Cardinality of Number Partitions

Lukas Bulwahn

March 17, 2025

Abstract

This entry provides a basic library for number partitions, defines the two-argument partition function through its recurrence relation and relates this partition function to the cardinality of number partitions. The main proof shows that the recursively-defined partition function with arguments n and k equals the cardinality of number partitions of n with exactly k parts. The combinatorial proof follows the proof sketch of Theorem 2.4.1 in Mazur's textbook "Combinatorics: A Guided Tour" [2]. This entry can serve as starting point for various more intrinsic properties about number partitions, the partition function and related recurrence relations.

Contents

1	Additions to Isabelle's Main Theories		2
	1.1	Addition to Finite-Set Theory	2
	1.2	Addition to Set-Interval Theory	2
	1.3	Additions to Multiset Theory	2
2	Number Partitions		3
	2.1	Number Partitions as $nat \Rightarrow nat$ Functions	3
	2.2	Bounds and Finiteness of Number Partitions	4
	2.3	Operations of Number Partitions	6
	2.4	Number Partitions as Multisets on Natural Numbers	12
		2.4.1 Relationship to Definition on Functions	12
3	Cardinality of Number Partitions		14
	3.1	The Partition Function	14
	3.2	Cardinality of Number Partitions	15
	3.3	Cardinality of Number Partitions as Multisets of Natural Num-	
		bers	19
	3.4	Cardinality of Number Partitions with only 1-parts	20

1 Additions to Isabelle's Main Theories

theory Additions-to-Main imports HOL-Library.Multiset begin

1.1 Addition to Finite-Set Theory

lemma bound-domain-and-range-impl-finitely-many-functions: finite {f::nat \Rightarrow nat. ($\forall i. f i \leq n$) \land ($\forall i \geq m. f i = 0$)} **proof** (*induct* m) case θ have eq: $\{f. (\forall i. f i \leq n) \land (\forall i. f i = 0)\} = \{(\lambda, 0)\}$ by auto from this show ?case by auto (subst eq; auto) next case (Suc m) let $S = (\lambda(y, f). f(m := y)) ` (\{0..n\} \times \{f. (\forall i. f i \le n) \land (\forall i \ge m. f i = 0)\})$ { fix qassume $\forall i. g \ i \leq n \ \forall i \geq Suc \ m. g \ i = 0$ from this have $q \in ?S$ by (auto intro: image-eqI[where $x=(q \ m, \ q(m:=0))]$) } from this have $\{f. (\forall i. f i \leq n) \land (\forall i \geq Suc m. f i = 0)\} = ?S$ by auto from this Suc show ?case by simp qed

1.2 Addition to Set-Interval Theory

lemma sum-atMost-remove-nat: **assumes** $k \le (n :: nat)$ **shows** $(\sum i \le n. f i) = f k + (\sum i \in \{...n\} - \{k\}. f i)$ **using** assms by (auto simp add: sum.remove[where x=k])

1.3 Additions to Multiset Theory

lemma set-mset-Abs-multiset: **assumes** finite $\{x. f x > 0\}$ **shows** set-mset (Abs-multiset f) = $\{x. f x > 0\}$ **using** assms **unfolding** set-mset-def **by** simp

lemma sum-mset-sum-count: sum-mset $M = (\sum i \in set\text{-mset } M. \text{ count } M \text{ i } * i)$ **proof** (induct M) **show** sum-mset {#} = ($\sum i \in set\text{-mset } \{\#\}$. count {#} i * i) **by** simp **next fix** M x **assume** hyp: sum-mset $M = (\sum i \in set\text{-mset } M. \text{ count } M \text{ i } * i)$ **show** sum-mset (add-mset x M) = ($\sum i \in set\text{-mset } (add\text{-mset } x M)$. count (add-mset x M) i * i)

```
proof (cases x \in \# M)
   assume a: \neg x \in \# M
   from this have count M x = 0 by (meson count-inI)
   from \langle \neg x \in \# M \rangle this hyp show ?thesis
      by (auto intro!: sum.cong)
  \mathbf{next}
   assume x \in \# M
   have sum-mset (add-mset x M) = (\sum i \in set\text{-mset } M. count M i * i) + x
      using hyp by simp
   also have \ldots = (\sum i \in set\text{-}mset \ M - \{x\}. \ count \ M \ i * i) + count \ M \ x * x + x
      using \langle x \in \# M \rangle by (simp add: sum.remove[of - x])
   also have \ldots = count (add-mset \ x \ M) \ x * x + (\sum i \in set-mset (add-mset \ x \ M))
- \{x\}. count (add-mset x M) i * i)
     by simp
   also have \ldots = (\sum i \in set\text{-}mset (add\text{-}mset x M), count (add\text{-}mset x M) i * i)
      using \langle x \in \# M \rangle by (simp add: sum.remove[of - x])
   finally show ?thesis .
  qed
qed
lemma sum-mset-eq-sum-on-supersets:
  assumes finite A set-mset M \subseteq A
  shows (\sum i \in set\text{-mset } M. \text{ count } M i * i) = (\sum i \in A. \text{ count } M i * i)
proof -
  note \langle finite | A \rangle \langle set-mset | M \subseteq | A \rangle
  moreover have \forall i \in A - set\text{-mset } M. \text{ count } M i * i = 0
   using count-inI by fastforce
  ultimately show ?thesis
   by (auto intro: sum.mono-neutral-cong-left)
qed
```

 \mathbf{end}

2 Number Partitions

theory Number-Partition imports Additions-to-Main begin

2.1 Number Partitions as $nat \Rightarrow nat$ Functions

definition partitions :: $(nat \Rightarrow nat) \Rightarrow nat \Rightarrow bool (infix \langle partitions \rangle 50)$ where $p \text{ partitions } n = ((\forall i. p i \neq 0 \longrightarrow 1 \leq i \land i \leq n) \land (\sum i \leq n. p i * i) = n)$ lemma partitionsI: assumes $\bigwedge i. p i \neq 0 \implies 1 \leq i \land i \leq n$ assumes $(\sum i \leq n. p i * i) = n$ shows p partitions n using assms unfolding partitions-def by auto

lemma partitionsE: **assumes** p partitions n **obtains** $\bigwedge i$. p $i \neq 0 \implies 1 \leq i \land i \leq n \ (\sum i \leq n. p \ i * i) = n$ **using** assms unfolding partitions-def by auto

lemma partitions-zero: p partitions $0 \leftrightarrow p = (\lambda i. \ 0)$ **unfolding** partitions-def **by** auto

lemma partitions-one: p partitions (Suc 0) \longleftrightarrow $p = (\lambda i. 0)(1 := 1)$ **unfolding** partitions-def **by** (auto split: if-split-asm) (auto simp add: fun-eq-iff)

2.2 Bounds and Finiteness of Number Partitions

```
lemma partitions-imp-finite-elements:
 assumes p partitions n
 shows finite \{i. \ 0 
proof –
  from assms have \{i. \ 0  by (auto elim: partitionsE)
 from this show ?thesis
   using rev-finite-subset by blast
qed
lemma partitions-bounds:
 assumes p partitions n
 shows p \ i \leq n
proof -
 from assms have index-bounds: (\forall i. p \ i \neq 0 \longrightarrow 1 \le i \land i \le n)
   and sum: (\sum i \le n, p \ i * i) = n
   unfolding partitions-def by auto
 show ?thesis
 proof (cases 1 \leq i \land i \leq n)
   \mathbf{case} \ True
   from True have \{..n\} = insert \ i \ \{i'. \ i' \le n \land i' \ne i\} by blast
   from sum[unfolded this] have p \ i * i + (\sum i \in \{i'. i' \le n \land i' \ne i\}. p \ i * i) =
n by auto
   from this have p \ i * i \leq n by linarith
   from this True show ?thesis using dual-order.trans by fastforce
 \mathbf{next}
   case False
   from this index-bounds show ?thesis by fastforce
 qed
qed
```

lemma partitions-parts-bounded:

```
assumes p partitions n
  shows sum p \{..n\} \leq n
proof -
  {
   fix i
   assume i \leq n
   from assms have p \ i \leq p \ i * i
     by (auto elim!: partitionsE)
  from this have sum p \{...n\} \leq (\sum i \leq n. p \ i * i)
   by (auto intro: sum-mono)
  also from assms have n: (\sum i \le n. p \ i * i) = n
   by (auto elim!: partitionsE)
 finally show ?thesis .
qed
lemma finite-partitions:
 finite \{p. p \text{ partitions } n\}
proof -
  have \{p. \ p \ partitions \ n\} \subseteq \{f. \ (\forall i. \ f \ i \le n) \land (\forall i. \ n + 1 \le i \longrightarrow f \ i = 0)\}
   by (auto elim: partitions-bounds) (auto simp add: partitions-def)
 from this bound-domain-and-range-impl-finitely-many-functions [of n n + 1] show
?thesis
   by (simp add: finite-subset)
qed
lemma finite-partitions-k-parts:
 finite {p. p partitions n \land sum p {...} n } = k}
by (simp add: finite-partitions)
lemma partitions-remaining-Max-part:
  assumes p partitions n
 assumes \theta 
 shows \forall i. n - k < i \land i \neq k \longrightarrow p \ i = 0
proof (clarify)
  fix i
 assume n - k < i \ i \neq k
  show p \ i = 0
  proof (cases i \leq n)
   assume i \leq n
   from assms have n: (\sum i \le n. p \ i * i) = n and k \le n
     by (auto elim: partitionsE)
   have (\sum i \le n. \ p \ i * i) = p \ k * k + (\sum i \in \{..n\} - \{k\}. \ p \ i * i)
     using \langle k \leq n \rangle sum-atMost-remove-nat by blast
   also have ... = p \ i * i + p \ k * k + (\sum i \in \{..n\} - \{i, k\}, p \ i * i)
     using \langle i \leq n \rangle \langle i \neq k \rangle
     \mathbf{by} \ (auto \ simp \ add: \ sum.remove[\mathbf{where} \ x=i]) \ (metis \ Diff-insert)
    finally have eq: (\sum i \le n. \ p \ i * i) = p \ i * i + p \ k * k + (\sum i \in \{...n\} - \{i, k\}).
p \ i * i).
```

```
show p i = 0
proof (rule ccontr)
assume p i \neq 0
have upper-bound: p i * i + p k * k \leq n
using eq n by auto
have lower-bound: p i * i + p k * k > n
using \langle n - k < i \rangle \langle 0 < p k \rangle \langle k \leq n \rangle \langle p i \neq 0 \rangle mult-eq-if not-less by auto
from upper-bound lower-bound show False by simp
qed
next
assume \neg (i \leq n)
from this show p i = 0
using assms(1) by (auto elim: partitionsE)
qed
qed
```

2.3 Operations of Number Partitions

lemma *partitions-remove1-bounds*: assumes partitions: p partitions n assumes $gr\theta: \theta$ assumes neq: $(p(k := p \ k - 1)) \ i \neq 0$ shows $1 \leq i \wedge i \leq n - k$ proof from partitions neq show $1 \leq i$ **by** (*auto elim*!: *partitionsE split*: *if-split-asm*) next from partitions gr0 have $n: (\sum i \le n. p \ i * i) = n$ and $k \le n$ **by** (*auto elim: partitionsE*) show i < n - k**proof** cases assume $k \leq n - k$ from $\langle k \leq n - k \rangle$ neq show ?thesis using partitions-remaining-Max-part[OF partitions gr0] not-le by force \mathbf{next} assume $\neg k \leq n - k$ from this have 2 * k > n by auto have p k = 1**proof** (rule ccontr) assume $p \ k \neq 1$ with $gr\theta$ have $p \ k \ge 2$ by *auto* from this have $p \ k * k \ge 2 * k$ by simp with $\langle 2 * k > n \rangle$ have $p \ k * k > n$ by linarith from $\langle k \leq n \rangle$ this have $(\sum i \leq n. p \ i * i) > n$ **by** (*simp add: sum-atMost-remove-nat*[*of k*]) from this n show False by auto qed from neq this show ?thesis using partitions-remaining-Max-part[OF partitions qr0] leI

by (auto split: if-split-asm) force qed qed **lemma** partitions-remove1: assumes partitions: p partitions n assumes $gr\theta: \theta$ shows $p(k := p \ k - 1)$ partitions (n - k)**proof** (rule partitionsI) fix iassume $(p(k := p \ k - 1)) \ i \neq 0$ from this show $1 \leq i \wedge i \leq n-k$ using partitions-remove1-bounds partitions $gr\theta$ by blast \mathbf{next} from partitions gr0 have $k \leq n$ by (auto elim: partitionsE) have $(\sum i \le n - k. (p(k := p \ k - 1)) \ i * i) = (\sum i \le n. (p(k := p \ k - 1)) \ i * i)$ using partitions-remove1-bounds partitions gr0 by (auto introl: sum.mono-neutral-left) also have ... = $(p \ k - 1) * k + (\sum i \in \{..n\} - \{k\}, (p(k := p \ k - 1)) \ i * i)$ using $\langle k \leq n \rangle$ by (simp add: sum-atMost-remove-nat[where k=k]) also have ... = $p \ k * k + (\sum i \in \{..n\} - \{k\}, p \ i * i) - k$ using gr0 by (simp add: diff-mult-distrib) also have ... = $(\sum i \le n. p \ i * i) - k$ **using** $\langle k \leq n \rangle$ by (simp add: sum-atMost-remove-nat[of k]) also from partitions have $\dots = n - k$ **by** (*auto elim: partitionsE*) finally show $(\sum i \le n - k. (p(k := p \ k - 1)) \ i * i) = n - k$. qed **lemma** partitions-insert1: assumes p: p partitions nassumes k > 0shows $(p(k := p \ k + 1))$ partitions (n + k)**proof** (*rule partitionsI*) fix iassume $(p(k := p \ k + 1)) \ i \neq 0$ from p this $\langle k > 0 \rangle$ show $1 < i \land i < n + k$ **by** (*auto elim*!: *partitionsE*) next have $(\sum i \le n + k. (p(k := p k + 1)) i * i) = p k * k + (\sum i \in \{...n + k\} - \{k\})$. $p \ i * i) + k$ **by** (*simp add: sum-atMost-remove-nat*[*of k*]) also have ... = $p \ k * k + (\sum i \in \{..n\} - \{k\}, p \ i * i) + k$ **using** p **by** (auto introl: sum.mono-neutral-right eliml: partitionsE) also have $\dots = (\sum i \le n. p \ i * i) + k$ using p by (cases $k \leq n$) (auto simp add: sum-atMost-remove-nat[of k] elim: partitionsE) also have $\dots = n + k$ using p by (auto elim: partitionsE) finally show $(\sum i \le n + k. (p(k := p k + 1)) i * i) = n + k$.

qed

lemma count-remove1: assumes p partitions nassumes θ shows $(\sum i \le n - k. (p(k := p \ k - 1)) \ i) = (\sum i \le n. \ p \ i) - 1$ proof – have $k \leq n$ using assms by (auto elim: partitionsE) have $(\sum i \le n - k. (p(k := p \ k - 1)) \ i) = (\sum i \le n. (p(k := p \ k - 1)) \ i)$ using partitions-remove1-bounds assms by (auto introl: sum.mono-neutral-left) also have $(\sum i \le n. (p(k := p \ k - 1)) \ i) = p \ k + (\sum i \in \{...n\} - \{k\}, p \ i) - 1$ $\mathbf{using} \ \langle 0$ **also have** ... = $(\sum i \in \{..n\}, p i) - 1$ **using** $\langle k \leq n \rangle$ by (simp add: sum-atMost-remove-nat[of k]) finally show ?thesis . qed **lemma** count-insert1: assumes p partitions n shows sum $(p(k := p \ k + 1)) \{..n + k\} = (\sum i \le n. \ p \ i) + 1$ proof – 1 **by** (*simp add: sum-atMost-remove-nat*[*of k*]) also have ... = $p k + (\sum i \in \{..n\} - \{k\}, p i) + 1$ using assms by (auto introl: sum.mono-neutral-right elim1: partitionsE) also have $\dots = (\sum i \le n. p i) + 1$ using assms by (cases $k \leq n$) (auto simp add: sum-atMost-remove-nat[of k] *elim: partitionsE*) finally show ?thesis . qed **lemma** partitions-decrease1: assumes p: p partitions massumes sum: sum $p \{...m\} = k$ assumes $p \ 1 = 0$ shows $(\lambda i. p (i + 1))$ partitions m - kproof – from p have p $\theta = \theta$ by (auto elim!: partitionsE) { fix iassume neq: $p(i + 1) \neq 0$ from p this $\langle p | 1 = 0 \rangle$ have $1 \leq i$ **by** (fastforce elim!: partitionsE simp add: le-Suc-eq) moreover have $i \leq m - k$ **proof** (*rule ccontr*) assume *i*-greater: $\neg i \leq m - k$ from p have s: $(\sum i \leq m. p \ i * i) = m$ **by** (*auto elim*!: *partitionsE*)

from p sum have k < musing partitions-parts-bounded by fastforce from neq p have $i + 1 \leq m$ by (auto elim!: partitionsE) from *i*-greater have i > m - k by simp have ineq1: i + 1 > (m - k) + 1using *i*-greater by simp have ineq21: $(\sum j \le m. (p(i + 1) := p(i + 1) - 1)) j * j) \ge (\sum j \le m. (p(i + 1) - 1)) j * j)$ + 1 := p (i + 1) - 1) j**using** $\langle p \ \theta = \theta \rangle$ not-less by (fastforce introl: sum-mono) have ineq22a: $(\sum j \le m. (p(i + 1) := p(i + 1) - 1)) j) = (\sum j \le m. p j) - 1$ using $(i + 1 \le m)$ neq by (simp add: sum.remove[where x=i+1]) have ineq22: $(\sum j \le m. (p(i + 1) = p(i + 1) - 1)) j) \ge k - 1$ using sum neq ineq22a by auto have ineq2: $(\sum j \le m. (p(i + 1) := p(i + 1) - 1)) j * j) \ge k - 1$ using ineq21 ineq22 by auto have $(\sum i \le m. p \ i * i) = p \ (i + 1) * (i + 1) + (\sum i \in \{...m\} - \{i + 1\}, p \ i)$ * i) using $\langle i + 1 \leq m \rangle$ neq by (subst sum.remove[where x=i+1]) auto also have ... = $(i + 1) + (\sum j \le m. (p(i + 1) = p(i + 1) - 1)) j * j)$ using $\langle i + 1 \leq m \rangle$ neq by (subst sum.remove[where x=i+1 and $g=\lambda j$. (p(i+1)=p(i+1)-i)(1)) j * j])(auto simp add: mult-eq-if) finally have $(\sum i \le m. p \ i * i) = i + 1 + (\sum j \le m. (p(i + 1) := p \ (i + 1)))$ (-1)) j * j). moreover have ... > m using ineq1 ineq2 $\langle k \leq m \rangle \langle p(i+1) \neq 0 \rangle$ by linarith ultimately have $(\sum i \le m. p \ i * i) > m$ by simp from s this show False by simp qed ultimately have $1 \leq i \wedge i \leq m - k$... $\mathbf{bounds} = this$ **show** $(\lambda i. p (i + 1))$ partitions m - k**proof** (*rule partitionsI*) fix iassume $p(i+1) \neq 0$ from bounds this show $1 \leq i \wedge i \leq m - k$. next have geq: $\forall i. p \ i * i \ge p \ i$ using $\langle p | \theta = \theta \rangle$ not-less by fastforce have $(\sum_{i \le m} k. p(i+1) * i) = (\sum_{i \le m} p(i+1) * i)$ using bounds by (auto intro: sum.mono-neutral-left) also have ... = $(\sum i \in Suc ` \{..m\}. p i * (i - 1))$ **by** (*auto simp add: sum.reindex*) also have ... = $(\sum i \leq Suc \ m. \ p \ i * (i - 1))$ using $\langle p \ \theta = \theta \rangle$ **by** (*simp add: atMost-Suc-eq-insert-0*) also have ... = $(\sum i \le m. p \ i * (i - 1))$

using p by (auto elim!: partitionsE) also have ... = $(\sum i \le m. p \ i * i - p \ i)$ **by** (*simp add: diff-mult-distrib2*) also have ... = $(\sum i{\leq}m.~p~i*~i)$ – $(\sum i{\leq}m.~p~i)$ using geq by (simp only: sum-subtractf-nat) also have $\dots = m - k$ using sum p by (auto elim!: partitionsE) finally show $(\sum i \le m - k, p(i + 1) * i) = m - k$. qed qed **lemma** partitions-increase1: assumes partitions: p partitions m - kassumes k: sum $p \{ ..m - k \} = k$ shows $(\lambda i. p (i - 1))$ partitions m **proof** (*rule partitionsI*) fix iassume $p(i-1) \neq 0$ from partitions this k show $1 \leq i \wedge i \leq m$ by (cases k) (auto elim!: partitionsE) \mathbf{next} from k partitions have $k \leq m$ using linear partitions-zero by force have $eq \cdot 0: \forall i > m - k$. $p \ i = 0$ using partitions by (auto elim!: partitionsE) from partitions have s: $(\sum i \le m - k, p \ i * i) = m - k$ by (auto elim!: partitionsE) have $(\sum i \le m. \ p \ (i - 1) * i) = (\sum i \le Suc \ m. \ p \ (i - 1) * i)$ using partitions k by (cases k) (auto elim!: partitionsE) also have $(\sum i \leq Suc \ m. \ p \ (i-1) * i) = (\sum i \leq m. \ p \ i * (i+1))$ **by** (subst sum.atMost-Suc-shift) simp also have ... = $(\sum_{i \le m} - k. p \ i * (i + 1))$ $\mathbf{using} \ eq{-}\theta \ \mathbf{by} \ (auto \ intro: \ sum.mono-neutral-right)$ also have ... = $(\sum i \le m - k, p \ i * i) + (\sum i \le m - k, p \ i)$ by (simp add: sum.distrib) also have $\dots = m - k + k$ using s k by simpalso have $\dots = m$ using $\langle k \leq m \rangle$ by simp finally show $(\sum i \le m. p (i - 1) * i) = m$. qed **lemma** count-decrease1: assumes p: p partitions m**assumes** sum: sum $p \{...m\} = k$ assumes $p \ 1 = 0$ shows sum $(\lambda i. p (i + 1)) \{...m - k\} = k$ proof from p have $p \ \theta = \theta$ by (auto elim!: partitionsE) have sum ($\lambda i. p (i + 1)$) {...m - k} = sum ($\lambda i. p (i + 1)$) {...m} using partitions-decrease1[OF assms] by (auto intro: sum.mono-neutral-left elim!: partitionsE)

also have $\ldots = sum (\lambda i. p (i + 1)) \{0...m\}$ by $(simp \ add: \ atLeast0AtMost)$

```
also have \ldots = sum (\lambda i. p i) \{Suc \ 0.. Suc \ m\}
  by (simp only: One-nat-def add-Suc-right add-0-right sum.shift-bounds-cl-Suc-ivl)
 also have \ldots = sum (\lambda i. p i) \{\ldots Suc m\}
   using \langle p | \theta = \theta \rangle by (simp add: atLeast0AtMost sum-shift-lb-Suc0-\theta)
 also have \ldots = sum (\lambda i. p i) \{\ldots m\}
   using p by (auto elim!: partitionsE)
 also have \ldots = k
   using sum by simp
  finally show ?thesis .
qed
lemma count-increase1:
 assumes partitions: p partitions m - k
 assumes k: sum p \{..m - k\} = k
 shows (\sum i \le m. p (i - 1)) = k
proof -
 have p \ 0 = 0 using partitions by (auto elim!: partitionsE)
 have (\sum i \le m. p(i-1)) = (\sum i \in \{1...m\}, p(i-1))
   using \langle p | \theta = \theta \rangle by (auto intro: sum.mono-neutral-cong-right)
 also have (\sum i \in \{1..m\}, p(i-1)) = (\sum i \leq m-1, p_i)
 proof (cases m)
   case \theta
   from this show ?thesis using \langle p | 0 = 0 \rangle by simp
  next
   case (Suc m')
   {
     fix x assume Suc 0 \le x x \le m
     from this Suc have x \in Suc '\{..m'\}
       by (auto introl: image-eqI[where x=x-1])
   }
   from this Suc show ?thesis
     by (intro sum.reindex-cong[of Suc]) auto
 \mathbf{qed}
  also have (\sum i \le m - 1, p i) = (\sum i \le m, p i)
 proof -
   {
     fix i
     assume 0 
     from assms this have i \leq m - 1
      using \langle p | 0 = 0 \rangle partitions-increase1 by (cases k) (auto elim!: partitionsE)
   3
   from this show ?thesis
     by (auto intro: sum.mono-neutral-cong-left)
 \mathbf{qed}
 also have \dots = (\sum i \leq m - k. p i)
   using partitions by (auto intro: sum.mono-neutral-right elim!: partitionsE)
 also have \dots = k using k by auto
  finally show ?thesis .
qed
```

2.4 Number Partitions as Multisets on Natural Numbers

definition number-partition :: nat \Rightarrow nat multiset \Rightarrow bool where

number-partition $n N = (sum-mset N = n \land 0 \notin M)$

2.4.1 Relationship to Definition on Functions

lemma count-partitions-iff: count N partitions $n \leftrightarrow number$ -partition n Nproof assume count N partitions n from this have $(\forall i. \text{ count } N \ i \neq 0 \longrightarrow 1 \leq i \land i \leq n) \ (\sum i \leq n. \text{ count } N \ i * i)$ = nunfolding Number-Partition.partitions-def by auto moreover from this have set-mset $N \subseteq \{..n\}$ by auto moreover have finite $\{..n\}$ by auto ultimately have sum-mset N = nusing sum-mset-sum-count sum-mset-eq-sum-on-supersets by presburger moreover have $0 \notin \# N$ using $\forall i. \ count \ N \ i \neq 0 \longrightarrow 1 \leq i \land i \leq n$ by auto ultimately show number-partition n N unfolding number-partition-def by auto \mathbf{next} assume number-partition n Nfrom this have sum-mset N = n and $0 \notin \mathbb{H} N$ unfolding number-partition-def by auto ł fix iassume count $N \ i \neq 0$ have $1 \leq i \wedge i \leq n$ proof from $\langle 0 \notin \# N \rangle \langle count N \ i \neq 0 \rangle$ show $1 \leq i$ using Suc-le-eq by auto from $(sum-mset \ N = n) (count \ N \ i \neq 0)$ show $i \leq n$ using multi-member-split by fastforce \mathbf{qed} } **moreover from** (sum-mset N = n) have $(\sum i \le n. \text{ count } N \ i * i) = n$ ${\bf by} \ (metis \ at Most-iff \ calculation \ finite-at Most \ not-in-iff \ subset I \ sum-mset-eq-sum-on-supersets \ superset \$ sum-mset-sum-count) ultimately show count N partitions n by (rule partitionsI) auto qed **lemma** partitions-iff-Abs-multiset: p partitions $n \leftrightarrow finite \{x. \ 0$ proof assume p partitions n

from this have bounds: $(\forall i. p \ i \neq 0 \longrightarrow 1 \leq i \land i \leq n)$

and sum: $(\sum i \le n, p \ i * i) = n$ unfolding partitions-def by auto **from** $\langle p \text{ partitions } n \rangle$ have finite $\{x. \ 0$ **by** (*rule partitions-imp-finite-elements*) **moreover from** (finite $\{x, 0) bounds have <math>\neg 0 \in \#$ Abs-multiset p using count-eq-zero-iff by force **moreover from** (finite $\{x, 0) this sum have sum-mset (Abs-multiset p)$ = nproof have $(\sum i \in \{x. \ \theta$ using bounds by (auto intro: sum.mono-neutral-cong-left) **from** (finite $\{x, 0) this sum show sum-mset (Abs-multiset <math>p$) = n **by** (*simp add: sum-mset-sum-count set-mset-Abs-multiset*) qed **ultimately show** finite $\{x, 0 number-partition n (Abs-multiset p)$ unfolding number-partition-def by auto next **assume** finite $\{x. \ 0 number-partition n (Abs-multiset p)$ **from** this have finite $\{x, 0 Abs-multiset p sum-mset (Abs-multiset$ p) = nunfolding number-partition-def by auto **from** (finite {x. $0 }) have <math>(\sum i \in \{x. 0$ **using** \langle sum-mset (Abs-multiset p) = $n \rangle$ by (simp add: sum-mset-sum-count set-mset-Abs-multiset) have bounds: $\bigwedge i. p \ i \neq 0 \implies 1 \leq i \land i \leq n$ proof fix iassume $p \ i \neq 0$ **from** $\langle \neg \ \theta \in \#$ Abs-multiset $p \rangle \langle finite \{x. \ \theta have <math>p \ \theta = \theta$ using count-inI by force from this $\langle p \ i \neq 0 \rangle$ show $1 \leq i$ by (metis One-nat-def leI less-Suc0) show $i \leq n$ **proof** (rule ccontr) assume $\neg i \leq n$ from this have i > nusing *le-less-linear* by *blast* from this $\langle p \ i \neq 0 \rangle$ have $p \ i * i > n$ **by** (*auto simp add: less-le-trans*) from $\langle p \ i \neq 0 \rangle$ have $(\sum i \in \{x. \ 0$ $p x \} - \{i\}. p i * i$ using $\langle finite \{x. \ 0$ by (subst sum.insert-remove[symmetric]) (auto simp add: insert-absorb) also from $\langle p \ i * i > n \rangle$ have $\ldots > n$ by *auto* finally show False using $\langle (\sum i \in \{x, 0 by blast$ qed qed moreover have $(\sum i \le n. p \ i * i) = n$ proof –

13

have $(\sum i \le n. p \ i * i) = (\sum i \in \{x. \ 0$ using bounds by (auto intro: sum.mono-neutral-cong-right)from this show ?thesis $using <math>\langle (\sum i \in \{x. \ 0 by simp$ qedultimately show p partitions n by (auto intro: partitionsI)qed

```
lemma size-nat-multiset-eq:
 fixes N :: nat multiset
 assumes number-partition n N
 shows size N = sum (count N) \{...n\}
proof -
 have set-mset N \subseteq \{..sum-mset N\}
   by (auto dest: multi-member-split)
 have size N = sum (count N) (set-mset N)
   by (rule size-multiset-overloaded-eq)
 also have \ldots = sum (count N) \{\ldots sum - mset N\}
   using \langle set\text{-mset } N \subseteq \{ ..sum\text{-mset } N \} \rangle
   by (auto intro: sum.mono-neutral-cong-left count-inI)
 finally show ?thesis
   using \langle number-partition \ n \ N \rangle
   unfolding number-partition-def by auto
qed
```

end

3 Cardinality of Number Partitions

theory Card-Number-Partitions imports Number-Partition begin

3.1 The Partition Function

fun Partition :: $nat \Rightarrow nat \Rightarrow nat$ **where** Partition 0 0 = 1 | Partition 0 (Suc k) = 0 | Partition (Suc m) 0 = 0 | Partition (Suc m) (Suc k) = Partition m k + Partition (m - k) (Suc k)

lemma Partition-less: **assumes** m < k **shows** Partition m k = 0**using** assms by (induct m k rule: Partition.induct) auto

lemma Partition-sum-Partition-diff:

assumes k < mshows Partition $m k = (\sum i \le k. Partition (m - k) i)$ using assms by (induct m k rule: Partition.induct) auto **lemma** *Partition-parts1*: Partition (Suc m) (Suc 0) = 1 $\mathbf{by} \ (induct \ m) \ auto$ **lemma** *Partition-diag*: Partition (Suc m) (Suc m) = 1by $(induct \ m)$ auto **lemma** *Partition-diag1*: Partition (Suc (Suc m)) (Suc m) = 1by (induct m) auto **lemma** *Partition-parts2*: shows Partition $m \ 2 = m \ div \ 2$ **proof** (*induct m rule: nat-less-induct*) fix m**assume** hypothesis: $\forall n < m$. Partition $n \ 2 = n \ div \ 2$ have $(m = 0 \lor m = 1) \lor m \ge 2$ by *auto* from this show Partition $m \ 2 = m \ div \ 2$ proof assume $m = 0 \lor m = 1$ from this show ?thesis by (auto simp add: numerals(2)) next assume 2 < mfrom this obtain m' where m': m = Suc (Suc m') by (metis add-2-eq-Suc le-Suc-ex)from hypothesis this have Partition $m' 2 = m' \operatorname{div} 2$ by simp from this m' show ?thesis using Partition-parts1 Partition.simps(4)[of Suc m' Suc 0] div2-Suc-Suc **by** (*simp add: numerals*(2) *del: Partition.simps*) qed qed

3.2 Cardinality of Number Partitions

lemma set-rewrite1: {p. p partitions Suc $m \land sum p$ {..Suc m} = Suc $k \land p \ 1 \neq 0$ } = $(\lambda p. \ p(1 := p \ 1 + 1))$ ` {p. p partitions $m \land sum p$ {..m} = k} (is ?S = ?T) proof { fix p assume assms: p partitions Suc m sum p {..Suc m} = Suc k \ 0 have $p(1 := p \ 1 - 1)$ partitions m using assms by (metis partitions-remove1 diff-Suc-1)

moreover have $(\sum i \leq m. (p(1 := p \ 1 - 1)) \ i) = k$ using assms by (metis count-remove1 diff-Suc-1) ultimately have $p(1 := p \ 1 - 1) \in \{p, p \text{ partitions } m \land sum p \ \{..m\} = k\}$ by simp moreover have $p = p(1 := p \ 1 - 1, 1 := (p(1 := p \ 1 - 1)) \ 1 + 1)$ using $\langle \theta by$ *auto* ultimately have $p \in (\lambda p, p(1 := p \ 1 + 1))$ ' $\{p, p \text{ partitions } m \land sum p \}$ $\{...m\} = k\}$ by blast } from this show $?S \subseteq ?T$ by blast \mathbf{next} { fix p**assume** assess: p partitions m sum p {..m} = khave $(p(1 := p \ 1 + 1))$ partitions Suc m (is ?g1)using assms by (metis partitions-insert1 Suc-eq-plus1 zero-less-one) moreover have sum $(p(1 := p \ 1 + 1))$ {...Suc m} = Suc k (is ?g2) using assms by (metis count-insert1 Suc-eq-plus1) moreover have $(p(1 := p \ 1 + 1)) \ 1 \neq 0$ (is ?g3) by auto ultimately have $?g1 \land ?g2 \land ?g3$ by simpł from this show $?T \subseteq ?S$ by auto qed **lemma** *set-rewrite2*: {p. p partitions $m \land sum p$ {..m} = $k \land p \ 1 = 0$ } $= (\lambda p. (\lambda i. p (i - 1))) ` \{ p. p \text{ partitions } (m - k) \land \text{ sum } p \{ ..m - k \} = k \}$ (is ?S = ?T)proof { fix p**assume** assess: p partitions m sum $p \{...m\} = k p 1 = 0$ have $(\lambda i. p (i + 1))$ partitions m - kusing assms partitions-decrease1 by blast moreover from assms have sum $(\lambda i. p (i + 1)) \{..m - k\} = k$ using assms count-decrease1 by blast ultimately have $(\lambda i. p (i + 1)) \in \{p. p \text{ partitions } m - k \land sum p \{...m - k\}$ = k by simp moreover have $p = (\lambda i. p ((i - 1) + 1))$ **proof** (*rule ext*) fix *i* show $p \ i = p \ (i - 1 + 1)$ **using** assms by (cases i) (auto elim!: partitionsE) qed ultimately have $p \in (\lambda p. (\lambda i. p (i - 1)))$ ' $\{p. p \text{ partitions } m - k \land sum p \}$ $\{..m - k\} = k\}$ by *auto* } from this show $?S \subseteq ?T$ by auto next ł

fix p**assume** assess: p partitions m - k sum $p \{...m - k\} = k$ from assms have $(\lambda i. p (i - 1))$ partitions m (is ?g1) using partitions-increase1 by blast moreover from assms have $(\sum i \le m. p(i-1)) = k$ (is ?g2) using count-increase1 by blast moreover from assms have $p \ \theta = \theta$ (is $2g\beta$) **by** (*auto elim*!: *partitionsE*) ultimately have $?g1 \land ?g2 \land ?g3$ by simp from this show $?T \subseteq ?S$ by auto qed **theorem** card-partitions-k-parts: card {p. p partitions $n \land (\sum i \le n. p i) = k$ } = Partition n k **proof** (*induct n k rule: Partition.induct*) case 1 have eq: $\{p, p = (\lambda x, \theta) \land p \theta = \theta\} = \{(\lambda x, \theta)\}$ by auto **show** card $\{p, p \text{ partitions } 0 \land sum p \{..0\} = 0\} = Partition 0 0$ by (simp add: partitions-zero eq) \mathbf{next} case (2 k)have eq: $\{p, p = (\lambda x, 0) \land p \ 0 = Suc \ k\} = \{\}$ by auto **show** card $\{p, p \text{ partitions } 0 \land sum p \{..0\} = Suc k\} = Partition 0 (Suc k)$ **by** (*simp add: partitions-zero eq*) \mathbf{next} case (3 m)have eq: $\{p, p \text{ partitions Suc } m \land sum p \{..Suc m\} = 0\} = \{\}$ **by** (fastforce elim!: partitionsE simp add: le-Suc-eq) **from** this show card $\{p, p \text{ partitions } Suc \ m \land sum \ p \ \{..Suc \ m\} = 0\} = Partition$ $(Suc m) \theta$ **by** (*simp only: Partition.simps card.empty*) \mathbf{next} case $(4 \ m \ k)$ let ?set1 = {p. p partitions Suc $m \land sum p$ {..Suc m} = Suc $k \land p \ 1 \neq 0$ } let $?set2 = \{p, p \text{ partitions } Suc \ m \land sum \ p \ \{..Suc \ m\} = Suc \ k \land p \ 1 = 0\}$ have finite $\{p, p \text{ partitions Suc } m\}$ by (simp add: finite-partitions) from this have finite-sets: finite ?set1 finite ?set2 by simp+ have set-eq: $\{p, p \text{ partitions } Suc \ m \land sum \ p \ \{..Suc \ m\} = Suc \ k\} = ?set1 \cup ?set2$ by auto have disjoint: $?set1 \cap ?set2 = \{\}$ by auto have inj1: inj-on $(\lambda p, p(1 := p \ 1 + 1))$ {p. p partitions $m \wedge sum p$ {...m} = k} by (auto intro!: inj-onI) (metis diff-Suc-1 fun-upd-idem-iff fun-upd-upd) have inj2: inj-on $(\lambda p \ i. \ p \ (i-1))$ {p. p partitions $m - k \land sum \ p \ {...m} = k$ Suc kby (auto introl: inj-onI simp add: fun-eq-iff) (metis add-diff-cancel-right') have card1: card ?set1 = Partition m k

using inj1 4(1) by (simp only: set-rewrite1 card-image)

have card2: card ?set2 = Partition (m - k) (Suc k) using inj2 4(2) by (simp only: set-rewrite2 card-image diff-Suc-Suc) have card $\{p. p \text{ partitions } Suc \ m \land sum \ p \ \{..Suc \ m\} = Suc \ k\} = Partition \ m \ k$ + Partition (m - k) (Suc k) using finite-sets disjoint by (simp only: set-eq card-Un-disjoint card1 card2) **from** this **show** card $\{p, p \text{ partitions } Suc \ m \land sum \ p \ \{..Suc \ m\} = Suc \ k\} =$ Partition (Suc m) (Suc k) by *auto* qed **theorem** card-partitions: card {p. p partitions n} = $(\sum k \le n. Partition n k)$ proof have seteq: $\{p, p \text{ partitions } n\} = \bigcup ((\lambda k, \{p, p \text{ partitions } n \land (\sum i \le n, p i)) =$ $k\}) ` \{..n\})$ by (auto intro: partitions-parts-bounded) have finite: $\bigwedge k$. finite $\{p, p \text{ partitions } n \land sum p \{...n\} = k\}$ **by** (*simp add: finite-partitions*) have card $\{p. p \text{ partitions } n\} = card (\bigcup ((\lambda k. \{p. p \text{ partitions } n \land (\sum i \leq n. p i))))$ = k) '{..*n*})) using finite by (simp add: seteq) also have ... = $(\sum x \le n. card \{p. p \text{ partitions } n \land sum p \{...n\} = x\})$ using finite by (subst card-UN-disjoint) auto also have $\dots = (\sum k \le n. Partition \ n \ k)$ **by** (*simp add: card-partitions-k-parts*) finally show ?thesis . qed **lemma** card-partitions-atmost-k-parts: card {p. p partitions $n \land sum p$ {...n} $\leq k$ } = Partition (n + k) k proof have card $\{p. p \text{ partitions } n \land sum p \{..n\} \leq k\} =$ card $(\bigcup ((\lambda k'. \{p. p \text{ partitions } n \land sum p \{...n\} = k'\})$ ' $\{...k\}))$ proof have $\{p, p \text{ partitions } n \land sum p \{...n\} \leq k\} =$ $(\bigcup k' \leq k. \{p. p \text{ partitions } n \land sum p \{..n\} = k'\})$ by auto from this show ?thesis by simp qed also have card $(\bigcup((\lambda k', \{p, p \text{ partitions } n \land sum p \{...n\} = k'\}) ` \{...k\})) =$ sum ($\lambda k'$. card {p. p partitions $n \land sum p$ {...n} = k'}) {...k} using finite-partitions-k-parts by (subst card-UN-disjoint) auto also have $\ldots = sum (\lambda k'. Partition n k') \{\ldots k\}$ using card-partitions-k-parts by simp also have $\ldots = Partition (n + k) k$ using Partition-sum-Partition-diff by simp

finally show ?thesis .

qed

3.3 Cardinality of Number Partitions as Multisets of Natural Numbers

lemma *bij-betw-multiset-number-partition-with-size*:

bij-betw count {N. number-partition $n N \land size N = k$ } {p. p partitions $n \land sum p \{..n\} = k$ }

proof (*rule bij-betw-byWitness*[where f'=Abs-multiset])

show $\forall N \in \{N. \text{ number-partition } n \ N \land \text{size } N = k\}$. Abs-multiset (count N) = N

using count-inverse by blast

show $\forall p \in \{p. p \text{ partitions } n \land sum p \{...n\} = k\}$. count (Abs-multiset p) = p by (auto simp add: partitions-imp-finite-elements)

show count ' {N. number-partition $n \ N \land size \ N = k$ } \subseteq {p. p partitions $n \land sum \ p \ \{..n\} = k$ }

by (*auto simp add: count-partitions-iff size-nat-multiset-eq*)

show Abs-multiset ' {p. p partitions $n \land sum p$ {..n} = k} \subseteq {N. number-partition $n \land n \land size \land N = k$ }

using partitions-iff-Abs-multiset size-nat-multiset-eq by fastforce qed

lemma *bij-betw-multiset-number-partition-with-atmost-size*:

bij-betw count {N. number-partition $n N \land size N \le k$ } {p. p partitions $n \land sum p \{..n\} \le k$ }

proof (*rule bij-betw-byWitness*[where f'=Abs-multiset])

show $\forall N \in \{N. \text{ number-partition } n \ N \land \text{size } N \leq k\}$. Abs-multiset (count N) = N

using count-inverse by blast

show $\forall p \in \{p. \ p \ partitions \ n \land sum \ p \ \{..n\} \leq k\}$. count (Abs-multiset p) = pby (auto simp add: partitions-imp-finite-elements)

show count ' {N. number-partition $n \ N \land size \ N \le k$ } \subseteq {p. p partitions $n \land sum \ p \ \{..n\} \le k$ }

by (*auto simp add: count-partitions-iff size-nat-multiset-eq*)

show Abs-multiset ' {p. p partitions $n \land sum p$ {...n} $\leq k$ } \subseteq {N. number-partition $n \land N \land size \land N \leq k$ }

using partitions-iff-Abs-multiset size-nat-multiset-eq by fastforce qed

 ${\bf theorem} \ card-number-partitions-with-atmost-k-parts:$

shows card $\{N. number-partition \ n \ N \land size \ N \le x\} = Partition \ (n + x) \ x$ proof -

have bij-betw count {N. number-partition $n \ N \land size \ N \le x$ } {p. p partitions $n \land sum \ p \ {..n} \le x$ }

by (rule bij-betw-multiset-number-partition-with-atmost-size)

from this have card $\{N.$ number-partition $n \ N \land size \ N \le x\} = card \ \{p. \ p \ partitions \ n \land sum \ p \ \{..n\} \le x\}$

by (*rule bij-betw-same-card*)

also have card $\{p. p \text{ partitions } n \land sum p \{...n\} \le x\} = Partition (n + x) x$ by (rule card-partitions-atmost-k-parts)

finally show ?thesis .

qed

theorem card-partitions-with-k-parts: card {N. number-partition $n N \land size N = k$ } = Partition n k **proof** – **have** bij-betw count {N. number-partition $n N \land size N = k$ } {p. p partitions n $\land sum p \{..n\} = k$ } **by** (rule bij-betw-multiset-number-partition-with-size) **from** this **have** card {N. number-partition $n N \land size N = k$ } = card {p. p partitions $n \land sum p \{..n\} = k$ } **by** (rule bij-betw-same-card) **also have** ... = Partition n k **by** (rule card-partitions-k-parts) **finally show** ?thesis . **qed**

3.4 Cardinality of Number Partitions with only 1-parts

lemma *number-partition1-eq-replicate-mset*: $\{N. (\forall n. n \in \# N \longrightarrow n = 1) \land number \text{-partition } n N\} = \{replicate \text{-mset } n \}$ proof **show** {N. $(\forall n. n \in \# N \longrightarrow n = 1) \land number-partition n N$ } \subseteq {replicate-mset n 1proof fix Nassume $N: N \in \{N. (\forall n. n \in \# N \longrightarrow n = 1) \land number-partition n N\}$ have $N = replicate-mset \ n \ 1$ **proof** (rule multiset-eqI) fix ihave count N 1 = sum-mset N $\mathbf{proof}\ cases$ assume $N = \{\#\}$ from this show ?thesis by auto \mathbf{next} assume $N \neq \{\#\}$ from this N have $1 \in \# N$ by blast from this N show ?thesis by (auto simp add: sum-mset-sum-count sum.remove[where x=1] simp *del*: *One-nat-def*) qed from N this show count N i = count (replicate-mset n 1) i**unfolding** number-partition-def by (auto intro: count-inI) qed from this show $N \in \{replicate-mset \ n \ 1\}$ by simp qed \mathbf{next} **show** {replicate-mset $n \ 1$ } \subseteq {N. ($\forall n. n \in \# N \longrightarrow n = 1$) \land number-partition n Nunfolding number-partition-def by auto qed

lemma card-number-partitions-with-only-parts-1-eq-1: assumes $n \leq x$ shows card {N. $(\forall n. n \in \# N \longrightarrow n = 1) \land number-partition n N \land size N \leq$ x = 1 (is card ?N = -) proof have $\forall N \in \{N. (\forall n. n \in \# N \longrightarrow n = 1) \land number-partition n N\}$. size N = nunfolding number-partition1-eq-replicate-mset by simp from this number-partition1-eq-replicate-mset $(n \le x)$ have $?N = \{replicate-mset : n \le x\}$ n 1 by auto from this show ?thesis by simp qed **lemma** card-number-partitions-with-only-parts-1-eq-0: assumes x < nshows card {N. $(\forall n. n \in \# N \longrightarrow n = 1) \land number-partition n N \land size N \leq$ x = 0 (is card ?N = -) proof have $\forall N \in \{N. (\forall n. n \in \# N \longrightarrow n = 1) \land number-partition n N\}$. size N = n**unfolding** *number-partition1-eq-replicate-mset* **by** *simp* from this number-partition1-eq-replicate-mset $\langle x < n \rangle$ have $?N = \{\}$ by auto from this show ?thesis by (simp only: card.empty) qed

end

References

- [1] M. Junker. Diskrete Algebraische Strukturen, 2010. German lecture notes from Mathematisches Institut Albert-Ludwigs-Universität Freiburg.
- [2] D. R. Mazur. *Combinatorics: a guided tour.* MAA textbooks. Mathematical Association of America, 2010.