Abstract:

We introduce a theory of intransitive non-interference for separation kernels with control. We show that it can be instantiated for a simple API consisting of IPC and events.

Keywords:

separation kernel with control, formal model, instantiation, IPC, events, Isabelle/HOL
Editors
Freek Verbeek, Julien Schmaltz (Open University of The Netherlands)

Contributors (ordered according to beneficiary numbers)
Sergey Tverdyshev, Oto Havle, Holger Blasum (SYSGO AG)
Bruno Langenstein, Werner Stephan (Deutsches Forschungszentrum für künstliche Intelligenz / DFKI GmbH)
Abderrahmane Feliachi, Yakoub Nemouchi, Burkhart Wolff (Université Paris Sud)
Freek Verbeek, Julien Schmaltz (Open University of The Netherlands)

Acknowledgment
The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318353.
Executive Summary

Intransitive noninterference has been a widely studied topic in the last few decades. Several well-established methodologies apply interactive theorem proving to formulate a noninterference theorem over abstract academic models. In joint work with several industrial and academic partners throughout Europe, we are helping in the certification process of PikeOS, an industrial separation kernel developed at SYSGO. In this process, established theories could not be applied. We present a new generic model of separation kernels and a new theory of intransitive noninterference. The model is rich in detail, making it suitable for formal verification of realistic and industrial systems such as PikeOS. Using a refinement-based theorem proving approach, we ensure that proofs remain manageable.

This document corresponds to the deliverable D31.1 of the EURO-MILS Project http://www.euromils.eu.
Contents

1 Introduction 2

2 Preliminaries 3

2.1 Binders for the option type 3

2.2 Theorems on lists 4

3 A generic model for separation kernels 6

3.1 K (Kernel) 7

3.1.1 Execution semantics 8

3.2 SK (Separation Kernel) 9

3.2.1 Security for non-interfering domains 10

3.2.2 Security for indirectly interfering domains 21

3.3 ISK (Interruptible Separation Kernel) 35

3.4 CISK (Controlled Interruptible Separation Kernel) 48

3.4.1 Execution semantics 50

3.4.2 Formulations of security 51

3.4.3 Proofs 51

4 Instantiation by a separation kernel with concrete actions 57

4.1 Model of a separation kernel configuration 58

4.1.1 Type definitions 58

4.1.2 Configuration 58

4.2 Formulation of a subject-subject communication policy and an information flow policy, and showing both can be derived from subject-object configuration data 59

4.2.1 Specification 59

4.2.2 Derivation 59

4.3 Separation kernel state and atomic step function 60

4.3.1 Interrupt points 60

4.3.2 System state 61

4.3.3 Atomic step 61

4.4 Preconditions and invariants for the atomic step 63

4.4.1 Atomic steps of SK_IPC preserve invariants 64

4.4.2 Summary theorems on atomic step invariants 65

4.5 The view-partitioning equivalence relation 67

4.5.1 Elementary properties 67

4.6 Atomic step locally respects the information flow policy 68

4.6.1 Locally respects of atomic step functions 68

4.6.2 Summary theorems on view-partitioning locally respects 70

4.7 Weak step consistency 71

4.7.1 Weak step consistency of auxiliary functions 71

4.7.2 Weak step consistency of atomic step functions 73

4.7.3 Summary theorems on view-partitioning weak step consistency 75

4.8 Separation kernel model 75

4.8.1 Initial state of separation kernel model 76

4.8.2 Types for instantiation of the generic model 76

4.8.3 Possible action sequences 77

4.8.4 Control 78

4.8.5 Discharging the proof obligations 78
4.9 Link implementation to CISK: the specific separation kernel is an interpretation of the
generic model. ... 88

5 Related Work ... 91

6 Conclusion .. 92
 6.0.1 Acknowledgement. ... 92
1 Introduction

Separation kernels are at the heart of many modern security-critical systems [23]. With next generation technology in cars, aircrafts and medical devices becoming more and more interconnected, a platform that offers secure decomposition of embedded systems becomes crucial for safe and secure performance. PikeOS, a separation kernel developed at SYSGO, is an operating system providing such an environment [12, 2]. A consortium of several European partners from industry and academia works on the certification of PikeOS up to at least Common Criteria EAL5+, with “+” being applying formal methods compliant to EAL7. Our aim is to derive a precise model of PikeOS and a precise formulation of the PikeOS security policy.

A crucial security property of separation kernels is intransitive noninterference. This property is typically required for systems with multiple independent levels of security (MILS) such as PikeOS. It ensures that a given security policy over different subjects of the system is obeyed. Such a security policy dictates which subjects may flow information to which other subjects.

Intransitive noninterference has been an active research field for the last three decades. Several papers have been published on defining intransitive noninterference and on unwinding methodologies that enable the proof of intransitive noninterference from local proof obligations. However, in the certification process of PikeOS these existing methodologies could not be directly applied. Generally, the methodologies are based on highly abstract generic models of computation. The gap between such an abstract model and the reality of PikeOS is large, making application of the methodologies tedious and cumbersome.

This paper presents a new generic model for separation kernels called CISK (for: Controlled Interruptible Separation Kernel). This model is richer in details and contains several facets present in many separation kernels, such as interrupts, context switches between domains and a notion of control. Regarding the latter, this concerns the fact that the kernel exercises control over the executions as performed by the domains. The kernel can, e.g., decide to skip actions of the domains, or abort them halfway. We prove that any instantiation of the model provides intransitive noninterference. The model and proofs have been formalized in Isabelle/HOL [21] which are included in the subsequent sections of this document.

We have adopted Rushby’s definition of intransitive noninterference [24]. We first present an overview of our approach and then discuss the relation between our approach and existing methodologies in the next section.

Overview

Generally, there are two conflicting interests when using a generic model. On the one hand the model must be sufficiently abstract to ensure that theorems and proofs remain manageable. On the other hand, the model must be rich enough and must contain sufficient domain-knowledge to allow easy instantiation. Rushby’s model, for example, is on one end of the spectrum: it is basically a Mealy machine, which is a highly abstract notion of computation, consisting only of state, inputs and outputs [24]. The model and its proofs are manageable, but making a realistic instantiation is tedious and requires complicated proofs.

We aim at the other side of the spectrum by having a generic model that is rich in detail. As a result, instantiating the model with, e.g., a model of PikeOS can be done easily. To ensure maintainability of the theorems and proofs, we have applied a highly modularized theorem proving technique.

Figure 1 shows an overview. The initial module “Kernel” is close to a Mealy machine, but has several facets added, including interrupts, context switches and control. New modules are added in such a way that each new module basically inserts an adjective before “Kernel”. The use of modules allows us to prove, e.g., a separation theorem in module “Separation Kernel” and subsequently to reuse this theorem later on when details on control or interrupts are added.

The second module adds a notion of separation, yielding a module of a Separation Kernel (SK). A security policy is added that dictates which domains may flow information to each other. Local proof
obligations are added from which a global theorem of noninterference is proven. This global theorem is the *unwinding* of the local proof obligations.

In the third module calls to the kernel are no longer considered atomic, yielding an Interruptible Separation Kernel (ISK). In this model, one call to the kernel is represented by an *action sequence*. Consider, for example, an IPC call (for: Inter Process Communication). From the point of view of the programmer this is one kernel call. From the point of view of the kernel it is an action sequence consisting of three stages IPC_PREP, IPC_WAIT, and IPC_SEND. During the PREP stage, it is checked whether the IPC is allowed by the security policy. The WAIT stage is entered if a thread needs to wait for its communication partner. The SEND stage is data transmission. After each stage, an interrupt may occur that switches the current context. A consequence of allowing interruptible action sequences is that it is no longer the case that any execution, i.e., any combination of atomic kernel actions, is realistic. We formulate a definition of *realistic execution* and weaken the proof obligations of the model to apply only to realistic executions.

The final module provides an interpretation of control that allows atomic kernel actions to be aborted or delayed. Additional proof obligations are required to ensure that noninterference is still provided. This yields a Controlled Interruptible Separation Kernel (CISK). When sequences of kernel actions are aborted, error codes can be transmitted to other domains. Revisiting our IPC example, after the PREP stage the kernel can decide to abort the action. The IPC action sequence will not be continued and error codes may be sent out. At the WAIT stage, the kernel can delay the action sequence until the communication partner of the IPC call is ready to receive.

In Section 3 we introduce a theory of intransitive non-interference for separation kernels with control, based on [31]. We show that it can be instantiated for a simple API consisting of IPC and events (Section 4). The rest of this section gives some auxiliary theories used for Section 3.

2 Preliminaries

2.1 Binders for the option type

```isar
theory Option-Binders
imports HOL.Option
begin

The following functions are used as binders in the theorems that are proven. At all times, when a
```
result is None, the theorem becomes vacuously true. The expression “\(m \rightarrow \alpha \)” means “First compute \(m \), if it is None then return True, otherwise pass the result to \(\alpha \).” B2 is a short hand for sequentially doing two independent computations. The following syntax is associated to B2: “\(\alpha \mid m_1 \mid m_2 \rightarrow \alpha \)” represents “First compute \(m_1 \) and \(m_2 \), if one of them is None then return True, otherwise pass the result to \(\alpha \).”

definition B :: 'a option ⇒ (α ⇒ bool) ⇒ bool (infixl → 65)
where \(\beta \) \(m \) \(\alpha \equiv \) case \(m \) of None ⇒ True | (Some \(a \)) ⇒ \(\alpha \ a \)

definition B2 :: 'a option ⇒ 'a option ⇒ ('a ⇒ 'a ⇒ bool) ⇒ bool
where \(\beta \) \(B2 \) \(m1 \) \(m2 \) \(\alpha \equiv \) \(m1 \rightarrow (\lambda a . m2 \rightarrow (\lambda b . \alpha a b)) \)

syntax B2 :: ['a option, 'a option, ('a ⇒ 'a ⇒ bool)] ⇒ bool ((- ∨ - ∨ -) [0, 0, 10] 10)

Some rewriting rules for the binders

lemma rewrite-B2-to-cases[simp]:
shows B2 \(s t f \equiv (\text{case } s \text{ of None ⇒ True} \mid (\text{Some } s1) ⇒ (\text{case } t \text{ of None ⇒ True} \mid (\text{Some } t1) ⇒ f \ s \ t)) \)

unfolding B-def B-def by(cases s,cases t,simp+)

lemma rewrite-B-None[simp]:
shows None ⇒ α ⇒ True

unfolding B-def by(auto)

lemma rewrite-B-m-True[simp]:
shows \(m \equiv (\lambda a . \text{True}) \equiv \text{True} \)

unfolding B-def by(cases m,simp+)

lemma rewrite-B2-cases:
shows (\text{case } a \text{ of None ⇒ True} \mid (\text{Some } s) ⇒ (\text{case } b \text{ of None ⇒ True} \mid (\text{Some } t) ⇒ f \ s \ t)) = (\forall s t . a = (\text{Some } s) ∧ b = (\text{Some } t) \rightarrow f \ s \ t) \)

by(cases a,simp,cases b,simp+)

definition strict-equal :: 'a option ⇒ 'a ⇒ bool
where \(\text{strict-equal } m \ a \equiv \text{case } m \text{ of None ⇒ False} \mid (\text{Some } a') ⇒ a' = a \)

end

2.2 Theorems on lists

theory List-Theorems
imports HOL.List

begin

definition lastn :: nat ⇒ 'a list ⇒ 'a list
where \(\text{lastn } n \ x \equiv \text{drop } ((\text{length } x) - n) \ x \)

definition is-sub-seq :: 'a ⇒ 'a ⇒ 'a list ⇒ bool
where \(\text{is-sub-seq } a \ b \ x \equiv \exists n . \text{Suc } n < \text{length } x ∧ x ! n = a ∧ x ! (\text{Suc } n) = b \)

definition prefixes :: 'a list set ⇒ 'a list set
where \(\text{prefixes } s \equiv \{ x . \exists n . y . n > 0 ∧ y \in s ∧ \text{take } n \ y = x \} \)

lemma drop-one[simp]:
shows drop (Suc 0) \(x \equiv tl x \) by(induct x,auto)

lemma length-ge-one:
shows \(x \not\equiv [] \rightarrow \text{length } x ≥ 1 \) by(induct x,auto)

lemma take-but-one[simp]:
shows \(x \not\equiv [] \rightarrow \text{lastn } ((\text{length } x) - 1) \ x = tl x \) unfolding lastn-def

using length-ge-one[where \(x = x \)] by auto

lemma Suc-m-minus-n[simp]:
shows \(m ≥ n \rightarrow Suc m - n = Suc (m - n) \) by auto
lemma \textit{lastn-one-less}: shows \(n > 0 \land n \leq \text{length } x \land \text{lastn } n \ x = (a \# y) \rightarrow \text{lastn } (n - 1) \ x = y \) unfolding \textit{lastn-def} using drop-Suc[\text{where } n=\text{length } x - n \text{ and } xs=x] drop-tl[\text{where } n=\text{length } x - n \text{ and } xs=x] by(auto)

lemma \textit{list-sub-implies-member}: shows \(\forall a \ x . \ \text{set } (a \# x) \subseteq Z \rightarrow a \in Z \) using \textit{auto}

lemma \textit{subset-smaller-list}: shows \(\forall a \ x . \ \text{set } (a \# x) \subseteq Z \rightarrow \text{set } x \subseteq Z \) by(auto)

lemma \textit{second-elt-is-hd-tl}: shows \(\text{tl } x = (a \# x'') \rightarrow a = x!1 \) by(cases x,auto)

lemma \textit{length-ge-2-implies-tl-not-empty}: shows \(\text{length } x \geq 2 \rightarrow \text{tl } x \neq [] \) by(cases x,auto)

lemma \textit{length-lt-2-implies-tl-empty}: shows \(\text{length } x < 2 \rightarrow \text{tl } x = [] \) by(cases x,auto)

lemma \textit{first-second-is-sub-seq}: shows \(\text{length } x \geq 2 \implies \text{is-sub-seq } (\text{hd } x) (x!1) \ x \) proof - assume \(\text{length } x \geq 2 \) hence \(1 : (\text{Suc } 0) < \text{length } x \) by auto hence \(x!0 = \text{hd } x \) by(cases x,auto) from this \(1 \) show \(\text{is-sub-seq } (\text{hd } x) (x!1) \ x \) unfolding \textit{is-sub-seq-def} by auto qed

lemma \textit{hd-drop-is-nth}: shows \(n < \text{length } x \implies \text{hd } (\text{drop } n \ x) = x!n \) proof(induct x arbitrary: n) case Nil thus \(? \) case by simp next case (Cons a x)
\{ have \(\text{hd } (\text{drop } n \ (a \# x)) = (a \# x) ! n \) proof(cases n) case 0 thus \(? \) thesis by simp next case (Suc m) from Suc Cons show \(? \) thesis by auto qed \} thus \(? \) case by auto qed

lemma \textit{def-of-hd}: shows \(y = a \# x \rightarrow \text{hd } y = a \) by simp

lemma \textit{def-of-tl}: shows \(y = a \# x \rightarrow \text{tl } y = x \) by simp

lemma \textit{drop-yields-results-implies-nbound}: shows \(\text{drop } n \ x \neq [] \rightarrow n < \text{length } x \) by(induct x,auto)

lemma \textit{hd-take[simp]}: shows \(n > 0 \rightarrow \text{hd } (\text{take } n \ x) = \text{hd } x \) by(cases x,simp,cases n,auto)

lemma \textit{consecutive-is-sub-seq}: shows \(a \# (b \# x) = \text{lastn } n \ y \implies \text{is-sub-seq } a \ b \ y \)
proof
 assume 1: a ≠ (b ≠ x) = lastn n y
 from 1 drop-Suc[where n=(length y) - n and x=y]
 drop-tl[where n=(length y) - n and x=y]
 def-of-tl[where y=lastn n y and a=a and x=b≠x]
 drop-yields-results-implies-nbound[where n=Suc (length y - n) and x=y]
 have 3: Suc (length y - n) < length y unfolding lastn-def by auto
 from 3 1 hd-drop-is-nth[where n=(length y) - n and x=y] def-of-hd[where y=drop (Suc (length y - n)) y and x=b≠x and a=a]
 have 4: y! (length y - n) = a unfolding lastn-def by auto
 from 3 1 hd-drop-is-nth[where n=Suc ((length y) - n) and x=y] def-of-hd[where y=drop (Suc (length y - n)) y and x=x and a=b]
 drop-Suc[where n=(length y) - n and x=y]
 drop-tl[where n=(length y) - n and x=y]
 def-of-tl[where y=lastn n y and a=a and x=b≠x]
 have 5: y! Suc (length y - n) = b unfolding lastn-def by auto
 from 3 4 5 show ?thesis
 unfolding is-sub-seq-def by auto
qed

lemma sub-seq-in-prefixes:
 assumes 3 y ∈ prefixes X. is-sub-seq a a’ y
 shows 3 y ∈ X. is-sub-seq a a’ y
proof–
 from assms obtain y where y: y ∈ prefixes X ∧ is-sub-seq a a’ y by auto
 then obtain n x where x: n > 0 ∧ x ∈ X ∧ take n x = y
 unfolding prefixes-def by auto
 from y obtain i where sub-seq-index: Suc i < length y ∧ y! i = a ∧ y! Suc i = a’
 unfolding is-sub-seq-def by auto
 from sub-seq-index x have is-sub-seq a a’ x
 unfolding is-sub-seq-def using nth-take by auto
 from this x show ?thesis by metis
qed

lemma set-tl-is-subset:
 shows set (tl x) ⊆ set x by (induct x,auto)
lemma x-is-hd-snd-tl:
 shows length x ≥ 2 → x = (hd x) ≠ x!1 ≠ tl(tl x)
proof(induct x)
 case Nil
 show ?case by auto
 case (Cons a x)
 show ?case by (induct xs,auto)
qed

lemma tl-x-not-x:
 shows x ≠ [] → tl x ≠ x by (induct x,auto)
lemma tl-hd-x-not-tl-x:
 shows x ≠ [] ∧ hd x ≠ [] → tl (hd x) ≠ tl x ≠ x using tl-x-not-x by (induct x,simp,auto)

end

3 A generic model for separation kernels

theory K
 imports Main HOL.List HOL.Set HOL.Transitive-Closure List-Theorems Option-Binders
This section defines a detailed generic model of separation kernels called CISK (Controlled Interruptible Separation Kernel). It contains a generic functional model of the behaviour of a separation kernel as a transition system, definitions of the security property and proofs that the functional model satisfies security properties. It is based on Rushby’s approach [25] for noninterference. For an explanation of the model, its structure and an overview of the proofs, we refer to the document entitled “A New Theory of Intransitive Noninterference for Separation Kernels with Control” [31].

The structure of the model is based on locales and refinement:

- **locale “Kernel”** defines a highly generic model for a kernel, with execution semantics. It defines a state transition system with some extensions to the one used in [25]. The transition system defined here stores the currently active domain in the state, and has transitions for explicit context switches and interrupts and provides a notion of control. As each operation of the system will be split into atomic actions in our model, only certain sequences of actions will correspond to a run on a real system. Therefore, the function \(\text{run} \), which applies an execution on a state and computes the resulting new state, is partial and defined for realistic traces only. Later, but not in this locale, we will define a predicate to distinguish realistic traces from other traces. Security properties are also not part of this locale, but will be introduced in the locales to be described next.

- **locale “Separation Kernel”** extends “Kernel” with constraints concerning non-interference. The theorem is only sensical for realistic traces; for unrealistic trace it will hold vacuously.

- **locale “Interruptible Separation Kernel”** refines “Separation Kernel” with interruptible action sequences. It defines function “realistic trace” based on these action sequences. Therefore, we can formulate a total \(\text{run} \) function.

- **locale “Controlled Interruptible Separation Kernel”** refines “Interruptible Separation Kernel” with abortable action sequences. It refines function “control” which now uses a generic predicate “aborting” and a generic function “set_error_code” to manage aborting of action sequences.

3.1 K (Kernel)

The model makes use of the following types:

- **state_t** A state contains information about the resources of the system, as well as which domain is currently active. We decided that a state does not need to include a program stack, as in this model the actions that are executed are modelled separately.

- **dom_t** A domain is an entity executing actions and making calls to the kernel. This type represents the names of all domains. Later on, we define security policies in terms of domains.

- **action_t** Actions of type ‘action_t represent atomic instructions that are executed by the kernel. As kernel actions are assumed to be atomic, we assume that after each kernel action an interrupt point can occur.

- **action_t execution** An execution of some domain is the code or the program that is executed by the domain. One call from a domain to the kernel will typically trigger a succession of one or more kernel actions. Therefore, an execution is represented as a list of sequences of kernel actions. Non-kernel actions are not take into account.

- **output_t** Given the current state and an action an output can be computed deterministically.

- **time_t** Time is modelled using natural numbers. Each atomic kernel action can be executed within one time unit.
Function \texttt{kstep} (for kernel step) computes the next state based on the current state \(s\) and a given action \(a\). It may assume that it makes sense to perform this action, i.e., that any precondition that is necessary for execution of action \(a\) in state \(s\) is met. If not, it may return any result. This precondition is represented by generic predicate \texttt{kprecondition} (for kernel precondition). Only realistic traces are considered. Predicate \texttt{realistic-execution} decides whether a given execution is realistic.

Function \texttt{current} returns given the state the domain that is currently executing actions. The model assumes a single-core setting, i.e., at all times only one domain is active. Interrupt behavior is modelled using functions \texttt{interrupt} and \texttt{cswitch} (for context switch) that dictate respectively when interrupts occur and how interrupts occur. Interrupts are solely time-based, meaning that there is an at beforehand fixed schedule dictating which domain is active at which time.

Finally, we add function \texttt{control}. This function represents control of the kernel over the execution as performed by the domains. Given the current state \(s\), the currently active domain \(d\) and the execution \(\alpha\) of that domain, it returns three objects. First, it returns the next action that domain \(d\) will perform. Commonly, this is the next action in execution \(\alpha\). It may also return None, indicating that no action is done. Secondly, it returns the updated execution. When executing action \(a\), typically, this action will be removed from the current execution (i.e., updating the program stack). Thirdly, it can update the state to set, e.g., error codes.

\begin{verbatim}
locale Kernel =
 fixes kstep :: 'state-t \Rightarrow 'action-t \Rightarrow 'state-t
 and output-f :: 'state-t \Rightarrow 'action-t \Rightarrow 'output-t
 and \texttt{state-t} \Rightarrow 'state-t
 and current :: 'state-t \Rightarrow 'dom-t
 and cswitch :: 'time-t \Rightarrow 'state-t \Rightarrow 'state-t
 and interrupt :: 'time-t \Rightarrow bool
 and kprecondition :: 'state-t \Rightarrow 'action-t \Rightarrow bool
 and realistic-execution :: 'action-t execution \Rightarrow bool
 and control :: 'state-t \Rightarrow 'dom-t \Rightarrow 'action-t execution \Rightarrow
 (('action-t option) \times ('action-t execution \times 'state-t))
 and kinvolved :: 'action-t \Rightarrow 'dom-t set

begin

3.1.1 Execution semantics

Short hand notations for using function control.

\begin{verbatim}
definition next-action :: 'state-t \Rightarrow ('dom-t \Rightarrow 'action-t execution) \Rightarrow 'action-t option
 where next-action s execs = fst (control s (current s) (execs (current s)))
definition next-exec :: 'state-t \Rightarrow ('dom-t \Rightarrow 'action-t execution) \Rightarrow ('dom-t \Rightarrow 'action-t execution)
 where next-exec s execs = fun-upd execs (current s) (fst (snd (control s (current s) (execs (current s)))))
definition next-state :: 'state-t \Rightarrow ('dom-t \Rightarrow 'action-t execution) \Rightarrow 'state-t
 where next-state s execs = snd (snd (control s (current s) (execs (current s))))

A thread is empty iff either it has no further action sequences to execute, or when the current action sequence is finished and there are no further action sequences to execute.

abbreviation thread-empty :: 'action-t execution \Rightarrow bool
 where thread-empty \equiv \exists exec = [] \lor exec = [[]]

Wrappers for function kstep and kprecondition that deal with the case where the given action is None.

\begin{verbatim}
definition step where step s oa \equiv case oa of None \Rightarrow s | (Some a) \Rightarrow kstep s a
definition precondition :: 'state-t \Rightarrow 'action-t option \Rightarrow bool
 where precondition s a \equiv a \rightarrow kprecondition s
definition involved
 where involved oa \equiv case oa of None \Rightarrow \{\} | (Some a) \Rightarrow kinvolved a
\end{verbatim}
\end{verbatim}
Execution semantics are defined as follows: a run consists of consecutively running sequences of actions. These sequences are interruptable. Run first checks whether an interrupt occurs. When this happens, function cswitch may switch the context. Otherwise, function control is used to determine the next action \(a \), which also yields a new state \(s' \). Action \(a \) is executed by executing (step \(s'\ a \)). The current execution of the current domain is updated.

Note that run is a partial function, i.e., it computes results only when at all times the preconditions hold. Such runs are the realistic ones. For other runs, we do not need to – and cannot – prove security. All the theorems are formulated in such a way that they hold vacuously for unrealistic runs.

\[
\text{function } \text{run} : : \text{time-t} \Rightarrow \text{state-t option} \Rightarrow (\text{dom-t} \Rightarrow (\text{action-t} \Rightarrow (\text{execution})) \Rightarrow \text{state-t option})
\]

\[
\text{where run } 0 \text{ s execs } = \text{s} / \text{divides.alt0}
\]

\[
\text{run } (\text{Suc n}) \text{ None execs } = \text{None} / \text{divides.alt0}
\]

\[
\text{interrupt } (\text{Suc n}) \Rightarrow \text{run } (\text{Suc n}) \text{ (Some s) execs } = \text{run n (Some (cswitch (Suc n) s)) execs}
\]

\[
\text{¬ interrupt } (\text{Suc n}) \Rightarrow \text{thread-empty(execs (current s))} \Rightarrow \text{run } (\text{Suc n}) \text{ (Some s) execs } = \text{run n (Some s execs)}
\]

\[
\text{control consistency}
\]

\[
\text{using not0-implies-Suc by (metis option.exhaust prod-cases3,auto)}
\]

\[
\text{termination by lexicographic-order}
\]

end

3.2 SK (Separation Kernel)

theory SK
imports K
begin

Locale Kernel is now refined to a generic model of a separation kernel. The security policy is represented using function \(ia \). Function \(\text{vpeq} \) is adopted from Rushby and is an equivalence relation representing whether two states are equivalent from the point of view of the given domain.

We assume constraints similar to Rushby, i.e., weak step consistency, locally respects, and output consistency. Additional assumptions are:

Step Atomicity Each atomic kernel step can be executed within one time slot. Therefore, the domain that is currently active does not change by executing one action.

Time-based Interrupts As interrupts occur according to a prefixed time-based schedule, the domain that is active after a call of switch depends on the currently active domain only (cswitch_consistency). Also, cswitch can only change which domain is currently active (cswitch_consistency).

Control Consistency States that are equivalent yield the same control. That is, the next action and the updated execution depend on the currently active domain only (next_action_consistent, next_execs_consistent), the state as updated by the control function remains in vpeq (next_state_consistent, locally_respects_next_state).

Finally, function control cannot change which domain is active (current_next_state).

definition actions-in-execution: 'action-t execution ⇒ 'action-t set
where actions-in-execution exec ⊆ \{ a . ∃ aseq ∈ set exec . a ∈ set aseq \}

locale Separation-Kernel = Kernel kstep output-f s0 current cswitch interrupt kprecondition realistic-execution control kinvolved
for kstep :: 'state-t ⇒ 'action-t ⇒ 'state-t

and output-f :: 'state-t ⇒ 'action-t ⇒ 'output-t

and s0 :: 'state-t

and current :: 'state-t ⇒ 'dom-t — Returns the currently active domain

and cswitch :: time-t ⇒ 'state-t ⇒ 'state-t — Switches the current domain

and interrupt :: time-t ⇒ bool — Returns \(t \) iff an interrupt occurs in the given state at the given time

and kprecondition :: 'state-t ⇒ 'action-t ⇒ bool — Returns \(t \) if an precondition holds that relates the current action to the state

and realistic-execution :: 'action-t execution ⇒ bool — In this locale, this function is completely unconstrained.

and control :: 'state-t ⇒ 'dom-t ⇒ 'action-t execution ⇒ (('action-t option) × 'action-t execution × 'state-t)

and kinvolved :: 'action-t ⇒ 'dom-t set

+

| fixes ifp :: 'dom-t ⇒ 'dom-t ⇒ bool |
| vpeq :: 'dom-t ⇒ 'state-t ⇒ bool |
| assumes vpeq-transitive: \(\forall \ a \ b \ c \ u. (\text{vpeq } u \ a \ b \land \text{vpeq } u \ b \ c) \rightarrow \text{vpeq } u \ a \ c \) |
| and vpeq-symmetric: \(\forall \ a \ b \ u. \text{vpeq } u \ a \ b \rightarrow \text{vpeq } u \ b \ a \) |
| and vpeq-reflexive: \(\forall \ a \ u. \text{vpeq } u \ a \ a \) |
| and ifp-reflexive: \(\forall \ u \ . \text{ifp } u \ u \) |
| and weakly-step-consistent: \(\forall \ s \ t \ u \ a. \text{vpeq } u \ s \ t \land \text{vpeq } (\text{current } s) \ s \ t \land \text{kprecondition } s \ a \land \text{kprecondition } t \ a \land \text{current } s = \text{current } t \rightarrow \text{vpeq } u \ (\text{kstep } s \ a) \ (\text{kstep } t \ a) \) |
| and locally-respects: \(\forall \ a \ s \ u. \text{ifp } (\text{current } s) \ u \land \text{kprecondition } s \ a \rightarrow \text{vpeq } u \ s \ (\text{kstep } s \ a) \) |
| and output-consistent: \(\forall \ a \ s \ t. \text{vpeq } (\text{current } s) \ s \ t \land \text{current } s = \text{current } t \rightarrow (\text{output-f } s \ a) = (\text{output-f } t \ a) \) |
| and step-atomicity: \(\forall \ a \ s \ . \text{current } (\text{kstep } s \ a) = \text{current } s \) |
| and cswitch-independent-of-state: \(\forall \ n \ s \ t. \text{current } s = \text{current } t \rightarrow \text{current } (\text{cswitch } n \ s) = \text{current } (\text{cswitch } n \ t) \) |

and cswitch-consistency: \(\forall \ u \ s \ t \ n \ . \text{vpeq } u \ s \ t \rightarrow \text{vpeq } u \ (\text{cswitch } n \ s) \ (\text{cswitch } n \ t) \) |

and next-action-consistent: \(\forall \ s \ t \ execs \ . \text{vpeq } (\text{current } s) \ s \ t \land (\forall \ d \in \text{involved } (\text{next-action } s \ execs) \ . \text{vpeq } d \ s \ t) \land \text{current } s = \text{current } t \rightarrow \text{next-action } s \ execs = \text{next-action } t \ execs \) |

and next-execs-consistent: \(\forall \ s \ t \ execs \ . \text{vpeq } (\text{current } s) \ s \ t \land (\forall \ d \in \text{involved } (\text{next-action } s \ execs) \ . \text{vpeq } d \ s \ t) \land \text{current } s = \text{current } t \rightarrow \text{fst } (\text{snd } (\text{control } s \ (\text{current } s) \ (\text{execs } (\text{current } s)))) = \text{fst } (\text{snd } (\text{control } t \ (\text{current } s) \ (\text{execs } (\text{current } s)))) \) |

and next-state-consistent: \(\forall \ s \ t \ u \ execs \ . \text{vpeq } (\text{current } s) \ s \ t \land \text{vpeq } u \ s \ t \land \text{current } s = \text{current } t \rightarrow \text{vpeq } u \ (\text{next-state } s \ execs) \ (\text{next-state } t \ execs) \) |

and current-next-state: \(\forall \ s \ execs \ . \text{current } (\text{next-state } s \ execs) = \text{current } s \) |

and locally-respects-next-state: \(\forall \ s \ u \ execs \ . \text{ifp } (\text{current } s) \ u \rightarrow \text{vpeq } u \ s \ (\text{next-state } s \ execs) \) |

and involved-ifp ifp: \(\forall \ s \ a \ . \forall \ d \in (\text{involved } a) \ . \text{kprecondition } s \ (\text{the } a) \rightarrow \text{ifp } d \ (\text{current } s) \) |

and next-action-from-execs: \(\forall \ s \ execs \ . \text{next-action } s \ execs \rightarrow (\lambda \ a \ . \ a \in \text{actions-in-execution } (\text{execs } (\text{current } s))) \) |

and next-execs-subset: \(\forall \ s \ execs \ u \ . \text{actions-in-execution } (\text{next-execs } s \ execs \ u) \subseteq \text{actions-in-execution } (\text{execs } u) \) |

begin

Note that there are no proof obligations on function “interrupt”. Its typing enforces the assumptions that switching is based on time and not on state. This assumption is sufficient for these proofs, i.e., no further assumptions are required.

3.2.1 Security for non-interfering domains

We define security for domains that are completely non-interfering. That is, for all domains \(u \) and \(v \) such that \(v \) may not interfere in any way with domain \(u \), we prove that the behavior of domain \(u \) is independent of the actions performed by \(v \). In other words, the output of domain \(u \) in some run is at all times equivalent to the output of domain \(u \) when the actions of domain \(v \) are replaced by some other set actions.

A domain is unrelated to \(u \) if and only if the security policy dictates that there is no path from the domain to \(u \).

abbreviation unrelated :: 'dom-t ⇒ 'dom-t ⇒ bool |

where unrelated \(d \ u \equiv \neg \text{ifp}^{*\ast} d \ u \)
To formulate the new theorem to prove, we redefine purging: all domains that may not influence domain \(u \) are replaced by arbitrary action sequences.

Definition purge:

\[
\text{'dom-t} \Rightarrow \text{'action-t execution} \Rightarrow \text{'dom-t} \Rightarrow (\text{'dom-t} \Rightarrow \text{'action-t execution})
\]

Where purge execs \(u \equiv \lambda \text{d} \cdot \begin{cases} \text{if unrelated \(d \) \(u \) then} & \text{(SOME alpha \cdot realistic-execution alpha)} \\ \text{else execs \(d \) \} } & \end{cases}
\]

A normal run from initial state \(s0 \) ending in state \(s_f \) is equivalent to a run purged for domain \((\text{currents}_s) \).

Definition NI-unrelated **Where** NI-unrelated

\[\equiv \forall \text{execs } a n \cdot \text{run } n \cdot \text{(Some } s0) \cdot \text{execs} \rightarrow \left(\lambda \text{s-f} \cdot \text{run } n \cdot \text{(Some } s0) \cdot (\text{purge execs } (\text{current } s-f)) \rightarrow \right) \right) \]

The following properties are proven inductively over states \(s \) and \(t \):

1. Invariably, states \(s \) and \(t \) are equivalent for any domain \(v \) that may influence the purged domain \(u \). This is more general than proving that “vpeq u s t” is inductive. The reason we need to prove equivalence over all domains \(v \) so that we can use weak step consistency.

2. Invariably, states \(s \) and \(t \) have the same active domain.

Abbreviation equivalent-states :: 'state-t option \(\Rightarrow \) 'state-t option \(\Rightarrow \) 'dom-t \(\Rightarrow \) bool

Where equivalent-states \(s t u \equiv s \parallel t \rightarrow (\forall s t . (\forall v . \text{ifp}^\ast \ast v u \rightarrow \text{vpeq v s t}) \land \text{current } s-f = \text{current } s-f) \)

Rushby’s view partitioning is redefined. Two states that are initially \(u \)-equivalent are \(u \)-equivalent after performing respectively a realistic run and a realistic purged run.

Definition view-partitioned::bool **Where** view-partitioned

\[\equiv \forall \text{execs } m s m t n u \cdot \text{equivalent-states } m s m t u \rightarrow \left(\text{run } n \cdot \text{msexe } m \parallel \right) \]

\[\left(\text{run } n \cdot \text{mt} \cdot \text{purge execs } u \rightarrow \left(\lambda \text{rs rt} . \text{vpeq } u \text{rs } rt \land \text{current } rs = \text{current } rt \right) \right) \]

We formulate a version of predicate view_partitioned that is on one hand more general, but on the other hand easier to prove inductive over function run. Instead of reasoning over execs and (purge execs \(u \)), we reason over any two executions execs1 and execs2 for which the following relation holds:

Definition purged-relation :: 'dom-t \(\Rightarrow \) ('dom-t \(\Rightarrow \) 'action-t execution) \(\Rightarrow \) ('dom-t \(\Rightarrow \) 'action-t execution) \(\Rightarrow \) bool

Where purged-relation \(u \cdot \text{execs1 execs2} \equiv \forall d \cdot \text{ifp}^\ast \ast d u \rightarrow \text{execs1 } d = \text{execs2 } d \)

The inductive version of view partitioning says that runs on two states that are \(u \)-equivalent and on two executions that are purged-related yield \(u \)-equivalent states.

Definition view-partitioned-ind::bool **Where** view-partitioned-ind

\[\equiv \forall \text{execs } s t u \cdot \text{equivalent-states } s t u \land \text{purged-relation } u \cdot \text{execs1 execs2} \rightarrow \text{equivalent-states } (\text{run } n \cdot \text{execs1}) (\text{run } n \cdot \text{execs2}) \]

A proof that when state \(t \) performs a step but state \(s \) not, the states remain equivalent for any domain \(v \) that may interfere with \(u \).

Lemma vpeq-s-nt:

Assumptions prec-t: precondition (next-state \(t \cdot \text{execs2} \) \((\text{next-action } t \cdot \text{execs2}) \)

Assumptions not-ifp-curr-u: \(\sim \text{ifp}^\ast \ast (\text{current } t) u \)

Assumptions vpeq-s-t: \(\forall v . \text{ifp}^\ast \ast v u \rightarrow \text{vpeq } v s t \)

Shows \((\forall v . \text{ifp}^\ast \ast v u \rightarrow \text{vpeq } v s t) \)

Proof

\[
\{ \text{fix } v \}
\]
assume \(\text{ifp-v-uc ifp}^{\ast\ast} v u \)

from \(\text{ifp-v-uc not-ifp-curr-u have unrelated: } (\neg \text{ifp}^{\ast\ast} (\text{current } t) v \) using \(\text{rtranclp-trans by metis} \)

from this current-next-state[THEN spec,THEN spec,where \(x1=t \)]

locally-respects[THEN spec,THEN spec,THEN spec,where \(x1=\text{next-state } t \) execs2] vpeq-reflexive

prec-s have vpeq v (next-state t execs2) (step (next-state t execs2) (next-action t execs2))

unfolding step-def precondition-def B-def

by (cases next-action t execs2,auto)

from unrelated this locally-respects-next-state vpeq-transitive have vpeq v t (step (next-state t execs2) (next-action t execs2)) by blast

from this and \(\text{ifp-v-u and vpeq-s-t and vpeq-symmetric and vpeq-transitive have vpeq v s } (\text{step (next-state t execs2) (next-action t execs2)}) \) by metis

thus \(\text{thesis by auto} \)

qed

A proof that when state \(s \) performs a step but state \(t \) not, the states remain equivalent for any domain \(v \) that may interfere with \(u \).

lemma vpeq-ns-t:

assumes \(\text{prec-s: precondition (next-state } s \) execs \) (next-action \(s \) execs)

assumes not-ifp-curr-u:\(\neg \text{ifp}^{\ast\ast} (\text{current } s) u \)

assumes vpeq-s-t \(\forall \ v . \text{ifp}^{\ast\ast} v u \rightarrow vpeq v s t \)

shows \(\forall \ v . \text{ifp}^{\ast\ast} v u \rightarrow vpeq v (\text{step (next-state } s \) execs) (\text{next-action } s \) execs)) \(t \)

proof-

{ fix \(v \)

assume \(\text{ifp-v-uc ifp}^{\ast\ast} v u \)

from \(\text{ifp-v-uc and not-ifp-curr-u have unrelated: } (\neg \text{ifp}^{\ast\ast} (\text{current } s) v \) using \(\text{rtranclp-trans by metis} \)

from this current-next-state[THEN spec,THEN spec,where \(x1=s \)] vpeq-reflexive

unrelated locally-respects[THEN spec,THEN spec,THEN spec,where \(x1=\text{next-state } s \) execs and \(x=v \) and \(x2=\text{the (next-action } s \) execs)] prec-s

have vpeq v (next-state s execs) (step (next-state s execs) (next-action s execs))

unfolding step-def precondition-def B-def

by (cases next-action s execs,auto)

from unrelated this locally-respects-next-state vpeq-transitive have vpeq v s (step (next-state s execs) (next-action s execs)) \(t \) by metis

} thus \(\text{thesis by auto} \)

qed

A proof that when both states \(s \) and \(t \) perform a step, the states remain equivalent for any domain \(v \) that may interfere with \(u \). It assumes that the current domain can interact with \(u \) (the domain for which is purged).

lemma vpeq-ns-nt-ifp-u:

assumes vpeq-s-t \(\forall \ v . \text{ifp}^{\ast\ast} v u \rightarrow vpeq v s t' \)

and current-s-t: current s = current t'

shows precondition (next-state s execs) \(a \land \text{precondition (next-state } t' \) execs) \(a \rightarrow (\text{ifp}^{\ast\ast} \text{ (current } s) u \rightarrow (\forall \ v . \text{ifp}^{\ast\ast} v u \rightarrow vpeq v (\text{step (next-state } s \) execs) a) (\text{step (next-state } t' \) execs) a)) \)

proof-

fix \(a \)

assume prec-s: precondition (next-state s execs) \(a \land \text{precondition (next-state } t' \) execs) \(a \)

assume ifp-curr: \(\text{ifp}^{\ast\ast} \text{ (current } s) u \)

from vpeq-s-t have vpeq-curr-s-t: \(\text{ifp}^{\ast\ast} \text{ (current } s) u \rightarrow vpeq \text{ (current } s) s t' \) by auto

from ifp-curr prec-s
A proof that when both states \(s \) and \(t \) perform a step, the states remain equivalent for any domain \(v \) that may interfere with \(u \). It assumes that the current domain cannot interact with \(u \) (the domain for which is purged).

Lemma vpeq-ns-nt-not-ifp-\(\mathbf{u} \)

Assumes purged-a-a\(\mathbf{2} \): purged-relation \(u \) execs execs2

\[\begin{align*}
\text{and} & \quad \text{prec-s precondition} \quad \text{(next-state } s \text{ execs)} \\
\text{and} & \quad \text{current-s-t: current } s = \text{ current } t' \\
\text{and} & \quad \text{vpeq-s-t: } \forall \ x. \ ifp^\star \ x u \rightarrow vpeq \ y s t'
\end{align*}\]

Shows \(\neg ifp^\star \ (\text{current } s) \ u \land \text{precondition} \quad \text{(next-action } t' \text{ execs2)} \rightarrow (\forall \ y. \ ifp^\star \ y u \rightarrow vpeq \ y \ (\text{step} \ (\text{next-state } s \text{ execs}) \ a) \ (\text{step} \ (\text{next-state } t' \text{ execs}) \ a) \)

Proof

\[
\begin{align*}
\text{assume} & \quad \text{not-ifp: } \neg ifp^\star \ \text{(current } s) \ u \\
\text{assume} & \quad \text{prec-t: precondition} \quad \text{(next-state } t' \text{ execs2)} \\
\text{fix} & \quad a \ a' \ v \\
\text{assume} & \quad \text{ifp-v-uc ifp^\star \ v u} \\
\text{from} & \quad \text{not-ifp and purged-a-a2 have } \neg ifp^\star \ \text{(current } s) \ u \quad \text{unfolding} \quad \text{purged-relation-def} \quad \text{by auto}
\end{align*}\]

From this and ifp-v-u have not-ifp-curr-v: \(\neg ifp^\star \ (\text{current } s) \ v \) using rtranclp-trans by metis

**From this current-next-state[THEN spec,THEN spec,where \(x1=s \text{ and } x=\text{execs2} \] prec-s vpeq-reflexive locally-respects[THEN spec,THEN spec,THEN spec,where \(x1=\text{next-state } s \text{ execs} \text{ and } x2=\text{the} \text{ (next-action } s \text{ execs} \text{ and } x=v) \]

Have vpeq v (next-state s execs) (step (next-state s execs) (next-action s execs))

Unfolding step-def precondition-def B-def

By (cases next-action s execs.auto)

From not-ifp-curr-v this locally-respects-next-state vpeq-transitive

Have vpeq-s-ns vpeq v s (step (next-state s execs) (next-action s execs))

By blast

**From not-ifp-curr-v current-s-t current-next-state[THEN spec,THEN spec,where \(x1=t' \text{ and } x=\text{execs2} \] prec-t locally-respects[THEN spec,THEN spec,where \(x=\text{next-state } t' \text{ execs2} \] vpeq-reflexive

Have \(a \): vpeq v (next-state t' execs2) (step (next-state t' execs2) (next-action t' execs2))

Unfolding step-def precondition-def B-def

By (cases next-action t' execs2.auto)

**From not-ifp-curr-v current-s-t current-next-state have \(I: \neg ifp^\star \ (\text{current } t') \ v \) using rtranclp-trans by auto

From 0 \(I \) locally-respects-next-state vpeq-transitive

Have vpeq-t-nt: vpeq v t' (step (next-state t' execs2) (next-action t' execs2))

By blast

From vpeq-s-ns and vpeq-t-nt and vpeq-s-t and ifp-v-u and vpeq-symmetric and vpeq-transitive

Have vpeq-s-ns vpeq v (step (next-state s execs) (next-action s execs)) (step (next-state t' execs2) (next-action t' execs2))

By blast

Thus \(?thesis by auto**

Qed

A run with a purged list of actions appears identical to a run without purging, when starting from two states that appear identical.

Lemma unwinding-implies-view-partitioned-ind:

Shows view-partitioned-ind
proof
{
fix execs execs2 n s t u
have equivalent-states s t u ∧ purged-relation u execs execs2 → equivalent-states (run n s execs) (run n t execs2) u
proof
(induct n s execs arbitrary: t u execs2 rule: run.induct)
case (1 s execs t u execs2)
 show ?case by auto
next
case (2 n execs t u execs2)
 show ?case by simp
next
case (3 n s execs t u execs2)
assume interrupt-s: interrupt (Suc n)
assume IH: (∀ u execs₂. equivalent-states (Some (cswitch (Suc n) s)) t u ∧ purged-relation u execs execs₂ → equivalent-states (run n (Some (cswitch (Suc n) s)) execs) (run n t execs₂) u)
{
fix t'
assume t = Some t'
fix rs
assume rs: run (Suc n) (Some s) execs = Some rs
fix rt
assume rt: run (Suc n) (Some t') execs₂ = Some rt
assume vpeq-s-t: ∀ v. ifp∗∗ v u → vpeq v s t'
assume current-s-t: current s = current t'
assume purged-a-a2: purged-relation u execs execs₂
— The following terminology is used: states rs and rt (for: run-s and run-t) are the states after a run. States ns and nt (for: next-s and next-t) are the states after one step.
— We prove two properties: the states rs and rt have equal active domains (current-rs-rt) and are vpeq for all domains v that may influence u (vpeq-rs-rt). Both are proven using the IH. To use the IH, we have to prove that the properties hold for the next step (in this case, a context switch). Statement current-ns-nt states that after one step states ns and nt have the same active domain. Statement vpeq-ns-nt states that after one step states ns and nt are vpeq for all domains v that may influence u (vpeq-ns-nt).
from current-s-t cswitch-independent-of-state
 have current-ns-nt: current (cswitch (Suc n) s) = current (cswitch (Suc n) t') by blast
from cswitch-consistency vpeq-s-t
 have vpeq-ns-nt: ∀ v. ifp∗∗ v u → vpeq v (cswitch (Suc n) s) (cswitch (Suc n) t') by auto
from current-ns-nt vpeq-ns-nt interrupt-s vpeq-reflexive purged-a-a2 current-s-t IH[where u=u and t=Some (cswitch (Suc n) t') and ?execs2.0=execs2]
 have current-rt: current rs = current rt using rs rt by(auto)
{
 fix v
 assume ia: ifp∗∗ v u
 from current-ns-nt vpeq-ns-nt ia interrupt-s vpeq-reflexive purged-a-a2 IH[where u=u and t=Some (cswitch (Suc n) t') and ?execs2.0=execs2]
 have vpeq-rt: vpeq v rs rt using rs rt by(auto)
 }
from current-rt and this have equivalent-states (Some rs) (Some rt) u by auto
}
thus ?case by(auto)
next
case (4 n execs s t u execs2)
assume not-interrupt: ¬interrupt (Suc n)
assume thread-empty-s: thread-empty(execs (current s))
assume IH: (∀t u execs2, equivalent-states (Some s) t u ∧ purged-relation u execs execs2 → equivalent-states (run n (Some s) execs) (run n t execs2) u)
{
 fix t′
 assume t: t = Some t′
 fix rs
 assume rs: run (Suc n) (Some s) execs = Some rs
 fix rt
 assume rt: run (Suc n) (Some t′) execs2 = Some rt

 assume vpeq-s-t: ∀v. ifp∗∗v u → vpeq v s t′
 assume current-s-t: current s = current t′
 assume purged-a-a2: purged-relation u execs execs2

 — The following terminology is used: states rs and rt (for: run-s and run-t) are the states after a run. States ns and nt (for: next-s and next-t) are the states after one step.

 — We prove two properties: the states rs and rt have equal active domains (current-rs-rt) and are vpeq for all domains v that may influence u (vpeq-rs-rt). Both are proven using the IH. To use the IH, we have to prove that the properties hold for the next step (in this case, nothing happens in s as the thread is empty). Statement current-ns-nt states that after one step states ns and nt have the same active domain. Statement vpeq_ns_nt states that after one step states ns and nt are vpeq for all domains v that may influence u (vpeq-rs-rt).

 from ifp-reflexive and vpeq-s-t have vpeq-s-t-u: vpeq u s t′ by auto
 from thread-empty-s and purged-a-a2 and current-s-t have purged-a-na2: ¬ifp∗∗(current t′) u → purged-relation u execs (next-execs t′ execs2)
 by (unfold next-execs-def, unfold purged-relation-def, auto)
 from step-atomicity current-next-state current-s-t have current-s-nt: current s = current (step (next-state t′ execs2))
 unfolding step-def
 by (cases next-action t′ execs2, auto)

 — The proof is by case distinction. If the current thread is empty in state t as well (case t-empty), then nothing happens and the proof is trivial. Otherwise (case t-not-empty), since the current thread has different executions in states s and t, we now show that it cannot influence u (statement not-ifp-curr-t). If in state t the precondition holds (case t-prec), locally respects shows that the states remain vpeq. Otherwise, (case t-not-prec), everything holds vacuously.

 have current-rs-rt: current rs = current rt
 proof
 cases thread-empty(execs2 (current t′)) rule case-split[cases-names t-empty t-not-empty]
 case t-empty
 from purged-a-a2 and vpeq-s-t and current-s-t IH[where t=Some t′ and u=u and ?execs2.0=execs2]
 have equivalent-states (run n (Some s) execs) (run n (Some t′ execs2) u) using rs rt by(auto)
 from this not-interrupt t-empty thread-empty-s
 show ?thesis using rs rt by(auto)
 next
case t-not-empty
 from t-not-empty current-next-state and vpeq-s-t-u and thread-empty-s and purged-a-a2 and current-s-t
 have not-ifp-curr-t: ¬ifp∗∗(current (next-state t′ execs2)) u unfolding purged-relation-def by auto
 show ?thesis
 proof (cases precondition (next-state t′ execs2) (next-action t′ execs2) rule case-split[cases-names t-prec t-not-prec])
 case t-prec
 from locally-respects-next-state current-next-state t-prec not-ifp-curr-t vpeq-s-t locally-respects vpeq-s-nt
 have vpeq-s-nt: (∀v. ifp∗∗v u → vpeq v s (step (next-state t′ execs2) (next-action t′ execs2))) by auto
 from vpeq-s-nt purged-a-na2 this current-s-nt not-ifp-curr-t current-next-state
 IH[where t=Some (step (next-state t′ execs2) (next-action t′ execs2)) and u=u and ?execs2.0=next-exec t′ execs2]
 have equivalent-states (run n (Some s) execs) (run n (Some (step (next-state t′ execs2) (next-action t′ execs2)) rule case-split[cases-names t-prec t-not-prec])
execs2)) (next-execs t' execs2) u
 using rs rt by auto
from t-not-empty t-prec vpeq-s-nt this thread-empty-s not-interrupt
 show ?thesis using rs rt by auto
next
case t-not-prec
 thus ?thesis using rt t-not-empty not-interrupt by(auto)
qed
qed
{
 fix v
assume ia : ifp** v u
have vpeq v rs rt
 proof (cases thread-empty(execs2 (current t'))) rule :case-split[case-names t-empty t-not-empty]
case t-empty
 from purged-a-a2 and vpeq-s-t and current-s-t IH[where t=Some t' and u=u and ?execs2.0=execs2]
 have equivalent-states (run n (Some s) execs) (run n (Some t') execs2) u using rs rt by(auto)
 from ia this not-interrupt t-empty thread-empty-s
 show ?thesis using rs rt by(auto)
next
case t-not-empty
 show ?thesis
 proof (cases precondition (next-state t' execs2) (next-action t' execs2) rule :case-split[case-names t-prec t-not-prec])
case t-prec
 from t-not-empty current-next-state and vpeq-s-t-u and thread-empty-s and purged-a-a2 and current-s-t
 have not-ifp-curr-t : ¬ifp** (current (next-state t' execs2)) u unfolding purged-relation-def
 by auto
 from t-prec current-next-state locally-respects-next-state this and vpeq-s-t and locally-respects and
 vpeq-s-nt
 have vpeq-s-nt: (∀ v. ifp** v u → vpeq v s (step (next-state t' execs2) (next-action t' execs2))) by auto
 from purged-a-na2 this current-s-nt not-ifp-curr-t current-next-state
 IH[where t=Some (step (next-state t' execs2)) (next-action t' execs2)) and u=u and ?execs2.0=next-execs
t' execs2]
 have equivalent-states (run n (Some s) execs) (run n (Some (step (next-state t' execs2)) (next-action t'
 execs2))) (next-execs t' execs2) u
 using rs rt by(auto)
 from ia t-not-empty t-prec vpeq-s-nt this thread-empty-s not-interrupt
 show ?thesis using rs rt by auto
next
case t-not-prec
 thus ?thesis using rt t-not-empty not-interrupt by(auto)
qed
qed
}
from current-rs-rt and this have equivalent-states (Some rs) (Some rt) u by auto
)
thus ?case by(simp add:option.splits,cases t,simp+)
next
case (Suc n execs s t u execs2)
assume not-interrupt: ¬interrupt (Suc n)
assume thread-not-empty-s: ¬thread-empty(execs (current s))
assume not-prec-s: ¬precondition (next-state s execs) (next-action s execs)
— Whenever the precondition does not hold, the entire theorem flattens to True and everything holds vacuously.

hence run (Suc n) (Some s) execs = None using not-interrupt thread-not-empty-s by simp
Thus, case by(simp add:option.splits)
next
case (6 n execs s t u execs2)
assume not-interrupt: ¬interrupt (Suc n)
assume thread-not-empty-s: ¬thread-empty(execs (current s))
assume prec-s: precondition (next-state s execs) (next-action s execs)
assume IH: (∀t u execs2).
 equivalent-states (Some (step (next-state s execs) (next-action s execs))) t u ∧
 purged-relation u (next-execs s execs) execs2 ——
 equivalent-states
 (run n (Some (step (next-state s execs) (next-action s execs))) (next-execs s execs))
 (run n t execs2) u)
{
 fix t'
 assume t: t = Some t'
 fix rs
 assume rs: run (Suc n) (Some s) execs = Some rs
 fix rt
 assume rt: run (Suc n) (Some t') execs2 = Some rt

 assume vpeq-s-t: ∀v. ifp" ** v u —— vpeq v s t'
 assume current-s-t: current s = current t'
 assume purged-a-a2: purged-relation u execs execs2

 — The following terminology is used: states rs and rt (for: run-s and run-t) are the states after a run. States ns and nt (for: next-s and next-t) are the states after one step.
 — We prove two properties: the states rs and rt have equal active domains (current-rs-rt) and are vpeq for all domains v that may influence u (vpeq-rs-rt). Both are proven using the IH. To use the IH, we have to prove that the properties hold for the next step (in this case, state s executes an action). Statement current-ns-nt states that after one step states ns and nt have the same active domain. Statement vpeq-ns-nt states that after one step states ns and nt are vpeq for all domains v that may influence u (vpeq-ns-rt).

 — Some lemma's used in the remainder of this case.
 from ifp-reflexive and vpeq-s-t have vpeq-s-t-uc vpeq u s t' by auto
 from step-atomicity and current-s-t current-next-state
 have current-ns-nt: current (step (next-state s execs) (next-action s execs)) = current (step (next-state t' execs2) (next-action t' execs2))
 unfolding step-def
 by (cases next-action s execs,cases next-action t' execs2,simp,simp,cases next-action t' execs2,simp,simp)
 from vpeq-s-t have vpeq-curr-s-t: ifp" ** (current s) u —— vpeq (current s) s t' by auto
 from prec-s involved-ifp THEN spec,THEN spec,where x1=next-state s execs and x=next-action s execs
 vpeq-s-t have vpeq-involved: ifp" ** (current s) u —— (∀ d ∈ involved (next-action s execs) . vpeq d s t')
 using current-next-state
 unfolding involved-def precondition-def B-def
 by(cases next-action s execs,simp,autometis converse-rtranclp-into-rtranclp)
 from current-s-t next-execs-consistent vpeq-curr-s-t vpeq-involved
 have next-execs-t: ifp" ** (current s) u —— next-execs t' execs = next-execs s execs
 unfolding next-execs-def
 by(auto)
 from current-s-t purged-a-a2 thread-not-empty-s next-action-consistent[THEN spec,THEN spec,where x1=s and x=t'] vpeq-curr-s-t vpeq-involved
 have next-action-s-t: ifp" ** (current s) u —— next-action t' execs2 = next-action s execs
 by(unfold next-action-def,unfold purged-relation-def,auto)
 from purged-a-a2 current-s-t next-execs-consistent[THEN spec,THEN spec,THEN spec,where x2=s and x1=t'
 and x=execs]
 vpeq-curr-s-t vpeq-involved
 have purged-na-na2: purged-relation u (next-execs s execs) (next-execs t' execs2)
unfolding next-execs-def purged-relation-def
by (auto)
from purged-a-a2 and purged-relation-def and thread-not-empty-s and current-s-t have thread-not-empty-t:
ifp^*+ (current s) u → ¬thread-empty(execs2 (current t)) by auto
from step-atomicity current-s-t current-next-state have current-ns-nt current (step (next-state s execs) (next-action s execs)) = current t'
unfolding step-def
by (cases next-action s execs,auto)
from step-atomicity and current-s-t have current-ns-nt: current s = current (step t' (next-action t' execs2))
unfolding step-def
by (cases next-action t' execs2,auto)
from purged-a-a2 have purged-na-a: ¬ifp^*+ (current s) u → purged-relation u (next-execs s execs) execs2
by (unfold next-execs-def,unfold purged-relation-def,auto)

— The proof is by case distinction. If the current domain can interact with u (case curr-ifp-u), then either in state t the precondition holds (case t-prec) or not. If it holds, then lemma vpeq-ns-nt-ifp-u applies. Otherwise, the proof is trivial as the theorem holds vacuously. If the domain cannot interact with u, (case curr-not-ifp-u), then lemma vpeq-ns-nt-not-ifp-u applies.

have current-rs-rt: current rs = current rt
proof (cases ifp^*+ (current s) u rule :case-split[cases-names curr-ifp-u curr-not-ifp-u])
 case curr-ifp-u
 show ?thesis
 proof (cases precondition (next-state t' execs2) (next-action t' execs2) rule :case-split[cases-names prec-t prec-not-t])
 case prec-t
 have thread-not-empty-t: ¬thread-empty(execs2 (current t')) using thread-not-empty-t curr-ifp-u by auto
 from current-ns-nt next-execs-t next-action-s-t purged-a-a2
 curr-ifp-u prec-t purged-a-a2 where a=(next-action s execs) vpeq-s-t current-s-t
 have equivalent-states (Some (step (next-state s execs) (next-action s execs))) (Some (step (next-state t' execs2) (next-action t' execs2))) u
 unfolding purged-relation-def next-state-def
 by auto
 from this
 IH[where u=u and ?execs2.0=(next-execs t' execs2) and t=Some (step (next-state t' execs2) (next-action t' execs2))]
 current-ns-nt purged-na-a
 have equivalent-states (run n (Some (step (next-state s execs) (next-action s execs))) (next-execs s execs))
 (run n (Some (step (next-state t' execs2) (next-action t' execs2))) (next-execs t' execs2)) u
 by auto
 from prec-t thread-not-empty-t prec-s and this and not-interrupt and thread-not-empty-s and next-action-s-t
 show ?thesis using rs rt by auto
 next
 case prec-not-t
 from curr-ifp-u prec-not-t thread-not-empty-t not-interrupt show ?thesis using rt by simp
 qed
 next
 case curr-not-ifp-u
 show ?thesis
 proof (cases thread-empty(execs2 (current t')) rule :case-split[cases-names t-empty t-not-empty])
 case t-not-empty
 show ?thesis
 proof (cases precondition (next-state t' execs2) (next-action t' execs2) rule :case-split[cases-names t-prec t-not-prec])
 case t-prec
 from curr-not-ifp-u t-prec IH[where u=u and ?execs2.0=(next-execs t' execs2) and t=Some (step (next-state t' execs2) (next-action t' execs2))]
current-ns-nt next-execs-t purged-na-na2 vpeq-ns-nt-not-ifp-u current-s-t vpeq-s-t prec-s purged-a-a2
have equivalent-states (run n (Some (step (next-state s execs) (next-action s execs))) (next-execs s execs))
 (run n (Some (step (next-state t' execs2) (next-action t' execs2))) (next-execs t' execs2)) u by auto
from this t-prec curr-not-ifp-u t-not-empty prec-s not-interrupt thread-not-empty-s show ?thesis using rs rt by auto
next case t-not-prec
 from t-not-prec t-not-empty not-interrupt show ?thesis using rt by simp
 qed
next case t-empty
 from curr-not-ifp-u and prec-s and vpeq-s-t and locally-respects and vpeq-ns-t current-next-state locally-respects-next-state
 have vpeq-ns-t (V v u. ifp^** v u -> vpeq v (step (next-state s execs) (next-action s execs)) t')
 by blast
 from curr-not-ifp-u IH[where t=Some t' and u=u and ?execs2.0=?execs2] and current-ns-t and next-execs-t
and purged-na-a and vpeq-ns-t and this
 have equivalent-states (run n (Some (step (next-state s execs) (next-action s execs))) (next-execs s execs))
 (run n (Some (step (next-state t' execs2) (next-action t' execs2))) (next-execs t' execs2)) u by auto
from this not-interrupt thread-not-empty-s t-empty prec-s show ?thesis using rs rt by auto
 qed
 qed
 { fix v
 assume ia: ifp^** v u
 have vpeq v rs rt
 proof (cases ifp^** (current s) u rule :case-split[case-names curr-ifp-u curr-not-ifp-u])
 case curr-ifp-u
 show ?thesis
 proof (cases precondition (next-state t' execs2) (next-action t' execs2) rule :case-split[case-names t-prec t-not-prec])
 case t-prec
 have thread-not-empty-t: ~thread-empty(execs2 (current t')) using thread-not-empty-t curr-ifp-u by auto
 from current-ns-nt next-execs-t next-action-s-t purged-a-a2
 curr-ifp-u t-prec prec-s vpeq-ns-nt-ifp-u[where a=(next-action s execs)] vpeq-s-t current-s-t
 have equivalent-states (Some (step (next-state s execs) (next-action s execs))) (Some (step (next-state t' execs2) (next-action t' execs2))) u by auto
 unfolding purged-relation-def next-state-def
 from this
 IH[where u=u and ?execs2.0=(next-execs t' execs2) and t=Some (step (next-state t' execs2) (next-action t' execs2))]
 current-ns-nt purged-na-na2
 have equivalent-states (run n (Some (step (next-state s execs) (next-action s execs))) (next-execs s execs))
 (run n (Some (step (next-state t' execs2) (next-action t' execs2))) (next-execs t' execs2)) u by auto
 from ia curr-ifp-u t-prec thread-not-empty-t prec-s and this and not-interrupt and thread-not-empty-s
and next-action-t-s
 show ?thesis using rs rt by auto
 next case t-not-prec
From the previous lemma, we can prove that the system is view partitioned. The previous lemma was inductive, this lemma just instantiates the previous lemma replacing \(s \) and \(t \) by the initial state.

Lemma unwinding-implies-view-partitioned:

\[\text{shows view-partitioned} \]

Proof

\[\text{from unwinding-implies-view-partitioned-ind have view-partitioned-inductive: view-partitioned-ind} \]

\[\text{by blast} \]

\[\text{have purged-relation: } \forall u \text{ execs . purged-relation u execs (purge execs u)} \]

\[\text{by (unfold purged-relation-def, unfold purge-def, auto)} \]

\[\{ \text{fix execs } s \text{ t } n \text{ u} \]
Assume I: equivalent-states $s \leftrightarrow t \leftrightarrow u$

From this view-partitioned-inductive purged-relation

Have equivalent-states $(run\ n\ s\ execs)\ (run\ n\ t\ (purge\ execs\ u))\ u$

Unfolding view-partitioned-ind-def by auto

From this ifp-reflexive

Have $run\ n\ s\ execs\ \parallel\ run\ n\ t\ (purge\ execs\ u)\ \therefore\ (\lambda rs\ rt.\ vpeq\ u\ rs\ rt\ \land\ current\ rs\ =\ current\ rt)$

Using r-into-rtrans-cp unfolding B-def

By cases $run\ n\ s\ execs, simp, cases\ run\ n\ t\ (purge\ execs\ u), simp, auto$

Thus \thereforethesis unfolding view-partitioned-def Let-def by auto

Qed

Domains that many not interfere with each other, do not interfere with each other.

Theorem unwinding-implies-NI-unrelated:

Shows NI-unrelated

Proof:

{ Fix $execs\ a\ n$

From unwinding-implies-view-partitioned

Have vp: view-partitioned by blast

From vp and vpeq-reflexive

Have $I: \forall u. (run\ n\ (Some\ s0)\ execs\ \parallel\ run\ n\ (Some\ s0)\ (purge\ execs\ u)\ \Rightarrow\ (\lambda rs\ rt.\ vpeq\ u\ rs\ rt\ \land\ current\ rs\ =\ current\ rt))$

Unfolding view-partitioned-def by auto

Have $run\ n\ (Some\ s0)\ execs\ \Rightarrow\ (\lambda s-f.\ run\ n\ (Some\ s0)\ (purge\ execs\ (current\ s-f))\ \Rightarrow\ (\lambda s-f2.\ output-f\ s-f\ a = output-f\ s-f2\ a\ \land\ current\ s-f = current\ s-f2))$

Proof(cases run n (Some s0) execs)

Case None

Thus \thereforethesis unfolding B-def by simp

Next

Case (Some rs)

Thus \thereforethesis

Proof(cases run n (Some s0) (purge execs (current rs)))

Case None

From Some this show \thereforethesis unfolding B-def by simp

Next

Case (Some rt)

From run n (Some s0) execs = Some rs Some $I[THEN$ spec,where $x=\current\ rs]$

Have $vpeq$ $vpeq\ (current\ rs)\ rs\ rt\ \land\ current\ rs\ =\ current\ rt$

Unfolding B-def by auto

From this output-consistent have $output-f\ rs\ a = output-f\ rt\ a$

By auto

From this $vpeq$ $run\ n\ (Some\ s0)\ execs\ =\ Some\ rs\ Some$

Show \thereforethesis unfolding B-def by auto

Qed

Qed

Thus \thereforethesis unfolding NI-unrelated-def by auto

Qed

3.2.2 Security for indirectly interfering domains

Consider the following security policy over three domains A, B and C: $A \rightsquigarrow B \rightsquigarrow C$, but $A \not\rightsquigarrow C$. The semantics of this policy is that A may communicate with C, but only via B. No direct communication from A to C is allowed. We formalize these semantics as follows: without intermediate domain B, domain A cannot flow information to C. In other words, from the point of view of domain C the run
where domain \(B \) is inactive must be equivalent to the run where domain \(B \) is inactive and domain \(A \) is replaced by an attacker. Domain \(C \) must be independent of domain \(A \), when domain \(B \) is inactive.

The aim of this subsection is to formalize the semantics where \(A \) can write to \(C \) via \(B \) only. We define to two ipurge functions. The first purges all domains \(d \) that are intermediary for some other domain \(v \). An intermediary for \(u \) is defined as a domain \(d \) for which there exists an information flow from some domain \(v \) to \(u \) via \(d \), but no direct information flow from \(v \) to \(u \) is allowed.

Definition intermediary :: 'dom-t ⇒ 'dom-t ⇒ bool
where intermediary \(d \) \(u \) \(\equiv \) \(v . \ \text{ifp}^{*\times} \ d \wedge \text{ifp} \ d \wedge \neg \text{ifp} \ v \wedge d \neq u \)

primrec remove-gateway-communications :: 'dom-t ⇒ 'action-t execution ⇒ 'action-t execution
where remove-gateway-communications \(u \) \(\emptyset \) = \(\emptyset \)

\[
\begin{align*}
\text{remove-gateway-communications} \ (u \ (\text{execs} \ u)) &= (\text{if } \exists \ a \in \ \text{aseq} . \ \exists \ v . \ \text{intermediary} \ v \ u \ \wedge \ v \in \ \text{involved} \ (\text{Some} \ a) \ \text{then} \emptyset \ \text{else} \ \text{aseq}) \# (\text{remove-gateway-communications} \ u \ (\text{execs} \ u))
\end{align*}
\]

Definition ipurge-l ::
\[
('\text{dom-t} \Rightarrow '\text{action-t execution}) \Rightarrow '\text{dom-t} \Rightarrow ('\text{dom-t} \Rightarrow '\text{action-t execution})
\]
where
ipurge-l \(\text{execs} \ u \equiv \lambda \ d . \ \text{if} \ \text{intermediary} \ d \ u \ \text{then}
\]
\[
\begin{align*}
\emptyset \\
\text{else if} \ d = u \ \text{then} \\
\text{remove-gateway-communications} \ u \ (\text{execs} \ u) \\
\text{else} \ \text{execs} \ d
\end{align*}
\]

The second ipurge removes both the intermediaries and the indirect sources. An indirect source for \(u \) is defined as a domain that may indirectly flow information to \(u \), but not directly.

Abbreviation ind-source :: 'dom-t ⇒ 'dom-t ⇒ bool
where
ind-source \(d \) \(u \) \(\equiv \) \(\text{ifp}^{*\times} \ d \wedge \neg \text{ifp} \ d \)

Definition ipurge-r ::
\[
('\text{dom-t} \Rightarrow '\text{action-t execution}) \Rightarrow '\text{dom-t} \Rightarrow ('\text{dom-t} \Rightarrow '\text{action-t execution})
\]
where
ipurge-r \(\text{execs} \ u \equiv \lambda \ d . \ \text{if} \ \text{intermediary} \ d \ u \ \text{then}
\]
\[
\begin{align*}
\emptyset \\
\text{else if} \ \text{ind-source} \ d \ u \ \text{then} \\
\text{SOME} \ \alpha , \ \text{realistic-execution} \ \alpha \\
\text{else if} \ d = u \ \text{then} \\
\text{remove-gateway-communications} \ u \ (\text{execs} \ u) \\
\text{else} \\
\text{execs} \ d
\end{align*}
\]

For a system with an intransitive policy to be called secure for domain \(u \) any indirect source may not flow information towards \(u \) when the intermediaries are purged out. This definition of security allows the information flow \(A \rightsquigarrow B \rightsquigarrow C \), but prohibits \(A \rightsquigarrow C \).

Definition NI-indirect-sources ::bool
where
NI-indirect-sources \(\equiv \forall \ \text{execs} \ a \ n . \ \text{run} \ n \ (\text{Some} \ s0) \ \text{execs} \rightsquigarrow \\
(\lambda \ s-f . \ (\text{run} \ n \ (\text{Some} \ s0) \ (\text{ipurge-l} \ \text{execs} \ (\text{current} \ s-f))) \parallel \\
\text{run} \ n \ (\text{Some} \ s0) \ (\text{ipurge-r} \ \text{execs} \ (\text{current} \ s-f))) \rightsquigarrow \\
(\lambda \ s-l \ s-r . \ \text{output-f} s-l \ a = \text{output-f} s-r \ a)
\]

This definition concerns indirect sources only. It does not enforce that an unrelated domain may not flow information to \(u \). This is expressed by “secure”.

This allows us to define security over intransitive policies.

Definition isecure::bool
where
isecure \(\equiv \ \text{NI-indirect-sources} \ \wedge \ \text{NI-unrelated}

Abbreviation inequivalent-states :: 'state-t option ⇒ 'state-t option ⇒ 'dom-t ⇒ bool
where
inequivalent-states \(s \ t \ u \equiv s \parallel t \rightsquigarrow (\lambda \ s . \ (\forall \ v . \ \text{ifp} \ v \ u \ \wedge \neg \text{intermediary} \ v \ u \rightsquigarrow \ \text{vpeq} \ v \ s \ t) \ \wedge \ \text{current} \ s = \ \text{current} \ t)
\]
definition does-not-communicate-with-gateway
where does-not-communicate-with-gateway u execs ≡ ∀ a . a ∈ actions-in-execution (execs u) → (∀ v . intermediary v u → v ⊈ involved (Some a))

definition iview-partitioned ∶∶ bool where iview-partitioned
≡ ∀ execs ms mt n u . iequivalent-states ms mt u → (∀ v . intermediary v u → v ∉ involved (Some a))

definition ipurged-relation1 ∶∶ ′dom-t ⇒ ′dom-t ⇒ ′dom-t ⇒ ′dom-t ⇒ ′dom-t ⇒ ′dom-t ⇒ ′action-t execution ⇒ ′action-t execution ⇒ bool
where ipurged-relation1 u execs1 execs2 ≡ ∀ d . ifp d u → execs1 d = execs2 d ∧ (intermediary d u → execs1 d = [])

Proof that if the current is not an intermediary for u, then all domains involved in the next action are vpeq.

lemma vpeq-involved-domains:
assumes ifp-curr : ifp (current s) u
and not-intermediary-curr : ¬intermediary (current s) u
and no-gateway-comm : does-not-communicate-with-gateway u execs
and vpeq-s-t : ∀ v . ifp v u → ¬intermediary v u → vpeq v s t'
and prec-s precondition (next-state s execs) (next-action s execs)
shows ∀ d ∈ involved (next-action s execs) . vpeq v s t'

proof
− { fix v assume involved : v ∈ involved (next-action s execs)
 from this prec-s involved-ifp[THEN spec,THEN spec,where x1=next-state s execs and x=next-action s execs]
 have ifp-v-curr : ifp v (current s)
 using current-next-state
 unfolding involved-def precondition-def B-def
 by (cases next-action s execs.auto)
 have vpeq v s t'
 proof
 − { assume ifp v u ∧ ¬intermediary v u
 from this vpeq-s-t
 have vpeq v s t' by (auto)
 }
 moreover
 { assume not-intermediary-v : intermediary v u
 from ifp-curr not-intermediary-curr ifp-v-curr not-intermediary-v have curr-is-u : current s = u
 using rtranclp-trans r-into-rtranclp
 by (metis intermediary-def)
 from curr-is-u next-action-from-exec[THEN spec,THEN spec,where x=execs and x1=s] not-intermediary-v involved
 no-gateway-comm[unfolded does-not-communicate-with-gateway-def,THEN spec,where x=the (next-action s execs)]
 have False
 unfolding involved-def B-def
 by (cases next-action s execs/auto)
 hence vpeq v s t' by auto
 }
 moreover
 {
assume intermediary-v ∶ ¬ ifp v u
from ifp-curr not-intermediary-curr ifp-curr intermediary-v
have False unfolding intermediary-def by auto
hence vpeq v s t’ by auto
}
ultimately
show vpeq v s t’ unfolding intermediary-def by auto
qed
}
thus ?thesis by auto
qed

Proof that purging removes communications of the gateway to domain u.

lemma ipurge-l-removes-gateway-communications:
shows does-not-communicate-with-gateway u (ipurge-l exec u)
proof−
{
fix aseq u execs a v
assume 1∶ aseq ∈ set (remove-gateway-communications u (execs u))
assume 2∶ a ∈ set aseq
assume 3∶ intermediary v u
have 4∶ v ∉ involved (Some a)

proof−
{
fix a∶ ‘action-t
fix aseq u exec v
have aseq ∈ set (remove-gateway-communications u exec) ∧ a ∈ set aseq ∧ intermediary v u → v ∉ involved
(Some a)
 by (induct exec,auto)
}
from 1 2 3 this show ?thesis by metis
qed
}
from this
show ?thesis
unfolding does-not-communicate-with-gateway-def ipurge-l-def actions-in-execution-def
 by auto
qed

Proof of view partitioning. The lemma is structured exactly as lemma unwinding_implies_view_partitioned_ind
and uses the same convention for naming.

lemma iunwinding_implies_view_partitioned1:
shows iview_partitioned
proof−
{
fix u execs execs2 s t n
have does-not-communicate-with-gateway u execs ∧ iequivalent-states s t u ∧ ipurged-relation1 u execs execs2
 → iequivalent-states (run n s execs) (run n t execs2) u
proof (induct n s execs arbitrary: t u execs2 rule: run.induct)
case (1 s execs t u execs2)
 show ?case by auto
next
case (2 n execs t u execs2)
 show ?case by simp
next
case (3 n s execs t u execs2)
 assume interrupt-s: interrupt (Suc n)
 assume IH: (∀ t u execs2. does-not-communicate-with-gateway u execs ∧

iequivalent-states \((\text{Some (cswitch (Suc n) s)}) \land \text{ipurged-relation1 u execs execs2}\) \(\rightarrow\) iequivalent-states \((\text{run n (Some (cswitch (Suc n) s)) execs}) \land \text{run n t execs2}\) u
\}

\{
 \text{fix } t' = \text{'state-t'}
 \text{assume } t = \text{Some } t'
 \text{fix } rs
 \text{assume } rs: \text{run (Suc n) (Some s) execs} = \text{Some } rs
 \text{fix } rt
 \text{assume } rt: \text{run (Suc n) (Some t') execs2} = \text{Some } rt

 \text{assume no-gateway-comm: does-not-communicate-with-gateway u execs}
 \text{assume vpeq-s-t:} \forall \; v. \text{ifp } v \land \text{~intermediary } v \land \text{vpeq } v \; s \; t'
 \text{assume current-s-t: current } s = \text{current } t'
 \text{assume purged-a-a2: ipurged-relation1 u execs execs2}

 \text{from current-s-t cswitch-independent-of-state}
 \text{have current-ns-nt: current } (\text{cswitch (Suc n) s}) = \text{current } (\text{cswitch (Suc n) t'})
 \text{by blast}
 \text{from cswitch-consistency vpeq-s-t}
 \text{have vpeq-ns-nt:} \forall \; v. \text{ifp } v \land \text{~intermediary } v \land \text{vpeq } v \; (\text{cswitch (Suc n) s}) \; (\text{cswitch (Suc n) t'})
 \text{by auto}
 \text{from no-gateway-comm current-ns-nt vpeq-ns-nt interrupt-s vpeq-reflexive current-s-t purged-a-a2 IH[where u=u and v=Some (cswitch (Suc n) t') and ?execs2.0=execs2]}
 \text{have current-rs-rt: current } rs = \text{current } rt \text{ using } rs \; rt \text{ by(auto)}
 \{
 \text{fix } v
 \text{assume ia: ifp } v \land \text{~intermediary } v \; u
 \text{from no-gateway-comm interrupt-s current-ns-nt vpeq-ns-nt vpeq-reflexive ia current-s-t purged-a-a2 IH[where u=u and v=Some (cswitch (Suc n) t') and ?execs2.0=execs2]}
 \text{have vpeq v rs rt using } rs \; rt \text{ by(auto)}
 \}
 \text{from current-rs-rt and this have iequivalent-states (Some rs) (Some rt) u by auto}
\}

\text{thus } ?\text{case by(simp add:option.splits,cases t,simp+)}\text{next}
\text{case } (4 \; n \; execs \; s \; t \; u \; execs2)
\text{assume not-interrupt: } \text{~interrupt (Suc n)}
\text{assume thread-empty-s: thread-empty}(\text{execs (current s)})
\text{assume IH: } (\forall \; t \; \text{execs2. does-not-communicate-with-gateway u execs} \land \text{iequivalent-states (Some s) t u \land ipurged-relation1 u execs execs2} \rightarrow \text{iequivalent-states (run n (Some s) execs) (run n t execs2) u})
\{
 \text{fix } t'
 \text{assume t: } t = \text{Some } t'
 \text{fix } rs
 \text{assume rs: run (Suc n) (Some s) execs} = \text{Some } rs
 \text{fix } rt
 \text{assume rt: run (Suc n) (Some t') execs2} = \text{Some } rt

 \text{assume no-gateway-comm: does-not-communicate-with-gateway u execs}
 \text{assume vpeq-s-t:} \forall \; v. \text{ifp } v \land \text{~intermediary } v \land \text{vpeq } v \; s \; t'
 \text{assume current-s-t: current } s = \text{current } t'
 \text{assume purged-a-a2: ipurged-relation1 u execs execs2}

 \text{from ifp-reflexive vpeq-s-t have vpeq-u-s-t: vpeq } u \; s \; t' \text{ unfolding intermediary-def by auto}
 \text{from step-atomicity current-next-state current-s-t have current-s-nt: current } s = \text{current } (\text{step } (\text{next-state } t')
execs2 \) (next-action t' execs2))

unfolding step-def
by (cases next-action s execs.cases next-action t' execs2simp.simp.cases next-action t' execs2simp.simp)
from vpeq-s-t have vpeq-curr-s-t: ifp (current s) u \land \sim-intermediary (current s) u \rightarrow vpeq (current s) s t' \by auto
have iequivalent-states (run (Suc n) (Some s) execs) (run (Suc n) (Some t') execs2 u)
proof (cases thread-empty(execs2 current t'))
case True
from purged-a-a2 and vpeq-s-t and current-s-t IH[where t=Some t' and u=u and ?execs2.0=execs2]

no-gateway-comm
have iequivalent-states (run n (Some s) execs) (run n (Some t') execs2 u) using rs rt by(auto)
from this have False using rt by(simp add:option.splits)
show ?thesis using rs rt by(auto)
next
case False
have prec-t precondition (next-state t' execs2) (next-action t' execs2)
proof–
{ assume not-prec-t: \sim-precondition (next-state t' execs2) (next-action t' execs2)
 hence run (Suc n) (Some t') execs2 = None using not-interrupt False not-prec-t by (simp)
 from this have False using rt by(simp add:option.splits)
}
thus ?thesis by auto
de

from False purged-a-a2 thread-empty-s current-s-t
have I: ind-source (current t') u \lor unrelated (current t') u unfolding ipurged-relation1-def intermediary-def
by auto
{
 fix v
 assume ifp-v: ifp v u
 assume v-not-intermediary: \sim-intermediary v u

 from ifp-v v-not-intermediary have not-ifp-curr-v: \sim-ifp (current t') v unfolding intermediary-def by auto
 from not-ifp-curr-v prec-t locally-respects[THEN spec,THEN spec,THEN spec,where x1=next-state t' execs2 and x=v and x2=the (next-action t' execs2)]
 current-next-state vpeq-reflexive
 have vpeq v (next-state t' execs2) (step (next-state t' execs2) (next-action t' execs2))
 unfolding step-def precondition-def B-def
 by (cases next-action t' execs2.auto)
 from this vpeq-transitive not-ifp-curr-v locally-respects-next-state
 have vpeq-t-nt: vpeq v t' (step (next-state t' execs2) (next-action t' execs2))
 blast
 from vpeq-s-t ifp-v v-not-intermediary vpeq-t-nt vpeq-transitive vpeq-symmetric vpeq-reflexive
 have vpeq v s (step (next-state t' execs2) (next-action t' execs2))
 by (metis)
}
hence vpeq-ns-nt: \forall v. ifp v u \land \sim-intermediary v u \rightarrow vpeq v s (step (next-state t' execs2) (next-action t' execs2)) by auto
from False purged-a-a2 current-s-t thread-empty-s have purged-a-na2: ipurged-relation1 u execs (next-execst' execs2)

unfolding ipurged-relation1-def next-execxs-def by(auto)
from vpeq-ns-nt no-gateway-comm
and IH[where t=Some (step (next-state t' execs2) (next-action t' execs2)) and ?execs2.0=(next-execst' execs2) and u=u]
and current-s-nt purged-a-na2
have eq-ns-nt: iequivalent-states (run n (Some s) execs)
\[(\text{run } n \ (\text{Some (step (next-state } t' \ \text{execs2}) \ (next-action t' \ \text{execs2})))) \ (\text{next-exec } t')\]

\(\text{execs2})\) \(\text{by auto}\)

\textbf{from} \(\text{precc-t eq-ns-nt not-interrupt False thread-empty-s}\)
\textbf{show} ?\text{thesis using } t \text{ rs rt by(auto)}

definition
\textbf{qed}

\textbf{thus} ?\text{case by simp add:option.splits,cases } t \text{.simp+}\)

\textbf{next}

\textbf{case} \(5 \ n \ \text{execs } s \ t \ u \ \text{execs2}\)
\textbf{assume} \(\text{not-interrupt: } \neg \text{interrupt } (\text{Suc } n)\)
\textbf{assume} \(\text{thread-not-empty-s: } \neg \text{thread-empty}(\text{execs } (\text{current } s))\)
\textbf{assume} \(\text{not-prec-s: } \neg \text{precondition } (\text{next-state } s \ \text{execs}) \ (\text{next-action } s \ \text{execs})\)
\textbf{hence} \(\text{run } (\text{Suc } n) \ (\text{Some } s) \ \text{execs} = \text{None using } \text{not-interrupt } \text{thread-not-empty-s by simp}\)

\textbf{thus} ?\text{case by simp add:option.splits}\)

\textbf{next}

\textbf{case} \(6 \ n \ \text{execs } s \ t \ u \ \text{execs2}\)
\textbf{assume} \(\text{not-interrupt: } \neg \text{interrupt } (\text{Suc } n)\)
\textbf{assume} \(\text{thread-not-empty-s: } \neg \text{thread-empty}(\text{execs } (\text{current } s))\)
\textbf{assume} \(\text{precc-s: } \text{precondition } (\text{next-state } s \ \text{execs}) \ (\text{next-action } s \ \text{execs})\)
\textbf{assume} \(\text{IH}: (\forall u \ \text{execs2}. \ does-not-communicate-with-gateway u \ (\text{next-execs } s \ \text{execs}) \wedge \ iequivalent-states \ (\text{Some (step } (\text{next-state } s \ \text{execs}) \ (\text{next-action } s \ \text{execs}))) \ t \ u \wedge \ ipurged-relation1 u \ (\text{next-execs } s \ \text{execs2}) \rightarrow \ iequivalent-states \ (\text{run } n \ (\text{Some (step } (\text{next-state } s \ \text{execs}) \ (\text{next-action } s \ \text{execs}))) \ (\text{next-exec } s \ \text{execs})) \ (\text{run } n \ t \ \text{execs2}) u)\)

\{
\textbf{fix} \(t'\)
\textbf{assume} \(t : t = \text{Some } t'\)
\textbf{fix} \(rs\)
\textbf{assume} \(rs: \text{run } (\text{Suc } n) \ (\text{Some } s) \ \text{execs} = \text{Some } rs\)
\textbf{fix} \(rt\)
\textbf{assume} \(rt: \text{run } (\text{Suc } n) \ (\text{Some } t') \ \text{execs2} = \text{Some } rt\)

\textbf{assume} \(\text{no-gateway-comm: } \text{does-not-communicate-with-gateway } u \ \text{execs}\)
\textbf{assume} \(\text{vpeq-s-t: } \forall v. \ \text{ifp } v u \ \wedge \ \neg intermediate \ \forall u \rightarrow \ \text{vpeq } v s t'\)
\textbf{assume} \(\text{current-s-t: } \text{current } s = \text{current } t'\)
\textbf{assume} \(\text{purged-a-a2: } \text{ipurged-relation1 } u \ \text{execs} \ \text{execs2}\)

\textbf{from} \(\text{ifp-reflective } \text{vpeq-s-t have } \text{vpeq-u-s-t: } \text{vpeq } u s t' \ \text{unfolding } \text{intermediary-def by auto}\)

\textbf{from} \(\text{step-atomicity and } \text{current-s-t current-ns-nt}\)
\textbf{have} \(\text{current-s-t current-step } (\text{next-state } s \ \text{execs}) \ (\text{next-action } s \ \text{execs}) = \text{current } (\text{step } (\text{next-state } t' \ \text{execs2}) \ (\text{next-action } t' \ \text{execs2}))\)

\textbf{unfolding step-def}
\textbf{by} (cases \(\text{next-action } s \ \text{execs},cases \text{next-action } t' \ \text{execs2},simp,simp,cases \text{next-action } t' \ \text{execs2},simp,simp)

\textbf{from} \(\text{step-atomicity current-ns-nt current-s-t have } \text{current-s-t: } \text{current } (\text{step } (\text{next-state } s \ \text{execs}) \ (\text{next-action } s \ \text{execs})) = \text{current } t'\)

\textbf{unfolding step-def}
\textbf{by} (cases \(\text{next-action } s \ \text{execs},auto)\)

\textbf{from} \(\text{vpeq-s-t have } \text{vpeq-curr-s-t: } \text{ifp } (\text{current } s) \ u \ \wedge \ \neg \text{intermediary } (\text{current } s) \ u \rightarrow \ \text{vpeq } (\text{current } s) \ s \ t'\)

\textbf{unfolding intermediary-def by auto}\)

\textbf{from} \(\text{current-s-t purged-a-a2}\)
\textbf{have} \(\text{eq-execs ifp } (\text{current } s) \ u \ \wedge \ \neg \text{intermediary } (\text{current } s) \ u \rightarrow \ \text{execs } (\text{current } s) = \text{execs2 } (\text{current } s)\)
\textbf{by} (auto simp add: ipurged-relation1-def)

\textbf{from} \(\text{vpeq-involved-domains no-gateway-comm vpeq-s-t vpeq-involved-domains prec-s}\)
\textbf{have} \(\text{vpeq-involved: } \text{ifp } (\text{current } s) \ u \ \wedge \ \neg \text{intermediary } (\text{current } s) \ u \rightarrow (\forall d \in \text{involved } (\text{next-action } s \ \text{execs}) \ \text{vpeq } d s t')\)
\begin{verbatim}

by blast
from current-s-t next-execs-consistent[THEN spec,THEN spec,THEN spec,where x2=s and x1=t' and x=execs]
vpeq-curr-s-t vpeq-involved
 have next-execs-t: ifp (current s) u ∨ ¬intermediary (current s) u ⟷ next-execs t' execs = next-execs s execs
by(auto simp add: next-execs-def)
from current-s-t and purged-a-a2 and thread-not-empty-s next-action-consistent[THEN spec,THEN spec,where
x1=s and x=t'] vpeq-curr-s-t vpeq-involved
 have next-action-s-t: ifp (current s) u ∨ ¬intermediary (current s) u ⟷ next-action t' execs2 = next-action s execs
by(unfold next-action-def,unfold ipurgerd-relation1-def,auto)
from purged-a-a2 and thread-not-empty-s and current-s-t
have thread-not-empty-t: ifp (current s) u ∨ ¬intermediary (current s) u ⟷ ¬thread-empty(execs2 (current t'))
unfolding ipurgerd-relation1-def by auto
have vpeq-ns-nt-1: ∀ a. precondition (next-state s execs) a ∨ precondition (next-state t' execs) a ⟷ ifp (current s) u ∨ ¬intermediary (current s) u ⟷ (∀ v. ifp v u ∨ ¬intermediary v u ⟷ vpeq v (step (next-state s execs) a) (step (next-state t' execs) a))
proof-
fix a
assume precs: precondition (next-state s execs) a ∨ precondition (next-state t' execs) a
assume ifp-curr: ifp (current s) u ∨ ¬intermediary (current s) u
from ifp-curr precs
next-state-consistent[THEN spec,THEN spec,where x1=s and x=t'] vpeq-curr-s-t vpeq-s-t
current-next-state current-s-t weakly-step-consistent[THEN spec,THEN spec,THEN spec,THEN spec,where
x3=next-state s execs and x2=next-state t' execs and x=the a]
show ∀ v. ifp v u ∨ ¬intermediary v u ⟷ vpeq v (step (next-state s execs) a) (step (next-state t' execs) a)
unfolding step-def precondition-def B-def
by (cases a,auto)
qed

have no-gateway-comm-na: does-not-communicate-with-gateway u (next-execs s execs)
proof-
{
 fix a
 assume a ∈ actions-in-execution (next-execs s execs u)
 from this no-gateway-comm unfold does-not-communicate-with-gateway-def,THEN spec,where x=a]
 next-execs-subset[THEN spec,THEN spec,THEN spec,where x2=s and x1=execs and x0=u]
 have ∀ v. intermediary v u ⟷ v ∉ involved (Some a)
 unfolding actions-in-execution-def
by(auto)
}
thus ?thesis unfolding does-not-communicate-with-gateway-def by auto
qed
have inequivalent-states (run (Suc n) (Some s) execs) (run (Suc n) (Some t') execs2) u
proof (cases ifp (current s) u ∨ ¬intermediary (current s) u rule :case-split[case-names T F])
case T
 show ?thesis
 proof (cases thread-empty(execs2 (current t')) rule :case-split[case-names T2 F2])
case F2
 show ?thesis
 proof (cases precondition (next-state t' execs2) (next-action t' execs2) rule :case-split[case-names T3 F3])
case T3
 from T purged-a-a2 current-s-t
 next-execs-consistent[THEN spec,THEN spec,where x1=s and x=t'] vpeq-corr-s-t vpeq-involved
 have purged-na-na2: ipurgerd-relation1 u (next-execs s execs) (next-execs t' execs2)
 unfolding ipurgerd-relation1-def next-execs-def
 by auto

\end{verbatim}
from IH[where t=Some (step (next-state t′ execs2) (next-action t′ execs2)) and ?execs2.0=next-exec t′ execs2 and u=]
 purged-na-na2 current-ns-nt vpeq-ns-nt T T3 prec-s
 next-action-s-t eq-exec current-s-t no-gateway-comm-na
 have eq-ns-nt : equivalent-states
 (run n (Some (step (next-state s execs) (next-action s execs))) (next-exec s execs))
 (run n (Some (step (next-state t′ execs2) (next-action t′ execs2))) (next-exec t′ execs2))
 unfolding next-state-def
 by (auto,metis)
from this not-interrupt thread-not-empty-s prec-s F2 T3
 have current-rs-rt : current rs = current rt using rs rt by auto
 { fix v
 assume ia : ifp v u ∧ ¬intermediary v u
from this eq-ns-nt not-interrupt thread-not-empty-s prec-s F2 T3
 have vpeq v rs rt using rs rt by auto
 }
from this and current-rs-rt show ?thesis using rs rt by auto
next case F3
 from F3 F2 not-interrupt show ?thesis using rt by simp
qed
next case T2
from T2 T purged-a-a2 thread-not-empty-s current-s-t vpeq-u-s-t
 have ind-source : False unfoldingipurged-relation1-def by auto
thus ?thesis by auto
qed
next case F
hence 1 : ind-source (current s) u ∨ unrelated (current s) u ∨ intermediary (current s) u
unfolding intermediary-def
by auto
from purged-a-a2 and thread-not-empty-s
 have 2 : ¬intermediary (current s) u unfoldingipurged-relation1-def by auto
let ?nt = if thread-empty (execs2 (current t′)) then t′ else step (next-state t′ execs2) (next-action t′ execs2)
let ?na2 = if thread-empty (execs2 (current t′)) then execs2 else next-exec t′ execs2
 have prec-t : ¬thread-empty (execs2 (current t′)) ==> precondition (next-state t′ execs2) (next-action t′ execs2)
proof
 assume thread-not-empty-t : ¬thread-empty (execs2 (current t′))
 { assume not-prec-t : ¬precondition (next-state t′ execs2) (next-action t′ execs2)
 hence run (Suc n) (Some t′ execs2) = None using not-interrupt thread-not-empty-t not-prec-t by (simp)
 from this have False using rt by (simp add:option.splits)
 } thus ?thesis by auto
qed

show ?thesis
proof
 { fix v
 assume ifp-v : ifp v u

assume \(\neg \text{intermediary } v u \)

have \(\neg \text{ifp-curr-v} \) \(\text{ifp (current s) v} \)

proof
assume \(\text{ifp-curr-v} \) \(\text{ifp (current s) v} \)
thus False
proof–
{ assume ind-source (current s) u from this \(\text{ifp-curr-v} \) \(\text{ifp-v} \) have intermediary v u unfolding intermediary-def by auto from this \(\neg \text{intermediary} \) have False unfolding intermediary-def by auto }
moreover
{ assume unrelated: unrelated (current s) u from this \(\text{ifp-v} \) \(\text{ifp-curr-v} \) have False using rtranclp-trans r-into-rtranclp by metis }
ultimately show \(\text{thesis using 1 2 by auto} \)
qed
qed
from this current-next-state \(\text{THEN spec,THEN spec,where } x1=s \text{ and } x=execs \) prec-s
locally-respects [THEN spec,THEN spec,where \(x=\text{next-state s execs} \) vpeq-reflexive
have vpeq v (next-state s execs) (step (next-state s execs) (next-action s execs)) unfolding step-def precondition-def B-def
by (cases next-action s execs,auto)
from not-ifp-curr-v this locally-respects-next-state vpeq-transitive
have vpeq-s-ns: vpeq v s (step (next-state s execs) (next-action s execs))
by blast
from not-ifp-curr-v current-s-t current-next-state \(\text{THEN spec,THEN spec,where } x1=t' \text{ and } x=execs2 \) prec-t
locally-respects [THEN spec,THEN spec,where \(x=\text{next-state t' execs2} \) F vpeq-reflexive
have \(\text{thesis using 1 2 by auto} \)
from this vpeq-reflexive
have \(\text{thesis using 1 2 by auto} \)
from this vpeq-s-t ifp-v \(\text{ifp-curr-v} \) v-not-intermediary
have vpeq v s t' by auto
from this vpeq-s-nt ifp-v v-not-intermediary
have vpeq s t' by auto
from this vpeq-s-nt ifp-v v-not-intermediary
have vpeq s t' by auto
from this vpeq-s-ns vpeq-t-nt vpeq-transitive vpeq-symmetric vpeq-reflexive
have vpeq v (step (next-state s execs) (next-action s execs)) ?nt
by (metis (hide-lams, no-types))
}
hence vpeq-ns-nt: \(\forall v. \text{ifp v u \wedge \neg intermediary v u \rightarrow vpeq v (step (next-state s execs) (next-action s execs)) ?nt by auto} \)
from vpeq-nt 2 F purged-a-a2 current-s-t thread-not-empty-s have purged-na-na2: ipured-relation1 u (next-execs s execs) ?na2
unfolding ipured-relation1-def next-execs-def intermediary-def by(auto)
from current-ns-nt current-ns-t current-next-state have current-ns-nt:
execute (step (next-state s execs) (next-action s execs)) = current ?nt
by auto
from prec-s vpeq-ns-nt no-gateway-comm-na
and II[where t=Some ?nt and ?execs2.0=?na2 and u=u]
and current-ns-nt purged-na-na2
have eq-ns-nt: iequivalent-states (run n (Some (step (next-state s execs) (next-action s execs))) (next-exec s execs))
(run n (Some ?nt) ?na2) u by auto

from this not-interrupt thread-not-empty-s prec-t prec-s
have current-ns-nt purged-na-na2
have current-rs-rt
:: current rs = current rt using rs rt by (cases thread-empty (execs2 (current t')),simp,simp)
{
 fix v
 assume ia: ifp v u ∧ ¬intermediary v u
 from this eq-ns-nt not-interrupt thread-not-empty-s prec-t
 have vpeq v rs rt
 using rs rt by (cases thread-empty(execs2 (current t')),simp,simp)
 }
from current-rs-rt and this show :thesis using rs rt by auto
qed

hence iview-partitioned-inductive: ∀ u s t execs execs2 n. does-not-communicate-with-gateway u execs ∧ iequivalent-states s t u ∧ ipurged-relation1 u execs execs2 → iequivalent-states (run n s execs) (run n t execs2) u
by blast
have ipurged-relation: ∀ u execs . ipurged-relation1 u (ipurge-l execs u) (ipurge-r execs u)
by (unfold ipurged-relation1-def ,unfold ipurge-l-def ,unfold ipurge-r-def ,auto)
{
 fix execs s t n u
 assume I: iequivalent-states s t u
 from ifp-reflexive
 have dir-source: ∀ u . ifp u u ∧ ¬intermediary u u unfolding intermediary-def by auto
 from ipurge-l-removes-gateway-communications
 have does-not-communicate-with-gateway u (ipurge-l execs u)
 by auto
 from I this iview-partitioned-inductive ipurged-relation
 have iequivalent-states (run n s (ipurge-l execs u)) (run n t (ipurge-r execs u)) u by auto
 from this dir-source
 have run n s (ipurge-l execs u) ∥ run n t (ipurge-r execs u) → (λ rs rt. vpeq u rs rt ∧ current rs = current rt)
 using r-into-rtranclp unfolding B-def
 by (cases run n s (ipurge-l execs u),simp,cases run n t (ipurge-r execs u),simp,auto)
 } thus :thesis unfolding iview-partitioned-def Let-def by auto
qed

Thus returns True iff and only if the two states have the same active domain, or if one of the states is None.

definition mcurrents :: 'state-t option ⇒ 'state-t option ⇒ bool
where mcurrents m1 m2 ≡ m1 ∥ m2 → (λ s t . current s = current t)

Proof that switching/interrupts are purely time-based and happen independent of the actions done by the domains. As all theorems in this locale, it holds vacuously whenever one of the states is None, i.e., whenever at some point a precondition does not hold.

lemma current-independent-of-domain-actions:
assumes current-s-t: mcurrents s t
shows mcurrents \((run\ n\ s\ execs)\ (run\ n\ t\ execs2)\)
proof
{
 fix\ n\ s\ execs\ t\ execs2
 have\ mcurrents\ s\ t\ \rightarrow\ mcurrents\ (run\ n\ s\ execs)\ (run\ n\ t\ execs2)
proof\ (induct\ n\ s\ execs\ arbitrary: t\ execs2\ rule: run.induct)
 case\ (1\ s\ execs\ t\ execs2)
 from\ this\ show\ ?case\ using\ current-s-t\ unfolding\ B-def\ by\ auto
next
 case\ (2\ n\ execs\ t\ execs2)
 show\ ?case\ unfolding\ mcurrents-def\ by(auto)
next
 case\ (3\ n\ s\ execs\ t\ execs2)
 assume\ interrupt: interrupt\ (Suc\ n)
 assume\ IH:\ \((\\\forall t\ execs2.\ mcurrents\ (\text{Some\ (cswitch\ (Suc\ n)\ s))}\ t\ \rightarrow\ mcurrents\ (run\ n\ (\text{Some\ (cswitch\ (Suc\ n)\ s))}\ execs)\ (run\ n\ t\ execs2))\)
 {
 fix\ t'
 assume\ t: t = (\text{Some\ t'})
 assume\ curr: mcurrents\ (\text{Some\ s})\ t
 from\ t\ curr\ cswitch-independent-of-state[THEN\ spec,\ THEN\ spec,\ THEN\ spec,\ \text{where\ s}:=s]\ \text{have\ current-ns-nt: current\ (cswitch\ (Suc\ n)\ s) = current\ (cswitch\ (Suc\ n)\ t')}
 unfolding\ mcurrents-def\ by\ simp
 from\ current-ns-nt\ IH[\text{where}\ t:=\text{Some\ (cswitch\ (Suc\ n)\ t')\ and}\ execs2.0=execs2]
 have\ mcurrents-ns-nt: mcurrents\ (run\ n\ (\text{Some\ (cswitch\ (Suc\ n)\ s))}\ execs)\ (run\ n\ (\text{Some\ (cswitch\ (Suc\ n)\ t')})\ execs2)
 unfolding\ mcurrents-def\ by(auto)
 from\ mcurrents-ns-nt\ interrupt\ t
 have\ mcurrents\ (run\ (Suc\ n)\ (\text{Some\ s})\ execs)\ (run\ (Suc\ n)\ t\ execs2)
 unfolding\ mcurrents-def\ B2-def\ B-def\ by(cases\ run\ n\ (\text{Some\ (cswitch\ (Suc\ n)\ s))}\ execs,\ cases\ run\ (Suc\ n)\ t\ execs2,auto)
 }
 thus\ ?case\ unfolding\ mcurrents-def\ B2-def\ by(cases\ t,auto)
next
 case\ (4\ n\ execs\ s\ execs2)
 assume\ not-interrupt: ~interrupt\ (Suc\ n)
 assume\ thread-empty-s: thread-empty(execs\ (current\ s))
 assume\ IH:\ \((\\\forall t\ execs2.\ mcurrents\ (\text{Some\ s})\ t\ \rightarrow\ mcurrents\ (run\ n\ (\text{Some\ s})\ execs)\ (run\ n\ t\ execs2))\)
 {
 fix\ t'
 assume\ t: t = (\text{Some\ t'})
 assume\ curr: mcurrents\ (\text{Some\ s})\ t
 {
 assume\ thread-empty-t: thread-empty(execs2\ (current\ t'))
 from\ t\ curr\ not-interrupt\ thread-empty-s\ this\ IH[\text{where}\ \text{execs2.0=execs2\ and}\ \text{t:=Some\ t'}]
 have\ mcurrents\ (run\ (Suc\ n)\ (\text{Some\ s})\ execs)\ (run\ (Suc\ n)\ t\ execs2)
 by\ auto
 }
 moreover
 {
 assume\ not-prec-t: ~thread-empty(execs2\ (current\ t'))\ \land\ ~precondition\ (next-state\ t'\ execs2)\ (next-action\ t'\ execs2)
 from\ t\ this\ not-interrupt
 have\ mcurrents\ (run\ (Suc\ n)\ (\text{Some\ s})\ execs)\ (run\ (Suc\ n)\ t\ execs2)
 unfolding\ mcurrents-def\ by\ (simp\ add:\ rewrite-B2-cases)
 }
 moreover
 }
\[
\{ \\
 \text{assume step-t:} \quad \neg \text{thread-empty}(\text{execs2} (\text{current } t')) \land \text{precondition} (\text{next-state } t' \text{ execs2}) (\text{next-action } t' \text{ execs2}) \\
 \text{have mcurrents (Some s) (Some (step (next-state t' execs2) (next-action t' execs2)))} \\
 \text{using step-atomicity curr t current-next-state unfolding mcurrents-def} \\
 \text{unfolding step-def} \\
 \text{by (cases next-action t' execs2,auto)} \\
 \text{from t step-t curr not-interrupt thread-empty-s this IH[\text{where } ?\text{execs2.0=execs2 and } t=\text{Some (step (next-state t' execs2) (next-action t' execs2))}] } \\
 \text{have mcurrents (run (Suc n) (Some s) execs) (run (Suc n) t execs2)} \\
 \text{by auto} \\
 \} \\
\text{ultimately have mcurrents (run (Suc n) (Some s) execs) (run (Suc n) t execs2) by blast} \\
\] \\
\text{thus ?case unfolding mcurrents-def B2-def by (cases t,auto)} \\
\text{next} \\
\text{case (5 n execs s t execs2)} \\
\text{assume not-interrupt-s:} \quad \neg \text{interrupt} (Suc n) \\
\text{assume thread-not-empty-s:} \quad \neg \text{thread-empty}(\text{execs (current s)}) \\
\text{assume not-prec-s:} \quad \neg \text{precondition} (\text{next-state s execs}) (\text{next-action s execs}) \\
\text{hence run (Suc n) (Some s) execs = None using not-interrupt-s thread-not-empty-s by simp} \\
\text{thus ?case unfolding mcurrents-def by (simp add-option splits)} \\
\text{next} \\
\text{case (6 n execs s t execs2)} \\
\text{assume not-interrupt:} \quad \neg \text{interrupt} (Suc n) \\
\text{assume thread-not-empty-s:} \quad \neg \text{thread-empty}(\text{execs (current s)}) \\
\text{assume prec-s:} \quad \text{precondition} (\text{next-state s execs}) (\text{next-action s execs}) \\
\text{assume IH:} \quad (\forall \text{execs2,} \\
\quad \text{mcurrents (Some (step (next-state s execs) (next-action s execs))) } t \mapsto \\
\quad \text{mcurrents (run n (Some (step (next-state s execs) (next-action s execs))) (next-execs s execs))} (\text{run n t execs2})) \\
\} \\
\text{fix t'} \\
\text{assume t:} \quad t = (\text{Some t'}) \\
\text{assume curr: mcurrents (Some s) t} \\
\} \\
\text{assume thread-empty-t:} \quad \text{thread-empty}(\text{execs2 (current t')}) \\
\text{have mcurrents (Some (step (next-state s execs) (next-action s execs))) (Some t')} \\
\text{using step-atomicity curr t current-next-state unfolding mcurrents-def} \\
\text{unfolding step-def} \\
\text{by (cases next-action s execs,auto)} \\
\text{from t curr not-interrupt thread-not-empty-s prec-s thread-empty-t this IH[\text{where } ?\text{execs2.0=execs2 and } t=\text{Some t']}} \\
\text{have mcurrents (run (Suc n) (Some s) execs) (run (Suc n) t execs2)} \\
\text{by auto} \\
\} \\
\text{moreover} \\
\} \\
\text{assume not-prec-t:} \quad \neg \text{thread-empty}(\text{execs2 (current t')}) \land \neg \text{precondition} (\text{next-state t' execs2}) (\text{next-action t' execs2}) \\
\text{from t this not-interrupt} \\
\text{have mcurrents (run (Suc n) (Some s) execs) (run (Suc n) t execs2)} \\
\text{unfolding mcurrents-def B2-def by (auto)} \\
\} \\
\text{moreover} \\
\} \\
\text{assume step-t:} \quad \neg \text{thread-empty}(\text{execs2 (current t')}) \land \text{precondition} (\text{next-state t' execs2}) (\text{next-action t'}
have mcurrents (Some (step (next-state s execs) (next-action s execs))) (Some (step (next-state t' execs2) (next-action t' execs2)))

using step-atomicity curr t current-next-state unfolding mcurrents-def

unfolding step-def by (cases next-action s execs, simp, cases next-action t' execs2, simp, simp, cases next-action t' execs2, simp, simp)

from current-next-state t step-t curr not-interrupt thread-not-empty-s prec-s this IH [where ?execs2.0 = next-execs t' execs2 and t = Some (step (next-state t' execs2) (next-action t' execs2))]

have mcurrents (run (Suc n) (Some s) execs) (run (Suc n) t execs2)

by auto

ultimately have mcurrents (run (Suc n) (Some s) execs) (run (Suc n) t execs2) by blast

thus ?thesis using current-s-t by auto

qed

theorem unwinding-implies-NI-indirect-sources:

shows NI-indirect-sources

proof -

{ fix execs a n

from iunwinding-implies-view-partitioned1

have vp : iview-partitioned by blast

from vp and vpeq-reflexive

have 1 : ∀ u . run n (Some s0) (ipurge-l execs u) || run n (Some s0) (ipurge-r execs u) → (λ rs rt. vpeq u rs rt ∧ current rs = current rt)

unfolding iview-partitioned-def by auto

have run n (Some s0) execs → (λ s-f. run n (Some s0) (ipurge-l execs (current s-f))) ||

run n (Some s0) (ipurge-r execs (current s-f)) →

(λ s-l s-r. output-f s-l a = output-f s-r a))

proof(cases run n (Some s0) execs)

case None

thus ?thesis unfolding B-def by simp

next

case (Some s-f)

thus ?thesis

proof(cases run n (Some s0) (ipurge-l execs (current s-f)))

case None

from Some this show ?thesis unfolding B-def by simp

next

case (Some s-ipurge-l)

show ?thesis

proof(cases run n (Some s0) (ipurge-r execs (current s-f)))

case None

from run n (Some s0) execs = Some s-f) Some this show ?thesis unfolding B-def by simp

next

case (Some s-ipurge-r)

from cswitch-independent-of-state

(run n (Some s0) execs = Some s-f) (run n (Some s0) (ipurge-l execs (current s-f)) = Some s-ipurge-l current-independent-of-domain-actions[where n=n and s=Some s0 and t=Some s0 and execs=execs and ?execs2.0 = (ipurge-l execs (current s-f))]

have 2: current s-ipurge-l = current s-f

unfolding mcurrents-def B-def by auto
from run n (Some s0) execs = Some s-f \ (run n (Some s0) (ipurge-l execs (current s-f)) = Some s-ipurge-h)
Some l[THEN spec, where x=current s-f]

have speq (current s-f) s-ipurge-l s-ipurge-r ∧ current s-ipurge-l = current s-ipurge-r

unfolding B-def by auto

from this 2 have output-f s-ipurge-l a = output-f s-ipurge-r a

using output-consistent by auto

from run n (Some s0) execs = Some s-f \ (run n (Some s0) (ipurge-l execs (current s-f)) = Some s-ipurge-h)
this Some

show thesis unfolding B-def by auto

qed

qed

qed

thus thesis unfolding NI-indirect-sources-def by auto

qed

theorem unwinding-implies-secure:

shows secure

using unwinding-implies-NI-indirect-sources unwinding-implies-NI-unrelated unfolding isecure-def by(auto)

end

end

3.3 ISK (Interruptible Separation Kernel)

theory ISK

imports SK

begin

At this point, the precondition linking action to state is generic and highly unconstrained. We refine
the previous locale by given generic functions “precondition” and “realistic_trace” a definiton. This
yields a total run function, instead of the partial one of locale Separation_Kernel.

This definition is based on a set of valid action sequences AS_set. Consider for example the following
action sequence:

\[\gamma = [COPY_{\text{INIT}}, COPY_{\text{CHECK}}, COPY_{\text{COPY}}] \]

If action sequence \(\gamma \) is a member of AS_set, this means that the attack surface contains an action COPY,
which consists of three consecutive atomic kernel actions. Interrupts can occur anywhere between these
atomic actions.

Given a set of valid action sequences such as \(\gamma \), generic function precondition can be defined. It now
consists of 1.) a generic invariant and 2.) more refined preconditions for the current action.

These preconditions need to be proven inductive only according to action sequences. Assume, e.g.,
that \(\gamma \in \text{AS_set} \) and that \(d \) is the currently active domain in state \(s \). The following constraints are assumed
and must therefore be proven for the instantiation:

- “AS_precondition s d COPY_{\text{INIT}}”
 since COPY_{\text{INIT}} is the start of an action sequence.

- “AS_precondition (step s COPY_{\text{INIT}}) d COPY_{\text{CHECK}}”
 since (COPY_{\text{INIT}}, COPY_{\text{CHECK}}) is a sub sequence.

- “AS_precondition (step s COPY_{\text{CHECK}}) d COPY_{\text{COPY}}”
 since (COPY_{\text{CHECK}}, COPY_{\text{COPY}}) is a sub sequence.

Additionally, the precondition for domain \(d \) must be consistent when a context switch occurs, or when
ever some other domain \(d' \) performs an action.
Locale Interruptible_Separation_Kernel refines locale Separation_Kernel in two ways. First, there is a definition of realistic executions. A realistic trace consists of action sequences from AS_set.

Secondly, the generic control function has been refined by additional assumptions. It is now assumed that control conforms to one of four possibilities:

1. The execution of the currently active domain is empty and the control function returns no action.
2. The currently active domain is executing the action sequence at the head of the execution. It returns the next kernel action of this sequence and updates the execution accordingly.
3. The action sequence is delayed.
4. The action sequence that is at the head of the execution is skipped and the execution is updated accordingly.

As for the state update, this is still completely unconstrained and generic as long as it respects the generic invariant and the precondition.

locale Interruptible-Separation-Kernel = Separation-Kernel kstep output-f s0 current cscontrol interrupt kprecondition realistic-execution-control kinvolved ifp vpeq

for kstep :: `state-t ⇒ 'action-t ⇒ 'state-t`
and output-f :: `state-t ⇒ 'action-t ⇒ 'output-t`
and s0 :: 'state-t
and current :: 'state-t ⇒ 'dom-t — Returns the currently active domain
and cscontrol :: time-t ⇒ 'state-t ⇒ 'state-t — Switches the current domain
and interrupt :: time-t ⇒ bool — Returns t if an interrupt occurs in the given state at the given time
and kprecondition :: 'state-t ⇒ 'action-t ⇒ bool — Returns t if a precondition holds that relates the current action to the state

and realistic-execution :: 'action-t execution ⇒ bool — In this locale, this function is completely unconstrained.
and control :: 'state-t ⇒ 'dom-t ⇒ 'action-t execution ⇒ (('action-t option) × 'action-t execution × 'state-t)
and kinvolved :: 'action-t ⇒ 'dom-t set
and ifp :: 'dom-t ⇒ 'dom-t ⇒ bool
and vpeq :: 'dom-t ⇒ 'state-t ⇒ 'state-t ⇒ bool
+ fixes AS-set :: ('action-t list) set — Returns a set of valid action sequences, i.e., the attack surface
and invariant :: 'state-t ⇒ bool
and AS-precondition :: 'state-t ⇒ 'dom-t ⇒ 'action-t ⇒ bool
and aborting :: 'state-t ⇒ 'dom-t ⇒ 'action-t ⇒ bool
and waiting :: 'state-t ⇒ 'dom-t ⇒ 'action-t ⇒ bool

assumes empty-in-AS-set: [] ∈ AS-set
and invariant-ès: invariant s0
and invariant-after-cscontrol ∀ s n. invariant s → invariant (cscontrol n s)
and preconditions-after-cscontrol ∀ s d n a. AS-precondition s d a → AS-precondition (cscontrol n s) d a
and AS-pre-first-action: ∀ s d aseq . invariant s ∧ aseq ∈ AS-set ∧ aseq ≠ [] → AS-precondition s d (hd aseq)
and AS-pre-after-step: ∀ s a a′. (∃ aseq ∈ AS-set . is-sub-seq a a′ aseq) ∧ invariant s ∧ AS-precondition s (current s) a ∧ ¬ aborting s (current s) a ∧ ¬ waiting s (current s) a → AS-precondition (kstep s a) (current s) a′
and AS-pre-dom-independent: ∀ s d a a′. current s ≠ d ∧ AS-precondition s d a → AS-precondition (kstep s a a′) d a
and spec-of-invariant: ∀ s a . invariant s → invariant (kstep s a)

and kprecondition-def: kprecondition s a ≡ invariant s ∧ AS-precondition s (current s) a
and realistic-execution-def: realistic-execution aseq ≡ set aseq ⊆ AS-set
and control-spec ∀ s d aseq . case control s d aseq of (a,aseqs’) s′ = (thread-empty aseqs ∧ (a,aseqs′) = (None,[])) ∨ (* Nothing happens *) (aseqs ≠ [] ∧ hd aseqs ≠ [] ∧ ¬ aborting s′ d (the a) ∧ ¬ waiting s′ d (the a) ∧ (a,aseqs′) = (Some (hd (hd aseqs)), (tl (hd aseqs))|(tl aseqs))) ∨ (* Execute the first action of the current action sequence *)
Lemma run_total_equals run is proven by doing induction. It is however not inductive and can therefore not be proven directly: a realistic execution is not necessarily realistic after performing one action. We generalize to do induction. Predicate realistic_executions_ind is the inductive version of realistic_executions. All action sequences in the tail of the executions must be complete action sequences (i.e., they must be from AS_set). The first action sequence, however, is being executed and is therefore not necessarily an action sequence from AS_set, but it is the last part of some action sequence from AS_set.

We need to know that invariably, the precondition holds. As this precondition consists of 1.) a generic invariant and 2.) more refined preconditions for the current action, we have to know that these two are invariably true.

Proof that “execution is realistic” is inductive, i.e., assuming the current execution is realistic, the execution returned by the control mechanism is realistic.

lemma next-execution-is-realistic-partial:
assumes na-def: next-execs s execs d = aseq ≠ aseq
and d-is-curr: d = current s
and realistic-executions-ind execs
and thread-not-empty: ¬thread-empty(execs (current s))
shows realistic-AS-partial aseq ∧ set aseqs ⊆ AS-set
proof
let ?c = control s (current s) (execs (current s))
{
 assume c-empty: let (a,aseqs',s') = ?c in
 (a,aseqs') = (None,[])
from na-def d-is-curr c-empty
 have ?thesis
 unfolding realistic-executions-ind-def next-exec-def by (auto)
}
moreover
{
 let ?ct= execs (current s)
 let ?execs' = (tl (hd ?ct)) ≠ (tl ?ct)
 let ?a' = Some (hd (hd ?ct))
 assume hd-thread-not-empty: hd (execs (current s)) ≠ []
 assume c-executing: let (a,aseqs',s') = ?c in
 (a,aseqs') = (?a', ?execs')
from na-def c-executing d-is-curr
 have as-defs: aseq = tl (hd ?ct) ∧ aseqs = tl ?ct
 unfolding next-exec-def by (auto)
from realistic[unfolded realistic-executions-ind-def,THEN spec,where x=d] d-is-curr
 have subset: set (tl ?execs') ⊆ AS-set
 unfolding Let-def realistic-AS-partial-def
 by (cases execs d,auto)
from d-is-curr thread-not-empty hd-thread-not-empty realistic[unfolded realistic-executions-ind-def,THEN spec,where x=d]
 obtain n aseq' where n-aseq': n ≤ length aseq' ∧ aseq' ∈ AS-set ∧ hd ?ct = lastn n aseq'
 unfolding realistic-AS-partial-def
 by (cases execs d,auto)
from this hd-thread-not-empty have n > 0 unfolding lastn-def by (cases n,auto)
from this n-aseq' lastn-one-less[where n=n and x=aseq' and a=hd (hd ?ct) and y=tl (hd ?ct)] hd-thread-not-empty
 have n − 1 ≤ length aseq' ∧ aseq' ∈ AS-set ∧ tl (hd ?ct) = lastn (n − 1) aseq'
 by auto
from this as-defs subset have ?thesis
 unfolding realistic-AS-partial-def
 by auto
}
moreover
{
 let ?ct= execs (current s)
 let ?execs' = ?ct
 let ?a' = Some (hd (hd ?ct))
 assume c-waiting: let (a,aseqs',s') = ?c in
 (a,aseqs') = (?a', ?execs')
from na-def c-waiting d-is-curr
 have as-defs: aseq = hd ?execs' ∧ aseqs = tl ?execs'
 unfolding next-exec-def by (auto)
from realistic[unfolded realistic-executions-ind-def,THEN spec,where x=d] d-is-curr set-tl-is-subset[where x=?execs']
 have subset: set (tl ?execs') ⊆ AS-set
 unfolding Let-def realistic-AS-partial-def
 by (cases execs d,auto)
from na-def c-waiting d-is-curr
 have ?execs' ≠ [] unfolding next-exec-def by auto
from realistic[unfolded realistic-executions-ind-def,THEN spec,where x=d] d-is-curr thread-not-empty
 obtain n aseq' where witness: n ≤ length aseq' ∧ aseq' ∈ AS-set ∧ hd(execs d) = lastn n aseq'
unfolding realistic-AS-partial-def by (cases execs d,auto)
from d-is-curr this subset as-defs have ?thesis
unfolding realistic-AS-partial-def
by auto
}

moreover
{
 let ?ct = execs (current s)
 let ?execs' = tl ?ct
 let ?a' = None
 assume c-aborting: let (a,aseqs',s') = ?c in
 (a,aseqs') = (?a', ?execs')
 from na-def c-aborting d-is-curr
 have as-defs: aseq = hd ?execs' ∧ aseq = tl ?execs'
 unfolding next-execs-def by (auto)
 from realistic[unfolded realistic-executions-ind-def,THEN spec,where x=d] d-is-curr set-tl-is-subset[where x=?execs']
 have subset: set (tl ?execs') ⊆ AS-set
 unfolding Let-def realistic-AS-partial-def
 by (cases execs d,auto)
 from na-def c-aborting d-is-curr
 have ?execs' ≠ [] unfolding next-execs-def by auto
 from empty-in-AS-set this
 realistic[unfolded realistic-executions-ind-def,THEN spec,where x=d] d-is-curr
 have length (hd ?execs') ≤ length (hd ?execs') ∧ (hd ?execs') ∈ AS-set ∧ hd ?execs' = lastn (length (hd ?execs')) (hd ?execs')
 unfolding lastn-def
 by (cases execs (current s),auto)
 from this subset as-defs have ?thesis
 unfolding realistic-AS-partial-def
 by auto
}

ultimately
show ?thesis
using control-spec[THEN spec,THEN spec,THEN spec,where x2=s and x1=current s and x=execs (current s)]
d-is-curr thread-not-empty
by (auto simp add: Let-def)
qed

The lemma that proves that the total run function is equivalent to the partial run function, i.e., that in
this refinement the case of the run function where the precondition is False will never occur.

lemma run-total-equals-run:
assumes realistic-exec: realistic-executions execs
 and invariant: invariant s
shows strict-equal (run n (Some s) execs) (run-total n s execs)
proof-
{
 fix n ms s execs
 have strict-equal ms s ∧ realistic-executions-ind execs ∧ precondition-ind s execs ---› strict-equal (run n ms execs) (run-total n s execs)
 proof (induct n ms execs arbitrary: s rule: run.induct)
 case (1 s execs sa)
 show ?case by auto
 next
 case (2 n execs s)
 show ?case unfolding strict-equal-def by auto
 next
 case (3 n s execs sa)
}
assume interrupt: interrupt (Suc n)
assume IH: (∃ s. strict-equal (Some (cswitch (Suc n) s)) sa ∧ realistic-executions-ind execs ∧ precondition-ind sa execs) →
strict-equal (run n (Some (cswitch (Suc n) s)) execs) (run-total n sa execs)

\[
\begin{align*}
\{ & \quad \text{assume equal-s-sa: strict-equal (Some s) sa} \\
& \quad \text{assume realistic: realistic-executions-ind execs} \\
& \quad \text{assume inv-sa: precondition-ind sa execs} \\
& \quad \text{have inv-nsa: precondition-ind (cswitch (Suc n) s) sa execs} \\
\}
\]

proof−
\[
\{ & \quad \text{fix } d \\
& \quad \text{have fst (control (cswitch (Suc n) sa) d (execs d)) → AS-precondition (cswitch (Suc n) sa) d} \\
& \quad \text{using next-action-after-cswitch inv-sa unfolded precondition-ind-def, THEN conjunct2, THEN spec, where } x=d \}
\]

precondition-after-cswitch
unfolding Let-def B-def precondition-ind-def
by (cases fst (control (cswitch (Suc n) sa) d (execs d)), auto)

thus ?thesis using inv-sa invariant-after-cswitch unfolding precondition-ind-def by auto
qed

from equal-s-sa realistic inv-nsa inv-IH[where sa=cswitch (Suc n) sa]

have equal-ns-nt: strict-equal (run n (Some (cswitch (Suc n) s)) execs) (run-total n (cswitch (Suc n) sa) execs)

unfolding strict-equal-def by (auto)

from this interrupt show ?case by auto
next
\[
\begin{align*}
\{ & \quad \text{case } (4 \ n \ execs \ s \ sa) \\
& \quad \text{assume not-interrupt: ¬interrupt (Suc n)} \\
& \quad \text{assume thread-empty: thread-empty(execs (current s))} \\
& \quad \text{assume IH: (∃ s. strict-equal (Some s) sa ∧ realistic-executions-ind execs ∧ precondition-ind sa execs) →
strict-equal (run n (Some s) execs) (run-total n sa execs))} \\
& \quad \text{have current-s-sa: strict-equal (Some s) sa → current s = current sa unfolding strict-equal-def by auto}
\}
\]

\[
\begin{align*}
\{ & \quad \text{assume equal-s-sa: strict-equal (Some s) sa} \\
& \quad \text{assume realistic: realistic-executions-ind execs} \\
& \quad \text{assume inv-sa: precondition-ind sa execs} \\
& \quad \text{from equal-s-sa realistic inv-IH[where sa=sa]} \\
& \quad \text{have equal-ns-nt: strict-equal (run n (Some s) execs) (run-total n sa execs)} \\
& \quad \text{unfolding strict-equal-def by (auto)}
\}
\]

\[
\begin{align*}
\{ & \quad \text{from this current-s-sa thread-empty not-interrupt show ?case by auto} \\
\}
\]

next
\[
\begin{align*}
\{ & \quad \text{case } (5 \ n \ execs \ s \ sa) \\
& \quad \text{assume not-interrupt: ¬interrupt (Suc n)} \\
& \quad \text{assume thread-not-empty: ¬thread-empty(execs (current s))} \\
& \quad \text{assume not-pref ¬ precondition (next-state s execs) (next-action s execs)} \
\]

— In locale ISK, the precondition can be proven to hold at all times. This case cannot happen, and we can prove False.
\[
\begin{align*}
\{ & \quad \text{assume equal-s-sa: strict-equal (Some s) sa} \\
& \quad \text{assume realistic: realistic-executions-ind execs} \\
& \quad \text{assume inv-sa: precondition-ind sa execs} \\
& \quad \text{from equal-s-sa have s-sa s = sa unfolding strict-equal-def by auto} \\
& \quad \text{from inv-sa have} \\
& \quad \text{next-action sa execs → AS-precondition sa (current sa)}
\}
\]
unfolding precondition-ind-def B-def next-action-def
by (cases next-action sa execs,auto)
from this next-state-precondition
have next-action sa execs → AS-precondition (next-state sa execs) (current sa)
unfolding precondition-ind-def B-def
by (cases next-action sa execs,auto)
from inv-sa this s-sa next-state-invariant current-next-state
have prec-s : precondition (next-state s execs) (next-action s execs)
unfolding precondition-ind-def kprecondition-def precondition-def B-def
by (cases next-action sa execs,auto)
from this not-prec have False by auto
}
thus ?case by auto

next

case (6 n execs s sa)
assume not-interrupt : ¬interrupt (Suc n)
assume thread-not-empty : ¬thread-empty (execs (current s))
assume prec: precondition (next-state s execs) (next-action s execs)
assume IH: (λ sa. strict-equal (Some (step (next-state s execs) (next-action s execs))) sa ∧
realistic-executions-ind (next-exec s execs) ∧ precondition-ind sa (next-exec s execs) ⟹
strict-equal (run n (Some (step (next-state s execs) (next-action s execs))) (next-exec s execs)) (run-total n sa (next-exec s execs)))
have current-s-sa: strict-equal (Some s) sa ⟹ current s = current sa unfolding strict-equal-def by auto
{
assume equal-s-sa: strict-equal (Some s) sa
assume realistic: realistic-executions-ind execs
assume inv-sa: precondition-ind sa execs
from equal-s-sa have s-sa: s = sa unfolding strict-equal-def by auto

let ?a = next-action s execs
let ?ns = step (next-state s execs) ?a
let ?na = next-exec s execs
let ?c = control s (current s) (execs (current s))

have equal-ns-nsa: strict-equal (Some ?ns) ?ns unfolding strict-equal-def by auto
from inv-sa equal-s-sa have inv-s: invariant s unfolding strict-equal-def precondition-ind-def by auto

— Two things are proven inductive. First, the assumptions that the execution is realistic (statement realistic-na).
This proof uses lemma next-execution-is-realistic-partial. Secondly, the precondition: if the precondition holds for
the current action, then it holds for the next action (statement invariant-na).

have realistic-na: realistic-executions-ind ?na
proof=
{
fix d
have case ?na d of [] ⟹ True | aseq # aseqs ⇒ realistic-AS-partial aseq ∧ set aseqs ⊆ AS-set
proof(cases ?na d,simp,rename-tac aseq aseqs,simp,cases d = current s)
case False
fix aseq aseqs
assume next-exec s execs d = aseq # aseqs
from False this realistic[unfolded realistic-executions-ind-def,THEN spec,where x=d]
show realistic-AS-partial aseq ∧ set aseqs ⊆ AS-set
unfolding next-exec-ns-def by simp
next
case True
fix aseq aseqs
assume na-def: next-exec s execs d = aseq # aseqs
from next-execution-is-realistic-partial na-def True realistic thread-not-empty
show realistic-AS-partial aseq ∧ set aseqs ⊆ AS-set by blast
qed }
thus ?thesis unfolding realistic-executions-ind-def by auto
qed
have invariant-na: precondition-ind ?ns ?na
proof−
from spec-of-invariant inv-sa next-state-invariant s-sa have inv-ns: invariant ?ns
unfolding precondition-ind-def step-def
by (cases next-action sa execs auto)
have ∀ d, fst (control ?ns d (?na d)) → AS-precondition ?ns d
proof−
{
fix d
{
let ?a′ = fst (control ?ns d (?na d))
assume snd-action-not-none: ?a′ ≠ None
have AS-precondition ?ns d (the ?a′)
proof (cases d = current s)
case True
{

have ?thesis
proof (cases ?a)
case (Some a)
— Assuming that the current domain executes some action a, and assuming that the action a’ after that is
not None (statement snd-action-not-none), we prove that the precondition is inductive, i.e., it will hold for a’. Two
cases arise: either action a is delayed (case waiting) or not (case executing).

show ?thesis
proof (cases ?na d = execs (current s) rule:case-split[case-names waiting executing])
case executing — The kernel is executing two consecutive actions a and a’. We show that [a,a’] is a
subsequence in some action in AS-set. The PO’s ensure that the precondition is inductive.
from executing True Some control-spec[THEN spec,THEN spec,THEN spec,where x2=s and x1=d and
x=execs d]

have a-def: a = hd (hd (execs (current s))) ∧ ?na d = (tl (hd (execs (current s))))≠(tl (execs
(current s)))
unfolding next-action-def next-execs-def Let-def
by(auto)
from a-def True snd-action-not-none control-spec[THEN spec,THEN spec,THEN spec,where x2=?ns
and x1=d and x=?na d]
second-elt-is-hd-tl[where x = hd (execs (current s)) and a=hd(tl(hd (execs (current s))))] and x'=tl
(tl(hd (execs (current s))))]
have na-def: the ?a′ = (hd (execs (current s)))!!1
unfolding next-exec-def
by(auto)
from Some realistic[unfolded realistic-executions-ind-def,THEN spec,where x=d] True thread-not-empty
obtain n aseq' where witness: n ≤ length aseq' ∧ aseq' ∈ AS-set ∧ hd(aseq d) = lastn n aseq'
unfolding realistic-AS-partial-def by (cases execs d.auto)
from True executing length-lt-2-implies-tl-empty[where x=hd (execs (current s))]
Some control-spec[THEN spec,THEN spec,THEN spec,where x2=s and x1=d and x=execs d]
snd-action-not-none control-spec[THEN spec,THEN spec,THEN spec,where x2=?ns and x1=d and
x=?na d]
have in-action-sequence: length (hd (execs (current s))) ≥ 2
unfolding next-action-def next-execs-def
by auto
from this witness consecutive-is-sub-seq[where a=a and b=the ?a′ and n=n and y=aseq' and x=tl
(hd (execs (current s))))]
This holds, since the control mechanism will ensure that action a’ is the start of a new action sequence in AS-set.

is not None (statement snd-action-not-none), we prove that the precondition is inductive, i.e., it will hold for a’.

spec

s-sa

have 1: \exists aseq' \in AS-set . is-sub-seq a (the ?a') aseq'

by(auto)

from True Some inv-sa[unfolded precondition-ind-def, THEN conjunct2, THEN spec, where x=current s] s-sa

have 2: AS-precondition s (current s) a

unfolding strict-equal-def next-action-def B-def by auto

from executing True Some control-spec[THEN spec, THEN spec, THEN spec, where x2=s and x1=d and x=execs d]

have not-aborting: \neg \text{aborting} (next-state s execs) (current s) (the ?a)

unfolding next-action-def next-state-def next-execs-def

by auto

from executing True Some control-spec[THEN spec, THEN spec, THEN spec, where x2=s and x1=d and x=execs d]

have not-waiting: \neg \text{waiting} (next-state s execs) (current s) (the ?a)

unfolding next-action-def next-state-def next-execs-def

by auto

from True this

1 2 inv-s

sub-seq-in-prefixes[where X=AS-set] Some next-state-invariant

current next-state[THEN spec, THEN spec, where x1=s and x=execs]

AS-prec-after-step[THEN spec, THEN spec, THEN spec, where x2=next-state s execs and x1=a and x=the ?a']

next-state-precondition not-aborting not-waiting

show ?thesis

by auto

next
case waiting — The kernel is delaying action a. Thus the action after a, which is a’, is equal to a.

from \text{tl-hd-x-not-tl-x}[where x=execs d] True waiting control-spec[THEN spec, THEN spec, THEN spec, where x2=s and x1=d and x=execs d]

have a-def: ?na d = execs (current s) \land next-state s execs = s \land waiting s d (the ?a)

unfolding next-action-def next-execs-def next-state-def

by(auto)

from Some waiting a-def True snd-action-not-none control-spec[THEN spec, THEN spec, THEN spec, where x2=?ns and x1=d and x=?na d]

have na-def: the ?a' \in hd (hd (execs (current s)))

unfolding next-action-def next-execs-def

by(auto)

from spec-of-waiting a-def True

have no-step: step s ?a = s unfolding step-def by (cases next-action s execs, auto)

from no-step Some True a-def

inv-sa[unfolded precondition-ind-def, THEN conjunct2, THEN spec, where x=current s] s-sa

have 2: AS-precondition s (current s) (the ?a')

unfolding next-action-def B-def

by(auto)

from a-def na-def this True Some no-step

show ?thesis

unfolding step-def

by(auto)

qed

next
case None

— Assuming that the current domain does not execute an action, and assuming that the action a’ after that is not None (statement snd-action-not-none), we prove that the precondition is inductive, i.e., it will hold for a’.

This holds, since the control mechanism will ensure that action a’ is the start of a new action sequence in AS-set.
from None True snd-action-not-none control-spec[THEN spec,THEN spec,THEN spec,where x1=\ns and x1=d and x=x=\na d]
control-spec[THEN spec,THEN spec,THEN spec,where x1=\ns and x1=d and x=execs d]
have na-def: \(?a' = \text{hd} (\text{tl} (\text{execs} (\text{current} s))) \) \(?\na d = \text{tl} (\text{execs} (\text{current} s)) \)
unfolding next-action-def next-exec-def
by (auto)
from True None snd-action-not-none control-spec[THEN spec,THEN spec,THEN spec,where x1=\ns and x1=d and x=x=\na d]
this
have I: \(\text{tl} (\text{execs} (\text{current} s)) \) \# \([] \) \& \(\text{hd} (\text{tl} (\text{execs} (\text{current} s))) \) \# \([] \)
by auto
from this realistic unfolded realistic-executions-ind-def,THEN spec,where x=d] True thread-not-empty
have \(\text{hd} (\text{tl} (\text{execs} (\text{current} s))) \) \(\in \) AS-set
by (cases execs d,auto)
from True snd-action-not-none this
inv-ns this na-def 1
AS-prec-first-action[THEN spec,THEN spec,THEN spec,where x1=\ns and x1=d and x=x=\na d]
show \(?\text{thesis}\) by auto
qed
thus \(?\text{thesis}\) using control-spec[THEN spec,THEN spec,THEN spec,where x1=\ns and x1=current s and x=x=\na d]
\(\text{current} s)]
thread-not-empty True snd-action-not-none
by (auto simp add: Let-def)
next
case False
from False have equal-na-a \(?\na d = \text{execs} d \)
unfolding next-exec-def by auto
from this False current-next-state next-action-after-step
have \(?a' = \text{fst} (\text{control} (\text{next-state} s \text{execs}) d (\text{next-exec} s \text{execs} d))\)
unfolding next-action-def by auto
from inv-sa unfolded precondition-ind-def,THEN conjunct2,THEN spec,where x=d] s-sa equal-na-a this
next-action-after-next-state[THEN spec,THEN spec,THEN spec,where x=d and x1=\ns and x1=execs]
snd-action-not-none False
have AS-precondition s d (the \(?a' \))
unfolding precondition-ind-def next-action-def B-def by (cases fst (control sa d (execs d)),auto)
from equal-na-a False this next-state-precondition current-next-state
AS-prec-dom-independent[THEN spec,THEN spec,THEN spec,THEN spec,where x3=next-state s execs
and x1=\ns and x=the \(?a \) and x1=the \(?a' \)]
show \(?\text{thesis}\) unfolding step-def
by (cases next-action s execs,auto)
qed
}

hence \(\text{fst} (\text{control} ?\na d (\text{?na d})) \rightarrow \text{AS-precondition} ?\na d \text{ unfolding B-def} \)
by (cases fst (control ?\na d (\text{?na d})),auto)
}
thus \(?\text{thesis}\) by auto
qed
from this inv-ns show \(?\text{thesis}\)
unfolding precondition-ind-def B-def Let-def
by (auto)
qed
from equal-ns-nsa realistic-na invariant-na s-sa IH[where sa=\ns]
Theorem unwinding implies isecure gives security for all realistic executions. For unrealistic executions, it holds vacuously and therefore does not tell us anything. In order to prove security for this refinement (i.e., for function run_total), we have to prove that purging yields realistic runs.

have equal-ns-nt: strict-equal (run n (Some ?ns) ?na) (run-total n (step (next-state sa execs) (next-action sa execs)) (next-execs sa execs)) (next-execs sa execs))
 by (auto)
}
 from this current-s-sa thread-not-empty not-interrupt prec show ?case by auto
qed
}
hence thm-inductive: ∀ m s execs n. strict-equal m s ∧ realistic-executions-ind execs ∧ precondition-ind s execs → strict-equal (run n m execs) (run-total n s execs) by blast
have 1: strict-equal (Some s) s unfolding strict-equal-def by simp
have 2: realistic-executions-ind execs
proof{-
 { fix d
 have case execs d of [] ⇒ True | aseq ≠ aseqs ⇒ realistic-AS-partial aseq ∧ set aseqs ⊆ AS-set
 proof (cases execs d, simp)
 case (Cons aseq aseqs)
 from Cons realistic-exec [unfolded realistic-executions-def, THEN spec, where x=d]
 have 0: length aseq ≤ length aseq ∧ aseq ∈ AS-set ∧ aseq = lastn (length aseq) aseq
 unfolding lastn-def realistic-execution-def by auto
 hence 1: realistic-AS-partial aseq unfolding realistic-AS-partial-def by auto
 from Cons realistic-exec [unfolded realistic-executions-def, THEN spec, where x=d]
 have 2: set aseqs ⊆ AS-set
 unfolding realistic-execution-def by auto
 from Cons 1 2 show ?thesis by auto
 qed
 } thus ?thesis unfolding realistic-executions-ind-def by auto
 qed
}
have 3: precondition-ind s execs
proof{-
 { fix d
 { assume not-empty: fst (control s d (execs d)) ≠ None
 from not-empty realistic-exec-[unfolded realistic-executions-def, THEN spec, where x=d]
 have current-aseq-is-realistic: hd (execs d) ∈ AS-set
 using control-spec[THEN spec, THEN spec, THEN spec, THEN spec, where x=execs d and x1=d and x2=s]
 unfolding realistic-execution-def by (cases execs d auto)
 from not-empty current-aseq-is-realistic invariant AS-prec-first-action[THEN spec, THEN spec, THEN spec, THEN spec, where x2=s and x1=d and x=hd (execs d)]
 have AS-precondition s d (the (fst (control s d (execs d))))
 using control-spec[THEN spec, THEN spec, THEN spec, THEN spec, where x=execs d and x1=d and x2=s]
 by (auto)
 } hence fst (control s d (execs d)) ↦ AS-precondition s d
 unfolding B-def
 by (cases fst (control s d (execs d)), (auto)
 } from this invariant show ?thesis unfolding precondition-ind-def by auto
 qed
from thm-inductive 1 2 3 show ?thesis by auto
qed
lemma realistic-purge:
 shows ∀ execs d . realistic-executions execs → realistic-executions (purge execs d)
proof-
{
 fix execs d
 assume realistic-executions execs
 hence realistic-executions (purge execs d)
 using someI[where P=realistic-execution and x=execs d]
 unfolding realistic-executions-def purge-def by(simp)
}
thus ?thesis by auto
qed

lemma remove-gateway-comm-subset:
 shows set (remove-gateway-communications d exec) ⊆ set exec ∪ {[]}
by(induct exec,auto)

lemma realistic-ipurge-l:
 shows ∀ execs d . realistic-executions execs → realistic-executions (ipurge-l execs d)
proof-
{
 fix execs d
 assume 1: realistic-executions execs
 from empty-in-AS-set remove-gateway-comm-subset[where d=d and exec=execs d] 1 have realistic-executions (ipurge-l execs d)
 unfolding realistic-executions-def ipurge-l-def by(auto)
}
thus ?thesis by auto
qed

lemma realistic-ipurge-r:
 shows ∀ execs d . realistic-executions execs → realistic-executions (ipurge-r execs d)
proof-
{
 fix execs d
 assume 1: realistic-executions execs
 from empty-in-AS-set remove-gateway-comm-subset[where d=d and exec=execs d] 1 have realistic-executions (ipurge-r execs d)
 using someI[where P=λ x . realistic-execution x and x=execs d]
 unfolding realistic-executions-def ipurge-r-def by(auto)
}
thus ?thesis by auto
qed

We now have sufficient lemma’s to prove security for run_total. The definition of security is similar to that in Section 3.2. It now assumes that the executions are realistic and concerns function run_total instead of function run.

definition NI-unrelated-total::bool
where NI-unrelated-total
 ≡ ∀ execs a n . realistic-executions execs →
 (let s-f = run-total n s0 execs in
 output-f s-f a = output-f (run-total n s0 (purge execs (current s-f)))) a
 ∧ current s-f = current (run-total n s0 (purge execs (current s-f))))

definition NI-indirect-sources-total::bool
where NI-indirect-sources-total
 ≡ ∀ execs a n . realistic-executions execs →
(let s-f = run-total n s0 execs in
 output-f (run-total n s0 (ipurge-l execs (current s-f))) a =
 output-f (run-total n s0 (ipurge-r execs (current s-f))) a)

definition isecure-total-bool
where isecure-total ≡ NI-unrelated-total ∧ NI-indirect-sources-total

theorem unwinding-implies-iscure-total:
shows isecure-total
proof−
 from unwinding-implies-secure have secure-partial: NI-unrelated unfolding isecure-def by blast
 from unwinding-implies-secure have isecure-1-partial: NI-indirect-sources unfolding isecure-def by blast

 have NI-unrelated-total: NI-unrelated-total
 proof−
 {
 fix execs a n
 assume realistic: realistic-executions execs
 from invariant-s0 realistic run-total-equals-run[where n=n and s=s0 and execs=execs]
 have 1: strict-equal (run n (Some s0) execs) (run-total n s0 execs) by auto

 have let s-f = run-total n s0 execs in output-f s-f a = output-f (run-total n s0 (purge execs (current s-f))) a ∧
 current s-f = current (run-total n s0 (purge execs (current s-f)))
 proof (cases run n (Some s0) execs)
 case None
 thus ?thesis using 1 unfolding NI-unrelated-total-def strict-equal-def by auto
 next
 case (Some s-f)
 from realistic-purge invariant-s0 realistic run-total-equals-run[where n=n and s=s0 and execs=purge execs (current s-f)]
 have 2: strict-equal (run n (Some s0) (purge execs (current s-f))) (run-total n s0 (purge execs (current s-f)))
 by auto
 show ?thesis proof(cases run n (Some s0) (purge execs (current s-f)))
 case None
 from 2 None show ?thesis using 2 unfolding NI-unrelated-total-def strict-equal-def by auto
 next
 case (Some s-f2)
 from run n (Some s0) execs = Some s-f1 Some 1 2 secure-partial[unfolded NI-unrelated-def,THEN spec,THEN spec,THEN spec,where x=x0 and x2=execs]
 show ?thesis
 unfolding strict-equal-def NI-unrelated-def
 by(simp add: Let-def B-def B2-def)
 qed
 qed
 }
 thus ?thesis unfolding NI-unrelated-total-def by auto
 qed

have NI-indirect-sources-total: NI-indirect-sources-total
proof−
 {
 fix execs a n
 assume realistic: realistic-executions execs
 from invariant-s0 realistic run-total-equals-run[where n=n and s=s0 and execs=execs]
 have 1: strict-equal (run n (Some s0) execs) (run-total n s0 execs) by auto

 have let s-f = run-total n s0 execs in output-f (run-total n s0 (ipurge-l execs (current s-f))) a = output-f
proof (cases \(n (\text{Some} \ s0) \ \text{execs} \)) a

\[
\text{case None}
\]

thus \(?\text{thesis}\) using 1 unfolding \text{NI-unrelated-total-def strict-equal-def} by auto

\[
\text{next}
\]

\[
\text{case (Some s-f)}
\]

\[
\text{from realistic-ipurge-l invariant-s0 realistic run-total-equals-run[where n=n and s=s0 and execs=ipurge-l execs (current s-f)]}
\]

\[
\text{have 2: strict-equal (run n (Some s0) (ipurge-l execs (current s-f))) (run-total n s0 (ipurge-l execs (current s-f))) by auto}
\]

\[
\text{from realistic-ipurge-r invariant-s0 realistic run-total-equals-run[where n=n and s=s0 and execs=ipurge-r execs (current s-f)]}
\]

\[
\text{have 3: strict-equal (run n (Some s0) (ipurge-r execs (current s-f))) (run-total n s0 (ipurge-r execs (current s-f))) by auto}
\]

\[
\text{show \(?\text{thesis}\) proof (cases \ s0 \ (\text{Some} \ s0) \ \text{execs} \ (\text{current} \ s-f) \))}
\]

\[
\text{case None}
\]

\[
\text{from 2 None show \(?\text{thesis}\) using 2 unfolding \text{NI-unrelated-total-def strict-equal-def} by auto}
\]

\[
\text{next}
\]

\[
\text{case (Some s-ipurge-l)}
\]

\[
\text{show \(?\text{thesis}\)}
\]

\[
\text{proof (cases \ s0 \ (\text{Some} \ s0) \ \text{execs} \ (\text{current} \ s-f) \))}
\]

\[
\text{case None}
\]

\[
\text{from 3 None show \(?\text{thesis}\) using 2 unfolding \text{NI-unrelated-total-def strict-equal-def} by auto}
\]

\[
\text{next}
\]

\[
\text{case (Some s-ipurge-r)}
\]

\[
\text{from run n (Some s0) execs = Some s-f \ (run n (Some s0) (ipurge-l execs (current s-f))) = Some s-ipurge-b}
\]

\[
\text{Some 1 2 3 isecure1-partial[unfolded NI-indirect-sources-def,THEN spec,THEN spec,THEN spec,where x=n and x2=execs]}
\]

\[
\text{show \(?\text{thesis}\)}
\]

\[
\text{unfolding strict-equal-def NI-unrelated-def}
\]

\[
\text{by (simp add: Let-def B-def B2-def)}
\]

\[
\text{qed}
\]

\[
\text{qed}
\]

\[
\text{qed}
\]

\[
\}
\]

\[
\text{thus \(?\text{thesis}\) unfolding NI-indirect-sources-total-def by auto}
\]

\[
\text{qed}
\]

\[
\text{from NI-unrelated-total NI-indirect-sources-total show \(?\text{thesis}\) unfolding isecure-total-def by auto}
\]

\[
\text{qed}
\]

\[
\]

end

end

3.4 CISK (Controlled Interruptible Separation Kernel)

theory CISK

imports ISK

begin

This section presents a generic model of a Controlled Interruptible Separation Kernel (CISK). It formulates security, i.e., intransitive noninterference. For a presentation of this model, see Section 2 of [31].

First, a locale is defined that defines all generic functions and all proof obligations (see Section 2.3 of [31]).
locale Controllable-Interruptible-Separation-Kernel = — CISK

fixes kstep :: 'state-t ⇒ 'action-t ⇒ 'state-t — Executes one atomic kernel action
and output-t :: 'state-t ⇒ 'action-t ⇒ 'output-t — Returns the observable behavior
and s0 :: 'state-t — The initial state
and current :: 'state-t ⇒ 'dom-t — Returns the currently active domain
and cswitch :: 'time-t ⇒ 'state-t ⇒ 'state-t — Performs a context switch
and interrupt :: 'time-t ⇒ bool — Returns true iff an interrupt occurs in the given state at the given time
and kinvolved :: 'action-t ⇒ 'dom-t set — Returns the set of domains that are involved in the given action
and ifp :: 'dom-t ⇒ 'dom-t ⇒ bool — The security policy.
and vpeq :: 'dom-t ⇒ 'state-t ⇒ 'state-t ⇒ bool — View partitioning equivalence
and AS-set :: ('action-list t) set — Returns a set of valid action sequences, i.e., the attack surface
and invariant :: 'state-t ⇒ bool — Returns an inductive state-invariant
and AS-precondition :: 'state-t ⇒ 'dom-t ⇒ 'action-t ⇒ bool — Returns the preconditions under which the given action can be executed.
and aborting :: 'state-t ⇒ 'dom-t ⇒ 'action-t ⇒ bool — Returns true iff the action is aborted.
and set-error-code :: 'state-t ⇒ 'action-t ⇒ 'state-t — Sets an error code when actions are aborted.

assumes vpeq-transitive: ∀ a b c u. (vpeq u a b ∧ vpeq u b c) → vpeq u a c
and vpeq-symmetric: ∀ a b u. vpeq u a b → vpeq u b a
and vpeq-reflexive: ∀ a u. vpeq u a a
and ifp-reflexive: ∀ a . ifp u u
and weakly-step-consistent: ∀ s t u a. vpeq u s t ∧ vpeq (current s) s t ∧ invariant s ∧ AS-precondition s (current s) a ∧ invariant t ∧ AS-precondition t (current t) a ∧ current s = current t → vpeq u (kstep s a) (kstep t a)
and locally-respects: ∀ a s u. ¬ifp (current s) u ∧ invariant s ∧ AS-precondition s (current s) a → vpeq u (kstep s a)

(kstep s a)
and output-consistent: ∀ a s t. vpeq (current s) s t ∧ current s = current t → (output-t s a) = (output-t f t a)
and step-atomicity: ∀ a s u. current (kstep s a) = current s
and cswitch-independent-of-state: ∀ n s t . current s = current t → current (cswitch n s) = current (cswitch n t)
and cswitch-consistency: ∀ a s t n . vpeq u s t → vpeq u (cswitch n s) (cswitch n t)
and empty-in-AS-set: [] ∈ AS-set
and invariant-s0: invariant s0
and invariant-after-cswitch: ∀ s n a . invariant s → invariant (cswitch n s)
and precondition-after-cswitch: ∀ s d n a . AS-precondition s d a → AS-precondition (cswitch n s) d a
and AS-prec-first-action: ∀ s d a sseq . invariant s ∧ sseq ∈ AS-set ∧ sseq ≠ [] → AS-precondition s d (hd sseq)
and AS-prec-after-step: ∀ s a a' . (∃ sseq ∈ AS-set . is-sub-seq a a' sseq) ∧ invariant s ∧ AS-precondition s (current s) a ∧ ¬aborting s (current s) a ∧ ¬waiting s (current s) a → AS-precondition (kstep t s a) (current s) a'
and AS-prec-dom-independent: ∀ s d a a' . current s ∉ d ∧ AS-precondition s d a → AS-precondition (kstep t s a') d a
and spec-of-invariant: ∀ s a . invariant s → invariant (kstep s a)
and aborting-switch-independent: ∀ n s a . aborting (cswitch n s) = aborting s
and aborting-error-update: ∀ s d a a' . current s ∉ d ∧ aborting s d a → aborting (set-error-code s a') d a
and aborting-after-step: ∀ s d a . current s ∉ d → aborting (kstep s a) d = aborting s d
and aborting-consistent: ∀ s t u . vpeq u s t → aborting s u = aborting t u
and waiting-switch-independent: ∀ n s . waiting (cswitch n s) = waiting s
and waiting-error-update: ∀ s d a a' . current s ∉ d ∧ waiting s d a → waiting (set-error-code s a') d a
and waiting-consistent: ∀ s t u a . vpeq (current s) s t ∧ (V d ∈ kinvolved a . vpeq d s t) ∧ vpeq u s t → waiting s u a = waiting t u a
and spec-of-waiting: ∀ s a . waiting s (current s) a → kstep s a = s
and set-error-consistent: ∀ s t u a . vpeq u s t → vpeq s (set-error-code s a) (set-error-code t a)
and set-error-locally-respects: ∀ s u a . ¬ifp (current s) u → vpeq s (set-error-code s a)
and current-set-error-code: ∀ s a . current (set-error-code s a) = current s
and precondition-after-set-error-code: ∀ s d a a' . AS-precondition s d a ∧ aborting s (current s) a' → AS-precondition (set-error-code s a') d a
and invariant-after-set-error-code: ∀ s a . invariant s → invariant (set-error-code s a)
and involved-ifp: ∀ s a . ∀ d ∈ (kinvolved a) . AS-precondition s (current s) a → ifp d (current s)
3.4.1 Execution semantics

Control is based on generic functions *aborting*, *waiting* and *set_error_code*. Function *aborting* decides whether a certain action is aborting, given its domain and the state. If so, then function *set_error_code* will be used to update the state, possibly communicating to other domains that an action has been aborted. Function *waiting* can delay the execution of an action. This behavior is implemented in function *CISK-control*.

function *CISK-control*: 'state-t ⇒ 'dom-t ⇒ 'action-t execution ⇒ ('action-t option × 'action-t execution × 'state-t)

where

| *CISK-control* s d [] = (None, [], s) — The thread is empty
| *CISK-control* s d ([[]]) = (None, [], s) — The current action sequence has been finished and the thread has no next action sequences to execute
| *CISK-control* s d ([[]]) = (None, as '#execs', s) — The current action sequence has been finished. Skip to the next sequence
| *CISK-control* s d (a#as '#execs') = (if aborting s d a then (None, execs', set_error_code s a) else if waiting s d a then (Some a, (a#as) '#execs', s) else (Some a, as '#execs', s)) — Executing an action sequence

by pat-completeness auto
termination by lexicographic-order

Function *run* defines the execution semantics. This function is presented in [31] by pseudo code (see Algorithm 1). Before defining the run function, we define accessor functions for the control mechanism. Functions next_action, next_execs and next_state correspond to “control.a”, “control.x” and “control.s” in [31].

abbreviation next-action: 'state-t ⇒ ('dom-t ⇒ 'action-t execution) ⇒ 'action-t option
where
next-action ≡ Kernel.next-action current *CISK-control*

abbreviation next-exec: 'state-t ⇒ ('dom-t ⇒ 'action-t execution) ⇒ ('dom-t ⇒ 'action-t execution)
where
next-exec ≡ Kernel.next-exec current *CISK-control*

abbreviation next-state: 'state-t ⇒ ('dom-t ⇒ 'action-t execution) ⇒ 'state-t
where
next-state ≡ Kernel.next-state current *CISK-control*

A thread is empty iff either it has no further action sequences to execute, or when the current action sequence is finished and there are no further action sequences to execute.

abbreviation thread-empty: 'action-t execution ⇒ bool
where
thread-empty exec ≡ exec = [] ∨ exec = [[]]

The following function defines the execution semantics of CISK, using function *CISK-control*.

function *run*: time-t ⇒ 'state-t ⇒ ('dom-t ⇒ 'action-t execution) ⇒ 'state-t
where
run 0 s execs = s
| interrupt (Suc n) ⇒ run (Suc n) s execs = run n (cswitch (Suc n) s) execs
| ¬interrupt (Suc n) ⇒ thread-empty(execs (current s)) ⇒ run (Suc n) s execs = run n s execs
| ¬interrupt (Suc n) ⇒ ¬thread-empty(execs (current s)) ⇒ run (Suc n) s execs = (let control-a = next-action s execs;
control-x = next-state s execs;
control-s = next-state s execs in
case control-a of None ⇒ run n control-s control-x
| (Some a) ⇒ run n (kstep control-s a) control-x)
using not0-implies-Suc by (metis prod-cases3.auto)
termination by lexicographic-order
3.4.2 Formulations of security

The definitions of security as presented in Section 2.2 of [31].

abbreviation kprecondition
 where kprecondition s a ≡ invariant s ∧ AS-precondition s (current s) a

definition realistic-execution
 where realistic-execution aseq ≡ set aseq ⊆ AS-set

definition realistic-executions :: (:: dom-t ⇒ action-t execution) ⇒ bool
 where realistic-executions execs ≡ ∀ d. realistic-execution (execs d)

abbreviation involved
 where involved ≡ Kernel.involved

abbreviation step
 where step ≡ Kernel.step

abbreviation purge
 where purge ≡ Separation-Kernel.purge

abbreviation ipurge-l
 where ipurge-l ≡ Separation-Kernel.ipurge-l

abbreviation ipurge-r
 where ipurge-r ≡ Separation-Kernel.ipurge-r

definition NI-unrelated
 where NI-unrelated ≡ ∀ execs a n. realistic-executions execs ⇒ (let s-f = run n s0 execs in output-f s-f a = output-f (run n s0 (purge execs (current s-f))) a)

definition NI-indirect-sources
 where NI-indirect-sources ≡ ∀ execs a n. realistic-executions execs ⇒ (let s-f = run n s0 execs in output-f (run n s0 (ipurge-l execs (current s-f))) a = output-f (run n s0 (ipurge-r execs (current s-f))) a)

definition isecure
 where isecure ≡ NI-unrelated ∧ NI-indirect-sources

3.4.3 Proofs

The final theorem is unwinding_implies_isecure_CISK. This theorem shows that any interpretation of locale CISK is secure.

To prove this theorem, the refinement framework is used. CISK is a refinement of ISK, as the only difference is the control function. In ISK, this function is a generic function called control, in CISK it is interpreted in function CISK_control. It is proven that function CISK_control satisfies all the proof obligations concerning generic function control. In other words, CISK_control is proven to be an interpretation of control. Therefore, all theorems on run_total apply to the run function of CISK as well.

lemma next-action-consistent:
 shows ∀ s t execs. vpeq (current s) s t ∧ (∀ d ∈ involved (next-action s execs) . vpeq d s t) ∧ current s = current t → next-action s execs = next-action t execs

proof

  ```
  { 
  fix s t execs
  assume vpeq (current s) s t
  assume vpeq-involved: ∀ d ∈ involved (next-action s execs) . vpeq d s t
  assume current-s-t: current s = current t
  from aborting-consistent current-s-t vpeq
  have aborting t (current s) = aborting s (current s) by auto
  from current-s-t this waiting-consistent vpeq-involved
  have next-action s execs = next-action t execs
  unfolding Kernel.next-action-def
  by (cases (s,(current s),execs (current s))) rule: CISK-control.cases,auto
  } 
  thus ?thesis by auto
  qed
  ```
lemma next-exec-consistent:
shows \(\forall s \ t \ \text{execs} \ . \ vpeq (\text{current} \ s) \ s \ t \wedge (\forall d \ \in \ \text{involved} (\text{next-action} \ s \ \text{execs}) . \ vpeq d \ s \ t) \wedge \ \text{current} \ s = \ \text{current} \ t \rightarrow \ \text{fst} (\ \text{snd} (\ \text{CISK-control} \ s \ (\ \text{current} \ s) \ (\ \text{execs} \ (\ \text{current} \ s)))) = \ \text{fst} (\ \text{snd} (\ \text{CISK-control} \ t \ (\ \text{current} \ s) \ (\ \text{execs} \ (\ \text{current} \ s)))) \)
proof
\-
\{
 fix \ s \ t \ \text{execs}
 assume vpeq: vpeq (current s) s t
 assume vpeq-involved: \(\forall d \ \in \ \text{involved} (\text{next-action} \ s \ \text{execs}) . \ vpeq d \ s \ t \)
 assume current-s-t: current s = current t
 from aborting-consistent current-s-t vpeq
 have \(I: \) aborting t (current s) = aborting s (current s) \ by \ auto
 from \(I \) vpeq current-s-t vpeq-involved waiting-consistent[THEN spec,THEN spec,THEN spec,THEN spec,where \(x_3=s \) and \(x_2=t \) and \(x_1=\text{current} \ s \) and \(x=\text{the} (\text{next-action} \ s \ \text{execs}) \)]
 have \(\text{fst} (\ \text{snd} (\ \text{CISK-control} \ s \ (\ \text{current} \ s) \ (\ \text{execs} \ (\ \text{current} \ s)))) = \ \text{fst} (\ \text{snd} (\ \text{CISK-control} \ t \ (\ \text{current} \ s) \ (\ \text{execs} \ (\ \text{current} \ s)))) \)
 unfolding Kernel.next-action-def Kernel.involved-def
 by\((\text{cases} \ (s,(\text{current} \ s),\text{execs} \ (\text{current} \ s))) \ \text{rule: CISK-control.cases,auto split: if-split-asm})
\}
thus ?thesis \ by \ auto
qed

lemma next-state-consistent:
shows \(\forall s \ t \ u \ \text{execs} . \ vpeq (\text{current} \ s) \ s \ t \wedge vpeq u s t \wedge \text{current} \ s = \text{current} \ t \rightarrow \ vpeq u (\text{next-state} \ s \ \text{execs}) \)
\((\text{next-state} \ t \ \text{execs}) \)
proof
\-
\{
 fix \ s \ t \ u \ \text{execs}
 have vpeq u (next-state s execs) (next-state t execs)
 unfolding Kernel.next-state-def
 using aborting-consistent set-error-consistent
 by\((\text{cases} \ (s,(\text{current} \ s),\text{execs} \ (\text{current} \ s))) \ \text{rule: CISK-control.cases,auto})
\}
thus ?thesis \ by \ auto
qed

lemma current-next-state:
shows \(\forall \ \text{execs} . \ \text{current} \ (\text{next-state} \ s \ \text{execs}) = \ \text{current} \ s \)
proof
\-
\{
 fix \ s \ \text{execs}
 have current (next-state s execs) = current s
 unfolding Kernel.next-state-def
 using current-set-error-code
 by\((\text{cases} \ (s,(\text{current} \ s),\text{execs} \ (\text{current} \ s))) \ \text{rule: CISK-control.cases,auto})
\}
thus ?thesis \ by \ auto
qed

lemma locally-respects-next-state:
shows \(\forall \ s \ u \ \text{execs} . \ \neg \text{ifp} (\text{current} \ s) \ u \rightarrow \ vpeq u s \ (\text{next-state} \ s \ \text{execs}) \)
proof
\-

\textbf{lemma} CISK-control-spec: \\
\textbf{shows} \(\forall s \ d \ \text{aseqs}. \) \\
\textbf{case} CISK-control \(s \ d \ \text{aseqs} \) of \\
\((a, \text{aseqs}', s') \Rightarrow \) \\
thread-empty aseqs \(\land (a, \text{aseqs'}) = (\text{None}, []) \lor \) \\
aseqs \(\neq [] \land \text{hd aseqs} \neq [] \land \lnot \text{aborting s'} d (\text{the a}) \land \lnot \text{waiting s'} d (\text{the a}) \land (a, \text{aseqs'}) = (\text{Some} (\text{hd (hd aseqs)}), \text{tl (hd aseqs)} = \text{tl aseqs}) \lor \) \\
aseqs \(\neq [] \land \text{hd aseqs} \neq [] \land \text{waiting s'} d (\text{the a}) \land (a, \text{aseqs'}, s') = (\text{Some} (\text{hd (hd aseqs)}), \text{aseqs}, s) \lor (a, \text{aseqs'}) = (\text{None}, \text{tl aseqs}) \) \\
\textbf{proof}-- \\
\{ \\
\textbf{fix} \(s \ d \ \text{aseqs} \) \\
\textbf{have} \text{case} CISK-control \(s \ d \ \text{aseqs} \) of \\
\((a, \text{aseqs}', s') \Rightarrow \) \\
thread-empty aseqs \(\land (a, \text{aseqs'}) = (\text{None}, []) \lor \) \\
aseqs \(\neq [] \land \text{hd aseqs} \neq [] \land \lnot \text{aborting s'} d (\text{the a}) \land \lnot \text{waiting s'} d (\text{the a}) \land (a, \text{aseqs'}) = (\text{Some} (\text{hd (hd aseqs)}), \text{tl (hd aseqs)} = \text{tl aseqs}) \lor \) \\
aseqs \(\neq [] \land \text{hd aseqs} \neq [] \land \text{waiting s'} d (\text{the a}) \land (a, \text{aseqs'}, s') = (\text{Some} (\text{hd (hd aseqs)}), \text{aseqs}, s) \lor (a, \text{aseqs'}) = (\text{None}, \text{tl aseqs}) \) \\
\textbf{by} \text{(cases (s,d,aseqs) rule: CISK-control.cases,auto)} \\
\} \\
\textbf{thus} \text{thesis by auto} \\
\textbf{qed} \\

\textbf{lemma} next-action-after-cswitch: \\
\textbf{shows} \(\forall s \ n \ d \ \text{aseqs} \cdot \text{fst} (\text{CISK-control (cswitch n s) d aseqs}) = \text{fst} (\text{CISK-control s d aseqs}) \) \\
\textbf{proof}-- \\
\{ \\
\textbf{fix} \(s \ n \ d \ \text{aseqs} \) \\
\textbf{have} \text{fst} (\text{CISK-control (cswitch n s) d aseqs}) = \text{fst} (\text{CISK-control s d aseqs}) \\
\textbf{using} \text{aborting-switch-independent waiting-switch-independent} \\
\textbf{by} \text{(cases (s,d,aseqs) rule: CISK-control.cases,auto)} \\
\} \\
\textbf{thus} \text{thesis by auto} \\
\textbf{qed} \\

\textbf{lemma} next-action-after-next-state: \\
\textbf{shows} \(\forall s \ d : \text{execs} . \ current s \neq d \longrightarrow \text{fst} (\text{CISK-control (next-state s execs) d (execs d)}) = \text{None} \lor \text{fst} (\text{CISK-control (next-state s execs) d (execs d)}) = \text{fst} (\text{CISK-control s d (execs d)}) \) \\
\textbf{proof}-- \\
\{ \\
\textbf{fix} \(s \ d \ \text{aseqs} \) \\
\textbf{assume} \(\text{current s} \neq d \) \\
\textbf{have} \text{fst} (\text{CISK-control (next-state s execs) d aseqs}) = \text{None} \lor \text{fst} (\text{CISK-control (next-state s execs) d aseqs}) = \text{fst} (\text{CISK-control s d aseqs}) \\
\textbf{proof}(\text{cases (s,d,aseqs) rule: CISK-control.cases,simp,simp,simp})
case (\(4 \text{sa da a as execs'}\))

thus ?thesis

unfolding Kernel.next-state-def

using aborting-error-update waiting-error-update 1

by (cases (sa, current sa, execs (current sa)) rule: CISK-control.cases, auto split: if-split-asm)

qed

} thus ?thesis by auto

qed

lemma next-action-after-step:

shows \(\forall s a d aseqs. \text{current s} \not\rightarrow d \rightarrow \text{fst (CISK-control (step s a) d aseqs)} = \text{fst (CISK-control s d aseqs)}\)

proof--

{ fix s a d aseqs
 assume 1: current s \not\rightarrow d
 from this aborting-after-step
 have \(\text{fst (CISK-control (step s a) d aseqs)} = \text{fst (CISK-control s d aseqs)}\)
 unfolding Kernel.step-def
 by (cases (s, d, aseqs) rule: CISK-control.cases, simp, simp, simp, cases a, auto)
}

thus ?thesis by auto

qed

lemma next-state-precondition:

shows \(\forall s d a execs. \text{AS-precondition s d a} \rightarrow \text{AS-precondition (next-state s execs) d a}\)

proof--

{ fix s d a execs
 assume AS-precondition s d a
 hence AS-precondition (next-state s execs) d a
 unfolding Kernel.next-state-def
 using precondition-after-set-error-code
 by (cases (s, (current s), execs (current s)) rule: CISK-control.cases, auto)
}

thus ?thesis by auto

qed

lemma next-state-invariant:

shows \(\forall s execs. \text{invariant s} \rightarrow \text{invariant (next-state s execs)}\)

proof--

{ fix s execs
 assume invariant s
 hence invariant (next-state s execs)
 unfolding Kernel.next-state-def
 using invariant-after-set-error-code
 by (cases (s, (current s), execs (current s)) rule: CISK-control.cases, auto)
}

thus ?thesis by auto

qed

lemma next-action-from-exec:

shows \(\forall s execs. \text{next-action s execs} \rightarrow (\lambda a. a \in \text{actions-in-execution (execs (current s)})\))

proof--

{ fix s execs

{ fix a
 assume 1: next-action s execs = Some a
 from / have a ∈ actions-in-execution (execs (current s))
 unfolding Kernel.next-action-def actions-in-execution-def
 by (cases (s, (current s), execs (current s)) rule: CISK-control.cases.auto split: if-split-asim) }

hence next-action s execs ↭ (∀ a . a ∈ actions-in-execution (execs (current s)))

unfolding B-def
by (cases next-action s execs.auto)
}

thus ?thesis unfolding B-def by (auto)

qed

lemma next-execs-subset:
shows ∀ s execs u . actions-in-execution (next-execs s execs u) ⊆ actions-in-execution (execs u)
proof-
{ fix s execs u
 have actions-in-execution (next-execs s execs u) ⊆ actions-in-execution (execs u)
 unfolding Kernel.next-execs-def actions-in-execution-def
 by (cases (s, (current s), execs (current s)) rule: CISK-control.cases.auto split: if-split-asim) }

thus ?thesis by auto

qed

theorem unwinding-implies-isecure-CISK:
shows isecure
proof-
interpret int: Interruptible-Separation-Kernel kstep output-f s0 current cswitch interrupt kprecondition realistic-execution
CISK-control kinvolved ifp vpeq AS-set invariant AS-precondition aborting waiting
proof (unfold-locales)

show ∀ a b c u . vpeq u a b ∧ vpeq u b c → vpeq u a c
 using vpeq-transitive by blast

show ∀ a b u . vpeq u a b → vpeq u b a
 using vpeq-symmetric by blast

show ∀ a u . vpeq u a a
 using vpeq-reflexive by blast

show ∀ u . ifp u u
 using ifp-reflexive by blast

show ∀ s t u a . vpeq u s t ∧ vpeq (current s) s t ∧ kprecondition s a ∧ kprecondition t a ∧ current s = current t
 → vpeq u (kstep s a) (kstep t a)
 using weakly-step-consistent by blast

show ∀ a s u . ¬ifp (current s) u ∧ kprecondition s a → vpeq u s (kstep s a)
 using locally-respects by blast

show ∀ a s t . vpeq (current s) s t ∧ current s = current t → (output-f s a) = (output-f t a)
 using output-consistent by blast

show ∀ s a . current (kstep s a) = current s
 using step-atomicity by blast

show ∀ n s t . current s = current t → current (cswitch n s) = current (cswitch n t)
 using cswitch-independent-of-state by blast

show ∀ u s t n . vpeq u s t → vpeq u (cswitch n s) (cswitch n t)
 using cswitch-consistency by blast

show ∀ s t execs . vpeq (current s) s t ∧ (∀ d ∈ involved (next-action s execs) . vpeq d s t) ∧ current s = current t
 → next-action s execs = next-action t execs
 using next-action-consistent by blast
\[\text{show } \forall s t \text{ execs.} \]
\[\text{vpeq } (\text{current } s) s t \land (\forall d \in \text{involved } (\text{next-action } s \text{ execs}) \cdot \text{vpeq } d s t) \land \text{current } s = \text{current } t \rightarrow\]
\[\text{fst } (\text{snd } (\text{CISK-control } s (\text{current } s)) (\text{execs } (\text{current } s))) = \text{fst } (\text{snd } (\text{CISK-control } t (\text{current } s)) (\text{execs } (\text{current } s)))\]
\[\text{using next-execs-consistent by blast}\]
\[\text{show } \forall s t u \text{ execs. } \text{vpeq } (\text{current } s) s t \land \text{vpeq } u s t \land \text{current } s = \text{current } t \rightarrow \text{vpeq } u (\text{next-state } s \text{ execs})\]
\[\text{(next-state } t \text{ execs)}\]
\[\text{using next-state-consistent by auto}\]
\[\text{show } \forall s \text{ execs. } \text{current } (\text{next-state } s \text{ execs}) = \text{current } s\]
\[\text{using current-next-state by auto}\]
\[\text{show } \forall s u \text{ execs. } \neg \text{ifp } (\text{current } s) u \rightarrow \text{vpeq } u (\text{next-state } s \text{ execs})\]
\[\text{using locally-respects-next-state by auto}\]
\[\text{show } \emptyset \in \text{A-set}\]
\[\text{using empty-in-A-set by blast}\]
\[\text{show } \forall s n . \text{invariant } s \rightarrow \text{invariant } (\text{cswitch } n s)\]
\[\text{using invariant-after-cswitch by blast}\]
\[\text{show } \forall s d n a . \text{AS-precondition } s d a \rightarrow \text{AS-precondition } (\text{cswitch } n s) d a\]
\[\text{using precondition-after-cswitch by blast}\]
\[\text{show } \text{invariant } s 0\]
\[\text{using invariant-s0 by blast}\]
\[\text{show } \forall s d a \text{ aseq } . \text{invariant } s \land \text{aseq } \in \text{A-set } \land \text{aseq } \notin \emptyset \rightarrow \text{AS-precondition } s d (\text{hd } \text{aseq})\]
\[\text{using AS-prec-first-action by blast}\]
\[\text{show } \forall s a a' . (\exists \text{aseq } \text{AS-set. is-sub-seq } a a' \text{ aseq}) \land \text{invariant } s \land \text{AS-precondition } s (\text{current } s) a \land \neg\]
\[\text{aborting } s (\text{current } s) a \land \neg \text{waiting } s (\text{current } s) a \rightarrow\]
\[\text{AS-precondition } (\text{kstep } s a) (\text{current } s) a'\]
\[\text{using AS-prec-after-step by blast}\]
\[\text{show } \forall s d a a' . \text{current } s \notin d \land \text{AS-precondition } s d a \rightarrow \text{AS-precondition } (\text{kstep } s a') d a\]
\[\text{using AS-prec-dom-independent by blast}\]
\[\text{show } \forall s a . \text{invariant } s \rightarrow \text{invariant } (\text{kstep } s a)\]
\[\text{using spec-of-invariant by blast}\]
\[\text{show } \forall s a . \text{kprecondition } s a \equiv \text{kprecondition } s a\]
\[\text{by auto}\]
\[\text{show } \forall s a . \text{realistic-execution } \text{aseq } \equiv \text{set } \text{aseq } \subseteq \text{A-set}\]
\[\text{unfolding realistic-execution-def by auto}\]
\[\text{show } \forall s a . \exists d \in \text{involved } a . \text{kprecondition } s (\text{the } a) \rightarrow \text{ifp } d (\text{current } s)\]
\[\text{using involved-ifp unfolding Kernel.involved-def by (auto split: option.splits)}\]
\[\text{show } \forall s \text{ execs. } \text{next-action } s \text{ execs } \rightarrow (\lambda a. a \in \text{actions-in-execution } (\text{execs } (\text{current } s)))\]
\[\text{using next-action-from-execs by blast}\]
\[\text{show } \forall s \text{ execs u. actions-in-execution } (\text{next-execs } s \text{ execs } u) \subseteq \text{actions-in-execution } (\text{execs } u)\]
\[\text{using next-execs-subset by blast}\]
\[\text{show } \forall s d \text{ aseqs.}\]
\[\text{case CISK-control } s d \text{ aseqs of}\]
\[\text{(a, aseqs', s') } \Rightarrow\]
\[\text{thread-empty aseqs } \land (a, \text{aseqs'}) = (\text{None}, []) \lor\]
\[\text{aseqs } \neq [] \land \text{hd } \text{aseqs } \neq [] \land \neg \text{aborting s'} d (\text{the } a) \land \neg \text{waiting } s' d (\text{the } a) \land (a, \text{aseqs'}) = (\text{Some } (\text{hd } (\text{hd aseqs})), \text{tl } (\text{hd aseqs}) \neq [] \lor\]
\[\text{aseqs } \neq [] \land \text{hd } \text{aseqs } \neq [] \land \text{waiting } s' d (\text{the } a) \land (a, \text{aseqs}', s') = (\text{Some } (\text{hd } (\text{hd aseqs})), \text{aseqs}, s) \lor (a, \text{aseqs'}) = (\text{None}, \text{tl } \text{aseqs})\]
\[\text{using CISK-control-spec by blast}\]
\[\text{show } \forall s n d \text{ aseqs. } \text{fst } (\text{CISK-control } (\text{cswitch } n s) d \text{ aseqs}) = \text{fst } (\text{CISK-control } s d \text{ aseqs})\]
\[\text{using next-action-after-cswitch by auto}\]
\[\text{show } \forall s \text{ execs } d.\]
\[\text{current } s d \rightarrow \]
\[\text{fst } (\text{CISK-control } (\text{next-state } s \text{ execs}) d (\text{execs } d)) = \text{None } \lor \text{fst } (\text{CISK-control } (\text{next-state } s \text{ execs}) d (\text{execs } d)) = \text{fst } (\text{CISK-control } s d (\text{execs } d))\]
\[\text{using next-action-after-next-state by auto}\]
show $\forall s a d \mathit{aseqs}$. current $s \not= d \rightarrow \mathit{fst} (\mathit{CISK\text{-}control} (\text{step} s a) d \mathit{aseqs}) = \mathit{fst} (\mathit{CISK\text{-}control} s d \mathit{aseqs})$

using next-action-after-step by auto

show $\forall s d a \mathit{execs}$. AS-precondition $s d a \rightarrow \mathit{AS\text{-}precondition} (\text{next\text{-}state} s \mathit{execs}) d a$

using next-state-precondition by auto

show $\forall s \mathit{execs}$. invariant $s \rightarrow \mathit{invariant} (\text{next\text{-}state} s \mathit{execs})$

using next-state-invariant by auto

show $\forall s a$. waiting s (current s) $a \rightarrow \mathit{kstep} s a = s$

using spec-of-waiting by blast

qed

note interpreted = Interruptible-Separation-Kernel kstep output-f $s0$ current cswitch kprecondition realistic-execution CISK-control kinvolved ifp vpeq AS-set invariant AS-precondition aborting waiting

note run-total-induct = Interruptible-Separation-Kernel.run-total.induct[of kstep output-f $s0$ current cswitch kprecondition realistic-execution

aborting waiting - interrupt]

have run-equals-run-total:

$\land \ n \mathit{execs} \cdot \mathit{run} n \mathit{execs} \equiv \mathit{Interruptible-Separation-Kernel.run-total} \mathit{kstep} \mathit{current} \mathit{cswitch} \mathit{interrupt}$

CISK-control $n \mathit{execs}$

proof −

fix $n \mathit{execs}$

show $\mathit{run} n \mathit{execs} \equiv \mathit{Interruptible-Separation-Kernel.run-total} \mathit{kstep} \mathit{current} \mathit{cswitch} \mathit{interrupt}$

CISK-control $n \mathit{execs}$

using interpreted int.step-def

by (induct $n \mathit{execs}$ rule: run-total-induct,auto split: option.splits)

qed

from interpreted

have 0: Interruptible-Separation-Kernel.isecure-total kstep output-f $s0$ current cswitch interrupt realistic-execution CISK-control kinvolved ifp

by (metis int.unwinding-implies-isecure-total)

from 0 run-equals-run-total

have 1: NI-unrelated

by (metis realistic-executions-def int.isecure-total-def int.realistic-executions-def int.NI-unrelated-total-def

NI-unrelated-def)

from 0 run-equals-run-total

have 2: NI-indirect-sources

by (metis realistic-executions-def int.NI-indirect-sources-total-def int.isecure-total-def int.realistic-executions-def

NI-indirect-sources-def)

from 1 2 show ?thesis unfolding isecure-def by auto

qed

end

end

4 Instantiation by a separation kernel with concrete actions

theory Step-configuration

imports Main

begin

In the previous section, no concrete actions for the step function were given. The foremost point we want to make by this instantiation is to show that we can instantiate the CISK model of the previous section with an implementation that, for the step function, as actions, provides events and interprocess communication (IPC). System call invocations that can be interrupted at certain interrupt points are split into several atomic steps. A communication interface of events and IPC is less “trivial” than it may seem it at a first glance, for example the L4 microkernel API only provided IPC as communication
primitive [16]. In particular, the concrete actions illustrate how an application of the CISK framework can be used to separate policy enforcement from other computations unrelated to policy enforcement.

Our separation kernel instantiation also has a notion of partitions. A partition is a logical unit that serves to encapsulate a group of CISK threads by, amongst others, enforcing a static per-partition access control policy to system resources. In the following instantiation, while the subjects of the step function are individual threads, the information flow policy ifp is defined at the granularity of partitions, which is realistic for many separation kernel implementations.

Lastly, as a limited manipulation of an access control policy is often needed, we also provide an invariant for having a dynamic access control policy whose maximal closure is bounded by the static per-partition access control policy. That the dynamic access control policy is a subset of a static access control policy is expressed by the invariant sp_subset. A use case for this is when you have statically configured access to files by subjects, but whether a file can be read/written also depends on whether the file has been dynamically opened or not. The instantiation provides infrastructure for such an invariant on the relation of a dynamic policy to a static policy, and shows how the invariant is maintained, without modeling any API for an open/close operation.

4.1 Model of a separation kernel configuration

4.1.1 Type definitions

The separation kernel partitions are considered to be the “subjects” of the information flow policy ifp. A file provider is a partition that, via a file API (read/write), provides files to other partitions. The configuration statically defines which partitions can act as a file provider and also the access rights (right/write) of other partitions to the files provided by the file provider. Some separation kernels include a management for address spaces (tasks), that may be hierarchically structured. Such a task hierarchy is not part of this model.

typedecl partition-id-t
typedecl thread-id-t
typedecl page-t — physical address of a memory page
typedecl filep-t — name of file provider
datatype obj-id-t =
 PAGE page-t
 FILEP filep-t
datatype mode-t =
 READ — The subject has right to read from the memory page, from the files served by a file provider.
 | WRITE — The subject has right to write to the memory page, from the files served by a file provider.
 | PROVIDE — The subject has right serve as the file provider. This mode is not used for memory pages or ports.

4.1.2 Configuration

The information flow policy is implicitly specified by the configuration. The configuration does not contain the communication rights between partitions (subjects). However, the rights can be derived from the configuration. For example, if two partitions \(p \) and \(p' \) can access a file \(f \), then \(p \) and \(p' \) can communicate. See below.

consts
configured-subj-obj :: partition-id-t \Rightarrow obj-id-t \Rightarrow mode-t \Rightarrow bool

Each user thread belongs to a partition. The relation is fixed at system startup. The configuration specifies how many threads a partition can create, but this limit is not part of the model.

consts
partition :: thread-id-t ⇒ partition-id-t

4.2 Formulation of a subject-subject communication policy and an information flow policy, and showing both can be derived from subject-object configuration data

theory Step-policies
imports Step-configuration
begin

4.2.1 Specification

In order to use CISK, we need an information flow policy ifp relation. We also express a static subject-subject sp-spec-subj-subj and subject-object sp-spec-subj-obj access control policy for the implementation of the model. The following locale summarizes all properties we need.

locale policy-axioms =
fixes sp-spec-subj-obj :: 'a ⇒ obj-id-t ⇒ mode-t ⇒ bool
and sp-spec-subj-subj :: 'a ⇒ 'a ⇒ bool
and ifp :: 'a ⇒ 'a ⇒ bool

assumes sp-spec-file-provider: ∀ p1 p2 f m1 m2 .
sp-spec-subj-obj p1 (FILEP f) m1 ∧
sp-spec-subj-obj p2 (FILEP f) m2 → sp-spec-subj-subj p1 p2

and sp-spec-no-wrongly-pages:
∀ p x . sp-spec-subj-obj p (PAGE x) WRITE → sp-spec-subj-obj p (PAGE x) READ

and ifp-reflexive:
∀ p . ifp p p

and ifp-compatible-with-sp-spec:
∀ a b . sp-spec-subj-subj a b → ifp a b ∧ ifp b a

and ifp-compatible-with-ipc:
∀ a b c x . (sp-spec-subj-subj a b ∧ sp-spec-subj-obj b (PAGE x) WRITE ∧ sp-spec-subj-obj c (PAGE x) READ) → ifp a c

begin end

4.2.2 Derivation

The configuration data only consists of a subject-object policy. We derive the subject-subject policy and the information flow policy from the configuration data and prove that properties we specified in Section 4.2.1 are satisfied.

locale abstract-policy-derivation =
fixes configuration-subj-obj :: 'a ⇒ obj-id-t ⇒ mode-t ⇒ bool
begin

definition sp-spec-subj-obj a x m ≡
configuration-subj-obj a x m ∨ (∃ y . x = PAGE y ∧ m = READ ∧ configuration-subj-obj a x WRITE)

definition sp-spec-subj-subj a b ≡
∃ f m1 m2 . sp-spec-subj-obj a (FILEP f) m1 ∧ sp-spec-subj-obj b (FILEP f) m2

definition ifp a b ≡...
Show that the policies specified in Section 4.2.1 can be derived from the configuration and their definitions.

Lemma correct:

shows policy-axioms sp-spec-subj-obj sp-spec-subj-subj ifp

Proof (unfold-locales)

show sp-spec-file-provider:

\[\forall p1 \, p2 \, f \, m1 \, m2 . \]

sp-spec-subj-obj p1 (FILEP f) m1 ∧

sp-spec-subj-obj p2 (FILEP f) m2 \rightarrow sp-spec-subj-subj p1 p2

unfolding sp-spec-subj-subj-def by auto

show sp-spec-no-wronly-pages:

\[\forall p \, x . \, sp-spec-subj-obj p (PAGE x) WRITE \rightarrow sp-spec-subj-obj p (PAGE x) READ\]

unfolding sp-spec-subj-obj-def by auto

show ifp-reflexive:

\[\forall p . \, ifp \, p \, p\]

unfolding ifp-def by auto

show ifp-compatible-with-sp-spec:

\[\forall a \, b . \, sp-spec-subj-subj a \, b \rightarrow ifp \, a \, b \land ifp \, b \, a\]

unfolding ifp-def by auto

show ifp-compatible-with-ipc:

\[\forall a \, b \, c \, x . \, (sp-spec-subj-subj a \, b) \]

\[\land sp-spec-subj-obj b (PAGE x) WRITE \land sp-spec-subj-obj c (PAGE x) READ\]

\[\rightarrow ifp \, a \, c\]

unfolding ifp-def by auto

qed

end

type-synonym sp-subj-subj-t = partition-id-t \Rightarrow partition-id-t \Rightarrow bool

type-synonym sp-subj-obj-t = partition-id-t \Rightarrow obj-id-t \Rightarrow mode-t \Rightarrow bool

interpretation Policy: abstract-policy-derivation configured-subj-obj,

interpretation Policy-properties: policy-axioms Policy.sp-spec-subj-obj Policy.sp-spec-subj-subj Policy.ifp

using Policy.correct by auto

Lemma example-how-to-use-properties-in-proofs:

shows \[\forall p . \, Policy.ifp \, p \, p\]

using Policy-properties.ifp-reflexive by auto

end

4.3 Separation kernel state and atomic step function

Theory Step

Imports Step-policies

Begin

4.3.1 Interrupt points

To model concurrency, each system call is split into several atomic steps, while allowing interrupts between the steps. The state of a thread is represented by an “interrupt point” (which corresponds to the
value of the program counter saved by the system when a thread is interrupted).

```
datatype ipc-direction-t = SEND | RECV
datatype ipc-stage-t = PREP | WAIT | BUF

datatype ev-consume-t = EV-CONSUME-ALL | EV-CONSUME-ONE
datatype ev-wait-stage-t = EV-PREP | EV-WAIT | EV-FINISH
datatype ev-signal-stage-t = EV-SIGNAL-PREP | EV-SIGNAL-FINISH

datatype int-point-t =
  SK-IPC ipc-direction-t ipc-stage-t thread-id-t page-t — The thread is executing a sending / receiving IPC.
  | SK-EV-WAIT ev-wait-stage-t ev-consume-t — The thread is waiting for an event.
  | SK-EV-SIGNAL ev-signal-stage-t thread-id-t — The thread is sending an event.
  | NONE — The thread is not executing any system call.
```

4.3.2 System state

typedec obj-t — value of an object

Each thread belongs to a partition. The relation is fixed (in this instantiation of a separation kernel).

```
consts
  partition :: thread-id-t ⇒ partition-id-t

  The state contains the dynamic policy (the communication rights in the current state of the system, for example).

  record thread-t =
    ev-counter = nat — event counter

  record state-t =
    sp-impl-subj-subj = sp-subj-subj-t — current subject-subject policy
    sp-impl-subj-obj = sp-subj-obj-t — current subject-object policy
    current = thread-id-t — current thread
    obj = obj-id-t ⇒ obj-t — values of all objects
    thread = thread-id-t ⇒ thread-t — internal state of threads

  Later (Section 4.4), the system invariant sp-subset will be used to ensure that the dynamic policies (sp_impl,...) are a subset of the corresponding static policies (sp_spec,...).
```

4.3.3 Atomic step

Helper functions

Set new value for an object.

```
definition set-object-value :: obj-id-t ⇒ obj-t ⇒ state-t ⇒ state-t where
  set-object-value obj-id val s =
  s ( obj := fun-upd (obj s) obj-id val )

  Return a representation of the opposite direction of IPC communication.
```

```
definition opposite-ipc-direction :: ipc-direction-t ⇒ ipc-direction-t where
  opposite-ipc-direction dir = case dir of SEND ⇒ RECV | RECV ⇒ SEND

  Add an access right from one partition to an object. In this model, not available from the API, but shows how dynamic changes of access rights could be implemented.
```

```
definition add-access-right :: partition-id-t ⇒ obj-id-t ⇒ mode-t ⇒ state-t ⇒ state-t where
  add-access-right part-id obj-id m s =
  s ( ( sp-impl-subj-subj := λ q q' q'''. ( part-id = q ∧ obj-id = q' ∧ m = q''' ) ∨ sp-impl-subj-obj s q q' q'' )
```
Add a communication right from one partition to another. In this model, not available from the API.

\[
\text{definition } \text{add-comm-right} :: \text{partition-id-t} \Rightarrow \text{partition-id-t} \Rightarrow \text{state-t} \Rightarrow \text{state-t} \text{ where}
\]
\[
\text{add-comm-right } p p' s \equiv \begin{cases}
\lambda q q'. (p = q \land p' = q') \lor \text{sp-impl-subj-subj } s q q'
\end{cases}
\]

Model of IPC system call We model IPC with the following simplifications:

1. The model contains the system calls for sending an IPC (SEND) and receiving an IPC (RECV), often implementations have a richer API (e.g. combining SEND and RECV in one invocation).
2. We model only a copying (“BUF”) mode, not a memory-mapping mode.
3. The model always copies one page per syscall.

\[
\text{definition } \text{ipc-precondition} :: \text{thread-id-t} \Rightarrow \text{ipc-direction-t} \Rightarrow \text{thread-id-t} \Rightarrow \text{page-t} \Rightarrow \text{state-t} \Rightarrow \text{bool} \text{ where}
\]
\[
\text{ipc-precondition } tid \text{ dir partner page } s \equiv \begin{cases}
\text{let sender } = (\text{case dir of SEND } \Rightarrow \text{tid} \mid \text{RECV } \Rightarrow \text{partner}) \text{ in} \\
\text{let receiver } = (\text{case dir of SEND } \Rightarrow \text{partner} \mid \text{RECV } \Rightarrow \text{tid}) \text{ in} \\
\text{(sp-impl-subj-subj } s \text{ (partition sender) (partition receiver)} \\
\land \text{sp-impl-subj-obj } s \text{ (partition tid) (PAGE page) local-access-mode)}
\end{cases}
\]

\[
\text{definition } \text{atomic-step-ipc} :: \text{thread-id-t} \Rightarrow \text{ipc-direction-t} \Rightarrow \text{ipc-stage-t} \Rightarrow \text{thread-id-t} \Rightarrow \text{page-t} \Rightarrow \text{state-t} \Rightarrow \text{state-t} \text{ where}
\]
\[
\text{atomic-step-ipc } tid \text{ dir stage partner page } s \equiv \begin{cases}
\text{case stage of} \\
\text{PREP } \Rightarrow s \\
\text{WAIT } \Rightarrow s \\
\text{BUF page'} \Rightarrow \\
\text{(case dir of SEND } \Rightarrow \\
\text{(set-object-value (PAGE page') (obj } s \text{ (PAGE page))) } s \\
\mid \text{RECV } \Rightarrow s)
\end{cases}
\]

Model of event syscalls

\[
\text{definition } \text{ev-signal-precondition} :: \text{thread-id-t} \Rightarrow \text{thread-id-t} \Rightarrow \text{state-t} \Rightarrow \text{bool} \text{ where}
\]
\[
\text{ev-signal-precondition } tid \text{ partner } s \equiv \begin{cases}
\text{sp-impl-subj-subj } s \text{ (partition tid) (partition partner)}
\end{cases}
\]

\[
\text{definition } \text{atomic-step-ev-signal} :: \text{thread-id-t} \Rightarrow \text{thread-id-t} \Rightarrow \text{state-t} \Rightarrow \text{state-t} \text{ where}
\]
\[
\text{atomic-step-ev-signal } tid \text{ partner } s = \begin{cases}
\text{let } \text{thread } := \text{fun-upd (thread } s \text{ partner (thread } s \text{ partner (} ev-counter ::= \text{Suc (ev-counter (thread } s \text{ partner)))})} \\
\end{cases}
\]

\[
\text{definition } \text{atomic-step-ev-wait-one} :: \text{thread-id-t} \Rightarrow \text{state-t} \Rightarrow \text{state-t} \text{ where}
\]
\[
\text{atomic-step-ev-wait-one } tid \text{ s } = \begin{cases}
\text{let } \text{thread } := \text{fun-upd (thread } s \text{ tid (thread } s \text{ tid (} ev-counter ::= (ev-counter (thread } s \text{ tid)} - 1\)))}
\end{cases}
\]

\[
\text{definition } \text{atomic-step-ev-wait-all} :: \text{thread-id-t} \Rightarrow \text{state-t} \Rightarrow \text{state-t} \text{ where}
\]
\[
\text{atomic-step-ev-wait-all } tid \text{ s } = \begin{cases}
\text{let } \text{thread } := \text{fun-upd (thread } s \text{ tid (thread } s \text{ tid (} ev-counter ::= 0\))}
\end{cases}
\]
Instantiation of CISK aborting and waiting In this instantiation of CISK, the aborting function is used to indicate security policy enforcement. An IPC call aborts in its PREP stage if the precondition for the calling thread does not hold. An event signal call aborts in its EV-SIGNAL-PREP stage if the precondition for the calling thread does not hold.

\[
\text{definition aborting} :: \text{state} \Rightarrow \text{thread-id} \Rightarrow \text{int-point} \Rightarrow \text{bool}
\]

\[
\text{where aborting s tid a} \equiv \text{case a of SK-IPC dir PREP partner page} \Rightarrow
\]

\[
\text{ ipc-precondition tid dir partner page s}
\]

\[
| \text{SK-EV-SIGNAL EV-SIGNAL-PREP partner} \Rightarrow
\]

\[
\text{ ev-signal-precondition tid partner s}
\]

\[
\text{-} \Rightarrow \text{False}
\]

The waiting function is used to indicate synchronization. An IPC call waits in its WAIT stage while the precondition for the partner thread does not hold. An EV_WAIT call waits until the event counter is not zero.

\[
\text{definition waiting} :: \text{state} \Rightarrow \text{thread-id} \Rightarrow \text{int-point} \Rightarrow \text{bool}
\]

\[
\text{where waiting s tid a} \equiv
\]

\[
\text{case a of SK-IPC dir WAIT partner page} \Rightarrow
\]

\[
\text{ ipc-precondition partner (opposite-ipc-direction dir) tid (SOME page' \cdot True) s}
\]

\[
| \text{SK-EV-WAIT EV-PREP -} \Rightarrow \text{False}
\]

\[
| \text{SK-EV-WAIT EV-WAIT -} \Rightarrow \text{ev-counter (thread s tid) = 0}
\]

\[
| \text{SK-EV-WAIT EV-FINISH -} \Rightarrow \text{False}
\]

\[
\text{-} \Rightarrow \text{False}
\]

The atomic step function. In the definition of atomic-step the arguments to an interrupt point are not taken from the thread state – the argument given to atomic-step could have an arbitrary value. So, seen in isolation, atomic-step allows more transitions than actually occur in the separation kernel. However, the CISK framework (1) restricts the atomic step function by the waiting and aborting functions as well (2) the set of realistic traces as attack sequences rAS-set (Section 4.8). An additional condition is that (3) the dynamic policy used in aborting is a subset of the static policy. This is ensured by the invariant sp-subset.

\[
\text{definition atomic-step} :: \text{state} \Rightarrow \text{int-point} \Rightarrow \text{state where}
\]

\[
\text{atomic-step s ipt} \equiv
\]

\[
\text{case ipt of}
\]

\[
\text{ SK-IPC dir stage partner page} \Rightarrow
\]

\[
\text{ atomic-step-ipc (current s) dir stage partner page s}
\]

\[
| \text{SK-EV-WAIT EV-PREP consume} \Rightarrow s
\]

\[
| \text{SK-EV-WAIT EV-WAIT consume} \Rightarrow s
\]

\[
| \text{SK-EV-WAIT EV-FINISH consume} \Rightarrow
\]

\[
\text{case consume of}
\]

\[
\text{ EV-CONSUME-ONE} \Rightarrow \text{atomic-step-ev-wait-one (current s) s}
\]

\[
| \text{EV-CONSUME-ALL} \Rightarrow \text{atomic-step-ev-wait-all (current s) s}
\]

\[
| \text{SK-EV-SIGNAL EV-SIGNAL-PREP partner} \Rightarrow s
\]

\[
| \text{SK-EV-SIGNAL EV-SIGNAL-FINISH partner} \Rightarrow
\]

\[
\text{atomic-step-ev-signal (current s) partner s}
\]

\[
| \text{NONE} \Rightarrow s
\]

\[
\text{end}
\]

4.4 Preconditions and invariants for the atomic step

theory Step-invariants
imports Step
begin

The dynamic/implementation policies have to be compatible with the static configuration.
Definition \(\text{sp-subset } s \equiv \)
\((\forall \ p1 \ p2. \ \text{sp-impl-subj-subj } s \ p1 \ p2 \rightarrow \text{Policy}\ . \ \text{sp-spec-subj-subj } p1 \ p2)\)
\(\land (\forall \ p1 \ p2 \ m. \ \text{sp-impl-subj-obj } s \ p1 \ p2 \ m \rightarrow \text{Policy}\ . \ \text{sp-spec-subj-obj } p1 \ p2 \ m)\)

The following predicate expresses the precondition for the atomic step. The precondition depends on the type of the atomic action.

Definition \(\text{atomic-step-precondition} :: \text{state-t} \Rightarrow \text{thread-id-t} \Rightarrow \text{int-point-t} \Rightarrow \text{bool} \)
where
\(\text{atomic-step-precondition } s \ tid \ ipt \equiv \)
\(\text{case ipt of} \)
\(\text{SK-IPC} \ \text{dir} \ \text{WAIT} \ \text{partner} \ \text{page} \Rightarrow \)
\((* \text{the thread managed it past PREP stage } *) \)
\(\text{ipc-precondition } tid \ \text{dir} \ \text{partner} \ \text{page} \ s \)
\(\mid \text{SK-IPC} \ \text{dir} \ \text{(BUF page')} \ \text{partner} \ \text{page} \Rightarrow \)
\((* \text{both the calling thread and its communication partner} \)
\(\text{managed it past PREP and WAIT stages } *) \)
\(\text{ipc-precondition } tid \ \text{dir} \ \text{partner} \ \text{page} \ s \)
\(\land \ \text{ipc-precondition partner (opposite-ipc-direction dir) tid page'} s \)
\(\mid \text{SK-EV-SIGNAL} \ \text{EV-SIGNAL-FINISH} \ \text{partner} \Rightarrow \)
\(\text{ev-signal-precondition } tid \ \text{partner} \ s \)
\(\mid \Rightarrow \)
\((* \text{No precondition for other interrupt points. } *) \)
\(\text{True} \)

The invariant to be preserved by the atomic step function. The invariant is independent from the type of the atomic action.

Definition \(\text{atomic-step-invariant} :: \text{state-t} \Rightarrow \text{bool} \)
where
\(\text{atomic-step-invariant } s \equiv \)
\(\text{sp-subset } s \)

4.4.1 Atomic steps of SK_IPC preserve invariants

Lemma \(\text{set-object-value-invariant} \)
shows \(\text{atomic-step-invariant } s \ = \ \text{atomic-step-invariant} \ (\text{set-object-value } ob \ va \ s) \)
proof –
show \?thesis
unfolding \(\text{atomic-step-invariant-def} \ \text{atomic-step-precondition-def} \ \text{ipc-precondition-def} \ \text{sp-subset-def} \ \text{set-object-value-def} \ \text{Let-def} \)
by (simp split: int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits)
qed

Lemma \(\text{set-thread-value-invariant} \)
shows \(\text{atomic-step-invariant } s \ = \ \text{atomic-step-invariant} \ (s ([\text{thread} := \text{thrst}])) \)
proof –
show \?thesis
unfolding \(\text{atomic-step-invariant-def} \ \text{atomic-step-precondition-def} \ \text{ipc-precondition-def} \ \text{sp-subset-def} \ \text{set-object-value-def} \ \text{Let-def} \)
by (simp split: int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits)
qed

Lemma \(\text{atomic-ipc-preserves-invariants} \)
fixes \(s :: \text{state-t} \)
and \(tid :: \text{thread-id-t} \)
assumes \(\text{atomic-step-invariant } s \)
shows \(\text{atomic-step-invariant} \ (\text{atomic-step-ipc } tid \ \text{dir} \ \text{stage} \ \text{partner} \ \text{page} \ s) \)
proof –
show \?thesis
proof (cases stage)
case **PREP**
 from this assms show ?thesis
 unfolding atomic-step-ipc-def atomic-step-invariant-def by auto
next
case **WAIT**
 from this assms show ?thesis
 unfolding atomic-step-ipc-def atomic-step-invariant-def by auto
next
case **BUF**
 show ?thesis
 using assms BUF set-object-value-invariant
 unfolding atomic-step-ipc-def
 by (simp split: ipc-direction-t.splits)
qed
qed

lemma atomic-ev-wait-one-preserves-invariants:
 fixes s :: state-t
 and tid :: thread-id-t
 assumes atomic-step-invariant s
 shows atomic-step-invariant (atomic-step-ev-wait-one tid s)
proof –
 from assms show ?thesis
 unfolding atomic-step-ev-wait-one-def atomic-step-invariant-def sp-subset-def
 by auto
qed

lemma atomic-ev-wait-all-preserves-invariants:
 fixes s :: state-t
 and tid :: thread-id-t
 assumes atomic-step-invariant s
 shows atomic-step-invariant (atomic-step-ev-wait-all tid s)
proof –
 from assms show ?thesis
 unfolding atomic-step-ev-wait-all-def atomic-step-invariant-def sp-subset-def
 by auto
qed

lemma atomic-ev-signal-preserves-invariants:
 fixes s :: state-t
 and tid :: thread-id-t
 assumes atomic-step-invariant s
 shows (atomic-step-invariant (atomic-step-ev-signal tid partner s)
proof –
 from assms show ?thesis
 unfolding atomic-step-ev-signal-def atomic-step-invariant-def sp-subset-def
 by auto
qed

4.4.2 **Summary theorems on atomic step invariants**

Now we are ready to show that an atomic step from the current interrupt point in any thread preserves invariants.

theorem atomic-step-preserves-invariants:
 fixes s :: state-t
 and tid :: thread-id-t
 assumes atomic-step-invariant s
shows atomic-step-invariant (atomic-step s a)
proof (cases a)
case SK-IPC
 then show ?thesis unfolding atomic-step-def
 using assms atomic-ipc-preserves-invariants
 by simp
next case (SK-EV-WAIT ev-wait-stage consume)
 then show ?thesis
 proof (cases consume)
 case EV-CONSUME-ALL
 then show ?thesis unfolding atomic-step-def
 using SK-EV-WAIT assms atomic-ev-wait-all-preserves-invariants
 by (simp split: ev-wait-stage-t.splits)
 next case EV-CONSUME-ONE
 then show ?thesis unfolding atomic-step-def
 using SK-EV-WAIT assms atomic-ev-wait-one-preserves-invariants
 by (simp split: ev-wait-stage-t.splits)
 qed
next case SK-EV-SIGNAL
 then show ?thesis unfolding atomic-step-def
 using assms atomic-ev-signal-preserves-invariants
 by (simp add: ev-signal-stage-t.splits)
next case NONE
 then show ?thesis unfolding atomic-step-def
 using assms
 by auto
qed

Finally, the invariants do not depend on the current thread. That is, the context switch preserves the
invariants, and an atomic step that is not a context switch does not change the current thread.

theorem cswitch-preserves-invariants:
 fixes s :: state-t
 and new-current :: thread-id-t
 assumes atomic-step-invariant s
 shows atomic-step-invariant (s (current := new-current))
proof –
 let ?s1 = s (current := new-current)
 have sp-subset s = sp-subset ?s1
 unfolding sp-subset-def by auto
 from assms this show ?thesis
 unfolding atomic-step-invariant-def by metis
qed

theorem atomic-step-does-not-change-current-thread:
 shows current (atomic-step s ipt) = current s
proof –
 show ?thesis
 unfolding atomic-step-def
 and atomic-step-ipc-def
 and set-object-value-def Let-def
 and atomic-step-ev-wait-one-def atomic-step-ev-wait-all-def
 and atomic-step-ev-signal-def
 by (simp split: int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits
 ev-consume-t.splits ev-wait-stage-t.splits ev-signal-stage-t.splits)
qed

end
4.5 The view-partitioning equivalence relation

theory Step-vpeq
imports Step Step-invariants
begin

The view consists of

1. View of object values.
2. View of subject-subject dynamic policy. The threads can discover the policy at runtime, e.g. by calling ipc() and observing success or failure.
3. View of subject-object dynamic policy. The threads can discover the policy at runtime, e.g. by calling open() and observing success or failure.

definition vpeq-obj :: partition-id-t ⇒ state-t ⇒ state-t ⇒ bool where
vpeq-obj u s t ≡ ∀ obj-id . Policy.sp-spec-subj-obj u obj-id READ ⊢ (obj s) obj-id = (obj t) obj-id

definition vpeq-subj-subj :: partition-id-t ⇒ state-t ⇒ state-t ⇒ bool where
vpeq-subj-subj u s t ≡ ∀ v . ((Policy.sp-spec-subj-subj u v ⊢ sp-impl-subj-subj s u v = sp-impl-subj-subj t u v)
∧ (Policy.sp-spec-subj-subj v u ⊢ sp-impl-subj-subj s v u = sp-impl-subj-subj t v u))

definition vpeq-subj-obj :: partition-id-t ⇒ state-t ⇒ state-t ⇒ bool where
vpeq-subj-obj u s t ≡ ∀ ob m p1 .
(Policy.sp-spec-subj-obj u ob m ⊢ sp-impl-subj-obj s u ob m = sp-impl-subj-obj t u ob m)
∧ (Policy.sp-spec-subj-obj ob p1 ob PROVIDE ∧ (Policy.sp-spec-subj-obj ob READ ∨ Policy.sp-spec-subj-obj ob WRITE) ⊢
sp-impl-subj-obj s p1 ob PROVIDE = sp-impl-subj-obj t p1 ob PROVIDE)

definition vpeq-local :: partition-id-t ⇒ state-t ⇒ state-t ⇒ bool where
vpeq-local u s t ≡ ∀ tid . (partition tid) = u ⊢ (thread s tid) = (thread t tid)

definition vpeq u s t ≡
vpeq-obj u s t ∧ vpeq-subj-subj u s t ∧ vpeq-subj-obj u s t ∧ vpeq-local u s t

4.5.1 Elementary properties

lemma vpeq-rel:
shows vpeq-refl vpeq u s s
and vpeq-sym [sym]: vpeq u s t ⊢ vpeq u t s
and vpeq-trans [trans]: [vpeq u s1 s2 ; vpeq u s2 s3] ⊢ vpeq u s1 s3

unfolding vpeq-def vpeq-obj-def vpeq-subj-subj-def vpeq-subj-obj-def vpeq-local-def
by auto

Auxiliary equivalence relation.

lemma set-object-value-ign:
assumes eq-obs: ¬ Policy.sp-spec-subj-obj u x READ
shows vpeq u s (set-object-value x y s)
proof −
from assms show ?thesis
unfolding vpeq-def vpeq-obj-def vpeq-subj-subj-def vpeq-subj-obj-def set-object-value-def
vpeq-local-def
by auto
Context-switch and fetch operations are also consistent with vpeq and locally respect everything.

Theorem cswitch-consistency-and-respect:

Fixes \(u \subseteq \text{partition-id-t} \)

And \(s :: \text{state-t} \)

And \(\text{new-current} :: \text{thread-id-t} \)

Assumes \(\text{atomic-step-invariant} \ s \)

Shows \(\text{vpeq} \ u \ s \ (s \leftarrow \text{current} := \text{new-current}[]) \)

Proof –

Show \(\text{thesis} \)

Unfolding \(\text{vpeq-def} \ \text{vpeq-obj-def} \ \text{vpeq-subj-subj-def} \ \text{vpeq-subj-obj-def} \ \text{vpeq-local-def} \)

By \(\text{auto} \)

qed

4.6 Atomic step locally respects the information flow policy

Theory Step-vpeq-locally-respects

Imports Step Step-invariants Step-vpeq

Begin

The notion of locally respects is common usage. We augment it by assuming that the \(\text{atomic-step-invariant} \)
holds (see [31]).

4.6.1 Locally respects of atomic step functions

Lemma ipc-respects-policy:

Assumes \(\text{no} \sim \text{Policy.ifp} \ (\text{partition} \ \text{tid}) \ u \)

And \(\text{inv} :: \text{atomic-step-invariant} \ s \)

And \(\text{prec} :: \text{atomic-step-precondition} \ s \ \text{tid} \ (\text{SK-IPC dir stage partner pag}) \)

And \(\text{ipt-case} :: \text{ipt} = \text{SK-IPC dir stage partner page} \)

Shows \(\text{vpeq} \ u \ s \ (\text{atomic-step-ipc tid dir stage partner page s}) \)

Proof (cases stage)

Case PREP

Thus \(\text{thesis} \)

Unfolding \(\text{atomic-step-ipc-def} \)

Using \(\text{vpeq-refl by simp} \)

Next

Case WAIT

Thus \(\text{thesis} \)

Unfolding \(\text{atomic-step-ipc-def} \)

Using \(\text{vpeq-refl by simp} \)

Next case (BUF mypage)

Show \(\text{thesis} \)

Proof (cases dir)

Case RECV

Thus \(\text{thesis} \)

Unfolding \(\text{atomic-step-ipc-def} \)

Using \(\text{vpeq-refl BUF by simp} \)

Next

Case SEND

Have Policy.sp-spec-subj-subj (partition tid) (partition partner)

And Policy.sp-spec-subj-obj (partition partner) (PAGE mypage) WRITE
using BUF SEND inv prec ipt-case
unfolding atomic-step-invariant-def sp-subset-def
unfolding atomic-step-precondition-def ipc-precondition-def opposite-ipc-direction-def
by auto

hence ¬Policy.sp-spec-subj-obj u (PAGE mypage) READ
using no Policy-properties.ifp-compatible-with-ipc
by auto

thus thesis
using BUF SEND assms
unfolding atomic-step-ipc-def set-object-value-def
unfolding vpeq-def vpeq-obj-def vpeq-subj-obj-def vpeq-subj-subj-def vpeq-local-def
by auto

qed

lemma ev-signal-respects-policy:
assumes no ¬Policy.ifp (partition tid) u
and inv: atomic-step-invariant s
and prec: atomic-step-precondition s tid (SK-EV-SIGNAL EV-SIGNAL-FINISH partner)
and ipt-case: ipt = SK-EV-SIGNAL EV-SIGNAL-FINISH partner
shows vpeq u s (atomic-step-ev-signal tid partner s)

proof −
from assms have 1: (partition partner) \not\in u
unfolding Policy.ifp-def atomic-step-precondition-def sp-subset-def
by auto

with prec have 1: (partition partner) \not\in u
unfolding atomic-step-precondition-def ev-signal-precondition-def
by (auto simp add: ev-signal-stage-t.splits)

then have 2: vpeq-local u s (atomic-step-ev-signal tid partner s)
unfolding vpeq-local-def atomic-step-ev-signal-def
by simp

have 3: vpeq-obj u s (atomic-step-ev-signal tid partner s)
unfolding vpeq-obj-def atomic-step-ev-signal-def
by simp

have 4: vpeq-subj-subj u s (atomic-step-ev-signal tid partner s)
unfolding vpeq-subj-subj-def atomic-step-ev-signal-def
by simp

have 5: vpeq-subj-obj u s (atomic-step-ev-signal tid partner s)
unfolding vpeq-subj-obj-def atomic-step-ev-signal-def
by simp

with 2 3 4 5 show thesis

unfolding vpeq-def
by simp

qed

lemma ev-wait-all-respects-policy:
assumes no ¬Policy.ifp (partition tid) u
and inv: atomic-step-invariant s
and prec: atomic-step-precondition s tid ipt
and ipt-case: ipt = SK-EV-WAIT ev-wait-stage EV-CONSUME-ALL
shows vpeq u s (atomic-step-ev-wait-all tid s)

proof −
from assms have 1: (partition tid) \not\in u
unfolding Policy.ifp-def
by simp

then have 2: vpeq-local u s (atomic-step-ev-wait-all tid s)
unfolding vpeq-local-def atomic-step-ev-wait-all-def

qed
by simp
have 3: vpeq-obj u s (atomic-step-ev-wait-all tid s)
unfolding vpeq-obj-def atomic-step-ev-wait-all-def
by simp
have 4: vpeq-subj-subj u s (atomic-step-ev-wait-all tid s)
unfolding vpeq-subj-subj-def atomic-step-ev-wait-all-def
by simp
have 5: vpeq-subj-obj u s (atomic-step-ev-wait-all tid s)
unfolding vpeq-subj-obj-def atomic-step-ev-wait-all-def
by simp
with 2 3 4 5 show ?thesis
unfolding vpeq-def
by simp
qed

lemma ev-wait-one-respects-policy:
assumes no: ¬ Policy.ifp (partition tid) u
and inv: atomic-step-invariant s
and prec: atomic-step-precondition s tid ipt
and ipt-case: ipt = SK-EV-WAIT ev-wait-stage EV-CONSUME-ONE
shows vpeq u s (atomic-step-ev-wait-one tid s)
proof –
from assms have 1: (partition tid) # u
unfolding Policy.ifp-def
by simp
then have 2: vpeq-local u s (atomic-step-ev-wait-one tid s)
unfolding vpeq-local-def atomic-step-ev-wait-one-def
by simp
have 3: vpeq-obj u s (atomic-step-ev-wait-one tid s)
unfolding vpeq-obj-def atomic-step-ev-wait-one-def
by simp
have 4: vpeq-subj-subj u s (atomic-step-ev-wait-one tid s)
unfolding vpeq-subj-subj-def atomic-step-ev-wait-one-def
by simp
have 5: vpeq-subj-obj u s (atomic-step-ev-wait-one tid s)
unfolding vpeq-subj-obj-def atomic-step-ev-wait-one-def
by simp
with 2 3 4 5 show ?thesis
unfolding vpeq-def
by simp
qed

4.6.2 Summary theorems on view-partitioning locally respects

Atomic step locally respects the information flow policy (ifp). The policy ifp is not necessarily the same as sp_spec_subj_subj.

theorem atomic-step-respects-policy:
assumes no: ¬ Policy.ifp (partition (current s)) u
and inv: atomic-step-invariant s
and prec: atomic-step-precondition s (current s) ipt
shows vpeq u s (atomic-step s ipt)
proof –
show ?thesis
using assms ipc-respects-policy vpeq-refl
ev-signal-respects-policy ev-wait-one-respects-policy
ev-wait-all-respects-policy
unfolding atomic-step-def
4.7 Weak step consistency

theory Step-vpeq-weakly-step-consistent
imports Step Step-invariants Step-vpeq
begin

The notion of weak step consistency is common usage. We augment it by assuming that the *atomic-step-invariant* holds (see [31]).

4.7.1 Weak step consistency of auxiliary functions

lemma ipc-precondition-weakly-step-consistent:
assumes eq-tid : vpeq (partition tid) s1 s2
and inv1: atomic-step-invariant s1
and inv2: atomic-step-invariant s2
shows ipc-precondition tid dir partner page s1 = ipc-precondition tid dir partner page s2
proof
let ?sender = case dir of SEND ⇒ tid / divides.alt0
RECV ⇒ partner
let ?receiver = case dir of SEND ⇒ partner / divides.alt0
RECV ⇒ tid
let ?local-access-mode = case dir of SEND ⇒ READ / divides.alt0
RECV ⇒ WRITE
let ?A = sp-impl-subj-subj s1 (partition ?sender) (partition ?receiver)
= sp-impl-subj-subj s2 (partition ?sender) (partition ?receiver)
let ?B = sp-impl-subj-obj s1 (partition tid) (PAGE page) ?local-access-mode
= sp-impl-subj-obj s2 (partition tid) (PAGE page) ?local-access-mode

have A: ?A
proof (cases Policy.sp-spec-subj-subj (partition ?sender) (partition ?receiver))
case True
thus ?A
using eq-tid unfolding vpeq-def vpeq-subj-subj-def
by (simp split: ipc-direction-t.splits)
next case False
have sp-subset s1 and sp-subset s2
using inv1 inv2 unfolding atomic-step-invariant-def sp-subset-def by auto
hence ¬ sp-impl-subj-subj s1 (partition ?sender) (partition ?receiver)
and ¬ sp-impl-subj-subj s2 (partition ?sender) (partition ?receiver)
using False unfolding sp-subset-def by auto
thus ?A by auto
qed

have B: ?B
proof (cases Policy.sp-spec-subj-obj (partition tid) (PAGE page) ?local-access-mode)
case True
thus ?B
using eq-tid unfolding vpeq-def vpeq-subj-obj-def
by (simp split: ipc-direction-t.splits)
next case False
have sp-subset s1 and sp-subset s2
using inv1 inv2 unfolding atomic-step-invariant-def sp-subset-def by auto
hence ¬ sp-impl-subj-obj s1 (partition tid) (PAGE page) ?local-access-mode
and ¬ sp-impl-subj-obj s2 (partition tid) (PAGE page) ?local-access-mode
using False unfolding sp-subset-def by auto
thus ?B by auto
qed
show ?thesis using A B unfolding ipc-precondition-def by auto
qed

lemma ev-signal-precondition-weakly-step-consistent:
assumes eq-tid: vpeq (partition tid) s1 s2
 and inv1: atomic-step-invariant s1
 and inv2: atomic-step-invariant s2
shows ev-signal-precondition tid partner s1 = ev-signal-precondition tid partner s2
proof –
 let ?A = sp-impl-subj-subj s1 (partition tid) (partition partner)
 = sp-impl-subj-subj s2 (partition tid) (partition partner)
 have A: ?A
 proof (cases Policy.sp-spec-subj-subj (partition tid) (partition partner))
 case True
 thus ?A
 using eq-tid unfolding vpeq-def vpeq-subj-subj-def
 by (simp split: ipc-direction-t.splits)
 next case False
 have sp-subset s1 and sp-subset s2
 using inv1 inv2 unfolding atomic-step-invariant-def sp-subset-def by auto
 hence ~ sp-impl-subj-subj s1 (partition tid) (partition partner)
 and ~ sp-impl-subj-subj s2 (partition tid) (partition partner)
 using False unfolding sp-subset-def by auto
 thus ?A by auto
 qed

show ?thesis using A unfolding ev-signal-precondition-def by auto
qed

lemma set-object-value-consistent:
assumes eq-obs: vpeq u s1 s2
shows vpeq u (set-object-value x y s1) (set-object-value x y s2)
proof –
 let ?s1' = set-object-value x y s1 and ?s2' = set-object-value x y s2
 have E1: vpeq-obj u ?s1' ?s2'
 proof –
 { fix x'
 assume 1: Policy.sp-spec-subj-obj u x' READ
 have obj ?s1' x' = obj ?s2' x'
 proof (cases x = x')
 case True
 thus obj ?s1' x' = obj ?s2' x'
 unfolding set-object-value-def by auto
 next case False
 hence 2: obj ?s1' x' = obj s1 x'
 and 3: obj ?s2' x' = obj s2 x'
 unfolding set-object-value-def by auto
 have 4: obj s1 x' = obj s2 x'
 using 1 eq-obs unfolding vpeq-def vpeq-obj-def by auto
 from 2 3 4 show obj ?s1' x' = obj ?s2' x'
 by simp
 qed }
 thus vpeq-obj u ?s1' ?s2'
 unfolding vpeq-obj-def by auto
 qed
 have E4: vpeq-subj-subj u ?s1' ?s2'
 proof –
 have sp-impl-subj-subj ?s1' = sp-impl-subj-subj s1
 and sp-impl-subj-subj ?s2' = sp-impl-subj-subj s2
 qed

unfolding set-object-value-def by auto
thus vpeq-subj-subj $u \ ?s1' \ ?s2'$
using eq-obs unfolding vpeq-def vpeq-subj-subj-def by auto
qed

have E5: vpeq-subj-obj $u \ ?s1' \ ?s2'$
proof –

have sp-impl-subj Obj $s1' = sp-impl-subj Obj s1$
and sp-impl-subj Obj $s2' = sp-impl-subj Obj s2$
unfolding set-object-value-def by auto
thus vpeq-subj-obj $u \ ?s1' \ ?s2'$
using eq-obs unfolding vpeq-def vpeq-subj-obj-def by auto
qed

from eq-obs have E6: vpeq-local $u \ ?s1' \ ?s2'$
unfolding vpeq-def vpeq-local-def set-object-value-def by simp
from E1 E4 E5 E6
show thesis unfolding vpeq-def by auto
qed

4.7.2 Weak step consistency of atomic step functions

lemma ipc-weekly-step-consistent:
assumes eq-obs: vpeq $u \ s1 \ s2$
and eq-act: vpeq (partition tid) $s1 \ s2$
and inv1: atomic-step-invariant $s1$
and inv2: atomic-step-invariant $s2$
and prec1: atomic-step-precondition $s1$ tid ipt
and prec2: atomic-step-precondition $s1$ tid ipt
and ipt-case: ipt = SK-IPC dir stage partner page
shows vpeq u
 (atomic-step-ipc tid dir stage partner page s1)
 (atomic-step-ipc tid dir stage partner page s2)
proof –

have \forall mypage. [[dir = SEND; stage = BUF mypage]] \implies thesis
proof –

fix mypage
assume dir-send: dir = SEND
assume stage-buf: stage = BUF mypage
have Policy.sp-spec-subj-obj (partition tid) (PAGE page) READ
 using inv1 prec1 dir-send stage-buf ipt-case
unfolding atomic-step-invariant-def sp-subset-def
unfolding atomic-step-precondition-def ipc-precondition-def opposite-ipc-direction-def
by auto
hence obj s1 (PAGE page) = obj s2 (PAGE page)
 using eq-act unfolding vpeq-def vpeq-obj-def vpeq-local-def
by auto
thus vpeq u
 (atomic-step-ipc tid dir stage partner page s1)
 (atomic-step-ipc tid dir stage partner page s2)
using dir-send stage-buf eq-obs set-object-value-consistent
unfolding atomic-step-ipc-def
by auto
qed

thus thesis
using eq-obs unfolding atomic-step-ipc-def
by (cases stage, auto, cases dir, auto)
qed
lemma ev-wait-one-weakly-step-consistent:
 assumes eq-obs: vpeq u s1 s2
 and eq-act: vpeq (partition tid) s1 s2
 and inv1: atomic-step-invariant s1
 and inv2: atomic-step-invariant s2
 and prec1: atomic-step-precondition s1 (current s1) ipt
 and prec2: atomic-step-precondition s1 (current s1) ipt
 shows vpeq u
 (atomic-step-ev-wait-one tid s1)
 (atomic-step-ev-wait-one tid s2)
 using assms
 unfolding vpeq-def vpeq-subj-subj-def vpeq-obj-def vpeq-subj-obj-def vpeq-local-def
 atomic-step-ev-wait-one-def
 by simp

lemma ev-wait-all-weakly-step-consistent:
 assumes eq-obs: vpeq u s1 s2
 and eq-act: vpeq (partition tid) s1 s2
 and inv1: atomic-step-invariant s1
 and inv2: atomic-step-invariant s2
 and prec1: atomic-step-precondition s1 (current s1) ipt
 and prec2: atomic-step-precondition s1 (current s1) ipt
 shows vpeq u
 (atomic-step-ev-wait-all tid s1)
 (atomic-step-ev-wait-all tid s2)
 using assms
 unfolding vpeq-def vpeq-subj-subj-def vpeq-obj-def vpeq-subj-obj-def vpeq-local-def
 atomic-step-ev-wait-all-def
 by simp

lemma ev-signal-weakly-step-consistent:
 assumes eq-obs: vpeq u s1 s2
 and eq-act: vpeq (partition tid) s1 s2
 and inv1: atomic-step-invariant s1
 and inv2: atomic-step-invariant s2
 and prec1: atomic-step-precondition s1 (current s1) ipt
 and prec2: atomic-step-precondition s1 (current s1) ipt
 shows vpeq u
 (atomic-step-ev-signal tid partner s1)
 (atomic-step-ev-signal tid partner s2)
 using assms
 unfolding vpeq-def vpeq-subj-subj-def vpeq-obj-def vpeq-subj-obj-def vpeq-local-def
 atomic-step-ev-signal-def
 by simp

The use of extend-f is to provide infrastructure to support use in dynamic policies, currently not used.

definition extend-f :: (partition-id-t ⇒ partition-id-t ⇒ bool) ⇒ (partition-id-t ⇒ partition-id-t ⇒ bool) ⇒
(partition-id-t ⇒ partition-id-t ⇒ bool) where
extend-f g h = λ p1 p2 . f p1 p2 ∨ g p1 p2

definition extend-subj-subj :: (partition-id-t ⇒ partition-id-t ⇒ bool) ⇒ state-t ⇒ state-t where
extend-subj-subj f s ≡ s (sp-impl-subj-subj := extend-f (sp-impl-subj-subj s))

lemma extend-subj-subj-consistent:
 fixes f :: partition-id-t ⇒ partition-id-t ⇒ bool
 assumes vpeq u s1 s2
shows \(\text{vpeq} \ u \ (\text{extend-subj-subj} \ f \ s1) \ (\text{extend-subj-subj} \ f \ s2) \)

proof

- let \(?g1 = \text{sp-impl-subj-subj} \ s1\) and \(?g2 = \text{sp-impl-subj-subj} \ s2\)
- have \(\forall \ v . \ \text{Policy.sp-spec-subj-subj} \ u \ v \rightarrow \ ?g1 \ u \ v = ?g2 \ u \ v\)
 and \(\forall \ v . \ \text{Policy.sp-spec-subj-subj} \ v \ u \rightarrow \ ?g1 \ v \ u = ?g2 \ v \ u\)
 using assms unfolding vpeq-def vpeq-subj-subj-def by auto

hence \(\forall \ v . \ \text{Policy.sp-spec-subj-subj} \ u \ v \rightarrow \ \text{extend-f} \ f \ ?g1 \ u \ v = \text{extend-f} \ f \ ?g2 \ u \ v\)
 unfolding extend-f-def by auto

hence 1: \(\text{vpeq-subj-subj} \ u \ (\text{extend-subj-subj} \ f \ s1) \ (\text{extend-subj-subj} \ f \ s2)\)
 unfolding vpeq-subj-subj-def extend-subj-subj-def by auto

have 2: \(\text{vpeq-obj} \ u \ (\text{extend-subj-subj} \ f \ s1) \ (\text{extend-subj-subj} \ f \ s2)\)
 using assms unfolding vpeq-def vpeq-obj-def extend-subj-subj-def by fastforce

have 3: \(\text{vpeq-local} \ u \ (\text{extend-subj-subj} \ f \ s1) \ (\text{extend-subj-subj} \ f \ s2)\)
 using assms unfolding vpeq-def vpeq-local-def extend-subj-subj-def by fastforce

have 4: \(\text{vpeq-local} \ u \ (\text{extend-subj-subj} \ f \ s1) \ (\text{extend-subj-subj} \ f \ s2)\)
 using assms unfolding vpeq-def vpeq-local-def extend-subj-subj-def by fastforce

from 1 2 3 4 show ?thesis
 using assms unfolding vpeq-def by fast

qed

4.7.3 Summary theorems on view-partitioning weak step consistency

The atomic step is weakly step consistent with view partitioning. Here, the “weakness” is that we assume that the two states are vp-equivalent not only w.r.t. the observer domain \(u\), but also w.r.t. the caller domain \(\text{Step.partition} \ tid\).

theorem atomic-step-weakly-step-consistent:
assumes eq-obs: \(\text{vpeq} \ u \ s1 \ s2\)
 and eq-act: \(\text{vpeq} \ (\text{partition} \ (\text{current} \ s1)) \ s1 \ s2\)
 and inv1: \(\text{atomic-step-invariant} \ s1\)
 and inv2: \(\text{atomic-step-invariant} \ s2\)
 and prec1: \(\text{atomic-step-precondition} \ s1 \ (\text{current} \ s1) \ \text{ipt}\)
 and prec2: \(\text{atomic-step-precondition} \ s2 \ (\text{current} \ s2) \ \text{ipt}\)
 and eq-curr: \(\text{current} \ s1 = \text{current} \ s2\)
shows \(\text{vpeq} \ u \ (\text{atomic-step} \ s1 \ \text{ipt}) \ (\text{atomic-step} \ s2 \ \text{ipt})\)

proof

 show ?thesis
 using assms
 ipc-weakly-step-consistent
 ev-wait-all-weakly-step-consistent
 ev-wait-one-weakly-step-consistent
 ev-signal-weakly-step-consistent
 vpeq-refl
 unfolding atomic-step-def
 apply (cases ipt, auto)
 apply (simp split: ev-consume-t.splits ev-wait-stage-t.splits)
 by (simp split: ev-signal-stage-t.splits)

 qed

end

4.8 Separation kernel model

theory Separation-kernel-model
imports ../step\Step
 ../step\Step-invariants
 ../step\Step-vpeq
First (Section 4.8.1) we instantiate the CISK generic model. Functions that instantiate a generic function of the CISK model are prefixed with an ‘r’, ‘r’ standing for “Rushby’; as CISK is derived originally from a model by Rushby [31]. For example, ‘rifp’ is the instantiation of the generic ‘ifp’.

Later (Section 4.8.5) all CISK proof obligations are discharged, e.g., weak step consistency, output consistency, etc. These will be used in Section 4.9.

4.8.1 Initial state of separation kernel model

We assume that the initial state of threads and memory is given. The initial state of threads is arbitrary, but the threads are not executing the system call. The purpose of the following definitions is to obtain the initial state without potentially dangerous axioms. The only axioms we admit without proof are formulated using the “consts” syntax and thus safe.

consts

- initial-current :: thread-id-t
- initial-obj :: obj-id-t ⇒ obj-t

definition $s_0 \in \text{state-t}$ where

- $s_0 \equiv (\{ \text{sp-impl-subj-subj} = \text{Policy.sp-spec-subj-subj},\)
- $\text{sp-impl-subj-obj} = \text{Policy.sp-spec-subj-obj},$
- $\text{current} = \text{initial-current},$
- $\text{obj} = \text{initial-obj},$
- $\text{thread} = \lambda - \cdot (\{ \text{ev-counter} = 0 \})$

lemma initial-invariant:

- shows atomic-step-invariant s_0

proof -

- have $\text{sp-subset } s_0$
 - unfolding $\text{sp-subset-def } s_0$-def by auto
- thus ?thesis
 - unfolding atomic-step-invariant-def by auto

qed

4.8.2 Types for instantiation of the generic model

To simplify formulations, we include the state invariant \textit{atomic-step-invariant} in the state data type. The initial state s_0 serves at witness that $rstate-t$ is non-empty.

typedef (overloaded) $rstate-t = \{ s . \text{atomic-step-invariant } s \}$

using initial-invariant by auto

definition $rstate \in \text{state-t}$ where $rstate = \text{Abs-rstate-t}$

definition $\text{rep} : \text{rstate-t} \Rightarrow \text{state-t}$ where $\text{rep} = \text{Rep-rstate-t}$

lemma rstate-invariant:

- shows atomic-step-invariant ($\downarrow s$)

unfolding rep-def by (metis Rep-rstate-t mem-Collect-eq)

lemma rstate-down-up[simp]:

- shows ($\uparrow s$) = s

unfolding rep-def abs-def using Rep-rstate-t-inverse by auto
lemma rstate-up-down [simp]:
assumes atomic-step-invariant s
shows (\downarrow s) = s
using assms Abs-rstate-t-inverse unfolding rep-def abs-def by auto

A CISK action is identified with an interrupt point.

type-synonym raction-t = int-point-t

definition rcurrent :: rstate-t \Rightarrow thread-id-t where
rcurrent s = current \downarrow s

definition rstep :: rstate-t \Rightarrow raction-t \Rightarrow rstate-t where
rstep s a \equiv (\uparrow (atomic-step (\downarrow s) a)

Each CISK domain is identified with a thread id.

type-synonym rdom-t = thread-id-t

The output function returns the contents of all memory accessible to the subject. The action argument of the output function is ignored.

datatype visible-obj-t = VALUE obj-t /divides.alt0 EXCEPTION

type-synonym routput-t = page-t \Rightarrow visible-obj-t

definition routput-f :: rstate-t \Rightarrow raction-t \Rightarrow routput-t where
routput-f s a p \equiv if sp-impl-subj-obj (\downarrow s) (\uparrow (partition (rcurrent s)) (PAGE p) READ then
VALUE (obj (\downarrow s) (PAGE p))
else
EXCEPTION

The precondition for the generic model. Note that atomic-step-invariant is already part of the state.

definition rprecondition :: rstate-t \Rightarrow rdom-t \Rightarrow raction-t \Rightarrow bool where
rprecondition s d a \equiv atomic-step-precondition (\downarrow s) d a

abbreviation rinvariant
where rinvariant s \equiv True — The invariant is already in the state type.

Translate view-partitioning and interaction-allowed relations.

definition rvpeq :: rdom-t \Rightarrow rstate-t \Rightarrow rstate-t \Rightarrow bool where
rvpeq u s1 s2 \equiv vpeq (partition u) (\downarrow s1) (\downarrow s2)

definition rifp :: rdom-t \Rightarrow rdom-t \Rightarrow bool where
rifp u v = Policy.ifp (partition u) (partition v)

Context Switches

definition rcswitch :: nat \Rightarrow rstate-t \Rightarrow rstate-t where
rcswitch n s \equiv (((\downarrow s) \hspace{1em} current := (SOME t \hspace{1em} True))

4.8.3 Possible action sequences

An SK-IPC consists of three atomic actions PREP, WAIT and BUF with the same parameters.

definition is-SK-IPC :: raction-t list \Rightarrow bool
where is-SK-IPC aseq \equiv \exists \hspace{1em} dir partner page .
where aseq = [SK-IPC dir PREP partner page.SK-IPC dir WAIT partner page.SK-IPC dir (BUF (SOME page’ . True)) partner page]
An **SK-EV-WAIT** consists of three atomic actions, one for each of the stages **EV-PREP**, **EV-WAIT** and **EV-FINISH** with the same parameters.

definition `is-SK-EV-WAIT : raction-t list ⇒ bool`

where `is-SK-EV-WAIT aseq ≡ ∃ consume .
aseq = [SK-EV-WAIT EV-PREP consume ,
SK-EV-WAIT EV-WAIT consume ,
SK-EV-WAIT EV-FINISH consume]`

An **SK-EV-SIGNAL** consists of two atomic actions, one for each of the stages **EV-SIGNAL-PREP** and **EV-SIGNAL-FINISH** with the same parameters.

definition `is-SK-EV-SIGNAL : raction-t list ⇒ bool`

where `is-SK-EV-SIGNAL aseq ≡ ∃ partner .
aseq = [SK-EV-SIGNAL EV-SIGNAL-PREP partner ,
SK-EV-SIGNAL EV-SIGNAL-FINISH partner]`

The complete attack surface consists of IPC calls, events, and noops.

definition `rAS-set : raction-t list set`

where `rAS-set ≡ { aseq . is-SK-IPC aseq ∨ is-SK-EV-WAIT aseq ∨ is-SK-EV-SIGNAL aseq } ∪ {}`

4.8.4 Control

When are actions aborting, and when are actions waiting. We do not currently use the **set-error-code** function yet.

abbreviation `raborting`

where `raborting s ≡ aborting (↓ s)`

abbreviation `rwaiting`

where `rwaiting s ≡ waiting (↓ s)`

definition `rset-error-code : rstate-t ⇒ raction-t ⇒ rstate-t`

where `rset-error-code s a ≡ s`

Returns the set of threads that are involved in a certain action. For example, for an IPC call, the **WAIT** stage synchronizes with the partner. This partner is involved in that action.

definition `rkinvolved : int-point-t ⇒ rdom-t set`

where `rkinvolved a ≡ case a of SK-IPC dir WAIT partner page ⇒ {partner}
| SK-EV-SIGNAL EV-SIGNAL-FINISH partner ⇒ {partner}
| - ⇒ {}`

abbreviation `rinvolved`

where `rinvolved ≡ Kernel.involved rkinvolved`

4.8.5 Discharging the proof obligations

lemma `inst-vpeq-rel`

shows `rvpeq-refl : rvpeq u s s`

and `rvpeq-sym : rvpeq u s1 s2 ⇒ rvpeq u s2 s1`

and `rvpeq-trans : [[rvpeq u s1 s2 ; rvpeq u s2 s3]] ⇒ rvpeq u s1 s3`

unfolding `rvpeq-def using vpeq-rel by metis+`

lemma `inst-ifp-refl`

shows `∀ u . rifp u u`

unfolding `rifp-def using Policy-properties.ifp-reflexive by fast`

lemma `inst-step-atomicity [simp]`

shows `∀ s a . rcurrent (rstep s a) = rcurrent s`

unfolding `rstep-def rcurrent-def`
by auto

lemma inst-weakly-step-consistent:
assumes rvpeq u s t
 and rvpeq (rcurrent s) s t
 and rcurrent s = rcurrent t
 and rprecondition s (rcurrent s) a
 and rprecondition t (rcurrent t) a
shows rvpeq u (rstep s a) (rstep t a)
using assms atomic-step-weakly-step-consistent rstate-invariant atomic-step-preserves-invariants
unfolding rcurrent-def rstep-def rvpeq-def rprecondition-def
by auto

lemma inst-local-respect:
assumes not-ifp :: ¬ rifp (rcurrent s) u
 and prec :: rprecondition s (rcurrent s) a
shows rvpeq u s (rstep s a)
using assms atomic-step-respects-policy rstate-invariant atomic-step-preserves-invariants
unfolding rifp-def rprecondition-def rvpeq-def rstep-def rcurrent-def
by auto

lemma inst-output-consistency:
assumes rvpeq: rvpeq (rcurrent s) s t
 and current-eq: rcurrent s = rcurrent t
shows routput-f s a = routput-f t a
proof−
 have ∀ a s t. rvpeq (rcurrent s) s t ∧ rcurrent s = rcurrent t → routput-f s a = routput-f t a
 proof−
 { fix a :: action-t
 fix s t :: rstate-t
 fix p :: page-t
 assume 1: rvpeq (rcurrent s) s t
 and 2: rcurrent s = rcurrent t
 let ?part = partition (rcurrent s)
 have routput-f s a p = routput-f t a p
 proof (cases Policy.sp-spec-subj-obj ?part (PAGE p) READ
rule: case-split [case-names Allowed Denied])
 case Allowed
 have 5: obj (↓s) (PAGE p) = obj (↓t) (PAGE p)
 using 1 Allowed unfolding rvpeq-def vpeq-def vpeq-obj-def by auto
 have 6: sp-impl-subj-obj (↓s) ?part (PAGE p) READ = sp-impl-subj-obj (↓t) ?part (PAGE p) READ
 using 1 2 Allowed unfolding rvpeq-def vpeq-def vpeq-subj-obj-def by auto
 show routput-f s a p = routput-f t a p
 unfolding routput-f-def using 2 5 6 by auto
 next case Denied
 hence sp-impl-subj-obj (↓s) ?part (PAGE p) READ = False
 and sp-impl-subj-obj (↓t) ?part (PAGE p) READ = False
 using rstate-invariant unfolding atomic-step-invariant-def sp-subset-def

by auto
 thus routput-f s a p = routput-f t a p
 using 2 unfolding routput-f-def by simp
qed }

thus \forall a s t. rvpeq (rcurrent s) s t \land rcurrent s = rcurrent t \rightarrow routput-f s a = routput-f t a
 by auto
qed
thus \?thesis using assms by auto
qed

lemma inst-cswitch-independent-of-state:
 assumes rcurrent s = rcurrent t
 shows rcurrent (rcswitch n s) = rcurrent (rcswitch n t)
 using rstate-invariant cswitch-preserves-invariants unfolding rcurrent-def rcswitch-def by simp

lemma inst-cswitch-consistency:
 assumes rvpeq u s t
 shows rvpeq u (rcswitch n s) (rcswitch n t)
 proof
 have 1: vpeq (partition u) \downarrow s \downarrow (rcswitch n s)
 using rstate-invariant cswitch-consistency-and-respect cswitch-preserves-invariants unfolding rcswitch-def
 by auto
 have 2: vpeq (partition u) \downarrow t \downarrow (rcswitch n t)
 using rstate-invariant cswitch-consistency-and-respect cswitch-preserves-invariants unfolding rcswitch-def
 by auto
 from 1 2 assms show \?thesis unfolding rvpeq-def using vpeq-rel by metis
 qed

 For the \textit{PREP} stage (the first stage of the IPC action sequence) the precondition is True.

lemma prec-first-IPC-action:
 assumes is-SK-IPC aseq
 shows rprecondition s d (hd aseq)
 using assms unfolding is-SK-IPC-def rprecondition-def atomic-step-precondition-def
 by auto

 For the the first stage of the \textit{EV-WAIT} action sequence the precondition is True.

lemma prec-first-EV-WAIT-action:
 assumes is-SK-EV-WAIT aseq
 shows rprecondition s d (hd aseq)
 using assms unfolding is-SK-EV-WAIT-def rprecondition-def atomic-step-precondition-def
 by auto

 For the first stage of the \textit{EV-SIGNAL} action sequence the precondition is True.

lemma prec-first-EV-SIGNAL-action:
 assumes is-SK-EV-SIGNAL aseq
 shows rprecondition s d (hd aseq)
 using assms unfolding is-SK-EV-SIGNAL-def rprecondition-def atomic-step-precondition-def
 ev-signal-precondition-def
 by auto
When not waiting or aborting, the precondition is “1-step inductive”, that is at all times the precondition holds initially (for the first step of an action sequence) and after doing one step.

Lemma prec-after-IPC-step:

Assumes
- `prec: rprecondition s (rcurrent s) (aseq ! n)`
- `n-bound: Suc n < length aseq`
- `IPC: is-SK-IPC aseq`
- `not-aborting: ¬raborting s (rcurrent s) (aseq ! n)`
- `not-waiting: ¬rwaiting s (rcurrent s) (aseq ! n)`

Shows
- `rprecondition (rstep s (aseq ! n)) (rcurrent s) (aseq ! Suc n)`

Proof

```
{ fix dir partner page
  let ?page' = (SOME page'. True)
  assume IPC: aseq = [SK-IPC dir PREP partner page, SK-IPC dir WAIT partner page, SK-IPC dir (BUF ?page') partner page]
  { assume 0: n=0
    from 0 IPC prec not-aborting
    have ?thesis
    by(auto)
  }
  moreover
  { assume 1: n=1
    from 1 IPC prec not-waiting
    have ?thesis
    by(auto)
  }
  moreover
  from IPC
  have length aseq = 3
  by auto
  ultimately
  have ?thesis
  using n-bound
  by arith
  }
thus ?thesis
using IPC
unfolding is-SK-IPC-def
by(auto)
qed
```

When not waiting or aborting, the precondition is 1-step inductive.

Lemma prec-after-EV-WAIT-step:

Assumes
- `prec: rprecondition s (rcurrent s) (aseq ! n)`
- `n-bound: Suc n < length aseq`
- `IPC: is-SK-EV-WAIT aseq`
- `not-aborting: ¬raborting s (rcurrent s) (aseq ! n)`
- `not-waiting: ¬rwaiting s (rcurrent s) (aseq ! n)`

Shows
- `rprecondition (rstep s (aseq ! n)) (rcurrent s) (aseq ! Suc n)`

Proof

```
{ 
```
fix consume

assume \textit{WAIT}: \textit{aseq} = [SK-EV-WAIT EV-PREP consume,
SK-EV-WAIT EV-WAIT consume,
SK-EV-WAIT EV-FINISH consume]

\{
assume 0: n=0
from 0 \textit{WAIT} \textit{prec} not-aborting
 have \textit{?thesis}
 unfolding \textit{rprecondition-def} atomic-step-precondition-def
 by (auto)
\}
moreover
\{
assume 1: n=1
from 1 \textit{WAIT} \textit{prec} not-waiting
 have \textit{?thesis}
 unfolding \textit{rprecondition-def} atomic-step-precondition-def
 by (auto)
\}
moreover
from \textit{WAIT}
 have length \textit{aseq} = 3
 by auto
ultimately
 have \textit{?thesis}
 using \textit{n-bound}
 by arith
\}
thus \textit{?thesis}
 using \textit{assms}
 unfolding \textit{is-SK-EV-WAIT-def}
 by auto
qed

When not waiting or aborting, the precondition is 1-step inductive.

\textbf{lemma } \textit{prec-after-EV-SIGNAL-step}:
\textbf{assumes} \textit{prec}: \textit{rprecondition} \textit{s} (\textit{rcurrent} \textit{s}) (\textit{aseq} \! n)
 and \textit{n-bound}: Suc \textit{n} < length \textit{aseq}
 and \textit{SIGNAL}: is-SK-EV-SIGNAL \textit{aseq}
 and \textit{not-aborting}: \neg \textit{raborting} \textit{s} (\textit{rcurrent} \textit{s}) (\textit{aseq} \! n)
 and \textit{not-waiting}: \neg \textit{rwaiting} \textit{s} (\textit{rcurrent} \textit{s}) (\textit{aseq} \! n)
\textbf{shows} \textit{rprecondition} (rstep s (aseq \! n)) (rcurrent s) (aseq \! Suc n)
\textbf{proof}−
\{
fix partner
assume \textit{SIGNAL1}: \textit{aseq} = [SK-EV-SIGNAL EV-SIGNAL-PREP partner,
SK-EV-SIGNAL EV-SIGNAL-FINISH partner]
\}
\{
assume 0: n=0
from 0 \textit{SIGNAL1} \textit{prec} not-aborting
 have \textit{?thesis}
 unfolding \textit{rprecondition-def} atomic-step-precondition-def
 aborting-def rstep-def atomic-step-def
 by auto
\}
moreover
from \textit{SIGNAL1}
 have length \textit{aseq} = 2
by auto
ultimately
have \text{thesis}
using n-bound
by arith
}
thus \text{thesis}
using assms
unfolding is-SK-EV-SIGNAL-def
by auto
qed

\text{lemma on-set-object-value:}
\text{shows sp-impl-subj-subj (set-object-value ob val s) = sp-impl-subj-subj s}
and sp-impl-subj-obj (set-object-value ob val s) = sp-impl-subj-obj s
unfolding set-object-value-def apply simp+ done

\text{lemma prec-IPC-dom-independent:}
assumes current s \neq d
and atomic-step-invariant s
and atomic-step-precondition s d a
shows atomic-step-precondition (atomic-step-ipc (current s) dir stage partner page s) d a
using assms on-set-object-value
unfolding atomic-step-precondition-def atomic-step-ipc-def ipc-precondition-def
ev-signal-precondition-def set-object-value-def
by (auto split: int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits
 ev-consume-t.splits ev-wait-stage-t.splits ev-signal-stage-t.splits)

\text{lemma prec-ev-signal-dom-independent:}
assumes current s \neq d
and atomic-step-invariant s
and atomic-step-precondition s d a
shows atomic-step-precondition (atomic-step-ev-signal (current s) partner s) d a
using assms on-set-object-value
unfolding atomic-step-precondition-def atomic-step-ev-signal-def ipc-precondition-def
ev-signal-precondition-def set-object-value-def
by (auto split: int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits
 ev-consume-t.splits ev-wait-stage-t.splits ev-signal-stage-t.splits)

\text{lemma prec-ev-wait-one-dom-independent:}
assumes current s \neq d
and atomic-step-invariant s
and atomic-step-precondition s d a
shows atomic-step-precondition (atomic-step-ev-wait-one (current s) s) d a
using assms on-set-object-value
unfolding atomic-step-precondition-def atomic-step-ev-wait-one-def ipc-precondition-def
ev-signal-precondition-def set-object-value-def
by (auto split: int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits
 ev-consume-t.splits ev-wait-stage-t.splits ev-signal-stage-t.splits)

\text{lemma prec-ev-wait-all-dom-independent:}
assumes current s \neq d
and atomic-step-invariant s
and atomic-step-precondition s d a
shows atomic-step-precondition (atomic-step-ev-wait-all (current s) s) d a
using assms on-set-object-value
unfolding atomic-step-precondition-def atomic-step-ev-wait-all-def ipc-precondition-def
Lemma 1: Prec-dom-independent

Shows: \(\forall s d a a'. \text{rcurrent } s /\text{slash.left} = d \land \text{rprecondition } s d a \rightarrow \text{rprecondition } (rstep s a') d a \)

Using: atomic-step-preserves-invariants

Unfolding: rcurrent-def rprecondition-def rstep-def atomic-step-def

By: (auto split: int-point-t.split ipc-stage-t.split ipc-direction-t.split ev-consume-t.split ev-wait-stage-t.split ev-signal-stage-t.split)

Lemma 2: IPC-precondition-after-cswitch

Shows: IPC-precondition \(d \text{ dir partner page } ((\downarrow s)(\text{current := new-current})) \)

Using: cswitch-preserves-invariants rstate-invariant

Unfolding: IPC-precondition-def

By: (auto split: ipc-direction-t.split)

Lemma 3: Aborting-switch-independent

Shows: \(\forall n s \cdot \text{raborting } (rswitch n s) = \text{raborting } s \)

Proof:

```
{ 
  fix n s 
  { 
    fix tid a 
    have raborting (rswitch n s) tid a = raborting s tid a 
    unfolding aborting-def rswitch-def 
    apply (auto split: int-point-t.split ipc-stage-t.split ev-signal-stage-t.split ev-wait-stage-t.split.splits ev-signal-stage-t.split) 
    apply (metis (full-types)) 
    by blast 
  } 
  hence raborting (rswitch n s) = raborting s by auto 
} 
thus ?thesis by auto 
```

QED

Lemma 4: Waiting-switch-independent

Shows: \(\forall n s \cdot \text{rwaiting } (rswitch n s) = \text{rwaiting } s \)

Proof:

```
{ 
  fix n s 
  { 
    fix tid a 
    have rwaiting (rswitch n s) tid a = rwaiting s tid a 
    unfolding waiting-def rswitch-def 
    apply (auto split: int-point-t.split ipc-stage-t.split ev-wait-stage-t.split ev-signal-stage-t.split) 
  } 
  by (auto split: int-point-t.split ipc-stage-t.split ev-wait-stage-t.split) 
}```
hence \textit{rwating} (\textit{rcswitch n s}) = \textit{rwating s} \textbf{by} \textit{auto}

\{ thus \textit{?thesis} \textbf{by} \textit{auto} \}

\textbf{qed}

\textbf{lemma} aborting-after-IPC-step:
\begin{itemize}
  \item \textbf{assumes} d1 \neq d2
  \item \textbf{shows} aborting (atomic-step-ipc d1 dir stage partner page s) d2 a = aborting s d2 a
\end{itemize}
\textbf{unfolding} atomic-step-ipc-def aborting-def set-object-value-def ipc-precondition-def
\textbf{by} (auto split: int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits ev-signal-stage-t.splits)

\textbf{lemma} waiting-after-IPC-step:
\begin{itemize}
  \item \textbf{assumes} d1 \neq d2
  \item \textbf{shows} waiting (atomic-step-ipc d1 dir stage partner page s) d2 a = waiting s d2 a
\end{itemize}
\textbf{unfolding} atomic-step-ipc-def waiting-def set-object-value-def ipc-precondition-def
\textbf{by} (auto split: int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits ev-wait-stage-t.splits)

\textbf{lemma} raborting-consistent:
\begin{itemize}
  \item \textbf{shows} \(\forall s t u. \text{rvpeq u s t} \longrightarrow \text{raborting s u} = \text{raborting t u}\)
\end{itemize}
\textbf{proof-}
\begin{itemize}
  \item \textbf{fix} s t u
  \item \textbf{assume} vpeq: rvpeq u s t
  \{ \textbf{fix} a \textbf{from} vpeq ipc-precondition-weakly-step-consistent rstate-invariant
  \textbf{have} \(\land\) tid dir partner page . ipc-precondition u dir partner page (\(\downarrow s\))
  \textbf{=} ipc-precondition u dir partner page (\(\downarrow t\))
  \textbf{unfolding} rvpeq-def
  \textbf{by} \textit{auto}
  \textbf{with} vpeq rstate-invariant \textbf{have} raborting s u a = raborting t u a
  \textbf{unfolding} aborting-def rvpeq-def vpeq-local-def ev-signal-precondition-def
  vpeq-subj-subj-def atomic-step-invariant-def sp-subset-def rep-def
  \textbf{apply} (auto split: int-point-t.splits ipc-stage-t.splits ev-signal-stage-t.splits)
  \textbf{by} \textit{blast}
  \}
  \textbf{hence} raborting s u = raborting t u \textbf{by} \textit{auto}
\}
\textbf{thus} \textit{?thesis} \textbf{by} \textit{auto}
\textbf{qed}

\textbf{lemma} aborting-dom-independent:
\begin{itemize}
  \item \textbf{assumes} rcurrent s \neq d
  \item \textbf{shows} raborting (rstep s a) d a' = raborting s d a'
\end{itemize}
\textbf{proof –}
\begin{itemize}
  \item \textbf{have} \(\land\) tid dir partner page s . ipc-precondition tid dir partner page s = ipc-precondition tid dir partner page (atomic-step s a)
  \begin{align*}
  \land \text{ev-signal-precondition tid partner s} = \text{ev-signal-precondition tid partner (atomic-step s a)}
  \end{align*}
  \textbf{proof –}
  \begin{itemize}
  \item \textbf{fix} tid dir partner page s
  \item \textbf{let} \textit{s = atomic-step s a}
\end{itemize}
have \(\forall p q \cdot \text{sp-impl-subj-subj } s p q = \text{sp-impl-subj-subj } \text{?} s p q\)
∧ \(\forall p x m \cdot \text{sp-impl-subj-obj } s p x m = \text{sp-impl-subj-obj } ?s p x m\)

unfolding atomic-step-def atomic-step-ipc-def
atomic-step-ev-wait-all-def atomic-step-ev-wait-one-def
atomic-step-ev-signal-def set-object-value-def
by (auto split: int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits
ev-wait-stage-t.splits ev-consume-t.splits ev-signal-stage-t.splits)

thus ipc-precondition tid dir partner page s = ipc-precondition tid dir partner page (atomic-step s a)
∧ ev-signal-precondition tid partner s = ev-signal-precondition tid partner (atomic-step s a)

unfolding ipc-precondition-def ev-signal-precondition-def by simp
qed

moreover have \(\land b. (\downarrow (\uparrow (\text{atomic-step } ?s b))) = \text{atomic-step } ?s b\)
using rstate-invariant atomic-step-preserves-invariants rstate-up-down by auto

ultimately show ?thesis
unfolding aborting-def rstep-def ev-signal-precondition-def
by (simp split: int-point-t.splits ipc-stage-t.splits ev-wait-stage-t.splits
ev-signal-stage-t.splits)

qed

lemma ipc-precondition-of-partner-consistent:
assumes vpeq: \(\forall d \in \text{rkinvolved } (\text{SK-IPC dir WAIT partner page}) . \text{rvpeq } d s t\)
shows ipc-precondition partner dir' u page' ?s = ipc-precondition partner dir' u page' ?t

proof-
from assms ipc-precondition-weakly-step-consistent rstate-invariant
show ?thesis
unfolding rvpeq-def rkinvolved-def
by auto

qed

lemma ev-signal-precondition-of-partner-consistent:
assumes vpeq: \(\forall d \in \text{rkinvolved } (\text{SK-EV-SIGNAL EV-SIGNAL-FINISH partner}) . \text{rvpeq } d s t\)
shows ev-signal-precondition partner u (?) s = ev-signal-precondition partner u (?) t

proof-
from assms ev-signal-precondition-weakly-step-consistent rstate-invariant
show ?thesis
unfolding rvpeq-def rkinvolved-def
by auto

qed

lemma waiting-consistent:
shows \(\forall s t u a . \text{rvpeq } (\text{rcurrent } s) s t \land (\forall d \in \text{rkinvolved } a . \text{rvpeq } d s t)\)
∧ rvpeq u s t
→ rwaiting s u a = rwaiting t u a

proof-
{ fix s t u a
  assume vpeq: rvpeq (rcurrent s) s t
  assume vpeq-involved: \(\forall d \in \text{rkinvolved } a . \text{rvpeq } d s t\)
  assume vpeq-u: rvpeq u s t
  have rwaiting s u a = rwaiting t u a proof (cases a)
  case SK-IPC
  thus rwaiting s u a = rwaiting t u a
  using ipc-precondition-of-partner-consistent vpeq-involved
  unfolding waiting-def by (auto split: ipc-stage-t.splits)
  next case SK-EV-WAIT
  thus rwaiting s u a = rwaiting t u a
}

qed
using ev-signal-precondition-of-partner-consistent
vpeq-involved vpeq vpeq-u
unfolding waiting-def rkinvolved-def ev-signal-precondition-def
rpeq-def vpeq-def vpeq-local-def
by (auto split: ipc-stage-t.splits ev-wait-stage-t.splits ev-consume-t.splits)
qed (simp add: waiting-def, simp add: waiting-def)
}
thus ?thesis by auto
qed

lemma ipc-precondition-ensures-ifp:
assumes ipc-precondition (current s) dir partner page s
and atomic-step-invariant s
shows rifp partner (current s)
proof –
let ?sp = λ t1 t2 . Policy.sp-spec-subj-subj (partition t1) (partition t2)
have ?sp (current s) partner v ?sp partner (current s)
using assms unfolding ipc-precondition-def atomic-step-invariant-def sp-subset-def
by (cases dir, auto)
thus ?thesis
unfolding rifp-def using Policy-properties.ifp-compatible-with-sp-spec by auto
qed

lemma ev-signal-precondition-ensures-ifp:
assumes ev-signal-precondition (current s) partner s
and atomic-step-invariant s
shows rifp partner (current s)
proof –
let ?sp = λ t1 t2 . Policy.sp-spec-subj-subj (partition t1) (partition t2)
have ?sp (current s) partner v ?sp partner (current s)
using assms unfolding ev-signal-precondition-def atomic-step-invariant-def sp-subset-def
by (auto)
thus ?thesis
unfolding rifp-def using Policy-properties.ifp-compatible-with-sp-spec by auto
qed

lemma involved-ifp:
shows ∀ s a . ∀ d ∈ rkinvolved a . rprecondition s (rcurrent s) a → rifp d (rcurrent s)
proof–
{ fix s a d
assume d-involved: d ∈ rkinvolved a
assume prec: rprecondition s (rcurrent s) a
from d-involved prec have rifp d (rcurrent s)
using ipc-precondition-ensures-ifp ev-signal-precondition-ensures-ifp rstate-invariant
unfolding rkinvolved-def rprecondition-def atomic-step-precondition-def rcurrent-def Kernel.involved-def
by (cases a,simp,auto split: int-point-t.splits ipc-stage-t.splits ev-wait-stage-t.splits)
}
thus ?thesis by auto
qed

lemma spec-of-waiting-ev:
shows ∀ s a . rwaiting s (rcurrent s) (SK-EV-WAIT EV-FINISH EV-CONSUME-ALL)
→ rstep s a = s
unfolding waiting-def
by auto
Lemma `spec-of-waiting-ev-w`:
shows \( \forall s, a. \text{rwaiting}(s) (\text{rcurrent}(s)) (\text{SK-WAIT EV-WAIT EV-CONSUME-ALL}) \rightarrow \text{rstep}(s) (\text{SK-WAIT EV-WAIT EV-CONSUME-ALL}) = s \)
unfolding `rstep-def atomic-step-def`
by (auto split: int-point-t.splits ipc-stage-t.splits ev-wait-stage-t.splits)

Lemma `spec-of-waiting`:
shows \( \forall s, a. \text{rwaiting}(s) (\text{rcurrent}(s)) a \rightarrow \text{rstep}(s, a) = s \)
by (auto split: int-point-t.splits ipc-stage-t.splits ev-wait-stage-t.splits)
end

4.9 Link implementation to CISK: the specific separation kernel is an interpretation of the generic model.

Theory `Link-separation-kernel-model-to-CISK`
imports `Separation-kernel-model`
begin

We show that the separation kernel instantiation satisfies the specification of CISK.

Theorem `CISK-proof-obligations-satisfied`:
shows
Controllable-Interruptible-Separation-Kernel
rstep
routput-f
\((\uparrow s_0)\)
rcurrent
rcswitch
rkinvolved
rifp
rvpeq
raS-set
rinvariant
rprecondition
raborting
rwainting
rset-error-code
proof (unfold-locales)
— show that `rvpeq` is equivalence relation
show \( \forall a, b, c, u. (\text{rvpeq}(u, a, b) \land \text{rvpeq}(u, b, c)) \rightarrow \text{rvpeq}(u, a, c) \)
and \( \forall a, b, u. \text{rvpeq}(u, a, b) \rightarrow \text{rvpeq}(u, b, a) \)
and \( \forall a, u. \text{rvpeq}(u, a, a) \)
using `inst-rpeq-rel` by `metis`
— show output consistency
show \( \forall a, s, t. \text{rvpeq}(\text{rcurrent}(s), s, t \land \text{rcurrent}(s) = \text{rcurrent}(t)) \rightarrow \text{routput-f}(s, a) = \text{routput-f}(t, a) \)
using `inst-output-consistency` by `metis`
— show reflexivity of `ifp`
show \( \forall u, \text{rifp}(u) = u \)
using `inst-ifp-refl` by `metis`
— show step consistency
show \( \forall s, t, u, a. \text{rvpeq}(s, t, a) \land \text{rvpeq}(\text{rcurrent}(s), s, t \land \text{rprecondition}(s) (\text{rcurrent}(s)) a \land \text{rprecondition}(t) (\text{rcurrent}(t)) a \land \text{rprecondition}(s) = \text{rprecondition}(t) \rightarrow \text{rvpeq}(u, \text{rstep}(s, a)) (\text{rstep}(t, a)) \)
using `inst-weakly-step-consistent` by `blast`
— show step atomicity
show \( \forall s \ a. \ \text{rcurrent} (\text{rstep} s \ a) = \text{rcurrent} s \)
using inst-step-atomicity by metis

show \( \forall a s u. \ rff (\text{rcurrent} s) \ u \land \text{True} \land \text{precondition} s (\text{rcurrent} s) \ a \rightarrow rvpeq u s (\text{rstep} s \ a) \)
using inst-local-respect by blast
— show cswitch is independent of state

show \( \forall a s u. \ \lnot \text{rifp} (\text{rcurrent} s) u \land \text{True} \land \text{rprecondition} s (\text{rcurrent} s) \ a \rightarrow rvpeq u s (\text{rstep} s \ a) \)
using inst-cswitch-independent-of-state by blast
— show cswitch consistency

show \( \forall n s t. \ \text{rcurrent} s = \text{rcurrent} t \rightarrow \text{rcurrent} (\text{rcswitch} n s) = \text{rcurrent} (\text{rcswitch} n t) \)
using inst-cswitch-consistency by metis
— Show the empt action sequence is in AS-set

show \( [\ ] \in \text{rAS-set} \)
unfolding rAS-set-def by auto
— The invariant for the initial state, already encoded in rstate-t

show True by auto
— Step function of the invariant, already encoded in rstate-t

show \( \forall s n. \ \text{True} \rightarrow \text{True} \)
by auto
— The precondition does not change with a context switch

show \( \forall s d n a. \ \text{rprecondition} s \ d \ a \rightarrow \text{rprecondition} (\text{rcswitch} n s) \ d \ a \)
using pre-ipc-action by blast
— The precondition holds for the first action of each action sequence

show \( \forall s d a \ a. \ \text{rprecondition} s \ d \ a \rightarrow \text{rprecondition} (\text{rcswitch} n s) \ d \ a \)
using pre-ipc-action by blast
— The precondition holds for the next action in an action sequence, assuming the sequence is not aborted or delayed

show \( \forall s d a \ a'. (\exists aseq \in \text{rAS-set} \land aseq \neq [\ ] \rightarrow \text{rprecondition} s \ d \ (hd aseq)) \land \text{True} \land \text{rprecondition} s (\text{rcurrent} s) \ a \land \lnot \text{raborting} s (\text{rcurrent} s) \ a \rightarrow \text{rprecondition} (\text{rstep} s \ a) (\text{rcurrent} s) \ a' \)
using pre-ipc-action by blast
— Steps of other domains do not influence the precondition

show \( \forall s d a \ a'. \text{rprecondition} s \ d \ a \rightarrow \text{rprecondition} (\text{rstep} s \ a) \ d \ a \)
using pre-ipc-action by blast
— The invariant

show \( \forall s a. \ \text{True} \rightarrow \text{True} \)
by auto
— Aborting does not depend on a context switch

show \( \forall n s. \ \text{raborting} (\text{rcswitch} n s) = \text{raborting} s \)
using aborting-switch-independent by auto
— Aborting does not depend on actions of other domains

show \( \forall s a d. \ \text{raborting} (\text{rstep} s \ a) \ d = \text{raborting} s \ d \)
using aborting-dom-independent by auto
— Aborting is consistent

show \( \forall s t u. \ \text{rvpeq} u s t \rightarrow \text{raborting} s u = \text{raborting} t u \)
using raborting-consistent by auto
— Waiting does not depend on a context switch

show \( \forall n s. \ \text{rwaiting} (\text{rcswitch} n s) = \text{rwaiting} s \)
using waiting-switch-independent by auto
— Waiting is consistent

show \( \forall s t u a. \ \text{rvpeq} (\text{rcurrent} s) s t \land (\forall d \in \text{rkinvolved} a. \ \text{rvpeq} d s t) \land \text{rvpeq} u s t \)
D31.1 – Formal Specification of a Generic Separation Kernel

---

→ rwaiting s u a = rwaiting t u a

**unfolding** Kernel.involved-def

**using** waiting-consistent by auto

— Domains that are involved in an action may influence the domain of the action

**show** ∀ s a. ∀ d ∈ rkinvolved a. rprecondition s (rcurrent s) a → rifp d (rcurrent s)

**using** involved-ifp by blast

— An action that is waiting does not change the state

**show** ∀ s a. rwaiting s (rcurrent s) a → rstep s a = s

**using** spec-of-waiting by blast

— Proof obligations for set-error-code. Right now, they are all trivial

**show** ∀ s d a' a. rcurrent s ≠ d ∧ raborting s d a → raborting (rset-error-code s a') d a

**unfolding** rset-error-code-def

by auto

**show** ∀ s t u a. rvpeq u s t → rvpeq u (rset-error-code s a) (rset-error-code t a)

**unfolding** rset-error-code-def

by auto

**show** ∀ s a u. ~ rifp (rcurrent s) u → rvpeq u s (rset-error-code s a)

**unfolding** rset-error-code-def

by (metis ∀ a u. rvpeq u a a)

**show** ∀ s a. rcurrent (rset-error-code s a) = rcurrent s

**unfolding** rset-error-code-def

by auto

**show** ∀ s d a' a. rprecondition s d a ∧ raborting s (rcurrent s) a' → rprecondition (rset-error-code s a') d a

**unfolding** rset-error-code-def

by auto

**show** ∀ s d a' a. rcurrent s ≠ d ∧ rwaiting s d a → rwaiting (rset-error-code s a') d a

**unfolding** rset-error-code-def

by auto

**qed**

Now we can instantiate CISK with some initial state, interrupt function, etc.

**interpretation** Inst

Controllable-Interruptible-Separation-Kernel

rstep — step function, without program stack

routput-f — output function

↑s0 — initial state

rcurrent — returns the currently active domain

rswitch — switches the currently active domain

(op =) 42 — interrupt function (yet unspecified)

rinvolved — returns a set of threads involved in the give action

rifp — information flow policy

rvpeq — view partitioning

rAS-set — the set of valid action sequences

rinvariant — the state invariant

rprecondition — the precondition for doing an action

raborting — condition under which an action is aborted

rwaiting — condition under which an action is delayed

rset-error-code — updates the state. Has no meaning in the current model.

**using** CISK-proof-obligations-satisfied by auto

The main theorem: the instantiation implements the information flow policy ifp.

**theorem** risecure:

Inst.isecure

**using** Inst.unwinding-implies-isecure-CISK

by blast

end
5 Related Work

We consider various definitions of intransitive (I) noninterference (NI). This overview is by no means intended to be complete. We first prune the field by focusing on INI with as granularity the domains: if the security policy states the act “v \sim u”, this means domain v is permitted to flow any information it has at its disposal to u. We do not consider language-based approaches to noninterference [26], which allow finer granularity mechanisms (i.e., flowing just a subset of the available information). Secondly, several formal verification efforts have been conducted concerning properties similar and related to INI such as no-exfiltration and no-infiltration [9]. Heitmeyer et al. prove these properties for a separation kernel in a Common Criteria certification process [11] (which kernel and which EAL is not clear). Martin et al. proved separation properties over the MASK kernel [18] and Shapiro and Weber verified correctness of the EROS confinement mechanism [28]. Klein provides an excellent overview of OS’s for which such properties have been verified [13]. Thirdly, INI definitions can be built upon either state-based automata, trace-based models, or process algebraic models [30]. We do not focus on the latter, as our approach is not based on process algebra.

Transitive NI was first introduced by Goguen and Meseguer in 1982 [7] and has been the topic of heavy research since. Goguen and Meseguer tried to extend their definition with an unless construct to allow such policies [8]. This construct, however, did not capture the notion of INI [17]. The first commonly accepted definition of INI is Rushby’s purging-based definition IP-secure [24]. IP-secure has been applied to, e.g., smartcards [27] and OS kernel extensions [7]. To the best of our knowledge, Rushby’s definition has not been applied in a certification context. Rushby’s definition has been subject to heavy scrutiny [22], [29] and a vast array of modifications have been proposed.

Roscoe and Goldsmith provide CSP-based definitions of NI for the transitive and the intransitive case, here dubbed as lazy and mixed independence. The latter one is more restrictive than Rushby’s IP-secure. Their critique on IP-secure, however, is not universally accepted [7]. Greve et al. provided the GWV framework developed in ACL2 [9]. Their definition is a non-inductive version of noninterference similar to Rushby’s step consistency. GWV has been used on various industrial systems. The exact relation between GWV and (I)P-secure, i.e., whether they are of equal strength, is still open. The second property, Declassification, means whether the definition allows assignments in the form of $l := \text{declassify}(h)$ (where we use Sabelfelds [26] notation for high and low variables). Information flows from h to l, but only after it has been declassified. In general, NI is coarser than declassification. It allows where downgrading can occur, but now what may be downgraded [17]. Mantel provides a definition of transitive NI where exceptions can be added to allow de-classification by adding intransitive exceptions to the security policy [17].

To deal with concurrency, definitions of NI have been proposed for Non-Deterministic automata. Von Oheimb defined noninfluence for such systems. His definition can be regarded as a “non-deterministic version” of IP-secure. Engelhardt et al. defined nTA-secure, the non-deterministic version of TA-secure. Finally, some notions of INI consider models that are in a sense richer than similar counterparts. Leslie extends Rushby’s notion of IP-secure for a model in which the security policy is Dynamic. Eggert et al. defined i-secure, an extension of IP-secure. Their model extends Rushby’s model (Mealy machines) with Local security policies. Murray et al. extend Von Oheimb definition of noninfluence to apply to a model that does not assume a static mapping of actions to domains. This makes it applicable to OS’s, as in such a setting such a mapping does not exist [20]. NI-OS has been applied to the seL4 separation kernel [20], [14].

Most definitions have an associated methodology. Various methodologies are based on unwinding [8]. This breaks down the proof of NI into smaller proof obligations (PO’s). These PO’s can be checked by some manual proof [24], [10], model checking [32] or dedicated algorithms [5]. The methodology of Murray et al. is a combination of unwinding, automated deduction and manual proofs. Some definitions are undecidable and have no suitable unwinding.

We are aiming to provide a methodology for INI based on a model that is richer in detail than Mealy machines. This places our contribution next to other works that aim to extend IP-security [15], [4] in
Figure 2. Similar to those approaches, we take IP-security as a starting point. We add kernel control mechanisms, interrupts and context switches. Ideally, we would simply prove IP-security over CISK. We argue that this is impossible and that a rephrasing is necessary.

Our ultimate goal — certification of PikeOS — is very similar to the work done on seL4 [20]–[19]. There are two reasons why their approach is not directly applicable to PikeOS. First, seL4 has been developed from scratch. A Haskell specification serves as the medium for the implementation as well as the system model for the kernel [6]. C code is derived from a high level specification. PikeOS, in contrast, is an established industrial OS. Secondly, interrupts are mostly disabled in seL4. Klein et al. side-step dealing with the verification complexity of interrupts by using a mostly atomic API [14]. In contrast, we aim to fully address interrupts.

With respect to attempts to formal operating system verifications, notable works are also the Verisoft I project [1] where also a weak form of a separation property, namely fairness of execution was addressed [3].

6 Conclusion

We have introduced a generic theory of intransitive non-interference for separation kernels with control as a series of locales and extensible record definitions in order to achieve a modular organization. Moreover, we have shown that it can be instantiated for a simplistic API consisting of IPC and events.

In the ongoing EURO-MILS project, we will extend this generic theory in order make it sufficiently rich to be instantiated with a realistic functional model of PikeOS.

6.0.1 Acknowledgement.

This work corresponds to the formal deliverable D31.1 of the Euro-MILS project funded by the European Union’s Programme

$\text{FP7/2007 – 2013}$

under grant agreement number ICT-318353.

References


