
Cardinality of Number Partitions

Lukas Bulwahn

March 17, 2025

Abstract

This entry provides a basic library for number partitions, defines
the two-argument partition function through its recurrence relation
and relates this partition function to the cardinality of number par-
titions. The main proof shows that the recursively-defined partition
function with arguments n and k equals the cardinality of number par-
titions of n with exactly k parts. The combinatorial proof follows the
proof sketch of Theorem 2.4.1 in Mazur’s textbook “Combinatorics:
A Guided Tour” [2]. This entry can serve as starting point for var-
ious more intrinsic properties about number partitions, the partition
function and related recurrence relations.

Contents
1 Additions to Isabelle’s Main Theories 2

1.1 Addition to Finite-Set Theory 2
1.2 Addition to Set-Interval Theory 2
1.3 Additions to Multiset Theory 2

2 Number Partitions 3
2.1 Number Partitions as nat ⇒ nat Functions 3
2.2 Bounds and Finiteness of Number Partitions 4
2.3 Operations of Number Partitions 6
2.4 Number Partitions as Multisets on Natural Numbers 12

2.4.1 Relationship to Definition on Functions 12

3 Cardinality of Number Partitions 14
3.1 The Partition Function . 14
3.2 Cardinality of Number Partitions 15
3.3 Cardinality of Number Partitions as Multisets of Natural Num-

bers . 19
3.4 Cardinality of Number Partitions with only 1-parts 20

1

1 Additions to Isabelle’s Main Theories
theory Additions-to-Main
imports HOL−Library.Multiset
begin

1.1 Addition to Finite-Set Theory
lemma bound-domain-and-range-impl-finitely-many-functions:

finite {f ::nat⇒nat. (∀ i. f i ≤ n) ∧ (∀ i≥m. f i = 0)}
proof (induct m)

case 0
have eq: {f . (∀ i. f i ≤ n) ∧ (∀ i. f i = 0)} = {(λ-. 0)} by auto
from this show ?case by auto (subst eq; auto)

next
case (Suc m)
let ?S = (λ(y, f). f (m := y)) ‘ ({0 ..n} × {f . (∀ i. f i ≤ n) ∧ (∀ i≥m. f i = 0)})
{

fix g
assume ∀ i. g i ≤ n ∀ i≥Suc m. g i = 0
from this have g ∈ ?S

by (auto intro: image-eqI [where x=(g m, g(m:=0))])
}
from this have {f . (∀ i. f i ≤ n) ∧ (∀ i≥Suc m. f i = 0)} = ?S by auto
from this Suc show ?case by simp

qed

1.2 Addition to Set-Interval Theory
lemma sum-atMost-remove-nat:

assumes k ≤ (n :: nat)
shows (

∑
i≤n. f i) = f k + (

∑
i∈{..n}−{k}. f i)

using assms by (auto simp add: sum.remove[where x=k])

1.3 Additions to Multiset Theory
lemma set-mset-Abs-multiset:

assumes finite {x. f x > 0}
shows set-mset (Abs-multiset f) = {x. f x > 0}

using assms unfolding set-mset-def by simp

lemma sum-mset-sum-count:
sum-mset M = (

∑
i∈set-mset M . count M i ∗ i)

proof (induct M)
show sum-mset {#} = (

∑
i∈set-mset {#}. count {#} i ∗ i) by simp

next
fix M x
assume hyp: sum-mset M = (

∑
i∈set-mset M . count M i ∗ i)

show sum-mset (add-mset x M) = (
∑

i∈set-mset (add-mset x M). count (add-mset
x M) i ∗ i)

2

proof (cases x ∈# M)
assume a: ¬ x ∈# M
from this have count M x = 0 by (meson count-inI)
from ‹¬ x ∈# M › this hyp show ?thesis

by (auto intro!: sum.cong)
next

assume x ∈# M
have sum-mset (add-mset x M) = (

∑
i∈set-mset M . count M i ∗ i) + x

using hyp by simp
also have . . . = (

∑
i∈set-mset M − {x}. count M i ∗ i) + count M x ∗ x + x

using ‹x ∈# M › by (simp add: sum.remove[of - x])
also have . . . = count (add-mset x M) x ∗ x + (

∑
i∈set-mset (add-mset x M)

− {x}. count (add-mset x M) i ∗ i)
by simp

also have . . . = (
∑

i∈set-mset (add-mset x M). count (add-mset x M) i ∗ i)
using ‹x ∈# M › by (simp add: sum.remove[of - x])

finally show ?thesis .
qed

qed

lemma sum-mset-eq-sum-on-supersets:
assumes finite A set-mset M ⊆ A
shows (

∑
i∈set-mset M . count M i ∗ i) = (

∑
i∈A. count M i ∗ i)

proof −
note ‹finite A› ‹set-mset M ⊆ A›
moreover have ∀ i∈A − set-mset M . count M i ∗ i = 0

using count-inI by fastforce
ultimately show ?thesis

by (auto intro: sum.mono-neutral-cong-left)
qed

end

2 Number Partitions
theory Number-Partition
imports Additions-to-Main
begin

2.1 Number Partitions as nat ⇒ nat Functions
definition partitions :: (nat ⇒ nat) ⇒ nat ⇒ bool (infix ‹partitions› 50)
where

p partitions n = ((∀ i. p i 6= 0 −→ 1 ≤ i ∧ i ≤ n) ∧ (
∑

i≤n. p i ∗ i) = n)

lemma partitionsI :
assumes

∧
i. p i 6= 0 =⇒ 1 ≤ i ∧ i ≤ n

assumes (
∑

i≤n. p i ∗ i) = n
shows p partitions n

3

using assms unfolding partitions-def by auto

lemma partitionsE :
assumes p partitions n
obtains

∧
i. p i 6= 0 =⇒ 1 ≤ i ∧ i ≤ n (

∑
i≤n. p i ∗ i) = n

using assms unfolding partitions-def by auto

lemma partitions-zero:
p partitions 0 ←→ p = (λi. 0)

unfolding partitions-def by auto

lemma partitions-one:
p partitions (Suc 0) ←→ p = (λi. 0)(1 := 1)

unfolding partitions-def
by (auto split: if-split-asm) (auto simp add: fun-eq-iff)

2.2 Bounds and Finiteness of Number Partitions
lemma partitions-imp-finite-elements:

assumes p partitions n
shows finite {i. 0 < p i}

proof −
from assms have {i. 0 < p i} ⊆ {..n} by (auto elim: partitionsE)
from this show ?thesis

using rev-finite-subset by blast
qed

lemma partitions-bounds:
assumes p partitions n
shows p i ≤ n

proof −
from assms have index-bounds: (∀ i. p i 6= 0 −→ 1 ≤ i ∧ i ≤ n)

and sum: (
∑

i≤n. p i ∗ i) = n
unfolding partitions-def by auto

show ?thesis
proof (cases 1 ≤ i ∧ i ≤ n)

case True
from True have {..n} = insert i {i ′. i ′ ≤ n ∧ i ′ 6= i} by blast
from sum[unfolded this] have p i ∗ i + (

∑
i∈{i ′. i ′ ≤ n ∧ i ′ 6= i}. p i ∗ i) =

n by auto
from this have p i ∗ i ≤ n by linarith
from this True show ?thesis using dual-order .trans by fastforce

next
case False
from this index-bounds show ?thesis by fastforce

qed
qed

lemma partitions-parts-bounded:

4

assumes p partitions n
shows sum p {..n} ≤ n

proof −
{

fix i
assume i ≤ n
from assms have p i ≤ p i ∗ i

by (auto elim!: partitionsE)
}
from this have sum p {..n} ≤ (

∑
i≤n. p i ∗ i)

by (auto intro: sum-mono)
also from assms have n: (

∑
i≤n. p i ∗ i) = n

by (auto elim!: partitionsE)
finally show ?thesis .

qed

lemma finite-partitions:
finite {p. p partitions n}

proof −
have {p. p partitions n} ⊆ {f . (∀ i. f i ≤ n) ∧ (∀ i. n + 1 ≤ i −→ f i = 0)}

by (auto elim: partitions-bounds) (auto simp add: partitions-def)
from this bound-domain-and-range-impl-finitely-many-functions[of n n + 1] show

?thesis
by (simp add: finite-subset)

qed

lemma finite-partitions-k-parts:
finite {p. p partitions n ∧ sum p {..n} = k}

by (simp add: finite-partitions)

lemma partitions-remaining-Max-part:
assumes p partitions n
assumes 0 < p k
shows ∀ i. n − k < i ∧ i 6= k −→ p i = 0

proof (clarify)
fix i
assume n − k < i i 6= k
show p i = 0
proof (cases i ≤ n)

assume i ≤ n
from assms have n: (

∑
i≤n. p i ∗ i) = n and k ≤ n

by (auto elim: partitionsE)
have (

∑
i≤n. p i ∗ i) = p k ∗ k + (

∑
i∈{..n}−{k}. p i ∗ i)

using ‹k ≤ n› sum-atMost-remove-nat by blast
also have ... = p i ∗ i + p k ∗ k + (

∑
i∈{..n}−{i, k}. p i ∗ i)

using ‹i ≤ n› ‹i 6= k›
by (auto simp add: sum.remove[where x=i]) (metis Diff-insert)

finally have eq: (
∑

i≤n. p i ∗ i) = p i ∗ i + p k ∗ k + (
∑

i∈{..n} − {i, k}.
p i ∗ i) .

5

show p i = 0
proof (rule ccontr)

assume p i 6= 0
have upper-bound: p i ∗ i + p k ∗ k ≤ n

using eq n by auto
have lower-bound: p i ∗ i + p k ∗ k > n

using ‹n − k < i› ‹0 < p k› ‹k ≤ n› ‹p i 6= 0 › mult-eq-if not-less by auto
from upper-bound lower-bound show False by simp

qed
next

assume ¬ (i ≤ n)
from this show p i = 0

using assms(1) by (auto elim: partitionsE)
qed

qed

2.3 Operations of Number Partitions
lemma partitions-remove1-bounds:

assumes partitions: p partitions n
assumes gr0 : 0 < p k
assumes neq: (p(k := p k − 1)) i 6= 0
shows 1 ≤ i ∧ i ≤ n − k

proof
from partitions neq show 1 ≤ i

by (auto elim!: partitionsE split: if-split-asm)
next

from partitions gr0 have n: (
∑

i≤n. p i ∗ i) = n and k ≤ n
by (auto elim: partitionsE)

show i ≤ n − k
proof cases

assume k ≤ n − k
from ‹k ≤ n − k› neq show ?thesis

using partitions-remaining-Max-part[OF partitions gr0] not-le by force
next

assume ¬ k ≤ n − k
from this have 2 ∗ k > n by auto
have p k = 1
proof (rule ccontr)

assume p k 6= 1
with gr0 have p k ≥ 2 by auto
from this have p k ∗ k ≥ 2 ∗ k by simp
with ‹2 ∗ k > n› have p k ∗ k > n by linarith
from ‹k ≤ n› this have (

∑
i≤n. p i ∗ i) > n

by (simp add: sum-atMost-remove-nat[of k])
from this n show False by auto

qed
from neq this show ?thesis

using partitions-remaining-Max-part[OF partitions gr0] leI

6

by (auto split: if-split-asm) force
qed

qed

lemma partitions-remove1 :
assumes partitions: p partitions n
assumes gr0 : 0 < p k
shows p(k := p k − 1) partitions (n − k)

proof (rule partitionsI)
fix i
assume (p(k := p k − 1)) i 6= 0
from this show 1 ≤ i ∧ i ≤ n − k using partitions-remove1-bounds partitions

gr0 by blast
next

from partitions gr0 have k ≤ n by (auto elim: partitionsE)
have (

∑
i≤n − k. (p(k := p k − 1)) i ∗ i) = (

∑
i≤n. (p(k := p k − 1)) i ∗ i)

using partitions-remove1-bounds partitions gr0 by (auto intro!: sum.mono-neutral-left)
also have ... = (p k − 1) ∗ k + (

∑
i∈{..n} − {k}. (p(k := p k − 1)) i ∗ i)

using ‹k ≤ n› by (simp add: sum-atMost-remove-nat[where k=k])
also have ... = p k ∗ k + (

∑
i∈{..n} − {k}. p i ∗ i) − k

using gr0 by (simp add: diff-mult-distrib)
also have ... = (

∑
i≤n. p i ∗ i) − k

using ‹k ≤ n› by (simp add: sum-atMost-remove-nat[of k])
also from partitions have ... = n − k

by (auto elim: partitionsE)
finally show (

∑
i≤n − k. (p(k := p k − 1)) i ∗ i) = n − k .

qed

lemma partitions-insert1 :
assumes p: p partitions n
assumes k > 0
shows (p(k := p k + 1)) partitions (n + k)

proof (rule partitionsI)
fix i
assume (p(k := p k + 1)) i 6= 0
from p this ‹k > 0 › show 1 ≤ i ∧ i ≤ n + k

by (auto elim!: partitionsE)
next

have (
∑

i≤n + k. (p(k := p k + 1)) i ∗ i) = p k ∗ k + (
∑

i∈{..n + k} − {k}.
p i ∗ i) + k

by (simp add: sum-atMost-remove-nat[of k])
also have ... = p k ∗ k + (

∑
i∈{..n} − {k}. p i ∗ i) + k

using p by (auto intro!: sum.mono-neutral-right elim!: partitionsE)
also have ... = (

∑
i≤n. p i ∗ i) + k

using p by (cases k ≤ n) (auto simp add: sum-atMost-remove-nat[of k] elim:
partitionsE)

also have ... = n + k
using p by (auto elim: partitionsE)

finally show (
∑

i≤n + k. (p(k := p k + 1)) i ∗ i) = n + k .

7

qed

lemma count-remove1 :
assumes p partitions n
assumes 0 < p k
shows (

∑
i≤n − k. (p(k := p k − 1)) i) = (

∑
i≤n. p i) − 1

proof −
have k ≤ n using assms by (auto elim: partitionsE)
have (

∑
i≤n − k. (p(k := p k − 1)) i) = (

∑
i≤n. (p(k := p k − 1)) i)

using partitions-remove1-bounds assms by (auto intro!: sum.mono-neutral-left)
also have (

∑
i≤n. (p(k := p k − 1)) i) = p k + (

∑
i∈{..n} − {k}. p i) − 1

using ‹0 < p k› ‹k ≤ n› by (simp add: sum-atMost-remove-nat[of k])
also have ... = (

∑
i∈{..n}. p i) − 1

using ‹k ≤ n› by (simp add: sum-atMost-remove-nat[of k])
finally show ?thesis .

qed

lemma count-insert1 :
assumes p partitions n
shows sum (p(k := p k + 1)) {..n + k} = (

∑
i≤n. p i) + 1

proof −
have (

∑
i≤n + k. (p(k := p k + 1)) i) = p k + (

∑
i∈{..n + k} − {k}. p i) +

1
by (simp add: sum-atMost-remove-nat[of k])

also have ... = p k + (
∑

i∈{..n} − {k}. p i) + 1
using assms by (auto intro!: sum.mono-neutral-right elim!: partitionsE)

also have ... = (
∑

i≤n. p i) + 1
using assms by (cases k ≤ n) (auto simp add: sum-atMost-remove-nat[of k]

elim: partitionsE)
finally show ?thesis .

qed

lemma partitions-decrease1 :
assumes p: p partitions m
assumes sum: sum p {..m} = k
assumes p 1 = 0
shows (λi. p (i + 1)) partitions m − k

proof −
from p have p 0 = 0 by (auto elim!: partitionsE)
{

fix i
assume neq: p (i + 1) 6= 0
from p this ‹p 1 = 0 › have 1 ≤ i

by (fastforce elim!: partitionsE simp add: le-Suc-eq)
moreover have i ≤ m − k
proof (rule ccontr)

assume i-greater : ¬ i ≤ m − k
from p have s: (

∑
i≤m. p i ∗ i) = m

by (auto elim!: partitionsE)

8

from p sum have k ≤ m
using partitions-parts-bounded by fastforce

from neq p have i + 1 ≤ m by (auto elim!: partitionsE)
from i-greater have i > m − k by simp
have ineq1 : i + 1 > (m − k) + 1

using i-greater by simp
have ineq21 : (

∑
j≤m. (p(i + 1 := p (i + 1) − 1)) j ∗ j) ≥ (

∑
j≤m. (p(i

+ 1 := p (i + 1) − 1)) j)
using ‹p 0 = 0 › not-less by (fastforce intro!: sum-mono)

have ineq22a: (
∑

j≤m. (p(i + 1 := p (i + 1) − 1)) j) = (
∑

j≤m. p j) − 1
using ‹i + 1 ≤ m› neq by (simp add: sum.remove[where x=i + 1])

have ineq22 : (
∑

j≤m. (p(i + 1 := p (i + 1) − 1)) j) ≥ k − 1
using sum neq ineq22a by auto

have ineq2 : (
∑

j≤m. (p(i + 1 := p (i + 1) − 1)) j ∗ j) ≥ k − 1
using ineq21 ineq22 by auto

have (
∑

i≤m. p i ∗ i) = p (i + 1) ∗ (i + 1) + (
∑

i∈{..m} − {i + 1}. p i
∗ i)

using ‹i + 1 ≤ m› neq
by (subst sum.remove[where x=i + 1]) auto

also have ... = (i + 1) + (
∑

j≤m. (p(i + 1 := p (i + 1) − 1)) j ∗ j)
using ‹i + 1 ≤ m› neq
by (subst sum.remove[where x=i + 1 and g=λj. (p(i + 1 := p (i + 1) −

1)) j ∗ j])
(auto simp add: mult-eq-if)

finally have (
∑

i≤m. p i ∗ i) = i + 1 + (
∑

j≤m. (p(i + 1 := p (i + 1)
− 1)) j ∗ j) .

moreover have ... > m using ineq1 ineq2 ‹k ≤ m› ‹p (i + 1) 6= 0 › by
linarith

ultimately have (
∑

i≤m. p i ∗ i) > m by simp
from s this show False by simp

qed
ultimately have 1 ≤ i ∧ i ≤ m − k ..

} note bounds = this
show (λi. p (i + 1)) partitions m − k
proof (rule partitionsI)

fix i
assume p (i + 1) 6= 0
from bounds this show 1 ≤ i ∧ i ≤ m − k .

next
have geq: ∀ i. p i ∗ i ≥ p i

using ‹p 0 = 0 › not-less by fastforce
have (

∑
i≤m − k. p (i + 1) ∗ i) = (

∑
i≤m. p (i + 1) ∗ i)

using bounds by (auto intro: sum.mono-neutral-left)
also have ... = (

∑
i∈Suc ‘ {..m}. p i ∗ (i − 1))

by (auto simp add: sum.reindex)
also have ... = (

∑
i≤Suc m. p i ∗ (i − 1))

using ‹p 0 = 0 ›
by (simp add: atMost-Suc-eq-insert-0)

also have ... = (
∑

i≤m. p i ∗ (i − 1))

9

using p by (auto elim!: partitionsE)
also have ... = (

∑
i≤m. p i ∗ i − p i)

by (simp add: diff-mult-distrib2)
also have ... = (

∑
i≤m. p i ∗ i) − (

∑
i≤m. p i)

using geq by (simp only: sum-subtractf-nat)
also have ... = m − k using sum p by (auto elim!: partitionsE)
finally show (

∑
i≤m − k. p (i + 1) ∗ i) = m − k .

qed
qed

lemma partitions-increase1 :
assumes partitions: p partitions m − k
assumes k: sum p {..m − k} = k
shows (λi. p (i − 1)) partitions m

proof (rule partitionsI)
fix i
assume p (i − 1) 6= 0
from partitions this k show 1 ≤ i ∧ i ≤ m

by (cases k) (auto elim!: partitionsE)
next

from k partitions have k ≤ m
using linear partitions-zero by force

have eq-0 : ∀ i>m − k. p i = 0 using partitions by (auto elim!: partitionsE)
from partitions have s: (

∑
i≤m − k. p i ∗ i) = m − k by (auto elim!: parti-

tionsE)
have (

∑
i≤m. p (i − 1) ∗ i) = (

∑
i≤Suc m. p (i − 1) ∗ i)

using partitions k by (cases k) (auto elim!: partitionsE)
also have (

∑
i≤Suc m. p (i − 1) ∗ i) = (

∑
i≤m. p i ∗ (i + 1))

by (subst sum.atMost-Suc-shift) simp
also have ... = (

∑
i≤m − k. p i ∗ (i + 1))

using eq-0 by (auto intro: sum.mono-neutral-right)
also have ... = (

∑
i≤m − k. p i ∗ i) + (

∑
i≤m − k. p i) by (simp add:

sum.distrib)
also have ... = m − k + k using s k by simp
also have ... = m using ‹k ≤ m› by simp
finally show (

∑
i≤m. p (i − 1) ∗ i) = m .

qed

lemma count-decrease1 :
assumes p: p partitions m
assumes sum: sum p {..m} = k
assumes p 1 = 0
shows sum (λi. p (i + 1)) {..m − k} = k

proof −
from p have p 0 = 0 by (auto elim!: partitionsE)
have sum (λi. p (i + 1)) {..m − k} = sum (λi. p (i + 1)) {..m}

using partitions-decrease1 [OF assms]
by (auto intro: sum.mono-neutral-left elim!: partitionsE)

also have . . . = sum (λi. p (i + 1)) {0 ..m} by (simp add: atLeast0AtMost)

10

also have . . . = sum (λi. p i) {Suc 0 .. Suc m}
by (simp only: One-nat-def add-Suc-right add-0-right sum.shift-bounds-cl-Suc-ivl)

also have . . . = sum (λi. p i) {.. Suc m}
using ‹p 0 = 0 › by (simp add: atLeast0AtMost sum-shift-lb-Suc0-0)

also have . . . = sum (λi. p i) {.. m}
using p by (auto elim!: partitionsE)

also have . . . = k
using sum by simp

finally show ?thesis .
qed

lemma count-increase1 :
assumes partitions: p partitions m − k
assumes k: sum p {..m − k} = k
shows (

∑
i≤m. p (i − 1)) = k

proof −
have p 0 = 0 using partitions by (auto elim!: partitionsE)
have (

∑
i≤m. p (i − 1)) = (

∑
i∈{1 ..m}. p (i − 1))

using ‹p 0 = 0 › by (auto intro: sum.mono-neutral-cong-right)
also have (

∑
i∈{1 ..m}. p (i − 1)) = (

∑
i≤m − 1 . p i)

proof (cases m)
case 0
from this show ?thesis using ‹p 0 = 0 › by simp

next
case (Suc m ′)
{

fix x assume Suc 0 ≤ x x ≤ m
from this Suc have x ∈ Suc ‘ {..m ′}

by (auto intro!: image-eqI [where x=x − 1])
}
from this Suc show ?thesis

by (intro sum.reindex-cong[of Suc]) auto
qed
also have (

∑
i≤m − 1 . p i) = (

∑
i≤m. p i)

proof −
{

fix i
assume 0 < p i i ≤ m
from assms this have i ≤ m − 1

using ‹p 0 = 0 › partitions-increase1 by (cases k) (auto elim!: partitionsE)
}
from this show ?thesis

by (auto intro: sum.mono-neutral-cong-left)
qed
also have ... = (

∑
i≤m − k. p i)

using partitions by (auto intro: sum.mono-neutral-right elim!: partitionsE)
also have ... = k using k by auto
finally show ?thesis .

qed

11

2.4 Number Partitions as Multisets on Natural Numbers
definition number-partition :: nat ⇒ nat multiset ⇒ bool
where

number-partition n N = (sum-mset N = n ∧ 0 /∈# N)

2.4.1 Relationship to Definition on Functions
lemma count-partitions-iff :

count N partitions n ←→ number-partition n N
proof

assume count N partitions n
from this have (∀ i. count N i 6= 0 −→ 1 ≤ i ∧ i ≤ n) (

∑
i≤n. count N i ∗ i)

= n
unfolding Number-Partition.partitions-def by auto

moreover from this have set-mset N ⊆ {..n} by auto
moreover have finite {..n} by auto
ultimately have sum-mset N = n

using sum-mset-sum-count sum-mset-eq-sum-on-supersets by presburger
moreover have 0 /∈# N

using ‹∀ i. count N i 6= 0 −→ 1 ≤ i ∧ i ≤ n› by auto
ultimately show number-partition n N

unfolding number-partition-def by auto
next

assume number-partition n N
from this have sum-mset N = n and 0 /∈# N

unfolding number-partition-def by auto
{

fix i
assume count N i 6= 0
have 1 ≤ i ∧ i ≤ n
proof

from ‹0 /∈# N › ‹count N i 6= 0 › show 1 ≤ i
using Suc-le-eq by auto

from ‹sum-mset N = n› ‹count N i 6= 0 › show i ≤ n
using multi-member-split by fastforce

qed
}
moreover from ‹sum-mset N = n› have (

∑
i≤n. count N i ∗ i) = n

by (metis atMost-iff calculation finite-atMost not-in-iff subsetI sum-mset-eq-sum-on-supersets
sum-mset-sum-count)

ultimately show count N partitions n
by (rule partitionsI) auto

qed

lemma partitions-iff-Abs-multiset:
p partitions n ←→ finite {x. 0 < p x} ∧ number-partition n (Abs-multiset p)

proof
assume p partitions n
from this have bounds: (∀ i. p i 6= 0 −→ 1 ≤ i ∧ i ≤ n)

12

and sum: (
∑

i≤n. p i ∗ i) = n
unfolding partitions-def by auto
from ‹p partitions n› have finite {x. 0 < p x}

by (rule partitions-imp-finite-elements)
moreover from ‹finite {x. 0 < p x}› bounds have ¬ 0 ∈# Abs-multiset p

using count-eq-zero-iff by force
moreover from ‹finite {x. 0 < p x}› this sum have sum-mset (Abs-multiset p)

= n
proof −

have (
∑

i∈{x. 0 < p x}. p i ∗ i) = (
∑

i≤n. p i ∗ i)
using bounds by (auto intro: sum.mono-neutral-cong-left)

from ‹finite {x. 0 < p x}› this sum show sum-mset (Abs-multiset p) = n
by (simp add: sum-mset-sum-count set-mset-Abs-multiset)

qed
ultimately show finite {x. 0 < p x} ∧ number-partition n (Abs-multiset p)

unfolding number-partition-def by auto
next

assume finite {x. 0 < p x} ∧ number-partition n (Abs-multiset p)
from this have finite {x. 0 < p x} 0 /∈# Abs-multiset p sum-mset (Abs-multiset

p) = n
unfolding number-partition-def by auto

from ‹finite {x. 0 < p x}› have (
∑

i∈{x. 0 < p x}. p i ∗ i) = n
using ‹ sum-mset (Abs-multiset p) = n›
by (simp add: sum-mset-sum-count set-mset-Abs-multiset)

have bounds:
∧

i. p i 6= 0 =⇒ 1 ≤ i ∧ i ≤ n
proof

fix i
assume p i 6= 0
from ‹¬ 0 ∈# Abs-multiset p› ‹finite {x. 0 < p x}› have p 0 = 0

using count-inI by force
from this ‹p i 6= 0 › show 1 ≤ i

by (metis One-nat-def leI less-Suc0)
show i ≤ n
proof (rule ccontr)

assume ¬ i ≤ n
from this have i > n

using le-less-linear by blast
from this ‹p i 6= 0 › have p i ∗ i > n

by (auto simp add: less-le-trans)
from ‹p i 6= 0 › have (

∑
i∈{x. 0 < p x}. p i ∗ i) = p i ∗ i + (

∑
i∈{x. 0 <

p x} − {i}. p i ∗ i)
using ‹finite {x. 0 < p x}›
by (subst sum.insert-remove[symmetric]) (auto simp add: insert-absorb)

also from ‹p i ∗ i > n› have . . . > n by auto
finally show False using ‹(

∑
i∈{x. 0 < p x}. p i ∗ i) = n› by blast

qed
qed
moreover have (

∑
i≤n. p i ∗ i) = n

proof −

13

have (
∑

i≤n. p i ∗ i) = (
∑

i∈{x. 0 < p x}. p i ∗ i)
using bounds by (auto intro: sum.mono-neutral-cong-right)

from this show ?thesis
using ‹(

∑
i∈{x. 0 < p x}. p i ∗ i) = n› by simp

qed
ultimately show p partitions n by (auto intro: partitionsI)

qed

lemma size-nat-multiset-eq:
fixes N :: nat multiset
assumes number-partition n N
shows size N = sum (count N) {..n}

proof −
have set-mset N ⊆ {..sum-mset N}

by (auto dest: multi-member-split)
have size N = sum (count N) (set-mset N)

by (rule size-multiset-overloaded-eq)
also have . . . = sum (count N) {..sum-mset N}

using ‹set-mset N ⊆ {..sum-mset N}›
by (auto intro: sum.mono-neutral-cong-left count-inI)

finally show ?thesis
using ‹number-partition n N ›
unfolding number-partition-def by auto

qed

end

3 Cardinality of Number Partitions
theory Card-Number-Partitions
imports Number-Partition
begin

3.1 The Partition Function
fun Partition :: nat ⇒ nat ⇒ nat
where

Partition 0 0 = 1
| Partition 0 (Suc k) = 0
| Partition (Suc m) 0 = 0
| Partition (Suc m) (Suc k) = Partition m k + Partition (m − k) (Suc k)

lemma Partition-less:
assumes m < k
shows Partition m k = 0

using assms by (induct m k rule: Partition.induct) auto

lemma Partition-sum-Partition-diff :

14

assumes k ≤ m
shows Partition m k = (

∑
i≤k. Partition (m − k) i)

using assms by (induct m k rule: Partition.induct) auto

lemma Partition-parts1 :
Partition (Suc m) (Suc 0) = 1

by (induct m) auto

lemma Partition-diag:
Partition (Suc m) (Suc m) = 1

by (induct m) auto

lemma Partition-diag1 :
Partition (Suc (Suc m)) (Suc m) = 1

by (induct m) auto

lemma Partition-parts2 :
shows Partition m 2 = m div 2

proof (induct m rule: nat-less-induct)
fix m
assume hypothesis: ∀n<m. Partition n 2 = n div 2
have (m = 0 ∨ m = 1) ∨ m ≥ 2 by auto
from this show Partition m 2 = m div 2
proof

assume m = 0 ∨ m = 1
from this show ?thesis by (auto simp add: numerals(2))

next
assume 2 ≤ m
from this obtain m ′ where m ′: m = Suc (Suc m ′) by (metis add-2-eq-Suc

le-Suc-ex)
from hypothesis this have Partition m ′ 2 = m ′ div 2 by simp
from this m ′ show ?thesis

using Partition-parts1 Partition.simps(4)[of Suc m ′ Suc 0] div2-Suc-Suc
by (simp add: numerals(2) del: Partition.simps)

qed
qed

3.2 Cardinality of Number Partitions
lemma set-rewrite1 :
{p. p partitions Suc m ∧ sum p {..Suc m} = Suc k ∧ p 1 6= 0}
= (λp. p(1 := p 1 + 1)) ‘ {p. p partitions m ∧ sum p {..m} = k} (is ?S =

?T)
proof

{
fix p
assume assms: p partitions Suc m sum p {..Suc m} = Suc k 0 < p 1
have p(1 := p 1 − 1) partitions m

using assms by (metis partitions-remove1 diff-Suc-1)

15

moreover have (
∑

i≤m. (p(1 := p 1 − 1)) i) = k
using assms by (metis count-remove1 diff-Suc-1)

ultimately have p(1 := p 1 − 1) ∈ {p. p partitions m ∧ sum p {..m} = k}
by simp

moreover have p = p(1 := p 1 − 1 , 1 := (p(1 := p 1 − 1)) 1 + 1)
using ‹0 < p 1 › by auto

ultimately have p ∈ (λp. p(1 := p 1 + 1)) ‘ {p. p partitions m ∧ sum p
{..m} = k} by blast

}
from this show ?S ⊆ ?T by blast

next
{

fix p
assume assms: p partitions m sum p {..m} = k
have (p(1 := p 1 + 1)) partitions Suc m (is ?g1)

using assms by (metis partitions-insert1 Suc-eq-plus1 zero-less-one)
moreover have sum (p(1 := p 1 + 1)) {..Suc m} = Suc k (is ?g2)

using assms by (metis count-insert1 Suc-eq-plus1)
moreover have (p(1 := p 1 + 1)) 1 6= 0 (is ?g3) by auto
ultimately have ?g1 ∧ ?g2 ∧ ?g3 by simp

}
from this show ?T ⊆ ?S by auto

qed

lemma set-rewrite2 :
{p. p partitions m ∧ sum p {..m} = k ∧ p 1 = 0}
= (λp. (λi. p (i − 1))) ‘ {p. p partitions (m − k) ∧ sum p {..m − k} = k}

(is ?S = ?T)
proof

{
fix p
assume assms: p partitions m sum p {..m} = k p 1 = 0
have (λi. p (i + 1)) partitions m − k

using assms partitions-decrease1 by blast
moreover from assms have sum (λi. p (i + 1)) {..m − k} = k

using assms count-decrease1 by blast
ultimately have (λi. p (i + 1)) ∈ {p. p partitions m − k ∧ sum p {..m − k}

= k} by simp
moreover have p = (λi. p ((i − 1) + 1))
proof (rule ext)

fix i show p i = p (i − 1 + 1)
using assms by (cases i) (auto elim!: partitionsE)

qed
ultimately have p ∈ (λp. (λi. p (i − 1))) ‘ {p. p partitions m − k ∧ sum p

{..m − k} = k} by auto
}
from this show ?S ⊆ ?T by auto

next
{

16

fix p
assume assms: p partitions m − k sum p {..m − k} = k
from assms have (λi. p (i − 1)) partitions m (is ?g1)

using partitions-increase1 by blast
moreover from assms have (

∑
i≤m. p (i − 1)) = k (is ?g2)

using count-increase1 by blast
moreover from assms have p 0 = 0 (is ?g3)

by (auto elim!: partitionsE)
ultimately have ?g1 ∧ ?g2 ∧ ?g3 by simp

}
from this show ?T ⊆ ?S by auto

qed

theorem card-partitions-k-parts:
card {p. p partitions n ∧ (

∑
i≤n. p i) = k} = Partition n k

proof (induct n k rule: Partition.induct)
case 1
have eq: {p. p = (λx. 0) ∧ p 0 = 0} = {(λx. 0)} by auto
show card {p. p partitions 0 ∧ sum p {..0} = 0} = Partition 0 0

by (simp add: partitions-zero eq)
next

case (2 k)
have eq: {p. p = (λx. 0) ∧ p 0 = Suc k} = {} by auto
show card {p. p partitions 0 ∧ sum p {..0} = Suc k} = Partition 0 (Suc k)

by (simp add: partitions-zero eq)
next

case (3 m)
have eq: {p. p partitions Suc m ∧ sum p {..Suc m} = 0} = {}

by (fastforce elim!: partitionsE simp add: le-Suc-eq)
from this show card {p. p partitions Suc m ∧ sum p {..Suc m} = 0} = Partition

(Suc m) 0
by (simp only: Partition.simps card.empty)

next
case (4 m k)
let ?set1 = {p. p partitions Suc m ∧ sum p {..Suc m} = Suc k ∧ p 1 6= 0}
let ?set2 = {p. p partitions Suc m ∧ sum p {..Suc m} = Suc k ∧ p 1 = 0}
have finite {p. p partitions Suc m}

by (simp add: finite-partitions)
from this have finite-sets: finite ?set1 finite ?set2 by simp+
have set-eq: {p. p partitions Suc m ∧ sum p {..Suc m} = Suc k} = ?set1 ∪ ?set2

by auto
have disjoint: ?set1 ∩ ?set2 = {} by auto
have inj1 : inj-on (λp. p(1 := p 1 + 1)) {p. p partitions m ∧ sum p {..m} = k}

by (auto intro!: inj-onI) (metis diff-Suc-1 fun-upd-idem-iff fun-upd-upd)
have inj2 : inj-on (λp i. p (i − 1)) {p. p partitions m − k ∧ sum p {..m − k} =

Suc k}
by (auto intro!: inj-onI simp add: fun-eq-iff) (metis add-diff-cancel-right ′)

have card1 : card ?set1 = Partition m k
using inj1 4 (1) by (simp only: set-rewrite1 card-image)

17

have card2 : card ?set2 = Partition (m − k) (Suc k)
using inj2 4 (2) by (simp only: set-rewrite2 card-image diff-Suc-Suc)

have card {p. p partitions Suc m ∧ sum p {..Suc m} = Suc k} = Partition m k
+ Partition (m − k) (Suc k)

using finite-sets disjoint by (simp only: set-eq card-Un-disjoint card1 card2)
from this show card {p. p partitions Suc m ∧ sum p {..Suc m} = Suc k} =

Partition (Suc m) (Suc k)
by auto

qed

theorem card-partitions:
card {p. p partitions n} = (

∑
k≤n. Partition n k)

proof −
have seteq: {p. p partitions n} =

⋃
((λk. {p. p partitions n ∧ (

∑
i≤n. p i) =

k}) ‘ {..n})
by (auto intro: partitions-parts-bounded)

have finite:
∧

k. finite {p. p partitions n ∧ sum p {..n} = k}
by (simp add: finite-partitions)

have card {p. p partitions n} = card (
⋃

((λk. {p. p partitions n ∧ (
∑

i≤n. p i)
= k}) ‘ {..n}))

using finite by (simp add: seteq)
also have ... = (

∑
x≤n. card {p. p partitions n ∧ sum p {..n} = x})

using finite by (subst card-UN-disjoint) auto
also have ... = (

∑
k≤n. Partition n k)

by (simp add: card-partitions-k-parts)
finally show ?thesis .

qed

lemma card-partitions-atmost-k-parts:
card {p. p partitions n ∧ sum p {..n} ≤ k} = Partition (n + k) k

proof −
have card {p. p partitions n ∧ sum p {..n} ≤ k} =

card (
⋃
((λk ′. {p. p partitions n ∧ sum p {..n} = k ′}) ‘ {..k}))

proof −
have {p. p partitions n ∧ sum p {..n} ≤ k} =
(
⋃

k ′≤k. {p. p partitions n ∧ sum p {..n} = k ′}) by auto
from this show ?thesis by simp

qed
also have card (

⋃
((λk ′. {p. p partitions n ∧ sum p {..n} = k ′}) ‘ {..k})) =

sum (λk ′. card {p. p partitions n ∧ sum p {..n} = k ′}) {..k}
using finite-partitions-k-parts by (subst card-UN-disjoint) auto

also have . . . = sum (λk ′. Partition n k ′) {..k}
using card-partitions-k-parts by simp

also have . . . = Partition (n + k) k
using Partition-sum-Partition-diff by simp

finally show ?thesis .
qed

18

3.3 Cardinality of Number Partitions as Multisets of Natural
Numbers

lemma bij-betw-multiset-number-partition-with-size:
bij-betw count {N . number-partition n N ∧ size N = k} {p. p partitions n ∧ sum

p {..n} = k}
proof (rule bij-betw-byWitness[where f ′=Abs-multiset])

show ∀N∈{N . number-partition n N ∧ size N = k}. Abs-multiset (count N) =
N

using count-inverse by blast
show ∀ p∈{p. p partitions n ∧ sum p {..n} = k}. count (Abs-multiset p) = p

by (auto simp add: partitions-imp-finite-elements)
show count ‘ {N . number-partition n N ∧ size N = k} ⊆ {p. p partitions n ∧

sum p {..n} = k}
by (auto simp add: count-partitions-iff size-nat-multiset-eq)

show Abs-multiset ‘ {p. p partitions n ∧ sum p {..n} = k} ⊆ {N . number-partition
n N ∧ size N = k}

using partitions-iff-Abs-multiset size-nat-multiset-eq by fastforce
qed

lemma bij-betw-multiset-number-partition-with-atmost-size:
bij-betw count {N . number-partition n N ∧ size N ≤ k} {p. p partitions n ∧ sum

p {..n} ≤ k}
proof (rule bij-betw-byWitness[where f ′=Abs-multiset])

show ∀N∈{N . number-partition n N ∧ size N ≤ k}. Abs-multiset (count N) =
N

using count-inverse by blast
show ∀ p∈{p. p partitions n ∧ sum p {..n} ≤ k}. count (Abs-multiset p) = p

by (auto simp add: partitions-imp-finite-elements)
show count ‘ {N . number-partition n N ∧ size N ≤ k} ⊆ {p. p partitions n ∧

sum p {..n} ≤ k}
by (auto simp add: count-partitions-iff size-nat-multiset-eq)

show Abs-multiset ‘ {p. p partitions n ∧ sum p {..n} ≤ k} ⊆ {N . number-partition
n N∧ size N ≤ k}

using partitions-iff-Abs-multiset size-nat-multiset-eq by fastforce
qed

theorem card-number-partitions-with-atmost-k-parts:
shows card {N . number-partition n N ∧ size N ≤ x} = Partition (n + x) x

proof −
have bij-betw count {N . number-partition n N ∧ size N ≤ x} {p. p partitions n
∧ sum p {..n} ≤ x}

by (rule bij-betw-multiset-number-partition-with-atmost-size)
from this have card {N . number-partition n N ∧ size N ≤ x} = card {p. p

partitions n ∧ sum p {..n} ≤ x}
by (rule bij-betw-same-card)

also have card {p. p partitions n ∧ sum p {..n} ≤ x} = Partition (n + x) x
by (rule card-partitions-atmost-k-parts)

finally show ?thesis .
qed

19

theorem card-partitions-with-k-parts:
card {N . number-partition n N ∧ size N = k} = Partition n k

proof −
have bij-betw count {N . number-partition n N ∧ size N = k} {p. p partitions n
∧ sum p {..n} = k}

by (rule bij-betw-multiset-number-partition-with-size)
from this have card {N . number-partition n N ∧ size N = k} = card {p. p

partitions n ∧ sum p {..n} = k}
by (rule bij-betw-same-card)

also have . . . = Partition n k by (rule card-partitions-k-parts)
finally show ?thesis .

qed

3.4 Cardinality of Number Partitions with only 1-parts
lemma number-partition1-eq-replicate-mset:
{N . (∀n. n∈# N −→ n = 1) ∧ number-partition n N} = {replicate-mset n 1}

proof
show {N . (∀n. n ∈# N −→ n = 1) ∧ number-partition n N} ⊆ {replicate-mset

n 1}
proof

fix N
assume N : N ∈ {N . (∀n. n ∈# N −→ n = 1) ∧ number-partition n N}
have N = replicate-mset n 1
proof (rule multiset-eqI)

fix i
have count N 1 = sum-mset N
proof cases

assume N = {#}
from this show ?thesis by auto

next
assume N 6= {#}
from this N have 1 ∈# N by blast
from this N show ?thesis

by (auto simp add: sum-mset-sum-count sum.remove[where x=1] simp
del: One-nat-def)

qed
from N this show count N i = count (replicate-mset n 1) i

unfolding number-partition-def by (auto intro: count-inI)
qed
from this show N ∈ {replicate-mset n 1} by simp

qed
next

show {replicate-mset n 1} ⊆ {N . (∀n. n ∈# N −→ n = 1) ∧ number-partition
n N}

unfolding number-partition-def by auto
qed

20

lemma card-number-partitions-with-only-parts-1-eq-1 :
assumes n ≤ x
shows card {N . (∀n. n∈# N −→ n = 1) ∧ number-partition n N ∧ size N ≤

x} = 1 (is card ?N = -)
proof −

have ∀N ∈ {N . (∀n. n ∈# N −→ n = 1) ∧ number-partition n N}. size N = n
unfolding number-partition1-eq-replicate-mset by simp

from this number-partition1-eq-replicate-mset ‹n ≤ x› have ?N = {replicate-mset
n 1} by auto

from this show ?thesis by simp
qed

lemma card-number-partitions-with-only-parts-1-eq-0 :
assumes x < n
shows card {N . (∀n. n∈# N −→ n = 1) ∧ number-partition n N ∧ size N ≤

x} = 0 (is card ?N = -)
proof −

have ∀N ∈ {N . (∀n. n ∈# N −→ n = 1) ∧ number-partition n N}. size N = n
unfolding number-partition1-eq-replicate-mset by simp

from this number-partition1-eq-replicate-mset‹x < n› have ?N = {} by auto
from this show ?thesis by (simp only: card.empty)

qed

end

References

[1] M. Junker. Diskrete Algebraische Strukturen, 2010. German lec-
ture notes from Mathematisches Institut Albert-Ludwigs-Universität
Freiburg.

[2] D. R. Mazur. Combinatorics: a guided tour. MAA textbooks. Mathe-
matical Association of America, 2010.

21

	Additions to Isabelle's Main Theories
	Addition to Finite-Set Theory
	Addition to Set-Interval Theory
	Additions to Multiset Theory

	Number Partitions
	Number Partitions as 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nat nat Functions
	Bounds and Finiteness of Number Partitions
	Operations of Number Partitions
	Number Partitions as Multisets on Natural Numbers
	Relationship to Definition on Functions

	Cardinality of Number Partitions
	The Partition Function
	Cardinality of Number Partitions
	Cardinality of Number Partitions as Multisets of Natural Numbers
	Cardinality of Number Partitions with only 1-parts

