
Verification of the CVM algorithm with a New Recursive
Analysis Technique

Emin Karayel, Derek Khu, Kuldeep S. Meel, Yong Kiam Tan,
and Seng Joe Watt

March 19, 2025

Abstract

In 2022, Chakraborty et al. [1] published a streaming algorithm (hence-
forth, the CVM algorithm) for the distinct elements problem, that deviated
considerably from the state-of-the art, due to its simplicity and avoidance of
standard derandomization techniques, while still maintaining a close to optimal
logarithmic space complexity.

In this entry, we verify the CVM algorithm’s correctness using a new tech-
nique which simplifies the analysis considerably compared to the orignal proof
by Chakraborty et al. The main idea is based on a probabilistic invariant that
allows us to derive concentration bounds using the Cramér–Chernoff method.

This new technique opens up the possible algorithm design space, and we
introduce a new variant of the CVM algorithm, that is total, and also has an
additional property in addition to concentration: unbiasedness. This means
the expected result of the algorithm is exactly equal to the desired result. The
latter is also a new property, that neither the original CVM algorithm nor
classic algorithms for the distinct elements problem possess.

1

Contents
1 Preliminary Definitions and Results 3

2 Abstract Algorithm 5

3 The Original CVM Algorithm 12

4 The New Unbiased Algorithm 15

A Informal Proof 19
A.1 Loop Invariant . 19
A.2 Concentration . 22
A.3 Unbiasedness . 24

2

1 Preliminary Definitions and Results
theory CVM-Preliminary

imports HOL−Probability.SPMF
begin

lemma bounded-finite:
assumes ‹finite S›
shows ‹bounded (f ‘ S)›
〈proof 〉

lemma of-bool-power :
assumes ‹y > 0 ›
shows ‹(of-bool x::real) ^ (y::nat) = of-bool x›
〈proof 〉

lemma card-filter-mono:
assumes ‹finite S›
shows ‹card (Set.filter p S) ≤ card S›
〈proof 〉

fun foldM ::
‹(′a ⇒ (′b ⇒ ′c) ⇒ ′c) ⇒ (′b ⇒ ′c) ⇒ (′d ⇒ ′b ⇒ ′a) ⇒ ′d list ⇒ ′b ⇒ ′c› where
‹foldM - return ′ - [] val = return ′ val› |
‹foldM bind ′ return ′ f (x # xs) val =

bind ′ (f x val) (foldM bind ′ return ′ f xs)›

abbreviation foldM-pmf ::
‹(′a ⇒ ′b ⇒ ′b pmf) ⇒ ′a list ⇒ ′b ⇒ ′b pmf › where
‹foldM-pmf ≡ foldM bind-pmf return-pmf ›

lemma foldM-pmf-snoc: ‹foldM-pmf f (xs@[y]) val = bind-pmf (foldM-pmf f xs val) (f y)›
〈proof 〉

abbreviation foldM-spmf
:: ‹(′a ⇒ ′b ⇒ ′b spmf) ⇒ ′a list ⇒ ′b ⇒ ′b spmf › where
‹foldM-spmf ≡ foldM bind-spmf return-spmf ›

lemma foldM-spmf-snoc: ‹foldM-spmf f (xs@[y]) val = bind-spmf (foldM-spmf f xs val) (f
y)›
〈proof 〉

abbreviation ‹prob-fail ≡ (λx. pmf x None)›

abbreviation ‹fail-spmf ≡ return-pmf None›

abbreviation fails-or-satisfies :: ‹(′a ⇒ bool) ⇒ ′a option ⇒ bool› where
‹fails-or-satisfies ≡ case-option True›

lemma prob-fail-foldM-spmf-le :
fixes

p :: real and
P :: ‹ ′b ⇒ bool› and

3

f :: ‹ ′a ⇒ ′b ⇒ ′b spmf ›
assumes

‹
∧

x y z. P y =⇒ z ∈ set-spmf (f x y) =⇒ P z›
‹
∧

x val. P val =⇒ prob-fail (f x val) ≤ p›
‹P val›

shows ‹prob-fail (foldM-spmf f xs val) ≤ real (length xs) ∗ p›
〈proof 〉

lemma foldM-spmf-of-pmf-eq :
shows ‹foldM-spmf (λx y. spmf-of-pmf (f x y)) xs = spmf-of-pmf ◦ foldM-pmf f xs›
(is ?thesis-0)

and ‹foldM-spmf (λx y. spmf-of-pmf (f x y)) xs val = spmf-of-pmf (foldM-pmf f xs
val)›
(is ?thesis-1)
〈proof 〉

end

4

2 Abstract Algorithm

This section verifies an abstract version of the CVM algorithm, where the sub-
sampling step can be an arbitrary randomized algorithm fulfilling an expectation
invariant.
The abstract algorithm is presented in Algorithm 1.

Algorithm 1 Abstract CVM algorithm.
Input: Stream elements a1, . . . , al, 0 < ε, 0 < δ < 1, 1/2

≤ f < 1
Output: An estimate R, s.t., P (|R− |A|| > ε|A|) ≤ δ where A := {a1, . . . , al}.

1: χ← {}, p← 1, n ≥
⌈
12
ε2

ln(3lδ)
⌉

2: for i← 1 to l do
3: b

$←− Ber(p) . insert ai with probability p (and remove it otherwise)
4: if b then
5: χ← χ ∪ {ai}
6: else
7: χ← χ− {ai}
8: if |χ| = n then
9: χ

$←− subsample(χ) . abstract subsampling step
10: p← pf

11: return |χ|
p . estimate cardinality of A

For the subsampling step we assume that it fulfills the following inequality:

∫
subsample(χ)

(∏
i∈S

g(i ∈ ω)

)
dω ≤

∏
i∈S

(∫
Ber(f)

g(ω) dω

)
(1)

for all non-negative functions g and S ⊆ χ, where Ber(p) denotes the Bernoulli-
distribution.
The original CVM algorithm uses a subsampling step where each element of χ is
retained independently with probability f . It is straightforward to see that this
fulfills the above condition (with equality).
The new CVM algorithm variant proposed in this work uses a subsampling step
where a random nf -sized subset of χ is kept. This also fulfills the above inequality,
although this is harder to prove and will be explained in more detail in Section 4.
In this section, we will verify that the above abstract algorithm indeed fulfills the
desired conditions on its estimate, as well as unbiasedness, i.e., that: E[R] = |A|.
The part that is not going to be verified in this section, is the fact that the algorithm
keeps at most n elements in the state χ, because it is not unconditionally true, but
will be ensured (by different means) for the concrete instantiations in the following
sections.
An informal version of this proof is presented in Appendix A. For important lem-
mas and theorems, we include a reference to the corresponding statement in the
appendix.
theory CVM-Abstract-Algorithm

5

imports
HOL−Decision-Procs.Approximation
CVM-Preliminary
Finite-Fields.Finite-Fields-More-PMF
Universal-Hash-Families.Universal-Hash-Families-More-Product-PMF

begin

unbundle no vec-syntax

datatype ′a state = State (state-χ: ‹ ′a set›) (state-p: real)

datatype ′a run-state = FinalState ‹ ′a list› | IntermState ‹ ′a list› ‹ ′a›

lemma run-state-induct:
assumes ‹P (FinalState [])›
assumes ‹

∧
xs x. P (FinalState xs) =⇒ P (IntermState xs x)›

assumes ‹
∧

xs x. P (IntermState xs x) =⇒ P (FinalState (xs@[x]))›
shows ‹P result›
〈proof 〉

locale cvm-algo-abstract =
fixes n :: nat and f :: real and subsample :: ‹ ′a set ⇒ ′a set pmf ›
assumes n-gt-0 : ‹n > 0 ›
assumes f-range: ‹f ∈ {1/2 ..<1}›
assumes subsample:

‹
∧

U x . card U = n =⇒ x ∈ set-pmf (subsample U) =⇒ x ⊆ U ›
assumes subsample-inequality:

‹
∧

g U S . S ⊆ U
=⇒ card U = n
=⇒ range g ⊆ {0 ::real..}
=⇒ (

∫
ω. (

∏
s∈S . g(s ∈ ω)) ∂subsample U) ≤ (

∏
s∈S . (

∫
ω. g ω ∂bernoulli-pmf f))›

begin

Line 1 of Algorithm 1:
definition initial-state :: ‹ ′a state› where

‹initial-state ≡ State {} 1 ›

Lines 3–7:
fun step-1 :: ‹ ′a ⇒ ′a state ⇒ ′a state pmf › where

‹step-1 a (State χ p) =
do {

b ← bernoulli-pmf p;
let χ = (if b then χ ∪ {a} else χ − {a});

return-pmf (State χ p)
}›

Lines 8–10:
fun step-2 :: ‹ ′a state ⇒ ′a state pmf › where

‹step-2 (State χ p) = do {
if card χ = n
then do {

6

χ ← subsample χ;
return-pmf (State χ (p∗f))
} else do {

return-pmf (State χ p)
}
}›

schematic-goal step-1-def : ‹step-1 x σ = ?x›
〈proof 〉

schematic-goal step-2-def : ‹step-2 σ = ?x›
〈proof 〉

Lines 1–10:
definition run-steps :: ‹ ′a list ⇒ ′a state pmf › where

‹run-steps xs ≡ foldM-pmf (λx σ. step-1 x σ >>= step-2) xs initial-state›

Line 11:
definition estimate :: ‹ ′a state ⇒ real› where

‹estimate σ = card (state-χ σ) / state-p σ›

lemma run-steps-snoc: ‹run-steps (xs @[x]) = run-steps xs >>= step-1 x >>= step-2 ›
〈proof 〉

fun run-state-pmf where
‹run-state-pmf (FinalState xs) = run-steps xs› |
‹run-state-pmf (IntermState xs x) = run-steps xs >>= step-1 x›

fun len-run-state where
‹len-run-state (FinalState xs) = length xs› |
‹len-run-state (IntermState xs x) = length xs›

fun run-state-set where
‹run-state-set (FinalState xs) = set xs› |
‹run-state-set (IntermState xs x) = set xs ∪ {x}›

lemma finite-run-state-set[simp]: ‹finite (run-state-set σ)› 〈proof 〉

lemma subsample-finite-pmf :
assumes ‹card U = n›
shows ‹finite (set-pmf (subsample U))›
〈proof 〉

lemma finite-run-state-pmf : ‹finite (set-pmf (run-state-pmf %))›
〈proof 〉

lemma state-χ-run-state-pmf : ‹AE σ in run-state-pmf %. state-χ σ ⊆ run-state-set %›
〈proof 〉

lemma state-χ-finite: ‹AE σ in run-state-pmf %. finite (state-χ σ)›
〈proof 〉

lemma state-p-range: ‹AE σ in run-state-pmf %. state-p σ ∈ {0<..1}›

7

〈proof 〉

Lemma 1:
lemma run-steps-preserves-expectation-le:

fixes ϕ :: ‹real ⇒ bool ⇒ real›
assumes phi :

‹
∧

x b. [[0 < x; x ≤ 1]] =⇒ ϕ x b ≥ 0 ›
‹
∧

p x. [[0 < p; p ≤ 1 ; 0 < x; x ≤ 1]] =⇒ (
∫
ω. ϕ x ω ∂bernoulli-pmf p) ≤ ϕ (x / p)

True›
‹mono-on {0 ..1} (λx. ϕ x False)›

defines ‹aux ≡ λ S σ. (
∏

x ∈ S . ϕ (state-p σ) (x ∈ state-χ σ))›
assumes ‹S ⊆ run-state-set %›
shows ‹measure-pmf .expectation (run-state-pmf %) (aux S) ≤ ϕ 1 True ^ card S›
〈proof 〉

Lemma 2:
lemma run-steps-preserves-expectation-le ′ :

fixes q :: real and h :: ‹real ⇒ real›
assumes h:

‹0 < q› ‹q ≤ 1 ›
‹concave-on {0 .. 1 / q} h›
‹
∧

x. [[0 ≤ x; x ∗ q ≤ 1]] =⇒ h x ≥ 0 ›
defines

‹aux ≡ λS σ. (
∏

x ∈ S . of-bool (state-p σ ≥ q) ∗ h (of-bool (x ∈ state-χ σ) / state-p
σ))›

assumes ‹S ⊆ run-state-set %›
shows ‹(

∫
τ . aux S τ ∂run-state-pmf %) ≤ (h 1) ^ card S› (is ‹?L ≤ ?R›)

〈proof 〉

Analysis of the case where n ≤ card (set xs):
context

fixes xs :: ‹ ′a list›
begin

private abbreviation ‹A ≡ real (card (set xs))›

context
assumes set-larger-than-n: ‹card (set xs) ≥ n›

begin

private definition ‹q = real n / (4 ∗ card (set xs))›

lemma q-range: ‹q ∈ {0<..1/4}›
〈proof 〉

lemma mono-nonnegI :
assumes ‹

∧
x. x ∈ I =⇒ h ′ x ≥ 0 ›

assumes ‹
∧

x. x ∈ I =⇒ (h has-real-derivative (h ′ x)) (at x)›
assumes ‹x ∈ I ∩ {0 ..}› ‹convex I › ‹0 ∈ I › ‹h 0 ≥ 0 ›
shows ‹h x ≥ 0 ›
〈proof 〉

8

lemma upper-tail-bound-helper :
assumes ‹x ∈ {0<..1 ::real}›
defines ‹h ≡ (λx. − q ∗ x2 / 3 − ln (1 + q ∗ x) + q ∗ ln (1 + x) ∗ (1 + x))›
shows ‹h x ≥ 0 ›
〈proof 〉 definition ϑ where ‹ϑ t x = 1 + q ∗ x ∗ (exp (t / q) − 1)›

lemma ϑ-concave: ‹concave-on {0 ..1 / q} (ϑ t)›
〈proof 〉

lemma ϑ-ge-exp-1 :
assumes ‹x ∈ {0 ..1/q}›
shows ‹exp (t ∗ x) ≤ ϑ t x›
〈proof 〉

lemma ϑ-ge-exp:
assumes ‹y ≥ q›
shows ‹exp (t / y) ≤ ϑ t (1 / y)›
〈proof 〉

lemma ϑ-nonneg:
assumes ‹x ∈ {0 ..1/q}›
shows ‹ϑ t x ≥ 0 › ‹ϑ t x > 0 ›
〈proof 〉

lemma ϑ-0 : ‹ϑ t 0 = 1 › 〈proof 〉

lemma tail-bound-aux:
assumes ‹run-state-set % ⊆ set xs› ‹c > 0 ›
defines ‹A ′ ≡ real (card (run-state-set %))›
shows ‹measure (run-state-pmf %) {ω. exp (t ∗ estimate ω) ≥ c ∧ state-p ω ≥ q} ≤ ϑ t

1 powr A ′/c›
(is ‹?L ≤ ?R›)

〈proof 〉

Lemma 3:
lemma upper-tail-bound:

assumes ‹ε ∈ {0<..1 ::real}›
assumes ‹run-state-set % ⊆ set xs›
shows ‹measure (run-state-pmf %) {ω. estimate ω ≥ (1+ε)∗A ∧ state-p ω ≥ q} ≤

exp(−real n/12∗ε2)›
(is ‹?L ≤ ?R›)

〈proof 〉

Lemma 4:
lemma low-p:

shows ‹measure (run-steps xs) {σ. state-p σ < q} ≤ real (length xs) ∗ exp(−real n/12)›
(is ‹?L ≤ ?R›)

〈proof 〉

lemma lower-tail-bound-helper :
assumes ‹x ∈ {0<..<1 ::real}›
defines ‹h ≡ (λx. − q ∗ x2 / 2 − ln (1 − q ∗ x) + q ∗ ln (1 − x) ∗ (1 − x))›
shows ‹h x ≥ 0 ›

9

〈proof 〉

Lemma 5:
lemma lower-tail-bound:

assumes ‹ε ∈ {0<..<1 ::real}›
shows ‹measure (run-steps xs) {ω. estimate ω ≤ (1−ε) ∗ A ∧ state-p ω ≥ q} ≤ exp(−real

n/8∗ε2)›
(is ‹?L ≤ ?R›)

〈proof 〉

lemma correctness-aux:
assumes ‹ε ∈ {0<..<1 ::real}› ‹δ ∈ {0<..<1 ::real}›
assumes ‹real n ≥ 12/ε^2 ∗ ln (3∗real (length xs) /δ)›
shows ‹measure (run-steps xs) {ω. |estimate ω − A| > ε∗A } ≤ δ›
(is ‹?L ≤ ?R›)

〈proof 〉

end

lemma deterministic-phase:
assumes ‹card (run-state-set σ) < n›
shows ‹run-state-pmf σ = return-pmf (State (run-state-set σ) 1)›
〈proof 〉

Theorem 1:
theorem correctness:

fixes ε δ :: real
assumes ‹ε ∈ {0<..<1}› ‹δ ∈ {0<..<1}›
assumes ‹real n ≥ 12 / ε2 ∗ ln (3 ∗ real (length xs) / δ)›
shows ‹measure (run-steps xs) {ω. |estimate ω − A| > ε ∗ A} ≤ δ›
〈proof 〉

lemma p-pos: ‹∃M∈{0<..1}. AE ω in run-steps xs. state-p ω ≥ M ›
〈proof 〉

lemma run-steps-expectation-sing:
assumes i: ‹i ∈ set xs›
shows ‹measure-pmf .expectation (run-steps xs) (λω. of-bool (i ∈ state-χ ω) / state-p ω)

= 1 ›
(is ‹?L = -›)
〈proof 〉

Subsection A.3:
corollary unbiasedness:

fixes σ :: ‹ ′a run-state›
shows ‹measure-pmf .expectation (run-steps xs) estimate = real (card (set xs))›
(is ‹?L = -›)

〈proof 〉

end

end

10

end

11

3 The Original CVM Algorithm

In this section, we verify the algorithm as presented by Chakrabory et al. [1] (repli-
cated, here, in Algorithm 2), with the following caveat:
In the original algorithm the elements are removed with probability f := 1

2 in the
subsampling step. The version verified here allows for any f ∈ [12 , e

−1/12].

Algorithm 2 Original CVM algorithm.
Input: Stream elements a1, . . . , al, 0 < ε, 0 < δ < 1, f subsampling param.
Output: An estimate R, s.t., P (|R− |A|| > ε|A|) ≤ δ where A := {a1, . . . , al}.

1: χ← {}, p← 1, n ≥
⌈
12
ε2

ln(6lδ)
⌉

2: for i← 1 to l do
3: b

$←− Ber(p) . insert ai with probability p (and remove it otherwise)
4: if b then
5: χ← χ ∪ {ai}
6: else
7: χ← χ− {ai}
8: if |χ| = n then
9: χ

$←− subsample(χ) . keep each element of χ indep. with prob. f
10: p← pf

11: if |χ| = n then
12: return ⊥
13: return |χ|

p . estimate cardinality of A

The first step of the proof is identical to the original proof [1], where the above
algorithm is approximated by a second algorithm, where lines 11–12 are removed,
i.e., the two algorithms behave identically, unless the very improbable event—where
the subsampling step fails to remove any elements—occurs. It is possible to show
that the total variational distance between the two algorithms is at most δ

2 .
In the second step, we verify that the probability that the second algorithm returns
an estimate outside of the desired interval is also at most δ

2 . This, of course, works by
noticing that it is an instance of the abstract algorithm we introduced in Section 2.
In combination, we conclude a failure probability of δ for the unmodified version of
the algorithm.
On the other hand, the fact that the number of elements in the buffer is at most n
can be seen directly from Algorithm 2.
theory CVM-Original-Algorithm

imports CVM-Abstract-Algorithm
begin

context
fixes f :: real
fixes n :: nat
assumes f-range: ‹f ∈ {1/2 ..exp(−1/12)}›
assumes n-gt-0 : ‹n > 0 ›

begin

12

Line 1:
definition initial-state :: ‹ ′a state› where

‹initial-state = State {} 1 ›

Lines 3–7:
fun step-1 :: ‹ ′a ⇒ ′a state ⇒ ′a state spmf › where

‹step-1 a (State χ p) =
do {

b ← bernoulli-pmf p;
let χ = (if b then χ ∪ {a} else χ − {a});

return-spmf (State χ p)
}›

definition subsample :: ‹ ′a set ⇒ ′a set spmf › where
‹subsample χ =

do {
keep-in-χ ← prod-pmf χ (λ-. bernoulli-pmf f);
return-spmf (Set.filter keep-in-χ χ)
}›

Lines 8–10:
fun step-2 :: ‹ ′a state ⇒ ′a state spmf › where

‹step-2 (State χ p) =
do {

if card χ = n then do {
χ ← subsample χ;
return-spmf (State χ (p ∗ f))
} else

return-spmf (State χ p)
}›

Lines 11–12:
fun step-3 :: ‹ ′a state ⇒ ′a state spmf › where

‹step-3 (State χ p) =
do {

if card χ = n
then fail-spmf
else return-spmf (State χ p)
}›

Lines 1–12:
definition run-steps :: ‹ ′a list ⇒ ′a state spmf › where

‹run-steps xs ≡ foldM-spmf (λx σ. step-1 x σ >>= step-2 >>= step-3) xs initial-state›

Line 13:
definition estimate :: ‹ ′a state ⇒ real› where

‹estimate σ = card (state-χ σ) / state-p σ›

definition run-algo :: ‹ ′a list ⇒ real spmf › where
‹run-algo xs = map-spmf estimate (run-steps xs)›

13

schematic-goal step-1-m-def : ‹step-1 x σ = ?x›
〈proof 〉

schematic-goal step-2-m-def : ‹step-2 σ = ?x›
〈proof 〉

schematic-goal step-3-m-def : ‹step-3 σ = ?x›
〈proof 〉

lemma ord-spmf-remove-step3 :
‹ord-spmf (=) (step-1 x σ >>= step-2 >>= step-3) (step-1 x σ >>= step-2)›
〈proof 〉

lemma ord-spmf-run-steps:
‹ord-spmf (=) (run-steps xs) (foldM-spmf (λx σ. step-1 x σ >>= step-2) xs initial-state)›
〈proof 〉

lemma f-range-simple: ‹f ∈ {1/2 ..<1}›
〈proof 〉

Main result:
theorem correctness:

fixes xs :: ‹ ′a list›
assumes ‹ε ∈ {0<..<1}› ‹δ ∈ {0<..<1}›
assumes ‹real n ≥ 12 / ε2 ∗ ln (6 ∗ real (length xs) / δ)›
defines ‹A ≡ real (card (set xs))›
shows ‹P(ω in run-algo xs. fails-or-satisfies (λR. |R − A| > ε ∗ A) ω) ≤ δ›
(is ‹?L ≤ ?R›)

〈proof 〉

lemma space-usage:
‹AE σ in measure-spmf (run-steps xs). card (state-χ σ) < n ∧ finite (state-χ σ)›
〈proof 〉

end

end

14

4 The New Unbiased Algorithm

In this section, we introduce the new algorithm variant promised in the abstract.
The main change is to replace the subsampling step of the original algorithm, which
removes each element of the buffer independently with probability f . Instead, we
choose a random nf -subset of the buffer (see Algorithm 3). (This means f , n must
be chosen, such that nf is an integer.)

Algorithm 3 New CVM algorithm.
Input: Stream elements a1, . . . , al, 0 < ε, 0 < δ < 1, f subsampling param.
Output: An estimate R, s.t., P (|R− |A|| > ε|A|) ≤ δ where A := {a1, . . . , al}.

1: χ← {}, p← 1, n ≥
⌈
12
ε2

ln(3lδ)
⌉

2: for i← 1 to l do
3: b

$←− Ber(p) . insert ai with probability p (and remove it otherwise)
4: if b then
5: χ← χ ∪ {ai}
6: else
7: χ← χ− {ai}
8: if |χ| = n then
9: χ

$←− subsample(χ) . Choose a random nf -subset of χ
10: p← pf

11: return |χ|
p . estimate cardinality of A

The fact that this still preserves the required inequality for the subsampling opera-
tion (Eq. 1) follows from the negative associativity of permutation distributions [2,
Th. 10].
(See also our formalization of the concept [3].)
Because the subsampling step always removes elements unconditionally, the second
check, whether the subsampling succeeded of the original algorithm is not necessary
anymore.
This improves the space usage of the algorithm, because the first reduction argument
from Section 3 is now obsolete. Moreover the resulting algorithm is now unbiased,
because it is an instance of the abstract algorithm of Section 2.
theory CVM-New-Unbiased-Algorithm

imports
CVM-Abstract-Algorithm
Probabilistic-Prime-Tests.Generalized-Primality-Test
Negative-Association.Negative-Association-Permutation-Distributions

begin

unbundle no vec-syntax

context
fixes f :: real and n :: nat
assumes f-range: ‹f ∈ {1/2 ..<1}› ‹n ∗ f ∈ �› and n-gt-0 : ‹n > 0 ›

begin

15

definition ‹initial-state = State {} 1 › — Setup initial state χ = ∅ and p = 1.
fun subsample where — Subsampling operation: Sample random nf subset.

‹subsample χ = pmf-of-set {S . S ⊆ χ ∧ card S = n ∗ f }›

fun step where — Loop body.
‹step a (State χ p) = do {

b ← bernoulli-pmf p;
let χ = (if b then χ ∪ {a} else χ − {a});

if card χ = n then do {
χ ← subsample χ;
return-pmf (State χ (p ∗ f))
} else do {

return-pmf (State χ p)
}
}›

fun run-steps where — Iterate loop over stream xs.
‹run-steps xs = foldM-pmf step xs initial-state›

fun estimate where
‹estimate (State χ p) = card χ / p›

fun run-algo where — Run algorithm and estimate.
‹run-algo xs = map-pmf estimate (run-steps xs)›

definition ‹subsample-size = (THE x . real x = n ∗ f)›

declare subsample.simps [simp del]

lemma subsample-size-eq:
‹real subsample-size = n ∗ f ›
〈proof 〉

lemma subsample-size:
‹subsample-size < n› ‹2 ∗ subsample-size ≥ n›
〈proof 〉

lemma subsample-finite-nonempty:
assumes ‹card U = n›
shows

‹{T . T ⊆ U ∧ card T = subsample-size} 6= {}› (is ‹?C 6= {}›)
‹finite {T . T ⊆ U ∧ card T = subsample-size}›
‹subsample U = pmf-of-set {T . T ⊆ U ∧ card T = subsample-size}›
‹finite (set-pmf (subsample U))›

〈proof 〉

lemma int-prod-subsample-eq-prod-int:
fixes g :: ‹bool ⇒ real›
assumes ‹card U = n› ‹S ⊆ U › ‹range g ⊆ {0 ..}›
shows ‹(

∫
ω. (

∏
s∈S . g(s ∈ ω)) ∂subsample U) ≤ (

∏
s∈S . (

∫
ω. g ω ∂bernoulli-pmf f))›

(is ‹?L ≤ ?R›)
〈proof 〉

16

schematic-goal step-n-def : ‹step x σ = ?x›
〈proof 〉

interpretation abs: cvm-algo-abstract n f subsample
rewrites ‹abs.run-steps = run-steps› and ‹abs.estimate = estimate›
〈proof 〉

theorem unbiasedness: ‹measure-pmf .expectation (run-algo xs) id = card (set xs)›
〈proof 〉

theorem correctness:
assumes ‹ε ∈ {0<..<1 ::real}› ‹δ ∈ {0<..<1 ::real}›
assumes ‹real n ≥ 12 / ε2 ∗ ln (3 ∗ real (length xs) / δ)›
defines ‹A ≡ real (card (set xs))›
shows ‹P(R in run-algo xs. |R − A| > ε ∗ A) ≤ δ›
〈proof 〉

lemma space-usage:
‹AE σ in run-steps xs. card (state-χ σ) < n ∧ finite (state-χ σ)›
〈proof 〉

end

end

17

References

[1] S. Chakraborty, N. V. Vinodchandran, and K. S. Meel. Distinct elements in
streams: An algorithm for the (text) book. In S. Chechik, G. Navarro, E. Roten-
berg, and G. Herman, editors, ESA, volume 244 of LIPIcs, pages 34:1–34:6.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[2] D. P. Dubhashi, V. Priebe, and D. Ranjan. Negative dependence through the
fkg inequality. BRICS Report Series, 3, 1996.

[3] E. Karayel. Negatively associated random variables. Archive of Formal Proofs,
January 2025. https://isa-afp.org/entries/Negative_Association.html, Formal
proof development.

18

https://isa-afp.org/entries/Negative_Association.html

A Informal Proof

This section includes an informal version of the proof for the tail bounds and unbi-
asedness of the abstract algorithm (Algorithm 1) for interested readers.
This means we assume the subsample(χ) operation fulfills Eq. 1 and always returns
a subset of χ.

Notation: For a finite set S, the probability space of uniformly sampling from
the set is denoted by U(S), i.e., for each s ∈ S we have PU(S)(s) = |S|−1. We write
Ber(p) for the Bernoulli probability space, over the set {0, 1}, i.e., PBer(p)({1}) = p.
I(P) is the indicator function for a predicate P , i.e., I(true) = 1 and I(false) = 0.
Like in the formalization, we will denote the first five lines of the loop (3–7) as
step 1, the last four lines (8–10) as step 2. For the distribution of the state of
the algorithm after processing i elements of the sequence, we will write Ωi. The
elements of the probability spaces are pairs composed of a set and the number of
subsampling steps, representing χ and p respectively.
For example: Ω0 = U({(∅, 1)}) is the initial state, Ω1 = U({({a1}, 1)}), etc., and
Ωl denotes the final state. We introduce χ and p as random variables defined over
such probability spaces Ω, in particular, χ (resp. p) is the projection to the first
(resp. second) component.
The state of the algorithm after processing only step 1 of the i-th loop iteration
is denoted by Ω′

i. So the sequence of states is represented by the distributions
Ω0,Ω

′
1,Ω1, . . . ,Ω

′
l,Ωl.

A.1 Loop Invariant

After these preliminaries, we can go to the main proof, whose core is a probabilistic
loop invariant for Algorithm 1 that can be verified inductively.

Lemma 1. Let ϕ : (0, 1] × {0, 1} → R≥0 be a function, fulfilling the following
conditions:

1. (1− α)ϕ(x, 0) + αϕ(x, 1) ≤ ϕ(x/α, 1) for all 0 < α < 1, 0 < x ≤ 1, and

2. ϕ(x, 0) ≤ ϕ(y, 0) for all 0 < x < y ≤ 1.

Then for all k ∈ {0, . . . , l}, S ⊆ {a1, .., ak}, Ω ∈ {Ωk,Ω
′
k}:

EΩ

[∏
s∈S

ϕ(p, I(s ∈ χ))

]
≤ ϕ(1, 1)|S|

Proof. We show the result using induction over k. Note that we show the statement
for arbitrary S, i.e., the induction statements are:

P (k) :↔

(
∀S ⊆ {a1, .., ak}. EΩk

[∏
s∈S

ϕ(p, I(s ∈ χ))

]
≤ ϕ(1, 1)|S|

)

Q(k) :↔

(
∀S ⊆ {a1, .., ak}. EΩ′

k

[∏
s∈S

ϕ(p, I(s ∈ χ))

]
≤ ϕ(1, 1)|S|

)

19

and we will show P (0), Q(1), P (1), Q(2), P (2), . . . , Q(l), P (l) successively.

Induction start P (0):
We have S ⊆ ∅, and hence

EΩ0

[∏
s∈S

ϕ(p, I(s ∈ χ))

]
= EΩ0 [1] = 1 ≤ ϕ(1, 1)0.

Induction step P (k)→ Q(k + 1):
Let S ⊆ {a1, . . . , ak+1} and define S′ := S − {ak+1}. Note that Ω′

k+1 can be
constructed from Ωk as a compound distribution, where ak+1 is included in the
buffer, with the probability p, which is itself a random variable over the space Ωk.
In particular, for example:

PΩ′
k+1

(P (χ, p)) =

∫
Ωk

∫
Ber(p(ω))

P (χ(ω)− {ak+1} ∪ f(τ), p(ω)) dτ dω

for all predicates P where we define f(1) = {ak+1} and f(0) = ∅.
We distinguish the two cases ak+1 ∈ S and ak+1 /∈ S. If ak+1 ∈ S:

EΩ′
k+1

[∏
s∈S ϕ(p, I(s ∈ χ))

]
=

∫
Ωk

(∏
s∈S′ ϕ(p, I(s ∈ χ))

) ∫
Ber(p(ω)) ϕ(p, τ) dτ dω

=
∫
Ωk

(∏
s∈S′ ϕ(p, I(s ∈ χ))

)
((1− p)ϕ(p, 0) + pϕ(p, 1)) dω

≤
Cond 1

∫
Ωk

(∏
s∈S′ ϕ(p, I(s ∈ χ))

)
ϕ(1, 1) dω

≤
IH

ϕ(1, 1)|S
′|ϕ(1, 1) = ϕ(1, 1)|S|

If ak+1 /∈ S then S′ = S and:

EΩ′
k+1

[∏
s∈S ϕ(p, I(s ∈ χ))

]
=
∫
Ωk

∏
s∈S ϕ(p, I(s ∈ χ)) dω ≤IH ϕ(1, 1)|S

′| = ϕ(1, 1)|S|

Induction step Q(k + 1)→ P (k + 1):
Let S ⊆ {a1, . . . , ak+1}.
Let us again note that Ωk+1 is a compound distribution over Ω′

k+1. In general, for
all predicates P :

PΩk+1
(P (χ, p)) =∫

Ω′
k+1

I(|χ(ω)| < n)P (χ(ω), p(ω)) + I(|χ(ω)| = n)

∫
subsample(χ(ω))

P (τ, fp(ω)) dτ dω.

20

With this we can can now verify the induction step:

EΩk+1

[∏
s∈S ϕ(p, I(s ∈ χ))

]
=

∫
Ω′

k+1
I(|χ| < n)

∏
s∈S ϕ(p, I(s ∈ χ)) dω

+
∫
Ω′

k+1
I(|χ| = n)

∏
s∈S\χ(ω) ϕ(pf, 0)

∫
subsample(χ)

∏
s∈S∩χ ϕ(pf, I(s ∈ τ))dτ dω

≤ Eq. 1
∫
Ω′

k+1
I(|χ| < n)

∏
s∈S ϕ(p, I(s ∈ χ)) dω

+
∫
Ω′

k+1
I(|χ| = n)

∏
s∈S\χ(ω) ϕ(pf, 0)

∏
s∈S∩χ

∫
Ber(f) ϕ(pf, τ)dτ dω

≤ Cond 2
∫
Ω′

k+1
I(|χ| < n)

∏
s∈S ϕ(p, I(s ∈ χ)) dω

+
∫
Ω′

k+1
I(|χ| = n)

∏
s∈S\χ(ω) ϕ(p, 0)

∏
s∈S∩χ((1− f)ϕ(pf, 0) + fϕ(pf, 1)) dω

≤ Cond 1
∫
Ω′

k+1
I(|χ| < n)

∏
s∈S ϕ(p, I(s ∈ χ)) dω

+
∫
Ω′

k+1
I(|χ| = n)

∏
s∈S\χ(ω) ϕ(p, 0)

∏
s∈S∩χ ϕ(p, 1) dω

=
∫
Ω′

k+1
I(|χ| < n)

∏
s∈S ϕ(p, I(s ∈ χ)) dω

+
∫
Ω′

k+1
I(|χ| = n)

∏
s∈S ϕ(p, I(s ∈ χ)) dω

= EΩ′
k+1

[∏
s∈S ϕ(p, I(s ∈ χ))

]
≤ IHϕ(1, 1)|S|

A corollary and more practical version of the previous lemma is:

Lemma 2. Let q ≤ 1 and h : [0, q−1]→ R≥0 be concave then for all k ∈ {0, . . . , l},
S ⊆ {a1, .., ak}, Ω ∈ {Ωk,Ω

′
k}:

EΩ

[∏
s∈S

I(p > q)h(p−1I(s ∈ χ))

]
≤ h(1)|S|

Proof. Follows from Lemma 1 for ϕ(p, τ) := I(p > q)h(τp−1). We just need to
check Conditions 1 and 2. Indeed,

(1− α)ϕ(x, 0) + αϕ(x, 1) = (1− α)I(x > q)h(0) + αI(x > q)h(x−1)

≤ I(x > q)h(αx−1) ≤ I(x > qα)h(αx−1) = ϕ(x/α, 1)

for 0 < α < 1 and 0 < x ≤ 1, where we used that x > q implies x > qα; and

ϕ(x, 0) = I(x > q)h(0) ≤ I(y > q)h(0) = ϕ(y, 0)

for 0 < x < y ≤ 1, where we used that x > q implies y > q.

It should be noted that this is a probabilistic recurrence relation, but the main
innovation is that we establish a relation, with respect to general classes of functions
of the state variables.

21

A.2 Concentration

Let us now see how we can obtain concentration bounds using Lemma 2, i.e.,
that the result of the algorithm is concentrated around the cardinality of A =
{a1, . . . , al}. This will be done using the Cramér–Chernoff method for the proba-
bility that the estimate is above (1 + ε)|A| (resp. below (1 − ε)|A|) assuming p is
not too small and a tail estimate for p being too small.
It should be noted that concentration is trivial, if |A| < n, i.e., if we never need to
do sub-sampling, so we assume |A| ≥ n.
Define q := n/(4|A|) and notice that q ≤ 1

4 .
Let us start with the upper tail bound:

Lemma 3. For any Ω ∈ {Ω0, . . . ,Ωl} ∪ {Ω′
1, . . . ,Ω

′
l} and 0 < ε ≤ 1:

L := PΩ

(
p−1|χ| ≥ (1 + ε)|A| ∧ p ≥ q

)
≤ exp

(
− n

12
ε2
)

Proof. By assumption there exists a k such that Ω ∈ {Ωk,Ω
′
k}. Let A′ = A ∩

{a1, . . . , ak}. Moreover, we define:

t := q ln(1 + ε)

h(x) := 1 + qx(et/q − 1)

To get a tail estimate, we use the Cramér–Chernoff method:

L ≤
t>0

PΩ

(
exp(tp−1|χ|) ≥ exp(t(1 + ε)|A|) ∧ p ≥ q

)
≤ PΩ

(
I(p ≥ q) exp(tp−1|χ|) ≥ exp(t(1 + ε)|A|)

)
≤

Markov
exp(−t(1 + ε)|A|)EΩ

[
I(p ≥ q) exp(tp−1|χ|)

]
≤ exp(−t(1 + ε)|A|)EΩ

[∏
s∈A′

I(p ≥ q) exp(tp−1I(s ∈ χ))

]

≤ exp(−t(1 + ε)|A|)EΩ

[∏
s∈A′

I(p ≥ q)h(p−1I(s ∈ χ))

]
≤

Le. 2
exp(−t(1 + ε)|A|)h(1)|A′|

≤
h(1)≥1

(exp(ln(h(1))− t(1 + ε)))|A|

So we just need to show that (using |A| = n
4q):

ln(h(1))− t(1 + ε) ≤ −qε
2

3

The latter can be established by analyzing the function

f(ε) := − ln(1 + qε) + q ln(1 + ε)(1 + ε)− qε2

3
= − ln(h(1)) + t(1 + ε)− qε2

3
.

For which it is easy to check f(0) = 0 and the derivative with respect to ε is
non-negative in the range 0 ≤ q ≤ 1/4 and 0 < ε ≤ 1, i.e., f(ε) ≥ 0.

22

Using the previous result we can also estimate bounds for p becoming too small:

Lemma 4.
PΩl

(p < q) ≤ l exp
(
− n

12

)
Proof. We will use a similar strategy as in the Bad2 bound from the original CVM
paper [1]. Let j be maximal, s.t., q ≤ f j . Hence f j+1 < q and:

f j ≤ 2ff j < 2q =
n

2|A|
. (2)

First, we bound the probability of jumping from p = f j to p = f j+1 at a specific
point in the algorithm, e.g., while processing k stream elements. It can only happen
if |χ| = n, p = f j in Ω′

k. Then

PΩ′
k
(|χ| ≥ n ∧ p = f j) ≤ P(p−1|χ| ≥ f−jn ∧ p ≥ q)

≤
Eq. 2

P(p−1|χ| ≥ 2|A| ∧ p ≥ q)

≤
Le. 3

exp(−n/12)

The probability that this happens ever in the entire process is then at most l times
the above which proves the lemma.

Lemma 5. Let 0 < ε < 1 then:

L := PΩl
(p−1|χ| ≤ (1− ε)|A| ∧ p ≥ q) ≤ exp

(
−n

8
ε2
)

Proof. Let us define

t := q ln(1− ε) < 0

h(x) := 1 + qx(et/q − 1)

Note that h(x) ≥ 0 for 0 ≤ x ≤ q−1 (can be checked by verifying it is true for h(0)
and h(q−1) and the fact that the function is affine.)
With these definitions we again follow the Cramér–Chernoff method:

L =
t<0

PΩl

(
exp(tp−1|χ|) ≥ exp(t(1− ε)|A|) ∧ p ≥ q

)
≤ PΩl

(
I(p ≥ q) exp(tp−1|χ|) ≥ exp(t(1− ε)|A|) ∧ p > q

)
≤

Markov
exp(−t(1− ε)|A|)EΩ

[
I(p ≥ q) exp(tp−1|χ|)

]
= exp(−t(1− ε)|A|)EΩ

[∏
s∈A

I(p ≥ q) exp(tp−1I(s ∈ χ))

]

≤ exp(−t(1− ε)|A|)EΩ

[∏
s∈A

I(p ≥ q)h(p−1I(s ∈ χ))

]
≤

Le. 2
exp(−t(1− ε)|A|)(h(1))|A|

= exp(ln(h(1))− t(1− ε))|A|

23

Substituting t and h and using |A| = n
4q , we can see that the lemma is true if

f(ε) := q ln(1− ε)(1− ε)− ln(1− qε)− q

2
ε2 = t(1− ε)− ln(h(1))− q

2
ε2

is non-negative for 0 ≤ q ≤ 1
4 and 0 < ε < 1. This can be verified by checking that

f(0) = 0 and that the derivative with respect to ε is non-negative.

We can now establish the concentration result:

Theorem 1. Let 0 < ε < 1 and 0 < δ < 1 and n ≥ 12
ε2

ln
(
3l
δ

)
then:

L = PΩl

(
|p−1|χ| − |A|| ≥ ε|A|

)
≤ δ

Proof. Note that the theorem is trivial if |A| < n. If not:

L ≤ PΩl

(
|p−1|χ| ≤ (1− ε)|A| ∧ p ≥ q

)
+ PΩl

(
|p−1|χ| ≥ (1 + ε)|A| ∧ p ≥ q

)
+ PΩl

(p < q)

≤
Le. 3−5

exp
(
−n

8
ε2
)
+ exp

(
− n

12
ε2
)
+ l exp

(
− n

12

)
≤ δ

3
+

δ

3
+

δ

3

A.3 Unbiasedness

Let M be large enough such that p−1 ≤ M a.s. (e.g., we can choose M = f−l).
Then we can derive from Lemma 2 using h(x) = x and h(x) = M + 1− x that for
all s ∈ A:

EΩl
[p−1I(s ∈ χ)] = EΩl

[I(p ≥M−1)p−1I(s ∈ χ)] ≤ 1

EΩl
[M + 1− p−1I(s ∈ χ)] = EΩl

[I(p ≥M−1)(M + 1− p−1I(s ∈ χ))] ≤M

which implies EΩl
[p−1I(s ∈ χ)] = 1. By linearity of expectation we conclude

EΩl
[p−1|χ|] =

∑
s∈A

EΩl
[p−1I(s ∈ χ)] = |A|.

24

	Preliminary Definitions and Results
	Abstract Algorithm
	The Original CVM Algorithm
	The New Unbiased Algorithm
	Informal Proof
	Loop Invariant
	Concentration
	Unbiasedness

