The HOL-CSP Refinement Toolkit

Safouan Taha Burkhart Wolff Lina Ye

March 19, 2025

Abstract

Recently, a modern version of Roscoes and Brookes [3] Failure-Divergence
Semantics for CSP has been formalized in Isabelle [10].

We use this formal development called HOL-CSP2.0 to analyse a family
of refinement notions, comprising classic and new ones. This analysis enables
to derive a number of properties that allow to deepen the understanding
of these notions, in particular with respect to specification decomposition
principles for the case of infinite sets of events. The established relations
between the refinement relations help to clarify some obscure points in the
CSP literature, but also provide a weapon for shorter refinement proofs.
Furthermore, we provide a framework for state-normalisation allowing to
formally reason on parameterised process architectures.

As a result, we have a modern environment for formal proofs of concur-
rent systems that allow for the combination of general infinite processes with
locally finite ones in a logically safe way. We demonstrate these verification-
techniques for classical, generalised examples: The CopyBuffer for arbitrary
data and the Dijkstra’s Dining Philosopher Problem of arbitrary size.

If you consider to cite this work, please refer to [11].

Contents

1 Context
1.1 Imtroduction
1.2 The Global Architecture of CSP_ RefTk

2 Normalisation of Deterministic CSP Processes
2.1 Deterministic normal-forms with explicit state
2.2 Interleaving product lemma
2.3 Synchronous product lemma L.
2.4 COonSEqUENCES . « .« v v v v v et e

3 Examples

3.1 CopyBuffer Refinement over an infinite alphabet
3.1.1 The Copy-Buffer vs. reference processes
3.1.2 ... and abstract consequences

3.2 Generalized Dining Philosophers
3.2.1 Preliminary lemmas for proof automation
3.2.2 The dining processes definition
3.2.3 Translation into normal form
3.2.4 The normal form for the global philosopher network
3.2.5 The complete process system under normal form . . .
3.2.6 And finally: Philosophers may dine ! Always !

4 Conclusion

11
11
11
12
12

13
13
13
13
14
14
14
15
19
20
20

23

CONTENTS

Chapter 1

Context

1.1 Introduction

Communicating Sequential Processes CSP is a language to specify and ver-
ify patterns of interaction of concurrent systems. Together with CCS and
LOTOS, it belongs to the family of process algebras. CSP’s rich theory
comprises denotational, operational and algebraic semantic facets and has
influenced programming languages such as Limbo, Crystal, Clojure and most
notably Golang [5]. CSP has been applied in industry as a tool for specify-
ing and verifying the concurrent aspects of hardware systems, such as the
T9000 transputer [1].

The theory of CSP, in particular the denotational Failure/Divergence Deno-
tational Semantics, has been initially proposed in the book by Tony Hoare
[6], but evolved substantially since [2, 3, 8.

Verification of CSP properties has been centered around the notion of process
refinement orderings, most notably -Crp- and -C-. The latter turns the
denotational domain of CSP into a Scott cpo [9], which yields semantics for
the fixed point operator pz. f(z) provided that f is continuous with respect
to -C-. Since it is possible to express deadlock-freeness and livelock-freeness
as a refinement problem, the verification of properties has been reduced
traditionally to a model-checking problem for a finite set of events A.

We are interested in verification techniques for arbitrary event sets A or
arbitrarily parameterized processes. Such processes can be used to model
dense-timed processes, processes with dynamic thread creation, and pro-
cesses with unbounded thread-local variables and buffers. Events may even
be higher-order objects such as functions or again processes, paving the way
for the modeling of re-programmable compute servers or dynamic distributed
computing architectures. However, this adds substantial complexity to the
process theory: when it comes to study the interplay of different denotational
models, refinement-orderings, and side-conditions for continuity, paper-and-
pencil proofs easily reach their limits of precision.

7

8 CHAPTER 1. CONTEXT

Several attempts have been undertaken to develop the formal theory of CSP
in an interactive proof system, mostly in Isabelle/HOL [4, 12, 7]. This work
is based on the most recent instance in this line, HOL-CSP 2.0, which has
been published as AFP submission [10] and whose development is hosted at
https://gitlri.lri.fr/burkhart.wolff /hol-csp2.0.

The present AFP Module is an add-on on this work and develops some
support for

1. example of induction schemes (mutual fixed-point Induction, K-induction),

2. a theory of explicit state normalisation which allows for proofs over
certain communicating networks of arbitrary size.

https://gitlri.lri.fr/burkhart.wolff/hol-csp2.0

1.2. THE GLOBAL ARCHITECTURE OF CSP_REFTK 9

1.2 The Global Architecture of CSP_ RefTk

[Pure]

[Tocm

[oL

[HOL-Library]

[tHoL-Eisbach] | | [HOLCF] |
| [HOL-CSP] | | Conclusion | | Introduction
CopyBuffer_props | | Process_norm |

DiningPhilosophers

Figure 1.1: The overall architecture: HOLCF, HOL-CSP, and CSP_ RefTk

The global architecture of CSP__RefTk is shown in Figure 1.1. The entire
package resides on:

1. HOL-Eisbach from the Isabelle/HOL distribution,
2. HOLCF from the Isabelle/HOL distribution, and

3. HOL-CSP 2.0 from the Isabelle Archive of Formal Proofs.

10

CHAPTER 1.

CONTEXT

Chapter 2

Normalisation of
Deterministic CSP Processes

theory Process-norm
imports HOL—CSP.CSP

begin

2.1 Deterministic normal-forms with explicit state

abbreviation P-dnorm 7 v = (u X. As. Oe€ (18) = X (v se)))
notation P-dnorm (Pporm[-,-] 60)

lemma dnorm-cont[simp:
fixes 7::'o::type = 'event::type set and v::'oc = ‘event = ‘o
shows cont (AX. (As. O e € (7s5) = X (v se))) (is cont ?f)

(proof)

2.2 Interleaving product lemma

lemma dnorm-inter:
fixes 71 :'oy:type = 'event::type set and To::'oaitype = 'event set
and v; 1oy = ‘event = oy and vy::'oy = 'event = ‘oq
defines P: P = P, ,rm[71,01] (is P = fiz-(A X. 9P X))
defines Q: Q = Prorm[72,02] (is Q = fiz-(A X. ?Q X))

assumes indep: Vs1 s3. 71 §1 N 72 s2 = {p
defines Tr: 7 = (A(81,82). 71 81 U T2 $2)
defines Up: v = (A(s1,82) e. if e € 71 81 then (v $1 €,89)

else if e € To so then (s1, va s2 €) else (s1,82))
defines S: S = Porm[m,v] (is S = fiz-(A X. 25 X))

11

12CHAPTER 2. NORMALISATION OF DETERMINISTIC CSP PROCESSES

shows (P sy ||| Q s2) = S (s1,82)

(proof)

2.3 Synchronous product lemma

lemma dnorm-par:
fixes 71 'oi:itype = 'event::type set and To::'oa::type = 'event set
and v; 1oy = ‘event = oy and vs::'oy = 'event = ‘oo
defines P: P = P orm[71,01] (is P = fiz-(A X. 2P X))
defines Q: Q = Poorm[72,02] (is Q@ = fiz-(A X. ?2Q X))

defines Tr: 7 = (A\(s1,82). 71 $1 N To $2)
defines Up: v = (A(s1,52) e. (V1 $1 €, Vg 52 €))
defines S: S = Porm[7,v] (is § = fiz-(A X. 25 X))

shows (P s || Q s2) = S (s1,52)

{proof)

2.4 Consequences

inductive-set R for 7 :'o:itype = ‘event::type set
and v :'oc = ‘event = ‘o
and oq 1’0

where rbase: cg € R 7 v 0

| rstep: sERTvog=ecE€ETS = vVseERTV O

— Deadlock freeness
lemma deadlock-free-dnorm- :
fixes 7 ::'o::type = 'event::type set
and v ::'c = ‘event = o
and og 1’0
assumes non-reachable-sink: Vs € R 7 v og. 7 s # {}
defines P: P = P, ,pp[7,v] (is P = fiz-(A X. ?P X))
shows s € R 7 v 09 = deadlock-free (P s)
(proof)

lemmas deadlock-free-dnorm = deadlock-free-dnorm-[rotated, OF rbase, rule-format]

end

Chapter 3

Examples

3.1 CopyBuffer Refinement over an infinite alpha-
bet

theory CopyBuffer-props
imports HOL—CSP.CopyBuffer HOL—CSP.CSP
begin

3.1.1 The Copy-Buffer vs. reference processes

thm DF-COPY

3.1.2 ... and abstract consequences

corollary df-COPY: deadlock-free COPY
and If-COPY: lifelock-free COPY

(proof)

corollary dfskps-COPY: deadlock-freesxrps COPY
and Ifsxps-COPY: lifelock-frees ik ps COPY
and nt-COPY: non-terminating COPY

(proof)

lemma DF-SYSTEM: DF UNIV Crpp SYSTEM
(proof)

corollary df-SYSTEM: deadlock-free SYSTEM
and If-SYSTEM: lifelock-free SYSTEM

{proof)

corollary dfsxrps-SYSTEM: deadlock-freesxps SYSTEM
and Ifsxrps-SYSTEM: lifelock-freesxrps SYSTEM
and nt-SYSTEM: non-terminating SYSTEM

{proof)

13

14 CHAPTER 3. EXAMPLES

end

3.2 Generalized Dining Philosophers

theory DiningPhilosophers
imports Process-norm
begin
3.2.1 Preliminary lemmas for proof automation

lemma Suc-mod: n > 1 = i # Suc i mod n

(proof)

lemmas suc-mods = Suc-mod Suc-mod[symmetric]

lemma l-suc: n > 1 = = n < Suc 0

(proof)

lemma minus-suc: n > 0 = n — Suc 0 # n

(proof)

lemma numeral-4-eq-4:4 = Suc (Suc (Suc (Suc 0)))
(proof)

lemma numeral-5-eq-5:5 = Suc (Suc (Suc (Suc (Suc 0))))
(proof)

3.2.2 The dining processes definition

locale DiningPhilosophers =

fixes N::nat
assumes N-g1[simp] : N > 1

begin

datatype dining-event = picks (phil:nat) (fork:nat)
| putsdown (phil:nat) (fork:nat)

definition RPHIL:: nat = dining-event process
where RPHIL i = (u X. (picks i i — (picks i (i—1) — (putsdown i (i—1) —
(putsdown i i — X)))))

definition LPHILO:: dining-event process
where LPHILO = (u X. (picks 0 (N—1) — (picks 0 0 — (putsdown 0 0 —
(putsdown 0 (N—1) = X)))))

definition FORK :: nat = dining-event process
where FORK i = (u X. (picks ii — (putsdown i i — X))

3.2. GENERALIZED DINING PHILOSOPHERS 15

O (picks ((i+1) mod N) i — (putsdown ((i+1) mod N) i —
X))

abbreviation foldPHILs n = fold (A i P. P ||| RPHIL 3) [1..< n] (LPHILO)
abbreviation foldFORKs n = fold (A i P. P ||| FORK i) [1..< n] (FORK 0)

abbreviation PHILs = foldPHILs N
abbreviation FORKs = follFORKs N

corollary N = 3 = PHILs = (LPHILO ||| RPHIL 1 ||| RPHIL 2)
(proof)

definition DINING :: dining-event process
where DINING = (FORKs || PHILs)

Unfolding rules

lemma RPHIL-rec:

RPHIL i = (picks ¢ i — (picks © (i—1) — (putsdown i (i—1) — (putsdown i i
— RPHIL i))))

(proof)

lemma LPHILO-rec:
LPHILO = (picks 0 (N—1) — (picks 0 0 — (putsdown 0 0 — (putsdown 0
(N—1) — LPHIL0))))

(proof)

lemma FORK-rec: FORK i = ((picks i i — (putsdown i { — (FORK 1)))
O (picks ((i+1) mod N) i — (putsdown ((i+1) mod N) i —
(FORK 1))))
(proof)

3.2.3 Translation into normal form

lemma N-pos[simp]: N > 0
(proof)

lemmas N-pos-simps[simp] = suc-mods[OF N-g1] l-suc[OF N-g1] minus-suc[OF
N-pos]

The one-fork process

type-synonym ids,.;, = nat

type-synonym o, = nat

16 CHAPTER 3. EXAMPLES

definition fork-transitions:: idjorr = 0forr = dining-event set (Try)
where Try i s = (if s =0 then {picks i i} U {picks ((i+1) mod N) i}
else if s = 1 then {putsdown i i}
else if s = 2 then {putsdown ((i+1) mod N) i}

else {H

declare Un-insert-right[simp del] Un-insert-left[simp del]

lemma ev-idforpz[simp|: e € Try i s => fork e =1

(proo)
definition oo, ,-update:: idsork = Ofork = dining-event = orork (Upy)
where Upy is e = (if e = (picks i) then 1
else if e = (picks ((i+1) mod N) i) then 2
else 0)

definition FORK ;orm:: dfork = O fork = dining-event process
where FORK ,orm @ = Pporm[Try © ,Upys 1]

lemma FORK orm-rec: FORK porm @t = (A s. O e€ (Try i s) = FORKporm ¢
(Upy ise))
(proof)

lemma FORK-refines-FORK y,orm: FORK yorm © 0 Cpp FORK i
(proof)

lemma FORK , ,rm-refines-FORK: FORK i Cpp FORK ,orm 1 0
(proof)

lemma FORK ,ypm-is-FORK: FORK i = FORK ,,ypm i 0
(proof)

The all-forks process in normal form
type-synonym o,,irs = nat list

definition forks-transitions:: nat = oyorrs = dining-event set (Trp)
where Trp n fs = (Ji<n. Try i (fs!i))

lemma forks-transitions-take: Trp n fs = Trp n (take n fs)

(proof)

definition oo, ,s-update:: oorks = dining-event = oorks (Upr)
where Upp fs e = (let i=(fork e) in fs[i:=(Upy i (fs!i) e)])

lemma forks-update-take: take n (Upp fs €) = Upp (take n fs) e
(proof)

3.2. GENERALIZED DINING PHILOSOPHERS 17

definition FORKs, orm:: nat = 0foris = dining-event process
where FORKsporm 1 = Pporm[Trr n ,UpF]

lemma FORKS,orm-rec: FORKSyorm n=(Afs.0e€ (Trp nfs) — FORKS,orm
n (Upp fs e))
(proof)

lemma FORKS, orm-0: FORKS,orm 0 fs = STOP
(proof)

lemma FORKS,,opm-1-dirl: length fs > 0 => FORKs,orm 1 fs Crp (FORK 1 orm
0 (fs10))
(proof)

lemma FORKS, opm-1-dir2: length fs > 0 = (FORK porm 0 (fs!0)) Crp FORKS,0rm
1fs
(proof)

lemma FORKsporm-1: length fs > 0 = (FORK porm 0 (fs!0)) = FORKS,orm
1fs
(proof)

lemma FORKS,, opm-unfold:
0 < n = length fs = Suc n =
FORKsporm (Suc n) fs = (FORKSporm 1 (butlast
N(FORK yorm n (fsln)))
(proof)

lemma ft: 0 < n = FORKsyorm n (replicate n 0) = follFORKs n
(proof)

corollary FORKs-is-FORKSs,orm: FORKS,orm N (replicate N 0) = FORKs
{proof)

The one-philosopher process in normal form:

type-synonym phil-id = nat
type-synonym phil-state = nat

definition rphil-transitions:: phil-id = phil-state = dining-event set (Tr,,)
where T, i s = (if s = 0 then {picks i i}
else if s = 1 then {picks i (i—1)}
else if s = 2 then {putsdown i (i—1)}
else if s = 3 then {putsdown i i}

else {1

definition lphil0-transitions:: phil-state = dining-event set (Trp)

18 CHAPTER 3. EXAMPLES

where Try, s = (if s= 0 then {picks 0 (N—1)}
else if s = 1 then {picks 0 0}
else if s = 2 then {putsdown 0 0}
else if s = 3 then {putsdown 0 (N—1)}

else {H

corollary rphil-phil: e € Tr,, i s = phil e = i
and Ilphil0-phil: e € Try, s => phil e = 0
(proof)

definition rphil-state-update:: idsori = Trork = dining-event = o york (Uprp)
where Up,, i s e = (if e = (picks i 1) then 1
else if e = (picks i (i—1)) then 2
else if e = (putsdown i (i—1)) then 3

else 0)
definition Iphil0-state-update:: o ror, = dining-event = o rork (Upip)
where Up;, s e = (if e = (picks 0 (N—1)) then 1
else if e = (picks 0 0) then 2
else if e = (putsdown 0 0) then 3
else 0)

definition RPHIL, orm:: idfork = Ofork = dining-event process
where RPHIL,orm © = Prorm[Trrp @ Uprp 1]

definition LPHILO orm:: Ofork = dining-event process
where LPHILO jorm = Prorm[Trip, Upip]

lemma RPHIL,opm-rec: RPHILyorm i = (A 5.0 ¢ € (Tryp i 8) = RPHILnopm
i (Uprp ise))
(proof)

lemma LPHILO ,orm-rec: LPHILO porm = (A s. O e € (Try, s) — LPHILO jorm
(Upip s €))
(proof)

lemma RPHIL-refines-RPHILy, orm:
assumes @-pos: i > 0
shows RPHIL, orm i 0 Epp RPHIL i

(proof)

lemma LPHILO-refines-LPHILO ,orm: LPHILO,orm 0 Epp LPHILO
(proof)

lemma RPHIL,, ,rm-refines-RPHIL:
assumes 4-pos: © >
shows RPHIL i Cpp RPHIL, orm 1 0

3.2. GENERALIZED DINING PHILOSOPHERS 19

(proof)

lemma LPHILO,,opm-refines-LPHIL0: LPHILO Crp LPHILO,opm 0
(proof)

lemma RPHIL,ym-is-RPHIL: i > 0 = RPHIL i = RPHILy,orm i 0
(proof)

lemma LPHILO o -is-LPHILO: LPHILO = LPHILO 07 m 0
(proof)

3.2.4 The normal form for the global philosopher network

type-synonym o,p;;s = nat list

definition phils-transitions:: nat = oppis = dining-event set (Irp)
where Trp n ps = Tryy (ps!0) U (Jie{1..< n}. Tryp i (psli))

corollary phils-phil: 0 < n = e € Trp ns = phile < n

(proof)

lemma phils-transitions-take: 0 < n = Trp n ps = Trp n (take n ps)
(proof)

definition o,,,.;s-update:: oppi1s = dining-event = oppis (Upp)
where Upp ps e = (let i=(phil e) in if ¢ = 0 then ps[i:=(Up;, (ps'i) e)]
else psli:==(Uprp % (psli) e)])

lemma phils-update-take: take n (Upp ps e) = Upp (take n ps) e
(proof)

definition PHILsyorm:: nat = opriis = dining-event process
where PHILS,orm 1 = Pporm[Trp n,Upp]

lemma PHILS,opm-rec: PHILSporm n = (A ps. O e € (Trp nps) = PHILSyorm
n (Upp ps e))
(proof)

lemma PHILS,, orm-1-dirl: length ps > 0 => PHILSporm 1 ps Cpp (LPHILO jorm
(ps!0))
(proof)

lemma PHILS,, orm-1-dir2: length ps > 0 => (LPHILO ;,0r-m (ps'0)) Cpp PHILS, orm
1 ps
(proof)

lemma PHILS, prm-1: length ps > 0 => PHILSorm 1 ps = (LPHILO orm (ps!0))
(proof)

20 CHAPTER 3. EXAMPLES

lemma PHILs,, orm-unfold:
assumes n-pos:0 < n
shows length ps = Suc n =
PHILSporm (Suc n) ps = (PHILSporm n (butlast
pS)|||(RPHILy0rm n (psin)))

(proof)

lemma pt: 0 < n = PHILSporm n (replicate n 0) = foldPHILs n
(proof)

corollary PHILs-is-PHILSyorm: PHILSyorm N (replicate N 0) = PHILs
(proof)

3.2.5 The complete process system under normal form

definition dining-transitions:: nat = ophirs X Tforks = dining-event set (Irp)
where Trp n = (A(ps,fs). (Trp n ps) N (Trr n fs))

definition dining-state-update::
Ophils X O forks = dining’event = Ophils X O forks (UPD)
where Upp = (A(ps.fs) e (Upp ps e, Upr fs ©))

definition DINING ,orm:: nat = Ophits X Oforks = dining-event process
where DINING ,orm 1 = Prorm[Trp n, Upp]

lemma ltsDining-rec: DININGorm n= (A s. O e € (Trp ns) = DINING, orm
n (Upp s e))
(proof)

lemma DINING-is-DINING ,om: DINING = DINING,, orm N (replicate N 0,
replicate N 0)

(proof)

3.2.6 And finally: Philosophers may dine ! Always !

corollary Ilphil-states:Up;, re =0V Upyp, re=1V Upyp, re=2V Upp re=
3

and rphil-states:Up,.p ire =0V Upppire=1V Uppire=2V Uppir
e=23

(proof)

lemma dining-events:
e€ Trp Ns —=
(Fie{1..<N}. e = picks i i V e = picks i (i—1) V e = putsdown i iV e =
putsdown i (i—1))
V (e = picks 0 0 V e = picks 0 (N—1) V e = putsdown 0 0 V e = putsdown
0 (N-1))
(proof)

3.2. GENERALIZED DINING PHILOSOPHERS 21

definition inv-dining ps fs =
(Vi. Suci < N — ((fs!(Suc i) = 1) +— ps!lSuc i # 0)) A (fs!(N—1)

=2 <— psl0 # 0)

ANNVi<N-—1. fsli =2 «— pslSuci=2) N (fsl0 =1
— psl0 = 2)

ANNi< N.fsli=0Vfsli=1Vfsli=2)

ANNMi<N.psli =0V psli=1V psli =2V psli = 3)

A length fs = N A length ps = N

lemma inv-DINING: s € R (Trp N) Upp (replicate N 0, replicate N 0) =
inv-dining (fst s) (snd s)
(proof)

lemma inv-implies-DF:inv-dining ps fs = Trp N (ps, fs) # {}
(proof)

corollary deadlock-free-DINING: deadlock-free DINING
(proof)

corollary deadlock-frees i ps-DINING: deadlock-freesxps DINING
(proof)

end

end

22

CHAPTER 3. EXAMPLES

Chapter 4

Conclusion

We presented a formalisation of the most comprehensive semantic model for
CSP, a ’classical’ language for the specification and analysis of concurrent
systems studied in a rich body of literature. For this purpose, we ported [12]
to a modern version of Isabelle, restructured the proofs, and extended the
resulting theory of the language substantially. The result HOL-CSP 2 has
been submitted to the Isabelle AFP [10], thus a fairly sustainable format
accessible to other researchers and tools.

We developed a novel set of deadlock - and livelock inference proof prin-
ciples based on classical and denotational characterizations. In particular,
we formally investigated the relations between different refinement notions
in the presence of deadlock - and livelock; an area where traditional CSP
literature skates over the nitty-gritty details. Finally, we demonstrated how
to exploit these results for deadlock/livelock analysis of protocols.

We put a large body of abstract CSP laws and induction principles together
to form concrete verification technologies for generalized classical problems,
which have been considered so far from the perspective of data-independence
or structural parametricity. The underlying novel principle of “trading rich
structure against rich state” allows one to convert processes into classical
transition systems for which established invariant techniques become appli-
cable.

Future applications of HOL-CSP 2 could comprise a combination with model
checkers, where our theory with its derived rules can be used to certify the
output of a model-checker over CSP. In our experience, labelled transition
systems generated by model checkers may be used to steer inductions or
to construct the normalized processes Py orm[7,v] automatically, thus com-
bining efficient finite reasoning over finite sub-systems with globally infinite
systems in a logically safe way.

23

24

CHAPTER 4. CONCLUSION

Bibliography

1]

[6]

7]

G. Barrett. Model checking in practice: the t9000 virtual channel pro-
cessor. IEEE Transactions on Software Engineering, 21(2):69-78, Feb
1995.

S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of com-
municating sequential processes. J. ACM, 31(3):560-599, 1984.

S. D. Brookes and A. W. Roscoe. An improved failures model for com-
municating processes. In S. D. Brookes, A. W. Roscoe, and G. Winskel,
editors, Seminar on Concurrency, pages 281-305, Berlin, Heidelberg,
1985. Springer Berlin Heidelberg.

A. J. Camilleri. A higher order logic mechanization of the csp failure-
divergence semantics. In G. Birtwistle, editor, IV Higher Order Work-
shop, Banff 1990, pages 123-150, London, 1991. Springer London.

A. Donovan and B. Kernighan. The Go Programming Language.
Addison-Wesley Professional Computing Series. Pearson Education,
2015.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1985.

Y. Isobe and M. Roggenbach. Csp-prover: a proof tool for the verifica-
tion of scalable concurrent systems. Information and Media Technolo-
gies, 5(1):32-39, 2010.

A. Roscoe. Theory and Practice of Concurrency. Prentice Hall, 1998.

D. Scott. Continuous lattices. In F. W. Lawvere, editor, Toposes,
Algebraic Geometry and Logic, pages 97-136, Berlin, Heidelberg, 1972.
Springer.

S. Taha, L. Ye, and B. Wolff. HOL-CSP Version 2.0. Archive of Formal
Proofs, Apr. 2019. http://isa-afp.org/entries/HOL-CSP.html.

25

http://isa-afp.org/entries/HOL-CSP.html

26 BIBLIOGRAPHY

[11] S. Taha, L. Ye, and B. Wolff. Philosophers may Dine - Definitively! In
C. A. Furia, editor, Integrated Formal Methods (iF'M), number 12546 in
Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, 2020.

[12] H. Tej and B. Wolff. A corrected failure divergence model for CSP
in Isabelle/HOL. In J. S. Fitzgerald, C. B. Jones, and P. Lucas, edi-
tors, Formal Methods Europe (FME), volume 1313 of Lecture Notes in
Computer Science, pages 318-337, Heidelberg, 1997. Springer-Verlag.

	Context
	Introduction
	The Global Architecture of CSP_RefTk

	Normalisation of Deterministic CSP Processes
	Deterministic normal-forms with explicit state
	Interleaving product lemma
	Synchronous product lemma
	Consequences

	Examples
	CopyBuffer Refinement over an infinite alphabet
	The Copy-Buffer vs. reference processes
	... and abstract consequences

	Generalized Dining Philosophers
	Preliminary lemmas for proof automation
	The dining processes definition
	Translation into normal form
	The normal form for the global philosopher network
	The complete process system under normal form
	And finally: Philosophers may dine ! Always !

	Conclusion

