
The Cardinality of the Continuum

Manuel Eberl

March 17, 2025

Abstract

This entry presents a short derivation of the cardinality of R, namely
that |R| = |2N| = 2ℵ0 . This is done by showing the injection R →
2Q, x 7→ (−∞, x) ∩ Q (i.e. Dedekind cuts) for one direction and the
injection 2N → Q, X 7→

∑
n∈X 3−n, i.e. ternary fractions, for the other

direction.

Contents
1 Auxiliary material 2

1.1 Miscellaneous facts about cardinalities 2
1.2 The set of finite subsets . 7
1.3 The set of functions with finite support 8

2 The Cardinality of the Continuum 11
2.1 |R| ≤ |2Q| via Dedekind cuts 11
2.2 2|N| ≤ |R| via ternary fractions 12
2.3 Equipollence proof . 16
2.4 Corollaries for real intervals 16
2.5 Corollaries for vector spaces 18

1

1 Auxiliary material
theory Cardinality_Continuum_Library

imports "HOL-Library.Equipollence" "HOL-Cardinals.Cardinals"
begin

1.1 Miscellaneous facts about cardinalities
lemma eqpoll_Pow [intro]:

assumes "A ≈ B"
shows "Pow A ≈ Pow B"

proof -
from assms obtain f where "bij_betw f A B"

unfolding eqpoll_def by blast
hence "bij_betw ((‘) f) (Pow A) (Pow B)"

by (rule bij_betw_Pow)
thus ?thesis

unfolding eqpoll_def by blast
qed

lemma lepoll_UNIV_nat_iff: "A . (UNIV :: nat set) ←→ countable A"
unfolding countable_def lepoll_def by simp

lemma countable_eqpoll:
assumes "countable A" "A ≈ B"
shows "countable B"
using assms countable_iff_bij unfolding eqpoll_def by blast

lemma countable_eqpoll_cong: "A ≈ B =⇒ countable A ←→ countable B"
using countable_eqpoll[of A B] countable_eqpoll[of B A]
by (auto simp: eqpoll_sym)

lemma eqpoll_UNIV_nat_iff: "A ≈ (UNIV :: nat set) ←→ countable A ∧
infinite A"
proof

assume *: "A ≈ (UNIV :: nat set)"
show "countable A ∧ infinite A"

using eqpoll_finite_iff[OF *] countable_eqpoll_cong[OF *] by simp
next

assume *: "countable A ∧ infinite A"
thus "A ≈ (UNIV :: nat set)"

by (meson countableE_infinite eqpoll_def)
qed

lemma ordLeq_finite_infinite:
"finite A =⇒ infinite B =⇒ (card_of A, card_of B) ∈ ordLeq"
by (meson card_of_Well_order card_of_ordLeq_finite ordLeq_total)

2

lemma eqpoll_imp_card_of_ordIso: "A ≈ B =⇒ |A| =o |B|"
by (simp add: eqpoll_iff_card_of_ordIso)

lemma card_of_Func: "|Func A B| =o |B| ^c |A|"
by (simp add: cexp_def)

lemma card_of_leq_natLeq_iff_countable:
"|X| ≤o natLeq ←→ countable X"

proof -
have "countable X ←→ |X| ≤o |UNIV :: nat set|"

unfolding countable_def by (meson card_of_ordLeq top_greatest)
with card_of_nat show ?thesis

using ordIso_symmetric ordLeq_ordIso_trans by blast
qed

lemma card_of_Sigma_cong:
assumes "

∧
x. x ∈ A =⇒ |B x| =o |B’ x|"

shows "|SIGMA x:A. B x| =o |SIGMA x:A. B’ x|"
proof -

have "∃ f. bij_betw f (B x) (B’ x)" if "x ∈ A" for x
using assms that card_of_ordIso by blast

then obtain f where f: "
∧

x. x ∈ A =⇒ bij_betw (f x) (B x) (B’ x)"
by metis

have "bij_betw (λ(x,y). (x, f x y)) (SIGMA x:A. B x) (SIGMA x:A. B’
x)"

using f by (fastforce simp: bij_betw_def inj_on_def image_def)
thus ?thesis

by (rule card_of_ordIsoI)
qed

lemma Cfinite_cases:
assumes "Cfinite c"
obtains n :: nat where "(c, natLeq_on n) ∈ ordIso"

proof -
from assms have "card_of (Field c) =o natLeq_on (card (Field c))"

by (simp add: cfinite_def finite_imp_card_of_natLeq_on)
with that[of "card (Field c)"] show ?thesis

using assms card_of_unique ordIso_transitive by blast
qed

lemma empty_nat_ordIso_czero: "({} :: (nat × nat) set) =o czero"
proof -

have "({} :: (nat × nat) set) =o |{} :: nat set|"
using finite_imp_card_of_natLeq_on[of "{} :: nat set"] by (simp add:

ordIso_symmetric)
moreover have "|{} :: nat set| =o czero"

by (simp add: card_of_ordIso_czero_iff_empty)
ultimately show "({} :: (nat × nat) set) =o czero"

using ordIso_symmetric ordIso_transitive by blast

3

qed

lemma card_order_on_empty: "card_order_on {} {}"
unfolding card_order_on_def well_order_on_def linear_order_on_def partial_order_on_def

preorder_on_def antisym_def trans_def refl_on_def total_on_def
ordLeq_def embed_def

by (auto intro!: ordLeq_refl)

lemma natLeq_on_plus_ordIso: "natLeq_on (m + n) =o natLeq_on m +c natLeq_on
n"
proof -

have "{0..<m+n} = {0..<m} ∪ {m..<m+n}"
by auto

also have "card_of ({0..<m} ∪ {m..<m+n}) =o card_of ({0..<m} <+> {m..<m+n})"
by (rule card_of_Un_Plus_ordIso) auto

also have "card_of ({0..<m} <+> {m..<m+n}) =o card_of {0..<m} +c card_of
{m..<m+n}"

by (rule Plus_csum)
also have "card_of {0..<m} +c card_of {m..<m+n} =o natLeq_on m +c natLeq_on

n"
using finite_imp_card_of_natLeq_on[of "{m..<m+n}"]
by (intro csum_cong card_of_less) auto

finally have "|{0..<m+n}| =o natLeq_on m +c natLeq_on n" .
moreover have "card_of {0..<m+n} =o natLeq_on (m + n)"

by (rule card_of_less)
ultimately show ?thesis

using ordIso_symmetric ordIso_transitive by blast
qed

lemma natLeq_on_1_ord_iso: "natLeq_on 1 =o BNF_Cardinal_Arithmetic.cone"
proof -

have "|{0..<1::nat}| =o natLeq_on 1"
by (rule card_of_less)

hence "|{0::nat}| =o natLeq_on 1"
by simp

moreover have "|{0::nat}| =o BNF_Cardinal_Arithmetic.cone"
by (rule single_cone)

ultimately show ?thesis
using ordIso_symmetric ordIso_transitive by blast

qed

lemma cexp_infinite_finite_ordLeq:
assumes "Cinfinite c" "Cfinite c’"
shows "c ^c c’ ≤o c"

proof -
have c: "Card_order c"

using assms by auto
from assms obtain n where n: "c’ =o natLeq_on n"

using Cfinite_cases by auto

4

have "c ^c c’ =o c ^c natLeq_on n"
using assms(2) by (intro cexp_cong2 c n) auto

also have "c ^c natLeq_on n ≤o c"
proof (induction n)

case 0
have "c ^c natLeq_on 0 =o c ^c czero"

by (intro cexp_cong2) (use assms in ‹auto simp: empty_nat_ordIso_czero
card_order_on_empty›)

also have "c ^c czero =o BNF_Cardinal_Arithmetic.cone"
by (rule cexp_czero)

also have "BNF_Cardinal_Arithmetic.cone ≤o c"
using assms by (simp add: Cfinite_cone Cfinite_ordLess_Cinfinite

ordLess_imp_ordLeq)
finally show ?case .

next
case (Suc n)
have "c ^c natLeq_on (Suc n) =o c ^c (natLeq_on n +c natLeq_on 1)"

using assms natLeq_on_plus_ordIso[of n 1]
by (intro cexp_cong2) (auto simp: natLeq_on_Card_order intro: ordIso_symmetric)

also have "c ^c (natLeq_on n +c natLeq_on 1) =o c ^c natLeq_on n *c
c ^c natLeq_on 1"

by (rule cexp_csum)
also have "c ^c natLeq_on n *c c ^c natLeq_on 1 ≤o c *c c"
proof (rule cprod_mono)

show "c ^c natLeq_on n ≤o c"
by (rule Suc.IH)

have "c ^c natLeq_on 1 =o c ^c BNF_Cardinal_Arithmetic.cone"
by (intro cexp_cong2 c natLeq_on_1_ord_iso natLeq_on_Card_order)

also have "c ^c BNF_Cardinal_Arithmetic.cone =o c"
by (intro cexp_cone c)

finally show "c ^c natLeq_on 1 ≤o c"
by (rule ordIso_imp_ordLeq)

qed
also have "c *c c =o c"

using assms(1) by (rule cprod_infinite)
finally show "c ^c natLeq_on (Suc n) ≤o c" .

qed
finally show ?thesis .

qed

lemma cexp_infinite_finite_ordIso:
assumes "Cinfinite c" "Cfinite c’" "BNF_Cardinal_Arithmetic.cone ≤o

c’"
shows "c ^c c’ =o c"

proof -
have c: "Card_order c"

using assms by auto
have "c =o c ^c BNF_Cardinal_Arithmetic.cone"

by (rule ordIso_symmetric, rule cexp_cone) fact

5

also have "c ^c BNF_Cardinal_Arithmetic.cone ≤o c ^c c’"
by (intro cexp_mono2 c assms Card_order_cone) (use cone_not_czero

in auto)
finally have "c ≤o c ^c c’" .
moreover have "c ^c c’ ≤o c"

by (rule cexp_infinite_finite_ordLeq) fact+
ultimately show ?thesis

by (simp add: ordIso_iff_ordLeq)
qed

lemma Cfinite_ordLeq_Cinfinite:
assumes "Cfinite c" "Cinfinite c’"
shows "c ≤o c’"
using assms Cfinite_ordLess_Cinfinite ordLess_imp_ordLeq by blast

lemma cfinite_card_of_iff [simp]: "BNF_Cardinal_Arithmetic.cfinite (card_of
X) ←→ finite X"

by (simp add: cfinite_def)

lemma cinfinite_card_of_iff [simp]: "BNF_Cardinal_Arithmetic.cinfinite
(card_of X) ←→ infinite X"

by (simp add: cinfinite_def)

lemma Func_conv_PiE: "Func A B = PiE A (λ_. B)"
by (auto simp: Func_def PiE_def extensional_def)

lemma finite_Func [intro]:
assumes "finite A" "finite B"
shows "finite (Func A B)"
using assms unfolding Func_conv_PiE by (intro finite_PiE)

lemma ordLeq_antisym: "(c, c’) ∈ ordLeq =⇒ (c’, c) ∈ ordLeq =⇒ (c,
c’) ∈ ordIso"

using ordIso_iff_ordLeq by auto

lemma cmax_cong:
assumes "(c1, c1’) ∈ ordIso" "(c2, c2’) ∈ ordIso" "Card_order c1" "Card_order

c2"
shows "cmax c1 c2 =o cmax c1’ c2’"

proof -
have [intro]: "Card_order c1’" "Card_order c2’"

using assms Card_order_ordIso2 by auto
have "c1 ≤o c2 ∨ c2 ≤o c1"

by (intro ordLeq_total) (use assms in auto)
thus ?thesis
proof

assume le: "c1 ≤o c2"
with assms have le’: "c1’ ≤o c2’"

by (meson ordIso_iff_ordLeq ordLeq_transitive)

6

have "cmax c1 c2 =o c2"
by (rule cmax2) (use le assms in auto)

moreover have "cmax c1’ c2’ =o c2’"
by (rule cmax2) (use le’ assms in auto)

ultimately show ?thesis
using assms ordIso_symmetric ordIso_transitive by metis

next
assume le: "c2 ≤o c1"
with assms have le’: "c2’ ≤o c1’"

by (meson ordIso_iff_ordLeq ordLeq_transitive)
have "cmax c1 c2 =o c1"

by (rule cmax1) (use le assms in auto)
moreover have "cmax c1’ c2’ =o c1’"

by (rule cmax1) (use le’ assms in auto)
ultimately show ?thesis

using assms ordIso_symmetric ordIso_transitive by metis
qed

qed

1.2 The set of finite subsets

We define an operator FinPow(X) that, given a set X, returns the set of all
finite subsets of that set. For finite X, this is boring since it is obviously just
the power set. For infinite X, it is however a useful concept to have.
We will show that if X is infinite then the cardinality of FinPow(X) is exactly
the same as that of X.
definition FinPow :: "’a set ⇒ ’a set set" where

"FinPow X = {Y. Y ⊆ X ∧ finite Y}"

lemma finite_FinPow [intro]: "finite A =⇒ finite (FinPow A)"
by (auto simp: FinPow_def)

lemma in_FinPow_iff: "Y ∈ FinPow X ←→ Y ⊆ X ∧ finite Y"
by (auto simp: FinPow_def)

lemma FinPow_subseteq_Pow: "FinPow X ⊆ Pow X"
unfolding FinPow_def by blast

lemma FinPow_eq_Pow: "finite X =⇒ FinPow X = Pow X"
unfolding FinPow_def using finite_subset by blast

theorem card_of_FinPow_infinite:
assumes "infinite A"
shows "|FinPow A| =o |A|"

proof -
have "set ‘ lists A = FinPow A"

using finite_list[where ?’a = ’a] by (force simp: FinPow_def)
hence "|FinPow A| ≤o |lists A|"

7

by (metis card_of_image)
also have "|lists A| =o |A|"

using assms by (rule card_of_lists_infinite)
finally have "|FinPow A| ≤o |A|" .
moreover have "inj_on (λx. {x}) A" "(λx. {x}) ‘ A ⊆ FinPow A"

by (auto simp: inj_on_def FinPow_def)
hence "|A| ≤o |FinPow A|"

using card_of_ordLeq by blast
ultimately show ?thesis

by (simp add: ordIso_iff_ordLeq)
qed

1.3 The set of functions with finite support

Next, we define an operator Func_finsuppz(A,B) that, given sets A and B
and an element z ∈ B, returns the set of functions f : A → B that have
finite support, i.e. that map all but a finite subset of A to z.
definition Func_finsupp :: "’b ⇒ ’a set ⇒ ’b set ⇒ (’a ⇒ ’b) set" where

"Func_finsupp z A B = {f∈A → B. (∀ x. x /∈ A −→ f x = z) ∧ finite
{x. f x 6= z}}"

lemma bij_betw_Func_finsup_Func_finite:
assumes "finite A"
shows "bij_betw (λf. restrict f A) (Func_finsupp z A B) (Func A B)"
by (rule bij_betwI[of _ _ _ "λf x. if x ∈ A then f x else z"])

(use assms in ‹auto simp: Func_finsupp_def Func_def›)

lemma eqpoll_Func_finsup_Func_finite: "finite A =⇒ Func_finsupp z A
B ≈ Func A B"

by (meson bij_betw_Func_finsup_Func_finite eqpoll_def)

lemma card_of_Func_finsup_finite: "finite A =⇒ |Func_finsupp z A B|
=o |B| ^c |A|"

using eqpoll_Func_finsup_Func_finite
by (metis Field_card_of cexp_def eqpoll_imp_card_of_ordIso)

The cases where A and B are both finite or B = {0} or A = ∅ are of course
trivial.
Perhaps not completely obviously, it turns out that in all other cases, the
cardinality of Func_finsuppz(A,B) is exactly max(|A|, |B|).
theorem card_of_Func_finsupp_infinite:

assumes "z ∈ B" and "B - {z} 6= {}" and "A 6= {}"
assumes "infinite A ∨ infinite B"
shows "|Func_finsupp z A B| =o cmax |A| |B|"

proof -
have inf_cmax: "Cinfinite (cmax |A| |B|)"

using assms by (simp add: Card_order_cmax cinfinite_def finite_cmax)

8

have "bij_betw (λf. ({x. f x 6= z}, restrict f {x. f x 6= z}))
(Func_finsupp z A B) (SIGMA X:FinPow A. Func X (B - {z}))"

by (rule bij_betwI[of _ _ _ "λ(X,f) x. if x ∈ -X ∪ -A then z else
f x"])

(fastforce simp: Func_def Func_finsupp_def FinPow_def fun_eq_iff
‹z ∈ B› split: if_splits)+

hence "|Func_finsupp z A B| =o |SIGMA X:FinPow A. Func X (B - {z})|"
by (rule card_of_ordIsoI)

also have "|SIGMA X:FinPow A. Func X (B - {z})| =o cmax |A| |B|"
proof (rule ordLeq_antisym)

show "|SIGMA X:FinPow A. Func X (B - {z})| ≤o cmax |A| |B|"
proof (intro card_of_Sigma_ordLeq_infinite_Field ballI)

show "infinite (Field (cmax |A| |B|))"
using assms by (simp add: finite_cmax)

next
show "Card_order (cmax |A| |B|)"

by (intro Card_order_cmax) auto
next

show "|FinPow A| ≤o cmax |A| |B|"
proof (cases "finite A")

assume "infinite A"
hence "|FinPow A| =o |A|"

by (rule card_of_FinPow_infinite)
also have "|A| ≤o cmax |A| |B|"

by (simp add: ordLeq_cmax)
finally show ?thesis .

next
assume A: "finite A"
have "finite (FinPow A)"

using A by auto
thus "|FinPow A| ≤o cmax |A| |B|"

using A by (intro Cfinite_ordLeq_Cinfinite inf_cmax) auto
qed

next
show "|Func X (B - {z})| ≤o cmax |A| |B|" if "X ∈ FinPow A" for

X
proof (cases "finite B")

case True
have "finite X"

using that by (auto simp: FinPow_def)
hence "finite (Func X (B - {z}))"

using True by blast
with inf_cmax show ?thesis

by (intro Cfinite_ordLeq_Cinfinite) auto
next

case False
have "|Func X (B - {z})| =o |B - {z}| ^c |X|"

by (rule card_of_Func)

9

also have "|B - {z}| ^c |X| ≤o |B - {z}|"
by (rule cexp_infinite_finite_ordLeq) (use False that in ‹auto

simp: FinPow_def›)
also have "|B - {z}| =o |B|"

using False by (simp add: infinite_card_of_diff_singl)
also have "|B| ≤o cmax |A| |B|"

by (simp add: ordLeq_cmax)
finally show ?thesis .

qed
qed

next
have "cmax |A| |B| =o |A| *c |B - {z}|"
proof (cases "|A| ≤o |B|")

case False
have "¬|B - {z}| =o czero"

using ‹B - {z} 6= {}› by (subst card_of_ordIso_czero_iff_empty)
auto

from False and assms have "infinite A"
using ordLeq_finite_infinite by blast

from False have "|B| ≤o |A|"
by (simp add: ordLess_imp_ordLeq)

have "|B - {z}| ≤o |B|"
by (rule card_of_mono1) auto

also note ‹|B| ≤o |A|›
finally have "|A| *c |B - {z}| =o |A|"

using ‹infinite A› ‹¬|B - {z}| =o czero› by (intro cprod_infinite1’)
auto

moreover have "cmax |A| |B| =o |A|"
using ‹|B| ≤o |A|› by (simp add: cmax1)

ultimately show ?thesis
using ordIso_symmetric ordIso_transitive by blast

next
case True
from True and assms have "infinite B"

using card_of_ordLeq_finite by blast
have "|A| *c |B - {z}| =o |A| *c |B|"

using ‹infinite B› by (intro cprod_cong2) (simp add: infinite_card_of_diff_singl)
also have "|A| *c |B| =o |B|"

using True ‹infinite B› assms(3)
by (simp add: card_of_ordIso_czero_iff_empty cprod_infinite2’)

also have "|B| =o cmax |A| |B|"
using True by (meson card_of_Card_order cmax2 ordIso_symmetric)

finally show ?thesis
using ordIso_symmetric ordIso_transitive by blast

qed
also have "|A| *c |B - {z}| =o |A × (B - {z})|"

by (metis Field_card_of card_of_refl cprod_def)
also have "|A × (B - {z})| ≤o |SIGMA X:(λx. {x})‘A. B - {z}|"

by (intro card_of_Sigma_mono[of "λx. {x}"]) auto

10

also have "|SIGMA X:(λx. {x})‘A. B - {z}| =o |SIGMA X:(λx. {x})‘A.
Func X (B - {z})|"

proof (rule card_of_Sigma_cong; safe)
fix x assume x: "x ∈ A"
have "|Func {x} (B - {z})| =o |B - {z}| ^c |{x}|"

by (simp add: card_of_Func)
also have "|B - {z}| ^c |{x}| =o |B - {z}| ^c BNF_Cardinal_Arithmetic.cone"

by (intro cexp_cong2) (auto simp: single_cone)
also have "|B - {z}| ^c Wellorder_Constructions.cone =o |B - {z}|"

using card_of_Card_order cexp_cone by blast
finally show "|B - {z}| =o |Func {x} (B - {z})|"

using ordIso_symmetric by blast
qed
also have "|SIGMA X:(λx. {x})‘A. Func X (B - {z})| ≤o |SIGMA X:FinPow

A. Func X (B - {z})|"
by (rule card_of_Sigma_mono) (auto simp: FinPow_def)

finally show "cmax |A| |B| ≤o |SIGMA X:FinPow A. Func X (B - {z})|"
.

qed
finally show ?thesis .

qed

end

2 The Cardinality of the Continuum
theory Cardinality_Continuum

imports Complex_Main Cardinality_Continuum_Library
begin

2.1 |R| ≤ |2Q| via Dedekind cuts
lemma le_cSup_iff:

fixes A :: "’a :: conditionally_complete_linorder set"
assumes "A 6= {}" "bdd_above A"
shows "Sup A ≥ c ←→ (∀ x<c. ∃ y∈A. y > x)"
using assms by (meson less_cSup_iff not_le_imp_less order_less_irrefl

order_less_le_trans)

We show that the function mapping a real number to all the rational numbers
below it is an injective map from the reals to 2Q. This is the same idea that
is used in the Dedekind cut definition of the reals.
lemma inj_Dedekind_cut:

fixes f :: "real ⇒ rat set"
defines "f ≡ (λx::real. {r::rat. of_rat r < x})"
shows "inj f"

proof
fix x y :: real

11

assume "f x = f y"

have *: "Sup (real_of_rat ‘ {r. real_of_rat r < z}) = z" for z :: real
proof -

have "real_of_rat ‘ {r. real_of_rat r < z} = {r∈�. r < z}"
by (auto elim!: Rats_cases)

also have "Sup . . . = z"
proof (rule antisym)

have "{r ∈ �. r < z} 6= {}"
using Rats_no_bot_less less_eq_real_def by blast

hence "Sup {r∈�. r < z} ≤ Sup {..z}"
by (rule cSup_subset_mono) auto

also have " . . . = z"
by simp

finally show "Sup {r∈�. r < z} ≤ z" .
next

show "Sup {r∈�. r < z} ≥ z"
proof (subst le_cSup_iff)

show "{r∈�. r < z} 6= {}"
using Rats_no_bot_less less_eq_real_def by blast

show "∀ y<z. ∃ r∈{r∈�. r < z}. y < r"
using Rats_dense_in_real by fastforce

show "bdd_above {r ∈ �. r < z}"
by (rule bdd_aboveI[of _ z]) auto

qed
qed
finally show ?thesis .

qed

from ‹f x = f y› have "Sup (real_of_rat ‘ f x) = Sup (real_of_rat ‘
f y)"

by simp
thus "x = y"

by (simp only: * f_def)
qed

2.2 2|N| ≤ |R| via ternary fractions

For the other direction, we construct an injective function that maps a set
of natural numbers A to a real number by constructing a ternary decimal
number of the form d0.d1d2d3 . . . where dm is 1 if m ∈ A and 0 otherwise.
We will first show a few more general results about such n -ary fraction
expansions.
lemma geometric_sums’:

fixes c :: "’a :: real_normed_field"
assumes "norm c < 1"
shows "(λn. c ^ (n + m)) sums (c ^ m / (1 - c))"

proof -

12

have "(λn. c ^ m * c ^ n) sums (c ^ m * (1 / (1 - c)))"
by (intro sums_mult geometric_sums assms)

thus ?thesis
by (simp add: power_add field_simps)

qed

lemma summable_nary_fraction:
fixes d :: real and f :: "nat ⇒ real"
assumes "

∧
n. norm (f n) ≤ c" "d > 1"

shows "summable (λn. f n / d ^ n)"
proof (rule summable_comparison_test)

show "∃ N. ∀ n≥N. norm (f n / d ^ n :: real) ≤ c * (1 / d) ^ n"
using assms by (intro exI[of _ 0]) (auto simp: field_simps)

show "summable (λn. c * (1 / d) ^ n :: real)"
using assms by (intro summable_mult summable_geometric) auto

qed

Consider two n -ary fraction expansions u = u1.u2u3 . . . and v = v1.v2v3 . . .
with n ≥ 2. Suppose that all the ui and vi are between 0 and n - 2 (i.e.
the highest digit does not occur). Then u and v are equal if and only if all
ui = vi for all i.
Note that without the additional restriction the result does not hold, as e.g.
the decimal numbers 0.2 and 0.19 are equal.
The reasoning boils down to showing that if m is the smallest index where
the two sequences differ, then |u− v| ≥ 1

d−1 > 0.
lemma nary_fraction_unique:

fixes u v :: "nat ⇒ nat"
assumes f_eq: "(

∑
n. real (u n) / real d ^ n) = (

∑
n. real (v n) /

real d ^ n)"
assumes uv: "

∧
n. u n ≤ d - 2" "

∧
n. v n ≤ d - 2" and d: "d ≥ 2"

shows "u = v"
proof -

define f :: "(nat ⇒ nat) ⇒ real" where
"f = (λu.

∑
n. real (u n) / real d ^ n)"

have "u m = v m" for m
proof (induction m rule: less_induct)

case (less m)
show "u m = v m"
proof (rule ccontr)

assume "u m 6= v m"

show False
using ‹u m 6= v m› uv less.IH f_eq

proof (induction "u m" "v m" arbitrary: u v rule: linorder_wlog)
case (sym u v)
from sym(1)[of v u] sym(2-) show ?case

by (simp add: eq_commute)

13

next
case (le u v)
have uv’: "real (u n) ≤ real d - 2" "real (v n) ≤ real d - 2"

for n
by (metis d of_nat_diff of_nat_le_iff of_nat_numeral le(3,4))+

have "f u - f v - (real (u m) - real (v m)) / real d ^ m ≤
(real d - 2) * ((1 / real d) ^ m / (real d - 1))"

proof (rule sums_le)
have "(λn. (real (u n) - real (v n)) / real d ^ n) sums (f u

- f v)"
unfolding diff_divide_distrib f_def using le d uv’
by (intro sums_diff summable_sums summable_nary_fraction[where

c = "real d - 2"]) auto
hence "(λn. (real (u (n + m)) - real (v (n + m))) / real d ^

(n + m)) sums
(f u - f v - (

∑
n<m. (real (u n) - real (v n)) / real

d ^ n))"
by (rule sums_split_initial_segment)

also have "(
∑

n<m. (real (u n) - real (v n)) / real d ^ n) =
0"

by (intro sum.neutral) (use le in auto)
finally have "(λn. (real (u (n + m)) - real (v (n + m))) / real

d ^ (n + m)) sums (f u - f v)"
by simp

thus "(λn. (real (u (Suc n + m)) - real (v (Suc n + m))) / real
d ^ (Suc n + m)) sums

(f u - f v - (real (u m) - real (v m)) / real d ^ m)"
by (subst sums_Suc_iff) auto

next
have "(λn. (real d - 2) * ((1 / real d) ^ (n + Suc m))) sums

((real d - 2) * ((1 / real d) ^ Suc m / (1 - 1 / real
d)))"

using d by (intro sums_mult geometric_sums’) auto
thus "(λn. (real d - 2) * ((1 / real d) ^ (n + Suc m))) sums

((real d - 2) * ((1 / real d) ^ m / (real d - 1)) ::
real)"

using d by (simp add: sums_iff field_simps)
next

fix n :: nat
have "(real (u (Suc n + m)) - real (v (Suc n + m))) / real d

^ (Suc n + m) ≤
((real d - 2) - 0) / real d ^ (Suc n + m)"

using uv’ by (intro divide_right_mono diff_mono) auto
thus "(real (u (Suc n + m)) - real (v (Suc n + m))) / real d

^ (Suc n + m) ≤
(real d - 2) * (1 / real d) ^ (n + Suc m)"

by (simp add: field_simps)
qed
hence "f u - f v ≤

14

(real d - 2) / (real d - 1) / real d ^ m + (real (u m)
- real (v m)) / real d ^ m"

by (simp add: field_simps)
also have " . . . = ((real d - 2) / (real d - 1) + real (u m) - real

(v m)) / real d ^ m"
by (simp add: add_divide_distrib diff_divide_distrib)

also have " . . . = ((real d - 2) / (real d - 1) + real_of_int (int
(u m) - int (v m))) / real d ^ m"

using ‹u m ≤ v m› by simp
also have " . . . ≤ ((real d - 2) / (real d - 1) + -1) / real d ^

m"
using le d by (intro divide_right_mono add_mono) auto

also have "(real d - 2) / (real d - 1) + -1 = -1 / (real d - 1)"
using d by (simp add: field_simps)

also have " . . . < 0"
using d by (simp add: field_simps)

finally have "f u - f v < 0"
using d by (simp add: field_simps)

with le show False
by (simp add: f_def)

qed
qed

qed
thus ?thesis

by blast
qed

It now follows straightforwardly that mapping sets of natural numbers to
ternary fraction expansions is indeed injective. For binary fractions, this
would not work due to the aforementioned issue.
lemma inj_nat_set_to_ternary:

fixes f :: "nat set ⇒ real"
defines "f ≡ (λA.

∑
n. (if n ∈ A then 1 else 0) / 3 ^ n)"

shows "inj f"
proof

fix A B :: "nat set"
assume "f A = f B"
have "(λn. if n ∈ A then 1 else 0 :: nat) = (λn. if n ∈ B then 1 else

0 :: nat)"
proof (rule nary_fraction_unique)

have *: "(
∑

n. (if n ∈ A then 1 else 0) / 3 ^ n) =
(
∑

n. real (if n ∈ A then 1 else 0) / real 3 ^ n)"
for A by (intro suminf_cong) auto

show "(
∑

n. real (if n ∈ A then 1 else 0) / real 3 ^ n) =
(
∑

n. real (if n ∈ B then 1 else 0) / real 3 ^ n)"
using ‹f A = f B› by (simp add: f_def *)

qed auto
thus "A = B"

by (metis equalityI subsetI zero_neq_one)

15

qed

2.3 Equipollence proof
theorem eqpoll_UNIV_real: "(UNIV :: real set) ≈ (UNIV :: nat set set)"
proof (rule lepoll_antisym)

show "(UNIV :: nat set set) . (UNIV :: real set)"
unfolding lepoll_def using inj_nat_set_to_ternary by blast

next
have "(UNIV :: real set) . (UNIV :: rat set set)"

unfolding lepoll_def using inj_Dedekind_cut by blast
also have " . . . = Pow (UNIV :: rat set)"

by simp
also have " . . . ≈ Pow (UNIV :: nat set)"

by (rule eqpoll_Pow) (auto simp: infinite_UNIV_char_0 eqpoll_UNIV_nat_iff)
also have " . . . = (UNIV :: nat set set)"

by simp
finally show "(UNIV :: real set) . (UNIV :: nat set set)" .

qed

We can also write the language in the language of cardinal numbers as
|R| = 2ℵ0 using Isabelle’s cardinal number library:
corollary card_of_UNIV_real: "|UNIV :: real set| =o ctwo ^c natLeq"
proof -

have "|UNIV :: real set| =o |UNIV :: nat set set|"
using eqpoll_UNIV_real by (simp add: eqpoll_iff_card_of_ordIso)

also have "|UNIV :: nat set set| =o cpow |UNIV :: nat set|"
by (simp add: cpow_def)

also have "cpow |UNIV :: nat set| =o ctwo ^c |UNIV :: nat set|"
by (rule cpow_cexp_ctwo)

also have "ctwo ^c |UNIV :: nat set| =o ctwo ^c natLeq"
by (intro cexp_cong2) (simp_all add: card_of_nat Card_order_ctwo)

finally show ?thesis .
qed

2.4 Corollaries for real intervals

It is easy to show that any real interval (whether open, closed, or infinite)
is equipollent to the full set of real numbers.
lemma eqpoll_Ioo_real:

fixes a b :: real
assumes "a < b"
shows "{a<..<b} ≈ (UNIV :: real set)"

proof -
have Ioo: "{a<..<b} ≈ {0::real<..<1}" if "a < b" for a b :: real
proof -

have "bij_betw (λx. x * (b - a) + a) {0<..<1} {a<..<b}"
proof (rule bij_betwI[of _ _ _ "λy. (y - a) / (b - a)"], goal_cases)

16

case 1
show ?case
proof

fix x :: real assume x: "x ∈ {0<..<1}"
have "x * (b - a) + a > 0 + a"

using x ‹a < b› by (intro add_strict_right_mono mult_pos_pos)
auto

moreover have "x * (b - a) + a < 1 * (b - a) + a"
using x ‹a < b› by (intro add_strict_right_mono mult_strict_right_mono)

auto
ultimately show "x * (b - a) + a ∈ {a<..<b}"

by simp
qed

qed (use ‹a < b› in ‹auto simp: field_simps›)
thus ?thesis

using eqpoll_def eqpoll_sym by blast
qed

have "{a<..<b} ≈ {-pi/2<..<pi/2}"
using eqpoll_trans[OF Ioo[of a b] eqpoll_sym[OF Ioo[of "-pi/2" "pi/2"]]]

assms
by simp

also have "bij_betw tan {-pi/2<..<pi/2} (UNIV :: real set)"
by (rule bij_betwI[of _ _ _ arctan])

(use arctan_lbound arctan_ubound in ‹auto simp: arctan_tan tan_arctan›)
hence "{-pi/2<..<pi/2} ≈ (UNIV :: real set)"

using eqpoll_def by blast
finally show ?thesis .

qed

lemma eqpoll_real:
assumes "{a::real<..<b} ⊆ X" "a < b"
shows "X ≈ (UNIV :: real set)"
using eqpoll_Ioo_real[OF assms(2)] assms(1)
by (meson eqpoll_sym lepoll_antisym lepoll_trans1 subset_UNIV subset_imp_lepoll)

lemma eqpoll_Icc_real: "(a::real) < b =⇒ {a..b} ≈ (UNIV :: real set)"
and eqpoll_Ioc_real: "(a::real) < b =⇒ {a<..b} ≈ (UNIV :: real set)"
and eqpoll_Ico_real: "(a::real) < b =⇒ {a..<b} ≈ (UNIV :: real set)"
by (rule eqpoll_real[of a b]; force)+

lemma eqpoll_Ici_real: "{a::real..} ≈ (UNIV :: real set)"
and eqpoll_Ioi_real: "{a::real<..} ≈ (UNIV :: real set)"
by (rule eqpoll_real[of a "a + 1"]; force)+

lemma eqpoll_Iic_real: "{..a::real} ≈ (UNIV :: real set)"
and eqpoll_Iio_real: "{..<a::real} ≈ (UNIV :: real set)"
by (rule eqpoll_real[of "a - 1" a]; force)+

17

lemmas eqpoll_real_ivl =
eqpoll_Ioo_real eqpoll_Ioc_real eqpoll_Ico_real eqpoll_Icc_real
eqpoll_Iio_real eqpoll_Iic_real eqpoll_Ici_real eqpoll_Ioi_real

lemmas card_of_ivl_real =
eqpoll_real_ivl[THEN eqpoll_imp_card_of_ordIso, THEN ordIso_transitive[OF

_ card_of_UNIV_real]]

2.5 Corollaries for vector spaces

We will now also show some results about the cardinality of vector spaces.
To do this, we use the obvious isomorphism between a vector space V with
a basis B and the set of finite-support functions B → V.
lemma (in vector_space) card_of_span:

assumes "independent B"
shows "|span B| =o |Func_finsupp 0 B (UNIV :: ’a set)|"

proof -
define f :: "(’b ⇒ ’a) ⇒ ’b" where "f = (λg.

∑
b | g b 6= 0. scale

(g b) b)"
define g :: "’b ⇒ ’b ⇒ ’a" where "g = representation B"
have "bij_betw g (span B) (Func_finsupp 0 B UNIV)"
proof (rule bij_betwI[of _ _ _ f], goal_cases)

case 1
thus ?case

by (auto simp: g_def Func_finsupp_def finite_representation intro:
representation_ne_zero)

next
case 2
thus ?case

by (auto simp: f_def Func_finsupp_def intro!: span_sum span_scale
intro: span_base)

next
case (3 x)
show "f (g x) = x" unfolding g_def f_def

by (intro sum_nonzero_representation_eq) (use 3 assms in auto)
next

case (4 v)
show "g (f v) = v" unfolding g_def using 4

by (intro representation_eqI)
(auto simp: assms f_def Func_finsupp_def intro: span_base

intro!: sum.cong span_sum span_scale split: if_splits)
qed
thus "|span B| =o |Func_finsupp 0 B (UNIV :: ’a set)|"

by (simp add: card_of_ordIsoI)
qed

We can now easily show the following: Let K be an infinite field and V a
non-trivial finite-dimensional K -vector space. Then |V| = |K|.

18

lemma (in vector_space) card_of_span_finite_dim_infinite_field:
assumes "independent B" and "finite B" and "B 6= {}" and "infinite

(UNIV :: ’a set)"
shows "|span B| =o |UNIV :: ’a set|"

proof -
have "|span B| =o |Func_finsupp 0 B (UNIV :: ’a set)|"

by (rule card_of_span) fact
also have "|Func_finsupp 0 B (UNIV :: ’a set)| =o cmax |B| |UNIV ::

’a set|"
proof (rule card_of_Func_finsupp_infinite)

show "UNIV - {0 :: ’a} 6= {}"
using assms by (metis finite.emptyI infinite_remove)

qed (use assms in auto)
also have "cmax |B| |UNIV :: ’a set| =o |UNIV :: ’a set|"

using assms by (intro cmax2 ordLeq3_finite_infinite) auto
finally show ?thesis .

qed

Similarly, we can show the following: Let V be an infinite-dimensional vector
space V over some (not necessarily infinite) field K. Then |V | = max(dimK(V), |K|).
lemma (in vector_space) card_of_span_infinite_dim_infinite_field:

assumes "independent B" "infinite B"
shows "|span B| =o cmax |B| |UNIV :: ’a set|"

proof -
have "|span B| =o |Func_finsupp 0 B (UNIV :: ’a set)|"

by (rule card_of_span) fact
also have "|Func_finsupp 0 B (UNIV :: ’a set)| =o cmax |B| |UNIV ::

’a set|"
proof (rule card_of_Func_finsupp_infinite)

have "(1 :: ’a) ∈ UNIV" "(1 :: ’a) 6= 0"
by auto

thus "UNIV - {0 :: ’a} 6= {}"
by blast

qed (use assms in auto)
finally show "|span B| =o cmax |B| |UNIV :: ’a set|" .

qed

end

theory Cardinality_Euclidean_Space
imports "HOL-Analysis.Analysis" Cardinality_Continuum

begin

With these results, it is now easy to see that any Euclidean space (i.e. finite-
dimensional real vector space) has the same cardinality as �:
corollary card_of_UNIV_euclidean_space:

"|UNIV :: ’a :: euclidean_space set| =o ctwo ^c natLeq"
proof -

have "|span Basis :: ’a set| =o |UNIV :: real set|"

19

by (rule card_of_span_finite_dim_infinite_field)
(simp_all add: independent_Basis infinite_UNIV_char_0)

also have "|UNIV :: real set| =o ctwo ^c natLeq"
by (rule card_of_UNIV_real)

finally show ?thesis
by simp

qed

In particular, this applies to � and Rn:
corollary card_of_complex: "|UNIV :: complex set| =o ctwo ^c natLeq"

by (rule card_of_UNIV_euclidean_space)

corollary card_of_real_vec: "|UNIV :: (real ^ ’n :: finite) set| =o ctwo
^c natLeq"

by (rule card_of_UNIV_euclidean_space)

end

20

	Auxiliary material
	Miscellaneous facts about cardinalities
	The set of finite subsets
	The set of functions with finite support

	The Cardinality of the Continuum
	|R| |2Q| via Dedekind cuts
	2|N| |R| via ternary fractions
	Equipollence proof
	Corollaries for real intervals
	Corollaries for vector spaces

