
Cardinality of Set Partitions

Lukas Bulwahn

March 17, 2025

Abstract

The theory’s main theorem states that the cardinality of set parti-
tions of size k on a carrier set of size n is expressed by Stirling numbers
of the second kind. In Isabelle, Stirling numbers of the second kind
are defined in the AFP entry ‘Discrete Summation’ [1] through their
well-known recurrence relation. The main theorem relates them to the
alternative definition as cardinality of set partitions. The proof follows
the simple and short explanation in Richard P. Stanley’s ‘Enumerative
Combinatorics: Volume 1’ [2] and Wikipedia [3], and unravels the full
details and implicit reasoning steps of these explanations.

Contents
1 Set Partitions 1

1.1 Useful Additions to Main Theories 2
1.2 Introduction and Elimination Rules 2
1.3 Basic Facts on Set Partitions 2
1.4 The Unique Part Containing an Element in a Set Partition . 4
1.5 Cardinality of Parts in a Set Partition 7
1.6 Operations on Set Partitions 8

2 Combinatorial Basics 12
2.1 Preliminaries . 12

2.1.1 Injectivity and Disjoint Families 12
2.1.2 Cardinality Theorems for Set.bind 12

2.2 Third Version of Injectivity Solver 13

3 Cardinality of Set Partitions 15

1 Set Partitions
theory Set-Partition
imports

HOL−Library.Disjoint-Sets

1

HOL−Library.FuncSet
begin

1.1 Useful Additions to Main Theories
lemma set-eqI ′:

assumes
∧

x. x ∈ A =⇒ x ∈ B
assumes

∧
x. x ∈ B =⇒ x ∈ A

shows A = B
using assms by auto

lemma comp-image:
((‘) f ◦ (‘) g) = (‘) (f o g)

by rule auto

1.2 Introduction and Elimination Rules

The definition of partition-on is in HOL−Library.Disjoint-Sets.
lemma partition-onI :

assumes
∧

p. p ∈ P =⇒ p 6= {}
assumes

⋃
P = A

assumes
∧

p p ′. p ∈ P =⇒ p ′ ∈ P =⇒ p 6= p ′ =⇒ p ∩ p ′ = {}
shows partition-on A P

using assms unfolding partition-on-def disjoint-def by blast

lemma partition-onE :
assumes partition-on A P
obtains

∧
p. p ∈ P =⇒ p 6= {}⋃

P = A∧
p p ′. p ∈ P =⇒ p ′ ∈ P =⇒ p 6= p ′ =⇒ p ∩ p ′ = {}

using assms unfolding partition-on-def disjoint-def by blast

1.3 Basic Facts on Set Partitions
lemma partition-onD4 : partition-on A P =⇒ p ∈ P =⇒ q ∈ P =⇒ x ∈ p =⇒ x
∈ q =⇒ p = q

by (auto simp: partition-on-def disjoint-def)

lemma partition-subset-imp-notin:
assumes partition-on A P X ∈ P
assumes X ′ ⊂ X
shows X ′ /∈ P

proof
assume X ′ ∈ P
from ‹X ′ ∈ P› ‹partition-on A P› have X ′ 6= {}

using partition-onD3 by blast
moreover from ‹X ′ ∈ P› ‹X ∈ P› ‹partition-on A P› ‹X ′ ⊂ X› have disjnt X

X ′

by (metis disjnt-def disjointD inf .strict-order-iff partition-onD2)

2

moreover note ‹X ′ ⊂ X›
ultimately show False

by (meson all-not-in-conv disjnt-iff psubsetD)
qed

lemma partition-on-Diff :
assumes P: partition-on A P shows Q ⊆ P =⇒ partition-on (A −

⋃
Q) (P −

Q)
using P P[THEN partition-onD4] by (auto simp: partition-on-def disjoint-def)

lemma partition-on-UN :
assumes A: partition-on A B and B:

∧
b. b ∈ B =⇒ partition-on b (P b)

shows partition-on A (
⋃

b∈B. P b)
proof (rule partition-onI)

show
⋃
(
⋃

b∈B. P b) = A
using B[THEN partition-onD1] A[THEN partition-onD1] by blast

next
show p 6= {} if p ∈ (

⋃
b∈B. P b) for p

using B[THEN partition-onD3] that by auto
next

fix p q assume p ∈ (
⋃

i∈B. P i) q ∈ (
⋃

i∈B. P i) and p 6= q
then obtain i j where i: p ∈ P i i ∈ B and j: q ∈ P j j ∈ B

by auto
show p ∩ q = {}
proof cases

assume i = j then show ?thesis
using i j ‹p 6= q› B[THEN partition-onD2 , of i] by (simp add: disjointD)

next
assume i 6= j
then have disjnt i j

using i j A[THEN partition-onD2] by (auto simp: pairwise-def)
moreover have p ⊆ i q ⊆ j

using B[THEN partition-onD1 , of i, symmetric] B[THEN partition-onD1 , of
j, symmetric] i j by auto

ultimately show ?thesis
by (auto simp: disjnt-def)

qed
qed

lemma partition-on-notemptyI :
assumes partition-on A P
assumes A 6= {}
shows P 6= {}

using assms by (auto elim: partition-onE)

lemma partition-on-disjoint:
assumes partition-on A P
assumes partition-on B Q
assumes A ∩ B = {}

3

shows P ∩ Q = {}
using assms by (fastforce elim: partition-onE)

lemma partition-on-eq-implies-eq-carrier :
assumes partition-on A Q
assumes partition-on B Q
shows A = B

using assms by (fastforce elim: partition-onE)

lemma partition-on-insert:
assumes partition-on A P
assumes disjnt A X X 6= {}
assumes A ∪ X = A ′

shows partition-on A ′ (insert X P)
using assms by (auto simp: partition-on-def disjoint-def disjnt-def)

An alternative formulation of [[partition-on ?A ?P; disjnt ?A ?X ; ?X 6= {};
?A ∪ ?X = ?A ′]] =⇒ partition-on ?A ′ (insert ?X ?P)

lemma partition-on-insert ′:
assumes partition-on (A − X) P
assumes X ⊆ A X 6= {}
shows partition-on A (insert X P)

proof −
have disjnt (A − X) X by (simp add: disjnt-iff)
from assms(1) this assms(3) have partition-on ((A − X) ∪ X) (insert X P)

by (auto intro: partition-on-insert)
from this ‹X ⊆ A› show ?thesis

by (metis Diff-partition sup-commute)
qed

lemma partition-on-insert-singleton:
assumes partition-on A P a /∈ A insert a A = A ′

shows partition-on A ′ (insert {a} P)
using assms by (auto simp: partition-on-def disjoint-def disjnt-def)

lemma partition-on-remove-singleton:
assumes partition-on A P X ∈ P A − X = A ′

shows partition-on A ′ (P − {X})
using assms partition-on-Diff by (metis Diff-cancel Diff-subset cSup-singleton in-
sert-subset)

1.4 The Unique Part Containing an Element in a Set Parti-
tion

lemma partition-on-partition-on-unique:
assumes partition-on A P
assumes x ∈ A
shows ∃ !X . x ∈ X ∧ X ∈ P

proof −

4

from ‹partition-on A P› have
⋃

P = A
by (auto elim: partition-onE)

from this ‹x ∈ A› obtain X where X : x ∈ X ∧ X ∈ P by blast
{

fix Y
assume x ∈ Y ∧ Y ∈ P
from this have X = Y

using X ‹partition-on A P› by (meson partition-onE disjoint-iff-not-equal)
}
from this X show ?thesis by auto

qed

lemma partition-on-the-part-mem:
assumes partition-on A P
assumes x ∈ A
shows (THE X . x ∈ X ∧ X ∈ P) ∈ P

proof −
from ‹x ∈ A› have ∃ !X . x ∈ X ∧ X ∈ P

using ‹partition-on A P› by (simp add: partition-on-partition-on-unique)
from this show (THE X . x ∈ X ∧ X ∈ P) ∈ P

by (metis (no-types, lifting) theI)
qed

lemma partition-on-in-the-unique-part:
assumes partition-on A P
assumes x ∈ A
shows x ∈ (THE X . x ∈ X ∧ X ∈ P)

proof −
from assms have ∃ !X . x ∈ X ∧ X ∈ P

by (simp add: partition-on-partition-on-unique)
from this show ?thesis

by (metis (mono-tags, lifting) theI ′)
qed

lemma partition-on-the-part-eq:
assumes partition-on A P
assumes x ∈ X X ∈ P
shows (THE X . x ∈ X ∧ X ∈ P) = X

proof −
from ‹x ∈ X› ‹X ∈ P› have x ∈ A

using ‹partition-on A P› by (auto elim: partition-onE)
from this have ∃ !X . x ∈ X ∧ X ∈ P

using ‹partition-on A P› by (simp add: partition-on-partition-on-unique)
from ‹x ∈ X› ‹X ∈ P› this show (THE X . x ∈ X ∧ X ∈ P) = X

by (auto intro!: the1-equality)
qed

lemma the-unique-part-alternative-def :

5

assumes partition-on A P
assumes x ∈ A
shows (THE X . x ∈ X ∧ X ∈ P) = {y. ∃X∈P. x ∈ X ∧ y ∈ X}

proof
show (THE X . x ∈ X ∧ X ∈ P) ⊆ {y. ∃X∈P. x ∈ X ∧ y ∈ X}
proof

fix y
assume y ∈ (THE X . x ∈ X ∧ X ∈ P)
moreover from ‹x ∈ A› have x ∈ (THE X . x ∈ X ∧ X ∈ P)

using ‹partition-on A P› partition-on-in-the-unique-part by force
moreover from ‹x ∈ A› have (THE X . x ∈ X ∧ X ∈ P) ∈ P

using ‹partition-on A P› partition-on-the-part-mem by force
ultimately show y ∈ {y. ∃X∈P. x ∈ X ∧ y ∈ X} by auto

qed
next

show {y. ∃X∈P. x ∈ X ∧ y ∈ X} ⊆ (THE X . x ∈ X ∧ X ∈ P)
proof

fix y
assume y ∈ {y. ∃X∈P. x ∈ X ∧ y ∈ X}
from this obtain X where x ∈ X and y ∈ X and X ∈ P by auto
from ‹x ∈ X› ‹X ∈ P› have (THE X . x ∈ X ∧ X ∈ P) = X

using ‹partition-on A P› partition-on-the-part-eq by force
from this ‹y ∈ X› show y ∈ (THE X . x ∈ X ∧ X ∈ P) by simp

qed
qed

lemma partition-on-all-in-part-eq-part:
assumes partition-on A P
assumes X ′ ∈ P
shows {x ∈ A. (THE X . x ∈ X ∧ X ∈ P) = X ′} = X ′

proof
show {x ∈ A. (THE X . x ∈ X ∧ X ∈ P) = X ′} ⊆ X ′

using assms(1) partition-on-in-the-unique-part by force
next

show X ′ ⊆ {x ∈ A. (THE X . x ∈ X ∧ X ∈ P) = X ′}
proof

fix x
assume x ∈ X ′

from ‹x ∈ X ′› ‹X ′ ∈ P› have x ∈ A
using ‹partition-on A P› by (auto elim: partition-onE)

moreover from ‹x ∈ X ′› ‹X ′ ∈ P› have (THE X . x ∈ X ∧ X ∈ P) = X ′

using ‹partition-on A P› partition-on-the-part-eq by fastforce
ultimately show x ∈ {x ∈ A. (THE X . x ∈ X ∧ X ∈ P) = X ′} by auto

qed
qed

lemma partition-on-part-characteristic:
assumes partition-on A P
assumes X ∈ P x ∈ X

6

shows X = {y. ∃X∈P. x ∈ X ∧ y ∈ X}
proof −

from ‹x ∈ X› ‹X ∈ P› have x ∈ A
using ‹partition-on A P› partition-onE by blast

from ‹x ∈ X› ‹X ∈ P› have X = (THE X . x ∈ X ∧ X ∈ P)
using ‹partition-on A P› by (simp add: partition-on-the-part-eq)

also from ‹x ∈ A› have (THE X . x ∈ X ∧ X ∈ P) = {y. ∃X∈P. x ∈ X ∧ y
∈ X}

using ‹partition-on A P› the-unique-part-alternative-def by force
finally show ?thesis .

qed

lemma partition-on-no-partition-outside-carrier :
assumes partition-on A P
assumes x /∈ A
shows {y. ∃X∈P. x ∈ X ∧ y ∈ X} = {}

using assms unfolding partition-on-def by auto

1.5 Cardinality of Parts in a Set Partition
lemma partition-on-le-set-elements:

assumes finite A
assumes partition-on A P
shows card P ≤ card A

using assms
proof (induct A arbitrary: P)

case empty
from this show card P ≤ card {} by (simp add: partition-on-empty)

next
case (insert a A)
show ?case
proof (cases {a} ∈ P)

case True
have prop-partition-on: ∀ p∈P. p 6= {}

⋃
P = insert a A

∀ p∈P. ∀ p ′∈P. p 6= p ′ −→ p ∩ p ′ = {}
using ‹partition-on (insert a A) P› by (fastforce elim: partition-onE)+

from this(2 , 3) ‹a /∈ A› ‹{a} ∈ P› have A-eq: A =
⋃
(P − {{a}})

by auto (metis Int-iff UnionI empty-iff insert-iff)
from prop-partition-on A-eq have partition-on: partition-on A (P − {{a}})

by (intro partition-onI) auto
from insert.hyps(3) this have card (P − {{a}}) ≤ card A by simp
from this insert(1 , 2 , 4) ‹{a} ∈ P› show ?thesis

using finite-elements[OF ‹finite A› partition-on] by simp
next

case False
from ‹partition-on (insert a A) P› obtain p where p-def : p ∈ P a ∈ p

by (blast elim: partition-onE)
from ‹partition-on (insert a A) P› p-def have a-notmem: ∀ p ′∈ P − {p}. a /∈

p ′

7

by (blast elim: partition-onE)
from ‹partition-on (insert a A) P› p-def have p − {a} /∈ P

unfolding partition-on-def disjoint-def
by (metis Diff-insert-absorb Diff-subset inf .orderE mk-disjoint-insert)

let ?P ′ = insert (p − {a}) (P − {p})
have partition-on A ?P ′

proof (rule partition-onI)
from ‹partition-on (insert a A) P› have ∀ p∈P. p 6= {} by (auto elim:

partition-onE)
from this p-def ‹{a} /∈ P› show

∧
p ′. p ′∈insert (p − {a}) (P − {p}) =⇒ p ′

6= {}
by (simp; metis (no-types) Diff-eq-empty-iff subset-singletonD)

next
from ‹partition-on (insert a A) P› have

⋃
P = insert a A by (auto elim:

partition-onE)
from p-def this ‹a /∈ A› a-notmem show

⋃
(insert (p − {a}) (P − {p})) =

A by auto
next

show
∧

pa pa ′. pa∈insert (p − {a}) (P − {p}) =⇒ pa ′∈insert (p − {a}) (P
− {p}) =⇒ pa 6= pa ′ =⇒ pa ∩ pa ′ = {}

using ‹partition-on (insert a A) P› p-def a-notmem
unfolding partition-on-def disjoint-def
by (metis disjoint-iff-not-equal insert-Diff insert-iff)

qed
have finite P using ‹finite A› ‹partition-on A ?P ′› finite-elements by fastforce
have card P = Suc (card (P − {p}))

using p-def ‹finite P› card.remove by fastforce
also have . . . = card ?P ′ using ‹p − {a} /∈ P› ‹finite P› by simp
also have . . . ≤ card A using ‹partition-on A ?P ′› insert.hyps(3) by simp
also have . . . ≤ card (insert a A) by (simp add: card-insert-le ‹finite A›)
finally show ?thesis .

qed
qed

1.6 Operations on Set Partitions
lemma partition-on-union:

assumes A ∩ B = {}
assumes partition-on A P
assumes partition-on B Q
shows partition-on (A ∪ B) (P ∪ Q)

proof (rule partition-onI)
fix X
assume X ∈ P ∪ Q
from this ‹partition-on A P› ‹partition-on B Q› show X 6= {}

by (auto elim: partition-onE)
next

show
⋃
(P ∪ Q) = A ∪ B

using ‹partition-on A P› ‹partition-on B Q› by (auto elim: partition-onE)

8

next
fix X Y
assume X ∈ P ∪ Q Y ∈ P ∪ Q X 6= Y
from this assms show X ∩ Y = {}

by (elim UnE partition-onE) auto
qed

lemma partition-on-split1 :
assumes partition-on A (P ∪ Q)
shows partition-on (

⋃
P) P

proof (rule partition-onI)
fix p
assume p ∈ P
from this assms show p 6= {}

using Un-iff partition-onE by auto
next

show
⋃

P =
⋃

P ..
next

fix p p ′

assume a: p ∈ P p ′ ∈ P p 6= p ′

from this assms show p ∩ p ′ = {}
using partition-onE subsetCE sup-ge1 by blast

qed

lemma partition-on-split2 :
assumes partition-on A (P ∪ Q)
shows partition-on (

⋃
Q) Q

using assms partition-on-split1 sup-commute by metis

lemma partition-on-intersect-on-elements:
assumes partition-on (A ∪ C) P
assumes ∀X ∈ P. ∃ x. x ∈ X ∩ C
shows partition-on C ((λX . X ∩ C) ‘ P)

proof (rule partition-onI)
fix p
assume p ∈ (λX . X ∩ C) ‘ P
from this assms show p 6= {} by auto

next
have

⋃
P = A ∪ C

using assms by (auto elim: partition-onE)
from this show

⋃
((λX . X ∩ C) ‘ P) = C by auto

next
fix p p ′

assume p ∈ (λX . X ∩ C) ‘ P p ′ ∈ (λX . X ∩ C) ‘ P p 6= p ′

from this assms(1) show p ∩ p ′ = {}
by (blast elim: partition-onE)

qed

lemma partition-on-insert-elements:

9

assumes A ∩ B = {}
assumes partition-on B P
assumes f ∈ A →E P
shows partition-on (A ∪ B) ((λX . X ∪ {x ∈ A. f x = X}) ‘ P) (is partition-on

- ?P)
proof (rule partition-onI)

fix X
assume X ∈ ?P
from this ‹partition-on B P› show X 6= {}

by (auto elim: partition-onE)
next

show
⋃

?P = A ∪ B
using ‹partition-on B P› ‹f ∈ A →E P› by (auto elim: partition-onE)

next
fix X Y
assume X ∈ ?P Y ∈ ?P X 6= Y
from ‹X ∈ ?P› obtain X ′ where X ′: X = X ′ ∪ {x ∈ A. f x = X ′} X ′ ∈ P by

auto
from ‹Y ∈ ?P› obtain Y ′ where Y ′: Y = Y ′ ∪ {x ∈ A. f x = Y ′} Y ′ ∈ P

by auto
from ‹X 6= Y › X ′ Y ′ have X ′ 6= Y ′ by auto
from this X ′ Y ′ have X ′ ∩ Y ′ = {}

using ‹partition-on B P› by (auto elim!: partition-onE)
from X ′ Y ′ have X ′ ⊆ B Y ′ ⊆ B

using ‹partition-on B P› by (auto elim!: partition-onE)
from this ‹X ′ ∩ Y ′ = {}› X ′ Y ′ ‹X ′ 6= Y ′› show X ∩ Y = {}

using ‹A ∩ B = {}› by auto
qed

lemma partition-on-map:
assumes inj-on f A
assumes partition-on A P
shows partition-on (f ‘ A) ((‘) f ‘ P)

proof −
{

fix X Y
assume X ∈ P Y ∈ P f ‘ X 6= f ‘ Y
moreover from assms have ∀ p∈P. ∀ p ′∈P. p 6= p ′ −→ p ∩ p ′ = {} and inj-on

f (
⋃

P)
by (auto elim!: partition-onE)

ultimately have f ‘ X ∩ f ‘ Y = {}
unfolding inj-on-def by auto (metis IntI empty-iff rev-image-eqI)+

}
from assms this show partition-on (f ‘ A) ((‘) f ‘ P)

by (auto intro!: partition-onI elim!: partition-onE)
qed

lemma set-of-partition-on-map:
assumes inj-on f A

10

shows (‘) ((‘) f) ‘ {P. partition-on A P} = {P. partition-on (f ‘ A) P}
proof (rule set-eqI ′)

fix x
assume x ∈ (‘) ((‘) f) ‘ {P. partition-on A P}
from this ‹inj-on f A› show x ∈ {P. partition-on (f ‘ A) P}

by (auto intro: partition-on-map)
next

fix P
assume P ∈ {P. partition-on (f ‘ A) P}
from this have partition-on (f ‘ A) P by auto
from this have mem:

∧
X x. X ∈ P =⇒ x ∈ X =⇒ x ∈ f ‘ A

by (auto elim!: partition-onE)
have (‘) (f ◦ the-inv-into A f) ‘ P = (‘) f ‘ (‘) (the-inv-into A f) ‘ P

by (simp add: image-image cong: image-cong-simp)
moreover have P = (‘) (f ◦ the-inv-into A f) ‘ P
proof (rule set-eqI ′)

fix X
assume X : X ∈ P
moreover from X mem have in-range: ∀ x∈X . x ∈ f ‘ A by auto
moreover have X = (f ◦ the-inv-into A f) ‘ X
proof (rule set-eqI ′)

fix x
assume x ∈ X
show x ∈ (f ◦ the-inv-into A f) ‘ X
proof (rule image-eqI)

from in-range ‹x ∈ X› assms show x = (f ◦ the-inv-into A f) x
by (auto simp add: f-the-inv-into-f [of f])

from ‹x ∈ X› show x ∈ X by assumption
qed

next
fix x
assume x ∈ (f ◦ the-inv-into A f) ‘ X
from this obtain x ′ where x ′: x ′ ∈ X ∧ x = f (the-inv-into A f x ′) by auto
from in-range x ′ have f : f (the-inv-into A f x ′) ∈ X

by (subst f-the-inv-into-f [of f]) (auto intro: ‹inj-on f A›)
from x ′ ‹X ∈ P› f show x ∈ X by auto

qed
ultimately show X ∈ (‘) (f ◦ the-inv-into A f) ‘ P by auto

next
fix X
assume X ∈ (‘) (f ◦ the-inv-into A f) ‘ P
moreover
{

fix Y
assume Y ∈ P
from this ‹inj-on f A› mem have ∀ x∈Y . f (the-inv-into A f x) = x

by (auto simp add: f-the-inv-into-f)
from this have (f ◦ the-inv-into A f) ‘ Y = Y by force

}

11

ultimately show X ∈ P by auto
qed
ultimately have P: P = (‘) f ‘ (‘) (the-inv-into A f) ‘ P by simp
have A-eq: A = the-inv-into A f ‘ f ‘ A by (simp add: assms)
from ‹inj-on f A› have inj-on (the-inv-into A f) (f ‘ A)

using ‹partition-on (f ‘ A) P› by (simp add: inj-on-the-inv-into)
from this have (‘) (the-inv-into A f) ‘ P ∈ {P. partition-on A P}

using ‹partition-on (f ‘ A) P› by (subst A-eq, auto intro!: partition-on-map)
from P this show P ∈ (‘) ((‘) f) ‘ {P. partition-on A P} by (rule image-eqI)

qed

end

2 Combinatorial Basics
theory Injectivity-Solver
imports

HOL−Library.Disjoint-Sets
HOL−Library.Monad-Syntax
HOL−Eisbach.Eisbach

begin

2.1 Preliminaries

These lemmas shall be added to the Disjoint Set theory.

2.1.1 Injectivity and Disjoint Families
lemma inj-on-impl-disjoint-family-on-singleton:

assumes inj-on f A
shows disjoint-family-on (λx. {f x}) A

using assms disjoint-family-on-def inj-on-contraD by fastforce

2.1.2 Cardinality Theorems for Set.bind
lemma card-bind:

assumes finite S
assumes ∀X ∈ S . finite (f X)
assumes disjoint-family-on f S
shows card (S >>= f) = (

∑
x∈S . card (f x))

proof −
have card (S >>= f) = card (

⋃
(f ‘ S))

by (simp add: bind-UNION)
also have card (

⋃
(f ‘ S)) = (

∑
x∈S . card (f x))

using assms unfolding disjoint-family-on-def by (simp add: card-UN-disjoint)
finally show ?thesis .

qed

12

lemma card-bind-constant:
assumes finite S
assumes ∀X ∈ S . finite (f X)
assumes disjoint-family-on f S
assumes

∧
x. x ∈ S =⇒ card (f x) = k

shows card (S >>= f) = card S ∗ k
using assms by (simp add: card-bind)

lemma card-bind-singleton:
assumes finite S
assumes inj-on f S
shows card (S >>= (λx. {f x})) = card S

using assms by (auto simp add: card-bind-constant inj-on-impl-disjoint-family-on-singleton)

2.2 Third Version of Injectivity Solver

Here, we provide a third version of the injectivity solver. The original first
version was provided in the AFP entry ‘Spivey’s Generalized Recurrence
for Bell Numbers‘. From that method, I derived a second version in the
AFP entry ‘Cardinality of Equivalence Relations‘. At roughly the same
time, Makarius improved the injectivity solver in the development version
of the first AFP entry. This third version now includes the improvements of
the second version and Makarius improvements to the first, and it further
extends the method to handle the new cases in the cardinality proof of this
AFP entry.
As the implementation of the injectivity solver only evolves in the de-
velopment branch of the AFP, the submissions of the three AFP entries
that employ the injectivity solver, have to create clones of the injectivity
solver for the identified and needed method adjustments. Ultimately, these
three clones should only remain in the stable branches of the AFP from Is-
abelle2016 to Isabelle2017 to work with their corresponding release versions.
In the development version, I have now consolidated the three versions here.
In the next step, I will move this version of the injectivity solver in the
HOL−Library.Disjoint-Sets and it will hopefully only evolve further there.
lemma disjoint-family-onI :

assumes
∧

i j. i ∈ I ∧ j ∈ I =⇒ i 6= j =⇒ (A i) ∩ (A j) = {}
shows disjoint-family-on A I

using assms unfolding disjoint-family-on-def by auto

lemma disjoint-bind:
∧

S T f g. (
∧

s t. S s ∧ T t =⇒ f s ∩ g t = {}) =⇒ ({s. S
s} >>= f) ∩ ({t. T t} >>= g) = {}
by fastforce

lemma disjoint-bind ′:
∧

S T f g. (
∧

s t. s ∈ S ∧ t ∈ T =⇒ f s ∩ g t = {}) =⇒ (S
>>= f) ∩ (T >>= g) = {}
by fastforce

13

lemma injectivity-solver-CollectE :
assumes a ∈ {x. P x} ∧ a ′ ∈ {x. P ′ x}
assumes (P a ∧ P ′ a ′) =⇒ W
shows W

using assms by auto

lemma injectivity-solver-prep-assms-Collect:
assumes x ∈ {x. P x}
shows P x ∧ P x

using assms by simp

lemma injectivity-solver-prep-assms: x ∈ A =⇒ x ∈ A ∧ x ∈ A
by simp

lemma disjoint-terminal-singleton:
∧

s t X Y . s 6= t =⇒ (X = Y =⇒ s = t) =⇒
{X} ∩ {Y } = {}
by auto

lemma disjoint-terminal-Collect:
assumes s 6= t
assumes

∧
x x ′. S x ∧ T x ′ =⇒ x = x ′ =⇒ s = t

shows {x. S x} ∩ {x. T x} = {}
using assms by auto

lemma disjoint-terminal:
s 6= t =⇒ (

∧
x x ′. x ∈ S ∧ x ′ ∈ T =⇒ x = x ′ =⇒ s = t) =⇒ S ∩ T = {}

by blast

lemma elim-singleton:
assumes x ∈ {s} ∧ x ′ ∈ {t}
obtains x = s ∧ x ′ = t

using assms by blast

method injectivity-solver uses rule =
insert method-facts,
use nothing in ‹
((drule injectivity-solver-prep-assms-Collect | drule injectivity-solver-prep-assms)+)?;
rule disjoint-family-onI ;
((rule disjoint-bind | rule disjoint-bind ′)+)?;
(erule elim-singleton)?;
(erule disjoint-terminal-singleton | erule disjoint-terminal-Collect | erule dis-

joint-terminal);
(elim injectivity-solver-CollectE)?;
rule rule;
assumption+

›

end

14

3 Cardinality of Set Partitions
theory Card-Partitions
imports

HOL−Combinatorics.Stirling
Set-Partition
Injectivity-Solver

begin

lemma set-partition-on-insert-with-fixed-card-eq:
assumes finite A
assumes a /∈ A
shows {P. partition-on (insert a A) P ∧ card P = Suc k} = (do {

P <− {P. partition-on A P ∧ card P = Suc k};
p <− P;
{insert (insert a p) (P − {p})}

})
∪ (do {

P <− {P. partition-on A P ∧ card P = k};
{insert {a} P}

}) (is ?S = ?T)
proof

show ?S ⊆ ?T
proof

fix P
assume P ∈ {P. partition-on (insert a A) P ∧ card P = Suc k}
from this have partition-on (insert a A) P and card P = Suc k by auto
show P ∈ ?T
proof cases

assume {a} ∈ P
have partition-on A (P − {{a}})

using ‹{a} ∈ P› ‹partition-on (insert a A) P›[THEN partition-on-Diff , of
{{a}}] ‹a /∈ A›

by auto
moreover from ‹{a} ∈ P› ‹card P = Suc k› have card (P − {{a}}) = k

by (subst card-Diff-singleton) (auto intro: card-ge-0-finite)
moreover from ‹{a} ∈ P› have P = insert {a} (P − {{a}}) by auto
ultimately have P ∈ {P. partition-on A P ∧ card P = k} >>= (λP. {insert

{a} P})
by auto

from this show ?thesis by auto
next

assume {a} /∈ P
let ?p ′ = (THE X . a ∈ X ∧ X ∈ P)
let ?p = (THE X . a ∈ X ∧ X ∈ P) − {a}
let ?P ′ = insert ?p (P − {?p ′})
from ‹partition-on (insert a A) P› have a ∈ (THE X . a ∈ X ∧ X ∈ P)

using partition-on-in-the-unique-part by fastforce
from ‹partition-on (insert a A) P› have (THE X . a ∈ X ∧ X ∈ P) ∈ P

15

using partition-on-the-part-mem by fastforce
from this ‹partition-on (insert a A) P› have (THE X . a ∈ X ∧ X ∈ P) −

{a} /∈ P
using partition-subset-imp-notin ‹a ∈ (THE X . a ∈ X ∧ X ∈ P)› by blast

have (THE X . a ∈ X ∧ X ∈ P) 6= {a}
using ‹(THE X . a ∈ X ∧ X ∈ P) ∈ P› ‹{a} /∈ P› by auto

from ‹partition-on (insert a A) P› have (THE X . a ∈ X ∧ X ∈ P) ⊆ insert
a A

using ‹(THE X . a ∈ X ∧ X ∈ P) ∈ P› partition-onD1 by fastforce
note facts-on-the-part-of = ‹a ∈ (THE X . a ∈ X ∧ X ∈ P)› ‹(THE X . a ∈

X ∧ X ∈ P) ∈ P›
‹(THE X . a ∈ X ∧ X ∈ P) − {a} /∈ P› ‹(THE X . a ∈ X ∧ X ∈ P) 6= {a}›
‹(THE X . a ∈ X ∧ X ∈ P) ⊆ insert a A›

from ‹partition-on (insert a A) P› ‹finite A› have finite P
by (meson finite.insertI finite-elements)

from ‹partition-on (insert a A) P› ‹a /∈ A› have partition-on (A − ?p) (P
− {?p ′})

using facts-on-the-part-of by (auto intro: partition-on-remove-singleton)
from this have partition-on A ?P ′

using facts-on-the-part-of by (auto intro: partition-on-insert simp add:
disjnt-iff)

moreover have card ?P ′ = Suc k
proof −

from ‹card P = Suc k› have card (P − {THE X . a ∈ X ∧ X ∈ P}) = k
using ‹finite P› ‹(THE X . a ∈ X ∧ X ∈ P) ∈ P› by simp

from this show ?thesis
using ‹finite P› ‹(THE X . a ∈ X ∧ X ∈ P) − {a} /∈ P› by (simp add:

card-insert-if)
qed
moreover have ?p ∈ ?P ′ by auto
moreover have P = insert (insert a ?p) (?P ′ − {?p})

using facts-on-the-part-of by (auto simp add: insert-absorb)
ultimately have P ∈ {P. partition-on A P ∧ card P = Suc k} >>= (λP. P

>>= (λp. {insert (insert a p) (P − {p})}))
by auto

then show ?thesis by auto
qed

qed
next

show ?T ⊆ ?S
proof

fix P
assume P ∈ ?T (is - ∈ ?subexpr1 ∪ ?subexpr2)
from this show P ∈ ?S
proof

assume P ∈ ?subexpr1
from this obtain p P ′ where P = insert (insert a p) (P ′ − {p})

and partition-on A P ′ and card P ′ = Suc k and p ∈ P ′ by auto
from ‹p ∈ P ′› ‹partition-on A P ′› have partition-on (A − p) (P ′ − {p})

16

by (simp add: partition-on-remove-singleton)
from ‹partition-on A P ′› ‹finite A› have finite P

using ‹P = -› finite-elements by auto
from ‹partition-on A P ′› ‹a /∈ A› have insert a p /∈ P ′ − {p}

using partition-onD1 by fastforce
from ‹P = -› this ‹card P ′ = Suc k› ‹finite P› ‹p ∈ P ′›
have card P = Suc k by auto
moreover have partition-on (insert a A) P

using ‹partition-on (A − p) (P ′ − {p})› ‹a /∈ A› ‹p ∈ P ′› ‹partition-on A
P ′› ‹P = -›

by (auto intro!: partition-on-insert dest: partition-onD1 simp add: disjnt-iff)
ultimately show P ∈ ?S by auto

next
assume P ∈ ?subexpr2
from this obtain P ′ where P = insert {a} P ′ and partition-on A P ′ and

card P ′ = k by auto
from ‹partition-on A P ′› ‹finite A› have finite P

using ‹P = insert {a} P ′› finite-elements by auto
from ‹partition-on A P ′› ‹a /∈ A› have {a} /∈ P ′

using partition-onD1 by fastforce
from ‹P = insert {a} P ′› ‹card P ′ = k› this ‹finite P› have card P = Suc k

by auto
moreover from ‹partition-on A P ′› ‹a /∈ A› have partition-on (insert a A)

P
using ‹P = insert {a} P ′› by (simp add: partition-on-insert-singleton)

ultimately show P ∈ ?S by auto
qed

qed
qed

lemma injectivity-subexpr1 :
assumes a /∈ A
assumes X ∈ P ∧ X ′ ∈ P ′

assumes insert (insert a X) (P − {X}) = insert (insert a X ′) (P ′ − {X ′})
assumes (partition-on A P ∧ card P = Suc k ′) ∧ (partition-on A P ′ ∧ card P ′

= Suc k ′)
shows P = P ′ and X = X ′

proof −
from assms(1 , 2 , 4) have a /∈ X a /∈ X ′

using partition-onD1 by auto
from assms(1 , 4) have insert a X /∈ P insert a X ′ /∈ P ′

using partition-onD1 by auto
from assms(1 , 3 , 4) have insert a X = insert a X ′

by (metis Diff-iff insertE insertI1 mem-simps(9) partition-onD1)
from this ‹a /∈ X ′› ‹a /∈ X› show X = X ′

by (meson insert-ident)
from assms(2 , 3) show P = P ′

using ‹insert a X = insert a X ′› ‹insert a X /∈ P› ‹insert a X ′ /∈ P ′›
by (metis insert-Diff insert-absorb insert-commute insert-ident)

17

qed

lemma injectivity-subexpr2 :
assumes a /∈ A
assumes insert {a} P = insert {a} P ′

assumes (partition-on A P ∧ card P = k ′) ∧ partition-on A P ′ ∧ card P ′ = k ′

shows P = P ′

proof −
from assms(1 , 3) have {a} /∈ P and {a} /∈ P ′

using partition-onD1 by auto
from ‹{a} /∈ P› have P = insert {a} P − {{a}} by simp
also from ‹insert {a} P = insert {a} P ′› have . . . = insert {a} P ′ − {{a}} by

simp
also from ‹{a} /∈ P ′› have . . . = P ′ by simp
finally show ?thesis .

qed

theorem card-partition-on:
assumes finite A
shows card {P. partition-on A P ∧ card P = k} = Stirling (card A) k

using assms
proof (induct A arbitrary: k)

case empty
have eq: {P. P = {} ∧ card P = 0} = {{}} by auto
show ?case by (cases k) (auto simp add: partition-on-empty eq)

next
case (insert a A)
from this show ?case
proof (cases k)

case 0
from insert(1) have empty: {P. partition-on (insert a A) P ∧ card P = 0} =

{}
unfolding partition-on-def by (auto simp add: card-eq-0-iff finite-UnionD)

from 0 insert show ?thesis by (auto simp add: empty)
next

case (Suc k ′)
let ?subexpr1 = do {

P <− {P. partition-on A P ∧ card P = Suc k ′};
p <− P;
{insert (insert a p) (P − {p})}

}
let ?subexpr2 = do {

P <− {P. partition-on A P ∧ card P = k ′};
{insert {a} P}

}
let ?expr = ?subexpr1 ∪ ?subexpr2
have card {P. partition-on (insert a A) P ∧ card P = k} = card ?expr
using ‹finite A› ‹a /∈ A› ‹k = Suc k ′› by (simp add: set-partition-on-insert-with-fixed-card-eq)
also have card ?expr = Stirling (card A) k ′ + Stirling (card A) (Suc k ′) ∗ Suc

18

k ′

proof −
have finite ?subexpr1 ∧ card ?subexpr1 = Stirling (card A) (Suc k ′) ∗ Suc k ′

proof −
from ‹finite A› have finite {P. partition-on A P ∧ card P = Suc k ′}

by (simp add: finitely-many-partition-on)
moreover have ∀X∈{P. partition-on A P ∧ card P = Suc k ′}. finite (X

>>= (λp. {insert (insert a p) (X − {p})}))
using finite-elements ‹finite A› finite-bind
by (metis (no-types, lifting) finite.emptyI finite-insert mem-Collect-eq)

moreover have disjoint-family-on (λP. P >>= (λp. {insert (insert a p) (P
− {p})})) {P. partition-on A P ∧ card P = Suc k ′}

by (injectivity-solver rule: injectivity-subexpr1 (1)[OF ‹a /∈ A›])
moreover have card (P >>= (λp. {insert (insert a p) (P − {p})})) = Suc

k ′

if P ∈ {P. partition-on A P ∧ card P = Suc k ′} for P
proof −

from that ‹finite A› have finite P
using finite-elements by blast

moreover have inj-on (λp. insert (insert a p) (P − {p})) P
using that injectivity-subexpr1 (2)[OF ‹a /∈ A›] by (simp add: inj-onI)

moreover from that have card P = Suc k ′ by simp
ultimately show ?thesis by (simp add: card-bind-singleton)

qed
ultimately have card ?subexpr1 = card {P. partition-on A P ∧ card P =

Suc k ′} ∗ Suc k ′

by (subst card-bind-constant) simp+
from this have card ?subexpr1 = Stirling (card A) (Suc k ′) ∗ Suc k ′

using insert.hyps(3) by simp
moreover have finite ?subexpr1

using ‹finite {P. partition-on A P ∧ card P = Suc k ′}›
‹∀X∈{P. partition-on A P ∧ card P = Suc k ′}. finite (X >>= (λp. {insert

(insert a p) (X − {p})}))›
by (auto intro: finite-bind)

ultimately show ?thesis by blast
qed
moreover have finite ?subexpr2 ∧ card ?subexpr2 = Stirling (card A) k ′

proof −
from ‹finite A› have finite {P. partition-on A P ∧ card P = k ′}

by (simp add: finitely-many-partition-on)
moreover have inj-on (insert {a}) {P. partition-on A P ∧ card P = k ′}

using injectivity-subexpr2 [OF ‹a /∈ A›] by (simp add: inj-on-def)
ultimately have card ?subexpr2 = card {P. partition-on A P ∧ card P =

k ′}
by (simp add: card-bind-singleton)

also have . . . = Stirling (card A) k ′

using insert.hyps(3) .
finally have card ?subexpr2 = Stirling (card A) k ′ .
moreover have finite ?subexpr2

19

by (simp add: ‹finite {P. partition-on A P ∧ card P = k ′}› finite-bind)
ultimately show ?thesis by blast

qed
moreover have ?subexpr1 ∩ ?subexpr2 = {}
proof −

have ∀P∈?subexpr1 . {a} /∈ P
using insert.hyps(2) by (force elim!: partition-onE)

moreover have ∀P∈?subexpr2 . {a} ∈ P by auto
ultimately show ?subexpr1 ∩ ?subexpr2 = {} by blast

qed
ultimately show ?thesis

by (simp add: card-Un-disjoint)
qed
also have . . . = Stirling (card (insert a A)) k

using insert(1 , 2) ‹k = Suc k ′› by simp
finally show ?thesis .

qed
qed

theorem card-partition-on-at-most-size:
assumes finite A
shows card {P. partition-on A P ∧ card P ≤ k} = (

∑
j≤k. Stirling (card A) j)

proof −
have card {P. partition-on A P ∧ card P ≤ k} = card (

⋃
j≤k. {P. partition-on

A P ∧ card P = j})
by (rule arg-cong[where f=card]) auto

also have . . . = (
∑

j≤k. card {P. partition-on A P ∧ card P = j})
by (subst card-UN-disjoint) (auto simp add: ‹finite A› finitely-many-partition-on)

also have (
∑

j≤k. card {P. partition-on A P ∧ card P = j}) = (
∑

j≤k. Stirling
(card A) j)

using ‹finite A› by (simp add: card-partition-on)
finally show ?thesis .

qed

theorem partition-on-size1 :
assumes finite A
shows {P. partition-on A P ∧ (∀X∈P. card X = 1)} = {(λa. {a}) ‘ A}

proof
show {P. partition-on A P ∧ (∀X∈P. card X = 1)} ⊆ {(λa. {a}) ‘ A}
proof

fix P
assume P: P ∈ {P. partition-on A P ∧ (∀X∈P. card X = 1)}
have P = (λa. {a}) ‘ A
proof

show P ⊆ (λa. {a}) ‘ A
proof

fix X
assume X ∈ P
from P this obtain x where X = {x}

20

by (auto simp add: card-Suc-eq)
from this ‹X ∈ P› have x ∈ A

using P unfolding partition-on-def by blast
from this ‹X = {x}› show X ∈(λa. {a}) ‘ A by auto

qed
next

show (λa. {a}) ‘ A ⊆ P
proof

fix X
assume X ∈ (λa. {a}) ‘ A
from this obtain x where X : X = {x} x ∈ A by auto
have

⋃
P = A

using P unfolding partition-on-def by blast
from this ‹x ∈ A› obtain X ′ where x ∈ X ′ and X ′ ∈ P

using UnionE by blast
from ‹X ′ ∈ P› have card X ′ = 1

using P unfolding partition-on-def by auto
from this ‹x ∈ X ′› have X ′ = {x}

using card-1-singletonE by blast
from this X(1) ‹X ′ ∈ P› show X ∈ P by auto

qed
qed
from this show P ∈ {(λa. {a}) ‘ A} by auto

qed
next

show {(λa. {a}) ‘ A} ⊆ {P. partition-on A P ∧ (∀X∈P. card X = 1)}
proof

fix P
assume P ∈ {(λa. {a}) ‘ A}
from this have P: P = (λa. {a}) ‘ A by auto
from this have partition-on A P by (auto intro: partition-onI)
from P this show P ∈ {P. partition-on A P ∧ (∀X∈P. card X = 1)} by auto

qed
qed

theorem card-partition-on-size1 :
assumes finite A
shows card {P. partition-on A P ∧ (∀X∈P. card X = 1)} = 1

using assms partition-on-size1 by fastforce

lemma card-partition-on-size1-eq-1 :
assumes finite A
assumes card A ≤ k
shows card {P. partition-on A P ∧ card P ≤ k ∧ (∀X∈P. card X = 1)} = 1

proof −
{

fix P
assume partition-on A P ∀X∈P. card X = 1
from this have P ∈ {P. partition-on A P ∧ (∀X∈P. card X = 1)} by simp

21

from this have P ∈ {(λa. {a}) ‘ A}
using partition-on-size1 ‹finite A› by auto

from this have P = (λa. {a}) ‘ A by auto
moreover from this have card P = card A

by (auto intro: card-image)
}
from this have {P. partition-on A P ∧ card P ≤ k ∧ (∀X∈P. card X = 1)} =

{P. partition-on A P ∧ (∀X∈P. card X = 1)}
using ‹card A ≤ k› by auto

from this show ?thesis
using ‹finite A› by (simp only: card-partition-on-size1)

qed

lemma card-partition-on-size1-eq-0 :
assumes finite A
assumes k < card A
shows card {P. partition-on A P ∧ card P ≤ k ∧ (∀X∈P. card X = 1)} = 0

proof −
{

fix P
assume partition-on A P ∀X∈P. card X = 1
from this have P ∈ {P. partition-on A P ∧ (∀X∈P. card X = 1)} by simp
from this have P ∈ {(λa. {a}) ‘ A}

using partition-on-size1 ‹finite A› by auto
from this have P = (λa. {a}) ‘ A by auto
from this have card P = card A

by (auto intro: card-image)
}
from this assms(2) have {P. partition-on A P ∧ card P ≤ k ∧ (∀X∈P. card X

= 1)} = {}
using Collect-empty-eq leD by fastforce

from this show ?thesis by (simp only: card.empty)
qed

end

References

[1] F. Haftmann. Discrete summation. Archive of Formal Proofs, Apr. 2014.
http://isa-afp.org/entries/Discrete_Summation.shtml, Formal proof de-
velopment.

[2] R. P. Stanley. Enumerative Combinatorics: Volume 1. Cambridge Uni-
versity Press, second edition, 2012.

[3] Wikipedia. Stirling numbers of the second kind — wikipedia,
the free encyclopedia, 2015. https://en.wikipedia.org/w/index.php?

22

http://isa-afp.org/entries/Discrete_Summation.shtml
https://en.wikipedia.org/w/index.php?title=Stirling_numbers_of_the_second_kind&oldid=693800357
https://en.wikipedia.org/w/index.php?title=Stirling_numbers_of_the_second_kind&oldid=693800357

title=Stirling_numbers_of_the_second_kind&oldid=693800357, [On-
line; accessed 12-December-2015].

23

https://en.wikipedia.org/w/index.php?title=Stirling_numbers_of_the_second_kind&oldid=693800357
https://en.wikipedia.org/w/index.php?title=Stirling_numbers_of_the_second_kind&oldid=693800357

	Set Partitions
	Useful Additions to Main Theories
	Introduction and Elimination Rules
	Basic Facts on Set Partitions
	The Unique Part Containing an Element in a Set Partition
	Cardinality of Parts in a Set Partition
	Operations on Set Partitions

	Combinatorial Basics
	Preliminaries
	Injectivity and Disjoint Families
	Cardinality Theorems for Set.bind

	Third Version of Injectivity Solver

	Cardinality of Set Partitions

