
Cardinality of Equivalence Relations

Lukas Bulwahn

September 13, 2023

Abstract

This entry provides formulae for counting the number of equivalence
relations and partial equivalence relations over a finite carrier set with
given cardinality.

To count the number of equivalence relations, we provide bijections
between equivalence relations and set partitions [4], and then transfer
the main results of the two AFP entries, Cardinality of Set Parti-
tions [1] and Spivey’s Generalized Recurrence for Bell Numbers [2],
to theorems on equivalence relations. To count the number of partial
equivalence relations, we observe that counting partial equivalence re-
lations over a set A is equivalent to counting all equivalence relations
over all subsets of the set A. From this observation and the results on
equivalence relations, we show that the cardinality of partial equiva-
lence relations over a finite set of cardinality n is equal to the n+1-th
Bell number [3].

Contents
1 Cardinality of Equivalence Relations 2

1.1 Bijection between Equivalence Relations and Set Partitions . 2
1.1.1 Possibly Interesting Theorem for HOL.Equiv-Relations 2
1.1.2 Dedicated Facts for Bijection Proof 2
1.1.3 Bijection Proof . 3

1.2 Finiteness of Equivalence Relations 4
1.3 Cardinality of Equivalence Relations 4

2 Cardinality of Partial Equivalence Relations 5
2.1 Definition of Partial Equivalence Relation 5
2.2 Construction of all Partial Equivalence Relations for a Given

Set . 6
2.3 Injectivity of the Set Construction 7
2.4 Cardinality Theorem of Partial Equivalence Relations 8

1

1 Cardinality of Equivalence Relations
theory Card-Equiv-Relations
imports

Card-Partitions.Card-Partitions
Bell-Numbers-Spivey.Bell-Numbers

begin

1.1 Bijection between Equivalence Relations and Set Parti-
tions

1.1.1 Possibly Interesting Theorem for HOL.Equiv-Relations

This theorem was historically useful in this theory, but is now after some
proof refactoring not needed here anymore. Possibly it is an interesting fact
about equivalence relations, though.
lemma equiv-quotient-eq-quotient-on-UNIV :

assumes equiv A R
shows A // R = (UNIV // R) − {{}}

proof
show UNIV // R − {{}} ⊆ A // R
proof

fix X
assume X ∈ UNIV // R − {{}}
from this obtain x where X = R ‘‘ {x} and X 6= {}

by (auto elim!: quotientE)
from this have x ∈ A

using ‹equiv A R› equiv-class-eq-iff by fastforce
from this ‹X = R ‘‘ {x}› show X ∈ A // R

by (auto intro!: quotientI)
qed

next
show A // R ⊆ UNIV // R − {{}}
proof

fix X
assume X ∈ A // R
from this have X 6= {}

using ‹equiv A R› in-quotient-imp-non-empty by auto
moreover from ‹X ∈ A // R› have X ∈ UNIV // R

by (metis UNIV-I assms proj-Eps proj-preserves)
ultimately show X ∈ UNIV // R − {{}} by simp

qed
qed

1.1.2 Dedicated Facts for Bijection Proof
lemma equiv-relation-of-partition-of :

assumes equiv A R
shows {(x, y). ∃X∈A // R. x ∈ X ∧ y ∈ X} = R

2

proof
show {(x, y). ∃X∈A // R. x ∈ X ∧ y ∈ X} ⊆ R
proof

fix xy
assume xy ∈ {(x, y). ∃X∈A // R. x ∈ X ∧ y ∈ X}
from this obtain x y and X where xy = (x, y)

and X ∈ A // R and x ∈ X y ∈ X
by auto

from ‹X ∈ A // R› obtain z where X = R ‘‘ {z}
by (auto elim: quotientE)

show xy ∈ R
using ‹xy = (x, y)› ‹X = R ‘‘ {z}› ‹x ∈ X› ‹y ∈ X› ‹equiv A R›
by (simp add: equiv-class-eq-iff)

qed
next

show R ⊆ {(x, y). ∃X∈A // R. x ∈ X ∧ y ∈ X}
proof

fix xy
assume xy ∈ R
obtain x y where xy = (x, y) by fastforce
from ‹xy ∈ R› have (x, y) ∈ R

using ‹xy = (x, y)› by simp
have R ‘‘ {x} ∈ A // R

using ‹equiv A R› ‹(x, y) ∈ R›
by (simp add: equiv-class-eq-iff quotientI)

moreover have x ∈ R ‘‘ {x}
using ‹(x, y) ∈ R› ‹equiv A R›
by (meson equiv-class-eq-iff equiv-class-self)

moreover have y ∈ R ‘‘ {x}
using ‹(x, y) ∈ R› ‹equiv A R› by simp

ultimately have (x, y) ∈ {(x, y). ∃X∈A // R. x ∈ X ∧ y ∈ X}
by auto

from this show xy ∈ {(x, y). ∃X∈A // R. x ∈ X ∧ y ∈ X}
using ‹xy = (x, y)› by simp

qed
qed

1.1.3 Bijection Proof
lemma bij-betw-partition-of :

bij-betw (λR. A // R) {R. equiv A R} {P. partition-on A P}
proof (rule bij-betw-byWitness[where f ′=λP. {(x, y). ∃X∈P. x ∈ X ∧ y ∈ X}])

show ∀R∈{R. equiv A R}. {(x, y). ∃X∈A // R. x ∈ X ∧ y ∈ X} = R
by (simp add: equiv-relation-of-partition-of)

show ∀P∈{P. partition-on A P}. A // {(x, y). ∃X∈P. x ∈ X ∧ y ∈ X} = P
by (simp add: partition-on-eq-quotient)

show (λR. A // R) ‘ {R. equiv A R} ⊆ {P. partition-on A P}
using partition-on-quotient by auto

show (λP. {(x, y). ∃X∈P. x ∈ X ∧ y ∈ X}) ‘ {P. partition-on A P} ⊆ {R.

3

equiv A R}
using equiv-partition-on by auto

qed

lemma bij-betw-partition-of-equiv-with-k-classes:
bij-betw (λR. A // R) {R. equiv A R ∧ card (A // R) = k} {P. partition-on A

P ∧ card P = k}
proof (rule bij-betw-byWitness[where f ′=λP. {(x, y). ∃X∈P. x ∈ X ∧ y ∈ X}])

show ∀R∈{R. equiv A R ∧ card (A // R) = k}. {(x, y). ∃X∈A // R. x ∈ X ∧
y ∈ X} = R

by (auto simp add: equiv-relation-of-partition-of)
show ∀P∈{P. partition-on A P ∧ card P = k}. A // {(x, y). ∃X∈P. x ∈ X ∧

y ∈ X} = P
by (auto simp add: partition-on-eq-quotient)

show (λR. A // R) ‘ {R. equiv A R ∧ card (A // R) = k} ⊆ {P. partition-on
A P ∧ card P = k}

using partition-on-quotient by auto
show (λP. {(x, y). ∃X∈P. x ∈ X ∧ y ∈ X}) ‘ {P. partition-on A P ∧ card P

= k} ⊆ {R. equiv A R ∧ card (A // R) = k}
using equiv-partition-on by (auto simp add: partition-on-eq-quotient)

qed

1.2 Finiteness of Equivalence Relations
lemma finite-equiv:

assumes finite A
shows finite {R. equiv A R}

proof −
have bij-betw (λR. A // R) {R. equiv A R} {P. partition-on A P}

by (rule bij-betw-partition-of)
from this show finite {R. equiv A R}

using ‹finite A› finitely-many-partition-on by (simp add: bij-betw-finite)
qed

1.3 Cardinality of Equivalence Relations
theorem card-equiv-rel-eq-card-partitions:

card {R. equiv A R} = card {P. partition-on A P}
proof −

have bij-betw (λR. A // R) {R. equiv A R} {P. partition-on A P}
by (rule bij-betw-partition-of)

from this show card {R. equiv A R} = card {P. partition-on A P}
by (rule bij-betw-same-card)

qed

corollary card-equiv-rel-eq-Bell:
assumes finite A
shows card {R. equiv A R} = Bell (card A)

using assms Bell-altdef card-equiv-rel-eq-card-partitions by force

4

corollary card-equiv-rel-eq-sum-Stirling:
assumes finite A
shows card {R. equiv A R} = sum (Stirling (card A)) {..card A}

using assms card-equiv-rel-eq-Bell Bell-Stirling-eq by simp

theorem card-equiv-k-classes-eq-card-partitions-k-parts:
card {R. equiv A R ∧ card (A // R) = k} = card {P. partition-on A P ∧ card

P = k}
proof −

have bij-betw (λR. A // R) {R. equiv A R ∧ card (A // R) = k} {P. partition-on
A P ∧ card P = k}

by (rule bij-betw-partition-of-equiv-with-k-classes)
from this show card {R. equiv A R ∧ card (A // R) = k} = card {P. partition-on

A P ∧ card P = k}
by (rule bij-betw-same-card)

qed

corollary
assumes finite A
shows card {R. equiv A R ∧ card (A // R) = k} = Stirling (card A) k

using card-equiv-k-classes-eq-card-partitions-k-parts
card-partition-on[OF ‹finite A›] by metis

end

2 Cardinality of Partial Equivalence Relations
theory Card-Partial-Equiv-Relations
imports

Card-Equiv-Relations
begin

2.1 Definition of Partial Equivalence Relation
definition partial-equiv :: ′a set ⇒ (′a × ′a) set ⇒ bool
where

partial-equiv A R = (R ⊆ A × A ∧ sym R ∧ trans R)

lemma partial-equivI :
assumes R ⊆ A × A sym R trans R
shows partial-equiv A R

using assms unfolding partial-equiv-def by auto

lemma partial-equiv-iff :
shows partial-equiv A R ←→ (∃A ′ ⊆ A. equiv A ′ R)

proof
assume partial-equiv A R
from ‹partial-equiv A R› have R ‘‘ A ⊆ A

unfolding partial-equiv-def by blast

5

moreover have equiv (R ‘‘ A) R
proof (rule equivI)

from ‹partial-equiv A R› show sym R
unfolding partial-equiv-def by blast

from ‹partial-equiv A R› show trans R
unfolding partial-equiv-def by blast

show refl-on (R ‘‘ A) R
proof (rule refl-onI)

show R ⊆ R ‘‘ A × R ‘‘ A
proof

fix p
assume p ∈ R
obtain x y where p = (x, y) by fastforce
moreover have x ∈ R ‘‘ A

using ‹p ∈ R› ‹p = (x, y)› ‹partial-equiv A R›
partial-equiv-def sym-def by fastforce

moreover have y ∈ R ‘‘ A
using ‹p ∈ R› ‹p = (x, y)› ‹R ‘‘ A ⊆ A› ‹x ∈ R ‘‘ A› by blast

ultimately show p ∈ R ‘‘ A × R ‘‘ A by auto
qed

next
fix y
assume y ∈ R ‘‘ A
from this obtain x where (x, y) ∈ R by auto
from ‹(x, y) ∈ R› have (y, x) ∈ R

using ‹sym R› by (meson symE)
from ‹(x, y) ∈ R› ‹(y, x) ∈ R› show (y, y) ∈ R

using ‹trans R› by (meson transE)
qed

qed
ultimately show ∃A ′⊆A. equiv A ′ R by blast

next
assume ∃A ′⊆A. equiv A ′ R
from this obtain A ′ where A ′ ⊆ A and equiv A ′ R by blast
show partial-equiv A R
proof (rule partial-equivI)

from ‹equiv A ′ R› ‹A ′ ⊆ A› show R ⊆ A × A
using equiv-class-eq-iff by fastforce

from ‹equiv A ′ R› show sym R
using equivE by blast

from ‹equiv A ′ R› show trans R
using equivE by blast

qed
qed

2.2 Construction of all Partial Equivalence Relations for a
Given Set

definition all-partial-equivs-on :: ′a set ⇒ ((′a × ′a) set) set

6

where
all-partial-equivs-on A =

do {
k ← {0 ..card A};
A ′← {A ′. A ′ ⊆ A ∧ card A ′ = k};
{R. equiv A ′ R}
}

lemma all-partial-equivs-on:
assumes finite A
shows all-partial-equivs-on A = {R. partial-equiv A R}

proof
show all-partial-equivs-on A ⊆ {R. partial-equiv A R}
proof

fix R
assume R ∈ all-partial-equivs-on A
from this obtain A ′ where A ′ ⊆ A and equiv A ′ R

unfolding all-partial-equivs-on-def by auto
from this have partial-equiv A R

using partial-equiv-iff by blast
from this show R ∈ {R. partial-equiv A R} ..

qed
next

show {R. partial-equiv A R} ⊆ all-partial-equivs-on A
proof

fix R
assume R ∈ {R. partial-equiv A R}
from this obtain A ′ where A ′ ⊆ A and equiv A ′ R

using partial-equiv-iff by (metis mem-Collect-eq)
moreover have card A ′ ∈ {0 ..card A}

using ‹A ′ ⊆ A› ‹finite A› by (simp add: card-mono)
ultimately show R ∈ all-partial-equivs-on A

unfolding all-partial-equivs-on-def
by (auto simp del: atLeastAtMost-iff)

qed
qed

2.3 Injectivity of the Set Construction
lemma equiv-inject:

assumes equiv A R equiv B R
shows A = B

proof −
from assms have R ⊆ A × A R ⊆ B × B by (simp add: equiv-type)+
moreover from assms have ∀ x∈A. (x, x) ∈ R ∀ x∈B. (x, x) ∈ R

by (simp add: eq-equiv-class)+
ultimately show ?thesis

using mem-Sigma-iff subset-antisym subset-eq by blast
qed

7

lemma injectivity:
assumes (A ′ ⊆ A ∧ card A ′ = k) ∧ (A ′′ ⊆ A ∧ card A ′′ = k ′)
assumes equiv A ′ R ∧ equiv A ′′ R ′

assumes R = R ′

shows A ′ = A ′′ k = k ′

proof −
from ‹R = R ′› assms(2) show A ′ = A ′′

using equiv-inject by fast
from this assms(1) show k = k ′ by simp

qed

2.4 Cardinality Theorem of Partial Equivalence Relations
theorem card-partial-equiv:

assumes finite A
shows card {R. partial-equiv A R} = Bell (card A + 1)

proof −
let ?expr = do {

k ← {0 ..card A};
A ′← {A ′. A ′ ⊆ A ∧ card A ′ = k};
{R. equiv A ′ R}
}

have card {R. partial-equiv A R} = card (all-partial-equivs-on A)
using ‹finite A› by (simp add: all-partial-equivs-on)

also have card (all-partial-equivs-on A) = card ?expr
unfolding all-partial-equivs-on-def ..

also have card ?expr = (
∑

k = 0 ..card A. (card A choose k) ∗ Bell k)
proof −

let ?S >>= ?comp = ?expr
{

fix k
assume k: k ∈ {..card A}
let ?expr = ?comp k
let ?S >>= ?comp = ?expr
have finite ?S using ‹finite A› by simp
moreover {

fix A ′

assume A ′: A ′ ∈ {A ′. A ′ ⊆ A ∧ card A ′ = k}
from this have A ′ ⊆ A and card A ′ = k by auto
let ?expr = ?comp A ′

have finite A ′

using ‹finite A› ‹A ′ ⊆ A› by (simp add: finite-subset)
have card ?expr = Bell k

using ‹finite A› ‹finite A ′› ‹A ′ ⊆ A› ‹card A ′ = k›
by (simp add: card-equiv-rel-eq-Bell)

moreover have finite ?expr
using ‹finite A ′› by (simp add: finite-equiv)

ultimately have finite ?expr ∧ card ?expr = Bell k by blast

8

} note inner = this
moreover have disjoint-family-on ?comp ?S

by (injectivity-solver rule: injectivity(1))
moreover have card ?S = card A choose k

using ‹finite A› by (simp add: n-subsets)
ultimately have card ?expr = (card A choose k) ∗ Bell k (is - = ?formula)

by (subst card-bind-constant) auto
moreover have finite ?expr

using ‹finite ?S› inner by (auto intro!: finite-bind)
ultimately have finite ?expr ∧ card ?expr = ?formula by blast

}
moreover have finite ?S by simp
moreover have disjoint-family-on ?comp ?S

by (injectivity-solver rule: injectivity(2))
ultimately show card ?expr = (

∑
k = 0 ..card A. (card A choose k) ∗ Bell k)

by (subst card-bind) auto
qed
also have . . . = (

∑
k≤card A. (card A choose k) ∗ Bell k)

by (auto intro: sum.cong)
also have . . . = Bell (card A + 1)

using Bell-recursive-eq by simp
finally show ?thesis .

qed

end

References

[1] L. Bulwahn. Cardinality of set partitions. Archive of Formal Proofs,
Dec. 2015. http://www.isa-afp.org/entries/Card_Partitions.shtml, For-
mal proof development.

[2] L. Bulwahn. Spivey’s generalized recurrence for bell numbers. Archive
of Formal Proofs, May 2016. http://www.isa-afp.org/entries/Bell_
Numbers_Spivey.shtml, Formal proof development.

[3] N. J. A. Sloane. A000110: Bell or exponential numbers: number of ways
to partition a set of n labeled elements. In The On-Line Encyclopedia of
Integer Sequences. https://oeis.org/A000110.

[4] Wikipedia. Equivalence relation — wikipedia, the free encyclopedia,
2016. [Online; accessed 23-May-2016].

9

http://www.isa-afp.org/entries/Card_Partitions.shtml
http://www.isa-afp.org/entries/Bell_Numbers_Spivey.shtml
http://www.isa-afp.org/entries/Bell_Numbers_Spivey.shtml

	Cardinality of Equivalence Relations
	Bijection between Equivalence Relations and Set Partitions
	Possibly Interesting Theorem for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HOL.Equiv-Relations
	Dedicated Facts for Bijection Proof
	Bijection Proof

	Finiteness of Equivalence Relations
	Cardinality of Equivalence Relations

	Cardinality of Partial Equivalence Relations
	Definition of Partial Equivalence Relation
	Construction of all Partial Equivalence Relations for a Given Set
	Injectivity of the Set Construction
	Cardinality Theorem of Partial Equivalence Relations

