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Abstract

This entry provides formulae for counting the number of equivalence
relations and partial equivalence relations over a finite carrier set with
given cardinality.

To count the number of equivalence relations, we provide bijections
between equivalence relations and set partitions [4], and then transfer
the main results of the two AFP entries, Cardinality of Set Parti-
tions [1] and Spivey’s Generalized Recurrence for Bell Numbers [2],
to theorems on equivalence relations. To count the number of partial
equivalence relations, we observe that counting partial equivalence re-
lations over a set A is equivalent to counting all equivalence relations
over all subsets of the set A. From this observation and the results on
equivalence relations, we show that the cardinality of partial equiva-
lence relations over a finite set of cardinality n is equal to the n + 1-th
Bell number [3].
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1 Cardinality of Equivalence Relations

theory Card-Equiv-Relations
imports
Card-Partitions. Card-Partitions
Bell-Numbers-Spivey. Bell-Numbers
begin

1.1 Bijection between Equivalence Relations and Set Parti-
tions

1.1.1 Possibly Interesting Theorem for HOL. Equiv-Relations

This theorem was historically useful in this theory, but is now after some
proof refactoring not needed here anymore. Possibly it is an interesting fact
about equivalence relations, though.
lemma equiv-quotient-eq-quotient-on-UNIV:

assumes equiv A R

shows A // R = (UNIV // R) — {{}}
(proof)

1.1.2 Dedicated Facts for Bijection Proof

lemma equiv-relation-of-partition-of

assumes equiv A R

shows {(z, y). 3X€A // Rz e X Nye X} =R
(proof )

1.1.3 Bijection Proof
lemma bij-betw-partition-of
bij-betw (AR. A // R) {R. equiv A R} {P. partition-on A P}
(proof)
lemma bij-betw-partition-of-equiv-with-k-classes:
bij-betw (AR. A // R) {R. equiv A R A card (A /] R) = k} {P. partition-on A
P A card P = k}
(proof)

1.2 Finiteness of Equivalence Relations

lemma finite-equiv:

assumes finite A

shows finite {R. equiv A R}
(proof)

1.3 Cardinality of Equivalence Relations

theorem card-equiv-rel-eq-card-partitions:



card {R. equiv A R} = card {P. partition-on A P}
(proof)

corollary card-equiv-rel-eq-Bell:
assumes finite A
shows card {R. equiv A R} = Bell (card A)

(proof)

corollary card-equiv-rel-eq-sum-Stirling:
assumes finite A
shows card {R. equiv A R} = sum (Stirling (card A)) {..card A}

(proof)

theorem card-equiv-k-classes-eq-card-partitions-k-parts:

card {R. equiv A R A card (A /] R) = k} = card {P. partition-on A P A card
P =k}
(proof)

corollary
assumes finite A
shows card {R. equiv A R A card (A // R) = k} = Stirling (card A) k

(proof)

end

2 Cardinality of Partial Equivalence Relations

theory Card-Partial-Equiv-Relations
imports

Card-Equiv-Relations
begin

2.1 Definition of Partial Equivalence Relation

definition partial-equiv :: 'a set = (‘a x 'a) set = bool
where
partial-equiv A R = (R C A x A A sym R A trans R)

lemma partial-equivl:
assumes R C A x A sym R trans R
shows partial-equiv A R

(proof)

lemma partial-equiv-iff:
shows partial-equiv A R +— (A’ C A. equiv A’ R)
(proof)



2.2 Construction of all Partial Equivalence Relations for a
Given Set

definition all-partial-equivs-on :: 'a set = (('a x 'a) set) set
where
all-partial-equivs-on A =
do {
k < {0..card A};
Al {A" A" C AN card A’ = k};
{R. equiv A" R}
}

lemma all-partial-equivs-on:

assumes finite A

shows all-partial-equivs-on A = {R. partial-equiv A R}
(proof)

2.3 Injectivity of the Set Construction

lemma equiv-inject:
assumes equiv A R equiv B R
shows A = B

(proof)

lemma injectivity:
assumes (A’ C AN card A’=k) N (A" C AN card A" = k')
assumes equiv A’ R A equiv A" R’
assumes R = R’
shows A" = A" k =k’
(proof)

2.4 Cardinality Theorem of Partial Equivalence Relations

theorem card-partial-equiv:
assumes finite A
shows card {R. partial-equiv A R} = Bell (card A + 1)

(proof)

end
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