Cardinality of Number Partitions

Lukas Bulwahn

June 11, 2019

Abstract

This entry provides a basic library for number partitions, defines the two-argument partition function through its recurrence relation and relates this partition function to the cardinality of number partitions. The main proof shows that the recursively-defined partition function with arguments n and k equals the cardinality of number partitions of n with exactly k parts. The combinatorial proof follows the proof sketch of Theorem 2.4.1 in Mazur’s textbook “Combinatorics: A Guided Tour” [2]. This entry can serve as starting point for various more intrinsic properties about number partitions, the partition function and related recurrence relations.

Contents

1 Additions to Isabelle’s Main Theories ... 2
 1.1 Addition to Finite-Set Theory .. 2
 1.2 Addition to Set-Interval Theory .. 2
 1.3 Additions to Multiset Theory .. 2

2 Number Partitions ... 3
 2.1 Number Partitions as $\mathsf{nat} \Rightarrow \mathsf{nat}$ Functions 3
 2.2 Bounds and Finiteness of Number Partitions 4
 2.3 Operations of Number Partitions .. 6
 2.4 Number Partitions as Multisets on Natural Numbers 12
 2.4.1 Relationship to Definition on Functions 12

3 Cardinality of Number Partitions .. 14
 3.1 The Partition Function .. 14
 3.2 Cardinality of Number Partitions .. 15
 3.3 Cardinality of Number Partitions as Multisets of Natural Numbers .. 19
 3.4 Cardinality of Number Partitions with only 1-parts 20
1 Additions to Isabelle’s Main Theories

theory Additions-to-Main
imports HOL-Library.Multiset
begin

1.1 Addition to Finite-Set Theory

lemma bound-domain-and-range-impl-finitely-many-functions:
finite \{f::nat\Rightarrow nat. (\forall i. f i \leq n) \land (\forall i\geq m. f i = 0)\}

proof (induct m)
case 0
have eq: \{f. (\forall i. f i \leq n) \land (\forall i. f i = 0)\} = \{(\lambda -. 0)\} by auto
from this show ?case by auto (subst eq; auto)

next
case (Suc m)
let ?S = (\lambda (y, f). f (m := y)) \cdot ({0..n} \times \{f. (\forall i. f i \leq n) \land (\forall i\geq m. f i = 0)\})

{ fix g
 assume \forall i. g i \leq n \land \forall i\geq Suc m. g i = 0
 from this have g \in ?S by (auto intro: image-eqI [where x = (g m, g(m:=0))])
}
from this have \{f. (\forall i. f i \leq n) \land (\forall i\geq Suc m. f i = 0)\} = ?S by auto
from this Suc show ?case by simp
qed

1.2 Addition to Set-Interval Theory

lemma sum-atMost-remove-nat:
assumes k \leq (n :: nat)
shows (\sum i\leq n. f i) = f k + (\sum i\in{..n}-{k}. f i)
using assms by (auto simp add: sum.remove[where x=k])

1.3 Additions to Multiset Theory

lemma set-mset-Abs-multiset:
assumes f \in multiset
shows set-mset (Abs-multiset f) = \{x. f x > 0\}
using assms unfolding set-mset-def by simp

lemma sum-mset-sum-count:
sum-mset M = (\sum i\in set-mset M. count M i \cdot i)
proof (induct M)
show sum-mset \{\#\} = (\sum i\in set-mset \{\#\}. count \{\#\} i \cdot i) by simp
next
fix M x
assume hyp: sum-mset M = (\sum i\in set-mset M. count M i \cdot i)
show \text{sum-mset}(\text{add-mset} \ x \ M) = \left(\sum_{i \in \text{set-mset}(\text{add-mset} \ x \ M). \text{count}(\text{add-mset} \ x \ M)} i \ast i\right)

\text{proof (cases } x \in \# \ M)\n\quad \text{assume } a: \neg x \in \# \ M\n\quad \text{from this have } \text{count} M x = 0 \text{ by (meson count-inI)}\n\quad \text{from } (\neg x \in \# \ M) \text{ this hyp show } ?\text{thesis}\n\quad \text{by (auto intro!: sum.cong)}
\text{next}\n\quad \text{assume } x \in \# \ M\n\quad \text{have } \text{sum-mset}(\text{add-mset} \ x \ M) = \left(\sum_{i \in \text{set-mset} M} \text{count}(\text{add-mset} \ x \ M) i \ast i\right) + x
\quad \text{using hyp by simp}\n\quad \text{also have } \ldots = \left(\sum_{i \in \text{set-mset} M} \text{count}(\text{add-mset} \ x \ M) i \ast i\right) + \text{count} M x \ast x + x
\quad \text{using } (x \in \# \ M) \text{ by (simp add: sum.remove[of - x])}\n\quad \text{also have } \ldots = \text{count}(\text{add-mset} \ x \ M) x \ast x + \left(\sum_{i \in \text{set-mset}(\text{add-mset} \ x \ M)} \text{count}(\text{add-mset} \ x \ M) i \ast i\right)
\quad \text{by simp}\n\quad \text{also have } \ldots = \left(\sum_{i \in \text{set-mset}(\text{add-mset} \ x \ M)} \text{count}(\text{add-mset} \ x \ M) i \ast i\right)
\quad \text{using } (x \in \# \ M) \text{ by (simp add: sum.remove[of - x])}\n\quad \text{finally show } ?\text{thesis} .\n\text{qed}\n\text{qed}

\text{lemma } \text{sum-mset-eq-sum-on-supersets}:\n\text{assumes } \text{finite } A \text{ set-mset } M \subseteq A\n\text{shows } \left(\sum_{i \in \text{set-mset} M} \text{count} M i \ast i\right) = \left(\sum_{i \in A} \text{count } M i \ast i\right)
\text{proof -}\n\quad \text{note } \text{finite } A \text{ (set-mset } M \subseteq A)\n\quad \text{moreover have } \forall i \in A - \text{set-mset } M. \text{count} M i \ast i = 0
\quad \text{using count-inI by fastforce}\n\quad \text{ultimately show } ?\text{thesis}\n\quad \text{by (auto intro: sum.mono-neutral-cong-left)}
\text{qed}

\text{end}

2 \text{ Number Partitions}

theory \text{Number-Partition}\n\text{imports Additions-to-Main}\n\text{begin}\n
2.1 \text{ Number Partitions as } \text{nat} \Rightarrow \text{nat} \text{ Functions}\n
\text{definition } \text{partitions} :: (\text{nat} \Rightarrow \text{nat}) \Rightarrow \text{nat} \Rightarrow \text{bool} \text{ (infix } \text{partitions 50)}\n\text{where}\n\quad p \text{ partitions } n = ((\forall i. p i \neq 0 \rightarrow 1 \leq i \land i \leq n) \land (\sum i \leq n. p i \ast i) = n)

\text{lemma } \text{partitionsI}:\n\text{assumes } \land i. p i \neq 0 \Rightarrow 1 \leq i \land i \leq n

3
assumes \((\sum_{i \leq n} p \ i \ i) = n\)
shows \(p \text{ partitions } n\)
using assms unfolding partitions-def by auto

lemma partitionsE:
assumes \(p \text{ partitions } n\)
obtains \(\forall i. \ p \ i \neq 0 \implies 1 \leq i \land i \leq n\)
(\(\sum_{i \leq n} p \ i \ i) = n\)
using assms unfolding partitions-def by auto

lemma partitions-zero:
\(p \text{ partitions } 0 \iff p = (\lambda i. \ 0)\)
unfolding partitions-def by auto

lemma partitions-one:
\(p \text{ partitions } (\text{Suc } 0) \iff p = (\lambda i. \ 0)(1 := 1)\)
unfolding partitions-def
by (auto split: if-split-asm) (auto simp add: fun-eq-iff)

2.2 Bounds and Finiteness of Number Partitions

lemma partitions-imp-finite-elements:
assumes \(p \text{ partitions } n\)
shows finite \(\{i. \ 0 < p \ i\}\)
proof –
from assms have \(\{i. \ 0 < p \ i\} \subseteq \{..n\}\)
by (auto elim: partitionsE)
from this show ?thesis
using rev-finite-subset by blast
qed

lemma partitions-imp-multiset:
assumes \(p \text{ partitions } n\)
shows \(p \in \text{multiset}\)
using assms partitions-imp-finite-elements multiset-def by auto

lemma partitions-bounds:
assumes \(p \text{ partitions } n\)
shows \(p \ i \leq n\)
proof –
from assms have index-bounds: \((\forall i. \ p \ i \neq 0 \implies 1 \leq i \land i \leq n)\)
and sum: \((\sum_{i \leq n} p \ i \ i) = n\)
unfolding partitions-def by auto
show ?thesis
proof (cases \(1 \leq i \land i \leq n\))
case True
from True have \(\{..n\} = \text{insert } i \{i', \ i' \leq n \land i' \neq i\}\)
by blast
from sum[unfolded this] have \(p \ i \ i + (\sum_{i \in \{i', \ i' \leq n \land i' \neq i\}} p \ i \ i) = n\)
by auto
from this have \(p \ i \ i \leq n\)
by linarith
from this True show ?thesis using dual-order.trans by fastforce
next
 case False
 from this index-bounds show \(?thesis \) by fastforce
qed

lemma partitions-parts-bounded:
 assumes \(p \) partitions \(n \)
 shows \(\sum p \{..n\} \leq n \)
proof (—)
 { fix \(i \)
 assume \(i \leq n \)
 from assms have \(p \, i \leq p \, i \times i \)
 by (auto elim!: partitionsE)
 }
from this have \(\sum p \{..n\} \leq (\sum i \leq n. \, p \, i \times i) \)
 by (auto intro: sum-mono)
also from assms have \(n \cdot (\sum i \leq n. \, p \, i \times i) = n \)
 by (auto elim!: partitionsE)
finally show \(?thesis \).
qed

lemma finite-partitions:
 finite \{ \(p \). \(p \) partitions \(n \)\}
proof (—)
 have \(\{ \(p \). \(p \) partitions \(n \)\} \subseteq \{ f. \, (\forall i. \, f \, i \leq n) \land (\forall i. \, n + 1 \leq i \longrightarrow f \, i = 0)\}\}
 by (auto elim: partitions-bounds) (auto simp add: partitions-def)
from this bound-domain-and-range-impl-finitely-many-functions[of \(n \) \(n + 1 \)] show \(?thesis \)
 by (simp add: finite-subset)
qed

lemma finite-partitions-k-parts:
 finite \{ \(p \). \(p \) partitions \(n \) \land \(\sum p \{..n\} = k \)\}
by (simp add: finite-partitions)

lemma partitions-remaining-Max-part:
 assumes \(p \) partitions \(n \)
 assumes \(0 < p \, k \)
 shows \(\forall i. \, n - k < i \land i \neq k \longrightarrow p \, i = 0 \)
proof (clarify)
 fix \(i \)
 assume \(n - k < i \ i \neq k \)
 show \(p \, i = 0 \)
 proof (cases \(i \leq n \))
 assume \(i \leq n \)
 from assms have \(n \cdot (\sum i \leq n. \, p \, i \times i) = n \) and \(k \leq n \)
 by (auto elim: partitionsE)
have \((\sum_{i \leq n} p_i \cdot i) = p_k \cdot k + (\sum_{i \in \{..n\} - \{k\}} p_i \cdot i) \)
using \(k \leq n \) sum-atMost-remove-nat by blast
also have \(\ldots = p_i \cdot i + p_k \cdot k + (\sum_{i \in \{..n\} - \{i, k\}} p_i \cdot i) \)
using \(i \leq n \) \(i \neq k \)
by (auto simp add: sum.remove[where \(x = i \)]) (metis Diff-insert)
finally have eq: \((\sum_{i \leq n} p_i \cdot i) = p_i \cdot i + p_k \cdot k + (\sum_{i \in \{..n\} - \{i, k\}} p_i \cdot i) \).

\[p \cdot i = 0 \]
proof (rule ccontr)
assume \(p \cdot i \neq 0 \)
have upper-bound: \(p_i \cdot i + p_k \cdot k \leq n \)
using eq n by auto
have lower-bound: \(p_i \cdot i + p_k \cdot k > n \)
using \(\langle n - k < i \rangle \langle 0 < p_k \rangle \langle k \leq n \rangle \langle p_i \neq 0 \rangle \) mult-eq-if not-less by auto
from upper-bound lower-bound show False by simp
qed
next
assume \(\neg (i \leq n) \)
from this show \(p \cdot i = 0 \)
using assms(1) by (auto elim: partitionsE)
qed

2.3 Operations of Number Partitions

lemma partitions-remove1-bounds:
assumes partitions: \(p \) partitions \(n \)
assumes gr0: \(0 < p_k \)
assumes neq: \((p(k := p_k - 1)) \cdot i \neq 0 \)
shows \(1 \leq i \land i \leq n - k \)
proof
from partitions neq show \(1 \leq i \)
by (auto elim!: partitionsE split: if-split-asm)
next
from partitions gr0 have n: \((\sum_{i \leq n} p_i \cdot i) = n \) and \(k \leq n \)
by (auto elim: partitionsE)
show \(i \leq n - k \)
proof cases
assume \(k \leq n - k \)
from \(i \leq n - k \) neq show \(?thesis
using partitions-remaining-Max-part[OF partitions gr0] not-le by force
next
assume \(\neg k \leq n - k \)
from this have \(2 \cdot k > n \) by auto
have \(p_k = 1 \)
proof (rule ccontr)
assume \(p_k \neq 1 \)
with gr0 have \(p_k \geq 2 \) by auto
from this have \(p_k \cdot k \geq 2 \cdot k \) by simp
with \(2 \ast k > n\) have \(p k \ast k > n\) by linarith
from \((k \leq n)\) this have \((\sum i \leq n. \ p i \ast i) > n\)
 by (simp add: sum-atMost-removeNat[of k])
from this n show False by auto
qed

from neq this show ?thesis
 using partitions.remaining-Max-part[OF partitions gr0] leI
by (auto split: if-split_asm) force
qed

lemma partitions-remove1:
 assumes partitions: \(p\) partitions \(n\)
 assumes gr0: \(0 < p k\)
 shows \(p(k := p k - 1)\) partitions \((n - k)\)
proof (rule partitionsI)
 fix \(i\)
 assume \((p(k := p k - 1)) i \neq 0\)
 from this show \(1 \leq i \&\& i \leq n - k\) using partitions.remove1-bounds partitions
 gr0 by blast
next
from partitions gr0 have \(k \leq n\) by (auto elim: partitionsE)
have \((\sum i \leq n - k. \ (p(k := p k - 1)) i \ast i) = (\sum i \leq n. \ (p(k := p k - 1)) i \ast i)\)
 using partitions.remove1-bounds partitions gr0 by (auto intro!: sum_mono_neutral_left)
also have \(\ldots = (p k - 1) \ast k + (\sum i \in\{..n\} - \{k\}. \ (p(k := p k - 1)) i \ast i)\)
 using \(k \leq n\) by (simp add: sum-atMost-removeNat[where \(k=k\)])
also have \(\ldots = p k \ast k + (\sum i \in\{..n\} - \{k\}. \ p i \ast i) - k\)
 using gr0 by (simp add: diff_mult_distrib)
also have \(\ldots = (\sum i \leq n. \ p i \ast i) - k\)
 using \(k \leq n\) by (simp add: sum-atMost-removeNat[of \(k\)])
also from partitions have \(\ldots = n - k\)
 by (auto elim: partitionsE)
finally show \((\sum i \leq n - k. \ (p(k := p k - 1)) i \ast i) = n - k\).
qed

lemma partitions-insert1:
 assumes \(p\): \(p\) partitions \(n\)
 assumes \(k > 0\)
 shows \((p(k := p k + 1))\) partitions \((n + k)\)
proof (rule partitionsI)
 fix \(i\)
 assume \((p(k := p k + 1)) i \neq 0\)
 from \(p\) this \((k > 0)\) show \(1 \leq i \&\& i \leq n + k\)
 by (auto elim!: partitionsE)
next
have \((\sum i \leq n + k. \ (p(k := p k + 1)) i \ast i) = p k \ast k + (\sum i \in\{..n + k\} - \{k\}. \ p i \ast i) + k\)
 by (simp add: sum-atMost-removeNat[of \(k\)])
also have \(\ldots = p k \ast k + (\sum i \in\{..n\} - \{k\}. \ p i \ast i) + k\)
proof
also have \(\vdash (\sum\{i \leq n. p\ i\} + k)\)
using \(p\) by (auto intro!: sum_mono_neutral_right elim!: partitionsE)
also have \(\vdash \vdash p\ i\ i\)
using \(p\) by (auto elim!: partitionsE)
finally show \(\sum\{i \leq n + k. (p(k := p\ k + 1))\ i\ i\} = n + k\).
qed

lemma count-remove1:
assumes \(p\) partitions \(n\)
assumes \(0 < p\)
shows \(\sum\{i \leq n - k. (p(k := p\ k - 1))\ i\} = (\sum\{i \leq n. p\ i\} - 1)\)
proof
have \(k \leq n\) using \(\vdash\) assms by (auto elim!: partitionsE)

have \(\sum\{i \leq n - k. (p(k := p\ k - 1))\ i\} = (\sum\{i \leq n. (p(k := p\ k - 1))\ i\}\)
using partitions-remove1-bounds assms by (auto intro!: sum_mono_neutral_left)
also have \(\sum\{i \leq n. (p(k := p\ k - 1))\ i\} = p\ k + (\sum\{i \in\{n\} - \{k\}. p\ i\} - 1)\)
using \(\vdash 0 < p\ k\) \(k \leq n\) by (simp add: sum_atMost_remove_nat[of \(k\)])
also have \(\vdash \vdash (\sum\{i \in\{n\}. p\ i\}) - 1\)
using \(\vdash\) assms by (auto intro!: sum_mono_neutral_right elim!: partitionsE)
also have \(\vdash \vdash (\sum\{i \leq n. p\ i\}) + 1\)
using assms by (cases \(k \leq n\) (auto simp add: sum_atMost_remove_nat[of \(k\)]
elim: partitionsE)
finally show \(?\)thesis .
qed

lemma count-insert1:
assumes \(p\) partitions \(n\)
shows \(\vdash \vdash \sum\{i \leq n + k. (p(k := p\ k + 1))\ i\} = (\sum\{i \leq n. p\ i\} + 1)\)
proof
have \(\vdash \vdash \sum\{i \leq n + k. (p(k := p\ k + 1))\ i\} = p\ k + (\sum\{i \in\{n\} + k\} - \{k\}. p\ i\) + 1\)
by (simp add: sum_atMost_remove_nat[of \(k\)])
also have \(\vdash \vdash (\sum\{i \in\{n\} + k\} - \{k\}. p\ i\) + 1\)
using assms by (auto intro!: sum_mono_neutral_right elim!: partitionsE)
also have \(\vdash \vdash (\sum\{i \leq n. p\ i\}) + 1\)
using assms by (cases \(k \leq n\) (auto simp add: sum_atMost_remove_nat[of \(k\)]
elim: partitionsE)
finally show \(?\)thesis .
qed

lemma partitions-decrease1:
assumes \(p\): \(p\) partitions \(m\)
assumes \(\vdash\) sum\(p\ \{\ .. m\\} = k\)
assumes \(\vdash 0 = p\)
shows \(\lambda i. p\ (i + 1)\) partitions \(m - k\)
proof
from \(p\) have \(\vdash 0 = 0\) by (auto elim!: partitionsE)
\{
fix \(i\)
assume \(\vdash\) neq\(p\ (i + 1) \neq 0\)
from p this ($p = 0$) have $1 \leq i$

by (fastforce elim!: partitionsE simp add: leSuc-eq)

moreover have $i \leq m - k$

proof (rule contr)

assume i-greater: $\neg i \leq m - k$

from p have s: $(\sum i \leq m. \ p \ i \ i) = m$

by (auto elim!: partitionsE)

from p sum have $k \leq m$

using partitions-parts-bounded by fastforce

from neq p have $i + 1 \leq m$ by (auto elim!: partitionsE)

from i-greater have $i > m - k$ by simp

have ineq1: $i + 1 > (m - k) + 1$

using i-greater by simp

have ineq21: $(\sum j \leq m. \ (p(i + 1 := p \ (i + 1) - 1))) \ j * j) \geq (\sum j \leq m. \ (p(i + 1 := p \ (i + 1) - 1))) \ j$

using ($p = 0 = 0$): not-less by (fastforce intro!: sum-mono)

have ineq22a: $(\sum j \leq m. \ (p(i + 1 := p \ (i + 1) - 1))) \ j = (\sum j \leq m. \ p \ j) - 1$

using ($i + 1 \leq m$): neq by (simp add: sum.remove{where $x=i+1$})

have ineq22: $(\sum j \leq m. \ (p(i + 1 := p \ (i + 1) - 1))) \ j \geq k - 1$

using sum neq ineq22a by auto

have ineq2: $(\sum j \leq m. \ (p(i + 1 := p \ (i + 1) - 1))) \ j * j) \geq k - 1$

using ineq21 ineq22 by auto

have $(\sum i \leq m. \ p \ i \ i) = (p + (i + 1) - 1) * (i + 1) + (\sum i \in\{..m\} \ - \ {i + 1}. \ p \ i \ i)$

using ($i + 1 \leq m$): neq

by (subst sum.remove{where $x=i+1$}) auto

also have ... = $(i + 1) + (\sum j \leq m. \ (p(i + 1 := p \ (i + 1) - 1))) \ j * j)

using ($i + 1 \leq m$): neq

by (subst sum.remove{where $x=i+1$ and g==j. \ $p(i + 1 := p \ (i + 1) - 1) \ j * j) * j\})$

(auto simp add: mult-eq-if)

finally have $(\sum i \leq m. \ p \ i \ i) = i + 1 + (\sum j \leq m. \ (p(i + 1 := p \ (i + 1) - 1))) \ j * j) * j\)\)

moreover have ... > m using ineq1 ineq2 \ ($k \leq m$) \ ($p \ i + 1$) \ neq 0\) by linarith

ultimately have $(\sum i \leq m. \ p \ i \ i) > m$ by simp

from s this show $False$ by simp

qed

ultimately have $1 \leq i \wedge i \leq m - k$..

} note bounds = this

show $(\exists \ i. \ p \ (i + 1))$ partitions $m - k$

proof (rule partitionsI)

fix i

assume $p \ (i + 1) \ neq 0$

from bounds this show $1 \leq i \wedge i \leq m - k$.

next

have geq: $\forall \ i. \ p \ i \ i \ geq p \ i$

using ($p \ 0 = 0$): not-less by fastforce

have $(\sum i \leq m - k. \ p \ (i + 1) * i) = (\sum i \leq m. \ p \ (i + 1) * i)$
lemma count-decrease1:
 assumes p: p partitions m
 assumes sum: sum p {..m} = k
 assumes p 1 = 0
 shows sum (λi. p (i + 1)) {..m - k} = k

proof
 have ... = (∑ i∈Suc ' {..m}. p i * (i - 1))
 by (auto simp add: sum.reindex)
 also have ... = (∑ i≤Suc m. p i * (i - 1))
 using p 0 = 0
 by (simp add: atMost-Suc-eq-insert-0 zero-notin-Suc-image)
 also have ... = (∑ i≤m. p i * (i - 1))
 using p by (auto elimination: partitionsE)
 also have ... = (∑ i≤m. p i * i) - (∑ i≤m. p i)
 using p by (simp only: sum_subtractf_nat)
 also have ... = m - k
 using sum p by (auto elimination: partitionsE)
 finally show (∑ i≤m - k. p (i + 1) * i) = m - k
 qed

lemma partitions-increase1:
 assumes partitions: p partitions m - k
 assumes k: sum p {..m - k} = k
 shows (λi. p (i - 1)) partitions m
proof (rule partitionsI)
 fix i
 assume p (i - 1) ≠ 0
 from partitions this k show 1 ≤ i ∧ i ≤ m
 by (cases k) (auto elimination: partitionsE)
next
 from k partitions have k ≤ m
 using linear partitions-zero by force
 have eq-0: ∀ i>m - k. p i = 0
 using partitions by (auto elimination: partitionsE)
 from partitions have s: (∑ i≤m - k. p i * i) = m - k
 by (auto elimination: partitionsE)
 have (∑ i≤m. p (i - 1) * i) = (∑ i≤Suc m. p (i - 1) * i)
 using partitions k
 by (cases k) (auto elimination: partitionsE)
 also have (∑ i≤Suc m. p (i - 1) * i) = (∑ i≤m. p i * (i + 1))
 by subst sum.atMost-Suc-shift
 also have ... = (∑ i≤m - k. p i * i + (∑ i≤m - k. p i))
 using eq-0
 by (auto intro: sum_mono_neutral_right)
 also have ... = m - k + k
 using s k by simp
 also have ... = m
 using k ≤ m by simp
 finally show (∑ i≤m. p (i - 1) * i) = m
 qed
proof
-
from p have p 0 = 0 by (auto elim!: partitionsE)
have sum (λi. p (i + 1)) {...m - k} = sum (λi. p (i + 1)) {...m}
 using partitions-decrease1[OF assms]
 by (auto intro: sum mono-neutral-left elim!: partitionsE)
also have ... = sum (λi. p (i + 1)) {...m} by (simp add: atLeastAtMost)
also have ... = sum (λi. p i) {Suc 0.. Suc m}
 by (simp only: One-nat-def add-Suc-right add-0-right sum.reindex-cong[of Suc])
 case 0
from this show thesis using (p 0 = 0) by simp
next
 case (Suc m')
 { fix x assume Suc 0 ≤ x x ≤ m
 from this Suc have x ∈ Suc ‘ {...m'}
 by (auto intro!: image-eqI[where x=x - 1])
 }
from this Suc show thesis
 by (intro sum.reindex-cong[of Suc]) auto
qed
also have (∑ i≤m-1. p i) = (∑ i≤m.. p i)
proof
 { fix i
 assume 0 < p i i ≤ m
 from assms this have i ≤ m - 1
 using (p 0 = 0; partitions-increase1) by (cases k) (auto elim!: partitionsE)
 }
from this show thesis
 by (auto intro: sum mono-neutral-cong-left)
also have ... = (\(\sum_{i \leq m - k} p \cdot i\)) using partitions by (auto intro: sum.mononic-neutral-right elim!: partitionsE)
also have ... = k using k by auto
finally show theorem.

2.4 Number Partitions as Multisets on Natural Numbers

definition number-partition :: nat \Rightarrow nat multiset \Rightarrow bool
where
number-partition n N = (\(\sum\) mset N = n \land 0 \notin \# N)

2.4.1 Relationship to Definition on Functions

lemma count-partitions-iff:
\(\text{count N partitions n} \iff \text{number-partition n N}\)
proof
assume count N partitions n
from this have (\(\forall i. \text{count N i \neq 0} \rightarrow 1 \leq i \land i \leq n\)) (\(\sum_{i \leq n. \text{count N i} \cdot i}\)) = n
unfolding \(\text{Number-Partition.partitions-def}\) by auto
moreover from this have set-mset N \subseteq {..n} by auto
moreover have finite {..n} by auto
ultimately have sum-mset N = n
using sum-mset-sum-count sum-mset-eq-sum-on-supersets by presburger
moreover have 0 \notin \# N
using (\(\forall i. \text{count N i \neq 0} \rightarrow 1 \leq i \land i \leq n\)) by auto
ultimately show number-partition n N
unfolding number-partition-def by auto

next
assume number-partition n N
from this have sum-mset N = n \land 0 \notin \# N
unfolding number-partition-def by auto
{}
fix i
assume count N i \neq 0
have 1 \leq i \land i \leq n
proof
from (0 \notin \# N) (count N i \neq 0) show 1 \leq i
using Suc.le-eq by auto
from (sum-mset N = n) (count N i \neq 0) show i \leq n
using multi-member-split by fastforce
qed

moreover from (sum-mset N = n) have (\(\sum_{i \leq n. \text{count N i} \cdot i}\)) = n
by (metis atMost-iff calculation finite-atMost not-in-iff subsetI sum-mset-eq-sum-on-supersets sum-mset-sum-count)
ultimately show count N partitions n
by (rule partitionsI) auto
lemma partitions-iff-Abs-multiset:
p partitions n ←→ finite \{ x. 0 < p x \} ∧ number-partition n (Abs-multiset p)
proof
 assume p partitions n
 from this have bounds: (\forall i. p i \neq 0 \rightarrow 1 \leq i \land i \leq n)
 and sum: (\sum i \leq n. p i \ast i) = n
 unfolding partitions-def by auto
 from \langle p partitions n \rangle have p \in multiset by (rule partitions-imp-multiset)
 from \langle p partitions n \rangle have finite \{ x. 0 < p x \}
 by (rule partitions-imp-finite-elements)
 moreover from \langle p \in multiset \rangle bounds have \neg 0 \in# Abs-multiset p
 using count-eq-zero-iff by force
 moreover from \langle p \in multiset \rangle this sum have sum-mset (Abs-multiset p) = n
 proof
 have (\sum i \in \{ x. 0 < p x \}. p i \ast i) = (\sum i \leq n. p i \ast i)
 using bounds by (auto intro: sum_mono_neutral_cong_left)
 from \langle p \in multiset \rangle this sum show sum-mset (Abs-multiset p) = n
 by (simp add: sum-mset-sum_count set-mset-Abs-multiset)
 qed
 ultimately show finite \{ x. 0 < p x \} ∧ number-partition n (Abs-multiset p)
 unfolding number-partition-def by auto
next
 assume finite \{ x. 0 < p x \} ∧ number-partition n (Abs-multiset p)
 from this have finite \{ x. 0 < p x \} 0 \notin# Abs-multiset p
 sum-mset (Abs-multiset p) = n
 proof
 fix i
 assume p i \neq 0
 from \langle \neg 0 \in# Abs-multiset p \rangle \langle p \in multiset \rangle have p 0 = 0
 using count-inI by force
 from this \langle p i \neq 0 \rangle show 1 \leq i
 by (metis One_nat_def leI less-Suc0)
 show i \leq n
 proof (rule ccontr)
 assume \neg i \leq n
 from this have i > n
 using le_less_linear by blast
 from this \langle p i \neq 0 \rangle have p i \ast i > n
 by (auto simp add: less_le_trans)
 from \langle p i \neq 0 \rangle have (\sum i \in \{ x. 0 < p x \}. p i \ast i) = p i \ast i + (\sum i \in \{ x. 0 < p x \} - \{ i \}. p i \ast i)
using \(\{x. 0 < p \times x \} \)
by (simp add: subst sum.insert-remove[symmetric])
also from \(\{p \times i > n\} \) have \(\ldots > n \) by auto
finally show False using \(\{\sum i \in \{x. 0 < p \times x\}. p \times i = n\} \) by blast
qed

moreover have \(\{\sum i \leq n. p \times i\} \) = \(n \)
proof -
 have \(\{\sum i \leq n. p \times i\} = \{\sum i \in \{x. 0 < p \times x\}. p \times i\} \)
 using bounds by (auto intro: sum.mono-neutral-cong-right)
 from this show \(?thesis \)
 using \(\{\sum i \in \{x. 0 < p \times x\}. p \times i = n\} \) by simp
qed

ultimately show \(p \) partitions \(n \) by (auto intro: partitionsI)
qed

lemma size-nat-multiset-eq:
 fixes \(N :: \text{nat multiset} \)
 assumes number-partition \(n N \)
 shows \(\text{size} N = \text{sum} \ (\text{count} N) \{..n\} \)
proof -
 have set-mset \(N \subseteq \{..\text{sum-mset} N\} \)
 by (auto dest: multi-member-split)
 have \(\text{size} N = \text{sum} \ (\text{count} N) \ (\text{set-mset} N) \)
 by (rule size-multiset-overloaded-eq)
 also have \(\ldots = \text{sum} \ (\text{count} N) \ \{..\text{sum-mset} N\} \)
 using \(\{\text{set-mset} N \subseteq \{..\text{sum-mset} N\}\} \)
 by (auto intro: sum.mono-neutral-cong-left count-inI)
 finally show \(?thesis \)
 using \(\{\text{number-partition} n N\} \)
 unfolding number-partition-def by auto
qed

end

3 Cardinality of Number Partitions

theory Card-Number-Partitions
imports Number-Partition
begin

3.1 The Partition Function

fun \(\text{Partition} :: \text{nat} \Rightarrow \text{nat} \Rightarrow \text{nat} \)
where
 \(\text{Partition} \ 0 \ 0 = 1 \)
| \(\text{Partition} \ 0 \ (\text{Suc} \ k) = 0 \)
| \(\text{Partition} \ (\text{Suc} \ m) \ 0 = 0 \)
\[\text{Partition} (\text{Suc } m) (\text{Suc } k) = \text{Partition} m k + \text{Partition} (m - k) (\text{Suc } k)\]

Lemma Partition-less:
- Assumes \(m < k\)
- Shows \(\text{Partition } m k = 0\)
- Using assms by (induct \(m \ k\) rule: Partition.induct) auto

Lemma Partition-sum-Partition-diff:
- Assumes \(k \leq m\)
- Shows \(\text{Partition } m k = (\sum_{i \leq k} \text{Partition} (m - k) i)\)
- Using assms by (induct \(m \ k\) rule: Partition.induct) auto

Lemma Partition-parts1:
- \(\text{Partition} (\text{Suc } m) (\text{Suc } 0) = 1\)
- By (induct \(m\)) auto

Lemma Partition-diag:
- \(\text{Partition} (\text{Suc } m) (\text{Suc } m) = 1\)
- By (induct \(m\)) auto

Lemma Partition-diag1:
- \(\text{Partition} (\text{Suc } (\text{Suc } m)) (\text{Suc } m) = 1\)
- By (induct \(m\)) auto

Lemma Partition-parts2:
- Shows \(\text{Partition} m 2 = m \div 2\)
- Proof (induct \(m\) rule: nat-less-induct)
 - Fix \(m\)
 - Assume hypothesis: \(\forall n<m. \text{Partition } n 2 = n \div 2\)
 - Have \((m = 0 \lor m = 1) \lor m \geq 2\) by auto
 - From this show \(\text{Partition } m 2 = m \div 2\)
 - Proof
 - Assume \(m = 0 \lor m = 1\)
 - From this show ?thesis by (auto simp add: numerals(2))
 - Next
 - Assume \(2 \leq m\)
 - From this obtain \(m'\) where \(m' = \text{Suc} (\text{Suc } m)\) by (metis add-2-eq-Suc le-Suc-ex)
 - From hypothesis this have \(\text{Partition } m' 2 = m' \div 2\) by simp
 - From this \(m'\) show ?thesis using \(\text{Partition-parts1} \text{Partition.simps(4)}[\text{of Suc } m' \text{ Suc } 0]\) \(\text{div2-Suc-Suc}\)
 - By (simp add: numerals(2) del: \text{Partition.simps})
 - Qed
- Qed

3.2 Cardinality of Number Partitions

Lemma set-rewrite1:
- \(\{p. \ p \text{ partitions } \text{Suc } m \land \text{sum } p \{..\text{Suc } m\} = \text{Suc } k \land p \ 1 \neq 0\}\)
\[
(p \cdot p(1 := p 1 + 1)) \cdot \{p \cdot p \text{ partitions } m \land \text{sum } p \{..m\} = k\} \quad (\text{is } ?S = \ ?T)
\]

proof

\{
 \begin{align*}
 \text{fix } p \\
 \text{assume } \text{assms: } p \text{ partitions } \text{Suc } m \text{ sum } p \{..\text{Suc } m\} = \text{Suc } k \land p 1 < p 1 \\
 \text{have } p(1 := p 1 - 1) \text{ partitions } m \\
 \text{using } \text{assms by } (\text{metis partitions-remove1 diff-Suc-1}) \\
 \text{moreover have } \sum_{i \leq m.} (p(1 := p 1 - 1)) i = k \\
 \text{using } \text{assms by } (\text{metis count-remove1 diff-Suc-1}) \\
 \text{ultimately have } p(1 := p 1 - 1) \in \{p \cdot p \text{ partitions } m \land \text{sum } p \{..m\} = k\} \\
 \text{by simp} \\
 \text{moreover have } p = p(1 := p 1 - 1, 1 := (p(1 := p 1 - 1)) 1 + 1) \\
 \text{using } (0 < p 1) \text{ by auto} \\
 \text{ultimately have } p \in (\lambda p. p(1 := p 1 + 1)) \cdot \{p \cdot p \text{ partitions } m \land \text{sum } p \{..m\} = k\} \text{ by blast} \\
\end{align*}
\}

from this show \(?S \subseteq ?T \) by blast

next

\{
 \begin{align*}
 \text{fix } p \\
 \text{assume } \text{assms: } p \text{ partitions } m \text{ sum } p \{..m\} = k \\
 \text{have } p(1 := p 1 + 1) \text{ partitions } \text{Suc } m \quad (\text{is } ?g1) \\
 \text{using } \text{assms by } (\text{metis partitions-insert1 Suc-eq-plus1 zero-less-one}) \\
 \text{moreover have } \text{sum } p(1 := p 1 + 1) \{..\text{Suc } m\} = \text{Suc } k \quad (\text{is } ?g2) \\
 \text{using } \text{assms by } (\text{metis count-insert1 Suc-eq-plus1}) \\
 \text{moreover have } p(1 := p 1 + 1) 1 \neq 0 \quad (\text{is } ?g3) \text{ by auto} \\
 \text{ultimately have } ?g1 \land ?g2 \land ?g3 \text{ by simp} \\
\end{align*}
\}

from this show \(?T \subseteq ?S \) by auto

qed

lemma \text{set-rewrite2:}

\{p \cdot p \text{ partitions } m \land \text{sum } p \{..m\} = k \land p 1 = 0\}

= (\lambda p. (\lambda i. p (i - 1))) \cdot \{p \cdot p \text{ partitions } (m - k) \land \text{sum } p \{..m - k\} = k\}

(is \(?S = ?T \))

proof

\{
 \begin{align*}
 \text{fix } p \\
 \text{assume } \text{assms: } p \text{ partitions } m \text{ sum } p \{..m\} = k \land p 1 = 0 \\
 \text{have } (\lambda i. p (i + 1)) \text{ partitions } m - k \\
 \text{using } \text{assms partitions-decrease1 by blast} \\
 \text{moreover from } \text{assms have } \text{sum } (\lambda i. p (i + 1)) \{..m - k\} = k \\
 \text{using } \text{assms count-decrease1 by blast} \\
 \text{ultimately have } (\lambda i. p (i + 1)) \in \{p \cdot p \text{ partitions } m - k \land \text{sum } p \{..m - k\} = k\} \text{ by simp} \\
 \text{moreover have } p = (\lambda i. p ((i - 1) + 1)) \\
 \text{proof } (\text{rule ext}) \\
 \text{fix } i \text{ show } p = p (i - 1 + 1) \\
\end{align*}
\}
using assms by (cases i) (auto elim: partitionsE)

qed
ultimately have \(p \in (\lambda p. (\lambda i. p\ (i - 1))) \cdot \{ p. p \text{ partitions } m - k \land \text{sum } p\ \{..m - k\} = k\} \) by auto

from this show \(?S \subseteq ?T \) by auto

next

{
 fix \(p \)
 assume assms: \(p \text{ partitions } m - k \land \text{sum } p\ \{..m - k\} = k\)
 from assms have \((\lambda i. p\ (i - 1)) \text{ partitions } m \) (is \(?g1 \))
 using partitions-increase1 by blast
 moreover from assms have \(\sum i \leq m. p\ (i - 1) = k \) (is \(?g2 \))
 using count-increase1 by blast
 moreover from assms have \(p 0 = 0 \) (is \(?g3 \))
 by (auto elim!: partitionsE)
 ultimately have \(?g1 \land ?g2 \land ?g3 \) by simp
}

from this show \(?T \subseteq ?S \) by auto

qed

theorem card-partitions-k-parts:
 \(\text{card } \{ p. p \text{ partitions } n \land (\sum i \leq n. p i) = k\} = \text{Partition } n k \)
proof (induct n k rule: Partition.induct)
 case 1
 have eq: \(\{ p. p = (\lambda x. 0) \land p 0 = 0\} = \{ (\lambda x. 0)\} \) by auto
 show \(\text{card } \{ p. p \text{ partitions } 0 \land \text{sum } p\ \{..0\} = 0\} = \text{Partition } 0 0 \)
 by (simp add: partitions-zero eq)

next
 case (2 k)
 have eq: \(\{ p. p = (\lambda x. 0) \land p 0 = \text{Suc } k\} = \{\} \) by auto
 show \(\text{card } \{ p. p \text{ partitions } 0 \land \text{sum } p\ \{..\text{Suc } k\} = \text{Suc } k\} = \text{Partition } 0 \ (\text{Suc } k) \)
 by (simp add: partitions-zero eq)

next
 case (3 m)
 have eq: \(\{ p. p \text{ partitions } \text{Suc } m \land \text{sum } p\ \{..\text{Suc } m\} = 0\} = \{\} \)
 by (fastforce elim!: partitionsE simp add: le-Suc-eq)
 from this show \(\text{card } \{ p. p \text{ partitions } \text{Suc } m \land \text{sum } p\ \{..\text{Suc } m\} = 0\} = \text{Partition } (\text{Suc } m) 0 \)
 by (simp only: Partition.simps card-empty)

next
 case (4 m k)
 let \(?set1 = \{ p. p \text{ partitions } \text{Suc } m \land \text{sum } p\ \{..\text{Suc } m\} = \text{Suc } k \land p\ 1 \neq 0\} \)
 let \(?set2 = \{ p. p \text{ partitions } \text{Suc } m \land \text{sum } p\ \{..\text{Suc } m\} = \text{Suc } k \land p\ 1 = 0\} \)
 have \(\text{finite } \{ p. p \text{ partitions } \text{Suc } m\} \)
 by (simp add: finite-partitions)
 from this have \(\text{finite-sets: finite } ?set1 \text{ finite } ?set2 \) by simp+
 have \(\text{set-eq: } \{ p. p \text{ partitions } \text{Suc } m \land \text{sum } p\ \{..\text{Suc } m\} = \text{Suc } k\} = ?set1 \cup ?set2 \by simp \)
 by auto
have disjoint: \(?set1 \cap \?set2 = \{\}\) by auto

have inj1: inj-on (\(\lambda p. p(1 := p + 1)\)) \(\{p.\) p partitions m \& sum p \{..m\} = k\}
 by (auto intro!: inj-onI) (metis diff-Suc-1 fun-upd-idem-iff fun-upd-upd)

have inj2: inj-on (\(\lambda p. p (i - 1)\)) \(\{p.\) p partitions m - k \& sum p \{..m - k\} = Suc k\}
 by (auto intro!: inj-onI simp add: fun-eq-iff) (metis add-cancel-right)

have card1: card \(?set1 = Partition m \ k\)
 using inj1 4(1) by (simp only: set-rev rewrite1 card-image)

have card2: card \(?set2 = Partition (m - \ k\) (Suc k\)
 using inj2 4(2) by (simp only: set-rev rewrite2 card-image diff-Suc-Suc)

have card \(\{p.\) p partitions Suc m \& sum p \{..Suc m\} = Suc k\} = Partition m \ k + Partition (m - \ k\) (Suc k\)
 using finite-sets disjoint by (simp only: set-eq Un disjoint card1 card2)

from this show card \(\{p.\) p partitions Suc m \& sum p \{..Suc m\} = Suc k\} = Partition (Suc m\) (Suc k\)
 by auto

qed

theorem card-partitions:
 card \(\{p.\) p partitions n\} = (\(\sum k \leq n.\) Partition n \ k\)

proof –
 have seteq: \(\{p.\) p partitions n\} = \(\bigcup((\lambda k. \{p.\) p partitions n \& (\(\sum i \leq n.\) p i) = k\}) \cdot \{..n\})\)
 by (auto intro: partitions-parts-bounded)
 have finite: \(?k. finite \{p.\) p partitions n \& sum p \{..n\} = k\}
 by (simp add: finite-partitions)
 have card \(\{p.\) p partitions n\} = card \((\bigcup((\lambda k. \{p.\) p partitions n \& (\(\sum i \leq n.\) p i) = k\}) \cdot \{..n\})\)
 using finite by (simp add: seteq)
 also have \(\sum x \leq n.\) card \(\{p.\) p partitions n \& sum p \{..n\} = x\}
 using finite by (subst card-UN-disjoint) auto
 also have \(\sum k \leq n.\) Partition n \ k\)
 by (simp add: card-partitions-k-parts)
 finally show \(?thesis\).

qed

lemma card-partitions-atmost-k-parts:
 card \(\{p.\) p partitions n \& sum p \{..n\} \leq k\} = Partition (n + \ k\)

proof –
 have card \(\{p.\) p partitions n \& sum p \{..n\} \leq k\) =
 card \((\bigcup((\lambda k'. \{p.\) p partitions n \& sum p \{..n\} = k'\}) \cdot \{..k\}))\)
 proof –
 have \(\{p.\) p partitions n \& sum p \{..n\} \leq k\) =
 \((\bigcup k' \leq k. \{p.\) p partitions n \& sum p \{..n\} = k'\}) by auto
 from this show \(?thesis\) by simp
 qed
 also have card \((\bigcup((\lambda k'. \{p.\) p partitions n \& sum p \{..n\} = k'\}) \cdot \{..k\})) =
 sum (\(\lambda k'.\) card \(\{p.\) p partitions n \& sum p \{..n\} = k'\}) \{..k\}\)
 using finite-partitions-k-parts by (subst card-UN-disjoint) auto
also have \(\sum (\lambda k'. \text{Partition } n \ k') \{..k\} \)
using \text{card-partitions-k-parts} by \text{simp}
also have \(\text{Partition } (n + k) \ k \)
using \text{Partition-sum-Partition-diff} by \text{simp}
finally show \(\text{thesis} \).
qed

3.3 Cardinality of Number Partitions as Multisets of Natural Numbers

\text{lemma bij-betw-multiset-number-partition-with-size}:
\text{bij-betw count } \{N. \text{number-partition } n \ N \ \wedge \ \text{size } N = k\} \ \{p. \ p \ \text{partitions } n \ \wedge \ \text{sum } p \ \{..n\} = k\}
\text{proof (rule bij-betw-byWitness[where } f' = \text{Abs-multiset}]\}
\text{show } \forall N \in \{N. \text{number-partition } n \ N \ \wedge \ \text{size } N = k\}. \ \text{Abs-multiset } (\text{count } N) = N
\quad \text{using count-inverse by blast}
\text{show } \forall p \in \{p. \ p \ \text{partitions } n \ \wedge \ \text{sum } p \ \{..n\} = k\}. \ \text{count } (\text{Abs-multiset } p) = p
\quad \text{by (auto simp add: multiset-def partitions-imp-finite-elements)}
\text{show count' } \{N. \text{number-partition } n \ N \ \wedge \ \text{size } N = k\} \subseteq \{p. \ p \ \text{partitions } n \ \wedge \ \text{sum } p \ \{..n\} = k\}
\quad \text{by (auto simp add: count-partitions-iff size-nat-multiset-eq)}
\text{show Abs-multiset' } \{p. \ p \ \text{partitions } n \ \wedge \ \text{sum } p \ \{..n\} = k\} \subseteq \{N. \text{number-partition } n \ N \ \wedge \ \text{size } N = k\}
\quad \text{using partitions-iff-Abs-multiset size-nat-multiset-eq partitions-imp-multiset by fastforce}
\text{qed}

\text{lemma bij-betw-multiset-number-partition-with-atmost-size}:
\text{bij-betw count } \{N. \text{number-partition } n \ N \ \wedge \ \text{size } N \leq k\} \ \{p. \ p \ \text{partitions } n \ \wedge \ \text{sum } p \ \{..n\} \leq k\}
\text{proof (rule bij-betw-byWitness[where } f' = \text{Abs-multiset}]\}
\text{show } \forall N \in \{N. \text{number-partition } n \ N \ \wedge \ \text{size } N \leq k\}. \ \text{Abs-multiset } (\text{count } N) = N
\quad \text{using count-inverse by blast}
\text{show } \forall p \in \{p. \ p \ \text{partitions } n \ \wedge \ \text{sum } p \ \{..n\} \leq k\}. \ \text{count } (\text{Abs-multiset } p) = p
\quad \text{by (auto simp add: multiset-def partitions-imp-finite-elements)}
\text{show count' } \{N. \text{number-partition } n \ N \ \wedge \ \text{size } N \leq k\} \subseteq \{p. \ p \ \text{partitions } n \ \wedge \ \text{sum } p \ \{..n\} \leq k\}
\quad \text{by (auto simp add: count-partitions-iff size-nat-multiset-eq)}
\text{show Abs-multiset' } \{p. \ p \ \text{partitions } n \ \wedge \ \text{sum } p \ \{..n\} \leq k\} \subseteq \{N. \text{number-partition } n \ N \ \wedge \ \text{size } N \leq k\}
\quad \text{using partitions-iff-Abs-multiset size-nat-multiset-eq partitions-imp-multiset by fastforce}
\text{qed}

\text{theorem card-number-partitions-with-atmost-k-parts}:
\text{shows card } \{N. \text{number-partition } n \ N \ \wedge \ \text{size } N \leq x\} = \text{Partition } (n + x) \ x
\text{proof – –}
have bij-betw count \{N. number-partition n N \land size N \leq x\} \{p. p partitions n \land sum p \{..n\} \leq x\}
 by (rule bij-betw-multiset-number-partition-with-atmost-size)
from this have card \{N. number-partition n N \land size N \leq x\} = card \{p. p partitions n \land sum p \{..n\} \leq x\}
 by (rule bij-betw-same-card)
also have card \{p. p partitions n \land sum p \{..n\} \leq x\} = \text{Partition} (n + x) x
 by (rule card-partitions-atmost-k-parts)
finally show thesis .
qed

theorem card-partitions-with-k-parts:
 card \{N. number-partition n N \land size N = k\} = \text{Partition} n k
proof
 have bij-betw count \{N. number-partition n N \land size N = k\} \{p. p partitions n \land sum p \{..n\} = k\}
 by (rule bij-betw-multiset-number-partition-with-size)
 from this have card \{N. number-partition n N \land size N = k\} = card \{p. p partitions n \land sum p \{..n\} = k\}
 by (rule bij-betw-same-card)
 also have \ldots = \text{Partition} n k by (rule card-partitions-k-parts)
finally show thesis .
qed

3.4 Cardinality of Number Partitions with only 1-parts

lemma number-partition1-eq-replicate-mset:
 \{N. (\forall n. n \in \# N \rightarrow n = 1) \land number-partition n N\} = \{\text{replicate-mset n 1}\}
proof
 show \{N. (\forall n. n \in \# N \rightarrow n = 1) \land number-partition n N\} \subseteq \{\text{replicate-mset n 1}\}
proof
 fix N
 assume N: N \in \{N. (\forall n. n \in \# N \rightarrow n = 1) \land number-partition n N\}
 have N = \text{replicate-mset n 1}
 proof (rule multiset-eqI)
 fix i
 have count N i = sum-mset N
 proof cases
 assume N = \#
 from this show thesis by auto
 next
 assume N \neq \#
 from this N have 1 \in \# N by blast
 from this N show thesis
 by (auto simp add: sum-mset-sum-count sum.remove[where x=1] simp del: One-nat-def)
 qed
 from N this show count N i = count (replicate-mset n 1) i
unfolding number-partition-def by (auto intro: count-inI)

qed from this show \(N \in \{\text{replicate-mset } n 1\} \) by simp

qed

next

show \(\{\text{replicate-mset } n 1\} \subseteq \{N. (\forall n. n \in \# N \rightarrow n = 1) \land \text{number-partition } n N\} \)

unfolding number-partition-def by auto

qed

lemma card-number-partitions-with-only-parts-1-eq-1:
 assumes \(n \leq x \)
 shows \(\text{card } \{N. (\forall n. n \in \# N \rightarrow n = 1) \land \text{number-partition } n N \land \text{size } N \leq x\} = 1 \) (is \(\text{card } ?N = -\))

proof –
 have \(\forall N \in \{N. (\forall n. n \in \# N \rightarrow n = 1) \land \text{number-partition } n N\}. \text{size } N = n \)

unfolding number-partition1-eq-replicate-mset by simp

from this number-partition1-eq-replicate-mset \(\langle n \leq x \rangle \) have \(?N = \{\text{replicate-mset } n 1\} \) by auto

from this show \(?\text{thesis} \) by simp

qed

lemma card-number-partitions-with-only-parts-1-eq-0:
 assumes \(x < n \)
 shows \(\text{card } \{N. (\forall n. n \in \# N \rightarrow n = 1) \land \text{number-partition } n N \land \text{size } N \leq x\} = 0 \) (is \(\text{card } ?N = -\))

proof –
 have \(\forall N \in \{N. (\forall n. n \in \# N \rightarrow n = 1) \land \text{number-partition } n N\}. \text{size } N = n \)

unfolding number-partition1-eq-replicate-mset by simp

from this number-partition1-eq-replicate-mset \(\langle x < n \rangle \) have \(?N = \{\} \) by auto

from this show \(?\text{thesis} \) by (simp only: card-empty)

qed

end

References
