The Calculus of Communicating Systems

Jesper Bengtson

September 13, 2023

Abstract

We formalise a large portion of CCS as described in Milner's book 'Communication and Concurrency' using the nominal datatype package in Isabelle. Our results include many of the standard theorems of bisimulation equivalence and congruence, for both weak and strong versions. One main goal of this formalisation is to keep the machinechecked proofs as close to their pen-and-paper counterpart as possible.

Contents

1 Overview 1
2 Formalisation

1 Overview

These theories formalise the following results from Milner's book Communication and Concurrency.

- strong bisimilarity is a congruence
- strong bisimilarity respects the laws of structural congruence
- weak bisimilarity is preserved by all operators except sum
- weak congruence is a congruence
- all strongly bisimilar agents are also weakly congruent which in turn are weakly bisimilar. As a corollary, weak bisimilarity and weak congruence respect the laws of structural congruence.

The file naming convention is hopefully self explanatory, where the prefixes Strong and Weak denote that the file covers theories required to formalise properties of strong and weak bisimilarity respectively; if the file name contains Sim the theories cover simulation, file names containing Bisim
cover bisimulation, and file names containing Cong cover weak congruence; files with the suffix Pres deal with theories that reason about preservation properties of operators such as a certain simulation or bisimulation being preserved by a certain operator; files with the suffix $S C$ reason about structural congruence.

For a complete exposition of all theories, please consult Bengtson's Ph. D. thesis [1].

2 Formalisation

```
theory Agent
    imports \(H O L-\) Nominal.Nominal
begin
atom-decl name
nominal-datatype act \(=\) actAction name \(\quad(0-1) 100)\)
    | actCoAction name (〈->100)
    | actTau ( \(\tau\) 100)
nominal-datatype \(c c s=\) CCSNil \(\quad(0115)\)
    | Action act ccs (-.- [120, 110] 110)
    | Sum ccs ccs \(\quad(\) infixl \(\oplus 90)\)
    | Par ccs ccs (infixl || 85)
    | Res «name» ccs ( ( \(\nu-\mid\) )- [105, 100] 100)
    | Bang ccs (!- [95])
nominal-primrec coAction :: act \(\Rightarrow\) act
where
    coAction \(((|a|)=(\langle a\rangle)\)
\(\mid\) coAction \((\langle a\rangle)=((|a|))\)
\(\mid\) coAction \((\tau)=\tau\)
\(\langle p r o o f\rangle\)
lemma coActionEqvt[eqvt]:
    fixes \(p\) :: name prm
    and \(a::\) act
    shows \((p \cdot \operatorname{coAction} a)=\operatorname{coAction}(p \cdot a)\)
\(\langle p r o o f\rangle\)
lemma coActionSimps[simp]:
    fixes \(a\) :: act
    shows coAction (coAction a) \(=a\)
    and \((\) coAction \(a=\tau)=(a=\tau)\)
\(\langle p r o o f\rangle\)
```

lemma coActSimp $[\operatorname{simp}]$: shows coAction $\alpha \neq \tau=(\alpha \neq \tau)$ and (coAction $\alpha=$ $\tau)=(\alpha=\tau)$
$\langle p r o o f\rangle$

```
lemma coActFresh[simp]:
    fixes x :: name
    and a :: act
    shows }x\sharp\mathrm{ coAction a = x #a
<proof\rangle
```

```
lemma alphaRes:
    fixes \(y\) :: name
    and \(P:: c c s\)
    and \(x::\) name
    assumes \(y \sharp P\)
    shows \((\nu x) P=(\nu y)([(x, y)] \cdot P)\)
\(\langle p r o o f\rangle\)
inductive semantics \(::\) ccs \(\Rightarrow\) act \(\Rightarrow\) ccs \(\Rightarrow\) bool \(\quad(-\longmapsto-\prec-[80,80,80] 80)\)
where
    Action: \(\quad \alpha .(P) \longmapsto \alpha \prec P\)
| Sum1: \(\quad P \longmapsto \alpha \prec P^{\prime} \Longrightarrow P \oplus Q \longmapsto \alpha \prec P^{\prime}\)
| Sum2: \(\quad Q \longmapsto \alpha \prec Q^{\prime} \Longrightarrow P \oplus Q \longmapsto \alpha \prec Q^{\prime}\)
| Par1: \(\quad P \longmapsto \alpha \prec P^{\prime} \Longrightarrow P\left\|Q \longmapsto \alpha \prec P^{\prime}\right\| Q\)
Par2: \(\quad Q \longmapsto \alpha \prec Q^{\prime} \Longrightarrow P\|Q \longmapsto \alpha \prec P\| Q^{\prime}\)
| Comm: \(\quad \llbracket P \longmapsto a \prec P^{\prime} ; Q \longmapsto(\) coAction \(a) \prec Q^{\prime} ; a \neq \tau \rrbracket \Longrightarrow P \| Q \longmapsto \tau \prec\)
\(P^{\prime} \| Q^{\prime}\)
| Res: \(\quad \llbracket P \longmapsto \alpha \prec P^{\prime} ; x \sharp \alpha \rrbracket \Longrightarrow(\nu x \mid) P \longmapsto \alpha \prec(\nu x) P^{\prime}\)
| Bang: \(\quad P\left|\mid!P \longmapsto \alpha \prec P^{\prime} \Longrightarrow!P \longmapsto \alpha \prec P^{\prime}\right.\)
```

equivariance semantics
nominal-inductive semantics
$\langle p r o o f\rangle$
lemma semanticsInduct:
$\llbracket R \longmapsto \beta \prec R^{\prime} ; \wedge \alpha P \mathcal{C} . \operatorname{Prop} \mathcal{C}(\alpha .(P)) \alpha P ;$
$\wedge P \alpha P^{\prime} Q \mathcal{C} . \llbracket P \longmapsto \alpha \prec P^{\prime} ; \wedge \mathcal{C}$. Prop $\mathcal{C} P \alpha P^{\prime} \rrbracket \Longrightarrow \operatorname{Prop} \mathcal{C}($ ccs.Sum $P Q) \alpha$ P^{\prime};
$\bigwedge Q \alpha Q^{\prime} P \mathcal{C} . \llbracket Q \longmapsto \alpha \prec Q^{\prime} ; \bigwedge \mathcal{C} . \operatorname{Prop} \mathcal{C} Q \alpha Q^{\prime} \rrbracket \Longrightarrow \operatorname{Prop} \mathcal{C}($ ccs.Sum $P Q)$ αQ^{\prime};
$\wedge P \alpha P^{\prime} Q \mathcal{C} . \llbracket P \longmapsto \alpha \prec P^{\prime} ; \wedge \mathcal{C} . \operatorname{Prop} \mathcal{C} P \alpha P \rrbracket \Longrightarrow \operatorname{Prop} \mathcal{C}(P \| Q) \alpha\left(P^{\prime} \|\right.$ $Q)$;
$\bigwedge Q \alpha Q^{\prime} P \mathcal{C} . \llbracket Q \longmapsto \alpha \prec Q^{\prime} ; \bigwedge \mathcal{C} . \operatorname{Prop} \mathcal{C} Q \alpha Q^{\rrbracket} \Longrightarrow \operatorname{Prop} \mathcal{C}(P \| Q) \alpha(P \|$ Q^{\prime};

```
\Pa P'Q Q'\mathcal{C}
    |P\longmapstoa\prec 的; ^\mathcal{C}. Prop \mathcal{C P a P'; Q\longmapsto(coAction a)}\prec\mp@subsup{Q}{}{\prime};
    \C. Prop \mathcal{C }Q(coAction a) Q';a\not=\tau\rrbracket
    Prop\mathcal{C}(P|Q)(\tau)(P'| Q );
\P\alpha P' x\mathcal{C}.
```



```
((\nux|)P);
\P\alpha P
PProp (\mathcal{C::'a::fs-name) R \beta R'}
<proof>
lemma NilTrans[dest]:
    shows 0 \longmapsto < < P'\Longrightarrow False
    and (0b|).P\longmapsto\langlec\rangle\prec \prec P'\Longrightarrow False
    and ((||)).P\longmapsto\tau\prec 敖\Longrightarrow False
    and (\langleb\rangle).P\longmapsto(c|)\prec\mp@subsup{P}{}{\prime}\Longrightarrow False
    and }(\langleb\rangle).P\longmapsto\tau\prec\mp@subsup{P}{}{\prime}\Longrightarrow\mathrm{ False
<proof>
lemma freshDerivative:
    fixes P :: ccs
    and a :: act
    and }\mp@subsup{P}{}{\prime}::cc
    and }x\mathrm{ :: name
    assumes }P\longmapsto\alpha\prec\mp@subsup{P}{}{\prime
    and }\quadx\sharp
    shows }x\sharp\alpha\mathrm{ and }x\sharp\mp@subsup{P}{}{\prime
<proof\rangle
lemma actCases[consumes 1, case-names cAct]:
    fixes }\alpha\mathrm{ :: act
    and P :: ccs
    and }\beta\mathrm{ :: act
    and }\mp@subsup{P}{}{\prime}::cc
    assumes }\alpha.(P)\longmapsto\beta\prec\mp@subsup{P}{}{\prime
    and Prop \alpha P
    shows Prop \beta P'
<proof\rangle
lemma sumCases[consumes 1, case-names cSum1 cSum2]:
    fixes P :: ccs
    and }Q ::cc
    and }\alpha:: ac
    and }R\mathrm{ :: ccs
```

```
    assumes \(P \oplus Q \longmapsto \alpha \prec R\)
    and \(\quad \bigwedge P^{\prime} . P \longmapsto \alpha \prec P^{\prime} \Longrightarrow\) Prop \(P^{\prime}\)
    and \(\quad \bigwedge Q^{\prime} . Q \longmapsto \alpha \prec Q^{\prime} \Longrightarrow\) Prop \(Q^{\prime}\)
    shows Prop \(R\)
\(\langle p r o o f\rangle\)
lemma parCases[consumes 1, case-names cPar1 cPar2 cComm]:
    fixes \(P\) :: ccs
    and \(\quad Q:: c c s\)
    and \(a::\) act
    and \(\quad R:: c c s\)
    assumes \(P \| Q \longmapsto \alpha \prec R\)
    and \(\quad \wedge P^{\prime} . P \longmapsto \alpha \prec P^{\prime} \Longrightarrow \operatorname{Prop} \alpha\left(P^{\prime} \| Q\right)\)
    and \(\quad \bigwedge Q^{\prime} . Q \longmapsto \alpha \prec Q^{\prime} \Longrightarrow \operatorname{Prop} \alpha\left(P \| Q^{\prime}\right)\)
    and \(\bigwedge P^{\prime} Q^{\prime} a . \llbracket P \longmapsto a \prec P^{\prime} ; Q \longmapsto(\) coAction \(a) \prec Q^{\prime} ; a \neq \tau ; \alpha=\tau \rrbracket \Longrightarrow\)
\(\operatorname{Prop}(\tau)\left(P^{\prime} \| Q^{\prime}\right)\)
    shows Prop \(\alpha R\)
\(\langle p r o o f\rangle\)
lemma resCases[consumes 1, case-names cRes]:
    fixes \(x\) :: name
    and \(P:: c c s\)
    and \(\alpha\) :: act
    and \(P^{\prime}:: c c s\)
    assumes \((\nu x) P \longmapsto \alpha \prec P^{\prime}\)
    and \(\quad \bigwedge P^{\prime} \cdot \llbracket P \longmapsto \alpha \prec P^{\prime} ; x \sharp \alpha \rrbracket \Longrightarrow \operatorname{Prop}\left((\nu x \mid) P^{\prime}\right)\)
    shows Prop \(P^{\prime}\)
\(\langle p r o o f\rangle\)
inductive bangPred \(::\) ccs \(\Rightarrow\) ccs \(\Rightarrow\) bool
where
    aux1: bangPred \(P(!P)\)
| aux2: bangPred \(P(P|\mid!P)\)
lemma bangInduct[consumes 1, case-names cPar1 cPar2 cComm cBang]:
fixes \(P\) :: ccs
and \(\alpha\) :: act
and \(P^{\prime}::\) ccs
and \(\mathcal{C}\) :: 'a::fs-name
assumes \(!P \longmapsto \alpha \prec P^{\prime}\)
and \(\quad r \operatorname{Par1}: \wedge \alpha P^{\prime} \mathcal{C} . \llbracket P \longmapsto \alpha \prec P \rrbracket \Longrightarrow \operatorname{Prop} \mathcal{C}(P \|!P) \alpha\left(P^{\prime} \|!P\right)\)
and \(\quad r\) Par2: \(\bigwedge \alpha P^{\prime} \mathcal{C} . \llbracket!P \longmapsto \alpha \prec P^{\prime} ; \bigwedge \mathcal{C} . \operatorname{Prop} \mathcal{C}(!P) \alpha P \rrbracket \Longrightarrow \operatorname{Prop} \mathcal{C}(P\)
```

```
|!P) \alpha (P| | ')
```



```
Prop\mathcal{C}(!P)(coAction a) P'\prime;a\not=\tau\rrbracket\Longrightarrow Prop\mathcal{C}(P|!P)(\tau)(\mp@subsup{P}{}{\prime}|\mp@subsup{P}{}{\prime\prime})
    and rBang: }\\alpha\mp@subsup{P}{}{\prime}\mathcal{C}.\llbracketP|!P\longmapsto\alpha\prec\mp@subsup{P}{}{\prime};\bigwedge\mathcal{C}.\operatorname{Prop}\mathcal{C}(P|!P)\alpha P\
Prop \mathcal{C (!P) \alpha P'}
    shows Prop \mathcal{C (!P) \alpha P'}
<proof>
inductive-set bangRel :: (ccs }\times\mathrm{ ccs) set }=>(ccs\timesccs) se
for Rel :: (ccs }\times ccs) se
where
    BRBang: }(P,Q)\in\operatorname{Rel}\Longrightarrow(!P,!Q)\in\mathrm{ bangRel Rel
| BRPar: (R,T) \in Rel \Longrightarrow(P,Q)\in(bangRel Rel) \Longrightarrow(R|P,T|Q)\in(bangRel
Rel)
lemma BRBangCases[consumes 1, case-names BRBang]:
    fixes P :: ccs
    and Q ::ccs
    and Rel :: (ccs }\timesccs) se
    and F :: ccs }=>\mathrm{ bool
    assumes }(P,!Q)\in\mathrm{ bangRel Rel
    and}\quad\bigwedgeP.(P,Q)\in\operatorname{Rel}\LongrightarrowF(!P
    shows F P
<proof\rangle
lemma BRParCases[consumes 1, case-names BRPar]:
fixes P :: ccs
and Q ::ccs
and Rel :: (ccs }\timesccs) se
and F :: ccs => bool
assumes (P,Q|!Q)\in bangRel Rel
and}\quad\PR.\llbracket(P,Q)\in\operatorname{Rel};(R,!Q)\in\mathrm{ bangRel Rel』 }\LongrightarrowF(P|R
shows F P
<proof\rangle
lemma bangRelSubset:
    fixes Rel :: (ccs }\timesccs) se
    and Rel':: (ccs }\times\mathrm{ ccs) set
assumes }(P,Q)\in\mathrm{ bangRel Rel
and}\quad\PQ.(P,Q)\in\operatorname{Rel}\Longrightarrow(P,Q)\inRe\mp@subsup{l}{}{\prime
shows (P,Q)\inbangRel Rel'
```

```
\langleproof\rangle
end
theory Tau-Chain
    imports Agent
begin
definition tauChain :: ccs => ccs => bool (- \Longrightarrow> - [80, 80] 80)
    where }P\mp@subsup{\Longrightarrow}{\tau}{}\mp@subsup{P}{}{\prime}\equiv(P,\mp@subsup{P}{}{\prime})\in{(P,\mp@subsup{P}{}{\prime})|P\mp@subsup{P}{}{\prime}.P\longmapsto\tau\prec\mp@subsup{P}{}{\prime}}`*
lemma tauChainInduct[consumes 1, case-names Base Step]:
    assumes P\Longrightarrow}\mp@subsup{\Longrightarrow}{\tau}{}\mp@subsup{P}{}{\prime
    and Prop P
    and}\quad\bigwedge\mp@subsup{P}{}{\prime}\mp@subsup{P}{}{\prime\prime}\cdot\llbracketP\Longrightarrow\mp@subsup{\Longrightarrow}{\tau}{}\mp@subsup{P}{}{\prime};\mp@subsup{P}{}{\prime}\longmapsto\tau\prec\mp@subsup{P}{}{\prime\prime};\mathrm{ Prop P}\rrbracket\Longrightarrow\mathrm{ Prop P'
    shows Prop P'
<proof\rangle
lemma tauChainRefl[simp]:
    fixes P :: ccs
    shows }P\mp@subsup{\Longrightarrow}{\tau}{}
<proof\rangle
lemma tauChainCons[dest]:
    fixes P :: ccs
    and }\mp@subsup{P}{}{\prime}::cc
    and }\mp@subsup{P}{}{\prime\prime}::cc
    assumes P\Longrightarrow}\mp@subsup{\Longrightarrow}{\tau}{}\mp@subsup{P}{}{\prime
    and }\quad\mp@subsup{P}{}{\prime}\longmapsto\tau\prec\mp@subsup{P}{}{\prime\prime
    shows }P\mp@subsup{\Longrightarrow}{\tau}{}\mp@subsup{P}{}{\prime\prime
<proof\rangle
lemma tauChainCons2[dest]:
    fixes P :: ccs
    and }\mp@subsup{P}{}{\prime}::cc
    and }\mp@subsup{P}{}{\prime\prime}:: cc
    assumes }\mp@subsup{P}{}{\prime}\longmapsto\tau\prec\mp@subsup{P}{}{\prime\prime
    and }P\Longrightarrow\mp@subsup{\Longrightarrow}{\tau}{}\mp@subsup{P}{}{\prime
    shows }P\mp@subsup{\Longrightarrow}{\tau}{}\mp@subsup{P}{}{\prime\prime
<proof\rangle
lemma tauChainAppend[dest]:
```

```
    fixes P :: ccs
    and }\mp@subsup{P}{}{\prime}::cc
    and }\mp@subsup{P}{}{\prime\prime}::cc
    assumes P\Longrightarrow}\mp@subsup{\Longrightarrow}{\tau}{}\mp@subsup{P}{}{\prime
    and }\mp@subsup{P}{}{\prime}\Longrightarrow\mp@subsup{\Longrightarrow}{\tau}{}\mp@subsup{P}{}{\prime\prime
    shows }P\Longrightarrow\mp@subsup{\Longrightarrow}{\tau}{}\mp@subsup{P}{}{\prime\prime
\langleproof\rangle
lemma tauChainSum1:
    fixes P :: ccs
    and }\mp@subsup{P}{}{\prime}::cc
    and }Q ::cc
    assumes P\Longrightarrow}\mp@subsup{\Longrightarrow}{\tau}{}\mp@subsup{P}{}{\prime
    and }P\not=\mp@subsup{P}{}{\prime
    shows }P\oplusQ\Longrightarrow\mp@subsup{}{\tau}{}\mp@subsup{P}{}{\prime
\langleproof\rangle
lemma tauChainSum2:
fixes P :: ccs
and }\mp@subsup{P}{}{\prime}::cc
and }Q ::cc
assumes Q \Longrightarrow>}\mp@subsup{\tau}{\tau}{}\mp@subsup{Q}{}{\prime
and }Q\not=\mp@subsup{Q}{}{\prime
shows }P\oplusQ\Longrightarrow\mp@subsup{}{\tau}{}\mp@subsup{Q}{}{\prime
\langleproof\rangle
lemma tauChainPar1:
fixes P :: ccs
and }\mp@subsup{P}{}{\prime}::cc
and }Q ::cc
assumes }P\Longrightarrow\mp@subsup{}{\tau}{}\mp@subsup{P}{}{\prime
shows }P|Q\Longrightarrow\mp@subsup{}{\tau}{}\mp@subsup{P}{}{\prime}|
<proof\rangle
lemma tauChainPar2:
fixes Q :: ccs
and }\mp@subsup{Q}{}{\prime}::cc
and P :: ccs
assumes Q \Longrightarrow>
```

```
    shows }P|Q\mp@subsup{\Longrightarrow}{\tau}{}P|\mp@subsup{Q}{}{\prime
<proof\rangle
lemma tauChainRes:
    fixes P :: ccs
    and }\mp@subsup{P}{}{\prime}:: cc
    and }x\mathrm{ :: name
    assumes }P\mp@subsup{\Longrightarrow}{\tau}{}\mp@subsup{P}{}{\prime
    shows (\nux)P \Longrightarrow>
<proof\rangle
lemma tauChainRepl:
    fixes P :: ccs
    assumes }P|!P\Longrightarrow\mp@subsup{\Longrightarrow}{\tau}{}\mp@subsup{P}{}{\prime
    and }\mp@subsup{P}{}{\prime}\not=P|!
    shows !P \Longrightarrow}\mp@subsup{}{\tau}{}\mp@subsup{P}{}{\prime
\langleproof\rangle
end
theory Weak-Cong-Semantics
    imports Tau-Chain
begin
definition weakCongTrans :: ccs }=>\mathrm{ act }=>\mathrm{ ccs }=>\mathrm{ bool (- #- <-[80, 80, 80]
80)
    where }P\Longrightarrow\alpha\prec\mp@subsup{P}{}{\prime}\equiv\exists\mp@subsup{P}{}{\prime\prime}\mp@subsup{P}{}{\prime\prime\prime}.P\Longrightarrow\mp@subsup{\Longrightarrow}{\tau}{}\mp@subsup{P}{}{\prime\prime}\wedge\mp@subsup{P}{}{\prime\prime}\longmapsto\alpha\prec\mp@subsup{P}{}{\prime\prime\prime}\wedge 政\prime\prime\Longrightarrow\mp@subsup{}{\tau}{}\mp@subsup{P}{}{\prime
lemma weakCongTransE:
    fixes P :: ccs
    and }\alpha\mathrm{ :: act
    and }\mp@subsup{P}{}{\prime}:: cc
    assumes }P\Longrightarrow\alpha\prec\mp@subsup{P}{}{\prime
    obtains }\mp@subsup{P}{}{\prime\prime}\mp@subsup{P}{}{\prime\prime\prime}\mathrm{ where }P\mp@subsup{\Longrightarrow}{\tau}{}\mp@subsup{P}{}{\prime\prime}\mathrm{ and }\mp@subsup{P}{}{\prime\prime}\longmapsto\alpha\prec\mp@subsup{P}{}{\prime\prime\prime}\mathrm{ and }\mp@subsup{P}{}{\prime\prime\prime}\mp@subsup{\Longrightarrow}{\tau}{}\mp@subsup{P}{}{\prime
<proof\rangle
lemma weakCongTransI:
fixes P :: ccs
and }\mp@subsup{P}{}{\prime\prime}::cc
and \alpha :: act
and }\mp@subsup{P}{}{\prime\prime\prime}:: cc
and }\mp@subsup{P}{}{\prime}\mathrm{ :: ccs
```

```
    assumes }P>\mp@subsup{\Longrightarrow}{\tau}{}\mp@subsup{P}{}{\prime\prime
    and \quad P'\prime}\longmapsto\alpha\prec\mp@subsup{P}{}{\prime\prime\prime
    and }\mp@subsup{P}{}{\prime\prime\prime}\mp@subsup{\Longrightarrow}{\tau}{}\mp@subsup{P}{}{\prime
    shows }P\Longrightarrow\alpha\prec\mp@subsup{P}{}{\prime
<proof\rangle
lemma transitionWeakCongTransition:
    fixes P :: ccs
    and }\alpha\mathrm{ :: act
    and }\mp@subsup{P}{}{\prime}::cc
    assumes }P\longmapsto\alpha\prec\mp@subsup{P}{}{\prime
    shows }P\Longrightarrow\alpha\prec\mp@subsup{P}{}{\prime
\langleproof\rangle
lemma weakCongAction:
    fixes a :: name
    and P :: ccs
    shows }\alpha.(P)\Longrightarrow\alpha\prec
<proof\rangle
lemma weakCongSum1:
    fixes P :: ccs
    and }\alpha\mathrm{ :: act
    and }\mp@subsup{P}{}{\prime}::cc
    and }Q ::cc
    assumes }P\Longrightarrow\alpha\prec\mp@subsup{P}{}{\prime
    shows }P\oplusQ\Longrightarrow\alpha\prec\mp@subsup{P}{}{\prime
<proof\rangle
lemma weakCongSum2:
    fixes Q :: ccs
    and }\alpha\mathrm{ :: act
    and}\mp@subsup{Q}{}{\prime}::cc
    and }P::cc
    assumes }Q\Longrightarrow\alpha\prec\mp@subsup{Q}{}{\prime
    shows }P\oplusQ\Longrightarrow\alpha\prec\mp@subsup{Q}{}{\prime
<proof\rangle
lemma weakCongPar1:
    fixes P :: ccs
    and }\alpha :: ac
```

```
    and }\mp@subsup{P}{}{\prime}::cc
    and }Q ::cc
    assumes }P\Longrightarrow\alpha\prec\mp@subsup{P}{}{\prime
    shows }P|Q\Longrightarrow\alpha\prec\mp@subsup{P}{}{\prime}|
\langleproof\rangle
lemma weakCongPar2:
    fixes Q :: ccs
    and }\alpha\mathrm{ :: act
    and }\mp@subsup{Q}{}{\prime}:: cc
    and }P::cc
    assumes }Q\Longrightarrow\alpha\prec\mp@subsup{Q}{}{\prime
    shows }P|Q\Longrightarrow\alpha\precP|\mp@subsup{Q}{}{\prime
<proof\rangle
lemma weakCongSync:
    fixes P :: ccs
    and }\alpha\mathrm{ :: act
    and }\mp@subsup{P}{}{\prime}::cc
    and }Q ::cc
    assumes }P\Longrightarrow\alpha\prec\mp@subsup{P}{}{\prime
    and }\quadQ\Longrightarrow(\mathrm{ coAction }\alpha)\prec\mp@subsup{Q}{}{\prime
    and \quad\alpha\not=\tau
    shows }P|Q\Longrightarrow\tau\prec\mp@subsup{P}{}{\prime}|\mp@subsup{Q}{}{\prime
\langleproof\rangle
lemma weakCongRes:
fixes P :: ccs
and }\alpha\mathrm{ :: act
and }\mp@subsup{P}{}{\prime}:: cc
and }x\mathrm{ :: name
assumes }P\Longrightarrow\alpha\prec\mp@subsup{P}{}{\prime
and }\quadx\sharp
shows (\nux)P\Longrightarrow\alpha\prec(\nux)P'
<proof\rangle
lemma weakCongRepl:
fixes P :: ccs
and }\alpha\mathrm{ :: act
and }\mp@subsup{P}{}{\prime}::cc
```

```
    assumes }P|!P\Longrightarrow\alpha\prec\mp@subsup{P}{}{\prime
    shows !P\Longrightarrow\alpha\prec P'
\langleproof\rangle
end
theory Weak-Semantics
    imports Weak-Cong-Semantics
begin
definition weakTrans :: ccs => act => ccs => bool (- " - - - [80, 80, 80] 80)
    where P\Longrightarrow}\Longrightarrow\prec\prec\mp@subsup{P}{}{\prime}\equivP\Longrightarrow\alpha\prec\mp@subsup{P}{}{\prime}\vee(\alpha=\tau\wedgeP=\mp@subsup{P}{}{\prime}
lemma weakEmptyTrans[simp]:
    fixes P :: ccs
    shows }P\Longrightarrow^ \tau\prec
<proof>
lemma weakTransCases[consumes 1, case-names Base Step]:
    fixes P :: ccs
    and }\alpha\mathrm{ :: act
    and }\mp@subsup{P}{}{\prime}::cc
    assumes P\Longrightarrow\alpha\prec敖
    and }\llbracket\alpha=\tau;P=P\rrbracket\Longrightarrow\operatorname{Prop}(\tau)
    and }P\Longrightarrow\alpha\prec\mp@subsup{P}{}{\prime}\Longrightarrow\mathrm{ Prop }\alpha\mp@subsup{P}{}{\prime
    shows Prop \alpha P'
\langleproof\rangle
lemma weakCongTransitionWeakTransition:
    fixes P :: ccs
    and }\alpha\mathrm{ :: act
    and }\mp@subsup{P}{}{\prime}:: cc
    assumes }P\Longrightarrow\alpha\prec\mp@subsup{P}{}{\prime
    shows P\Longrightarrow^ }\alpha\prec\mp@subsup{P}{}{\prime
<proof\rangle
lemma transitionWeakTransition:
    fixes P :: ccs
    and }\alpha\mathrm{ :: act
    and }\mp@subsup{P}{}{\prime}:: cc
    assumes }P\longmapsto\alpha\prec\mp@subsup{P}{}{\prime
```

```
    shows P\Longrightarrow}\Longrightarrow\prec\prec\mp@subsup{P}{}{\prime
<proof\rangle
lemma weakAction:
    fixes a :: name
    and P :: ccs
    shows }\alpha.(P)\Longrightarrow^ \alpha\prec
\langleproof\rangle
lemma weakSum1:
    fixes P :: ccs
    and }\alpha\mathrm{ :: act
    and }\mp@subsup{P}{}{\prime}::cc
    and }Q ::cc
    assumes P\Longrightarrow^\alpha}\prec\mp@subsup{P}{}{\prime
    and }P\not=\mp@subsup{P}{}{\prime
    shows }P\oplusQ\Longrightarrow\alpha\prec\mp@subsup{P}{}{\prime
\langleproof\rangle
lemma weakSum2:
    fixes }Q :: cc
    and }\alpha\mathrm{ :: act
    and }\mp@subsup{Q}{}{\prime}::cc
    and }P::cc
    assumes }Q\Longrightarrow^^\alpha\prec\mp@subsup{Q}{}{\prime
    and }Q\not=\mp@subsup{Q}{}{\prime
    shows }P\oplusQ\Longrightarrow\alpha\prec\mp@subsup{Q}{}{\prime
<proof>
lemma weakPar1:
    fixes P :: ccs
    and }\alpha\mathrm{ :: act
    and }\mp@subsup{P}{}{\prime}::cc
    and }Q ::cc
    assumes }P\Longrightarrow^\alpha\prec\mp@subsup{P}{}{\prime
    shows }P|Q\Longrightarrow^\alpha\prec\mp@subsup{P}{}{\prime}|
\langleproof\rangle
lemma weakPar2:
fixes }Q\mathrm{ :: ccs
and }\alpha\mathrm{ :: act
and }\mp@subsup{Q}{}{\prime}:: cc
```

```
    and P :: ccs
    assumes }Q\Longrightarrow^^\alpha\prec\mp@subsup{Q}{}{\prime
    shows }P|Q\Longrightarrow\alpha\precP|\mp@subsup{Q}{}{\prime
<proof\rangle
lemma weakSync:
    fixes P :: ccs
    and }\alpha\mathrm{ :: act
    and }\mp@subsup{P}{}{\prime}:: cc
    and }Q ::cc
    assumes P\Longrightarrow^ \alpha\prec 㐌
    and }Q\Longrightarrow(\mathrm{ coAction }\alpha)\prec\mp@subsup{Q}{}{\prime
    and \quad\alpha\not=\tau
    shows }P|Q\Longrightarrow^^ \tau\prec\mp@subsup{P}{}{\prime}|\mp@subsup{Q}{}{\prime
<proof>
lemma weakRes:
    fixes P :: ccs
    and }\alpha\mathrm{ :: act
    and }\mp@subsup{P}{}{\prime}::cc
    and }x\mathrm{ :: name
    assumes P\Longrightarrow^\alpha\prec ' '
    and }\quadx\sharp
    shows (\nux|)P\Longrightarrow^ < \prec(\nux) P'
\langleproof\rangle
lemma weakRepl:
    fixes P :: ccs
    and }\alpha\mathrm{ :: act
    and }\mp@subsup{P}{}{\prime}:: cc
    assumes }P|!P\Longrightarrow^\alpha\prec\mp@subsup{P}{}{\prime
    and }\quad\mp@subsup{P}{}{\prime}\not=P|!
    shows !P\Longrightarrow\alpha\prec P'
\langleproof\rangle
end
theory Strong-Sim
    imports Agent
begin
```

```
definition simulation \(:: c c s \Rightarrow(c c s \times c c s)\) set \(\Rightarrow c c s \Rightarrow\) bool \(\quad(-\rightsquigarrow[-]-[80,80\),
80] 80)
where
    \(P \rightsquigarrow[\) Rel \(] Q \equiv \forall a Q^{\prime} . Q \longmapsto a \prec Q^{\prime} \longrightarrow\left(\exists P^{\prime} . P \longmapsto a \prec P^{\prime} \wedge\left(P^{\prime}, Q^{\prime}\right) \in R e l\right)\)
lemma simI[case-names Sim]:
    fixes \(P\) :: ccs
    and Rel \(::(c c s \times c c s)\) set
    and \(Q\) :: ccs
    assumes \(\wedge \alpha Q^{\prime} . Q \longmapsto \alpha \prec Q^{\prime} \Longrightarrow \exists P^{\prime} . P \longmapsto \alpha \prec P^{\prime} \wedge\left(P^{\prime}, Q^{\prime}\right) \in\) Rel
    shows \(P \rightsquigarrow[R e l] Q\)
\(\langle\) proof \(\rangle\)
lemma simE:
    fixes \(P\) :: ccs
    and Rel \(::(c c s \times c c s)\) set
    and \(Q\) ::ccs
    and \(\alpha\) :: act
    and \(Q^{\prime}\) :: ccs
assumes \(P \rightsquigarrow[R e l] Q\)
and \(\quad Q \longmapsto \alpha \prec Q^{\prime}\)
obtains \(P^{\prime}\) where \(P \longmapsto \alpha \prec P^{\prime}\) and \(\left(P^{\prime}, Q^{\prime}\right) \in\) Rel
<proof〉
lemma reflexive:
fixes \(P\) :: ccs
and Rel \(::(c c s \times c c s)\) set
assumes \(I d \subseteq\) Rel
shows \(P \rightsquigarrow[\) Rel \(] P\)
\(\langle\) proof \(\rangle\)
lemma transitive:
fixes \(P\) :: ccs
and Rel :: \((c c s \times c c s)\) set
and \(Q\) :: ccs
and Rel' \(::(c c s \times c c s)\) set
and \(R \quad:: c c s\)
and \(R e l^{\prime \prime}::(c c s \times c c s)\) set
assumes \(P \rightsquigarrow[\) Rel \(] Q\)
and \(\quad Q \rightsquigarrow\left[\mathrm{Rel}^{\prime}\right] R\)
and \(\operatorname{Rel} O R e l^{\prime} \subseteq R e l^{\prime \prime}\)
```

```
    shows P}\rightsquigarrow[\mp@subsup{Rel}{}{\prime\prime}]
<proof\rangle
end
theory Weak-Sim
    imports Weak-Semantics Strong-Sim
begin
definition weakSimulation :: ccs }=>(ccs\timesccs) set m ccs => bool (- \rightsquigarrow<-> -
[80, 80, 80] 80)
where
```



```
Rel)
lemma weakSimI[case-names Sim]:
    fixes P :: ccs
    and Rel :: (ccs }\timesccs) se
    and Q ::ccs
    assumes }\bigwedge\alpha \mp@subsup{Q}{}{\prime}.Q\longmapsto\alpha\prec\mp@subsup{Q}{}{\prime}\Longrightarrow\exists\mp@subsup{P}{}{\prime}.P\Longrightarrow^\alpha\prec\mp@subsup{P}{}{\prime}\wedge(\mp@subsup{P}{}{\prime},\mp@subsup{Q}{}{\prime})\inRe
    shows P}\rightsquigarrow^<Rel>
<proof\rangle
lemma weakSimE:
    fixes P :: ccs
    and Rel :: (ccs\timesccs) set
    and }Q ::cc
    and \alpha :: act
    and }\mp@subsup{Q}{}{\prime}\mathrm{ :: ccs
    assumes P\leadsto^<Rel>Q
    and }\quadQ\longmapsto\alpha\prec\mp@subsup{Q}{}{\prime
    obtains P' where P\Longrightarrow < }\alpha\prec\mp@subsup{P}{}{\prime}\mathrm{ and ( (P', Q') & Rel
<proof>
lemma simTauChain:
    fixes P :: ccs
    and Rel :: (ccs }\timesccs) se
    and Q ::ccs
    and }\mp@subsup{Q}{}{\prime}::cc
assumes Q \Longrightarrow}\mp@subsup{\tau}{\tau}{}\mp@subsup{Q}{}{\prime
and}\quad(P,Q)\in\mathrm{ Rel
and Sim: \RS.(R,S)\inRel\LongrightarrowR\leadsto^<Rel>S
obtains P' where }P\Longrightarrow\mp@subsup{\Longrightarrow}{\tau}{}\mp@subsup{P}{}{\prime}\mathrm{ and ( }\mp@subsup{P}{}{\prime},\mp@subsup{Q}{}{\prime})\in\mathrm{ Rel
```

```
\langleproof\rangle
lemma simE2:
    fixes P :: ccs
    and Rel :: (ccs }\times\mathrm{ ccs) set
    and }Q ::cc
    and }\alpha\mathrm{ :: act
    and }\mp@subsup{Q}{}{\prime}:: cc
    assumes }(P,Q)\in\operatorname{Rel
    and }Q\Longrightarrow\alpha\prec\mp@subsup{Q}{}{\prime
    and Sim: }\RS.(R,S)\inRel\LongrightarrowR\rightsquigarrow^<Rel>
    obtains P' where P\Longrightarrow^ }\alpha\prec\mp@subsup{P}{}{\prime}\mathrm{ and ( ( '', Q') & Rel
<proof>
lemma reflexive:
    fixes P :: ccs
    and Rel :: (ccs }\timesccs) se
    assumes Id \subseteqRel
    shows P}\mp@subsup{\rightsquigarrow}{}{\wedge}<\mathrm{ Rel > P
<proof\rangle
lemma transitive:
    fixes P :: ccs
    and Rel :: (ccs \times ccs) set
    and Q :: ccs
    and Rel' :: (ccs }\timesccs) se
    and R :: ccs
    and Rel"\prime::(ccs\timesccs) set
    assumes }(P,Q)\in\mathrm{ Rel
    and }Q\rightsquigarrow^<Rel'>
    and Rel O Rel'}\subseteqRel'\prime
    and }\{T.(S,T)\in\operatorname{Rel}\LongrightarrowS\rightsquigarrow^<Rel>
    shows P\rightsquigarrow`<<Rel'>}>
\langleproof\rangle
lemma weakMonotonic:
    fixes P :: ccs
    and }A::(ccs\timesccs) se
    and }Q::cc
    and }B::(ccs\timesccs) se
    assumes P\rightsquigarrow^<A>Q
    and }A\subseteq
```

```
    shows P\rightsquigarrow^ <B> Q
<proof>
lemma simWeakSim:
    fixes P :: ccs
    and Rel :: (ccs }\timesccs) se
    and Q ::ccs
    assumes P\rightsquigarrow[Rel] Q
    shows P}\rightsquigarrow^<Rel>
<proof\rangle
end
theory Weak-Cong-Sim
    imports Weak-Cong-Semantics Weak-Sim Strong-Sim
begin
definition weakCongSimulation :: ccs }=>(ccs\timesccs) set => ccs => bool (- \rightsquigarrow<->
- [80, 80, 80] 80)
where
    P\rightsquigarrow<Rel>}Q\equiv\foralla\mp@subsup{Q}{}{\prime}.Q\longmapstoa\prec\mp@subsup{Q}{}{\prime}\longrightarrow(\exists\mp@subsup{P}{}{\prime}.P\Longrightarrowa\prec\mp@subsup{P}{}{\prime}\wedge(\mp@subsup{P}{}{\prime},\mp@subsup{Q}{}{\prime})\inRel
lemma weakSimI[case-names Sim]:
    fixes P :: ccs
    and Rel :: (ccs }\timesccs) se
    and Q ::ccs
    assumes }\Lambda\alpha\mp@subsup{Q}{}{\prime}.Q\longmapsto\alpha\prec\mp@subsup{Q}{}{\prime}\Longrightarrow\exists\mp@subsup{P}{}{\prime}.P\Longrightarrow\alpha\prec\mp@subsup{P}{}{\prime}\wedge(\mp@subsup{P}{}{\prime},\mp@subsup{Q}{}{\prime})\inRe
    shows P}\rightsquigarrow<\mathrm{ Rel > Q
<proof\rangle
lemma weakSimE:
    fixes P :: ccs
    and Rel :: (ccs }\timesccs) se
    and }Q ::cc
    and }\alpha\mathrm{ :: act
    and }\mp@subsup{Q}{}{\prime}\mathrm{ :: ccs
    assumes P}\rightsquigarrow<\mathrm{ Rel> Q
    and }\quadQ\longmapsto\alpha\prec\mp@subsup{Q}{}{\prime
    obtains }\mp@subsup{P}{}{\prime}\mathrm{ where }P\Longrightarrow\alpha\prec\mp@subsup{P}{}{\prime}\mathrm{ and ( }\mp@subsup{P}{}{\prime},\mp@subsup{Q}{}{\prime})\in\operatorname{Rel
<proof\rangle
lemma simWeakSim:
```

```
    fixes P :: ccs
    and Rel :: (ccs }\times\mathrm{ ccs) set
    and Q ::ccs
    assumes P}\rightsquigarrow[Rel] Q
    shows P}\rightsquigarrow<\mathrm{ Rel > Q
<proof>
lemma weakCongSim WeakSim:
    fixes P :: ccs
    and Rel :: (ccs }\timesccs) se
    and Q ::ccs
    assumes }P\rightsquigarrow<\mathrm{ Rel }>
    shows P\rightsquigarrow^ <Rel>}
\langleproof\rangle
lemma test:
    assumes P\Longrightarrow}\mp@subsup{\Longrightarrow}{\tau}{}\mp@subsup{P}{}{\prime
    shows }P=\mp@subsup{P}{}{\prime}\vee(\exists\mp@subsup{P}{}{\prime\prime}.P\longmapsto\tau\prec\mp@subsup{P}{}{\prime\prime}\wedge\mp@subsup{P}{}{\prime\prime}\Longrightarrow\mp@subsup{}{\tau}{}\mp@subsup{P}{}{\prime}
<proof\rangle
lemma tauChainCasesSym[consumes 1, case-names cTauNil cTauStep]:
    assumes P\Longrightarrow}\mp@subsup{\Longrightarrow}{\tau}{}\mp@subsup{P}{}{\prime
    and Prop P
    and}\quad\\mp@subsup{P}{}{\prime\prime}.\llbracketP\longmapsto\tau\prec\mp@subsup{P}{}{\prime\prime};\mp@subsup{P}{}{\prime\prime}\mp@subsup{\Longrightarrow}{\tau}{}P\\\Longrightarrow\mathrm{ Prop P
    shows Prop P'
<proof\rangle
lemma simE2:
    fixes P :: ccs
    and Rel :: (ccs }\timesccs) se
    and }Q ::cc
    and \alpha :: act
    and}\mp@subsup{Q}{}{\prime}::cc
    assumes }P\rightsquigarrow<\mathrm{ Rel > Q
    and }Q\Longrightarrow\alpha\prec\mp@subsup{Q}{}{\prime
    and Sim: }\RS.(R,S)\inRel\LongrightarrowR\rightsquigarrow^<Rel>
    obtains }\mp@subsup{P}{}{\prime}\mathrm{ where }P\Longrightarrow\alpha\prec\mp@subsup{P}{}{\prime}\mathrm{ and ( }\mp@subsup{P}{}{\prime},\mp@subsup{Q}{}{\prime})\in\operatorname{Rel
<proof\rangle
lemma reflexive:
    fixes P :: ccs
```

```
    and Rel :: (ccs }\timesccs) se
    assumes Id \subseteqRel
    shows P\rightsquigarrow<Rel> P
<proof\rangle
lemma transitive:
    fixes P :: ccs
    and Rel :: (ccs \times ccs) set
    and }Q :: cc
    and Rel' :: (ccs \times ccs) set
    and R :: ccs
    and Rel" :: (ccs }\times\mathrm{ ccs) set
    assumes P}\rightsquigarrow<\mathrm{ Rel > Q
    and }\quadQ\rightsquigarrow<R\mp@subsup{Rel}{}{\prime}>
    and Rel O Rel'}\subseteqRel"
    and}\quad\ST.(S,T)\in\operatorname{Rel}\LongrightarrowS\rightsquigarrow^<Rel>
    shows P}\rightsquigarrow<\mp@subsup{\mathrm{ Rel }}{}{\prime\prime}>
<proof>
lemma weakMonotonic:
    fixes P :: ccs
    and }A::(ccs\timesccs) se
    and }Q::cc
    and }B::(ccs\timesccs) se
    assumes }P\rightsquigarrow<A>
    and}\quadA\subseteq
    shows P}>>B>
<proof\rangle
end
theory Strong-Sim-SC
    imports Strong-Sim
begin
lemma resNilLeft:
    fixes x :: name
    shows (\nux\00\rightsquigarrow[Rel] 0
\langleproof\rangle
lemma resNilRight:
    fixes x :: name
```

```
    shows 0}\rightsquigarrow[Rel] (\nux)\mathbf{0
<proof>
lemma test[simp]:
    fixes x :: name
    and P :: ccs
    shows }x\sharp[x].
<proof\rangle
lemma scopeExtSumLeft:
    fixes x :: name
    and }P::cc
    and }Q ::cc
    assumes }x\sharp
    and C1: \bigwedgey R.y\sharpR\Longrightarrow((\nuy)R,R)\inRel
    and Id\subseteqRel
    shows }(\nux|)(P\oplusQ)\rightsquigarrow[Rel] P\oplus(\nux)
<proof\rangle
lemma scopeExtSumRight:
    fixes x :: name
    and }P::cc
    and }Q ::cc
    assumes }x\sharp
    and C1:\bigwedgeyR. y\sharpR\Longrightarrow(R,(\nuy|)R)\inRel
    and Id\subseteqRel
    shows }P\oplus(\nu\nu\)Q\rightsquigarrow[Rel](\nux)(P\oplusQ
<proof\rangle
lemma scopeExtLeft:
    fixes x :: name
    and }P::cc
    and }Q ::cc
    assumes }x\sharp
    and C1: \y R T.y\sharpR\Longrightarrow((\nuy|)(R|T),R| (\nu\nuy)T)\inRel
    shows (\nux|(P|Q)\rightsquigarrow[Rel] P| |\nux|)Q
<proof\rangle
lemma scopeExtRight:
    fixes x :: name
    and P :: ccs
```

```
    and }Q :: cc
    assumes }x\sharp
    and C1: \y RT. y\sharpR\Longrightarrow(R|(\nuy|)T,(\nuy|)(R|T))\inRel
    shows P| |\nux|Q Q[Rel] (\nux|)(P|Q)
<proof>
lemma sumComm:
    fixes P :: ccs
    and }Q :: cc
    assumes Id\subseteqRel
    shows }P\oplusQ\rightsquigarrow[Rel] Q\oplus
<proof>
lemma sumAssocLeft:
    fixes P :: ccs
    and }Q :: cc
    and }R\mathrm{ :: ccs
    assumes Id \subseteqRel
    shows }(P\oplusQ)\oplusR\rightsquigarrow[Rel] P\oplus(Q\oplusR
<proof\rangle
lemma sumAssocRight:
    fixes P :: ccs
    and }Q::cc
    and }R\mathrm{ :: ccs
    assumes Id \subseteqRel
    shows }P\oplus(Q\oplusR)\rightsquigarrow[Rel](P\oplusQ)\oplus
<proof>
lemma sumIdLeft:
    fixes P :: ccs
    and Rel :: (ccs }\timesccs) se
    assumes Id \subseteqRel
    shows P\oplus0}0\rightsquigarrow[Rel] 
<proof\rangle
lemma sumIdRight:
    fixes P :: ccs
    and Rel :: (ccs }\timesccs) se
```

```
    assumes \(I d \subseteq\) Rel
    shows \(P \rightsquigarrow[\) Rel \(] P \oplus \mathbf{0}\)
\(\langle p r o o f\rangle\)
lemma parComm:
    fixes \(P\) :: ccs
    and \(\quad Q::\) ccs
    assumes \(C 1: \wedge R T .(R\|T, T\| R) \in \operatorname{Rel}\)
    shows \(P \| Q \rightsquigarrow[\) Rel \(] Q \| P\)
\(\langle p r o o f\rangle\)
lemma parAssocLeft:
    fixes \(P\) :: ccs
    and \(\quad Q\) :: ccs
    and \(\quad R\) :: ccs
    assumes \(C 1: \wedge S T U .((S \| T)\|U, S\|(T \| U)) \in \operatorname{Rel}\)
    shows \((P \| Q)\|R \rightsquigarrow[R e l] P\|(Q \| R)\)
\(\langle p r o o f\rangle\)
lemma parAssocRight:
    fixes \(P\) :: ccs
    and \(\quad Q:: c c s\)
    and \(\quad R\) :: ccs
    assumes \(C 1: \wedge S T U .(S\|(T \| U),(S \| T)\| U) \in \operatorname{Rel}\)
    shows \(P\|(Q \| R) \rightsquigarrow[\operatorname{Rel}](P \| Q)\| R\)
\(\langle p r o o f\rangle\)
lemma parIdLeft:
    fixes \(P\) :: ccs
    and Rel \(::(c c s \times c c s)\) set
    assumes \(\bigwedge Q .(Q \| \mathbf{0}, Q) \in \operatorname{Rel}\)
    shows \(P \| \mathbf{0} \rightsquigarrow[R e l] P\)
〈proof〉
lemma parIdRight:
    fixes \(P\) :: ccs
    and Rel :: \((c c s \times c c s)\) set
    assumes \(\bigwedge Q .(Q, Q \| \mathbf{0}) \in \operatorname{Rel}\)
```

```
    shows P\rightsquigarrow[Rel] P|0
<proof\rangle
declare fresh-atm[simp]
lemma resActLeft:
    fixes x :: name
    and }\alpha:::ac
    and P :: ccs
    assumes }x\sharp
    and Id\subseteqRel
    shows (\nux|)(\alpha.(P))\rightsquigarrow[Rel] (\alpha.(0\nux|)P))
<proof>
lemma resActRight:
    fixes }x\mathrm{ :: name
    and }\alpha:::ac
    and P :: ccs
    assumes }x\sharp
    and Id\subseteqRel
    shows }\alpha.(\\nux|P)\rightsquigarrow[Rel] \\nux|(\alpha.(P)
<proof>
lemma resComm:
    fixes x :: name
    and y :: name
    and P :: ccs
    assumes }\bigwedgeQ.((\nux|)((\nu\nuy|)Q),(\nuy|)((\nux|)Q))\inRe
    shows (\nux|\(|\nuy|P)\rightsquigarrow[Rel] (\nuy|)((\nux|)P)
\langleproof\rangle
inductive-cases bangCases[simplified ccs.distinct act.distinct]:!P\longmapsto\alpha}\prec\mp@subsup{P}{}{\prime
lemma bangUnfoldLeft:
    fixes P :: ccs
    assumes Id \subseteqRel
    shows P|!P\rightsquigarrow[Rel]!P
<proof>
lemma bangUnfoldRight:
```

```
    fixes P :: ccs
    assumes Id \subseteqRel
    shows !P\rightsquigarrow[Rel] P|!P
<proof\rangle
end
theory Strong-Bisim
    imports Strong-Sim
begin
lemma monotonic:
    fixes P :: ccs
    and }A::(ccs\timesccs) se
    and }Q::cc
    and }B::(ccs\timesccs) se
    assumes P}\rightsquigarrow[A]
    and }A\subseteq
    shows P}\rightsquigarrow[B]
<proof\rangle
lemma monoCoinduct: \x y xa xb P Q.
    x\leqy\Longrightarrow\Longrightarrow
    (Q\rightsquigarrow[{(xb,xa).y xb xa}] P)
<proof\rangle
coinductive-set bisim :: (ccs \times ccs) set
where
    \llbracketP\rightsquigarrow[bisim] Q; (Q,P)\inbisim\rrbracket\Longrightarrow(P,Q)\inbisim
monos monoCoinduct
abbreviation
    bisimJudge (- ~ - [70, 70] 65) where P~Q P (P,Q) \inbisim
lemma bisimCoinductAux[consumes 1]:
    fixes P :: ccs
    and }Q::cc
    and }X::(ccs\timesccs) se
    assumes (P,Q)\inX
    and}\quad\PQ.(P,Q)\inX\LongrightarrowP\rightsquigarrow[(X\cup\mathrm{ bisim )}]Q\wedge(Q,P)\in
    shows P~Q
<proof\rangle
```

```
lemma bisimCoinduct[consumes 1, case-names cSim cSym]:
    fixes \(P\) :: ccs
    and \(\quad Q::\) ccs
    and \(\quad X::(c c s \times c c s)\) set
    assumes \((P, Q) \in X\)
    and \(\quad \wedge R S .(R, S) \in X \Longrightarrow R \rightsquigarrow[(X \cup\) bisim \()] S\)
    and \(\quad \bigwedge R S \cdot(R, S) \in X \Longrightarrow(S, R) \in X\)
    shows \(P \sim Q\)
\(\langle p r o o f\rangle\)
lemma bisim WeakCoinductAux[consumes 1]:
    fixes \(P\) :: ccs
    and \(\quad Q:: c c s\)
    and \(X::(c c s \times c c s)\) set
    assumes \((P, Q) \in X\)
    and \(\quad \wedge R S .(R, S) \in X \Longrightarrow R \rightsquigarrow[X] S \wedge(S, R) \in X\)
    shows \(P \sim Q\)
\(\langle p r o o f\rangle\)
lemma bisim WeakCoinduct[consumes 1, case-names cSim cSym]:
fixes \(P\) :: ccs
and \(\quad Q:: c c s\)
and \(X::(c c s \times c c s)\) set
assumes \((P, Q) \in X\)
and \(\quad \wedge P Q .(P, Q) \in X \Longrightarrow P \rightsquigarrow[X] Q\)
and \(\quad \wedge P Q \cdot(P, Q) \in X \Longrightarrow(Q, P) \in X\)
shows \(P \sim Q\)
\(\langle p r o o f\rangle\)
lemma bisimE:
    fixes \(P\) :: ccs
    and \(\quad Q\) :: ccs
    assumes \(P \sim Q\)
    shows \(P \rightsquigarrow[\) bisim \(] Q\)
    and \(\quad Q \sim P\)
\(\langle p r o o f\rangle\)
lemma bisimI:
fixes \(P\) :: ccs
and \(\quad Q::\) ccs
```

```
    assumes P\rightsquigarrow[bisim] Q
    and }\quadQ~
    shows P~Q
<proof\rangle
lemma reflexive:
    fixes P :: ccs
    shows P~P
<proof\rangle
lemma symmetric:
    fixes P :: ccs
    and }Q ::cc
    assumes P~Q
    shows Q~P
<proof\rangle
lemma transitive:
    fixes P :: ccs
    and }Q ::cc
    and }R\mathrm{ :: ccs
    assumes P~Q
    and }\quadQ~
    shows P~R
<proof\rangle
lemma bisimTransCoinduct[consumes 1, case-names cSim cSym]:
    fixes P :: ccs
    and }Q :: cc
    assumes (P,Q)\inX
    and rSim: \bigwedgeRS.(R,S)\inX\LongrightarrowR\rightsquigarrow[(bisim O X O bisim)] S
    and rSym: }\bigwedgeRS.(R,S)\inX\Longrightarrow(S,R)\in
    shows P~Q
<proof\rangle
end
theory Strong-Sim-Pres
    imports Strong-Sim
begin
```

```
lemma actPres:
    fixes \(P\) :: ccs
    and \(\quad Q \quad:: c c s\)
    and Rel :: \((c c s \times c c s)\) set
    and \(a\) :: name
    and Rel' \(::(c c s \times c c s)\) set
    assumes \((P, Q) \in\) Rel
    shows \(\alpha .(P) \rightsquigarrow[\) Rel \(] \alpha .(Q)\)
\(\langle p r o o f\rangle\)
lemma sumPres:
fixes \(P\) :: ccs
and \(Q\) ::ccs
and Rel \(::(c c s \times c c s)\) set
assumes \(P \rightsquigarrow[\) Rel \(] Q\)
and \(\quad R e l \subseteq R e l^{\prime}\)
and \(\quad I d \subseteq R e l^{\prime}\)
shows \(P \oplus R \rightsquigarrow\left[\right.\) Rel \(\left.^{\dagger}\right] Q \oplus R\)
\(\langle p r o o f\rangle\)
lemma parPresAux:
fixes \(P\) :: ccs
and \(Q\) ::ccs
and Rel :: \((c c s \times c c s)\) set
assumes \(P \rightsquigarrow[\) Rel \(] Q\)
and \((P, Q) \in\) Rel
and \(\quad R \rightsquigarrow[R e l] T\)
and \(\quad(R, T) \in R^{\prime} l^{\prime}\)
and \(\quad C 1: \bigwedge P^{\prime} Q^{\prime} R^{\prime} T^{\prime} . \llbracket\left(P^{\prime}, Q^{\prime}\right) \in \operatorname{Rel} ;\left(R^{\prime}, T^{\prime}\right) \in \operatorname{Rel} \rrbracket \Longrightarrow\left(P^{\prime}\left\|R^{\prime}, Q^{\prime}\right\|\right.\)
\(\left.T^{\prime}\right) \in \operatorname{Rel}^{\prime \prime}\)
shows \(P \| R \rightsquigarrow\left[\right.\) Rel \(\left.^{\prime \prime}\right] Q \| T\)
\(\langle p r o o f\rangle\)
lemma parPres:
fixes \(P\) :: ccs
and \(Q\) ::ccs
and Rel \(::(c c s \times c c s)\) set
assumes \(P \rightsquigarrow[\) Rel \(] Q\)
and \(\quad(P, Q) \in\) Rel
and \(\quad C 1: \bigwedge S T U .(S, T) \in \operatorname{Rel} \Longrightarrow(S\|U, T\| U) \in \operatorname{Rel}^{\prime}\)
```

```
    shows P|R\rightsquigarrow[Rel] Q | R
<proof\rangle
lemma resPres:
    fixes P :: ccs
    and Rel :: (ccs }\timesccs) se
    and }Q ::cc
    and x :: name
    assumes P\rightsquigarrow[Rel] Q
    and}\quad\RSy.(R,S)\inRel\Longrightarrow((\nuy|R,(\nuy|)S)\inRel'
    shows (\nux|)P\rightsquigarrow[Rel'] (\nux)Q
<proof\rangle
lemma bangPres:
    fixes P :: ccs
    and Rel :: (ccs }\timesccs) se
    and Q ::ccs
    assumes (P,Q)\inRel
    and }C1:\bigwedgeRS.(R,S)\inRel\LongrightarrowR\rightsquigarrow[Rel]
    shows !P \rightsquigarrow[bangRel Rel]!Q
<proof\rangle
end
theory Strong-Bisim-Pres
    imports Strong-Bisim Strong-Sim-Pres
begin
lemma actPres:
    fixes P :: ccs
    and }Q::cc
    and \alpha :: act
    assumes P~Q
    shows }\alpha.(P)~\alpha.(Q
<proof\rangle
lemma sumPres:
    fixes P :: ccs
    and }Q ::cc
    and }R::cc
    assumes P~Q
```

```
    shows }P\oplusR~Q\oplus
<proof\rangle
lemma parPres:
    fixes P :: ccs
    and }Q::cc
    and }R\mathrm{ :: ccs
    assumes P~Q
    shows }P|R~Q|
<proof\rangle
lemma resPres:
    fixes P :: ccs
    and }Q::cc
    and x :: name
    assumes P~Q
    shows (\nux|)P~(\nu\nu|)Q
<proof\rangle
lemma bangPres:
    fixes P :: ccs
    and }Q ::cc
    assumes P~Q
    shows !P~!Q
\langleproof\rangle
end
theory Struct-Cong
    imports Agent
begin
inductive structCong :: ccs =>ccs => bool (- \equivs -)
    where
    Refl: P}\equiv\mp@subsup{}{s}{}
| Sym: P \equiv
|Trans: }\llbracketP\equiv\mp@subsup{\equiv}{s}{}Q;Q\mp@subsup{\equiv}{s}{}R\rrbracket\LongrightarrowP\mp@subsup{\equiv}{s}{}
| ParComm: P|Q \
| ParAssoc: (P|Q)|R\equiv\mp@subsup{}{s}{}P|(Q|R)
| ParId: P | 0 = =s P
| SumComm: P}\oplusQ\equiv\mp@subsup{}{s}{}Q\oplus
```

```
|SumAssoc: }(P\oplusQ)\oplusR\equiv\mp@subsup{}{s}{}P\oplus(Q\oplusR
|umId: P}\oplus\mathbf{0}\equiv\mp@subsup{}{s}{}
| ResNil: ( }\nux)\mathbf{0}\mp@subsup{\equiv}{s}{}\mathbf{0
ScopeExtPar: x\sharpP\Longrightarrow(\nux)(P||) \equiv
ScopeExtSum: x\sharpP\Longrightarrow (\nux) (P\oplusQ) \equiv
ScopeAct: x \sharp 人\Longrightarrow (\nux|)(\alpha.(P)) \equiv
|copeCommAux: x\not=y\Longrightarrow(\nu\nux)(0\nuy|)P) \equiv
| BangUnfold: !P \equiv}\mp@subsup{}{s}{}P||!
equivariance structCong
nominal-inductive structCong
<proof\rangle
lemma ScopeComm:
    fixes x :: name
    and y :: name
    and P :: ccs
    shows (\nu\nux\(0\nuy)P) \equiv
<proof\rangle
end
theory Strong-Bisim-SC
    imports Strong-Sim-SC Strong-Bisim-Pres Struct-Cong
begin
lemma resNil:
    fixes x :: name
    shows (\nux\0 ~ 0
<proof\rangle
lemma scopeExt:
    fixes x :: name
    and }P::cc
    and }Q::cc
    assumes }x\sharp
    shows (\nux )(P|Q)~P|(\nux|)Q
<proof\rangle
lemma sumComm:
    fixes P :: ccs
    and }Q :: cc
    shows }P\oplusQ~Q\oplus
```

```
\langleproof\rangle
lemma sumAssoc:
    fixes P :: ccs
    and }Q :: cc
    and }R\mathrm{ :: ccs
    shows }(P\oplusQ)\oplusR~P\oplus(Q\oplusR
\langleproof\rangle
lemma sumId:
    fixes P :: ccs
    shows P}\oplus\mathbf{0}~
<proof>
lemma parComm:
    fixes P :: ccs
    and }Q ::cc
    shows P| Q ~ Q|P
<proof\rangle
lemma parAssoc:
    fixes P :: ccs
    and }Q ::cc
    and }R\mathrm{ :: ccs
    shows (P|Q)|R~P|(Q|R)
<proof\rangle
lemma parId:
    fixes P :: ccs
    shows P|0 ~ P
<proof\rangle
lemma scopeFresh:
    fixes x :: name
    and P :: ccs
    assumes }x\sharp
    shows (\nux|)P~P
<proof\rangle
lemma scopeExtSum:
    fixes x :: name
    and P :: ccs
```

```
    and }Q :: cc
    assumes }x\sharp
    shows }(\nux)(P\oplusQ)~P\oplus(\nu\nu)
<proof\rangle
lemma resAct:
    fixes x :: name
    and }\alpha:: ac
    and P :: ccs
    assumes }x\sharp
    shows (\nux|( }\alpha.(P))~\alpha.(|\nux|P
\langleproof\rangle
lemma resComm:
    fixes x :: name
    and y :: name
    and P :: ccs
    shows (\nux|)(|\nuy|P)~ (|\nuy|)(|\nux|P)
<proof\rangle
lemma bangUnfold:
    fixes P
    shows !P~P|!P
<proof\rangle
lemma bisimStructCong:
    fixes P :: ccs
    and }Q :: cc
    assumes P}\mp@subsup{\equiv}{s}{}
    shows P~Q
<proof\rangle
end
theory Weak-Bisim
    imports Weak-Sim Strong-Bisim-SC Struct-Cong
begin
lemma weakMonoCoinduct: \x y xa xb P Q.
\[
\begin{aligned}
& x \leq y \Longrightarrow \\
& (Q \leadsto \wedge
\end{aligned}
\]
```

```
        (Q\rightsquigarrow^<{(xb,xa). y xb xa}>P)
<proof\rangle
coinductive-set weakBisimulation :: (ccs }\times\mathrm{ ccs) set
where
    \llbracketP\rightsquigarrow`<weakBisimulation> Q; (Q,P)\in weakBisimulation\rrbracket\Longrightarrow(P,Q)\in weak-
Bisimulation
monos weakMonoCoinduct
abbreviation
    weakBisimJudge (- \approx - [70, 70] 65) where P}\approxQ\equiv(P,Q)\in weakBisimulation
lemma weakBisimulationCoinductAux[consumes 1]:
    fixes P :: ccs
    and }Q :: cc
    and }X::(ccs\timesccs) se
    assumes }(P,Q)\in
    and}\quad\PQ.(P,Q)\inX\LongrightarrowP\rightsquigarrow^<(X\cup\mathrm{ weakBisimulation ) }>Q\wedge(Q,P
\inX
    shows P}\approx
<proof\rangle
lemma weakBisimulationCoinduct[consumes 1, case-names cSim cSym]:
fixes P :: ccs
and }Q ::cc
and }X::(ccs\timesccs) se
assumes }(P,Q)\in
and }\quad\RS.(R,S)\inX\LongrightarrowR\rightsquigarrow^<(X\cup\mathrm{ weakBisimulation )}>
and }\RS.(R,S)\inX\Longrightarrow(S,R)\in
shows P}\approx
<proof\rangle
lemma weakBisim WeakCoinductAux[consumes 1]:
    fixes P :: ccs
    and }Q::cc
    and }X::(ccs\timesccs) se
    assumes }(P,Q)\in
    and}\quad\PQ.(P,Q)\inX\LongrightarrowP\rightsquigarrow^<X>Q\wedge(Q,P)\in
    shows P}\approx
<proof\rangle
lemma weakBisimWeakCoinduct[consumes 1, case-names cSim cSym]:
    fixes P :: ccs
```

```
    and }Q :: cc
    and }X::(ccs\timesccs) se
    assumes }(P,Q)\in
    and}\quad\PQ.(P,Q)\inX\LongrightarrowP\rightsquigarrow^<X>Q
    and}\quad\PQ.(P,Q)\inX\Longrightarrow(Q,P)\in
    shows P}\approx
<proof\rangle
lemma weakBisimulationE:
    fixes P :: ccs
    and }Q ::cc
    assumes P\approxQ
    shows P\rightsquigarrow^<weakBisimulation> Q
    and Q}\approx
<proof>
lemma weakBisimulationI:
    fixes P :: ccs
    and }Q::cc
    assumes P\rightsquigarrow^<weakBisimulation> Q
    and }Q\approx
    shows P}\approx
\langleproof\rangle
lemma reflexive:
    fixes P :: ccs
    shows P}
<proof\rangle
lemma symmetric:
    fixes P :: ccs
    and }Q :: cc
    assumes P}\approx
    shows Q 
<proof>
lemma transitive:
fixes P :: ccs
and }Q::cc
and }R::cc
```

```
    assumes P\approxQ
    and }Q\approx
    shows P}\approx
<proof\rangle
lemma bisim WeakBisimulation:
    fixes P :: ccs
    and }Q :: cc
    assumes P~Q
    shows P}\approx
<proof\rangle
lemma structCongWeakBisimulation:
    fixes P :: ccs
    and }Q::cc
    assumes P \equiv}\mp@subsup{s}{s}{}
    shows P}\approx
<proof\rangle
lemma strongAppend:
    fixes P :: ccs
    and Q :: ccs
    and R :: ccs
    and Rel :: (ccs }\timesccs) se
    and Rel' :: (ccs }\timesccs) se
    and Rel" :: (ccs }\times\mathrm{ ccs) set
    assumes PSimQ: P\rightsquigarrow`<<Rel>Q
    and QSimR:Q\rightsquigarrow[Rel']R
    and Trans:Rel O Rel'}\subseteqRel"
    shows P\rightsquigarrow < Rel '"> R
<proof>
lemma weakBisim WeakUpto[case-names cSim cSym, consumes 1]:
    assumes p:(P,Q)\inX
    and rSim: }\PQ.(P,Q)\inX\LongrightarrowP\leadsto^<(weakBisimulation O X O bisim)> Q
    and rSym: \PQ.(P,Q)\inX\Longrightarrow(Q,P)\inX
    shows P}\approx
<proof\rangle
lemma weakBisimUpto[case-names cSim cSym, consumes 1]:
```

```
    assumes p:(P,Q)\inX
    and rSim: }\bigwedgeRS.(R,S)\inX\LongrightarrowR\leadsto^<(weakBisimulation O(X\cup weakBisim-
ulation) O bisim)>S
    and rSym: \bigwedgeR S. (R,S)\inX\Longrightarrow(S,R)\inX
    shows P\approxQ
\langleproof\rangle
end
theory Weak-Cong
    imports Weak-Cong-Sim Weak-Bisim Strong-Bisim-SC
begin
definition weakCongruence :: ccs => ccs => bool (-\cong - [70, 70] 65)
where
    P\congQ\equivP\rightsquigarrow<weakBisimulation> Q ^Q\rightsquigarrow<weakBisimulation> P
lemma weakCongruenceE:
    fixes P :: ccs
    and }Q ::cc
    assumes P\congQ
    shows P}\rightsquigarrow<\mathrm{ weakBisimulation> Q
    and }Q\rightsquigarrow<\mathrm{ weakBisimulation> P
\langleproof\rangle
lemma weakCongruenceI:
    fixes P :: ccs
    and }Q :: cc
    assumes P}\rightsquigarrow<\mathrm{ weakBisimulation> Q
    and }\quadQ\rightsquigarrow<\mathrm{ weakBisimulation> P
    shows P\congQ
\langleproof\rangle
lemma weakCongISym[consumes 1, case-names cSym cSim]:
    fixes P :: ccs
    and }Q ::cc
    assumes Prop P Q
    and }\PQ. Prop PQ\Longrightarrow Prop Q P
    and}\quad\bigwedgePQ. Prop PQ\Longrightarrow(FP)\rightsquigarrow<weakBisimulation> (F Q
    shows FP\congFQ
<proof>
```

```
lemma weakCongISym2[consumes 1, case-names cSim]:
    fixes \(P\) :: ccs
    and \(\quad Q\) :: ccs
    assumes \(P \cong Q\)
    and \(\quad \bigwedge P Q . P \cong Q \Longrightarrow(F P) \rightsquigarrow<\) weakBisimulation \(>(F Q)\)
    shows \(F P \cong F Q\)
\(\langle p r o o f\rangle\)
lemma reflexive:
    fixes \(P\) :: ccs
    shows \(P \cong P\)
\(\langle p r o o f\rangle\)
lemma symmetric:
    fixes \(P\) :: ccs
    and \(\quad Q:: c c s\)
    assumes \(P \cong Q\)
    shows \(Q \cong P\)
\(\langle p r o o f\rangle\)
lemma transitive:
    fixes \(P\) :: ccs
    and \(\quad Q:: c c s\)
    and \(\quad R\) :: ccs
    assumes \(P \cong Q\)
    and \(\quad Q \cong R\)
    shows \(P \cong R\)
\(\langle p r o o f\rangle\)
lemma bisimWeakCongruence:
    fixes \(P\) :: ccs
    and \(\quad Q:: c c s\)
    assumes \(P \sim Q\)
    shows \(P \cong Q\)
\(\langle p r o o f\rangle\)
lemma structCong WeakCongruence:
fixes \(P\) :: ccs
and \(\quad Q::\) ccs
```

```
    assumes \(P \equiv{ }_{s} Q\)
    shows \(P \cong Q\)
\(\langle p r o o f\rangle\)
lemma weakCongruenceWeakBisimulation:
    fixes \(P\) :: ccs
    and \(\quad Q:: c c s\)
    assumes \(P \cong Q\)
    shows \(P \approx Q\)
\(\langle\) proof \(\rangle\)
end
theory Weak-Sim-Pres
    imports Weak-Sim
begin
lemma actPres:
    fixes \(P\) :: ccs
    and \(Q\) :: ccs
    and Rel :: \((c c s \times c c s)\) set
    and \(a\) :: name
    and Rel' \(::(\) ccs \(\times\) ccs \()\) set
    assumes \((P, Q) \in\) Rel
    shows \(\alpha .(P) \rightsquigarrow \wedge<\) Rel \(>\alpha .(Q)\)
〈proof〉
lemma sumPres:
    fixes \(P\) :: ccs
    and \(Q\) :: ccs
    and Rel \(::(c c s \times c c s)\) set
    assumes \(P \leadsto \wedge<\) Rel \(>Q\)
    and \(R e l \subseteq R e l^{\prime}\)
    and \(\quad I d \subseteq R e l^{\prime}\)
    and \(\quad C 1: \bigwedge S T U .(S, T) \in \operatorname{Rel} \Longrightarrow(S \oplus U, T) \in \operatorname{Rel}^{\prime}\)
    shows \(P \oplus R \rightsquigarrow \wedge\) Rel \(^{\prime}>Q \oplus R\)
\(\langle p r o o f\rangle\)
lemma parPresAux:
    fixes \(P\) :: ccs
    and \(\quad Q \quad:: c c s\)
```

```
and R :: ccs
and T ::ccs
and Rel :: (ccs }\times\mathrm{ ccs) set
and Rel' :: (ccs }\timesccs) se
and Rel""::(ccs }\times\mathrm{ ccs) set
assumes P\rightsquigarrow^<Rel>Q
and}\quad(P,Q)\in\operatorname{Rel
and }R\rightsquigarrow`<Rel'>
and}\quad(R,T)\inRe\mp@subsup{l}{}{\prime
and C1:\P' Q' R' T'. \llbracket(P', Q') \inRel; ( R', T') \inRel\rrbracket \Longrightarrow(P'| R', Q'|
T')}\inRe\mp@subsup{e}{}{\prime\prime
shows P|| m`<<Rel'\prime}>Q|
<proof\rangle
lemma parPres:
fixes P :: ccs
and Q :: ccs
and R :: ccs
and Rel :: (ccs }\times\mathrm{ ccs) set
and Rel'::(ccs }\times\mathrm{ ccs) set
assumes P}\rightsquigarrow~<Rel>
and}\quad(P,Q)\in\operatorname{Rel
```



```
shows P|R\rightsquigarrow`<Rel'>}Q|
<proof\rangle
lemma resPres:
fixes P :: ccs
and Rel :: (ccs }\timesccs) se
and Q ::ccs
and x :: name
assumes P\rightsquigarrow^<Rel>Q
and}\quad\RSy.(R,S)\inRel\Longrightarrow((\nuy|R,(\nuy|)S)\inRel'
shows }(\nux|P\rightsquigarrow^<\mp@subsup{Rel}{}{\prime}>(\nux|)
<proof\rangle
lemma bangPres:
    fixes P :: ccs
    and Rel :: (ccs }\timesccs) se
    and Q ::ccs
assumes }(P,Q)\inRe
and C1:\bigwedgeRS.(R,S)\inRel\LongrightarrowR\rightsquigarrow^<Rel>S
and Par: \bigwedgeRSTU.\llbracket(R,S)\inRel; (T,U)\inRel\rrbracket\Longrightarrow(R|T,S|U)\in
```

```
Rel'
    and C2:bangRel Rel\subseteqRel'
    and C3:\bigwedgeRS. (R|!R,S)\inRel'\Longrightarrow(!R,S)\inRel'
    shows!P\rightsquigarrow^<Rel'>!Q
<proof\rangle
end
theory Weak-Bisim-Pres
    imports Weak-Bisim Weak-Sim-Pres Strong-Bisim-SC
begin
lemma actPres:
    fixes P :: ccs
    and }Q::cc
    and }\alpha:::ac
    assumes P}\approx
    shows \alpha.(P) \approx\alpha.(Q)
\langleproof\rangle
lemma parPres:
    fixes P :: ccs
    and }Q ::cc
    and }R :: cc
    assumes P}
    shows }P|R\approxQ|
<proof\rangle
lemma resPres:
    fixes P :: ccs
    and }Q ::cc
    and x :: name
    assumes P}\approx
    shows (\nux)P\approx(\nux)Q
\langleproof\rangle
lemma bangPres:
    fixes P :: ccs
    and }Q::cc
    assumes P\approxQ
```

```
    shows !P\approx!Q
<proof\rangle
end
theory Weak-Cong-Sim-Pres
    imports Weak-Cong-Sim
begin
lemma actPres:
    fixes P :: ccs
    and }Q ::cc
    and Rel :: (ccs }\times\mathrm{ ccs) set
    and a :: name
    and Rel':: (ccs }\times\mathrm{ ccs) set
    assumes }(P,Q)\in\operatorname{Rel
    shows \alpha.(P) \rightsquigarrow<RRel> \alpha.(Q)
<proof\rangle
lemma sumPres:
    fixes P :: ccs
    and Q ::ccs
    and Rel :: (ccs }\times\mathrm{ ccs) set
    assumes }P\rightsquigarrow<\mathrm{ Rel > Q
    and Rel\subseteqRel'
    and Id\subseteqRel'
    shows }P\oplusR\rightsquigarrow<\mp@subsup{Rel}{}{\prime}>Q\oplus
<proof\rangle
lemma parPres:
    fixes P :: ccs
    and Q ::ccs
    and Rel :: (ccs }\timesccs) se
    assumes Pm<Rel>}
    and}\quad(P,Q)\in\mathrm{ Rel
    and }\quadC1:\bigwedgeSTU.(S,T)\in\operatorname{Rel}\Longrightarrow(S|U,T|U)\inRel'
    shows P|R\rightsquigarrow<<\mp@subsup{Rel}{}{\prime}>Q|R
<proof\rangle
lemma resPres:
    fixes P :: ccs
    and Rel :: (ccs }\timesccs) se
    and Q ::ccs
```

```
    and x :: name
    assumes P\rightsquigarrow<Rel>}
    and}\quad\RSy.(R,S)\inRel\Longrightarrow((\nuy|R,(\nuy|)S)\inRel'
    shows (\nux\)P\rightsquigarrow<\mp@subsup{Rel}{}{\prime}>(\nu\nux|Q
<proof>
lemma bangPres:
    fixes P :: ccs
    and }Q :: cc
    and Rel :: (ccs }\timesccs) se
    and Rel' :: (ccs }\timesccs) se
    assumes }(P,Q)\in\mathrm{ Rel
    and }\quadC1:\bigwedgeRS.(R,S)\inRel\LongrightarrowR\rightsquigarrow<\mp@subsup{Rel}{}{\prime}>
    and C2:Rel \subseteqRel'
    shows !P \rightsquigarrow<bangRel Rel'> !Q
<proof\rangle
end
theory Weak-Cong-Pres
    imports Weak-Cong Weak-Bisim-Pres Weak-Cong-Sim-Pres
begin
lemma actPres:
    fixes P :: ccs
    and }Q ::cc
    and \alpha :: act
    assumes P\congQ
    shows }\alpha.(P)\cong\alpha.(Q
<proof\rangle
lemma sumPres:
    fixes P :: ccs
    and }Q ::cc
    and }R\mathrm{ :: ccs
    assumes P\congQ
    shows }P\oplusR\congQ\oplus
<proof\rangle
lemma parPres:
    fixes P :: ccs
```

```
    and }Q :: cc
    and }R::cc
    assumes P\congQ
    shows }P|R\congQ|
\langleproof\rangle
lemma resPres:
    fixes P :: ccs
    and }Q ::cc
    and x :: name
    assumes P\congQ
    shows (\nux|)P\cong(\nu\nu|)Q
<proof\rangle
lemma weakBisimBangRel: bangRel weakBisimulation \subseteq weakBisimulation
<proof\rangle
lemma bangPres:
    fixes P :: ccs
    and }Q :: cc
    assumes P\congQ
    shows !P\cong!Q
\langleproof\rangle
end
```


References

[1] J. Bengtson. Formalising process calculi, volume 94. Uppsala Dissertations from the Faculty of Science and Technology, 2010.

