
A bytecode logic for JML and types
(Isabelle/HOL sources)

Lennart Beringer and Martin Hofmann

March 17, 2025

Abstract

This document contains the Isabelle/HOL sources underlying our
paper A bytecode logic for JML and types [2], updated to Isabelle 2008.
We present a program logic for a subset of sequential Java bytecode
that is suitable for representing both, features found in high-level spec-
ification language JML as well as interpretations of high-level type sys-
tems. To this end, we introduce a fine-grained collection of assertions,
including strong invariants, local annotations and VDM-reminiscent
partial-correctness specifications. Thanks to a goal-oriented structure
and interpretation of judgements, verification may proceed without
recourse to an additional control flow analysis. The suitability for in-
terpreting intensional type systems is illustrated by the proof-carrying-
code style encoding of a type system for a first-order functional lan-
guage which guarantees a constant upper bound on the number of ob-
jects allocated throughout an execution, be the execution terminating
or non-terminating.

Like the published paper, the formal development is restricted to
a comparatively small subset of the JVML, lacking (among other fea-
tures) exceptions, arrays, virtual methods, and static fields. This short-
coming has been overcome meanwhile, as our paper has formed the
basis of the Mobius base logic [9], a program logic for the full sequen-
tial fragment of the JVML. Indeed, the present formalisation formed
the basis of a subsequent formalisation of the Mobius base logic in the
proof assistant Coq, which includes a proof of soundness with respect
to the Bicolano operational semantics [10].

Contents
1 Preliminaries: association lists 2

2 Language 3
2.1 Syntax . 3
2.2 Dynamic semantics . 5

2.2.1 Semantic components 5

1

2.2.2 Operational judgements 6
2.3 Basic properties . 8

3 Axiomatic semantics 8
3.1 Assertion forms . 8
3.2 Proof system . 9

4 Auxiliary operational judgements 14
4.1 Multistep execution . 14
4.2 Reachability relation . 15

5 Soundness 16
5.1 Validity . 16
5.2 Soundness under valid contexts 18
5.3 Soundness of verified programs 20

6 A derived logic for a strong type system 20
6.1 Syntax and semantics of judgements 21
6.2 Derived proof rules . 22
6.3 Soundness of high-level type system 23

1 Preliminaries: association lists

Finite maps are used frequently, both in the representation of syntax and in
the program logics. Instead of restricting Isabelle’s partial map type α ⇀ β
to finite domains, we found it easier for the present development to use the
following adhoc data type of association lists.
type-synonym (′a, ′b) AssList = (′a × ′b) list

primrec lookup::(′a, ′b) AssList ⇒ ′a ⇒ (′b option) (‹-↓-› [90 ,0] 90)
where
lookup [] l = None |
lookup (h # t) l = (if fst h = l then Some(snd h) else lookup t l)

The statement following the type declaration of lookup indicates that we
may use the infix notation L↓a for the lookup operation, and asserts some
precedence for bracketing. In a similar way, shorthands are introduced for
various operations throughout this document.
primrec delete::(′a, ′b) AssList ⇒ ′a ⇒ (′a, ′b) AssList
where
delete [] a = [] |
delete (h # t) a = (if (fst h) = a then delete t a else (h # (delete t a)))

definition upd::(′a, ′b) AssList ⇒ ′a ⇒ ′b ⇒ (′a, ′b) AssList

2

(‹-[-7→-]› [1000 ,0 ,0] 1000)
where upd L a b = (a,b) # (delete L a)

The empty map is represented by the empty list.
definition emp::(′a, ′b)AssList
where emp = []
definition contained::(′a, ′b) AssList ⇒ (′a, ′b) AssList ⇒ bool
where contained L M = (∀ a b . L↓a = Some b −→ M↓a = Some b)

The following operation defined the cardinality of a map.
fun AL-Size :: (′a, ′b) AssList ⇒ nat (‹|-|› [1000] 1000) where

AL-Size [] = 0
| AL-Size (h # t) = Suc (AL-Size (delete t (fst h)))

Some obvious basic properties of association lists and their operations are
easily proven, but have been suppressed during the document preparation.

2 Language
2.1 Syntax

We have syntactic classes of (local) variables, class names, field names, and
method names. Naming restrictions, namespaces, long Java names etc. are
not modelled.
typedecl Var
typedecl Class
typedecl Field
typedecl Method

Since arithmetic operations are modelled as unimplemented functions, we
introduce the type of values in this section. The domain of heap locations
is arbitrary.
typedecl Addr

A reference is either null or an address.
datatype Ref = Nullref | Loc Addr

Values are either integer numbers or references.
datatype Val = RVal Ref | IVal int

The type of (instruction) labels is fixed, since the operational semantics
increments the program counter after each instruction.
type-synonym Label = int

3

Regarding the instructions, we support basic operand-stack manipulations,
object creation, field modifications, casts, static method invocations, condi-
tional and unconditional jumps, and a return instruction.
For every (Isabelle) function f : Val⇒Val⇒Val we have an instruction binop
f whose semantics is to invoke f on the two topmost values on the operand
stack and replace them with the result. Similarly for unop f.
datatype Instr =

const Val
| dup
| pop
| swap
| load Var
| store Var
| binop Val ⇒ Val ⇒ Val
| unop Val ⇒ Val
| new Class
| getfield Class Field
| putfield Class Field
| checkcast Class
| invokeS Class Method
| goto Label
| iftrue Label
| vreturn

Method body declarations contain a list of formal parameters, a mapping
from instruction labels to instructions, and a start label. The operational
semantics assumes that instructions are labelled consecutively1.
type-synonym Mbody = Var list × (Label, Instr) AssList × Label

A class definition associates method bodies to method names.
type-synonym Classdef = (Method, Mbody) AssList

Finally, a program consists of classes.
type-synonym Prog = (Class, Classdef) AssList

Taken together, the three types Prog, Classdef, and Mbody represent an
abstract model of the virtual machine environment. In our opinion, it would
be desirable to avoid modelling this environment at a finer level, at least for
the purpose of the program logic. For example, we prefer not to consider in
detail the representation of the constant pool.

1In the paper, we slightly abstract from this by including a successor functions on labels

4

2.2 Dynamic semantics
2.2.1 Semantic components

An object consists of the identifier of its dynamic class and a map from field
names to values. Currently, we do not model type-correctness, nor do we
require that all (or indeed any) of the fields stem from the static definition
of the class, or a super-class. Note, however, that type correctness can be
expressed in the logic.
type-synonym Object = Class × (Field, Val) AssList

The heap is represented as a map from addresses to values. The JVM
specification does not prescribe any particular object layout. The proposed
type reflects this indeterminacy, but allows one to calculate the byte-correct
size of a heap only after a layout scheme has been supplied. Alternative
heap models would be the store-less semantics in the sense of Jonkers [8]
and Deutsch [5], (where the heap is modelled as a partial equivalence relation
on access paths), or object-based semantics in the sense of Reddy [11], where
the heap is represented as a history of update operations. Hähnle et al. use
a variant of the latter in their dynamic logic for a JavaCard [6].
type-synonym Heap = (Addr , Object) AssList

Later, one might extend heaps by a component for static fields.

The types of the (register) store and the operand stack are as expected.
type-synonym Store = (Var , Val) AssList
type-synonym OpStack = Val list

States contain an operand stack, a store, and a heap.
type-synonym State = OpStack × Store × Heap

definition heap::State ⇒ Heap
where heap s = snd(snd s)

The operational semantics and the program logic are defined relative to a
fixed program P. Alternatively, the type of the operational semantics (and
proof judgements) could be extended by a program component. We also
define the constant value TRUE, the representation of which does not matter
for the current formalisation.
axiomatization P::Prog and TRUE ::Val

In order to obtain more readable rules, we define operations for extracting
method bodies and instructions from the program.
definition mbody-is::Class ⇒ Method ⇒ Mbody ⇒ bool
where mbody-is C m M = (∃ CD . P↓C = Some CD ∧ CD↓m = Some M)

5

definition get-ins::Mbody ⇒ Label ⇒ Instr option
where get-ins M l = (fst(snd M))↓l

definition ins-is::Class ⇒ Method ⇒ Label ⇒ Instr ⇒ bool
where ins-is C m l ins = (∃ M . mbody-is C m M ∧ get-ins M l = Some ins)

The transfer of method arguments from the caller’s operand stack to the
formal parameters of an invoked method is modelled by the predicate
inductive-set Frame::(OpStack × (Var list) × Store × OpStack) set
where
FrameNil: [[oo=ops]] =⇒ (ops,[],emp,oo) : Frame
|
Frame-cons: [[(oo,par ,S ,ops) : Frame; R =S [x 7→v]]]

=⇒ (v # oo, x # par ,R,ops):Frame

In order to obtain a deterministic semantics, we assume the existence of a
function, with the obvious freshness axiom for this construction.
axiomatization nextLoc::Heap ⇒ Addr
where nextLoc-fresh: h↓(nextLoc h) = None

2.2.2 Operational judgements

Similar to Bannwart-Müller [1], we define two operational judgements: a
one-step relation and a relation that represents the transitive closure of the
former until the end of the current method invocation. These relations are
mutually recursive, since the method invocation rule contracts the execu-
tion of the invoked method to a single step. The one-step relation associates
a state to its immediate successor state, where the program counter is in-
terpreted with respect to the current method body. The transitive closure
ignores the bottom part of the operand stack and the store of the final
configuration. It simply returns the heap and the result of the method invo-
cation, where the latter is given by the topmost value on the operand stack.
In contrast to [1], we do not use an explicit return variable. Both relations
take an additional index of type nat that monitors the derivation height.
This is useful in the proof of soundness of the program logic.

Intuitively, (M ,l,s,n,l ′,s ′):Step means that method (body) M evolves in one
step from state s to state s ′, while statement (M ,s,n,h,v):Exec indicates that
executing from s in method M leads eventually to a state whose final value
is h, where precisely the last step in this sequence is a vreturn instruction
and the return value is v.

Like Bannwart and Müller, we define a "frame-less" semantics. i.e. the ex-
ecution of a method body is modelled by a transitive closure of the basic
step-relation, which results in a one-step reduction at the invocation site.

6

Arguably, an operational semantics with an explicit frame stack is closer to
the real JVM. It should not be difficult to verify the operational soundness
of the present system w.r.t. such a finer model, or to modify the semantics.
inductive-set

Step::(Mbody × Label × State × nat × Label × State) set
and

Exec::(Mbody × Label × State × nat × Heap × Val) set
where
Const:[[get-ins M l = Some (const v); NEXT = (v # os,s,h); ll=l+1]]

=⇒ (M ,l,(os,s,h), 1 , ll, NEXT) : Step
|
Dup: [[get-ins M l = Some dup; NEXT = (v # v # os,s,h); ll =l+1]]

=⇒ (M ,l,(v # os,s,h), 1 , ll, NEXT) : Step
|
Pop: [[get-ins M l = Some pop; NEXT = (os,s,h); ll=l+1]]

=⇒ (M ,l,(v # os,s,h), 1 , ll, NEXT) : Step
|
Swap: [[get-ins M l = Some swap; NEXT = (w # (v # os),s,h); ll= l+1]]

=⇒ (M ,l,(v # (w # os),s,h), 1 , ll, NEXT) : Step
|
Load: [[get-ins M l = Some (load x); s↓x = Some v;

NEXT = (v # os,s,h); ll=l+1]]
=⇒ (M ,l,(os,s,h), 1 , ll,NEXT) : Step

|
Store:[[get-ins M l = Some (store x); NEXT = (os,s[x 7→v],h); ll= l+1]]

=⇒ (M ,l,(v # os,s,h), 1 , ll, NEXT) : Step
|
Binop:[[get-ins M l = Some (binop f); NEXT = ((f v w) # os,s,h); ll=l+1]]

=⇒ (M ,l,(v # (w # os),s,h), 1 , ll,NEXT) : Step
|
Unop: [[get-ins M l = Some (unop f); NEXT = ((f v) # os,s,h);ll=l+1]]

=⇒ (M ,l,(v # os,s,h), 1 , ll, NEXT) : Step
|
New: [[get-ins M l = Some (new d); newobj = (d, emp); a=nextLoc h;

NEXT = ((RVal (Loc a)) # os,s,h[a 7→newobj]); ll = l+1]]
=⇒ (M ,l,(os,s,h), 1 , ll,NEXT) : Step

|
Get: [[get-ins M l = Some (getfield d F); h↓a = Some (d, Flds);

Flds↓F = Some v; NEXT = (v # os,s,h); ll=l+1]]
=⇒ (M ,l,((RVal (Loc a)) # os,s,h), 1 , ll,NEXT) : Step

|
Put: [[get-ins M l = Some (putfield d F); h↓a = Some (d, Flds);

newobj = (d, Flds[F 7→v]); NEXT = (os,s,h[a 7→newobj]); ll=l+1]]
=⇒ (M ,l,(v # ((RVal (Loc a)) # os),s,h), 1 , ll, NEXT) : Step

|
Cast: [[get-ins M l = Some (checkcast d); h↓a = Some (d, Flds);

NEXT = ((RVal (Loc a)) # os,s,h); ll=l+1]]
=⇒ (M ,l,((RVal (Loc a)) # os,s,h), 1 , ll,NEXT) : Step

|

7

Goto: [[get-ins M l = Some (goto pc)]] =⇒ (M ,l,S , 1 , pc,S) : Step
|
IfT : [[get-ins M l = Some (iftrue pc); NEXT = (os,s,h)]]

=⇒ (M ,l,(TRUE # os,s,h), 1 , pc, NEXT) : Step
|
IfF : [[get-ins M l = Some (iftrue pc); v 6= TRUE ; NEXT = (os,s,h); ll=l+1]]

=⇒ (M ,l,(v # os,s,h), 1 , ll, NEXT) : Step
|
InvS : [[get-ins M l = Some (invokeS C m); mbody-is C m (par ,code,l0);

((par ,code,l0),l0 ,([], S ,h), n, hh, v): Exec;
(ops,par ,S ,os) : Frame; NEXT = (v # os,s,hh); ll = l+1]]

=⇒ (M ,l,(ops,s,h), Suc n, ll, NEXT) : Step
|
Vret: [[get-ins M l = Some vreturn]] =⇒ (M ,l,(v # os,s,h), 1 , h, v) : Exec
|
Run: [[(M ,l,s,n,ll,t):Step; (M ,ll,t,m,h,v):Exec; k = (max n m) +1]]

=⇒ (M ,l,s,k,h,v) : Exec

A big-step operational judgement that abstracts from the derivation height
is easily defined.
definition Opsem::Mbody ⇒ Label ⇒ State ⇒ Heap ⇒ Val ⇒ bool
where Opsem M l s h v = (∃ n . (M ,l,s,n,h,v):Exec)

2.3 Basic properties

We provide elimination lemmas for the inductively defined relations
inductive-cases eval-cases:
(M ,l,s,n,ll,t) : Step
(M ,l,s,n,h,v) : Exec

and observe that no derivations of height 0 exist.
lemma no-zero-height-Step-derivs: (M ,l,s,0 ,ll,t):Step =⇒ False
lemma no-zero-height-Exec-derivs: (M ,l,s,0 ,h,v):Exec =⇒ False

By induction on the derivation system one can show determinism.

lemma Step-determ:
[[(M ,l,s,n,l1 ,t) ∈ Step; (M ,l,s,m,l2 ,r):Step]] =⇒ n=m ∧ t=r ∧ l1=l2

lemma Exec-determ:
[[(M ,l,s,n,h,v) ∈ Exec; (M ,l,s,m,k,w):Exec]] =⇒ n=m ∧ h=k ∧ v=w

3 Axiomatic semantics
3.1 Assertion forms

We introduce two further kinds of states. Initial states do not contain
operand stacks, terminal states lack operand stacks and local variables, but
include return values.

8

type-synonym InitState = Store × Heap
type-synonym TermState = Heap × Val

A judgements relating to a specific program point C.m.l consists of pre- and
post-conditions, an invariant, and – optionally – a local annotation. Local
pre-conditions and annotations relate initial states to states, i.e. are of type
type-synonym Assn = InitState ⇒ State ⇒ bool

Post-conditions additionally depend on a terminal state
type-synonym Post = InitState ⇒ State ⇒ TermState ⇒ bool

Invariants hold for the heap components of all future (reachable) states in
the current frame as well as its subframes. They relate these heaps to the
current state and the initial state of the current frame.
type-synonym Inv = InitState ⇒ State ⇒ Heap ⇒ bool

Local annotations of a method implementation are collected in a table of
type
type-synonym ANNO = (Label, Assn) AssList

Implicitly, the labels are always interpreted with respect to the current
method. In addition to such a table, the behaviour of methods is speci-
fied by a partial-correctness assertion of type
type-synonym MethSpec = InitState ⇒ TermState ⇒ bool

and a method invariant of type
type-synonym MethInv = InitState ⇒ Heap ⇒ bool

A method invariant is expected to be satisfied by the heap components of
all states during the execution of the method, including states in subframes,
irrespectively of the termination behaviour.

All method specifications are collected in a table of type
type-synonym MSPEC = (Class × Method, MethSpec × MethInv × ANNO)
AssList

A table of this type assigns to each method a partial-correctness specifica-
tion, a method invariant, and a table of local annotations for the instructions
in this method.

3.2 Proof system

The proof system derives judgements of the form GB{A}C,m, l{B} I where
A is a pre-condition, B is a post-condition, I is a strong invariant, C.m.l
represents a program point, and G is a proof context (see below). The proof

9

system consists of syntax-directed rules and structural rules. These rules
are formulated in such a way that assertions in the conclusions are uncon-
strained, i.e. a rule can be directly applied to derive a judgement. In the case
of the syntax-directed rules, the hypotheses require the derivation of related
statements for the control flow successor instructions. Judgements occur-
ring as hypotheses involve assertions that are notationally constrained, and
relate to the conclusions’ assertions via uniform constructions that resemble
strongest postconditions in Hoare-style logics.

On pre-conditions, the operator
definition SP-pre::Mbody ⇒ Label ⇒ Assn ⇒ Assn
where SP-pre M l A = (λ s0 r . (∃ s l1 n. A s0 s ∧ (M ,l,s,n,l1 ,r):Step))

constructs an assertion that holds of a state r precisely if the argument
assertion A held at the predecessor state of r. Similar readings explain the
constructions on post-conditions
definition SP-post::Mbody ⇒ Label ⇒ Post ⇒ Post
where SP-post M l B = (λ s0 r t . (∀ s l1 n. (M ,l,s,n,l1 ,r):Step −→ B s0 s t))

and invariants
definition SP-inv::Mbody ⇒ Label ⇒ Inv ⇒ Inv
where SP-inv M l I = (λ s0 r h . ∀ s l1 n. (M ,l,s,n,l1 ,r):Step −→ I s0 s h)

For the basic instructions, the appearance of the single-step execution rela-
tion in these constructions makes the strongest-postcondition interpretation
apparent, but could easily be eliminated by unfolding the definition of Step.
In the proof rule for static method invocations, such a direct reference to the
operational semantics is clearly undesirable. Instead, the proof rule extracts
the invoked method’s specification from the specification table. In order
to simplify the formulation of the proof rule, we introduce three operators
which manipulate the extracted assertions in a similar way as the above
SP-operators.
definition SINV-pre::Var list ⇒ MethSpec ⇒ Assn ⇒ Assn where
SINV-pre par T A =
(λ s0 s . (∃ ops1 ops2 S R h k w.

(ops1 ,par ,R,ops2) : Frame ∧ T (R, k) (h,w) ∧
A s0 (ops1 ,S ,k) ∧ s = (w#ops2 ,S , h)))

definition SINV-post::Var list ⇒ MethSpec ⇒ Post ⇒ Post where
SINV-post par T B =
(λ s0 s t . ∀ ops1 ops2 S R h k w r .

(ops1 ,par ,R,ops2) : Frame −→ T (R, k) (h,w) −→
s=(w#ops2 ,S ,h) −→ r=(ops1 ,S ,k) −→ B s0 r t)

definition SINV-inv::Var list ⇒ MethSpec ⇒ Inv ⇒ Inv where
SINV-inv par T I =

10

(λ s0 s h ′ . ∀ ops1 ops2 S R h k w.
(ops1 ,par ,R,ops2) : Frame −→ T (R,k) (h,w) −→
s=(w#ops2 ,S ,h) −→ I s0 (ops1 ,S ,k) h ′)

The derivation system is formulated using contexts G of proof-theoretic
assumptions representing local judgements. The type of contexts is
type-synonym CTXT = (Class × Method × Label, Assn × Post × Inv) AssList

The existence of the proof context also motivates that the hypotheses in
the syntax-directed rules are formulated using an auxiliary judgement form,
G B 〈A〉C,m, l〈B〉 I. Statements for this auxiliary form can be derived
by essentially two rules. The first rule, AX, allows us to extract assump-
tions from the context, while the second rule, INJECT, converts an ordi-
nary judgement G B {A}C,m, l{B} I into G B 〈A〉C,m, l〈B〉 I. No rule
is provided for a direct embedding in the opposite direction. As a conse-
quence of this formulation, contextual assumptions cannot be used directly
to justify a statement GB {A}C,m, l{B} I. Instead, the extraction of such
an assumption has to be followed by at least one ”proper” (syntax-driven)
rule. In particular, attempts to verify jumps by assuming a judgement and
immediately using it to prove the rule’s hypothesis are ruled out. More
specifically, the purpose of this technical device will become obvious when
we discharge the context in the proof of soundness (Section 5.3). Here,
each entry ((C ′,m′, l′), (A′, B′, I ′)) of the context will need to be justified
by a derivation G B {A′}C ′,m′, l′{B′} I ′. This justification should in prin-
ciple be allowed to rely on other entries of the context. However, an axiom
rule for judgements G B {A}C,m, l{B} I would allow a trivial discharge
of any context entry. The introduction of the auxiliary judgement form
GB 〈A〉C,m, l〈B〉 I thus ensures that the discharge of a contextual assump-
tion involves at least one application of a "proper" (i.e. syntax-directed) rule.
Rule INJECT is used to chain together syntax-directed rules. Indeed, it al-
lows us to discharge a hypothesis G B 〈A〉C,m, l〈B〉 I of a syntax-directed
rule using a derivation of GB {A}C,m, l{B} I.

The proof rules are defined relative to a fixed method specification table
MST .
axiomatization MST ::MSPEC

In Isabelle, the distinction between the two judgement forms may for ex-
ample be achieved by introducing a single judgement form that includes a
boolean flag, and definiing two pretty-printing notions.
inductive-set SP-Judgement ::
(bool × CTXT × Class × Method × Label × Assn × Post × Inv) set

and
SP-Deriv :: CTXT => Assn => Class => Method => Label =>

Post => Inv => bool

11

(‹- B {| - |} -,-,- {| - |} -› [100 ,100 ,100 ,100 ,100 ,100 ,100] 50)
and
SP-Assum :: CTXT => Assn => Class => Method => Label =>

Post => Inv => bool
(‹- B 〈 - 〉 -,-,- 〈 - 〉 -› [100 ,100 ,100 ,100 ,100 ,100 ,100] 50)

where
G B {| A |} C ,m,l {| B |} I == (False, G, C , m, l, A, B, I):SP-Judgement
|
G B 〈 A 〉 C ,m,l 〈 B 〉 I == (True, G, C , m, l, A, B, I):SP-Judgement
|
INSTR:
[[mbody-is C m M ; get-ins M l = Some ins;

lookup MST (C ,m) = Some (Mspec,Minv,Anno);
∀ Q . lookup Anno l = Some Q −→ (∀ s0 s . A s0 s −→ Q s0 s);
∀ s0 s . A s0 s −→ I s0 s (heap s);
ins ∈ { const c, dup, pop, swap, load x, store x, binop f , unop g,

new d, getfield d F , putfield d F , checkcast d};
G B 〈 (SP-pre M l A) 〉 C ,m,(l+1) 〈 (SP-post M l B) 〉 (SP-inv M l I)]]

=⇒ G B {| A |} C ,m,l {| B |} I
|
GOTO:
[[mbody-is C m M ; get-ins M l = Some (goto pc);

MST↓(C ,m) = Some (Mspec,Minv,Anno);
∀ Q . Anno↓(l) = Some Q −→ (∀ s0 s . A s0 s −→ Q s0 s);
∀ s0 s . A s0 s −→ I s0 s (heap s);
G B 〈SP-pre M l A〉 C ,m,pc 〈SP-post M l B〉 (SP-inv M l I)]]

=⇒ G B {| A |} C ,m,l {| B |} I
|
IF :
[[mbody-is C m M ; get-ins M l = Some (iftrue pc);

MST↓(C ,m) = Some (Mspec,Minv,Anno);
∀ Q . Anno↓(l) = Some Q −→ (∀ s0 s . A s0 s −→ Q s0 s);
∀ s0 s . A s0 s −→ I s0 s (heap s);

G B 〈 SP-pre M l (λ s0 s . (∀ ops S k . s=(TRUE#ops,S ,k) −→ A s0 s))〉
C ,m,pc
〈 SP-post M l (λ s0 s t .

(∀ ops S k . s=(TRUE#ops,S ,k) −→ B s0 s t))〉
(SP-inv M l (λ s0 s t .

(∀ ops S k . s=(TRUE#ops,S ,k) −→ I s0 s t)));

G B 〈 SP-pre M l (λ s0 s .
(∀ ops S k v . s = (v#ops,S ,k) −→ v 6= TRUE −→ A s0 s))〉

C ,m,(l+1)
〈 SP-post M l (λ s0 s t.
(∀ ops S k v . s = (v#ops,S ,k) −→ v 6= TRUE −→ B s0 s t))〉

(SP-inv M l (λ s0 s t.
(∀ ops S k v . s = (v#ops,S ,k) −→ v 6= TRUE −→ I s0 s t)))]]

=⇒ G B {| A |} C ,m,l {| B |} I

12

|
VRET :
[[mbody-is C m M ; get-ins M l = Some vreturn;

MST↓(C ,m) = Some (Mspec,Minv,Anno);
∀ Q . Anno↓(l) = Some Q −→ (∀ s0 s . A s0 s −→ Q s0 s);
∀ s0 s . A s0 s −→ I s0 s (heap s);
∀ s0 s . A s0 s −→ (∀ v ops S h . s = (v#ops,S ,h) −→ B s0 s (h,v))]]

=⇒ G B {| A |} C ,m,l {| B |} I
|
INVS :
[[mbody-is C m M ; get-ins M l = Some (invokeS D m ′);

MST↓(C ,m) = Some (Mspec,Minv,Anno);
MST↓(D,m ′) = Some (T ,MI ,Anno2); mbody-is D m ′ (par ,code,l0);
∀ Q . Anno↓(l) = Some Q −→ (∀ s0 s . A s0 s −→ Q s0 s);
∀ s0 s . A s0 s −→ I s0 s (heap s);
∀ s0 ops1 ops2 S R k t . (ops1 ,par ,R,ops2) : Frame −→

A s0 (ops1 ,S ,k) −→ MI (R,k) t −→ I s0 (ops1 ,S ,k) t;
G B 〈SINV-pre par T A〉 C ,m,(l+1) 〈SINV-post par T B〉

(SINV-inv par T I)]]
=⇒ G B {| A |} C ,m,l {| B |} I
|
CONSEQ:
[[(b,G,C ,m,l,AA,BB,II) ∈ SP-Judgement;

∀ s0 s . A s0 s −→ AA s0 s; ∀ s0 s t . BB s0 s t −→ B s0 s t;
∀ s0 s k. II s0 s k −→ I s0 s k]]

=⇒ (b,G,C ,m,l,A,B,I) ∈ SP-Judgement
|
INJECT : [[G B {| A |} C ,m,l {| B |} I]] =⇒ G B 〈 A 〉 C ,m,l 〈 B 〉 I
|
AX :
[[G↓(C ,m,l) = Some (A,B,I); MST↓(C ,m) = Some (Mspec,Minv,Anno);

∀ Q . Anno↓(l) = Some Q −→ (∀ s0 s . A s0 s −→ Q s0 s);
∀ s0 s . A s0 s −→ I s0 s (heap s)]]

=⇒ G B 〈 A 〉 C ,m,l 〈 B 〉 I

As a first consequence, we can prove by induction on the proof system that
a derivable judgement entails its strong invariant and an annotation that
may be attached to the instruction.
lemma AssertionsImplyMethInvariants:
[[G B {| A |} C ,m,l {| B |} I ; A s0 s]] =⇒ I s0 s (heap s)

lemma AssertionsImplyAnnoInvariants:
[[G B {| A |} C ,m,l {| B |} I ; MST↓(C ,m) = Some(Mspec,Minv,Anno);

Anno↓(l) = Some Q; A s0 s]] =⇒ Q s0 s

For verified programs, all preconditions can be justified by proof derivations,
and initial labels of all methods (again provably) satisfy the method precon-
ditions.
definition mkState::InitState ⇒ State
where mkState s0 = ([],fst s0 ,snd s0)

13

definition mkPost::MethSpec ⇒ Post
where mkPost T = (λ s0 s t . s=mkState s0 −→ T s0 t)

definition mkInv::MethInv ⇒ Inv
where mkInv MI = (λ s0 s t . s=mkState s0 −→ MI s0 t)

definition VP-G::CTXT ⇒ bool where
VP-G G =
((∀ C m l A B I . G↓(C ,m,l) = Some (A,B,I) −→ G B {|A|} C ,m,l {|B|} I) ∧
(∀ C m par code l0 T MI Anno.

mbody-is C m (par ,code,l0) −→ MST↓(C ,m) = Some(T ,MI ,Anno) −→
G B {|(λ s0 s. s = mkState s0)|} C ,m,l0 {|mkPost T |} (mkInv MI)))

definition VP::bool where VP = (∃ G . VP-G G)

4 Auxiliary operational judgements

Beside the basic operational judgements Step and Exec, the interpretation
of judgements refers to two multi-step relations which we now define.

4.1 Multistep execution

The first additional operational judgement is the reflexive and transitive
closure of Step. It relates states s and t if the latter can be reached from
the former by a chain if single steps, all in the same frame. Note that t does
not need to be a terminal state. As was the case in the definition of Step,
we first define a relation with an explicit derivation height index (MStep).
inductive-set
MStep::(Mbody × Label × State × nat × Label × State) set
where
MS-zero: [[k=0 ; t=s; ll=l]] =⇒ (M ,l,s,k,ll,t):MStep
|
MS-step: [[(M ,l,s,n,l1 ,r):Step; (M ,l1 ,r ,k,l2 ,t):MStep; m=Suc k+n]]

=⇒ (M ,l,s,m,l2 ,t) : MStep

The following properties of MStep are useful to notice.
lemma ZeroHeightMultiElim: (M ,l,s,0 ,ll,r) ∈ MStep =⇒ r=s ∧ ll=l
lemma MultiSplit:
[[(M , l, s, k, ll, t) ∈ MStep; 1 ≤ k]] =⇒
∃ n m r l1 . (M ,l,s,n,l1 ,r):Step ∧ (M ,l1 ,r ,m,ll,t):MStep ∧ Suc m + n =k

lemma MStep-returnElim:
[[(M ,l,s,k,ll,t) ∈ MStep; get-ins M l = Some vreturn]] =⇒ t=s ∧ ll = l

lemma MultiApp:
[[(M ,l,s,k,l1 ,r):MStep; (M ,l1 ,r ,n,l2 ,t):Step]] =⇒ (M ,l,s,Suc k+n,l2 ,t):MStep

14

lemma MStep-Compose:
[[(M ,l,s,n,l1 ,r):MStep; (M ,l1 ,r ,k,l2 ,t):MStep; nk=n+k]]
=⇒ (M ,l,s,nk,l2 ,t):MStep

Here are two simple lemmas relating the operational judgements.
lemma MStep-Exec1 :
[[(M , l, s, kb, l1 , t) ∈ MStep; (M , l, s, k, hh, v) ∈ Exec]]
=⇒ ∃ n. (M , l1 , t, n, hh, v) ∈ Exec

lemma MStep-Exec2 :
[[(M , l, s, kb, l1 , t) ∈ MStep; (M , l1 , t, k, hh, v) ∈ Exec]]
=⇒ ∃ n. (M , l, s, n, hh, v) ∈ Exec

Finally, the definition of the non-height-indexed relation.
definition MS ::Mbody ⇒ Label ⇒ State ⇒ Label ⇒ State ⇒ bool
where MS M l s ll t = (∃ k . (M ,l,s,k,ll,t):MStep)

4.2 Reachability relation

The second auxiliary operational judgement is required for the interpretation
of invariants and method invariants. Invariants are expected to be satisfied
in all heap components of (future) states that occur either in the same frame
as the current state or a subframe thereof. Likewise, method invariants are
expected to be satisfied by all heap components of states observed during
the execution of a method, including subframes. None of the previous three
operational judgements allows us to express these interpretations, as Step
injects the execution of an invoked method as a single step. Thus, states
occurring in subframes cannot be related to states occurring in the parent
frame using these judgements. This motivates the introduction of predicates
relating states s and t whenever the latter can be reach from the former,
i.e. whenever t occurs as a successor of s in the same frame as s or one
of its subframes. Again, we first define a relation that includes an explicit
derivation height index.
inductive-set

Reachable::(Mbody × Label × State × nat × State) set
where
Reachable-zero: [[k=0 ; t=s]] =⇒ (M ,l,s,k,t):Reachable
|
Reachable-step:
[[(M ,l,s,n,ll,r):Step; (M ,ll,r ,m,t):Reachable; k=Suc m+n]]
=⇒ (M ,l,s,k,t) : Reachable

|
Reachable-invS :
[[mbody-is C m (par ,code,l0); get-ins M l = Some (invokeS C m);

s = (ops,S ,h); (ops,par ,R,ops1):Frame;
((par ,code,l0), l0 , ([],R,h), n, t):Reachable; k=Suc n]]

=⇒ (M ,l,s,k,t) : Reachable

15

The following properties of are useful to notice.
lemma ZeroHeightReachableElim: (M ,l,s,0 ,r) ∈ Reachable =⇒ r=s
lemma ReachableSplit[rule-format]:
(M , l,s, k, t) ∈ Reachable =⇒

1 ≤ k −→
((∃ n m r ll. (M ,l,s,n,ll,r):Step ∧

(M ,ll,r ,m,t):Reachable ∧ Suc m +n =k) ∨
(∃ n ops S h c m par R ops1 code l0 .

s=(ops,S ,h) ∧ get-ins M l = Some (invokeS c m) ∧
mbody-is c m (par ,code,l0) ∧ (ops,par ,R,ops1):Frame ∧
((par ,code,l0), l0 , ([],R,h), n, t):Reachable ∧ Suc n = k))

lemma Reachable-returnElim[rule-format]:
(M ,l,s,k,t) ∈ Reachable =⇒ get-ins M l = Some vreturn −→ t=s

Similar to the operational semantics, we define a variation of the reachability
relation that hides the index.
definition Reach::Mbody ⇒ Label ⇒ State ⇒ State ⇒ bool
where Reach M l s t = (∃ k . (M ,l,s,k,t):Reachable)

5 Soundness

This section contains the soundness proof of the program logic. In the first
subsection, we define our notion of validity, thus formalising our intuitive
explanation of the terms preconditions, specifications, and invariants. The
following two subsections contain the details of the proof and can easily be
skipped during a first pass through the document.

5.1 Validity

A judgement is valid at the program point C .m.l (i.e. at label l in method
m of class C), written valid C m l A B I or, in symbols,

� {A}C,m, l {B} I,

if A is a precondition for B and for all local annotations following l in an
execution of m, and all reachable states in the current frame or yet-to-be
created subframes satisfy I. More precisely, whenever an execution of the
method starting in an initial state s0 reaches the label l with state s, the
following properties are implied by A(s0, s).

1. If the continued execution from s reaches a final state t (i.e. the method
terminates), then that final state t satisfies B(s0, s, t).

2. Any state s′ visited in the current frame during the remaining program
execution whose label carries an annotation Q will satisfy Q(s0, s

′),
even if the execution of the frame does not terminate.

16

3. Any state s′ visited in the current frame or a subframe of the current
frame will satisfy I(s0, s, heap(s

′)), again even if the execution does
not terminate.

Formally, this interpretation is expressed as follows.
definition valid::Class ⇒ Method ⇒ Label ⇒ Assn ⇒ Post ⇒ Inv ⇒ bool where
valid C m l A B I =

(∀ M . mbody-is C m M −→
(∀ Mspec Minv Anno . MST↓(C ,m) = Some(Mspec,Minv,Anno) −→
(∀ par code l0 . M = (par ,code,l0) −→
(∀ s0 s . MS M l0 (mkState s0) l s −→ A s0 s −→
((∀ h v. Opsem M l s h v −→ B s0 s (h,v)) ∧
(∀ ll r . (MS M l s ll r −→ (∀ Q . Anno↓(ll) = Some Q −→ Q s0 r)) ∧

(Reach M l s r −→ I s0 s (heap r))))))))

abbreviation valid-syntax :: Assn ⇒ Class ⇒ Method ⇒
Label ⇒ Post ⇒ Inv ⇒ bool

(‹ |= {| - |} - , - , - {| - |} -› [200 ,200 ,200 ,200 ,200 ,200] 200)
where valid-syntax A C m l B I == valid C m l A B I

This notion of validity extends that of Bannwart-Müller by allowing the post-
condition to differ from method specification and to refer to the initial state,
and by including invariants. In the logic of Bannwart and Müller, the validity
of a method specification is given by a partial correctness (Hoare-style)
interpretation, while the validity of preconditions of individual instructions
is such that a precondition at l implies the preconditions of its immediate
control flow successors.

Validity us lifted to contexts and the method specification table. In the case
of the former, we simply require that all entries be valid.
definition G-valid::CTXT ⇒ bool where
G-valid G = (∀ C m l A B I . G↓(C ,m,l) = Some (A,B,I)−→

|= {|A|} C , m, l {|B|} I)

Regarding the specification table, we require that the initial label of each
method satisfies an assertion that ties the method precondition to the cur-
rent state.
definition MST-valid ::bool where
MST-valid = (∀ C m par code l0 T MI Anno.

mbody-is C m (par ,code,l0) −→ MST↓(C , m) = Some (T ,MI ,Anno) −→
|= {|(λ s0 s. s = mkState s0)|} C , m, l0 {|(mkPost T)|} (mkInv MI))

definition Prog-valid::bool where
Prog-valid = (∃ G . G-valid G ∧ MST-valid)

The remainder of this section contains a proof of soundness, i.e. of the prop-
erty

VP =⇒ Prog-valid,

17

and is structured into two parts. The first step (Section 5.2) establishes a
soundness result where the VP property is replaced by validity assumptions
regarding the method specification table and the context. In the second
step (Section 5.3), we show that these validity assumptions are satisfied by
verified programs, which implies the overall soundness theorem.

5.2 Soundness under valid contexts

The soundness proof proceeds by induction on the axiomatic semantics,
based on an auxiliary lemma for method invocations that is proven by in-
duction on the derivation height of the operational semantics. For the lat-
ter induction, relativised notions of validity are employed that restrict the
derivation height of the program continuations affected by an assertion. The
appropriate definitions of relativised validity for judgements, for the precon-
dition table, and for the method specification table are as follows.
definition validn::

nat ⇒ Class ⇒ Method ⇒ Label ⇒ Assn ⇒ Post ⇒ Inv ⇒ bool where
validn K C m l A B I =

(∀ M . mbody-is C m M −→
(∀ Mspec Minv Anno . MST↓(C ,m) = Some(Mspec,Minv,Anno) −→
(∀ par code l0 . M = (par ,code,l0) −→
(∀ s0 s . MS M l0 (mkState s0) l s −→ A s0 s −→
(∀ k . k ≤ K −→
((∀ h v. (M ,l,s,k,h,v):Exec −→ B s0 s (h,v)) ∧
(∀ ll r . ((M ,l,s,k,ll,r):MStep −→

(∀ Q . Anno↓(ll) = Some Q −→ Q s0 r)) ∧
((M ,l,s,k,r):Reachable −→ I s0 s (heap r)))))))))

abbreviation validn-syntax :: nat ⇒ Assn ⇒ Class ⇒ Method ⇒
Label ⇒ Post ⇒ Inv ⇒ bool

(‹|=- {| - |} - , - , - {| - |} - › [200 ,200 ,200 ,200 ,200 ,200 ,200] 200)
where validn-syntax K A C m l B I == validn K C m l A B I

definition G-validn::nat ⇒ CTXT ⇒ bool where
G-validn K G = (∀ C m l A B I . G↓(C ,m,l) = Some (A,B,I) −→

|=K {|A|} C , m, l {|B|} I)

definition MST-validn::nat ⇒ bool where
MST-validn K = (∀ C m par code l0 T MI Anno.

mbody-is C m (par ,code,l0) −→ MST↓(C , m) = Some (T ,MI ,Anno) −→
|=K {|(λ s0 s. s = mkState s0)|} C , m, l0 {|(mkPost T)|} (mkInv MI))

definition Prog-validn::nat ⇒ bool where
Prog-validn K = (∃ G . G-validn K G ∧ MST-validn K)

The relativised notions are related to each other, and to the native notions
of validity as follows.

18

lemma valid-validn: |= {|A|} C , m, l {|B|} I =⇒ |=K {|A|} C , m, l {|B|} I
lemma validn-valid: [[∀ K . |=K {|A|} C , m, l {|B|} I]] =⇒ |= {|A|} C , m, l {|B|} I
lemma validn-lower :
[[|=K {|A|} C , m, l {|B|} I ; L ≤ K]] =⇒ |=L {|A|} C , m, l {|B|} I

lemma G-valid-validn: G-valid G =⇒ G-validn K G
lemma G-validn-valid:[[∀ K . G-validn K G]] =⇒ G-valid G
lemma G-validn-lower : [[G-validn K G; L ≤ K]] =⇒ G-validn L G
lemma MST-validn-valid:[[∀ K . MST-validn K]] =⇒ MST-valid
lemma MST-valid-validn:MST-valid =⇒ MST-validn K
lemma MST-validn-lower : [[MST-validn K ; L ≤ K]] =⇒ MST-validn L

We define an abbreviation for the side conditions of the rule for static method
invocations. . .
definition INVS-SC ::

Class ⇒ Method ⇒ Label ⇒ Class ⇒ Method ⇒ MethSpec ⇒ MethInv ⇒
ANNO ⇒ ANNO ⇒ Mbody ⇒ Assn ⇒ Inv ⇒ bool where

INVS-SC C m l D m ′ T MI Anno Anno2 M ′ A I = (∃ M par code l0 T1 MI1 .
mbody-is C m M ∧ get-ins M l = Some (invokeS D m ′) ∧
MST↓(C ,m) = Some (T1 ,MI1 ,Anno) ∧
MST↓(D,m ′) = Some (T ,MI ,Anno2) ∧
mbody-is D m ′ M ′ ∧ M ′=(par ,code,l0) ∧
(∀ Q . Anno↓(l) = Some Q −→ (∀ s0 s . A s0 s −→ Q s0 s)) ∧
(∀ s0 s . A s0 s −→ I s0 s (heap s)) ∧
(∀ s0 ops1 ops2 S R h t . (ops1 ,par ,R,ops2) : Frame −→

A s0 (ops1 ,S ,h) −→ MI (R,h) t −→ I s0 (ops1 ,S ,h) t))

. . . and another abbreviation for the soundness property of the same rule.
definition INVS-soundK ::

nat ⇒ CTXT ⇒ Class ⇒ Method ⇒ Label ⇒ Class ⇒ Method ⇒
MethSpec ⇒ MethInv ⇒ ANNO ⇒ ANNO ⇒ Mbody ⇒ Assn ⇒
Post ⇒ Inv ⇒ bool where

INVS-soundK K G C m l D m ′ T MI Anno Anno2 M ′ A B I =
(INVS-SC C m l D m ′ T MI Anno Anno2 M ′ A I −→

G-validn K G −→ MST-validn K −→
|=K {|(SINV-pre (fst M ′) T A)|} C ,m,(l+1)

{|(SINV-post (fst M ′) T B)|} (SINV-inv (fst M ′) T I)
−→ |=(K+1) {| A |} C ,m,l {| B |} I)

The proof that this property holds for all K proceeds by induction on K.
lemma INVS-soundK-all:

INVS-soundK K G C m l D m ′ T MI Anno Anno2 M ′ A B I

The heart of the soundness proof - the induction on the axiomatic semantics.
lemma SOUND-Aux[rule-format]:
(b,G,C ,m,l,A,B,I):SP-Judgement =⇒ G-validn K G −→ MST-validn K −→
((b −→ |=K {|A|} C , m, l {|B|} I) ∧
((¬ b) −→ |=(Suc K) {|A|} C , m, l {|B|} I))

19

The statement of this lemma gives a semantic interpretation of the two
judgement forms, as SP-Assum-judgements enjoy validity up to execution
height K, while SP-Deriv-judgements are valid up to level K + 1.

From this, we obtain a soundness result that still involves context validity.
theorem SOUND-in-CTXT :
[[G B {|A|} C ,m,l {|B|} I ; G-valid G; MST-valid]] =⇒ |= {|A|} C , m, l {|B|} I

We will now show that the two semantic assumptions can be replaced by
the verified-program property.

5.3 Soundness of verified programs

In order to obtain a soundness result that does not require validity assump-
tions of the context or the specification table, we show that the VP property
implies context validity. First, the elimination of contexts. By induction on
k we prove
lemma VPG-MSTn-Gn[rule-format]:
VP-G G −→ MST-validn k −→ G-validn k G

which implies
lemma VPG-MST-G: [[VP-G G; MST-valid]] =⇒ G-valid G

Next, the elimination of MST-valid. Again by induction on k, we prove
lemma VPG-MSTn[rule-format]: VP-G G −→ MST-validn k

which yields
lemma VPG-MST :VP-G G =⇒ MST-valid

Combining these two results, and unfolding the definition of program validity
yields the final soundness result.
theorem VP-VALID: VP =⇒ Prog-valid

6 A derived logic for a strong type system

In this section we consider a system of derived assertions, for a type system
for bounded heap consumption. The type system arises by reformulating
the analysis of Cachera, Jensen, Pichardie, and Schneider [4] for a high-
level functional language. The original approach of Cachera et al. consists
of formalising the correctness proof of a certain analysis technique in Coq.
Consequently, the verification of a program requires the execution of the
analysis algorithm inside the theorem prover, which involves the computa-
tion of the (method) call graph and fixed point iterations. In contrast, our

20

approach follows the proof-carrying code paradigm more closely: the analy-
sis amounts to a type inference which is left unformalised and can thus be
carried out outside the trusted code base. Only the result of the analysis is
communicated to the code recipient. The recipient verifies the validity of the
certificate by a largely syntax-directed single-pass traversal of the (low-level)
code using a domain-specific program logic. This approach to proof-carrying
code was already explored in the MRG project, with respect to program log-
ics of partial correctness [3] and a type system for memory consumption by
Hofmann and Jost [7]. In order to obtain syntax-directedness of the proof
rules, these had to be formulated at the granularity of typing judgements.
In contrast, the present proof system admits proof rules for individual JVM
instructions.
Having derived proof rules for individual JVM instructions, we introduce a
type system for a small functional language, and a compilation into bytecode.
The type system associates a natural number n to an expression e, in a typing
context Σ. Informally, the interpretation of a typing judgement Σ B e : n
is that the evaluation of e (which may include the invocation of functions
whose resource behaviour is specified in Σ) does not perform more than
n allocations. The type system is then formally proven sound, using the
derived logic for bytecode. By virtue of the invariants, the guarantee given
by the present system is stronger than the one given by our encoding of the
Hofmann-Jost system, as even non-terminating programs can be verified in
a meaningful way.

6.1 Syntax and semantics of judgements

The formal interpretation at JVM level of a type n is given by a triple

Cachera(n) = (A,B, I)

consisting of a (trivial) precondition, a post-condition, and a strong invari-
ant.
definition Cachera::nat ⇒ (Assn × Post × Inv) where
Cachera n = (λ s0 s . True,

λ s0 (ops,s,h) (k,v) . |k| ≤ |h| + n,
λ s0 (ops,s,h) k. |k| ≤ |h| + n)

This definition is motivated by the expectation that B{A} p eq {B} I should
be derivable whenever the type judgement ΣB e : n holds, where peq is the
translation of compiling the expression e into JVML, and the specification
table MST contains the interpretations of the entries in Σ.

We abbreviate the above construction of judgements by a predicate deriv.
definition deriv::CTXT ⇒ Class ⇒ Method ⇒ Label ⇒

(Assn × Post × Inv) ⇒ bool where

21

deriv G C m l (ABI) = (let (A,B,I) = ABI in (G B {| A |} C ,m,l {| B |} I))

Thus, the intended interpretation of a typing judgement ΣB e : n is

deriv C m l (Cachera n)

if e translates to a code block whose first instruction is at C.m.l.

We also define a judgement of the auxiliary form of sequents.
definition derivAssum::CTXT ⇒ Class ⇒ Method ⇒ Label ⇒

(Assn × Post × Inv) ⇒ bool where
derivAssum G C m l (ABI) = (let (A,B,I) = ABI in G B 〈 A 〉 C ,m,l 〈 B 〉 I)

The following operation converts a derived judgement into the syntactical
form of method specifications.
definition mkSPEC ::(Assn × Post × Inv) ⇒ ANNO ⇒

(MethSpec × MethInv × ANNO) where
mkSPEC (ABI) Anno = (let (A,B,I) = ABI in

(λ s0 t . B s0 (mkState s0) t, λ s0 h . I s0 (mkState s0) h, Anno))

This enables the interpretation of typing contexts Σ as a set of constraints
on the specification table MST.

6.2 Derived proof rules

We are now ready to prove derived rules, i.e. proof rules where assumptions
as well as conclusions are of the restricted assertion form. While their jus-
tification unfolds the definition of the predicate deriv, their application will
not. We first give syntax-directed proof rules for all JVM instructions:
lemma CACH-NEW :
[[ins-is C m l (new c); MST↓(C ,m)=Some(Mspec,Minv,Anno);

Anno↓(l) = None; n = k + 1 ; derivAssum G C m (l+1) (Cachera k)]]
=⇒ deriv G C m l (Cachera n)

lemma CACH-INSTR:
[[ins-is C m l I ;

I ∈ { const c, dup, pop, swap, load x, store x, binop f ,
unop g, getfield d F , putfield d F , checkcast d};

MST↓(C ,m)=Some(Mspec,Minv,Anno); Anno↓(l) = None;
derivAssum G C m (l+1) (Cachera n)]]

=⇒ deriv G C m l (Cachera n)
lemma CACH-RET :
[[ins-is C m l vreturn; MST↓(C ,m)=Some(Mspec,Minv,Anno);

Anno↓(l) = None]]
=⇒ deriv G C m l (Cachera 0)

lemma CACH-GOTO:
[[ins-is C m l (goto pc); MST↓(C ,m)=Some(Mspec,Minv,Anno);

Anno↓(l) = None; derivAssum G C m pc (Cachera n)]]
=⇒ deriv G C m l (Cachera n)

22

lemma CACH-IF :
[[ins-is C m l (iftrue pc); MST↓(C ,m)=Some(Mspec,Minv,Anno);

Anno↓(l) = None; derivAssum G C m pc (Cachera n);
derivAssum G C m (l+1) (Cachera n)]]

=⇒ deriv G C m l (Cachera n)
lemma CACH-INVS :
[[ins-is C m l (invokeS D m ′); mbody-is D m ′ (par ,code,l0);

MST↓(C ,m)=Some(Mspec,Minv,Anno); Anno↓(l) = None;
MST↓(D, m ′) = Some(mkSPEC (Cachera k) Anno2);
nk = n+k; derivAssum G C m (l+1) (Cachera n)]]

=⇒ deriv G C m l (Cachera nk)

In addition, we have two rules for subtyping
lemma CACH-SUB:
[[deriv G C m l (Cachera n); n ≤ k]] =⇒ deriv G C m l (Cachera k)

lemma CACHAssum-SUB:
[[derivAssum G C m l (Cachera n); n ≤ k]]
=⇒ derivAssum G C m l (Cachera k)

and specialised forms of the axiom rule and the injection rule.
lemma CACH-AX :
[[G↓(C ,m,l) = Some (Cachera n); MST↓(C ,m)=Some(Mspec,Minv,Anno);

Anno↓(l) = None]]
=⇒ derivAssum G C m l (Cachera n)

lemma CACH-INJECT :
deriv G C m l (Cachera n) =⇒ derivAssum G C m l (Cachera n)

Finally, a verified-program rule relates specifications to judgements for the
method bodies. Thus, even the method specifications may be given as de-
rived assertions (modulo the mkSPEC -conversion).
lemma CACH-VP:
[[∀ c m par code l0 . mbody-is c m (par , code, l0) −→

(∃ n Anno . MST↓(c,m) = Some(mkSPEC (Cachera n) Anno) ∧
deriv G c m l0 (Cachera n));

∀ c m l A B I . G↓(c,m,l) = Some(A,B,I) −→
(∃ n . (A,B,I) = Cachera n ∧ deriv G c m l (Cachera n))]]

=⇒ VP

6.3 Soundness of high-level type system

We define a first-order functional language where expressions are stratified
into primitive expressions and general expressions. The language supports
the construction of lists using constructors NilPrim and ConsPrim h t, and
includes a corresponding pattern match operation. In order to simplify the
compilation, function identifiers are taken to be pairs of class names and
method names.
type-synonym Fun = Class × Method

23

datatype Prim =
IntPrim int

| UnPrim Val ⇒ Val Var
| BinPrim Val ⇒ Val ⇒ Val Var Var
| NilPrim
| ConsPrim Var Var
| CallPrim Fun Var list

datatype Expr =
PrimE Prim

| LetE Var Prim Expr
| CondE Var Expr Expr
| MatchE Var Expr Var Var Expr

type-synonym FunProg = (Fun,Var list × Expr) AssList

The type system uses contexts that associate a type (natural number) to
function identifiers.
type-synonym TP-Sig = (Fun, nat) AssList

We first give the rules for primitive expressions.
inductive-set TP-prim::(TP-Sig × Prim × nat)set
where
TP-int: (Σ,IntPrim i,0) : TP-prim
|
TP-un: (Σ,UnPrim f x,0) : TP-prim
|
TP-bin: (Σ,BinPrim f x y,0) : TP-prim
|
TP-nil: (Σ,NilPrim,0) : TP-prim
|
TP-cons: (Σ,ConsPrim x y,1) : TP-prim
|
TP-Call: [[Σ↓f = Some n]] =⇒ (Σ,CallPrim f args,n) : TP-prim

Next, the rules for general expressions.
inductive-set TP-expr ::(TP-Sig × Expr × nat) set
where
TP-sub: [[(Σ,e,m):TP-expr ; m ≤ n]] =⇒ (Σ,e,n):TP-expr
|
TP-prim:[[(Σ,p,n):TP-prim]] =⇒ (Σ,PrimE p,n) : TP-expr
|
TP-let: [[(Σ,p,k):TP-prim; (Σ,e,m):TP-expr ; n = k+m]]

=⇒ (Σ,LetE x p e,n) : TP-expr
|
TP-Cond:[[(Σ,e1 ,n):TP-expr ; (Σ,e2 ,n):TP-expr]]

=⇒(Σ,CondE x e1 e2 ,n) : TP-expr
|

24

TP-Match:[[(Σ,e1 ,n):TP-expr ; (Σ,e2 ,n):TP-expr]]
=⇒ (Σ,MatchE x e1 h t e2 ,n):TP-expr

A functional program is well-typed if its domain agrees with that of some
context such that each function body validates the context entry.
definition TP::TP-Sig ⇒ FunProg ⇒ bool where
TP Σ F = ((∀ f . (Σ↓f = None) = (F↓f = None)) ∧

(∀ f n par e . Σ↓f = Some n −→ F↓f = Some (par ,e) −→ (Σ,e,n):TP-expr))

For the translation into bytecode, we introduce identifiers for a class of lists,
the expected field names, and a temporary (reserved) variable name.
axiomatization

LIST ::Class and
HD::Field and
TL::Field and
tmp::Var

The compilation of primitive expressions extends a code block by a sequence
of JVM instructions that leave a value on the top of the operand stack.
inductive-set compilePrim::
(Label × (Label,Instr) AssList × Prim × ((Label,Instr) AssList × Label)) set

where
compileInt: (l, code, IntPrim i, (code[l 7→(const (IVal i))],l+1)) : compilePrim
|
compileUn:
(l, code, UnPrim f x, (code[l 7→(load x)][(l+1) 7→(unop f)],l+2)) : compilePrim

|
compileBin:
(l, code, BinPrim f x y,

(code[l 7→(load x)][(l+1)7→(load y)][(l+2)7→(binop f)],l+3)) : compilePrim
|
compileNil:
(l, code, NilPrim, (code[l 7→(const (RVal Nullref))],l+1)) : compilePrim

|
compileCons:
(l, code, ConsPrim x y,

(code[l 7→(load y)][(l+1)7→(load x)]
[(l+2)7→(new LIST)][(l+3)7→store tmp]
[(l+4)7→load tmp][(l+5) 7→(putfield LIST HD)]
[(l+6)7→load tmp][(l+7) 7→(putfield LIST TL)]
[(l+8)7→(load tmp)], l+9)) : compilePrim

|
compileCall-Nil:
(l, code, CallPrim f [],(code[l 7→invokeS (fst f) (snd f)],l+1)): compilePrim

|
compileCall-Cons:
[[(l+1 ,code[l 7→load x], CallPrim f args, OUT) : compilePrim]]
=⇒ (l, code, CallPrim f (x#args), OUT): compilePrim

25

The following lemma shows that the resulting code is an extension of the
code submitted as an argument, and that the new instructions define a
contiguous block.
lemma compilePrim-Prop1 [rule-format]:
(l, code, p, OUT) : compilePrim =⇒
(∀ code1l1 . OUT = (code1 , l1) −→

(l < l1 ∧ (∀ ll . ll < l −→ code1↓ll = code↓ll) ∧
(∀ ll . l ≤ ll −→ ll < l1 −→ (∃ ins . code1↓ll = Some ins))))

A signature corresponds to a method specification table if all context entries
are represented as MST entries and method names that are defined in the
global program P.
definition Sig-good::TP-Sig ⇒ bool where
Sig-good Σ =
(∀ C m n. Σ↓(C ,m) = Some n −→

(MST↓(C , m) = Some (mkSPEC (Cachera n) emp) ∧
(∃ par code l0 . mbody-is C m (par ,code,l0))))

This definition requires MST to associate the specification

mkSPEC (Cachera n) emp

to each method to which the type signature associates the type n. In par-
ticular, this requires the annotation table of such a method to be empty.
Additionally, the global program P is required to contain a method defini-
tion for each method (i.e. function) name occurring in the domain of the
signature.

An auxiliary abbreviation that captures when a block of code has trivial
annotations and only comprises defined program labels.
definition Segment::

Class ⇒ Method ⇒ Label ⇒ Label ⇒ (Label,Instr)AssList ⇒ bool
where
Segment C m l l1 code =

(∃ Mspec Minv Anno . MST↓(C ,m) = Some(Mspec,Minv,Anno) ∧
(∀ ll. l ≤ ll −→ ll < l1 −→

Anno↓(ll) = None ∧ (∃ ins. ins-is C m ll ins ∧ code↓ll = Some ins)))

The soundness of (the translation of) a function call is proven by induction
on the list of arguments.
lemma Call-SoundAux[rule-format]:
Σ↓f = Some n −→

MST↓(fst f ,snd f) = Some(mkSPEC (Cachera n) Anno2) −→
(∃ par body l0 . mbody-is (fst f) (snd f) (par ,body,l0)) −→

(∀ l code code1 l1 G C m T MI k.
(l, code, CallPrim f args, code1 , l1) ∈ compilePrim −→

26

MST↓(C , m) = Some (T , MI ,Anno) −→ Segment C m l l1 code1 −→
derivAssum G C m l1 (Cachera k) −→
deriv G C m l (Cachera (n+k)))

lemma Call-Sound:
[[Sig-good Σ; Σ↓f = Some n;
(l, code, CallPrim f args, code1 , l1) ∈ compilePrim;
MST↓(C ,m) = Some (T , MI ,Anno); Segment C m l l1 code1 ;
derivAssum G C m l1 (Cachera nn); k = n+nn]]

=⇒ deriv G C m l (Cachera k)

The definition of basic instructions.
definition basic::Instr ⇒ bool where
basic ins = ((∃ c . ins = const c) ∨ ins = dup ∨

ins= pop ∨ ins= swap ∨ (∃ x. ins= load x) ∨
(∃ y. ins= store y) ∨ (∃ f . ins= binop f) ∨
(∃ g. ins= unop g) ∨ (∃ c1 F1 . ins= getfield c1 F1) ∨
(∃ c2 F2 . ins= putfield c2 F2) ∨
(∃ c3 . ins= checkcast c3))

Next, we prove the soundness of basic instructions. The hypothesis refers
to instructions located at the program continuation.
lemma Basic-Sound:
[[Segment C m l ll code; MST↓(C ,m) = Some (T , MI ,Anno); l≤l1 ; l1 < ll;

l2=l1+1 ; code↓l1 = Some ins; basic ins; derivAssum G C m l2 (Cachera n)]]
=⇒ deriv G C m l1 (Cachera n)

Following this, the soundness of the type system for primitive expressions.
The proof proceeds by induction on the typing judgement.
lemma TP-prim-Sound[rule-format]:
(Σ,p,n):TP-prim =⇒
Sig-good Σ −→
(∀ l code code1 l1 G C m T MI Anno nn k.

(l, code, p, (code1 ,l1)) : compilePrim −→
MST↓(C ,m) = Some (T ,MI ,Anno) −→
Segment C m l l1 code1 −→ derivAssum G C m l1 (Cachera nn) −→
k = n+nn −→ deriv G C m l (Cachera k))

The translation of general expressions is defined similarly, but no code con-
tinuation is required.
inductive-set compileExpr ::
(Label × (Label,Instr) AssList × Expr × ((Label,Instr) AssList × Label)) set

where
compilePrimE :
[[(l, code, p, (code1 ,l1)) : compilePrim; OUT = (code1 [l1 7→vreturn],l1+1)]]
=⇒ (l, code, PrimE p, OUT):compileExpr

|
compileLetE :
[[(l, code, p, (code1 ,l1)) : compilePrim; (code2 ,l2) = (code1 [l1 7→(store x)],l1+1);

27

(l2 , code2 , e, OUT) : compileExpr]]
=⇒ (l, code, LetE x p e, OUT) : compileExpr

|
compileCondE :
[[(l+2 , code, e2 , (codeElse,XXX)) : compileExpr ;

(XXX , codeElse, e1 , (codeThen,YYY)) : compileExpr ;
OUT = (codeThen[l 7→load x][(l+1)7→(iftrue XXX)], YYY)]]

=⇒ (l, code, CondE x e1 e2 , OUT): compileExpr
|
compileMatchE :
[[(l+9 , code, e2 , (codeCons,lNil)) : compileExpr ;

(lNil, codeCons, e1 , (codeNil,lRes)) : compileExpr ;
OUT = (codeNil[l 7→(load x)]

[(l+1)7→(unop (λ v . if v = RVal Nullref
then TRUE else FALSE))]

[(l+2)7→(iftrue lNil)]
[(l+3)7→(load x)]
[(l+4)7→(getfield LIST HD)]
[(l+5)7→(store h)]
[(l+6)7→(load x)]
[(l+7)7→(getfield LIST TL)]
[(l+8)7→(store t)], lRes)]]

=⇒ (l, code, MatchE x e1 h t e2 , OUT): compileExpr

Again, we prove an auxiliary result on the emitted code, by induction on
the compilation judgement.
lemma compileExpr-Prop1 [rule-format]:
(l,code,e,OUT) : compileExpr =⇒
(∀ code1 l1 . OUT = (code1 , l1) −→

(l < l1 ∧
(∀ ll . ll < l −→ code1↓ll = code↓ll) ∧
(∀ ll . l ≤ ll −→ ll < l1 −→ (∃ ins . code1↓ll = Some ins))))

Then, soundness of the epxression type system is proven by induction on
the typing judgement.
lemma TP-epxr-Sound[rule-format]:
(Σ,e,n):TP-expr =⇒ Sig-good Σ −→
(∀ l code code1 l1 G C m T MI Anno.

(l, code, e, (code1 ,l1)):compileExpr −→
MST↓(C ,m) = Some (T ,MI ,Anno) −→
Segment C m l l1 code1 −→ deriv G C m l (Cachera n))

The full translation of a functional program into a bytecode program is
defined as follows.
definition compileProg::FunProg ⇒ bool where
compileProg F =
((∀ C m par e. F↓(C ,m) = Some(par ,e) −→

(∃ code l0 l. mbody-is C m (rev par ,code,l0) ∧

28

(l0 ,[],e,(code,l)):compileExpr)) ∧
(∀ C m. (∃ M . mbody-is C m M) = (∃ fdecl . F↓(C ,m) = Some fdecl)))

The final condition relating a typing context to a method specification table.
definition TP-MST ::TP-Sig ⇒ bool where
TP-MST Σ =

(∀ C m . case (MST↓(C ,m)) of
None ⇒ Σ↓(C ,m) = None

| Some(T ,MI ,Anno) ⇒ Anno = emp ∧
(∃ n . Σ↓(C ,m)=Some n ∧
(T ,MI ,Anno) = mkSPEC (Cachera n) emp))

For well-typed programs, this property implies the earlier condition on sig-
natures.
lemma translation-good: [[compileProg F ; TP-MST Σ; TP Σ F]] =⇒ Sig-good Σ

We can thus prove that well-typed function bodies satisfy the specifications
asserted by the typing context.
lemma CACH-BodiesDerivable[rule-format]:
[[mbody-is C m (par , code, l); compileProg F ; TP-MST Σ; TP Σ F]]
=⇒ ∃ n . MST↓(C ,m) = Some(mkSPEC (Cachera n) emp) ∧

deriv [] C m l (Cachera n)

From this, the overall soundness result follows easily.
theorem CACH-VERIFIED: [[TP Σ F ; TP-MST Σ; compileProg F]] =⇒ VP

References

[1] F. Y. Bannwart and P. Müller. A logic for bytecode. Electronic Notes
in Theoretical Computer Science, 141(1):255–273, 2005.

[2] L. Beringer and M. Hofmann. A bytecode logic for JML and types.
In N. Kobayashi, editor, Proceedings of the 4th Asian Symposium on
Programming Languages and Systems (APLAS 2006), volume 4279 of
LNCS, pages 389–405. Springer, 2006.

[3] L. Beringer, M. Hofmann, A. Momigliano, and O. Shkaravska. Auto-
matic certification of heap consumption. In A. V. Franz Baader, editor,
LPAR 2004, volume 3425 of LNCS, pages 347–362. Springer-Verlag,
2005.

[4] D. Cachera, T. Jensen, D. Pichardie, and G. Schneider. Certified mem-
ory usage analysis. In Proceedings of the 13th International Sympo-
sium on Formal Methods (FM’05), volume 3582 of LNCS, pages 91–106.
Springer-Verlag, 2005.

29

[5] A. Deutsch. A storeless model of aliasing and its abstractions using
finite representations of right-regular equivalence relations. In Proceed-
ings of the International Conference on Computer Languages, pages
2–13. IEEE, Apr. 1992.

[6] R. Hähnle and W. Mostowski. Verification of safety properties in the
presence of transactions. In Post Conference Proceedings of CASSIS:
Construction and Analysis of Safe, Secure and Interoperable Smart de-
vices, volume 3362 of LNCS, pages 151–171. Springer, 2005.

[7] M. Hofmann and S. Jost. Static prediction of heap space usage for first-
order functional programs. In Proceedings of the 30th ACM Symposium
on Principles of Programming Languages (POPL’03), pages 185–197.
ACM Press, Jan. 2003.

[8] H. M. B. Jonkers. Abstract storage structures. Algorithmic languages,
1981.

[9] Mobius Consortium. Deliverable 3.1: Bytecode specification language
and program logic, 2006. Available online from http://mobius.inria.fr.

[10] D. Pichardie. Bicolano – Byte Code Language in Coq. http://mobius.
inria.fr/twiki/bin/view/Bicolano. Summary appears in [9], 2006.

[11] U. S. Reddy. Global state considered unnecessary: An introduction to
object-based semantics. Journal of Lisp and Symbolic Computation,
9:7–76, 1996.

30

http://mobius.inria.fr
http://mobius.inria.fr/twiki/bin/view/Bicolano
http://mobius.inria.fr/twiki/bin/view/Bicolano

	Preliminaries: association lists
	Language
	Syntax
	Dynamic semantics
	Semantic components
	Operational judgements

	Basic properties

	Axiomatic semantics
	Assertion forms
	Proof system

	Auxiliary operational judgements
	Multistep execution
	Reachability relation

	Soundness
	Validity
	Soundness under valid contexts
	Soundness of verified programs

	A derived logic for a strong type system
	Syntax and semantics of judgements
	Derived proof rules
	Soundness of high-level type system

