The Cartan Fixed Point Theorems

Lawrence C. Paulson

March 17, 2025

Abstract

The Cartan fixed point theorems concern the group of holomorphic auto-
morphisms on a connected open set of C". Ciolli et al. [1] have formalised
the one-dimensional case of these theorems in HOL Light. This entry con-
tains their proofs, ported to Isabelle/HOL. Thus it addresses the authors
remark that “it would be important to write a formal proof in a language
that can be read by both humans and machines.”

Contents

0.1 First Cartan Theorem 1
theory Cartan
imports HOL— Complex-Analysis. Complex-Analysis

begin

0.1 First Cartan Theorem

Ported from HOL Light. See Gianni Ciolli, Graziano Gentili, Marco Mag-
gesi. A Certified Proof of the Cartan Fixed Point Theorems. J Automated
Reasoning (2011) 47:319-336 DOI 10.1007/s10817-010-9198-6

lemma deriv-left-inverse:

assumes f holomorphic-on S and g holomorphic-on T
and open S and open T

and f‘SCT
and [simp]: Nz. z€ S = g (fz) =2
and w € S
shows deriv f w * deriv g (f w) = 1
proof —

have deriv f w * deriv g (f w) = deriv g (f w) * deriv f w
by (simp add: algebra-simps)
also have ... = deriv (g o f) w
using assms
by (metis analytic-on-imp-differentiable-at analytic-on-open deriv-chain im-
age-subset-iff)
also have ... = deriv id w
apply (rule complex-derivative-transform-within-open [where s=5S])
apply (rule assms holomorphic-on-compose-gen holomorphic-intros)+
apply simp
done
also have ... = 1
using higher-deriv-id [of 1] by simp
finally show ?thesis .
qed

lemma Cauchy-higher-deriv-bound:
assumes holf: f holomorphic-on (ball z r)

and contf: continuous-on (cball z 1) f
and 0 < rand 0 <n
and fin : Aw. w € ball zr = fw € ball y BO
shows norm ((deriv "~ n) fz) < (fact n) * B0 |/ r™n
proof —
have 0 < B0 using <0 < > fin [of 7]
by (metis ball-eq-empty ex-in-conv fin not-less)
have le-B0: Aw. cmod (w — z) < r = cmod (fw — y) < B0
apply (rule continuous-on-closure-norm-le [of ball z r Aw. fw — y])
apply (auto simp: <0 < ry dist-norm norm-minus-commute)
apply (rule continuous-intros contf)+
using fin apply (simp add: dist-commute dist-norm less-eq-real-def)
done
have (deriv "~ n) fz = (deriv 7" n) (Aw. fw) z — (deriv ™" n) (Aw. y) z
using (0 < n» by simp
also have ... = (deriv "~ n) (Aw. fw — y) 2z
by (rule higher-deriv-diff [OF holf, symmetric]) (auto simp: <0 < r» holomor-
phic-on-const)
finally have (deriv "~ n) fz = (deriv ™" n) (Aw. fw — y) z .
have contf’: continuous-on (cball z r) (Au. fu — y)
by (rule contf continuous-intros)+
have holf”: (Au. (f u — y)) holomorphic-on (ball z 1)
by (simp add: holf holomorphic-on-diff holomorphic-on-const)
define a where a = (2 * pi)/(fact n)
have 0 < a by (simp add: a-def)
have B0 /r (Suc n)*2 * pi x r = ax((fact n)xB0/r"n)
using <0 < r by (simp add: a-def divide-simps)
have der-dif: (deriv "~ n) (Aw. fw — y) z = (deriv " " n) f 2z
using 0 < ™ 0 < n»
by (auto simp: higher-deriv-diff [OF holf holomorphic-on-const))
have norm ((2 * of-real pi = i)/(fact n) x (deriv =" n) (Aw. fw — y) 2)
< (BO/r(Sucn)) = (2 % pi x 1)
apply (rule has-contour-integral-bound-circlepath [of (Au. (f v — y)/(u —
2)(Suc n)) - 2))
using Cauchy-has-contour-integral-higher-derivative-circlepath [OF contf’ holf’]
using <0 < B0» <0 <
apply (auto simp: norm-divide norm-mult norm-power divide-simps le-B0)
done
then show ?thesis
using 0 < ™
by (auto simp: norm-divide norm-mult norm-power field-simps der-dif le-B0)
qged

lemma higher-deriv-comp-lemma:
assumes s: open s and holf: f holomorphic-on s
and z € s
and t: open t and holg: g holomorphic-on t
and fst: f ‘s Ct
and n: i < n

and dfz: deriv f z = 1 and zero: N\i. [1 < ;i < n] = (deriv " "4) fz= 10
shows (deriv " 1) (g o f) z = (deriv " 4) g (f 2)
using n holg
proof (induction i arbitrary: g)
case 0 then show ?case by simp
next
case (Suc 17)
have g o f holomorphic-on s using Suc.prems holf
using fst by (simp add: holomorphic-on-compose-gen image-subset-iff)
then have 1: deriv (g o f) holomorphic-on s
by (simp add: holomorphic-deriv s)
have dg: deriv g holomorphic-on t
using Suc.prems by (simp add: Suc.prems(2) holomorphic-deriv t)
then have deriv g holomorphic-on f ‘s
using fst by (simp add: holomorphic-on-subset image-subset-iff)
then have dgf: (deriv g o f) holomorphic-on s
by (simp add: holf holomorphic-on-compose)
then have 2: (Aw. (deriv g o f) w * deriv f w) holomorphic-on s
by (blast intro: holomorphic-intros holomorphic-on-compose holf s)
have (deriv =" i) (deriv (g o f)) z = (deriv 7 ¢) (Aw. deriv g (f w) * deriv f w)
z
apply (rule higher-deriv-transform-within-open [OF 1 2 [unfolded o-def] s <z €
»])
apply (rule deriv-chain)
using holf Suc.prems fst apply (auto simp: holomorphic-on-imp-differentiable-at
s t)
done
also have ... = (3 j=0..i. of-nat(i choose j) * (deriv " j) (Aw. deriv g (f w))
z * (deriv =" (i — j)) (deriv f) 2)
apply (rule higher-deriv-mult [OF dgf [unfolded o-def] - s <z € $])
by (simp add: holf holomorphic-deriv s)

also have ... = (> j=i..i. of-nat(i choose j) * (deriv = j) (Aw. deriv g (f w)) z
* (deriv =" Suc (i — j)) f 2)
proof —

have x: (deriv 7 j) (Aw. deriv g (fw)) z =0 if j < i and nz: (deriv ~ (i —
) (deriv f) z # 0 for j
proof —
have 1 < Suc (i — j) Suc (i — j) < n
using «j < ©» «Suc i < n» by auto
then show %thesis by (metis comp-def funpow.simps(2) funpow-swapl zero
nz)
qed
then show ?thesis
apply (simp only: funpow-Suc-right o-def)
apply (rule comm-monoid-add-class.sum.mono-neutral-right, auto)
done
qed
also have ... = (deriv 7" 1) (deriv g) (f 2)
using Suc.IH [OF - dg] Suc.prems by (simp add: dfz)

finally show ?case
by (simp only: funpow-Suc-right o-def)
qed

lemma higher-deriv-comp-iter-lemma:
assumes s: open s and holf: f holomorphic-on s
and fss: f ‘s C s
and z € s and [simp]: fz =2z
and n: 1 < n
and dfz: deriv f z = 1 and zero: N\i. [1 < ;i < n] = (deriv " "4) fz= 10
shows (deriv =" ©) (f""m) z = (deriv " i) f 2
proof —
have holfm: (f~"m) holomorphic-on s for m
apply (induction m, simp add: holomorphic-on-ident)
apply (simp only: funpow-Suc-right holomorphic-on-compose-gen [OF holf -
i)
done
show ?thesis using n
proof (induction m)
case 0 with dfz show Zcase
by (auto simp: zero)
next
case (Suc m)
have (deriv 7" @) (f T m o f) z = (deriv ") (f T m) (f 2)
using Suc.prems holfm <z € $» dfz fss higher-deriv-comp-lemma holf s zero
by blast
also have ... = (deriv " 4) f 2
by (simp add: Suc)
finally show ?case
by (simp only: funpow-Suc-right)
qed
qed

lemma higher-deriv-iter-top-lemma:
assumes s: open s and holf: f holomorphic-on s
and fss: f ‘s C s
and z € s and [simp]: fz = z
and dfz [simp]: deriv f z = 1
and n: I <n Ai. [<ii<n] = (deriv ") fz=0
shows (deriv "~ n) (f 7" m) z=m * (deriv """ n) fz
using n
proof (induction n arbitrary: m)
case 0 then show ?case by simp
next
case (Suc n)
have [simp]: (f~"m) z = z for m
by (induction m) auto
have fms-sb: (f""m) ‘s C s for m

apply (induction m)
using fss
apply force+
done
have holfm: (f~"m) holomorphic-on s for m
apply (induction m, simp add: holomorphic-on-ident)
apply (simp only: funpow-Suc-right holomorphic-on-compose-gen [OF holf -
fss])
done
then have holdfm: deriv (f = m) holomorphic-on s for m
by (simp add: holomorphic-deriv s)
have holdffm: (Az. deriv f ((f =~ m) 2z)) holomorphic-on s for m
apply (rule holomorphic-on-compose-gen [where g=deriv f and t=s, unfolded
o-def])
using s <z € & holfm holf fms-sb by (auto intro: holomorphic-intros)
have f-cd-w: Nw. w € s = [field-differentiable at w
using holf holomorphic-on-imp-differentiable-at s by blast
have f-cd-mw: Am w. w € s = (f~ m) field-differentiable at w
using holfm holomorphic-on-imp-differentiable-at s by auto
have der-fm [simp]: deriv (f ~"m) z = I for m
apply (induction m, simp add: deriv-ident)
apply (subst funpow-Suc-right)
apply (subst deriv-chain)
using <z € s» holfm holomorphic-on-imp-differentiable-at s f-cd-w apply auto
done
note Suc(3) [simp)
note n-Suc = Suc
show ?Zcase
proof (induction m)
case (with n-Suc show ?case
by (metis Zero-not-Suc funpow-simps-right(1) higher-deriv-id lambda-zero
nat-neq-iff of-nat-0)
next
case (Suc m)
have deriv-nffm: (deriv =" n) (deriv f o (f ~~ m)) z = (deriv = n) (deriv f)
((f 7 m) 2)
apply (rule higher-deriv-comp-lemma [OF s holfm <z € s» s - fms-sb order-refi])
using <z € s fss higher-deriv-comp-iter-lemma holf holf holomorphic-deriv s
apply auto
done
have deriv (f =~ m o f) holomorphic-on s
by (metis funpow-Suc-right holdfm)
moreover have (Aw. deriv f ((f 7~ m) w) * deriv (f =~ m) w) holomorphic-on

by (rule holomorphic-on-mult [OF holdffm holdfm])
ultimately have (deriv " n) (deriv (f =" m o f)) z = (deriv = n) (Aw. deriv
fF(f 77 m) w) = deriv (f T~ m) w) 2z
apply (rule higher-deriv-transform-within-open [OF - - s <z € $)])
by (metis comp-funpow deriv-chain f-cd-mw f-cd-w fms-sb funpow-swapl im-

age-subset-iff o-id)
also have ... =
(3 i=0..n. of-nat(n choose i) * (deriv i) (Aw. deriv f ((f " m) w)) z *
(deriv ™" (n — 1)) (deriv (f 7" m)) z)
by (rule higher-deriv-mult [OF holdffm holdfm s <z € $])
also have ... = (3" i € {0,n}. of-nat(n choose i) x (deriv =" i) (Aw. deriv f ((f
(deriv =" (n — 7)) (deriv (f =" m)) 2)

PN

proof —
have x: (deriv =" @) (Aw. deriv f (f T m) w)) z2=0 ifi<n0<ii#n
and nz: (deriv = (n — 1)) (deriv (f =" m)) z # 0 for i
proof —
have less: 1 < Suc (n—i) and le: Suc (n—i) < n
using that by auto
have (deriv = (Suc (n — ©))) (f 7" m) z = (deriv " (Suc (n — 7)) f z
apply (rule higher-deriv-comp-iter-lemma [OF s holf fss <z € s» <fz = 2
le df2])
by simp
also have ... = 0
using n-Suc(3) less le le-imp-less-Suc by blast
finally have (deriv = (Suc (n — 9))) (f ~"m) z= 0.
then show %thesis by (simp add: funpow-swapl nz)
qed
show ?thesis
by (rule comm-monoid-add-class.sum.mono-neutral-right) (auto simp: *)
qged
also have ... = of-nat (Suc m) x (deriv =" n) (deriv f) z
apply (subst Groups-Big.comm-monoid-add-class.sum.insert)
apply (simp-all add: deriv-nffm [unfolded o-def] of-nat-Suc [of 0] del: of-nat-Suc)
using n-Suc(2) Suc
apply (auto simp del: funpow.simps simp: algebra-simps funpow-simps-right)
done
finally have (deriv =" n) (deriv (f =~ m o f)) z = of-nat (Suc m) * (deriv =
n) (deriv f) z .
then show ?case
apply (simp only: funpow-Suc-right)
apply (simp add: o-def del: of-nat-Suc)
done
qed
qed

Should be proved for n-dimensional vectors of complex numbers

theorem first-Cartan-dim-1:
assumes holf: f holomorphic-on s
and open s connected s bounded s
and fss: f ‘s C s
and z € s and [simp]: fz = z
and dfz [simp]: deriv f z = 1
and w € s

shows fw = w
proof —
obtain ¢ where 0 < cand c¢: s C ball z ¢
using <bounded s> bounded-subset-ballD by blast
obtain » where 0 < r and r: cball z7 C s
using <z € sy open-contains-cball <open sy by blast
then have bzr: ball z r C s using ball-subset-cball by blast
have fms-sb: (f~"m) ‘s C s for m
apply (induction m)
using fss apply force+
done
have holfm: (f~"m) holomorphic-on s for m
apply (induction m, simp add: holomorphic-on-ident)
apply (simp only: funpow-Suc-right holomorphic-on-compose-gen [OF holf -
fss])
done
have *: (deriv " n) fz = (deriv " n) id z for n
proof —
consider n =0 | n= 1|1 < n by arith
then show ?thesis
proof cases
assume n = (then show ?thesis by force
next
assume n = I then show ?thesis by force
next
assume ni: n > 1
then have (deriv " " n) fz =0
proof (induction n rule: less-induct)
case (less n)
have le: real m * ecmod ((deriv "~ n) fz) < fact n x ¢ / r " n if m#0 for

proof —
have holfm” (f =~ m) holomorphic-on ball z r
using holfm bzr holomorphic-on-subset by blast
then have contfm’: continuous-on (cball z r) (f =~ m)
using <cball z r C sy holfm holomorphic-on-imp-continuous-on holomor-
phic-on-subset by blast
have real m x cmod ((deriv "~ n) fz) = emod (real m x (deriv """ n) f z)
by (simp add: norm-mult)
also have ... = cmod ((deriv "~ n) (f 7" m) 2)
apply (subst higher-deriv-iter-top-lemma [OF <open $» holf fss <z € $» «f
z = 2z df?])
using less apply auto
done
also have ... < factnxc/r " n
apply (rule Cauchy-higher-deriv-bound [OF holfm’ contfm’ <0 < r»,
where y=z])
using less.prems apply linarith
using fms-sb ¢ r ball-subset-cball

apply blast
done
finally show ?thesis .
qed
have cmod ((deriv "~ n) fz) =0
apply (rule real-archimedian-rdiv-eq-0 [where ¢ = (fact n) x ¢ / r ~ n])
apply simp
using 0 < m 0 < ©
apply (simp add: divide-simps)
apply (blast intro: le)
done
then show Zcase by simp
qed
with n1 show ?thesis by simp
qed
qged
have fw = id w
by (rule holomorphic-fun-eg-on-connected
[OF holf holomorphic-on-id <open $) <(connected s» * <z € $» <w € $])
also have ... = w by simp
finally show ?thesis .
qged

Second Cartan Theorem.

lemma Cartan-is-linear:
assumes holf: f holomorphic-on s
and open s and connected s
and 0 € s
and ins: Auz. [normu=1;z€ s = ux*xz € s
and feg: Auz. [normu=1;z€ s] = f (ux2) =ux*fz
shows Jc.Vzes. fz=cx*xz
proof —
have [simp]: f0 = 0
using feq [of —1 0] assms by simp
have uneq: u™n x (deriv =" n) f (u x 2) = u * (deriv " n) fz
ifnormu=1z¢€sfornuz
proof —
have holfuw: (Aw. f (u * w)) holomorphic-on s
apply (rule holomorphic-on-compose-gen [OF - holf, unfolded o-def))
using that ins by (auto simp: holomorphic-on-linear)
have hol-d-fuw: (deriv =" n) (Aw. u x f w) holomorphic-on s for n
by (rule holomorphic-higher-deriv holomorphic-intros holf assms)+
have «: (deriv =" n) (Aw. u * fw) 2z =u * (deriv " n) fzif z € s for 2
using that
proof (induction n arbitrary: z)
case (then show ?case by simp
next
case (Suc n)
have deriv ((deriv ™" n) (Aw. u * fw)) z = deriv (Aw. u * (deriv = n) fw)

apply (rule complez-derivative-transform-within-open [OF hol-d-fuw))
apply (auto introl: holomorphic-higher-deriv holomorphic-intros assms Suc)
done
also have ... = u * deriv ((deriv """ n) f) z
apply (rule deriv-cmult)
using Suc <open s» holf holomorphic-higher-deriv holomorphic-on-imp-differentiable-at
by blast
finally show ?case by simp
qed
have (deriv "~ n) Aw. f (ux w)) z=u " n x (deriv =" n) f (u * 2)
apply (rule higher-deriv-compose-linear [OF holf <open s» <open s)])
apply (simp add: that)
apply (simp add: ins that)
done
moreover have (deriv =~ n) (Aw. f (u *x w)) 2z = u * (deriv """ n) f 2
apply (subst higher-deriv-transform-within-open [OF holfuw, of Aw. u * f w))
apply (rule holomorphic-intros holf assms that)+
apply blast
using * (z € s» apply blast

done
ultimately show Zthesis by metis
qed
have dnf0: (deriv "~ n) f0 = 0 if len: 2 < n for n
proof —

have #x: z = 0 if Au:complex. normu =1 = u " n+* 2z = u* z for z
proof —
have Ju::complex. norm v =1 Au " n # u
using complez-not-root-unity [of n—1] len
apply (simp add: algebra-simps le-diff-conv2, clarify)
apply (rule-tac z=u in exl)
apply (subst (asm) power-diff)
apply auto
done
with that show ?thesis
by auto
qged
show ?thesis
apply (rule xx)
using uneq [OF - <0 €]
by force
qed
show ?thesis
apply (rule-tac z = deriv f 0 in exl, clarify)
apply (rule holomorphic-fun-eq-on-connected [OF holf - <open s) <connected s»
-<0 € &)
using dnf0 apply (auto simp: holomorphic-on-linear)
done
qed

Should be proved for n-dimensional vectors of complex numbers

theorem second-Cartan-dim-1:
assumes holf: f holomorphic-on ball 0 r
and holg: g holomorphic-on ball 0 r
and [simp]: f 0 = 0 and [simp]: ¢ 0 = 0
and ballf: Nz. z € ball 0 r = f2z € ball O 7
and ballg: N\z. z € ball 0 r = gz € ball O r
and fg: N\z. 2z € ball0r = [(g2) = 2
and gf: Az. 2 € ball 0r = g (f2) = 2
and 0 < r
shows 3t. Vz € ball 0 r. g z = exp(i * of-real t) x z
proof —
have c-le-1: ¢ < 1
fo<cNr.0<z=2x<r=cxaxz<rforec
proof —
have rst: Arstureal. 0 =7V s/r<tVr<O0V-os<rxt
by (metis (no-types) mult-less-cancel-left-disj nonzero-mult-div-cancel-left
times-divide-eq-right)
{assume ~r < cAcx*(cx*(cx*(cx*xr))) <1
then have | < c= Ar.n 1 <rA-r<c)
using <0 < ¢ by (metis (full-types) less-eq-real-def mult.right-neutral
mult-left-mono not-less)
then have - 1 < cVvV -1 <c¢
by linarith }
moreover
{have - 0<r /c= -1<c
using <0 < ™ by force
then have I < ¢c=— -1 <c¢
using rst <0 < r that
by (metis div-by-1 frac-less2 less-le-trans mult.commute not-le order-refl
pos-divide-le-eq zero-less-one) }
ultimately show Zthesis
by (metis (no-types) linear not-less)
qed
have ugeq: u x g z = g (u * 2) if nou: norm v = 1 and z: z € ball 0 r for u z
proof —
have [simp]: v # 0 using that by auto
have holl: (Aa. f (u x g a) / w) holomorphic-on ball 0 r
apply (rule holomorphic-intros)
apply (rule holomorphic-on-compose-gen [OF - holf, unfolded o-def))
apply (rule holomorphic-intros holg)+
using nou ballg
apply (auto simp: dist-norm norm-mult holomorphic-on-const)
done
have cdf: f field-differentiable at 0
using <0 < v holf holomorphic-on-imp-differentiable-at by auto
have cdg: g field-differentiable at 0
using <0 < 7 holg holomorphic-on-imp-differentiable-at by auto
have cd-fug: (Aa. f (u * g a)) field-differentiable at 0

10

apply (rule field-differentiable-compose [where g=f and f = Aa. (u * g a),
unfolded o-def])
apply (rule derivative-intros)+
using cdf cdg
apply auto
done
have deriv g 0 = deriv g (f 0)
by simp
then have deriv f 0 * deriv g 0 = 1
by (metis open-ball <0 < rv ballf centre-in-ball deriv-left-inverse gf holf holg
image-subsetl)
then have equ: deriv f 0 x deriv (Aa. u * ga) 0 = u
by (simp add: cdg deriv-cmult)
have derl: deriv (Aa. f (ux ga) [u) 0 =1
apply (simp add: field-class.field-divide-inverse deriv-cmult-right [OF cd-fug])
apply (subst deriv-chain [where g=f and f = Aa. (u * g a), unfolded o-def])
apply (rule derivative-intros cdf cdg | simp add: equ)+
done
have fugeq: Aw. w € ball 0r = [(u*x gw) / u=w
apply (rule first-Cartan-dim-1 [OF holl, where z=0])
apply (simp-all add: <0 <)
apply (auto simp: derl)
using nou ballf ballg
apply (simp add: dist-norm norm-mult norm-divide)
done
have f(u * g2) = u * 2
by (metis <u # 0> fugeq nonzero-mult-div-cancel-left z times-divide-eq-right)
also have ... = f (g (u * 2))
by (metis (no-types, lifting) fg mem-ball-0 mult-cancel-right2 norm-mult nou

finally have f(u *x g z2) = f (g (u * 2)) .
then have g (f (u + g)) = g (f (g (u *)))
by simp
then show ?thesis
apply (subst (asm) gf)
apply (simp add: dist-norm norm-mult nou)
using ballg mem-ball-0 z apply blast
apply (subst (asm) gf)
apply (simp add: dist-norm norm-mult nou)
apply (metis bally mem-ball-0 mult.left-neutral norm-mult nou z, simp)
done
qed
obtain ¢ where ¢: Az. 2 € ball 0 r = gz =c x z
apply (rule exE [OF Cartan-is-linear [OF holg]])
apply (simp-all add: <0 < r> ugeq)
apply (auto simp: dist-norm norm-mult)
done
have gr2: g (f (r/2)) = ¢ * f(r/2)
apply (rule ¢) using <0 < > ballf mem-ball-0 by force

11

then have norm ¢ > 0
using 0 < ™
by simp (metis <f 0 = 0 c¢ dist-commute fg mem-ball mult-zero-left per-
fect-choose-dist)
then have [simp]: ¢ # 0 by auto
have zless: x < r * cmod cif 0 < z x < r for
proof —
have = = norm (g (f (of-real)))
proof —
have r > cmod (of-real x)
by (simp add: that)
then have complex-of-real z € ball 0 r
using mem-ball-0 by blast
then show ?thesis
using gf <0 < x> by force
qed
then show ?thesis
apply (rule ssubst)
apply (subst c)
apply (rule ballf)
using ballf [of] that
apply (auto simp: norm-mult dist-0-norm)
done
qed
have 11: 1 / norm ¢ < 1
apply (rule c-le-1)
using zless apply (auto simp: divide-simps)
done
have [0 < z; 2 < r] = cmod ¢ x z < r for x
using ¢ [of z] ballg [of z] by (auto simp: norm-mult dist-0-norm,)
then have norm ¢ < 1
by (force intro: c-le-1)
moreover have 1 < norm c
using 11 by simp
ultimately have norm ¢ = 1 by (rule antisym)
with complez-norm-eq-1-exp ¢ show ?thesis
by metis
qed

end

12

Bibliography

[1] G. Ciolli, G. Gentili, and M. Maggesi. A certified proof of the Cartan
fixed point theorems. J. Autom. Reason., 47(3):319-336, Oct. 2011.

13

	First Cartan Theorem

