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Abstract

This entry provides three lemmas to count the number of multi-
sets of a given size and finite carrier set. The first lemma provides a
cardinality formula assuming that the multiset’s elements are chosen
from the given carrier set. The latter two lemmas provide formulas
assuming that the multiset’s elements also cover the given carrier set,
i.e., each element of the carrier set occurs in the multiset at least once.

The proof of the first lemma uses the argument of the recurrence
relation for counting multisets [1]. The proof of the second lemma is
straightforward, and the proof of the third lemma is easily obtained
using the first cardinality lemma. A challenge for the formalization is
the derivation of the required induction rule, which is a special combi-
nation of the induction rules for finite sets and natural numbers. The
induction rule is derived by defining a suitable inductive predicate and
transforming the predicate’s induction rule.
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1 Cardinality of Multisets
theory Card-Multisets
imports

HOL−Library.Multiset
begin

1.1 Additions to Multiset Theory
lemma mset-set-set-mset-subseteq:
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mset-set (set-mset M ) ⊆# M
proof (induct M )

case empty
show ?case by simp

next
case (add x M )
from this show ?case
proof (cases x ∈# M )

assume x ∈# M
from this have mset-set (set-mset (M + {#x#})) = mset-set (set-mset M )

by (simp add: insert-absorb)
from this add.hyps show ?thesis

using subset-mset.trans by fastforce
next

assume ¬ x ∈# M
from this add.hyps have {#x#} + mset-set (set-mset M ) ⊆# M + {#x#}

by (simp add: insert-subset-eq-iff )
from this ‹¬ x ∈# M › show ?thesis by simp

qed
qed

lemma size-mset-set-eq-card:
assumes finite A
shows size (mset-set A) = card A

using assms by (induct A) auto

lemma card-set-mset-leq:
card (set-mset M ) ≤ size M

by (induct M ) (auto simp add: card-insert-le-m1 )

1.2 Lemma to Enumerate Sets of Multisets
lemma set-of-multisets-eq:

assumes x /∈ A
shows {M . set-mset M ⊆ insert x A ∧ size M = Suc k} =
{M . set-mset M ⊆ A ∧ size M = Suc k} ∪
(λM . M + {#x#}) ‘ {M . set-mset M ⊆ insert x A ∧ size M = k}

proof −
from ‹x /∈ A› have {M . set-mset M ⊆ insert x A ∧ size M = Suc k} =
{M . set-mset M ⊆ A ∧ size M = Suc k} ∪
{M . set-mset M ⊆ insert x A ∧ size M = Suc k ∧ x ∈# M}
by auto

moreover have {M . set-mset M ⊆ insert x A ∧ size M = Suc k ∧ x ∈# M} =
(λM . M + {#x#}) ‘ {M . set-mset M ⊆ insert x A ∧ size M = k} (is ?S =

?T )
proof

show ?S ⊆ ?T
proof

fix M
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assume M ∈ ?S
from this have M = M − {#x#} + {#x#} by auto
moreover have M − {#x#} ∈ {M . set-mset M ⊆ insert x A ∧ size M = k}
proof −

have set-mset (M − {#x#} + {#x#}) ⊆ insert x A
using ‹M ∈ ?S› by force
moreover have size (M − {#x#} + {#x#}) = Suc k ∧ x ∈# M −

{#x#} + {#x#}
using ‹M ∈ ?S› by force

ultimately show ?thesis by force
qed
ultimately show M ∈ ?T by auto

qed
next

show ?T ⊆ ?S by force
qed
ultimately show ?thesis by auto

qed

1.3 Derivation of Suitable Induction Rule
context
begin

private inductive R :: ′a set ⇒ nat ⇒ bool
where

finite A =⇒ R A 0
| R {} k
| finite A =⇒ x /∈ A =⇒ R A (Suc k) =⇒ R (insert x A) k =⇒ R (insert x A)
(Suc k)

private lemma R-eq-finite:
R A k ←→ finite A

proof
assume R A k
from this show finite A by cases auto

next
assume finite A
from this show R A k
proof (induct A)

case empty
from this show ?case by (rule R.intros(2 ))

next
case insert
from this show ?case
proof (induct k)

case 0
from this show ?case

by (intro R.intros(1 ) finite.insertI )
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next
case Suc
from this show ?case

by (metis R.simps Zero-neq-Suc diff-Suc-1 )
qed

qed
qed

lemma finite-set-and-nat-induct[consumes 1 , case-names zero empty step]:
assumes finite A
assumes

∧
A. finite A =⇒ P A 0

assumes
∧

k. P {} k
assumes

∧
A k x. finite A =⇒ x /∈ A =⇒ P A (Suc k) =⇒ P (insert x A) k =⇒

P (insert x A) (Suc k)
shows P A k

proof −
from ‹finite A› have R A k by (subst R-eq-finite)
from this assms(2−4 ) show ?thesis by (induct A k) auto

qed

end

1.4 Finiteness of Sets of Multisets
lemma finite-multisets:

assumes finite A
shows finite {M . set-mset M ⊆ A ∧ size M = k}

using assms
proof (induct A k rule: finite-set-and-nat-induct)

case zero
from this show ?case by auto

next
case empty
from this show ?case by auto

next
case (step A k x)
from this show ?case

using set-of-multisets-eq[OF ‹x /∈ A›] by simp
qed

1.5 Cardinality of Multisets
lemma card-multisets:

assumes finite A
shows card {M . set-mset M ⊆ A ∧ size M = k} = (card A + k − 1 ) choose k

using assms
proof (induct A k rule: finite-set-and-nat-induct)

case (zero A)
assume finite (A :: ′a set)
have {M . set-mset M ⊆ A ∧ size M = 0} = {{#}} by auto
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from this show card {M . set-mset M ⊆ A ∧ size M = 0} = card A + 0 − 1
choose 0

by simp
next

case (empty k)
show card {M . set-mset M ⊆ {} ∧ size M = k} = card {} + k − 1 choose k

by (cases k) (auto simp add: binomial-eq-0 )
next

case (step A k x)
let ?S1 = {M . set-mset M ⊆ A ∧ size M = Suc k}
and ?S2 = {M . set-mset M ⊆ insert x A ∧ size M = k}
assume hyps1 : card ?S1 = card A + Suc k − 1 choose Suc k
assume hyps2 : card ?S2 = card (insert x A) + k − 1 choose k
have finite-sets: finite ?S1 finite ((λM . M + {#x#}) ‘ ?S2)

using ‹finite A› by (auto simp add: finite-multisets)
have inj: inj-on (λM . M + {#x#}) ?S2 by (rule inj-onI ) auto
have card {M . set-mset M ⊆ insert x A ∧ size M = Suc k} =

card (?S1 ∪ (λM . M + {#x#}) ‘ ?S2)
using set-of-multisets-eq ‹x /∈ A› by fastforce

also have . . . = card ?S1 + card ((λM . M + {#x#}) ‘ ?S2)
using finite-sets ‹x /∈ A› by (subst card-Un-disjoint) auto

also have . . . = card ?S1 + card ?S2

using inj by (auto intro: card-image)
also have . . . = (card A + Suc k − 1 choose Suc k) + (card (insert x A) + k −

1 choose k)
using hyps1 hyps2 by simp

also have . . . = card (insert x A) + Suc k − 1 choose Suc k
using ‹x /∈ A› ‹finite A› by simp

finally show ?case .
qed

lemma card-too-small-multisets-covering-set:
assumes finite A
assumes k < card A
shows card {M . set-mset M = A ∧ size M = k} = 0

proof −
from ‹k < card A› have eq: {M . set-mset M = A ∧ size M = k} = {}

using card-set-mset-leq Collect-empty-eq leD by auto
from this show ?thesis by (metis card.empty)

qed

lemma card-multisets-covering-set:
assumes finite A
assumes card A ≤ k
shows card {M . set-mset M = A ∧ size M = k} = (k − 1 ) choose (k − card A)

proof −
have {M . set-mset M = A ∧ size M = k} = (λM . M + mset-set A) ‘
{M . set-mset M ⊆ A ∧ size M = k − card A} (is ?S = ?f ‘ ?T )

proof
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show ?S ⊆ ?f ‘ ?T
proof

fix M
assume M ∈ ?S
from this have M = M − mset-set A + mset-set A

by (auto simp add: mset-set-set-mset-subseteq subset-mset.diff-add)
moreover from ‹M ∈ ?S› have M − mset-set A ∈ ?T
by (auto simp add: mset-set-set-mset-subseteq size-Diff-submset size-mset-set-eq-card

in-diffD)
ultimately show M ∈ ?f ‘ ?T by auto

qed
next

from ‹finite A› ‹card A ≤ k› show ?f ‘ ?T ⊆ ?S
by (auto simp add: size-mset-set-eq-card)+

qed
moreover have inj-on ?f ?T by (rule inj-onI ) auto
ultimately have card ?S = card ?T by (simp add: card-image)
also have . . . = card A + (k − card A) − 1 choose (k − card A)

using ‹finite A› by (simp only: card-multisets)
also have . . . = (k − 1 ) choose (k − card A)

using ‹card A ≤ k› by auto
finally show ?thesis .

qed

end
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