
Catalan Numbers

Manuel Eberl

March 17, 2025

Abstract

In this work, we define the Catalan numbers Cn and prove several
equivalent definitions (including some closed-form formulae). We also
show one of their applications (counting the number of binary trees of
size n), prove the asymptotic growth approximation Cn ∼ 4n√

πn1.5 , and
provide reasonably efficient executable code to compute them.

The derivation of the closed-form formulae uses algebraic manip-
ulations of the ordinary generating function of the Catalan numbers,
and the asymptotic approximation is then done using generalised bi-
nomial coefficients and the Gamma function. Thanks to these highly
non-elementary mathematical tools, the proofs are very short and sim-
ple.

Contents
1 Catalan numbers 2

1.1 Auxiliary integral . 2
1.2 Other auxiliary lemmas . 4
1.3 Definition . 5
1.4 Closed-form formulae and more recurrences 6
1.5 Integral formula . 8
1.6 Asymptotics . 11
1.7 Relation to binary trees . 11
1.8 Efficient computation . 12

1

1 Catalan numbers
theory Catalan-Auxiliary-Integral
imports HOL−Analysis.Analysis HOL−Real-Asymp.Real-Asymp
begin

1.1 Auxiliary integral

First, we will prove the integral

4∫
0

√
4− x

x
dx = 2π

which occurs in the proof for the integral formula for the Catalan numbers.
context
begin

We prove the integral by explicitly constructing the indefinite integral.
lemma catalan-aux-integral:
((λx::real. sqrt ((4 − x) / x)) has-integral 2 ∗ pi) {0 ..4}

proof −
define F where F ≡ λx. sqrt (4/x − 1) ∗ x − 2 ∗ arctan ((sqrt (4/x − 1) ∗

(x − 2)) / (x − 4))
— The nice part of the indefinite integral. The endpoints are removable singu-

larities.

define G where G ≡ λx. if x = 4 then pi else if x = 0 then −pi else F x
— The actual indefinite integral including the endpoints.

— We now prove that the indefinite integral indeed tends to pi resp. − pi at the
edges of the integration interval.

have (F −−−→ −pi) (at-right 0)
unfolding F-def by real-asymp

hence G-0 : (G −−−→ −pi) (at-right 0) unfolding G-def
by (rule Lim-transform-eventually) (auto intro!: eventually-at-rightI [of 0 1])

have (F −−−→ pi) (at-left 4)
unfolding F-def by real-asymp

hence G-4 : (G −−−→ pi) (at-left 4) unfolding G-def
by (rule Lim-transform-eventually) (auto intro!: eventually-at-leftI [of 1])

— The derivative of G is indeed the integrand in the interior of the integration
interval.
have deriv-G: (G has-field-derivative sqrt ((4 − x) / x)) (at x) if x: x ∈ {0<..<4}

for x
proof −

from x have eventually (λy. y ∈ {0<..<4}) (nhds x)

2

by (intro eventually-nhds-in-open) simp-all
hence eq: eventually (λx. F x = G x) (nhds x) by eventually-elim (simp add:

G-def)

define T where T ≡ λx::real. 4 / (sqrt (4/x − 1) ∗ (x − 4) ∗ x^2)
have ∗: ((λx. (sqrt (4/x − 1) ∗ (x − 2)) / (x − 4)) has-field-derivative T x)

(at x)
by (insert x, rule derivative-eq-intros refl | simp)+

(simp add: divide-simps T-def , simp add: field-simps power2-eq-square)
have ((λx. 2 ∗ arctan ((sqrt (4/x − 1) ∗ (x − 2)) / (x − 4))) has-field-derivative

2 ∗ T x / (1 + (sqrt (4 / x − 1) ∗ (x − 2) / (x − 4))2)) (at x)
by (rule ∗ derivative-eq-intros refl | simp)+ (simp add: field-simps)

also from x have (sqrt (4 / x − 1) ∗ (x − 2) / (x − 4))2 = (4/x − 1) ∗
(x−2)^2 / (x − 4)^2

by (simp add: power-mult-distrib power-divide)
also from x have 1 + . . . = −4 / ((x − 4) ∗ x)

by (simp add: divide-simps power2-eq-square mult-ac) (simp add: alge-
bra-simps)?

also from x have 2 ∗ T x / . . . = − (2 / (x ∗ sqrt (4 / x − 1)))
by (simp add: T-def power2-eq-square)

finally have ∗: ((λx. 2 ∗ arctan (sqrt (4 / x − 1) ∗ (x − 2) / (x − 4)))
has-real-derivative

− (2 / (x ∗ sqrt (4 / x − 1)))) (at x) .
have (F has-field-derivative sqrt (4 / x − 1)) (at x) unfolding F-def
by (insert x, (rule ∗ derivative-eq-intros refl | simp)+) (simp add: field-simps)

thus ?thesis by (subst (asm) DERIV-cong-ev[OF refl eq refl]) (insert x, simp
add: field-simps)

qed

— It is now obvious that G is continuous over the entire integration interval.
have cont-G: continuous-on {0 ..4} G unfolding continuous-on
proof safe

fix x :: real assume x ∈ {0 ..4}
then consider x = 0 | x = 4 | x ∈ {0<..<4} by force
thus (G −−−→ G x) (at x within {0 ..4})
proof cases

assume x = 0
have ∗: at (0 ::real) within {0 ..4} ≤ at-right 0 unfolding at-within-def

by (rule inf-mono) auto
from G-0 have (G −−−→ −pi) (at x within {0 ..4})

by (rule filterlim-mono) (simp-all add: ∗ ‹x = 0 ›)
also have −pi = G x by (simp add: G-def ‹x = 0 ›)
finally show ?thesis .

next
assume x = 4
have ∗: at (4 ::real) within {0 ..4} ≤ at-left 4 unfolding at-within-def

by (rule inf-mono) auto
from G-4 have (G −−−→ pi) (at x within {0 ..4})

3

by (rule filterlim-mono) (simp-all add: ∗ ‹x = 4 ›)
also have pi = G x by (simp add: G-def ‹x = 4 ›)
finally show ?thesis .

next
assume x ∈ {0<..<4}
from deriv-G[OF this] have isCont G x by (rule DERIV-isCont)
thus ?thesis unfolding isCont-def by (rule filterlim-mono) (auto simp: at-le)

qed
qed

— Finally, we can apply the Fundamental Theorem of Calculus.
have ((λx. sqrt ((4 − x) / x)) has-integral G 4 − G 0) {0 ..4}

using cont-G deriv-G
by (intro fundamental-theorem-of-calculus-interior)

(auto simp: has-real-derivative-iff-has-vector-derivative)
also have G 4 − G 0 = 2 ∗ pi by (simp add: G-def)
finally show ?thesis .

qed

end

end

theory Catalan-Numbers
imports

Complex-Main
Catalan-Auxiliary-Integral
HOL−Analysis.Analysis
HOL−Computational-Algebra.Formal-Power-Series
HOL−Library.Landau-Symbols
Landau-Symbols.Landau-More

begin

1.2 Other auxiliary lemmas
lemma mult-eq-imp-eq-div:

assumes a ∗ b = c (a :: ′a :: semidom-divide) 6= 0
shows b = c div a
by (simp add: assms(2) assms(1) [symmetric])

lemma Gamma-minus-one-half-real:
Gamma (−(1/2) :: real) = − 2 ∗ sqrt pi
using rGamma-plus1 [of −1/2 :: real]
by (simp add: rGamma-inverse-Gamma divide-simps Gamma-one-half-real split:

if-split-asm)

lemma gbinomial-asymptotic ′:
assumes z /∈ �

4

shows (λn. z gchoose (n + k)) ∼[at-top]
(λn. (−1)^(n+k) / (Gamma (−z) ∗ of-nat n powr (z + 1)) :: real)

proof −
from assms have [simp]: Gamma (−z) 6= 0

by (simp-all add: Gamma-eq-zero-iff uminus-in-nonpos-Ints-iff)
have filterlim (λn. n + k) at-top at-top

by (intro filterlim-subseq strict-mono-add)
from asymp-equivI ′-const[OF gbinomial-asymptotic[of z]] assms

have (λn. z gchoose n) ∼[at-top] (λn. (−1)^n / (Gamma (−z) ∗ exp ((z+1) ∗
ln (real n))))

by (simp add: Gamma-eq-zero-iff uminus-in-nonpos-Ints-iff field-simps)
also have eventually (λn. exp ((z+1) ∗ ln (real n)) = real n powr (z+1)) at-top

using eventually-gt-at-top[of 0] by eventually-elim (simp add: powr-def)
finally have (λx. z gchoose (x + k)) ∼[at-top]

(λx. (− 1) ^ (x + k) / (Gamma (− z) ∗ real (x + k) powr (z + 1)))
by (rule asymp-equiv-compose ′) (simp add: filterlim-subseq strict-mono-add)

also have (λx. real x + real k) ∼[at-top] real
by (subst asymp-equiv-add-right) auto

hence (λx. real (x + k) powr (z + 1)) ∼[at-top] (λx. real x powr (z + 1))
by (intro asymp-equiv-powr-real) auto

finally show ?thesis by − (simp-all add: asymp-equiv-intros)
qed

1.3 Definition

We define Catalan numbers by their well-known recursive definition. We
shall later derive a few more equivalent definitions from this one.

fun catalan :: nat ⇒ nat where
catalan 0 = 1
| catalan (Suc n) = (

∑
i≤n. catalan i ∗ catalan (n − i))

The easiest proof of the more profound properties of the Catalan numbers
(such as their closed-form equation and their asymptotic growth) uses their
ordinary generating function (OGF). This proof is almost mechanical in the
sense that it does not require ‘guessing’ the closed form; one can read it
directly from the generating function.
We therefore define the OGF of the Catalan numbers (

∑∞
n=0Cnz

n in stan-
dard mathematical notation):
definition fps-catalan = Abs-fps (of-nat ◦ catalan)

lemma fps-catalan-nth [simp]: fps-nth fps-catalan n = of-nat (catalan n)
by (simp add: fps-catalan-def)

Given their recursive definition, it is easy to see that the OGF of the Catalan
numbers satisfies the following recursive equation:

5

lemma fps-catalan-recurrence:
fps-catalan = 1 + fps-X ∗ fps-catalan^2

proof (rule fps-ext)
fix n :: nat
show fps-nth fps-catalan n = fps-nth (1 + fps-X ∗ fps-catalan^2) n

by (cases n) (simp-all add: fps-square-nth catalan-Suc)
qed

We can now easily solve this equation for fps-catalan: if we denote the un-
known OGF as F (z), we get F (z) = 1

2(1−
√
1− 4z).

Note that we do not actually use the square root as defined on real or
complex numbers. Any (1 + cz)α can be expressed using the formal power
series whose coefficients are the generalised binomial coefficients, and thus
we can do all of these transformations in a purely algebraic way:

√
1− 4z =

(1 + z)
1
2 ◦ (−4z) (where ◦ denotes composition of formal power series) and

(1 + z)α has the well-known expansion
∑∞

n=0

(
α
n

)
zn.

lemma fps-catalan-fps-binomial:
fps-catalan = (1/2 ∗ (1 − (fps-binomial (1/2) oo (−4∗fps-X)))) / fps-X

proof (rule mult-eq-imp-eq-div)
let ?F = fps-catalan :: ′a fps
have fps-X ∗ (1 + fps-X ∗ ?F^2) = fps-X ∗ ?F by (simp only: fps-catalan-recurrence

[symmetric])
hence (1 / 2 − fps-X ∗ ?F)2 = − fps-X + 1 / 4

by (simp add: algebra-simps power2-eq-square fps-numeral-simps)
also have . . . = (1/2 ∗ (fps-binomial (1/2) oo (−4∗fps-X)))^2

by (simp add: power-mult-distrib div-power fps-binomial-1 fps-binomial-power
fps-compose-power fps-compose-add-distrib ring-distribs)

finally have 1/2 − fps-X ∗ ?F = 1/2 ∗ (fps-binomial (1/2) oo (−4∗fps-X))
by (rule fps-power-eqD) simp-all

thus fps-X∗?F = 1/2 ∗ (1 − (fps-binomial (1/2) oo (−4∗fps-X))) by algebra
qed simp-all

1.4 Closed-form formulae and more recurrences

We can now read a closed-form formula for the Catalan numbers directly
from the generating function 1

2z (1− (1 + z)
1
2 ◦ (−4z)).

theorem catalan-closed-form-gbinomial:
real (catalan n) = 2 ∗ (− 4) ^ n ∗ (1/2 gchoose Suc n)

proof −
have (catalan n :: real) = fps-nth fps-catalan n by simp
also have . . . = 2 ∗ (− 4) ^ n ∗ (1/2 gchoose Suc n)

by (subst fps-catalan-fps-binomial)
(simp add: fps-div-fps-X-nth numeral-fps-const fps-compose-linear)

finally show ?thesis .
qed

This closed-form formula can easily be rewritten to the form Cn = 1
n+1

(
2n
n

)
,

6

which contains only ‘normal’ binomial coefficients and not the generalised
ones:
lemma catalan-closed-form-aux:

catalan n ∗ Suc n = (2∗n) choose n
proof −

have real ((2∗n) choose n) = fact (2∗n) / (fact n)^2
by (simp add: binomial-fact power2-eq-square)

also have (fact (2∗n) :: real) = 4^n ∗ pochhammer (1 / 2) n ∗ fact n
by (simp add: fact-double power-mult)

also have . . . / (fact n)^2 / real (n+1) = real (catalan n)
by (simp add: catalan-closed-form-gbinomial gbinomial-pochhammer pochham-

mer-rec
field-simps power2-eq-square power-mult-distrib [symmetric] del: of-nat-Suc)

finally have real (catalan n ∗ Suc n) = real ((2∗n) choose n) by (simp add:
field-simps)

thus ?thesis by (simp only: of-nat-eq-iff)
qed

theorem of-nat-catalan-closed-form:
of-nat (catalan n) = (of-nat ((2∗n) choose n) / of-nat (Suc n) :: ′a :: field-char-0)

proof −
have of-nat (catalan n ∗ Suc n) = of-nat ((2∗n) choose n)

by (subst catalan-closed-form-aux) (rule refl)
also have of-nat (catalan n ∗ Suc n) = of-nat (catalan n) ∗ of-nat (Suc n)

by (simp only: of-nat-mult)
finally show ?thesis by (simp add: divide-simps del: of-nat-Suc)

qed

theorem catalan-closed-form:
catalan n = ((2∗n) choose n) div Suc n
by (subst catalan-closed-form-aux [symmetric]) (simp del: mult-Suc-right)

The following is another nice closed-form formula for the Catalan numbers,
which directly follows from the previous one:
corollary catalan-closed-form ′:

catalan n = ((2∗n) choose n) − ((2∗n) choose (Suc n))
proof (cases n)

case (Suc m)
have real ((2∗n) choose n) − real ((2∗n) choose (Suc n)) =

fact (2∗m+2) / (fact (m+1))^2 − fact (2∗m+2) / (real (m+2) ∗ fact
(m+1) ∗ fact m)

by (subst (1 2) binomial-fact) (simp-all add: Suc power2-eq-square)
also have . . . = fact (2∗m+2) / ((fact (m+1))^2 ∗ real (m+2))

by (simp add: divide-simps power2-eq-square) (simp-all add: algebra-simps)
also have . . . = real (catalan n)

by (subst of-nat-catalan-closed-form, subst binomial-fact) (simp-all add: Suc
power2-eq-square)

finally show ?thesis by linarith
qed simp-all

7

We can now easily show that the Catalan numbers also satisfy another,
simpler recurrence, namely Cn+1 = 2(2n+1)

n+2 Cn. We will later use this to
prove code equations to compute the Catalan numbers more efficiently.
lemma catalan-Suc-aux:
(n + 2) ∗ catalan (Suc n) = 2 ∗ (2 ∗ n + 1) ∗ catalan n

proof −
have real (catalan (Suc n)) ∗ real (n + 2) = real (catalan n) ∗ 2 ∗ real (2 ∗ n

+ 1)
proof (cases n)

case (Suc n)
thus ?thesis

by (subst (1 2) of-nat-catalan-closed-form, subst (1 2) binomial-fact)
(simp-all add: divide-simps)

qed simp-all
hence real ((n + 2) ∗ catalan (Suc n)) = real (2 ∗ (2 ∗ n + 1) ∗ catalan n)

by (simp only: mult-ac of-nat-mult)
thus ?thesis by (simp only: of-nat-eq-iff)

qed

theorem of-nat-catalan-Suc ′:
of-nat (catalan (Suc n)) =

(of-nat (2∗(2∗n+1)) / of-nat (n+2) ∗ of-nat (catalan n) :: ′a :: field-char-0)
proof −

have (of-nat (2∗(2∗n+1)) / of-nat (n+2) ∗ of-nat (catalan n) :: ′a) =
of-nat (2∗(2∗n + 1) ∗ catalan n) / of-nat (n+2)

by (simp add: divide-simps mult-ac del: mult-Suc mult-Suc-right)
also note catalan-Suc-aux[of n, symmetric]
also have of-nat ((n + 2) ∗ catalan (Suc n)) / of-nat (n + 2) = (of-nat (catalan

(Suc n)) :: ′a)
by (simp del: of-nat-Suc mult-Suc-right mult-Suc)

finally show ?thesis ..
qed

theorem catalan-Suc ′:
catalan (Suc n) = (catalan n ∗ (2∗(2∗n+1))) div (n+2)

proof −
from catalan-Suc-aux[of n] have catalan n ∗ (2∗(2∗n+1)) = catalan (Suc n) ∗

(n+2)
by (simp add: algebra-simps)

also have . . . div (n+2) = catalan (Suc n) by (simp del: mult-Suc mult-Suc-right)
finally show ?thesis ..

qed

1.5 Integral formula

The recursive formula we have just proven allows us to derive an integral
formula for the Catalan numbers. The proof was adapted from a textbook
proof by Steven Roman. [1]

8

context
begin

private definition I :: nat ⇒ real where
I n = integral {0 ..4} (λx. x powr (of-nat n − 1/2) ∗ sqrt (4 − x))

private lemma has-integral-I0 : ((λx. x powr (−(1/2)) ∗ sqrt (4 − x)) has-integral
2∗pi) {0 ..4}
proof −

have
∧

x. x∈{0 ..4}−{} =⇒ x powr (−(1/2)) ∗ sqrt (4 − x) = sqrt ((4 − x) /
x)

by (auto simp: powr-minus field-simps powr-half-sqrt real-sqrt-divide)
thus ?thesis by (rule has-integral-spike[OF negligible-empty - catalan-aux-integral])

qed

private lemma integrable-I :
(λx. x powr (of-nat n − 1/2) ∗ sqrt (4 − x)) integrable-on {0 ..4}

proof (cases n = 0)
case True
with has-integral-I0 show ?thesis by (simp add: has-integral-integrable)

next
case False
thus ?thesis by (intro integrable-continuous-real continuous-on-mult continu-

ous-on-powr ′)
(auto intro!: continuous-intros)

qed

private lemma I-Suc: I (Suc n) = real (2 ∗ (2∗n + 1)) / real (n + 2) ∗ I n
proof −

define u ′ u v v ′

where u ′ = (λx. sqrt (4 − x :: real))
and u = (λx. −2/3 ∗ (4 − x) powr (3/2 :: real))
and v = (λx. x powr (real n + 1/2))
and v ′ = (λx. (real n + 1/2) ∗ x powr (real n − 1/2))

define c where c = −2/3 ∗ (real n + 1/2)
define i where i = (λn x. x powr (real n − 1/2) ∗ sqrt (4 − x) :: real)

have I (Suc n) = integral {0 ..4} (λx. u ′ x ∗ v x)
unfolding I-def by (simp add: algebra-simps u ′-def v-def)

have ((λx. u ′ x ∗ v x) has-integral − c ∗ (4 ∗ I n − I (Suc n))) {0 ..4}
proof (rule integration-by-parts-interior [OF bounded-bilinear-mult])

show continuous-on {0 ..4} u unfolding u-def
by (intro continuous-on-powr ′ continuous-on-mult) (auto intro!: continu-

ous-intros)
show continuous-on {0 ..4} v unfolding v-def

by (intro continuous-on-powr ′ continuous-on-mult) (auto intro!: continu-
ous-intros)

fix x :: real assume x: x ∈ {0<..<4}
from x show (u has-vector-derivative u ′ x) (at x)

9

unfolding has-real-derivative-iff-has-vector-derivative [symmetric] u-def u ′-def
by (auto intro!: derivative-eq-intros simp: field-simps powr-half-sqrt)

from x show (v has-vector-derivative v ′ x) (at x)
unfolding has-real-derivative-iff-has-vector-derivative [symmetric] v-def v ′-def
by (auto intro!: derivative-eq-intros simp: field-simps)

next
show ((λx. u x ∗ v ′ x) has-integral u 4 ∗ v 4 − u 0 ∗ v 0 − − c ∗ (4 ∗ I n −

I (Suc n))) {0 ..4}
proof (rule has-integral-spike; (intro ballI)?)

fix x :: real assume x: x ∈ {0 ..4}−{0}
have u x ∗ v ′ x = c ∗ ((4 − x) powr (1 + 1/2) ∗ x powr (real n − 1/2))

by (simp add: u-def v ′-def c-def)
also from x have (4 − x) powr (1 + 1/2) = (4 − x) ∗ sqrt (4 − x)

by (subst powr-add) (simp-all add: powr-half-sqrt)
also have . . . ∗ x powr (real n − 1/2) = 4 ∗ sqrt (4 − x) ∗ x powr (real n

− 1/2) −
sqrt (4 − x) ∗ x powr (real n − 1/2 + 1)

by (subst powr-add) (insert x, simp add: field-simps)
also have real n − 1/2 + 1 = real (Suc n) − 1/2 by simp
finally show u x ∗ v ′ x = c ∗ (4 ∗ i n x − i (Suc n) x) by (simp add: i-def)

next
have ((λx. c ∗ (4 ∗ i n x − i (Suc n) x)) has-integral c ∗ (4 ∗ I n − I (Suc

n))) {0 ..4}
unfolding i-def I-def

by (intro has-integral-mult-right has-integral-diff integrable-integral inte-
grable-I)

thus ((λx. c ∗ (4 ∗ i n x − i (Suc n) x)) has-integral u 4 ∗ v 4 − u 0 ∗ v 0
− −

c ∗ (4 ∗ I n − I (Suc n))) {0 ..4} by (simp add: u-def v-def)
qed simp-all

qed simp-all
also have (λx. u ′ x ∗ v x) = i (Suc n)

by (rule ext) (simp add: u ′-def v-def i-def algebra-simps)
finally have I (Suc n) = − c ∗ (4 ∗ I n − I (Suc n)) unfolding I-def i-def by

blast
hence (1 − c) ∗ I (Suc n) = −4 ∗ c ∗ I n by algebra
hence I (Suc n) = (−4 ∗ c) / (1 − c) ∗ I n by (simp add: field-simps c-def)
also have (−4 ∗ c) / (1 − c) = real (2∗(2∗n + 1)) / real (n + 2)

by (simp add: c-def field-simps)
finally show ?thesis .

qed

private lemma catalan-eq-I : real (catalan n) = I n / (2 ∗ pi)
proof (induction n)

case 0
thus ?case using has-integral-I0 by (simp add: I-def integral-unique)

next
case (Suc n)
show ?case by (simp add: of-nat-catalan-Suc ′ Suc.IH I-Suc)

10

qed

theorem catalan-integral-form:
((λx. x powr (real n − 1 / 2) ∗ sqrt (4 − x) / (2∗pi))

has-integral real (catalan n)) {0 ..4}
proof −

have ((λx. x powr (real n − 1 / 2) ∗ sqrt (4 − x) ∗ inverse (2∗pi)) has-integral

I n ∗ inverse (2 ∗ pi)) {0 ..4} unfolding I-def
by (intro has-integral-mult-left integrable-integral integrable-I)

thus ?thesis by (simp add: catalan-eq-I field-simps)
qed

end

1.6 Asymptotics

Using the closed form Cn = 2 ·(−4)n
(1

2
n+1

)
and the fact that

(
α
n

)
∼ (−1)n

Γ(−α)nα+1

for any α /∈ N, wwe can now easily analyse the asymptotic behaviour of the
Catalan numbers:
theorem catalan-asymptotics:

catalan ∼[at-top] (λn. 4 ^ n / (sqrt pi ∗ n powr (3/2)))
proof −

have catalan ∼[at-top] (λn. 2 ∗ (− 4) ^ n ∗ (1/2 gchoose (n+1)))
by (subst catalan-closed-form-gbinomial) simp-all

also have (λn. 1/2 gchoose (n+1)) ∼[at-top] (λn. (−1)^(n+1) / (Gamma
(−(1/2)) ∗ real n powr (1/2 + 1)))

using fraction-not-in-nats[of 2 1] by (intro asymp-equiv-intros gbinomial-asymptotic ′)
simp-all

also have (λn. 2 ∗ (− 4) ^ n ∗ . . . n) = (λn. 4 ^ n / (sqrt pi ∗ n powr (3/2)))
by (intro ext) (simp add: Gamma-minus-one-half-real power-mult-distrib [symmetric])

finally show ?thesis by − (simp-all add: asymp-equiv-intros)
qed

1.7 Relation to binary trees

It is well-known that the Catalan number Cn is the number of rooted binary
trees with n internal nodes (where internal nodes are those with two children
and external nodes are those with no children).
We will briefly show this here to show that the above asymptotic formula
also describes the number of binary trees of a given size.
qualified datatype tree = Leaf | Node tree tree

qualified primrec count-nodes :: tree ⇒ nat where
count-nodes Leaf = 0
| count-nodes (Node l r) = 1 + count-nodes l + count-nodes r

11

qualified definition trees-of-size :: nat ⇒ tree set where
trees-of-size n = {t. count-nodes t = n}

lemma count-nodes-eq-0-iff [simp]: count-nodes t = 0 ←→ t = Leaf
by (cases t) simp-all

lemma trees-of-size-0 [simp]: trees-of-size 0 = {Leaf }
by (simp add: trees-of-size-def)

lemma trees-of-size-Suc:
trees-of-size (Suc n) = (λ(l,r). Node l r) ‘ (

⋃
k≤n. trees-of-size k × trees-of-size

(n − k))
(is ?lhs = ?rhs)

proof (rule set-eqI)
fix t show t ∈ ?lhs ←→ t ∈ ?rhs by (cases t) (auto simp: trees-of-size-def)

qed

lemma finite-trees-of-size [simp,intro]: finite (trees-of-size n)
by (induction n rule: catalan.induct)

(auto simp: trees-of-size-Suc intro!: finite-imageI finite-cartesian-product)

lemma trees-of-size-nonempty: trees-of-size n 6= {}
by (induction n rule: catalan.induct) (auto simp: trees-of-size-Suc)

lemma trees-of-size-disjoint:
assumes m 6= n
shows trees-of-size m ∩ trees-of-size n = {}
using assms by (auto simp: trees-of-size-def)

theorem card-trees-of-size: card (trees-of-size n) = catalan n
by (induction n rule: catalan.induct)

(simp-all add: catalan-Suc trees-of-size-Suc card-image inj-on-def
trees-of-size-disjoint Times-Int-Times catalan-Suc card-UN-disjoint)

1.8 Efficient computation

We shall now prove code equations that allow more efficient computation
of Catalan numbers. In order to do this, we define a tail-recursive function
that uses the recurrence catalan (Suc n) = catalan n ∗ (2 ∗ (2 ∗ n + 1))
div (n + 2):
qualified function catalan-aux where [simp del]:

catalan-aux n k acc =
(if k ≥ n then acc else catalan-aux n (Suc k) ((acc ∗ (2∗(2∗k+1))) div (k+2)))

by auto
termination by (relation Wellfounded.measure (λ(a,b,-). a − b)) simp-all

qualified lemma catalan-aux-simps:

12

k ≥ n =⇒ catalan-aux n k acc = acc
k < n =⇒ catalan-aux n k acc = catalan-aux n (Suc k) ((acc ∗ (2∗(2∗k+1)))

div (k+2))
by (subst catalan-aux.simps, simp)+

qualified lemma catalan-aux-correct:
assumes k ≤ n
shows catalan-aux n k (catalan k) = catalan n

using assms
proof (induction n k catalan k rule: catalan-aux.induct)

case (1 n k)
show ?case
proof (cases k < n)

case True
hence catalan-aux n k (catalan k) = catalan-aux n (Suc k) (catalan (Suc k))

by (subst catalan-Suc ′) (simp-all add: catalan-aux-simps)
with 1 True show ?thesis by (simp add: catalan-Suc ′)

qed (insert 1 .prems, simp-all add: catalan-aux-simps)
qed

lemma catalan-code [code]: catalan n = catalan-aux n 0 1
using catalan-aux-correct[of 0 n] by simp

end

References

[1] S. Roman. An Introduction to Catalan Numbers. Birkhäuser Basel, 2015.

13

	Catalan numbers
	Auxiliary integral
	Other auxiliary lemmas
	Definition
	Closed-form formulae and more recurrences
	Integral formula
	Asymptotics
	Relation to binary trees
	Efficient computation

