A framework for establishing Strong Eventual Consistency for Conflict-free Replicated Data types

Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, Alastair R. Beresford

August 16, 2018

Abstract

In this work, we focus on the correctness of Conflict-free Replicated Data Types (CRDTs), a class of algorithm that provides strong eventual consistency guarantees for replicated data. We develop a modular and reusable framework for verifying the correctness of CRDT algorithms. We avoid correctness issues that have dogged previous mechanised proofs in this area by including a network model in our formalisation, and proving that our theorems hold in all possible network behaviours. Our axiomatic network model is a standard abstraction that accurately reflects the behaviour of real-world computer networks. Moreover, we identify an abstract convergence theorem, a property of order relations, which provides a formal definition of strong eventual consistency. We then obtain the first machine-checked correctness theorems for three concrete CRDTs: the Replicated Growable Array, the Observed-Remove Set, and an Increment-Decrement Counter.

Contents

1 Introduction 2
2 Technical Lemmas 2
 2.1 Kleisli arrow composition ... 3
 2.2 Lemmas about sets .. 3
 2.3 Lemmas about list ... 3
3 Strong Eventual Consistency 6
 3.1 Concurrent operations ... 6
 3.2 Happens-before consistency ... 7
 3.3 Apply operations .. 9
 3.4 Concurrent operations commute 9
 3.5 Abstract convergence theorem 10
 3.6 Convergence and progress ... 11
4 Axiomatic network models 12
 4.1 Node histories ... 12
 4.2 Asynchronous broadcast networks 15
 4.3 Causal networks .. 16
 4.4 Dummy network models ... 22
5 Replicated Growable Array 22
 5.1 Insert and delete operations 22
 5.2 Well-definedness of insert and delete 23
 5.3 Preservation of element indices 24
1 Introduction

Strong eventual consistency (SEC) is a model that strikes a compromise between strong and eventual consistency [12]. Informally, it guarantees that whenever two nodes have received the same set of messages—possibly in a different order—their view of the shared state is identical, and any conflicting concurrent updates must be merged automatically. Large-scale deployments of SEC algorithms include datacentre-based applications using the Riak distributed database [3], and collaborative editing applications such as Google Docs [5]. Unlike strong consistency models, it is possible to implement SEC in decentralised settings without any central server or leader, and it allows local execution at each node to proceed without waiting for communication with other nodes. However, algorithms for achieving decentralised SEC are currently poorly understood: several such algorithms, published in peer-reviewed venues, were subsequently shown to violate their supposed guarantees [6, 7, 9]. Informal reasoning has repeatedly produced plausible-looking but incorrect algorithms, and there have even been examples of mechanised formal proofs of SEC algorithm correctness later being shown to be flawed. These mechanised proofs failed because, in formalising the algorithm, they made false assumptions about the execution environment.

In this work we use the Isabelle/HOL proof assistant [13] to create a framework for reliably reasoning about the correctness of a particular class of decentralised replication algorithms. We do this by formalising not only the replication algorithms, but also the network in which they execute, allowing us to prove that the algorithm’s assumptions hold in all possible network behaviours. We model the network using the axioms of asynchronous unreliable causal broadcast, a well-understood abstraction that is commonly implemented by network protocols, and which can run on almost any computer network, including large-scale networks that delay, reorder, or drop messages, and in which nodes may fail.

We then use this framework to produce machine-checked proofs of correctness for three Conflict-Free Replicated Data Types (CRDTs), a class of replication algorithms that ensure strong eventual consistency [11, 12]. To our knowledge, this is the first machine-checked verification of SEC algorithms that explicitly models the network and reasons about all possible network behaviours. The framework is modular and reusable, making it easy to formulate proofs for new algorithms. We provide the first mechanised proofs of the Replicated Growable Array, the operation-based Observed-Remove Set, and the operation-based counter CRDT.

2 Technical Lemmas

This section contains a list of helper definitions and lemmas about sets, lists and the option monad.
2.1 Kleisli arrow composition

definition kleisli ::
 "('b ⇒ 'b option) ⇒ ('b ⇒ 'b option) ⇒ ('b ⇒ 'b option)
 (infixr ⊘ 65)" where
 f ⊘ g ≡ (λx. (f x >>= (λy. g y))

lemma kleisli-comm-cong:
 assumes x ⊘ y = y ⊘ x
 shows z ⊘ x ⊘ y = z ⊘ y ⊘ x
 using assms by(clarsimp simp add: kleisli-def)

lemma kleisli-assoc:
 shows (z ⊘ x) ⊘ y = z ⊘ (x ⊘ y)
 by(auto simp add: kleisli-def)

2.2 Lemmas about sets

lemma distinct-set-notin [dest]:
 assumes distinct (x ≠ xs)
 shows x /∈ set xs
 using assms by(induction xs, auto)

lemma set-membership-equality-technicalD [dest]:
 assumes {x} ∪ (set xs) = {y} ∪ (set ys)
 shows x = y ∨ y ∈ set xs
 using assms by(induction xs, auto)

lemma set-equality-technical:
 assumes {x} ∪ (set xs) = {y} ∪ (set ys)
 and x /∈ set xs
 and y /∈ set ys
 and y ∈ set xs
 shows {x} ∪ (set xs - {y}) = set ys
 using assms by (induction xs) auto

lemma set-elem-nth:
 assumes x ∈ set xs
 shows ∃m. m < length xs ∧ xs ! m = x
 using assms by(induction xs, simp) (meson in-set-conv-nth)

2.3 Lemmas about list

lemma list-nil-or-snoc:
 shows xs = [] ∨ (∃y ys. xs = ys @ [y])
 by (induction xs, auto)

lemma suffix-eq-distinct-list:
 assumes distinct xs
 and ys @ suf1 = xs
 and ys @ suf2 = xs
 shows suf1 = suf2
 using assms by(induction xs arbitrary: suf1 suf2 rule: rev-induct, simp) (metis append-eq-append-conv)

lemma pre-suf-eq-distinct-list:
 assumes distinct xs
 and ys ≠ []
 and pre1 @ ys @ suf1 = xs
and \(pre2@ys@\text{suf2} = xs \)
shows \(pre1 = pre2 \land \text{suf1} = \text{suf2} \)

using \text{assms}
apply (induction \(xs \) arbitrary: \(pre1 \) \(pre2 \) \(ys \), \text{simp})
apply (case-tac \(pre1 \); case-tac \(pre2 \); clarify)
apply (metis \text{suffix-eq-distinct-list} \text{append-Nil})
apply (metis \text{Un-iff} \text{append-eq-Cons-conv} \text{distinct.simps(2)} \text{list.set-intros(1)} \text{set-append} \text{suffix-eq-distinct-list})
apply (metis \text{distinct.simps(2)} \text{hd-append2 list.sel(1)} \text{list.sel(3)} \text{list.simps(3)} \text{tl-append2})
done

lemma \text{list-head-unaffected:}
assumes \(hd (x @ [y, z]) = v \)
shows \(hd (x @ [y]) = v \)
using \text{assms} by (metis \text{hd-append list.sel(1)})

lemma \text{list-head-butlast:}
assumes \(hd xs = v \)
and \(length xs > 1 \)
shows \(hd (\text{butlast} xs) = v \)
using \text{assms} by (metis \text{hd-conv-nth} \text{length-butlast} \text{length-greater-0-conv} \text{less-trans} \text{nth-butlast} \text{zero-less-diff} \text{zero-less-one})

lemma \text{list-head-length-one:}
assumes \(hd xs = x \)
and \(length xs = 1 \)
shows \(xs = [x] \)
using \text{assms} by (metis \text{One-nat-def} \text{Suc-length-conv} \text{hd-Cons-tl} \text{length-0-conv} \text{list.sel(3)})

lemma \text{list-two-at-end:}
assumes \(length xs > 1 \)
shows \(\exists x' \ x \ y. \ xs = x' @ [x, y] \)
using \text{assms}
apply (induction \(xs \) rule: \text{rev-induct}, \text{simp})
apply (case-tac \(length xs = 1 \), \text{simp})
apply (metis \text{append-self-conv2} \text{length-0-conv} \text{length-Suc-conv})
apply (rule-tac \(x = \text{butlast} xs \) in \text{exI}, \text{rule-tac} \(x = \text{last} xs \) in \text{exI}, \text{simp})
done

lemma \text{list-nth-split-technical:}
assumes \(m < \text{length cs} \)
and \(cs \neq [] \)
shows \(\exists xs' \ x. \ xs = xs' @ [x] \)
using \text{assms}
apply (induction \(m \) arbitrary: \(cs \))
apply (meson \(in-set-decomp \) \(\text{nth-mem} \))
apply (metis \text{in-set-decomp} \text{length-list-update} \text{set-swap} \text{set-update-mem1})
done

lemma \text{list-nth-split:}
assumes \(m < \text{length cs} \)
and \(n < m \)
and \(1 < \text{length cs} \)
shows \(\exists xs' \ ys \ zs. \ xs = xs' @ [ys] @ [zs] \)
using \text{assms} proof (induction \(n \) arbitrary: \(cs \) \text{m})
case \(0 \) thus \(?case \)
apply (case-tac \(cs \); \text{clarsimp})
apply (rule-tac \(x = [] \) in \text{exI}, \text{clarsimp})

proof
apply (rule list-nth-split-technical, simp, force) done

next
case (Suc n)
thus ?case
proof (cases cs)
case Nil
then show ?thesis
 using Suc.prems by auto
next
case (Cons a as)
hence m - 1 < length as < m
 using Suc by force
then obtain xs ys zs where as = xs @ a # as ! n # ys @ as ! (m - 1) # zs
 using Suc by force
thus ?thesis
apply (rule-tac x = a # xs in exI)
using Suc Cons apply force done
qed

lemma list-split-two-elems:
assumes distinct cs
 and x ∈ set cs
 and y ∈ set cs
 and x =/= y
shows ∃ pre mid suf. cs = pre @ x # mid @ y # suf ∨ cs = pre @ y # mid @ x # suf
proof
 obtain xi yi where *:
 xi < length cs ∧ x = cs ! xi yi < length cs ∧ y = cs ! yi xi =/= yi
 using set-elem-nth linorder-neqE-nat assms by metis
 thus ?thesis
 by (metis list-nth-split One-nat-def less-Suc-eq linorder-neqE-nat not-less-zero)
qed

lemma split-list-unique-prefix:
assumes x ∈ set xs
shows ∃ pre suf. xs = pre @ x # suf ∧ (∀ y ∈ set pre. x =/= y)
using assms proof (induction xs)
case Nil thus ?case by clarsimp
next
case (Cons y ys)
then show ?case
proof (cases y=x)
case True
 then show ?thesis by force
next
case False
 then obtain pre suf where ys = pre @ x # suf ∧ (∀ y ∈ set pre. x =/= y)
 using assms Cons by auto
 thus ?thesis
 using split-list-first by force
qed

lemma map-filter-append:
shows List.map-filter P (xs @ ys) = List.map-filter P xs @ List.map-filter P ys
by (auto simp add: List.map-filter-def)
3 Strong Eventual Consistency

In this section we formalise the notion of strong eventual consistency. We do not make any assumptions about networks or data structures; instead, we use an abstract model of operations that may be reordered, and we reason about the properties that those operations must satisfy. We then provide concrete implementations of that abstract model in later sections.

```plaintext
locale happens-before = preorder hb-weak hb
  for hb-weak :: 'a ⇒ 'a ⇒ bool (infix ≤ 50)
  and hb :: 'a ⇒ 'a ⇒ bool (infix < 50) +
  fixes interp :: 'a ⇒ 'b ⇒ 'b ((·) [0] 1000)

begin

3.1 Concurrent operations

We say that two operations x and y are concurrent, written x||y, whenever one does not happen before the other: ¬(x ≺ y) and ¬(y ≺ x).

definition concurrent :: 'a ⇒ 'a ⇒ bool (infix || 50) where
  s1 || s2 ≡ ¬ (s1 ≺ s2) ∧ ¬ (s2 ≺ s1)

lemma concurrentI [intro!]: ¬ (s1 ≺ s2) ⇒ ¬ (s2 ≺ s1) ⇒ s1 || s2
  by (auto simp: concurrent-def)

lemma concurrentD1 [dest!]: s1 || s2 ⇒ ¬ (s1 ≺ s2)
  by (auto simp: concurrent-def)

lemma concurrentD2 [dest!]: s1 || s2 ⇒ ¬ (s2 ≺ s1)
  by (auto simp: concurrent-def)

lemma concurrent-refl [intro!, simp]: s || s
  by (auto simp: concurrent-def)

lemma concurrent-comm: s1 || s2 ⇔ s2 || s1
  by (auto simp: concurrent-def)

definition concurrent-set :: 'a ⇒ 'a list ⇒ bool where
  concurrent-set x xs ≡ ∀ y ∈ set xs. x || y

lemma concurrent-set-empty [simp, intro!]:
  concurrent-set x []
```

6
by (auto simp: concurrent-set-def)

lemma concurrent-set-ConsE [elim!]:
 assumes concurrent-set a (x#xs)
 and concurrent-set a xs \implies concurrent x a \implies G
 shows G
 using assms by (auto simp: concurrent-set-def)

lemma concurrent-set-ConsI [intro!]:
 concurrent-set a xs \implies concurrent a x \implies concurrent-set a (x#xs)
 by (auto simp: concurrent-set-def)

lemma concurrent-set-appendI [intro!]:
 concurrent-set a xs \implies concurrent-set a ys \implies concurrent-set a (xs @ ys)
 by (auto simp: concurrent-set-def)

lemma concurrent-set-Cons-Snoc [simp]:
 concurrent-set a (xs @ [x]) = concurrent-set a (x#xs)
 by (auto simp: concurrent-set-def)

3.2 Happens-before consistency

The purpose of the happens-before relation is to require that some operations must be applied in a particular order, while allowing concurrent operations to be reordered with respect to each other. We assume that each node applies operations in some sequential order (a standard assumption for distributed algorithms), and so we can model the execution history of a node as a list of operations.

inductive hb-consistent :: 'a list \Rightarrow bool where
 [intro!]: hb-consistent []
 [intro!]: [hb-consistent zs; \forall x \in set zs. \neg y \prec x] \implies hb-consistent (zs @ [y])

As a result, whenever two operations x and y appear in a hb-consistent list, and x \prec y, then x must appear before y in the list. However, if x \parallel y, the operations can appear in the list in either order.

lemma (x \prec y \lor concurrent x y) = (\neg y \prec x)
 using less-asym by blast

lemma consistentI [intro!]:
 assumes hb-consistent (xs @ ys)
 and \forall x \in set (xs @ ys). \neg z \prec x
 shows hb-consistent (xs @ ys @ [z])
 using assms hb-consistent.intros append-assoc by metis

inductive-cases hb-consistent-elim [elim]:
 hb-consistent []
 hb-consistent (xs@[y])
 hb-consistent (xs@ys)
 hb-consistent (xs@ys@[z])

inductive-cases hb-consistent-elim-gen:
 hb-consistent zs

lemma hb-consistent-append-D1 [dest]:
 assumes hb-consistent (xs @ ys)
 shows hb-consistent xs
 using assms by (induction ys arbitrary; xs rule: List.rev-induct) auto
lemma \(\text{hb-consistent-append-D2} \) [dest]:
\begin{align*}
\text{assumes } & \text{hb-consistent } (xs @ ys) \\
\text{shows } & \text{hb-consistent } ys \\
\text{using } & \text{assms by (induction } ys \text{ arbitrary; } xs \text{ rule: } \text{List.rev-induct) fastforce+}
\end{align*}

lemma \(\text{hb-consistent-append-elim-ConsD} \) [elim]:
\begin{align*}
\text{assumes } & \text{hb-consistent } (y#ys) \\
\text{shows } & \text{hb-consistent } ys \\
\text{using } & \text{assms } \text{hb-consistent-append-D2 by (metis append-Cons append-Nil)}
\end{align*}

lemma \(\text{hb-consistent-remove1} \) [intro]:
\begin{align*}
\text{assumes } & \text{hb-consistent } xs \\
\text{shows } & \text{hb-consistent } (\text{remove1 } x xs) \\
\text{using } & \text{assms by (induction rule: } \text{hb-consistent.induct) (auto simp: remove1-append)}
\end{align*}

lemma \(\text{hb-consistent-singleton} \) [intro!]:
\begin{align*}
\text{shows } & \text{hb-consistent } [x] \\
\text{using } & \text{hb-consistent.intros by fastforce}
\end{align*}

lemma \(\text{hb-consistent-prefix-suffix-exists} \):
\begin{align*}
\text{assumes } & \text{hb-consistent } ys \\
& \text{hb-consistent } (xs @ [x]) \\
& \{x\} \cup \text{set } xs = \text{set } ys \\
& \text{distinct } (x#xs) \\
& \text{distinct } ys \\
\text{shows } & \exists \text{prefix suffix. } ys = \text{prefix } @ x \# \text{suffix } \land \text{concurrent-set } x \text{ suffix} \\
\text{using } & \text{assms proof (induction arbitrary; } xs \text{ rule: } \text{hb-consistent.induct, simp)} \\
\text{fix } & xs \ y \ ys \\
\text{assume } & \text{IH: } (\forall xs. \text{hb-consistent } (xs @ [x]) \\
& \{x\} \cup \text{set } xs = \text{set } ys \implies \\
& \text{distinct } (x \# xs) \implies \text{distinct } ys \implies \\
& \exists \text{prefix suffix. } ys = \text{prefix } @ x \# \text{suffix } \land \text{concurrent-set } x \text{ suffix}) \\
\text{assume } & \text{assms: } \text{hb-consistent } ys \forall x \in \text{set } ys. \neg \text{hb y x} \\
& \text{hb-consistent } (xs @ [x]) \\
& \{x\} \cup \text{set } xs = \text{set } (ys @ [y]) \\
& \text{distinct } (x \# xs) \text{ distinct } (ys @ [y]) \\
\text{hence } & x = y \lor y \in \text{set } xs \\
\text{using } & \text{assms by auto} \\
\text{moreover } \{ \\
\text{assume } & x = y \\
\text{hence } & \exists \text{prefix suffix. } ys @ [y] = \text{prefix } @ x \# \text{suffix } \land \text{concurrent-set } x \text{ suffix} \\
\text{by force} \} \\
\text{moreover } \{ \\
\text{assume } & y\text{-in-xs: } y \in \text{set } xs \\
\text{hence } & \{x\} \cup (\text{set } xs - \{y\}) = \text{set } ys \\
\text{using } & \text{assms by (auto intro: set-equality-technical)} \\
\text{hence } & \text{remove-y-in-xs: } \{x\} \cup \text{set } (\text{remove1 } y xs) = \text{set } ys \\
\text{using } & \text{assms by auto} \\
\text{moreover have } & \text{hb-consistent } ((\text{remove1 } y xs) @ [x]) \\
\text{using } & \text{assms } \text{hb-consistent-remove1 by force} \\
\text{moreover have } & \text{distinct } (x \# (\text{remove1 } y xs)) \\
\text{using } & \text{assms by simp} \\
\text{moreover have } & \text{distinct } ys \\
\text{using } & \text{assms by simp} \\
\text{ultimately obtain } prefix suffix \text{ where } ys\text{-split: } ys = \text{prefix } @ x \# \text{suffix } \land \text{concurrent-set } x \text{ suffix} \\
\text{using } & \text{IH by force} \\
\text{moreover } \}
have concurrent x y
using assms y-in-xs remove-y-in-xs concurrent-def by blast
hence concurrent-set x (suffix@[y])
using ys-split by clarsimp

} ultimately have ∃prefix suffix. ys @ [y] = prefix @ x # suffix ∧ concurrent-set x suffix
by force

} ultimately show ∃prefix suffix. ys @ [y] = prefix @ x # suffix ∧ concurrent-set x suffix
by auto
qed

lemma hb-consistent-append [intro!]:
assumes hb-consistent suffix
hb-consistent prefix
∧ s p. s ∈ set suffix → p ∈ set prefix → ¬ s ⊖ p
shows hb-consistent (prefix ⊖ suffix)
using assms by (induction rule: hb-consistent.induct) force+

lemma hb-consistent-append-porder:
assumes hb-consistent (xs @ ys)
x ∈ set xs
y ∈ set ys
shows ¬ y ⊖ x
using assms by (induction ys arbitrary: xs rule: rev-induct) force+

3.3 Apply operations

We can now define a function \textit{apply-operations} that composes an arbitrary list of operations into a state transformer. We first map interp across the list to obtain a state transformer for each operation, and then collectively compose them using the Kleisli arrow composition combinator.

definition apply-operations :: 'a list ⇒ 'b ≪ 'b
where
apply-operations es ≡ foldl (⊿) Some (map interp es)

lemma apply-operations-empty [simp]: apply-operations [] = Some s
by(auto simp: apply-operations-def)

lemma apply-operations-Snoc [simp]:
apply-operations (xs@[x]) = (apply-operations xs) ⊲ ⟨x⟩
by(auto simp add: apply-operations-def kleisli-def)

3.4 Concurrent operations commute

We say that two operations x and y commute whenever \(⟨x⟩ ⊲ ⟨y⟩ = ⟨y⟩ ⊲ ⟨x⟩\), i.e. when we can swap the order of the composition of their interpretations without changing the resulting state transformer. For our purposes, requiring that this property holds for all pairs of operations is too strong. Rather, the commutation property is only required to hold for operations that are concurrent.

definition concurrent-ops-commute :: 'a list ⇒ bool where
concurrent-ops-commute xs ≡ ∀ x y. {x, y} ⊆ set xs → concurrent x y → ⟨x⟩ ⊲ ⟨y⟩ = ⟨y⟩ ⊲ ⟨x⟩

lemma concurrent-ops-commute-empty [intro!]: concurrent-ops-commute []
by(auto simp: concurrent-ops-commute-def)

lemma concurrent-ops-commute-singleton [intro!]: concurrent-ops-commute [x]
by (auto simp: concurrent-ops-commute-def)

lemma concurrent-ops-commute-appendD [dest]:
 assumes concurrent-ops-commute (xs@ys)
 shows concurrent-ops-commute xs
using assms by (auto simp: concurrent-ops-commute-def)

lemma concurrent-ops-commute-rearrange:
 concurrent-ops-commute (xs@x#ys) = concurrent-ops-commute (xs@ys@x)
by (clarsimp simp: concurrent-ops-commute-def)

lemma concurrent-ops-commute-concurrent-set:
 assumes concurrent-ops-commute (prefix@suffix@[x])
 concurrent-set x suffix
 distinct (prefix @ x # suffix)
 shows apply-operations (prefix @ suffix @ [x]) = apply-operations (prefix @ x # suffix)
using assms proof (induction suffix arbitrary: rule: rev-induct, force)
fix a xs
assume IH: concurrent-ops-commute (prefix @ xs @ [x]) \implies
 concurrent-set x xs \implies distinct (prefix @ x # xs) \implies
 apply-operations (prefix @ xs @ [x]) = apply-operations (prefix @ x # xs)
assume assms: concurrent-ops-commute (prefix @ (xs @ [a]) @ [x])
 concurrent-set x (xs @ [a]) distinct (prefix @ x # xs @ [a])
hence ac-comm: (a) \triangleright (x) \triangleright (a)
by (clarsimp simp: concurrent-ops-commute-def) blast
have copc: concurrent-ops-commute (prefix @ xs @ [x])
 using assms by (clarsimp simp: concurrent-ops-commute-def) blast
have apply-operations ((prefix @ x # xs) @ [a]) = (apply-operations (prefix @ x # xs)) \triangleright (a)
 by (simp del: append-assoc)
also have ... = (apply-operations (prefix @ xs @ [x])) \triangleright (a)
 using IH assms copc by auto
also have ... = ((apply-operations (prefix @ xs)) \triangleright (x)) \triangleright (a)
 by (simp add: append-assoc[symmetric] del: append-assoc)
also have ... = (apply-operations (prefix @ xs)) \triangleright ((a) \triangleright (x))
 using ac-comm kleisli-comm-cong kleisli-assoc by simp
finally show apply-operations (prefix @ (xs @ [a]) @ [x]) = apply-operations (prefix @ x # xs @ [a])
 by (metis Cons-eq-appendD append-assoc apply-operations Snoc kleisli-assoc)
qed

3.5 Abstract convergence theorem

We can now state and prove our main theorem, \textit{convergence}. This theorem states that two hb-consistent lists of distinct operations, which are permutations of each other and in which concurrent operations commute, have the same interpretation.

theorem convergence:
 assumes set xs = set ys
 concurrent-ops-commute xs
 concurrent-ops-commute ys
 distinct xs
 distinct ys
 hb-consistent xs
 hb-consistent ys
 shows apply-operations xs = apply-operations ys
using assms proof (induction xs arbitrary: rule: rev-induct, simp)
case assms: (snoc x xs)
then obtain prefix suffix where ys-split: ys = prefix @ x # suffix \wedge concurrent-set x suffix
 using hb-consistent-prefix-suffix-exists by fastforce
moreover hence \(\ast: \) distinct (prefix @ suffix) hb-consistent xs
 using assms by auto
moreover {
 have hb-consistent prefix hb-consistent suffix
 using ys-split assms hb-consistent-append-D2 hb-consistent-append-elim-ConsD by blast+
 hence hb-consistent (prefix @ suffix)
 by (metis assms(8) hb-consistent-append hb-consistent-append-porder list.set-intros(2) ys-split)
}
moreover have \(\ast\ast: \) concurrent-ops-commute (prefix @ suffix @ \([x]\))
 using assms ys-split by (clarsimp simp: concurrent-ops-commute-def)
moreover hence concurrent-ops-commute (prefix @ suffix)
 by (force simp del: append-assoc simp add: append-assoc[symmetric])
ultimately have apply-operations xs = apply-operations (prefix@suffix)
 using assms by simp (metis Diff-insert-absorb Un-iff * concurrent-ops-commute-appendD set-append)
moreover have apply-operations (prefix@suffix @ \([x]\)) = apply-operations (prefix@x \# suffix)
 using ys-split assms \(\ast\ast \) concurrent-ops-commute-concurrent-set by force
ultimately show \(\ast\prime \) case
 using ys-split by (force simp: append-assoc[symmetric] simp del: append-assoc)
qed

corollary convergence-ext:
 assumes set xs = set ys
 concurrent-ops-commute xs
 concurrent-ops-commute ys
 distinct xs
 distinct ys
 hb-consistent xs
 hb-consistent ys
 shows apply-operations xs s = apply-operations ys s
 using convergence assms by metis
end

3.6 Convergence and progress

Besides convergence, another required property of SEC is progress: if a valid operation was
issued on one node, then applying that operation on other nodes must also succeed—that is,
the execution must not become stuck in an error state. Although the type signature of the
interpretation function allows operations to fail, we need to prove that in all \(hb-consistent \)
network behaviours such failure never actually occurs. We capture the combined requirements
in the strong-eventual-consistency locale, which extends happens-before.
locale strong-eventual-consistency = happens-before +
 fixes op-history :: `'a list ⇒ bool
 and initial-state :: `'b
 assumes causality: op-history xs ⟹ hb-consistent xs
 assumes distinctness: op-history xs ⟹ distinct xs
 assumes commutativity: op-history xs ⟹ concurrent-ops-commute xs
 assumes no-failure: op-history(xs@\([x]\)) ⟹ apply-operations xs initial-state = Some state ⟹ (x)
 state ≠ None
 assumes trunc-history: op-history(xs@\([x]\)) ⟹ op-history xs
begin

theorem sec-convergence:
 assumes set xs = set ys
 op-history xs
 op-history ys
 shows apply-operations xs = apply-operations ys
 by (meson assms convergence causality commutativity distinctness)
theorem sec-progress:
 assumes op-history xs
 shows apply-operations xs initial-state ≠ None
using assms proof(induction xs rule: rev-induct, simp)
case (suc x xs)
 have apply-operations xs initial-state ≠ None
 using snoc.IH snoc.prems trunc-history kleisli-def bind-def by blast
moreover have apply-operations (xs @ [x]) = apply-operations xs ⊢ (x)
 by simp
ultimately show ?case
 using no-failure snoc.prems by (clarsimp simp add: kleisli-def split: bind-splits)
qed

end

4 Axiomatic network models

In this section we develop a formal definition of an asynchronous unreliable causal broadcast network. We choose this model because it satisfies the causal delivery requirements of many operation-based CRDTs [1, 2]. Moreover, it is suitable for use in decentralised settings, as motivated in the introduction, since it does not require waiting for communication with a central server or a quorum of nodes.

theory
 Network
imports
 Convergence
begin

4.1 Node histories

We model a distributed system as an unbounded number of communicating nodes. We assume nothing about the communication pattern of nodes—we assume only that each node is uniquely identified by a natural number, and that the flow of execution at each node consists of a finite, totally ordered sequence of execution steps (events). We call that sequence of events at node \(i \) the history of that node. For convenience, we assume that every event or execution step is unique within a node’s history.

locale node-histories =
 fixes history :: nat ⇒ 'evt list
 assumes histories-distinct [intro!, simp]: distinct (history i)

lemma (in node-histories) history-finite:
 shows finite (set (history i))
by auto

definition (in node-histories) history-order :: 'evt ⇒ nat ⇒ 'evt ⇒ bool (-/ ⊏ / - [50,1000,50]50)
where
 \(x ⊏^i z \equiv ∃xs ys zs. xs@x#ys@z#zs = history i \)

lemma (in node-histories) node-total-order-trans:
 assumes e1 ⊏^i e2
 and e2 ⊏^i e3
 shows e1 ⊏^i e3

12
proof
obtain $xs_1 \ \ xs_2 \ \ ys_1 \ \ ys_2 \ \ zs_1 \ \ zs_2$ where $*: \ \ xs_1 \ @ \ e_1 \ # \ ys_1 \ @ \ e_2 \ # \ zs_1 = \ \text{history} \ i$
$\ \ \ \ \ xs_2 \ @ \ e_2 \ # \ ys_2 \ @ \ e_3 \ # \ zs_2 = \ \text{history} \ i$
using history-order-def assms by auto
hence $xs_1 \ @ \ e_1 \ # \ ys_1 = \ \text{history} \ i$
by (rule-tac $xs=\ \text{history} \ i$ and $ys=\ [e_2]$ in pre-suf-eq-distinct-list) auto
thus $?\text{thesis}$ by (clarsimp simp add: history-order-def)

thus $?\text{thesis}$ by (clarsimp simp add: history-order-def)

qed

lemma (in node-histories) local-order-carrier-closed:
assumes $e_1 \sqsubseteq \ e_2$
shows $\{e_1, e_2\} \subseteq \ \text{set} \ (\ \text{history} \ i)$
using assms by (clarsimp simp add: history-order-def)

lemma (in node-histories) node-total-order-irrefl:
shows $\neg (e \sqsubseteq \ e)$
by (clarsimp simp add: history-order-def)

lemma (in node-histories) node-total-order-antisym:
assumes $e_1 \sqsubseteq \ e_2$
and $e_2 \sqsubseteq \ e_1$
shows False
using assms node-total-order-irrefl node-total-order-trans by blast

lemma (in node-histories) node-order-is-total:
assumes $e_1 \in \ \text{set} \ (\ \text{history} \ i)$
and $e_2 \in \ \text{set} \ (\ \text{history} \ i)$
and $e_1 \neq e_2$
shows $e_1 \sqsubseteq \ e_2 \lor \ e_2 \sqsubseteq \ e_1$
using assms unfolding history-order-def by (metis list-split-two-elems histories-distinct)

definition (in node-histories) prefix-of-node-history :: 'evt list \Rightarrow nat \Rightarrow bool (infix prefix of 50) where
$xs \ \text{prefix of} \ i \equiv \exists ys. \ xs\@\ys = \text{history} \ i$

lemma (in node-histories) carriers-head-lt:
assumes $y\#ys = \ \text{history} \ i$
shows $\neg (x \sqsubseteq \ y)$
using assms
apply (clarsimp simp add: history-order-def)
apply (rename-tac $xs_1 \ \ ys_1 \ \ zs_1$)
apply (subgoal-tac $xs_1 \ \@ \ x \ # \ ys_1 = [] \ \land \ zs_1 = \ ys$)
apply clarsimp
apply (rule-tac $xs=\ \text{history} \ i$ and $ys=\ [y]$ in pre-suf-eq-distinct-list)
apply auto
done

lemma (in node-histories) prefix-of-ConsD [dest]:
assumes $x \neq \ \text{prefix of} \ i$
shows $[x] \ \text{prefix of} \ i$
using assms by (auto simp: prefix-of-node-history-def)

lemma (in node-histories) prefix-of-appendD [dest]:
assumes $xs \ \@ \ ys \ \text{prefix of} \ i$

shows xs prefix of i
using assms by (auto simp: prefix-of-node-history-def)

lemma (in node-histories) prefix-distinct:
 assumes xs prefix of i
 shows distinct xs
using assms by (clarsimp simp: prefix-of-node-history-def) (metis histories-distinct distinct-append)

lemma (in node-histories) prefix-to-carriers [intro]:
 assumes xs prefix of i
 shows set xs ⊆ set (history i)
using assms by (clarsimp simp: prefix-of-node-history-def) (metis Un_iff set-append)

lemma (in node-histories) prefix-elem-to-carriers:
 assumes xs prefix of i
 and x ∈ set xs
 shows x ∈ set (history i)
using assms by (clarsimp simp: prefix-of-node-history-def) (metis Un_iff set-append)

lemma (in node-histories) local-order-prefix-closed:
 assumes x ⊑ i y
 and xs prefix of i
 and y ∈ set xs
 shows x ∈ set xs
proof –
 obtain ys where $xs@ys$ = history i
 using assms prefix-of-node-history-def by blast
moreover obtain as cs where $as@x#bs@y#$ cs = history i
 using assms history-order-def by blast
moreover obtain pre suf where $*:xs=pre@y#$ suf
 using assms split-list by fastforce
ultimately have $pre=as@x#bs$ $∧$ $suf@ys=cs$
by (rule-tac $xs=$history i and ys=[y] in pre-suf-eq-distinct-list) auto
thus ?thesis
 using assms $*$ by clarsimp
qed

lemma (in node-histories) local-order-prefix-closed-last:
 assumes x ⊑ i y
 and $xs@[y]$ prefix of i
 shows x ∈ set xs
proof –
 have x ∈ set ($xs@[y]$)
 using assms by (force dest: local-order-prefix-closed)
 thus ?thesis
 using assms by (force simp add: node-total-order-irrefl prefix-to-carriers)
qed

lemma (in node-histories) events-before-exist:
 assumes x ∈ set (history i)
 shows $∃pre$. $pre@[x]$ prefix of i
proof –
 have $∃idx$. idx < length (history i) $∧$ (history i)!idx = x
 using assms by (simp add: set-elem-nth)
 thus ?thesis
 by (metis append-take-drop-id take-Suc-conv-app-nth prefix-of-node-history-def)
qed
lemma (in node-histories) events-in-local-order:
assumes pre @ [e2] prefix of i
and e1 ∈ set pre
shows e1 ⊑ i e2
using assms split-list unfolding history-order-def prefix-of-node-history-def by fastforce

4.2 Asynchronous broadcast networks

We define a new locale network containing three axioms that define how broadcast and deliver events may interact, with these axioms defining the properties of our network model.

datatype 'msg event
 = Broadcast 'msg
 | Deliver 'msg

locale network = node-histories history for history :: nat ⇒ 'msg event list +
fixes msg-id :: 'msg ⇒ 'msgid

assumes delivery-has-a-cause: [Deliver m ∈ set (history i)] ⇒ ∃ j. Broadcast m ∈ set (history j)
and deliver-locally: [Broadcast m ∈ set (history i)] ⇒ Broadcast m ⊑ i Deliver m
and msg-id-unique: [Broadcast m1 ∈ set (history i);
 Broadcast m2 ∈ set (history j);
 msg-id m1 = msg-id m2] ⇒ i = j ∧ m1 = m2

The axioms can be understood as follows:

delivery-has-a-cause: If some message m was delivered at some node, then there exists some node on which m was broadcast. With this axiom, we assert that messages are not created “out of thin air” by the network itself, and that the only source of messages are the nodes.

deliver-locally: If a node broadcasts some message m, then the same node must subsequently also deliver m to itself. Since m does not actually travel over the network, this local delivery is always possible, even if the network is interrupted. Local delivery may seem redundant, since the effect of the delivery could also be implemented by the broadcast event itself; however, it is standard practice in the description of broadcast protocols that the sender of a message also sends it to itself, since this property simplifies the definition of algorithms built on top of the broadcast abstraction [4].

msg-id-unique: We do not assume that the message type 'msg has any particular structure; we only assume the existence of a function msg-id:: 'msg⇒ 'msgid that maps every message to some globally unique identifier of type 'msgid. We assert this uniqueness by stating that if m1 and m2 are any two messages broadcast by any two nodes, and their msg-ids are the same, then they were in fact broadcast by the same node and the two messages are identical. In practice, these globally unique IDs can by implemented using unique node identifiers, sequence numbers or timestamps.

lemma (in network) broadcast-before-delivery:
assumes Deliver m ∈ set (history i)
shows ∃ j. Broadcast m ⊑ i Deliver m
using assms deliver-locally delivery-has-a-cause by blast

lemma (in network) broadcasts-unique:
assumes i ≠ j
and Broadcast m ∈ set (history i)
shows Broadcast m ∉ set (history j)
Based on the well-known definition by [8], we say that \(m_1 \prec m_2 \) if any of the following is true:

1. \(m_1 \) and \(m_2 \) were broadcast by the same node, and \(m_1 \) was broadcast before \(m_2 \).
2. The node that broadcast \(m_2 \) had delivered \(m_1 \) before it broadcast \(m_2 \).
3. There exists some operation \(m_3 \) such that \(m_1 \prec m_3 \) and \(m_3 \prec m_2 \).

\[
\text{inductive (in network)} \ hb :: \ 'msg \Rightarrow \ 'msg \Rightarrow \ bool \
\text{where}
\begin{align*}
\text{hb-broadcast:} & \quad \text{Broadcast } m_1 \searrow i \text{ Broadcast } m_2 \Rightarrow hb \ m_1 \ m_2 \\
\text{hb-deliver:} & \quad \text{Deliver } m_1 \searrow i \text{ Broadcast } m_2 \Rightarrow hb \ m_1 \ m_2 \\
\text{hb-trans:} & \quad \text{hb } m_1 \ m_2 \ ; \ hb \ m_2 \ m_3 \Rightarrow hb \ m_1 \ m_3
\end{align*}
\]

\[
\text{inductive-cases (in network)} \ hb \text{-elim: } hb \ x \ y
\]

\[
\text{definition (in network)} \ weak-hb :: \ 'msg \Rightarrow \ 'msg \Rightarrow \ bool \
\text{where}
\begin{align*}
weak-hb \ m_1 \ m_2 & \equiv \ hb \ m_1 \ m_2 \\
& \lor \ m_1 = m_2
\end{align*}
\]

\[
\text{locale causal-network = network +}
\text{assumes causal-delivery: } \text{Deliver } m_2 \in \text{set (history } j) \Rightarrow hb \ m_1 \ m_2 \Rightarrow \text{Deliver } m_1 \searrow i \text{ Deliver } m_2
\]

\[
\text{lemma (in causal-network) causal-broadcast:}
\text{assumes } \text{Deliver } m_2 \in \text{set (history } j) \\
\text{and } \text{Deliver } m_1 \searrow i \text{ Broadcast } m_2
\text{shows } \text{Deliver } m_1 \searrow i \text{ Deliver } m_2
\text{using } \text{assms causal-delivery } hb \text{-intro (2) by blast}
\]

\[
\text{lemma (in network) } hb\text{-broadcast-exists1:}
\text{assumes } hb \ m_1 \ m_2
\text{shows } \exists i. \text{Broadcast } m_1 \in \text{set (history } i)
\text{using } \text{assms}
\text{apply (induction rule: } hb \text{-induct)}
\text{apply (meson insert-subset node-histories.local-order-carrier-closed node-histories-axioms)}
\text{apply (meson delivery-has-a-cause insert-subset local-order-carrier-closed)}
\text{apply simp}
\text{done}
\]

\[
\text{lemma (in network) } hb\text{-broadcast-exists2:}
\text{assumes } hb \ m_1 \ m_2
\text{shows } \exists i. \text{Broadcast } m_2 \in \text{set (history } i)
\text{using } \text{assms}
\text{apply (induction rule: } hb \text{-induct)}
\text{apply (meson insert-subset node-histories.local-order-carrier-closed node-histories-axioms)}
\text{apply (meson delivery-has-a-cause insert-subset local-order-carrier-closed)}
\text{apply simp}
\text{done}
\]

\[
\text{4.3 Causal networks}
\text{lemma (in causal-network) } hb\text{-has-a-reason:}
\text{assumes } hb \ m_1 \ m_2
\text{and } \text{Broadcast } m_2 \in \text{set (history } i)
\text{shows } \text{Deliver } m_1 \in \text{set (history } i) \lor \text{Broadcast } m_1 \in \text{set (history } i)
\text{using } \text{assms}
\text{apply (induction rule: } hb\text{-induct)}
\text{apply (metis insert-subset local-order-carrier-closed network broadcasts-unique network-axioms)}
\text{apply (metis insert-subset local-order-carrier-closed network broadcasts-unique network-axioms)}
\text{using } \text{hb-trans causal-delivery local-order-carrier-closed apply blast}
\]

16
done

lemma (in causal-network) hb-cross-node-delivery:
assumes hb m1 m2
and Broadcast m1 ∈ set (history i)
and Broadcast m2 ∈ set (history j)
and i ≠ j
shows Deliver m1 ∈ set (history j)
using assms
apply (induction rule: hb.induct)
apply (metis broadcasts-unique insert-subset local-order-carrier-closed)
apply (metis insert-subset local-order-carrier-closed network.broadcasts-unique network-axioms)
using broadcasts-unique hb.intros(3) hb-has-a-reason apply blast
done

lemma (in causal-network) hb-irrefl:
assumes hb m1 m2
shows m1 ≠ m2
using assms
proof (induction rule: hb.induct)
case (hb-broadcast m1 i m2) thus ?case
using node-total-order-antisym by blast
next
case (hb-deliver m1 i m2) thus ?case
by (meson causal-broadcast insert-subset local-order-carrier-closed node-total-order-irrefl)
next
case (hb-trans m1 m2 m3)
then obtain i j where Broadcast m3 ∈ set (history i) Broadcast m2 ∈ set (history j)
using hb-broadcast-exists2 by blast
then show ?case
using assms hb-trans by (meson causal-network.causal-delivery causal-network-axioms
deliver-locally insert-subset network hb.intros(3) network-axioms
node-histories.local-order-carrier-closed assms hb-trans
node-histories-axioms node-total-order-irrefl)
qed

lemma (in causal-network) hb-broadcast-broadcast-order:
assumes hb m1 m2
and Broadcast m1 ∈ set (history i)
and Broadcast m2 ∈ set (history i)
shows Broadcast m1 ⊏ i Broadcast m2
using assms
proof (induction rule: hb.induct)
case (hb-broadcast m1 i m2) thus ?case
by (metis insertI1 local-order-carrier-closed network.broadcasts-unique network-axioms subsetCE)
next
case (hb-deliver m1 i m2) thus ?case
by (metis broadcasts-unique insert-subset local-order-carrier-closed
network.broadcast-before-delivery network-axioms node-total-order-trans)
next
case (hb-trans m1 m2 m3)
then show ?case
proof (cases Broadcast m2 ∈ set (history i))
case True thus ?thesis
using hb-trans node-total-order-trans by blast
next
case False hence Deliver m2 ∈ set (history i) m1 ≠ m2 m2 ≠ m3
using hb-has-a-reason hb-trans by auto
thus ?thesis
by (metis hb-trans event.inject(1) hb.intros(1) hb-irrefl network hb.intros(3) network-axioms
lemma (in causal-network) hb-antisym:
assumes hb x y and hb y x
shows False
using assms proof (induction rule: hb.induct)
fix m1 i m2
assumes hb m2 m1 and Broadcast m1 ⊑ broadcast m2
shows False using assms (1) hb.intro (2) hb-irrefl by blast
next
fix m1 i m2
assumes hb m2 m1 and Deliver m1 ⊑ broadcast m2
shows False using assms (1) hb.intro (2) hb-irrefl by blast
next
fix m1 i m2
assumes hb m2 m1 and Deliver m1 ⊑ broadcast m2
shows False using assms (1) hb.intro (2) hb-irrefl by blast
next
fix m1 m2 m3
assumes hb m1 m2 hb m2 m3 hb m3 m1
shows False using hb.intro (3) by blast
qed

definition (in network) node-deliver-messages :: 'msg event list ⇒ 'msg list where
node-deliver-messages cs ≡ List.map-filter (λe. case e of Deliver m ⇒ Some m | _ ⇒ None) cs

lemma (in network) node-deliver-messages-empty [simp]:
shows node-deliver-messages [] = []
by (auto simp add: node-deliver-messages-def List.map-filter-simps)

lemma (in network) node-deliver-messages-Cons:
shows node-deliver-messages (x#xs) = (node-deliver-messages [x])@[node-deliver-messages xs]
lemma (in network) node-deliver-messages-append:
 shows node-deliver-messages (xs@ys) = (node-deliver-messages xs)@(node-deliver-messages ys)
 by (auto simp add: node-deliver-messages-def map-filter-def)

lemma (in network) node-deliver-messages-Broadcast [simp]:
 shows node-deliver-messages [Broadcast m] = []
 by (clarsimp simp: node-deliver-messages-def map-filter-def)

lemma (in network) node-deliver-messages-Deliver [simp]:
 shows node-deliver-messages [Deliver m] = [m]
 by (clarsimp simp: node-deliver-messages-def map-filter-def)

lemma (in network) prefix-msg-in-history:
 assumes es prefix of i
 and m ∈ set (node-deliver-messages es)
 shows Deliver m ∈ set (history i)
 using assms prefix-to-carriers by (fastforce simp: node-deliver-messages-def map-filter-def split: event.split_asm)

lemma (in network) prefix-contains-msg:
 assumes es prefix of i
 and m ∈ set (node-deliver-messages es)
 shows Deliver m ∈ set es
 using assms by (auto simp: node-deliver-messages-def map-filter-def split: event.split_asm)

lemma (in network) node-deliver-messages-distinct:
 assumes xs prefix of i
 shows distinct (node-deliver-messages xs)
 using assms proof (induction xs rule: rev-induct)
 case Nil thus ?case by simp
 next
 case (snoc x xs)
 { fix y assume *: y ∈ set (node-deliver-messages xs) y ∈ set (node-deliver-messages [x])
 moreover have distinct (xs @ [x])
 using assms snoc prefix-distinct by blast
 ultimately have False
 using assms apply (case-tac x; clarsimp simp add: map-filter-def node-deliver-messages-def)
 using * prefix-contains-msg snoc.prems by blast
 } thus ?case
 using snoc by (fastforce simp add: node-deliver-messages-append node-deliver-messages-def map-filter-def)
qed

lemma (in network) drop-last-message:
 assumes evts prefix of i
 and node-deliver-messages evts = msgs @ [last-msg]
 shows ∃ pre. pre prefix of i ∧ node-deliver-messages pre = msgs
 proof
 have Deliver last-msg ∈ set evts
 using assms network.prefix-contains-msg network-axioms by force
 then obtain idx where *: idx < length evts evts ! idx = Deliver last-msg
 by (meson set-elem-nth)
 then obtain pre suf where evts = pre ⊕ (evts ! idx) # suf
 using id-take-nth-drop by blast
 hence **: evts = pre ⊕ (Deliver last-msg) # suf
 using assms * by auto
 moreover hence distinct (node-deliver-messages ([Deliver last-msg] @ suf))
 by (metis assms(1) assms(2) distinct-singleton node-deliver-messages-Cons node-deliver-messages-Deliver)
node-deliver-messages-append node-deliver-messages-distinct not-Cons-self2 pre-suf-eq-distinct-list

ultimately have node-deliver-messages ([Deliver last-msg] @ suf) = [last-msg] @ []

by (metis append-self-cone assms(1) assms(2) node-deliver-messages-Cons node-deliver-messages-Deliver
node-deliver-messages-append node-deliver-messages-distinct not-Cons-self2 pre-suf-eq-distinct-list)

thus ?thesis
using assms * * by (metis append1-eq-conv append-Cons append-Nil node-deliver-messages-append
prefix-of-appendD)

qed

locale network-with-ops

begin

definition interp-msg :: 'msgid × 'op ⇒ 'state ‒ ‒ 'state where
interp-msg msg state ≡ interp (snd msg) state

sublocale hb: happens-before weak-hb hb interp-msg
proof
fix x y :: 'msgid × 'op
show hb x y = (weak-hb x y ∧ ¬ weak-hb y x)
unfolding weak-hb-def using hb-antisym by blast
next
fix x
show weak-hb x x
using weak-hb-def by blast
next
fix x y z
assume weak-hb x y weak-hb y z
thus weak-hb x z
using weak-hb-def by (metis network hb intros(3) network-axioms)

qed

end

definition (in network-with-ops) apply-operations :: ('msgid × 'op) event list ⇒ 'state where
apply-operations es ≡ hb.apply-operations (node-deliver-messages es) initial-state

definition (in network-with-ops) node-deliver-ops :: ('msgid × 'op) event list ⇒ 'op list where
node-deliver-ops cs ≡ map snd (node-deliver-messages cs)

lemma (in network-with-ops) apply-operations-empty [simp]:
shows apply-operations [] = Some initial-state
by(auto simp add: apply-operations-def)

lemma (in network-with-ops) apply-operations-Broadcast [simp]:
shows apply-operations (xs @ [Broadcast m]) = apply-operations xs
by(auto simp add: apply-operations-def node-deliver-messages-def map-filter-def)

lemma (in network-with-ops) apply-operations-Deliver [simp]:
shows apply-operations (xs @ [Deliver m]) = (apply-operations xs ⊻ interp-msg m)
by(auto simp add: apply-operations-def node-deliver-messages-def map-filter-def kleisli-def)

lemma (in network-with-ops) hb-consistent-technical:
assumes \(\forall m \ n. \ m < \text{length} \ cs \implies n < m \implies \ cs \uplus m \subseteq \ cs \uplus \ n \uplus \ cs \uplus m \)
shows hb hb-consistent (node-deliver-messages cs)
using assms proof (induction cs rule: rev-induct)
case Nil thus ?case
 by (simp add: node-deliver-messages-def hb hb-consistent.intro(1) map-filter-simps(2))
next
case (snoc x xs)
hence *: (∀m n. m < length xs ⇒ n < m ⇒ xs ! n ⊏ i xs ! m)
 by (−, erule-tac x=m in meta-allE, erule-tac x=n in meta-allE, clarsimp simp add: nth-append)
then show ?case
proof (cases x)
 case (Broadcast x1)
 thus ?thesis
 using * by (clarsimp)
next
case (Deliver x2)
 thus ?thesis
 using *
 apply (clarsimp simp add: node-deliver-messages-def map-filter-def map-filter-append)
 apply (rename-tac m m1 m2)
 apply (clarsimp)
 apply (erule-tac x=m in meta-allE)
 apply (clarsimp simp add: nth-append)
 apply (erule-tac x=n in meta-allE)
 apply (clarsimp simp add: nth-append)
 apply (drule set-elem-nth)
 apply (erule exE)
 apply (erule conjE)
 apply (erule-tac x=length xs in meta-allE)
 apply (clarsimp simp add: nth-append)
 by (metis causal-delivery insert-subset node-histories local-order-carrier-closed node-histories-axioms node-total-order-antisym)
qed

qed

locale network-with-constrained-ops = network-with-ops

fixes valid-msg :: 'c ⇒ 'a × 'b ⇒ bool

assumes broadcast-only-valid-msgs: pre @ [Broadcast m] prefix of i ⇒ ∃ state. apply-operations pre = Some state ∧ valid-msg state m

lemma (in network-with-constrained-ops) broadcast-is-valid:
assumes Broadcast m ∈ set (history i)

qed

locale network-with-constrained-ops = network-with-ops +

fixes valid-msg :: 'c ⇒ ('a × 'b) ⇒ bool

assumes broadcast-only-valid-msgs: pre @ [Broadcast m] prefix of i ⇒ ∃ state. apply-operations pre = Some state ∧ valid-msg state m

lemma (in network-with-constrained-ops) broadcast-is-valid:
assumes Broadcast m ∈ set (history i)
shows $\exists \text{state}. \text{valid-msg state m}$
using assms broadcast-only-valid-msgs events-before-exist by blast

lemma (in network-with-constrained-ops) deliver-is-valid:
assumes $\text{Deliver m} \in \text{set \{history i\}}$
shows $\exists j \pre \text{state}. \pre \otimes [\text{Broadcast m}] \prefix \text{of j} \land \text{apply-operations pre} = \text{Some state} \land \text{valid-msg state m}$
using assms apply (clarsimp dest!: delivery-has-a-cause)
using broadcast-only-valid-msgs events-before-exist apply blast
done

lemma (in network-with-constrained-ops) deliver-in-prefix-is-valid:
assumes $\text{xs} \prefix \text{of i}$ and $\text{Deliver m} \in \text{set xs}$
shows $\exists \text{state}. \text{valid-msg state m}$
by (meson assms network-with-constrained-ops deliver-is-valid network-with-constrained-ops-axioms prefix-elem-to-carriers)

4.4 Dummy network models

interpretation trivial-node-histories: node-histories $\lambda m. []$
by standard auto

interpretation trivial-network: network $\lambda m. [] \ id$
by standard auto

interpretation trivial-causal-network: causal-network $\lambda m. [] \ id$
by standard auto

interpretation trivial-network-with-ops: network-with-ops $\lambda m. [] (\lambda x. y. \text{Some y}) \ 0$
by standard auto

interpretation trivial-network-with-constrained-ops: network-with-constrained-ops $\lambda m. [] (\lambda x. y. \text{Some y}) \ 0 \ \lambda x. \text{True}$
by standard (simp add: trivial-node-histories.prefix-of-node-history-def)

end

5 Replicated Growable Array

The RGA, introduced by [10], is a replicated ordered list (sequence) datatype that supports insert and delete operations.

theory
 Ordered-List
imports
 Util
begin

type-synonym ($'id$, 'v) elt = '$id \times '$v \times bool

5.1 Insert and delete operations

Insertion operations place the new element after an existing list element with a given ID, or at the head of the list if no ID is given. Deletion operations refer to the ID of the list element that is to be deleted. However, it is not safe for a deletion operation to completely remove a list element, because then a concurrent insertion after the deleted element would not be able to
locate the insertion position. Instead, the list retains so-called tombstones: a deletion operation merely sets a flag on a list element to mark it as deleted, but the element actually remains in the list. A separate garbage collection process can be used to eventually purge tombstones [10], but we do not consider tombstone removal here.

```
hide-const insert

fun insert-body :: (′id::{linorder}, ′v) elt list ⇒ (′id, ′v) elt ⇒ (′id, ′v) elt list where
  insert-body [] e = [e] |
  insert-body (x#xs) e =
    (if fst x < fst e then
      e#x#xs
    else x#insert-body xs e)

fun insert :: (′id::{linorder}, ′v) elt list ⇒ (′id, ′v) elt ⇒ ′id option ⇒ (′id, ′v) elt list option where
  insert xs e None = Some (insert-body xs e) |
  insert [] e (Some i) = None |
  insert (x#xs) e (Some i) =
    (if fst x = i then
      Some (x#insert-body xs e)
    else
      insert xs e (Some i) ≡ (λt. Some (x#t)))

fun delete :: (′id::{linorder}, ′v) elt list ⇒ ′id ⇒ (′id, ′v) elt list option where
  delete [] i = None |
  delete ((i′, v, flag)#xs) i =
    (if i′ = i then
      Some ((i′, v, True)#xs)
    else
      delete xs i ≡ (λt. Some ((i′,v,flag)#t)))

5.2 Well-definedness of insert and delete

lemma insert-no-failure:
  assumes i = None ∨ (∃ i′. i = Some i′ ∧ i′ ∈ fst ' set xs)
  shows ∃ xs′. insert xs e i = Some xs′
using assms by(induction rule: insert.induct; force)

lemma insert-None-index-neq-None [dest]:
  assumes insert xs e i = None
  shows i ≠ None
using assms by(cases i, auto)

lemma insert-Some-None-index-not-in [dest]:
  assumes insert xs e (Some i) = None
  shows i ∉ fst ' set xs
using assms by(induction xs, auto split: if-split-asm bind-splits)

lemma index-not-in-insert-Some-None [simp]:
  assumes i ∉ fst ' set xs
  shows insert xs e (Some i) = None
using assms by(induction xs, auto)

lemma delete-no-failure:
  assumes i ∈ fst ' set xs
  shows ∃ xs′. delete xs i = Some xs′
using assms by(induction xs; force)
```
lemma delete-None-index-not-in [dest]:
 assumes delete xs i = None
 shows i \notin \mathsf{fst ' set xs}
using assms by(induction xs, auto split: if-split-asm bind-splits simp add: \mathsf{fst\-eq\-Domain})

lemma index-not-in-delete-None [simp]:
 assumes i \notin \mathsf{fst ' set xs}
 shows delete xs i = None
using assms by(induction xs, auto)

5.3 Preservation of element indices

lemma insert-body-preserve-indices [simp]:
 shows \mathsf{fst ' set (insert-body xs e)} = \mathsf{fst ' set xs} \cup \{\mathsf{fst e}\}
by(induction xs, auto simp add: insert-commute)

lemma insert-preserve-indices:
 assumes \exists ys. insert xs e i = Some ys
 shows \mathsf{fst ' set (the (insert xs e i))} = \mathsf{fst ' set xs} \cup \{\mathsf{fst e}\}
using assms by(induction xs; cases i; auto simp add: insert-commute split: bind-splits)

corollary insert-preserve-indices':
 assumes insert xs e i = Some ys
 shows \mathsf{fst ' set (the (insert xs e i))} = \mathsf{fst ' set xs} \cup \{\mathsf{fst e}\}
using assms insert-preserve-indices by blast

lemma delete-preserve-indices:
 assumes delete xs i = Some ys
 shows \mathsf{fst ' set xs} = \mathsf{fst ' set ys}
using assms by(induction xs arbitrary: ys, simp) (case-tac a; auto split: if-split-asm bind-splits)

5.4 Commutativity of concurrent operations

lemma insert-body-commutes:
 assumes \mathsf{fst e1} \neq \mathsf{fst e2}
 shows insert-body (insert-body xs e1) e2 = insert-body (insert-body xs e2) e1
using assms by(induction xs, auto)

lemma insert-insert-body:
 assumes \mathsf{fst e1} \neq \mathsf{fst e2}
 and i2 \neq \mathsf{Some (fst e1)}
 shows insert (insert-body xs e1) e2 i2 = insert xs e2 i2 \Rightarrow (\lambda ys. insert ys e1 (Some i)) = None
using assms by (induction xs; cases i2) (auto split: if-split-asm simp add: insert-body-commutes)

lemma insert-nil-None:
 assumes \mathsf{fst e1} \neq \mathsf{fst e2}
 and i \neq \mathsf{fst e2}
 and i2 \neq \mathsf{Some (fst e1)}
 shows insert [] e2 i2 \Rightarrow (\lambda ys. insert ys e1 (Some i)) = None
using assms by (cases i2) clarsimp+

lemma insert-insert-body-commute:
 assumes i \neq \mathsf{fst e1}
 and \mathsf{fst e1} \neq \mathsf{fst e2}
 shows insert (insert-body xs e1) e2 (Some i) =
 insert xs e2 (Some i) \Rightarrow (\lambda y. insert-body y e1))
using assms by(induction xs, auto simp add: insert-body-commutes)
lemma insert-commutes:
assumes \(\text{fst } e_1 \neq \text{fst } e_2 \)
\(i_1' = \text{None } \lor \ i_1 \neq \text{Some } (\text{fst } e_2) \)
\(i_2 = \text{None } \lor \ i_2 \neq \text{Some } (\text{fst } e_1) \)
shows \(\text{insert } x \cdot e_1 \cdot i_1 \ \Rightarrow (\text{lys. insert } y_2 \cdot e_2 \cdot i_2) = \\
\text{insert } x \cdot e_2 \cdot i_2 \ \Rightarrow (\text{lys. insert } y_1 \cdot e_1 \cdot i_1) \)
using assms proof(induction rule: insert.induct)
fix \(x \cdot s \) and \(e :: \ ('a, 'b) elt \)
assume \(i_2 = \text{None } \lor \ i_2 \neq \text{Some } (\text{fst } e) \) and \(\text{fst } e \neq \text{fst } e_2 \)
thus \(\text{insert } x \cdot e \cdot \text{None} \ \Rightarrow (\text{lys. insert } y_2 \cdot e_2 \cdot i_2) = \\
\text{insert } x \cdot e_2 \cdot i_2 \ \Rightarrow (\text{lys. insert } y_1 \cdot e_1 \cdot i_1) \)
by(auto simp add: insert-body-commutes intro: insert-insert-body)
next
fix \(i \) and \(e :: \ ('a, 'b) elt \)
assume \(\text{fst } e \neq \text{fst } e_2 \) and \(i_2 = \text{None } \lor \ i_2 \neq \text{Some } (\text{fst } e) \) and \(\text{Some } i = \text{None } \lor \ i \neq \text{Some } (\text{fst } e_2) \)
thus \(\text{insert } [] \cdot e \cdot (\text{Some } i) \ \Rightarrow (\text{lys. insert } y_2 \cdot e_2 \cdot i_2) = \\
\text{insert } [] \cdot e_2 \cdot i_2 \ \Rightarrow (\text{lys. insert } y_1 \cdot e_1 \cdot i_1) \)
by(auto intro: insert-nil-none[symmetric])
next
fix \(x \cdot s \) and \(x \cdot e :: \ ('a, 'b) elt \)
assume \(\text{IH}: (\text{fst } x \neq i \ \Rightarrow \\
\text{fst } e \neq \text{fst } e_2 \ \Rightarrow \\
\text{Some } i = \text{None } \lor \ i \neq \text{Some } (\text{fst } e_2) \ \Rightarrow \\
i_2 = \text{None } \lor \ i_2 \neq \text{Some } (\text{fst } e) \ \Rightarrow \\
\text{insert } x \cdot e \cdot (\text{Some } i) \ \Rightarrow (\text{lys. insert } y_2 \cdot e_2 \cdot i_2) = \\
\text{insert } x \cdot e_2 \cdot i_2 \ \Rightarrow (\text{lys. insert } y_1 \cdot e_1 \cdot i_1) \)
\(\)apply \(\)–
apply(rule disjE, clarsimp, simp, rule conjI)
apply(case_tac \(i_2 \); force simp add: insert-body-commutes insert-insert-body-commute)
apply(case_tac \(i_2 \); clarsimp cong: Option.bind_cong simp add: insert-insert-body split: bind-splits)
apply force
done
qed

lemma delete-commutes:
shows \(\text{delete } x \cdot s \cdot i_1 \ \Rightarrow (\text{lys. delete } y_2 \cdot e_2) = \\
\text{delete } x \cdot s \cdot i_2 \ \Rightarrow (\text{lys. delete } y_1 \cdot e_1) \)
by(induction \(x \cdot s \), auto split: bind-splits if-split-asn)

lemma insert-body-delete-commute:
assumes \(i_2 \neq \text{fst } e \)
shows \(\text{delete } (\text{insert-body } x \cdot s \cdot e) \cdot i_2 \ \Rightarrow (\lambda t. \text{Some } (x \# t)) = \\
\text{delete } x \cdot s \cdot i_2 \ \Rightarrow (\lambda y. \text{Some } (x \# \text{insert-body } y \cdot e)) \)
using assms by(induction \(x \cdot s \); cases \(e \); cases \(i_1 \); auto split: bind-splits if-split-asn simp add: insert-body-delete-commute)

lemma insert-delete-commute:
assumes \(i_2 \neq \text{fst } e \)
shows \(\text{insert } x \cdot e \cdot i_1 \ \Rightarrow (\text{lys. delete } y_2 \cdot e_2) = \\
\text{insert } x \cdot e_2 \cdot i_2 \ \Rightarrow (\text{lys. insert } y_1 \cdot e_1) \)
using assms by(induction \(x \cdot s \); cases \(e \); cases \(i_1 \); auto split: bind-splits if-split-asn simp add: insert-body-delete-commute)

5.5 Alternative definition of insert

fun insert' :: \('id :: \text{linorder}, \ 'v\) elt list ⇒ \('id, \ 'v\) elt list ⇒ \('id :: \text{linorder}, \ 'v\) elt list
where
\(\text{insert'} [] \cdot e \cdot \text{None} = \text{Some } [e] \)
\begin{verbatim}
insert' [] e (Some i) = None |
insert' (x#xs) e None =
 (if fst x < fst e then
 Some (e#x#xs)
 else
 case insert' xs e None of
 None ⇒ None |
 Some t ⇒ Some (x#t) |
insert' (x#xs) e (Some i) =
 (if fst x = i then
 case insert' xs e None of
 None ⇒ None |
 Some t ⇒ Some (x#t)
 else
 case insert' xs e (Some i) of
 None ⇒ None |
 Some t ⇒ Some (x#t))

lemma [elim!, dest]:
 assumes insert' xs e None = None
 shows False
 using assms by(induction xs, auto split: if-split-asm option.split-asm)

lemma insert-body-insert':
 shows insert' xs e None = Some (insert-body xs e)
by(induction xs, auto)

lemma insert-insert':
 shows insert xs e i = insert' xs e i
by(induction xs; cases e; cases i, auto split: option.split simp add: insert-body-insert')

lemma insert-body-stop-iteration:
 assumes fst e > fst x
 shows insert-body (x#xs) e = e#x#xs
using assms by simp

lemma insert-body-contains-new-elem:
 shows ∃ p s. xs = p @ s ∧ insert-body xs e = p @ e # s
proof (induction xs)
case Nil thus ?case by force
next
case (Cons a xs)
then obtain p s where xs = p @ s ∧ insert-body xs e = p @ e # s by force
thus ?case
 apply clarsimp
 apply (rule conjI;clarsimp)
 apply force
 apply (rule-tac x=a # p in exI, force)
done

qed

lemma insert-between-elements:
 assumes xs = pre@ref # suf
 and distinct (map fst xs)
 and \(\land i', i' \in \text{fst ' set xs} \implies i' < \text{fst e} \)
 shows insert xs e (Some (fst ref)) = Some (pre @ ref # e # suf)
using assms by(induction xs arbitrary: pre ref suf, force) (case-tac pre; case-tac suf; force)
\end{verbatim}
lemma insert-position-element-technical:
assumes $\forall x \in \text{set as}. \ a \neq \text{fst } x$
and \text{insert-body} (cs @ ds) \ e = cs @ e @ \# ds
shows \text{insert} (as @ (a, aa, b) @ # cs @ ds) \ e \ (\text{Some } a) = \text{Some } (as @ (a, aa, b) @ # cs @ e @ # ds)
using \text{assms by} (\text{induction as arbitrary: cs ds; clarsimp})

lemma split-tuple-list-by-id:
assumes $(a,b,c) \in \text{set xs}$
and \text{distinct} (map \text{fst} xs)
shows $\exists \text{pre suf}. \ xs = \text{pre @ (a, b, c) @ # suf} \land (\forall y \in \text{set pre}. \ \text{fst } y \neq a)$
using \text{assms proof}(\text{induction xs, clarsimp})

proof
\begin{itemize}
\item \text{case} $(\text{Cons } x \ xs)$
\quad assume $x \neq (a, b, c)$
\quad hence $(a, b, c) \in \text{set xs} \ \text{distinct} \ (\text{map \text{fst} xs})$
\quad using Cons.prems by force+
\quad then obtain \text{pre suf where} $xs = \text{pre @ (a, b, c) @ # suf} \land (\forall y \in \text{set pre}. \ \text{fst } y \neq a)$
\quad using Cons.IH by force
\quad hence ?case
\quad apply(rule-tac $x=x@\#pre$ in exI)
\quad using Cons.prems(2) by auto
\end{itemize}
thus ?case
by force
qed

lemma insert-preserves-order:
assumes $i = \text{None} \lor (\exists i'. \ i = \text{Some } i' \land i' \in \text{fst } \text{set xs})$
and \text{distinct} (map \text{fst xs})
shows $\exists \text{pre suf}. \ xs = \text{pre @ suf} \land (\forall y \in \text{set pre}. \ \text{fst } y \neq a)$
using \text{assms proof} –
\begin{itemize}
\item assume $i = \text{None}$
\item hence ?thesis
\quad by clarsimp (metis \text{insert-body-contains-new-elem})
\end{itemize}
moreover \{
\item assume $\exists i'. \ i = \text{Some } i' \land i' \in \text{fst } \text{set xs}$
\item then obtain $j v b$ where $i = \text{Some } (j, v, b) \in \text{set xs}$ by force
\item moreover then obtain as bs where $xs = as@j, v, b@#bs \ \forall x \in \text{set as}. \ \text{fst } x \neq j$
\quad using \text{assms by} (metis \text{split-tuple-list-by-id})
\item moreover then obtain cs ds where \text{insert-body} bs \ e = cs@e@#ds \ cs@ds = bs
\quad by(metis \text{insert-body-contains-new-elem})
\item ultimately have ?thesis
\quad by(rule-tac $x=as@j, v, b@#cs$ in exI; clarsimp)(metis \text{insert-position-element-technical})
\} ultimately show ?thesis
using \text{assms by} force
qed
end

5.6 Network

theory RGA
imports Network Ordered-List
begin

datatype \('id, 'v) operation =
\quad Insert \('id, 'v) elt \ 'id option |
\quad Delete \ 'id

data
fun interpret-opers :: ('id::linorder, 'v) operation ⇒ ('id, 'v) elt list ⇒ ('id, 'v) elt list [(-) [0] 1000] where
interpret-opers (Insert e n) xs = insert xs e n |
interpret-opers (Delete n) xs = delete xs n

definition element-ids :: ('id, 'v) elt list ⇒ 'id set where
element-ids list ≡ set (map fst list)

definition valid-rga-msg :: ('id, 'v) elt list ⇒ 'id × ('id::linorder, 'v) operation ⇒ bool where
valid-rga-msg list msg ≡ case msg of
(i, Insert e None) ⇒ fst e = i |
(i, Insert e (Some pos)) ⇒ fst e = i ∧ pos ∈ element-ids list |
(i, Delete pos) ⇒ pos ∈ element-ids list

goal locale rga = network-with-constrained-ops - interpret-opers [] valid-rga-msg

definition indices :: ('id × ('id, 'v) operation) event list ⇒ 'id list where
indices xs ≡ List.map-filter (λx. case x of Deliver (i, Insert e n) ⇒ Some (fst e) | - ⇒ None) xs

lemma indices-Nil [simp]:
 shows indices [] = []
 by(auto simp: indices-def map-filter-def)

lemma indices-append [simp]:
 shows indices (xs@ys) = indices xs @ indices ys
 by(auto simp: indices-def map-filter-def)

lemma indices-Broadcast-singleton [simp]:
 shows indices [Broadcast b] = []
 by(auto simp: indices-def map-filter-def)

lemma indices-Deliver-Insert [simp]:
 shows indices [Deliver (i, Insert e n)] = [fst e]
 by(auto simp: indices-def map-filter-def)

lemma indices-Deliver-Delete [simp]:
 shows indices [Deliver (i, Delete n)] = []
 by(auto simp: indices-def map-filter-def)

lemma (in rga) idx-in-elem-inserted [intro]:
 assumes Deliver (i, Insert e n) ∈ set xs
 shows fst e ∈ set (indices xs)
 using assms by(induction xs, auto simp add: indices-def map-filter-def)

lemma (in rga) apply-opers-idx-elems:
 assumes es prefix of i
 and apply-operations es = Some xs
 shows element-ids xs = set (indices es)
 using assms unfolding element-ids-def
 proof(induction es arbitrary: xs rule: rev-induct, clarsimp)
 case (snoc x xs) thus ?case
 proof (cases x, clarsimp, blast)
 case (Deliver e)
 moreover obtain a b where e = (a, b) by force
 ultimately show ?thesis
 qed
using snoc assms apply (cases b; clarsimp split: bind-splits simp add: interp-msg-def)
apply (metis Un-insert-right append.right-neutral insert-preserve-indices' list.set(1)
 option.sel prefix-of-appendD prod.sel(1) set-append)
bysimp (metis delete-preserve-indices prefix-of-appendD)

qed

lemma (in rga) delete-does-not-change-element-ids:
assumes es @ [Deliver (i, Delete n)] prefix of j
and apply-operations es = Some xs1
and apply-operations (es @ [Deliver (i, Delete n)]) = Some xs2
shows element-ids xs1 = element-ids xs2
proof
 have indices es = indices (es @ [Deliver (i, Delete n)])
 by simp
 then show ?thesis
 by (metis (no-types) assms prefix-of-appendD rga.apply-ops-idx-elems rga-axioms)
qed

lemma (in rga) someone-inserted-id:
assumes es @ [Deliver (i, Insert (k, v, f) n)] prefix of j
and apply-operations es = Some xs1
and apply-operations (es @ [Deliver (i, Insert (k, v, f) n)]) = Some xs2
and a ∈ element-ids xs2
and a ≠ k
shows a ∈ element-ids xs1
using assms apply-ops-idx-elems by auto

lemma (in rga) deliver-insert-exists:
assumes es prefix of j
and apply-operations es = Some xs
and a ∈ element-ids xs
shows ∃ i v f n. Deliver (i, Insert (a, v, f) n) ∈ set es
using assms unfolding element-ids-def
proof (induction es arbitrary: xs rule: rev-induct, clarsimp)
case (snoc x xs ys) thus ?case
proof (cases x)
case (Broadcast e) thus ?thesis
 by (clarsimp simp add: interp-msg-def)
next
case (Deliver e)
moreover then obtain xs' where *: apply-operations xs = Some xs'
 using snoc by fastforce
moreover obtain k v where **: e = (k, v) by force
ultimately show ?thesis
 using assms snoc proof (cases v)
case (Insert el -) thus ?thesis
 using snoc Deliver * **
 apply (cases el; cases fst el = a; clarsimp)
 apply (blast, metis (no-types, lifting) element-ids-def prefix-of-appendD set-map snoc.prems(2)
 snoc.prems(3) someone-inserted-id)
 done
next
case (Delete -) thus ?thesis
 using snoc Deliver ** apply clarsimp
 apply (drule prefix-of-appendD, clarsimp simp add: bind-eq-Some-conv interp-msg-def)
 apply (metis delete-preserve-indices image-eqI prod.sel(1))
 done
\textbf{lemma (in rga) insert-in-apply-set:}
\begin{itemize}
 \item \textbf{assumes} \(es @ \{\text{Deliver} (i, \text{Insert} e (\text{Some} \: a))\} \) prefix of \(j \)
 \item and \(\text{Deliver} (i', \text{Insert} e' n) \in \text{set} \: es \)
 \item and \(\text{apply-operations} \: es = \text{Some} \: s \)
\end{itemize}
\textbf{shows} \(\text{fst} \: e' \in \text{element-ids} \: s \)
\textbf{using} \(\text{assms apply-opers-idx-elems idx-in-elem-inserted prefix-of-appendD} \) \textbf{by} blast

\textbf{lemma (in rga) insert-msg-id:}
\begin{itemize}
 \item \textbf{assumes} Broadcast (\(i, \text{Insert} \: e \: n \)) \in \text{set} \: (\text{history} \: j)
\end{itemize}
\textbf{shows} \(n = \text{None} \lor (\exists \: i' \: e' \: n'. \: n = \text{Some} \: (\text{fst} \: e') \land \text{Deliver} (i', \text{Insert} \: e' \: n') \sqsubseteq j \) Broadcast (\(i, \text{Insert} \: e \: n \))
\textbf{proof} –
\begin{itemize}
 \item \textbf{obtain} \(\text{state where} \: 1: \text{valid-rga-msg} \: \text{state} \: (i, \text{Insert} \: e \: n) \)
 \item \textbf{using} \(\text{assms broadcast-is-valid} \) \textbf{by} blast
\end{itemize}
\textbf{thus} \(\text{fst} \: e = i \)
\textbf{by} (\text{clarsimp simp add: valid-rga-msg-def split: option.split-asm})
\textbf{qed}

\textbf{lemma (in rga) allowed-insert:}
\begin{itemize}
 \item \textbf{assumes} Broadcast (\(i, \text{Insert} \: e \: n \)) \in \text{set} \: (\text{history} \: j)
\end{itemize}
\textbf{shows} \(n = \text{None} \lor (\exists \: i' \: e' \: n'. \: n = \text{Some} \: (\text{fst} \: e') \land \text{Deliver} (i', \text{Insert} \: e' \: n') \sqsubseteq j \) Broadcast (\(i, \text{Insert} \: e \: n \))
\textbf{proof} –
\begin{itemize}
 \item \textbf{obtain} \(\text{pre where} \: 1: \text{pre @ [Broadcast} \: (i, \text{Insert} \: e \: n)] \) prefix of \(j \)
 \item \textbf{using} \(\text{assms events-before-exist} \) \textbf{by} blast
 \item \textbf{from} \(\text{this obtain} \text{ state where} \: 2: \text{apply-operations} \: \text{pre} = \text{Some} \: \text{state} \) \textbf{and} 3: valid-rga-msg state (\(i, \text{Insert} \: e \: n \))
 \item \textbf{using} broadcast-only-valid-msgs \textbf{by} blast
 \item \textbf{show} \(n = \text{None} \lor (\exists \: i' \: e' \: n'. \: n = \text{Some} \: (\text{fst} \: e') \land \text{Deliver} (i', \text{Insert} \: e' \: n') \sqsubseteq j \) Broadcast (\(i, \text{Insert} \: e \: n \))
\end{itemize}
\textbf{proof}(cases \(n \))
\begin{itemize}
 \item \textbf{assume} 4: \(n = \text{Some} \: a \)
 \item \textbf{hence} \(a \in \text{element-ids} \: \text{state} \) \textbf{and} 5: \(\text{fst} \: e = i \)
 \item \textbf{using} 3 \textbf{by} (\text{clarsimp simp add: valid-rga-msg-def} +)
 \item \textbf{from} \(\text{this have} \exists i' \: e' \: f' \: n'. \: \text{Deliver} (i', \text{Insert} \: (a, \: e', \: f') \: n') \in \text{set} \: \text{pre} \)
 \item \textbf{using} deliver-insert-exists 2 1 \textbf{by} blast
 \item \textbf{thus} \(n = \text{None} \lor (\exists \: i' \: e' \: n'. \: n = \text{Some} \: (\text{fst} \: e') \land \text{Deliver} (i', \text{Insert} \: e' \: n') \sqsubseteq j \) Broadcast (\(i, \text{Insert} \: e \: n \))
 \end{itemize}
\textbf{using} events-in-local-order 1 4 5 \textbf{by} (metis fst-conv)
\textbf{qed simp}
\textbf{qed}

\textbf{lemma (in rga) allowed-delete:}
\begin{itemize}
 \item \textbf{assumes} Broadcast (\(i, \text{Delete} \: x \)) \in \text{set} \: (\text{history} \: j)
\end{itemize}
\textbf{shows} \(\exists \: i' \: n' \: v \: b. \: \text{Deliver} (i', \text{Insert} \: (x, \: v, \: b) \: n') \sqsubseteq j \) Broadcast (\(i, \text{Delete} \: x \))
\textbf{proof} –
\begin{itemize}
 \item \textbf{obtain} \(\text{pre where} \: 1: \text{pre @ [Broadcast} \: (i, \text{Delete} \: x)] \) prefix of \(j \)
 \item \textbf{using} \(\text{assms events-before-exist} \) \textbf{by} blast
 \item \textbf{from} \(\text{this obtain} \text{ state where} \: 2: \text{apply-operations} \: \text{pre} = \text{Some} \: \text{state} \) \textbf{and} valid-rga-msg state (\(i, \text{Delete} \: x \))
 \item \textbf{using} broadcast-only-valid-msgs \textbf{by} blast
 \item \textbf{hence} \(x \in \text{element-ids} \: \text{state} \)
 \item \textbf{using} apply-opers-idx-elems \textbf{by} (simps add: valid-rga-msg-def)
 \item \textbf{hence} \(\exists \: i' \: v' \: f' \: n'. \: \text{Deliver} (i', \text{Insert} \: (x, \: v', \: f') \: n') \in \text{set} \: \text{pre} \)
\end{itemize}
lemma (in rga) insert-id-unique:
 assumes fst e1 = fst e2
 and Broadcast (i1, Insert e1 n1) \in set (history i)
 and Broadcast (i2, Insert e2 n2) \in set (history j)
 shows Insert e1 n1 = Insert e2 n2
using assms insert-msg-id msg-id-unique Pair-inject fst-conv
by blast

lemma (in rga) allowed-delete-deliver:
 assumes Deliver (i, Delete x) \in set (history j)
 shows \exists i' n' v b. Deliver (i', Insert (x, v, b) n') □ j Deliver (i, Delete x)
using assms by (meson allowed-delete bot-least causal-broadcast delivery-has-a-cause insert-subset)

lemma (in rga) allowed-delete-deliver-in-set:
 assumes (es@[Deliver (i, Delete m)]) prefix of j
 shows \exists i' n v b. Deliver (i', Insert (m, v, b) n) \in set es
by (meson (no-types, lifting) Un-insert-right insert-iff list.simps(15) assms
local-order-prefix-closed-last rga allowed-prefix-closed-first rga-axioms set-append subsetCE prefix-to-carriers)

lemma (in rga) allowed-insert-deliver:
 assumes Deliver (i, Insert e n) \in set (history j)
 shows \exists i v n' b. Deliver (i', Insert (n', v, b) n'') □ j Deliver (i, Insert e n)
proof
 obtain ja where 1: Broadcast (i, Insert e n) \in set (history ja)
 using assms delivery-has-a-cause by blast
 show n = None \lor (\exists i' n'' v b. n = Some n' \land Deliver (i', Insert (n', v, b) n'') □ j Deliver (i, Insert e n))
proof(cases n)
 fix a
 assume 3: n = Some a
 from this obtain i' e' n' where 4: Some a = Some (fst e') and
 2: Deliver (i', Insert e' n') □ j a Broadcast (i, Insert e (Some a))
 using allowed-insert 1 by blast
 hence Deliver (i', Insert e' n') \in set (history ja) and Broadcast (i, Insert e (Some a)) \in set (history ja)
 using local-order-carrier-closed by simp+
 from this obtain jaa where Broadcast (i, Insert e (Some a)) \in set (history jaa)
 using delivery-has-a-cause by simp
 have \exists i'' n'' v b. n = Some n' \land Deliver (i', Insert (n', v, b) n'') □ j Deliver (i, Insert e n)
 using 2 3 4 by (metis assms causal-broadcast prod-collapse)
 thus n = None \lor (\exists i' n'' v b. n = Some n' \land Deliver (i', Insert (n', v, b) n'') □ j Deliver (i, Insert e n))
 by auto
qed simp

lemma (in rga) allowed-insert-deliver-in-set:
 assumes (es@[Deliver (i, Insert e m)]) prefix of j
 shows m = None \lor (\exists i' m' n v b. m = Some m' \land Deliver (i', Insert (m', v, b) n) \in set es)
by (metis assms Un-insert-right insert-subset list.simps(15) set-append prefix-to-carriers
 allowed-insert-deliver local-order-prefix-closed-first)

lemma (in rga) Insert-no-failure:
assumes es @ [Deliver (i, Insert e n)] prefix of j
 and apply-operations es = Some s
shows ∃ ys. insert s e n = Some ys
by (metis (no-types, lifting) element-ids-def allowed-insert-deliver-in-set assms fst-conv
insert-in-apply-set insert-no-failure set-map)

lemma (in rga) delete-no-failure:
 assumes es @ [Deliver (i, Delete n)] prefix of j
 and apply-operations es = Some s
shows ∃ ys. delete s n = Some ys
proof
 obtain i' na v b where 1: Deliver (i', Insert (n, v, b) na) ∈ set es
 using assms allowed-delete-deliver-in-set by blast
 also have fst (n, v, b) ∈ set (indices es)
 using assms idx-in-elem-inserted calculation by blast
 from this assms and 1 show ∃ ys. delete s n = Some ys
 apply
 apply (rule delete-no-failure)
 apply (metis apply-opers-idx-elems element-ids-def prefix-of-appendD prod.sel(1) set-map)
done
qed

lemma (in rga) Insert-equal:
 assumes fst e1 = fst e2
 and Broadcast (i1, Insert e1 n1) ∈ set (history i)
 and Broadcast (i2, Insert e2 n2) ∈ set (history j)
shows Insert e1 n1 = Insert e2 n2
using insert-id-unique assms by simp

lemma (in rga) same-insert:
 assumes fst e1 = fst e2
 and xs prefix of i
 and (i1, Insert e1 n1) ∈ set (node-deliver-messages xs)
 and (i2, Insert e2 n2) ∈ set (node-deliver-messages xs)
shows Insert e1 n1 = Insert e2 n2
proof
 have Deliver (i1, Insert e1 n1) ∈ set (history i)
 using assms by (auto simp add: node-deliver-messages-def prefix-msg-in-history)
 from this obtain j where 1: Broadcast (i1, Insert e1 n1) ∈ set (history j)
 using delivery-has-a-cause by blast
 have Deliver (i2, Insert e2 n2) ∈ set (history i)
 using assms by (auto simp add: node-deliver-messages-def prefix-msg-in-history)
 from this obtain k where 2: Broadcast (i2, Insert e2 n2) ∈ set (history k)
 using delivery-has-a-cause by blast
 show Insert e1 n1 = Insert e2 n2
 by (rule Insert-equal; force simp add: assms intro: 1 2)
qed

lemma (in rga) insert-commute-assms:
 assumes { Deliver (i, Insert e n), Deliver (i', Insert e' n') } ⊆ set (history j)
 and hb.concurrent (i, Insert e n) (i', Insert e' n')
shows n = None ∨ n ≠ Some (fst e')
using assms
apply (clarsimp simp: hb.concurrent-def)
apply (cases e')
apply clarsimp
apply (frule delivery-has-a-cause)
apply (clarsimp)

apply(frule allowed-insert)
apply clarsimp
apply(metis Insert-equal delivery-has-a-cause fst-conv hb.intros(2) insert-subset
local-order-carrier-closed insert-msg-id)
done

lemma subset-reorder:
 assumes \{a, b\} \subseteq c
 shows \{b, a\} \subseteq c
using assms by simp

lemma (in rga) Insert-Delete-concurrent:
 assumes \{Deliver (i, Insert e n), Deliver (i', Delete n')\} \subseteq set (history j)
 and \(\text{hb.concurrent} (i, Insert e n) (i', Delete n')\)
 shows \(n' \neq e\)
by (metis assms subset-reorder hb.concurrent-comm insert-commute-assms option.simps(3))

lemma (in rga) insert-valid-assms:
 assumes Deliver (i, Insert e n) \in set (history j)
 shows \(n = \text{None} \lor n \neq \text{Some} (\text{fst} e)\)
using assms by (meson allowed-insert-deliver hb.concurrent-def hb.less-asym insert-subset
local-order-carrier-closed rga.insert-commute-assms rga-axioms)

lemma (in rga) Intersect-Delete-concurrent:
 assumes \{Deliver (i, Insert e n), Deliver (i', Delete n')\} \subseteq set (history j)
 and \(\text{hb.concurrent} (i, Insert e n) (i', Delete n')\)
 shows \(n' \neq \text{fst} e\)
by (metis assms Insert-equal allowed-delete delivery-has-a-cause fst-conv hb.concurrent-def
hb.intros(2) insert-subset local-order-carrier-closed rga.insert-msg-id rga-axioms)

lemma (in rga) concurrent-operations-commute:
 assumes xs prefix of i
 shows \(\text{hb.concurrent-ops-commute} (node-deliver-messages xs)\)
proof
 have \(\forall x \ y. \{x, y\} \subseteq set (\text{node-deliver-messages} \ xs) \implies \text{hb.concurrent} x y \implies \text{interp-msg} x \triangleright \text{interp-msg} y = \text{interp-msg} y \triangleright \text{interp-msg} x\)
proof
 fix \(x \ y \ ii\)
 assume \(\forall x \ y. \{x, y\} \subseteq set (\text{node-deliver-messages} \ xs)\)
 and \(C: \text{hb.concurrent} x y\)
 hence \(X: x \in set (\text{node-deliver-messages} \ xs)\) and \(Y: y \in set (\text{node-deliver-messages} \ xs)\)
 by auto
 obtain \(x1 \ x2 \ y1 \ y2\) where \(1: x = (x1, x2)\) and \(2: y = (y1, y2)\)
 by fastforce
 have \((\text{interp-msg} (x1, x2) \triangleright \text{interp-msg} (y1, y2)) \ ii = (\text{interp-msg} (y1, y2) \triangleright \text{interp-msg} (x1, x2))\)
proof(cases x2; cases y2)
 fix \(ix1 \ ix2\ iyg1 iyg2\)
 assume \(X2: x2 = \text{Insert} ix1 ix2\) and \(Y2: y2 = \text{Insert} iy1 iy2\)
 show \((\text{interp-msg} (x1, x2) \triangleright \text{interp-msg} (y1, y2)) \ ii = (\text{interp-msg} (y1, y2) \triangleright \text{interp-msg} (x1, x2))\)
proof(cases \text{fst} ix1 = \text{fst} iy1\)
 assume \text{fst} ix1 = \text{fst} iy1
 hence \(\text{Insert} ix1 ix2 = \text{Insert} iy1 iy2\)
 apply(rule same-insert)
 using \(1 \ 2 \ X \ Y \ X2 \ Y2\) assms apply auto
done
 hence \(ix1 = iy1\) and \(ix2 = iy2\)
by auto

from this and X2 Y2 show (interp-msg (x1, x2) ▷ interp-msg (y1, y2)) ii = (interp-msg (y1, y2) ▷ interp-msg (x1, x2)) ii
 by(clarsimp simp add: kleisli-def interp-msg-def)

next
 assume NEQ: fst ix1 ≠ fst iy1
 have iy2 = None ∨ ix2 ≠ Some (fst iy1)
 apply(rule insert-commute-assms)
 using prefix-msg-in-history[OF assms] X Y X2 Y2 1 2
 apply(clarsimp, blast)
 using C 1 2 X2 Y2 apply blast
 done
 also have iy2 = None ∨ iy2 ≠ Some (fst iy1)
 apply(rule insert-commute-assms)
 using prefix-msg-in-history[OF assms] X Y X2 Y2 1 2
 apply(clarsimp, blast)
 using 1 2 C X2 Y2 apply blast
 done
 ultimately have insert ii ix1 ix2 ▷ (λx. insert x iy1 iy2) = insert ii iy1 iy2 ▷ (λx. insert x iy1 ix2)
 using NEQ insert-commutes by blast
 thus (interp-msg (x1, x2) ▷ interp-msg (y1, y2)) ii = (interp-msg (y1, y2) ▷ interp-msg (x1, x2)) ii
 by(clarsimp simp add: interp-msg-def X2 Y2 kleisli-def)

qed

next
 fix ix1 ix2 yd
 assume X2: x2 = Insert ix1 ix2 and Y2: yd = Delete yd
 have hb.concurrent (x1, Insert ix1 ix2) (y1, Delete yd)
 using C X2 Y2 1 2 by simp
 also have {Deliver (x1, Insert ix1 ix2), Deliver (y1, Delete yd)} ⊆ set (history i)
 using prefix-msg-in-history assms X2 Y2 X Y 1 2 by blast
 ultimately have yd ≠ fst ix1
 apply –
 apply(rule Insert-Delete-concurrent; force)
 done
 hence insert ii ix1 ix2 ▷ (λx. delete x yd) = delete ii yd ▷ (λx. insert x ix1 ix2)
 by(rule insert-delete-commute)
 thus (interp-msg (x1, x2) ▷ interp-msg (y1, y2)) ii = (interp-msg (y1, y2) ▷ interp-msg (x1, x2)) ii
 by(clarsimp simp add: interp-msg-def kleisli-def X2 Y2)

next
 fix xd iy1 iy2
 assume X2: x2 = Delete xd and Y2: y2 = Insert iy1 iy2
 have hb.concurrent (x1, Delete xd) (y1, Insert iy1 iy2)
 using C X2 Y2 1 2 by simp
 also have {Deliver (x1, Delete xd), Deliver (y1, Insert iy1 iy2)} ⊆ set (history i)
 using prefix-msg-in-history assms X2 Y2 X Y 1 2 by blast
 ultimately have xd ≠ fst iy1
 apply –
 apply(rule Insert-Delete-concurrent; force)
 done
 hence delete ii xd ▷ (λx. insert x iy1 iy2) = insert ii iy1 iy2 ▷ (λx. delete x xd)
 by(rule insert-delete-commute[symmetric])
 thus (interp-msg (x1, x2) ▷ interp-msg (y1, y2)) ii = (interp-msg (y1, y2) ▷ interp-msg (x1, x2)) ii
 by(clarsimp simp add: interp-msg-def kleisli-def X2 Y2)

next
fix \(xd\) \(yd\)
assume \(X2: x2 = \text{Delete} \ xd\) and \(Y2: y2 = \text{Delete} \ yd\)
have \(\text{delete} \ ii \ xd \ \Longrightarrow (lx \ \text{delete} \ x \ yd) = \text{delete} \ ii \ yd \ \Longrightarrow (lx \ \text{delete} \ x \ xd)\)
by(rule delete-commutes)
thus \((\text{interp-msg} \ (x1, x2) \triangleright \text{interp-msg} \ (y1, y2)) \ ii = (\text{interp-msg} \ (y1, y2) \triangleright \text{interp-msg} \ (x1, x2)) \ ii\)
by(clarsimp simp add: interp-msg-def kleisli-def X2 Y2)
qed
thus \((\text{interp-msg} \ x \triangleright \text{interp-msg} \ y) \ ii = (\text{interp-msg} \ y \triangleright \text{interp-msg} \ x) \ ii\)
using 1 2 by auto
qed
thus \(\text{hb.concurrent-ops-commute} \ (\text{node-deliver-messages} \ xs)\)
by(auto simp add: \(\text{hb.concurrent-ops-commute-def}\))
qed

corollary (in rga) concurrent-operations-commute:
shows \(\text{hb.concurrent-ops-commute} \ (\text{node-deliver-messages} \ (\text{history} \ i))\)
by (meson concurrent-operations-commute append.right-neutral prefix-of-node-history-def)

lemma (in rga) apply-operations-never-fails:
assumes \(xs \ \text{prefix of} \ i\)
shows \(\text{apply-operations} \ xs \neq \text{None}\)
using \(\text{assms}\)
proof(induction \(xs\) rule: \(\text{rev-induct}\))
show \(\text{apply-operations} \ [\] \neq \text{None}\)
by clarsimp
next
fix \(x\) \(xs\)
assume 1: \(xs \ \text{prefix of} \ i\ \Longrightarrow \text{apply-operations} \ xs \neq \text{None}\)
and 2: \(xs \ @ [x] \ \text{prefix of} \ i\)
hence 3: \(xs \ \text{prefix of} \ i\)
by auto
show \(\text{apply-operations} \ (xs \ @ [x]) \neq \text{None}\)
proofof(cases \(x\))
fix \(b\)
assume \(x = \text{Broadcast} \ b\)
thus \(\text{apply-operations} \ (xs \ @ [x]) \neq \text{None}\)
using 1 3 by clarsimp
next
fix \(d\)
assume 4: \(x = \text{Deliver} \ d\)
thus \(\text{apply-operations} \ (xs \ @ [x]) \neq \text{None}\)
proofof(cases \(d\); clarify)
fix \(a\) \(b\)
assume 5: \(x = \text{Deliver} \ (a, b)\)
show \(\exists y. \ \text{apply-operations} \ (xs \ @ [\text{Deliver} \ (a, b)]) = \text{Some} \ y\)
proofof(cases \(b\); clarify)
fix \(aa\) \(aaa\) \(ba\) \(x12\)
assume 6: \(b = \text{Insert} \ (aa, aaa, ba) \ x12\)
show \(\exists y. \ \text{apply-operations} \ (xs \ @ [\text{Deliver} \ (a, \text{Insert} \ (aa, aaa, ba) \ x12)]) = \text{Some} \ y\)
apply(clarsimp simp add: interp-msg-def split!: bind-splits)
apply(simp add: 1 3)
apply(rule rga.Insert-no-failure, rule rga-axioms)
using 4 5 6 2 apply force+
done
next
fix \(x2\)
assume 6: \(b = \text{Delete} \ x2\)
show \(\exists y. \ \text{apply-operations} \ (xs \ @ [\text{Deliver} \ (a, \text{Delete} \ x2)]) = \text{Some} \ y\)

apply(clarsimp simp add: interp-msg-def split!: bind-splits)
apply(simp add: 1 3)
apply(rule delete-no-failure)
using 4 5 6 2 apply force+
done
qed
qed
qed
qed

lemma (in rga) apply-operations-never-fails':
 shows apply-operations (history i) ≠ None
by(meson apply-operations-never-fails append.right-neutral prefix-of-node-history-def)

corollary (in rga) rga-convergence:
 assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)
 and xs prefix of i
 and ys prefix of j
 shows apply-operations xs = apply-operations ys
using assms by(auto simp add: apply-operations-def intro: hb.convergence-ext
 concurrent-operations-commute node-deliver-messages-distinct hb-consistent-prefix)

5.7 Strong eventual consistency

context rga begin

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
 λops.∃ xs i. xs prefix of i ∧ node-deliver-messages xs = ops []
proof(standard;clarsimp)
 fix xsa i
 assume xsa prefix of i
 thus hb.hb-consistent (node-deliver-messages xsa)
 by(auto simp add: hb-consistent-prefix)
next
 fix xsa i
 assume xsa prefix of i
 thus distinct (node-deliver-messages xsa)
 by(auto simp add: node-deliver-messages-distinct)
next
 fix xsa i
 assume xsa prefix of i
 thus hb.concurrent-ops-commute (node-deliver-messages xsa)
 by(auto simp add: concurrent-operations-commute)
next
 fix xs a b state xsa x
 assume hb.apply-operations xs [] = Some state
 and node-deliver-messages xsa = xs @ [(a, b)]
 and xsa prefix of x
 thus ∃ y. interp-msg (a, b) state = Some y
 by(metis (no-types, lifting) apply-operations-def bind.bind-lunit not-None-eq
 hb.apply-operations-Snoc kleisli-def apply-operations-never-fails interp-msg-def)
next
 fix xs a b xsa x
 assume node-deliver-messages xsa = xs @ [(a, b)]
 and xsa prefix of x
 thus xsa. (∃ x. xsa prefix of x) ∧ node-deliver-messages xsa = xs
 using drop-last-message by blast
qed
interpretation trivial-rga-implementation: rga λx. []
 by (standard, auto simp add: trivial-node-histories.history-order-def
 trivial-node-histories.prefix-of-node-history-def)

end

6 Increment-Decrement Counter

The Increment-Decrement Counter is perhaps the simplest CRDT, and a paradigmatic example
of a replicated data structure with commutative operations.

theory Counter
 imports Network
begin

datatype operation = Increment | Decrement

fun counter-op :: operation ⇒ int ⇒ int
where
counter-op Increment x = Some (x + 1) |
counter-op Decrement x = Some (x - 1)

locale counter = network-with-ops - counter-op 0

lemma (in counter) counter-op x ⊲ counter-op y = counter-op y ⊲ counter-op x
 by (case-tac x; case-tac y; auto simp add: kleisli-def)

lemma (in counter) concurrent-operations-commute:
 assumes xs prefix of i
 shows hb.concurrent-ops-commute (node-deliver-messages xs)
 using assms
 apply (clarsimp simp; hb.concurrent-ops-commute-def)
 apply (rename-tac a b x y)
 apply (case-tac b; case-tac y; force simp add: interp-msg-def kleisli-def)
 done

corollary (in counter) counter-convergence:
 assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)
 and xs prefix of i
 and ys prefix of j
 shows apply-operations xs = apply-operations ys
 using assms by (auto simp add: apply-operations-def intro: hb.convergence-ext
 concurrent-operations-commute node-deliver-messages-distinct hb-consistent-prefix)

context counter begin

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
 λops. ∃i∈ι. zs prefix of i ∧ node-deliver-messages xs = ops 0
 apply (standard; clarsimp simp add: hb-consistent-prefix drop-last-message
 node-deliver-messages-distinct concurrent-operations-commute)
 apply (metis (full-typex) interp-msg-def counter-op.elims)
 using drop-last-message apply blast
 done
7 Observed-Remove Set

The ORSet is a well-known CRDT for implementing replicated sets, supporting two operations: the insertion and deletion of an arbitrary element in the shared set.

``` Isabelle
theory ORSet
imports Network
begin

datatype ('id, 'a) operation = Add 'id 'a | Rem 'id set 'a

type-synonym ('id, 'a) state = 'a ⇒ 'id set

definition op-elem :: ('id, 'a) operation ⇒ 'a where
  op-elem oper ≡ case oper of Add i e ⇒ e | Rem is e ⇒ e

definition interpret-op :: ('id, 'a) operation ⇒ ('id, 'a) state ⇒ ('id, 'a) state ⇒ 'bool where
  interpret-op oper state ≡ let before = state (op-elem oper);
                                 after = case oper of Add i e ⇒ before ∪ {i} | Rem is e ⇒ before − is
                                 in Some (state ((op-elem oper) := after))

definition valid-behaviours :: ('id, 'a) state ⇒ 'id × ('id, 'a) operation ⇒ 'bool where
  valid-behaviours state msg ≡ case msg of
    (i, Add j e) ⇒ i = j |
    (i, Rem is e) ⇒ is = state e

locale orset = network-with-constrained-ops - interpret-op λx. {} valid-behaviours

lemma (in orset) add-add-commute:
  shows (Add i1 e1) ⊲ (Add i2 e2) = (Add i2 e2) ⊲ (Add i1 e1)
  by(auto simp add: interpret-op-def op-elem-def kleisli-def, fastforce)

lemma (in orset) add-rem-commute:
  assumes i /∈ is
  shows (Add i e1) ⊲ (Rem is e2) = (Rem is e2) ⊲ (Add i e1)
  using assms by(auto simp add: interpret-op-def kleisli-def op-elem-def, fastforce)

lemma (in orset) apply-operations-never-fails:
  assumes xs prefix of i
  shows apply-operations xs ≠ None
  using assms proof(induction xs rule: rev-induct, clarsimp)
    case (snoc x xs) thus ?case
    proof (cases x)
      case (Broadcast e) thus ?thesis
      using snoc by force
    next
      case (Deliver e) thus ?thesis
      using snoc by (clarsimp, metis interpret-op-def interp-msg-def bind.bind-lunit prefix-of-appendD)
    qed
  qed
```

38
lemma (in orset) add-id-valid:
 assumes xs prefix of j
 and Deliver (i1, Add i2 e) ∈ set xs
 shows i1 = i2
proof –
 have ∃s. valid-behaviours s (i1, Add i2 e)
 using assms deliver-in-prefix-is-valid by blast
 thus ?thesis
 by (simp add: valid-behaviours-def)
qed

definition (in orset) added-ids :: ('id × ('id, 'b) operation) event list ⇒ 'b ⇒ 'id list where
 added-ids es p ≡ List.map-filter (λx. case x of Deliver (i, Add j e) ⇒ if e = p then Some j else None)
 | - ⇒ None

lemma (in orset) [simp]:
 shows added-ids [] e = []
 by (auto simp: added-ids-def map-filter-def)

lemma (in orset) [simp]:
 shows added-ids (xs @ ys) e = added-ids xs e @ added-ids ys e
 by (auto simp: added-ids-def map-filter-append)

lemma (in orset) added-ids-Broadcast-collapse [simp]:
 shows added-ids ([Broadcast e]) e' = []
 by (auto simp: added-ids-def map-filter-append map-filter-def)

lemma (in orset) added-ids-Deliver-Rem-collapse [simp]:
 shows added-ids ([Deliver (i, Rem is e)]) e' = []
 by (auto simp: added-ids-def map-filter-append map-filter-def)

lemma (in orset) added-ids-Deliver-Add-diff-collapse [simp]:
 shows e ≠ e' ⇒ added-ids ([Deliver (i, Add j e)]) e' = []
 by (auto simp: added-ids-def map-filter-append map-filter-def)

lemma (in orset) added-ids-Deliver-Add-same-collapse [simp]:
 shows added-ids ([Deliver (i, Add j e)]) e = [j]
 by (auto simp: added-ids-def map-filter-append map-filter-def)

lemma (in orset) added-id-not-in-set:
 assumes i1 ∉ set (added-ids [Deliver (i, Add i2 e)] e)
 shows i1 ≠ i2
 using assms by simp

lemma (in orset) apply-operations-added-ids:
 assumes es prefix of j
 and apply-operations es = Some f
 shows f x ⊆ set (added-ids es x)
 using assms proof (induct es arbitrary: f rule: rev-induct, force)
 case (snoc x xs) thus ?case
 proof (cases x, force)
 case (Deliver e)
 moreover obtain a b where e = (a, b) by force
 ultimately show ?thesis
 using snoc by (case_tac b; clarsimp simp: interp-msg-def split: bind-splits, force split: if-split_asm simp add: op-elem-def interpret-op-def)
 qed
 qed

39
lemma (in orset) Deliver-added-ids:
 assumes xs prefix of j
 and i ∈ set (added-ids xs e)
 shows Deliver (i, Add i e) ∈ set xs
using assms proof (induct xs rule: rev-induct, clarsimp)
case (snoc x xs) thus ?case
proof (cases x, force)
case (Deliver e')
 moreover obtain a b where e' = (a, b) by force
 ultimately show ?thesis
 using snoc apply (case-tac b; clarsimp)
 apply (metis added-ids-Deliver-Add-diff-collapse added-ids-Deliver-Add-same-collapse
 empty-iff list.set(1) set-ConsD add-id-valid in-set-conv-decomp prefix-of-appendD)
 apply force
 done
qed

lemma (in orset) Broadcast-Deliver-prefix-closed:
 assumes xs @ [Broadcast (r, Rem ix e)] prefix of j
 and i ∈ ix
 shows Deliver (i, Add i e) ∈ set xs
proof
 obtain y where apply-operations xs = Some y
 using assms broadcast-only-valid-msgs by blast
 moreover hence ix = y e
 by (metis (mono-tags, lifting) assms(1) broadcast-only-valid-msgs operation.case(2) option.simps(1)
 valid-behaviours-def case-prodD)
 ultimately show ?thesis
 using assms Deliver-added-ids apply-operations-added-ids by blast
qed

lemma (in orset) Broadcast-Deliver-prefix-closed2:
 assumes xs prefix of j
 and Broadcast (r, Rem ix e) ∈ set xs
 and i ∈ ix
 shows Deliver (i, Add i e) ∈ set xs
using assms Broadcast-Deliver-prefix-closed by (induction xs rule: rev-induct; force)

lemma (in orset) concurrent-add-remove-independent-technical:
 assumes i ∈ is
 and xs prefix of j
 and (i, Add i e) ∈ set (node-deliver-messages xs) and (ir, Rem is e) ∈ set (node-deliver-messages xs)
 shows hb (i, Add i e) (ir, Rem is e)
proof
 obtain pre k where pre@[Broadcast (ir, Rem is e)] prefix of k
 using assms delivery-has-a-cause events-before-exist prefix-msg-in-history by blast
 moreover hence Deliver (i, Add i e) ∈ set pre
 using Broadcast-Deliver-prefix-closed assms(1) by auto
 ultimately show ?thesis
 using hb.intros(2) events-in-local-order by blast
qed

lemma (in orset) Deliver-Add-same-id-same-message:
 assumes Deliver (i, Add i e1) ∈ set (history j) and Deliver (i, Add i e2) ∈ set (history j)
 shows e1 = e2
proof
 obtain pre1 pre2 k1 k2 where *: pre1@[Broadcast (i, Add i e1)] prefix of k1 pre2@[Broadcast (i, Add i e2)] prefix of k2
 using assms delivery-has-a-cause events-before-exist by meson
 moreover hence Broadcast (i, Add i e1) ∈ set (history k1) Broadcast (i, Add i e2) ∈ set (history k2)
 using node-histories.prefix-to-carriers node-histories-axioms by force+
 ultimately show ?thesis
 using msg-id-unique by fastforce
qed

lemma (in orset) ids-imply-messages-same:
 assumes i ∈ is
 and xs prefix of j
 and (i, Add i e1) ∈ set (node-deliver-messages xs) and (ir, Rem is e2) ∈ set (node-deliver-messages xs)
 shows e1 = e2
proof
 obtain pre k where pre@[Broadcast (i, Rem is e2)] prefix of k
 using assms delivery-has-a-cause events-before-exist prefix-msg-in-history by blast
 moreover hence Deliver (i, Add i e1) ∈ set pre
 using Broadcast-Deliver-prefix-closed assms(1) by blast
 moreover have Deliver (i, Add i e1) ∈ set (history j)
 using assms(2) assms(3) prefix-msg-in-history by blast
 ultimately show ?thesis
 by (metis fst-conv msg-id-unique network.delivery-has-a-cause network-axioms operation.inject(1)
 prefix-elem-to-carriers prefix-of-appendD prod.inject)
qed

corollary (in orset) concurrent-add-remove-independent:
 assumes ~ hb (i, Add i e1) (ir, Rem is e2) and ~ hb (ir, Rem is e2) (i, Add i e1)
 and xs prefix of j
 and (i, Add i e1) ∈ set (node-deliver-messages xs) and (ir, Rem is e2) ∈ set (node-deliver-messages xs)
 shows i /∈ is
 using assms ids-imply-messages-same concurrent-add-remove-independent-technical by fastforce

lemma (in orset) rem-rem-commute:
 shows ⟨Rem i1 e1⟩ ⊦ ⟨Rem i2 e2⟩ = ⟨Rem i2 e2⟩ ⊦ ⟨Rem i1 e1⟩
 by (unfold interpret-op-def op-elem-def kleisli-def, fastforce)

lemma (in orset) concurrent-operations-commute:
 assumes xs prefix of i
 shows hb.concurrent-ops-commute (node-deliver-messages xs)
proof
 { fix a b x y
 assume (a, b) ∈ set (node-deliver-messages xs)
 (x, y) ∈ set (node-deliver-messages xs)
 hb.concurrent (a, b) (x, y)
 hence interp-msg (a, b) ⊦ interp-msg (x, y) = interp-msg (x, y) ⊦ interp-msg (a, b)
 apply(unfold interp-msg-def, case-tac b; case-tac y; simp add: add-add-commute rem-rem-commute
 hb.concurrent-def)
 apply (metis add-id-valid add-rem-commute assms concurrent-add-remove-independent hb.concurrentD1
 hb.concurrentD2 prefix-contains-msg)+
 done
 } thus ?thesis
 by (fastforce simp: hb.concurrent-ops-commute-def)
qed
theorem (in orset) convergence:
 assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)
 and xs prefix of i and ys prefix of j
 shows apply-operations xs = apply-operations ys
using assms by (auto simp add: apply-operations-def intro: hb.convergence-ext concurrent-operations-commute
 node-deliver-messages-distinct hb-consistent-prefix)

context orset begin

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
\lambda\text{ops}.\exists i. \text{xs prefix of } i \land \text{node-deliver-messages xs} = \text{ops} \lambda x.\{\}

apply (standard; clarsimp simp add: hb-consistent-prefix node-deliver-messages-distinct
 concurrent-operations-commute)

apply (metis (no-types, lifting) apply-operations-def bind.bind-lunit not-None-eq
 hb.apply-operations-Snoc kleisli-def apply-operations-never-fails interp-msg-def)

using drop-last-message apply blast

end

end

References

