A framework for establishing Strong Eventual Consistency for Conflict-free Replicated Data types

Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, Alastair R. Beresford

April 19, 2020

Abstract

In this work, we focus on the correctness of Conflict-free Replicated Data Types (CRDTs), a class of algorithm that provides strong eventual consistency guarantees for replicated data. We develop a modular and reusable framework for verifying the correctness of CRDT algorithms. We avoid correctness issues that have dogged previous mechanised proofs in this area by including a network model in our formalisation, and proving that our theorems hold in all possible network behaviours. Our axiomatic network model is a standard abstraction that accurately reflects the behaviour of real-world computer networks. Moreover, we identify an abstract convergence theorem, a property of order relations, which provides a formal definition of strong eventual consistency. We then obtain the first machine-checked correctness theorems for three concrete CRDTs: the Replicated Growable Array, the Observed-Remove Set, and an Increment-Decrement Counter.

Contents

1 Introduction 2

2 Technical Lemmas 2
 2.1 Kleisli arrow composition 3
 2.2 Lemmas about sets 3
 2.3 Lemmas about list 3

3 Strong Eventual Consistency 6
 3.1 Concurrent operations 6
 3.2 Happens-before consistency 7
 3.3 Apply operations 9
 3.4 Concurrent operations commute 9
 3.5 Abstract convergence theorem 10
 3.6 Convergence and progress 11

4 Axiomatic network models 12
 4.1 Node histories 12
 4.2 Asynchronous broadcast networks 15
 4.3 Causal networks 16
 4.4 Dummy network models 22

5 Replicated Growable Array 22
 5.1 Insert and delete operations 22
 5.2 Well-definedness of insert and delete 23
 5.3 Preservation of element indices 24
1 Introduction

Strong eventual consistency (SEC) is a model that strikes a compromise between strong and eventual consistency [12]. Informally, it guarantees that whenever two nodes have received the same set of messages—possibly in a different order—their view of the shared state is identical, and any conflicting concurrent updates must be merged automatically. Large-scale deployments of SEC algorithms include datacentre-based applications using the Riak distributed database [3], and collaborative editing applications such as Google Docs [5]. Unlike strong consistency models, it is possible to implement SEC in decentralised settings without any central server or leader, and it allows local execution at each node to proceed without waiting for communication with other nodes. However, algorithms for achieving decentralised SEC are currently poorly understood: several such algorithms, published in peer-reviewed venues, were subsequently shown to violate their supposed guarantees [6, 7, 9]. Informal reasoning has repeatedly produced plausible-looking but incorrect algorithms, and there have even been examples of mechanised formal proofs of SEC algorithm correctness later being shown to be flawed. These mechanised proofs failed because, in formalising the algorithm, they made false assumptions about the execution environment.

In this work we use the Isabelle/HOL proof assistant [13] to create a framework for reliably reasoning about the correctness of a particular class of decentralised replication algorithms. We do this by formalising not only the replication algorithms, but also the network in which they execute, allowing us to prove that the algorithm’s assumptions hold in all possible network behaviours. We model the network using the axioms of asynchronous unreliable causal broadcast, a well-understood abstraction that is commonly implemented by network protocols, and which can run on almost any computer network, including large-scale networks that delay, reorder, or drop messages, and in which nodes may fail.

We then use this framework to produce machine-checked proofs of correctness for three Conflict-Free Replicated Data Types (CRDTs), a class of replication algorithms that ensure strong eventual consistency [11, 12]. To our knowledge, this is the first machine-checked verification of SEC algorithms that explicitly models the network and reasons about all possible network behaviours. The framework is modular and reusable, making it easy to formulate proofs for new algorithms. We provide the first mechanised proofs of the Replicated Growable Array, the operation-based Observed-Remove Set, and the operation-based counter CRDT.

2 Technical Lemmas

This section contains a list of helper definitions and lemmas about sets, lists and the option monad.
2.1 Kleisli arrow composition

definition kleisli ::

 ′b ⇒ ′b option ⇒ (′b ⇒ ′b option) ⇒ (′b ⇒ ′b option)
 (infixr ⊿ 65) where
 f ⊿ g ≡ (λx. f x >>= (λy. g y))

lemma kleisli-comm-cong:
 assumes x ⊿ y = y ⊿ x
 shows z ⊿ x ⊿ y = z ⊿ y ⊿ x
 using assms by(clarsimp simp add: kleisli-def)

lemma kleisli-assoc:
 shows (z ⊿ x) ⊿ y = z ⊿ (x ⊿ y)
 by(auto simp add: kleisli-def)

2.2 Lemmas about sets

lemma distinct-set-notin [dest]:
 assumes distinct (x#xs)
 shows x /∈ set xs
 using assms by(induction xs, auto)

lemma set-membership-equality-technicalD [dest]:
 assumes {x} ∪ (set xs) = {y} ∪ (set ys)
 shows x = y ∨ y ∈ set xs
 using assms by(induction xs, auto)

lemma set-equality-technical:
 assumes {x} ∪ (set xs) = {y} ∪ (set ys)
 and x /∈ set xs
 and y /∈ set ys
 and y ∈ set xs
 shows {x} ∪ (set xs − {y}) = set ys
 using assms by (induction xs) auto

lemma set-elem-nth:
 assumes x ∈ set xs
 shows ∃m. m < length xs ∧ xs ! m = x
 using assms by(induction xs, simp) (meson in-set-conv-nth)

2.3 Lemmas about list

lemma list-nil-or-snoc:
 shows xs = [] ∨ (∃y ys. xs = ys@[y])
 by (induction xs, auto)

lemma suffix-eq-distinct-list:
 assumes distinct xs
 and ys@[suf1] = xs
 and ys@[suf2] = xs
 shows suf1 = suf2
 using assms by(induction xs arbitrary: suf1 suf2 rule: rev-induct, simp) (metis append-eq-append-conv)

lemma pre-suf-eq-distinct-list:
 assumes distinct xs
 and ys ≠ []
 and pre1@[ys@suf1] = xs
and \(\text{pre2}@\text{ys}@\text{suf2} = \text{xs} \)

shows \(\text{pre1} = \text{pre2} \land \text{suf1} = \text{suf2} \)

using assms

apply(induction \text{xs} arbitrary: \text{pre1} \text{pre2} \text{ys}, simp)
apply(case-tac \text{pre1}; case-tac \text{pre2}; clarify)
apply(metis suffix-eq-distinct-list append-Nil)
apply(metis Un-iff append-eq-Cons-conv distinct.simps(2) list.set-intros(1) set-append suffix-eq-distinct-list)
apply(metis Un-iff append-eq-Cons-conv distinct.simps(2) list.set-intros(1) set-append suffix-eq-distinct-list)
apply(metis distinct.simps(2) hd-append list.sel(1) list.sel(3) list.simps(3) tl-append2)
done

lemma list-head-unaffected:
assumes hd \((\text{x} \@ [\text{y}, \text{z}]) = \text{v}\)
shows hd \((\text{x} \@ [\text{y}]) = \text{v}\)
using assms by (metis hd-append list.sel(1))

lemma list-head-butlast:
assumes hd \text{xs} = \text{v}
and \text{length \text{xs} > 1}
shows hd (butlast \text{xs}) = \text{v}
using assms by (metis hd-conv-nth length-butlast length-greater-0-conv less-trans nth-butlast zero-less-diff zero-less-one)

lemma list-head-length-one:
assumes hd \text{xs} = \text{x}
and \text{length \text{xs} = 1}
shows \text{xs} = [\text{x}]
using assms by(metis One-nat-def Suc-length-conv hd-Cons-tl length-0-conv list.sel(3))

lemma list-two-at-end:
assumes length \text{xs} > 1
shows \(\exists \text{xs}' \text{ x y} \text{. xs} = \text{xs}' \@ [\text{x}, \text{y}] \)
using assms
apply(induction \text{xs} rule: rev-induct, simp)
apply(metis append-self-conv length-append self-conv length-0-conv Suc-length-conv)
apply(rule-tac \text{x}=butlast \text{xs} \text{ in exI}, rule-tac \text{x}=last \text{xs} \text{ in exI}, simp)
done

lemma list-nth-split-technical:
assumes \(\text{m < length \text{cs}} \)
and \(\text{cs} \neq [] \)
shows \(\exists \text{xs} \text{ ys} \text{. cs} = \text{xs}@\text{(cs!m)#ys} \)
using assms
apply(induction \text{m arbitrary: cs})
apply(meson in-set-conv-decomp nth-mem)
apply(metis in-set-conv-decomp length-list-update set-swap set-update-meml)
done

lemma list-nth-split:
assumes \(\text{m < length \text{cs}} \)
and \(\text{n < m} \)
and \(\text{1 < length \text{cs}} \)
shows \(\exists \text{xs} \text{ ys} \text{ zs} \text{. cs} = \text{xs}@\text{(cs!n)#ys@\text{(cs!m)#zs}} \)
using assms proof(induction \text{n arbitrary: cs m})
case 0 thus \(?\text{case} \)
apply(case-tac \text{cs}; clarsimp)
apply(rule-tac \text{x=}[] \text{ in exI}, clarsimp)
apply (rule list-nth-split-technical, simp, force)
done

next
case (Suc n)
thus ?case
proof (cases cs)
case Nil
then show ?thesis
 using Suc.prems by auto
next
case (Cons a as)
hence \(m-1 < \text{length } n < m-1 \)
 using Suc by force+
then obtain xs ys zs where \(as = xs \# ! as \# ! as \# (m-1) \# zs \)
 using Suc by force
thus ?thesis
 apply (rule-tac x=a#xs in exI)
 using Suc Cons apply force
done
qed

lemma list-split-two-elems:
assumes distinct cs
 and \(x \in \text{set } cs \)
 and \(y \in \text{set } cs \)
 and \(x \neq y \)
shows \(\exists \, \text{pre mid suf. } cs = \text{pre } \# x \# \text{mid } \# y \# \text{suf } \lor \text{cs = pre } \# y \# \text{mid } \# x \# \text{suf} \)
proof –
obtain \(xi yi \) where \(*: xi < \text{length } cs \land x = cs ! xi yi < \text{length } cs \land y = cs ! yi xi \neq yi \)
 using set-elem-nth linorder-neqE-nat assms by metis
thus ?thesis
 by (metis list-nth-split One-nat-def less-Suc-eq linorder-neqE-nat not-less-zero)
qed

lemma split-list-unique-prefix:
assumes \(x \in \text{set } xs \)
shows \(\exists \, \text{pre suf. } zs = \text{pre } \# x \# \text{suf } \land (\forall y \in \text{set } \text{pre. } x \neq y) \)
using assms proof (induction xs)
case Nil thus ?case by clarsimp
next
case (Cons y ys)
then show ?case
proof (cases y=x)
case True
then show ?thesis by force
next
case False
then obtain pre suf where \(ys = \text{pre } \# x \# \text{suf } \land (\forall y \in \text{set } \text{pre. } x \neq y) \)
 using assms Cons by auto
thus ?thesis
 using split-list-first by force
qed

lemma map-filter-append:
shows List.map-filter P (xs @ ys) = List.map-filter P xs @ List.map-filter P ys
by (auto simp add: List.map-filter-def)
3 Strong Eventual Consistency

In this section we formalise the notion of strong eventual consistency. We do not make any assumptions about networks or data structures; instead, we use an abstract model of operations that may be reordered, and we reason about the properties that those operations must satisfy. We then provide concrete implementations of that abstract model in later sections.

theory
Convergence
imports
 Util
begin

The happens-before relation, as introduced by [8], captures causal dependencies between operations. It can be defined in terms of sending and receiving messages on a network. However, for now, we keep it abstract, our only restriction on the happens-before relation is that it must be a strict partial order, that is, it must be irreflexive and transitive, which implies that it is also antisymmetric. We describe the state of a node using an abstract type variable. To model state changes, we assume the existence of an interpretation function interp which lifts an operation into a state transformer—a function that either maps an old state to a new state, or fails.

locale happens-before = preorder hb-weak hb
 for hb-weak :: 'a ⇒ 'a ⇒ bool (infix ≤ 50)
 and hb :: 'a ⇒ 'a ⇒ bool (infix < 50) +
 fixes interp :: 'a ⇒ 'b ⇒ 'b ((·) [0] 1000)

3.1 Concurrent operations

We say that two operations x and y are concurrent, written $x \parallel y$, whenever one does not happen before the other: $\neg (x \prec y)$ and $\neg (y \prec x)$.

definition concurrent :: 'a ⇒ 'a ⇒ bool (infix || 50) where
 $s_1 \parallel s_2 \equiv \neg (s_1 \prec s_2) \land \neg (s_2 \prec s_1)$

lemma concurrentI [intro!, simp: concurrent-def]
 $\neg (s_1 \prec s_2) \Longrightarrow \neg (s_2 \prec s_1) \Longrightarrow s_1 \parallel s_2$
 by (auto simp: concurrent-def)

lemma concurrentD1 [dest]: $s_1 \parallel s_2 \Longrightarrow \neg (s_1 \prec s_2)$
 by (auto simp: concurrent-def)

lemma concurrentD2 [dest]: $s_1 \parallel s_2 \Longrightarrow \neg (s_2 \prec s_1)$
 by (auto simp: concurrent-def)

lemma concurrent-refl [intro!, simp]: $s \parallel s$
 by (auto simp: concurrent-def)

lemma concurrent-comm: $s_1 \parallel s_2 \Longleftrightarrow s_2 \parallel s_1$
 by (auto simp: concurrent-def)

definition concurrent-set :: 'a ⇒ 'a list ⇒ bool where
 $\text{concurrent-set } x \; xs \equiv \forall y \in \text{set } xs. \; x \parallel y$

lemma concurrent-set-empty [simp, intro!]:
 $\text{concurrent-set } x$
by (auto simp: concurrent-set-def)

lemma concurrent-set-ConsE [elim!]:
assumes concurrent-set a (x#xs)
and concurrent-set a xs \implies concurrent x a \implies G
shows G
using assms by (auto simp: concurrent-set-def)

lemma concurrent-set-ConsI [intro!]:
concurrent-set a xs \implies concurrent a x \implies concurrent-set a (x#xs)
by (auto simp: concurrent-set-def)

lemma concurrent-set-appendI [intro!]:
concurrent-set a xs \implies concurrent-set a ys \implies concurrent-set a (xs@ys)
by (auto simp: concurrent-set-def)

lemma concurrent-set-Cons-Snoc [simp]:
concurrent-set a (xs@[x]) = concurrent-set a (x#xs)
by (auto simp: concurrent-set-def)

3.2 Happens-before consistency

The purpose of the happens-before relation is to require that some operations must be applied in a particular order, while allowing concurrent operations to be reordered with respect to each other. We assume that each node applies operations in some sequential order (a standard assumption for distributed algorithms), and so we can model the execution history of a node as a list of operations.

inductive hb-consistent :: 'a list \Rightarrow bool where
 [intro!]: hb-consistent []
 [intro!]: [hb-consistent zs; \forall x \in set zs. \neg y \prec x] \implies hb-consistent (zs @ [y])

As a result, whenever two operations x and y appear in a hb-consistent list, and x \prec y, then x must appear before y in the list. However, if x \parallel y, the operations can appear in the list in either order.

lemma (x \prec y \lor concurrent x y) = (\neg y \prec x)
using less-asym by blast

lemma consistentI [intro!]:
assumes hb-consistent (xs @ ys)
and \forall x \in set (xs @ ys). \neg z \prec x
shows hb-consistent (xs @ ys @ [z])
using assms hb-consistent.intros append-assoc by metis

inductive-cases hb-consistent-elim [elim]:
 hb-consistent []
 hb-consistent (xs@[y])
 hb-consistent (xs@ys)
 hb-consistent (xs@ys@[z])

inductive-cases hb-consistent-elim-gen:
 hb-consistent zs

lemma hb-consistent-append-D1 [dest]:
assumes hb-consistent (xs @ ys)
shows hb-consistent xs
using assms by(induction ys arbitrary; xs rule: List.rev-induct) auto
lemma \(hb\text{-}consistent\text{-}append\text{-}D2 \) [dest]:

assumes \(hb\text{-}consistent \ (xs \ @ \ ys) \)

shows \(hb\text{-}consistent \ ys \)

using \(\text{assms} \ \text{by} \) (induction \(ys \) arbitrary: \(xs \) rule: List.rev-induct) fastforce+

lemma \(hb\text{-}consistent\text{-}append\text{-}elim\text{-}ConsD \) [elim]:

assumes \(hb\text{-}consistent \ (y@ys) \)

shows \(hb\text{-}consistent \ ys \)

using \(\text{assms} \ \text{by} \) \(hb\text{-}consistent\text{-}append\text{-}D2 \)

lemma \(hb\text{-}consistent\text{-}remove1 \) [intro]:

assumes \(hb\text{-}consistent \ xs \)

shows \(hb\text{-}consistent \ (\text{remove1} \ x \ xs) \)

using \(\text{assms} \ \text{by} \) (induction rule: \(hb\text{-}consistent\text{-}induct \)) (auto simp: remove1-append)

lemma \(hb\text{-}consistent\text{-}singleton \) [intro!]:

shows \(hb\text{-}consistent \ [x] \)

using \(\text{hb\text{-}consistent\text{-}intros} \ \text{by} \) fastforce

lemma \(hb\text{-}consistent\text{-}prefix\text{-}suffix\text{-}exists \):

assumes \(hb\text{-}consistent \ ys \)

\(hb\text{-}consistent \ (xs \ @ \ [x]) \)

\(\{x\} \cup \text{set} \ xs = \text{set} \ ys \)

\(\text{distinct} \ (x\#xs) \)

\(\text{distinct} \ ys \)

shows \(\exists \ \text{prefix} \ \text{suffix}. \ ys = \text{prefix} \ @ \ x \# \text{suffix} \land \text{concurrent-set} \ x \ \text{suffix} \)

using \(\text{assms} \ \text{proof} \) (induction arbitrary: \(xs \) rule: \(hb\text{-}consistent\text{-}induct, \simp \))

fix \(xs \ y \ ys \)

assume \(IH : (\forall xs. \ hb\text{-}consistent \ (xs \ @ \ [x])) \implies \)

\(\{x\} \cup \text{set} \ xs = \text{set} \ ys \implies \)

\(\text{distinct} \ (x\#xs) \implies \text{distinct} \ ys \implies \)

\(\exists \ \text{prefix} \ \text{suffix}. \ ys = \text{prefix} \ @ \ x \# \text{suffix} \land \text{concurrent-set} \ x \ \text{suffix} \)

assume assms: \(hh\text{-}consistent \ ys \forall x \in \text{set} \ ys. \neg hh \ y \ x \)

\(hh\text{-}consistent \ (xs \ @ \ [x]) \)

\(\{x\} \cup \text{set} \ xs = \text{set} \ (ys \ @ \ [y]) \)

\(\text{distinct} \ (x\#xs) \ \text{distinct} \ (ys \ @ \ [y]) \)

hence \(x \ = \ y \lor y \in \text{set} \ xs \)

using \(\text{assms} \ \text{by} \) auto

moreover {

assume \(x = y \)

hence \(\exists \ \text{prefix} \ \text{suffix}. \ ys \ @ \ [y] = \text{prefix} \ @ \ x \# \text{suffix} \land \text{concurrent-set} \ x \ \text{suffix} \)

by force

}

moreover {

assume \(y\text{-}in\text{-}xs: \ y \in \text{set} \ xs \)

hence \(\{x\} \cup (\text{set} \ xs - \{y\}) = \text{set} \ ys \)

using \(\text{assms} \ \text{by} \) (auto intro: set-equality-technical)

hence \(\text{remove\text{-}y\text{-}in\text{-}xs:} \ \{x\} \cup \text{set} \ (\text{remove1} \ y \ xs) = \text{set} \ ys \)

using \(\text{assms} \ \text{by} \) auto

moreover have \(hh\text{-}consistent \ ((\text{remove1} \ y \ xs) \ @ \ [x]) \)

using \(\text{assms} \ \text{by} \) auto

moreover have \(\text{distinct} \ (x \# (\text{remove1} \ y \ xs)) \)

using \(\text{assms} \ \text{by} \ simp \)

moreover have \(\text{distinct} \ ys \)

using \(\text{assms} \ \text{by} \ simp \)

ultimately obtain \(prefix \ suffix \ where \ yss\text{-}split: \ ys = \text{prefix} \ @ \ x \# \text{suffix} \land \text{concurrent-set} \ x \ \text{suffix} \)

using \(IH \) **by** force

moreover {

}
have concurrent x y using assms y-in-xs remove-y-in-xs concurrent-def by blast
hence concurrent-set x (suffix@[y]) using ys-split by clarsimp
}

ultimately have ∃ prefix suffix. ys @ [y] = prefix @ x ≠ suffix ∧ concurrent-set x suffix by force
}

ultimately show ∃ prefix suffix. ys @ [y] = prefix @ x ≠ suffix ∧ concurrent-set x suffix by auto
qed

lemma hb-consistent-append [intro!]:
assumes hb-consistent suffix
hb-consistent prefix
\[s p. s ∈ set suffix ⇒ p ∈ set prefix ⇒ \neg s ≺ p \]
shows hb-consistent (prefix @ suffix)
using assms by (induction rule: hb-consistent.induct) force+

lemma hb-consistent-append-porder:
assumes hb-consistent (xs @ ys)
x ∈ set xs
y ∈ set ys
shows ¬ y ≺ x
using assms by (induction ys arbitrary: xs rule: rev-induct) force+

3.3 Apply operations

We can now define a function apply-operations that composes an arbitrary list of operations into a state transformer. We first map interp across the list to obtain a state transformer for each operation, and then collectively compose them using the Kleisli arrow composition combinator.

definition apply-operations :: 'a list ⇒ 'b ⇒ 'b
where
apply-operations es ≡ foldl (⊿) Some (map interp es)

lemma apply-operations-empty [simp]: apply-operations [] s = Some s
by(auto simp: apply-operations-def)

lemma apply-operations-Snoc [simp]:
apply-operations (xs@[x]) = (apply-operations xs) ⊢ ⟨x⟩
by(auto simp add: apply-operations-def kleisli-def)

3.4 Concurrent operations commute

We say that two operations x and y commute whenever ⟨x⟩ ⊢ ⟨y⟩ = ⟨y⟩ ⊢ ⟨x⟩, i.e. when we can swap the order of the composition of their interpretations without changing the resulting state transformer. For our purposes, requiring that this property holds for all pairs of operations is too strong. Rather, the commutation property is only required to hold for operations that are concurrent.

definition concurrent-ops-commute :: 'a list ⇒ bool where
concurrent-ops-commute xs ≡
∀ x y. {x, y} ⊆ set xs → concurrent x y → ⟨x⟩ ⊢ ⟨y⟩ = ⟨y⟩ ⊢ ⟨x⟩

lemma concurrent-ops-commute-empty [intro!]: concurrent-ops-commute []
by(auto simp: concurrent-ops-commute-def)

lemma concurrent-ops-commute-singleton [intro!]: concurrent-ops-commute [x]
by (auto simp: concurrent-ops-commute-def)

lemma concurrent-ops-commute-appendD [dest]:
 assumes concurrent-ops-commute (xs@ys)
 shows concurrent-ops-commute xs
using assms by (auto simp: concurrent-ops-commute-def)

lemma concurrent-ops-commute-rearrange:
 concurrent-ops-commute (xs@x#ys) = concurrent-ops-commute (xs@ys@[x])
by (clarsimp simp: concurrent-ops-commute-def)

lemma concurrent-ops-commute-concurrent-set:
 assumes concurrent-ops-commute (prefix@suffix@[x])
 shows apply-operations (prefix @ x) @ suffix = apply-operations (prefix @ x) @ (suffix@[x])
using assms proof (induction suffix arbitrary: rule: rev-induct, force)
fix a xs
assume IH: concurrent-ops-commute (prefix @ xs @ [x])
 concurrent-set x xs
 distinct (prefix @ x # suffix)
 apply-operations (prefix @ x # xs) = apply-operations (prefix @ x # suffix)
assume assms: concurrent-ops-commute (prefix @ (zs @ [a]) @ [x])
 concurrent-set x (zs @ [a]) distinct (prefix @ x # xs @ [a])
hence ac-comm: (a) ▷ (x) = (x) ▷ (a)
 by (clarsimp simp: concurrent-ops-commute-def) blast
have copc: concurrent-ops-commute (prefix @ xs @ [x])
 by (clarsimp simp: concurrent-ops-commute-def) blast
have apply-operations ((prefix @ x # xs) @ [a]) = apply-operations (prefix @ x # xs)
 ▷ (a)
 by (simp del: append-assoc)
also have ... = (apply-operations (prefix @ xs @ [x])) ▷ (a)
 by (clarsimp simp: append-assoc)
also have ... = ((apply-operations (prefix @ xs)) ▷ (x)) ▷ (a)
 by (simp add: append-assoc[symmetric]
 del: append-assoc)
also have ... = (apply-operations (prefix @ xs)) ▷ ((a) ▷ (x))
using ac-comm kleisli-comm-cong kleisli-assoc by simp
finally show apply-operations (prefix @ (zs @ [a]) @ [x]) = apply-operations (prefix @ x # xs @ [a])
 by (metis Cons-eq-appendI append-assoc apply-operations-Snoc kleisli-assoc)
qed

3.5 Abstract convergence theorem

We can now state and prove our main theorem, convergence. This theorem states that two
hb-consistent lists of distinct operations, which are permutations of each other and in which
concurrent operations commute, have the same interpretation.

theorem convergence:
 assumes set xs = set ys
 concurrent-ops-commute xs
 concurrent-ops-commute ys
 distinct xs
 distinct ys
 hb-consistent xs
 hb-consistent ys
shows apply-operations xs = apply-operations ys
using assms proof (induction xs arbitrary: ys rule: rev-induct, simp)
case assms: (snoc x xs)
then obtain prefix suffix where ys-split: ys = prefix @ x # suffix ∧ concurrent-set x suffix
 by (fastforce)
moreover hence \(*\): distinct (prefix @ suffix) hb-consistent xs
 using assms by auto
moreover {
 have hb-consistent prefix hb-consistent suffix
 using ys-split assms hb-consistent-append-D2 hb-consistent-append-elim-ConsD by blast+
 hence hb-consistent (prefix @ suffix)
 by (metis assms(8) hb-consistent-append hb-consistent-append-porder list.set-intros(2) ys-split)
}
moreover have \(*\): concurrent-ops-commute (prefix @ suffix @ [x])
 using assms ys-split by (clarsimp simp: concurrent-ops-commute-def)
moreover hence concurrent-ops-commute (prefix @ suffix)
 by (force simp del: append-assoc simp add: append-assoc[symmetric])
ultimately have apply-operations xs = apply-operations (prefix @ suffix)
 using assms by simp (metis Diff-insert-absorb Un-iff * concurrent-ops-commute-appendD set-append)
moreover have apply-operations (prefix @ suffix @ [x]) = apply-operations (prefix @ x # suffix)
 using ys-split assms \(*\) concurrent-ops-commute-concurrent-set by force
ultimately show ?case
 using ys-split by (force simp: append-assoc[symmetric] simp del: append-assoc)
qed

corollary convergence-ext:
 assumes set xs = set ys
 concurrent-ops-commute xs
 concurrent-ops-commute ys
 distinct xs
 distinct ys
 hb-consistent xs
 hb-consistent ys
 shows apply-operations xs s = apply-operations ys s
 using convergence assms by metis
end

3.6 Convergence and progress

Besides convergence, another required property of SEC is progress: if a valid operation was issued on one node, then applying that operation on other nodes must also succeed—that is, the execution must not become stuck in an error state. Although the type signature of the interpretation function allows operations to fail, we need to prove that in all hb-consistent network behaviours such failure never actually occurs. We capture the combined requirements in the strong-eventual-consistency locale, which extends happens-before.

locale strong-eventual-consistency = happens-before +
 fixes op-history :: 'a list ⇒ bool
 and initial-state :: 'b
 assumes causality: op-history xs ⇒ hb-consistent xs
 assumes distinctness: op-history xs ⇒ distinct xs
 assumes commutativity: op-history xs ⇒ concurrent-ops-commute xs
 assumes no-failure: op-history(xs@[x]) ⇒ apply-operations xs initial-state = Some state ⇒ ⟨x⟩ state ≠ None
 assumes trunc-history: op-history(xs@[x]) ⇒ op-history xs
begin

theorem sec-convergence:
 assumes set xs = set ys
 op-history xs
 op-history ys
 shows apply-operations xs = apply-operations ys
 by (meson assms convergence causality commutativity distinctness)
4 Axiomatic network models

In this section we develop a formal definition of an asynchronous unreliable causal broadcast network. We choose this model because it satisfies the causal delivery requirements of many operation-based CRDTs [1, 2]. Moreover, it is suitable for use in decentralised settings, as motivated in the introduction, since it does not require waiting for communication with a central server or a quorum of nodes.

4.1 Node histories

We model a distributed system as an unbounded number of communicating nodes. We assume nothing about the communication pattern of nodes—we assume only that each node is uniquely identified by a natural number, and that the flow of execution at each node consists of a finite, totally ordered sequence of execution steps (events). We call that sequence of events at node \(i \) the history of that node. For convenience, we assume that every event or execution step is unique within a node’s history.
proof
 obtain xs1 xs2 ys1 ys2 zs1 zs2 where *: xs1 @ e1 # ys1 @ e2 # zs1 = history i
 xs2 @ e2 # ys2 @ e3 # zs2 = history i
 using history-order-def assms by auto
 hence xs1 @ e1 # ys1 @ e2 # zs1 = history i
 xs2 @ e2 # ys2 @ e3 # zs2 = history i
 by(rule-tac xs=history i and ys=[e2] in pre-suf-eq-distinct-list) auto
thus ?thesis
 by(clarsimp simp: history-order-def) (metis *(2) append.assoc append-Cons)
qed

lemma (in node-histories) local-order-carrier-closed:
 assumes e1 ⊑ i e2
 shows \{e1,e2\} ⊆ set (history i)
 using assms by (clarsimp simp add: history-order-def)
 (metis in-set-conv-decomp Un-iff Un-subset-iff insert-subset list.simps(15)
 set-append set-subset-Cons)

lemma (in node-histories) node-total-order-irrefl:
 shows ¬ (e ⊑ i e)
 by(clarsimp simp add: history-order-def)
 (metis Un-iff histories-distinct distinct-append distinct-set-notin
 list.set-intros(1) set-append)

lemma (in node-histories) node-total-order-antisym:
 assumes e1 ⊑ i e2
 and e2 ⊑ i e1
 shows False
 using assms node-total-order-irrefl node-total-order-trans by blast

lemma (in node-histories) node-order-is-total:
 assumes e1 ∈ set (history i)
 and e2 ∈ set (history i)
 and e1 ≠ e2
 shows e1 ⊑ i e2 ∨ e2 ⊑ i e1
 using assms unfolding history-order-def by(metis list-split-two-elems histories-distinct)

definition (in node-histories) prefix-of-node-history :: 'evt list ⇒ nat ⇒ bool (infix prefix of 50) where
 xs prefix of i ≡ ∃ ys. xs@ys = history i

lemma (in node-histories) carriers-head-lt:
 assumes y#ys = history i
 shows ¬(x ⊑ i y)
 using assms
 apply(clarsimp simp add: history-order-def)
 apply(rename-tac xs1 ys1 zs1)
 apply (subgoal-tac xs1 @ x # ys1 = || x # zs1 = y)
 apply clarsimp
 apply (rule-tac xs=history i and ys=[y] in pre-suf-eq-distinct-list)
 apply auto
 done

lemma (in node-histories) prefix-of-ConsD [dest]:
 assumes x ≠ xs prefix of i
 shows [x] prefix of i
 using assms by(auto simp: prefix-of-node-history-def)

lemma (in node-histories) prefix-of-appendD [dest]:
 assumes xs @ ys prefix of i

shows xs prefix of i
using assms by (auto simp: prefix-of-node-history-def)

lemma (in node-histories) prefix-distinct:
 assumes xs prefix of i
 shows distinct xs
 using assms by (clarsimp simp: prefix-of-node-history-def) (metis histories-distinct distinct-append)

lemma (in node-histories) prefix-to-carriers [intro]:
 assumes xs prefix of i
 shows set xs ⊆ set (history i)
 using assms by (clarsimp simp: prefix-of-node-history-def) (metis Un-iff set-append)

lemma (in node-histories) prefix-elem-to-carriers:
 assumes xs prefix of i and x ∈ set xs
 shows x ∈ set (history i)
 using assms by (clarsimp simp: prefix-of-node-history-def) (metis Un-iff set-append)

lemma (in node-histories) local-order-prefix-closed:
 assumes x ⊏ i y and xs prefix of i and y ∈ set xs
 shows x ∈ set xs
proof -
 obtain ys where xs @ ys = history i
 using assms prefix-of-node-history-def by blast
 moreover obtain as bs cs where as @ x # bs @ y # cs = history i
 using assms history-order-def by blast
 moreover obtain pre suf where *: xs = pre @ y # suf
 using assms split-list by fastforce
 ultimately have pre = as @ x # bs ∧ suf @ ys = cs
 by (rule-tac xs=history i and ys=[y] in pre-suf-eq-distinct-list) auto
 thus ?thesis
 using assms * by clarsimp
qed

lemma (in node-histories) local-order-prefix-closed-last:
 assumes x ⊏ i y and xs@[y] prefix of i
 shows x ∈ set xs
proof -
 have x ∈ set (xs @ [y])
 using assms by (force dest: local-order-prefix-closed)
 thus ?thesis
 using assms by (force simp add: node-total-order-irrefl prefix-to-carriers)
qed

lemma (in node-histories) events-before-exist:
 assumes x ∈ set (history i)
 shows ∃ pre. pre @ [x] prefix of i
proof -
 have ∃ idx. idx < length (history i) ∧ (history i)!idx = x
 using assms by (simp add: set-elem-nth)
 thus ?thesis
 by (metis append-take-drop-id take-Suc-conv-app-nth prefix-of-node-history-def)
qed
lemma (in node-histories) events-in-local-order:
 assumes pre @ [e2] prefix of i
 and e1 ∈ set pre
 shows e1 ⊑ e2
 using assms split-list unfolding history-order-def prefix-of-node-history-def by fastforce

4.2 Asynchronous broadcast networks

We define a new locale network containing three axioms that define how broadcast and deliver
events may interact, with these axioms defining the properties of our network model.

datatype 'msg event
 = Broadcast 'msg
 | Deliver 'msg

locale network = node-histories history for history :: nat ⇒ 'msg event list +
 fixes msg-id :: 'msg ⇒ 'msgid

 assumes delivery-has-a-cause: [Deliver m ∈ set (history i)] ⇒ ∃ j. Broadcast m ∈ set (history j)
 and deliver-locally: [Broadcast m ∈ set (history i)] ⇒ Broadcast m ⊑1 Deliver m
 and msg-id-unique: [Broadcast m1 ∈ set (history i);
 Broadcast m2 ∈ set (history j);
 msg-id m1 = msg-id m2] ⇒ i = j ∧ m1 = m2

The axioms can be understood as follows:

delivery-has-a-cause: If some message m was delivered at some node, then there exists some
node on which m was broadcast. With this axiom, we assert that messages are not created
"out of thin air" by the network itself, and that the only source of messages are the nodes.

deliver-locally: If a node broadcasts some message m, then the same node must subsequently
also deliver m to itself. Since m does not actually travel over the network, this local
delivery is always possible, even if the network is interrupted. Local delivery may seem
redundant, since the effect of the delivery could also be implemented by the broadcast
event itself; however, it is standard practice in the description of broadcast protocols that
the sender of a message also sends it to itself, since this property simplifies the definition
of algorithms built on top of the broadcast abstraction [4].

msg-id-unique: We do not assume that the message type 'msg has any particular structure;
we only assume the existence of a function msg-id:: 'msg⇒ 'msgid that maps every message
to some globally unique identifier of type 'msgid. We assert this uniqueness by stating
that if m1 and m2 are any two messages broadcast by any two nodes, and their msg-ids
are the same, then they were in fact broadcast by the same node and the two messages are
identical. In practice, these globally unique IDs can by implemented using unique node
identifiers, sequence numbers or timestamps.

lemma (in network) broadcast-before-delivery:
 assumes Deliver m ∈ set (history i)
 shows ∃ j. Broadcast m ⊑1 Deliver m
 using assms deliver-locally delivery-has-a-cause by blast

lemma (in network) broadcasts-unique:
 assumes i ≠ j
 and Broadcast m ∈ set (history i)
 shows Broadcast m ∉ set (history j)
Based on the well-known definition by [8], we say that \(m_1 < m_2 \) if any of the following is true:

1. \(m_1 \) and \(m_2 \) were broadcast by the same node, and \(m_1 \) was broadcast before \(m_2 \).
2. The node that broadcast \(m_2 \) had delivered \(m_1 \) before it broadcast \(m_2 \).
3. There exists some operation \(m_3 \) such that \(m_1 < m_3 \) and \(m_3 < m_2 \).

\[
\text{inductive (in network) } hb :: \text{ 'msg } \Rightarrow \text{ 'msg } \Rightarrow \text{ bool where}
\]
\[
\begin{align*}
hb\text{-broadcast: } & \begin{cases}
\text{Broadcast } m_1 \sqsupset \text{Broadcast } m_2 \\
\end{cases} \\
hb\text{-deliver: } & \begin{cases}
\text{Deliver } m_1 \sqsupset \text{Broadcast } m_2 \\
\end{cases} \\
hb\text{-trans: } & \begin{cases}
\text{hb } m_1 m_2; \text{hb } m_2 m_3 \\
\end{cases}
\]

\[
\text{inductive-cases (in network) } hb\text{-elim: } hb x y
\]

\[
\text{definition (in network) } weak-hb :: \text{ 'msg } \Rightarrow \text{ 'msg } \Rightarrow \text{ bool where}
\]
\[
\text{weak-hb } m_1 m_2 \equiv hb m_1 m_2 \lor m_1 = m_2
\]

\[
\text{locale causal-network = network +}
\]
\[
\begin{align*}
\text{assumes } & \text{ causal-delivery: } \text{Deliver } m_2 \in \text{set (history } j \text{)} \Rightarrow \text{hb } m_1 m_2 \Rightarrow \text{Deliver } m_1 \sqsupset \text{Deliver } m_2
\end{align*}
\]

\[
\text{lemma (in causal-network) } hb\text{-broadcast:}
\]
\[
\begin{align*}
\text{assumes } & \text{ Deliver } m_2 \in \text{set (history } j \text{)} \\
\text{and } & \text{Deliver } m_1 \sqsupset \text{Broadcast } m_2
\end{align*}
\]
\[
\begin{align*}
\text{shows } & \text{Deliver } m_1 \sqsupset \text{Deliver } m_2
\end{align*}
\]
\[
\text{using assms causal-delivery hb.intros(2) by blast}
\]

\[
\text{lemma (in network) } hb\text{-broadcast-exists1:}
\]
\[
\begin{align*}
\text{assumes } & \text{hb } m_1 m_2 \\
\text{shows } & \exists i. \text{Broadcast } m_1 \in \text{set (history } i \text{)}
\end{align*}
\]
\[
\text{using assms}
\]
\[
\text{apply (induction rule: } hb\text{.induct)}
\]
\[
\begin{align*}
\text{apply (meson insert-subset node-histories.local-order-carrier-closed node-histories-axioms)}
\end{align*}
\]
\[
\begin{align*}
\text{apply (meson delivery-has-a-cause insert-subset local-order-carrier-closed)}
\end{align*}
\]
\[
\text{apply simp}
\]
\[
\text{done}
\]

\[
\text{lemma (in network) } hb\text{-broadcast-exists2:}
\]
\[
\begin{align*}
\text{assumes } & \text{hb } m_1 m_2 \\
\text{shows } & \exists i. \text{Broadcast } m_2 \in \text{set (history } i \text{)}
\end{align*}
\]
\[
\text{using assms}
\]
\[
\text{apply (induction rule: } hb\text{.induct)}
\]
\[
\begin{align*}
\text{apply (meson insert-subset node-histories.local-order-carrier-closed node-histories-axioms)}
\end{align*}
\]
\[
\begin{align*}
\text{apply (meson delivery-has-a-cause insert-subset local-order-carrier-closed)}
\end{align*}
\]
\[
\text{apply simp}
\]
\[
\text{done}
\]

\[
\text{4.3 Causal networks}
\]

\[
\text{lemma (in causal-network) } hb\text{-has-a-reason:}
\]
\[
\begin{align*}
\text{assumes } & \text{hb } m_1 m_2 \\
\text{and } & \text{Broadcast } m_2 \in \text{set (history } i \text{)}
\end{align*}
\]
\[
\begin{align*}
\text{shows } & \text{Deliver } m_1 \in \text{set (history } i \text{)} \lor \text{Broadcast } m_1 \in \text{set (history } i \text{)}
\end{align*}
\]
\[
\text{using assms apply (induction rule: } hb\text{.induct)}
\]
\[
\begin{align*}
\text{apply (metis insert-subset local-order-carrier-closed network.broadcasts-unique network-axioms)}
\end{align*}
\]
\[
\begin{align*}
\text{apply (metis insert-subset local-order-carrier-closed network.broadcasts-unique network-axioms)}
\end{align*}
\]
\[
\text{using hb-trans causal-delivery local-order-carrier-closed apply blast}
\]

16
lemma (in causal-network) hb-cross-node-delivery:
 assumes hb m1 m2
 and Broadcast m1 ∈ set (history i)
 and Broadcast m2 ∈ set (history j)
 and i ≠ j
 shows Deliver m1 ∈ set (history j)
using assms
apply (induction rule: hb.induct)
 apply (metis broadcasts-unique insert-subset local-order-carrier-closed)
 apply (metis insert-subset local-order-carrier-closed network.broadcasts-unique network-axioms)
using broadcasts-unique hb.intros(3) hb-has-a-reason apply blast
done

lemma (in causal-network) hb-irrefl:
 assumes hb m1 m2
 shows m1 ≠ m2
using assms
proof (induction rule: hb.induct)
case (hb-broadcast m1 i m2) thus ?case
 using node-total-order-antisym by blast
next
case (hb-deliver m1 i m2) thus ?case
 by (meson causal-broadcast insert-subset local-order-carrier-closed node-total-order-irrefl)
next
case (hb-trans m1 m2 m3)
 then obtain i j where Broadcast m3 ∈ set (history i) Broadcast m2 ∈ set (history j)
 using hb-broadcast-exists2 by blast
 then show ?case
 using assms hb-trans
 by (meson causal-network.causal-delivery causal-network-axioms
deliver-locally insert-subset network hb.intros(3) network-axioms
node-histories.local-order-carrier-closed assms hb-trans
node-histories-axioms node-total-order-irrefl)
qed

lemma (in causal-network) hb-broadcast-broadcast-order:
 assumes hb m1 m2
 and Broadcast m1 ∈ set (history i)
 and Broadcast m2 ∈ set (history i)
 shows Broadcast m1 ⊑ i Broadcast m2
using assms
proof (induction rule: hb.induct)
case (hb-broadcast m1 i m2) thus ?case
 by (metis insertI1 local-order-carrier-closed network.broadcasts-unique network-axioms subsetCE)
next
case (hb-deliver m1 i m2) thus ?case
 by (metis broadcasts-unique insert-subset local-order-carrier-closed
network.broadcast-before-delivery network-axioms node-total-order-trans)
next
case (hb-trans m1 m2 m3)
 then show ?case
 proof (cases Broadcast m2 ∈ set (history i))
 case True thus ?thesis
 using hb-trans node-total-order-trans by blast
 next
case False hence Deliver m2 ∈ set (history i) m1 ≠ m2 m2 ≠ m3
 using hb-has-a-reason hb-trans by auto
 thus ?thesis
 by (metis hb-trans event.inject(1) hb.intros(1) hb-irrefl network hb.intros(3) network-axioms)
lemma (in causal-network) hb-antisym:
 assumes hb x y
 and hb y x
 shows False
using assms proof (induction rule: hb.induct)
fix m1 i m2
assume hb m2 m1 and Broadcast m1 ⊑ Broadcast m2
thus False
 apply − proof (erule hb-elim)
 show ∀ia. Broadcast m1 ⊑ Broadcast m2 ⇒ Broadcast m2 ⊑ a Broadcast m1 ⇒ False
 by (metis broadcasts-unique insert-subset local-order-carrier-closed node-total-order-irrefl node-total-order-trans)
next
 show ∀ia. Broadcast m1 ⊑ Broadcast m2 ⇒ Deliver m2 ⊑ a Broadcast m1 ⇒ False
 by (metis broadcast-before-delivery broadcasts-unique insert-subset local-order-carrier-closed node-total-order-irrefl node-total-order-trans)
next
 show ∀m2a. Broadcast m1 ⊑ Broadcast m2 ⇒ hb m2 m2a ⇒ hb m2a m1 ⇒ False
 using assms (1) assms (2) hb.intros (3) hb-irrefl by blast
qed

fix m1 i m2
assume hb m2 m1 and Deliver m1 ⊑ Broadcast m2
thus False
 apply − proof (erule hb-elim)
 show ∀ia. Deliver m1 ⊑ Broadcast m2 ⇒ Deliver m2 ⊑ a Broadcast m1 ⇒ False
 by (metis broadcast-before-delivery broadcasts-unique insert-subset local-order-carrier-closed node-total-order-irrefl node-total-order-trans)
next
 show ∀ia. Deliver m1 ⊑ Broadcast m2 ⇒ Deliver m2 ⊑ a Broadcast m1 ⇒ False
 by (meson causal-network causal-delivery causal-network-axioms hb.intros (2) hb.intros (3) insert-subset local-order-carrier-closed node-total-order-irrefl)
next
 show ∀m2a. Deliver m1 ⊑ Broadcast m2 ⇒ hb m2 m2a ⇒ hb m2a m1 ⇒ False
 by (meson causal-delivery hb.intros (2) insert-subset local-order-carrier-closed network hb.intros (3) network-axioms node-total-order-irrefl)
qed

fix m1 m2 m3
assume hb m1 m2 hb m2 m3 hb m3 m1
and (hb m2 m1 ⇒ False) (hb m3 m2 ⇒ False)
thus False
 using hb.intros (3) by blast
qed

definition (in network) node-deliver-messages :: 'msg event list ⇒ 'msg list where
node-deliver-messages cs ≡ List.map-filter (λe. case e of Deliver m ⇒ Some m | - ⇒ None) cs

lemma (in network) node-deliver-messages-empty [simp]:
 shows node-deliver-messages [] = []
 by (auto simp add: node-deliver-messages-def List.map-filter-simps)

lemma (in network) node-deliver-messages-Cons:
 shows node-deliver-messages (x # xs) = (node-deliver-messages [x]) @ (node-deliver-messages xs)
by (auto simp add: node-deliver-messages-def map-filter-def)

lemma (in network) node-deliver-messages-append:
 shows node-deliver-messages (xs @ ys) = (node-deliver-messages xs) @ (node-deliver-messages ys)
by (auto simp add: node-deliver-messages-def map-filter-def)

lemma (in network) node-deliver-messages-Broadcast [simp]:
 shows node-deliver-messages [Broadcast m] = []
by (clarsimp simp: node-deliver-messages-def map-filter-def)

lemma (in network) node-deliver-messages-Deliver [simp]:
 shows node-deliver-messages [Deliver m] = [m]
by (clarsimp simp: node-deliver-messages-def map-filter-def)

lemma (in network) prefix-msg-in-history:
 assumes es prefix of i
 and m ∈ set (node-deliver-messages es)
 shows Deliver m ∈ set (history i)
 using assms prefix-to-carriers by (fastforce simp: node-deliver-messages-def map-filter-def split: event.split_asm)

lemma (in network) prefix-contains-msg:
 assumes es prefix of i
 and m ∈ set (node-deliver-messages es)
 shows Deliver m ∈ set es
 using assms by (auto simp: node-deliver-messages-def map-filter-def split: event.split_asm)

lemma (in network) node-deliver-messages-distinct:
 assumes xs prefix of i
 shows distinct (node-deliver-messages xs)
 using assms proof (induction xs rule: rev-induct)
 case Nil thus ?case by simp
next
 case (snoc x xs)
 { fix y assume *: y ∈ set (node-deliver-messages xs) y ∈ set (node-deliver-messages [x])
 moreover have distinct (xs @ [x])
 using assms snoc prefix-distinct by blast
 ultimately have False
 using assms apply(case-tac x; clarsimp simp add: map-filter-def node-deliver-messages-def)
 using * prefix-contains-msg snoc.prems by blast
 } thus ?case
 using snoc by (fastforce simp add: node-deliver-messages-append node-deliver-messages-def map-filter-def)
qed

lemma (in network) drop-last-message:
 assumes evts prefix of i
 and node-deliver-messages evts = msgs @ [last-msg]
 shows ∃ pre. pre prefix of i ∧ node-deliver-messages pre = msgs
proof -
 have Deliver last-msg ∈ set evts
 using assms network:prefix-contains-msg network-axioms by force
 then obtain idx where *: idx < length evts evts ! idx = Deliver last-msg
 by (meson set-elem-nth)
 then obtain pre suf where evts = pre @ (evts ! idx) # suf
 using id-take-nth-drop by blast
 hence **: evts = pre @ (Deliver last-msg) # suf
 using assms * by auto
 moreover hence distinct (node-deliver-messages [(Deliver last-msg) @ suf])
 by (metis assms(1) assms(2) distinct-singleton node-deliver-messages-Cons node-deliver-messages-Deliver)
ultimately have node-deliver-messages:D [Deliver last-msg] @ suf = [last-msg] @ []

thus ?thesis

using assms by (metis append1-eq-conv append-Cons append-Nil node-deliver-messages-append prefix-of-appendD)

locale network-with-ops =

for history :: nat ⇒ (′msgid × ′op) event list +

fixes interp :: ′op ⇒ ′state → ′state

and initial-state :: ′state

context network-with-ops begin

definition interp-msg :: ′msgid × ′op ⇒ ′state → ′state where
interp-msg msg state ≡ interp (snd msg) state

sublocale hb: happens-before weak-hb hb interp-msg

proof

fix x y :: ′msgid × ′op
show hb x y = (weak-hb x y ∧ ¬ weak-hb y x)
 unfolding weak-hb-def using hb-antisym by blast

next
 fix x
 show weak-hb x x
 using weak-hb-def by blast

next
 fix x y z
 assume weak-hb x y weak-hb y z
 thus weak-hb x z
 using weak-hb-def by (metis network hb intros(3) network-axioms)

qed

end

definition (in network-with-ops) apply-operations :: (′msgid × ′op) event list ⇒ ′state where
apply-operations es = hbapply-operations (node-deliver-messages es) initial-state

definition (in network-with-ops) node-deliver-ops :: (′msgid × ′op) event list ⇒ ′op list where
node-deliver-ops cs = map snd (node-deliver-messages cs)

lemma (in network-with-ops) apply-operations-empty [simp]:
 shows apply-operations [] = Some initial-state
by (auto simp add: apply-operations-def)

lemma (in network-with-ops) apply-operations-Broadcast [simp]:
 shows apply-operations (xs @ [Broadcast m]) = apply-operations xs
by (auto simp add: apply-operations-def node-deliver-messages-def map-filter-def)

lemma (in network-with-ops) apply-operations-Deliver [simp]:
 shows apply-operations (xs @ [Deliver m]) = (apply-operations xs ⇒ interp-msg m)
by (auto simp add: apply-operations-def node-deliver-messages-def map-filter-def kleisli-def)

lemma (in network-with-ops) hb-consistent-technical:
 assumes ∀ m n. n < length cs ⇒ n < m ⇒ cs ! n ⊑ cs ! m
 shows hb hb-consistent (node-deliver-messages cs)

20
using \texttt{assms proof} (induction \texttt{cs} rule: \texttt{rev-induct})

\begin{verbatim}
case Nil thus \?case
by(simp add: node-deliver-messages-def hb hb-consistent.intro(1) map-filter-simps(2))
\end{verbatim}

\begin{verbatim}
next
case (snoc x xs)
hence \(*\): \(\forall m n. m < length xs \implies n < m \implies xs ! n \sqsubseteq xs ! m\)
 by(\texttt{erule-tac x=m in meta-allE eule-tac x=n in meta-allE}, clarsimp simp add: nth-append)
then show \?case
proof (cases x)
case (Broadcast x1)
thus \?thesis
using snoc * by (clarsimp simp add: node-deliver-messages-append)
next
case (Deliver x2)
thus \?thesis
using snoc * apply(clarsimp simp add: node-deliver-messages-def map-filter-def map-filter-append)
 apply(drule list-nth-split, assumption, clarsimp simp add: nth-append)
proof (cases)
case a thus \?thesis
using * by clarsimp
next
case b thus \?thesis
using assms * by clarsimp
next
case c thus \?thesis
using assms * apply clarsimp
apply(drule list-nth-split, assumption, clarsimp simp: c)
apply (metis append.assoc append.simps(2) history-order-def)
done
qed
\end{verbatim}

\begin{verbatim}
qed
\end{verbatim}

\begin{verbatim}
corollary \texttt{(in network-with-ops)}
 shows hb hb-consistent (node-deliver-messages (history i))
 by (metis hb-consistent-technical history-order-def less-one linorder-neqE-nat list-nth-split zero-order(3))
\end{verbatim}

\begin{verbatim}
lemma \texttt{(in network-with-ops)} hb-consistent-prefix:
 assumes xs prefix of i
 shows hb hb-consistent (node-deliver-messages xs)
using \texttt{assms proof} \ (clarsimp-of-node-history-def, rule-tac \texttt{i=i} in hb-consistent-technical)
fix m n ys assume *: xs @ ys = history i m < length xs n < m
consider (a) xs = [] | (b) \exists c. xs = [c] | (c) Suc 0 < length (xs)
 by (metis Suc-pred length-Suc-conv length-greater-0-conv zero-less-diff)
thus xs ! n \sqsubseteq xs ! m
proof (cases)
case a thus \?thesis
using * by clarsimp
next
case b thus \?thesis
using assms * by clarsimp
next
case c thus \?thesis
using assms * apply clarsimp
apply(drule list-nth-split, assumption, clarsimp simp: c)
apply (metis append.assoc append.simps(2) history-order-def)
done
qed
\end{verbatim}

\begin{verbatim}
locale network-with-constrained-ops = network-with-ops +
fixes valid-msg :: \('c \Rightarrow ('a \times 'b) \Rightarrow bool\)
assumes broadcast-only-valid-msgs: \texttt{pre \at [Broadcast m] prefix of i \implies \exists state. apply-operations pre = Some state \\ valid-msg state m}
\end{verbatim}

\begin{verbatim}
lemma \texttt{(in network-with-constrained-ops)} broadcast-is-valid:
 assumes Broadcast m \in set (history i)
\end{verbatim}
shows \(\exists \text{state}. \text{valid-msg state m} \)
using assms broadcast-only-valid-msgs events-before-exist by blast

lemma (in network-with-constrained-ops) deliver-is-valid:
assumes \(\text{Deliver m} \in \text{set} \ (\text{history} \ i) \)
shows \(\exists \text{pre state. pre @ [Broadcast m]} \text{prefix of} \ j \land \text{apply-operations pre} = \text{Some state} \land \text{valid-msg state m} \)
using assms apply (clarsimp dest: delivery-has-a-cause)
using broadcast-only-valid-msgs events-before-exist apply blast done

lemma (in network-with-constrained-ops) deliver-in-prefix-is-valid:
assumes \(\text{xs prefix of} \ i \)
and \(\text{Deliver m} \in \text{set} \ \text{xs} \)
shows \(\exists \text{state. valid-msg state m} \)
by (meson assms network-with-constrained-ops.deliver-is-valid network-with-constrained-ops-axioms prefix-elem-to-carriers)

4.4 Dummy network models

interpretation trivial-node-histories: node-histories \(\lambda m. \ [] \)
by standard auto

interpretation trivial-network: network \(\lambda m. \ [] \ \text{id} \)
by standard auto

interpretation trivial-causal-network: causal-network \(\lambda m. \ [] \ \text{id} \)
by standard auto

interpretation trivial-network-with-ops: network-with-ops \(\lambda m. \ [] \ (\lambda x \ y. \ \text{Some} \ y) \ 0 \)
by standard auto

interpretation trivial-network-with-constrained-ops: network-with-constrained-ops \(\lambda m. \ [] \ (\lambda x \ y. \ \text{Some} \ y) \ 0 \ \lambda x \ y. \ \text{True} \)
by standard (simp add: trivial-node-histories.prefix-of-node-history-def)

end

5 Replicated Growable Array

The RGA, introduced by [10], is a replicated ordered list (sequence) datatype that supports insert and delete operations.

theory Ordered-List
imports Util
begin

type-synonym ('id, 'v) elt = 'id \times 'v \times bool

5.1 Insert and delete operations

Insertion operations place the new element after an existing list element with a given ID, or at the head of the list if no ID is given. Deletion operations refer to the ID of the list element that is to be deleted. However, it is not safe for a deletion operation to completely remove a list element, because then a concurrent insertion after the deleted element would not be able to
locate the insertion position. Instead, the list retains so-called tombstones: a deletion operation
merely sets a flag on a list element to mark it as deleted, but the element actually remains in
the list. A separate garbage collection process can be used to eventually purge tombstones [10],
but we do not consider tombstone removal here.

hide-const insert

fun insert-body :: ('id::{linorder}, 'v) elt list ⇒ ('id, 'v) elt ⇒ ('id, 'v) elt list where
insert-body [] e = [e] |
insert-body (x#xs) e =
 (if fst x < fst e then
 e#x#xs
 else x#insert-body xs e)

fun insert :: ('id::{linorder}, 'v) elt list ⇒ ('id, 'v) elt ⇒ 'id option ⇒ ('id, 'v) elt list option where
insert xs e None = Some (insert-body xs e) |
insert (x#xs) e (Some i) =
 (if fst x = i then
 Some (x#insert-body xs e)
 else
 insert xs e (Some i) ≥≥ (λt. Some (x#t)))

fun delete :: ('id::{linorder}, 'v) elt list ⇒ 'id ⇒ ('id, 'v) elt list option where
delete [] i = None |
delete ((i', v, flag)#xs) i =
 (if i' = i then
 Some ((i', v, True)#xs)
 else
 delete xs i ≥≥ (λt. Some ((i', v, flag)#t)))

5.2 Well-definedness of insert and delete

lemma insert-no-failure:
 assumes i = None ∨ (∃i'. i = Some i' ∧ i' ∈ fst ' set xs)
 shows ∃xs'. insert xs e i = Some xs'
using assms by(induction rule: insert.induct; force)

lemma insert-None-index-neq-None [dest]:
 assumes insert xs e i = None
 shows i ≠ None
using assms by(cases i, auto)

lemma insert-Some-None-index-not-in [dest]:
 assumes insert xs e (Some i) = None
 shows i ∉ fst ' set xs
using assms by(induction xs, auto split: if-split-asm bind-splits)

lemma index-not-in-insert-Some-None [simp]:
 assumes i ∉ fst ' set xs
 shows insert xs e (Some i) = None
using assms by(induction xs, auto)

lemma delete-no-failure:
 assumes i ∈ fst ' set xs
 shows ∃xs'. delete xs i = Some xs'
using assms by(induction xs; force)
lemma delete-None-index-not-in [dest]:
 assumes delete xs i = None
 shows i /∈ fst ' set xs
using assms by (induction xs, auto split: if-split-asm bind-splits simp add: fst-eq-Domain)

lemma index-not-in-delete-None [simp]:
 assumes i /∈ fst ' set xs
 shows delete xs i = None
using assms by (induction xs, auto)

5.3 Preservation of element indices

lemma insert-body-preserve-indices [simp]:
 shows fst ' set (insert-body xs e) = fst ' set xs ∪ {fst e}
by (induction xs, auto simp add: insert-commute)

lemma insert-preserve-indices:
 assumes ∃ys. insert xs e i = Some ys
 shows fst ' set (the (insert xs e i)) = fst ' set xs ∪ {fst e}
using assms by (induction xs; cases i; auto simp add: insert-commute split: bind-splits)

corollary insert-preserve-indices':
 assumes insert xs e i = Some ys
 shows fst ' set (the (insert xs e i)) = fst ' set xs ∪ {fst e}
using assms insert-preserve-indices by blast

lemma delete-preserve-indices:
 assumes delete xs i = Some ys
 shows fst ' set xs = fst ' set ys
using assms by (induction xs arbitrary: ys, simp) (case-tac a; auto split: if-split-asm bind-splits)

5.4 Commutativity of concurrent operations

lemma insert-body-commutes:
 assumes fst e1 ≠ fst e2
 shows insert-body (insert-body xs e1) e2 = insert-body (insert-body xs e2) e1
using assms by (induction xs, auto)

lemma insert-insert-body:
 assumes fst e1 ≠ fst e2
 and i2 ≠ Some (fst e1)
 shows insert (insert-body xs e1) e2 i2 = insert xs e2 i2 ≫ (λys. Some (insert-body ys e1))
using assms by (induction xs; cases i2) (auto split: if-split-asm simp add: insert-body-commutes)

lemma insert-Nil-None:
 assumes fst e1 ≠ fst e2
 and i ≠ Some (fst e1)
 shows [] e2 i2 ≫ (λys. insert ys e1 (Some i)) = None
using assms by (cases i2) clarsimp+

lemma insert-insert-body-commute:
 assumes i ≠ fst e1
 and fst e1 ≠ fst e2
 shows insert (insert-body xs e1) e2 (Some i) =
 insert xs e2 (Some i) ≫ (λy. Some (insert-body y e1))
using assms by (induction xs, auto simp add: insert-body-commutes)
lemma insert-commutes:
assumes \(\text{fst } e \neq \text{fst } e' \)
\(i' = \text{None } \lor \text{fst } e \neq \text{Some } (\text{fst } e) \)
\(i2 = \text{None } \lor \text{fst } e \neq \text{Some } (\text{fst } e) \)
shows \(\text{insert } xs e i1 \succsim (_ys. \text{insert } ys e2 i2) = \text{insert } xs e2 i2 \succsim (_ys. \text{insert } ys e1 i1) \)
using \text{assms} proof (induction rule: \text{insert.induct})
fix \(xs \) and \(e :: (_a, _b) \) elt
assume \(i2 = \text{None } \lor i2 \neq \text{Some } (\text{fst } e) \) and \(\text{fst } e \neq \text{fst } e' \)
thus \(\text{insert } xs e \text{None } \succsim (_ys. \text{insert } ys e2 i2) = \text{insert } xs e2 i2 \succsim (_ys. \text{insert } ys e \text{None}) \)
by (auto simp add: insert-body-commutes intro: insert-insert-body)

next
fix \(i \) and \(e :: (_a, _b) \) elt
assume \(\text{fst } e \neq \text{fst } e' \) and \(i2 = \text{None } \lor i2 \neq \text{Some } (\text{fst } e) \) and \(\text{Some } i = \text{None } \lor \text{Some } i \neq \text{Some } (\text{fst } e) \)
thus \(\text{insert } [] e \text{(Some } i) \succsim (_ys. \text{insert } ys e2 i2) = \text{insert } [] e2 i2 \succsim (_ys. \text{insert } ys e \text{(Some } i)) \)
by (auto intro: insert-nil-none[symmetric])

next
fix \(xs \) \(i \) and \(e :: (_a, _b) \) elt
assume \(\text{IH: } (\text{fst } x \neq i \implies \text{fst } e \neq \text{fst } e' \implies \text{Some } i = \text{None } \lor \text{Some } i \neq \text{Some } (\text{fst } e2) \implies i2 = \text{None } \lor i2 \neq \text{Some } (\text{fst } e) \implies \text{insert } xs e \text{(Some } i) \succsim (_ys. \text{insert } ys e2 i2) = \text{insert } xs e2 i2 \succsim (_ys. \text{insert } ys e \text{(Some } i)) \)
apply –
apply (rule disjE, clarsimp, simp, rule conjI)
apply (case_tac \(i2 \); force simp add: insert-body-commutes insert-insert-body-commute)
apply (case-tac \(i2 \); clarsimp cong: Option.bind-cong simp add: insert-insert-body split: bind-splits)
apply force
done

qed

lemma delete-commutes:
shows \(\text{delete } xs i1 \succsim (_ys. \text{delete } ys i2) = \text{delete } xs i2 \succsim (_ys. \text{delete } ys i1) \)
by (induction \(xs \), auto split: bind-splits if-split-asm)

lemma insert-body-delete-commute:
assumes \(i2 \neq \text{fst } e \)
shows \(\text{delete } (\text{insert-body } xs e) i2 \succsim (_lt. \text{Some } (x \neq i)) = \text{delete } xs i2 \succsim (_yg. \text{Some } (x \neq \text{insert-body } y e)) \)
using \text{assms} by (induction \(xs \); cases \(e \); cases \(i1 \); auto split: bind-splits if-split-asm simp add: insert-body-delete-commute)

lemma insert-delete-commute:
assumes \(i2 \neq \text{fst } e \)
shows \(\text{insert } xs e i1 \succsim (_ys. \text{delete } ys i2) = \text{delete } xs i2 \succsim (_ys. \text{insert } ys e i1) \)
using \text{assms} by (induction \(xs \); cases \(e \); cases \(i1 \); auto split: bind-splits if-split-asm simp add: insert-body-delete-commute)

5.5 Alternative definition of insert

fun insert’ :: (‘id::linorder, ‘v) elt list ⇒ (‘id, ‘v) elt ⇒ (‘id::linorder, ‘v) elt list
where
insert’ [] e None = Some [e] |
lemma [elim!, dest]:
assumes \(\text{insert'} \, xs \, e \, \text{None} = \text{None} \)
shows \(\text{False} \)
using assms by \(\text{induction \, xs, \, auto \, split: \, if-split-asm \, option.split-asm} \)

lemma \(\text{insert-body-insert'} \):
shows \(\text{insert'} \, xs \, e \, \text{None} = \text{Some} \, (\text{insert-body \, xs} \, e) \)
by \(\text{induction \, xs, \, auto} \)

lemma \(\text{insert-insert'} \):
shows \(\text{insert} \, xs \, e \, \text{i} = \text{insert'} \, xs \, e \, \text{i} \)
by \(\text{induction \, xs; \, cases \, e; \, cases \, i, \, auto \, split: \, option.split simp add: \, insert-body-insert'} \)

lemma \(\text{insert-body-stop-iteration} \):
assumes \(\text{fst} \, e > \text{fst} \, x \)
shows \(\text{insert-body} \, (x\#xs) \, e = e\#x\#xs \)
using assms by simp

lemma \(\text{insert-body-contains-new-elem} \):
shows \(\exists \, p \, s. \, xs = p \, @ \, s \, \land \, \text{insert-body} \, xs \, e = p \, @ \, e \, \# \, s \)
proof \(\text{induction \, xs} \)
 case Nil thus \(\\text{?case \, by \, force} \)
next
 case (Cons a xs)
then obtain \(p \, s \, \text{where} \, xs = p \, @ \, s \, \land \, \text{insert-body} \, xs \, e = p \, @ \, e \, \# \, s \) \text{by force}
thus \(\?case \)
 apply clarsimp
 apply (rule conjI; clarsimp)
 apply force
 apply (rule-tac \(x=a \, \# \, p \), in \(exI \), force)
 done
qed

lemma \(\text{insert-between-elements} \):
assumes \(\text{xs} = \text{pre} @ \text{ref} \, \# \, \text{suf} \)
and \(\text{distinct} \, (\text{map} \, \text{fst} \, \text{xs}) \)
and \(\forall \, i', \, i' \in \text{fst} \, \text{set} \, \text{xs} \, \Longrightarrow \, i' < \text{fst} \, e \)
shows \(\text{insert} \, \text{xs} \, e \, (\text{Some} \, (\text{fst} \, \text{ref})) = \text{Some} \, (\text{pre} \, \# \, \text{e} \, \# \, \text{suf}) \)
using assms by \(\text{induction \, xs \, arbitrary: \, pre \, \text{ref} \, \text{suf}, \, \text{force} \) \text{(case-tac \, pre; \, case-tac \, suf; \, force)} \)
lemma insert-position-element-technical:
 assumes \(\forall x \in \text{set as}. \ a \neq \text{fst } x \)
 and insert-body \((\text{cs } @ \text{ ds}) \ e = \text{cs } @ e \neq \text{ ds}\)
 shows insert \((\text{as } @ (a, aa, b) \neq \text{ cs } @ \text{ ds}) \ e \ (\text{Some } a) = \text{Some } (\text{as } @ (a, aa, b) \neq \text{ cs } @ e \neq \text{ ds})\)
using assms by (induction as arbitrary: cs ds; clarsimp)

lemma split-tuple-list-by-id:
 assumes \((a,b,c) \in \text{set xs}\)
 and distinct \((\text{map fst xs})\)
 shows \(\exists \text{pre suf}. \ \text{xs} = \text{pre } @ (a, b, c) \neq \text{ suf} \wedge (\forall y \in \text{set pre}. \ \text{fst } y \neq a)\)
using assms proof (induction xs, clarsimp)
 case (Cons x xs)
 { assume \(x \neq (a, b, c)\)
 hence \((a, b, c) \in \text{set xs} \text{ distinct} (\text{map fst xs})\)
 using Cons.prems by force+
 then obtain \(\text{pre suf where} \ \text{xs} = \text{pre } @ (a, b, c) \neq \text{ suf} \wedge (\forall y \in \text{set pre}. \ \text{fst } y \neq a)\)
 using Cons.IH by force
 hence ?case
 apply (rule-tac \(x = \text{#pre } \text{ in exI}\))
 using Cons.prems(2) by auto
 }
 thus \(?case\)
 by force
qed

lemma insert-preserves-order:
 assumes \(i = \text{None} \lor (\exists i'. \ i = \text{Some } i' \land i' \in \text{fst } \text{ set } \text{xs})\)
 and distinct \((\text{map fst xs})\)
 shows \(\exists \text{pre suf}. \ \text{xs} = \text{pre } @ \text{#suf} \wedge \text{insert } \text{e} \text{ i} = \text{Some } \text{#e } \text{#suf}\)
using assms proof -
 { assume \(i = \text{None}\)
 hence ?thesis
 by clarsimp (metis insert-body-contains-new-elem)
 }
 moreover \{
 assume \(\exists i'. \ i = \text{Some } i' \land i' \in \text{fst } \text{ set } \text{xs}\)
 then obtain \(j v b \text{ where} \ i = \text{Some } j (j, v, b) \in \text{set xs} \text{ by force}\)
 moreover then obtain \(\text{as bs where} \ \text{xs} = \text{as } @ (j, v, b) \neq \text{#bs } \forall x \in \text{set as}. \ \text{fst } x \neq j\)
 using assms by (metis split-tuple-list-by-id)
 moreover then obtain \(\text{cs ds where} \ \text{insert-body } \text{bs } \text{e} = \text{cs } @ \text{#e } \text{#ds } \text{cs } @ \text{ds} = \text{bs}\)
 by (metis insert-body-contains-new-elem)
 ultimately have \(?thesis\)
 by (rule-tac \(x = \text{as } @ (j, v, b) \neq \text{ in exI}; \text{clarsimp}(\text{metis insert-position-element-technical})\))
 }
 ultimately show ?thesis
 using assms by force
qed

5.6 Network

theory RGA
imports Network Ordered-List
begin

datatype \((\text{id}, \text{v})\) operation =
 Insert \((\text{id}, \text{v})\) elt \text{id} option |
 Delete \text{id}

fun interpret-opers :: ('id::linorder, 'v) operation ⇒ ('id, 'v) elt list ⇒ ('id, 'v) elt list ((-) [0] 1000) where
interpret-opers (Insert e n) xs = insert xs e n
interpret-opers (Delete n) xs = delete xs n

definition element-ids :: ('id, 'v) elt list ⇒ 'id set where
element-ids list ≡ set (map fst list)
definition valid-rga-msg :: ('id × ('id::linorder, 'v) operation ⇒ bool where
valid-rga-msg list msg ≡ case msg of
 (i, Insert e None) ⇒ fst e = i |
 (i, Insert e (Some pos)) ⇒ fst e = i ∧ pos ∈ element-ids list |
 (i, Delete pos) ⇒ pos ∈ element-ids list

locale rga = network-with-constrained-ops - interpret-opers [] valid-rga-msg
definition indices :: ('id × ('id, 'v) operation) event list ⇒ 'id list where
indices xs ≡ List.map-filter (λx. case x of Deliver (i, Insert e n) ⇒ Some (fst e) | - ⇒ None) xs

lemma indices-Nil [simp]:
shows indices [] = []
by(auto simp: indices-def map-filter-def)

lemma indices-append [simp]:
shows indices (xs@ys) = indices xs @ indices ys
by(auto simp: indices-def map-filter-def)

lemma indices-Broadcast-singleton [simp]:
shows indices [Broadcast b] = []
by(auto simp: indices-def map-filter-def)

lemma indices-Deliver-Insert [simp]:
shows indices [Deliver (i, Insert e n)] = [fst e]
by(auto simp: indices-def map-filter-def)

lemma indices-Deliver-Delete [simp]:
shows indices [Deliver (i, Delete n)] = []
by(auto simp: indices-def map-filter-def)

lemma (in rga) idx-in-elem-inserted [intro]:
assumes Deliver (i, Insert e n) ∈ set xs
shows fst e ∈ set (indices xs)
using assms by(induction xs, auto simp add: indices-def map-filter-def)

lemma (in rga) apply-opers-idx-elems:
assumes es prefix of i
 and apply-operations es = Some xs
shows element-ids xs = set (indices es)
using assms unfolding element-ids-def
proof(induction es arbitrary: xs rule: rev-induct, clarsimp)
case (snoc x xs) thus ?case
proof (cases x, clarsimp, blast)
case (Deliver e)
 moreover obtain a b where e = (a, b) by force
ultimately show ?thesis

28
using snoc assms apply (cases b; clarsimp split: bind-splits simp add: interp-msg-def)
apply (metis Un-insert-right append.right-neutral insert- \preserves indices’ list.sel(1)
 option.sel prefix-of-appendD prod.sel(1) set-append)
by (metis delete- \preserves indices prefix-of-appendD)
qed

lemma (in rga) delete-does-not-change-element-ids:
assumes es @ [Deliver (i, Delete n)] prefix of j
and apply-operations es = Some xs1
and apply-operations (es @ [Deliver (i, Delete n)]) = Some xs2
shows element-ids xs1 = element-ids xs2
proof –
 have indices es = indices (es @ [Deliver (i, Delete n)])
 by simp
 then show ?thesis
 using (metis (no-types) assms prefix-of-appendD rga.apply- \preserves idx-elems rga-axioms)
qed

lemma (in rga) someone-inserted-id:
assumes es @ [Deliver (i, Insert (k, v, f) n)] prefix of j
and apply-operations es = Some xs1
and apply-operations (es @ [Deliver (i, Insert (k, v, f) n)]) = Some xs2
and a ∈ element-ids xs2
and a ≠ k
shows a ∈ element-ids xs1
using assms apply- \preserves idx-elems by auto

lemma (in rga) deliver-insert-exists:
assumes es prefix of j
 and apply-operations es = Some xs
 and a ∈ element-ids xs
shows ∃ i v f n. Deliver (i, Insert (a, v, f) n) ∈ set es
using assms unfolding element-ids-def
proof (induction es arbitrary: xs rule: rev Induct, clarsimp)
case (snoc x xs ys) thus ?case
 using (cases x)
 case (Broadcast e) thus ?thesis
 using (clarsimp)
 apply (cases el; cases fst el = a; clarsimp)
 apply (blast, metis (no-types, lifting) element-ids-def prefix-of-appendD set-map snoc.prems(2)
 snoc.prems(3) someone-inserted-id)
done
next
case (Deliver e)
moreover then obtain xs’ where *: apply-operations xs = Some xs’
 using snoc by fastforce
moreover obtain k v where **: e = (k, v) by force
ultimately show ?thesis
using assms snoc proof (cases v)
case (Insert el -) thus ?thesis
 using snoc Deliver * *
 apply (cases el; cases fst el = a; clarsimp)
 apply (blast, metis prefix-of-appendD set-map snoc.prems(2)
 snoc.prems(3) someone-inserted-id)
done
next
case (Delete -) thus ?thesis
 using snoc Deliver ** apply clarsimp
 apply (drule prefix-of-appendD, clarsimp simp add: bind-eq-Some-conv interp-msg-def)
 apply (metis delete- \preserves indices image-eqI prod.sel(1))
done
\documentclass{article}

\begin{document}

lemma (in rga) insert-in-apply-set:
\begin{proof}
assume es @ [Deliver (i, Insert e (Some a))] prefix of j
and Deliver (i', Insert e' n) \in es
and apply-operations es = Some s
shows \text{fst e' \in element-ids s}
using assms apply-operations idx-elems idx-in-element-inserted prefix-of-appendD by blast
\end{proof}

lemma (in rga) insert-msg-id:
\begin{proof}
assume Broadcast (i, Insert e n) \in set (history j)
shows \text{fst e = i}
\end{proof}

lemma (in rga) allowed-insert:
\begin{proof}
assume Broadcast (i, Insert e n) \in set (history j)
shows \text{n = None \lor (\exists i' e' n. n = Some (fst e') \land Deliver (i', Insert e' n') \sqsubseteq Broadcast (i, Insert e n))}
\end{proof}

lemma (in rga) allowed-delete:
\begin{proof}
assume Broadcast (i, Delete x) \in set (history j)
shows \text{\exists i' n' v b. Deliver (i', Insert (x, v, b) n') \sqsubseteq Broadcast (i, Delete x)}
\end{proof}

\end{document}
using deliver-insert-exists 1 2 by blast

thus \exists i' n' v b. Deliver (i', Insert (x, v, b) n') ⊑ \top Broadcast (i, Delete x)

using events-in-local-order 1 by blast

qed

lemma (in rga) insert-id-unique:
 assumes fst e1 = fst e2
 and Broadcast (i1, Insert e1 n1) ∈ set (history i)
 and Broadcast (i2, Insert e2 n2) ∈ set (history j)
 shows Insert e1 n1 = Insert e2 n2

using assms insert-msg-id msg-id-unique Pair-inject fst-conv by metis

lemma (in rga) allowed-delete-deliver:
 assumes Deliver (i, Delete x) ∈ set (history j)
 shows \exists i' n' v b. Deliver (i', Insert (x, v, b) n') ⊑ \top Deliver (i, Delete x)

using assms by (meson allowed-delete bot-least causal-broadcast delivery-has-a-cause insert-subset)

lemma (in rga) allowed-delete-deliver-in-set:
 assumes (es@[\{Deliver (i, Delete m)\}]) prefix of j
 shows \exists i' n' v b. Deliver (i', Insert (m, v, b) n) ∈ set es

by (metis (no-types, lifting) Un-insert-right insert-iff list.simps(15) assms
local-order-prefix-closed-last rga allowed-prefix-closed-last rga allowed-prefix-closed-last rga-axioms set-append subsetCE prefix-to-carriers)

lemma (in rga) allowed-insert-deliver:
 assumes Deliver (i, Insert e n) ∈ set (history j)
 shows n = None ∨ (\exists i' n'' v b. n = Some n' ∧ Deliver (i', Insert (n', v, b) n'') ⊑ \top Deliver (i, Insert e n))

proof
 obtain ja where 1: Broadcast (i, Insert e n) ∈ set (history ja)
 using assms delivery-has-a-cause by blast
 show n = None ∨ (\exists i' n'' v b. n = Some n' ∧ Deliver (i', Insert (n', v, b) n'') ⊑ \top Deliver (i, Insert e n))

 proof (cases n)
 fix a
 assume 3: n = Some a
 from this obtain i' e' n' where 4: Some a = Some (fst e') and
 2: Deliver (i', Insert e' n') ⊑ \top a Broadcast (i, Insert e (Some a))

 using allowed-insert 1 by blast
 hence Deliver (i', Insert e' n') ∈ set (history ja) and Broadcast (i, Insert e (Some a)) ∈ set (history ja)

 using local-order-carrier-closed by simp+
 from this obtain jaa where Broadcast (i, Insert e (Some a)) ∈ set (history jaa)
 using delivery-has-a-cause by simp
 have \exists i'' n'' v b. n = Some n' ∧ Deliver (i'', Insert (n'', v, b) n'') ⊑ \top Deliver (i, Insert e n)

 using 2 3 4 by (metis assms causal-broadcast prod.collapse)
 thus n = None ∨ (\exists i' n'' v b. n = Some n' ∧ Deliver (i', Insert (n', v, b) n'') ⊑ \top Deliver (i, Insert e n))

 by auto
 qed simp

qed

lemma (in rga) allowed-insert-deliver-in-set:
 assumes (es@[\{Deliver (i, Insert e m)\}]) prefix of j
 shows m = None ∨ (\exists i' m'' v b. m = Some m' ∧ Deliver (i', Insert (m', v, b) n) ∈ set es)

by (metis assms Un-insert-right insert-subset list.simps(15) set-append prefix-to-carriers
 allowed-insert-deliver local-order-prefix-closed-last)

lemma (in rga) Insert-no-failure:
lemma (in rga) delete-no-failure:
assumes es @ [Deliver (i, Insert e n)] prefix of j
 and apply-operations es = Some s
shows ⋀ys. insert s e n = Some ys
by (metis (no-types, lifting) element-ids-def allowed-insert-deliver-in-set assms fst-conv
 insert-in-apply-set insert-no-failure set-map)

proof –
obtain i' na v b where 1: Deliver (i', Insert (n, v, b) na) ∈ set es
 using assms allowed-delete-deliver-in-set by blast
also have fst (n, v, b) ∈ set (indices es)
 using assms idx-in-elem-inserted calculation by blast
from this assms and 1 show ⋀ys. delete s n = Some ys
 apply –
 apply (rule delete-no-failure)
 apply (metis apply-opers-idx-elems element-ids-def prefix-of-appendD prod.sel(1) set-map)
done

qed

lemma (in rga) Insert-equal:
assumes fst e1 = fst e2
 and Broadcast (i1, Insert e1 n1) ∈ set (history i)
 and Broadcast (i2, Insert e2 n2) ∈ set (history j)
shows Insert e1 n1 = Insert e2 n2
using insert-id-unique assms by simp

lemma (in rga) same-insert:
assumes fst e1 = fst e2
 and xs prefix of i
 and (i1, Insert e1 n1) ∈ set (node-deliver-messages xs)
 and (i2, Insert e2 n2) ∈ set (node-deliver-messages xs)
shows Insert e1 n1 = Insert e2 n2
proof –
have Deliver (i1, Insert e1 n1) ∈ set (history i)
 using assms by (auto simp add: node-deliver-messages-def prefix-msg-in-history)
from this obtain j where 1: Broadcast (i1, Insert e1 n1) ∈ set (history j)
 using delivery-has-a-cause by blast
have Deliver (i2, Insert e2 n2) ∈ set (history i)
 using assms by (auto simp add: node-deliver-messages-def prefix-msg-in-history)
from this obtain k where 2: Broadcast (i2, Insert e2 n2) ∈ set (history k)
 using delivery-has-a-cause by blast
show Insert e1 n1 = Insert e2 n2
 by (rule Insert-equal; force simp add: assms intro: 1 2)
qed

lemma (in rga) insert-commute-assms:
assumes {Deliver (i, Insert e n), Deliver (i', Insert e' n')} ⊆ set (history j)
 and hb.concurrent (i, Insert e n) (i', Insert e' n')
shows n = None ∨ n ≠ Some (fst e)
using assms
apply (clarsimp simp: hb.concurrent-def)
apply (cases e')
apply clarsimp
apply (frule delivery-has-a-cause)
apply (frule delivery-has-a-cause, clarsimp)
apply (frule allowed-insert)
apply clarsimp
apply (metis Insert-equal delivery-has-a-cause fst-conv hbintros(2) insert-subset
local-order-carrier-closed insert-msg-id)
done

lemma subset-reorder:
 assumes \{a, b\} \subseteq c
 shows \{b, a\} \subseteq c
using assms by simp

lemma (in rga) Insert-Insert-concurrent:
 assumes \{Deliver (i, Insert e n), Deliver (i', Insert e' (Some m))\} \subseteq set (history j)
 and hb.concurrent (i, Insert e n) (i', Insert e' (Some m))
 shows fst e \neq m
by (metis assms subset-reorder hb.concurrent-comm insert-commute-assms option.simps(3))

lemma (in rga) insert-valid-assms:
 assumes Deliver (i, Insert e n) \in set (history j)
 shows n = None \lor n \neq Some (fst e)
using assms by (meson allowed-insert-deliver hb.concurrent-def hb.less-asym insert-subset
local-order-carrier-closed rga.insert-commute-assms rga-axioms)

lemma (in rga) Insert-Delete-concurrent:
 assumes \{Deliver (i, Insert e n), Deliver (i', Delete n')\} \subseteq set (history j)
 and hb.concurrent (i, Insert e n) (i', Delete n')
 shows n' \neq fst e
by (metis assms Insert-equal allowed-delete delivery-has-a-cause fst-conv hb.concurrent-def
hbintros(2) insert-subset local-order-carrier-closed rga.insert-msg-id rga-axioms)

lemma (in rga) concurrent-operations-commute:
 assumes zs prefix of i
 shows hb.concurrent-ops-commute (node-deliver-messages xs)
proof –
 have \(\forall x y. \{x, y\} \subseteq set (node-deliver-messages xs) \Rightarrow hb.concurrent x y \Rightarrow interp-msg x \triangleright interp-msg y = interp-msg y \triangleright interp-msg x \)
proof
 fix x y ii
 assume \(\{x, y\} \subseteq set (node-deliver-messages xs) \)
 and C: hb.concurrent x y
 hence X: x \in set (node-deliver-messages xs) and Y: y \in set (node-deliver-messages xs)
 by auto
 obtain x1 x2 y1 y2 where 1: x = (x1, x2) and 2: y = (y1, y2)
 by fastforce
 have (interp-msg (x1, x2) \triangleright interp-msg (y1, y2)) ii = (interp-msg (y1, y2) \triangleright interp-msg (x1, x2))
 proof (cases x2; cases y2)
 fix ix1 ix2 iy1 iy2
 assume X2: x2 = Insert ix1 ix2 and Y2: y2 = Insert iy1 iy2
 show (interp-msg (x1, x2) \triangleright interp-msg (y1, y2)) ii = (interp-msg (y1, y2) \triangleright interp-msg (x1, x2))
 proof (cases fst ix1 = fst iy1)
 fix ix1 ix2 iy1 iy2
 assume X1: ix1 = ix2 and Y1: iy1 = iy2
 hence Insert ix1 ix2 = Insert iy1 iy2
 apply (rule same-insert)
 using 1 2 X Y X2 Y2 assms apply auto
done
 hence ix1 = iy1 and ix2 = iy2
by auto

from this and X2 Y2 show (interp-msg (x1, x2) \vdash interp-msg (y1, y2)) \iff (interp-msg (y1, y2) \vdash interp-msg (x1, x2))
by (clarsimp simp add: kleisli-def interp-msg-def)

next
assume NEQ: \fst ix1 \neq \fst iy1
have \fst iy2 = None \lor \fst iy2 \neq Some (\fst iy1)
apply (rule insert-commute-assms)
using prefix-msg-in-history[OF assms] X Y X2 Y2 1 2
apply (clarsimp, blast)
using C 1 2 X2 Y2 apply blast
done
also have iy2 = None \lor iy2 \neq Some (\fst iy1)
apply (rule insert-commute-assms)
using prefix-msg-in-history[OF assms] X Y X2 Y2 1 2
apply (clarsimp, blast)
using 1 2 C X2 Y2 apply blast
done
ultimately have insert ii ix1 ix2 \Rightarrow (\lambda x. insert x iy1 iy2) = insert ii iy1 iy2 \Rightarrow (\lambda x. insert x ix1 ix2)
using NEQ insert-commutes by blast
thus (interp-msg (x1, x2) \vdash interp-msg (y1, y2)) \iff (interp-msg (y1, y2) \vdash interp-msg (x1, x2))
by (clarsimp simp add: interp-msg-def X2 Y2 kleisli-def)
qed

next
fix ix1 ix2 yd
assume X2: x2 = Insert ix1 ix2 and Y2: y2 = Delete yd
have hb.concurrent (x1, Insert ix1 ix2) (y1, Delete yd)
using C X2 Y2 1 2 by simp
also have \{ Deliver (x1, Insert ix1 ix2), Deliver (y1, Delete yd) \} \subseteq set (history i)
using prefix-msg-in-history assms X2 Y2 X Y 1 2 by blast
ultimately have yd \neq \fst ix1
apply --
apply (rule Insert-Delete-concurrent; force)
done
hence insert ii ix1 ix2 \Rightarrow (\lambda x. delete x yd) = delete ii yd \Rightarrow (\lambda x. insert x ix1 ix2)
by (rule insert-delete-commute)
thus (interp-msg (x1, x2) \vdash interp-msg (y1, y2)) \iff (interp-msg (y1, y2) \vdash interp-msg (x1, x2))
by (clarsimp simp add: interp-msg-def kleisli-def X2 Y2)

next
fix xd iy1 iy2
assume X2: x2 = Delete xd and Y2: y2 = Insert iy1 iy2
have hb.concurrent (x1, Delete xd) (y1, Insert iy1 iy2)
using C X2 Y2 1 2 by simp
also have \{ Deliver (x1, Delete xd), Deliver (y1, Insert iy1 iy2) \} \subseteq set (history i)
using prefix-msg-in-history assms X2 Y2 X Y 1 2 by blast
ultimately have xd \neq \fst iy1
apply --
apply (rule Insert-Delete-concurrent; force)
done
hence delete ii xd \Rightarrow (\lambda x. insert x iy1 iy2) = insert ii iy1 iy2 \Rightarrow (\lambda x. delete x xd)
by (rule insert-delete-commute[symmetric])
thus (interp-msg (x1, x2) \vdash interp-msg (y1, y2)) \iff (interp-msg (y1, y2) \vdash interp-msg (x1, x2))
by (clarsimp simp add: interp-msg-def kleisli-def X2 Y2)

next
fix \(xd \) \(yd \)

assume \(X2: x2 = \text{Delete} \ xd \) and \(Y2: y2 = \text{Delete} \ yd \)

have \(\text{delete} \ i \ i \ i \ \delta \equiv (\lambda x. \text{delete} \ x \ yd) = \text{delete} \ ii \ yd \ \equiv (\lambda x. \text{delete} \ x \ xd) \)

by (rule delete-commutes)

thus \((\text{interp-msg} \ (x1, x2) \ delta \ \text{interp-msg} \ (y1, y2)) \ ii \equiv (\text{interp-msg} \ (y1, y2) \ delta \ \text{interp-msg} \ (x1, x2)) \ ii \)

by (clarsimp simp add: interp-msg-def kleisli-def X2 Y2)

qed

thus \((\text{interp-msg} \ x \ delta \ \text{interp-msg} \ y) \ ii \equiv (\text{interp-msg} \ y \ delta \ \text{interp-msg} \ x) \ ii \)

using 1 2 by auto

qed

corollary (in rga) concurrent-operations-commute:

shows \(hh.\text{concurrent-ops-commute} \ (\text{node-deliver-messages} \ xs) \)

by (meson concurrent-operations-commute append.right-neutral prefix-of-node-history-def)

lemma (in rga) apply-operations-never-fails:

assumes \(xs \ \text{prefix of} \ i \)

shows \(\text{apply-operations} \ xs \neq \text{None} \)

using assms proof (induction \(xs \) rule: rev-induct)

show \(\text{apply-operations} \ [] \neq \text{None} \)

by clarsimp

next

fix \(x \) \(xs \)

assume 1: \(xs \ \text{prefix of} \ i \Longrightarrow \text{apply-operations} \ xs \neq \text{None} \)

and 2: \(xs \ \od \ [x] \ \text{prefix of} \ i \)

hence 3: \(xs \ \text{prefix of} \ i \)

by auto

show \(\text{apply-operations} \ (xs \ \od \ [x]) \neq \text{None} \)

proof (cases \(x \))

fix \(b \)

assume \(x = \text{Broadcast} \ b \)

thus \(\text{apply-operations} \ (xs \ \od \ [x]) \neq \text{None} \)

using 1 3 by clarsimp

next

fix \(d \)

assume 4: \(x = \text{Deliver} \ d \)

thus \(\text{apply-operations} \ (xs \ \od \ [x]) \neq \text{None} \)

proof (cases \(d \); clarify)

fix \(a \) \(b \)

assume 5: \(x = \text{Deliver} \ (a, b) \)

show \(\exists y. \text{apply-operations} \ (xs \ \od \ [\text{Deliver} \ (a, b)]) = \text{Some} \ y \)

proof (cases \(b \); clarify)

fix \(aa \) \(aaa \) \(ba \) \(x12 \)

assume 6: \(b = \text{Insert} \ (aa, aaa, ba) \ x12 \)

show \(\exists y. \text{apply-operations} \ (xs \ \od \ [\text{Deliver} \ (a, \text{Insert} \ (aa, aaa, ba) \ x12)]) = \text{Some} \ y \)

apply (clarsimp simp add: interp-msg-def split! bind-splits)

apply (simp add: 1 3)

apply (rule rga.Insert-no-failure, rule rga-axioms)

using 4 5 6 2 apply force+

done

next

fix \(x2 \)

assume 6: \(b = \text{Delete} \ x2 \)

show \(\exists y. \text{apply-operations} \ (xs \ \od \ [\text{Deliver} \ (a, \text{Delete} \ x2)]) = \text{Some} \ y \)
apply(clarsimp simp add: interp-msg-def split!: bind-splits)
apply(simp add: 1 3)
apply(rule delete-no-failure)
using 4 5 6 2 apply force+
done
qed
qed
qed
qed

lemma (in rga) apply-operations-never-fails':
shows apply-operations (history i) \neq None
by(meson apply-operations-never-fails append.right-neutral prefix-of-node-history-def)
corollary (in rga) rga-convergence:
assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)
and xs prefix of i
and ys prefix of j
shows apply-operations xs = apply-operations ys
using assms by(auto simp add: apply-operations-def intro: hb.convergence-ext
concert-operations-commute node-deliver-messages-distinct hb-consistent-prefix)

5.7 Strong eventual consistency
context rga begin

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
\lambda ops.\exists xs i. xs prefix of i \land node-deliver-messages xs = ops []
proof(standard;clarsimp)
fix xsa i
assume xsa prefix of i
thus hb.hb-consistent (node-deliver-messages xsa)
 by(auto simp add: hb-consistent-prefix)
next
fix xsa i
assume xsa prefix of i
thus distinct (node-deliver-messages xsa)
 by(auto simp add: node-deliver-messages-distinct)
next
fix xsa i
assume xsa prefix of i
thus hb.concurrent-ops-commute (node-deliver-messages xsa)
 by(auto simp add: concurrent-operations-commute)
next
fix xs a b state xsa x
assume hb.apply-operations xs [] = Some state
 and node-deliver-messages xsa = xs \oplus [(a, b)]
 and xsa prefix of x
thus \exists y. interp-msg (a, b) state = Some y
 by(metis (no-types, lifting) apply-operations-def bind.bind-lunit not-None-eq
 hb.apply-operations-Snoc kleisli-def apply-operations-never-fails interp-msg-def)
next
fix xs a b xsa x
assume node-deliver-messages xsa = xs \oplus [(a, b)]
 and xsa prefix of x
thus \exists xsa. (\exists x. xsa prefix of x) \land node-deliver-messages xsa = xs
 using drop-last-message by blast
qed

36
6 Increment-Decrement Counter

The Increment-Decrement Counter is perhaps the simplest CRDT, and a paradigmatic example of a replicated data structure with commutative operations.

theory
begin

locale counter = network-with-ops - counter-op 0

lemma (in counter) counter-op x ▷ counter-op y = counter-op y ▷ counter-op x
 by (case-tac x; case-tac y; auto simp add: kleisli-def)

lemma (in counter) concurrent-operations-commute:
 assumes xs prefix of i
 shows hb.concurrent-ops-commute (node-deliver-messages xs)
 using assms
 apply (clarsimp simp; hb.concurrent-ops-commute-def)
 apply (rename-tac a b x y)
 apply (case-tac b; case-tac y; force simp add: interp-msg-def kleisli-def)
 done

corollary (in counter) counter-convergence:
 assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)
 and xs prefix of i
 and ys prefix of j
 shows apply-operations xs = apply-operations ys
 using assms by (auto simp add: apply-operations-def intro: hb.convergence-ext
 concurrent-operations-commute node-deliver-messages-distinct hb-consistent-prefix)

context counter begin

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
 λops. ∃zs i. zs prefix of i ∧ node-deliver-messages zs = ops 0
 apply (standard; clarsimp simp add: hb-consistent-prefix drop-last-message
 node-deliver-messages-distinct concurrent-operations-commute)
 apply (metis (full-types) interp-msg-def counter-op.elims)
 using drop-last-message apply blast
 done

end
7 Observed-Remove Set

The ORSet is a well-known CRDT for implementing replicated sets, supporting two operations: the insertion and deletion of an arbitrary element in the shared set.

theory ORSet imports Network begin

datatype ('id, 'a) operation = Add 'id 'a | Rem 'id set 'a

type-synonym ('id, 'a) state = 'a ⇒ 'id set

definition op-elem :: ('id, 'a) operation ⇒ 'a where
 op-elem oper ≡ case oper of Add i e ⇒ e | Rem is e ⇒ e

definition interpret-op :: ('id, 'a) operation ⇒ ('id, 'a) state ⇒ ('id, 'a) state (⟨⋅⟩ [0] 1000) where
 interpret-op oper state ≡ let before = state (op-elem oper);
 after = case oper of Add i e ⇒ before ∪ {i} | Rem is e ⇒ before − is
 in Some (state (op-elem oper := after))

definition valid-behaviours :: ('id, 'a) state ⇒ 'id × ('id, 'a) operation ⇒ bool where
 valid-behaviours state msg ≡ case msg of
 (i, Add j e) ⇒ i = j |
 (i, Rem is e) ⇒ is = state e

locale orset = network-with-constrained-ops - interpret-op λx. {} valid-behaviours

lemma (in orset) add-add-commute:
 shows (Add i1 e1) ⊿ (Add i2 e2) = (Add i2 e2) ⊿ (Add i1 e1)
 by(auto simp add: interpret-op-def op-elem-def kleisli-def, fastforce)

lemma (in orset) add-rem-commute:
 assumes i /∈ is
 shows (Add i e1) ⊿ (Rem is e2) = (Rem is e2) ⊿ (Add i e1)
 using assms by(auto simp add: interpret-op-def kleisli-def op-elem-def, fastforce)

lemma (in orset) apply-operations-never-fails:
 assumes xs prefix of i
 shows apply-operations xs ≠ None
 using assms proof(induction xs rule: rev-induct, clarsimp)
 case (snoc x xs) thus ?case
 next
 case (Deliver e) thus ?thesis
 using snoc by (clarsimp, metis interpret-op-def interp-msg-def bind.bind-lunit prefix-of-appendD)
 qed

end
lemma (in orset) add-id-valid:
 assumes xs prefix of j
 and Deliver (i1, Add i2 e) ∈ set xs
 shows i1 = i2
proof
 have ∃ s. valid-behaviours s (i1, Add i2 e)
 using assms deliver-in-prefix-is-valid by blast
 thus ?thesis
 by (simp add: valid-behaviours-def)
qed

definition (in orset) added-ids :: (id × (id, b) operation) event list ⇒ b ⇒ id list where
 added-ids es p ≡ List.map-filter (λ x. case x of Deliver (i, Add j e) ⇒ if e = p then Some j else None
 | _ ⇒ None) es

lemma (in orset) [simp]:
 shows added-ids [] e = []
 by (auto simp: added-ids-def map-filter-def)

lemma (in orset) [simp]:
 shows added-ids (xs @ ys) e = added-ids xs e @ added-ids ys e
 by (auto simp: added-ids-def map-filter-append)

lemma (in orset) added-ids-Broadcast-collapse [simp]:
 shows added-ids ([Broadcast e]) e' = []
 by (auto simp: added-ids-def map-filter-append map-filter-def)

lemma (in orset) added-ids-Deliver-Rem-collapse [simp]:
 shows added-ids ([Deliver (i, Rem is e)]) e' = []
 by (auto simp: added-ids-def map-filter-append map-filter-def)

lemma (in orset) added-ids-Deliver-Add-diff-collapse [simp]:
 shows e ≠ e' ⇒ added-ids ([Deliver (i, Add j e)]) e' = []
 by (auto simp: added-ids-def map-filter-append map-filter-def)

lemma (in orset) added-ids-Deliver-Add-same-collapse [simp]:
 shows added-ids ([Deliver (i, Add j e)]) e = [j]
 by (auto simp: added-ids-def map-filter-append map-filter-def)

lemma (in orset) added-id-not-in-set:
 assumes i1 /∈ set (added-ids [Deliver (i, Add i2 e)] e)
 shows i1 ≠ i2
 using assms by simp

lemma (in orset) apply-operations-added-ids:
 assumes es prefix of j
 and apply-operations es = Some f
 shows f x ⊆ set (added-ids es x)
 using assms proof (induct es arbitrary: f rule: rev-induct, force)
 case (snoc x xs) thus ?case
 proof (cases x, force)
 case (Deliver e)
 moreover obtain a b where e = (a, b) by force
 ultimately show ?thesis
 using snoc by (cases_tac b; clarsimp simp: interp-msg-def split: bind-splits,
 force split: if-split_asm simp add: op-elem-def interpret-op-def)
 qed
 qed
lemma (in orset) Deliver-added-ids:
assumes xs prefix of j
 and i ∈ set (added-ids xs e)
shows Deliver (i, Add i e) ∈ set xs
using assms proof (induct xs rule: rev-induct, clarsimp)
case (snoc x xs) thus ?case
proof (cases x, force)
 case (Deliver e')
 moreover obtain a b where e' = (a, b) by force
 ultimately show ?thesis
 using snoc apply (case-tac b; clarsimp)
 apply (metis added-ids-Deliver-Add-diff-collapse added-ids-Deliver-Add-same-collapse
 empty-iff list.set(1) set-ConsD add-id-valid in-set-conv-decomp prefix-of-appendD)
 apply force
done
qed

lemma (in orset) Broadcast-Deliver-prefix-closed:
assumes xs @ [Broadcast (r, Rem ix e)] prefix of j
 and i ∈ ix
shows Deliver (i, Add i e) ∈ set xs
proof –
 obtain y where apply-operations xs = Some y
 using assms broadcast-only-valid-msgs by blast
 moreover hence ix = y e
 by (metis (mono-tags, lifting) assms(1) broadcast-only-valid-msgs operation.case(2) option.simps(1)
 valid-behaviours-def case-prodD)
 ultimately show ?thesis
 using assms Deliver-added-ids apply-operations-added-ids by blast
qed

lemma (in orset) Broadcast-Deliver-prefix-closed2:
assumes xs prefix of j
 and Broadcast (r, Rem ix e) ∈ set xs
 and i ∈ ix
shows Deliver (i, Add i e) ∈ set xs
using assms Broadcast-Deliver-prefix-closed by (induction xs rule: rev-induct; force)

lemma (in orset) concurrent-add-remove-independent-technical:
assumes i ∈ is
 and xs prefix of j
 and (i, Add i e) ∈ set (node-deliver-messages xs) and (ir, Rem is e) ∈ set (node-deliver-messages xs)
shows hb (i, Add i e) (ir, Rem is e)
proof –
 obtain pre k where pre@[Broadcast (ir, Rem is e)] prefix of k
 using assms delivery-has-a-cause events-before-exist prefix-msg-in-history by blast
 moreover hence Deliver (i, Add i e) ∈ set pre
 using Broadcast-Deliver-prefix-closed assms(1) by auto
 ultimately show ?thesis
 using hb.intros(2) events-in-local-order by blast
qed

lemma (in orset) Deliver-Add-same-id-same-message:
assumes Deliver (i, Add i e1) ∈ set (history j) and Deliver (i, Add i e2) ∈ set (history j)
shows e1 = e2
proof –

obtain pre1 pre2 k1 k2 where *: pre1@[Broadcast (i, Add i e1)] prefix of k1 pre2@[Broadcast (i, Add i e2)] prefix of k2

using assms delivery-has-a-cause events-before-exist by meson
moreover hence Broadcast (i, Add i e1) ∈ set (history k1) Broadcast (i, Add i e2) ∈ set (history k2)

using node-histories.prefix-to-carriers node-histories-axioms by force+
ultimately show ?thesis

using msg-id-unique by fastforce

qed

lemma (in orset) ids-imply-messages-same:

assumes i ∈ is
and xs prefix of j
and (i, Add i e1) ∈ set (node-deliver-messages xs) and (ir, Rem is e2) ∈ set (node-deliver-messages xs)
shows e1 = e2

proof –

obtain pre k where pre@[Broadcast (ir, Rem is e2)] prefix of k

using assms delivery-has-a-cause events-before-exist prefix-msg-in-history by blast
moreover hence Deliver (i, Add i e1) ∈ set pre

using Broadcast-Deliver-prefix-closed assms(1) by blast
moreover have Deliver (i, Add i e1) ∈ set (history j)

using assms(2) assms(3) prefix-msg-in-history by blast
ultimately show ?thesis

by (metis fst-conv msg-id-unique network.delivery-has-a-cause network-axioms operation.inject(1) prefix-elem-to-carriers prefix-of-appendD prod.inject)

qed

corollary (in orset) concurrent-add-remove-independent:

assumes ¬ hb (i, Add i e1) (ir, Rem is e2) and ¬ hb (ir, Rem is e2) (i, Add i e1)

and xs prefix of j

and (i, Add i e1) ∈ set (node-deliver-messages xs) and (ir, Rem is e2) ∈ set (node-deliver-messages xs)

shows i ∉ is

using assms ids-imply-messages-same concurrent-add-remove-independent-technical by fastforce

lemma (in orset) rem-rem-commute:

shows (Rem i1 e1) ▷ (Rem i2 e2) = (Rem i2 e2) ▷ (Rem i1 e1)

by (unfold interpret-op-def op-elem-def kleisli-def, fastforce)

lemma (in orset) concurrent-operations-commute:

assumes xs prefix of i

shows hb.concurrent-ops-commute (node-deliver-messages xs)

proof –

{ fix a b x y
 assume (a, b) ∈ set (node-deliver-messages xs)
 (x, y) ∈ set (node-deliver-messages xs)
 hb.concurrent (a, b) (x, y)

 hence interp-msg (a, b) ▷ interp-msg (x, y) = interp-msg (x, y) ▷ interp-msg (a, b)
 apply (unfold interp-msg-def, case-tac b; case-tac y; simp add: add-add-commute rem-rem-commute
 hb.concurrent-def)
 apply (metis add-id-valid add-rem-commute assms concurrent-add-remove-independent hb.concurrentD1
 hb.concurrentD2 prefix-contains-msg)+
 done
 }

by (fastforce simp: hb.concurrent-ops-commute-def)

qed
\textbf{theorem} (in orset) convergence:
\begin{itemize}
 \item \textbf{assumes} set (node-deliver-messages xs) = set (node-deliver-messages ys)
 \item \textbf{and} xs prefix of i and ys prefix of j
 \item \textbf{shows} apply-operations xs = apply-operations ys
\end{itemize}
\textbf{using} assms by (auto simp add: apply-operations-def intro: hb.convergence-ext concurrent-operations-commute node-deliver-messages-distinct hb-consistent-prefix)

\textbf{context} orset begin

\textbf{sublocale} sec: strong-eventual-consistency weak-hb hb interp-msg
\lambda ops.\exists xs i. xs prefix of i \land node-deliver-messages xs = ops $\lambda x.\{}$
\textbf{apply} (standard; clarsimp simp add: hb-consistent-prefix node-deliver-messages-distinct concurrent-operations-commute)
\textbf{apply} (metis (no-types, lifting) apply-operations-def bind.bind-lunit not-None-eq hb.apply-operations-Snoc kleisli-def apply-operations-never-fails interp-msg-def)
\textbf{using} drop-last-message apply blast

\textbf{done}

\textbf{end}

\textbf{end}

\textbf{References}

