Category Theory with Adjunctions and Limits

Eugene W. Stark

Department of Computer Science
Stony Brook University
Stony Brook, New York 11794 USA

September 13, 2023

Abstract

This article attempts to develop a usable framework for doing category theory
in Isabelle/HOL. Our point of view, which to some extent differs from that of the
previous AFP articles on the subject, is to try to explore how category theory can
be done efficaciously within HOL, rather than trying to match exactly the way
things are done using a traditional approach. To this end, we define the notion of
category in an “object-free” style, in which a category is represented by a single
partial composition operation on arrows. This way of defining categories provides
some advantages in the context of HOL, including the ability to avoid the use of
records and the possibility of defining functors and natural transformations simply
as certain functions on arrows, rather than as composite objects. We define various
constructions associated with the basic notions, including: dual category, product
category, functor category, discrete category, free category, functor composition, and
horizontal and vertical composite of natural transformations. A “set category” locale
is defined that axiomatizes the notion “category of all sets at a type and all functions
between them,” and a fairly extensive set of properties of set categories is derived
from the locale assumptions. The notion of a set category is used to prove the Yoneda
Lemma in a general setting of a category equipped with a “hom embedding,” which
maps arrows of the category to the “universe” of the set category. We also give a
treatment of adjunctions, defining adjunctions via left and right adjoint functors,
natural bijections between hom-sets, and unit and counit natural transformations,
and showing the equivalence of these definitions. We also develop the theory of limits,
including representations of functors, diagrams and cones, and diagonal functors. We
show that right adjoint functors preserve limits, and that limits can be constructed
via products and equalizers. We characterize the conditions under which limits exist
in a set category. We also examine the case of limits in a functor category, ultimately
culminating in a proof that the Yoneda embedding preserves limits.

Revisions made subsequent to the first version of this article added material on
equivalence of categories, cartesian categories, categories with pullbacks, categories
with finite limits, and cartesian closed categories. A construction was given of the
category of hereditarily finite sets and functions between them, and it was shown
that this category is cartesian closed.

Contents

1 Introduction 6
2 Category 11
2.1 Partial Composition 12
2.2 Categories e 15

3 EpiMonolso 22
4 DualCategory 30
5 Concrete Categories 33
6 InitialTerminal 40
7 Functor 42
8 Subcategory 52
8.1 Full Subcategory 55
8.2 Inclusion Functor 55

9 SetCategory 57
9.1 Some Lemmas about Restriction Y
9.2 Set Categories e e e 58
9.3 Categoricity 65
9.4 Further Properties of Set Categories 69
9.4.1 [Initial Object 69

9.4.2 Identity Arrows 69

9.4.3 Inclusions e 70

9.4.4 Image Factorization 71

9.4.5 Points and Terminal Objects 72

9.4.6 The ‘Determines Same Function’ Relation on Arrows 74

9.4.7 Retractions, Sections, and Isomorphisms 74

9.4.8 Monomorphisms and Epimorphisms 76

9.5 Concrete Set Categories i i it 76

9.6 Sub-Set Categories L 78

10 SetCat 79
11 ProductCategory 87
12 NaturalTransformation 92
12.1 Definition of a Natural Transformation 92
12.2 Components of a Natural Transformation 94
12.3 Functors as Natural Transformations 95
12.4 Constant Natural Transformations 95
12.5 Vertical Composition 96
12.6 Natural Isomorphisms 98
12.7 Horizontal Composition o . 101
13 BinaryFunctor 103
14 FunctorCategory 108
14.1 Construction e 108
14.2 Additional Properties 109
14.3 Evaluation Functor o 110
144 Currying o o o 111

15 Yoneda 115
15.1 Hom-Functors 115
15.2 Yoneda Functors 120

16 Adjunction 126
16.1 Left Adjoint Functor 126
16.2 Right Adjoint Functor Lo o 128
16.3 Various Definitions of Adjunction 129
16.3.1 Meta-Adjunction L 129

16.3.2 Hom-Adjunction 130

16.3.3 Unit/Counit Adjunction 132

16.3.4 Adjunction 133

16.4 Meta-Adjunctions Induce Unit/Counit Adjunctions 134
16.5 Meta-Adjunctions Induce Left and Right Adjoint Functors 137
16.6 Unit/Counit Adjunctions Induce Meta-Adjunctions 137
16.7 Left and Right Adjoint Functors Induce Meta-Adjunctions 138
16.8 Meta-Adjunctions Induce Hom-Adjunctions 142
16.9 Hom-Adjunctions Induce Meta-Adjunctions 145
16.10Putting it All Together L 147
16.11Inverse Functors are Adjoints 149
16.12Composition of Adjunctions 149
16.13Right Adjoints are Unique up to Natural Isomorphism 151

17 Equivalence of Categories 152

18 FreeCategory 158
18.1 Graphs. e 158
18.2 Free Categories 159
18.3 Discrete Categories L 160
18.4 Quiverso e 161
18.5 Parallel Pairs 163

19 DiscreteCategory 165

20 Limit 167
20.1 Representations of Functors 167
20.2 Diagrams and Coneso e e e 169
20.3 Limits e 173

20.3.1 Limit Cones e 173
20.3.2 Limits by Representation 175
20.3.3 Putting it all Together 175
20.3.4 Limit Cones Induce Limit Situations 176
20.3.5 Representations of the Cones Functor Induce Limit Situations. . . 178
20.4 Categories with Limits 179
20.4.1 Diagonal Functors 179
20.5 Right Adjoint Functors Preserve Limits 182
20.6 Special Kinds of Limits 182
20.6.1 Terminal Objects 182
20.6.2 Products 183
20.6.3 Equalizers Lo 186
20.7 Limits by Products and Equalizers 188
20.8 Limits in a Set Category 189
20.9 Limits in Functor Categories 193
20.10The Yoneda Functor Preserves Limits 196

21 Category with Pullbacks 197
21.1 Commutative Squares e 197
21.2 Cospan Diagrams 198
21.3 Category with Pullbackso o 200
21.4 Elementary Category with Pullbacks 202
21.5 Agreement between the Definitions 206

22 Cartesian Category 208
22.1 Category with Binary Products, 208

22.1.1 Binary Product Diagrams 208
22.1.2 Category with Binary Products 210
22.1.3 Elementary Category with Binary Products 212

22.1.4 Agreement between the Definitions 215

22.1.5 Further Properties 216

22.2 Category with Terminal Object 221
22.3 Cartesian Category Lo 223
22.3.1 Monoidal Structure. oo 224

22.3.2 Exponentials L 227

22.4 Category with Finite Products 227

23 Category with Finite Limits 230
24 Cartesian Closed Category 233
25 The Category of Hereditarily Finite Sets 236
25.1 Preliminaries e 236
25.2 Construction of the Category 238
25.3 Binary Products 241
25.4 Exponentialso 243
25.5 The Main Results 245

26 ZFC SetCat 247

Chapter 1

Introduction

This article attempts to develop a usable framework for doing category theory in Is-
abelle/HOL. Perhaps the main issue that one faces in doing this is how best to represent
what is essentially a theory of a partially defined operation (composition) in HOL, which
is a theory of total functions. The fact that in HOL every function is total means that
a value must be given for the composition of any pair of arrows of a category, even
if those arrows are not really composable. Proofs must constantly concern themselves
with whether or not a particular term does or does not denote an arrow, and whether
particular pairs of arrows are or are not composable. This kind of issue crops up in the
most basic situations, such as trying to use associativity of composition to prove that
two arrows are equal. Without some sort of systematic way of dealing with this issue,
it is hard to do proofs of interesting results, because one is constantly distracted from
the main line of reasoning by the necessity of proving lemmas that show that various
expressions denote well-defined arrows, that various pairs of arrows are composable, etc.

In trying to develop category theory in this setting, one notices fairly soon that
some of the problem can be solved by creating introduction rules that allow the proof
assistant to automatically infer, say, that a given term denotes an arrow with a particular
domain and codomain from similar properties of its proper subterms. This “upward”
reasoning helps, but it goes only so far. Eventually one faces a situation in which it
is desired to prove theorems whose hypotheses state that certain terms denote arrows
with particular domains and codomains, but the proof requires similar lemmas about the
proper subterms. Without some way of doing this “downward” reasoning, it becomes
very tedious to establish the necessary lemmas.

Another issue that one faces when trying to formulate category theory within HOL is
the lack of the set-theoretic universe that is usually assumed in traditional developments.
Since there is no “type of all sets” in HOL, one cannot construct “the” category Set of all
sets and functions between them. Instead, the best one can do is consider “a” category
of all sets and functions at a particular type. Although the lack of set-theoretic universe
would likely cause complications for some applications of category theory, there are many
applications for which the lack of a universe is not really a hindrance. So one might well
adopt a point of view that accepts a priori the lack of a universe and asks instead how

much of traditional category theory could be done in such a setting.

There have been two previous category theory submissions to the AFP. The first [5] is
an exploratory work that develops just enough category theory to enable the statement
and proof of a version of the Yoneda Lemma. The main features are: the use of records
to define categories and functors, construction of a category of all subsets of a given
set, where the arrows are domain set/codomain set/function triples, and the use of
the category of all sets of elements of the arrow type of category C as the target for the
Yoneda functor for C. The second category theory submission to the AFP [2] is somewhat
more extensive in its scope, and tries to match more closely a traditional development
of category theory through the use of a set-theoretic universe obtained by an axiomatic
extension of HOL. Categories, functors, and natural transformations are defined as multi-
component records, similarly to [5]. “The” category of sets is defined, having as its
object and arrow type the type ZF, which is the axiomatically defined set-theoretic
universe. Included in [2] is a more extensive development of natural transformations,
vertical composition, and functor categories than is to be found in [5]. However, as in
[5], the main purely category-theoretic result in [2] is the Yoneda Lemma. Beyond the
use of “extensional” functions, which take on a particular default value outside of their
domains of definition, neither [5] nor [2] explicitly describe a systematic approach to the
problem of obtaining lemmas that establish when the various terms appearing in a proof
denote well-defined arrows.

The present development differs in a number of respects from that of [5] and [2], both
in style and scope. The main stylistic features of the present development are as follows:

o The notion of a category is defined in an “object-free” style, motivated by [1], Sec.
3.52-3.53, in which a category is represented by a single partial composition oper-
ation on arrows. This way of defining categories provides some advantages in the
context of HOL, including the possibility of avoiding extensive use of composite ob-
jects constructed using records. (Katovsky seemed to have had some similar ideas,
since he refers in [3] to a theory “PartialBinaryAlgebra” that was also motivated
by [1], although this theory did not ultimately become part of his AFP article.)

e Functors and natural transformation are defined simply to be certain functions on
arrows, where locale predicates are used to express the conditions that must be
satisfied. This makes it possible to define functors and natural transformations
easily using lambda notation without records.

¢ Rules for reasoning about categories, functors, and natural transformations are
defined so that all “diagrammatic” hypotheses reduce to conjunctions of assertions,
each of which states that a given entity is an arrow, has a particular domain
or codomain, or inhabits a particular “hom-set”. A system of introduction and
elimination rules is established which permits both “upward” reasoning, in which
such diagrammatic assertions are established for larger terms using corresponding
assertions about the proper subterms, as well as “downward” reasoning, in which
diagrammatic assertions about proper subterms are inferred from such assertions
about a larger term, to be carried out automatically.

o Constructions on categories, functors, and natural transformations are defined us-
ing locales in a formulaic fashion. As an example, the product category construction
is defined using a locale that takes two categories (given by their partial composi-
tion operations) as parameters. The partial composition operation for the product
category is given by a function “comp” defined in the locale. Lemmas proved within
the locale include the fact that comp indeed defines a category, as well as character-
izations of the basic notions (domain, codomain, identities, composition) in terms
of those of the parameter categories. For some constructions, such as the product
category, it is possible and convenient to have a “transparent” arrow type, which
permits reasoning about the construction without having to introduce an elaborate
system of constructors, destructors, and associated rules. For other constructions,
such as the functor category, it is more desirable to use an “opaque” arrow type
that hides the concrete structure, and forces all reasoning to take place using a
fixed set of rules.

o Rather than commit to a specific concrete construction of a category of sets and
functions a “set category” locale is defined which axiomatizes the properties of the
category of sets with elements at a particular type and functions between such.
In keeping with the definitional approach, the axiomatization is shown consistent
by exhibiting a particular interpretation for the locale, however care is taken to
to ensure that any proofs making use of the interpretation depend only on the
locale assumptions and not on the concrete details of the construction. The set
category axioms are also shown to be categorical, in the sense that a bijection
between the sets of terminal objects of two interpretations of the locale extends to
an isomorphism of categories. This supports the idea that the locale axioms are
an adequate characterization of the properties of a category of sets and functions
and the details of a particular concrete construction can be kept hidden.

A brief synopsis of the formal mathematical content of the present development is as
follows:

e Definitions are given for the notions: category, functor, and natural transformation.

e Several constructions on categories are given, including: free category, discrete
category, dual category, product category, and functor category.

e Composite functor, horizontal and vertical composite of natural transformations
are defined, and various properties proved.

e The notion of a “set category” is defined and a fairly extensive development of the
consequences of the definition is carried out.

e Hom-functors and Yoneda functors are defined and the Yoneda Lemma is proved.

o Adjunctions are defined in several ways, including universal arrows, natural iso-
morphisms between hom-sets, and unit and counit natural transformations. The
relationships between the definitions are established.

e The theory of limits is developed, including the notions of diagram, cone, limit
cone, representable functors, products, and equalizers. It is proved that a cate-
gory with products at a particular index type has limits of all diagrams at that
type. The completeness properties of a set category are established. Limits in
functor categories are explored, culminating in a proof that the Yoneda embedding
preserves limits.

Revision Notes

The 2018 version of this development was a major revision of the original (2016)
version. Although the overall organization and content remained essentially the same,
the 2018 version revised the axioms used to define a category, and as a consequence many
proofs required changes. The purpose of the revision was to obtain a more organized set of
basic facts which, when annotated for use in automatic proof, would yield behavior more
understandable than that of the original version. In particular, as I gained experience
with the Isabelle simplifier, I was able to understand better how to avoid some of the
vexing problems of looping simplifications that sometimes cropped up when using the
original rules. The new version “feels” about as powerful as the original version, or
perhaps slightly more so. However, the new version uses elimination rules in place of
some things that were previously done by simplification rules, which means that from
time to time it becomes necessary to provide guidance to the prover as to where the
elimination rules should be invoked.

Another difference between the 2018 version of this document and the original is the
introduction of some notational syntax, which I intentionally avoided in the original. An
important reason for not introducing syntax in the original version was that at the time
I did not have much experience with the notational features of Isabelle, and I was afraid
of introducing hard-to-remove syntax that would make the development more difficult to
read and write, rather than easier. (I tended to find, for example, that the proliferation
of special syntax introduced in [2] made the presentation seem less readily accessible
than if the syntax had been omitted.) In the 2018 revision, I introduced syntax for
composition of arrows in a category, and for the notion of “an arrow inhabiting a hom-
set.” The notation for composition eases readability by reducing the number of required
parentheses, and the notation for asserting that an arrow inhabits a particular hom-set
gives these assertions a more familiar appearance; making it easier to understand them
at a glance.

This document was revised again in early 2020, prior to the release of Isabelle2020.
That revision incorporated the generic “concrete category” construction originally intro-
duced in [6], and using it systematically as a uniform replacement for various construc-
tions that were previously done in an ad hoc manner. These include the construction
of “functor categories” of categories of functors and natural transformations, “set cat-
egories” of sets and functions, and various kinds of free categories. The awkward “ab-
stracted category” construction, which had no interesting mathematical content but was
present in the original version as a solution to a modularity problem that I no longer
deem to be a significant issue, has been removed. The cumbersome “horizontal compos-
ite” locale, which was unnecessary given that in this formalization horizontal composite

is given simply by function composition, has been replaced by a single lemma that does
the same job. Finally, a lemma in the original version that incorrectly advertised itself
as being the “interchange law” for natural transformations, has been changed to be the
correct general statement.

The current version of this document incorporates further revisions, made later in
2020 after the release of Isabelle2020. The theory “category with pullbacks”, originally
introduced in [6], was moved here and improved somewhat. In addition, new theories
were introduced to cover additional common situations of categories with certain kinds
of limits: “cartesian category”, which concerns categories with binary products and a
terminal object, “cartesian closed category”, which additionally have exponentials, and
“category with finite limits”, which is shown to be the same as “category with pullbacks
and terminal object”. To tie things together and to verify the consistency of the locales
(e.g. “cartesian closed category”) for which concrete interpretations have not yet been
given, we construct a category whose objects correspond to the hereditarily finite sets
and whose arrows correspond to functions between such sets, and we show that this
category is cartesian closed and has finite limits. To facilitate this development, we gen-
eralize the “set category” construction to cover some cases in which not every subset of
the “universe” need determine an object. In particular, the generalized notion of “set
category” covers the case in which only finite sets correspond to objects. This general-
ization permits us to treat the category of hereditarily finite sets as a “set category” and
to apply some results previously shown about limits in such a category.

In early 2022 a construction was added, using “ZFC in HOL”, of the (large) category
of small sets and functions between them, and it was shown that this category is small-
complete.

10

Chapter 2

Category

theory Category
imports Main HOL— Library. FuncSet
begin

This theory develops an “object-free” definition of category loosely following [1], Sec.
3.52-3.53. We define the notion “category” in terms of axioms that concern a single
partial binary operation on a type, some of whose elements are to be regarded as the
“arrows” of the category.

The nonstandard definition of category has some advantages and disadvantages. An
advantage is that only one piece of data (the composition operation) is required to
specify a category, so the use of records is not required to bundle up several separate
objects. A related advantage is the fact that functors and natural transformations can
be defined simply to be functions that satisfy certain axioms, rather than more complex
composite objects. One disadvantage is that the notions of “object” and “identity arrow”
are conflated, though this is easy to get used to. Perhaps a more significant disadvantage
is that each arrow of a category must carry along the information about its domain and
codomain. This implies, for example, that the arrows of a category of sets and functions
cannot be directly identified with functions, but rather only with functions that have
been equipped with their domain and codomain sets.

To represent the partiality of the composition operation of a category, we assume that
the composition for a category has a unique zero element, which we call null, and we
consider arrows to be “composable” if and only if their composite is non-null. Functors
and natural transformations are required to map arrows to arrows and be “extensional”
in the sense that they map non-arrows to null. This is so that equality of functors and
natural transformations coincides with their extensional equality as functions in HOL.
The fact that we co-opt an element of the arrow type to serve as null means that it is not
possible to define a category whose arrows exhaust the elements of a given type. This
presents a disadvantage in some situations. For example, we cannot construct a discrete
category whose arrows are directly identified with the set of all elements of a given type
‘a; instead, we must pass to a larger type (such as ‘a option) so that there is an element
available for use as null. The presence of null, however, is crucial to our being able to

11

define a system of introduction and elimination rules that can be applied automatically
to establish that a given expression denotes an arrow. Without null, we would be able
to define an introduction rule to infer, say, that the composition of composable arrows
is composable, but not an elimination rule to infer that arrows are composable from the
fact that their composite is an arrow. Having the ability to do both is critical to the
usability of the theory.

A partial magma is a partial binary operation OP defined on the set of elements at
a type ‘a. As discussed above, we assume the existence of a unique element null of type
‘a that is a zero for OP, and we use null to represent “undefined”. A partial magma
consists simply of a partial binary operation. We represent the partiality by assuming
the existence of a unique value null that behaves as a zero for the operation.

locale partial-magma =

fixes OP :: 'a = 'a = 'a

assumes cz-un-null: 3!'n. V. OPnt=n AN OPtn=n
begin

definition null :: ‘a
where null = (THE n. Vt. OPnt=n A OPtn = n)

lemma null-eql:
assumes At. OPnt=nAOPtn=n
shows n = null

(proof)

lemma null-is-zero [simp]:
shows OP null t = null and OP ¢t null = null
{proof)

end

2.1 Partial Composition

A partial composition is formally the same thing as a partial magma, except that we
think of the operation as an operation of “composition”, and we regard elements f and
g of type 'a as composable if their composition is non-null.

type-synonym ‘a comp = 'a = ‘a = a
locale partial-composition =
partial-magma C

for C :: 'a comp (infixr - 55)
begin

An identity is a self-composable element a such that composition of any other element
f with @ on either the left or the right results in f whenever the composition is defined.

definition ide
where ide a = a - a # null A

12

Vf (f-a#null — f-a=f)A(a-f#null — a-f=Ff))

A domain of an element f is an identity o for which composition of f with ¢ on the
right is defined. The notion codomain is defined similarly, using composition on the left.
Note that, although these definitions are completely dual, the choice of terminology im-
plies that we will think of composition as being written in traditional order, as opposed
to diagram order. It is pretty much essential to do it this way, to maintain compatibil-
ity with the notation for function application once we start working with functors and
natural transformations.

definition domains
where domains f = {a. ide a A f - a # null}

definition codomains
where codomains f = {b. ide b A b - f # null}

lemma domains-null:
shows domains null = {}

(proof)

lemma codomains-null:
shows codomains null = {}

(proof)

lemma self-domain-iff-ide:
shows a € domains a < ide a

(proof)

lemma self-codomain-iff-ide:
shows a € codomains a +— ide a

(proof)

An element f is an arrow if either it has a domain or it has a codomain. In an arbitrary
partial magma it is possible for f to have one but not the other, but the category locale
will include assumptions to rule this out.

definition arr
where arr f = domains f # {} V codomains f # {}

lemma not-arr-null [simp]:
shows — arr null

(proof)

Using the notions of domain and codomain, we can define homs. The predicate
in-hom f a b expresses “f is an arrow from a to b,” and the term hom a b denotes the set
of all such arrows. It is convenient to have both of these, though passing back and forth
sometimes involves extra work. We choose in-hom as the more fundamental notion.

definition in-hom («-: - — -»)

where «f : a = b» = a € domains f A b € codomains f

13

abbreviation hom
where hom a b = {f. «f : a = b»}

lemma arrl:
assumes «f : a — b»
shows arr f

(proof)

lemma ide-in-hom [intro]:
shows ide a +— «a : a — a»

(proof)
Arrows f ¢ for which the composite g - f is defined are sequential.

abbreviation seq
where seq g f = arr (g - f)

lemma comp-arr-ide:
assumes ide o and seq f a
shows f - a=f

(proof)

lemma comp-ide-arr:
assumes ide b and seq b f
shows b - f = f

(proof)

The domain of an arrow f is an element chosen arbitrarily from the set of domains
of f and the codomain of f is an element chosen arbitrarily from the set of codomains.

definition dom
where dom f = (if domains f # {} then (SOME a. a € domains f) else null)

definition cod
where cod f = (if codomains f # {} then (SOME b. b € codomains f) else null)

lemma dom-null [simp):
shows dom null = null

(proof)

lemma cod-null [simp]:
shows cod null = null

{proof)

lemma dom-in-domains:
assumes domains [# {}
shows dom f € domains f

{proof)

lemma cod-in-codomains:
assumes codomains [# {}

14

shows cod f € codomains f
(proof)

end

2.2 Categories

A category is defined to be a partial magma whose composition satisfies an extensionality
condition, an associativity condition, and the requirement that every arrow have both a
domain and a codomain. The associativity condition involves four “matching conditions”
(match-1, match-2, match-3, and match-4) which constrain the domain of definition of
the composition, and a fifth condition (comp-assoc’) which states that the results of the
two ways of composing three elements are equal. In the presence of the comp-assoc’
axiom match-4 can be derived from match-3 and vice versa.

locale category = partial-composition +

assumes ext: g - f # null = seq g f

and has-domain-iff-has-codomain: domains f # {} <— codomains f # {}

and match-1: [seq h g; seq (h - g) f] = seq g f

and match-2: [seqh (g - f); seqgf] = seqh g

and match-3: [seq g f; seqh g = seq (h - g) f

and comp-assoc”: [seq g f; seqhg] = (h-g)-f=h-g-f

begin

Associativity of composition holds unconditionally. This was not the case in previous,

weaker versions of this theory, and I did not notice this for some time after updating
to the current axioms. It is obviously an advantage that no additional hypotheses have
to be verified in order to apply associativity, but a disadvantage is that this fact is now
“too readily applicable,” so that if it is made a default simplification it tends to get in
the way of applying other simplifications that we would also like to be able to apply
automatically. So, it now seems best not to make this fact a default simplification, but
rather to invoke it explicitly where it is required.

lemma comp-assoc:
shows (h-g)-f=h-g-f
(proof)

lemma match-4:
assumes seq g f and seq h g
shows seq h (g - f)

(proof)

lemma domains-comp:
assumes seq g f
shows domains (g - f) = domains f

{proof)

lemma codomains-comp:
assumes seq g f

15

shows codomains (g - f) = codomains g

{proof)

lemma has-domain-iff-arr:
shows domains f # {} +— arr f

(proof)

lemma has-codomain-iff-arr:
shows codomains f # {} «— arr f

(proof)

A consequence of the category axioms is that domains and codomains, if they exist,
are unique.

lemma domain-unique:
assumes a € domains f and o’ € domains f
shows a = a’

{proof)

lemma codomain-unique:
assumes b € codomains f and b’ € codomains f
shows b = b’

{proof)

lemma domains-simp:
assumes arr f
shows domains f = {dom f}

(proof)

lemma codomains-simp:
assumes arr f
shows codomains f = {cod [}

(proof)

lemma domains-char:

shows domains f = (if arr f then {dom f} else {})
(proof)

lemma codomains-char:
shows codomains f = (if arr f then {cod f} else {})

(proof)

A consequence of the following lemma is that the notion arr is redundant, given
in-hom, dom, and cod. However, I have retained it because I have not been able to find a
set of usefully powerful simplification rules expressed only in terms of in-hom that does
not result in looping in many situations.

lemma arr-iff-in-hom:

shows arr f «— «f : dom f — cod f»

(proof)

16

lemma in-homl [introl:
assumes arr f and dom f = a and cod f = b
shows «f : a — b»

{proof)

lemma in-homFE [elim):

assumes «f : a — b»

and arr f = domf=a = codf=b= T
shows T

(proof)

To obtain the “only if” direction in the next two results and in similar results later for
composition and the application of functors and natural transformations, is the reason
for assuming the existence of null as a special element of the arrow type, as opposed to,
say, using option types to represent partiality. The presence of null allows us not only to
make the “upward” inference that the domain of an arrow is again an arrow, but also to
make the “downward” inference that if dom f is an arrow then so is f. Similarly, we will
be able to infer not only that if f and g are composable arrows then ¢g - f is an arrow,
but also that if g - f is an arrow then f and g are composable arrows. These inferences
allow most necessary facts about what terms denote arrows to be deduced automatically
from minimal assumptions. Typically all that is required is to assume or establish that
certain terms denote arrows in particular homs at the point where those terms are first
introduced, and then similar facts about related terms can be derived automatically.
Without this feature, nearly every proof would involve many tedious additional steps to
establish that each of the terms appearing in the proof (including all its subterms) in
fact denote arrows.

lemma arr-dom-iff-arr:
shows arr (dom f) «— arr f

(proof)

lemma arr-cod-iff-arr:
shows arr (cod f) «— arr f

(proof)

lemma arr-dom [simp]:
assumes arr f
shows arr (dom f)

(proof)

lemma arr-cod [simp):
assumes arr f
shows arr (cod f)

{proof)

lemma seql [simp]:
assumes arr f and arr g and dom g = cod f
shows seq g f

{proof)

17

This version of seql is useful as an introduction rule, but not as useful as a simplifi-
cation, because it requires finding the intermediary term b. Sometimes auto is able to do
this, but other times it is more expedient just to invoke this rule and fill in the missing
terms manually, especially when dealing with a chain of compositions.

lemma seql’ [intro]:
assumes «f : a — b» and «g : b = c»
shows seq g f

{proof)

lemma compatible-iff-seq:
shows domains g N codomains f # {} +— seq g f

{proof)

The following is another example of a crucial “downward” rule that would not be
possible without a reserved null value.

lemma segE [elim]:

assumes seq g f

and arr f = arr g = dom g=cod f = T
shows T

{proof)

lemma comp-in-homlI [intro]:
assumes «f : a — b» and «g : b = o»
shows «g - f:a — c»

{proof)

lemma comp-in-homlI’ [simp]:
assumes arr f and arr g and dom f = a and cod g = ¢ and dom g = cod f
shows «g - f: a — c»

(proof)

lemma comp-in-homE [elim]:
assumes «g - f:a — c»
obtains b where «f : ¢ — b» and «g : b — c»

(proof)

The next two rules are useful as simplifications, but they slow down the simplifier
too much to use them by default. So it is necessary to guess when they are needed and
cite them explicitly. This is usually not too difficult.

lemma comp-arr-dom:
assumes arr f and dom f = a
shows f - a = f

(proof)

lemma comp-cod-arr:
assumes arr f and cod f = b
shows b - f = f

(proof)

18

lemma ide-char:
shows ide a «<— arra A doma =a A cod a = a

{proof)

In some contexts, this rule causes the simplifier to loop, but it is too useful not to
have as a default simplification. In cases where it is a problem, usually a method like
blast or force will succeed if this rule is cited explicitly.

lemma ideD [simp]:
assumes ide a
shows arr ¢ and dom a = a and cod a = a

(proof)

lemma ide-dom [simp]:
assumes arr f
shows ide (dom f)

(proof)

lemma ide-cod [simp]:
assumes a7 f
shows ide (cod f)

(proof)

lemma dom-eql:
assumes ide o and seq f a
shows dom f = a

(proof)

lemma cod-eql:
assumes ide b and seq b f
shows cod f = b

(proof)

lemma dom-eql":
assumes a € domains [
shows a = dom f

(proof)

lemma cod-eql”:
assumes a € codomains f
shows a = cod f

(proof)

lemma ide-char’:
shows ide a <— arr a A (dom a = a V cod a = a)

{proof)

lemma dom-dom:
shows dom (dom f) = dom f

19

(proof)

lemma cod-cod:
shows cod (cod f) = cod f

(proof)

lemma dom-cod:
shows dom (cod f) = cod f

{proof)

lemma cod-dom:
shows cod (dom f) = dom f

(proof)

lemma dom-comp [simp):
assumes seq g f
shows dom (g - f) = dom f

(proof)

lemma cod-comp [simp]:

assumes seq g f

shows cod (g - f) = cod g
(proof)

lemma comp-ide-self [simp]:
assumes ide a
shows a - a = a

(proof)

lemma ide-compE [elim):
assumes ide (g - f)

and seqgf = seqfg=— g -f=domf= g -f=codg=—= T

shows T
(proof)

The next two results are sometimes useful for performing manipulations at the head
of a chain of composed arrows. I have adopted the convention that such chains are canon-
ically represented in right-associated form. This makes it easy to perform manipulations
at the “tail” of a chain, but more difficult to perform them at the “head”. These results
take care of the rote manipulations using associativity that are needed to either permute
or combine arrows at the head of a chain.

lemma comp-permute:

assumes f - g =k - | and seq f g and seq g h

shows f-g-h=k-1-h
(proof)

lemma comp-reduce:

assumes f - ¢ = k and seq f g and seq g h

shows f-g-h=%k-h

20

(proof)

Here we define some common configurations of arrows. These are defined as abbrevi-
ations, because we want all “diagrammatic” assumptions in a theorem to reduce readily
to a conjunction of assertions of the basic forms arr f, dom f = X, cod f = Y, and «f :
a — b».

abbreviation endo
where endo f = seq f f

abbreviation antipar
where antipar f g = seq g f N seq f g

abbreviation span
where span fg = arr f A arr g A dom f = dom g

abbreviation cospan
where cospan fg = arr f A arr g A cod f = cod g

abbreviation par
where par fg= arr f A arr g A dom f = dom g A cod f = cod g

end

end

21

Chapter 3

EpiMonolso

theory EpiMonolso
imports Category
begin
This theory defines and develops properties of epimorphisms, monomorphisms, iso-
morphisms, sections, and retractions.

context category
begin

definition epi
where epi f = (arr f A inj-on (Ag. g - f) {g. seq g f})

definition mono
where mono f = (arr f A inj-on (Ag. f - g) {g. seq f g})

lemma epil [intro]:
assumes arr f and \g g' [seq g fiseqg' fig-f=9" - fl=9=¢
shows epi f

(proof)

lemma epi-implies-arr:
assumes epi f
shows arr f

(proof)

lemma epiE [elim]:

assumes epi f

and seq g fand seq g’ fand g- f =g’ f
shows g = ¢’

(proof)

lemma monol [intro]:
assumes arr g and Aff' [seqgf;seqgfi9-f=9g-f1=f=/f

22

shows mono g

(proof)

lemma mono-implies-arr:
assumes mono f
shows arr f

(proof)

lemma monoFE [elim]:
assumes mono g
and seq g fand seqg f'and g - f =g - f’
shows f/' = f
(proof)

definition inverse-arrows
where inverse-arrows f g = ide (g - f) A ide (f - g)

lemma inverse-arrowsl [intro]:
assumes ide (g - f) and ide (f - g)
shows inverse-arrows f g

(proof)

lemma inverse-arrowsE [elim]:
assumes nverse-arrows f g
and [ide (g - f);ide (f-9)] = T
shows T

{proof)

lemma inverse-arrows-sym:
shows inverse-arrows f g «— inverse-arrows g f

(proof)

lemma ide-self-inverse:
assumes ide a
shows inverse-arrows a a

(proof)

lemma inverse-arrow-unique:
assumes inverse-arrows | g and inverse-arrows f g’
shows g = ¢’

(proof)

lemma inverse-arrows-compose:
assumes seq g f and inverse-arrows f f' and inverse-arrows g g’
shows inverse-arrows (g - f) (f' - ¢')

(proof)

definition section
where section f = 3 g. ide (g - f)

23

lemma sectionl [intro]:
assumes ide (g - f)
shows section f

(proof)

lemma sectionE [elim]:
assumes section f
obtains g where ide (g - f)

(proof)

definition retraction
where retraction g = 3f. ide (g - f)

lemma retractionl [intro|:
assumes ide (g - f)
shows retraction g

(proof)

lemma retractionE [elim):
assumes retraction g
obtains f where ide (g - f)

(proof)

lemma section-is-mono:
assumes section g
shows mono g

{proof)

lemma retraction-is-epi:
assumes retraction ¢
shows epi g

{proof)

lemma section-retraction-compose:
assumes ide (e - m) and ide (e’ - m’) and seq m’ m
shows ide ((e - e') - (m'- m))

(proof)

lemma sections-compose [intro):
assumes section m and section m’ and seq m’ m
shows section (m’ - m)

(proof)

lemma retractions-compose [introl:
assumes retraction e and retraction ¢’ and seq e’ e
shows retraction (e’ - €)

(proof)

24

lemma monos-compose [intro]:
assumes mono m and mono m' and seq m’ m
shows mono (m' - m)

{proof)

lemma epis-compose [introl:

assumes epi ¢ and epi ¢’ and seq e’ e
shows epi (e’ - e)

(proof)

definition iso
where iso f = Jg. inverse-arrows f g

lemma isol [intro]:
assumes nverse-arrows f g
shows iso f

(proof)

lemma isoF [elim]:
assumes iso f
obtains g where inverse-arrows f g

(proof)

lemma ide-is-iso [simp]:
assumes ide a
shows iso a

(proof)

lemma iso-is-arr:
assumes iso f
shows arr f

(proof)

lemma iso-is-section:
assumes iso f
shows section f

(proof)

lemma iso-is-retraction:
assumes iso f
shows retraction f

(proof)

lemma iso-iff-mono-and-retraction:
shows iso f «— mono f A retraction f

{proof)

lemma iso-iff-section-and-epi:
shows iso f <— section f N epi f

25

{proof)

lemma iso-iff-section-and-retraction:
shows iso f «— section f A retraction f

(proof)

lemma isos-compose [intro]:

assumes iso f and iso f' and seq f' f
shows iso (f' - f)

(proof)

lemma iso-cancel-left:
assumes iso f and f - ¢ = f - g’ and seq f ¢
shows g = ¢’

(proof)

lemma iso-cancel-right:
assumes iso g and f - g = f'- g and seq f g and iso g
shows [= f'

(proof)

definition isomorphic
where isomorphic a o’ = (3f. «f : a = a’» A iso f)

lemma isomorphicl [introl:
assumes iso f
shows isomorphic (dom f) (cod f)

(proof)

lemma isomorphicE [elim]:
assumes isomorphic a a’
obtains f where «f : a — a’» A iso f

(proof)

~

definition iso-in-hom («-: - = -»)
where iso-in-hom fa b= «f : a — b» N iso f

lemma iso-in-homlI [intro]:
assumes «f : a — b» and iso f
shows «f : a = by

{proof)

lemma iso-in-homFE [elim]:
assumes «f : a = b»

and [«f :a = by;iso f] = T
shows T

(proof)

lemma isomorphicl":

26

assumes «f : a = b»
shows isomorphic a b

(proof)

lemma ide-iso-in-hom:
assumes ide a
shows «a : a = a»

{proof)

lemma comp-iso-in-hom [introl:
assumes «f : a = b» and «g: b = c»
shows «g - f:a = ¢»

(proof)

definition inv
where inv f = (SOME g. inverse-arrows f g)

lemma inv-is-inverse:
assumes iso f
shows inverse-arrows f (inv f)

(proof)

lemma iso-inv-iso [intro, simpl:
assumes iso f
shows iso (inv f)

(proof)

lemma inverse-unique:
assumes inverse-arrows f g
shows inv f = ¢

(proof)

lemma inv-ide [simp]:
assumes ide a
shows inv a = a

{proof)

lemma inv-inv [simp):
assumes iso f
shows inv (inv f) = f

{proof)

lemma comp-arr-inv:

assumes inverse-arrows f g

shows f - g = dom ¢
(proof)

lemma comp-inv-arr:
assumes inverse-arrows f g

27

shows g - f = dom f
{proof)

lemma comp-arr-inv':

assumes iso f

shows f - inv f = cod f
(proof)

lemma comp-inv-arr’:
assumes iso f
shows inv f - f = dom f

(proof)

lemma inv-in-hom [simp]:
assumes iso f and «f : a — b»
shows «inv f : b — a»

(proof)

lemma arr-inv [simp]:
assumes iso f
shows arr (inv f)

(proof)

lemma dom-inv [simp]:
assumes iso f
shows dom (inv f) = cod f

(proof)

lemma cod-inv [simp]:
assumes iso f
shows cod (inv) = dom f

(proof)

lemma inv-comp:
assumes iso [and iso g and seq g f
shows inv (g - f) = inv f - inv g

(proof)

lemma isomorphic-reflexive:
assumes ide f
shows isomorphic f f

(proof)

lemma isomorphic-symmetric:
assumes isomorphic f g
shows isomorphic g f

(proof)

lemma isomorphic-transitive [trans]:

28

assumes isomorphic f g and isomorphic g h
shows isomorphic f h

(proof)
A section or retraction of an isomorphism is in fact an inverse.

lemma section-retraction-of-iso:
assumes iso f

shows ide (g - f) = inverse-arrows f g
and ide (f - g) = inverse-arrows f g

{proof)

A situation that occurs frequently is that we have a commuting triangle, but we need
the triangle obtained by inverting one side that is an isomorphism. The following fact
streamlines this derivation.

lemma invert-side-of-triangle:

assumes arr hand f - g = h

shows iso f = seq (inv f) hAg=invf-h

and iso g = seq h (inv g) ANf=h-invg

(proof)

A similar situation is where we have a commuting square and we want to invert two
opposite sides.

lemma invert-opposite-sides-of-square:

assumes seq fgand f - g=h - k

shows [iso f; iso k| = seq g (inv k) A seq (inv f) h A g-invk =invf-h

(proof)

The following versions of inv-comp provide information needed for repeated applica-
tion to a composition of more than two arrows and seem often to be more useful.

lemma inv-comp-left:

assumes iso (¢ - f) and iso g

shows inv (g - f) = inv f - inv g and iso f
(proof)

lemma inv-comp-right:

assumes iso (g - f) and iso f

shows inv (g - f) = inv f - inv g and iso g

(proof)

end

end

29

Chapter 4

DualCategory

theory DualCategory
imports EpiMonolso
begin

The locale defined here constructs the dual (opposite) of a category. The arrows
of the dual category are directly identified with the arrows of the given category and
simplification rules are introduced that automatically eliminate notions defined for the
dual category in favor of the corresponding notions on the original category. This makes
it easy to use the dual of a category in the same context as the category itself, without
having to worry about whether an arrow belongs to the category or its dual.

locale dual-category =

C: category C
for C :: 'a comp (infixr - 55)
begin

definition comp (infixr -°P 55)
where g P f=f-¢g

lemma comp-char [simp]:
shows g P f=f-g¢g

(proof)

interpretation partial-composition comp
(proof)

notation in-hom («-: - < -»)

lemma null-char [simpl:
shows null = C.null

(proof)

lemma ide-char [simp]:
shows ide a «— C.ide a

(proof)

30

lemma domains-char:
shows domains f = C.codomains f

{proof)

lemma codomains-char:
shows codomains f = C.domains f

{proof)

interpretation category comp

(proof)

lemma is-category:
shows category comp (proof)

end

sublocale dual-category C category comp

{proof)

context dual-category
begin

lemma dom-char [simp]:
shows dom f = C.cod f

(proof)

lemma cod-char [simp):

shows cod f = C.dom f
(proof)

lemma arr-char [simp]:
shows arr f <— C.arr f

(proof)

lemma hom-char [simp]:
shows in-hom f b a +— C.in-hom fa b

(proof)

lemma seg-char [simp]:
shows seq g f = C.seq f g
(proof)

lemma iso-char [simp]:
shows iso f +— C.iso f

{proof)

end

end

32

Chapter 5

Concrete Categories

In this section we define a locale concrete-category, which provides a uniform (and more
traditional) way to construct a category from specified sets of objects and arrows, with
specified identity objects and composition of arrows. We prove that the identities and
arrows of the constructed category are appropriately in bijective correspondence with the
given sets and that domains, codomains, and composition in the constructed category are
as expected according to this correspondence. In the later theory Functor, once we have
defined functors and isomorphisms of categories, we will show a stronger property of this
construction: if C' is any category, then C is isomorphic to the concrete category formed
from it in the obvious way by taking the identities of C as objects, the set of arrows of
C as arrows, the identities of C as identity objects, and defining composition of arrows
using the composition of C. Thus no information about C'is lost by extracting its objects,
arrows, identities, and composition and rebuilding it as a concrete category. We note,
however, that we do not assume that the composition function given as parameter to the
concrete category construction is “extensional”, so in general it will contain incidental
information about composition of non-composable arrows, and this information is not
preserved by the concrete category construction.

theory ConcreteCategory
imports Category
begin

locale concrete-category =
fixes Obj :: o set
and Hom :: ‘o = ‘o = 'a set
and Id :: 'o = 'a
and Comp :: 'o = o= o= 'a = 'a ='a
assumes [Id-in-Hom: A € Obj = Id A € Hom A A
and Comp-in-Hom: [A € Obj; B € Obj; C € Obj; f € Hom A B; g € Hom B C']
= Comp CBAgfe€ HmAC
and Comp-Hom-Id: | A € Obj; f € Hom A B] = Comp BA A f (Id A) = f
and Comp-Id-Hom: [B € Obj; f € Hom A B = Comp BBA (IdB) f = f
and Comp-assoc: [A € Obj; B € Obj; C € Obj; D € Oby;
f € Hom A B; g € Hom B C; h € Hom CD | =

33

Comp D C A h (Comp CBAgf)= CompDBA (CompDCBhyg)f
begin

datatype (‘oo, ‘aa) arr =
Null
| MkArr ‘oo 'oo 'aa

abbreviation Mklde :: ‘o = ('o, 'a) arr
where Mklde A = MkArr A A (Id A)

fun Dom :: (‘o, 'a) arr = 'o
where Dom (MkArr A --) = A
| Dom - = undefined

fun Cod
where Cod (MkArr - B -) = B
| Cod - = undefined

fun Map
where Map (MkArr - - F) = F
| Map - = undefined

abbreviation Arr
where Arr f = f # Null A Dom f € Obj A Cod f € Obj A Map f € Hom (Dom f) (Cod f)

abbreviation Ide
where Ide a = a # Null A Dom a € Obj A Cod a = Dom a N Map a = Id (Dom a)

definition COMP :: (‘o, 'a) arr comp

where COMP g f = if Arr f AN Arr g A Dom g = Cod f then
MEArr (Dom f) (Cod g) (Comp (Cod g) (Dom g) (Dom f) (Map g) (Map f))
else

Null

interpretation partial-composition COMP

(proof)

lemma null-char:
shows null = Null

{proof)

lemma ide-charcc:
shows ide f «— Ide f

{proof)

lemma ide-MkIde [simp]:
assumes A € Obj
shows ide (MkIde A)

34

(proof)

lemma in-domains-char:
shows a € domains f «+— Arr f A a = Mklde (Dom f)

(proof)

lemma in-codomains-char:
shows b € codomains f <— Arr f A b = Mklde (Cod f)

{proof)

lemma arr-char:
shows arr f <— Arr f

(proof)

lemma arrlcc:
assumes f # Null and Dom f € Obj Cod f € Obj Map f € Hom (Dom f) (Cod f)

shows arr f
(proof)

lemma arrE:

assumes arr f

and [f # Null; Dom f € Obj; Cod f € Obj; Map f € Hom (Dom f) (Cod)] = T
shows T

(proof)

lemma arr-MkArr [simp):
assumes A € Obj and B € Obj and f € Hom A B
shows arr (MkArr A B f)

(proof)

lemma MEkArr-Map:
assumes arr f
shows MkArr (Dom f) (Cod f) (Map f) = f

(proof)

lemma Arr-comp:
assumes arr f and arr g and Dom g = Cod f
shows Arr (COMP g f)

(proof)

lemma Dom-comp [simp]:
assumes arr f and arr g and Dom g = Cod f
shows Dom (COMP g f) = Dom f

(proof)

lemma Cod-comp [simp]:
assumes arr f and arr g and Dom g = Cod f
shows Cod (COMP g f) = Cod g

(proof)

35

lemma Map-comyp [simp]:
assumes arr f and arr g and Dom g = Cod f
shows Map (COMP g f) = Comp (Cod g) (Dom g) (Dom f) (Map g) (Map f)

(proof)

lemma seq-char:
shows seq g f «— arr f A arr g A Dom g = Cod f

{proof)

interpretation category COMP
(proof)

proposition is-category:
shows category COMP
(proof)

Functions Dom, Cod, and Map establish a correspondence between the arrows of the
constructed category and the elements of the originally given parameters Obj and Hom.

lemma Dom-in-0Obj:

assumes arr f

shows Dom f € Obj

(proof)

lemma Cod-in-Obj:
assumes arr f
shows Cod f € Obj

(proof)

lemma Map-in-Hom:
assumes arr f
shows Map f € Hom (Dom f) (Cod f)

(proof)

lemma MkArr-in-hom:
assumes A € Obj and B € Obj and f € Hom A B
shows in-hom (MkArr A B f) (MkIde A) (MkIde B)

(proof)

The next few results show that domains, codomains, and composition in the con-
structed category are as expected according to the just-given correspondence.

lemma dom-char:

shows dom f = (if arr f then Mklde (Dom f) else null)
{proof)

lemma cod-char:
shows cod f = (if arr f then MkIde (Cod f) else null)

(proof)

36

lemma comp-char:
shows COMP g f = (if seq g f then
MkArr (Dom f) (Cod g) (Comp (Cod g) (Dom g) (Dom f) (Map g) (Map f))
else
null)

(proof)

lemma in-hom-char:
shows in-hom fa b +— arr f A ide a N\ ide b AN Dom f = Dom a A Cod f = Dom b

(proof)

lemma Dom-dom [simp]:
assumes arr f
shows Dom (dom f) = Dom f

(proof)

lemma Cod-dom [simp]:
assumes arr f
shows Cod (dom f) = Dom f

{proof)

lemma Dom-cod [simp]:
assumes arr f
shows Dom (cod f) = Cod f

{proof)

lemma Cod-cod [simp]:
assumes arr f
shows Cod (cod f) = Cod f

{proof)

lemma Map-dom [simp]:
assumes arr f
shows Map (dom f) = Id (Dom f)

(proof)

lemma Map-cod [simp]:
assumes arr f
shows Map (cod f) = Id (Cod f)

(proof)

lemma Map-ide:
assumes ide a
shows Map a = Id (Dom a) and Map a = Id (Cod a)

(proof)

lemma MkIde-Dom:
assumes arr a

37

shows Mklde (Dom a) = dom a
(proof)

lemma MklIde-Cod:
assumes arr a
shows MkIde (Cod a) = cod a

(proof)

lemma MkIde-Dom’ [simp]:
assumes ide a
shows MkIde (Dom a) = a

(proof)

lemma MkIde-Cod’ [simp]:
assumes ide a

shows Mklde (Cod a) = a
(proof)

lemma dom-MkArr [simp):
assumes arr (MkArr A B F)
shows dom (MkArr A B F) = MkIde A

(proof)

lemma cod-MkArr [simp]:
assumes arr (MkArr A B F)
shows cod (MkArr A B F) = Mklde B

(proof)

lemma comp-MkArr [simp]:
assumes arr (MkArr A B F) and arr (MkArr B C G)
shows COMP (MkArr B C G) (MkArr A B F) = MkArr A C (Comp C B A G F)

(proof)

The set Obj of “objects” given as a parameter is in bijective correspondence (via
function MklIde) with the set of identities of the resulting category.

proposition bij-betw-ide- Obj:

shows Mklde € Obj — Collect ide

and Dom € Collect ide — Obj

and A € Obj = Dom (Mklde A) = A

and a € Collect ide = MkIde (Dom a) = a

and bij-betw Dom (Collect ide) Obj

{proof)

For each pair of identities a and b, the set Hom (Dom a) (Dom b) is in bijective
correspondence (via function MkArr (Dom a) (Dom b)) with the “hom-set” hom a b of
the resulting category.

proposition bij-betw-hom-Hom:

assumes ide a and ide b

shows Map € hom a b — Hom (Dom a) (Dom b)

38

and MkArr (Dom a) (Dom b) € Hom (Dom a) (Dom b) — hom a b

and Af. f € hom a b = MkArr (Dom a) (Dom b) (Map f) = f

and AF. F € Hom (Dom a) (Dom b) = Map (MkArr (Dom a) (Dom b) F) = F
and bij-betw Map (hom a b) (Hom (Dom a) (Dom b))

(proof)

lemma arr-eql:
assumes arr ¢t and arr t’ and Dom t = Dom t’ and Cod t = Cod t' and Map t = Map t’
shows ¢ = ¢’

(proof)

end

sublocale concrete-category C category COMP

(proof)

end

39

Chapter 6

InitialTerminal

theory InitialTerminal
imports EpiMonolso
begin

This theory defines the notions of initial and terminal object in a category and estab-

lishes some properties of these notions, including that when they exist they are unique
up to isomorphism.

context category
begin

definition initial
where initial a = ide a A (Vb. ide b — (3!f. «f 1 a — b»))

definition terminal
where terminal b = ide b A (Va. ide a — (3If. «f : a — b»))

abbreviation initial-arr
where nitial-arr f = arr f A initial (dom f)

abbreviation terminal-arr
where terminal-arr f = arr f A terminal (cod f)

abbreviation point
where point f = arr f A terminal (dom f)

lemma initial-arr-unique:
assumes par f f’ and initial-arr f and initial-arr [’
shows [= f'

(proof)

lemma ingtiall [intro]:
assumes ide a and A\b. ide b = JIf. «f : a — b»
shows initial a

{proof)

40

lemma initialE [elim):
assumes initial ¢ and ide b
obtains f where «f : a — by and A\f’. «f':a = by = f'=f

(proof)

lemma terminal-arr-unique:
assumes par f f' and terminal-arr f and terminal-arr f’
shows [= f'

(proof)

lemma terminall [introl:
assumes ide b and Aa. ide a = 3JIf. «f : a — b»
shows terminal b

(proof)

lemma terminalE [elim):
assumes terminal b and ide a
obtains f where «f : a = by and A\f’. «f':a = by = f'=f

{proof)

lemma terminal-objs-isomorphic:
assumes terminal a and terminal b
shows isomorphic a b

{proof)

lemma isomorphic-to-terminal-is-terminal:
assumes terminal a and isomorphic a a’
shows terminal a’

{proof)

lemma initial-objs-isomorphic:
assumes initial ¢ and initial b
shows isomorphic a b

{proof)

lemma isomorphic-to-initial-is-initial:
assumes initial a and isomorphic a a’
shows initial a’

(proof)
lemma point-is-mono:

assumes point f
shows mono f

(proof)
end

end

41

Chapter 7

Functor

theory Functor
imports Category ConcreteCategory DualCategory Initial Terminal
begin

One advantage of the “object-free” definition of category is that a functor from cat-
egory A to category B is simply a function from the type of arrows of A to the type of
arrows of B that satisfies certain conditions: namely, that arrows are mapped to arrows,
non-arrows are mapped to null, and domains, codomains, and composition of arrows are
preserved.

locale functor =
A: category A +
B: category B
for A :: 'a comp (infixr -4 55)
and B :: 'b comp (infixr -5 55)
and F :: 'a = b +
assumes is-extensional: ~A.arr f = F f = B.null
and preserves-arr: A.arr f => B.arr (F f)
and preserves-dom [iff]: A.arr f = B.dom (F f) = F (A.dom f)
and preserves-cod [iff]: A.arr f = B.cod (F f) = F (A.cod f)
and preserves-comp [iff]: A.seqgf = F (9-af)=Fg-p Ff

begin
notation A.in-hom («-:-—4 -»)
notation B.in-hom («-: - —p -»)

lemma preserves-hom [intro]:
assumes «f : a —4 b»
shows «F f: Fa—p F b»

{proof)

The following, which is made possible through the presence of null, allows us to infer
that the subterm f denotes an arrow if the term F f denotes an arrow. This is very
useful, because otherwise doing anything with f would require a separate proof that it is
an arrow by some other means.

42

lemma preserves-reflects-arr [iff]:

shows B.arr (F f) «— A.arr f
(proof)

lemma preserves-seq [intro):
assumes A.seq g f
shows B.seq (F g) (F f)

{proof)

lemma preserves-ide [simp:
assumes A.ide a
shows B.ide (F a)

(proof)

lemma preserves-iso [simp):
assumes A.iso f
shows B.iso (F f)

(proof)

lemma preserves-isomorphic:
assumes A.isomorphic a b
shows B.isomorphic (F a) (F b)

(proof)

lemma preserves-section-retraction:
assumes A.ide (4 e m)
shows B.ide (B (F ¢) (F m))

(proof)

lemma preserves-section:
assumes A.section m
shows B.section (F m)

(proof)

lemma preserves-retraction:
assumes A.retraction e
shows B.retraction (F e)

(proof)

lemma preserves-inverse-arrows:
assumes A.inverse-arrows f g
shows B.inverse-arrows (F f) (F g)

(proof)

lemma preserves-inv:

assumes A.iso f

shows F (A.inv f) = B.inv (F f)
(proof)

43

lemma preserves-iso-in-hom [intro]:

assumes A.iso-in-hom fa b

shows B.iso-in-hom (F f) (F' a) (F b)
{proof)

end

locale endofunctor =

functor A A F
for A :: 'a comp (infixr - 55)
and F :: 'a = "a

locale faithful-functor = functor A B F

for A :: 'a comp

and B :: 'b comp

and F :: 'a = b +

assumes is-faithful: [Apar ff, Ff=Ff']| = f=1/f
begin

lemma locally-reflects-ide:
assumes «f : ¢ —4 a» and B.ide (F f)
shows A.ide f

(proof)

end

locale full-functor = functor A B F

for A :: 'a comp

and B :: 'b comp

and F :: 'a = 'b +

assumes is-full: | A.ide a; Avide o’y «g: Fa'—-p Fay] = 3f. «f 10’24 av NFf=yg

locale fully-faithful-functor =
faithful-functor A B F +
full-functor A B F

for A :: 'a comp

and B :: 'b comp

and F :: ‘a = b

begin

lemma refiects-iso:
assumes «f : ¢’ —4 a» and B.iso (F f)
shows A.iso f

{proof)

lemma reflects-isomorphic:
assumes A.ide f and A.ide f' and B.isomorphic (F f) (F f’)
shows A.isomorphic f f'

{proof)

44

end

locale embedding-functor = functor A B F

for A :: 'a comp

and B :: 'b comp

and F :: 'a = b +

assumes is-embedding: [A.arr f; Aarr f, Ff=Ff'] = f=f'

sublocale embedding-functor C faithful-functor

{proof)

context embedding-functor
begin

lemma refiects-ide:
assumes B.ide (F f)
shows A.ide f

(proof)

end

locale full-embedding-functor =
embedding-functor A B F