Cauchy's Mean Theorem and the Cauchy-Schwarz Inequality

Benjamin Porter

September 13, 2023

Contents

1 Cauchy's Mean Theorem 3
1.1 Abstract 3
1.2 Formal proof 4
1.2.1 Collection sum and product 4
1.2.2 Auxiliary lemma 7
1.2.3 Mean and GMean 8
1.2.4 list-neq, list-eq 10
1.2.5 Element selection 13
1.2.6 Abstract properties 14
1.2.7 Existence of a new collection 19
1.2.8 Cauchy's Mean Theorem 24
2 The Cauchy-Schwarz Inequality 26
2.1 Abstract 26
2.2 Formal Proof 26
2.2.1 Vector, Dot and Norm definitions 26

Abstract

This document presents the mechanised proofs of two popular theorems attributed to Augustin Louis Cauchy - Cauchy's Mean Theorem and the Cauchy-Schwarz Inequality.

Chapter 1

Cauchy's Mean Theorem

theory CauchysMeanTheorem
imports Complex-Main
begin

1.1 Abstract

The following document presents a proof of Cauchy's Mean theorem formalised in the Isabelle/Isar theorem proving system.
Theorem: For any collection of positive real numbers the geometric mean is always less than or equal to the arithmetic mean. In mathematical terms:

$$
\sqrt[n]{x_{1} x_{2} \ldots x_{n}} \leq \frac{x_{1}+\ldots+x_{n}}{n}
$$

We will use the term mean to denote the arithmetic mean and gmean to denote the geometric mean.

Informal Proof:

This proof is based on the proof presented in [1]. First we need an auxiliary lemma (the proof of which is presented formally below) that states:
Given two pairs of numbers of equal sum, the pair with the greater product is the pair with the least difference. Using this lemma we now present the proof -
Given any collection C of positive numbers with mean M and product P and with some element not equal to M we can choose two elements from the collection, a and b where $a>M$ and $b<M$. Remove these elements from the collection and replace them with two new elements, a^{\prime} and b^{\prime} such that $a^{\prime}=M$ and $a^{\prime}+b^{\prime}=a+b$. This new collection C^{\prime} now has a greater product P^{\prime} but equal mean with respect to C. We can continue in this fashion until we have a collection C_{n} such that $P_{n}>P$ and $M_{n}=M$, but C_{n} has all its elements equal to M and thus $P_{n}=M^{n}$. Using the definition of geometric and arithmetic means above we can see that for any collection of positive
elements E it is always true that gmean $\mathrm{E} \leq$ mean E . QED.
[1] Dorrie, H. "100 Great Problems of Elementary Mathematics." 1965, Dover.

1.2 Formal proof

1.2.1 Collection sum and product

The finite collections of numbers will be modelled as lists. We then define sum and product operations over these lists.

Sum and product definitions

```
notation (input) sum-list (\sum:- [999] 998)
notation (input) prod-list (П:- [999] 998)
```


Properties of sum and product

We now present some useful properties of sum and product over collections.
These lemmas just state that if all the elements in a collection C are less (greater than) than some value m, then the sum will less than (greater than) $m * l e n g t h(C)$.
lemma sum-list-mono-lt [rule-format]:
fixes $x s$::real list
shows $x s \neq[] \wedge(\forall x \in$ set $x s . x<m)$
$\longrightarrow\left(\left(\sum: x s\right)<(m *(\right.$ real $($ length $\left.x s)))\right)$
proof (induct xs)
case Nil show? case by simp
next
case (Cons y ys)
\{
assume ant: $y \# y s \neq[] \wedge(\forall x \in \operatorname{set}(y \# y s) . x<m)$
hence $y l m: y<m$ by simp
have $\sum:(y \# y s)<m *$ real (length $\left.(y \# y s)\right)$
proof cases
assume $y s \neq[]$
moreover with ant have $\forall x \in$ set ys. $x<m$ by simp
moreover with calculation Cons have $\sum: y s<m *$ real (length ys) by simp
hence $\sum: y s+y<m *$ real (length ys) $+y$ by simp
with $y l m$ have $\sum:(y \# y s)<m *($ real(length ys) +1$)$ by $($ simp add:field-simps $)$
then have $\sum:(y \# y s)<m *($ real $($ length $y s+1))$
by (simp add: algebra-simps)
hence $\sum:(y \# y s)<m *($ real $($ length $(y \# y s)))$ by simp
thus ?thesis.
next

```
        assume }\neg(ys\not=[]
        hence ys = [] by simp
        with ylm show?thesis by simp
        qed
}
thus ?case by simp
qed
lemma sum-list-mono-gt [rule-format]:
fixes xs::real list
shows xs }\not=[]\wedge(\forallx\in\mathrm{ set xs. }x>m
        \longrightarrow ( ( \sum : x s ) > ( m * ( \text { real (length xs))))}
```

proof omitted
qed
If a is in C then the sum of the collection D where D is C with a removed is the sum of C minus a.
lemma sum-list-rmv1:
$a \in$ set $x s \Longrightarrow \sum:($ remove1 $a x s)=\sum: x s-\left(a::{ }^{\prime} a::\right.$ ab-group-add $)$
by (induct xs) auto
A handy addition and division distribution law over collection sums.

```
lemma list-sum-distrib-aux:
    shows \(\left(\sum: x s /(n:: ' a\right.\) :: archimedean-field \(\left.)+\sum: x s\right)=(1+(1 / n)) * \sum: x s\)
proof (induct xs)
    case Nil show ?case by simp
next
    case (Cons \(x\) xs)
    show ?case
    proof -
        have
            \(\sum:(x \# x s) / n=x / n+\sum: x s / n\)
            by (simp add: add-divide-distrib)
    also with Cons have
            \(\ldots=x / n+(1+1 / n) * \sum: x s-\sum: x s\)
            by \(\operatorname{simp}\)
    finally have
                \(\sum:(x \# x s) / n+\sum:(x \# x s)=x / n+(1+1 / n) * \sum: x s-\sum: x s+\sum:(x \# x s)\)
            by \(\operatorname{simp}\)
    also have
                \(\ldots=x / n+(1+(1 / n)-1) * \sum: x s+\sum:(x \# x s)\)
            by (subst mult-1-left [symmetric, of \(\left.\sum: x s\right]\) ) (simp add: field-simps)
    also have
                \(\ldots=x / n+(1 / n) * \sum: x s+\sum:(x \# x s)\)
            by \(\operatorname{simp}\)
    also have
                \(\ldots=(1 / n) * \sum:(x \# x s)+1 * \sum:(x \# x s)\) by \((\) simp add: divide-simps \()\)
```

```
    finally show ?thesis by (simp add: field-simps)
    qed
qed
lemma remove1-retains-prod:
    fixes \(a\) and \(x s:: ' a\) :: comm-ring-1 list
    shows \(a:\) set \(x s \longrightarrow \Pi: x s=\Pi:(\) remove \(1 a x s) * a\)
    (is ? \(P x s\) )
proof (induct \(x s\) )
    case Nil
    show ?case by simp
next
    case (Cons aa list)
    assume plist: ?P list
    show ?P (aa\#list)
    proof
    assume \(a m l: a: \operatorname{set}(a a \# l i s t)\)
    show \(\Pi:(a a \#\) list \()=\prod\) :remove1 \(a(a a \#\) list \() * a\)
    proof (cases)
        assume aeq: \(a=a a\)
        hence
            remove1 \(a(\) aa\# \(\#\) list \()=\) list
            by \(\operatorname{simp}\)
        hence
                \(\Pi:(\) remove1 \(a(\) aa\#list \())=\prod: l i s t\)
                by \(\operatorname{simp}\)
        moreover with aeq have
                \(\Pi:(a a \# l i s t)=\Pi: l i s t * a\)
                by \(\operatorname{simp}\)
        ultimately show
            \(\Pi:(\) aa\#list \()=\Pi\) :remove1 \(a(\) aa \# list \() * a\)
            by \(\operatorname{simp}\)
    next
        assume naeq: \(a \neq a a\)
        with aml have aml2: a : set list by simp
        from naeq have
            remove1 \(a(\) aa\#list \()=a a \#(\) remove1 a list \()\)
            by \(\operatorname{simp}\)
        moreover hence
            \(\Pi:(\) remove1 \(a(\) aa\#list \())=a a * \Pi:(\) remove1 a list \()\)
            by \(\operatorname{simp}\)
        moreover from aml2 plist have
            \(\Pi: l i s t=\Pi:(\) remove1 a list \() * a\)
            by \(\operatorname{simp}\)
        ultimately show
            \(\Pi:(\) aa\#list \()=\Pi:\) remove1 \(a(\) aa \# list \() * a\)
            by \(\operatorname{simp}\)
        qed
qed
```

qed
The final lemma of this section states that if all elements are positive and non-zero then the product of these elements is also positive and non-zero.

```
lemma el-gt0-imp-prod-gt0 [rule-format]:
    fixes \(x s::^{\prime} a\) :: archimedean-field list
    shows \(\forall y . y:\) set \(x s \longrightarrow y>0 \Longrightarrow \prod: x s>0\)
proof (induct xs)
    case Nil show? case by simp
next
    case (Cons a xs)
    have exp: \(\Pi:(a \# x s)=\prod: x s * a\) by \(\operatorname{simp}\)
    with Cons have \(a>0\) by simp
    with exp Cons show ?case by simp
qed
```


1.2.2 Auxiliary lemma

This section presents a proof of the auxiliary lemma required for this theorem.

```
lemma prod-exp:
    fixes \(x\) ::real
    shows \(4 *(x * y)=(x+y)\) ^2 \(-(x-y){ }^{\wedge} 2\)
    by (simp add: power2-diff power2-sum)
lemma abs-less-imp-sq-less [rule-format]:
    fixes \(x::\) real and \(y::\) real and \(z::\) real and \(w::\) real
    assumes diff: abs \((x-y)<a b s(z-w)\)
    shows \((x-y)^{\wedge} \xlongequal[2]{ }<(z-w)^{\wedge}\) 2
proof cases
    assume \(x=y\)
    hence abs \((x-y)=0\) by \(\operatorname{simp}\)
    moreover with diff have \(a b s(z-w)>0\) by simp
    hence \((z-w)^{\wedge} 2>0\) by simp
    ultimately show ?thesis by auto
next
    assume \(x \neq y\)
    hence \(a b s(x-y)>0\) by \(\operatorname{simp}\)
    with diff have \((a b s(x-y))^{\wedge}\) 2 \(<(\text { abs }(z-w))^{\wedge} 2\)
            by \(-(\) drule power-strict-mono \([\) where \(a=a b s(x-y)\) and \(n=2\) and \(b=a b s\)
\((z-w)]\), auto)
    thus ?thesis by simp
qed
```

The required lemma (phrased slightly differently than in the informal proof.) Here we show that for any two pairs of numbers with equal sums the pair with the least difference has the greater product.
lemma le-diff-imp-gt-prod [rule-format]:

```
    fixes \(x::\) real and \(y::\) real and \(z::\) real and \(w::\) real
    assumes diff: abs \((x-y)<a b s(z-w)\) and sum: \(x+y=z+w\)
    shows \(x * y>z * w\)
proof -
    from sum have \((x+y)^{\wedge} \mathcal{2}=(z+w)^{\wedge} 2\) by simp
    moreover from diff have \((x-y) \wedge 2<(z-w) \wedge 2\) by (rule abs-less-imp-sq-less)
    ultimately have \((x+y)^{\wedge} 2-(x-y) \wedge_{2}>(z+w)^{\wedge} 2-(z-w)^{\wedge} 2\) by auto
    thus \(x * y>z * w\) by (simp only: prod-exp [symmetric])
qed
```


1.2.3 Mean and GMean

Now we introduce definitions and properties of arithmetic and geometric means over collections of real numbers.

Definitions

Arithmetic mean

definition

$$
\begin{aligned}
& \text { mean }::(\text { real list }) \Rightarrow \text { real } \text { where } \\
& \text { mean } s=\left(\sum: s / \text { real }(\text { length } s)\right)
\end{aligned}
$$

Geometric mean

definition

```
gmean :: (real list)=>real where
gmean s = root (length s) (\Pi:s)
```


Properties

Here we present some trivial properties of mean and gmean.

```
lemma list-sum-mean:
    fixes xs::real list
    shows }\sum:xs=((\mathrm{ mean xs) * (real (length xs))}
apply (induct-tac xs)
apply simp
apply clarsimp
apply (unfold mean-def)
apply clarsimp
done
lemma list-mean-eq-iff:
    fixes one::real list and two::real list
    assumes
        se:( \sum:one = \sum:two ) and
        le:(length one = length two)
    shows (mean one = mean two)
proof -
```

```
    from se le have
    (\sum:one / real (length one))}=(\sum:two / real (length two)
    by auto
    thus ?thesis unfolding mean-def .
qed
lemma list-gmean-gt-iff:
    fixes one::real list and two::real list
    assumes
        gz1: П:one > 0 and gz2: П:two > 0 and
        ne1: one }\not=[] \mathrm{ and ne2: two }\not=[] an
        pe:(\prod:one > П:two) and
        le:(length one = length two)
    shows (gmean one > gmean two)
    unfolding gmean-def
    using le ne2 pe by simp
```

This slightly more complicated lemma shows that for every non-empty collection with mean M, adding another element a where $a=M$ results in a new list with the same mean M.

```
lemma list-mean-cons [rule-format]:
    fixes xs::real list
    shows \(x s \neq[] \longrightarrow\) mean \(((\) mean \(x s) \# x s)=\) mean \(x s\)
proof
    assume lne: \(x s \neq[]\)
    obtain len where ld: len \(=\) real (length \(x s\) ) by simp
    with lne have lgt0: len \(>0\) by simp
    hence lnez: len \(\neq 0\) by simp
    from lgt0 have l1nez: len \(+1 \neq 0\) by simp
    from ld have mean: mean \(x s=\sum\) :xs / len unfolding mean-def by simp
    with ld of-nat-add of-int-1 mean-def
    have mean \(((\) mean \(x s) \# x s)=\left(\sum: x s / l e n+\sum: x s\right) /(1+l e n)\)
        by \(\operatorname{simp}\)
    also from list-sum-distrib-aux [of \(x s\) ] have
        \(\ldots=(1+(1 /\) len \()) * \sum: x s /(1+\) len \()\) by \(\operatorname{simp}\)
    also with lnez have
    \(\ldots=(\) len +1\() * \sum:\) xs \(/(\) len \(*(1+\) len \())\)
        apply -
        apply (drule mult-divide-mult-cancel-left
            \(\left[\right.\) symmetric, where \(c=l e n\) and \(a=(1+1 /\) len \() * \sum: x s\) and \(\left.\left.b=1+l e n\right]\right)\)
        apply (clarsimp simp:field-simps)
        done
    also from l1nez have \(\ldots=\sum: x s /\) len
        apply (subst mult.commute [where \(a=l e n]\) )
        apply (drule mult-divide-mult-cancel-left
            [where \(c=l e n+1\) and \(a=\sum: x s\) and \(\left.\left.b=l e n\right]\right)\)
    by (simp add: ac-simps ac-simps)
    finally show mean ( \((\) mean \(x s) \# x s)=\) mean \(x s\) by (simp add: mean)
qed
```

For a non-empty collection with positive mean, if we add a positive number to the collection then the mean remains positive.

```
lemma mean-gt-0 [rule-format]:
    \(x s \neq[] \wedge 0<x \wedge 0<(\) mean \(x s) \longrightarrow 0<(\) mean \((x \# x s))\)
proof
    assume \(a: x s \neq[] \wedge 0<x \wedge 0<\) mean \(x s\)
    hence xgt0: \(0<x\) and mgt0: \(0<\) mean \(x s\) by auto
    from \(a\) have lxsgt0: length \(x s \neq 0\) by simp
    from mgt0 have \(x s g t 0: 0<\sum: x s\)
    proof -
        have mean \(x s=\sum: x s /\) real (length \(x s\) ) unfolding mean-def by simp
        hence \(\sum: x s=\) mean \(x s *\) real (length \(x s\) ) by simp
        moreover from lxsgt0 have real (length xs) \(>0\) by simp
        moreover with calculation lxsgt0 mgt0 show ?thesis by auto
    qed
    with \(x g t 0\) have \(\sum:(x \# x s)>0\) by simp
    thus \(0<(\) mean \((x \# x s))\)
    proof -
        assume \(0<\sum:(x \# x s)\)
        moreover have real (length \((x \# x s))>0\) by simp
        ultimately show ?thesis unfolding mean-def by simp
    qed
qed
```


1.2.4 list-neq, list-eq

This section presents a useful formalisation of the act of removing all the elements from a collection that are equal (not equal) to a particular value. We use this to extract all the non-mean elements from a collection as is required by the proof.

Definitions

list-neq and list-eq just extract elements from a collection that are not equal (or equal) to some value.

abbreviation

$$
\begin{aligned}
& \text { list-neq :: ('a list) } \Rightarrow{ }^{\prime} a \Rightarrow(\text { ('a list }) \text { where } \\
& \text { list-neq xs el }==\text { filter }(\lambda x . x \neq e l) \text { xs }
\end{aligned}
$$

abbreviation

list-eq :: ('a list) $\Rightarrow{ }^{\prime} a \Rightarrow$ ('a list) where
list-eq xs el $==$ filter $(\lambda x . x=e l)$ xs

Properties

This lemma just proves a required fact about list-neq, remove1 and length. lemma list-neq-remove1 [rule-format]:

```
    shows }a\not=m\wedgea: set x
    \longrightarrow l e n g t h ~ ( l i s t - n e q ~ ( r e m o v e 1 ~ a ~ x s ) ~ m ) ~ < ~ l e n g t h ~ ( l i s t - n e q ~ x s ~ m )
    (is ?A xs \longrightarrow?B xs is ?P xs)
proof (induct xs)
    case Nil show ?case by simp
next
    case (Cons x xs)
    note <?P xs`
    {
        assume a:?A (x#xs)
        hence
            a-ne-m: }a\not=m\mathrm{ and
            a-mem-x-xs: a : set(x#xs)
            by auto
    have b: ?B (x#xs)
    proof cases
            assume xs=[]
            with a-ne-m a-mem-x-xs show ?thesis
                apply (cases x=a)
                by auto
    next
            assume xs-ne: xs \not= []
            with a-ne-m a-mem-x-xs show ?thesis
            proof cases
            assume a=x with a-ne-m show ?thesis by simp
            next
                assume a-ne-x: a\not=x
                with a-mem-x-xs have a-mem-xs: a : set xs by simp
                with xs-ne a-ne-m Cons have
                rel: length (list-neq (remove1 a xs) m) < length (list-neq xs m)
                by simp
            show ?thesis
            proof cases
                    assume x-e-m: }x=
                    with Cons xs-ne a-ne-m a-mem-xs show ?thesis by simp
            next
                assume x-ne-m: }x\not=
                    from a-ne-x have
                    remove1 a (x#xs)=x#(remove1 a xs)
                    by simp
                    hence
                    length (list-neq (remove1 a (x#xs)) m)=
                    length (list-neq (x#(remove1 a xs)) m)
                    by simp
                    also with x-ne-m have
                    .. = 1 + length (list-neq (remove1 a xs)m)
                    by simp
                    finally have
                    length (list-neq (remove1 a (x#xs)) m)=
```

```
                    1 + length (list-neq (remove1 a xs)m)
                    by simp
                    moreover with x-ne-m a-ne-x have
                    length (list-neq (x#xs)m)=
                    1 + length (list-neq xs m)
                    by simp
                moreover with rel show ?thesis by simp
                qed
            qed
        qed
    }
    thus ?P (x#xs) by simp
qed
```

We now prove some facts about list-eq, list-neq, length, sum and product.

```
lemma list-eq-sum [simp]:
    fixes xs::real list
    shows \sum:(list-eq xs m)=(m*(real (length (list-eq xs m)))}
apply (induct-tac xs)
apply simp
apply (simp add:field-simps)
done
lemma list-eq-prod [simp]:
    fixes xs::real list
    shows \Pi:(list-eq xs m)=( m^ (length (list-eq xs m)))
apply (induct-tac xs)
apply simp
apply clarsimp
done
lemma sum-list-split:
    fixes xs::real list
    shows }\sum:xs=(\sum:(list-neq xs m) + \sum:(list-eq xs m))
apply (induct xs)
apply simp
apply clarsimp
done
lemma prod-list-split:
    fixes xs::real list
    shows \Pi:xs=(\Pi:(list-neq xs m)* \Pi:(list-eq xs m))
apply (induct xs)
apply simp
apply clarsimp
done
lemma sum-list-length-split:
    fixes xs::real list
```

```
shows length xs = length (list-neq xs m) + length (list-eq xs m)
apply (induct xs)
apply simp+
done
```


1.2.5 Element selection

We now show that given after extracting all the elements not equal to the mean there exists one that is greater then (or less than) the mean.

```
lemma pick-one-gt:
    fixes xs::real list and \(m\) ::real
    defines \(m: m \equiv(\) mean \(x s)\) and neq: noteq \(\equiv\) list-neq xs \(m\)
    assumes asum: noteq \(\neq[]\)
    shows \(\exists e\). \(e\) : set noteq \(\wedge e>m\)
proof (rule ccontr)
    let \(? m=(\) mean \(x s)\)
    let ?neq \(=\) list-neq xs ? \(m\)
    let \(? e q=\) list-eq \(x s ? m\)
    from list-eq-sum have \(\left(\sum: ? e q\right)=? m *(\) real (length ?eq) \()\) by simp
    from asum have neq-ne: ? \(n e q \neq[]\) unfolding \(m\) neq.
    assume not-el: \(\neg(\exists e . e\) : set noteq \(\wedge m<e)\)
    hence not-el-exp: \(\neg(\exists e . e:\) set ?neq \(\wedge\) ? \(m<e)\) unfolding \(m\) neq.
    hence \(\forall e\). \(\neg(e\) : set ? neq \() \vee \neg(e>\) ? m ) by simp
    hence \(\forall e\). \(e:\) set ?neq \(\longrightarrow \neg(e>\) ? \(m)\) by blast
    hence \(\forall e . e:\) set ? neq \(\longrightarrow e \leq\) ? \(m\) by (simp add: linorder-not-less)
    hence \(\forall e\). e : set ?neq \(\longrightarrow e<\) ? \(m\) by (simp add:order-le-less)
    with assms sum-list-mono-lt have ( \(\sum: ? n e q\) ) \(<\) ?m \(*\) (real (length ?neq)) by
blast
    hence
        \(\left(\sum: ? n e q\right)+\left(\sum: ? e q\right)<? m *(\) real \((\) length ?neq \())+\left(\sum: ? e q\right)\) by simp
    also have
        \(\ldots=(? m *((\) real \((\) length ? neq \()+(\) real \((\) length ?eq \()))))\)
            by (simp add:field-simps)
    also have
        \(\ldots=(? m *(\) real \((\) length \(x s)))\)
            apply (subst of-nat-add [symmetric])
            by (simp add: sum-list-length-split [symmetric])
    also have
        \(\ldots=\sum: x s\)
        by (simp add: list-sum-mean [symmetric])
    also from not-el calculation show False by (simp only: sum-list-split [symmetric])
qed
lemma pick-one-lt:
    fixes \(x s:\) :real list and \(m\) ::real
    defines \(m: m \equiv(\) mean \(x s)\) and neq: noteq \(\equiv\) list-neq xs \(m\)
    assumes asum: noteq \(\neq[]\)
    shows \(\exists e\). \(e:\) set noteq \(\wedge e<m\)
proof (rule ccontr) - reductio ad absurdum
```

```
    let ?m}=(\mathrm{ mean xs)
    let ?neq = list-neq xs ?m
    let ?eq = list-eq xs ?m
    from list-eq-sum have (\sum:?eq) =?m * (real (length ?eq)) by simp
    from asum have neq-ne: ?neq }=[]\mathrm{ unfolding m neq.
    assume not-el: }\neg(\existse.e e: set noteq \wedge m>e
    hence not-el-exp: }\neg(\existse.e : set ?neq \wedge ? m > e) unfolding m neq
    hence }\foralle.\neg(e\mathrm{ : set ?neq )}\vee\neg(e<\mathrm{ ?m) by simp
    hence }\foralle.e : set ?neq\longrightarrow\neg \longrightarrow(e<?m) by blas
    hence }\foralle.e:set ?neq\longrightarrowe\geq?m by (simp add:linorder-not-less
    hence }\foralle.e : set ?neq \longrightarrowe> ?m by (auto simp:order-le-less
    with assms sum-list-mono-gt have (\sum:?neq) > ?m * (real (length ?neq)) by
blast
    hence
        (\sum:?neq)}+(\sum:?eq)>?m*(real (length ?neq)) + (\sum:?eq) by sim
    also have
        (?m*(real (length ?neq)) +(\sum:?eq)) =
        (?m*(real (length ?neq)) +(?m*(real (length ?eq)))
    by simp
    also have
        .. = (?m* ((real (length ?neq) +(real (length ?eq))))}
        by (simp add:field-simps)
    also have
        .. = (?m * (real (length xs))}
        apply (subst of-nat-add [symmetric])
        by (simp add: sum-list-length-split [symmetric])
    also have
        \ldots= \sum:xs
        by (simp add: list-sum-mean [symmetric])
    also from not-el calculation show False by (simp only: sum-list-split [symmetric])
qed
```


1.2.6 Abstract properties

In order to maintain some comprehension of the following proofs we now introduce some properties of collections.

Definitions

het: The heterogeneity of a collection is the number of elements not equal to its mean. A heterogeneity of zero implies the all the elements in the collection are the same (i.e. homogeneous).

definition

het :: real list \Rightarrow nat where
het $l=$ length $($ list-neq $l($ mean $l))$
lemma het-gt-O-imp-noteq-ne: het $l>0 \Longrightarrow$ list-neq $l($ mean $l) \neq[]$
unfolding het-def by simp

```
lemma het-gt-OI: assumes \(a: a \in\) set \(x s\) and \(b: b \in\) set \(x s\) and neq: \(a \neq b\)
    shows het xs \(>0\)
proof (rule ccontr)
    assume \(\neg\) ?thesis
    hence het \(x s=0\) by auto
    from this[unfolded het-def] have list-neq xs (mean xs) \(=[]\) by simp
    from arg-cong[OF this, of set \(]\) have mean: \(\bigwedge x . x \in\) set \(x s \Longrightarrow x=\) mean \(x s\) by
auto
    from mean \([O F a]\) mean \([O F b]\) neq show False by auto
qed
```

$\gamma-e q$: Two lists are γ-equivalent if and only if they both have the same
number of elements and the same arithmetic means.

definition

 \(\gamma-e q::((\) real list \() *(\) real list \()) \Rightarrow\) bool where
 \(\gamma\)-eq \(a \longleftrightarrow\) mean \((\) fst \(a)=\) mean \((\) snd \(a) \wedge\) length \((f s t a)=\) length \((\) snd \(a)\)
 $\gamma-e q$ is transitive and symmetric.
lemma γ-eq-sym: γ-eq $(a, b)=\gamma-e q(b, a)$
unfolding γ-eq-def by auto
lemma γ-eq-trans:
$\gamma-e q(x, y) \Longrightarrow \gamma-e q(y, z) \Longrightarrow \gamma-e q(x, z)$
unfolding γ-eq-def by simp
pos: A list is positive if all its elements are greater than 0 .

```
definition
pos \(::\) real list \(\Rightarrow\) bool where
pos \(l \longleftrightarrow(\) if \(l=[]\) then False else \(\forall e . e:\) set \(l \longrightarrow e>0)\)
```

lemma pos-empty [simp]: pos [] = False unfolding pos-def by simp
lemma pos-single $[$ simp $]$: pos $[x]=(x>0)$ unfolding pos-def by simp
lemma pos-imp-ne: pos $x s \Longrightarrow x s \neq[]$ unfolding pos-def by auto
lemma pos-cons [simp]:
$x s \neq[] \longrightarrow \operatorname{pos}(x \# x s)=$
(if $(x>0)$ then pos xs else False)
(is?P $x x s$ is ?A $x s \longrightarrow$? $S x x s$)
proof (simp add: if-split, rule impI)
assume xsne: $x s \neq[]$
hence $p x s$-simp:
pos $x s=(\forall e . e:$ set $x s \longrightarrow e>0)$
unfolding pos-def by simp
show
$(0<x \longrightarrow \operatorname{pos}(x \# x s)=$ pos $x s) \wedge$
$(\neg 0<x \longrightarrow \neg \operatorname{pos}(x \# x s))$
proof
\{

```
        assume xgt0: \(0<x\)
        \{
            assume pxs: pos xs
            with pxs-simp have \(\forall e . e:\) set \(x s \longrightarrow e>0\) by simp
            with xgt0 have \(\forall e . e:\) set \((x \# x s) \longrightarrow e>0\) by simp
            hence pos ( \(x \# x s\) ) unfolding pos-def by simp
        \}
        moreover
        \{
            assume pxxs: pos (x\#xs)
            hence \(\forall e . e: \operatorname{set}(x \# x s) \longrightarrow e>0\) unfolding pos-def by simp
            hence \(\forall e\). \(e\) : set \(x s \longrightarrow e>0\) by simp
            with xsne have pos xs unfolding pos-def by simp
            \}
            ultimately have pos \((x \# x s)=\) pos \(x s\)
            apply -
            apply (rule iffI)
            apply auto
            done
        \}
        thus \(0<x \longrightarrow \operatorname{pos}(x \# x s)=\) pos \(x s\) by \(\operatorname{simp}\)
    next
        \{
            assume xngt0: \(\neg(0<x)\)
            \{
            assume pxs: pos xs
            with pxs-simp have \(\forall e . e:\) set \(x s \longrightarrow e>0\) by simp
            with xngt0 have \(\neg(\forall e . e: s e t(x \# x s) \longrightarrow e>0)\) by auto
            hence \(\neg(\operatorname{pos}(x \# x s))\) unfolding pos-def by simp
            \}
            moreover
            \{
            assume pxxs: \(\neg p o s ~ x s\)
            with xsne have \(\neg(\forall e . e\) : set \(x s \longrightarrow e>0)\) unfolding pos-def by simp
            hence \(\neg(\forall e . e: \operatorname{set}(x \# x s) \longrightarrow e>0)\) by auto
            hence \(\neg(\operatorname{pos}(x \# x s))\) unfolding pos-def by simp
            \}
            ultimately have \(\neg \operatorname{pos}(x \# x s)\) by auto
    \}
    thus \(\neg 0<x \longrightarrow \neg \operatorname{pos}(x \# x s)\) by simp
    qed
```

qed

Properties

Here we prove some non-trivial properties of the abstract properties.
Two lemmas regarding pos. The first states the removing an element from a positive collection (of more than 1 element) results in a positive collection.

The second asserts that the mean of a positive collection is positive.

```
lemma pos-imp-rmv-pos:
    assumes (remove1 a xs) #[] pos xs shows pos(remove1 a xs)
proof -
    from assms have pl: pos xs and rmvne:(remove1 a xs)\not=[] by auto
    from pl have xs \not= [] by (rule pos-imp-ne)
    with pl pos-def have }\forallx.x: set xs \longrightarrowx>0 by sim
    hence }\forallx.x\mathrm{ : set (remove1 a xs) }\longrightarrowx>
        using set-remove1-subset[of-xs] by(blast)
    with rmvne show pos (remove1 a xs) unfolding pos-def by simp
qed
lemma pos-mean: pos xs \Longrightarrow mean xs > 0
proof (induct xs)
    case Nil thus ?case by(simp add: pos-def)
next
    case (Cons x xs)
    show ?case
    proof cases
        assume xse: xs = []
        hence pos (x#xs)=(x>0) by simp
        with Cons(2) have x>0 by(simp)
        with xse have 0<mean (x#xs) by(auto simp:mean-def)
        thus ?thesis by simp
    next
        assume xsne: xs \not= []
        show ?thesis
        proof cases
        assume pxs: pos xs
        with Cons(1) have z-le-mxs: 0 < mean xs by(simp)
        {
            assume ass: x>0
            with ass z-le-mxs xsne have 0<mean (x#xs)
                    apply -
                    apply (rule mean-gt-0)
                by simp
        }
        moreover
        {
            from xsne pxs have 0<x
                proof cases
                    assume 0<x thus ?thesis by simp
                next
                    assume }\neg(0<x
                    with xsne pos-cons have pos (x#xs)= False by simp
                    with Cons(2) show ?thesis by simp
                qed
        }
        ultimately have 0< mean (x#xs) by simp
```

```
        thus ?thesis by simp
    next
        assume npxs: \negpos xs
        with xsne pos-cons have pos (x#xs) = False by simp
        thus ?thesis using Cons(2) by simp
    qed
    qed
qed
```

We now show that homogeneity of a non-empty collection x implies that its product is equal to $($ mean $x)$ 个 $($ length $x)$.

```
lemma prod-list-het0:
    shows \(x \neq[] \wedge\) het \(x=0 \Longrightarrow \Pi: x=(\) mean \(x) \wedge(\) length \(x)\)
proof -
    assume \(x \neq[] \wedge\) het \(x=0\)
    hence xne: \(x \neq \square]\) and hetx: het \(x=0\) by auto
    from hetx have lz: length (list-neq \(x(\) mean \(x))=0\) unfolding het-def.
    hence \(\Pi:(\) list-neq \(x(\) mean \(x))=1\) by simp
    with prod-list-split have \(\Pi: x=\Pi:(\) list-eq \(x(\) mean \(x))\)
        apply -
        apply (drule meta-spec \([\) of \(-x]\) )
        apply (drule meta-spec [of - mean x])
        by \(\operatorname{simp}\)
    also with list-eq-prod have
    \(\ldots=(\) mean \(x) \wedge\) (length \((\) list-eq \(x(\) mean \(x)))\) by simp
also with calculation lz sum-list-length-split have
    \(\Pi: x=(\) mean \(x) \wedge(\) length \(x)\)
    apply -
    apply (drule meta-spec \([o f-x]\) )
    apply (drule meta-spec [of - mean \(x]\) )
    by \(\operatorname{simp}\)
    thus ?thesis by simp
qed
```

Furthermore we present an important result - that a homogeneous collection has equal geometric and arithmetic means.

```
lemma het-base:
    shows pos \(x \wedge\) het \(x=0 \Longrightarrow\) gmean \(x=\) mean \(x\)
proof -
    assume ass: pos \(x \wedge\) het \(x=0\)
    hence
        \(x n e: x \neq[]\) and
        hetx: het \(x=0\) and
        posx: pos \(x\)
    by auto
    from posx pos-mean have mxgt0: mean \(x>0\) by simp
    from xne have lxgt0: length \(x>0\) by simp
    with ass prod-list-het0 have
    root \((\) length \(x)(\Pi: x)=\operatorname{root}(\) length \(x)((\) mean \(x) \uparrow(\) length \(x))\)
```

by simp
also from lxgt0 mxgt0 real-root-power-cancel have $\ldots=$ mean x by auto finally show gmean $x=$ mean x unfolding gmean-def. qed

1.2.7 Existence of a new collection

We now present the largest and most important proof in this document. Given any positive and non-homogeneous collection of real numbers there exists a new collection that is γ-equivalent, positive, has a strictly lower heterogeneity and a greater geometric mean.

```
lemma new-list-gt-gmean:
    fixes xs :: real list and m :: real
    and neq and eq
    defines
        m:m \equivmean xs and
        neq: noteq \equiv list-neq xs m and
        eq: eq \equiv list-eq xs m
    assumes pos-xs: pos xs and het-gt-0: het xs > 0
    shows
    \existsx\mp@subsup{s}{}{\prime}.gmean xs'> gmean xs ^ \gamma-eq (xs',xs)^
            het x\mp@subsup{s}{}{\prime}<< het xs ^ pos xs'
proof -
    from pos-xs pos-imp-ne have
        pos-els: }\forally.y: set xs \longrightarrowy>0 by (unfold pos-def, simp
    with el-gt0-imp-prod-gt0[of xs] have pos-asm: \Pi:xs > 0 by simp
    from neq het-gt-0 het-gt-0-imp-noteq-ne m have
        neqne: noteq }\not=[]\mathrm{ by simp
```

Pick two elements from xs , one greater than m , one less than m .
from assms pick-one-gt neqne obtain α where
α-def: α : set noteq $\wedge \alpha>m$ unfolding neq m by auto
from assms pick-one-lt neqne obtain β where
β-def: β : set noteq $\wedge \beta<m$ unfolding neq m by auto
from α-def β-def have α-gt: $\alpha>m$ and β-lt: $\beta<m$ by auto
from α-def β-def have el-neq: $\beta \neq \alpha$ by simp
from neqne neq have xsne: xs $\neq[]$ by auto
from β-def have β-mem: β : set xs by (auto simp: neq)
from α-def have α-mem: α : set xs by (auto simp: neq)
from pos-xs pos-def xsne α-mem β-mem α-def β-def have
α-pos: $\alpha>0$ and β-pos: $\beta>0$ by auto

- remove these elements from xs, and insert two new elements
obtain left-over where lo: left-over $=($ remove1 $\beta($ remove 1α xs $))$ by simp
obtain b where bdef: $m+b=\alpha+\beta$
by (drule meta-spec $[$ of $-\alpha+\beta-m]$, simp)
from m pos-xs pos-def pos-mean have m-pos: $m>0$ by simp
with bdef α-pos β-pos α-gt β-lt have b-pos: $b>0$ by simp
obtain new-list where nl: new-list $=m \# b \#($ left-over $)$ by auto
from el-neq β-mem α-mem have β : set $x s \wedge \alpha$: set $x s \wedge \beta \neq \alpha$ by simp
hence α : set (remove1 β xs) $\wedge \beta: \operatorname{set}($ remove1 α xs) by (auto simp add: in-set-remove1)
moreover hence (remove1 $\alpha x s) \neq[] \wedge($ remove1 β xs $) \neq[]$ by (auto)
ultimately have
mem : $\alpha: \operatorname{set}($ remove $1 \beta x s) \wedge \beta: \operatorname{set}($ remove1 $\alpha x s) \wedge$
$($ remove $1 \alpha x s) \neq[] \wedge($ remove $1 \beta x s) \neq[]$ by simp
- prove that new list is positive
from $n l$ have $n l$-pos: pos new-list
proof cases
assume left-over $=[]$
with $n l$ b-pos m-pos show ?thesis by simp
next
assume lone: left-over $\neq[]$
from mem pos-imp-rmv-pos pos-xs have pos (remove1 α xs) by simp
with lo lone pos-imp-rmv-pos have pos left-over by simp
with lone mem nl m-pos b-pos show?thesis by simp
qed
- now show that the new list has the same mean as the old list
with mem nl lo bdef α-mem β-mem
have $\sum:$ new-list $=\sum: x s$
apply clarsimp
apply (subst sum-list-rmv1)
apply simp
apply (subst sum-list-rmv1)
apply simp
apply clarsimp
done
moreover from lo $\mathrm{nl} \beta$-mem α-mem mem have
leq: length new-list $=$ length $x s$
apply -
apply (erule conjE)+
apply (clarsimp)
apply (subst length-remove1, simp)
apply (simp add: length-remove1)
apply (auto dest!:length-pos-if-in-set)
done
ultimately have eq-mean: mean new-list $=$ mean $x s$ by (rule list-mean-eq-iff)
- finally show that the new list has a greater gmean than the old list
have gt-gmean: gmean new-list $>$ gmean xs
proof -

```
    from bdef \alpha-gt \beta-lt have abs (m-b)<abs (\alpha-\beta) by arith
    moreover from bdef have }m+b=\alpha+\beta\mathrm{ .
    ultimately have mb-gt-gt: }m*b>\alpha*\beta\mathrm{ by (rule le-diff-imp-gt-prod)
    moreover from nl have
        \Pi : n e w - l i s t ~ = ~ \Pi : l e f t - o v e r ~ * ~ ( ~ m * b ) ~ b y ~ a u t o
    moreover
    from lo \alpha-mem \beta-mem mem remove1-retains-prod [where ' }a=\mathrm{ real] have
        xsprod: \Pi:xs = \:left-over * ( }\alpha*\beta)\mathrm{ by auto
    moreover from xsne have
        xs # [].
    moreover from nl have
        nlne: new-list }\not=[] by sim
    moreover from pos-asm lo have
        \Pi:left-over > 0
        proof -
            from pos-asm have \Pi:xs>0.
            moreover
            from xsprod have \Pi:xs=\Pi:left-over * ( }\alpha*\beta)\mathrm{ .
            ultimately have \Pi:left-over * (\alpha*\beta)>0 by simp
            moreover
            from pos-els \alpha-mem }\beta\mathrm{ -mem have }\alpha>0\mathrm{ and }\beta>0\mathrm{ by auto
            hence }\alpha*\beta>0 by sim
            ultimately show \Pi:left-over > 0
                apply -
                apply (rule zero-less-mult-pos2 [where a=(\alpha*\beta)])
                by auto
        qed
    ultimately have \Pi:new-list > \:xs
        by simp
    moreover with pos-asm nl have }\Pi\mathrm{ :new-list > 0 by auto
    moreover from calculation pos-asm xsne nlne leq list-gmean-gt-iff
    show gmean new-list > gmean xs by simp
qed
- auxiliary info
from }\beta\mathrm{ -lt have }\beta\mathrm{ -ne-m: }\beta\not=m\mathrm{ by simp
from mem have
    \beta-mem-rmv-\alpha: \beta: set (remove1 \alpha xs) and rmv-\alpha-ne:(remove1 \alpha xs) \not= [] by
auto
from }\alpha\mathrm{ -def have }\alpha\mathrm{ -ne-m: }\alpha\not=m\mathrm{ by simp
- now show that new list is more homogeneous
have lt-het: het new-list < het xs
proof cases
    assume bm: b=m
    with het-def have
    het new-list = length (list-neq new-list (mean new-list))
    by simp
```

also with $m \mathrm{nl}$ eq-mean have
$\ldots=$ length (list-neq $(m \# b \#($ left-over $)) m$)
by simp
also with $b m$ have
$\ldots=$ length (list-neq left-over m)
by simp
also with lo β-def α-def have
$\ldots=$ length $($ list-neq (remove1 $\beta($ remove1 α xs $)) m$)
by simp
also from β-ne-m β-mem-rmv- α rmv- α-ne have
\ldots length (list-neq (remove1 α xs) m)
apply -
apply (rule list-neq-remove1)
by simp
also from α-mem α-ne-m xsne have
$\ldots<$ length (list-neq xs m)
apply -
apply (rule list-neq-remove1)
by simp
also with m het-def have $\ldots=$ het $x s$ by simp
finally show het new-list < het xs.
next
assume $b n m$: $b \neq m$
with het-def have
het new-list $=$ length (list-neq new-list (mean new-list) $)$
by simp
also with m nl eq-mean have
$\ldots=$ length $($ list-neq $(m \# b \#($ left-over $)) m)$
by simp
also with $b n m$ have
$\ldots=$ length $(b \#($ list-neq left-over $m))$
by simp
also have
$\ldots=1+$ length (list-neq left-over m)
by simp
also with lo β-def α-def have
$\ldots=1+$ length $($ list-neq $($ remove $1 \beta($ remove 1α xs $)) m)$
by simp
also from β-ne-m β-mem-rmv- α rmv- α-ne have
$\ldots<1+$ length (list-neq (remove1 α xs) m)
apply -
apply (simp only: nat-add-left-cancel-less)
apply (rule list-neq-remove1)
by simp
finally have
het new-list \leq length (list-neq (remove1 α xs) m)
by simp
also from α-mem α-ne-m xsne have $\ldots<$ length (list-neq xs m) apply -

```
        apply (rule list-neq-remove1)
        by simp
    also with m het-def have ... = het xs by simp
    finally show het new-list < het xs.
qed
    - thus thesis by existence of newlist
    from \gamma-eq-def lt-het gt-gmean eq-mean leq nl-pos show ?thesis by auto
qed
```

Furthermore we show that for all non-homogeneous positive collections there exists another collection that is γ-equivalent, positive, has a greater geometric mean and is homogeneous.

```
lemma existence-of-het0 [rule-format]:
    shows \(\forall x . p=\) het \(x \wedge p>0 \wedge\) pos \(x \longrightarrow\)
    \((\exists y\). gmean \(y>\) gmean \(x \wedge \gamma-e q(x, y) \wedge\) het \(y=0 \wedge\) pos \(y)\)
    (is ? \(Q p\) is \(\forall x\). (?A \(x p \longrightarrow\) ? \(S x)\) )
proof (induct p rule: nat-less-induct)
    fix \(n\)
    assume ind: \(\forall m<n\). ? \(Q m\)
    \{
        fix \(x\)
    assume ass: ?A \(x\) n
    hence het \(x>0\) and pos \(x\) by auto
    with new-list-gt-gmean have
        \(\exists y\) gmean \(y>\) gmean \(x \wedge \gamma-e q(x, y) \wedge\) het \(y<\) het \(x \wedge\) pos \(y\)
        apply -
        apply (drule meta-spec \([o f-x]\) )
        apply (drule meta-mp)
            apply assumption
            apply (drule meta-mp)
                apply assumption
            apply (subst(asm) \(\gamma\)-eq-sym)
            apply simp
            done
        then obtain \(\beta\) where
                \(\beta\)-def: gmean \(\beta>\) gmean \(x \wedge \gamma-e q(x, \beta) \wedge\) het \(\beta<\) het \(x \wedge\) pos \(\beta\)..
        then obtain \(b\) where bdef: \(b=\) het \(\beta\) by simp
        with ass \(\beta\)-def have \(b<n\) by auto
        with ind have ? \(Q b\) by simp
        with \(\beta\)-def have
            ind2: \(b=\) het \(\beta \wedge 0<b \wedge \operatorname{pos} \beta \longrightarrow\)
            \((\exists y\) gmean \(\beta<\) gmean \(y \wedge \gamma-e q(\beta, y) \wedge\) het \(y=0 \wedge\) pos \(y)\) by simp
    \{
        assume \(\neg(0<b)\)
        hence \(b=0\) by simp
        with bdef have het \(\beta=0\) by simp
        with \(\beta\)-def have ?S \(x\) by auto
    \}
```

```
    moreover
    {
        assume 0<b
        with bdef ind2 \beta-def have ?S \beta by simp
        then obtain \gamma where
                gmean }\beta<\mathrm{ gmean }\gamma\wedge\gamma-eq (\beta,\gamma)^ het \gamma=0^ pos \gamma ..
            with }\beta\mathrm{ -def have gmean }x<gmean \gamma ^\gamma-eq (x,\gamma)^ het \gamma=0^ pos \gamma
                apply clarsimp
                apply (rule \gamma-eq-trans)
                by auto
            hence ?S x by auto
        }
        ultimately have ?S }x\mathrm{ by auto
    }
    thus ?Q n by simp
qed
```


1．2．8 Cauchy＇s Mean Theorem

We now present the final proof of the theorem．For any positive collection we show that its geometric mean is less than or equal to its arithmetic mean．

```
theorem CauchysMeanTheorem:
    fixes \(z:\) :real list
    assumes pos z
    shows gmean \(z \leq\) mean \(z\)
proof -
    from 〈pos \(z\rangle\) have \(z n e: z \neq[]\) by (rule pos-imp-ne)
    show gmean \(z \leq\) mean \(z\)
    proof cases
        assume het \(z=0\)
        with \(\langle p o s\) z zne het-base have gmean \(z=\) mean \(z\) by simp
        thus ?thesis by simp
    next
        assume het \(z \neq 0\)
        hence het \(z>0\) by simp
        moreover obtain \(k\) where \(k=\) het \(z\) by simp
        moreover with calculation 〈pos z〉 existence-of-het0 have
            \(\exists y\) gmean \(y>\) gmean \(z \wedge \gamma-e q(z, y) \wedge\) het \(y=0 \wedge\) pos \(y\) by auto
        then obtain \(\alpha\) where
            gmean \(\alpha>\) gmean \(z \wedge \gamma-e q(z, \alpha) \wedge\) het \(\alpha=0 \wedge\) pos \(\alpha\)..
        with het-base \(\gamma\)-eq-def pos-imp-ne have
            mean \(z=\) mean \(\alpha\) and
            gmean \(\alpha>\) gmean \(z\) and
            gmean \(\alpha=\) mean \(\alpha\) by auto
        hence gmean \(z<\) mean \(z\) by simp
        thus ?thesis by simp
    qed
qed
```

In the equality version we prove that the geometric mean is identical to the arithmetic mean iff the collection is homogeneous．

```
theorem CauchysMeanTheorem-Eq:
    fixes \(z:\) :real list
    assumes pos \(z\)
    shows gmean \(z=\) mean \(z \longleftrightarrow\) het \(z=0\)
proof
    assume het \(z=0\)
    with het-base \([\) of \(z]\langle p o s z\rangle\) show gmean \(z=\) mean \(z\) by auto
next
    assume eq: gmean \(z=\) mean \(z\)
    show het \(z=0\)
    proof (rule ccontr)
        assume het \(z \neq 0\)
        hence het \(z>0\) by auto
        moreover obtain \(k\) where \(k=\) het \(z\) by simp
        moreover with calculation 〈pos z〉 existence-of-het0 have
            \(\exists y\) gmean \(y>\) gmean \(z \wedge \gamma-e q(z, y) \wedge\) het \(y=0 \wedge\) pos \(y\) by auto
        then obtain \(\alpha\) where
            gmean \(\alpha>\) gmean \(z \wedge \gamma-e q(z, \alpha) \wedge\) het \(\alpha=0 \wedge \operatorname{pos} \alpha\)..
        with het-base \(\gamma\)-eq-def pos-imp-ne have
            mean \(z=\) mean \(\alpha\) and
            gmean \(\alpha>\) gmean \(z\) and
            gmean \(\alpha=\) mean \(\alpha\) by auto
        hence gmean \(z<\) mean \(z\) by simp
        thus False using eq by auto
    qed
qed
corollary CauchysMeanTheorem-Less:
    fixes \(z\) ::real list
    assumes pos \(z\) and het \(z>0\)
    shows gmean \(z<\) mean \(z\)
    using
        CauchysMeanTheorem[OF 〈pos z〉]
        CauchysMeanTheorem-Eq[OF〈pos z〉]
        〈het \(z>0\) 〉
    by auto
```

end

Chapter 2

The Cauchy-Schwarz Inequality

theory CauchySchwarz
imports Complex-Main
begin

2.1 Abstract

The following document presents a formalised proof of the Cauchy-Schwarz Inequality for the specific case of R^{n}. The system used is Isabelle/Isar.
Theorem: Take V to be some vector space possessing a norm and inner product, then for all $a, b \in V$ the following inequality holds: $|a \cdot b| \leq\|a\| *\|b\|$. Specifically, in the Real case, the norm is the Euclidean length and the inner product is the standard dot product.

2.2 Formal Proof

2.2.1 Vector, Dot and Norm definitions.

This section presents definitions for a real vector type, a dot product function and a norm function.

Vector

We now define a vector type to be a tuple of (function, length). Where the function is of type nat \Rightarrow real. We also define some accessor functions and appropriate notation.

```
type-synonym vector =(nat=>real) * nat
```

```
definition
    ith :: vector \(\Rightarrow\) nat \(\Rightarrow\) real (((-)_) \([80,100] 100)\) where
    ith \(v i=f s t v i\)
definition
    vlen \(::\) vector \(\Rightarrow\) nat where
    vlen \(v=s n d v\)
```

Now to access the second element of some vector v the syntax is v_{2}.

Dot and Norm

We now define the dot product and norm operations.

definition

```
dot :: vector }=>\mathrm{ vector }=>\mathrm{ real (infixr - 60) where
dot a b = (\sumj\in{1..(vlen a)}. aj* 施)
definition
```

```
norm \(::\) vector \(\Rightarrow\) real \(\quad(\|-\| 100)\) where
```

norm $::$ vector \Rightarrow real $\quad(\|-\| 100)$ where
norm $v=\operatorname{sqrt}\left(\sum j \in\{1 . .(\right.$ vlen $\left.v)\} . v_{j} \wedge_{2}\right)$

```
norm \(v=\operatorname{sqrt}\left(\sum j \in\{1 . .(\right.\) vlen \(\left.v)\} . v_{j} \wedge_{2}\right)\)
```

Another definition of the norm is $\|v\|=\operatorname{sqrt}(v \cdot v)$. We show that our definition leads to this one.

```
lemma norm-dot:
    \(\|v\|=\operatorname{sqrt}(v \cdot v)\)
proof -
    have \(\operatorname{sqrt}(v \cdot v)=\operatorname{sqrt}\left(\sum j \in\{1 . .(\right.\) vlen \(\left.v)\} . v_{j} * v_{j}\right)\) unfolding dot-def by simp
    also with real-sq have \(\ldots=\operatorname{sqrt}\left(\sum j \in\{1 . .(v l e n v)\} . v_{j}{ }^{\text {®2 }}\right.\) ) by \(\operatorname{simp}\)
    also have \(\ldots=\|v\|\) unfolding norm-def by \(\operatorname{simp}\)
    finally show ?thesis ..
qed
```

A further important property is that the norm is never negative.

```
lemma norm-pos:
    |v|\geq0
proof -
    have }\forallj.\mp@subsup{v}{j}{~}~2\geq0\mathrm{ unfolding ith-def by auto
    have ( }\sumj\in{1..(vlen v)}.vj`Z) \geq0 by (simp add: sum-nonneg)
    with real-sqrt-ge-zero have sqrt (\sumj\in{1..(vlen v)}.v^^2) \geq0.
    thus ?thesis unfolding norm-def .
qed
```

We now prove an intermediary lemma regarding double summation.

```
lemma double-sum-aux:
    fixes \(f:: n a t \Rightarrow\) real
    shows
    \(\left(\sum k \in\{1 . . n\} .\left(\sum j \in\{1 . . n\} . f k * g j\right)\right)=\)
        \(\left(\sum k \in\{1 . . n\} .\left(\sum j \in\{1 \ldots n\} .(f k * g j+f j * g k) / 2\right)\right)\)
```

```
proof -
    have
        \(2 *\left(\sum k \in\{1 . . n\} .\left(\sum j \in\{1 . . n\} . f k * g j\right)\right)=\)
        \(\left(\sum k \in\{1 . . n\} .\left(\sum j \in\{1 . . n\} . f k * g j\right)\right)+\)
        \(\left(\sum k \in\{1 . . n\} .\left(\sum j \in\{1 . . n\} . f k * g j\right)\right)\)
    by \(\operatorname{simp}\)
    also have
        \(\ldots=\)
        \(\left(\sum k \in\{1 . . n\} .\left(\sum j \in\{1 . . n\} . f k * g j\right)\right)+\)
        \(\left(\sum k \in\{1 . . n\} .\left(\sum j \in\{1 . . n\} . f j * g k\right)\right)\)
        by (simp only: double-sum-equiv)
    also have
        \(\ldots=\)
        \(\left(\sum k \in\{1 . . n\} .\left(\sum j \in\{1 . . n\} . f k * g j+f j * g k\right)\right)\)
        by (auto simp add: sum.distrib)
    finally have
        \(2 *\left(\sum k \in\{1 . . n\} .\left(\sum j \in\{1 . . n\} . f k * g j\right)\right)=\)
        \(\left(\sum k \in\{1 . . n\} .\left(\sum j \in\{1 . . n\} . f k * g j+f j * g k\right)\right)\).
    hence
        \(\left(\sum k \in\{1 . . n\} .\left(\sum j \in\{1 . . n\} . f k * g j\right)\right)=\)
        \(\left(\sum k \in\{1 . . n\} .\left(\sum j \in\{1 . . n\} .(f k * g j+f j * g k)\right)\right) *(1 / 2)\)
        by auto
    also have
        \(\left(\sum k \in\{1 . . n\} .\left(\sum j \in\{1 . . n\} .(f k * g j+f j * g k) *(1 / 2)\right)\right)\)
        by (simp add: sum-distrib-left mult.commute)
    finally show ?thesis by (auto simp add: inverse-eq-divide)
qed
```

The final theorem can now be proven. It is a simple forward proof that uses properties of double summation and the preceding lemma.

```
theorem CauchySchwarzReal:
    fixes \(x:\) :vector
    assumes vlen \(x=\) vlen \(y\)
    shows \(|x \cdot y| \leq\|x\| *\|y\|\)
proof -
    have \(|x \cdot y|^{\wedge 2} \leq(\|x\| * * y \|)^{\wedge} 2\)
    proof -
```

We can rewrite the goal in the following form ...

```
have (|x|*|y|)^2 - |x\cdoty|`2 \geq0
proof -
    obtain n where nx: n= vlen x by simp
    with «vlen }x=\mathrm{ vlen }y>\mathrm{ have ny: n= vlen y by simp
    {
```

Some preliminary simplification rules.
have $\left(\sum j \in\{1 . . n\} . x_{j}{ }^{\wedge} 2\right) \geq 0$ by (simp add: sum-nonneg)
hence $x p:\left(\operatorname{sqrt}\left(\sum j \in\{1 . . n\} . x_{j} \text { ^2 }\right)\right)^{\wedge} 2=\left(\sum j \in\{1 . . n\} . x_{j}{ }^{\wedge}\right.$ 2 $)$
by（rule real－sqrt－pow2）
have $\left(\sum j \in\{1 . . n\} . y_{j}{ }^{\wedge}\right.$ 2）≥ 0 by（simp add：sum－nonneg）
hence $y p:\left(\operatorname{sqrt}\left(\sum j \in\{1 . . n\} . y_{j}{ }^{\wedge} 2\right)\right)^{\wedge} 2=\left(\sum j \in\{1 . . n\} . y_{j}{ }^{\wedge} 2\right)$
by（rule real－sqrt－pow2）
The main result of this section is that $(\|x\| *\|y\|)^{\wedge} 2$ can be written as a double sum．

have

$(\|x\| *\|y\|)$ へ2 $=\|x\|$＾2 $*\|y\|$ へ2
by（simp add：real－sq－exp）
also from $n x n y$ have

$$
\ldots=\left(\operatorname{sqrt}\left(\sum j \in\{1 \ldots n\} \cdot x_{j}^{\wedge} 2\right)\right)^{\wedge} 2 *\left(\operatorname{sqrt}\left(\sum j \in\{1 \ldots n\} \cdot y_{j}^{\wedge} 2\right)\right)^{\wedge} 2
$$

unfolding norm－def by auto
also from $x p$ yp have

$$
\ldots=\left(\sum j \in\{1 . . n\} . x_{j}^{\wedge} 2\right) *\left(\sum j \in\{1 . . n\} . y_{j}{ }^{\wedge} \text { 2 }\right)
$$

by simp
also from sum－product have

$$
\ldots=\left(\sum k \in\{1 . . n\} .\left(\sum j \in\{1 . . n\} .\left(x_{k} \text { ^2 }\right) *\left(y_{j} \text { ^2 } 2\right)\right)\right) .
$$

finally have

$(\|x\| *\|y\|)^{\wedge 2}=\left(\sum k \in\{1 . . n\} .\left(\sum j \in\{1 . . n\} .\left(x_{k}{ }^{\wedge}\right.\right.\right.$ 2 $) *\left(y_{j}\right.$ へ2 $\left.\left.)\right)\right) \cdot$
\}
moreover
\｛
We also show that $|x \cdot y|^{\wedge} 2$ can be expressed as a double sum．

have

$|x \cdot y|^{\wedge}{ }_{2}=(x \cdot y) \wedge_{2}$
by simp
also from $n x$ have

$$
\ldots=\left(\sum j \in\{1 . . n\} . x_{j} * y_{j}\right)^{\wedge} 2
$$

unfolding dot－def by simp
also from real－sq have
$\ldots=\left(\sum j \in\{1 . . n\} . x_{j} * y_{j}\right) *\left(\sum j \in\{1 . . n\} . x_{j} * y_{j}\right)$
by simp
also from sum－product have
$\ldots=\left(\sum k \in\{1 . . n\} .\left(\sum j \in\{1 . . n\} .\left(x_{k} * y_{k}\right) *\left(x_{j} * y_{j}\right)\right)\right)$.

finally have

```
    \(|x \cdot y|^{\wedge} 2=\left(\sum k \in\{1 . . n\} .\left(\sum j \in\{1 . . n\} .\left(x_{k} * y_{k}\right) *\left(x_{j} * y_{j}\right)\right)\right)\).
\}
```

We now manipulate the double sum expressions to get the required inequality．

ultimately have

```
    \((\|x\| *\|y\|)^{\wedge} 2-|x \cdot y|^{\text {^2 }}=\)
        \(\left(\sum k \in\{1 . . n\} .\left(\sum j \in\{1 . . n\} .\left(x_{k}{ }^{\text {®2 }}\right) *\left(y_{j}\right.\right.\right.\) へ2 \(\left.\left.)\right)\right)-\)
        \(\left(\sum k \in\{1 . . n\} .\left(\sum j \in\{1 . . n\} .\left(x_{k} * y_{k}\right) *\left(x_{j} * y_{j}\right)\right)\right)\)
    by \(\operatorname{simp}\)
also have
```

 \(\ldots=\)
 \(\left(\sum k \in\{1 . . n\} .\left(\sum j \in\{1 . . n\} .\left(\left(x_{k}\right.\right.\right.\right.\) へ2 \(* y_{j}\) へ2 \()+\left(x_{j}\right.\) へ2 \(* y_{k}\) へ2 \(\left.)\right) /\) 2 \(\left.)\right)-\)
    ```
\(\left(\sum k \in\{1 . . n\} .\left(\sum j \in\{1 . . n\} .\left(x_{k} * y_{k}\right) *\left(x_{j} * y_{j}\right)\right)\right)\)
by (simp only: double-sum-aux)
also have
```

$\ldots=$

by (auto simp add: sum-subtractf)
also have
($\sum k \in\{1 . . n\}$. ($\sum j \in\{1 . . n\}$. (inverse 2)*2*
$\left(\left(\left(x_{k}\right.\right.\right.$ ^2* y_{j} へ2 $)+\left(x_{j}\right.$ ^2* y_{k} ^2 $\left.)\right) *(1 /$ 2 $\left.\left.\left.)-\left(x_{k} * y_{k}\right) *\left(x_{j} * y_{j}\right)\right)\right)\right)$
by auto
also have
($\sum k \in\{1 . . n\}$. ($\sum j \in\{1 . . n\}$. (inverse 2) $)$ ($2 *$

by (simp only: mult.assoc)
also have
($\sum k \in\{1 . . n\}$. ($\sum j \in\{1$..n\}. (inverse 2)*
$\left(\left(\left(\left(x_{k} \curvearrowright 2 * y_{j} \wedge 2\right)+\left(x_{j} \wedge 2 * y_{k}\right.\right.\right.\right.$ 凤2 $\left.)\right) * 2 *($ inverse 2$\left.\left.\left.\left.)-2 *\left(x_{k} * y_{k}\right) *\left(x_{j} * y_{j}\right)\right)\right)\right)\right)$
by (auto simp add: distrib-right mult.assoc ac-simps)
also have

```
...
( \(\sum k \in\{1 . . n\}\). ( \(\sum j \in\{1 . . n\}\). (inverse 2)*
```


by (simp only: mult.assoc, simp)
also have

```
... =
    (inverse 2) \(*\left(\sum k \in\{1 . . n\} .\left(\sum j \in\{1 . . n\}\right.\right.\).
    \(\left.\left.\left(\left(\left(x_{k} \curvearrowright 2 * y_{j} \wedge 2\right)+\left(x_{j} \curvearrowright 2 * y_{k} \curvearrowright 2\right)\right)-2 *\left(x_{k} * y_{k}\right) *\left(x_{j} * y_{j}\right)\right)\right)\right)\)
```

 by (simp only: sum-distrib-left)
 also have
 \(\ldots=\)
 (inverse 2) \(*\left(\sum k \in\{1 . . n\} .\left(\sum j \in\{1 . . n\} .\left(x_{k} * y_{j}-x_{j} * y_{k}\right)^{\wedge} 2\right)\right)\)
 by (simp only: power2-diff real-sq-exp, auto simp add: ac-simps)
 also have \(\ldots \geq 0\)
 proof -
 have \(\left(\sum k \in\{1 . . n\} .\left(\sum j \in\{1 . . n\} .\left(x_{k} * y_{j}-x_{j} * y_{k}\right)^{\wedge} 2\right)\right) \geq 0\)
 by (simp add: sum-nonneg)
 thus ?thesis by simp
 qed
 finally show \((\|x\| *\|y\|)^{\wedge} 2-|x \cdot y|^{\wedge} 2 \geq 0\).
 qed
thus ?thesis by simp
qed
moreover have $0 \leq\|x\| *\|y\|$
by (auto simp add: norm-pos)
ultimately show ?thesis by (rule power2-le-imp-le)
qed
end

