A formalisation of the Cocke-Younger-Kasami
algorithm

Maksym Bortin

March 19, 2025

Abstract

The theory provides a formalisation of the Cocke-Younger-Kasami
algorithm [1] (CYK for short), an approach to solving the word problem
for context-free languages. CYK decides if a word is in the languages
generated by a context-free grammar in Chomsky normal form. The
formalized algorithm is executable.

Contents

1 Basic modelling 2
1.1 Grammars in Chomsky normal form 2
1.2 Derivation by grammars 2
1.3 The generated language semantics 3

2 Basic properties 3
2.1 Properties of generated languages)

3 Abstract specification of CYK 5
3.1 Properties of subword 6
3.2 Propertiesof CYK 7

4 Implementation 7
4.1 Maincycle. 7
4.2 Initialisation phase L. 9
4.3 The overall procedure 10

theory CYK
imports Main
begin

The theory is structured as follows. First section deals with modelling
of grammars, derivations, and the language semantics. Then the basic prop-
erties are proved. Further, CYK is abstractly specified and its underlying
recursive relationship proved. The final section contains a prototypical im-
plementation accompanied by a proof of its correctness.

1 Basic modelling

1.1 Grammars in Chomsky normal form

A grammar in Chomsky normal form is here simply modelled by a list of
production rules (the type CNG below), each having a non-terminal symbol
on the lhs and either two non-terminals or one terminal symbol on the rhs.

datatype ('n, t) RHS = Branch 'n 'n
| Leaf 't

type-synonym ('n, t) CNG = ('n x ('n, 't) RHS) list
Abbreviating the list append symbol for better readability

abbreviation list-append :: ‘a list = 'a list = 'a list (infixr > 65)
where zs - ys = zs Q ys

1.2 Derivation by grammars

A word form (or sentential form) may be built of both non-terminal and
terminal symbols, as opposed to a word that contains only terminals. By
the usage of disjoint union, non-terminals are injected into a word form by
Inl whereas terminals — by Inr.

type-synonym ('n, 't) word-form = ('n + 't) list

type-synonym 't word = 't list

A single step derivation relation on word forms is induced by a gram-
mar in the standard way, replacing a non-terminal within a word form in
accordance to the production rules.

definition DSTEP :: ('n, 't) CNG = (('n, 't) word-form x ('n, 't) word-form)
set
where DSTEP G = {(I - [Inl N] - r, z) | L N r rhs z. (N, rhs) € set G A
(case Ths of
Branch AB=x=1-[Inl A, Inl B] - r
| Leaf t = x =1 [Inrt] - r)}

abbreviation DSTEP’ :: ('n, 't) word-form = ('n, 't) CNG = ('n, 't) word-form
= bool (- —— - [60, 61, 60] 61)
where w —G— w' = (w, w’) € DSTEP G

abbreviation DSTEP-reflc :: ('n, 't) word-form = ('n, t) CNG = ('n, 't)
word-form = bool («- ——= - [60, 61, 60] 61)
where w —G—=~ w’' = (w, w') € (DSTEP G)~

abbreviation DSTEP-transc :: ('n, 't) word-form = ('n, t) CNG = ('n, 't)
word-form = bool («- ——T - [60, 61, 60] 61)
where w —G—1 w' = (w, w’) € (DSTEP G)*

abbreviation DSTEP-rtransc :: ('n, 't) word-form = ('n, 't) CNG = ('n, 't)
word-form = bool (- —-—* - [60, 61, 60] 61)
where w —G—* w' = (w, w') € (DSTEP G)*

1.3 The generated language semantics

The language generated by a grammar from a non-terminal symbol com-
prises all words that can be derived from the non-terminal in one or more
steps. Notice that by the presented grammar modelling, languages contain-
ing the empty word cannot be generated. Hence in rare situations when such
languages are required, the empty word case should be treated separately.
definition Lang :: ('n, 't) CNG = 'n = 't word set

where Lang G S = {w. [Inl S| —G—=" map Inr w }

nbn

So, for instance, a grammar generating the language a"b" from the non-

terminal /S’ might look as follows.

definition G-anbn =
[(//S//’ Branch //A// //T//),
(//S/l’ B,r,anch //A// //B//)7
(//T//, B,',,anch //S/I //B/I),
(//14//7 Leaf //a///)7

(//B//, Leaf //b//)]

Now the term Lang G-anbn 'S’ denotes the set of words of the form
a™b™ with n > 0. This is intuitively clear, but not straight forward to show,
and a lengthy proof for that is out of scope.

2 Basic properties

lemma prod-into-DSTEP1 :

(S, Branch A B) € set G =
L-[InlS]-R—-G— L-[InlA,InlB]-R
(proof)

lemma prod-into-DSTEP2 :
(S, Leaf a) € set G =
L-[InlS]-R—-G—L-[Inra-R

(proof)

lemma DSTEP-D :

s -Gt =

L NRrhs.s=L-[Inl N|- RA (N, rhs) € set G A
(VA B. ths = Branch A B — t = L - [Inl A, Inl B] - R) A
(Vz. rhs = Leaf t — t = L - [Inr z] - R)
(proof)

lemma DSTEP-append :

assumes a: s —G— ¢

shows L - s - R—G—L -t - R
(proof)

lemma DSTEP-star-mono :
s —G—=* t = length s < length t
(proof)

lemma DSTEP-comp :

assumes a: [- r —G— t

shows 3!’ r'. | - G="UANr —-G==r'ANt=1-7r'
(proof)

theorem DSTEP-star-compl :
assumes A: [- r —G—=*t
shows 3" r'. | —G=*U'ANr —=G=*r'"Nt=1"-71'

(proof)

theorem DSTEP-star-comp?2 :
assumes A: | —G—=* [

and B: r —G—* r’
shows | - r —G—=*1"-r’/
(proof)

lemma DSTEP-trancl-term :

assumes A: [Inl S| —G—* ¢
and B: Inr z € sett
shows IN. (N, Leaf z) € set G

(proof)

2.1 Properties of generated languages

lemma Lang-no-Nil :
w € Lang G S = w # ||
(proof)

lemma Lang-rtrancl-eq :
(w € Lang G S) = [Inl S] —G—* map Inr w (is 2L = (%p € ?R*))
(proof)

lemma Lang-term :
w € Lang G S =
Vo € set w. AN. (N, Leaf z) € set G

(proof)

lemma Lang-eql :
([x] € Lang G S) = ((S, Leaf z) € set G)
(proof)

theorem Lang-eq?2 :

(w e Lang G S N\ 1 < length w) =

(34 B. (S, Branch A B) € set G A (3lr.w=1-r ANl€ Lang G AN r € Lang
G 1))

(is 2L = ?R)

{proof)

3 Abstract specification of CYK

A subword of a word w, starting at the position 4 (first element is at the
position 0) and having the length j, is defined as follows.

definition subword w i j = take j (drop i w)

Thus, to any subword of the given word w CYK assigns all non-terminals
from which this subword is derivable by the grammar G.

definition CYK G wij = {S. subword wij € Lang G S}

3.1 Properties of subword

lemma subword-length :
i+ j < length w = length(subword w i j) = j
(proof)

lemma subword-nthl1 :

i+ 7 <lengthw =k < j =
(subword w i)k = w!(i + k)
(proof)

lemma subword-nth2 :
assumes A: i + 1 < length w
shows subword w i 1 = [w!{]

(proof)

lemma subword-self :
subword w 0 (length w) = w

(proof)

lemma take-split[rule-format] :
Vnm. n<lengthzs — n < m—
take n zs - take (m — n) (drop n xs) = take m xs

(proof)

lemma subword-split :

i+ j<lengthw = 0< k= k< j=

subword w i j = subword w i k - subword w (i + k) (j — k)
(proof)

lemma subword-split2 :
assumes A: subword wij=1-r
and B: i + j < length w
and C: 0 < length I
and D: 0 < length r
shows [= subword w i (length 1) A r = subword w (i + length 1) (j — length I)
(proof)

3.2 Properties of CYK

lemma CYK-Lang :
(S € CYK G w0 (length w)) = (w € Lang G S)

(proof)

lemma CYK-eql :

i+ 1 < length w =

CYK Gwil={S.(S, Leaf (wi)) € set G}
(proof)

theorem CYK-eq2 :
assumes A: i + j < length w
and B: 1 <j
shows CYK Gwij={X| XA Bk. (X, Branch A B) € set G N A € CYK G
wikANBeCYKGuw (i+k)(G—kANI<EkANE<j}
(proof)

4 Implementation

One of the particularly interesting features of CYK implementation is that
it follows the principles of dynamic programming, constructing a table of
solutions for sub-problems in the bottom-up style reusing already stored
results.

4.1 Main cycle

This is an auxiliary implementation of the membership test on lists.

fun mem :: 'a = 'a list = bool
where

mem a [|] = False |

mem a (z#xs) = (z = a V mem a xs)

lemma mem/[simp)] :
mem x zs = (z € set xs)

(proof)

The purpose of the following is to collect non-terminals that appear on
the lhs of a production such that the first non-terminal on its rhs appears in
the first of two given lists and the second non-terminal — in the second list.
fun match-prods :: ('n, 't) CNG = 'n list = 'n list = 'n list
where match-prods [] Is rs = [] |

match-prods ((X, Branch A B)#ps) ls rs =

(if mem A Is A mem B rs then X # match-prods ps ls rs
else match-prods ps ls rs) |

match-prods ((X, Leaf a)#ps) ls rs = match-prods ps ls s

lemma match-prods :
(X € set(match-prods G ls 1s)) =
(A € set ls. AB € set rs. (X, Branch A B) € set G)

(proof)

The following function is the inner cycle of the algorithm. The parame-
ters ¢ and j identify a subword starting at ¢ with the length j, whereas k is
used to iterate through its splits (which are of course subwords as well) all
having the length greater 0 but less than j. The parameter T represents a
table containing CYK solutions for those splits.

function inner :: (/

'n list

where inner G T i kj =

(if k < j then match-prods G (T'(i, k)) (T(i + k,j — k) Qinner G Ti (k+ 1) j
else [])

(proof)

termination
(proof)

n, 't) CNG = (nat x nat = 'n list) = nat = nat = nat =

declare inner.simps[simp del]

lemma inner :

(X € set(inner G T i kj)) =

BlLE<IANI<jAX € set(match-prods G (T(i, 1)) (T(i + 1,5 —1))))
(is 2L G Tikj=?R G Tikj)

(proof)

Now the main part of the algorithm just iterates through all subwords
up to the given length len, calls inner on these, and stores the results in the
table T'. The length j is supposed to be greater than 1 — the subwords of
length 1 will be handled in the initialisation phase below.
function main :: ('n, t) CNG = (nat x nat = 'n list) = nat = nat = nat =
(nat x nat = 'n list)
where main G Tlenij = (let T' = T((i, j) := inner G T i 17) in

if i + j < len then main G T'len (i + 1) j
else if j < len then main G T len 0 (j + 1)
else T)

(proof)
termination

(proof)

declare main.simps[simp del]

lemma main :
assumes [< j
and ¢ + j < length w
and \i'j. j'<j= 1 <j = '+ j < length w = set(T(i', j))) = CYK
Guwij'
and A\i’ i’ < i =i+ j < length w = set(T(i’, j)) = CYK Gwi'j
and 1 <j'
and i’ + j' < length w
shows set((main G T (length w) i 5)(i', j))) = CYK G wi'j'
(proof)

4.2 Initialisation phase

Similarly to match-prods above, here we collect non-terminals from which
the given terminal symbol can be derived.
fun init-match :: ('n, 't) CNG = 't = 'n list
where init-match [| t =[] |
init-match ((X, Branch A B)#ps) t = init-match ps t |
init-match ((X, Leaf a)#ps) t = (if a = t then X # init-match ps t
else init-match ps t)

lemma init-match :

(X € set(init-match G a)) =
((X, Leaf a) € set G)
(proof)

Representing the empty table.
definition emptyT = (A(4, j). [])

The following function initialises the empty table for subwords of length
1, i.e. each symbol occurring in the given word.

fun nit’ = ('n, 't) CNG = 't list = nat = nat x nat = 'n list
where init’ G [| k = emptyT |
init’ G (t#ts) k = (init’ G ts (k + 1))((k, 1) := init-match G t)

lemma init’ :

assumes ¢ + 1 < length w

shows set(init’ G w 0 (i, 1)) = CYK Gw i1
(proof)

The next version of initialization refines init’ in that it takes additional
account of the cases when the given word is empty or contains a terminal
symbol that does not have any matching production (that is, init-match is
an empty list). No initial table is then needed as such words can immediately
be rejected.

fun init :: ('n, 't) CNG = 't list = nat = (nat x nat = 'n list) option

where init G [| k = None |
init G [t] k = (case (init-match G t) of
[| = None

| zs = Some(emptyT((k, 1) := xs))) |
init G (t#ts) k = (case (init-match G t) of
[= None
| zs = (case (init G ts (k + 1)) of
None = None
| Some T = Some(T((k, 1) := xs))))

lemma init1:
nit' G w k = T if <init G w k = Some T»
(proof)

lemma nit2 :

(init G w k = None) =

(w=1[V (3a € set w. init-match G a = []))
(proof)

4.3 The overall procedure

definition cyk G S w = (case init G w 0 of
None = False
| Some T = let len = length w in
if len = 1 then mem S (T(0, 1))
else let T' = main G T len 0 2 in
mem S (T'(0, len)))

theorem cyk :
cyk G Sw = (w € Lang G S)
(proof)

value [code]
let G = [(0::int, Branch 1 2), (0, Branch 2 3),
(1, Branch 2 1), (1, Leaf "a'),
(2, Branch 3 3), (2, Leaf "'b"),
(3, Branch 1 2), (3, Leaf "a'")]
in map (cyk G 0)
[[Ilbll,//all,/la//,/lb//7//a//],

[//b//7//a/l7//bll7//a//”

end

10

References

[1] D. H. Younger. Recognition and parsing of context-free languages in
time n3. Information and Control, 10(2):189 — 208, 1967.

11

	Basic modelling
	Grammars in Chomsky normal form
	Derivation by grammars
	The generated language semantics

	Basic properties
	Properties of generated languages

	Abstract specification of CYK
	Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 subword
	Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 CYK

	Implementation
	Main cycle
	Initialisation phase
	The overall procedure

