
D31.1
Formal Specification of a Generic Separation Kernel

Project number: 318353

Project acronym: EURO-MILS

Project title:
EURO-MILS: Secure European Virtualisation
for Trustworthy Applications in Critical Do-
mains

Start date of the project: 1st October, 2012

Duration: 36 months

Programme: FP7/2007-2013

Deliverable type: R

Deliverable reference number: ICT-318353 / D31.1 / 0.0

Activity and Work package contributing to
deliverable: Activity 3 / WP 3.1

Due date: September 2013 – M12

Actual submission date: 17th March, 2025

Responsible organisation: Open University of The Netherlands

Editors: Freek Verbeek, Julien Schmaltz

Dissemination level: PU

Revision: 0.0 (r-2)

Abstract:

We introduce a theory of intransitive non-
interference for separation kernels with con-
trol. We show that it can be instantiated for
a simple API consisting of IPC and events.

Keywords: separation kernel with control, formal model,
instantiation, IPC, events, Isabelle/HOL

D31.1 – Formal Specification of a Generic Separation Kernel

Editors

Freek Verbeek, Julien Schmaltz (Open University of The Netherlands)

Contributors (ordered according to beneficiary numbers)

Sergey Tverdyshev, Oto Havle, Holger Blasum (SYSGO AG)

Bruno Langenstein, Werner Stephan (Deutsches Forschungszentrum für künstliche Intelligenz / DFKI

GmbH)

Abderrahmane Feliachi, Yakoub Nemouchi, Burkhart Wolff (Université Paris Sud)

Freek Verbeek, Julien Schmaltz (Open University of The Netherlands)

Acknowledgment
The research leading to these results has received funding from the European Union’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement n○ 318353.

EURO-MILS D31.1 I

D31.1 – Formal Specification of a Generic Separation Kernel

Executive Summary

Intransitive noninterference has been a widely studied topic in the last few decades. Several well-
established methodologies apply interactive theorem proving to formulate a noninterference theorem
over abstract academic models. In joint work with several industrial and academic partners throughout
Europe, we are helping in the certification process of PikeOS, an industrial separation kernel developed
at SYSGO. In this process, established theories could not be applied. We present a new generic model of
separation kernels and a new theory of intransitive noninterference. The model is rich in detail, making
it suitable for formal verification of realistic and industrial systems such as PikeOS. Using a refinement-
based theorem proving approach, we ensure that proofs remain manageable.

This document corresponds to the deliverable D31.1 of the EURO-MILS Project http://www.euromils.
eu.

EURO-MILS D31.1 II

http://www.euromils.eu
http://www.euromils.eu

D31.1 – Formal Specification of a Generic Separation Kernel

Contents

1 Introduction 2

2 Preliminaries 3
2.1 Binders for the option type . 3
2.2 Theorems on lists . 4

3 A generic model for separation kernels 5
3.1 K (Kernel) . 6

3.1.1 Execution semantics . 7
3.2 SK (Separation Kernel) . 8

3.2.1 Security for non-interfering domains . 9
3.2.2 Security for indirectly interfering domains . 11

3.3 ISK (Interruptible Separation Kernel) . 14
3.4 CISK (Controlled Interruptible Separation Kernel) . 17

3.4.1 Execution semantics . 19
3.4.2 Formulations of security . 19
3.4.3 Proofs . 20

4 Instantiation by a separation kernel with concrete actions 21
4.1 Model of a separation kernel configuration . 22

4.1.1 Type definitions . 22
4.1.2 Configuration . 22

4.2 Formulation of a subject-subject communication policy and an information flow policy,
and showing both can be derived from subject-object configuration data 23
4.2.1 Specification . 23
4.2.2 Derivation . 23

4.3 Separation kernel state and atomic step function . 24
4.3.1 Interrupt points . 24
4.3.2 System state . 25
4.3.3 Atomic step . 25

4.4 Preconditions and invariants for the atomic step . 27
4.4.1 Atomic steps of SK_IPC preserve invariants . 28
4.4.2 Summary theorems on atomic step invariants . 28

4.5 The view-partitioning equivalence relation . 29
4.5.1 Elementary properties . 30

4.6 Atomic step locally respects the information flow policy 30
4.6.1 Locally respects of atomic step functions . 30
4.6.2 Summary theorems on view-partitioning locally respects 31

4.7 Weak step consistency . 31
4.7.1 Weak step consistency of auxiliary functions . 31
4.7.2 Weak step consistency of atomic step functions 32
4.7.3 Summary theorems on view-partitioning weak step consistency 33

4.8 Separation kernel model . 33
4.8.1 Initial state of separation kernel model . 33
4.8.2 Types for instantiation of the generic model . 34
4.8.3 Possible action sequences . 35
4.8.4 Control . 35
4.8.5 Discharging the proof obligations . 36

EURO-MILS D31.1 III

D31.1 – Formal Specification of a Generic Separation Kernel

4.9 Link implementation to CISK: the specific separation kernel is an interpretation of the
generic model. 40

5 Related Work 41

6 Conclusion 42
6.0.1 Acknowledgement. 42

EURO-MILS D31.1 Page 1 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

1 Introduction

Separation kernels are at the heart of many modern security-critical systems [23]. With next generation
technology in cars, aircrafts and medical devices becoming more and more interconnected, a platform
that offers secure decomposition of embedded systems becomes crucial for safe and secure performance.
PikeOS, a separation kernel developed at SYSGO, is an operating system providing such an environ-
ment [12, 2]. A consortium of several European partners from industry and academia works on the
certification of PikeOS up to at least Common Criteria EAL5+, with "+" being applying formal methods
compliant to EAL7. Our aim is to derive a precise model of PikeOS and a precise formulation of the
PikeOS security policy.

A crucial security property of separation kernels is intransitive noninterference. This property is
typically required for systems with multiple independent levels of security (MILS) such as PikeOS. It
ensures that a given security policy over different subjects of the system is obeyed. Such a security policy
dictates which subjects may flow information to which other subjects.

Intransitive noninterference has been an active research field for the last three decades. Several pa-
pers have been published on defining intransitive noninterference and on unwinding methodologies that
enable the proof of intransitive noninterference from local proof obligations. However, in the certifi-
cation process of PikeOS these existing methodologies could not be directly applied. Generally, the
methodologies are based on highly abstract generic models of computation. The gap between such an
abstract model and the reality of PikeOS is large, making application of the methodologies tedious and
cumbersome.

This paper presents a new generic model for separation kernels called CISK (for: Controlled Inter-
ruptible Separation Kernel). This model is richer in details and contains several facets present in many
separation kernels, such as interrupts, context switches between domains and a notion of control. Re-
garding the latter, this concerns the fact that the kernel exercises control over the executions as performed
by the domains. The kernel can, e.g., decide to skip actions of the domains, or abort them halfway. We
prove that any instantiation of the model provides intransitive noninterference. The model and proofs
have been formalized in Isabelle/HOL [21] which are included in the subsequent sections of this docu-
ment.

We have adopted Rushby’s definition of intransitive noninterference [24]. We first present an overview
of our approach and then discuss the relation between our approach and existing methodologies in the
next section.

Overview

Generally, there are two conflicting interests when using a generic model. On the one hand the model
must be sufficiently abstract to ensure that theorems and proofs remain manageable. On the other hand,
the model must be rich enough and must contain sufficient domain-knowledge to allow easy instantiation.
Rushby’s model, for example, is on one end of the spectrum: it is basically a Mealy machine, which is a
highly abstract notion of computation, consisting only of state, inputs and outputs [24]. The model and
its proofs are manageable, but making a realistic instantiation is tedious and requires complicated proofs.

We aim at the other side of the spectrum by having a generic model that is rich in detail. As a result,
instantiating the model with, e.g., a model of PikeOS can be done easily. To ensure maintainability of
the theorems and proofs, we have applied a highly modularized theorem proving technique.

Figure 1 shows an overview. The initial module “Kernel” is close to a Mealy machine, but has several
facets added, including interrupts, context switches and control. New modules are added in such a way
that each new module basically inserts an adjective before “Kernel”. The use of modules allows us to
prove, e.g., a separation theorem in module “Separation Kernel” and subsequently to reuse this theorem
later on when details on control or interrupts are added.

The second module adds a notion of separation, yielding a module of a Separation Kernel (SK). A
security policy is added that dictates which domains may flow information to each other. Local proof

EURO-MILS D31.1 Page 2 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

Figure 1: Overview of CISK modular structure

obligations are added from which a global theorem of noninterference is proven. This global theorem is
the unwinding of the local proof obligations.

In the third module calls to the kernel are no longer considered atomic, yielding an Interruptible
Separation Kernel (ISK). In this model, one call to the kernel is represented by an action sequence.
Consider, for example, an IPC call (for: Inter Process Communication). From the point of view of
the programmer this is one kernel call. From the point of view of the kernel it is an action sequence
consisting of three stages IPC_PREP, IPC_WAIT, and IPC_SEND. During the PREP stage, it is checked
whether the IPC is allowed by the security policy. The WAIT stage is entered if a thread needs to wait
for its communication partner. The SEND stage is data transmission. After each stage, an interrupt may
occur that switches the current context. A consequence of allowing interruptible action sequences is that
it is no longer the case that any execution, i.e., any combination of atomic kernel actions, is realistic. We
formulate a definition of realistic execution and weaken the proof obligations of the model to apply only
to realistic executions.

The final module provides an interpretation of control that allows atomic kernel actions to be aborted
or delayed. Additional proof obligations are required to ensure that noninterference is still provided.
This yields a Controlled Interruptible Separation Kernel (CISK). When sequences of kernel actions are
aborted, error codes can be transmitted to other domains. Revisiting our IPC example, after the PREP
stage the kernel can decide to abort the action. The IPC action sequence will not be continued and
error codes may be sent out. At the WAIT stage, the kernel can delay the action sequence until the
communication partner of the IPC call is ready to receive.

In Section 3 we introduce a theory of intransitive non-interference for separation kernels with con-
trol, based on [31]. We show that it can be instantiated for a simple API consisting of IPC and events
(Section 4). The rest of this section gives some auxiliary theories used for Section 3.

2 Preliminaries

2.1 Binders for the option type
theory Option-Binders

imports Main
begin

The following functions are used as binders in the theorems that are proven. At all times, when a

EURO-MILS D31.1 Page 3 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

result is None, the theorem becomes vacuously true. The expression “m⇀ α” means “First compute m,
if it is None then return True, otherwise pass the result to α”. B2 is a short hand for sequentially doing
two independent computations. The following syntax is associated to B2: “m1∣∣m2 ⇀ α” represents
“First compute m1 and m2, if one of them is None then return True, otherwise pass the result to α”.

definition B ∶∶
′a option⇒ (′a⇒ bool) ⇒ bool (infixl ‹⇀› 65)

where B m α ≡ case m of None⇒ True ∣ (Some a) ⇒ α a

definition B2 ∶∶ ′a option⇒ ′a option⇒ (′a⇒ ′a⇒ bool) ⇒ bool
where B2 m1 m2 α ≡ m1 ⇀ (λ a . m2 ⇀ (λ b . α a b))

syntax B2 ∶∶ [′a option, ′a option, (′a⇒ ′a⇒ bool)] => bool (‹(- ∥ - ⇀ -)› [0, 0, 10] 10)

Some rewriting rules for the binders

lemma rewrite-B2-to-cases[simp]∶
shows B2 s t f = (case s of None⇒ True ∣ (Some s1) ⇒ (case t of None⇒ True ∣ (Some t1) ⇒ f s1 t1))
⟨proof ⟩
lemma rewrite-B-None[simp]∶

shows None⇀ α = True
⟨proof ⟩
lemma rewrite-B-m-True[simp]∶

shows m ⇀ (λ a . True) = True
⟨proof ⟩
lemma rewrite-B2-cases∶

shows (case a of None⇒ True ∣ (Some s) ⇒ (case b of None⇒ True ∣ (Some t) ⇒ f s t))
= (∀ s t . a = (Some s) ∧ b = (Some t) Ð→ f s t)

⟨proof ⟩

definition strict-equal ∶∶ ′a option⇒ ′a⇒ bool
where strict-equal m a ≡ case m of None⇒ False ∣ (Some a ′) ⇒ a ′ = a

end

2.2 Theorems on lists
theory List-Theorems

imports Main
begin

definition lastn ∶∶ nat⇒ ′a list⇒ ′a list
where lastn n x = drop ((length x) − n) x

definition is-sub-seq ∶∶ ′a⇒ ′a⇒ ′a list⇒ bool
where is-sub-seq a b x ≡ ∃ n . Suc n < length x ∧ x!n = a ∧ x!(Suc n) = b

definition prefixes ∶∶ ′a list set⇒ ′a list set
where prefixes s ≡ {x . ∃ n y . n > 0 ∧ y ∈ s ∧ take n y = x}

lemma drop-one[simp]∶
shows drop (Suc 0) x = tl x ⟨proof ⟩

lemma length-ge-one∶
shows x /= [] Ð→ length x ≥ 1 ⟨proof ⟩

lemma take-but-one[simp]∶
shows x /= [] Ð→ lastn ((length x) − 1) x = tl x ⟨proof ⟩

lemma Suc-m-minus-n[simp]∶
shows m ≥ n Ð→ Suc m − n = Suc (m − n) ⟨proof ⟩

lemma lastn-one-less∶

EURO-MILS D31.1 Page 4 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

shows n > 0 ∧ n ≤ length x ∧ lastn n x = (a#y) Ð→ lastn (n − 1) x = y ⟨proof ⟩
lemma list-sub-implies-member∶

shows ∀ a x . set (a#x) ⊆ Z Ð→ a ∈ Z ⟨proof ⟩
lemma subset-smaller-list∶

shows ∀ a x . set (a#x) ⊆ Z Ð→ set x ⊆ Z ⟨proof ⟩
lemma second-elt-is-hd-tl∶

shows tl x = (a # x ′) Ð→ a = x ! 1
⟨proof ⟩

lemma length-ge-2-implies-tl-not-empty∶
shows length x ≥ 2 Ð→ tl x /= []
⟨proof ⟩

lemma length-lt-2-implies-tl-empty∶
shows length x < 2 Ð→ tl x = []
⟨proof ⟩

lemma first-second-is-sub-seq∶
shows length x ≥ 2Ô⇒ is-sub-seq (hd x) (x!1) x
⟨proof ⟩
lemma hd-drop-is-nth∶

shows n < length xÔ⇒ hd (drop n x) = x!n
⟨proof ⟩

lemma def-of-hd∶
shows y = a # x Ð→ hd y = a ⟨proof ⟩

lemma def-of-tl∶
shows y = a # x Ð→ tl y = x ⟨proof ⟩

lemma drop-yields-results-implies-nbound∶
shows drop n x /= [] Ð→ n < length x
⟨proof ⟩
lemma consecutive-is-sub-seq∶

shows a # (b # x) = lastn n yÔ⇒ is-sub-seq a b y
⟨proof ⟩

lemma sub-seq-in-prefixes∶
assumes ∃ y ∈ prefixes X. is-sub-seq a a ′ y
shows ∃ y ∈ X. is-sub-seq a a ′ y
⟨proof ⟩

lemma set-tl-is-subset∶
shows set (tl x) ⊆ set x ⟨proof ⟩
lemma x-is-hd-snd-tl∶
shows length x ≥ 2 Ð→ x = (hd x) # x!1 # tl(tl x)
⟨proof ⟩

lemma tl-x-not-x∶
shows x /= [] Ð→ tl x /= x ⟨proof ⟩
lemma tl-hd-x-not-tl-x∶
shows x /= [] ∧ hd x /= [] Ð→ tl (hd x) # tl x /= x ⟨proof ⟩

end

3 A generic model for separation kernels

theory K
imports List-Theorems Option-Binders

begin

EURO-MILS D31.1 Page 5 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

This section defines a detailed generic model of separation kernels called CISK (Controlled Inter-
ruptible Separation Kernel). It contains a generic functional model of the behaviour of a separation
kernel as a transition system, definitions of the security property and proofs that the functional model
satisfies security properties. It is based on Rushby’s approach [25] for noninterference. For an explana-
tion of the model, its structure and an overview of the proofs, we refer to the document entitled “A New
Theory of Intransitive Noninterference for Separation Kernels with Control” [31].

The structure of the model is based on locales and refinement:

• locale “Kernel" defines a highly generic model for a kernel, with execution semantics. It defines
a state transition system with some extensions to the one used in [25]. The transition system
defined here stores the currently active domain in the state, and has transitions for explicit context
switches and interrupts and provides a notion of control. As each operation of the system will be
split into atomic actions in our model, only certain sequences of actions will correspond to a run
on a real system. Therefore, the function run, which applies an execution on a state and computes
the resulting new state, is partial and defined for realistic traces only. Later, but not in this locale,
we will define a predicate to distinguish realistic traces from other traces. Security properties are
also not part of this locale, but will be introduced in the locales to be described next.

• locale “Separation_Kernel" extends "Kernel" with constraints concerning non-interference. The
theorem is only sensical for realistic traces; for unrealistic trace it will hold vacuously.

• locale “Interruptible_Separation_Kernel" refines “Separation_Kernel" with interruptible action
sequences. It defines function “realistic_trace” based on these action sequences. Therefore, we
can formulate a total run function.

• locale “Controlled_Interruptible_Separation_Kernel" refines “Interruptible_Separation_Kernel"
with abortable action sequences. It refines function “control” which now uses a generic predicate
“aborting” and a generic function “set_error_code” to manage aborting of action sequences.

3.1 K (Kernel)

The model makes use of the following types:

’state_t A state contains information about the resources of the system, as well as which domain is
currently active. We decided that a state does not need to include a program stack, as in this model
the actions that are executed are modelled separately.

’dom_t A domain is an entity executing actions and making calls to the kernel. This type represents the
names of all domains. Later on, we define security policies in terms of domains.

’action_t Actions of type ’action_t represent atomic instructions that are executed by the kernel. As
kernel actions are assumed to be atomic, we assume that after each kernel action an interrupt point
can occur.

’action_t execution An execution of some domain is the code or the program that is executed by the
domain. One call from a domain to the kernel will typically trigger a succession of one or more
kernel actions. Therefore, an execution is represented as a list of sequences of kernel actions.
Non-kernel actions are not take into account.

’output_t Given the current state and an action an output can be computed deterministically.

time_t Time is modelled using natural numbers. Each atomic kernel action can be executed within one
time unit.

EURO-MILS D31.1 Page 6 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

type-synonym (′action-t) execution = ′action-t list list
type-synonym time-t = nat

Function kstep (for kernel step) computes the next state based on the current state s and a given action
a. It may assume that it makes sense to perform this action, i.e., that any precondition that is necessary for
execution of action a in state s is met. If not, it may return any result. This precondition is represented by
generic predicate kprecondition (for kernel precondition). Only realistic traces are considered. Predicate
realistic_execution decides whether a given execution is realistic.

Function current returns given the state the domain that is currently executing actions. The model
assumes a single-core setting, i.e., at all times only one domain is active. Interrupt behavior is modelled
using functions interrupt and cswitch (for context switch) that dictate respectively when interrupts occur
and how interrupts occur. Interrupts are solely time-based, meaning that there is an at beforehand fixed
schedule dictating which domain is active at which time.

Finally, we add function control. This function represents control of the kernel over the execution
as performed by the domains. Given the current state s, the currently active domain d and the execution
α of that domain, it returns three objects. First, it returns the next action that domain d will perform.
Commonly, this is the next action in execution α. It may also return None, indicating that no action is
done. Secondly, it returns the updated execution. When executing action a, typically, this action will be
removed from the current execution (i.e., updating the program stack). Thirdly, it can update the state to
set, e.g., error codes.

locale Kernel =
fixes kstep ∶∶ ′state-t⇒ ′action-t⇒ ′state-t

and output-f ∶∶ ′state-t⇒ ′action-t⇒ ′output-t
and s0 ∶∶ ′state-t
and current ∶∶ ′state-t => ′dom-t
and cswitch ∶∶ time-t⇒ ′state-t⇒ ′state-t
and interrupt ∶∶ time-t⇒ bool
and kprecondition ∶∶ ′state-t⇒ ′action-t⇒ bool
and realistic-execution ∶∶ ′action-t execution⇒ bool
and control ∶∶ ′state-t⇒ ′dom-t⇒ ′action-t execution⇒

((
′action-t option) × ′action-t execution × ′state-t)

and kinvolved ∶∶ ′action-t⇒ ′dom-t set
begin

3.1.1 Execution semantics

Short hand notations for using function control.

definition next-action∶∶ ′state-t⇒ (′dom-t⇒ ′action-t execution) ⇒ ′action-t option
where next-action s execs = fst (control s (current s) (execs (current s)))
definition next-execs∶∶ ′state-t⇒ (′dom-t⇒ ′action-t execution) ⇒ (′dom-t⇒ ′action-t execution)
where next-execs s execs = (fun-upd execs (current s) (fst (snd (control s (current s) (execs (current s))))))
definition next-state∶∶ ′state-t⇒ (′dom-t⇒ ′action-t execution) ⇒ ′state-t
where next-state s execs = snd (snd (control s (current s) (execs (current s))))

A thread is empty iff either it has no further action sequences to execute, or when the current action
sequence is finished and there are no further action sequences to execute.

abbreviation thread-empty∶∶ ′action-t execution⇒ bool
where thread-empty exec ≡ exec = [] ∨ exec = [[]]

Wrappers for function kstep and kprecondition that deal with the case where the given action is None.

definition step where step s oa ≡ case oa of None⇒ s ∣ (Some a) ⇒ kstep s a
definition precondition ∶∶ ′state-t⇒ ′action-t option⇒ bool
where precondition s a ≡ a ⇀ kprecondition s
definition involved
where involved oa ≡ case oa of None⇒ {} ∣ (Some a) ⇒ kinvolved a

EURO-MILS D31.1 Page 7 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

Execution semantics are defined as follows: a run consists of consecutively running sequences of
actions. These sequences are interruptable. Run first checks whether an interrupt occurs. When this
happens, function cswitch may switch the context. Otherwise, function control is used to determine the
next action a, which also yields a new state s′. Action a is executed by executing (step s′ a). The current
execution of the current domain is updated.

Note that run is a partial function, i.e., it computes results only when at all times the preconditions
hold. Such runs are the realistic ones. For other runs, we do not need to – and cannot – prove security.
All the theorems are formulated in such a way that they hold vacuously for unrealistic runs.

function run ∶∶ time-t⇒ ′state-t option⇒ (′dom-t⇒ ′action-t execution) ⇒ ′state-t option
where run 0 s execs = s
∣ run (Suc n) None execs = None
∣ interrupt (Suc n) Ô⇒ run (Suc n) (Some s) execs = run n (Some (cswitch (Suc n) s)) execs
∣ ¬interrupt (Suc n) Ô⇒ thread-empty(execs (current s)) Ô⇒ run (Suc n) (Some s) execs = run n (Some s) execs
∣ ¬interrupt (Suc n) Ô⇒ ¬thread-empty(execs (current s)) Ô⇒ ¬precondition (next-state s execs) (next-action s
execs) Ô⇒ run (Suc n) (Some s) execs = None
∣ ¬interrupt (Suc n) Ô⇒ ¬thread-empty(execs (current s)) Ô⇒ precondition (next-state s execs) (next-action s
execs) Ô⇒

run (Suc n) (Some s) execs = run n (Some (step (next-state s execs) (next-action s execs))) (next-execs s
execs)
⟨proof ⟩
termination ⟨proof ⟩
end

end

3.2 SK (Separation Kernel)
theory SK

imports K
begin

Locale Kernel is now refined to a generic model of a separation kernel. The security policy is repre-
sented using function ia. Function vpeq is adopted from Rushby and is an equivalence relation represet-
ing whether two states are equivalent from the point of view of the given domain.

We assume constraints similar to Rushby, i.e., weak step consistency, locally respects, and output
consistency. Additional assumptions are:

Step Atomicity Each atomic kernel step can be executed within one time slot. Therefore, the domain
that is currently active does not change by executing one action.

Time-based Interrupts As interrupts occur according to a prefixed time-based schedule, the domain
that is active after a call of switch depends on the currently active domain only (cswitch_consis-
tency). Also, cswitch can only change which domain is currently active (cswitch_consistency).

Control Consistency States that are equivalent yield the same control. That is, the next action and the
updated execution depend on the currently active domain only (next_action_consistent, next_ex-
ecs_consistent), the state as updated by the control function remains in vpeq (next_state_consis-
tent, locally_respects_next_state). Finally, function control cannot change which domain is active
(current_next_state).

definition actions-in-execution∶∶ ′action-t execution⇒ ′action-t set
where actions-in-execution exec ≡ { a . ∃ aseq ∈ set exec . a ∈ set aseq }

EURO-MILS D31.1 Page 8 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

locale Separation-Kernel = Kernel kstep output-f s0 current cswitch interrupt kprecondition realistic-execution
control kinvolved

for kstep ∶∶ ′state-t⇒ ′action-t⇒ ′state-t
and output-f ∶∶ ′state-t⇒ ′action-t⇒ ′output-t
and s0 ∶∶ ′state-t
and current ∶∶ ′state-t => ′dom-t — Returns the currently active domain
and cswitch ∶∶ time-t⇒ ′state-t⇒ ′state-t — Switches the current domain
and interrupt ∶∶ time-t⇒ bool — Returns t iff an interrupt occurs in the given state at the given time
and kprecondition ∶∶

′state-t ⇒ ′action-t ⇒ bool — Returns t if an precondition holds that relates the current
action to the state

and realistic-execution ∶∶ ′action-t execution⇒ bool — In this locale, this function is completely unconstrained.
and control ∶∶ ′state-t⇒ ′dom-t⇒ ′action-t execution⇒ ((′action-t option) × ′action-t execution × ′state-t)
and kinvolved ∶∶ ′action-t⇒ ′dom-t set
+

fixes ifp ∶∶ ′dom-t⇒ ′dom-t⇒ bool
and vpeq ∶∶ ′dom-t⇒ ′state-t⇒ ′state-t⇒ bool

assumes vpeq-transitive∶ ∀ a b c u. (vpeq u a b ∧ vpeq u b c) Ð→ vpeq u a c
and vpeq-symmetric∶ ∀ a b u. vpeq u a b Ð→ vpeq u b a
and vpeq-reflexive∶ ∀ a u. vpeq u a a
and ifp-reflexive∶ ∀ u . ifp u u
and weakly-step-consistent∶ ∀ s t u a. vpeq u s t ∧ vpeq (current s) s t ∧ kprecondition s a ∧ kprecondition t a

∧ current s = current t Ð→ vpeq u (kstep s a) (kstep t a)
and locally-respects∶ ∀ a s u. ¬ifp (current s) u ∧ kprecondition s a Ð→ vpeq u s (kstep s a)
and output-consistent∶ ∀ a s t. vpeq (current s) s t ∧ current s = current t Ð→ (output-f s a) = (output-f t a)
and step-atomicity∶ ∀ s a . current (kstep s a) = current s
and cswitch-independent-of-state∶ ∀ n s t . current s = current t Ð→ current (cswitch n s) = current (cswitch n

t)
and cswitch-consistency∶ ∀ u s t n . vpeq u s t Ð→ vpeq u (cswitch n s) (cswitch n t)
and next-action-consistent∶ ∀ s t execs . vpeq (current s) s t ∧ (∀ d ∈ involved (next-action s execs) . vpeq d s

t) ∧ current s = current t Ð→ next-action s execs = next-action t execs
and next-execs-consistent∶ ∀ s t execs . vpeq (current s) s t ∧ (∀ d ∈ involved (next-action s execs) . vpeq d s

t) ∧ current s = current t Ð→ fst (snd (control s (current s) (execs (current s)))) = fst (snd (control t (current s)
(execs (current s))))

and next-state-consistent∶ ∀ s t u execs . vpeq (current s) s t ∧ vpeq u s t ∧ current s = current t Ð→ vpeq u
(next-state s execs) (next-state t execs)

and current-next-state∶ ∀ s execs . current (next-state s execs) = current s
and locally-respects-next-state∶ ∀ s u execs. ¬ifp (current s) u Ð→ vpeq u s (next-state s execs)
and involved-ifp∶ ∀ s a . ∀ d ∈ (involved a) . kprecondition s (the a) Ð→ ifp d (current s)
and next-action-from-execs∶ ∀ s execs . next-action s execs ⇀ (λ a . a ∈ actions-in-execution (execs (current

s)))
and next-execs-subset∶ ∀ s execs u . actions-in-execution (next-execs s execs u) ⊆ actions-in-execution (execs u)

begin

Note that there are no proof obligations on function “interrupt”. Its typing enforces the assumptions
that switching is based on time and not on state. This assumption is sufficient for these proofs, i.e., no
further assumptions are required.

3.2.1 Security for non-interfering domains

We define security for domains that are completely non-interfering. That is, for all domains u and v
such that v may not interfere in any way with domain u, we prove that the behavior of domain u is
independent of the actions performed by v. In other words, the output of domain u in some run is at all
times equivalent to the output of domain u when the actions of domain v are replaced by some other set
actions.

A domain is unrelated to u if and only if the security policy dictates that there is no path from the
domain to u.

EURO-MILS D31.1 Page 9 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

abbreviation unrelated ∶∶ ′dom-t⇒ ′dom-t⇒ bool
where unrelated d u ≡ ¬ifp^∗∗ d u

To formulate the new theorem to prove, we redefine purging: all domains that may not influence
domain u are replaced by arbitrary action sequences.

definition purge ∶∶
(
′dom-t⇒ ′action-t execution) ⇒ ′dom-t⇒ (′dom-t⇒ ′action-t execution)

where purge execs u ≡ λ d . (if unrelated d u then
(SOME alpha . realistic-execution alpha)

else execs d)

A normal run from initial state s0 ending in state s_f is equivalent to a run purged for domain
(currents_f).

definition NI-unrelated where NI-unrelated
≡ ∀ execs a n . run n (Some s0) execs ⇀

(λ s-f . run n (Some s0) (purge execs (current s-f)) ⇀
(λ s-f2 . output-f s-f a = output-f s-f2 a ∧ current s-f = current s-f2))

The following properties are proven inductive over states s and t:

1. Invariably, states s and t are equivalent for any domain v that may influence the purged domain
u. This is more general than proving that “vpeq u s t” is inductive. The reason we need to prove
equivalence over all domains v is so that we can use weak step consistency.

2. Invariably, states s and t have the same active domain.

abbreviation equivalent-states ∶∶ ′state-t option ⇒ ′state-t option⇒ ′dom-t⇒ bool
where equivalent-states s t u ≡ s ∥ t ⇀ (λ s t . (∀ v . ifp^∗∗ v u Ð→ vpeq v s t) ∧ current s = current t)

Rushby’s view partitioning is redefined. Two states that are initially u-equivalent are u-equivalent
after performing respectively a realistic run and a realistic purged run.

definition view-partitioned∶∶bool where view-partitioned
≡ ∀ execs ms mt n u . equivalent-states ms mt u Ð→
(run n ms execs ∥
run n mt (purge execs u) ⇀
(λ rs rt . vpeq u rs rt ∧ current rs = current rt))

We formulate a version of predicate view_partitioned that is on one hand more general, but on the
other hand easier to prove inductive over function run. Instead of reasoning over execs and (purge execs
u), we reason over any two executions execs1 and execs2 for which the following relation holds:

definition purged-relation ∶∶ ′dom-t⇒ (′dom-t⇒ ′action-t execution) ⇒ (′dom-t⇒ ′action-t execution) ⇒ bool
where purged-relation u execs1 execs2 ≡ ∀ d . ifp^∗∗ d u Ð→ execs1 d = execs2 d

The inductive version of view partitioning says that runs on two states that are u-equivalent and on
two executions that are purged_related yield u-equivalent states.

definition view-partitioned-ind∶∶bool where view-partitioned-ind
≡ ∀ execs1 execs2 s t n u . equivalent-states s t u ∧ purged-relation u execs1 execs2Ð→ equivalent-states (run n

s execs1) (run n t execs2) u

A proof that when state t performs a step but state s not, the states remain equivalent for any domain
v that may interfere with u.

lemma vpeq-s-nt∶
assumes prec-t∶ precondition (next-state t execs2) (next-action t execs2)
assumes not-ifp-curr-u∶ ¬ ifp^∗∗ (current t) u
assumes vpeq-s-t∶ ∀ v . ifp^∗∗ v u Ð→ vpeq v s t
shows (∀ v . ifp^∗∗ v u Ð→ vpeq v s (step (next-state t execs2) (next-action t execs2)))

EURO-MILS D31.1 Page 10 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

⟨proof ⟩

A proof that when state s performs a step but state t not, the states remain equivalent for any domain
v that may interfere with u.

lemma vpeq-ns-t∶
assumes prec-s∶ precondition (next-state s execs) (next-action s execs)
assumes not-ifp-curr-u∶ ¬ ifp^∗∗ (current s) u
assumes vpeq-s-t∶ ∀ v . ifp^∗∗ v u Ð→ vpeq v s t
shows ∀ v . ifp^∗∗ v u Ð→ vpeq v (step (next-state s execs) (next-action s execs)) t
⟨proof ⟩

A proof that when both states s and t perform a step, the states remain equivalent for any domain v
that may interfere with u. It assumes that the current domain can interact with u (the domain for which
is purged).

lemma vpeq-ns-nt-ifp-u∶
assumes vpeq-s-t∶ ∀ v . ifp^∗∗ v u Ð→ vpeq v s t ′

and current-s-t∶ current s = current t ′

shows precondition (next-state s execs) a ∧ precondition (next-state t ′ execs) a Ô⇒ (ifp^∗∗ (current s) u Ô⇒
(∀ v . ifp^∗∗ v u Ð→ vpeq v (step (next-state s execs) a) (step (next-state t ′ execs) a)))
⟨proof ⟩

A proof that when both states s and t perform a step, the states remain equivalent for any domain
v that may interfere with u. It assumes that the current domain cannot interact with u (the domain for
which is purged).

lemma vpeq-ns-nt-not-ifp-u∶
assumes purged-a-a2∶ purged-relation u execs execs2

and prec-s∶ precondition (next-state s execs) (next-action s execs)
and current-s-t∶ current s = current t ′

and vpeq-s-t∶ ∀ v . ifp^∗∗ v u Ð→ vpeq v s t ′

shows ¬ifp^∗∗ (current s) u ∧ precondition (next-state t ′ execs2) (next-action t ′ execs2) Ð→ (∀ v . ifp^∗∗ v u
Ð→ vpeq v (step (next-state s execs) (next-action s execs)) (step (next-state t ′ execs2) (next-action t ′ execs2)))
⟨proof ⟩

A run with a purged list of actions appears identical to a run without purging, when starting from two
states that appear identical.

lemma unwinding-implies-view-partitioned-ind∶
shows view-partitioned-ind
⟨proof ⟩

From the previous lemma, we can prove that the system is view partitioned. The previous lemma
was inductive, this lemma just instantiates the previous lemma replacing s and t by the initial state.

lemma unwinding-implies-view-partitioned∶
shows view-partitioned
⟨proof ⟩

Domains that many not interfere with each other, do not interfere with each other.

theorem unwinding-implies-NI-unrelated∶
shows NI-unrelated
⟨proof ⟩

3.2.2 Security for indirectly interfering domains

Consider the following security policy over three domains A, B and C: A ↝ B ↝ C, but A /↝ C. The
semantics of this policy is that A may communicate with C, but only via B. No direct communication
from A to C is allowed. We formalize these semantics as follows: without intermediate domain B,
domain A cannot flow information to C. In other words, from the point of view of domain C the run

EURO-MILS D31.1 Page 11 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

where domain B is inactive must be equivalent to the run where domain B is inactive and domain A is
replaced by an attacker. Domain C must be independent of domain A, when domain B is inactive.

The aim of this subsection is to formalize the semantics where A can write to C via B only. We define
to two ipurge functions. The first purges all domains d that are intermediary for some other domain v.
An intermediary for u is defined as a domain d for which there exists an information flow from some
domain v to u via d, but no direct information flow from v to u is allowed.

definition intermediary ∶∶ ′dom-t⇒ ′dom-t⇒ bool
where intermediary d u ≡ ∃ v . ifp^∗∗ v d ∧ ifp d u ∧ ¬ifp v u ∧ d /= u
primrec remove-gateway-communications ∶∶ ′dom-t⇒ ′action-t execution⇒ ′action-t execution
where remove-gateway-communications u [] = []
∣ remove-gateway-communications u (aseq#exec) = (if ∃ a ∈ set aseq . ∃ v . intermediary v u ∧ v ∈ involved

(Some a) then [] else aseq)#(remove-gateway-communications u exec)

definition ipurge-l ∶∶
(
′dom-t⇒ ′action-t execution) ⇒ ′dom-t⇒ (′dom-t⇒ ′action-t execution) where

ipurge-l execs u ≡ λ d . if intermediary d u then
[]

else if d = u then
remove-gateway-communications u (execs u)

else execs d

The second ipurge removes both the intermediaries and the indirect sources. An indirect source for
u is defined as a domain that may indirectly flow information to u, but not directly.

abbreviation ind-source ∶∶ ′dom-t⇒ ′dom-t⇒ bool
where ind-source d u ≡ ifp^∗∗ d u ∧ ¬ifp d u
definition ipurge-r ∶∶
(
′dom-t⇒ ′action-t execution) ⇒ ′dom-t⇒ (′dom-t⇒ ′action-t execution) where

ipurge-r execs u ≡ λ d . if intermediary d u then
[]

else if ind-source d u then
SOME alpha . realistic-execution alpha

else if d = u then
remove-gateway-communications u (execs u)

else
execs d

For a system with an intransitive policy to be called secure for domain u any indirect source may not
flow information towards u when the intermediaries are purged out. This definition of security allows
the information flow A↝ B ↝ C, but prohibits A↝ C.

definition NI-indirect-sources ∶∶bool
where NI-indirect-sources
≡ ∀ execs a n. run n (Some s0) execs ⇀

(λ s-f . (run n (Some s0) (ipurge-l execs (current s-f)) ∥
run n (Some s0) (ipurge-r execs (current s-f)) ⇀
(λ s-l s-r . output-f s-l a = output-f s-r a)))

This definition concerns indirect sources only. It does not enforce that an unrelated domain may not
flow information to u. This is expressed by “secure”.

This allows us to define security over intransitive policies.

definition isecure∶∶bool
where isecure ≡ NI-indirect-sources ∧ NI-unrelated

abbreviation iequivalent-states ∶∶ ′state-t option ⇒ ′state-t option⇒ ′dom-t⇒ bool
where iequivalent-states s t u ≡ s ∥ t ⇀ (λ s t . (∀ v . ifp v u ∧ ¬intermediary v u Ð→ vpeq v s t) ∧ current s =
current t)

EURO-MILS D31.1 Page 12 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

definition does-not-communicate-with-gateway
where does-not-communicate-with-gateway u execs ≡ ∀ a . a ∈ actions-in-execution (execs u) Ð→ (∀ v . inter-
mediary v u Ð→ v ∉ involved (Some a))

definition iview-partitioned∶∶bool where iview-partitioned
≡ ∀ execs ms mt n u . iequivalent-states ms mt u Ð→
(run n ms (ipurge-l execs u) ∥
run n mt (ipurge-r execs u) ⇀
(λ rs rt . vpeq u rs rt ∧ current rs = current rt))

definition ipurged-relation1 ∶∶ ′dom-t⇒ (′dom-t⇒ ′action-t execution) ⇒ (′dom-t⇒ ′action-t execution) ⇒ bool
where ipurged-relation1 u execs1 execs2 ≡ ∀ d . (ifp d uÐ→ execs1 d = execs2 d) ∧ (intermediary d uÐ→ execs1
d = [])

Proof that if the current is not an intermediary for u, then all domains involved in the next action are
vpeq.

lemma vpeq-involved-domains∶
assumes ifp-curr∶ ifp (current s) u

and not-intermediary-curr∶ ¬intermediary (current s) u
and no-gateway-comm∶ does-not-communicate-with-gateway u execs
and vpeq-s-t∶ ∀ v . ifp v u ∧ ¬intermediary v u Ð→ vpeq v s t ′

and prec-s∶ precondition (next-state s execs) (next-action s execs)
shows ∀ d ∈ involved (next-action s execs) . vpeq d s t ′

⟨proof ⟩

Proof that purging removes communications of the gateway to domain u.

lemma ipurge-l-removes-gateway-communications∶
shows does-not-communicate-with-gateway u (ipurge-l execs u)
⟨proof ⟩

Proof of view partitioning. The lemma is structured exactly as lemma unwinding_implies_view_par-
titioned_ind and uses the same convention for naming.

lemma iunwinding-implies-view-partitioned1∶
shows iview-partitioned
⟨proof ⟩

Returns True iff and only if the two states have the same active domain, or if one of the states is
None.

definition mcurrents ∶∶ ′state-t option⇒ ′state-t option⇒ bool
where mcurrents m1 m2 ≡ m1 ∥ m2 ⇀ (λ s t . current s = current t)

Proof that switching/interrupts are purely time-based and happen independent of the actions done by
the domains. As all theorems in this locale, it holds vacuously whenever one of the states is None, i.e.,
whenver at some point a precondition does not hold.

lemma current-independent-of-domain-actions∶
assumes current-s-t∶ mcurrents s t

shows mcurrents (run n s execs) (run n t execs2)
⟨proof ⟩

theorem unwinding-implies-NI-indirect-sources∶
shows NI-indirect-sources
⟨proof ⟩

theorem unwinding-implies-isecure∶

EURO-MILS D31.1 Page 13 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

shows isecure
⟨proof ⟩

end
end

3.3 ISK (Interruptible Separation Kernel)
theory ISK

imports SK
begin

At this point, the precondition linking action to state is generic and highly unconstrained. We refine
the previous locale by given generic functions “precondition” and “realistic_trace” a definiton. This
yields a total run function, instead of the partial one of locale Separation_Kernel.

This definition is based on a set of valid action sequences AS_set. Consider for example the following
action sequence:

γ = [COPY _INIT,COPY _CHECK,COPY _COPY]

If action sequence γ is a member of AS_set, this means that the attack surface contains an action COPY,
which consists of three consecutive atomic kernel actions. Interrupts can occur anywhere between these
atomic actions.

Given a set of valid action sequences such as γ, generic function precondition can be defined. It now
consists of 1.) a generic invariant and 2.) more refined preconditions for the current action.

These preconditions need to be proven inductive only according to action sequences. Assume, e.g.,
that γ ∈ AS_set and that d is the currently active domain in state s. The following constraints are assumed
and must therefore be proven for the instantiation:

• “AS_precondition s d COPY_INIT”
since COPY_INIT is the start of an action sequence.

• “AS_precondition (step s COPY_INIT) d COPY_CHECK”
since (COPY_INIT, COPY_CHECK) is a sub sequence.

• “AS_precondition (step s COPY_CHECK) d COPY_COPY”
since (COPY_CHECK, COPY_COPY) is a sub sequence.

Additionally, the precondition for domain d must be consistent when a context switch occurs, or when
ever some other domain d′ performs an action.

Locale Interruptible_Separation_Kernel refines locale Separation_Kernel in two ways. First, there is
a definition of realistic executions. A realistic trace consists of action sequences from AS_set.

Secondly, the generic control function has been refined by additional assumptions. It is now assumed
that control conforms to one of four possibilities:

1. The execution of the currently active domain is empty and the control function returns no action.

2. The currently active domain is executing the action sequence at the head of the execution. It returns
the next kernel action of this sequence and updates the execution accordingly.

3. The action sequence is delayed.

4. The action sequence that is at the head of the execution is skipped and the execution is updated
accordingly.

As for the state update, this is still completely unconstrained and generic as long as it respects the generic
invariant and the precondition.

EURO-MILS D31.1 Page 14 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

locale Interruptible-Separation-Kernel = Separation-Kernel kstep output-f s0 current cswitch interrupt kprecondi-
tion realistic-execution control kinvolved ifp vpeq

for kstep ∶∶ ′state-t⇒ ′action-t⇒ ′state-t
and output-f ∶∶ ′state-t⇒ ′action-t⇒ ′output-t
and s0 ∶∶ ′state-t
and current ∶∶ ′state-t => ′dom-t — Returns the currently active domain
and cswitch ∶∶ time-t⇒ ′state-t⇒ ′state-t — Switches the current domain
and interrupt ∶∶ time-t⇒ bool — Returns t iff an interrupt occurs in the given state at the given time
and kprecondition ∶∶

′state-t ⇒ ′action-t ⇒ bool — Returns t if an precondition holds that relates the current
action to the state

and realistic-execution ∶∶ ′action-t execution⇒ bool — In this locale, this function is completely unconstrained.
and control ∶∶ ′state-t⇒ ′dom-t⇒ ′action-t execution⇒ ((′action-t option) × ′action-t execution × ′state-t)
and kinvolved ∶∶ ′action-t⇒ ′dom-t set
and ifp ∶∶ ′dom-t⇒ ′dom-t⇒ bool
and vpeq ∶∶ ′dom-t⇒ ′state-t⇒ ′state-t⇒ bool
+

fixes AS-set ∶∶ (′action-t list) set — Returns a set of valid action sequences, i.e., the attack surface
and invariant ∶∶ ′state-t⇒ bool
and AS-precondition ∶∶ ′state-t⇒ ′dom-t⇒ ′action-t⇒ bool
and aborting ∶∶ ′state-t⇒ ′dom-t⇒ ′action-t⇒ bool
and waiting ∶∶ ′state-t⇒ ′dom-t⇒ ′action-t⇒ bool

assumes empty-in-AS-set∶ [] ∈ AS-set
and invariant-s0∶ invariant s0
and invariant-after-cswitch∶ ∀ s n . invariant s Ð→ invariant (cswitch n s)
and precondition-after-cswitch∶ ∀ s d n a. AS-precondition s d a Ð→ AS-precondition (cswitch n s) d a
and AS-prec-first-action∶ ∀ s d aseq . invariant s ∧ aseq ∈ AS-set ∧ aseq /= [] Ð→ AS-precondition s d (hd aseq)
and AS-prec-after-step∶ ∀ s a a ′ . (∃ aseq ∈ AS-set . is-sub-seq a a ′ aseq) ∧ invariant s ∧ AS-precondition s

(current s) a ∧ ¬aborting s (current s) a ∧ ¬ waiting s (current s) a Ð→ AS-precondition (kstep s a) (current s)
a ′

and AS-prec-dom-independent∶ ∀ s d a a ′ . current s /= d ∧ AS-precondition s d a Ð→ AS-precondition (kstep s
a ′) d a

and spec-of-invariant∶ ∀ s a . invariant s Ð→ invariant (kstep s a)

and kprecondition-def ∶ kprecondition s a ≡ invariant s ∧ AS-precondition s (current s) a
and realistic-execution-def ∶ realistic-execution aseq ≡ set aseq ⊆ AS-set
and control-spec∶ ∀ s d aseqs . case control s d aseqs of (a,aseqs ′,s ′) ⇒

(thread-empty aseqs ∧ (a,aseqs ′) = (None,[])) ∨ — Nothing happens
(aseqs /= [] ∧ hd aseqs /= [] ∧ ¬aborting s ′ d (the a) ∧ ¬ waiting s ′ d (the a) ∧ (a,aseqs ′) =

(Some (hd (hd aseqs)), (tl (hd aseqs))#(tl aseqs))) ∨ — Execute the first action of the current action sequence
(aseqs /= [] ∧ hd aseqs /= [] ∧ waiting s ′ d (the a) ∧ (a,aseqs ′,s ′) = (Some (hd (hd

aseqs)),aseqs,s)) ∨ — Nothing happens, waiting to execute the next action
(a,aseqs ′) = (None,tl aseqs)

and next-action-after-cswitch∶ ∀ s n d aseqs . fst (control (cswitch n s) d aseqs) = fst (control s d aseqs)
and next-action-after-next-state∶ ∀ s execs d . current s /= d Ð→ fst (control (next-state s execs) d (execs d))

= None ∨ fst (control (next-state s execs) d (execs d)) = fst (control s d (execs d))
and next-action-after-step∶ ∀ s a d aseqs . current s /= d Ð→ fst (control (step s a) d aseqs) = fst (control s d

aseqs)
and next-state-precondition∶ ∀ s d a execs. AS-precondition s d a Ð→ AS-precondition (next-state s execs) d a
and next-state-invariant∶ ∀ s execs . invariant s Ð→ invariant (next-state s execs)
and spec-of-waiting∶ ∀ s a . waiting s (current s) a Ð→ kstep s a = s

begin

We can now formulate a total run function, since based on the new assumptions the case where the
precondition does not hold, will never occur.
function run-total ∶∶ time-t⇒ ′state-t⇒ (′dom-t⇒ ′action-t execution) ⇒ ′state-t
where run-total 0 s execs = s
∣ interrupt (Suc n) Ô⇒ run-total (Suc n) s execs = run-total n (cswitch (Suc n) s) execs
∣ ¬interrupt (Suc n) Ô⇒ thread-empty(execs (current s)) Ô⇒ run-total (Suc n) s execs = run-total n s execs

EURO-MILS D31.1 Page 15 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

∣ ¬interrupt (Suc n) Ô⇒ ¬thread-empty(execs (current s)) Ô⇒
run-total (Suc n) s execs = run-total n (step (next-state s execs) (next-action s execs)) (next-execs s execs)

⟨proof ⟩
termination ⟨proof ⟩

The major part of the proofs in this locale consist of proving that function run_total is equivalent to
function run, i.e., that the precondition does always hold. This assumes that the executions are realistic.
This means that the execution of each domain contains action sequences that are from AS_set. This
ensures, e.g, that a COPY_CHECK is always preceded by a COPY_INIT.

definition realistic-executions ∶∶ (′dom-t⇒ ′action-t execution) ⇒ bool
where realistic-executions execs ≡ ∀ d . realistic-execution (execs d)

Lemma run_total_equals_run is proven by doing induction. It is however not inductive and can
therefore not be proven directly: a realistic execution is not necessarily realistic after performing one
action. We generalize to do induction. Predicate realistic_executions_ind is the inductive version of
realistic_executions. All action sequences in the tail of the executions must be complete action sequences
(i.e., they must be from AS_set). The first action sequence, however, is being executed and is therefore
not necessarily an action sequence from AS_set, but it is the last part of some action sequence from
AS_set.

definition realistic-AS-partial ∶∶ ′action-t list⇒ bool
where realistic-AS-partial aseq ≡ ∃ n aseq ′ . n ≤ length aseq ′ ∧ aseq ′ ∈ AS-set ∧ aseq = lastn n aseq ′

definition realistic-executions-ind ∶∶ (′dom-t⇒ ′action-t execution) ⇒ bool
where realistic-executions-ind execs ≡ ∀ d . (case execs d of [] ⇒ True ∣ (aseq#aseqs) ⇒ realistic-AS-partial
aseq ∧ set aseqs ⊆ AS-set)

We need to know that invariably, the precondition holds. As this precondition consists of 1.) a generic
invariant and 2.) more refined preconditions for the current action, we have to know that these two are
invariably true.

definition precondition-ind ∶∶ ′state-t⇒ (′dom-t⇒ ′action-t execution) ⇒ bool
where precondition-ind s execs ≡ invariant s ∧ (∀ d . fst(control s d (execs d)) ⇀ AS-precondition s d)

Proof that “execution is realistic" is inductive, i.e., assuming the current execution is realistic, the
execution returned by the control mechanism is realistic.

lemma next-execution-is-realistic-partial∶
assumes na-def ∶ next-execs s execs d = aseq # aseqs

and d-is-curr∶ d = current s
and realistic∶ realistic-executions-ind execs
and thread-not-empty∶ ¬thread-empty(execs (current s))

shows realistic-AS-partial aseq ∧ set aseqs ⊆ AS-set
⟨proof ⟩

The lemma that proves that the total run function is equivalent to the partial run function, i.e., that in
this refinement the case of the run function where the precondition is False will never occur.

lemma run-total-equals-run∶
assumes realistic-exec∶ realistic-executions execs

and invariant∶ invariant s
shows strict-equal (run n (Some s) execs) (run-total n s execs)

⟨proof ⟩

Theorem unwinding_implies_isecure gives security for all realistic executions. For unrealistic exe-
cutions, it holds vacuously and therefore does not tell us anything. In order to prove security for this
refinement (i.e., for function run_total), we have to prove that purging yields realistic runs.

lemma realistic-purge∶
shows ∀ execs d . realistic-executions execsÐ→ realistic-executions (purge execs d)
⟨proof ⟩

EURO-MILS D31.1 Page 16 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

lemma remove-gateway-comm-subset∶
shows set (remove-gateway-communications d exec) ⊆ set exec ∪ {[]}
⟨proof ⟩

lemma realistic-ipurge-l∶
shows ∀ execs d . realistic-executions execsÐ→ realistic-executions (ipurge-l execs d)
⟨proof ⟩

lemma realistic-ipurge-r∶
shows ∀ execs d . realistic-executions execsÐ→ realistic-executions (ipurge-r execs d)
⟨proof ⟩

We now have sufficient lemma’s to prove security for run_total. The definition of security is similar
to that in Section 3.2. It now assumes that the executions are realistic and concerns function run_total
instead of function run.

definition NI-unrelated-total∶∶bool
where NI-unrelated-total
≡ ∀ execs a n . realistic-executions execsÐ→

(let s-f = run-total n s0 execs in
output-f s-f a = output-f (run-total n s0 (purge execs (current s-f))) a
∧ current s-f = current (run-total n s0 (purge execs (current s-f))))

definition NI-indirect-sources-total∶∶bool
where NI-indirect-sources-total
≡ ∀ execs a n. realistic-executions execsÐ→

(let s-f = run-total n s0 execs in
output-f (run-total n s0 (ipurge-l execs (current s-f))) a =
output-f (run-total n s0 (ipurge-r execs (current s-f))) a)

definition isecure-total∶∶bool
where isecure-total ≡ NI-unrelated-total ∧ NI-indirect-sources-total

theorem unwinding-implies-isecure-total∶
shows isecure-total
⟨proof ⟩

end
end

3.4 CISK (Controlled Interruptible Separation Kernel)
theory CISK

imports ISK
begin

This section presents a generic model of a Controlled Interruptible Separation Kernel (CISK). It
formulates security, i.e., intransitive noninterference. For a presentation of this model, see Section 2
of [31].

First, a locale is defined that defines all generic functions and all proof obligations (see Section 2.3
of [31]).

locale Controllable-Interruptible-Separation-Kernel =— CISK
fixes kstep ∶∶ ′state-t⇒ ′action-t⇒ ′state-t — Executes one atomic kernel action

and output-f ∶∶ ′state-t⇒ ′action-t⇒ ′output-t — Returns the observable behavior
and s0 ∶∶ ′state-t — The initial state
and current ∶∶ ′state-t => ′dom-t — Returns the currently active domain

EURO-MILS D31.1 Page 17 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

and cswitch ∶∶ time-t⇒ ′state-t⇒ ′state-t — Performs a context switch
and interrupt ∶∶ time-t⇒ bool — Returns t iff an interrupt occurs in the given state at the given time
and kinvolved ∶∶ ′action-t⇒ ′dom-t set — Returns the set of domains that are involved in the given action
and ifp ∶∶ ′dom-t⇒ ′dom-t⇒ bool — The security policy.
and vpeq ∶∶ ′dom-t⇒ ′state-t⇒ ′state-t⇒ bool — View partitioning equivalence
and AS-set ∶∶ (′action-t list) set — Returns a set of valid action sequences, i.e., the attack surface
and invariant ∶∶ ′state-t⇒ bool — Returns an inductive state-invariant
and AS-precondition ∶∶ ′state-t⇒ ′dom-t⇒ ′action-t⇒ bool — Returns the preconditions under which the given

action can be executed.
and aborting ∶∶ ′state-t⇒ ′dom-t⇒ ′action-t⇒ bool — Returns true iff the action is aborted.
and waiting ∶∶ ′state-t⇒ ′dom-t⇒ ′action-t⇒ bool — Returns true iff execution of the given action is delayed.
and set-error-code ∶∶ ′state-t⇒ ′action-t⇒ ′state-t — Sets an error code when actions are aborted.

assumes vpeq-transitive∶ ∀ a b c u. (vpeq u a b ∧ vpeq u b c) Ð→ vpeq u a c
and vpeq-symmetric∶ ∀ a b u. vpeq u a b Ð→ vpeq u b a
and vpeq-reflexive∶ ∀ a u. vpeq u a a
and ifp-reflexive∶ ∀ u . ifp u u
and weakly-step-consistent∶ ∀ s t u a. vpeq u s t ∧ vpeq (current s) s t ∧ invariant s ∧ AS-precondition s (current

s) a ∧ invariant t ∧ AS-precondition t (current t) a ∧ current s = current t Ð→ vpeq u (kstep s a) (kstep t a)
and locally-respects∶ ∀ a s u. ¬ifp (current s) u ∧ invariant s ∧ AS-precondition s (current s) a Ð→ vpeq u s

(kstep s a)
and output-consistent∶ ∀ a s t. vpeq (current s) s t ∧ current s = current t Ð→ (output-f s a) = (output-f t a)
and step-atomicity∶ ∀ s a . current (kstep s a) = current s
and cswitch-independent-of-state∶ ∀ n s t . current s = current t Ð→ current (cswitch n s) = current (cswitch n

t)
and cswitch-consistency∶ ∀ u s t n . vpeq u s t Ð→ vpeq u (cswitch n s) (cswitch n t)
and empty-in-AS-set∶ [] ∈ AS-set
and invariant-s0∶ invariant s0
and invariant-after-cswitch∶ ∀ s n . invariant s Ð→ invariant (cswitch n s)
and precondition-after-cswitch∶ ∀ s d n a. AS-precondition s d a Ð→ AS-precondition (cswitch n s) d a
and AS-prec-first-action∶ ∀ s d aseq . invariant s ∧ aseq ∈ AS-set ∧ aseq /= [] Ð→ AS-precondition s d (hd aseq)
and AS-prec-after-step∶ ∀ s a a ′ . (∃ aseq ∈ AS-set . is-sub-seq a a ′ aseq) ∧ invariant s ∧ AS-precondition s

(current s) a ∧ ¬aborting s (current s) a ∧ ¬ waiting s (current s) aÐ→ AS-precondition (kstep s a) (current s)
a ′

and AS-prec-dom-independent∶ ∀ s d a a ′ . current s /= d ∧ AS-precondition s d a Ð→ AS-precondition (kstep s
a ′) d a

and spec-of-invariant∶ ∀ s a . invariant s Ð→ invariant (kstep s a)
and aborting-switch-independent∶ ∀ n s . aborting (cswitch n s) = aborting s
and aborting-error-update∶ ∀ s d a ′ a . current s /= d ∧ aborting s d a Ð→ aborting (set-error-code s a ′) d a
and aborting-after-step∶ ∀ s a d . current s /= d Ð→ aborting (kstep s a) d = aborting s d
and aborting-consistent∶ ∀ s t u . vpeq u s t Ð→ aborting s u = aborting t u
and waiting-switch-independent∶ ∀ n s . waiting (cswitch n s) = waiting s
and waiting-error-update∶ ∀ s d a ′ a . current s /= d ∧ waiting s d a Ð→ waiting (set-error-code s a ′) d a
and waiting-consistent∶ ∀ s t u a . vpeq (current s) s t ∧ (∀ d ∈ kinvolved a . vpeq d s t) ∧ vpeq u s t Ð→ waiting

s u a = waiting t u a
and spec-of-waiting∶ ∀ s a . waiting s (current s) a Ð→ kstep s a = s
and set-error-consistent∶ ∀ s t u a . vpeq u s t Ð→ vpeq u (set-error-code s a) (set-error-code t a)
and set-error-locally-respects∶ ∀ s u a . ¬ifp (current s) u Ð→ vpeq u s (set-error-code s a)
and current-set-error-code∶ ∀ s a . current (set-error-code s a) = current s

and precondition-after-set-error-code∶ ∀ s d a a ′. AS-precondition s d a ∧ aborting s (current s) a ′ Ð→
AS-precondition (set-error-code s a ′) d a

and invariant-after-set-error-code∶ ∀ s a . invariant s Ð→ invariant (set-error-code s a)
and involved-ifp∶ ∀ s a . ∀ d ∈ (kinvolved a) . AS-precondition s (current s) a Ð→ ifp d (current s)

begin

EURO-MILS D31.1 Page 18 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

3.4.1 Execution semantics

Control is based on generic functions aborting, waiting and set_error_code. Function aborting de-
cides whether a certain action is aborting, given its domain and the state. If so, then function set_er-
ror_code will be used to update the state, possibly communicating to other domains that an action has
been aborted. Function waiting can delay the execution of an action. This behavior is implemented in
function CISK_control.

function CISK-control ∶∶ ′state-t ⇒ ′dom-t ⇒ ′action-t execution ⇒ (′action-t option ×
′action-t execution ×

′state-t)
where CISK-control s d [] = (None,[],s)— The thread is empty
∣ CISK-control s d ([]#[]) = (None,[],s)— The current action sequence has been finished and the thread

has no next action sequences to execute
∣ CISK-control s d ([]#(as ′#execs ′)) = (None,as ′#execs ′,s)— The current action sequence has been finished.

Skip to the next sequence
∣ CISK-control s d ((a#as)#execs ′) = (if aborting s d a then

(None, execs ′,set-error-code s a)
else if waiting s d a then
(Some a, (a#as)#execs ′,s)

else
(Some a, as#execs ′,s))— Executing an action sequence

⟨proof ⟩
termination ⟨proof ⟩

Function run defines the execution semantics. This function is presented in [31] by pseudo code (see
Algorithm 1). Before defining the run function, we define accessor functions for the control mechanism.
Functions next_action, next_execs and next_state correspond to “control.a”, “control.x” and “control.s”
in [31].

abbreviation next-action∶∶ ′state-t⇒ (′dom-t⇒ ′action-t execution) ⇒ ′action-t option
where next-action ≡ Kernel.next-action current CISK-control
abbreviation next-execs∶∶ ′state-t⇒ (′dom-t⇒ ′action-t execution) ⇒ (′dom-t⇒ ′action-t execution)
where next-execs ≡ Kernel.next-execs current CISK-control
abbreviation next-state∶∶ ′state-t⇒ (′dom-t⇒ ′action-t execution) ⇒ ′state-t
where next-state ≡ Kernel.next-state current CISK-control

A thread is empty iff either it has no further action sequences to execute, or when the current action
sequence is finished and there are no further action sequences to execute.

abbreviation thread-empty∶∶ ′action-t execution⇒ bool
where thread-empty exec ≡ exec = [] ∨ exec = [[]]

The following function defines the execution semantics of CISK, using function CISK_control.

function run ∶∶ time-t⇒ ′state-t⇒ (′dom-t⇒ ′action-t execution) ⇒ ′state-t
where run 0 s execs = s
∣ interrupt (Suc n) Ô⇒ run (Suc n) s execs = run n (cswitch (Suc n) s) execs
∣ ¬interrupt (Suc n) Ô⇒ thread-empty(execs (current s)) Ô⇒ run (Suc n) s execs = run n s execs
∣ ¬interrupt (Suc n) Ô⇒ ¬thread-empty(execs (current s)) Ô⇒

run (Suc n) s execs = (let control-a = next-action s execs;
control-s = next-state s execs;
control-x = next-execs s execs in

case control-a of None⇒ run n control-s control-x
∣ (Some a) ⇒ run n (kstep control-s a) control-x)

⟨proof ⟩
termination ⟨proof ⟩

3.4.2 Formulations of security

The definitions of security as presented in Section 2.2 of [31].

EURO-MILS D31.1 Page 19 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

abbreviation kprecondition
where kprecondition s a ≡ invariant s ∧ AS-precondition s (current s) a

definition realistic-execution
where realistic-execution aseq ≡ set aseq ⊆ AS-set
definition realistic-executions ∶∶ (′dom-t⇒ ′action-t execution) ⇒ bool
where realistic-executions execs ≡ ∀d. realistic-execution (execs d)
abbreviation involved where involved ≡ Kernel.involved kinvolved
abbreviation step where step ≡ Kernel.step kstep
abbreviation purge where purge ≡ Separation-Kernel.purge realistic-execution ifp
abbreviation ipurge-l where ipurge-l ≡ Separation-Kernel.ipurge-l kinvolved ifp
abbreviation ipurge-r where ipurge-r ≡ Separation-Kernel.ipurge-r realistic-execution kinvolved ifp

definition NI-unrelated∶∶bool
where NI-unrelated
≡ ∀ execs a n . realistic-executions execsÐ→

(let s-f = run n s0 execs in
output-f s-f a = output-f (run n s0 (purge execs (current s-f))) a)

definition NI-indirect-sources∶∶bool
where NI-indirect-sources
≡ ∀ execs a n. realistic-executions execsÐ→

(let s-f = run n s0 execs in
output-f (run n s0 (ipurge-l execs (current s-f))) a =
output-f (run n s0 (ipurge-r execs (current s-f))) a)

definition isecure∶∶bool
where isecure ≡ NI-unrelated ∧ NI-indirect-sources

3.4.3 Proofs

The final theorem is unwinding_implies_isecure_CISK. This theorem shows that any interpretation of
locale CISK is secure.

To prove this theorem, the refinement framework is used. CISK is a refinement of ISK, as the
only idfference is the control function. In ISK, this function is a generic function called control, in
CISK it is interpreted in function CISK_control. It is proven that function CISK_control satisfies all the
proof obligations concerning generic function control. In other words, CISK_control is proven to be an
interpretation of control. Therefore, all theorems on run_total apply to the run function of CISK as well.

lemma next-action-consistent∶
shows ∀ s t execs . vpeq (current s) s t ∧ (∀ d ∈ involved (next-action s execs) . vpeq d s t) ∧ current s = current
t Ð→ next-action s execs = next-action t execs
⟨proof ⟩

lemma next-execs-consistent∶
shows ∀ s t execs . vpeq (current s) s t ∧ (∀ d ∈ involved (next-action s execs) . vpeq d s t) ∧ current s = current
t Ð→ fst (snd (CISK-control s (current s) (execs (current s)))) = fst (snd (CISK-control t (current s) (execs
(current s))))
⟨proof ⟩

lemma next-state-consistent∶
shows ∀ s t u execs . vpeq (current s) s t ∧ vpeq u s t ∧ current s = current t Ð→ vpeq u (next-state s execs)
(next-state t execs)
⟨proof ⟩

lemma current-next-state∶
shows ∀ s execs . current (next-state s execs) = current s
⟨proof ⟩

lemma locally-respects-next-state∶

EURO-MILS D31.1 Page 20 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

shows ∀ s u execs. ¬ifp (current s) u Ð→ vpeq u s (next-state s execs)
⟨proof ⟩

lemma CISK-control-spec∶
shows ∀ s d aseqs.

case CISK-control s d aseqs of
(a, aseqs ′, s ′) ⇒
thread-empty aseqs ∧ (a, aseqs ′) = (None, []) ∨
aseqs /= [] ∧ hd aseqs /= [] ∧ ¬ aborting s ′ d (the a) ∧ ¬ waiting s ′ d (the a) ∧ (a, aseqs ′) = (Some (hd (hd

aseqs)), tl (hd aseqs) # tl aseqs) ∨
aseqs /= [] ∧ hd aseqs /= [] ∧ waiting s ′ d (the a) ∧ (a, aseqs ′, s ′) = (Some (hd (hd aseqs)), aseqs, s) ∨ (a,

aseqs ′) = (None, tl aseqs)
⟨proof ⟩

lemma next-action-after-cswitch∶
shows ∀ s n d aseqs . fst (CISK-control (cswitch n s) d aseqs) = fst (CISK-control s d aseqs)
⟨proof ⟩

lemma next-action-after-next-state∶
shows∀ s execs d . current s /= dÐ→ fst (CISK-control (next-state s execs) d (execs d)) =None ∨ fst (CISK-control
(next-state s execs) d (execs d)) = fst (CISK-control s d (execs d))
⟨proof ⟩

lemma next-action-after-step∶
shows ∀ s a d aseqs . current s /= d Ð→ fst (CISK-control (step s a) d aseqs) = fst (CISK-control s d aseqs)
⟨proof ⟩

lemma next-state-precondition∶
shows ∀ s d a execs. AS-precondition s d a Ð→ AS-precondition (next-state s execs) d a
⟨proof ⟩

lemma next-state-invariant∶
shows ∀ s execs. invariant s Ð→ invariant (next-state s execs)
⟨proof ⟩

lemma next-action-from-execs∶
shows ∀ s execs . next-action s execs⇀ (λ a . a ∈ actions-in-execution (execs (current s)))
⟨proof ⟩

lemma next-execs-subset∶
shows ∀ s execs u . actions-in-execution (next-execs s execs u) ⊆ actions-in-execution (execs u)
⟨proof ⟩

theorem unwinding-implies-isecure-CISK∶
shows isecure
⟨proof ⟩

end
end

4 Instantiation by a separation kernel with concrete actions

theory Step-configuration
imports Main

begin

EURO-MILS D31.1 Page 21 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

In the previous section, no concrete actions for the step function were given. The foremost point we
want to make by this instantiation is to show that we can instantiate the CISK model of the previous
section with an implementation that, for the step function, as actions, provides events and interprocess
communication (IPC). System call invocations that can be interrupted at certain interrupt points are
split into several atomic steps. A communication interface of events and IPC is less “trivial” than it
may seem it at a first glance, for example the L4 microkernel API only provided IPC as communication
primitive [16]. In particular, the concrete actions illustrate how an application of the CISK framework
can be used to separate policy enforcement from other computations unrelated to policy enforcement.

Our separation kernel instantiation also has a notion of partitions. A partition is a logical unit that
serves to encapsulate a group of CISK threads by, amongst others, enforcing a static per-partition access
control policy to system resources. In the following instantiation, while the subjects of the step function
are individual threads, the information flow policy ifp is defined at the granularity of partitions, which
is realistic for many separation kernel implementations.

Lastly, as a limited manipulation of an access control policy is often needed, we also provide an
invariant for having a dynamic access control policy whose maximal closure is bounded by the static
per-partition access control policy. That the dynamic access control policy is a subset of a static access
control policy is expressed by the invariant sp_subset. A use case for this is when you have statically
configured access to files by subjects, but whether a file can be read/written also depends on whether the
file has been dynamically opened or not. The instantiation provides infrastructure for such an invariant
on the relation of a dynamic policy to a static policy, and shows how the invariant is maintained, without
modeling any API for an open/close operation.

4.1 Model of a separation kernel configuration

4.1.1 Type definitions

The separation kernel partitions are considered to be the “subjects" of the information flow policy ifp.
A file provider is a partition that, via a file API (read/write), provides files to other partitions. The
configuration statically defines which partitions can act as a file provider and also the access rights
(right/write) of other partitions to the files provided by the file provider. Some separation kernels include
a management for address spaces (tasks), that may be hierachically structured. Such a task hierarchy is
not part of this model.

typedecl partition-id-t
typedecl thread-id-t

typedecl page-t — physical address of a memory page
typedecl filep-t — name of file provider

datatype obj-id-t =
PAGE page-t
∣ FILEP filep-t

datatype mode-t =
READ — The subject has right to read from the memory page, from the files served by a file provider.
∣ WRITE — The subject has right to write to the memory page, from the files served by a file provider.
∣ PROVIDE — The subject has right serve as the file provider. This mode is not used for memory pages or ports.

4.1.2 Configuration

The information flow policy is implicitly specified by the configuration. The configuration does not
contain the communication rights between partitions (subjects). However, the rights can be derived
from the configuration. For example, if two partitions p and p ′ can access a file f, then p and p ′ can
communicate. See below.

EURO-MILS D31.1 Page 22 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

consts
configured-subj-obj ∶∶ partition-id-t⇒ obj-id-t⇒ mode-t⇒ bool

Each user thread belongs to a partition. The relation is fixed at system startup. The configuration
specifies how many threads a partition can create, but this limit is not part of the model.

consts
partition ∶∶ thread-id-t⇒ partition-id-t

end

4.2 Formulation of a subject-subject communication policy and an information flow pol-
icy, and showing both can be derived from subject-object configuration data

theory Step-policies
imports Step-configuration

begin

4.2.1 Specification

In order to use CISK, we need an information flow policy ifp relation. We also express a static subject-
subject sp-spec-subj-obj and subject-object sp-spec-subj-subj access control policy for the implementa-
tion of the model. The following locale summarizes all properties we need.

locale policy-axioms =
fixes sp-spec-subj-obj ∶∶ ′a⇒ obj-id-t⇒ mode-t⇒ bool

and sp-spec-subj-subj ∶∶ ′a⇒ ′a⇒ bool
and ifp ∶∶ ′a⇒ ′a⇒ bool

assumes sp-spec-file-provider∶ ∀ p1 p2 f m1 m2 .
sp-spec-subj-obj p1 (FILEP f) m1 ∧
sp-spec-subj-obj p2 (FILEP f) m2 Ð→ sp-spec-subj-subj p1 p2

and sp-spec-no-wronly-pages∶
∀ p x . sp-spec-subj-obj p (PAGE x) WRITE Ð→ sp-spec-subj-obj p (PAGE x) READ

and ifp-reflexive∶
∀ p . ifp p p

and ifp-compatible-with-sp-spec∶
∀ a b . sp-spec-subj-subj a b Ð→ ifp a b ∧ ifp b a

and ifp-compatible-with-ipc∶
∀ a b c x . (sp-spec-subj-subj a b

∧ sp-spec-subj-obj b (PAGE x) WRITE ∧ sp-spec-subj-obj c (PAGE x) READ)
Ð→ ifp a c

begin end

4.2.2 Derivation

The configuration data only consists of a subject-object policy. We derive the subject-subject policy
and the information flow policy from the configuration data and prove that properties we specified in
Section 4.2.1 are satisfied.

locale abstract-policy-derivation =
fixes configuration-subj-obj ∶∶ ′a⇒ obj-id-t⇒ mode-t⇒ bool

begin

EURO-MILS D31.1 Page 23 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

definition sp-spec-subj-obj a x m ≡
configuration-subj-obj a x m ∨ (∃ y . x = PAGE y ∧ m = READ ∧ configuration-subj-obj a x WRITE)

definition sp-spec-subj-subj a b ≡
∃ f m1 m2 . sp-spec-subj-obj a (FILEP f) m1 ∧ sp-spec-subj-obj b (FILEP f) m2

definition ifp a b ≡
sp-spec-subj-subj a b
∨ sp-spec-subj-subj b a
∨ (∃ c y . sp-spec-subj-subj a c

∧ sp-spec-subj-obj c (PAGE y) WRITE
∧ sp-spec-subj-obj b (PAGE y) READ)

∨ (a = b)

Show that the policies specified in Section 4.2.1 can be derived from the configuration and their
definitions.

lemma correct∶
shows policy-axioms sp-spec-subj-obj sp-spec-subj-subj ifp
⟨proof ⟩

end

type-synonym sp-subj-subj-t = partition-id-t⇒ partition-id-t⇒ bool
type-synonym sp-subj-obj-t = partition-id-t⇒ obj-id-t⇒ mode-t⇒ bool

interpretation Policy∶ abstract-policy-derivation configured-subj-obj⟨proof ⟩
interpretation Policy-properties∶ policy-axioms Policy.sp-spec-subj-obj Policy.sp-spec-subj-subj Policy.ifp
⟨proof ⟩

lemma example-how-to-use-properties-in-proofs∶
shows ∀ p . Policy.ifp p p
⟨proof ⟩

end

4.3 Separation kernel state and atomic step function
theory Step

imports Step-policies
begin

4.3.1 Interrupt points

To model concurrency, each system call is split into several atomic steps, while allowing interrupts be-
tween the steps. The state of a thread is represented by an “interrupt point" (which corresponds to the
value of the program counter saved by the system when a thread is interrupted).

datatype ipc-direction-t = SEND ∣ RECV
datatype ipc-stage-t = PREP ∣ WAIT ∣ BUF page-t

datatype ev-consume-t = EV-CONSUME-ALL ∣ EV-CONSUME-ONE
datatype ev-wait-stage-t = EV-PREP ∣ EV-WAIT ∣ EV-FINISH
datatype ev-signal-stage-t = EV-SIGNAL-PREP ∣ EV-SIGNAL-FINISH

datatype int-point-t =
SK-IPC ipc-direction-t ipc-stage-t thread-id-t page-t — The thread is executing a sending / receiving IPC.
∣ SK-EV-WAIT ev-wait-stage-t ev-consume-t — The thread is waiting for an event.
∣ SK-EV-SIGNAL ev-signal-stage-t thread-id-t — The thread is sending an event.
∣ NONE — The thread is not executing any system call.

EURO-MILS D31.1 Page 24 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

4.3.2 System state

typedecl obj-t — value of an object

Each thread belongs to a partition. The relation is fixed (in this instantiation of a separation kernel).

consts
partition ∶∶ thread-id-t⇒ partition-id-t

The state contains the dynamic policy (the communication rights in the current state of the system,
for example).

record thread-t =

ev-counter ∶∶ nat — event counter

record state-t =
sp-impl-subj-subj ∶∶ sp-subj-subj-t — current subject-subject policy
sp-impl-subj-obj ∶∶ sp-subj-obj-t — current subject-object policy
current ∶∶ thread-id-t — current thread
obj ∶∶ obj-id-t⇒ obj-t — values of all objects
thread ∶∶ thread-id-t⇒ thread-t — internal state of threads

Later (Section 4.4), the system invariant sp-subset will be used to ensure that the dynamic policies
(sp_impl_...) are a subset of the corresponding static policies (sp_spec_...).

4.3.3 Atomic step

Helper functions Set new value for an object.

definition set-object-value ∶∶ obj-id-t⇒ obj-t⇒ state-t⇒ state-t where
set-object-value obj-id val s =

s (∣ obj ∶= fun-upd (obj s) obj-id val ∣)

Return a representation of the opposite direction of IPC communication.

definition opposite-ipc-direction ∶∶ ipc-direction-t⇒ ipc-direction-t where
opposite-ipc-direction dir ≡ case dir of SEND⇒ RECV ∣ RECV ⇒ SEND

Add an access right from one partition to an object. In this model, not available from the API, but
shows how dynamic changes of access rights could be implemented.

definition add-access-right ∶∶ partition-id-t => obj-id-t => mode-t => state-t => state-t where
add-access-right part-id obj-id m s =

s (∣ sp-impl-subj-obj ∶= λ q q ′ q ′′. (part-id = q ∧ obj-id = q ′ ∧ m = q ′′)
∨ sp-impl-subj-obj s q q ′ q ′′∣)

Add a communication right from one partition to another. In this model, not available from the API.

definition add-comm-right ∶∶ partition-id-t⇒ partition-id-t⇒ state-t⇒ state-t where
add-comm-right p p ′ s ≡

s (∣ sp-impl-subj-subj ∶= λ q q ′ . (p = q ∧ p ′ = q ′) ∨ sp-impl-subj-subj s q q ′ ∣)

Model of IPC system call We model IPC with the following simplifications:

1. The model contains the system calls for sending an IPC (SEND) and receiving an IPC (RECV),
often implementations have a richer API (e.g. combining SEND and RECV in one invocation).

2. We model only a copying (“BUF") mode, not a memory-mapping mode.

3. The model always copies one page per syscall.

EURO-MILS D31.1 Page 25 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

definition ipc-precondition ∶∶ thread-id-t⇒ ipc-direction-t⇒ thread-id-t⇒ page-t⇒ state-t⇒ bool where
ipc-precondition tid dir partner page s ≡

let sender = (case dir of SEND⇒ tid ∣ RECV ⇒ partner) in
let receiver = (case dir of SEND⇒ partner ∣ RECV ⇒ tid) in
let local-access-mode = (case dir of SEND⇒ READ ∣ RECV ⇒ WRITE) in
(sp-impl-subj-subj s (partition sender) (partition receiver)
∧ sp-impl-subj-obj s (partition tid) (PAGE page) local-access-mode)

definition atomic-step-ipc ∶∶ thread-id-t ⇒ ipc-direction-t ⇒ ipc-stage-t ⇒ thread-id-t ⇒ page-t ⇒ state-t ⇒
state-t where

atomic-step-ipc tid dir stage partner page s ≡
case stage of
PREP⇒

s
∣ WAIT ⇒

s
∣ BUF page ′⇒
(case dir of

SEND⇒
(set-object-value (PAGE page ′) (obj s (PAGE page)) s)

∣ RECV ⇒ s)

Model of event syscalls definition ev-signal-precondition ∶∶ thread-id-t⇒ thread-id-t⇒ state-t⇒ bool where
ev-signal-precondition tid partner s ≡
(sp-impl-subj-subj s (partition tid) (partition partner))

definition atomic-step-ev-signal ∶∶ thread-id-t⇒ thread-id-t⇒ state-t⇒ state-t where
atomic-step-ev-signal tid partner s =

s (∣ thread ∶= fun-upd (thread s) partner (thread s partner (∣ ev-counter ∶= Suc (ev-counter (thread s partner))
∣)) ∣)

definition atomic-step-ev-wait-one ∶∶ thread-id-t⇒ state-t⇒ state-t where
atomic-step-ev-wait-one tid s =

s (∣ thread ∶= fun-upd (thread s) tid (thread s tid (∣ ev-counter ∶= (ev-counter (thread s tid) − 1) ∣)) ∣)

definition atomic-step-ev-wait-all ∶∶ thread-id-t⇒ state-t⇒ state-t where
atomic-step-ev-wait-all tid s =

s (∣ thread ∶= fun-upd (thread s) tid (thread s tid (∣ ev-counter ∶= 0 ∣)) ∣)

Instantiation of CISK aborting and waiting In this instantiation of CISK, the aborting function is
used to indicate security policy enforcement. An IPC call aborts in its PREP stage if the precondition
for the calling thread does not hold. An event signal call aborts in its EV-SIGNAL-PREP stage if the
precondition for the calling thread does not hold.

definition aborting ∶∶ state-t⇒ thread-id-t⇒ int-point-t⇒ bool
where aborting s tid a ≡ case a of SK-IPC dir PREP partner page⇒

¬ipc-precondition tid dir partner page s
∣ SK-EV-SIGNAL EV-SIGNAL-PREP partner⇒
¬ev-signal-precondition tid partner s
∣ - => False

The waiting function is used to indicate synchronization. An IPC call waits in its WAIT stage while
the precondition for the partner thread does not hold. An EV_WAIT call waits until the event counter is
not zero.

definition waiting ∶∶ state-t⇒ thread-id-t⇒ int-point-t⇒ bool

EURO-MILS D31.1 Page 26 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

where waiting s tid a ≡
case a of SK-IPC dir WAIT partner page⇒

¬ipc-precondition partner (opposite-ipc-direction dir) tid (SOME page ′ . True) s
∣ SK-EV-WAIT EV-PREP -⇒ False
∣ SK-EV-WAIT EV-WAIT -⇒ ev-counter (thread s tid) = 0
∣ SK-EV-WAIT EV-FINISH -⇒ False
∣ -⇒ False

The atomic step function. In the definition of atomic-step the arguments to an interrupt point are not
taken from the thread state – the argument given to atomic-step could have an arbitrary value. So, seen
in isolation, atomic-step allows more transitions than actually occur in the separation kernel. However,
the CISK framework (1) restricts the atomic step function by the waiting and aborting functions as well
(2) the set of realistic traces as attack sequences rAS-set (Section 4.8). An additional condition is that
(3) the dynamic policy used in aborting is a subset of the static policy. This is ensured by the invariant
sp-subset.

definition atomic-step ∶∶ state-t⇒ int-point-t⇒ state-t where
atomic-step s ipt ≡

case ipt of
SK-IPC dir stage partner page⇒

atomic-step-ipc (current s) dir stage partner page s
∣ SK-EV-WAIT EV-PREP consume⇒ s
∣ SK-EV-WAIT EV-WAIT consume⇒ s
∣ SK-EV-WAIT EV-FINISH consume⇒
case consume of

EV-CONSUME-ONE⇒ atomic-step-ev-wait-one (current s) s
∣ EV-CONSUME-ALL⇒ atomic-step-ev-wait-all (current s) s
∣ SK-EV-SIGNAL EV-SIGNAL-PREP partner⇒ s
∣ SK-EV-SIGNAL EV-SIGNAL-FINISH partner⇒
atomic-step-ev-signal (current s) partner s
∣ NONE⇒ s

end

4.4 Preconditions and invariants for the atomic step
theory Step-invariants

imports Step
begin

The dynamic/implementation policies have to be compatible with the static configuration.

definition sp-subset s ≡
(∀ p1 p2 . sp-impl-subj-subj s p1 p2 Ð→ Policy.sp-spec-subj-subj p1 p2)
∧ (∀ p1 p2 m. sp-impl-subj-obj s p1 p2 m Ð→ Policy.sp-spec-subj-obj p1 p2 m)

The following predicate expresses the precondition for the atomic step. The precondition depends on
the type of the atomic action.

definition atomic-step-precondition ∶∶ state-t⇒ thread-id-t⇒ int-point-t⇒ bool where
atomic-step-precondition s tid ipt ≡

case ipt of
SK-IPC dir WAIT partner page⇒
— the thread managed it past PREP stage
ipc-precondition tid dir partner page s

∣ SK-IPC dir (BUF page ′) partner page⇒
— both the calling thread and its communication partner managed it past PREP and WAIT stages
ipc-precondition tid dir partner page s

EURO-MILS D31.1 Page 27 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

∧ ipc-precondition partner (opposite-ipc-direction dir) tid page ′ s
∣ SK-EV-SIGNAL EV-SIGNAL-FINISH partner⇒

ev-signal-precondition tid partner s
∣ -⇒

— No precondition for other interrupt points.
True

The invariant to be preserved by the atomic step function. The invariant is independent from the type
of the atomic action.

definition atomic-step-invariant ∶∶ state-t⇒ bool where
atomic-step-invariant s ≡

sp-subset s

4.4.1 Atomic steps of SK_IPC preserve invariants

lemma set-object-value-invariant∶
shows atomic-step-invariant s = atomic-step-invariant (set-object-value ob va s)
⟨proof ⟩

lemma set-thread-value-invariant∶
shows atomic-step-invariant s = atomic-step-invariant (s (∣ thread ∶= thrst ∣))
⟨proof ⟩

lemma atomic-ipc-preserves-invariants∶
fixes s ∶∶ state-t

and tid ∶∶ thread-id-t
assumes atomic-step-invariant s
shows atomic-step-invariant (atomic-step-ipc tid dir stage partner page s)
⟨proof ⟩

lemma atomic-ev-wait-one-preserves-invariants∶
fixes s ∶∶ state-t

and tid ∶∶ thread-id-t
assumes atomic-step-invariant s
shows atomic-step-invariant (atomic-step-ev-wait-one tid s)
⟨proof ⟩

lemma atomic-ev-wait-all-preserves-invariants∶
fixes s ∶∶ state-t

and tid ∶∶ thread-id-t
assumes atomic-step-invariant s
shows atomic-step-invariant (atomic-step-ev-wait-all tid s)
⟨proof ⟩

lemma atomic-ev-signal-preserves-invariants∶
fixes s ∶∶ state-t

and tid ∶∶ thread-id-t
assumes atomic-step-invariant s
shows atomic-step-invariant (atomic-step-ev-signal tid partner s)
⟨proof ⟩

4.4.2 Summary theorems on atomic step invariants

Now we are ready to show that an atomic step from the current interrupt point in any thread preserves
invariants.

theorem atomic-step-preserves-invariants∶
fixes s ∶∶ state-t

EURO-MILS D31.1 Page 28 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

and tid ∶∶ thread-id-t
assumes atomic-step-invariant s
shows atomic-step-invariant (atomic-step s a)
⟨proof ⟩

Finally, the invariants do not depend on the current thread. That is, the context switch preserves the
invariants, and an atomic step that is not a context switch does not change the current thread.

theorem cswitch-preserves-invariants∶
fixes s ∶∶ state-t

and new-current ∶∶ thread-id-t
assumes atomic-step-invariant s
shows atomic-step-invariant (s (∣ current ∶= new-current ∣))
⟨proof ⟩

theorem atomic-step-does-not-change-current-thread∶
shows current (atomic-step s ipt) = current s
⟨proof ⟩

end

4.5 The view-partitioning equivalence relation
theory Step-vpeq

imports Step Step-invariants
begin

The view consists of

1. View of object values.

2. View of subject-subject dynamic policy. The threads can discover the policy at runtime, e.g. by
calling ipc() and observing success or failure.

3. View of subject-object dynamic policy. The threads can discover the policy at runtime, e.g. by
calling open() and observing success or failure.

definition vpeq-obj ∶∶ partition-id-t⇒ state-t⇒ state-t⇒ bool where
vpeq-obj u s t ≡ ∀ obj-id . Policy.sp-spec-subj-obj u obj-id READ Ð→ (obj s) obj-id = (obj t) obj-id

definition vpeq-subj-subj ∶∶ partition-id-t⇒ state-t⇒ state-t⇒ bool where
vpeq-subj-subj u s t ≡
∀ v . ((Policy.sp-spec-subj-subj u v Ð→ sp-impl-subj-subj s u v = sp-impl-subj-subj t u v)

∧ (Policy.sp-spec-subj-subj v u Ð→ sp-impl-subj-subj s v u = sp-impl-subj-subj t v u))

definition vpeq-subj-obj ∶∶ partition-id-t⇒ state-t⇒ state-t⇒ bool where
vpeq-subj-obj u s t ≡
∀ ob m p1 .
(Policy.sp-spec-subj-obj u ob m Ð→ sp-impl-subj-obj s u ob m = sp-impl-subj-obj t u ob m)
∧ (Policy.sp-spec-subj-obj p1 ob PROVIDE ∧ (Policy.sp-spec-subj-obj u ob READ ∨ Policy.sp-spec-subj-obj u

ob WRITE) Ð→
sp-impl-subj-obj s p1 ob PROVIDE = sp-impl-subj-obj t p1 ob PROVIDE)

definition vpeq-local ∶∶ partition-id-t⇒ state-t⇒ state-t⇒ bool where
vpeq-local u s t ≡
∀ tid . (partition tid) = u Ð→ (thread s tid) = (thread t tid)

definition vpeq u s t ≡
vpeq-obj u s t ∧ vpeq-subj-subj u s t ∧ vpeq-subj-obj u s t ∧ vpeq-local u s t

EURO-MILS D31.1 Page 29 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

4.5.1 Elementary properties

lemma vpeq-rel∶
shows vpeq-refl∶ vpeq u s s

and vpeq-sym [sym]∶ vpeq u s tÔ⇒ vpeq u t s
and vpeq-trans [trans]∶ [[vpeq u s1 s2 ; vpeq u s2 s3]] Ô⇒ vpeq u s1 s3
⟨proof ⟩

Auxiliary equivalence relation.

lemma set-object-value-ign∶
assumes eq-obs∶ ∼ Policy.sp-spec-subj-obj u x READ

shows vpeq u s (set-object-value x y s)
⟨proof ⟩

Context-switch and fetch operations are also consistent with vpeq and locally respect everything.

theorem cswitch-consistency-and-respect∶
fixes u ∶∶ partition-id-t

and s ∶∶ state-t
and new-current ∶∶ thread-id-t

assumes atomic-step-invariant s
shows vpeq u s (s (∣ current ∶= new-current ∣))
⟨proof ⟩

end

4.6 Atomic step locally respects the information flow policy
theory Step-vpeq-locally-respects

imports Step Step-invariants Step-vpeq
begin

The notion of locally respects is common usage. We augment it by assuming that the atomic-step-invariant
holds (see [31]).

4.6.1 Locally respects of atomic step functions

lemma ipc-respects-policy∶
assumes no∶ ¬ Policy.ifp (partition tid) u

and inv∶ atomic-step-invariant s
and prec∶ atomic-step-precondition s tid (SK-IPC dir stage partner pag)
and ipt-case∶ ipt = SK-IPC dir stage partner page

shows vpeq u s (atomic-step-ipc tid dir stage partner page s)
⟨proof ⟩

lemma ev-signal-respects-policy∶
assumes no∶ ¬ Policy.ifp (partition tid) u

and inv∶ atomic-step-invariant s
and prec∶ atomic-step-precondition s tid (SK-EV-SIGNAL EV-SIGNAL-FINISH partner)
and ipt-case∶ ipt = SK-EV-SIGNAL EV-SIGNAL-FINISH partner

shows vpeq u s (atomic-step-ev-signal tid partner s)
⟨proof ⟩

lemma ev-wait-all-respects-policy∶
assumes no∶ ¬ Policy.ifp (partition tid) u

and inv∶ atomic-step-invariant s
and prec∶ atomic-step-precondition s tid ipt

EURO-MILS D31.1 Page 30 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

and ipt-case∶ ipt = SK-EV-WAIT ev-wait-stage EV-CONSUME-ALL
shows vpeq u s (atomic-step-ev-wait-all tid s)
⟨proof ⟩

lemma ev-wait-one-respects-policy∶
assumes no∶ ¬ Policy.ifp (partition tid) u

and inv∶ atomic-step-invariant s
and prec∶ atomic-step-precondition s tid ipt
and ipt-case∶ ipt = SK-EV-WAIT ev-wait-stage EV-CONSUME-ONE

shows vpeq u s (atomic-step-ev-wait-one tid s)
⟨proof ⟩

4.6.2 Summary theorems on view-partitioning locally respects

Atomic step locally respects the information flow policy (ifp). The policy ifp is not necessarily the same
as sp_spec_subj_subj.

theorem atomic-step-respects-policy∶
assumes no∶ ¬ Policy.ifp (partition (current s)) u

and inv∶ atomic-step-invariant s
and prec∶ atomic-step-precondition s (current s) ipt

shows vpeq u s (atomic-step s ipt)
⟨proof ⟩

end

4.7 Weak step consistency
theory Step-vpeq-weakly-step-consistent

imports Step Step-invariants Step-vpeq
begin

The notion of weak step consistency is common usage. We augment it by assuming that the atomic-step-invariant
holds (see [31]).

4.7.1 Weak step consistency of auxiliary functions

lemma ipc-precondition-weakly-step-consistent∶
assumes eq-tid∶ vpeq (partition tid) s1 s2

and inv1∶ atomic-step-invariant s1
and inv2∶ atomic-step-invariant s2

shows ipc-precondition tid dir partner page s1 = ipc-precondition tid dir partner page s2
⟨proof ⟩

lemma ev-signal-precondition-weakly-step-consistent∶
assumes eq-tid∶ vpeq (partition tid) s1 s2

and inv1∶ atomic-step-invariant s1
and inv2∶ atomic-step-invariant s2

shows ev-signal-precondition tid partner s1 = ev-signal-precondition tid partner s2
⟨proof ⟩

lemma set-object-value-consistent∶
assumes eq-obs∶ vpeq u s1 s2

shows vpeq u (set-object-value x y s1) (set-object-value x y s2)
⟨proof ⟩

EURO-MILS D31.1 Page 31 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

4.7.2 Weak step consistency of atomic step functions

lemma ipc-weakly-step-consistent∶
assumes eq-obs∶ vpeq u s1 s2

and eq-act∶ vpeq (partition tid) s1 s2
and inv1∶ atomic-step-invariant s1
and inv2∶ atomic-step-invariant s2
and prec1∶ atomic-step-precondition s1 tid ipt
and prec2∶ atomic-step-precondition s1 tid ipt
and ipt-case∶ ipt = SK-IPC dir stage partner page

shows vpeq u
(atomic-step-ipc tid dir stage partner page s1)
(atomic-step-ipc tid dir stage partner page s2)

⟨proof ⟩

lemma ev-wait-one-weakly-step-consistent∶
assumes eq-obs∶ vpeq u s1 s2

and eq-act∶ vpeq (partition tid) s1 s2
and inv1∶ atomic-step-invariant s1
and inv2∶ atomic-step-invariant s2
and prec1∶ atomic-step-precondition s1 (current s1) ipt
and prec2∶ atomic-step-precondition s1 (current s1) ipt

shows vpeq u
(atomic-step-ev-wait-one tid s1)
(atomic-step-ev-wait-one tid s2)

⟨proof ⟩

lemma ev-wait-all-weakly-step-consistent∶
assumes eq-obs∶ vpeq u s1 s2

and eq-act∶ vpeq (partition tid) s1 s2
and inv1∶ atomic-step-invariant s1
and inv2∶ atomic-step-invariant s2
and prec1∶ atomic-step-precondition s1 (current s1) ipt
and prec2∶ atomic-step-precondition s1 (current s1) ipt

shows vpeq u
(atomic-step-ev-wait-all tid s1)
(atomic-step-ev-wait-all tid s2)

⟨proof ⟩

lemma ev-signal-weakly-step-consistent∶
assumes eq-obs∶ vpeq u s1 s2

and eq-act∶ vpeq (partition tid) s1 s2
and inv1∶ atomic-step-invariant s1
and inv2∶ atomic-step-invariant s2
and prec1∶ atomic-step-precondition s1 (current s1) ipt
and prec2∶ atomic-step-precondition s1 (current s1) ipt

shows vpeq u
(atomic-step-ev-signal tid partner s1)
(atomic-step-ev-signal tid partner s2)

⟨proof ⟩

The use of extend-f is to provide infrastructure to support use in dynamic policies, currently not used.

definition extend-f ∶∶ (partition-id-t ⇒ partition-id-t ⇒ bool) ⇒ (partition-id-t ⇒ partition-id-t ⇒ bool) ⇒
(partition-id-t⇒ partition-id-t⇒ bool) where

extend-f f g ≡ λ p1 p2 . f p1 p2 ∨ g p1 p2

definition extend-subj-subj ∶∶ (partition-id-t⇒ partition-id-t⇒ bool) ⇒ state-t⇒ state-t where

EURO-MILS D31.1 Page 32 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

extend-subj-subj f s ≡ s (∣ sp-impl-subj-subj ∶= extend-f f (sp-impl-subj-subj s) ∣)

lemma extend-subj-subj-consistent∶
fixes f ∶∶ partition-id-t⇒ partition-id-t⇒ bool
assumes vpeq u s1 s2
shows vpeq u (extend-subj-subj f s1) (extend-subj-subj f s2)
⟨proof ⟩

4.7.3 Summary theorems on view-partitioning weak step consistency

The atomic step is weakly step consistent with view partitioning. Here, the “weakness” is that we assume
that the two states are vp-equivalent not only w.r.t. the observer domain u, but also w.r.t. the caller domain
Step.partition tid).

theorem atomic-step-weakly-step-consistent∶
assumes eq-obs∶ vpeq u s1 s2

and eq-act∶ vpeq (partition (current s1)) s1 s2
and inv1∶ atomic-step-invariant s1
and inv2∶ atomic-step-invariant s2
and prec1∶ atomic-step-precondition s1 (current s1) ipt
and prec2∶ atomic-step-precondition s2 (current s2) ipt
and eq-curr∶ current s1 = current s2

shows vpeq u (atomic-step s1 ipt) (atomic-step s2 ipt)
⟨proof ⟩
end

4.8 Separation kernel model
theory Separation-kernel-model

imports ../../step/Step
../../step/Step-invariants
../../step/Step-vpeq
../../step/Step-vpeq-locally-respects
../../step/Step-vpeq-weakly-step-consistent
CISK

begin

First (Section 4.8.1) we instantiate the CISK generic model. Functions that instantiate a generic
function of the CISK model are prefixed with an ‘r’, ‘r’ standing for “Rushby’;, as CISK is derived
originally from a model by Rushby [31]. For example, ‘rifp’ is the instantiation of the generic ‘ifp’.

Later (Section 4.8.5) all CISK proof obligations are discharged, e.g., weak step consistency, output
consistency, etc. These will be used in Section 4.9.

4.8.1 Initial state of separation kernel model

We assume that the initial state of threads and memory is given. The initial state of threads is arbitrary,
but the threads are not executing the system call. The purpose of the following definitions is to obtain
the initial state without potentially dangerous axioms. The only axioms we admit without proof are
formulated using the “consts” syntax and thus safe.

consts
initial-current ∶∶ thread-id-t
initial-obj ∶∶ obj-id-t⇒ obj-t

definition s0 ∶∶ state-t where
s0 ≡ (∣ sp-impl-subj-subj = Policy.sp-spec-subj-subj,

sp-impl-subj-obj = Policy.sp-spec-subj-obj,

EURO-MILS D31.1 Page 33 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

current = initial-current,
obj = initial-obj,
thread = λ - . (∣ ev-counter = 0 ∣)
∣)

lemma initial-invariant∶
shows atomic-step-invariant s0
⟨proof ⟩

4.8.2 Types for instantiation of the generic model

To simplify formulations, we include the state invariant atomic-step-invariant in the state data type. The
initial state s0 serves at witness that rstate-t is non-empty.

typedef (overloaded) rstate-t = { s . atomic-step-invariant s }
⟨proof ⟩

definition abs ∶∶ state-t⇒ rstate-t (‹↑ -›) where abs = Abs-rstate-t
definition rep ∶∶ rstate-t⇒ state-t (‹↓ -›) where rep = Rep-rstate-t

lemma rstate-invariant∶
shows atomic-step-invariant (↓s)
⟨proof ⟩

lemma rstate-down-up[simp]∶
shows (↑↓s) = s
⟨proof ⟩

lemma rstate-up-down[simp]∶
assumes atomic-step-invariant s
shows (↓↑s) = s
⟨proof ⟩

A CISK action is identified with an interrupt point.

type-synonym raction-t = int-point-t

definition rcurrent ∶∶ rstate-t⇒ thread-id-t where
rcurrent s = current ↓s

definition rstep ∶∶ rstate-t⇒ raction-t⇒ rstate-t where
rstep s a ≡ ↑(atomic-step (↓s) a)

Each CISK domain is identified with a thread id.

type-synonym rdom-t = thread-id-t

The output function returns the contents of all memory accessible to the subject. The action argument
of the output function is ignored.

datatype visible-obj-t = VALUE obj-t ∣ EXCEPTION
type-synonym routput-t = page-t⇒ visible-obj-t

definition routput-f ∶∶ rstate-t⇒ raction-t⇒ routput-t where
routput-f s a p ≡

if sp-impl-subj-obj (↓s) (partition (rcurrent s)) (PAGE p) READ then
VALUE (obj (↓s) (PAGE p))

else
EXCEPTION

The precondition for the generic model. Note that atomic-step-invariant is already part of the state.

EURO-MILS D31.1 Page 34 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

definition rprecondition ∶∶ rstate-t⇒ rdom-t⇒ raction-t⇒ bool where
rprecondition s d a ≡ atomic-step-precondition (↓s) d a

abbreviation rinvariant
where rinvariant s ≡ True — The invariant is already in the state type.

Translate view-partitioning and interaction-allowed relations.

definition rvpeq ∶∶ rdom-t⇒ rstate-t⇒ rstate-t⇒ bool where
rvpeq u s1 s2 ≡ vpeq (partition u) (↓s1) (↓s2)

definition rifp ∶∶ rdom-t⇒ rdom-t⇒ bool where
rifp u v = Policy.ifp (partition u) (partition v)

Context Switches

definition rcswitch ∶∶ nat⇒ rstate-t⇒ rstate-t where
rcswitch n s ≡ ↑((↓s) (∣ current ∶= (SOME t . True) ∣))

4.8.3 Possible action sequences

An SK-IPC consists of three atomic actions PREP, WAIT and BUF with the same parameters.

definition is-SK-IPC ∶∶ raction-t list⇒ bool
where is-SK-IPC aseq ≡ ∃ dir partner page .

aseq = [SK-IPC dir PREP partner page,SK-IPC dir WAIT partner page,SK-IPC dir (BUF (SOME
page ′ . True)) partner page]

An SK-EV-WAIT consists of three atomic actions, one for each of the stages EV-PREP, EV-WAIT
and EV-FINISH with the same parameters.

definition is-SK-EV-WAIT ∶∶ raction-t list⇒ bool
where is-SK-EV-WAIT aseq ≡ ∃ consume .

aseq = [SK-EV-WAIT EV-PREP consume ,
SK-EV-WAIT EV-WAIT consume ,
SK-EV-WAIT EV-FINISH consume]

An SK-EV-SIGNAL consists of two atomic actions, one for each of the stages EV-SIGNAL-PREP and
EV-SIGNAL-FINISH with the same parameters.

definition is-SK-EV-SIGNAL ∶∶ raction-t list⇒ bool
where is-SK-EV-SIGNAL aseq ≡ ∃ partner .

aseq = [SK-EV-SIGNAL EV-SIGNAL-PREP partner,
SK-EV-SIGNAL EV-SIGNAL-FINISH partner]

The complete attack surface consists of IPC calls, events, and noops.

definition rAS-set ∶∶ raction-t list set
where rAS-set ≡ { aseq . is-SK-IPC aseq ∨ is-SK-EV-WAIT aseq ∨ is-SK-EV-SIGNAL aseq } ∪ {[]}

4.8.4 Control

When are actions aborting, and when are actions waiting. We do not currently use the set-error-code
function yet.

abbreviation raborting
where raborting s ≡ aborting (↓s)

abbreviation rwaiting
where rwaiting s ≡ waiting (↓s)

definition rset-error-code ∶∶ rstate-t⇒ raction-t⇒ rstate-t
where rset-error-code s a ≡ s

Returns the set of threads that are involved in a certain action. For example, for an IPC call, the WAIT
stage synchronizes with the partner. This partner is involved in that action.

EURO-MILS D31.1 Page 35 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

definition rkinvolved ∶∶ int-point-t⇒ rdom-t set
where rkinvolved a ≡
case a of SK-IPC dir WAIT partner page⇒ {partner}
∣ SK-EV-SIGNAL EV-SIGNAL-FINISH partner => {partner}
∣ -⇒ {}

abbreviation rinvolved ∶∶ int-point-t option⇒ rdom-t set
where rinvolved ≡ Kernel.involved rkinvolved

4.8.5 Discharging the proof obligations

lemma inst-vpeq-rel∶
shows rvpeq-refl∶ rvpeq u s s

and rvpeq-sym∶ rvpeq u s1 s2Ô⇒ rvpeq u s2 s1
and rvpeq-trans∶ [[rvpeq u s1 s2; rvpeq u s2 s3]] Ô⇒ rvpeq u s1 s3
⟨proof ⟩

lemma inst-ifp-refl∶
shows ∀ u . rifp u u
⟨proof ⟩

lemma inst-step-atomicity [simp]∶
shows ∀ s a . rcurrent (rstep s a) = rcurrent s
⟨proof ⟩

lemma inst-weakly-step-consistent∶
assumes rvpeq u s t

and rvpeq (rcurrent s) s t
and rcurrent s = rcurrent t
and rprecondition s (rcurrent s) a
and rprecondition t (rcurrent t) a

shows rvpeq u (rstep s a) (rstep t a)
⟨proof ⟩

lemma inst-local-respect∶
assumes not-ifp∶ ¬rifp (rcurrent s) u

and prec∶ rprecondition s (rcurrent s) a
shows rvpeq u s (rstep s a)

⟨proof ⟩

lemma inst-output-consistency∶
assumes rvpeq∶ rvpeq (rcurrent s) s t
and current-eq∶ rcurrent s = rcurrent t
shows routput-f s a = routput-f t a
⟨proof ⟩

lemma inst-cswitch-independent-of-state∶
assumes rcurrent s = rcurrent t
shows rcurrent (rcswitch n s) = rcurrent (rcswitch n t)

EURO-MILS D31.1 Page 36 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

⟨proof ⟩

lemma inst-cswitch-consistency∶
assumes rvpeq u s t
shows rvpeq u (rcswitch n s) (rcswitch n t)
⟨proof ⟩

For the PREP stage (the first stage of the IPC action sequence) the precondition is True.

lemma prec-first-IPC-action∶
assumes is-SK-IPC aseq

shows rprecondition s d (hd aseq)
⟨proof ⟩

For the the first stage of the EV-WAIT action sequence the precondition is True.

lemma prec-first-EV-WAIT-action∶
assumes is-SK-EV-WAIT aseq

shows rprecondition s d (hd aseq)
⟨proof ⟩

For the first stage of the EV-SIGNAL action sequence the precondition is True.

lemma prec-first-EV-SIGNAL-action∶
assumes is-SK-EV-SIGNAL aseq

shows rprecondition s d (hd aseq)
⟨proof ⟩

When not waiting or aborting, the precondition is “1-step inductive”, that is at all times the precon-
dition holds initially (for the first step of an action sequence) and after doing one step.

lemma prec-after-IPC-step∶
assumes prec∶ rprecondition s (rcurrent s) (aseq ! n)

and n-bound∶ Suc n < length aseq
and IPC∶ is-SK-IPC aseq
and not-aborting∶ ¬raborting s (rcurrent s) (aseq ! n)
and not-waiting∶ ¬rwaiting s (rcurrent s) (aseq ! n)

shows rprecondition (rstep s (aseq ! n)) (rcurrent s) (aseq ! Suc n)
⟨proof ⟩

When not waiting or aborting, the precondition is 1-step inductive.

lemma prec-after-EV-WAIT-step∶
assumes prec∶ rprecondition s (rcurrent s) (aseq ! n)

and n-bound∶ Suc n < length aseq
and IPC∶ is-SK-EV-WAIT aseq
and not-aborting∶ ¬raborting s (rcurrent s) (aseq ! n)
and not-waiting∶ ¬rwaiting s (rcurrent s) (aseq ! n)

shows rprecondition (rstep s (aseq ! n)) (rcurrent s) (aseq ! Suc n)
⟨proof ⟩

When not waiting or aborting, the precondition is 1-step inductive.

lemma prec-after-EV-SIGNAL-step∶
assumes prec∶ rprecondition s (rcurrent s) (aseq ! n)

and n-bound∶ Suc n < length aseq
and SIGNAL∶ is-SK-EV-SIGNAL aseq
and not-aborting∶ ¬raborting s (rcurrent s) (aseq ! n)
and not-waiting∶ ¬rwaiting s (rcurrent s) (aseq ! n)

shows rprecondition (rstep s (aseq ! n)) (rcurrent s) (aseq ! Suc n)
⟨proof ⟩

EURO-MILS D31.1 Page 37 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

lemma on-set-object-value∶
shows sp-impl-subj-subj (set-object-value ob val s) = sp-impl-subj-subj s

and sp-impl-subj-obj (set-object-value ob val s) = sp-impl-subj-obj s
⟨proof ⟩

lemma prec-IPC-dom-independent∶
assumes current s /= d

and atomic-step-invariant s
and atomic-step-precondition s d a

shows atomic-step-precondition (atomic-step-ipc (current s) dir stage partner page s) d a
⟨proof ⟩

lemma prec-ev-signal-dom-independent∶
assumes current s /= d

and atomic-step-invariant s
and atomic-step-precondition s d a

shows atomic-step-precondition (atomic-step-ev-signal (current s) partner s) d a
⟨proof ⟩

lemma prec-ev-wait-one-dom-independent∶
assumes current s /= d

and atomic-step-invariant s
and atomic-step-precondition s d a

shows atomic-step-precondition (atomic-step-ev-wait-one (current s) s) d a
⟨proof ⟩

lemma prec-ev-wait-all-dom-independent∶
assumes current s /= d

and atomic-step-invariant s
and atomic-step-precondition s d a

shows atomic-step-precondition (atomic-step-ev-wait-all (current s) s) d a
⟨proof ⟩

lemma prec-dom-independent∶
shows ∀ s d a a ′ . rcurrent s /= d ∧ rprecondition s d a Ð→ rprecondition (rstep s a ′) d a
⟨proof ⟩

lemma ipc-precondition-after-cswitch[simp]∶
shows ipc-precondition d dir partner page ((↓ s)(∣current ∶= new-current∣))

= ipc-precondition d dir partner page (↓ s)
⟨proof ⟩

lemma precondition-after-cswitch∶
shows ∀ s d n a. rprecondition s d a Ð→ rprecondition (rcswitch n s) d a
⟨proof ⟩

lemma aborting-switch-independent∶
shows ∀n s. raborting (rcswitch n s) = raborting s
⟨proof ⟩
lemma waiting-switch-independent∶
shows ∀n s. rwaiting (rcswitch n s) = rwaiting s
⟨proof ⟩

lemma aborting-after-IPC-step∶
assumes d1 /= d2
shows aborting (atomic-step-ipc d1 dir stage partner page s) d2 a = aborting s d2 a
⟨proof ⟩

EURO-MILS D31.1 Page 38 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

lemma waiting-after-IPC-step∶
assumes d1 /= d2
shows waiting (atomic-step-ipc d1 dir stage partner page s) d2 a = waiting s d2 a
⟨proof ⟩

lemma raborting-consistent∶
shows ∀ s t u. rvpeq u s t Ð→ raborting s u = raborting t u
⟨proof ⟩

lemma aborting-dom-independent∶
assumes rcurrent s /= d

shows raborting (rstep s a) d a ′ = raborting s d a ′

⟨proof ⟩

lemma ipc-precondition-of-partner-consistent∶
assumes vpeq∶ ∀ d ∈ rkinvolved (SK-IPC dir WAIT partner page) . rvpeq d s t
shows ipc-precondition partner dir ′ u page ′ (↓ s) = ipc-precondition partner dir ′ u page ′ ↓ t
⟨proof ⟩

lemma ev-signal-precondition-of-partner-consistent∶
assumes vpeq∶ ∀ d ∈ rkinvolved (SK-EV-SIGNAL EV-SIGNAL-FINISH partner) . rvpeq d s t
shows ev-signal-precondition partner u (↓ s) = ev-signal-precondition partner u (↓ t)
⟨proof ⟩

lemma waiting-consistent∶
shows ∀ s t u a . rvpeq (rcurrent s) s t ∧ (∀ d ∈ rkinvolved a . rvpeq d s t)

∧ rvpeq u s t
Ð→ rwaiting s u a = rwaiting t u a

⟨proof ⟩

lemma ipc-precondition-ensures-ifp∶
assumes ipc-precondition (current s) dir partner page s

and atomic-step-invariant s
shows rifp partner (current s)
⟨proof ⟩

lemma ev-signal-precondition-ensures-ifp∶
assumes ev-signal-precondition (current s) partner s

and atomic-step-invariant s
shows rifp partner (current s)
⟨proof ⟩

lemma involved-ifp∶
shows ∀ s a . ∀ d ∈ rkinvolved a . rprecondition s (rcurrent s) a Ð→ rifp d (rcurrent s)
⟨proof ⟩

lemma spec-of-waiting-ev∶
shows ∀ s a. rwaiting s (rcurrent s) (SK-EV-WAIT EV-FINISH EV-CONSUME-ALL)

Ð→ rstep s a = s
⟨proof ⟩

lemma spec-of-waiting-ev-w∶
shows ∀ s a. rwaiting s (rcurrent s) (SK-EV-WAIT EV-WAIT EV-CONSUME-ALL)

Ð→ rstep s (SK-EV-WAIT EV-WAIT EV-CONSUME-ALL) = s

EURO-MILS D31.1 Page 39 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

⟨proof ⟩

lemma spec-of-waiting∶
shows ∀ s a. rwaiting s (rcurrent s) a Ð→ rstep s a = s
⟨proof ⟩
end

4.9 Link implementation to CISK: the specific separation kernel is an interpretation of
the generic model.

theory Link-separation-kernel-model-to-CISK
imports Separation-kernel-model

begin

We show that the separation kernel instantiation satisfies the specification of CISK.

theorem CISK-proof-obligations-satisfied∶
shows

Controllable-Interruptible-Separation-Kernel
rstep
routput-f
(↑s0)
rcurrent
rcswitch
rkinvolved
rifp
rvpeq
rAS-set
rinvariant
rprecondition
raborting
rwaiting
rset-error-code

⟨proof ⟩

Now we can instantiate CISK with some initial state, interrupt function, etc.

interpretation Inst∶
Controllable-Interruptible-Separation-Kernel

rstep — step function, without program stack
routput-f — output function
↑s0 — initial state
rcurrent — returns the currently active domain
rcswitch — switches the currently active domain
(=) 42 — interrupt function (yet unspecified)
rkinvolved — returns a set of threads involved in the give action
rifp — information flow policy
rvpeq — view partitioning
rAS-set — the set of valid action sequences
rinvariant — the state invariant
rprecondition — the precondition for doing an action
raborting — condition under which an action is aborted
rwaiting — condition under which an action is delayed
rset-error-code — updates the state. Has no meaning in the current model.

⟨proof ⟩

The main theorem: the instantiation implements the information flow policy ifp.

theorem risecure∶
Inst.isecure

EURO-MILS D31.1 Page 40 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

⟨proof ⟩

end

5 Related Work

We consider various definitions of intransitive (I) nonin- terference (NI). This overview is by no means
intended to be complete. We first prune the field by focusing on INI with as granularity the domains: if
the security policy states the act “v ↝ u”, this means domain v is permitted to flow any information it has
at its disposal to u. We do not consider language-based approaches to noninterference [26], which allow
finer granularity mechanisms (i.e., flowing just a subset of the available information). Secondly, several
formal verification efforts have been conducted concerning properties similar and related to INI such as
no-exfiltration and no-infiltration [9]. Heitmeyer et al. prove these properties for a separation kernel in
a Common Criteria certification process [11] (which kernel and which EAL is not clear). Martin et al.
proved separation properties over the MASK kernel [18] and Shapiro and Weber verified correctness of
the EROS confinement mechanism [28]. Klein provides an excellent overview of OS’s for which such
properties have been verified [13]. Thirdly, INI definitions can be built upon either state-based automata,
trace-based models, or process algebraic models [30]. We do not focus on the latter, as our approach is
not based on process algebra.

Transitive NI was first introduced by Goguen and Meseguer in 1982 [7] and has been the topic of
heavy research since. Goguen and Meseguer tried to extend their definition with an unless construct
to allow such policies [8]. This construct, however, did not capture the notion of INI [17]. The first
commonly accepted definition of INI is Rushby’s purging-based definition IP-secure [24]. IP- security
has been applied to, e.g., smartcards [27] and OS kernel extensions [?]. To the best of our knowledge,
Rushby’s definition has not been applied in a certification context. Rushby’s definition has been subject
to heavy scrutiny [22], [29] and a vast array of modifications have been proposed.

Roscoe and Goldsmith provide CSP-based definitions of NI for the transitive and the intransitive case,
here dubbed as lazy and mixed independence. The latter one is more restrictive than Rushby’s IP-security.
Their critique on IP-secure, however, is not universally accepted [?]. Greve at al. provided the GWV
framework developed in ACL2 [9]. Their definition is a non-inductive version of noninterference similar
to Rushby’s step consistency. GWV has been used on various industrial systems. The exact relation
between GWV and (I)P-secure, i.e., whether they are of equal strength, is still open. The second property,
Declassification, means whether the definition allows assignments in the form of l ∶= declassify(h)
(where we use Sabelfelds [26] notation for high and low variables). Information flows from h to l,
but only after it has been declassified. In general, NI is coarser than declassification. It allows where
downgrading can occur, but now what may be downgraded [17]. Mantel provides a definition of transitive
NI where exceptions can be added to allow de-classification by adding intransitive exceptions to the
security policy [17].

To deal with concurrency, definitions of NI have been proposed for Non-Deterministic automata. Von
Oheimb defined noninfluence for such systems. His definition can be regarded as a “non-deterministic
version” of IP-secure. Engelhardt et al. defined nTA-secure, the non-deterministic version of TA-
security. Finally, some notions of INI consider models that are in a sense richer than similar counterparts.
Leslie extends Rushby’s notion of IP-security for a model in which the security policy is Dynamic. Eg-
gert et al. defined i-secure, an extension of IP-secure. Their model extends Rushby’s model (Mealy
machines) with Local security policies. Murray et al. extends Von Oheimb definition of noninfluence to
apply to a model that does not assume a static mapping of actions to domains. This makes it applicable
to OS’s, as in such a setting such a mapping does not exist [20]. NI-OS has been applied to the seL4
separation kernel [20], [14].

Most definitions have an associated methodology. Various methodologies are based on unwinding
[8]. This breaks down the proof of NI into smaller proof obligations (PO’s). These PO’s can be checked
by some manual proof [24], [10], model checking [32] or dedicated algorithms [5]. The methodology of

EURO-MILS D31.1 Page 41 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

Murray et al. is a combination of unwinding, automated deduction and manual proofs. Some definitions
are undecidable and have no suitable unwinding.

We are aiming to provide a methodology for INI based on a model that is richer in detail than Mealy
machines. This places our contribution next to other works that aim to extend IP-security [15], [4] in
Figure 2. Similar to those approaches, we take IP-security as a starting point. We add kernel control
mechanisms, interrupts and context switches. Ideally, we would simply prove IP-security over CISK.
We argue that this is impossible and that a rephrasing is necessary.

Our ultimate goal — certification of PikeOS — is very similar to the work done on seL4 [20]–[19].
There are two reasons why their approach is not directly applicable to PikeOS. First, seL4 has been
developed from scratch. A Haskell specification serves as the medium for the implementation as well
as the system model for the kernel [6]. C code is derived from a high level specification. PikeOS, in
contrast, is an established industrial OS. Secondly, interrupts are mostly disabled in seL4. Klein et al.
side-step dealing with the verification complexity of interrupts by using a mostly atomic API [14]. In
contrast, we aim to fully address interrupts.

With respect to attempts to formal operating system verifications, notable works are also the Verisoft
I project [1] where also a weak form of a separation property, namely fairness of execution was addressed
[3].

6 Conclusion

We have introduced a generic theory of intransitive non-interference for separation kernels with control
as a series of locales and extensible record definitions in order to a achieve a modular organization.
Moreover, we have shown that it can be instantiated for a simplistic API consisting of IPC and events.

In the ongoing EURO-MILS project, we will extend this generic theory in order make it sufficiently
rich to be instantiated with a realistic functional model of PikeOS.

6.0.1 Acknowledgement.

This work corresponds to the formal deliverable D31.1 of the Euro-MILS project funded by the European
Union’s Programme

FP7/2007 − 2013

under grant agreement number ICT-318353.

References

[1] E. Alkassar, M. A. Hillebrand, D. Leinenbach, N. Schirmer, A. Starostin, and A. Tsyban. Balancing
the load. J. Autom. Reasoning, 42(2-4):389–454, 2009.

[2] J. Brygier, R. Fuchsen, and H. Blasum. Pikeos: Safe and secure virtualization in a separation
microkernel. Technical report, 2009.

[3] M. Daum, J. Dörrenbächer, and B. Wolff. Proving fairness and implementation correctness of a
microkernel scheduler. J. Autom. Reasoning, 42(2-4):349–388, 2009.

[4] S. Eggert, H. Schnoor, and T. Wilke. Noninterference with local policies. In K. Chatterjee and
J. Sgall, editors, Mathematical Foundations of Computer Science 2013, volume 8087 of Lecture
Notes in Computer Science, pages 337–348. Springer Berlin Heidelberg, 2013.

[5] S. Eggert, R. van der Meyden, H. Schnoor, and T. Wilke. The complexity of intransitive noninter-
ference. In IEEE Symposium on Security and Privacy, pages 196–211, 2011.

EURO-MILS D31.1 Page 42 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

[6] K. Elphinstone, G. Klein, P. Derrin, T. Roscoe, and G. Heiser. Towards a practical, verified kernel.
In Proceedings of the 11th USENIX Workshop on Hot Topics in Operating Systems, HOTOS’07,
pages 20:1–20:6, Berkeley, CA, USA, 2007. USENIX Association.

[7] J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE Symposium on
Security and Privacy, pages 11–20, 1984.

[8] J. A. Goguen and J. Meseguer. Unwinding and inference control. In IEEE Symposium on Security
and Privacy, pages 75–87, 1984.

[9] D. Greve, M. Wilding, and W. M. Vanfleet. A separation kernel formal security policy. In Fourth
International Workshop on the ACL2 Prover and Its Applications (ACL2-2003), 2003.

[10] J. Haigh and W. Young. Extending the non-interference version of mls for sat. IEEE Transactions
on Software Engineering, 13:141–150, 1987 1987.

[11] C. L. Heitmeyer, M. Archer, E. I. Leonard, and J. McLean. Formal specification and verification
of data separation in a separation kernel for an embedded system. In Proceedings of the 13th ACM
Conference on Computer and Communications Security, CCS ’06, pages 346–355, New York, NY,
USA, 2006. ACM.

[12] R. Kaiser and S. Wagner. Evolution of the PikeOS microkernel. In In: FirstInternational Workshop
on Microkernels for Embedded Systems, 2007.

[13] G. Klein. Operating system verification—an overview. Sadhana, 34(1):27–69, 2009.

[14] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. sel4: Formal verification of an os
kernel. In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles,
SOSP ’09, pages 207–220, New York, NY, USA, 2009. ACM.

[15] R. Leslie. Dynamic intransitive noninterference. In IEEE International Symposium on Secure
Software Engineering, pages 75–87, 2006.

[16] J. Liedtke. On µ-kernel construction. In Proceedings of the 15th ACM Symposium on Operating
Systems Principles, pages 237–250. ACM Press, 1995.

[17] H. Mantel. Information flow control and applications — bridging a gap —. In J. Oliveira and
P. Zave, editors, FME 2001: Formal Methods for Increasing Software Productivity, volume 2021
of Lecture Notes in Computer Science, pages 153–172. Springer Berlin Heidelberg, 2001.

[18] W. Martin, P. White, F. S. Taylor, and A. Goldberg. Formal construction of the mathematically
analyzed separation kernel. In Proceedings of the 15th IEEE International Conference on Auto-
mated Software Engineering, ASE ’00, pages 133–, Washington, DC, USA, 2000. IEEE Computer
Society.

[19] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried, C. Lewis, X. Gao, and
G. Klein. sel4: from general purpose to a proof of information flow enforcement. In IEEE Sympo-
sium on Security and Privacy, pages 415–429, San Francisco, CA, May 2013.

[20] T. Murray, D. Matichuk, M. Brassil, P. Gammie, and G. Klein. Noninterference for operating
system kernels. In Chris Hawblitzel and Dale Miller, editor, The Second International Conference
on Certified Programs and Proofs, pages 126–142, Kyoto, dec 2012. Springer.

[21] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/hol: a proof assistant for higher- order logic.
2012.

EURO-MILS D31.1 Page 43 of 44

D31.1 – Formal Specification of a Generic Separation Kernel

[22] A. W. Roscoe. What is intransitive noninterference. In In Proc. of the 12th IEEE Computer Security
Foundations Workshop, pages 228–238, 1999.

[23] J. Rushby. Design and verification of secure systems. ACM SIGOPS Operating Systems Review,
15:12–21, 1981.

[24] J. Rushby. Noninterference, transitivity, and channel-control security policies. Technical report,
dec 1992.

[25] J. Rushby. Noninterference, transitivity, and channel-control security policies. Technical report,
dec 1992.

[26] A. Sabelfeld and A. C. Myers. Language-based information-flow security,. Selected Areas in
Communications, IEEE Journal on,, 21(1):5–19, 2003.

[27] G. Schellhorn, W. Reif, A. Schairer, P. Karger, V. Austel, and D. Toll. Verification of a formal
security model for multiapplicative smart cards. In F. Cuppens, Y. Deswarte, D. Gollmann, and
M. Waidner, editors, Computer Security - ESORICS 2000, volume 1895 of Lecture Notes in Com-
puter Science, pages 17–36. Springer Berlin Heidelberg, 2000.

[28] J. S. Shapiro and S. Weber. Verifying the eros confinement mechanism. In Proceedings of the 2000
IEEE Symposium on Security and Privacy, SP ’00, pages 166–, Washington, DC, USA, 2000. IEEE
Computer Society.

[29] R. Van Der Meyden. What, indeed, is intransitive noninterference? In Proceedings of the 12th
European Conference on Research in Computer Security, ESORICS’07, pages 235–250, Berlin,
Heidelberg, 2007. Springer-Verlag.

[30] R. van der Meyden and C. Zhang. A comparison of semantic models for noninterference. Theoret-
ical Computer Science, 411(47):4123 – 4147, 2010.

[31] F. Verbeek, J. Schmaltz, S. Tverdyshev, H. Blasum, and O. Havle. A new theory of intransitive
noninterference for separation kernels with control (manuscript), 2013.

[32] M. Whalen, D. Greve, and L. Wagner. Model checking information flow. In D. S. Hardin, ed-
itor, Design and Verification of Microprocessor Systems for High-Assurance Applications, pages
381–428. Springer US, 2010.

EURO-MILS D31.1 Page 44 of 44

	Introduction
	Preliminaries
	Binders for the option type
	Theorems on lists

	A generic model for separation kernels
	K (Kernel)
	Execution semantics

	SK (Separation Kernel)
	Security for non-interfering domains
	Security for indirectly interfering domains

	ISK (Interruptible Separation Kernel)
	CISK (Controlled Interruptible Separation Kernel)
	Execution semantics
	Formulations of security
	Proofs

	Instantiation by a separation kernel with concrete actions
	Model of a separation kernel configuration
	Type definitions
	Configuration

	Formulation of a subject-subject communication policy and an information flow policy, and showing both can be derived from subject-object configuration data
	Specification
	Derivation

	Separation kernel state and atomic step function
	Interrupt points
	System state
	Atomic step

	Preconditions and invariants for the atomic step
	Atomic steps of SK_IPC preserve invariants
	Summary theorems on atomic step invariants

	The view-partitioning equivalence relation
	Elementary properties

	Atomic step locally respects the information flow policy
	Locally respects of atomic step functions
	Summary theorems on view-partitioning locally respects

	Weak step consistency
	Weak step consistency of auxiliary functions
	Weak step consistency of atomic step functions
	Summary theorems on view-partitioning weak step consistency

	Separation kernel model
	Initial state of separation kernel model
	Types for instantiation of the generic model
	Possible action sequences
	Control
	Discharging the proof obligations

	Link implementation to CISK: the specific separation kernel is an interpretation of the generic model.

	Related Work
	Conclusion
	Acknowledgement.

