
The Cartan Fixed Point Theorems

Lawrence C. Paulson

March 17, 2025

Abstract

The Cartan fixed point theorems concern the group of holomorphic auto-
morphisms on a connected open set of Cn. Ciolli et al. [1] have formalised
the one-dimensional case of these theorems in HOL Light. This entry con-
tains their proofs, ported to Isabelle/HOL. Thus it addresses the authors
remark that “it would be important to write a formal proof in a language
that can be read by both humans and machines.”

Contents

0.1 First Cartan Theorem . 1
theory Cartan
imports HOL−Complex-Analysis.Complex-Analysis

begin

0.1 First Cartan Theorem
Ported from HOL Light. See Gianni Ciolli, Graziano Gentili, Marco Mag-
gesi. A Certified Proof of the Cartan Fixed Point Theorems. J Automated
Reasoning (2011) 47:319–336 DOI 10.1007/s10817-010-9198-6
lemma deriv-left-inverse:

assumes f holomorphic-on S and g holomorphic-on T
and open S and open T
and f ‘ S ⊆ T
and [simp]:

∧
z. z ∈ S =⇒ g (f z) = z

and w ∈ S
shows deriv f w ∗ deriv g (f w) = 1

proof −
have deriv f w ∗ deriv g (f w) = deriv g (f w) ∗ deriv f w

by (simp add: algebra-simps)
also have ... = deriv (g o f) w

using assms
by (metis analytic-on-imp-differentiable-at analytic-on-open deriv-chain im-

age-subset-iff)
also have ... = deriv id w

apply (rule complex-derivative-transform-within-open [where s=S])
apply (rule assms holomorphic-on-compose-gen holomorphic-intros)+
apply simp
done

also have ... = 1
using higher-deriv-id [of 1] by simp

finally show ?thesis .
qed

lemma Cauchy-higher-deriv-bound:
assumes holf : f holomorphic-on (ball z r)

1

and contf : continuous-on (cball z r) f
and 0 < r and 0 < n
and fin :

∧
w. w ∈ ball z r =⇒ f w ∈ ball y B0

shows norm ((deriv ^^ n) f z) ≤ (fact n) ∗ B0 / r^n
proof −

have 0 < B0 using ‹0 < r› fin [of z]
by (metis ball-eq-empty ex-in-conv fin not-less)

have le-B0 :
∧

w. cmod (w − z) ≤ r =⇒ cmod (f w − y) ≤ B0
apply (rule continuous-on-closure-norm-le [of ball z r λw. f w − y])
apply (auto simp: ‹0 < r› dist-norm norm-minus-commute)
apply (rule continuous-intros contf)+
using fin apply (simp add: dist-commute dist-norm less-eq-real-def)
done

have (deriv ^^ n) f z = (deriv ^^ n) (λw. f w) z − (deriv ^^ n) (λw. y) z
using ‹0 < n› by simp

also have ... = (deriv ^^ n) (λw. f w − y) z
by (rule higher-deriv-diff [OF holf , symmetric]) (auto simp: ‹0 < r› holomor-

phic-on-const)
finally have (deriv ^^ n) f z = (deriv ^^ n) (λw. f w − y) z .
have contf ′: continuous-on (cball z r) (λu. f u − y)

by (rule contf continuous-intros)+
have holf ′: (λu. (f u − y)) holomorphic-on (ball z r)

by (simp add: holf holomorphic-on-diff holomorphic-on-const)
define a where a = (2 ∗ pi)/(fact n)
have 0 < a by (simp add: a-def)
have B0/r^(Suc n)∗2 ∗ pi ∗ r = a∗((fact n)∗B0/r^n)

using ‹0 < r› by (simp add: a-def divide-simps)
have der-dif : (deriv ^^ n) (λw. f w − y) z = (deriv ^^ n) f z

using ‹0 < r› ‹0 < n›
by (auto simp: higher-deriv-diff [OF holf holomorphic-on-const])

have norm ((2 ∗ of-real pi ∗ i)/(fact n) ∗ (deriv ^^ n) (λw. f w − y) z)
≤ (B0/r^(Suc n)) ∗ (2 ∗ pi ∗ r)

apply (rule has-contour-integral-bound-circlepath [of (λu. (f u − y)/(u −
z)^(Suc n)) - z])

using Cauchy-has-contour-integral-higher-derivative-circlepath [OF contf ′ holf ′]
using ‹0 < B0 › ‹0 < r›
apply (auto simp: norm-divide norm-mult norm-power divide-simps le-B0)
done

then show ?thesis
using ‹0 < r›
by (auto simp: norm-divide norm-mult norm-power field-simps der-dif le-B0)

qed

lemma higher-deriv-comp-lemma:
assumes s: open s and holf : f holomorphic-on s

and z ∈ s
and t: open t and holg: g holomorphic-on t
and fst: f ‘ s ⊆ t
and n: i ≤ n

2

and dfz: deriv f z = 1 and zero:
∧

i. [[1 < i; i ≤ n]] =⇒ (deriv ^^ i) f z = 0
shows (deriv ^^ i) (g o f) z = (deriv ^^ i) g (f z)

using n holg
proof (induction i arbitrary: g)

case 0 then show ?case by simp
next

case (Suc i)
have g ◦ f holomorphic-on s using Suc.prems holf

using fst by (simp add: holomorphic-on-compose-gen image-subset-iff)
then have 1 : deriv (g ◦ f) holomorphic-on s

by (simp add: holomorphic-deriv s)
have dg: deriv g holomorphic-on t

using Suc.prems by (simp add: Suc.prems(2) holomorphic-deriv t)
then have deriv g holomorphic-on f ‘ s

using fst by (simp add: holomorphic-on-subset image-subset-iff)
then have dgf : (deriv g o f) holomorphic-on s

by (simp add: holf holomorphic-on-compose)
then have 2 : (λw. (deriv g o f) w ∗ deriv f w) holomorphic-on s

by (blast intro: holomorphic-intros holomorphic-on-compose holf s)
have (deriv ^^ i) (deriv (g o f)) z = (deriv ^^ i) (λw. deriv g (f w) ∗ deriv f w)

z
apply (rule higher-deriv-transform-within-open [OF 1 2 [unfolded o-def] s ‹z ∈

s›])
apply (rule deriv-chain)

using holf Suc.prems fst apply (auto simp: holomorphic-on-imp-differentiable-at
s t)

done
also have ... = (

∑
j=0 ..i. of-nat(i choose j) ∗ (deriv ^^ j) (λw. deriv g (f w))

z ∗ (deriv ^^ (i − j)) (deriv f) z)
apply (rule higher-deriv-mult [OF dgf [unfolded o-def] - s ‹z ∈ s›])
by (simp add: holf holomorphic-deriv s)

also have ... = (
∑

j=i..i. of-nat(i choose j) ∗ (deriv ^^ j) (λw. deriv g (f w)) z
∗ (deriv ^^ Suc (i − j)) f z)

proof −
have ∗: (deriv ^^ j) (λw. deriv g (f w)) z = 0 if j < i and nz: (deriv ^^ (i −

j)) (deriv f) z 6= 0 for j
proof −

have 1 < Suc (i − j) Suc (i − j) ≤ n
using ‹j < i› ‹Suc i ≤ n› by auto

then show ?thesis by (metis comp-def funpow.simps(2) funpow-swap1 zero
nz)

qed
then show ?thesis

apply (simp only: funpow-Suc-right o-def)
apply (rule comm-monoid-add-class.sum.mono-neutral-right, auto)
done

qed
also have ... = (deriv ^^ i) (deriv g) (f z)

using Suc.IH [OF - dg] Suc.prems by (simp add: dfz)

3

finally show ?case
by (simp only: funpow-Suc-right o-def)

qed

lemma higher-deriv-comp-iter-lemma:
assumes s: open s and holf : f holomorphic-on s

and fss: f ‘ s ⊆ s
and z ∈ s and [simp]: f z = z
and n: i ≤ n
and dfz: deriv f z = 1 and zero:

∧
i. [[1 < i; i ≤ n]] =⇒ (deriv ^^ i) f z = 0

shows (deriv ^^ i) (f^^m) z = (deriv ^^ i) f z
proof −

have holfm: (f^^m) holomorphic-on s for m
apply (induction m, simp add: holomorphic-on-ident)
apply (simp only: funpow-Suc-right holomorphic-on-compose-gen [OF holf -

fss])
done

show ?thesis using n
proof (induction m)

case 0 with dfz show ?case
by (auto simp: zero)

next
case (Suc m)
have (deriv ^^ i) (f ^^ m ◦ f) z = (deriv ^^ i) (f ^^ m) (f z)

using Suc.prems holfm ‹z ∈ s› dfz fss higher-deriv-comp-lemma holf s zero
by blast

also have ... = (deriv ^^ i) f z
by (simp add: Suc)

finally show ?case
by (simp only: funpow-Suc-right)

qed
qed

lemma higher-deriv-iter-top-lemma:
assumes s: open s and holf : f holomorphic-on s

and fss: f ‘ s ⊆ s
and z ∈ s and [simp]: f z = z
and dfz [simp]: deriv f z = 1
and n: 1 < n

∧
i. [[1 < i; i < n]] =⇒ (deriv ^^ i) f z = 0

shows (deriv ^^ n) (f ^^ m) z = m ∗ (deriv ^^ n) f z
using n
proof (induction n arbitrary: m)

case 0 then show ?case by simp
next

case (Suc n)
have [simp]: (f^^m) z = z for m

by (induction m) auto
have fms-sb: (f^^m) ‘ s ⊆ s for m

4

apply (induction m)
using fss
apply force+
done

have holfm: (f^^m) holomorphic-on s for m
apply (induction m, simp add: holomorphic-on-ident)
apply (simp only: funpow-Suc-right holomorphic-on-compose-gen [OF holf -

fss])
done

then have holdfm: deriv (f ^^ m) holomorphic-on s for m
by (simp add: holomorphic-deriv s)

have holdffm: (λz. deriv f ((f ^^ m) z)) holomorphic-on s for m
apply (rule holomorphic-on-compose-gen [where g=deriv f and t=s, unfolded

o-def])
using s ‹z ∈ s› holfm holf fms-sb by (auto intro: holomorphic-intros)

have f-cd-w:
∧

w. w ∈ s =⇒ f field-differentiable at w
using holf holomorphic-on-imp-differentiable-at s by blast

have f-cd-mw:
∧

m w. w ∈ s =⇒ (f^^m) field-differentiable at w
using holfm holomorphic-on-imp-differentiable-at s by auto

have der-fm [simp]: deriv (f ^^ m) z = 1 for m
apply (induction m, simp add: deriv-ident)
apply (subst funpow-Suc-right)
apply (subst deriv-chain)
using ‹z ∈ s› holfm holomorphic-on-imp-differentiable-at s f-cd-w apply auto
done

note Suc(3) [simp]
note n-Suc = Suc
show ?case
proof (induction m)

case 0 with n-Suc show ?case
by (metis Zero-not-Suc funpow-simps-right(1) higher-deriv-id lambda-zero

nat-neq-iff of-nat-0)
next

case (Suc m)
have deriv-nffm: (deriv ^^ n) (deriv f o (f ^^ m)) z = (deriv ^^ n) (deriv f)

((f ^^ m) z)
apply (rule higher-deriv-comp-lemma [OF s holfm ‹z ∈ s› s - fms-sb order-refl])
using ‹z ∈ s› fss higher-deriv-comp-iter-lemma holf holf holomorphic-deriv s

apply auto
done

have deriv (f ^^ m ◦ f) holomorphic-on s
by (metis funpow-Suc-right holdfm)

moreover have (λw. deriv f ((f ^^ m) w) ∗ deriv (f ^^ m) w) holomorphic-on
s

by (rule holomorphic-on-mult [OF holdffm holdfm])
ultimately have (deriv ^^ n) (deriv (f ^^ m ◦ f)) z = (deriv ^^ n) (λw. deriv

f ((f ^^ m) w) ∗ deriv (f ^^ m) w) z
apply (rule higher-deriv-transform-within-open [OF - - s ‹z ∈ s›])
by (metis comp-funpow deriv-chain f-cd-mw f-cd-w fms-sb funpow-swap1 im-

5

age-subset-iff o-id)
also have ... =

(
∑

i=0 ..n. of-nat(n choose i) ∗ (deriv ^^ i) (λw. deriv f ((f ^^ m) w)) z ∗
(deriv ^^ (n − i)) (deriv (f ^^ m)) z)

by (rule higher-deriv-mult [OF holdffm holdfm s ‹z ∈ s›])
also have ... = (

∑
i ∈ {0 ,n}. of-nat(n choose i) ∗ (deriv ^^ i) (λw. deriv f ((f

^^ m) w)) z ∗
(deriv ^^ (n − i)) (deriv (f ^^ m)) z)

proof −
have ∗: (deriv ^^ i) (λw. deriv f ((f ^^ m) w)) z = 0 if i ≤ n 0 < i i 6= n

and nz: (deriv ^^ (n − i)) (deriv (f ^^ m)) z 6= 0 for i
proof −

have less: 1 < Suc (n−i) and le: Suc (n−i) ≤ n
using that by auto

have (deriv ^^ (Suc (n − i))) (f ^^ m) z = (deriv ^^(Suc (n − i))) f z
apply (rule higher-deriv-comp-iter-lemma [OF s holf fss ‹z ∈ s› ‹f z = z›

le dfz])
by simp

also have ... = 0
using n-Suc(3) less le le-imp-less-Suc by blast

finally have (deriv ^^ (Suc (n − i))) (f ^^ m) z = 0 .
then show ?thesis by (simp add: funpow-swap1 nz)

qed
show ?thesis

by (rule comm-monoid-add-class.sum.mono-neutral-right) (auto simp: ∗)
qed
also have ... = of-nat (Suc m) ∗ (deriv ^^ n) (deriv f) z

apply (subst Groups-Big.comm-monoid-add-class.sum.insert)
apply (simp-all add: deriv-nffm [unfolded o-def] of-nat-Suc [of 0] del: of-nat-Suc)

using n-Suc(2) Suc
apply (auto simp del: funpow.simps simp: algebra-simps funpow-simps-right)
done

finally have (deriv ^^ n) (deriv (f ^^ m ◦ f)) z = of-nat (Suc m) ∗ (deriv ^^
n) (deriv f) z .

then show ?case
apply (simp only: funpow-Suc-right)
apply (simp add: o-def del: of-nat-Suc)
done

qed
qed

Should be proved for n-dimensional vectors of complex numbers
theorem first-Cartan-dim-1 :

assumes holf : f holomorphic-on s
and open s connected s bounded s
and fss: f ‘ s ⊆ s
and z ∈ s and [simp]: f z = z
and dfz [simp]: deriv f z = 1
and w ∈ s

6

shows f w = w
proof −

obtain c where 0 < c and c: s ⊆ ball z c
using ‹bounded s› bounded-subset-ballD by blast

obtain r where 0 < r and r : cball z r ⊆ s
using ‹z ∈ s› open-contains-cball ‹open s› by blast

then have bzr : ball z r ⊆ s using ball-subset-cball by blast
have fms-sb: (f^^m) ‘ s ⊆ s for m

apply (induction m)
using fss apply force+
done

have holfm: (f^^m) holomorphic-on s for m
apply (induction m, simp add: holomorphic-on-ident)
apply (simp only: funpow-Suc-right holomorphic-on-compose-gen [OF holf -

fss])
done

have ∗: (deriv ^^ n) f z = (deriv ^^ n) id z for n
proof −

consider n = 0 | n = 1 | 1 < n by arith
then show ?thesis
proof cases

assume n = 0 then show ?thesis by force
next

assume n = 1 then show ?thesis by force
next

assume n1 : n > 1
then have (deriv ^^ n) f z = 0
proof (induction n rule: less-induct)

case (less n)
have le: real m ∗ cmod ((deriv ^^ n) f z) ≤ fact n ∗ c / r ^ n if m 6=0 for

m
proof −

have holfm ′: (f ^^ m) holomorphic-on ball z r
using holfm bzr holomorphic-on-subset by blast

then have contfm ′: continuous-on (cball z r) (f ^^ m)
using ‹cball z r ⊆ s› holfm holomorphic-on-imp-continuous-on holomor-

phic-on-subset by blast
have real m ∗ cmod ((deriv ^^ n) f z) = cmod (real m ∗ (deriv ^^ n) f z)

by (simp add: norm-mult)
also have ... = cmod ((deriv ^^ n) (f ^^ m) z)
apply (subst higher-deriv-iter-top-lemma [OF ‹open s› holf fss ‹z ∈ s› ‹f

z = z› dfz])
using less apply auto
done

also have ... ≤ fact n ∗ c / r ^ n
apply (rule Cauchy-higher-deriv-bound [OF holfm ′ contfm ′ ‹0 < r›,

where y=z])
using less.prems apply linarith
using fms-sb c r ball-subset-cball

7

apply blast
done

finally show ?thesis .
qed
have cmod ((deriv ^^ n) f z) = 0

apply (rule real-archimedian-rdiv-eq-0 [where c = (fact n) ∗ c / r ^ n])
apply simp
using ‹0 < r› ‹0 < c›
apply (simp add: divide-simps)
apply (blast intro: le)
done

then show ?case by simp
qed
with n1 show ?thesis by simp

qed
qed
have f w = id w

by (rule holomorphic-fun-eq-on-connected
[OF holf holomorphic-on-id ‹open s› ‹connected s› ∗ ‹z ∈ s› ‹w ∈ s›])

also have ... = w by simp
finally show ?thesis .

qed

Second Cartan Theorem.
lemma Cartan-is-linear :

assumes holf : f holomorphic-on s
and open s and connected s
and 0 ∈ s
and ins:

∧
u z. [[norm u = 1 ; z ∈ s]] =⇒ u ∗ z ∈ s

and feq:
∧

u z. [[norm u = 1 ; z ∈ s]] =⇒ f (u ∗ z) = u ∗ f z
shows ∃ c. ∀ z ∈ s. f z = c ∗ z

proof −
have [simp]: f 0 = 0

using feq [of −1 0] assms by simp
have uneq: u^n ∗ (deriv ^^ n) f (u ∗ z) = u ∗ (deriv ^^ n) f z

if norm u = 1 z ∈ s for n u z
proof −

have holfuw: (λw. f (u ∗ w)) holomorphic-on s
apply (rule holomorphic-on-compose-gen [OF - holf , unfolded o-def])
using that ins by (auto simp: holomorphic-on-linear)

have hol-d-fuw: (deriv ^^ n) (λw. u ∗ f w) holomorphic-on s for n
by (rule holomorphic-higher-deriv holomorphic-intros holf assms)+

have ∗: (deriv ^^ n) (λw. u ∗ f w) z = u ∗ (deriv ^^ n) f z if z ∈ s for z
using that
proof (induction n arbitrary: z)

case 0 then show ?case by simp
next

case (Suc n)
have deriv ((deriv ^^ n) (λw. u ∗ f w)) z = deriv (λw. u ∗ (deriv ^^ n) f w)

8

z
apply (rule complex-derivative-transform-within-open [OF hol-d-fuw])
apply (auto intro!: holomorphic-higher-deriv holomorphic-intros assms Suc)
done

also have ... = u ∗ deriv ((deriv ^^ n) f) z
apply (rule deriv-cmult)

using Suc ‹open s› holf holomorphic-higher-deriv holomorphic-on-imp-differentiable-at
by blast

finally show ?case by simp
qed
have (deriv ^^ n) (λw. f (u ∗ w)) z = u ^ n ∗ (deriv ^^ n) f (u ∗ z)

apply (rule higher-deriv-compose-linear [OF holf ‹open s› ‹open s›])
apply (simp add: that)
apply (simp add: ins that)
done

moreover have (deriv ^^ n) (λw. f (u ∗ w)) z = u ∗ (deriv ^^ n) f z
apply (subst higher-deriv-transform-within-open [OF holfuw, of λw. u ∗ f w])
apply (rule holomorphic-intros holf assms that)+
apply blast
using ∗ ‹z ∈ s› apply blast
done

ultimately show ?thesis by metis
qed
have dnf0 : (deriv ^^ n) f 0 = 0 if len: 2 ≤ n for n
proof −

have ∗∗: z = 0 if
∧

u::complex. norm u = 1 =⇒ u ^ n ∗ z = u ∗ z for z
proof −

have ∃ u::complex. norm u = 1 ∧ u ^ n 6= u
using complex-not-root-unity [of n−1] len
apply (simp add: algebra-simps le-diff-conv2 , clarify)
apply (rule-tac x=u in exI)
apply (subst (asm) power-diff)
apply auto
done

with that show ?thesis
by auto

qed
show ?thesis

apply (rule ∗∗)
using uneq [OF - ‹0 ∈ s›]
by force

qed
show ?thesis

apply (rule-tac x = deriv f 0 in exI , clarify)
apply (rule holomorphic-fun-eq-on-connected [OF holf - ‹open s› ‹connected s›

- ‹0 ∈ s›])
using dnf0 apply (auto simp: holomorphic-on-linear)
done

qed

9

Should be proved for n-dimensional vectors of complex numbers
theorem second-Cartan-dim-1 :

assumes holf : f holomorphic-on ball 0 r
and holg: g holomorphic-on ball 0 r
and [simp]: f 0 = 0 and [simp]: g 0 = 0
and ballf :

∧
z. z ∈ ball 0 r =⇒ f z ∈ ball 0 r

and ballg:
∧

z. z ∈ ball 0 r =⇒ g z ∈ ball 0 r
and fg:

∧
z. z ∈ ball 0 r =⇒ f (g z) = z

and gf :
∧

z. z ∈ ball 0 r =⇒ g (f z) = z
and 0 < r

shows ∃ t. ∀ z ∈ ball 0 r . g z = exp(i ∗ of-real t) ∗ z
proof −

have c-le-1 : c ≤ 1
if 0 ≤ c

∧
x. 0 ≤ x =⇒ x < r =⇒ c ∗ x < r for c

proof −
have rst:

∧
r s t::real. 0 = r ∨ s/r < t ∨ r < 0 ∨ ¬ s < r ∗ t

by (metis (no-types) mult-less-cancel-left-disj nonzero-mult-div-cancel-left
times-divide-eq-right)

{ assume ¬ r < c ∧ c ∗ (c ∗ (c ∗ (c ∗ r))) < 1
then have 1 ≤ c =⇒ (∃ r . ¬ 1 < r ∧ ¬ r < c)

using ‹0 ≤ c› by (metis (full-types) less-eq-real-def mult.right-neutral
mult-left-mono not-less)

then have ¬ 1 < c ∨ ¬ 1 ≤ c
by linarith }

moreover
{ have ¬ 0 ≤ r / c =⇒ ¬ 1 ≤ c

using ‹0 < r› by force
then have 1 < c =⇒ ¬ 1 ≤ c

using rst ‹0 < r› that
by (metis div-by-1 frac-less2 less-le-trans mult.commute not-le order-refl

pos-divide-le-eq zero-less-one) }
ultimately show ?thesis

by (metis (no-types) linear not-less)
qed
have ugeq: u ∗ g z = g (u ∗ z) if nou: norm u = 1 and z: z ∈ ball 0 r for u z
proof −

have [simp]: u 6= 0 using that by auto
have hol1 : (λa. f (u ∗ g a) / u) holomorphic-on ball 0 r

apply (rule holomorphic-intros)
apply (rule holomorphic-on-compose-gen [OF - holf , unfolded o-def])
apply (rule holomorphic-intros holg)+
using nou ballg
apply (auto simp: dist-norm norm-mult holomorphic-on-const)
done

have cdf : f field-differentiable at 0
using ‹0 < r› holf holomorphic-on-imp-differentiable-at by auto

have cdg: g field-differentiable at 0
using ‹0 < r› holg holomorphic-on-imp-differentiable-at by auto

have cd-fug: (λa. f (u ∗ g a)) field-differentiable at 0

10

apply (rule field-differentiable-compose [where g=f and f = λa. (u ∗ g a),
unfolded o-def])

apply (rule derivative-intros)+
using cdf cdg
apply auto
done

have deriv g 0 = deriv g (f 0)
by simp

then have deriv f 0 ∗ deriv g 0 = 1
by (metis open-ball ‹0 < r› ballf centre-in-ball deriv-left-inverse gf holf holg

image-subsetI)
then have equ: deriv f 0 ∗ deriv (λa. u ∗ g a) 0 = u

by (simp add: cdg deriv-cmult)
have der1 : deriv (λa. f (u ∗ g a) / u) 0 = 1
apply (simp add: field-class.field-divide-inverse deriv-cmult-right [OF cd-fug])
apply (subst deriv-chain [where g=f and f = λa. (u ∗ g a), unfolded o-def])
apply (rule derivative-intros cdf cdg | simp add: equ)+
done

have fugeq:
∧

w. w ∈ ball 0 r =⇒ f (u ∗ g w) / u = w
apply (rule first-Cartan-dim-1 [OF hol1 , where z=0])
apply (simp-all add: ‹0 < r›)
apply (auto simp: der1)
using nou ballf ballg
apply (simp add: dist-norm norm-mult norm-divide)
done

have f (u ∗ g z) = u ∗ z
by (metis ‹u 6= 0 › fugeq nonzero-mult-div-cancel-left z times-divide-eq-right)

also have ... = f (g (u ∗ z))
by (metis (no-types, lifting) fg mem-ball-0 mult-cancel-right2 norm-mult nou

z)
finally have f (u ∗ g z) = f (g (u ∗ z)) .
then have g (f (u ∗ g z)) = g (f (g (u ∗ z)))

by simp
then show ?thesis

apply (subst (asm) gf)
apply (simp add: dist-norm norm-mult nou)
using ballg mem-ball-0 z apply blast
apply (subst (asm) gf)
apply (simp add: dist-norm norm-mult nou)
apply (metis ballg mem-ball-0 mult.left-neutral norm-mult nou z, simp)
done

qed
obtain c where c:

∧
z. z ∈ ball 0 r =⇒ g z = c ∗ z

apply (rule exE [OF Cartan-is-linear [OF holg]])
apply (simp-all add: ‹0 < r› ugeq)
apply (auto simp: dist-norm norm-mult)
done

have gr2 : g (f (r/2)) = c ∗ f (r/2)
apply (rule c) using ‹0 < r› ballf mem-ball-0 by force

11

then have norm c > 0
using ‹0 < r›

by simp (metis ‹f 0 = 0 › c dist-commute fg mem-ball mult-zero-left per-
fect-choose-dist)

then have [simp]: c 6= 0 by auto
have xless: x < r ∗ cmod c if 0 ≤ x x < r for x
proof −

have x = norm (g (f (of-real x)))
proof −

have r > cmod (of-real x)
by (simp add: that)

then have complex-of-real x ∈ ball 0 r
using mem-ball-0 by blast

then show ?thesis
using gf ‹0 ≤ x› by force

qed
then show ?thesis

apply (rule ssubst)
apply (subst c)
apply (rule ballf)
using ballf [of x] that
apply (auto simp: norm-mult dist-0-norm)
done

qed
have 11 : 1 / norm c ≤ 1

apply (rule c-le-1)
using xless apply (auto simp: divide-simps)
done

have [[0 ≤ x; x < r]] =⇒ cmod c ∗ x < r for x
using c [of x] ballg [of x] by (auto simp: norm-mult dist-0-norm)
then have norm c ≤ 1
by (force intro: c-le-1)

moreover have 1 ≤ norm c
using 11 by simp

ultimately have norm c = 1 by (rule antisym)
with complex-norm-eq-1-exp c show ?thesis

by metis
qed

end

12

Bibliography

[1] G. Ciolli, G. Gentili, and M. Maggesi. A certified proof of the Cartan
fixed point theorems. J. Autom. Reason., 47(3):319–336, Oct. 2011.

13

	First Cartan Theorem

