A framework for establishing Strong Eventual Consistency for Conflict-free Replicated Data types

Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, Alastair R. Beresford

August 16, 2018

Abstract

In this work, we focus on the correctness of Conflict-free Replicated Data Types (CRDTs), a class of algorithm that provides strong eventual consistency guarantees for replicated data. We develop a modular and reusable framework for verifying the correctness of CRDT algorithms. We avoid correctness issues that have dogged previous mechanised proofs in this area by including a network model in our formalisation, and proving that our theorems hold in all possible network behaviours. Our axiomatic network model is a standard abstraction that accurately reflects the behaviour of real-world computer networks. Moreover, we identify an abstract convergence theorem, a property of order relations, which provides a formal definition of strong eventual consistency. We then obtain the first machine-checked correctness theorems for three concrete CRDTs: the Replicated Growable Array, the Observed-Remove Set, and an Increment-Decrement Counter.

Contents

1 Introduction 2

2 Technical Lemmas 2
 2.1 Kleisli arrow composition .. 3
 2.2 Lemmas about sets ... 3
 2.3 Lemmas about list ... 3

3 Strong Eventual Consistency 5
 3.1 Concurrent operations ... 5
 3.2 Happens-before consistency ... 6
 3.3 Apply operations .. 7
 3.4 Concurrent operations commute ... 8
 3.5 Abstract convergence theorem ... 8
 3.6 Convergence and progress .. 9

4 Axiomatic network models 9
 4.1 Node histories .. 10
 4.2 Asynchronous broadcast networks ... 11
 4.3 Causal networks .. 13
 4.4 Dummy network models .. 16

5 Replicated Growable Array 16
 5.1 Insert and delete operations ... 16
 5.2 Well-definedness of insert and delete ... 17
 5.3 Preservation of element indices ... 17
1 Introduction

Strong eventual consistency (SEC) is a model that strikes a compromise between strong and eventual consistency [12]. Informally, it guarantees that whenever two nodes have received the same set of messages—possibly in a different order—their view of the shared state is identical, and any conflicting concurrent updates must be merged automatically. Large-scale deployments of SEC algorithms include datacentre-based applications using the Riak distributed database [3], and collaborative editing applications such as Google Docs [5]. Unlike strong consistency models, it is possible to implement SEC in decentralised settings without any central server or leader, and it allows local execution at each node to proceed without waiting for communication with other nodes. However, algorithms for achieving decentralised SEC are currently poorly understood: several such algorithms, published in peer-reviewed venues, were subsequently shown to violate their supposed guarantees [6, 7, 9]. Informal reasoning has repeatedly produced plausible-looking but incorrect algorithms, and there have even been examples of mechanised formal proofs of SEC algorithm correctness later being shown to be flawed. These mechanised proofs failed because, in formalising the algorithm, they made false assumptions about the execution environment.

In this work we use the Isabelle/HOL proof assistant [13] to create a framework for reliably reasoning about the correctness of a particular class of decentralised replication algorithms. We do this by formalising not only the replication algorithms, but also the network in which they execute, allowing us to prove that the algorithm’s assumptions hold in all possible network behaviours. We model the network using the axioms of asynchronous unreliable causal broadcast, a well-understood abstraction that is commonly implemented by network protocols, and which can run on almost any computer network, including large-scale networks that delay, reorder, or drop messages, and in which nodes may fail.

We then use this framework to produce machine-checked proofs of correctness for three Conflict-Free Replicated Data Types (CRDTs), a class of replication algorithms that ensure strong eventual consistency [11, 12]. To our knowledge, this is the first machine-checked verification of SEC algorithms that explicitly models the network and reasons about all possible network behaviours. The framework is modular and reusable, making it easy to formulate proofs for new algorithms. We provide the first mechanised proofs of the Replicated Growable Array, the operation-based Observed-Remove Set, and the operation-based counter CRDT.

2 Technical Lemmas

This section contains a list of helper definitions and lemmas about sets, lists and the option monad.
2.1 Kleisli arrow composition

definition kleisli :: \((\text{\texttt{b}} \Rightarrow \text{\texttt{b}} \text{ option}) \Rightarrow \text{\texttt{b}} \Rightarrow \text{\texttt{b}} \text{ option}) (\text{\texttt{infixr}} \triangleright 65)\) where
\(f \triangleright g \equiv \lambda x. (f x \gg (\lambda y. g y))\)

lemma kleisli-comm-cong:
 assumes \(x \triangleright y = y \triangleright x\)
 shows \((z \triangleright x) \triangleright y = z \triangleright (x \triangleright y)\)
 ⟨proof⟩

lemma kleisli-assoc:
 shows \((z \triangleright x) \triangleright y = z \triangleright (x \triangleright y)\)
 ⟨proof⟩

2.2 Lemmas about sets

lemma distinct-set-notin [dest]:
 assumes \(\text{distinct } (x \# \text{set } xs)\)
 shows \(x \notin \text{set } xs\)
 ⟨proof⟩

lemma set-membership-equality-technicalD [dest]:
 assumes \(\{x\} \cup (\text{set } xs) = \{y\} \cup (\text{set } ys)\)
 shows \(x = y \lor y \in \text{set } xs\)
 ⟨proof⟩

lemma set-equality-technical:
 assumes \(\{x\} \cup (\text{set } xs) = \{y\} \cup (\text{set } ys)\)
 and \(x \notin \text{set } xs\)
 and \(y \notin \text{set } ys\)
 and \(y \in \text{set } xs\)
 shows \(\{x\} \cup (\text{set } xs - \{y\}) = \text{set } ys\)
 ⟨proof⟩

lemma set-elem-nth:
 assumes \(x \in \text{set } xs\)
 shows \(\exists m. m < \text{length } xs \land xs ! m = x\)
 ⟨proof⟩

2.3 Lemmas about list

lemma list-nil-or-snoc:
 shows \(xs = [] \lor (\exists y \text{ ys. } xs = \text{ys@}[y])\)
 ⟨proof⟩

lemma suffix-eq-distinct-list:
 assumes \(\text{distinct } xs\)
 and \(\text{ys@suf1} = xs\)
 and \(\text{ys@suf2} = xs\)
 shows \(\text{suf1} = \text{suf2}\)
 ⟨proof⟩

lemma pre-suf-eq-distinct-list:
 assumes \(\text{distinct } xs\)
 and \(\text{ys} \neq []\)
 and \(\text{pre1@ys@suf1} = xs\)
and \(\text{pre2} @ \text{ys} @ \text{suf2} = \text{xs} \)
shows \(\text{pre1} = \text{pre2} \land \text{suf1} = \text{suf2} \)

\(\langle \text{proof} \rangle \)

lemma \(\text{list-head-unaffected} \):
assumes \(\text{hd} \ (x @ [y, z]) = v \)
shows \(\text{hd} \ (x @ [y, \]) = v \)

\(\langle \text{proof} \rangle \)

lemma \(\text{list-head-butlast} \):
assumes \(\text{hd} \ \text{xs} = v \)
and \(\text{length} \ \text{xs} > 1 \)
shows \(\text{hd} \ (\text{butlast} \ \text{xs}) = v \)

\(\langle \text{proof} \rangle \)

lemma \(\text{list-head-length-one} \):
assumes \(\text{hd} \ \text{xs} = x \)
and \(\text{length} \ \text{xs} = 1 \)
shows \(\text{xs} = [x] \)

\(\langle \text{proof} \rangle \)

lemma \(\text{list-two-at-end} \):
assumes \(\text{length} \ \text{xs} > 1 \)
shows \(\exists \text{xs'} \ x \ y. \ \text{xs} = \text{xs'} @ [x, y] \)

\(\langle \text{proof} \rangle \)

lemma \(\text{list-nth-split-technical} \):
assumes \(m < \text{length} \ \text{cs} \)
and \(\text{cs} \neq [] \)
shows \(\exists \text{xs} \ \text{ys}. \ \text{cs} = \text{xs} @ (\text{cs}!m)#\text{ys} \)

\(\langle \text{proof} \rangle \)

lemma \(\text{list-nth-split} \):
assumes \(m < \text{length} \ \text{cs} \)
and \(n < m \)
and \(1 < \text{length} \ \text{cs} \)
shows \(\exists \text{xs} \ \text{ys} \ \text{zs}. \ \text{cs} = \text{xs} @ (\text{cs}!n)#\text{ys} @ (\text{cs}!m)#\text{zs} \)

\(\langle \text{proof} \rangle \)

lemma \(\text{list-split-two-elems} \):
assumes \(\text{distinct} \ \text{cs} \)
and \(x \in \text{set} \ \text{cs} \)
and \(y \in \text{set} \ \text{cs} \)
and \(x \neq y \)
shows \(\exists \text{pre} \ \text{mid} \ \text{suf}. \ \text{cs} = \text{pre} @ x \# \text{mid} @ y \# \text{suf} \lor \text{cs} = \text{pre} @ y \# \text{mid} @ x \# \text{suf} \)

\(\langle \text{proof} \rangle \)

lemma \(\text{split-list-unique-prefix} \):
assumes \(x \in \text{set} \ \text{xs} \)
shows \(\exists \text{pre} \ \text{suf}. \ \text{xs} = \text{pre} @ x \# \text{suf} \land (\forall y \in \text{set} \ \text{pre}. \ x \neq y) \)

\(\langle \text{proof} \rangle \)

lemma \(\text{map-filter-append} \):
shows \(\text{List.map-filter} \ P \ (\text{xs} @ \text{ys}) = \text{List.map-filter} \ P \ \text{xs} @ \text{List.map-filter} \ P \ \text{ys} \)

\(\langle \text{proof} \rangle \)

end
3 Strong Eventual Consistency

In this section we formalise the notion of strong eventual consistency. We do not make any assumptions about networks or data structures; instead, we use an abstract model of operations that may be reordered, and we reason about the properties that those operations must satisfy. We then provide concrete implementations of that abstract model in later sections.

theory Convergence
imports Util
begin

The happens-before relation, as introduced by [8], captures causal dependencies between operations. It can be defined in terms of sending and receiving messages on a network. However, for now, we keep it abstract, our only restriction on the happens-before relation is that it must be a strict partial order, that is, it must be irreflexive and transitive, which implies that it is also antisymmetric. We describe the state of a node using an abstract type variable. To model state changes, we assume the existence of an interpretation function interp which lifts an operation into a state transformer—a function that either maps an old state to a new state, or fails.

locale happens-before = preorder hb-weak hb
for hb-weak :: 'a ⇒ 'a ⇒ bool (infix ≤ 50)
and hb :: 'a ⇒ 'a ⇒ bool (infix < 50) +
fixes interp :: 'a ⇒ 'b ⇒ 'b ((·) [0] 1000)
begin

3.1 Concurrent operations

We say that two operations \(x \) and \(y \) are concurrent, written \(x \parallel y \), whenever one does not happen before the other: \(\neg (x \prec y) \) and \(\neg (y \prec x) \).

definition concurrent :: 'a ⇒ 'a ⇒ bool (infix \(|| \) 50) where
\(s_1 \parallel s_2 \equiv \neg (s_1 \prec s_2) \land \neg (s_2 \prec s_1) \)

lemma concurrentI [intro!]: \(\neg (s_1 \prec s_2) \implies \neg (s_2 \prec s_1) \implies s_1 \parallel s_2 \) {proof}

lemma concurrentD1 [dest]: \(s_1 \parallel s_2 \implies \neg (s_1 \prec s_2) \) {proof}

lemma concurrentD2 [dest]: \(s_1 \parallel s_2 \implies \neg (s_2 \prec s_1) \) {proof}

lemma concurrent-refl [intro!, simp]: \(s \parallel s \) {proof}

lemma concurrent-comm [intro!, simp]: \(s_1 \parallel s_2 \iff s_2 \parallel s_1 \) {proof}

definition concurrent-set :: 'a ⇒ 'a list ⇒ bool where
\(\text{concurrent-set } x \; xs \equiv \forall y \in \text{set } xs. \; x \parallel y \)

lemma concurrent-set-empty [simp, intro!]:
concurrent-set \(x \) [\[
lemma concurrent-set-ConsE [elim!]:

5
assumes concurrent-set a (x#xs)
and concurrent-set a xs ⇒ concurrent x a ⇒ G
shows G
⟨proof⟩

lemma concurrent-set-ConsI [intro!]:
concurrent-set a xs ⇒ concurrent a x ⇒ concurrent-set a (x#xs)
⟨proof⟩

lemma concurrent-set-appendI [intro!]:
concurrent-set a xs ⇒ concurrent-set a ys ⇒ concurrent-set a (xs@ys)
⟨proof⟩

lemma concurrent-set-Cons-Snoc [simp]:
concurrent-set a (xs@[x]) = concurrent-set a (x#xs)
⟨proof⟩

3.2 Happens-before consistency

The purpose of the happens-before relation is to require that some operations must be applied in a particular order, while allowing concurrent operations to be reordered with respect to each other. We assume that each node applies operations in some sequential order (a standard assumption for distributed algorithms), and so we can model the execution history of a node as a list of operations.

inductive hb-consistent :: 'a list ⇒ bool where
[introl]: hb-consistent [] |
[introl]: [hb-consistent zs; ∀ x ∈ set zs. ¬ y ≺ x] ⇒ hb-consistent (xs@[y])

As a result, whenever two operations x and y appear in a hb-consistent list, and x ≺ y, then x must appear before y in the list. However, if x ∥ y, the operations can appear in the list in either order.

lemma (x ≺ y ∨ concurrent x y) = (¬ y ≺ x)
⟨proof⟩

lemma consistentI [intro!]:
assumes hb-consistent (xs@ys)
and ∀ x ∈ set (xs@ys). ¬ z ≺ x
shows hb-consistent (xs@ys@[z])
⟨proof⟩

inductive-cases hb-consistent-elim [elim]:
hb-consistent []
hb-consistent (xs@[y])
hb-consistent (xs@ys)
hb-consistent (xs@ys@[z])

inductive-cases hb-consistent-elim-gen:
hb-consistent zs

lemma hb-consistent-append-D1 [dest]:
assumes hb-consistent (xs@ys)
shows hb-consistent xs
⟨proof⟩

lemma hb-consistent-append-D2 [dest]:
assumes hb-consistent (xs@ys)
shows hb-consistent ys
⟨proof⟩
lemma hb-consistent-append-elim-ConsD [elim]:
 assumes hb-consistent (y#ys)
 shows hb-consistent ys
⟨proof⟩

lemma hb-consistent-remove1 [intro]:
 assumes hb-consistent xs
 shows hb-consistent (remove1 x xs)
⟨proof⟩

lemma hb-consistent-singleton [intro!]:
 shows hb-consistent [x]
⟨proof⟩

lemma hb-consistent-prefix-suffix-exists:
 assumes hb-consistent ys
 hb-consistent (xs @ [x])
 \{x\} union set xs = set ys
 distinct (x#xs)
 distinct ys
 shows \exists prefix suffix. ys = prefix @ x # suffix \land concurrent-set x suffix
⟨proof⟩

lemma hb-consistent-append [intro!]:
 assumes hb-consistent suffix
 hb-consistent prefix
 \(\land s p. s \in set suffix \implies p \in set prefix \implies \neg s \prec p\)
 shows hb-consistent (prefix @ suffix)
⟨proof⟩

lemma hb-consistent-append-porder:
 assumes hb-consistent (xs @ ys)
 x \in set xs
 y \in set ys
 shows \neg y \prec x
⟨proof⟩

3.3 Apply operations

We can now define a function apply-operations that composes an arbitrary list of operations into a state transformer. We first map interp across the list to obtain a state transformer for each operation, and then collectively compose them using the Kleisli arrow composition combinator.

definition apply-operations :: 'a list \Rightarrow 'b \Rightarrow 'b where
apply-operations es \equiv foldl (\ › \) Some (map interp es)

lemma apply-operations-empty [simp]: apply-operations [] s = Some s
⟨proof⟩

lemma apply-operations-Snoc [simp]:
apply-operations (xs@[x]) = (apply-operations xs) \ › \ (x)
⟨proof⟩
3.4 Concurrent operations commute

We say that two operations x and y commute whenever $⟨x⟩ ⊳ ⟨y⟩ = ⟨y⟩ ⊳ ⟨x⟩$, i.e. when we can swap the order of the composition of their interpretations without changing the resulting state transformer. For our purposes, requiring that this property holds for all pairs of operations is too strong. Rather, the commutation property is only required to hold for operations that are concurrent.

definition concurrent-ops-commute :: 'a list ⇒ bool where

\[
\forall x, y. \{x, y\} ⊆ \text{set} \; xs \rightarrow \text{concurrent} \; x \; y \rightarrow ⟨x⟩ ⊳ ⟨y⟩ = ⟨y⟩ ⊳ ⟨x⟩
\]

lemma concurrent-ops-commute-empty [intro!]: concurrent-ops-commute []

lemma concurrent-ops-commute-singleton [intro!]: concurrent-ops-commute [x]

lemma concurrent-ops-commute-appendD [dest]:

assumes concurrent-ops-commute (xs@ys)

shows concurrent-ops-commute xs

lemma concurrent-ops-commute-rearrange:

concurrent-ops-commute (xs@x#ys) = concurrent-ops-commute (xs@ys@[x])

lemma concurrent-ops-commute-concurrent-set:

assumes concurrent-ops-commute (prefix@suffix@[x])

concurrent-set x suffix

distinct (prefix @ x # suffix)

shows apply-operations (prefix @ suffix @ [x]) = apply-operations (prefix @ x # suffix)

3.5 Abstract convergence theorem

We can now state and prove our main theorem, convergence. This theorem states that two hb-consistent lists of distinct operations, which are permutations of each other and in which concurrent operations commute, have the same interpretation.

theorem convergence:

assumes set xs = set ys

concurrent-ops-commute xs

concurrent-ops-commute ys

distinct xs

distinct ys

hb-consistent xs

hb-consistent ys

shows apply-operations xs = apply-operations ys

corollary convergence-ext:

assumes set xs = set ys

concurrent-ops-commute xs

concurrent-ops-commute ys

distinct xs

distinct ys

hb-consistent xs
3.6 Convergence and progress

Besides convergence, another required property of SEC is progress: if a valid operation was issued on one node, then applying that operation on other nodes must also succeed—that is, the execution must not become stuck in an error state. Although the type signature of the interpretation function allows operations to fail, we need to prove that in all \(hb\)-consistent network behaviours such failure never actually occurs. We capture the combined requirements in the strong-eventual-consistency locale, which extends happens-before.

\[
\text{locale strong-eventual-consistency = happens-before + }
\]
\[
\text{fixes op-history :: 'a list ⇒ bool}
\]
\[
\text{and initial-state :: 'b}
\]
\[
\text{assumes causality: op-history xs ⇒ hb-consistent xs}
\]
\[
\text{assumes distinctness: op-history xs ⇒ distinct xs}
\]
\[
\text{assumes commutativity: op-history xs ⇒ concurrent-ops-commute xs}
\]
\[
\text{assumes no-failure: op-history(xs@\[x\]) ⇒ apply-operations xs initial-state = Some state ⇒ (x) state \neq None}
\]
\[
\text{assumes trunc-history: op-history(xs@\[x\]) ⇒ op-history xs}
\]

begin

theorem sec-convergence:
\[
\text{assumes set xs = set ys}
\]
\[
\text{op-history xs}
\]
\[
\text{op-history ys}
\]
\[
\text{shows apply-operations xs = apply-operations ys}
\]
\langle\text{proof}\rangle

\[
\text{theorem sec-progress:}
\]
\[
\text{assumes op-history xs}
\]
\[
\text{shows apply-operations xs initial-state \neq None}
\]
\langle\text{proof}\rangle

end

4 Axiomatic network models

In this section we develop a formal definition of an asynchronous unreliable causal broadcast network. We choose this model because it satisfies the causal delivery requirements of many operation-based CRDTs [1, 2]. Moreover, it is suitable for use in decentralised settings, as motivated in the introduction, since it does not require waiting for communication with a central server or a quorum of nodes.

theory Network
imports
Convergence
begin
4.1 Node histories

We model a distributed system as an unbounded number of communicating nodes. We assume
nothing about the communication pattern of nodes—we assume only that each node is uniquely
identified by a natural number, and that the flow of execution at each node consists of a finite,
totally ordered sequence of execution steps (events). We call that sequence of events at node
\(i\) the history of that node. For convenience, we assume that every event or execution step is
unique within a node’s history.

locale node-histories =
 fixes history :: nat ⇒ 'evt list
 assumes histories-distinct [intro!, simp]: distinct (history i)

lemma (in node-histories) history-finite:
 shows finite (set (history i))
 ⟨proof⟩

definition (in node-histories) history-order :: 'evt ⇒ nat ⇒ 'evt ⇒ bool (-/ ⊏ -/ - [50,1000,50])
where
 \(x ⊏^i z \equiv \exists xs ys zs. xs@x#ys@z#zs = history i\)

lemma (in node-histories) node-total-order-trans:
 assumes \(e1 ⊏^i e2\)
 and \(e2 ⊏^i e3\)
 shows \(e1 ⊏^i e3\)
 ⟨proof⟩

lemma (in node-histories) local-order-carrier-closed:
 assumes \(e1 ⊏^i e2\)
 shows \(\{e1,e2\} ⊆ set (history i)\)
 ⟨proof⟩

lemma (in node-histories) node-total-order-irrefl:
 shows \(\neg (e ⊏^i e)\)
 ⟨proof⟩

lemma (in node-histories) node-total-order-antisym:
 assumes \(e1 ⊏^i e2\)
 and \(e2 ⊏^i e1\)
 shows False
 ⟨proof⟩

lemma (in node-histories) node-order-is-total:
 assumes \(e1 ∈ set (history i)\)
 and \(e2 ∈ set (history i)\)
 and \(e1 \neq e2\)
 shows \(e1 ⊏^i e2 \lor e2 ⊏^i e1\)
 ⟨proof⟩

definition (in node-histories) prefix-of-node-history :: 'evt list ⇒ nat ⇒ bool (\textit{infix prefix of 50})
where
 \(xs\, prefix\, of\, i \equiv \exists ys. xs@x#ys@z#zs = history i\)

lemma (in node-histories) carriers-head-lt:
 assumes \(y#ys = history \, i\)
 shows \(\neg(x ⊏^i y)\)
 ⟨proof⟩

lemma (in node-histories) prefix-of-ConsD [dest]:
assumes $x \neq xs$ prefix of i
shows $[x]$ prefix of i
\(\langle proof\rangle\)

lemma (in node-histories) prefix-appendD [dest]:
assumes $xs @ ys$ prefix of i
shows xs prefix of i
\(\langle proof\rangle\)

lemma (in node-histories) prefix-distinct:
assumes xs prefix of i
shows distinct xs
\(\langle proof\rangle\)

lemma (in node-histories) prefix-to-carriers [intro]:
assumes xs prefix of i
shows $set xs \subseteq set (history i)$
\(\langle proof\rangle\)

lemma (in node-histories) prefix-elem-to-carriers:
assumes xs prefix of i
and $x \in set xs$
shows $x \in set (history i)$
\(\langle proof\rangle\)

lemma (in node-histories) local-order-prefix-closed:
assumes $x \preceq^i y$
and xs prefix of i
and $y \in set xs$
shows $x \in set xs$
\(\langle proof\rangle\)

lemma (in node-histories) local-order-prefix-closed-last:
assumes $x \preceq^i y$
and $xs[y]$ prefix of i
shows $x \in set xs$
\(\langle proof\rangle\)

lemma (in node-histories) events-before-exist:
assumes $x \in set (history i)$
shows $\exists \pre. \pre @ [x]$ prefix of i
\(\langle proof\rangle\)

lemma (in node-histories) events-in-local-order:
assumes $\pre @ [e2]$ prefix of i
and $e1 \in set \pre$
shows $e1 \preceq^i e2$
\(\langle proof\rangle\)

4.2 Asynchronous broadcast networks

We define a new locale network containing three axioms that define how broadcast and deliver events may interact, with these axioms defining the properties of our network model.

datatype 'msg event
= Broadcast 'msg
| Deliver 'msg
locale network = node-histories history
for history :: nat ⇒ 'msg event list +
fixes msg-id :: 'msg ⇒ 'msgid

assumes delivery-has-a-cause: [Deliver m ∈ set (history i)] ⇒
∃ j. Broadcast m ∈ set (history j)

and deliver-locally: [Broadcast m ∈ set (history i)] ⇒
Broadcast m ⊏ i Deliver m

and msg-id-unique: [Broadcast m1 ∈ set (history i);
 Broadcast m2 ∈ set (history j);
 msg-id m1 = msg-id m2] ⇒ i = j ∧ m1 = m2

The axioms can be understood as follows:

delivery-has-a-cause: If some message \(m \) was delivered at some node, then there exists some
node on which \(m \) was broadcast. With this axiom, we assert that messages are not created
“out of thin air” by the network itself, and that the only source of messages are the nodes.

deliver-locally: If a node broadcasts some message \(m \), then the same node must subsequently
also deliver \(m \) to itself. Since \(m \) does not actually travel over the network, this local
delivery is always possible, even if the network is interrupted. Local delivery may seem
redundant, since the effect of the delivery could also be implemented by the broadcast
event itself; however, it is standard practice in the description of broadcast protocols that
the sender of a message also sends it to itself, since this property simplifies the definition
of algorithms built on top of the broadcast abstraction [4].

msg-id-unique: We do not assume that the message type \('msg \) has any particular structure;
we only assume the existence of a function \(msg-id:: 'msg ⇒ 'msgid \) that maps every message
to some globally unique identifier of type \('msgid \). We assert this uniqueness by stating
that if \(m1 \) and \(m2 \) are any two messages broadcast by any two nodes, and their \(msg-ids \)
are the same, then they were in fact broadcast by the same node and the two messages are
identical. In practice, these globally unique IDs can by implemented using unique node
identifiers, sequence numbers or timestamps.

lemma (in network) broadcast-before-delivery:
assumes Deliver m ∈ set (history i)
shows 3 j. Broadcast m ⊏ j Deliver m
{proof}

lemma (in network) broadcasts-unique:
assumes i ≠ j
 and Broadcast m ∈ set (history i)
shows Broadcast m /∈ set (history j)
{proof}

Based on the well-known definition by [8], we say that \(m1 \prec m2 \) if any of the following is true:

1. \(m1 \) and \(m2 \) were broadcast by the same node, and \(m1 \) was broadcast before \(m2 \).

2. The node that broadcast \(m2 \) had delivered \(m1 \) before it broadcast \(m2 \).

3. There exists some operation \(m3 \) such that \(m1 \prec m3 \) and \(m3 \prec m2 \).

inductive (in network) hb :: 'msg ⇒ 'msg ⇒ bool where

hb-broadcast: [Broadcast m1 ⊏ i Broadcast m2] ⇒ hb m1 m2 |

hb-deliver: [Deliver m1 ⊏ i Broadcast m2] ⇒ hb m1 m2 |

hb-trans: [hb m1 m2; hb m2 m3] ⇒ hb m1 m3
inductive-cases (in network) hb-elim: hb x y

definition (in network) weak-hb :: 'msg ⇒ 'msg ⇒ bool where
 weak-hb m1 m2 ≡ hb m1 m2 ∨ m1 = m2

locale causal-network = network +
 assumes causal-delivery: Deliver m2 ∈ set (history j) ⇒ hb m1 m2 ⇒ Deliver m1 ⊑ i Deliver m2

lemma (in causal-network) causal-broadcast:
 assumes Deliver m2 ∈ set (history j)
 and Deliver m1 ⊑ i Broadcast m2
 shows Deliver m1 ⊑ j Deliver m2
{proof}

lemma (in network) hb-broadcast-exists1:
 assumes hb m1 m2
 shows ∃ i. Broadcast m1 ∈ set (history i)
{proof}

lemma (in network) hb-broadcast-exists2:
 assumes hb m1 m2
 shows ∃ i. Broadcast m2 ∈ set (history i)
{proof}

4.3 Causal networks

lemma (in causal-network) hb-has-a-reason:
 assumes hb m1 m2
 and Broadcast m2 ∈ set (history i)
 shows Deliver m1 ∈ set (history i) ∨ Broadcast m1 ∈ set (history i)
{proof}

lemma (in causal-network) hb-cross-node-delivery:
 assumes hb m1 m2
 and Broadcast m1 ∈ set (history i)
 and Broadcast m2 ∈ set (history j)
 and i ≠ j
 shows Deliver m1 ∈ set (history j)
{proof}

lemma (in causal-network) hb-irrefl:
 assumes hb m1 m2
 shows m1 ≠ m2
{proof}

lemma (in causal-network) hb-broadcast-broadcast-order:
 assumes hb m1 m2
 and Broadcast m1 ∈ set (history i)
 and Broadcast m2 ∈ set (history i)
 shows Broadcast m1 ⊑ i Broadcast m2
{proof}

lemma (in causal-network) hb-antisym:
 assumes hb x y
 and hb y x
 shows False
{proof}
definition (in network) node-deliver-messages :: ’msg event list ⇒ ’msg list where

node-deliver-messages cs ≡ List.map-filter (λ e. case e of Deliver m ⇒ Some m | - ⇒ None) cs

lemma (in network) node-deliver-messages-empty [simp]:
shows node-deliver-messages [] = []
⟨proof⟩

lemma (in network) node-deliver-messages-Cons:
shows node-deliver-messages (x#xs) = (node-deliver-messages [x])@[node-deliver-messages xs]
⟨proof⟩

lemma (in network) node-deliver-messages-append:
shows node-deliver-messages (xs@ys) = (node-deliver-messages xs)@[node-deliver-messages ys]
⟨proof⟩

lemma (in network) node-deliver-messages-Broadcast [simp]:
shows node-deliver-messages [Broadcast m] = []
⟨proof⟩

lemma (in network) node-deliver-messages-Deliver [simp]:
shows node-deliver-messages [Deliver m] = [m]
⟨proof⟩

lemma (in network) prefix-msg-in-history:
assumes es prefix of i
and m ∈ set (node-deliver-messages es)
shows Deliver m ∈ set (history i)
⟨proof⟩

lemma (in network) prefix-contains-msg:
assumes es prefix of i
and m ∈ set (node-deliver-messages es)
shows Deliver m ∈ set es
⟨proof⟩

lemma (in network) node-deliver-messages-distinct:
assumes xs prefix of i
shows distinct (node-deliver-messages xs)
⟨proof⟩

lemma (in network) drop-last-message:
assumes evts prefix of i
and node-deliver-messages evts = msgs@[last-msg]
shows ∃pre. pre prefix of i ∧ node-deliver-messages pre = msgs
⟨proof⟩

locale network-with-ops = causal-network history fst
for history :: nat ⇒ (′msgid × ′op) event list +
fixes interp :: ′op ⇒ ’state → ′state
and initial-state :: ′state

context network-with-ops begin

definition interp-msg :: ′msgid × ′op ⇒ ′state → ′state where
interp-msg msg state ≡ interp (snd msg) state

sublocale hb: happens-before weak-hb hb interp-msg
⟨proof⟩
definition (in network-with-ops) apply-operations :: ('msgid × 'op) event list → 'state where
apply-operations es ≡ hb.apply-operations (node-deliver-messages es) initial-state

definition (in network-with-ops) node-deliver-ops :: ('msgid × 'op) event list ⇒ 'op list where
node-deliver-ops cs ≡ map snd (node-deliver-messages cs)

lemma (in network-with-ops) apply-operations-empty [simp]:
shows apply-operations [] = Some initial-state
⟨proof⟩

lemma (in network-with-ops) apply-operations-Broadcast [simp]:
shows apply-operations (xs @ [Broadcast m]) = apply-operations xs
⟨proof⟩

lemma (in network-with-ops) apply-operations-Deliver [simp]:
shows apply-operations (xs @ [Deliver m]) = (apply-operations xs >>= interp-msg m)
⟨proof⟩

lemma (in network-with-ops) hb-consistent-technical:
 assumes \(\forall m. n. m < \text{length } cs \Rightarrow n < m \Rightarrow cs ! n \sqsubseteq cs ! m \)
 shows hb hb-consistent (node-deliver-messages cs)
⟨proof⟩

corollary (in network-with-ops)
shows hb hb-consistent (node-deliver-messages (history i))
⟨proof⟩

lemma (in network-with-ops) hb-consistent-prefix:
 assumes xs prefix of i
 shows hb hb-consistent (node-deliver-messages xs)
⟨proof⟩

locale network-with-constrained-ops = network-with-ops +
fixes valid-msg :: 'c ⇒ ('a × 'b) ⇒ bool
assumes broadcast-only-valid-msgs: pre @ [Broadcast m] prefix of i \(\Rightarrow \exists \text{state. apply-operations pre = Some state } \land \text{valid-msg state m} \)

lemma (in network-with-constrained-ops) broadcast-is-valid:
 assumes Broadcast m ∈ set (history i)
 shows \(\exists \text{state. valid-msg state m} \)
⟨proof⟩

lemma (in network-with-constrained-ops) deliver-is-valid:
 assumes Deliver m ∈ set (history i)
 shows \(\exists j \text{ pre state. pre @ [Broadcast m] prefix of j } \land \text{apply-operations pre = Some state } \land \text{valid-msg state m} \)
⟨proof⟩

lemma (in network-with-constrained-ops) deliver-in-prefix-is-valid:
 assumes xs prefix of i
 and Deliver m ∈ set xs
 shows \(\exists \text{state. valid-msg state m} \)
⟨proof⟩
4.4 Dummy network models

interpretation trivial-node(histories: node(histories) λm. []
⟨proof⟩

interpretation trivial-network: network λm. [] id
⟨proof⟩

interpretation trivial-causal-network: causal-network λm. [] id
⟨proof⟩

interpretation trivial-network-with-ops: network-with-ops λm. [] (λx y. Some y) 0
⟨proof⟩

⟨proof⟩

end

5 Replicated Growable Array

The RGA, introduced by [10], is a replicated ordered list (sequence) datatype that supports `insert` and `delete` operations.

theory
 Ordered-List
imports
 Util
begin

type-synonym ('id, 'v) elt = 'id × 'v × bool

5.1 Insert and delete operations

Insertion operations place the new element after an existing list element with a given ID, or at the head of the list if no ID is given. Deletion operations refer to the ID of the list element that is to be deleted. However, it is not safe for a deletion operation to completely remove a list element, because then a concurrent insertion after the deleted element would not be able to locate the insertion position. Instead, the list retains so-called tombstones: a deletion operation merely sets a flag on a list element to mark it as deleted, but the element actually remains in the list. A separate garbage collection process can be used to eventually purge tombstones [10], but we do not consider tombstone removal here.

hide-const insert

fun insert-body :: ('id::{linorder}, 'v) elt list ⇒ ('id, 'v) elt ⇒ ('id, 'v) elt list where
 insert-body [] e = [e] |
 insert-body (x#xs) e =
 (if fst x < fst e then
 e#x#xs
 else x#insert-body xs e)

fun insert :: ('id::{linorder}, 'v) elt list ⇒ ('id, 'v) elt ⇒ 'id option ⇒ ('id, 'v) elt list option where
 insert xs e None = Some (insert-body xs e) |
 insert [] e (Some i) = None |
 insert (x#xs) e (Some i) =
 (if fst x = i then
Some (x#insert-body xs e)
else
insert xs e (Some i) ⇔ (λ. Some (x#t))

fun delete :: ('id::{linorder}, 'v) elt list ⇒ 'id ⇒ ('id, 'v) elt list option where
delete []
i = None |
delete ([(i', v, flag)#xs]) i =
(if i' = i then
Some ([(i', v, True)#xs])
else
delete xs i ⇔ (λ. Some ((i',v,flag)#t)))

5.2 Well-definedness of insert and delete

lemma insert-no-failure:
assumes i = None ∨ (∃ i'. i = Some i' ∧ i' ∈ fst ' set xs)
shows ∃ xs'. insert xs e i = Some xs'
(proof)

lemma insert-None-index-neq-None [dest]:
assumes insert xs e i = None
shows i ≠ None
(proof)

lemma insert-Some-None-index-not-in [dest]:
assumes insert xs e (Some i) = None
shows i /∈ fst ' set xs
(proof)

lemma index-not-in-insert-Some-None [simp]:
assumes i /∈ fst ' set xs
shows insert xs e (Some i) = None
(proof)

lemma delete-no-failure:
assumes i ∈ fst ' set xs
shows ∃ xs'. delete xs i = Some xs'
(proof)

lemma delete-None-index-not-in [dest]:
assumes delete xs i = None
shows i /∈ fst ' set xs
(proof)

lemma index-not-in-delete-None [simp]:
assumes i /∈ fst ' set xs
shows delete xs i = None
(proof)

5.3 Preservation of element indices

lemma insert-body-preserve-indices [simp]:
shows fst ' set (insert-body xs e) = fst ' set xs ∪ {fst e}
(proof)

lemma insert-preserve-indices:
assumes ∃ ys. insert xs e i = Some ys
shows fst ' set (the (insert xs e i)) = fst ' set xs ∪ {fst e}
proof

corollary insert-preserve-indices':

assumes insert xs e i = Some ys

shows fst ' set (the (insert xs e i)) = fst ' set xs ∪ {fst e}

(proof)

lemma delete-preserve-indices:

assumes delete xs i = Some ys

shows fst ' set xs = fst ' set ys

(proof)

5.4 Commutativity of concurrent operations

lemma insert-body-commutes:

assumes fst e1 ≠ fst e2

shows insert-body (insert-body xs e1) e2 = insert-body (insert-body xs e2) e1

(proof)

lemma insert-insert-body:

assumes fst e1 ≠ fst e2

and i2 ≠ Some (fst e1)

shows insert (insert-body xs e1) e2 i2 = insert xs e2 i2 ⇒ (λys. Some (insert-body ys e1))

(proof)

lemma insert-nil-None:

assumes fst e1 ≠ fst e2

and i ≠ fst e2

and i2 ≠ Some (fst e1)

shows insert [] e2 i2 ⇒ (λys. insert ys e1 (Some i)) = None

(proof)

lemma insert-insert-body-commute:

assumes i ≠ fst e1

and fst e1 ≠ fst e2

shows insert (insert-body xs e1) e2 (Some i) = insert xs e2 (Some i) ⇒ (λy. Some (insert-body y e1))

(proof)

lemma insert-commutes:

assumes fst e1 ≠ fst e2

i1 = None ∨ i1 ≠ Some (fst e2)

i2 = None ∨ i2 ≠ Some (fst e1)

shows insert xs e1 i1 ⇒ (λys. insert ys e2 i2) = insert xs e2 i2 ⇒ (λys. insert ys e1 i1)

(proof)

lemma delete-commutes:

shows delete xs i1 ⇒ (λys. delete ys i2) = delete xs i2 ⇒ (λys. delete ys i1)

(proof)

lemma insert-body-delete-commute:

assumes i2 ≠ fst e

shows delete (insert-body xs e) i2 ⇒ (λt. Some (x#t)) = delete xs i2 ⇒ (λy. Some (x#insert-body y e))

(proof)

lemma insert-delete-commute:
assumes $i 2 \neq \text{fst } e$
shows \quad \text{insert } xs \cdot e \cdot i 1 \cong (\lambda ys. \text{delete } ys \cdot i 2) = \text{delete } xs \cdot i 2 \cong (\lambda ys. \text{insert } ys \cdot e \cdot i 1)$
(proof)

5.5 Alternative definition of insert

fun \text{insert}' :: ('id:\{\text{linorder}\}, 'v) elt list \Rightarrow ('id, 'v) elt \Rightarrow 'id option \Rightarrow ('id:\{\text{linorder}\}, 'v) elt list
where
\begin{align*}
\text{insert}'[\emptyset] \cdot e \cdot \text{None} &= \text{Some } [\cdot e] |
\text{insert}'[\emptyset] \cdot e \cdot (\text{Some } i) &= \text{None } | \\
\text{insert}'(x\#xs) \cdot e \cdot \text{None} &= (\text{if } \text{fst } x < \text{fst } e \text{ then } \text{None } \Rightarrow \text{Some } (x\#t)) | \\
\text{else } \& \text{ case } \text{insert}' \cdot xs \cdot e \cdot \text{None } \Rightarrow \text{None } \\
\text{if } \text{fst } x = i \text{ then } \text{else } \& \text{ case } \text{insert}' \cdot xs \cdot e \cdot (\text{Some } i) = \text{None } \Rightarrow \text{Some } (x\#t) \\
\text{else } \& \text{ case } \text{insert}' \cdot xs \cdot (\text{Some } i) \Rightarrow \text{None } \\
\text{if } \text{fst } t \Rightarrow \text{Some } (x\#t) \\
\text{else } \& \text{ Some } t \Rightarrow \text{Some } (x\#t))
\end{align*}

lemma [elim!, dest]:
\begin{align*}
\text{assumes } \text{insert}' \cdot xs \cdot e \cdot \text{None} = \text{None } \\
\text{shows} \quad \text{False}
\end{align*}
(proof)

lemma \text{insert-body-insert}':
\begin{align*}
\text{shows } \text{insert'} \cdot xs \cdot e \cdot \text{None} = \text{Some } (\text{insert-body } xs \cdot e)
\end{align*}
(proof)

lemma \text{insert-insert}':
\begin{align*}
\text{shows } \text{insert } xs \cdot e \cdot i = \text{insert'} \cdot xs \cdot e \cdot i
\end{align*}
(proof)

lemma \text{insert-body-stop-iteration}:
\begin{align*}
\text{assumes } \text{fst } e > \text{fst } x \\
\text{shows } \text{insert-body } (x\#xs) \cdot e = e\#x\#xs
\end{align*}
(proof)

lemma \text{insert-body-contains-new-elem}:
\begin{align*}
\text{shows } \exists p \cdot s. \cdot xs = p \@ s \land \text{insert-body } xs \cdot e = p \@ e \# s
\end{align*}
(proof)

lemma \text{insert-between-elements}:
\begin{align*}
\text{assumes } \text{xs} = \text{pre}@ref \# suf \\
\text{and } \text{distinct } (\text{map } \text{fst } xs) \\
\text{and } \forall i'. \cdot i' \in \text{fst } set xs \Rightarrow i' < \text{fst } e \\
\text{shows } \text{insert } xs \cdot e \cdot (\text{Some } (\text{fst ref})) = \text{Some } (\text{pre } @ ref \# e \# suf)
\end{align*}
(proof)

lemma \text{insert-position-element-technical}:
\begin{align*}
\text{assumes } \forall x \in \text{set } as. \cdot a \neq \text{fst } x
\end{align*}
and insert-body (cs @ ds) e = cs @ e # ds
shows insert (as @ (a, aa, b) # cs @ ds) e (Some a) = Some (as @ (a, aa, b) # cs @ e # ds)
(proof)

lemma split-tuple-list-by-id:
assumes (a,b,c) ∈ set xs
and distinct (map fst xs)
shows ∃ pre suf. xs = pre @ (a,b,c) # suf ∧ (∀ y ∈ set pre. fst y ≠ a)
(proof)

lemma insert-preserves-order:
assumes i = None ∨ (∃ i'. i = Some i' ∧ i' ∈ fst ' set xs)
and distinct (map fst xs)
shows ∃ pre suf. xs = pre @ suf ∧ insert xs e i = Some (pre @ e # suf)
(proof)
end

5.6 Network

theory RGA
imports Network Ordered-List
begin

datatype ('id,'v) operation =
 Insert ('id,'v) elt 'id option |
 Delete 'id

fun interpret-opers :: ('id::linorder,'v) operation ⇒ ('id,'v) elt list ⇒ ('id,'v) elt list
where
 interpret-opers (Insert e n) xs = insert xs e n |
 interpret-opers (Delete n) xs = delete xs n

definition element-ids :: ('id,'v) elt list ⇒ 'id set where
 element-ids list ≡ set (map fst list)

definition valid-rga-msg :: ('id,'v) elt list ⇒ 'id × ('id::linorder,'v) operation ⇒ bool where
 valid-rga-msg list msg ≡ case msg of
 (i, Insert e None) ⇒ fst e = i |
 (i, Insert e (Some pos)) ⇒ fst e = i ∧ pos ∈ element-ids list |
 (i, Delete pos) ⇒ pos ∈ element-ids list

locale rga = network-with-constrained-ops - interpret-opers [] valid-rga-msg

definition indices :: ('id × ('id,'v) operation) event list ⇒ 'id list where
 indices xs ≡
 List.map-filter (λx. case x of Deliver (i, Insert e n) ⇒ Some (fst e) | · ⇒ None) xs

lemma indices- Nil [simp]:
shows indices [] = []
(proof)

lemma indices-append [simp]:
shows indices (xs@ys) = indices xs @ indices ys
(proof)
lemma indices-Broadcast-singleton [simp]:
 shows indices [Broadcast b] = []
⟨proof⟩

lemma indices-Deliver-Insert [simp]:
 shows indices [Deliver (i, Insert e n)] = [fst e]
⟨proof⟩

lemma indices-Deliver-Delete [simp]:
 shows indices [Deliver (i, Delete n)] = []
⟨proof⟩

lemma (in rga) idx-in-elem-inserted [intro]:
 assumes Deliver (i, Insert e n) ∈ set xs
 shows fst e ∈ set (indices xs)
⟨proof⟩

lemma (in rga) apply-opers-idx-elems:
 assumes es prefix of i
 and apply-operations es = Some xs
 shows element-ids xs = set (indices es)
⟨proof⟩

lemma (in rga) delete-does-not-change-element-ids:
 assumes es @ [Deliver (i, Delete n)] prefix of j
 and apply-operations es = Some xs1
 and apply-operations (es @ [Deliver (i, Delete n)]) = Some xs2
 shows element-ids xs1 = element-ids xs2
⟨proof⟩

lemma (in rga) someone-inserted-id:
 assumes es @ [Deliver (i, Insert (k, v, f) n)] prefix of j
 and apply-operations es = Some xs1
 and apply-operations (es @ [Deliver (i, Insert (k, v, f) n)]) = Some xs2
 and a ∈ element-ids xs2
 and a ≠ k
 shows a ∈ element-ids xs1
⟨proof⟩

lemma (in rga) deliver-insert-exists:
 assumes es prefix of j
 and apply-operations es = Some xs
 and a ∈ element-ids xs
 shows ∃i v f n. Deliver (i, Insert (a, v, f) n) ∈ set es
⟨proof⟩

lemma (in rga) insert-in-apply-set:
 assumes es @ [Deliver (i, Insert e (Some a))] prefix of j
 and Deliver (i', Insert e' n) ∈ set es
 and apply-operations es = Some s
 shows fst e' ∈ element-ids s
⟨proof⟩

lemma (in rga) insert-msg-id:
 assumes Broadcast (i, Insert e n) ∈ set (history j)
 shows fst e = i
⟨proof⟩
lemma (in rga) allowed-insert:
 assumes Broadcast (i, Insert e n) ∈ set (history j)
 shows \(n = \text{None} \lor (\exists i' \cdot \text{Loc} i' \cdot n = \text{Some} (\text{fst} e') \land \text{Deliver} (i', \text{Insert} e' n') \circledast \text{Broadcast} (i, \text{Insert} e n)) \)
 (proof)

lemma (in rga) allowed-delete:
 assumes Broadcast (i, Delete x) ∈ set (history j)
 shows \(\exists i' \cdot i' \cdot n' \cdot v \cdot b \cdot \text{Deliver} (i', \text{Insert} (x, v, b) n') \circledast \text{Broadcast} (i, \text{Delete} x) \)
 (proof)

lemma (in rga) insert-id-unique:
 assumes \(\text{fst} e1 = \text{fst} e2 \)
 and Broadcast (i1, Insert e1 n1) ∈ set (history i)
 and Broadcast (i2, Insert e2 n2) ∈ set (history j)
 shows Insert e1 n1 = Insert e2 n2
 (proof)

lemma (in rga) allowed-delete-deliver:
 assumes Delivered (i, Delete x) ∈ set (history j)
 shows \(\exists i' \cdot i' \cdot n' \cdot v \cdot b \cdot \text{Deliver} (i', \text{Insert} (x, v, b) n') \circledast \text{Deliver} (i, \text{Delete} x) \)
 (proof)

lemma (in rga) allowed-delete-deliver-in-set:
 assumes \(\langle \text{es} \circ \text{Delivered} (i, \text{Delete} m) \rangle \text{prefix of } j \)
 shows \(\exists i' \cdot i' \cdot n' \cdot v \cdot b \cdot \text{Deliver} (i', \text{Insert} (m, v, b) n) \in \text{set es} \)
 (proof)

lemma (in rga) allowed-insert-deliver:
 assumes Delivered (i, Insert e n) ∈ set (history j)
 shows \(n = \text{None} \lor (\exists i' \cdot i' \cdot n' \cdot v \cdot b \cdot n = \text{Some} n' \land \text{Deliver} (i', \text{Insert} (n', v, b) n') \circledast \text{Deliver} (i, \text{Insert} e n)) \)
 (proof)

lemma (in rga) allowed-insert-deliver-in-set:
 assumes \(\langle \text{es} \circ \text{Delivered} (i, \text{Insert} e m) \rangle \text{prefix of } j \)
 shows \(m = \text{None} \lor (\exists i' \cdot i' \cdot m' \cdot v \cdot b \cdot m = \text{Some} m' \land \text{Deliver} (i', \text{Insert} (m', v, b) n) \in \text{set es} \)
 (proof)

lemma (in rga) Insert-no-failure:
 assumes \(\text{es} @ [\text{Delivered} (i, \text{Insert} e n)] \text{prefix of } j \)
 and apply-operations es = Some s
 shows \(\exists ys. \text{insert } s \in n = \text{Some } ys \)
 (proof)

lemma (in rga) delete-no-failure:
 assumes \(\text{es} @ [\text{Delivered} (i, \text{Delete} n)] \text{prefix of } j \)
 and apply-operations es = Some s
 shows \(\exists ys. \text{delete } s \in n = \text{Some } ys \)
 (proof)

lemma (in rga) Insert-equal:
 assumes \(\text{fst} e1 = \text{fst} e2 \)
 and Broadcast (i1, Insert e1 n1) ∈ set (history i)
 and Broadcast (i2, Insert e2 n2) ∈ set (history j)
 shows Insert e1 n1 = Insert e2 n2
 (proof)
lemma (in rga) same-insert:
 assumes \(\text{fst } e_1 = \text{fst } e_2 \)
 and \(xs \) prefix of \(i \)
 and \((i_1, \text{Insert } e_1 n_1) \in \text{set} \ (\text{node-deliver-messages } xs)\)
 and \((i_2, \text{Insert } e_2 n_2) \in \text{set} \ (\text{node-deliver-messages } xs)\)
 shows \(\text{Insert } e_1 n_1 = \text{Insert } e_2 n_2 \)
(\text{proof})

lemma (in rga) insert-commute-assms:
 assumes \{\text{Deliver} (i, \text{Insert } e n), \text{Deliver} (i', \text{Insert } e' n')\} \subseteq \text{set} \ (\text{history } j)\)
 and \(\text{hb.concurrent} (i, \text{Insert } e n) (i', \text{Insert } e' n') \)
 shows \(n = \text{None} \lor n \neq \text{Some} (\text{fst } e') \)
(\text{proof})

lemma subset-reorder:
 assumes \(\{a, b\} \subseteq c \)
 shows \(\{b, a\} \subseteq c \)
(\text{proof})

lemma (in rga) Insert-Insert-concurrent:
 assumes \{\text{Deliver} (i, \text{Insert } e k), \text{Deliver} (i', \text{Insert } e'(\text{Some } m))\} \subseteq \text{set} \ (\text{history } j)\)
 and \(\text{hb.concurrent} (i, \text{Insert } e k) (i', \text{Insert } e'(\text{Some } m)) \)
 shows \(\text{fst } e \neq m \)
(\text{proof})

lemma (in rga) insert-valid-assms:
 assumes \text{Deliver} (i, \text{Insert } e n) \in \text{set} \ (\text{history } j)\)
 shows \(n = \text{None} \lor n \neq \text{Some} (\text{fst } e) \)
(\text{proof})

lemma (in rga) Insert-Delete-concurrent:
 assumes \{\text{Deliver} (i, \text{Insert } e n), \text{Deliver} (i', \text{Delete } n')\} \subseteq \text{set} \ (\text{history } j)\)
 and \(\text{hb.concurrent} (i, \text{Insert } e n) (i', \text{Delete } n') \)
 shows \(n' \neq \text{fst } e \)
(\text{proof})

lemma (in rga) concurrent-operations-commute:
 assumes \(xs \) prefix of \(i \)
 shows \(\text{hb.concurrent-ops-commute} \ (\text{node-deliver-messages } xs) \)
(\text{proof})

corollary (in rga) concurrent-operations-commute:\n shows \(\text{hb.concurrent-ops-commute} \ (\text{node-deliver-messages } (\text{history } i)) \)
(\text{proof})

lemma (in rga) apply-operations-never-fails:
 assumes \(xs \) prefix of \(i \)
 shows \(\text{apply-operations } xs \neq \text{None} \)
(\text{proof})

lemma (in rga) apply-operations-never-fails:\n shows \(\text{apply-operations} \ (\text{history } i) \neq \text{None} \)
(\text{proof})

corollary (in rga) rga-convergence:
 assumes \(\text{set} \ (\text{node-deliver-messages } xs) = \text{set} \ (\text{node-deliver-messages } ys) \)
 and \(xs \) prefix of \(i \)

23
5.7 Strong eventual consistency

context rga begin

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
 \(\lambda \text{ops.\exists xs i. xs prefix of i \land node-deliver-messages xs = ops }\) []
 ⟨proof⟩

end

interpretation trivial-rga-implementation: rga \(\lambda x.\) []
 ⟨proof⟩

end

6 Increment-Decrement Counter

The Increment-Decrement Counter is perhaps the simplest CRDT, and a paradigmatic example of a replicated data structure with commutative operations.

theory Counter
imports Network
begin

datatype operation = Increment | Decrement

fun counter-op :: operation ⇒ int → int where
 counter-op Increment x = Some (x + 1) |
 counter-op Decrement x = Some (x - 1)

locale counter = network-with-ops - counter-op 0

lemma (in counter) counter-op x >> counter-op y = counter-op y >> counter-op x
 ⟨proof⟩

lemma (in counter) concurrent-operations-commute:
 assumes xs prefix of i
 shows hb.concurrent-ops-commute (node-deliver-messages xs)
 ⟨proof⟩

corollary (in counter) counter-convergence:
 assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)
 and xs prefix of i
 and ys prefix of j
 shows apply-operations xs = apply-operations ys
 ⟨proof⟩

context counter begin

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
 \(\lambda \text{ops.\exists xs i. xs prefix of i \land node-deliver-messages xs = ops }\) []
 ⟨proof⟩

end
7 Observed-Remove Set

The ORSet is a well-known CRDT for implementing replicated sets, supporting two operations: the insertion and deletion of an arbitrary element in the shared set.

theory ORSet
 imports Network
begin

datatype ('id, 'a) operation = Add 'id 'a | Rem 'id set 'a

type-synonym ('id, 'a) state = 'a ⇒ 'id set

definition op-elem :: ('id, 'a) operation ⇒ 'a where
 op-elem oper ≡ case oper of
 Add i e ⇒ e |
 Rem is e ⇒ e

definition interpret-op :: ('id, 'a) operation ⇒ ('id, 'a) state ⇒ ('id, 'a) state where
 interpret-op oper state ≡ let before = state (op-elem oper);
 in Some (state ((op-elem oper) := after)))

definition valid-behaviours :: ('id, 'a) state ⇒ 'id × ('id, 'a) operation ⇒ bool where
 valid-behaviours state msg ≡ case msg of
 (i, Add j e) ⇒ i = j |
 (i, Rem is e) ⇒ is = state e

locale orset = network-with-constrained-ops - interpret-op λx. {} valid-behaviours

lemma (in orset) add-add-commute:
 shows ⟨Add i1 e1⟩ ⊳ ⟨Add i2 e2⟩ = ⟨Add i2 e2⟩ ⊳ ⟨Add i1 e1⟩
⟨proof⟩

lemma (in orset) add-rem-commute:
 assumes i /∈ is
 shows ⟨Add i e1⟩ ⊳ ⟨Rem is e2⟩ = ⟨Rem is e2⟩ ⊳ ⟨Add i e1⟩
⟨proof⟩

lemma (in orset) apply-operations-never-fails:
 assumes xs prefix of i
 shows apply-operations xs ≠ None
⟨proof⟩

lemma (in orset) add-id-valid:
 assumes xs prefix of j
 and Deliver (i1, Add i2 e) ∈ set xs
 shows i1 = i2
⟨proof⟩

definition (in orset) added-ids :: ('id × ('id, 'b) operation) event list ⇒ 'b ⇒ 'id list where
 added-ids es p ≡ List.map-filter (λx. case of Deliver (i, Add j e) ⇒ if e = p then Some j else None
lemma (in orset) [simp]: shows added-ids [] e = []
⟨proof⟩

lemma (in orset) [simp]: shows added-ids (xs @ ys) e = added-ids xs e @ added-ids ys e
⟨proof⟩

lemma (in orset) added-ids-Broadcast-collapse [simp]: shows added-ids ([Broadcast e]) e' = []
⟨proof⟩

lemma (in orset) added-ids-Deliver-Rem-collapse [simp]: shows added-ids ([Deliver (i, Rem is e)]) e' = []
⟨proof⟩

lemma (in orset) added-ids-Deliver-Add-diff-collapse [simp]: shows e ≠ e' ⇒ added-ids ([Deliver (i, Add j e)]) e' = []
⟨proof⟩

lemma (in orset) added-ids-Deliver-Add-same-collapse [simp]: shows added-ids ([Deliver (i, Add j e)]) e = [j]
⟨proof⟩

lemma (in orset) added-id-not-in-set: assumes i1 /∈ set (added-ids [Deliver (i, Add i2 e)]) e shows i1 ≠ i2
⟨proof⟩

lemma (in orset) apply-operations-added-ids: assumes es prefix of j and apply-operations es = Some f shows f x ⊆ set (added-ids es x)
⟨proof⟩

lemma (in orset) Deliver-added-ids: assumes xs prefix of j and i ∈ set (added-ids xs e) shows Deliver (i, Add i e) ∈ set xs
⟨proof⟩

lemma (in orset) Broadcast-Deliver-prefix-closed: assumes xs @ [Broadcast (r, Rem ix e)] prefix of j and i ∈ ix shows Deliver (i, Add i e) ∈ set xs
⟨proof⟩

lemma (in orset) Broadcast-Deliver-prefix-closed2: assumes xs prefix of j and Broadcast (r, Rem ix e) ∈ set xs and i ∈ ix shows Deliver (i, Add i e) ∈ set xs
⟨proof⟩

lemma (in orset) concurrent-add-remove-independent-technical: assumes i ∈ is
and xs prefix of j
and (i, Add i e) ∈ set (node-deliver-messages xs) and (ir, Rem is e) ∈ set (node-deliver-messages xs)
shows hb (i, Add i e) (ir, Rem is e)
⟨proof⟩

lemma (in orset) Deliver-Add-same-id-same-message:
assumes Deliver (i, Add i e1) ∈ set (history j) and Deliver (i, Add i e2) ∈ set (history j)
shows e1 = e2
⟨proof⟩

lemma (in orset) ids-imply-messages-same:
assumes i ∈ is
and xs prefix of j
and (i, Add i e1) ∈ set (node-deliver-messages xs) and (ir, Rem is e2) ∈ set (node-deliver-messages xs)
shows e1 = e2
⟨proof⟩

corollary (in orset) concurrent-add-remove-independent:
assumes ¬ hb (i, Add i e1) (ir, Rem is e2) and ¬ hb (ir, Rem is e2) (i, Add i e1)
and xs prefix of j
and (i, Add i e1) ∈ set (node-deliver-messages xs) and (ir, Rem is e2) ∈ set (node-deliver-messages xs)
shows i /∈ is
⟨proof⟩

lemma (in orset) rem-rem-commute:
shows ⟨Rem i1 e1⟩ ⊿ ⟨Rem i2 e2⟩ = ⟨Rem i2 e2⟩ ⊿ ⟨Rem i1 e1⟩
⟨proof⟩

lemma (in orset) concurrent-operations-commute:
assumes xs prefix of i
shows hb.concurrent-ops-commute (node-deliver-messages xs)
⟨proof⟩

theorem (in orset) convergence:
assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)
and xs prefix of i and ys prefix of j
shows apply-operations xs = apply-operations ys
⟨proof⟩

context orset begin

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops.∃xs i. xs prefix of i ∧ node-deliver-messages xs = ops λx.{}
⟨proof⟩

end

end

References

