A framework for establishing Strong Eventual Consistency for Conflict-free Replicated Data types

Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, Alastair R. Beresford

April 19, 2020

Abstract

In this work, we focus on the correctness of Conflict-free Replicated Data Types (CRDTs), a class of algorithm that provides strong eventual consistency guarantees for replicated data. We develop a modular and reusable framework for verifying the correctness of CRDT algorithms. We avoid correctness issues that have dogged previous mechanised proofs in this area by including a network model in our formalisation, and proving that our theorems hold in all possible network behaviours. Our axiomatic network model is a standard abstraction that accurately reflects the behaviour of real-world computer networks. Moreover, we identify an abstract convergence theorem, a property of order relations, which provides a formal definition of strong eventual consistency. We then obtain the first machine-checked correctness theorems for three concrete CRDTs: the Replicated Growable Array, the Observed-Remove Set, and an Increment-Decrement Counter.

Contents

1 Introduction 2
2 Technical Lemmas 2
 2.1 Kleisli arrow composition .. 3
 2.2 Lemmas about sets .. 3
 2.3 Lemmas about list .. 3
3 Strong Eventual Consistency 5
 3.1 Concurrent operations .. 5
 3.2 Happens-before consistency 6
 3.3 Apply operations ... 7
 3.4 Concurrent operations commute 8
 3.5 Abstract convergence theorem 8
 3.6 Convergence and progress 9
4 Axiomatic network models 9
 4.1 Node histories ... 10
 4.2 Asynchronous broadcast networks 11
 4.3 Causal networks .. 13
 4.4 Dummy network models .. 16
5 Replicated Growable Array 16
 5.1 Insert and delete operations 16
 5.2 Well-definedness of insert and delete 17
 5.3 Preservation of element indices 17
1 Introduction

Strong eventual consistency (SEC) is a model that strikes a compromise between strong and eventual consistency [12]. Informally, it guarantees that whenever two nodes have received the same set of messages—possibly in a different order—their view of the shared state is identical, and any conflicting concurrent updates must be merged automatically. Large-scale deployments of SEC algorithms include datacentre-based applications using the Riak distributed database [3], and collaborative editing applications such as Google Docs [5]. Unlike strong consistency models, it is possible to implement SEC in decentralised settings without any central server or leader, and it allows local execution at each node to proceed without waiting for communication with other nodes. However, algorithms for achieving decentralised SEC are currently poorly understood: several such algorithms, published in peer-reviewed venues, were subsequently shown to violate their supposed guarantees [6, 7, 9]. Informal reasoning has repeatedly produced plausible-looking but incorrect algorithms, and there have even been examples of mechanised formal proofs of SEC algorithm correctness later being shown to be flawed. These mechanised proofs failed because, in formalising the algorithm, they made false assumptions about the execution environment.

In this work we use the Isabelle/HOL proof assistant [13] to create a framework for reliably reasoning about the correctness of a particular class of decentralised replication algorithms. We do this by formalising not only the replication algorithms, but also the network in which they execute, allowing us to prove that the algorithm’s assumptions hold in all possible network behaviours. We model the network using the axioms of asynchronous unreliable causal broadcast, a well-understood abstraction that is commonly implemented by network protocols, and which can run on almost any computer network, including large-scale networks that delay, reorder, or drop messages, and in which nodes may fail.

We then use this framework to produce machine-checked proofs of correctness for three Conflict-Free Replicated Data Types (CRDTs), a class of replication algorithms that ensure strong eventual consistency [11, 12]. To our knowledge, this is the first machine-checked verification of SEC algorithms that explicitly models the network and reasons about all possible network behaviours. The framework is modular and reusable, making it easy to formulate proofs for new algorithms. We provide the first mechanised proofs of the Replicated Growable Array, the operation-based Observed-Remove Set, and the operation-based counter CRDT.

2 Technical Lemmas

This section contains a list of helper definitions and lemmas about sets, lists and the option monad.
2.1 Kleisli arrow composition

definition kleisli :: ('b ⇒ 'b option) ⇒ ('b ⇒ 'b option) ⇒ ('b ⇒ 'b option) (infixr ⊘ 65) where
\[f ⊘ g ≡ λx. (f x >>= (λy. g y)) \]

lemma kleisli-comm-cong:
- assumes \(x ⊘ y = y ⊘ x \)
- shows \(z ⊘ x ⊘ y = z ⊘ y ⊘ x \)
- \(\langle \text{proof} \rangle \)

lemma kleisli-assoc:
- shows \((z ⊘ x) ⊘ y = z ⊘ (x ⊘ y) \)
- \(\langle \text{proof} \rangle \)

2.2 Lemmas about sets

lemma distinct-set-notin [dest]:
- assumes distinct \(x \not\in \text{set} \) \(xs \)
- shows \(x \not\in \text{set} \) \(xs \)
- \(\langle \text{proof} \rangle \)

lemma set-membership-equality-technicalD [dest]:
- assumes \(\{x\} \cup (\text{set} \) \(xs\) \) = \(\{y\} \cup (\text{set} \) \(ys\) \)
- shows \(x = y \lor y \in \text{set} \) \(xs \)
- \(\langle \text{proof} \rangle \)

lemma set-equality-technical:
- assumes \(\{x\} \cup (\text{set} \) \(xs\) \) = \(\{y\} \cup (\text{set} \) \(ys\) \)
 - and \(x \not\in \text{set} \) \(xs \)
 - and \(y \not\in \text{set} \) \(ys \)
 - and \(y \in \text{set} \) \(xs \)
 - shows \(\{x\} \cup (\text{set} \) \(xs\) \) \(-\) \(\{y\}\) \) = \(\text{set} \) \(ys \)
 - \(\langle \text{proof} \rangle \)

lemma set-elem-nth:
- assumes \(x \in \text{set} \) \(xs \)
- shows \(\exists m. m < \text{length} \) \(xs \) \(\land \) \(xs \) \(![m] = x \)
- \(\langle \text{proof} \rangle \)

2.3 Lemmas about list

lemma list-nil-or-snoc:
- shows \(xs = [] \lor (\exists y \) \(ys. \) \(xs = ys@[y]\) \)
 - \(\langle \text{proof} \rangle \)

lemma suffix-eq-distinct-list:
- assumes distinct \(xs \)
 - and \(ys@[suf1] = xs \)
 - and \(ys@[suf2] = xs \)
 - shows \(suf1 = suf2 \)
 - \(\langle \text{proof} \rangle \)

lemma pre-suf-eq-distinct-list:
- assumes distinct \(xs \)
 - and \(ys \not\in [] \)
 - and \(\text{pre1@[ys@[suf1]} = xs \)
 - \(\langle \text{proof} \rangle \)
and \(\text{pre}2@\text{ys}@\text{suf}2 = \text{xs} \)
shows \(\text{pre}1 = \text{pre}2 \land \text{suf}1 = \text{suf}2 \)
(proof)

lemma list-head-unaffected:
assumes \(\text{hd} (x @ [y, z]) = v \)
shows \(\text{hd} (x @ [y]) = v \)
(proof)

lemma list-head-butlast:
assumes \(\text{hd} \text{xs} = v \)
and \(\text{length} \text{xs} > 1 \)
shows \(\text{hd} (\text{butlast} \text{xs}) = v \)
(proof)

lemma list-head-length-one:
assumes \(\text{hd} \text{xs} = x \)
and \(\text{length} \text{xs} = 1 \)
shows \(\text{xs} = [x] \)
(proof)

lemma list-two-at-end:
assumes \(\text{length} \text{xs} > 1 \)
shows \(\exists \text{xs}' \text{x} \text{y}. \text{xs} = \text{xs}' @ [x, y] \)
(proof)

lemma list-nth-split-technical:
assumes \(m < \text{length} \text{cs} \)
and \(\text{cs} \neq [] \)
shows \(\exists \text{xs} \text{ys} \text{. cs} = \text{xs}@((\text{cs}!m))#\text{ys} \)
(proof)

lemma list-nth-split:
assumes \(m < \text{length} \text{cs} \)
and \(n < m \)
and \(1 < \text{length} \text{cs} \)
shows \(\exists \text{xs} \text{ys} \text{zs} \. \text{cs} = \text{xs}@((\text{cs}!n))#\text{ys}@((\text{cs}!m))#\text{zs} \)
(proof)

lemma list-split-two-elems:
assumes \(\text{distinct} \text{cs} \)
and \(x \in \text{set} \text{cs} \)
and \(y \in \text{set} \text{cs} \)
and \(x \neq y \)
shows \(\exists \text{pre} \text{mid} \text{suf} \. \text{cs} = \text{pre} @ x \# \text{mid} @ y \# \text{suf} \lor \text{cs} = \text{pre} @ y \# \text{mid} @ x \# \text{suf} \)
(proof)

lemma split-list-unique-prefix:
assumes \(x \in \text{set} \text{xs} \)
shows \(\exists \text{pre} \text{suf} \. \text{xs} = \text{pre} @ x \# \text{suf} \land (\forall y \in \text{set} \text{pre}. x \neq y) \)
(proof)

lemma map-filter-append:
shows \(\text{List.map-filter P} (\text{xs} @ \text{ys}) = \text{List.map-filter P} \text{xs} @ \text{List.map-filter P} \text{ys} \)
(proof)

end
3 Strong Eventual Consistency

In this section we formalise the notion of strong eventual consistency. We do not make any assumptions about networks or data structures; instead, we use an abstract model of operations that may be reordered, and we reason about the properties that those operations must satisfy. We then provide concrete implementations of that abstract model in later sections.

\[\text{theory} \quad \text{Convergence} \quad \text{imports} \quad \text{Util} \quad \text{begin} \]

The \textit{happens-before} relation, as introduced by [8], captures causal dependencies between operations. It can be defined in terms of sending and receiving messages on a network. However, for now, we keep it abstract, our only restriction on the happens-before relation is that it must be a strict partial order, that is, it must be irreflexive and transitive, which implies that it is also antisymmetric. We describe the state of a node using an abstract type variable. To model state changes, we assume the existence of an interpretation function \textit{interp} which lifts an operation into a state transformer—a function that either maps an old state to a new state, or fails.

\[\text{locale happens-before} = \text{preorder hb-weak hb} \quad \text{for} \quad \text{hb-weak} :: \to a \Rightarrow a \Rightarrow \text{bool} \quad \text{infix} \quad \preceq \quad 50 \quad \text{and} \quad \text{hb} :: \to a \Rightarrow a \Rightarrow \text{bool} \quad \text{infix} \quad \prec \quad 50 \quad + \quad \text{fixes} \quad \text{interp} :: \to a \Rightarrow b \Rightarrow b \quad \langle \prec \rangle \quad [0 \quad 1000] \quad \text{begin} \]

3.1 Concurrent operations

We say that two operations \(x\) and \(y\) are \textit{concurrent}, written \(x \parallel y\), whenever one does not happen before the other: \(\neg(x \prec y)\) and \(\neg(y \prec x)\).

\[\text{definition} \quad \text{concurrent} :: \to a \Rightarrow a \Rightarrow \text{bool} \quad \text{infix} \quad \parallel \quad 50 \quad \text{where} \]

\[\text{s1} \parallel \text{s2} \equiv \neg (\text{s1} \prec \text{s2}) \land \neg (\text{s2} \prec \text{s1}) \]

\[\text{lemma} \quad \text{concurrentI} [\text{intro}] : \neg (\text{s1} \prec \text{s2}) \implies \neg (\text{s2} \prec \text{s1}) \implies \text{s1} \parallel \text{s2} \quad \langle \text{proof} \rangle \]

\[\text{lemma} \quad \text{concurrentD1} [\text{dest}] : \text{s1} \parallel \text{s2} \implies \neg (\text{s1} \prec \text{s2}) \quad \langle \text{proof} \rangle \]

\[\text{lemma} \quad \text{concurrentD2} [\text{dest}] : \text{s1} \parallel \text{s2} \implies \neg (\text{s2} \prec \text{s1}) \quad \langle \text{proof} \rangle \]

\[\text{lemma} \quad \text{concurrent-refl} [\text{intro}, \text{simp}] : \text{s} \parallel \text{s} \quad \langle \text{proof} \rangle \]

\[\text{lemma} \quad \text{concurrent-comm} : \text{s1} \parallel \text{s2} \iff \text{s2} \parallel \text{s1} \quad \langle \text{proof} \rangle \]

\[\text{definition} \quad \text{concurrent-set} :: \to a \Rightarrow \text{a list} \Rightarrow \text{bool} \quad \text{where} \]

\[\text{concurrent-set} \text{x} \text{xs} \equiv \forall \text{y} \in \text{set} \text{xs}. \text{x} \parallel \text{y} \]

\[\text{lemma} \quad \text{concurrent-set-empty} [\text{simp}, \text{intro}] : \quad \text{concurrent-set} \text{x} [] \quad \langle \text{proof} \rangle \]

\[\text{lemma} \quad \text{concurrent-set-ConsE} [\text{elim}] : \]
assumes \(\text{concurrent-set \(a \ (x \# xs)\)}\)
and \(\text{concurrent-set \(a \ xs \Rightarrow \text{concurrent} \ x \ a \Rightarrow G\)}\)
shows \(G\)
(proof)

\textbf{lemma concurrent-set-ConsI} [intro!]:
\(\text{concurrent-set \(a \ xs \Rightarrow \text{concurrent} \ a \ x \Rightarrow \text{concurrent-set} \ a \ (x \# xs)\)}\)
(proof)

\textbf{lemma concurrent-set-appendI} [intro!]:
\(\text{concurrent-set} \ a \ xs \Rightarrow \text{concurrent-set} \ a \ ys \Rightarrow \text{concurrent-set} \ a \ (xs @ ys)\)
(proof)

\textbf{lemma concurrent-set-Cons-Snoc} [simp]:
\(\text{concurrent-set} \ a \ (xs \@ [x]) = \text{concurrent-set} \ a \ (x \# xs)\)
(proof)

3.2 Happens-before consistency

The purpose of the happens-before relation is to require that some operations must be applied in a particular order, while allowing concurrent operations to be reordered with respect to each other. We assume that each node applies operations in some sequential order (a standard assumption for distributed algorithms), and so we can model the execution history of a node as a list of operations.

\textbf{inductive} \(\text{hb-consistent} :: \ 'a \ \text{list} \Rightarrow \text{bool} \ \text{where}\
\ [\text{intro}]: \ \text{hb-consistent} \ [] | \ [\text{intro}]: \ [\text{hb-consistent} \ zs; \ \forall \ x \ \in \ \text{set} \ (xs @ ys). \ \neg \ y < x] \Rightarrow \text{hb-consistent} \ (xs @ [y])\)

As a result, whenever two operations \(x\) and \(y\) appear in a \(\text{hb-consistent}\) list, and \(x \prec y\), then \(x\) must appear before \(y\) in the list. However, if \(x \parallel y\), the operations can appear in the list in either order.

\textbf{lemma} \((x \prec y \lor \text{concurrent} \ x \ y) = (\neg y < x)\)
(proof)

\textbf{lemma consistentI} [intro!]:
\textbf{assumes} \(\text{hb-consistent} \ (xs @ ys)\)
\textbf{and} \(\forall x \in \text{set} \ (xs @ ys). \ \neg \ z < x\)
\textbf{shows} \(\text{hb-consistent} \ (xs @ ys @ [z])\)
(proof)

\textbf{inductive-cases} \(\text{hb-consistent-elim} \ [\text{elim}]:\)
\(\text{hb-consistent} \ []\)
\(\text{hb-consistent} \ (xs@[y])\)
\(\text{hb-consistent} \ (xs@ys)\)
\(\text{hb-consistent} \ (xs@ys@[z])\)

\textbf{inductive-cases} \(\text{hb-consistent-elim-gen}:\)
\(\text{hb-consistent} \ zs\)

\textbf{lemma} \(\text{hb-consistent-append-D1} \ [\text{dest}]:\)
\textbf{assumes} \(\text{hb-consistent} \ (xs @ ys)\)
\textbf{shows} \(\text{hb-consistent} \ xs\)
(proof)

\textbf{lemma} \(\text{hb-consistent-append-D2} \ [\text{dest}]:\)
\textbf{assumes} \(\text{hb-consistent} \ (xs @ ys)\)
\textbf{shows} \(\text{hb-consistent} \ ys\)

6
lemma hb-consistent-append-elim-ConsD [elim]:
assumes hb-consistent (y#ys)
shows hb-consistent ys
⟨proof⟩

lemma hb-consistent-remove1 [intro]:
assumes hb-consistent xs
shows hb-consistent (remove1 x xs)
⟨proof⟩

lemma hb-consistent-singleton [intro]:
shows hb-consistent [x]
⟨proof⟩

lemma hb-consistent-prefix-suffix-exists:
assumes hb-consistent ys
hb-consistent (xs@[x])
{x} ∪ set xs = set ys
distinct (x#xs)
distinct ys
shows ∃prefix suffix. ys = prefix @ x # suffix ∧ concurrent-set x suffix
⟨proof⟩

lemma hb-consistent-append [intro]:
assumes hb-consistent suffix
hb-consistent prefix
∧\ s p. s ∈ set suffix ⇒ p ∈ set prefix ⇒ ¬ s ≺ p
shows hb-consistent (prefix @ suffix)
⟨proof⟩

lemma hb-consistent-append-porder:
assumes hb-consistent (xs @ ys)
x ∈ set xs
y ∈ set ys
shows ¬ y ≺ x
⟨proof⟩

3.3 Apply operations

We can now define a function apply-operations that composes an arbitrary list of operations into a state transformer. We first map interp across the list to obtain a state transformer for each operation, and then collectively compose them using the Kleisli arrow composition combinator.

definition apply-operations :: 'a list ⇒ 'b ⇒ 'b where
apply-operations es ≡ foldl (∘) Some (map interp es)

lemma apply-operations-empty [simp]: apply-operations [] s = Some s
⟨proof⟩

lemma apply-operations-Snoc [simp]:
apply-operations (xs@[x]) = (apply-operations xs) ∘ (x)
⟨proof⟩
3.4 Concurrent operations commute

We say that two operations x and y commute whenever $\langle x \rangle \triangleright \langle y \rangle = \langle y \rangle \triangleright \langle x \rangle$, i.e. when we can swap the order of the composition of their interpretations without changing the resulting state transformer. For our purposes, requiring that this property holds for all pairs of operations is too strong. Rather, the commutation property is only required to hold for operations that are concurrent.

Definition

\[
\text{concurrent-ops-commute} :: 'a list \Rightarrow \text{bool}
\]

where

\[
\text{concurrent-ops-commute } xs \equiv \\
\forall x, y. \{x, y\} \subseteq \text{set } xs \rightarrow \text{concurrent } x \rightarrow y \rightarrow \langle x \rangle \triangleright \langle y \rangle = \langle y \rangle \triangleright \langle x \rangle
\]

Lemma

\[
\text{concurrent-ops-commute-empty} \ [\text{intro}] : \text{concurrent-ops-commute } []
\]

Lemma

\[
\text{concurrent-ops-commute-singleton} \ [\text{intro}] : \text{concurrent-ops-commute } [x]
\]

Lemma

\[
\text{concurrent-ops-commute-appendD} \ [\text{dest}] : \\
\text{assumes concurrent-ops-commute } (xs@ys) \rightarrow \\
\text{shows concurrent-ops-commute } xs
\]

Lemma

\[
\text{concurrent-ops-commute-rearrange} : \\
\text{concurrent-ops-commute } (xs@x#ys) = \text{concurrent-ops-commute } (xs@ys@[x])
\]

Lemma

\[
\text{concurrent-ops-commute-concurrent-set} : \\
\text{assumes concurrent-ops-commute } (prefix@suffix@[x]) \\
\text{concurrent-set } x \text{ suffix} \\
\text{distinct } (prefix @ x \neq suffix) \\
\text{shows apply-operations } (prefix @ suffix @ [x]) = \text{apply-operations } (prefix @ x \neq suffix)
\]

3.5 Abstract convergence theorem

We can now state and prove our main theorem, **convergence**. This theorem states that two hb-consistent lists of distinct operations, which are permutations of each other and in which concurrent operations commute, have the same interpretation.

Theorem

\[
\text{convergence} : \\
\text{assumes set } xs = \text{set } ys \\
\text{concurrent-ops-commute } xs \\
\text{concurrent-ops-commute } ys \\
\text{distinct } xs \\
\text{distinct } ys \\
\text{hb-consistent } xs \\
\text{hb-consistent } ys \\
\text{shows apply-operations } xs = \text{apply-operations } ys
\]

Corollary

\[
\text{convergence-ext} : \\
\text{assumes set } xs = \text{set } ys \\
\text{concurrent-ops-commute } xs \\
\text{concurrent-ops-commute } ys \\
\text{distinct } xs \\
\text{distinct } ys \\
\text{hb-consistent } xs
\]
3.6 Convergence and progress

Besides convergence, another required property of SEC is progress: if a valid operation was issued on one node, then applying that operation on other nodes must also succeed—that is, the execution must not become stuck in an error state. Although the type signature of the interpretation function allows operations to fail, we need to prove that in all \textit{hb-consistent} network behaviours such failure never actually occurs. We capture the combined requirements in the \textit{strong-eventual-consistency} locale, which extends \textit{happens-before}.

\begin{verbatim}
locale strong-eventual-consistency = happens-before +
 fixes op-history :: 'a list ⇒ bool
 and initial-state :: 'b
 assumes causality: op-history xs ⇒ hb-consistent xs
 assumes distinctness: op-history xs ⇒ distinct xs
 assumes commutativity: op-history xs ⇒ concurrent-ops-commute xs
 assumes no-failure: op-history(xs@[x]) ⇒ apply-operations xs initial-state = Some state ⇒ (x)
 state ≠ None
 assumes trunc-history: op-history(xs@[x]) ⇒ op-history xs
begin

theorem sec-convergence:
 assumes set xs = set ys
 op-history xs
 op-history ys
 shows apply-operations xs = apply-operations ys
⟨proof⟩

theorem sec-progress:
 assumes op-history xs
 shows apply-operations xs initial-state ≠ None
⟨proof⟩

end
end
\end{verbatim}

4 Axiomatic network models

In this section we develop a formal definition of an \textit{asynchronous unreliable causal broadcast network}. We choose this model because it satisfies the causal delivery requirements of many operation-based CRDTs [1, 2]. Moreover, it is suitable for use in decentralised settings, as motivated in the introduction, since it does not require waiting for communication with a central server or a quorum of nodes.

\begin{verbatim}
theory Network
imports
 Convergence
begin
\end{verbatim}
4.1 Node histories

We model a distributed system as an unbounded number of communicating nodes. We assume nothing about the communication pattern of nodes—we assume only that each node is uniquely identified by a natural number, and that the flow of execution at each node consists of a finite, totally ordered sequence of execution steps (events). We call that sequence of events at node \(i \) the history of that node. For convenience, we assume that every event or execution step is unique within a node’s history.

\[
\text{locale node-histories} = \
\text{fixes history :: nat ⇒ 'evt list} \\
\text{assumes histories-distinct [intro!, simp]: distinct (history i)}
\]

\[
\text{lemma (in node-histories) history-finite:} \\
\text{shows finite (set (history i)) (proof)}
\]

\[
\text{definition (in node-histories) history-order :: 'evt ⇒ nat ⇒ 'evt ⇒ bool (-/ ⊏ - [50,1000,50]) where} \\
x ⊏^i z ≡ ∃xs ys zs. xs@x#ys@z#zs = history i
\]

\[
\text{lemma (in node-histories) node-total-order-trans:} \\
\text{assumes e1 ⊏^i e2} \\
\text{and e2 ⊏^i e3} \\
\text{shows e1 ⊏^i e3 (proof)}
\]

\[
\text{lemma (in node-histories) local-order-carrier-closed:} \\
\text{assumes e1 ⊏^i e2} \\
\text{shows \{e1,e2\} ⊆ set (history i) (proof)}
\]

\[
\text{lemma (in node-histories) node-total-order-irrefl:} \\
\text{shows ¬(e ⊏^i e) (proof)}
\]

\[
\text{lemma (in node-histories) node-total-order-antisym:} \\
\text{assumes e1 ⊏^i e2} \\
\text{and e2 ⊏^i e1} \\
\text{shows False (proof)}
\]

\[
\text{lemma (in node-histories) node-order-is-total:} \\
\text{assumes e1 ∈ set (history i)} \\
\text{and e2 ∈ set (history i)} \\
\text{and e1 ≠ e2} \\
\text{shows e1 ⊏^i e2 ∨ e2 ⊏^i e1 (proof)}
\]

\[
\text{definition (in node-histories) prefix-of-node-history :: 'evt list ⇒ nat ⇒ bool (infix prefix of 50) where} \\
x$s prefix of i ≡ ∃ys. xs@x#ys@z#zs = history i
\]

\[
\text{lemma (in node-histories) carriers-head-lt:} \\
\text{assumes y#ys = history i} \\
\text{shows ¬(x ⊏^i y) (proof)}
\]

\[
\text{lemma (in node-histories) prefix-of-ConsD [dest]:}
\]
assumes $x \neq xs$ prefix of i
shows $[x]$ prefix of i
(proof)

lemma (in node-histories) prefix-of-appendD [dest]:
assumes $xs @ ys$ prefix of i
shows xs prefix of i
(proof)

lemma (in node-histories) prefix-distinct:
assumes xs prefix of i
shows distinct xs
(proof)

lemma (in node-histories) prefix-to-carriers [intro]:
assumes xs prefix of i
shows set xs \subseteq set $(history i)$
(proof)

lemma (in node-histories) prefix-elem-to-carriers:
assumes xs prefix of i
and $x \in$ set xs
shows $x \in$ set $(history i)$
(proof)

lemma (in node-histories) local-order-prefix-closed:
assumes $x \sqsubseteq_i y$
and xs prefix of i
and $y \in$ set xs
shows $x \in$ set xs
(proof)

lemma (in node-histories) local-order-prefix-closed-last:
assumes $x \sqsubseteq_i y$
and $xs@[y]$ prefix of i
shows $x \in$ set xs
(proof)

lemma (in node-histories) events-before-exist:
assumes $x \in$ set $(history i)$
shows \exists pre. pre $\sqsubseteq [x]$ prefix of i
(proof)

lemma (in node-histories) events-in-local-order:
assumes pre $\sqsubseteq [e2]$ prefix of i
and $e1 \in$ set pre
shows $e1 \sqsubseteq_i e2$
(proof)

4.2 Asynchronous broadcast networks

We define a new locale network containing three axioms that define how broadcast and deliver events may interact, with these axioms defining the properties of our network model.

datatype 'msg event
= Broadcast 'msg
| Deliver 'msg
locale network = node-histories history for history :: nat ⇒ 'msg event list +
fixes msg-id :: 'msg ⇒ 'msgid

assumes delivery-has-a-cause: [Deliver m ∈ set (history i)] ⇒ ∃ j. Broadcast m ∈ set (history j)
and deliver-locally: [Broadcast m ∈ set (history i)] ⇒ Broadcast m ⊏ i Deliver m
and msg-id-unique: [Broadcast m1 ∈ set (history i); Broadcast m2 ∈ set (history j); msg-id m1 = msg-id m2] ⇒ i = j ∧ m1 = m2

The axioms can be understood as follows:

delivery-has-a-cause: If some message \(m \) was delivered at some node, then there exists some node on which \(m \) was broadcast. With this axiom, we assert that messages are not created “out of thin air” by the network itself, and that the only source of messages are the nodes.

deliver-locally: If a node broadcasts some message \(m \), then the same node must subsequently also deliver \(m \) to itself. Since \(m \) does not actually travel over the network, this local delivery is always possible, even if the network is interrupted. Local delivery may seem redundant, since the effect of the delivery could also be implemented by the broadcast event itself; however, it is standard practice in the description of broadcast protocols that the sender of a message also sends it to itself, since this property simplifies the definition of algorithms built on top of the broadcast abstraction [4].

msg-id-unique: We do not assume that the message type \('msg \) has any particular structure; we only assume the existence of a function \(msg-id::'msg⇒'msgid \) that maps every message to some globally unique identifier of type \('msgid \). We assert this uniqueness by stating that if \(m1 \) and \(m2 \) are any two messages broadcast by any two nodes, and their \(msg-ids \) are the same, then they were in fact broadcast by the same node and the two messages are identical. In practice, these globally unique IDs can by implemented using unique node identifiers, sequence numbers or timestamps.

lemma (in network) broadcast-before-delivery:
assumes Deliver m ∈ set (history i)
shows ∃ j. Broadcast m ⊏ j Deliver m
⟨proof⟩

lemma (in network) broadcasts-unique:
assumes i ≠ j
and Broadcast m ∈ set (history i)
shows Broadcast m ∉ set (history j)
⟨proof⟩

Based on the well-known definition by [8], we say that \(m1 \prec m2 \) if any of the following is true:

1. \(m1 \) and \(m2 \) were broadcast by the same node, and \(m1 \) was broadcast before \(m2 \).
2. The node that broadcast \(m2 \) had delivered \(m1 \) before it broadcast \(m2 \).
3. There exists some operation \(m3 \) such that \(m1 \prec m3 \) and \(m3 \prec m2 \).

inductive (in network) hb :: 'msg ⇒ 'msg ⇒ bool where
hb-broadcast: [Broadcast m1 ⊏ i Broadcast m2] ⇒ hb m1 m2 |
hb-deliver: [Deliver m1 ⊏ i Broadcast m2] ⇒ hb m1 m2 |
hb-trans: [hb m1 m2; hb m2 m3] ⇒ hb m1 m3
inductive-cases (in network) hb-elim: hb x y

definition (in network) weak-hb :: 'msg ⇒ 'msg ⇒ bool where
weak-hb m1 m2 ≡ hb m1 m2 ∨ m1 = m2

locale causal-network = network +
assumes causal-delivery: Deliver m2 ∈ set (history j) ⇒ hb m1 m2 =⇒ Deliver m1 ⊑ j Deliver m2

lemma (in causal-network) causal-broadcast:
assumes Deliver m2 ∈ set (history j)
and Deliver m1 ⊑ j Broadcast m2
shows Deliver m1 ⊑ j Deliver m2
⟨proof⟩

lemma (in network) hb-broadcast-exists1:
assumes hb m1 m2
shows ∃ i. Broadcast m1 ∈ set (history i)
⟨proof⟩

lemma (in network) hb-broadcast-exists2:
assumes hb m1 m2
shows ∃ i. Broadcast m2 ∈ set (history i)
⟨proof⟩

4.3 Causal networks

lemma (in causal-network) hb-has-a-reason:
assumes hb m1 m2
and Broadcast m2 ∈ set (history i)
shows Deliver m1 ∈ set (history i) ∨ Broadcast m1 ∈ set (history i)
⟨proof⟩

lemma (in causal-network) hb-cross-node-delivery:
assumes hb m1 m2
and Broadcast m1 ∈ set (history i)
and Broadcast m2 ∈ set (history j)
and i ≠ j
shows Deliver m1 ∈ set (history j)
⟨proof⟩

lemma (in causal-network) hb-irrefl:
assumes hb m1 m2
shows m1 ≠ m2
⟨proof⟩

lemma (in causal-network) hb-broadcast-broadcast-order:
assumes hb m1 m2
and Broadcast m1 ∈ set (history i)
and Broadcast m2 ∈ set (history i)
shows Broadcast m1 ⊑ i Broadcast m2
⟨proof⟩

lemma (in causal-network) hb-antisym:
assumes hb x y
and hb y x
shows False
⟨proof⟩
definition (in network) node-deliver-messages :: 'msg event list ⇒ 'msg list
where
node-deliver-messages cs ≡ List.map-filter (λ e. case e of Deliver m ⇒ Some m | - ⇒ None) cs

lemma (in network) node-deliver-messages-empty [simp]:
shows node-deliver-messages [] = []
⟨proof⟩

lemma (in network) node-deliver-messages-Cons:
shows node-deliver-messages (x#xs) = (node-deliver-messages [x])@((node-deliver-messages xs)
⟨proof⟩

lemma (in network) node-deliver-messages-append:
shows node-deliver-messages (xs@ys) = (node-deliver-messages xs)@((node-deliver-messages ys)
⟨proof⟩

lemma (in network) node-deliver-messages-Broadcast [simp]:
shows node-deliver-messages [Broadcast m] = []
⟨proof⟩

lemma (in network) node-deliver-messages-Deliver [simp]:
shows node-deliver-messages [Deliver m] = [m]
⟨proof⟩

lemma (in network) prefix-msg-in-history:
assumes es prefix of i
and m ∈ set (node-deliver-messages es)
shows Deliver m ∈ set (history i)
⟨proof⟩

lemma (in network) prefix-contains-msg:
assumes es prefix of i
and m ∈ set (node-deliver-messages es)
shows Deliver m ∈ set es
⟨proof⟩

lemma (in network) node-deliver-messages-distinct:
assumes xs prefix of i
shows distinct (node-deliver-messages xs)
⟨proof⟩

lemma (in network) drop-last-message:
assumes evts prefix of i
and node-deliver-messages evts = msgs @ [last-msg]
shows ∃ pre. pre prefix of i ∧ node-deliver-messages pre = msgs
⟨proof⟩

locale network-with-ops = causal-network history fst
for history :: nat ⇒ ('msgid × 'op) event list +
fixes interp :: 'op ⇒ 'state ⇰ 'state
and initial-state :: 'state

context network-with-ops begin

definition interp-msg :: 'msgid × 'op ⇒ 'state ⇰ 'state
where
interp-msg msg state ≡ interp (snd msg) state

sublocale hh: happens-before weak-hb hh interp-msg
⟨proof⟩
definition (in network-with-ops) apply-operations :: (msgid × op) event list → state where
apply-operations es ≡ hb.apply-operations (node-deliver-messages es) initial-state

definition (in network-with-ops) node-deliver-ops :: (msgid × op) event list ⇒ op list where
node-deliver-ops cs ≡ map snd (node-deliver-messages cs)

lemma (in network-with-ops) apply-operations-empty [simp]:
shows apply-operations [] = Some initial-state
⟨proof⟩

lemma (in network-with-ops) apply-operations-Broadcast [simp]:
shows apply-operations (xs @ [Broadcast m]) = apply-operations xs
⟨proof⟩

lemma (in network-with-ops) apply-operations-Deliver [simp]:
shows apply-operations (xs @ [Deliver m]) = (apply-operations xs ≫ interp-msg m)
⟨proof⟩

lemma (in network-with-ops) hb-consistent-technical:
assumes ∀ m. m < length cs ⇒ n < m ⇒ cs ↑ i cs ↑ j cs ↑ i m
shows hb.hb-consistent (node-deliver-messages cs)
⟨proof⟩

corollary (in network-with-ops)
shows hb.hb-consistent (node-deliver-messages (history i))
⟨proof⟩

lemma (in network-with-ops) hb-consistent-prefix:
assumes xs prefix of i
shows hb.hb-consistent (node-deliver-messages xs)
⟨proof⟩

locale network-with-constrained-ops = network-with-ops +
fixes valid-msg :: 'c ⇒ ('a × 'b) ⇒ bool
assumes broadcast-only-valid-msgs: pre @ [Broadcast m] prefix of i ⇒
∃ state. apply-operations pre = Some state ∧ valid-msg state m

lemma (in network-with-constrained-ops) broadcast-is-valid:
assumes Broadcast m ∈ set (history i)
shows ∃ state. valid-msg state m
⟨proof⟩

lemma (in network-with-constrained-ops) deliver-is-valid:
assumes Deliver m ∈ set (history i)
shows ∃ j pre state. pre @ [Broadcast m] prefix of j ∧ apply-operations pre = Some state ∧ valid-msg state m
⟨proof⟩

lemma (in network-with-constrained-ops) deliver-in-prefix-is-valid:
assumes xs prefix of i
and Deliver m ∈ set xs
shows ∃ state. valid-msg state m
⟨proof⟩
4.4 Dummy network models

interpretation trivial-node-histories: node-histories λm. []
⟨proof⟩

interpretation trivial-network: network λm. [] id
⟨proof⟩

interpretation trivial-causal-network: causal-network λm. [] id
⟨proof⟩

interpretation trivial-network-with-ops: network-with-ops λm. [] (λx y. Some y) 0
⟨proof⟩

⟨proof⟩

end

5 Replicated Growable Array

The RGA, introduced by [10], is a replicated ordered list (sequence) datatype that supports insert and delete operations.

theory Ordered-List
imports Util
begin

type-synonym (′id, ′v) elt = ′id × ′v × bool

5.1 Insert and delete operations

Insertion operations place the new element after an existing list element with a given ID, or at the head of the list if no ID is given. Deletion operations refer to the ID of the list element that is to be deleted. However, it is not safe for a deletion operation to completely remove a list element, because then a concurrent insertion after the deleted element would not be able to locate the insertion position. Instead, the list retains so-called tombstones: a deletion operation merely sets a flag on a list element to mark it as deleted, but the element actually remains in the list. A separate garbage collection process can be used to eventually purge tombstones [10], but we do not consider tombstone removal here.

hide-const insert

fun insert-body :: (′id::{linorder}, ′v) elt list ⇒ (′id, ′v) elt ⇒ (′id, ′v) elt list where
insert-body [] e = [e] |
insert-body (x#xs) e =
 (if fst x < fst e then
 e#x#xs
 else x#insert-body xs e)

fun insert :: (′id::{linorder}, ′v) elt list ⇒ (′id, ′v) elt ⇒ ′id option ⇒ (′id, ′v) elt list option where
insert xs e None = Some (insert-body xs e) |
insert [] e (Some i) = None |
insert (x#xs) e (Some i) =
 (if fst x = i then
Some \((x\#\text{insert-body} \, xs \, e)\)

else

\(\text{insert} \, xs \, e \, (\text{Some} \, i) \; \ni \lambda. \text{Some} \, (x\#t))\)

fun delete :: \(\langle \text{id:} \{\text{linorder}\}, \, \langle \text{v} \rangle \rangle \; \text{elt list} \Rightarrow \langle \text{id}, \, \langle \text{v} \rangle \rangle \; \text{elt list option}\) where

delete \([],\)

\(i = \text{None} \mid\)

delete \((\text{Some} \, (i', \, \text{flag})\#xs) \, i = \)

\((\text{if} \; i' = i \text{ then} \; \text{Some} \, (i', \, \text{flag})\#xs)\)

else

delete \(xs \, i \; \ni \lambda. \text{Some} \, ((i', v, \text{flag})\#t))\)

5.2 Well-definedness of insert and delete

lemma insert-no-failure:

\(\text{assumes} \; i = \text{None} \lor (\exists \, i'. \; i = \text{Some} \, i' \land i' \in \text{fst} \; \langle \text{set} \rangle \; xs)\)

\(\text{shows} \; \exists \, xs'. \; \text{insert} \, xs \, e \, i = \text{Some} \, xs'\)

\(\langle \text{proof} \rangle\)

lemma insert-None-index-neq-None [dest]:

\(\text{assumes} \; \text{insert} \, xs \, e \, i = \text{None}\)

\(\text{shows} \; i \neq \text{None}\)

\(\langle \text{proof} \rangle\)

lemma insert-Some-None-index-not-in [dest]:

\(\text{assumes} \; \text{insert} \, xs \, e \, (\text{Some} \, i) = \text{None}\)

\(\text{shows} \; i \notin \text{fst} \; \langle \text{set} \rangle \; xs\)

\(\langle \text{proof} \rangle\)

lemma index-not-in-insert-Some-None [simp]:

\(\text{assumes} \; i \notin \text{fst} \; \langle \text{set} \rangle \; xs\)

\(\text{shows} \; \text{insert} \, xs \, e \, (\text{Some} \, i) = \text{None}\)

\(\langle \text{proof} \rangle\)

lemma delete-no-failure:

\(\text{assumes} \; i \in \text{fst} \; \langle \text{set} \rangle \; xs\)

\(\text{shows} \; \exists \, xs'. \; \text{delete} \, xs \, i = \text{Some} \, xs'\)

\(\langle \text{proof} \rangle\)

lemma delete-None-index-not-in [dest]:

\(\text{assumes} \; \text{delete} \, xs \, i = \text{None}\)

\(\text{shows} \; i \notin \text{fst} \; \langle \text{set} \rangle \; xs\)

\(\langle \text{proof} \rangle\)

lemma index-not-in-delete-None [simp]:

\(\text{assumes} \; i \notin \text{fst} \; \langle \text{set} \rangle \; xs\)

\(\text{shows} \; \text{delete} \, xs \, i = \text{None}\)

\(\langle \text{proof} \rangle\)

5.3 Preservation of element indices

lemma insert-body-preserve-indices [simp]:

\(\text{shows} \; \text{fst} \; \langle \text{set} \rangle \; (\text{insert-body} \, xs \, e) = \text{fst} \; \langle \text{set} \rangle \; xs \cup \{\text{fst} \, e\}\)

\(\langle \text{proof} \rangle\)

lemma insert-preserve-indices:

\(\text{assumes} \; \exists \, ys. \; \text{insert} \, xs \, e \, i = \text{Some} \, ys\)

\(\text{shows} \; \text{fst} \; \langle \text{set} \rangle \; (\text{the} \; (\text{insert} \, xs \, e \, i)) = \text{fst} \; \langle \text{set} \rangle \; xs \cup \{\text{fst} \, e\}\)

17
corollary insert-preserve-indices':
 assumes insert xs e i = Some ys
 shows fst ' set (the (insert xs e i)) = fst ' set xs ∪ {fst e}
(proof)

lemma delete-preserve-indices:
 assumes delete xs i = Some ys
 shows fst ' set xs = fst ' set ys
(proof)

5.4 Commutativity of concurrent operations

lemma insert-body-commutes:
 assumes fst e1 ≠ fst e2
 shows insert-body (insert-body xs e1) e2 = insert-body (insert-body xs e2) e1
(proof)

lemma insert-insert-body:
 assumes fst e1 ≠ fst e2
 and i2 ≠ Some (fst e1)
 shows insert (insert-body xs e1) e2 i2 = insert xs e2 i2 ≜ (λys. Some (insert-body ys e1))
(proof)

lemma insert-nil-None:
 assumes fst e1 ≠ fst e2
 and i ≠ fst e2
 and i2 ≠ Some (fst e1)
 shows insert [] e2 i2 ≜ (λys. insert ys e1 (Some i)) = None
(proof)

lemma insert-insert-body-commute:
 assumes i ≠ fst e1
 and fst e1 ≠ fst e2
 shows insert (insert-body xs e1) e2 (Some i) =
 insert xs e2 (Some i) ≜ (λy. Some (insert-body y e1))
(proof)

lemma insert-commutes:
 assumes fst e1 ≠ fst e2
 i1 = None ∨ i1 ≠ Some (fst e2)
 i2 = None ∨ i2 ≠ Some (fst e1)
 shows insert xs e1 i1 ≜ (λys. insert ys e2 i2) =
 insert xs e2 i2 ≜ (λys. insert ys e1 i1)
(proof)

lemma delete-commutes:
 shows delete xs i1 ≜ (λys. delete ys i2) = delete xs i2 ≜ (λys. delete ys i1)
(proof)

lemma insert-body-delete-commute:
 assumes i2 ≠ fst e
 shows delete (insert-body xs e) i2 ≜ (λt. Some (x#t)) =
 delete xs i2 ≜ (λy. Some (x#insert-body y e))
(proof)

lemma insert-delete-commute:
assumes $i_2 \neq \text{fst } e$

shows $\text{insert } xs \ e \ i_1 \Rightarrow (\lambda ys. \text{delete } ys \ i_2) = \text{delete } xs \ i_2 \Rightarrow (\lambda ys. \text{insert } ys \ e \ i_1)$

(proof)

5.5 Alternative definition of insert

fun $\text{insert'} :: \text{('id::linorder), ('v) elt list } \Rightarrow \text{('id, ('v) elt } \Rightarrow \text{option } \Rightarrow \text{('id::linorder), ('v) elt list}$
where
\[
\begin{align*}
\text{insert'}[] \ e & \quad \text{None } = \text{Some } [e] | \\
\text{insert'}[] \ e & \quad (\text{Some } i) = \text{None } | \\
\text{insert'}(x\#xs) \ e & \quad \text{None } = \\
& \quad \text{(if } \text{fst } x < \text{fst } e \text{ then} \\
& \quad \text{Some } (e\#x\#xs) \\
\text{else} \\
& \quad \text{case } \text{insert'} \ xs \ e \ \text{None of} \\
& \quad \text{None } \Rightarrow \text{None} \\
& \quad | \text{ Some } t \Rightarrow \text{ Some } (x\#t)) | \\
\text{insert'}(x\#xs) \ e & \quad (\text{Some } i) = \\
& \quad \text{(if } \text{fst } x = i \text{ then} \\
& \quad \text{case } \text{insert'} \ xs \ e \ \text{None of} \\
& \quad \text{None } \Rightarrow \text{None} \\
& \quad | \text{ Some } t \Rightarrow \text{ Some } (x\#t) \\
\text{else} \\
& \quad \text{case } \text{insert'} \ xs \ e \ (\text{Some } i) \ of \\
& \quad \text{None } \Rightarrow \text{None} \\
& \quad | \text{ Some } t \Rightarrow \text{ Some } (x\#t))
\end{align*}
\]

lemma [elim!, dest]:
assume $\text{insert'} \ xs \ e \ \text{None } = \text{None}$
shows False

(proof)

lemma $\text{insert-body-insert'}$:
\begin{align*}
s\text{shows } \text{insert'} \ xs \ e \ \text{None } = \text{Some } (\text{insert-body } xs \ e)
\end{align*}

(proof)

lemma insert-insert':
\begin{align*}
s\text{shows } \text{insert } xs \ e \ i = \text{insert'} \ xs \ e \ i
\end{align*}

(proof)

lemma $\text{insert-body-stop-iteration}$:
\begin{align*}
\text{assumes } \text{fst } e > \text{fst } x
\text{shows } \text{insert-body } (x\#xs) \ e = e\#x\#xs
\end{align*}

(proof)

lemma $\text{insert-body-contains-new-elem}$:
\begin{align*}
s\text{shows } \exists \ p \ s. \ xs = p \ @ \ s \land \text{insert-body } xs \ e = p \ @ \ e \ # \ s
\end{align*}

(proof)

lemma $\text{insert-between-elements}$:
\begin{align*}
\text{assumes } xs = \text{pre}@\text{ref}\#\text{suf}
\text{and } \text{distinct } (\text{map } \text{fst } xs)
\text{and } \forall i'. \ i' \in \text{fst } ' \text{ set } xs \Rightarrow i' < \text{fst } e
\text{shows } \text{insert } xs \ e \ (\text{Some } (\text{fst ref})) = \text{Some } (\text{pre } @ \ \text{ref } \ # \ e \ # \ \text{suf})
\end{align*}

(proof)

lemma $\text{insert-position-element-technical}$:
\begin{align*}
\text{assumes } \forall x \in \text{set } as. \ a \neq \text{fst } x
\end{align*}

19
and \(\text{insert-body} \) \((cs @ ds) e = cs @ e # ds\)
shows \(\text{insert} \) \((as @ (a, aa, b) # cs @ ds) e (\text{Some} a) = \text{Some} (as @ (a, aa, b) # cs @ e # ds)\)

(proof)

Lemma split-tuple-list-by-id:
assumes \((a, b, c) \in \text{set} \; \text{xs}\)
and \(\text{distinct} \) \((\text{map} \; \text{fst} \; \text{xs})\)
shows \(\exists \; \text{pre} \; \text{suf}. \; \text{xs} = \text{pre} @ (a, b, c) # \text{suf} \land (\forall y \in \text{set} \; \text{pre}. \; \text{fst} \; y \neq a)\)

(proof)

Lemma insert-preserves-order:
assumes \(i = \text{None} \lor (\exists) \; i'. \; i = \text{Some} \; i' \land i' \in \text{fst} \; (\text{set} \; \text{xs})\)
and \(\text{distinct} \) \((\text{map} \; \text{fst} \; \text{xs})\)
shows \(\exists \; \text{pre} \; \text{suf}. \; \text{xs} = \text{pre}@\text{suf} \land \text{insert} \; \text{xs} \; e \; i = \text{Some} \; (\text{pre} @ e # \text{suf})\)

(proof)

5.6 Network

theory RGA
imports Network Ordered-List
begin

datatype \((\prime \; \text{id}, \prime \; \text{v}) \; \text{operation} =\)
\(\text{Insert} \; (\prime \; \text{id}, \prime \; \text{v}) \; \text{elt} \; \prime \; \text{id} \; \text{option} \mid \)
\(\text{Delete} \; \prime \; \text{id} \)

fun interpret-opers :: \((\prime \; \text{id} :: \text{linorder}, \prime \; \text{v}) \; \text{operation} \Rightarrow (\prime \; \text{id}, \prime \; \text{v}) \; \text{elt} \; \text{list} \Rightarrow (\prime \; \text{id}, \prime \; \text{v}) \; \text{elt} \; \text{list} \) where
\(\text{interpret-opers} \; (\text{Insert} \; e \; n) \; \text{xs} = \text{insert} \; \text{xs} \; e \; n \mid \)
\(\text{interpret-opers} \; (\text{Delete} \; n) \; \text{xs} = \text{delete} \; \text{xs} \; n \)

definition element-ids :: \((\prime \; \text{id}, \prime \; \text{v}) \; \text{elt} \; \text{list} \Rightarrow \prime \; \text{id} \; \text{set} \) where
\(\text{element-ids} \; \text{list} \equiv \text{set} \; (\text{map} \; \text{fst} \; \text{list})\)

definition valid-rga-msg :: \((\prime \; \text{id}, \prime \; \text{v}) \; \text{elt} \; \text{list} \Rightarrow \prime \; \text{id} \times (\prime \; \text{id} :: \text{linorder}, \prime \; \text{v}) \; \text{operation} \Rightarrow \text{bool} \) where
\(\text{valid-rga-msg} \; \text{list} \; \text{msg} \equiv \text{case} \; \text{msg} \; \text{of} \)
\((i, \text{Insert} \; e \; \text{None}) \Rightarrow \text{fst} \; e = i \mid \)
\((i, \text{Insert} \; e \; (\text{Some} \; \text{pos})) \Rightarrow \text{fst} \; e = i \land \text{pos} \in \text{element-ids} \; \text{list} \mid \)
\((i, \text{Delete} \; \text{pos}) \Rightarrow \text{pos} \in \text{element-ids} \; \text{list} \)

locale rga = network-with-constrained-ops - interpret-opers [] valid-rga-msg

definition indices :: \((\prime \; \text{id} \times (\prime \; \text{id}, \prime \; \text{v}) \; \text{operation}) \; \text{event} \; \text{list} \Rightarrow \prime \; \text{id} \; \text{list} \) where
\(\text{indices} \; \text{xs} \equiv \text{List.map-filter} \; (\lambda x. \text{case} \; \text{x} \; \text{of} \; \text{Deliver} \; (i, \text{Insert} \; e \; n) \Rightarrow \text{Some} \; (\text{fst} \; e) \mid \cdot \Rightarrow \text{None}) \; \text{xs} \)

lemma indices-Nil [simp]:
\(\text{shows} \; \text{indices} \; [] = []\)
(proof)

lemma indices-append [simp]:
\(\text{shows} \; \text{indices} \; (\text{xs}@\text{ys}) = \text{indices} \; \text{xs} @ \text{indices} \; \text{ys}\)
(proof)
lemma indices-Broadcast-singleton [simp]:
 shows indices [Broadcast b] = []
⟨proof⟩

lemma indices-Deliver-Insert [simp]:
 shows indices [Deliver (i, Insert e n)] = [fst e]
⟨proof⟩

lemma indices-Deliver-Delete [simp]:
 shows indices [Deliver (i, Delete n)] = []
⟨proof⟩

lemma (in rga) idx-in-elem-inserted [intro]:
 assumes Deliver (i, Insert e n) ∈ set xs
 shows fst e ∈ set (indices xs)
⟨proof⟩

lemma (in rga) apply-opers-idx-elems:
 assumes es prefix of i
 and apply-operations es = Some xs
 shows element-ids xs = set (indices es)
⟨proof⟩

lemma (in rga) delete-does-not-change-element-ids:
 assumes es @ [Deliver (i, Delete n)] prefix of j
 and apply-operations es = Some xs1
 and apply-operations (es @ [Deliver (i, Delete n)]) = Some xs2
 shows element-ids xs1 = element-ids xs2
⟨proof⟩

lemma (in rga) someone-inserted-id:
 assumes es @ [Deliver (i, Insert (k, v, f) n)] prefix of j
 and apply-operations es = Some xs1
 and apply-operations (es @ [Deliver (i, Insert (k, v, f) n)]) = Some xs2
 and a ∈ element-ids xs2
 and a ≠ k
 shows a ∈ element-ids xs1
⟨proof⟩

lemma (in rga) deliver-insert-exists:
 assumes es prefix of j
 and apply-operations es = Some xs
 and a ∈ element-ids xs
 shows ∃ i v f n. Deliver (i, Insert (a, v, f) n) ∈ set es
⟨proof⟩

lemma (in rga) insert-in-apply-set:
 assumes es @ [Deliver (i, Insert e (Some a))] prefix of j
 and Deliver (i', Insert e' n) ∈ set es
 and apply-operations es = Some s
 shows fst e' ∈ element-ids s
⟨proof⟩

lemma (in rga) insert-msg-id:
 assumes Broadcast (i, Insert e n) ∈ set (history j)
 shows fst e = i
⟨proof⟩

21
lemma (in rga) allowed-insert:
 \textbf{assumes} Broadcast \((i, \text{Insert } e \ n) \in \text{set} \ (\text{history } j)\)
 \textbf{shows} \(n = \text{None} \lor (\exists i' \text{ Insert } e' \ n'. \ n = \text{Some} \ (\text{fst } e') \land \text{Deliver } (i', \text{Insert } e' \ n') \triangleleft Broadcast \ (i, \text{Insert } e \ n))\)
 \textbf{(proof)}

lemma (in rga) allowed-delete:
 \textbf{assumes} Broadcast \((i, \text{Delete } x) \in \text{set} \ (\text{history } j)\)
 \textbf{shows} \(\exists i' \text{ n'} v \ b. \ \text{Deliver } (i', \text{Insert } (x, v) \ n') \triangleleft Broadcast \ (i, \text{Delete } x)\)
 \textbf{(proof)}

lemma (in rga) insert-id-unique:
 \textbf{assumes} \(\text{fst } e1 = \text{fst } e2\)
 and \(\text{Broadcast } (i1, \text{Insert } e1 \ n1) \in \text{set} \ (\text{history } i)\)
 and \(\text{Broadcast } (i2, \text{Insert } e2 \ n2) \in \text{set} \ (\text{history } j)\)
 \textbf{shows} \(\text{Insert } e1 \ n1 = \text{Insert } e2 \ n2\)
 \textbf{(proof)}

lemma (in rga) allowed-delete-deliver:
 \textbf{assumes} Deliver \((i, \text{Delete } x) \in \text{set} \ (\text{history } j)\)
 \textbf{shows} \(\exists i' \text{ n'} v \ b. \ \text{Deliver } (i', \text{Insert } (x, v) \ n') \triangleleft \text{Deliver } (i, \text{Delete } x)\)
 \textbf{(proof)}

lemma (in rga) allowed-delete-deliver-in-set:
 \textbf{assumes} \(\text{set } es@[\text{Deliver } (i, \text{Delete } m)] \) \textbf{prefix of } \(j\)
 \textbf{shows} \(\exists i' \text{ n' v } b. \ \text{Deliver } (i', \text{Insert } (m, v) \ n) \in \text{ set } es\)
 \textbf{(proof)}

lemma (in rga) allowed-insert-deliver:
 \textbf{assumes} Deliver \((i, \text{Insert } e \ n) \in \text{set} \ (\text{history } j)\)
 \textbf{shows} \(n = \text{None} \lor (\exists i' \text{ n' n'' v } b. \ n = \text{Some} \ n' \land \text{Deliver } (i', \text{Insert } (n', v) \ n') \triangleleft \text{Deliver } (i, \text{Insert } e \ n))\)
 \textbf{(proof)}

lemma (in rga) allowed-insert-deliver-in-set:
 \textbf{assumes} \(\text{es@}[\text{Deliver } (i, \text{Insert } e \ m)] \) \textbf{prefix of } \(j\)
 \textbf{shows} \(m = \text{None} \lor (\exists i' \text{ m' n' v } b. \ m = \text{Some} \ m' \land \text{Deliver } (i', \text{Insert } (m', v) \ n) \in \text{ set } es)\)
 \textbf{(proof)}

lemma (in rga) Insert-no-failure:
 \textbf{assumes} \(\text{es@}[\text{Deliver } (i, \text{Insert } e \ n)] \) \textbf{prefix of } \(j\)
 and \(\text{apply-operations } es = \text{Some } s\)
 \textbf{shows} \(\exists ys. \text{ insert } s e n = \text{Some } ys\)
 \textbf{(proof)}

lemma (in rga) delete-no-failure:
 \textbf{assumes} \(\text{es@}[\text{Deliver } (i, \text{Delete } n)] \) \textbf{prefix of } \(j\)
 and \(\text{apply-operations } es = \text{Some } s\)
 \textbf{shows} \(\exists ys. \text{ delete } s e n = \text{Some } ys\)
 \textbf{(proof)}

lemma (in rga) Insert-equal:
 \textbf{assumes} \(\text{fst } e1 = \text{fst } e2\)
 and \(\text{Broadcast } (i1, \text{Insert } e1 \ n1) \in \text{set} \ (\text{history } i)\)
 and \(\text{Broadcast } (i2, \text{Insert } e2 \ n2) \in \text{set} \ (\text{history } j)\)
 \textbf{shows} \(\text{Insert } e1 \ n1 = \text{Insert } e2 \ n2\)
 \textbf{(proof)}
lemma (in rga) same-insert:
assumes \(\text{fst } e_1 = \text{fst } e_2 \)
and \(\text{xs prefix of } i \)
and \((i_1, \text{Insert } e_1 n_1) \in \text{set } (\text{node-deliver-messages } \text{xs}) \)
and \((i_2, \text{Insert } e_2 n_2) \in \text{set } (\text{node-deliver-messages } \text{xs}) \)
shows \(\text{Insert } e_1 n_1 = \text{Insert } e_2 n_2 \)
(proof)

lemma (in rga) insert-commute-assms:
assumes \(\{ \text{Deliver } (i, \text{Insert } e n), \text{Deliver } (i', \text{Insert } e' n') \} \subseteq \text{set } (\text{history } j) \)
and \(\text{hb.concurrent } (i, \text{Insert } e n) (i', \text{Insert } e' n') \)
shows \(n = \text{None } \lor n \neq \text{Some } (\text{fst } e') \)
(proof)

lemma subset-reorder:
assumes \(\{ a, b \} \subseteq c \)
shows \(\{ b, a \} \subseteq c \)
(proof)

lemma (in rga) Insert-Insert-concurrent:
assumes \(\{ \text{Deliver } (i, \text{Insert } e k), \text{Deliver } (i', \text{Insert } e' (\text{Some } m)) \} \subseteq \text{set } (\text{history } j) \)
and \(\text{hb.concurrent } (i, \text{Insert } e k) (i', \text{Insert } e' (\text{Some } m)) \)
shows \(\text{fst } e \neq m \)
(proof)

lemma (in rga) insert-valid-assms:
assumes \(\text{Deliver } (i, \text{Insert } e n) \in \text{set } (\text{history } j) \)
shows \(n = \text{None } \lor n \neq \text{Some } (\text{fst } e) \)
(proof)

lemma (in rga) Insert-Delete-concurrent:
assumes \(\{ \text{Deliver } (i, \text{Insert } e n), \text{Deliver } (i', \text{Delete } n') \} \subseteq \text{set } (\text{history } j) \)
and \(\text{hb.concurrent } (i, \text{Insert } e n) (i', \text{Delete } n') \)
shows \(n' \neq \text{fst } e \)
(proof)

lemma (in rga) concurrent-operations-commute:
assumes \(\text{xs prefix of } i \)
shows \(\text{hb.concurrent-ops-commute } (\text{node-deliver-messages } \text{xs}) \)
(proof)

corollary (in rga) concurrent-operations-commute\(^*\):
shows \(\text{hb.concurrent-ops-commute } (\text{node-deliver-messages } (\text{history } i)) \)
(proof)

lemma (in rga) apply-operations-never-fails:
assumes \(\text{xs prefix of } i \)
shows \(\text{apply-operations } \text{xs} \neq \text{None} \)
(proof)

lemma (in rga) apply-operations-never-fails\(^*\):
shows \(\text{apply-operations } (\text{history } i) \neq \text{None} \)
(proof)

corollary (in rga) rga-convergence:
assumes \(\text{set } (\text{node-deliver-messages } \text{xs}) = \text{set } (\text{node-deliver-messages } \text{ys}) \)
and \(\text{xs prefix of } i \)
and ys prefix of j
shows apply-operations xs = apply-operations ys
⟨proof⟩

5.7 Strong eventual consistency

context rga begin

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops.∃xs i. xs prefix of i ∧ node-deliver-messages xs = ops []
⟨proof⟩
end

interpretation trivial-rga-implementation: rga λx. []
⟨proof⟩
end

6 Increment-Decrement Counter

The Increment-Decrement Counter is perhaps the simplest CRDT, and a paradigmatic example
of a replicated data structure with commutative operations.

theory
 Counter
imports
 Network
begin

datatype operation = Increment | Decrement

fun counter-op :: operation ⇒ int ⇀ int where
 counter-op Increment x = Some (x + 1) |
 counter-op Decrement x = Some (x - 1)

locale counter = network-with-ops - counter-op 0

lemma (in counter) counter-op x ∴ counter-op y = counter-op y ∴ counter-op x
⟨proof⟩

lemma (in counter) concurrent-operations-commute:
 assumes xs prefix of i
 shows hb.concurrent-ops-commute (node-deliver-messages xs)
⟨proof⟩

corollary (in counter) counter-convergence:
 assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)
 and xs prefix of i
 and ys prefix of j
 shows apply-operations xs = apply-operations ys
⟨proof⟩

context counter begin

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops. ∃xs i. xs prefix of i ∧ node-deliver-messages xs = ops 0
⟨proof⟩

24
The ORSet is a well-known CRDT for implementing replicated sets, supporting two operations: the \textit{insertion} and \textit{deletion} of an arbitrary element in the shared set.

\begin{verbatim}
theory ORSet imports Network begin

datatype ('id, 'a) operation = Add 'id 'a | Rem 'id set 'a

type-synonym ('id, 'a) state = 'a => 'id set

definition op-elem :: ('id, 'a) operation => 'a where
 op-elem oper ≡ case oper of Add i e => e | Rem is e => e

definition interpret-op :: ('id, 'a) operation => ('id, 'a) state => ('id, 'a) state where
 interpret-op oper state ≡ let before = state (op-elem oper);
 after = case oper of Add i e => before ∪ {i} | Rem is e => before - is
 in Some (state ((op-elem oper) := after))

definition valid-behaviours :: ('id, 'a) state => ('id, 'a) operation => bool where
 valid-behaviours state msg ≡ case msg of
 (i, Add j e) => i = j |
 (i, Rem is e) => is = state e

locale orset = network-with-constrained-ops - interpret-op λx. {} valid-behaviours

lemma (in orset) add-add-commute: shows (Add i1 e1) ⊢ (Add i2 e2) = (Add i2 e2) ⊢ (Add i1 e1)
{proof}

lemma (in orset) add-rem-commute: assumes i ≠ is
shows (Add i e1) ⊢ (Rem is e2) = (Rem is e2) ⊢ (Add i e1)
{proof}

lemma (in orset) apply-operations-never-fails: assumes xs prefix of i
shows apply-operations xs ≠ None
{proof}

lemma (in orset) add-id-valid: assumes xs prefix of j
and Deliver (i1, Add i2 e) ∈ set xs
shows i1 = i2
{proof}

definition (in orset) added-ids :: ('id × ('id, 'a) operation) event list => 'b => 'id list where
added-ids es p ≡ List.map-filter (λx. case x of Deliver (i, Add j e) => if e = p then Some j else None

end
end
\end{verbatim}

7 Observed-Remove Set
lemma (in orset) \([\texttt{simp}]\):
shows \(\text{added-ids \{\}} \ e = \{\}
⟨\text{proof}⟩

lemma (in orset) \([\texttt{simp}]\):
shows \(\text{added-ids (xs \at \ ys) \ e = \text{added-ids xs} \ e \at \text{added-ids ys} \ e}
⟨\text{proof}⟩

lemma (in orset) \(\text{added-ids-Broadcast-collapse \ [\texttt{simp}]\)}:
shows \(\text{added-ids ([Broadcast \ e])} \ e' = \{\}
⟨\text{proof}⟩

lemma (in orset) \(\text{added-ids-Deliver-Rem-collapse \ [\texttt{simp}]\)}:
shows \(\text{added-ids ([Deliver (i, Rem is e)])} \ e' = \{\}
⟨\text{proof}⟩

lemma (in orset) \(\text{added-ids-Deliver-Add-diff-collapse \ [\texttt{simp}]\)}:
shows \(e \neq e' \Rightarrow \text{added-ids ([Deliver (i, Add j e)])} \ e' = \{\}
⟨\text{proof}⟩

lemma (in orset) \(\text{added-ids-Deliver-Add-same-collapse \ [\texttt{simp}]\)}:
shows \(\text{added-ids ([Deliver (i, Add j e)])} \ e = [j]}
⟨\text{proof}⟩

lemma (in orset) \(\text{added-id-not-in-set} \):
assumes \(i1 \notin \text{set (added-ids [Deliver (i, Add i2 e)] e)}
shows \(i1 \neq i2
⟨\text{proof}⟩

lemma (in orset) \(\text{apply-operations-added-ids} \):
assumes \(\text{es prefix of } j \)
and \(\text{apply-operations es} = \text{Some } f\)
shows \(f \ x \subseteq \text{set (added-ids es } x)\)
⟨\text{proof}⟩

lemma (in orset) \(\text{Deliver-added-ids} \):
assumes \(\text{xs prefix of } j \)
and \(\text{set (added-ids xs } e)\)
shows \(\text{Deliver (i, Add i e)} \in \text{set } xs\)
⟨\text{proof}⟩

lemma (in orset) \(\text{Broadcast-Deliver-prefix-closed} \):
assumes \(\text{xs @ [Broadcast (r, Rem ix e)] prefix of } j \)
and \(\text{i } \in \text{ix}\)
shows \(\text{Deliver (i, Add i e)} \in \text{set } xs\)
⟨\text{proof}⟩

lemma (in orset) \(\text{Broadcast-Deliver-prefix-closed2} \):
assumes \(\text{xs prefix of } j \)
and \(\text{Broadcast (r, Rem ix e)} \in \text{set } xs\)
and \(\text{i } \in \text{ix}\)
shows \(\text{Deliver (i, Add i e)} \in \text{set } xs\)
⟨\text{proof}⟩

lemma (in orset) \(\text{concurrent-add-remove-independent-technical} \):
assumes \(i \in \text{is}\)
and \(xs\) prefix of \(j\)
and \((i, \text{Add } i \ e) \in \text{set } (\text{node-deliver-messages } xs)\) and \((ir, \text{Rem is } e) \in \text{set } (\text{node-deliver-messages } xs)\)
shows \(hb \ (i, \text{Add } i \ e) \ (ir, \text{Rem is } e)\)
\(\langle \text{proof} \rangle\)

lemma (in orset) Deliver-Add-same-id-same-message:
assumes Deliver \((i, \text{Add } i \ e1) \in \text{set } (\text{history } j)\) and Deliver \((i, \text{Add } i \ e2) \in \text{set } (\text{history } j)\)
shows \(e1 = e2\)
\(\langle \text{proof} \rangle\)

lemma (in orset) ids-imply-messages-same:
assumes \(i \in \text{is}\)
and \(xs\) prefix of \(j\)
and \((i, \text{Add } i \ e1) \in \text{set } (\text{node-deliver-messages } xs)\) and \((ir, \text{Rem is } e2) \in \text{set } (\text{node-deliver-messages } xs)\)
shows \(e1 = e2\)
\(\langle \text{proof} \rangle\)

corollary (in orset) concurrent-add-remove-independent:
assumes \(\neg \ hb \ (i, \text{Add } i \ e1) \ (ir, \text{Rem is } e2)\) and \(\neg \ hb \ (ir, \text{Rem is } e2) \ (i, \text{Add } i \ e1)\)
and \((i, \text{Add } i \ e1) \in \text{set } (\text{node-deliver-messages } xs)\) and \((ir, \text{Rem is } e2) \in \text{set } (\text{node-deliver-messages } xs)\)
shows \(i \notin \text{is}\)
\(\langle \text{proof} \rangle\)

lemma (in orset) rem-rem-commute:
shows \(\langle \text{Rem } i1 \ e1 \rangle \triangleright (\text{Rem } i2 \ e2) = (\text{Rem } i2 \ e2) \triangleright (\text{Rem } i1 \ e1)\)
\(\langle \text{proof} \rangle\)

lemma (in orset) concurrent-operations-commute:
assumes \(xs\) prefix of \(i\)
shows \(hb.\text{concurrent-ops-commute } (\text{node-deliver-messages } xs)\)
\(\langle \text{proof} \rangle\)

theorem (in orset) convergence:
assumes set \((\text{node-deliver-messages } xs) = \text{set } (\text{node-deliver-messages } ys)\)
and \(xs\) prefix of \(i\) and \(ys\) prefix of \(j\)
shows apply-operations \(xs = \text{apply-operations } ys\)
\(\langle \text{proof} \rangle\)

context orset begin

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
\(\lambda ops. \exists \; xs \; i. \; \text{xs prefix of } i \land \text{node-deliver-messages } xs = ops \; \lambda x.\{\}\)
\(\langle \text{proof} \rangle\)

end
end

References

