
Communicating Concurrent Kleene Algebra for
Distributed Systems Specification

Maxime Buyse and Jason Jaskolka

March 17, 2025

Abstract

Communicating Concurrent Kleene Algebra (C2KA) is a mathe-
matical framework for capturing the communicating and concurrent
behaviour of agents in distributed systems. It extends Hoare et al.’s
Concurrent Kleene Algebra (CKA) with communication actions
through the notions of stimuli and shared environments. C2KA has
applications in studying system-level properties of distributed systems
such as safety, security, and reliability. In this work, we formalize re-
sults about C2KA and its application for distributed systems specifica-
tion. We first formalize the stimulus structure and behaviour structure
(CKA). Next, we combine them to formalize C2KA and its properties.
Then, we formalize notions and properties related to the topology of
distributed systems and the potential for communication via stimuli
and via shared environments of agents, all within the algebraic setting
of C2KA.

Contents
1 Introduction 2

2 Stimulus Structure 3

3 Behaviour Structure 4

4 Communicating Concurrent Kleene Algebra 7

5 Notions of Topology for C2KA 10
5.1 Orbits . 11
5.2 Stabilisers . 12
5.3 Fixed Points . 12
5.4 Strong Orbits and Induced Behaviours 13

1

6 Notions of Communication for C2KA 15
6.1 Stimuli-Connected Systems & Universally Influential Agents 17
6.2 Preserving the Potential for Communication under Non-

Determinism . 19
6.2.1 Potential for Communication via Stimuli 19
6.2.2 Potential for Communication via Shared Environ-

ments . 20
6.3 Preserving the Potential for Communication with Agent Be-

haviour Modifications . 21

1 Introduction

Most complex distributed systems participate in intensive communication
and exchange with their environment, which often includes other systems.
For example, many systems need input in terms of energy, resources, infor-
mation, etc. As a result, the interactions between a system and its environ-
ment need to be carefully taken into account when modeling such systems.
In a distributed system, agents can communicate via their shared environ-
ments in the form of shared-variable communication where they transfer
information through a shared medium (e.g., variables, buffers, etc.) and
through their local communication channels in the form of message-passing
communication where they transfer information explicitly through the ex-
change of data structures. However, the agents in the system may also be
influenced by external stimuli. From the perspective of behaviourism, a
stimulus constitutes the basis for behaviour. In this way, agent behaviour
can, in some situations, be explained without the need to consider the in-
ternal states of an agent. A closed system is one that does not receive any
stimuli that affect its behaviour and that does not share any environment.
A system that is not a closed system is called an open system. When dealing
with open systems, external stimuli are required to initiate agent behaviours.
Such external stimuli result from systems outside the boundaries of the con-
sidered system and may impact the way in which the system agents behave.
It is important to note that every stimulus invokes a response from an agent.
When the behaviour of an agent changes as a result of the response, we say
that the stimulus influences the behaviour of the agent.
Communicating Concurrent Kleene Algebra (C2KA) [2, 5] is a mathemati-
cal framework for capturing the communicating and concurrent behaviour
of agents in distributed systems. In this work, the term agent is used to
refer to any system, component, or process whose behaviour consists of dis-
crete actions and each interaction, direct or indirect, of an agent with its
neighbouring agents is called a communication as in [6]. C2KA extends the
algebraic model of Concurrent Kleene Algebra [1], with communication ac-

2

tions through the notions of stimuli and shared environments. It offers an
algebraic setting capable of capturing both the influence of stimuli on agent
behaviour as well as the communication and concurrency of agents in a sys-
tem and its environment at an abstract algebraic level, thereby allowing it
to capture the dynamic behaviour of complex distributed systems.
In this work, we follow Jaskolka’s doctoral dissertation [2] which provides
a full treatment of C2KA and its related notions and properties. Section 2
and Section 3 formalize the stimulus structure and behaviour structure,
respectively. These structures comprise the two primary components of a
C2KA. Section 4 then combines these notions to formalize C2KA and its
properties. Section 5 follows this by presenting a formalization of the notions
of orbits, stabilisers, and fixed points to establish an understanding of the
topology of a distributed system specified using C2KA. Finally, Section 6
formalizes results regarding the potential for communication via stimuli and
via shared environments of distributed system agents within the algebraic
setting of C2KA.

2 Stimulus Structure

A stimulus constitutes the basis for behaviour. Because of this, each dis-
crete, observable event introduced to a system, such as that which occurs
through the communication among agents or from the system environment,
is considered to be a stimulus which invokes a response from each system
agent.
A stimulus structure is an idempotent semiring

(
S,⊕,�, d, n

)
with a mul-

tiplicatively absorbing d and identity n. Within the context of stimuli, S
is a set of stimuli which may be introduced to a system. The operator ⊕
is interpreted as a choice between two stimuli and the operator � is inter-
preted as a sequential composition of two stimuli. The element d represents
the deactivation stimulus which influences all agents to become inactive and
the element n represents the neutral stimulus which has no influence on the
behaviour of all agents. The natural ordering relation ≤S on a stimulus
structure S is called the sub-stimulus relation. For stimuli s, t ∈ S, we
write s ≤S t and say that s is a sub-stimulus of t if and only if s⊕ t = t.
theory Stimuli

imports Main
begin

The class stimuli describes the stimulus structure for C2KA. We do not
use Isabelle’s built-in theories for groups and orderings to allow a different
notation for the operations on stimuli to be consistent with [2].
class plus-ord =

fixes leq:: ′a ⇒ ′a ⇒ bool (‹(-/ ≤S -)› [51 , 51] 50)

3

fixes add:: ′a ⇒ ′a ⇒ ′a (infixl ‹⊕› 65)
assumes leq-def : x ≤S y ←→ x ⊕ y = y
and add-assoc: (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)
and add-comm: x ⊕ y = y ⊕ x

begin

notation
leq (‹ ′(≤ ′)›) and
leq (‹(-/ ≤S -)› [51 , 51] 50)

end

class stimuli = plus-ord +
fixes seq-comp:: ′a ⇒ ′a ⇒ ′a (infixl ‹�› 70)
fixes neutral :: ′a (‹n›)
and deactivation :: ′a (‹d›)
and basic :: ′a set (‹Sa›)
assumes stim-idem [simp]: x ⊕ x = x
and seq-nl [simp]: n � x = x
and seq-nr [simp]: x � n = x
and add-zero [simp]: d ⊕ x = x
and absorbingl [simp]: d � x = d
and absorbingr [simp]: x � d = d
and zero-not-basic: d /∈ Sa

begin

lemma inf-add-S-right: x ≤S y =⇒ x ≤S y ⊕ z
unfolding leq-def
by (simp add: add-assoc [symmetric])

lemma inf-add-S-left: x ≤S y =⇒ x ≤S z ⊕ y
by (simp add: add-comm inf-add-S-right)

lemma leq-refl [simp]: x ≤S x
unfolding leq-def
by simp

end

end

3 Behaviour Structure

Hoare et al. [1] presented the framework of Concurrent Kleene Algebra
(CKA) which captures the concurrent behaviour of agents. The framework
of CKA is adopted to describe agent behaviours in distributed systems. For
a CKA

(
K,+, ∗, ; , * , ; , 0, 1

)
, K is a set of possible behaviours. The oper-

ator + is interpreted as a choice between two behaviours, the operator ;

4

is interpreted as a sequential composition of two behaviours, and the op-
erator ∗ is interpreted as a parallel composition of two behaviours. The
operators ; and * are interpreted as a finite sequential iteration and a fi-
nite parallel iteration of behaviours, respectively. The element 0 represents
the behaviour of the inactive agent and the element 1 represents the be-
haviour of the idle agent. Associated with a CKA K is a natural ordering
relation ≤K related to the semirings upon which the CKA is built which is
called the sub-behaviour relation. For behaviours a, b ∈ K, we write a ≤K b
and say that a is a sub-behaviour of b if and only if a+ b = b.
theory CKA

imports Main
begin

unbundle no rtrancl-syntax

notation
times (infixl ‹∗› 70)
and less-eq (‹ ′(≤K

′)›)
and less-eq (‹(-/ ≤K -)› [51 , 51] 50)

The class cka contains an axiomatisation of Concurrent Kleene Algebras and
a selection of useful theorems.
class join-semilattice = ordered-ab-semigroup-add +

assumes leq-def : x ≤ y ←→ x + y = y
and le-def : x < y ←→ x ≤ y ∧ x 6= y
and add-idem [simp]: x + x = x

begin

lemma inf-add-K-right: a ≤K a + b
unfolding leq-def
by (simp add: add-assoc[symmetric])

lemma inf-add-K-left: a ≤K b + a
by (simp only: add-commute, fact inf-add-K-right)

end

class dioid = semiring + one + zero + join-semilattice +
assumes par-onel [simp]: 1 ∗ x = x
and par-oner [simp]: x ∗ 1 = x
and add-zerol [simp]: 0 + x = x
and annil [simp]: 0 ∗ x = 0
and annir [simp]: x ∗ 0 = 0

class kleene-algebra = dioid +
fixes star :: ′a ⇒ ′a (‹-∗› [101] 100)
assumes star-unfoldl: 1 + x ∗ x∗ ≤K x∗

and star-unfoldr : 1 + x∗ ∗ x ≤K x∗

5

and star-inductl: z + x ∗ y ≤K y =⇒ x∗ ∗ z ≤K y
and star-inductr : z + y ∗ x ≤K y =⇒ z ∗ x∗ ≤K y

class cka = kleene-algebra +
fixes seq :: ′a ⇒ ′a ⇒ ′a (infixl ‹;› 70)
and seqstar :: ′a ⇒ ′a (‹-;› [101] 100)
assumes seq-assoc: x ; (y ; z) = (x ; y) ; z
and seq-rident [simp]: x ; 1 = x
and seq-lident [simp]: 1 ; x = x
and seq-rdistrib [simp]: (x + y);z = x;z + y;z
and seq-ldistrib [simp]: x;(y + z) = x;y + x;z
and seq-annir [simp]: x ; 0 = 0
and seq-annil [simp]: 0 ; x = 0
and seqstar-unfoldl: 1 + x ; x ; ≤K x ;

and seqstar-unfoldr : 1 + x ; ; x ≤K x ;

and seqstar-inductl: z + x ; y ≤K y =⇒ x ; ; z ≤K y
and seqstar-inductr : z + y ; x ≤K y =⇒ z ; x ; ≤K y
and exchange: (a∗b) ; (c∗d) ≤K (b;c) ∗ (a;d)

begin

interpretation cka: kleene-algebra plus less-eq less 1 0 seq seqstar
by (unfold-locales, simp-all add: seq-assoc seqstar-unfoldl seqstar-unfoldr seqs-

tar-inductl seqstar-inductr)

lemma par-comm: a ∗ b = b ∗ a
proof −

have (b∗a) ; (1∗1) ≤K (a;1) ∗ (b;1) by (simp only: exchange)
hence b ∗ a ≤K a ∗ b by (simp)
hence a ∗ b ≤K b ∗ a ←→ a ∗ b = b ∗ a by (rule antisym-conv)
moreover have a ∗ b ≤K b ∗ a proof −
have (a∗b) ; (1∗1) ≤K (b;1) ∗ (a;1) by (rule exchange)

thus ?thesis by (simp)
qed
ultimately show ?thesis by (auto)

qed

lemma exchange-2 : (a∗b) ; (c∗d) ≤K (a;c) ∗ (b;d)
proof −

have (b∗a) ; (c∗d) ≤K (a;c) ∗ (b;d) by (rule exchange)
thus ?thesis by (simp add: par-comm)

qed

lemma seq-inf-par : a ; b ≤K a ∗ b
proof −

have (1∗a) ; (1∗b) ≤K (a;1) ∗ (1 ;b) by (rule exchange)
thus ?thesis by simp

qed

lemma add-seq-inf-par : a;b + b;a ≤K a∗b

6

proof −
have a;b ≤K a∗b by (rule seq-inf-par)
moreover have b;a ≤K b∗a by (rule seq-inf-par)
ultimately have a;b + b;a ≤K a∗b + b∗a by (simp add: add-mono)
thus ?thesis by (simp add: par-comm)

qed

lemma exchange-3 : (a∗b) ; c ≤K a ∗ (b;c)
proof −

have (a∗b) ; (1∗c) ≤K (a;1) ∗ (b;c) by (rule exchange-2)
thus ?thesis by simp

qed

lemma exchange-4 : a ; (b∗c) ≤K (a;b) ∗ c
proof −

have (1∗a) ; (b∗c) ≤K (a;b) ∗ (1 ;c) by (rule exchange)
thus ?thesis by simp

qed

lemma seqstar-inf-parstar : a; ≤K a∗

proof −
have a ; a∗ ≤K a ∗ a∗ by (rule seq-inf-par)
hence 1 + a ; a∗ ≤K 1 + a ∗ a∗ by (simp add: add-left-mono)
hence 1 + a ; a∗ ≤K a∗ by (simp add: star-unfoldl order-trans)
hence a; ; 1 ≤K a∗ by (rule seqstar-inductl)
thus ?thesis by simp

qed

end

end

4 Communicating Concurrent Kleene Algebra

C2KA extends the algebraic foundation of CKA with the notions of semi-
modules and stimulus structures to capture the influence of stimuli on the
behaviour of system agents.
A C2KA is a mathematical system consisting of two semimodules which
describe how a stimulus structure S and a CKA K mutually act upon
one another to characterize the response invoked by a stimulus on an
agent behaviour as a next behaviour and a next stimulus. The left S-
semimodule

(
SK,+

)
describes how the stimulus structure S acts upon the

CKA K via the mapping ◦. The mapping ◦ is called the next behaviour map-
ping and it describes how a stimulus invokes a behavioural response from a
given agent. From

(
SK,+

)
, the next behaviour mapping ◦ distributes over +

and ⊕. Additionally, since
(
SK,+

)
is unitary, it is the case that the neutral

7

stimulus has no influence on the behaviour of all agents and since
(
SK,+

)
is zero-preserving, the deactivation stimulus influences all agents to become
inactive. The right K-semimodule

(
SK,⊕

)
describes how the CKA K acts

upon the stimulus structure S via the mapping λ. The mapping λ is called
the next stimulus mapping and it describes how a new stimulus is gener-
ated as a result of the response invoked by a given stimulus on an agent
behaviour. From

(
SK,⊕

)
, the next stimulus mapping λ distributes over ⊕

and +. Also, since
(
SK,⊕

)
is unitary, it is the case that the idle agent for-

wards any stimulus that acts on it and since
(
SK,⊕

)
is zero-preserving, the

inactive agent always generates the deactivation stimulus. A full account of
C2KA can be found in [2, 4, 5].
theory C2KA

imports CKA Stimuli
begin

no-notation comp (infixl ‹◦› 55)
unbundle no rtrancl-syntax

The locale c2ka contains an axiomatisation of C2KA and some basic the-
orems relying on the axiomatisations of stimulus structures and CKA pro-
vided in Sections 2 and 3, respectively. We use a locale instead of a class in
order to allow stimuli and behaviours to have two different types.
locale c2ka =

fixes next-behaviour :: ′b::stimuli ⇒ ′a::cka ⇒ ′a (infixr ‹◦› 75)
and next-stimulus :: (′b::stimuli × ′a::cka) ⇒ ′b (‹λ›)
assumes lsemimodule1 [simp]: s ◦ (a + b) = (s ◦ a) + (s ◦ b)
and lsemimodule2 [simp]: (s ⊕ t) ◦ a = (s ◦ a) + (t ◦ a)
and lsemimodule3 [simp]: (s � t) ◦ a = s ◦ (t ◦ a)
and lsemimodule4 [simp]: n ◦ a = a
and lsemimodule5 [simp]: d ◦ a = 0
and rsemimodule1 [simp]: λ(s ⊕ t, a) = λ(s, a) ⊕ λ(t, a)
and rsemimodule2 [simp]: λ(s, a + b) = λ(s, a) ⊕ λ(s, b)
and rsemimodule3 [simp]: λ(s, a ; b) = λ(λ(s, a), b)
and rsemimodule4 [simp]: λ(s, 1) = s
and rsemimodule5 [simp]: λ(s, 0) = d
and cascadingaxiom [simp]: s ◦ (a ; b) = (s ◦ a);(λ(s, a) ◦ b)
and cascadingoutputlaw: a ≤K c ∨ b = 1 ∨ (s ◦ a);(λ(s,c) ◦ b) = 0
and sequentialoutputlaw [simp]: λ(s � t, a) = λ(s, t◦a) � λ(t, a)
and onefix: s = d ∨ s ◦ 1 = 1
and neutralunmodified: a = 0 ∨ λ(n, a) = n

begin

Lemmas inf-K-S-next-behaviour and inf-K-S-next-stimulus show basic re-
sults from the axiomatisation of C2KA.
lemma inf-K-S-next-behaviour : (a ≤K b ∧ s ≤S t) =⇒ (s ◦ a ≤K t ◦ b)

unfolding Stimuli.leq-def CKA.leq-def

8

proof −
assume hyp: a + b = b ∧ s ⊕ t = t
hence s ◦ a + t ◦ b = s ◦ a + (s ⊕ t) ◦ b by simp
hence s ◦ a + t ◦ b = s ◦ a + s ◦ b + t ◦ b by (simp add: algebra-simps)
moreover have s ◦ (a + b) = s ◦ a + s ◦ b by simp
ultimately have s ◦ a + t ◦ b = s ◦ (a + b) + t ◦ b by simp
hence s ◦ a + t ◦ b = s ◦ b + t ◦ b by (simp add: hyp)
hence s ◦ a + t ◦ b = (s ⊕ t) ◦ b by simp
thus s ◦ a + t ◦ b = t ◦ b by (simp add: hyp)

qed

lemma inf-K-S-next-stimulus: a ≤K b ∧ s ≤S t =⇒ λ(s,a) ≤S λ(t,b)
unfolding Stimuli.leq-def CKA.leq-def

proof −
assume hyp: a + b = b ∧ s ⊕ t = t
hence λ(s,a) ⊕ λ(t,b) = λ(s,a) ⊕ λ(s⊕t,b) by simp
hence λ(s,a) ⊕ λ(t,b) = λ(s,a) ⊕ λ(s,b) ⊕ λ(t,b) by (simp add: add-assoc)
moreover have λ(s,a+b) = λ(s,a) ⊕ λ(s,b) by simp
ultimately have λ(s,a) ⊕ λ(t,b) = λ(s,a+b) ⊕ λ(t,b) by simp
hence λ(s,a) ⊕ λ(t,b) = λ(s,b) ⊕ λ(t,b) by (simp add: hyp)
hence λ(s,a) ⊕ λ(t,b) = λ(s⊕t,b) by simp
thus λ(s,a) ⊕ λ(t,b) = λ(t,b) by (simp add: hyp)

qed

The following lemmas show additional results from the axiomatisation of
C2KA which follow from lemmas inf-K-S-next-behaviour and inf-K-S-next-
stimulus.
lemma inf-K-next-behaviour : a ≤K b =⇒ s ◦ a ≤K s ◦ b

by (simp add: inf-K-S-next-behaviour)

lemma inf-S-next-behaviour : s ≤S t =⇒ s ◦ a ≤K t ◦ a
by (simp add: inf-K-S-next-behaviour)

lemma inf-add-seq-par-next-behaviour : s ◦ (a;b + b;a) ≤K s ◦ (a∗b)
using inf-K-next-behaviour add-seq-inf-par by blast

lemma inf-seqstar-parstar-next-behaviour : s ◦ a; ≤K s ◦ a∗

by (simp add: seqstar-inf-parstar inf-K-next-behaviour)

lemma inf-S-next-stimulus: s ≤S t =⇒ λ(s,a) ≤S λ(t,a)
by (simp add: inf-K-S-next-stimulus)

lemma inf-K-next-stimulus: a ≤K b =⇒ λ(s,a) ≤S λ(s,b)
by (simp add: inf-K-S-next-stimulus)

lemma inf-add-seq-par-next-stimulus: λ(s, a;b + b;a) ≤S λ(s, a∗b)
proof −

have a;b ≤K a∗b by (rule seq-inf-par)
moreover have b;a ≤K b∗a by (rule seq-inf-par)

9

ultimately have a;b + b;a ≤K a∗b + b∗a by (simp add: add-mono)
hence a;b + b;a ≤K a∗b by (simp add: par-comm)
thus λ(s, a;b + b;a) ≤S λ(s, a∗b) by (rule inf-K-next-stimulus)

qed

lemma inf-seqstar-parstar-next-stimulus: λ(s, a;) ≤S λ(s, a∗)
by (simp add: seqstar-inf-parstar inf-K-next-stimulus)

end

end

5 Notions of Topology for C2KA

Orbits, stabilisers, and fixed points are notions that allow us to perceive a
kind of topology of a system with respect to the stimulus-response relation-
ships among system agents. In this context, the term “topology” is used
to capture the relationships (influence) and connectedness via stimuli of the
agents in a distributed system. It intends to capture a kind of reachability
in terms of the possible behaviours for a given agent.
A C2KA consists of two semimodules

(
SK,+

)
and

(
SK,⊕

)
for which we

have a left S-act SK and a right K-act SK. Therefore, there are two com-
plementary notions of orbits, stabilisers, and fixed points within the context
of agent behaviours and stimuli, respectively. In this way, one can use these
notions to think about distributed systems from two different perspectives,
namely the behavioural perspective provided by the action of stimuli on
agent behaviours described by

(
SK,+

)
and the external event (stimulus)

perspective provided by the action of agent behaviours on stimuli described
by

(
SK,⊕

)
. In this section, only the treatment of these notions with re-

spect to the left S-semimodule
(
SK,+

)
and agent behaviours is provided.

The same notions for the right K-semimodule
(
SK,⊕

)
and stimuli can be

provided in a very similar way.
When discussing the interplay between C2KA and the notions of orbits,
stabilisers, and fixed points, the partial order of sub-behaviours ≤K is ex-
tended to sets in order to express sets of agent behaviours encompassing
one another. For two subsets of agent behaviours A,B ⊆ K, we say that A
is encompassed by B (or B encompasses A), written A lK B, if and only
if ∀

(
a | a ∈ A : ∃(b | b ∈ B : a ≤K b)

)
. In essence, AlK B indicates

that every behaviour contained within the set A is a sub-behaviour of at
least one behaviour in the set B. The encompassing relation lS for stimuli
can be defined similarly.
Throughout this section, let

(
SK,+

)
be the unitary and zero-preserving

left S-semimodule of a C2KA and let a ∈ K.

10

theory Topology-C2KA
imports C2KA

begin

no-notation comp (infixl ‹◦› 55)
unbundle no rtrancl-syntax

The locale topology-c2ka extends the axiomatisation of c2ka to support the
notions of topology.
locale topology-c2ka = c2ka +

fixes orbit :: ′a::cka ⇒ ′a::cka set (‹Orb›)
and strong-orbit :: ′a::cka ⇒ ′a::cka set (‹OrbS›)
and stabiliser :: ′a::cka ⇒ ′b::stimuli set (‹Stab›)
and fixed :: ′a::cka ⇒ bool
and encompassing-relation-behaviours :: ′a set ⇒ ′a set ⇒ bool (infix ‹lK› 50)
and encompassing-relation-stimuli :: ′b set ⇒ ′b set ⇒ bool (infix ‹lS› 50)
and induced :: ′a::cka ⇒ ′a::cka ⇒ bool (infix ‹C› 50)
and orbit-equivalent :: ′a::cka ⇒ ′a::cka ⇒ bool (infix ‹∼K› 50)
assumes orb-def : x ∈ Orb(a) ←→ (∃ s. (s ◦ a = x))
and orbs-def : b ∈ OrbS(a) ←→ Orb(b) = Orb(a)
and stab-def : s ∈ Stab(a) ←→ s ◦ a = a
and fixed-def : fixed(a) ←→ (∀ s:: ′b. s 6=d −→ s ◦ a = a)
and erb-def : A lK B ←→ (∀ a:: ′a. a ∈ A −→ (∃ b. b ∈ B ∧ a ≤K b))
and ers-def : E lS F ←→ (∀ a:: ′b. a ∈ E −→ (∃ b. b ∈ F ∧ a ≤S b))
and induced-def : a C b ←→ b ∈ Orb(a)
and orbit-equivalent-def : a ∼K b ←→ Orb(a) = Orb(b)

begin

5.1 Orbits

The orbit of a in S is the set given by Orb(a) = {s ◦ a | s ∈ S}. The orbit
of an agent a ∈ K represents the set of all possible behavioural responses
from an agent behaving as a to any stimulus from S. In this way, the orbit
of a given agent can be perceived as the set of all possible future behaviours
for that agent.

Lemma inf-K-enc-orb provides an isotonicity law with respect to the orbits
and the encompassing relation for agent behaviours.
lemma inf-K-enc-orb: a ≤K b =⇒ Orb(a) lK Orb(b)

unfolding erb-def orb-def
using inf-K-next-behaviour by blast

The following lemmas provide a selection of properties regarding orbits and
the encompassing relation for agent behaviours.
lemma enc-orb-add: Orb(a) lK Orb(a + b)

using inf-K-enc-orb inf-add-K-right by auto

11

lemma enc-orb-exchange: Orb((a∗b) ; (c∗d)) lK Orb((a;c) ∗ (b;d))
using inf-K-enc-orb exchange-2 by blast

lemma enc-orb-seq-par : Orb(a;b) lK Orb(a∗b)
using inf-K-enc-orb seq-inf-par by auto

lemma enc-orb-add-seq-par : Orb(a;b + b;a) lK Orb(a∗b)
using inf-K-enc-orb add-seq-inf-par by auto

lemma enc-orb-parseq: Orb((a∗b);c) lK Orb(a∗(b;c))
using inf-K-enc-orb exchange-3 by blast

lemma enc-orb-seqpar : Orb(a;(b∗c)) lK Orb((a;b)∗c)
using inf-K-enc-orb exchange-4 by blast

lemma enc-orb-seqstar-parstar : Orb(a;) lK Orb(a∗)
using inf-K-enc-orb seqstar-inf-parstar by auto

lemma enc-orb-union: Orb(a) lK Orb(c) ∧ Orb(b) lK Orb(c)
←→ Orb(a) ∪ Orb(b) lK Orb(c)

unfolding erb-def
by auto

5.2 Stabilisers

The stabiliser of a in S is the set given by Stab(a) = {s ∈ S | s ◦ a = a}.
The stabiliser of an agent a ∈ K represents the set of stimuli which have no
observable influence (or act as neutral stimuli) on an agent behaving as a.

Lemma enc-stab-inter-add provides a property regarding stabilisers and the
encompassing relation for stimuli.
lemma enc-stab-inter-add: Stab(a) ∩ Stab(b) lS Stab(a + b)

unfolding ers-def
by (auto simp add: stab-def , rename-tac s, rule-tac x=s in exI , simp)

5.3 Fixed Points

An element a ∈ K is called a fixed point if ∀(s | s ∈ S\{d} : s ◦ a = a).
When an agent behaviour is a fixed point, it is not influenced by any stim-
ulus other than the deactivation stimulus d. It is important to note that
since

(
SK,+

)
is zero-preserving, every agent behaviour becomes inactive

when subjected to the deactivation stimulus d. Because of this, we exclude
this special case when discussing fixed point agent behaviours.
lemma zerofix [simp]: s ◦ 0 = 0
proof −

have 0 = d ◦ a by simp
hence s ◦ 0 = s ◦ (d ◦ a) by simp

12

hence s ◦ 0 = (s � d) ◦ a by (simp only: lsemimodule3 [symmetric])
thus s ◦ 0 = 0 by simp

qed

The following lemmas provide a selection of properties regarding fixed agent
behaviours.
lemma fixed-zero: fixed(0)

unfolding fixed-def
by simp

lemma fixed-a-b-add: fixed(a) ∧ fixed(b) −→ fixed(a + b)
unfolding fixed-def
by simp

lemma fix-not-deactivation: s ◦ a = a ∧ λ(s,a) = d =⇒ a = 0
proof −

assume E : s ◦ a = a ∧ λ(s,a) = d
hence s ◦ (a;1) = a by simp
hence (s◦a) ; (λ(s,a)◦1) = a by (simp only: cascadingaxiom)
hence 0 = a by (simp add: E)
thus ?thesis by auto

qed

lemma fixed-a-b-seq: fixed(a) ∧ fixed(b) −→ fixed(a ; b)
unfolding fixed-def

proof (rule impI)
assume hyp: (∀ s. s 6= d −→ s ◦ a = a) ∧ (∀ s. s 6= d −→ s ◦ b = b)
have C1 : (∀ s. λ(s,a) = d −→ s 6= d −→ s ◦ (a ; b) = a ; b)
proof −

have E : (∀ s. s 6= d ∧ λ(s,a) = d −→ s ◦ (a ; b) = 0) by simp
hence (∀ s. s 6= d ∧ λ(s,a) = d −→ s ◦ a = a ∧ λ(s,a) = d)

by (simp add: hyp)
moreover have (∀ s. s ◦ a = a ∧ λ(s,a) = d −→ a = 0)

by (simp add: fix-not-deactivation)
ultimately have (∀ s. s 6= d ∧ λ(s,a) = d −→ a = 0) by auto
thus ?thesis by (auto simp add: E)

qed
moreover have C2 : (∀ s. λ(s,a) 6= d −→ s 6= d −→ s ◦ (a ; b) = a ; b)

by (simp add: hyp)
ultimately show (∀ s. s 6= d −→ s ◦ (a ; b) = a ; b) by blast

qed

5.4 Strong Orbits and Induced Behaviours

The strong orbit of a in S is the set given by OrbS(a) = {b ∈ K | Orb(b) =
Orb(a)}. Two agents are in the same strong orbit, denoted a ∼K b for a, b ∈
K, if and only if their orbits are identical. This is to say when a ∼K b, if an
agent behaving as a is influenced by a stimulus to behave as b, then there

13

exists a stimulus which influences the agent, now behaving as b, to revert
back to its original behaviour a.
The influence of stimuli on agent behaviours is called the induced behaviours
via stimuli. Let a, b ∈ K be agent behaviours with a 6= b. We say that b
is induced by a via stimuli (denoted by a C b) if and only if ∃(s | s ∈
S : s ◦ a = b). The notion of induced behaviours allows us to make some
predictions about the evolution of agent behaviours in a given system by
providing some insight into how different agents can respond to any stimuli.

Lemma fixed-not-induce states that if an agent has a fixed point behaviour,
then it does not induce any agent behaviours via stimuli besides the inactive
behaviour 0.
lemma fixed-not-induce: fixed(a) −→ (∀ b. b 6= 0 ∧ b 6= a −→ ¬(a C b))
proof −

have
∧

s. s = d ∨ s 6= d =⇒ (∀ t. t 6= d −→ t ◦ a = a) =⇒ s ◦ a 6= 0
=⇒ s ◦ a 6= a =⇒ False

by (erule disjE , simp-all)
hence

∧
s. (∀ t. t 6= d −→ t ◦ a = a) =⇒ s ◦ a 6= 0 =⇒ s ◦ a 6= a =⇒ False

by simp
thus ?thesis

unfolding fixed-def induced-def orb-def
by auto

qed

Lemma strong-orbit-both-induced states that all agent behaviours which be-
long to the same strong orbit are mutually induced via some (possibly dif-
ferent) stimuli. This is to say that if two agent behaviours are in the same
strong orbit, then there exists inverse stimuli for each agent behaviour in a
strong orbit allowing an agent to revert back to its previous behaviour.
lemma in-own-orbit: a ∈ Orb(a)

unfolding orb-def
by (rule-tac x=n in exI , simp)

lemma strong-orbit-both-induced: a ∼K b −→ a C b ∧ b C a
unfolding orbit-equivalent-def induced-def
by (blast intro: in-own-orbit)

Lemma strong-orbit-induce-same states that if two agent behaviours are in
the same strong orbit, then a third behaviour can be induced via stimuli by
either of the behaviours within the strong orbit. This is to say that each
behaviour in a strong orbit can induce the same set of behaviours (perhaps
via different stimuli).
lemma strong-orbit-induce-same: a ∼K b −→ (a C c ←→ b C c)

unfolding induced-def orbit-equivalent-def
by simp

14

end

end

6 Notions of Communication for C2KA

Distributed systems contain a significant number of interactions among their
constituent agents. Any interaction, direct or indirect, of an agent with its
neighbouring agents can be understood as a communication [6]. Therefore,
any potential for communication between two system agents can be charac-
terized by the existence of a communication path allowing for the transfer
of data or control from one agent to another. Potential for communication
allows system agents to have an influence over each other. The study of
agent influence allows for the determination of the overall structure of the
distributed system of which the agents comprise. A full treatment of the po-
tential for communication within distributed systems specified using C2KA
has been given in [2] and [3] and is highlighted below.
Consider a distributed system with A,B ∈ A such that A 6= B. We write A 7→〈
a
〉

where A is the name given to the agent and a ∈ K is the agent behaviour.
For A 7→

〈
a
〉

and B 7→
〈
b
〉
, we write A+ B to denote the agent

〈
a+ b

〉
. In

a sense, we extend the operators on behaviours of K to their corresponding
agents.
Communication via stimuli from agent A to agent B is said to have taken
place only when a stimulus generated by A influences (i.e., causes an ob-
servable change in, directly or indirectly) the behaviour of B. Note that
it is possible that more than one agent is influenced by the generation
of the same stimulus by another agent in the system. Formally, we say
that agent A 7→

〈
a
〉

has the potential for direct communication via stim-
uli with agent B 7→

〈
b
〉

(denoted by A →S B) if and only if ∃
(
s, t |

s, t ∈ Sb ∧ t ≤S λ(s, a) : t ◦ b 6= b
)

where Sb is the set of all ba-
sic stimuli. A stimulus is called basic if it is indivisible with regard to
the sequential composition operator � of a stimulus structure. Similarly,
we say that agent A has the potential for communication via stimuli with
agent B using at most n basic stimuli (denoted by A →n

S B) if and only
if ∃

(
C | C ∈ A ∧ C 6= A ∧ C 6= B : A→(n−1)

S C ∧ C→S B
)
. More gen-

erally, we say that agent A has the potential for communication via stimuli
with agent B (denoted by A→+

S B) if and only if ∃
(
n | n ≥ 1 : A→n

S B
)
.

When A →+
S B, there is a sequence of stimuli of arbitrary length which

allows for the transfer of data or control from agent A to agent B in the
system. To simplify the Isabelle theory, we do not implement the poten-
tial for communication using at most n basic stimuli. Instead, we give the
definition of potential for direct communication via stimuli and the fact

15

that A →S B =⇒ A →+
S B as axioms because these are the only properties

that we use about potential for communication via stimuli.
Communication via shared environments from agent A to agent B (denoted
by A→+

E B) is said to have taken place only when A has the ability to alter
an element of the environment that it shares with B such that B is able to
observe the alteration that was made. Formally, we say that agent A 7→

〈
a
〉

has the potential for direct communication via shared environments with
agent B 7→

〈
b
〉

(denoted by A→E B) if and only if aR b where R is a given
dependence relation. More generally, agent A has the potential for commu-
nication via shared environments with agent B (denoted by A→+

E B) if and
only if aR+ b where R+ is the transitive closure of the given dependence re-
lation. This means that if two agents respect the given dependence relation,
then there is a potential for communication via shared environments.
theory Communication-C2KA

imports Topology-C2KA
begin

The locale communication-c2ka extends topology-c2ka to include aspects of
potential for communication among distributed system agents.
locale communication-c2ka = topology-c2ka +

fixes dcs :: ′a::cka ⇒ ′a::cka ⇒ bool (infix ‹→S› 50)
and pcs :: ′a::cka ⇒ ′a::cka ⇒ bool (infix ‹→S

+› 50)
and dce :: ′a::cka ⇒ ′a::cka ⇒ bool (infix ‹→E› 50)
and pce :: ′a::cka ⇒ ′a::cka ⇒ bool (infix ‹→E

+› 50)
and pdc :: ′a::cka ⇒ ′a::cka ⇒ bool (infix ‹ › 50)
and pfc :: ′a::cka ⇒ ′a::cka ⇒ bool (infix ‹ +› 50)
and stimuli-connected :: ′a set ⇒ bool
and universally-influential :: ′a::cka × ′a set ⇒ bool
assumes dcs-def : a →S b ←→
(∃ s t. s ∈ Sa ∧ t ∈ Sa ∧ t ≤S λ(s,a) ∧ t ◦ b 6= b)
and pdc-def : a b ←→ (a →S b ∨ a →E b)
and zero-dce: ¬(0 →E a)
and one-dce: ¬(1 →E a)
and dce-zero: ¬(a →E 0)
and dce-one: ¬(a →E 1)
and sum-dce: (A + B →E C) ←→ (A →E C ∨ B →E C)
and dce-sum: (A →E B + C) ←→ (A →E B ∨ A →E C)
and dcs-pcs: A →S B =⇒ A →S

+ B
and stimuli-connected-def : stimuli-connected(C) ←→

(∀ X1 X2. X1 ∩ X2 = {} ∧ X1 ∪ X2 = C ∧ X1 6= {} ∧ X2 6= {} −→
(∃ A B. A ∈ X1 ∧ B ∈ X2 ∧ (A →S

+ B ∨ B →S
+ A)))

and universally-influential-def : universally-influential(A,C) ←→
A ∈ C ∧ (∀ B. B ∈ C ∧ B 6= A −→ A →S

+ B)
begin

16

6.1 Stimuli-Connected Systems & Universally Influential
Agents

Two subsets X1 and X2 of A form a partition of A if and only if X1∩X2 = ∅
and X1 ∪ X2 = A. A distributed system of agents A is called stimuli-
connected if and only if for every X1 and X2 nonempty that form a partition
of A, we have ∃(A,B | A ∈ X1 ∧ B ∈ X2 : A →+

S B ∨ B →+
S A).

Otherwise, A is called stimuli-disconnected. In a stimuli-connected system,
every agent is a participant, either as the source or sink, of at least one
direct communication via stimuli.

An agent A ∈ A is called universally influential if and only if ∀
(
B | B ∈

A\{A} : A→+
S B

)
. A universally influential agent is able to generate some

stimuli that influences the behaviour, either directly or indirectly, of each
other agent in the system.

Lemma universally-influential-stimuli-connected shows that the existence of
a universally influential agent yields a stimuli-connected system.
lemma universally-influential-stimuli-connected:
(∃ A. universally-influential(A,C)) −→ stimuli-connected(C)

unfolding universally-influential-def stimuli-connected-def
proof (intro allI impI)

fix X1 X2

show (∃A. A ∈ C ∧ (∀B. B ∈ C ∧ B 6= A −→ A →S
+ B)) =⇒

X1 ∩ X2 = {} ∧ X1 ∪ X2 = C ∧ X1 6= {} ∧ X2 6= {} =⇒
(∃ A B. A ∈ X1 ∧ B ∈ X2 ∧ (A →S

+ B ∨ B →S
+ A))

proof −
assume (∃A. A ∈ C ∧ (∀B. B ∈ C ∧ B 6= A −→ A →S

+ B))
from this obtain A where Aui: A ∈ C ∧ (∀B. B ∈ C ∧ B 6= A −→

A →S
+ B) by auto

show X1 ∩ X2 = {} ∧ X1 ∪ X2 = C ∧ X1 6= {} ∧ X2 6= {} =⇒
(∃A B. A ∈ X1 ∧ B ∈ X2 ∧ (A →S

+ B ∨ B →S
+ A))

proof −
assume partition:X1 ∩ X2 = {} ∧ X1 ∪ X2 = C ∧ X1 6= {} ∧ X2 6= {}
show (∃A B. A ∈ X1 ∧ B ∈ X2 ∧ (A →S

+ B ∨ B →S
+ A))

proof cases
assume in1 : A ∈ X1

from partition obtain B where in2 : B ∈ X2 by auto
have A = B =⇒ False
proof −

assume A = B
hence A ∈ X2 by (simp add: in2)
moreover have A ∈ X1 by (rule in1)
ultimately have A ∈ X1 ∩ X2 by simp
hence A ∈ {} by (simp add: partition)
thus False by simp

qed
hence A 6= B by auto

17

moreover have B ∈ C
proof −

from partition have C = X1 ∪ X2 by auto
hence X2 ⊆ C by simp
thus ?thesis by (auto simp add: in2)

qed
ultimately have A →S

+ B by (auto simp add: Aui in2)
thus ?thesis

by (rule-tac x=A in exI , rule-tac x=B in exI , simp add: in1 in2)
next

assume notin1 : A /∈ X1

moreover have A ∈ C by (simp add: Aui)
moreover have X1 ∪ X2 = C by (simp add: partition)
ultimately have in2 : A ∈ X2 by auto
from partition obtain B where in1 : B ∈ X1 by auto
have B = A =⇒ False
proof −

assume B = A
hence B ∈ X2 by (simp add: in2)
moreover have B ∈ X1 by (rule in1)
ultimately have B ∈ X1 ∩ X2 by simp
hence B ∈ {} by (simp add: partition)
thus False by simp

qed
hence B 6= A by auto
moreover have B ∈ C
proof −

from partition have C = X1 ∪ X2 by auto
hence X1 ⊆ C by simp
thus ?thesis by (auto simp add: in1)

qed
ultimately have A →S

+ B by (auto simp add: Aui in2)
thus ?thesis

by (rule-tac x=B in exI , rule-tac x=A in exI , simp add: in1 in2)
qed

qed
qed

qed

Lemma fixed-no-stimcomm shows that no agent has the potential for com-
munication via stimuli with an agent that has a fixed point behaviour.
lemma fixed-no-stimcomm: fixed(A) −→ (∀ B. ¬(B →S A))

unfolding fixed-def
proof (rule impI)

assume hyp: ∀ s. s 6= d −→ s ◦ A = A
have ∃ B. B →S A =⇒ False
proof −

assume ∃ B. B →S A
then obtain B where B →S A by auto

18

hence ∃ s t. s ∈ Sa ∧ t ∈ Sa ∧ t ≤S λ(s,B) ∧ t ◦ A 6= A
by (simp only: dcs-def)

then obtain s t where st: s ∈ Sa ∧ t ∈ Sa ∧ t ≤S λ(s,B) ∧ t ◦ A 6= A
by auto

hence t 6= d by (auto simp only: zero-not-basic)
hence t ◦ A = A by (simp add: hyp)
thus False by (auto simp add: st)

qed
thus (∀ B. ¬(B →S A)) by auto

qed

6.2 Preserving the Potential for Communication under Non-
Determinism

6.2.1 Potential for Communication via Stimuli

The following results show how the potential for communication via stimuli
can be preserved when non-determinism is introduced among agents. Specif-
ically, Lemma source-nondet-stimcomm states that when non-determinism
is added at the source of a potential communication path via stimuli, the
potential for communication via stimuli is always preserved. On the other
hand, Lemma sink-nondet-stimcomm states that when non-determinism is
added at the sink of a potential communication path via stimuli, the poten-
tial for communication is preserved only if there does not exist any basic
stimulus that is generated by the source that influences agent B and agent C
to behave as a sub-behaviour of agent B+ C. This condition ensures that
agent B+ C cannot have a fixed point behaviour.
lemma source-nondet-stimcomm: (B →S C) =⇒ ((A + B) →S C)
proof −

assume B →S C
then obtain s t where st: s ∈ Sa ∧ t ∈ Sa ∧ t ≤S λ(s,B) ∧ t ◦ C 6= C

by (auto simp only: dcs-def)
show (A + B) →S C

unfolding dcs-def
by (rule-tac x=s in exI , rule-tac x=t in exI , auto simp add: st inf-add-S-left)

qed

lemma comm-source-nondet-stimcomm: (B →S C) =⇒ ((B + A) →S C)
by (simp add: source-nondet-stimcomm algebra-simps)

lemma sink-sum-stimcomm: (∃ s t. s ∈ Sa ∧ t ∈ Sa ∧ t ≤S λ(s,A) ∧
¬(t ◦ B ≤K B + C ∧ t ◦ C ≤K B + C)) =⇒ (A →S B + C)
proof −

assume ∃ s t. s ∈ Sa ∧ t ∈ Sa ∧ t ≤S λ(s,A) ∧
¬(t ◦ B ≤K B + C ∧ t ◦ C ≤K B + C)

then obtain s t where st: s ∈ Sa ∧ t ∈ Sa ∧ t ≤S λ(s,A) ∧
¬(t ◦ B ≤K B + C ∧ t ◦ C ≤K B + C) by auto

19

have t ◦ (B + C) = B + C =⇒ False
proof −

assume fixbc: t ◦ (B + C) = B + C
have t ◦ B ≤K t ◦ (B + C)

by (simp, rule inf-add-K-right)
moreover have t ◦ C ≤K t ◦ (B + C)

by (simp, rule inf-add-K-left)
ultimately have t ◦ B ≤K B + C ∧ t ◦ C ≤K B + C

by (simp only: fixbc)
thus False by (simp only: st)

qed
thus A →S B + C

unfolding dcs-def
by (rule-tac x=s in exI , rule-tac x=t in exI , auto simp only: st)

qed

lemma sink-nondet-stimcomm: A →S B =⇒ (∀ s t. s ∈ Sa ∧ t ∈ Sa ∧ t ≤S
λ(s,A)
−→ ¬(t ◦ B ≤K B + C ∧ t ◦ C ≤K B + C)) =⇒ (A →S B + C)
proof (rule sink-sum-stimcomm)

assume h1 : A →S B
assume h2 : (∀ s t. s ∈ Sa ∧ t ∈ Sa ∧ t ≤S λ(s,A) −→
¬(t ◦ B ≤K B + C ∧ t ◦ C ≤K B + C))

show ∃ s t. s ∈ Sa ∧ t ∈ Sa ∧ t ≤S λ(s,A) ∧
¬(t ◦ B ≤K B + C ∧ t ◦ C ≤K B + C)

proof −
from h1 obtain s t where s ∈ Sa ∧ t ∈ Sa ∧ t ≤S λ(s,A) ∧ t ◦ B 6= B

by (auto simp only: dcs-def)
from this h2 have s ∈ Sa ∧ t ∈ Sa ∧ t ≤S λ(s,A) ∧

¬(t ◦ B ≤K B + C ∧ t ◦ C ≤K B + C) by auto
thus ?thesis

by (rule-tac x=s in exI , rule-tac x=t in exI , auto)
qed

qed

6.2.2 Potential for Communication via Shared Environments

Lemmas source-nondet-envcomm and sink-nondet-envcomm show how the
potential for communication via shared environments is preserved when non-
determinism is introduced at the source or the sink of a potential commu-
nication path via shared environments.
lemma source-nondet-envcomm: B →E C =⇒ (A + B) →E C

by (simp add: sum-dce)

lemma sink-nondet-envcomm: A →E B =⇒ A →E (B + C)
by (simp add: dce-sum)

20

6.3 Preserving the Potential for Communication with Agent
Behaviour Modifications

The following results identify the conditions constraining the modifications
that can be made to the source or sink agent involved in a direct potential
for communication to preserve the communication in a distributed system.
In this way, it demonstrates the conditions under which a modification to
an agent behaviour can be made while maintaining the communicating be-
haviour of the agents in the system.
Specifically, Lemma sink-seq-stimcomm shows how the sequential composi-
tion of an additional behaviour on the left of a sink agent will not affect the
potential for communication provided that every stimulus that is generated
by the source agent either does not fix the behaviour of the first component
of the sequential composition, or causes the first component of the sequen-
tial composition to generate a stimulus that does not fix the behaviour of
the second component of the sequential composition. Alternatively, Lemma
nondet-right-source-communication shows how non-determinism added on
the right of a source agent will not affect the potential for communication
provided that the non-deterministic behaviours can be influenced by the
source agent to stop being a sub-behaviour of the non-deterministic be-
haviour.
lemma sink-seq-stimcomm: A →S B
=⇒ ∀ s t. s ∈ Sa ∧ t ∈ Sa ∧ t ≤S λ(s,A) −→ λ(t,C) = t =⇒ A;C →S B
proof −

assume A →S B
then obtain s t where st: s ∈ Sa ∧ t ∈ Sa ∧ t ≤S λ(s,A) ∧ t ◦ B 6= B

unfolding dcs-def by auto
assume ∀ s t. s ∈ Sa ∧ t ∈ Sa ∧ t ≤S λ(s,A) −→ λ(t,C) = t
from this st have tfix: λ(t,C) = t by auto
have λ(t,C) ≤S λ(λ(s,A),C) by (simp add: inf-S-next-stimulus st)
hence t ≤S λ (λ (s, A), C) by (simp add: tfix)
thus A;C →S B

unfolding dcs-def
by (rule-tac x=s in exI , rule-tac x=t in exI , simp add: st)

qed

lemma nondet-right-source-communication: A C ∧ C B =⇒ (∀ s t. s ∈ Sa
∧ t ∈ Sa ∧ t ≤S λ(s,A)
−→ ¬(t ◦ C ≤K C + D ∧ t ◦ D ≤K C + D)) =⇒ A C+D ∧ C+D B
proof −

assume h1 :A C ∧ C B
assume h2 :(∀ s t. s ∈ Sa ∧ t ∈ Sa ∧ t ≤S λ(s,A)
−→ ¬(t ◦ C ≤K C + D ∧ t ◦ D ≤K C + D))

from h2 have hs: A →S C =⇒ A →S C+D
by (auto simp add: sink-nondet-stimcomm)

have A C =⇒ A C+D

21

unfolding pdc-def
using dce-sum hs by blast

moreover have C B =⇒ C + D B
unfolding pdc-def
using comm-source-nondet-stimcomm sum-dce by blast

ultimately show A C+D ∧ C+D B
by (simp add: h1)

qed

end

end

References

[1] C. Hoare, B. Möller, G. Struth, and I. Wehrman. Concurrent Kleene al-
gebra and its foundations. Journal of Logic and Algebraic Programming,
80(6):266–296, 2011.

[2] J. Jaskolka. On the Modelling, Analysis, and Mitigation of Distributed
Covert Channels. PhD thesis, McMaster University, Hamilton, ON,
Canada, March 2015.

[3] J. Jaskolka and R. Khedri. A formulation of the potential for commu-
nication condition using C2KA. In A. Peron and C. Piazza, editors,
Proceedings of the 5th International Symposium on Games, Automata,
Logics and Formal Verification, volume 161 of Electronic Proceedings in
Theoretical Computer Science, pages 161–174. Open Publishing Associ-
ation, Verona, Italy, September 2014.

[4] J. Jaskolka, R. Khedri, and Q. Zhang. Foundations of communicating
concurrent Kleene algebra. Technical Report CAS-13-07-RK, McMaster
University, Hamilton, ON, Canada, November 2013.

[5] J. Jaskolka, R. Khedri, and Q. Zhang. Endowing concurrent Kleene alge-
bra with communication actions. In P. Höfner, P. Jipsen, W. Kahl, and
M. Müller, editors, Proceedings of the 14th International Conference on
Relational and Algebraic Methods in Computer Science, volume 8428 of
Lecture Notes in Computer Science, pages 19–36. Springer International
Publishing Switzerland, 2014.

[6] R. Milner. Communication and Concurrency. Prentice-Hall Interna-
tional Series in Computer Science. Prentice Hall, 1989.

22

	Introduction
	Stimulus Structure
	Behaviour Structure
	Communicating Concurrent Kleene Algebra
	Notions of Topology for C2KA
	Orbits
	Stabilisers
	Fixed Points
	Strong Orbits and Induced Behaviours

	Notions of Communication for C2KA
	Stimuli-Connected Systems & Universally Influential Agents
	Preserving the Potential for Communication under Non-Determinism
	Potential for Communication via Stimuli
	Potential for Communication via Shared Environments

	Preserving the Potential for Communication with Agent Behaviour Modifications

