
Catalan Numbers

Manuel Eberl

March 17, 2025

Abstract

In this work, we define the Catalan numbers Cn and prove several
equivalent definitions (including some closed-form formulae). We also
show one of their applications (counting the number of binary trees of
size n), prove the asymptotic growth approximation Cn ∼ 4n√

πn1.5 , and
provide reasonably efficient executable code to compute them.

The derivation of the closed-form formulae uses algebraic manip-
ulations of the ordinary generating function of the Catalan numbers,
and the asymptotic approximation is then done using generalised bi-
nomial coefficients and the Gamma function. Thanks to these highly
non-elementary mathematical tools, the proofs are very short and sim-
ple.

Contents
1 Catalan numbers 2

1.1 Auxiliary integral . 2
1.2 Other auxiliary lemmas . 2
1.3 Definition . 3
1.4 Closed-form formulae and more recurrences 4
1.5 Integral formula . 5
1.6 Asymptotics . 5
1.7 Relation to binary trees . 5
1.8 Efficient computation . 6

1

1 Catalan numbers
theory Catalan-Auxiliary-Integral
imports HOL−Analysis.Analysis HOL−Real-Asymp.Real-Asymp
begin

1.1 Auxiliary integral

First, we will prove the integral

4∫
0

√
4− x

x
dx = 2π

which occurs in the proof for the integral formula for the Catalan numbers.
context
begin

We prove the integral by explicitly constructing the indefinite integral.
lemma catalan-aux-integral:
((λx::real. sqrt ((4 − x) / x)) has-integral 2 ∗ pi) {0 ..4}
〈proof 〉

end

end

theory Catalan-Numbers
imports

Complex-Main
Catalan-Auxiliary-Integral
HOL−Analysis.Analysis
HOL−Computational-Algebra.Formal-Power-Series
HOL−Library.Landau-Symbols
Landau-Symbols.Landau-More

begin

1.2 Other auxiliary lemmas
lemma mult-eq-imp-eq-div:

assumes a ∗ b = c (a :: ′a :: semidom-divide) 6= 0
shows b = c div a
〈proof 〉

lemma Gamma-minus-one-half-real:
Gamma (−(1/2) :: real) = − 2 ∗ sqrt pi
〈proof 〉

2

lemma gbinomial-asymptotic ′:
assumes z /∈ �
shows (λn. z gchoose (n + k)) ∼[at-top]

(λn. (−1)^(n+k) / (Gamma (−z) ∗ of-nat n powr (z + 1)) :: real)
〈proof 〉

1.3 Definition

We define Catalan numbers by their well-known recursive definition. We
shall later derive a few more equivalent definitions from this one.

fun catalan :: nat ⇒ nat where
catalan 0 = 1
| catalan (Suc n) = (

∑
i≤n. catalan i ∗ catalan (n − i))

〈proof 〉

The easiest proof of the more profound properties of the Catalan numbers
(such as their closed-form equation and their asymptotic growth) uses their
ordinary generating function (OGF). This proof is almost mechanical in the
sense that it does not require ‘guessing’ the closed form; one can read it
directly from the generating function.
We therefore define the OGF of the Catalan numbers (

∑∞
n=0Cnz

n in stan-
dard mathematical notation):
definition fps-catalan = Abs-fps (of-nat ◦ catalan)

lemma fps-catalan-nth [simp]: fps-nth fps-catalan n = of-nat (catalan n)
〈proof 〉

Given their recursive definition, it is easy to see that the OGF of the Catalan
numbers satisfies the following recursive equation:
lemma fps-catalan-recurrence:

fps-catalan = 1 + fps-X ∗ fps-catalan^2
〈proof 〉

We can now easily solve this equation for fps-catalan: if we denote the un-
known OGF as F (z), we get F (z) = 1

2(1−
√
1− 4z).

Note that we do not actually use the square root as defined on real or
complex numbers. Any (1 + cz)α can be expressed using the formal power
series whose coefficients are the generalised binomial coefficients, and thus
we can do all of these transformations in a purely algebraic way:

√
1− 4z =

(1 + z)
1
2 ◦ (−4z) (where ◦ denotes composition of formal power series) and

(1 + z)α has the well-known expansion
∑∞

n=0

(
α
n

)
zn.

lemma fps-catalan-fps-binomial:
fps-catalan = (1/2 ∗ (1 − (fps-binomial (1/2) oo (−4∗fps-X)))) / fps-X
〈proof 〉

3

1.4 Closed-form formulae and more recurrences

We can now read a closed-form formula for the Catalan numbers directly
from the generating function 1

2z (1− (1 + z)
1
2 ◦ (−4z)).

theorem catalan-closed-form-gbinomial:
real (catalan n) = 2 ∗ (− 4) ^ n ∗ (1/2 gchoose Suc n)
〈proof 〉

This closed-form formula can easily be rewritten to the form Cn = 1
n+1

(
2n
n

)
,

which contains only ‘normal’ binomial coefficients and not the generalised
ones:
lemma catalan-closed-form-aux:

catalan n ∗ Suc n = (2∗n) choose n
〈proof 〉

theorem of-nat-catalan-closed-form:
of-nat (catalan n) = (of-nat ((2∗n) choose n) / of-nat (Suc n) :: ′a :: field-char-0)
〈proof 〉

theorem catalan-closed-form:
catalan n = ((2∗n) choose n) div Suc n
〈proof 〉

The following is another nice closed-form formula for the Catalan numbers,
which directly follows from the previous one:
corollary catalan-closed-form ′:

catalan n = ((2∗n) choose n) − ((2∗n) choose (Suc n))
〈proof 〉

We can now easily show that the Catalan numbers also satisfy another,
simpler recurrence, namely Cn+1 = 2(2n+1)

n+2 Cn. We will later use this to
prove code equations to compute the Catalan numbers more efficiently.
lemma catalan-Suc-aux:
(n + 2) ∗ catalan (Suc n) = 2 ∗ (2 ∗ n + 1) ∗ catalan n
〈proof 〉

theorem of-nat-catalan-Suc ′:
of-nat (catalan (Suc n)) =

(of-nat (2∗(2∗n+1)) / of-nat (n+2) ∗ of-nat (catalan n) :: ′a :: field-char-0)
〈proof 〉

theorem catalan-Suc ′:
catalan (Suc n) = (catalan n ∗ (2∗(2∗n+1))) div (n+2)
〈proof 〉

4

1.5 Integral formula

The recursive formula we have just proven allows us to derive an integral
formula for the Catalan numbers. The proof was adapted from a textbook
proof by Steven Roman. [1]
context
begin

private definition I :: nat ⇒ real where
I n = integral {0 ..4} (λx. x powr (of-nat n − 1/2) ∗ sqrt (4 − x))

private lemma has-integral-I0 : ((λx. x powr (−(1/2)) ∗ sqrt (4 − x)) has-integral
2∗pi) {0 ..4}
〈proof 〉 lemma integrable-I :
(λx. x powr (of-nat n − 1/2) ∗ sqrt (4 − x)) integrable-on {0 ..4}
〈proof 〉 lemma I-Suc: I (Suc n) = real (2 ∗ (2∗n + 1)) / real (n + 2) ∗ I n
〈proof 〉 lemma catalan-eq-I : real (catalan n) = I n / (2 ∗ pi)
〈proof 〉

theorem catalan-integral-form:
((λx. x powr (real n − 1 / 2) ∗ sqrt (4 − x) / (2∗pi))

has-integral real (catalan n)) {0 ..4}
〈proof 〉

end

1.6 Asymptotics

Using the closed form Cn = 2 ·(−4)n
(1

2
n+1

)
and the fact that

(
α
n

)
∼ (−1)n

Γ(−α)nα+1

for any α /∈ N, wwe can now easily analyse the asymptotic behaviour of the
Catalan numbers:
theorem catalan-asymptotics:

catalan ∼[at-top] (λn. 4 ^ n / (sqrt pi ∗ n powr (3/2)))
〈proof 〉

1.7 Relation to binary trees

It is well-known that the Catalan number Cn is the number of rooted binary
trees with n internal nodes (where internal nodes are those with two children
and external nodes are those with no children).
We will briefly show this here to show that the above asymptotic formula
also describes the number of binary trees of a given size.
qualified datatype tree = Leaf | Node tree tree

qualified primrec count-nodes :: tree ⇒ nat where
count-nodes Leaf = 0

5

| count-nodes (Node l r) = 1 + count-nodes l + count-nodes r

qualified definition trees-of-size :: nat ⇒ tree set where
trees-of-size n = {t. count-nodes t = n}

lemma count-nodes-eq-0-iff [simp]: count-nodes t = 0 ←→ t = Leaf
〈proof 〉

lemma trees-of-size-0 [simp]: trees-of-size 0 = {Leaf }
〈proof 〉

lemma trees-of-size-Suc:
trees-of-size (Suc n) = (λ(l,r). Node l r) ‘ (

⋃
k≤n. trees-of-size k × trees-of-size

(n − k))
(is ?lhs = ?rhs)

〈proof 〉

lemma finite-trees-of-size [simp,intro]: finite (trees-of-size n)
〈proof 〉

lemma trees-of-size-nonempty: trees-of-size n 6= {}
〈proof 〉

lemma trees-of-size-disjoint:
assumes m 6= n
shows trees-of-size m ∩ trees-of-size n = {}
〈proof 〉

theorem card-trees-of-size: card (trees-of-size n) = catalan n
〈proof 〉

1.8 Efficient computation

We shall now prove code equations that allow more efficient computation
of Catalan numbers. In order to do this, we define a tail-recursive function
that uses the recurrence catalan (Suc n) = catalan n ∗ (2 ∗ (2 ∗ n + 1))
div (n + 2):
qualified function catalan-aux where [simp del]:

catalan-aux n k acc =
(if k ≥ n then acc else catalan-aux n (Suc k) ((acc ∗ (2∗(2∗k+1))) div (k+2)))
〈proof 〉

termination 〈proof 〉 lemma catalan-aux-simps:
k ≥ n =⇒ catalan-aux n k acc = acc
k < n =⇒ catalan-aux n k acc = catalan-aux n (Suc k) ((acc ∗ (2∗(2∗k+1)))

div (k+2))
〈proof 〉 lemma catalan-aux-correct:
assumes k ≤ n
shows catalan-aux n k (catalan k) = catalan n

6

〈proof 〉

lemma catalan-code [code]: catalan n = catalan-aux n 0 1
〈proof 〉

end

References

[1] S. Roman. An Introduction to Catalan Numbers. Birkhäuser Basel, 2015.

7

	Catalan numbers
	Auxiliary integral
	Other auxiliary lemmas
	Definition
	Closed-form formulae and more recurrences
	Integral formula
	Asymptotics
	Relation to binary trees
	Efficient computation

