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Abstract

This entry provides a basic library for number partitions, defines
the two-argument partition function through its recurrence relation
and relates this partition function to the cardinality of number par-
titions. The main proof shows that the recursively-defined partition
function with arguments n and k equals the cardinality of number par-
titions of n with exactly k parts. The combinatorial proof follows the
proof sketch of Theorem 2.4.1 in Mazur’s textbook “Combinatorics:
A Guided Tour” [2]. This entry can serve as starting point for var-
ious more intrinsic properties about number partitions, the partition
function and related recurrence relations.
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1 Additions to Isabelle’s Main Theories
theory Additions-to-Main
imports HOL−Library.Multiset
begin

1.1 Addition to Finite-Set Theory
lemma bound-domain-and-range-impl-finitely-many-functions:

finite {f ::nat⇒nat. (∀ i. f i ≤ n) ∧ (∀ i≥m. f i = 0 )}
proof (induct m)

case 0
have eq: {f . (∀ i. f i ≤ n) ∧ (∀ i. f i = 0 )} = {(λ-. 0 )} by auto
from this show ?case by auto (subst eq; auto)

next
case (Suc m)
let ?S = (λ(y, f ). f (m := y)) ‘ ({0 ..n} × {f . (∀ i. f i ≤ n) ∧ (∀ i≥m. f i = 0 )})
{

fix g
assume ∀ i. g i ≤ n ∀ i≥Suc m. g i = 0
from this have g ∈ ?S

by (auto intro: image-eqI [where x=(g m, g(m:=0 ))])
}
from this have {f . (∀ i. f i ≤ n) ∧ (∀ i≥Suc m. f i = 0 )} = ?S by auto
from this Suc show ?case by simp

qed

1.2 Addition to Set-Interval Theory
lemma sum-atMost-remove-nat:

assumes k ≤ (n :: nat)
shows (

∑
i≤n. f i) = f k + (

∑
i∈{..n}−{k}. f i)

using assms by (auto simp add: sum.remove[where x=k])

1.3 Additions to Multiset Theory
lemma set-mset-Abs-multiset:

assumes finite {x. f x > 0}
shows set-mset (Abs-multiset f ) = {x. f x > 0}

using assms unfolding set-mset-def by simp

lemma sum-mset-sum-count:
sum-mset M = (

∑
i∈set-mset M . count M i ∗ i)

proof (induct M )
show sum-mset {#} = (

∑
i∈set-mset {#}. count {#} i ∗ i) by simp

next
fix M x
assume hyp: sum-mset M = (

∑
i∈set-mset M . count M i ∗ i)

show sum-mset (add-mset x M ) = (
∑

i∈set-mset (add-mset x M ). count (add-mset
x M ) i ∗ i)
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proof (cases x ∈# M )
assume a: ¬ x ∈# M
from this have count M x = 0 by (meson count-inI )
from ‹¬ x ∈# M › this hyp show ?thesis

by (auto intro!: sum.cong)
next

assume x ∈# M
have sum-mset (add-mset x M ) = (

∑
i∈set-mset M . count M i ∗ i) + x

using hyp by simp
also have . . . = (

∑
i∈set-mset M − {x}. count M i ∗ i) + count M x ∗ x + x

using ‹x ∈# M › by (simp add: sum.remove[of - x])
also have . . . = count (add-mset x M ) x ∗ x + (

∑
i∈set-mset (add-mset x M )

− {x}. count (add-mset x M ) i ∗ i)
by simp

also have . . . = (
∑

i∈set-mset (add-mset x M ). count (add-mset x M ) i ∗ i)
using ‹x ∈# M › by (simp add: sum.remove[of - x])

finally show ?thesis .
qed

qed

lemma sum-mset-eq-sum-on-supersets:
assumes finite A set-mset M ⊆ A
shows (

∑
i∈set-mset M . count M i ∗ i) = (

∑
i∈A. count M i ∗ i)

proof −
note ‹finite A› ‹set-mset M ⊆ A›
moreover have ∀ i∈A − set-mset M . count M i ∗ i = 0

using count-inI by fastforce
ultimately show ?thesis

by (auto intro: sum.mono-neutral-cong-left)
qed

end

2 Number Partitions
theory Number-Partition
imports Additions-to-Main
begin

2.1 Number Partitions as nat ⇒ nat Functions
definition partitions :: (nat ⇒ nat) ⇒ nat ⇒ bool (infix ‹partitions› 50 )
where

p partitions n = ((∀ i. p i 6= 0 −→ 1 ≤ i ∧ i ≤ n) ∧ (
∑

i≤n. p i ∗ i) = n)

lemma partitionsI :
assumes

∧
i. p i 6= 0 =⇒ 1 ≤ i ∧ i ≤ n

assumes (
∑

i≤n. p i ∗ i) = n
shows p partitions n
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using assms unfolding partitions-def by auto

lemma partitionsE :
assumes p partitions n
obtains

∧
i. p i 6= 0 =⇒ 1 ≤ i ∧ i ≤ n (

∑
i≤n. p i ∗ i) = n

using assms unfolding partitions-def by auto

lemma partitions-zero:
p partitions 0 ←→ p = (λi. 0 )

unfolding partitions-def by auto

lemma partitions-one:
p partitions (Suc 0 ) ←→ p = (λi. 0 )(1 := 1 )

unfolding partitions-def
by (auto split: if-split-asm) (auto simp add: fun-eq-iff )

2.2 Bounds and Finiteness of Number Partitions
lemma partitions-imp-finite-elements:

assumes p partitions n
shows finite {i. 0 < p i}

proof −
from assms have {i. 0 < p i} ⊆ {..n} by (auto elim: partitionsE)
from this show ?thesis

using rev-finite-subset by blast
qed

lemma partitions-bounds:
assumes p partitions n
shows p i ≤ n

proof −
from assms have index-bounds: (∀ i. p i 6= 0 −→ 1 ≤ i ∧ i ≤ n)

and sum: (
∑

i≤n. p i ∗ i) = n
unfolding partitions-def by auto

show ?thesis
proof (cases 1 ≤ i ∧ i ≤ n)

case True
from True have {..n} = insert i {i ′. i ′ ≤ n ∧ i ′ 6= i} by blast
from sum[unfolded this] have p i ∗ i + (

∑
i∈{i ′. i ′ ≤ n ∧ i ′ 6= i}. p i ∗ i) =

n by auto
from this have p i ∗ i ≤ n by linarith
from this True show ?thesis using dual-order .trans by fastforce

next
case False
from this index-bounds show ?thesis by fastforce

qed
qed

lemma partitions-parts-bounded:
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assumes p partitions n
shows sum p {..n} ≤ n

proof −
{

fix i
assume i ≤ n
from assms have p i ≤ p i ∗ i

by (auto elim!: partitionsE)
}
from this have sum p {..n} ≤ (

∑
i≤n. p i ∗ i)

by (auto intro: sum-mono)
also from assms have n: (

∑
i≤n. p i ∗ i) = n

by (auto elim!: partitionsE)
finally show ?thesis .

qed

lemma finite-partitions:
finite {p. p partitions n}

proof −
have {p. p partitions n} ⊆ {f . (∀ i. f i ≤ n) ∧ (∀ i. n + 1 ≤ i −→ f i = 0 )}

by (auto elim: partitions-bounds) (auto simp add: partitions-def )
from this bound-domain-and-range-impl-finitely-many-functions[of n n + 1 ] show

?thesis
by (simp add: finite-subset)

qed

lemma finite-partitions-k-parts:
finite {p. p partitions n ∧ sum p {..n} = k}

by (simp add: finite-partitions)

lemma partitions-remaining-Max-part:
assumes p partitions n
assumes 0 < p k
shows ∀ i. n − k < i ∧ i 6= k −→ p i = 0

proof (clarify)
fix i
assume n − k < i i 6= k
show p i = 0
proof (cases i ≤ n)

assume i ≤ n
from assms have n: (

∑
i≤n. p i ∗ i) = n and k ≤ n

by (auto elim: partitionsE)
have (

∑
i≤n. p i ∗ i) = p k ∗ k + (

∑
i∈{..n}−{k}. p i ∗ i)

using ‹k ≤ n› sum-atMost-remove-nat by blast
also have ... = p i ∗ i + p k ∗ k + (

∑
i∈{..n}−{i, k}. p i ∗ i)

using ‹i ≤ n› ‹i 6= k›
by (auto simp add: sum.remove[where x=i]) (metis Diff-insert)

finally have eq: (
∑

i≤n. p i ∗ i) = p i ∗ i + p k ∗ k + (
∑

i∈{..n} − {i, k}.
p i ∗ i) .
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show p i = 0
proof (rule ccontr)

assume p i 6= 0
have upper-bound: p i ∗ i + p k ∗ k ≤ n

using eq n by auto
have lower-bound: p i ∗ i + p k ∗ k > n

using ‹n − k < i› ‹0 < p k› ‹k ≤ n› ‹p i 6= 0 › mult-eq-if not-less by auto
from upper-bound lower-bound show False by simp

qed
next

assume ¬ (i ≤ n)
from this show p i = 0

using assms(1 ) by (auto elim: partitionsE)
qed

qed

2.3 Operations of Number Partitions
lemma partitions-remove1-bounds:

assumes partitions: p partitions n
assumes gr0 : 0 < p k
assumes neq: (p(k := p k − 1 )) i 6= 0
shows 1 ≤ i ∧ i ≤ n − k

proof
from partitions neq show 1 ≤ i

by (auto elim!: partitionsE split: if-split-asm)
next

from partitions gr0 have n: (
∑

i≤n. p i ∗ i) = n and k ≤ n
by (auto elim: partitionsE)

show i ≤ n − k
proof cases

assume k ≤ n − k
from ‹k ≤ n − k› neq show ?thesis

using partitions-remaining-Max-part[OF partitions gr0 ] not-le by force
next

assume ¬ k ≤ n − k
from this have 2 ∗ k > n by auto
have p k = 1
proof (rule ccontr)

assume p k 6= 1
with gr0 have p k ≥ 2 by auto
from this have p k ∗ k ≥ 2 ∗ k by simp
with ‹2 ∗ k > n› have p k ∗ k > n by linarith
from ‹k ≤ n› this have (

∑
i≤n. p i ∗ i) > n

by (simp add: sum-atMost-remove-nat[of k])
from this n show False by auto

qed
from neq this show ?thesis

using partitions-remaining-Max-part[OF partitions gr0 ] leI
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by (auto split: if-split-asm) force
qed

qed

lemma partitions-remove1 :
assumes partitions: p partitions n
assumes gr0 : 0 < p k
shows p(k := p k − 1 ) partitions (n − k)

proof (rule partitionsI )
fix i
assume (p(k := p k − 1 )) i 6= 0
from this show 1 ≤ i ∧ i ≤ n − k using partitions-remove1-bounds partitions

gr0 by blast
next

from partitions gr0 have k ≤ n by (auto elim: partitionsE)
have (

∑
i≤n − k. (p(k := p k − 1 )) i ∗ i) = (

∑
i≤n. (p(k := p k − 1 )) i ∗ i)

using partitions-remove1-bounds partitions gr0 by (auto intro!: sum.mono-neutral-left)
also have ... = (p k − 1 ) ∗ k + (

∑
i∈{..n} − {k}. (p(k := p k − 1 )) i ∗ i)

using ‹k ≤ n› by (simp add: sum-atMost-remove-nat[where k=k])
also have ... = p k ∗ k + (

∑
i∈{..n} − {k}. p i ∗ i) − k

using gr0 by (simp add: diff-mult-distrib)
also have ... = (

∑
i≤n. p i ∗ i) − k

using ‹k ≤ n› by (simp add: sum-atMost-remove-nat[of k])
also from partitions have ... = n − k

by (auto elim: partitionsE)
finally show (

∑
i≤n − k. (p(k := p k − 1 )) i ∗ i) = n − k .

qed

lemma partitions-insert1 :
assumes p: p partitions n
assumes k > 0
shows (p(k := p k + 1 )) partitions (n + k)

proof (rule partitionsI )
fix i
assume (p(k := p k + 1 )) i 6= 0
from p this ‹k > 0 › show 1 ≤ i ∧ i ≤ n + k

by (auto elim!: partitionsE)
next

have (
∑

i≤n + k. (p(k := p k + 1 )) i ∗ i) = p k ∗ k + (
∑

i∈{..n + k} − {k}.
p i ∗ i) + k

by (simp add: sum-atMost-remove-nat[of k])
also have ... = p k ∗ k + (

∑
i∈{..n} − {k}. p i ∗ i) + k

using p by (auto intro!: sum.mono-neutral-right elim!: partitionsE)
also have ... = (

∑
i≤n. p i ∗ i) + k

using p by (cases k ≤ n) (auto simp add: sum-atMost-remove-nat[of k] elim:
partitionsE)

also have ... = n + k
using p by (auto elim: partitionsE)

finally show (
∑

i≤n + k. (p(k := p k + 1 )) i ∗ i) = n + k .
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qed

lemma count-remove1 :
assumes p partitions n
assumes 0 < p k
shows (

∑
i≤n − k. (p(k := p k − 1 )) i) = (

∑
i≤n. p i) − 1

proof −
have k ≤ n using assms by (auto elim: partitionsE)
have (

∑
i≤n − k. (p(k := p k − 1 )) i) = (

∑
i≤n. (p(k := p k − 1 )) i)

using partitions-remove1-bounds assms by (auto intro!: sum.mono-neutral-left)
also have (

∑
i≤n. (p(k := p k − 1 )) i) = p k + (

∑
i∈{..n} − {k}. p i) − 1

using ‹0 < p k› ‹k ≤ n› by (simp add: sum-atMost-remove-nat[of k])
also have ... = (

∑
i∈{..n}. p i) − 1

using ‹k ≤ n› by (simp add: sum-atMost-remove-nat[of k])
finally show ?thesis .

qed

lemma count-insert1 :
assumes p partitions n
shows sum (p(k := p k + 1 )) {..n + k} = (

∑
i≤n. p i) + 1

proof −
have (

∑
i≤n + k. (p(k := p k + 1 )) i) = p k + (

∑
i∈{..n + k} − {k}. p i) +

1
by (simp add: sum-atMost-remove-nat[of k])

also have ... = p k + (
∑

i∈{..n} − {k}. p i) + 1
using assms by (auto intro!: sum.mono-neutral-right elim!: partitionsE)

also have ... = (
∑

i≤n. p i) + 1
using assms by (cases k ≤ n) (auto simp add: sum-atMost-remove-nat[of k]

elim: partitionsE)
finally show ?thesis .

qed

lemma partitions-decrease1 :
assumes p: p partitions m
assumes sum: sum p {..m} = k
assumes p 1 = 0
shows (λi. p (i + 1 )) partitions m − k

proof −
from p have p 0 = 0 by (auto elim!: partitionsE)
{

fix i
assume neq: p (i + 1 ) 6= 0
from p this ‹p 1 = 0 › have 1 ≤ i

by (fastforce elim!: partitionsE simp add: le-Suc-eq)
moreover have i ≤ m − k
proof (rule ccontr)

assume i-greater : ¬ i ≤ m − k
from p have s: (

∑
i≤m. p i ∗ i) = m

by (auto elim!: partitionsE)
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from p sum have k ≤ m
using partitions-parts-bounded by fastforce

from neq p have i + 1 ≤ m by (auto elim!: partitionsE)
from i-greater have i > m − k by simp
have ineq1 : i + 1 > (m − k) + 1

using i-greater by simp
have ineq21 : (

∑
j≤m. (p(i + 1 := p (i + 1 ) − 1 )) j ∗ j) ≥ (

∑
j≤m. (p(i

+ 1 := p (i + 1 ) − 1 )) j)
using ‹p 0 = 0 › not-less by (fastforce intro!: sum-mono)

have ineq22a: (
∑

j≤m. (p(i + 1 := p (i + 1 ) − 1 )) j) = (
∑

j≤m. p j) − 1
using ‹i + 1 ≤ m› neq by (simp add: sum.remove[where x=i + 1 ])

have ineq22 : (
∑

j≤m. (p(i + 1 := p (i + 1 ) − 1 )) j) ≥ k − 1
using sum neq ineq22a by auto

have ineq2 : (
∑

j≤m. (p(i + 1 := p (i + 1 ) − 1 )) j ∗ j) ≥ k − 1
using ineq21 ineq22 by auto

have (
∑

i≤m. p i ∗ i) = p (i + 1 ) ∗ (i + 1 ) + (
∑

i∈{..m} − {i + 1}. p i
∗ i)

using ‹i + 1 ≤ m› neq
by (subst sum.remove[where x=i + 1 ]) auto

also have ... = (i + 1 ) + (
∑

j≤m. (p(i + 1 := p (i + 1 ) − 1 )) j ∗ j)
using ‹i + 1 ≤ m› neq
by (subst sum.remove[where x=i + 1 and g=λj. (p(i + 1 := p (i + 1 ) −

1 )) j ∗ j])
(auto simp add: mult-eq-if )

finally have (
∑

i≤m. p i ∗ i) = i + 1 + (
∑

j≤m. (p(i + 1 := p (i + 1 )
− 1 )) j ∗ j) .

moreover have ... > m using ineq1 ineq2 ‹k ≤ m› ‹p (i + 1 ) 6= 0 › by
linarith

ultimately have (
∑

i≤m. p i ∗ i) > m by simp
from s this show False by simp

qed
ultimately have 1 ≤ i ∧ i ≤ m − k ..

} note bounds = this
show (λi. p (i + 1 )) partitions m − k
proof (rule partitionsI )

fix i
assume p (i + 1 ) 6= 0
from bounds this show 1 ≤ i ∧ i ≤ m − k .

next
have geq: ∀ i. p i ∗ i ≥ p i

using ‹p 0 = 0 › not-less by fastforce
have (

∑
i≤m − k. p (i + 1 ) ∗ i) = (

∑
i≤m. p (i + 1 ) ∗ i)

using bounds by (auto intro: sum.mono-neutral-left)
also have ... = (

∑
i∈Suc ‘ {..m}. p i ∗ (i − 1 ))

by (auto simp add: sum.reindex)
also have ... = (

∑
i≤Suc m. p i ∗ (i − 1 ))

using ‹p 0 = 0 ›
by (simp add: atMost-Suc-eq-insert-0 )

also have ... = (
∑

i≤m. p i ∗ (i − 1 ))
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using p by (auto elim!: partitionsE)
also have ... = (

∑
i≤m. p i ∗ i − p i)

by (simp add: diff-mult-distrib2 )
also have ... = (

∑
i≤m. p i ∗ i) − (

∑
i≤m. p i)

using geq by (simp only: sum-subtractf-nat)
also have ... = m − k using sum p by (auto elim!: partitionsE)
finally show (

∑
i≤m − k. p (i + 1 ) ∗ i) = m − k .

qed
qed

lemma partitions-increase1 :
assumes partitions: p partitions m − k
assumes k: sum p {..m − k} = k
shows (λi. p (i − 1 )) partitions m

proof (rule partitionsI )
fix i
assume p (i − 1 ) 6= 0
from partitions this k show 1 ≤ i ∧ i ≤ m

by (cases k) (auto elim!: partitionsE)
next

from k partitions have k ≤ m
using linear partitions-zero by force

have eq-0 : ∀ i>m − k. p i = 0 using partitions by (auto elim!: partitionsE)
from partitions have s: (

∑
i≤m − k. p i ∗ i) = m − k by (auto elim!: parti-

tionsE)
have (

∑
i≤m. p (i − 1 ) ∗ i) = (

∑
i≤Suc m. p (i − 1 ) ∗ i)

using partitions k by (cases k) (auto elim!: partitionsE)
also have (

∑
i≤Suc m. p (i − 1 ) ∗ i) = (

∑
i≤m. p i ∗ (i + 1 ))

by (subst sum.atMost-Suc-shift) simp
also have ... = (

∑
i≤m − k. p i ∗ (i + 1 ))

using eq-0 by (auto intro: sum.mono-neutral-right)
also have ... = (

∑
i≤m − k. p i ∗ i) + (

∑
i≤m − k. p i) by (simp add:

sum.distrib)
also have ... = m − k + k using s k by simp
also have ... = m using ‹k ≤ m› by simp
finally show (

∑
i≤m. p (i − 1 ) ∗ i) = m .

qed

lemma count-decrease1 :
assumes p: p partitions m
assumes sum: sum p {..m} = k
assumes p 1 = 0
shows sum (λi. p (i + 1 )) {..m − k} = k

proof −
from p have p 0 = 0 by (auto elim!: partitionsE)
have sum (λi. p (i + 1 )) {..m − k} = sum (λi. p (i + 1 )) {..m}

using partitions-decrease1 [OF assms]
by (auto intro: sum.mono-neutral-left elim!: partitionsE)

also have . . . = sum (λi. p (i + 1 )) {0 ..m} by (simp add: atLeast0AtMost)
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also have . . . = sum (λi. p i) {Suc 0 .. Suc m}
by (simp only: One-nat-def add-Suc-right add-0-right sum.shift-bounds-cl-Suc-ivl)

also have . . . = sum (λi. p i) {.. Suc m}
using ‹p 0 = 0 › by (simp add: atLeast0AtMost sum-shift-lb-Suc0-0 )

also have . . . = sum (λi. p i) {.. m}
using p by (auto elim!: partitionsE)

also have . . . = k
using sum by simp

finally show ?thesis .
qed

lemma count-increase1 :
assumes partitions: p partitions m − k
assumes k: sum p {..m − k} = k
shows (

∑
i≤m. p (i − 1 )) = k

proof −
have p 0 = 0 using partitions by (auto elim!: partitionsE)
have (

∑
i≤m. p (i − 1 )) = (

∑
i∈{1 ..m}. p (i − 1 ))

using ‹p 0 = 0 › by (auto intro: sum.mono-neutral-cong-right)
also have (

∑
i∈{1 ..m}. p (i − 1 )) = (

∑
i≤m − 1 . p i)

proof (cases m)
case 0
from this show ?thesis using ‹p 0 = 0 › by simp

next
case (Suc m ′)
{

fix x assume Suc 0 ≤ x x ≤ m
from this Suc have x ∈ Suc ‘ {..m ′}

by (auto intro!: image-eqI [where x=x − 1 ])
}
from this Suc show ?thesis

by (intro sum.reindex-cong[of Suc]) auto
qed
also have (

∑
i≤m − 1 . p i) = (

∑
i≤m. p i)

proof −
{

fix i
assume 0 < p i i ≤ m
from assms this have i ≤ m − 1

using ‹p 0 = 0 › partitions-increase1 by (cases k) (auto elim!: partitionsE)
}
from this show ?thesis

by (auto intro: sum.mono-neutral-cong-left)
qed
also have ... = (

∑
i≤m − k. p i)

using partitions by (auto intro: sum.mono-neutral-right elim!: partitionsE)
also have ... = k using k by auto
finally show ?thesis .

qed
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2.4 Number Partitions as Multisets on Natural Numbers
definition number-partition :: nat ⇒ nat multiset ⇒ bool
where

number-partition n N = (sum-mset N = n ∧ 0 /∈# N )

2.4.1 Relationship to Definition on Functions
lemma count-partitions-iff :

count N partitions n ←→ number-partition n N
proof

assume count N partitions n
from this have (∀ i. count N i 6= 0 −→ 1 ≤ i ∧ i ≤ n) (

∑
i≤n. count N i ∗ i)

= n
unfolding Number-Partition.partitions-def by auto

moreover from this have set-mset N ⊆ {..n} by auto
moreover have finite {..n} by auto
ultimately have sum-mset N = n

using sum-mset-sum-count sum-mset-eq-sum-on-supersets by presburger
moreover have 0 /∈# N

using ‹∀ i. count N i 6= 0 −→ 1 ≤ i ∧ i ≤ n› by auto
ultimately show number-partition n N

unfolding number-partition-def by auto
next

assume number-partition n N
from this have sum-mset N = n and 0 /∈# N

unfolding number-partition-def by auto
{

fix i
assume count N i 6= 0
have 1 ≤ i ∧ i ≤ n
proof

from ‹0 /∈# N › ‹count N i 6= 0 › show 1 ≤ i
using Suc-le-eq by auto

from ‹sum-mset N = n› ‹count N i 6= 0 › show i ≤ n
using multi-member-split by fastforce

qed
}
moreover from ‹sum-mset N = n› have (

∑
i≤n. count N i ∗ i) = n

by (metis atMost-iff calculation finite-atMost not-in-iff subsetI sum-mset-eq-sum-on-supersets
sum-mset-sum-count)

ultimately show count N partitions n
by (rule partitionsI ) auto

qed

lemma partitions-iff-Abs-multiset:
p partitions n ←→ finite {x. 0 < p x} ∧ number-partition n (Abs-multiset p)

proof
assume p partitions n
from this have bounds: (∀ i. p i 6= 0 −→ 1 ≤ i ∧ i ≤ n)
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and sum: (
∑

i≤n. p i ∗ i) = n
unfolding partitions-def by auto
from ‹p partitions n› have finite {x. 0 < p x}

by (rule partitions-imp-finite-elements)
moreover from ‹finite {x. 0 < p x}› bounds have ¬ 0 ∈# Abs-multiset p

using count-eq-zero-iff by force
moreover from ‹finite {x. 0 < p x}› this sum have sum-mset (Abs-multiset p)

= n
proof −

have (
∑

i∈{x. 0 < p x}. p i ∗ i) = (
∑

i≤n. p i ∗ i)
using bounds by (auto intro: sum.mono-neutral-cong-left)

from ‹finite {x. 0 < p x}› this sum show sum-mset (Abs-multiset p) = n
by (simp add: sum-mset-sum-count set-mset-Abs-multiset)

qed
ultimately show finite {x. 0 < p x} ∧ number-partition n (Abs-multiset p)

unfolding number-partition-def by auto
next

assume finite {x. 0 < p x} ∧ number-partition n (Abs-multiset p)
from this have finite {x. 0 < p x} 0 /∈# Abs-multiset p sum-mset (Abs-multiset

p) = n
unfolding number-partition-def by auto

from ‹finite {x. 0 < p x}› have (
∑

i∈{x. 0 < p x}. p i ∗ i) = n
using ‹ sum-mset (Abs-multiset p) = n›
by (simp add: sum-mset-sum-count set-mset-Abs-multiset)

have bounds:
∧

i. p i 6= 0 =⇒ 1 ≤ i ∧ i ≤ n
proof

fix i
assume p i 6= 0
from ‹¬ 0 ∈# Abs-multiset p› ‹finite {x. 0 < p x}› have p 0 = 0

using count-inI by force
from this ‹p i 6= 0 › show 1 ≤ i

by (metis One-nat-def leI less-Suc0 )
show i ≤ n
proof (rule ccontr)

assume ¬ i ≤ n
from this have i > n

using le-less-linear by blast
from this ‹p i 6= 0 › have p i ∗ i > n

by (auto simp add: less-le-trans)
from ‹p i 6= 0 › have (

∑
i∈{x. 0 < p x}. p i ∗ i) = p i ∗ i + (

∑
i∈{x. 0 <

p x} − {i}. p i ∗ i)
using ‹finite {x. 0 < p x}›
by (subst sum.insert-remove[symmetric]) (auto simp add: insert-absorb)

also from ‹p i ∗ i > n› have . . . > n by auto
finally show False using ‹(

∑
i∈{x. 0 < p x}. p i ∗ i) = n› by blast

qed
qed
moreover have (

∑
i≤n. p i ∗ i) = n

proof −
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have (
∑

i≤n. p i ∗ i) = (
∑

i∈{x. 0 < p x}. p i ∗ i)
using bounds by (auto intro: sum.mono-neutral-cong-right)

from this show ?thesis
using ‹(

∑
i∈{x. 0 < p x}. p i ∗ i) = n› by simp

qed
ultimately show p partitions n by (auto intro: partitionsI )

qed

lemma size-nat-multiset-eq:
fixes N :: nat multiset
assumes number-partition n N
shows size N = sum (count N ) {..n}

proof −
have set-mset N ⊆ {..sum-mset N}

by (auto dest: multi-member-split)
have size N = sum (count N ) (set-mset N )

by (rule size-multiset-overloaded-eq)
also have . . . = sum (count N ) {..sum-mset N}

using ‹set-mset N ⊆ {..sum-mset N}›
by (auto intro: sum.mono-neutral-cong-left count-inI )

finally show ?thesis
using ‹number-partition n N ›
unfolding number-partition-def by auto

qed

end

3 Cardinality of Number Partitions
theory Card-Number-Partitions
imports Number-Partition
begin

3.1 The Partition Function
fun Partition :: nat ⇒ nat ⇒ nat
where

Partition 0 0 = 1
| Partition 0 (Suc k) = 0
| Partition (Suc m) 0 = 0
| Partition (Suc m) (Suc k) = Partition m k + Partition (m − k) (Suc k)

lemma Partition-less:
assumes m < k
shows Partition m k = 0

using assms by (induct m k rule: Partition.induct) auto

lemma Partition-sum-Partition-diff :
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assumes k ≤ m
shows Partition m k = (

∑
i≤k. Partition (m − k) i)

using assms by (induct m k rule: Partition.induct) auto

lemma Partition-parts1 :
Partition (Suc m) (Suc 0 ) = 1

by (induct m) auto

lemma Partition-diag:
Partition (Suc m) (Suc m) = 1

by (induct m) auto

lemma Partition-diag1 :
Partition (Suc (Suc m)) (Suc m) = 1

by (induct m) auto

lemma Partition-parts2 :
shows Partition m 2 = m div 2

proof (induct m rule: nat-less-induct)
fix m
assume hypothesis: ∀n<m. Partition n 2 = n div 2
have (m = 0 ∨ m = 1 ) ∨ m ≥ 2 by auto
from this show Partition m 2 = m div 2
proof

assume m = 0 ∨ m = 1
from this show ?thesis by (auto simp add: numerals(2 ))

next
assume 2 ≤ m
from this obtain m ′ where m ′: m = Suc (Suc m ′) by (metis add-2-eq-Suc

le-Suc-ex)
from hypothesis this have Partition m ′ 2 = m ′ div 2 by simp
from this m ′ show ?thesis

using Partition-parts1 Partition.simps(4 )[of Suc m ′ Suc 0 ] div2-Suc-Suc
by (simp add: numerals(2 ) del: Partition.simps)

qed
qed

3.2 Cardinality of Number Partitions
lemma set-rewrite1 :
{p. p partitions Suc m ∧ sum p {..Suc m} = Suc k ∧ p 1 6= 0}
= (λp. p(1 := p 1 + 1 )) ‘ {p. p partitions m ∧ sum p {..m} = k} (is ?S =

?T )
proof

{
fix p
assume assms: p partitions Suc m sum p {..Suc m} = Suc k 0 < p 1
have p(1 := p 1 − 1 ) partitions m

using assms by (metis partitions-remove1 diff-Suc-1 )
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moreover have (
∑

i≤m. (p(1 := p 1 − 1 )) i) = k
using assms by (metis count-remove1 diff-Suc-1 )

ultimately have p(1 := p 1 − 1 ) ∈ {p. p partitions m ∧ sum p {..m} = k}
by simp

moreover have p = p(1 := p 1 − 1 , 1 := (p(1 := p 1 − 1 )) 1 + 1 )
using ‹0 < p 1 › by auto

ultimately have p ∈ (λp. p(1 := p 1 + 1 )) ‘ {p. p partitions m ∧ sum p
{..m} = k} by blast

}
from this show ?S ⊆ ?T by blast

next
{

fix p
assume assms: p partitions m sum p {..m} = k
have (p(1 := p 1 + 1 )) partitions Suc m (is ?g1 )

using assms by (metis partitions-insert1 Suc-eq-plus1 zero-less-one)
moreover have sum (p(1 := p 1 + 1 )) {..Suc m} = Suc k (is ?g2 )

using assms by (metis count-insert1 Suc-eq-plus1 )
moreover have (p(1 := p 1 + 1 )) 1 6= 0 (is ?g3 ) by auto
ultimately have ?g1 ∧ ?g2 ∧ ?g3 by simp

}
from this show ?T ⊆ ?S by auto

qed

lemma set-rewrite2 :
{p. p partitions m ∧ sum p {..m} = k ∧ p 1 = 0}
= (λp. (λi. p (i − 1 ))) ‘ {p. p partitions (m − k) ∧ sum p {..m − k} = k}

(is ?S = ?T )
proof

{
fix p
assume assms: p partitions m sum p {..m} = k p 1 = 0
have (λi. p (i + 1 )) partitions m − k

using assms partitions-decrease1 by blast
moreover from assms have sum (λi. p (i + 1 )) {..m − k} = k

using assms count-decrease1 by blast
ultimately have (λi. p (i + 1 )) ∈ {p. p partitions m − k ∧ sum p {..m − k}

= k} by simp
moreover have p = (λi. p ((i − 1 ) + 1 ))
proof (rule ext)

fix i show p i = p (i − 1 + 1 )
using assms by (cases i) (auto elim!: partitionsE)

qed
ultimately have p ∈ (λp. (λi. p (i − 1 ))) ‘ {p. p partitions m − k ∧ sum p

{..m − k} = k} by auto
}
from this show ?S ⊆ ?T by auto

next
{
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fix p
assume assms: p partitions m − k sum p {..m − k} = k
from assms have (λi. p (i − 1 )) partitions m (is ?g1 )

using partitions-increase1 by blast
moreover from assms have (

∑
i≤m. p (i − 1 )) = k (is ?g2 )

using count-increase1 by blast
moreover from assms have p 0 = 0 (is ?g3 )

by (auto elim!: partitionsE)
ultimately have ?g1 ∧ ?g2 ∧ ?g3 by simp

}
from this show ?T ⊆ ?S by auto

qed

theorem card-partitions-k-parts:
card {p. p partitions n ∧ (

∑
i≤n. p i) = k} = Partition n k

proof (induct n k rule: Partition.induct)
case 1
have eq: {p. p = (λx. 0 ) ∧ p 0 = 0} = {(λx. 0 )} by auto
show card {p. p partitions 0 ∧ sum p {..0} = 0} = Partition 0 0

by (simp add: partitions-zero eq)
next

case (2 k)
have eq: {p. p = (λx. 0 ) ∧ p 0 = Suc k} = {} by auto
show card {p. p partitions 0 ∧ sum p {..0} = Suc k} = Partition 0 (Suc k)

by (simp add: partitions-zero eq)
next

case (3 m)
have eq: {p. p partitions Suc m ∧ sum p {..Suc m} = 0} = {}

by (fastforce elim!: partitionsE simp add: le-Suc-eq)
from this show card {p. p partitions Suc m ∧ sum p {..Suc m} = 0} = Partition

(Suc m) 0
by (simp only: Partition.simps card.empty)

next
case (4 m k)
let ?set1 = {p. p partitions Suc m ∧ sum p {..Suc m} = Suc k ∧ p 1 6= 0}
let ?set2 = {p. p partitions Suc m ∧ sum p {..Suc m} = Suc k ∧ p 1 = 0}
have finite {p. p partitions Suc m}

by (simp add: finite-partitions)
from this have finite-sets: finite ?set1 finite ?set2 by simp+
have set-eq: {p. p partitions Suc m ∧ sum p {..Suc m} = Suc k} = ?set1 ∪ ?set2

by auto
have disjoint: ?set1 ∩ ?set2 = {} by auto
have inj1 : inj-on (λp. p(1 := p 1 + 1 )) {p. p partitions m ∧ sum p {..m} = k}

by (auto intro!: inj-onI ) (metis diff-Suc-1 fun-upd-idem-iff fun-upd-upd)
have inj2 : inj-on (λp i. p (i − 1 )) {p. p partitions m − k ∧ sum p {..m − k} =

Suc k}
by (auto intro!: inj-onI simp add: fun-eq-iff ) (metis add-diff-cancel-right ′)

have card1 : card ?set1 = Partition m k
using inj1 4 (1 ) by (simp only: set-rewrite1 card-image)
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have card2 : card ?set2 = Partition (m − k) (Suc k)
using inj2 4 (2 ) by (simp only: set-rewrite2 card-image diff-Suc-Suc)

have card {p. p partitions Suc m ∧ sum p {..Suc m} = Suc k} = Partition m k
+ Partition (m − k) (Suc k)

using finite-sets disjoint by (simp only: set-eq card-Un-disjoint card1 card2 )
from this show card {p. p partitions Suc m ∧ sum p {..Suc m} = Suc k} =

Partition (Suc m) (Suc k)
by auto

qed

theorem card-partitions:
card {p. p partitions n} = (

∑
k≤n. Partition n k)

proof −
have seteq: {p. p partitions n} =

⋃
((λk. {p. p partitions n ∧ (

∑
i≤n. p i) =

k}) ‘ {..n})
by (auto intro: partitions-parts-bounded)

have finite:
∧

k. finite {p. p partitions n ∧ sum p {..n} = k}
by (simp add: finite-partitions)

have card {p. p partitions n} = card (
⋃

((λk. {p. p partitions n ∧ (
∑

i≤n. p i)
= k}) ‘ {..n}))

using finite by (simp add: seteq)
also have ... = (

∑
x≤n. card {p. p partitions n ∧ sum p {..n} = x})

using finite by (subst card-UN-disjoint) auto
also have ... = (

∑
k≤n. Partition n k)

by (simp add: card-partitions-k-parts)
finally show ?thesis .

qed

lemma card-partitions-atmost-k-parts:
card {p. p partitions n ∧ sum p {..n} ≤ k} = Partition (n + k) k

proof −
have card {p. p partitions n ∧ sum p {..n} ≤ k} =

card (
⋃
((λk ′. {p. p partitions n ∧ sum p {..n} = k ′}) ‘ {..k}))

proof −
have {p. p partitions n ∧ sum p {..n} ≤ k} =
(
⋃

k ′≤k. {p. p partitions n ∧ sum p {..n} = k ′}) by auto
from this show ?thesis by simp

qed
also have card (

⋃
((λk ′. {p. p partitions n ∧ sum p {..n} = k ′}) ‘ {..k})) =

sum (λk ′. card {p. p partitions n ∧ sum p {..n} = k ′}) {..k}
using finite-partitions-k-parts by (subst card-UN-disjoint) auto

also have . . . = sum (λk ′. Partition n k ′) {..k}
using card-partitions-k-parts by simp

also have . . . = Partition (n + k) k
using Partition-sum-Partition-diff by simp

finally show ?thesis .
qed
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3.3 Cardinality of Number Partitions as Multisets of Natural
Numbers

lemma bij-betw-multiset-number-partition-with-size:
bij-betw count {N . number-partition n N ∧ size N = k} {p. p partitions n ∧ sum

p {..n} = k}
proof (rule bij-betw-byWitness[where f ′=Abs-multiset])

show ∀N∈{N . number-partition n N ∧ size N = k}. Abs-multiset (count N ) =
N

using count-inverse by blast
show ∀ p∈{p. p partitions n ∧ sum p {..n} = k}. count (Abs-multiset p) = p

by (auto simp add: partitions-imp-finite-elements)
show count ‘ {N . number-partition n N ∧ size N = k} ⊆ {p. p partitions n ∧

sum p {..n} = k}
by (auto simp add: count-partitions-iff size-nat-multiset-eq)

show Abs-multiset ‘ {p. p partitions n ∧ sum p {..n} = k} ⊆ {N . number-partition
n N ∧ size N = k}

using partitions-iff-Abs-multiset size-nat-multiset-eq by fastforce
qed

lemma bij-betw-multiset-number-partition-with-atmost-size:
bij-betw count {N . number-partition n N ∧ size N ≤ k} {p. p partitions n ∧ sum

p {..n} ≤ k}
proof (rule bij-betw-byWitness[where f ′=Abs-multiset])

show ∀N∈{N . number-partition n N ∧ size N ≤ k}. Abs-multiset (count N ) =
N

using count-inverse by blast
show ∀ p∈{p. p partitions n ∧ sum p {..n} ≤ k}. count (Abs-multiset p) = p

by (auto simp add: partitions-imp-finite-elements)
show count ‘ {N . number-partition n N ∧ size N ≤ k} ⊆ {p. p partitions n ∧

sum p {..n} ≤ k}
by (auto simp add: count-partitions-iff size-nat-multiset-eq)

show Abs-multiset ‘ {p. p partitions n ∧ sum p {..n} ≤ k} ⊆ {N . number-partition
n N∧ size N ≤ k}

using partitions-iff-Abs-multiset size-nat-multiset-eq by fastforce
qed

theorem card-number-partitions-with-atmost-k-parts:
shows card {N . number-partition n N ∧ size N ≤ x} = Partition (n + x) x

proof −
have bij-betw count {N . number-partition n N ∧ size N ≤ x} {p. p partitions n
∧ sum p {..n} ≤ x}

by (rule bij-betw-multiset-number-partition-with-atmost-size)
from this have card {N . number-partition n N ∧ size N ≤ x} = card {p. p

partitions n ∧ sum p {..n} ≤ x}
by (rule bij-betw-same-card)

also have card {p. p partitions n ∧ sum p {..n} ≤ x} = Partition (n + x) x
by (rule card-partitions-atmost-k-parts)

finally show ?thesis .
qed
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theorem card-partitions-with-k-parts:
card {N . number-partition n N ∧ size N = k} = Partition n k

proof −
have bij-betw count {N . number-partition n N ∧ size N = k} {p. p partitions n
∧ sum p {..n} = k}

by (rule bij-betw-multiset-number-partition-with-size)
from this have card {N . number-partition n N ∧ size N = k} = card {p. p

partitions n ∧ sum p {..n} = k}
by (rule bij-betw-same-card)

also have . . . = Partition n k by (rule card-partitions-k-parts)
finally show ?thesis .

qed

3.4 Cardinality of Number Partitions with only 1-parts
lemma number-partition1-eq-replicate-mset:
{N . (∀n. n∈# N −→ n = 1 ) ∧ number-partition n N} = {replicate-mset n 1}

proof
show {N . (∀n. n ∈# N −→ n = 1 ) ∧ number-partition n N} ⊆ {replicate-mset

n 1}
proof

fix N
assume N : N ∈ {N . (∀n. n ∈# N −→ n = 1 ) ∧ number-partition n N}
have N = replicate-mset n 1
proof (rule multiset-eqI )

fix i
have count N 1 = sum-mset N
proof cases

assume N = {#}
from this show ?thesis by auto

next
assume N 6= {#}
from this N have 1 ∈# N by blast
from this N show ?thesis

by (auto simp add: sum-mset-sum-count sum.remove[where x=1 ] simp
del: One-nat-def )

qed
from N this show count N i = count (replicate-mset n 1 ) i

unfolding number-partition-def by (auto intro: count-inI )
qed
from this show N ∈ {replicate-mset n 1} by simp

qed
next

show {replicate-mset n 1} ⊆ {N . (∀n. n ∈# N −→ n = 1 ) ∧ number-partition
n N}

unfolding number-partition-def by auto
qed
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lemma card-number-partitions-with-only-parts-1-eq-1 :
assumes n ≤ x
shows card {N . (∀n. n∈# N −→ n = 1 ) ∧ number-partition n N ∧ size N ≤

x} = 1 (is card ?N = -)
proof −

have ∀N ∈ {N . (∀n. n ∈# N −→ n = 1 ) ∧ number-partition n N}. size N = n
unfolding number-partition1-eq-replicate-mset by simp

from this number-partition1-eq-replicate-mset ‹n ≤ x› have ?N = {replicate-mset
n 1} by auto

from this show ?thesis by simp
qed

lemma card-number-partitions-with-only-parts-1-eq-0 :
assumes x < n
shows card {N . (∀n. n∈# N −→ n = 1 ) ∧ number-partition n N ∧ size N ≤

x} = 0 (is card ?N = -)
proof −

have ∀N ∈ {N . (∀n. n ∈# N −→ n = 1 ) ∧ number-partition n N}. size N = n
unfolding number-partition1-eq-replicate-mset by simp

from this number-partition1-eq-replicate-mset‹x < n› have ?N = {} by auto
from this show ?thesis by (simp only: card.empty)

qed

end
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