Formalized Burrows-Wheeler Transform

Louis Cheung and Christine Rizkallah

March 17, 2025

Abstract

The Burrows-Wheeler transform (BWT) [2] is an invertible lossless transformation that permutes input sequences into alternate sequences of the same length that frequently contain long localized regions that involve clusters consisting of just a few distinct symbols, and sometimes also include long runs of same-symbol repetitions. Moreover, there is a one-to-one correspondence between the BWT and suffix arrays [7]. As a consequence, the BWT is widely used in data compression and as an indexing data structure for pattern search. In this formalization [4], we present the formal verification of both the BWT and its inverse, building on a formalization of suffix arrays [5]. This is the artefact of our CPP paper [3].

Contents

1	Nat Modulo Helper	3		
2	Rotated Sublists	3		
3	Counting 3.1 Count List	11 11 12 14		
4	Rank Definition	19		
5				
	5.1 List Properties	19		
	5.2 Counting Properties	19		
	5.3 Bound Properties	21		
	5.4 Sorted Properties	23		
6	Select Definition	26		

7	Sele	ect Properties	27
	7.1	Length Properties	27
	7.2	List Properties	27
	7.3	Bound Properties	28
	7.4	Nth Properties	28
	7.5	Sorted Properties	32
8	Rar	nk and Select Properties	37
	8.1	Correctness of Rank and Select	37
		8.1.1 Rank Correctness	37
		8.1.2 Select Correctness	37
	8.2	Rank and Select	38
	8.3	Sorted Properties	39
9	Suf	fix Array Properties	40
	9.1	Bijections	40
	9.2	Suffix Properties	41
	9.3	General Properties	43
	9.4	Nth Properties	43
	9.5	Valid List Properties	45
10		unting Properties on Suffix Arays	46
		Counting Properties	46
	10.2	Ordering Properties	51
11	Bur	rows-Wheeler Transform	53
12		T Verification	54
	12.1	List Rotations	54
		Ordering	55
	12.3	BWT Equivalence	56
13		T and Suffix Array Correspondence	56
		BWT Using Suffix Arrays	
			65
	13.3	Suffix Array and BWT Rank	68
14		erse Burrows-Wheeler Transform	71
		Abstract Versions	71
	14.2	Concrete Versions	71
15	List	Filter	72

16 Verification of the Inverse Burrows-Wheeler Transform	73		
16.1 LF-Mapping Simple Properties	73		
16.2 LF-Mapping Correctness	75		
16.3 Backwards Inverse BWT Simple Properties	76		
16.4 Backwards Inverse BWT Correctness	78		
16.5 Concretization	84		
16.6 Inverse BWT Correctness	86		
theory Nat-Mod-Helper			
imports Main			

```
begin
```

1 Nat Modulo Helper

 ${\bf lemma} \ \textit{nat-mod-add-neq-self}:$

 $\llbracket a < (n :: nat); \ b < n; \ b \neq 0 \rrbracket \implies (a + b) \ mod \ n \neq a$ by (metis add-diff-cancel-left' mod-if mod-mult-div-eq mod-mult-self1-is-0)

lemma *nat-mod-a-pl-b-eq1*:

 $\llbracket n + b \le a; a < (n :: nat) \rrbracket \Longrightarrow (a + b) \mod n = b - (n - a)$ using order-le-less-trans by blast

lemma *not-mod-a-pl-b-eq2*:

 $[n - a \le b; a < n; b < (n :: nat)] \Longrightarrow (a + b) \mod n = b - (n - a)$ using Nat.diff-diff-right add.commute mod-if by auto

\mathbf{end}

theory Rotated-Substring imports Nat-Mod-Helper begin

2 Rotated Sublists

definition is-sublist :: 'a list \Rightarrow 'a list \Rightarrow bool where is-sublist xs ys = (\exists as bs. xs = as @ ys @ bs) definition is-rot-sublist :: 'a list \Rightarrow 'a list \Rightarrow bool where is-rot-sublist xs ys = (\exists n. is-sublist (rotate n xs) ys) definition inc-one-bounded :: nat \Rightarrow nat list \Rightarrow bool where

inc-one-bounded $n \ xs \equiv$ $(\forall i. \ Suc \ i < length \ xs \longrightarrow xs \ ! \ Suc \ i = Suc \ (xs \ ! \ i) \ mod \ n) \land$ $(\forall i < length \ xs. \ xs \ ! \ i < n)$

lemma inc-one-boundedD:

 $[inc-one-bounded \ n \ xs; \ Suc \ i < length \ xs] \implies xs \ ! \ Suc \ i = \ Suc \ (xs \ ! \ i) \ mod \ n$ $[inc-one-bounded \ n \ xs; \ i < length \ xs] \implies xs \ ! \ i < n$ using inc-one-bounded-def by blast+ **lemma** *inc-one-bounded-nth-plus*: $[[inc-one-bounded n xs; i + k < length xs]] \implies xs ! (i + k) = (xs ! i + k) \mod n$ **proof** (*induct* k) case θ then show ?case by (simp add: inc-one-boundedD(2)) \mathbf{next} case (Suc k) then show ?case by (metis Suc-lessD add-Suc-right inc-one-bounded-def mod-Suc-eq) qed **lemma** *inc-one-bounded-neg*: [*inc-one-bounded* n xs; *length* $xs \leq n$; i + k < length xs; $k \neq 0$] $\implies xs ! (i + k)$ $\neq xs ! i$ using inc-one-bounded-nth-plus nat-mod-add-neq-self **by** (simp add: inc-one-boundedD(2) linorder-not-le) **corollary** *inc-one-bounded-neq-nth*: assumes inc-one-bounded n xs and length $xs \leq n$ i < length xsand and j < length xsand $i \neq j$ shows $xs \mid i \neq xs \mid j$ **proof** (cases i < j) assume i < jthen show ?thesis by (metis assms(1,2,4) canonically-ordered-monoid-add-class.less E inc-one-bounded-neq) \mathbf{next} assume $\neg i < j$ then show ?thesis by (metis assms(1,2,3,5) canonically-ordered-monoid-add-class.less E inc-one-bounded-neg *le-neq-implies-less linorder-not-le*) qed **lemma** *inc-one-bounded-distinct*: [*inc-one-bounded* n xs; *length* $xs \leq n$] \implies *distinct* xs

using distinct-conv-nth inc-one-bounded-neq-nth by blast

 ${\bf lemma} \ inc\ one\ bounded\ subset\ upt:$

 $\llbracket inc-one-bounded \ n \ xs; \ length \ xs \le n \rrbracket \implies set \ xs \le \{0..< n\}$ by (metis atLeastLessThan-iff in-set-conv-nth inc-one-boundedD(2) less-eq-nat.simps(1) subset-code(1))

```
lemma inc-one-bounded-consD:
  inc-one-bounded n (x \# xs) \Longrightarrow inc-one-bounded n xs
 unfolding inc-one-bounded-def
 using bot-nat-0.not-eq-extremum lessI less-zeroE mod-less-divisor by fastforce
lemma inc-one-bounded-nth:
  [inc-one-bounded n xs; i < \text{length } xs] \implies xs ! i = ((\lambda x. Suc x \mod n))(xs !)
\theta)
proof (induct i)
 case \theta
 then show ?case
   by simp
next
 case (Suc i)
 note IH = this
 from IH
 have xs \mid i = ((\lambda x. Suc \ x \ mod \ n) \frown i) \ (xs \mid 0)
   by simp
 hence Suc (xs ! i) mod n = ((\lambda x. Suc x \mod n) \frown Suc i) (xs ! \theta)
   by force
 moreover
 from inc-one-boundedD(1)[OF IH(2,3)]
 have xs \mid Suc \ i = Suc \ (xs \mid i) \mod n.
 ultimately show ?case
   by presburger
qed
lemma inc-one-bounded-nth-le:
 \llbracket inc\text{-}one\text{-}bounded \ n \ xs; \ i < length \ xs; \ (xs \ ! \ 0) + i < n \rrbracket \Longrightarrow
  xs \mid i = (xs \mid 0) + i
 by (metis add-cancel-right-left inc-one-bounded-nth-plus mod-if)
lemma inc-one-bounded-upt1:
 assumes inc-one-bounded n xs
          length xs = Suc k
 and
 and
          Suc k < n
 and
          (xs ! 0) + k < n
shows xs = [xs \mid 0.. < (xs \mid 0) + Suc k]
proof (intro list-eq-iff-nth-eq[THEN iffD2] conjI impI allI)
 show length xs = length [xs ! 0 .. < xs ! 0 + Suc k]
   using assms(2) by force
\mathbf{next}
 fix i
 assume i < length xs
 hence [xs ! 0 .. < xs ! 0 + Suc k] ! i = xs ! 0 + i
   by (metis add-less-cancel-left assms(2) nth-upt)
 moreover
```

have $xs \mid \theta + i < n$

```
using \langle i < length xs \rangle assms(2,4) by linarith
  with inc-one-bounded-nth-le[OF assms(1) \langle i < length xs \rangle]
 have xs \mid i = xs \mid 0 + i
   by simp
 ultimately show xs \mid i = [xs \mid 0.. < xs \mid 0 + Suc \mid i]
   by presburger
\mathbf{qed}
lemma inc-one-bounded-upt2:
 assumes inc-one-bounded n xs
 and
           length xs = Suc k
 and
           Suc k \leq n
 and
           n \leq (xs \mid \theta) + k
shows xs = [xs ! 0 .. < n] @ [0 .. < (xs ! 0) + Suc k - n]
proof (intro list-eq-iff-nth-eq[THEN iffD2] conjI impI allI)
 show length xs = length ([xs ! 0 .. < n] @ [0 .. < xs ! 0 + Suc k - n])
   using assms(1) assms(2) assms(4) inc-one-boundedD(2) less-or-eq-imp-le by
auto
next
 fix i
 assume i < length xs
 show xs ! i = ([xs ! 0 .. < n] @ [0 .. < xs ! 0 + Suc k - n]) ! i
 proof (cases i < length [xs ! 0..< n])
   assume i < length [xs ! 0..< n]
   hence ([xs ! 0 .. < n] @ [0 .. < xs ! 0 + Suc k - n]) ! i = [xs ! 0 .. < n] ! i
     by (meson nth-append)
   moreover
   have [xs ! 0..< n] ! i = xs ! 0 + i
     using \langle i < length [xs ! 0..< n] \rangle by force
   moreover
   have xs \mid \theta + i < n
     using \langle i < length \ [xs ! 0..< n] \rangle by auto
   with inc-one-bounded-nth-le[OF assms(1) \langle i < length xs \rangle]
   have xs \mid i = xs \mid 0 + i
     by blast
   ultimately show xs \mid i = ([xs \mid 0 .. < n] @ [0 .. < xs \mid 0 + Suc k - n]) \mid i
     by simp
  \mathbf{next}
   assume \neg i < length [xs ! 0..< n]
   hence ([xs ! 0 .. < n] @ [0 .. < xs ! 0 + Suc k - n]) ! i =
          [0..< xs ! 0 + Suc k - n] ! (i - length [xs ! 0..< n])
     by (meson nth-append)
   moreover
   have [0..<xs ! 0 + Suc k - n] ! (i - length [xs ! 0..<n]) = i - (n - xs ! 0)
     using \langle i < length xs \rangle add-0 assms(2) assms(4) by fastforce
   moreover
   {
     have i < n
       using \langle i < length xs \rangle assms(2) assms(3) by linarith
```

```
moreover
     from inc-one-boundedD(2)[OF assms(1), of 0]
     have xs \mid \theta < n
      by (simp \ add: assms(2))
     moreover
     have n - xs ! 0 \le i
      using \langle \neg i < length [xs ! 0..< n] \rangle by force
     ultimately have xs \mid i = i - (n - xs \mid 0)
       using not-mod-a-pl-b-eq2[of n xs ! 0 i]
              inc-one-bounded-nth-plus OF assms(1), of 0 i, simplified, OF < i < i
length xs ]
      by presburger
   }
   ultimately show xs \mid i = ([xs \mid 0 ... < n] @ [0 ... < xs \mid 0 + Suc k - n]) \mid i
     by argo
 qed
qed
lemmas inc-one-bounded-upt = inc-one-bounded-upt1 inc-one-bounded-upt2
lemma is-rot-sublist-nil:
  is-rot-sublist xs []
```

```
by (metis append-Nil is-rot-sublist-def is-sublist-def)

lemma rotate-upt:

m \le n \implies rotate \ m \ [0..<n] = [m..<n] @ [0..<m]

by (metis diff-zero le-Suc-ex length-upt rotate-append upt-add-eq-append zero-order(1))
```

```
lemma inc-one-bounded-is-rot-sublist:
 assumes inc-one-bounded n xs length xs \leq n
 shows is-rot-sublist [0..< n] xs
 unfolding is-rot-sublist-def is-sublist-def
proof (cases length xs)
 case \theta
 then show \exists na \ as \ bs. \ rotate \ na \ [0..< n] = as @ xs @ bs
   using append-Nil by blast
next
  case (Suc k)
 hence Suc k \leq n
   using assms(2) by auto
 have (xs \mid 0) + k < n \implies \exists na \ as \ bs. \ rotate \ na \ [0..< n] = as @ xs @ bs
 proof –
   assume (xs ! 0) + k < n
   with inc-one-bounded-upt(1)[OF assms(1) Suc (Suc \ k \le n)]
   have xs = [xs ! 0 .. < xs ! 0 + Suc k]
     by blast
   moreover
   have xs \mid 0 + Suc \mid k \leq n
```

by (simp add: Suc-leI $\langle xs \mid 0 + k < n \rangle$) with upt-add-eq-append [of xs ! 0 xs ! 0 + Suc k n - (xs ! 0 + Suc k)] have [xs ! 0 .. < n] = [xs ! 0 .. < xs ! 0 + Suc k] @ [xs ! 0 + Suc k ... < n]**by** (*metis le-add1 le-add-diff-inverse*) with upt-add-eq-append [of 0 xs ! 0 n - xs ! 0] have [0..<n] = [0..<xs! 0] @ [xs! 0..<xs! 0 + Suc k] @ [xs! 0 + Suc k..<n]using $\langle xs \mid 0 + Suc \mid k \leq n \rangle$ by fastforce ultimately show *?thesis* by (metis append.right-neutral append-Nil rotate-append) \mathbf{qed} moreover have $\neg (xs \mid 0) + k < n \implies \exists na \ as \ bs. \ rotate \ na \ [0..< n] = as @ xs @ bs$ proof assume $\neg (xs ! 0) + k < n$ hence $(xs \mid 0) + k \ge n$ by simp with inc-one-bounded-upt(2)[OF assms(1) Suc $\langle Suc \ k \leq n \rangle$] have $xs = [xs \mid 0 \dots < n] @ [0 \dots < xs \mid 0 + Suc k - n]$ **by** blast moreover **from** *inc-one-boundedD*(2)[*OF assms*(1), *of* 0] have $xs \mid \theta < n$ **by** (simp add: Suc) with rotate-upt[of $xs \mid 0 \mid n$] have rotate $(xs \mid \theta) \mid [\theta ... < n] = [xs \mid \theta ... < n] @ [\theta ... < xs \mid \theta]$ by linarith moreover { have $0 \le xs \mid 0 + Suc k - n$ by simp hence $[0 \dots < xs ! 0 + Suc k - n + (n - Suc k)] =$ [0..<xs ! 0 + Suc k - n] @ [xs ! 0 + Suc k - n..<xs ! 0 + Suc k - n..</p>n + (n - Suc k)] using upt-add-eq-append of 0 xs ! 0 + Suc k - n n - Suc k by blast moreover have $xs \mid 0 = xs \mid 0 + Suc \ k - n + (n - Suc \ k)$ using $(Suc \ k \le n) \ (n \le xs ! \ 0 + k)$ by auto ultimately have [0..< xs ! 0] = [0..< xs ! 0 + Suc k - n] @ [xs ! 0 + Suc k] $-n..< xs \mid 0$] by argo } ultimately show *?thesis* by (metis append.assoc append-Nil) qed ultimately show $\exists na \ as \ bs. \ rotate \ na \ [0..< n] = as @ xs @ bs$ by blast qed

lemma *is-rot-sublist-idx*:

is-rot-sublist [0..< length xs] ys \implies is-rot-sublist xs (map ((!) xs) ys) unfolding is-rot-sublist-def is-sublist-def **proof** (*elim* exE) fix n as bs**assume** rotate n [0... < length xs] = as @ ys @ bshence rotate n xs = map ((!) xs) (as @ ys @ bs)by (metis map-nth rotate-map) **then show** $\exists n \ as \ bs.$ rotate $n \ xs = as @ map ((!) \ xs) \ ys @ bs$ by auto qed **lemma** *is-rot-sublist-upt-eq-upt-hd*: $\llbracket is\text{-rot-sublist} \ [0..<Suc \ n] \ ys; \ length \ ys = Suc \ n; \ ys \ ! \ 0 = 0 \rrbracket \Longrightarrow ys = [0..<Suc \ n]$ nunfolding is-rot-sublist-def is-sublist-def **proof** (*elim* exE) fix m as bs**assume** A: length $ys = Suc \ n \ ys \ ! \ 0 = 0$ rotate $m \ [0..<Suc \ n] = as \ @ ys \ @ bs$ with rotate-conv-mod[of m [0..<Suc n]] have rotate (m mod length [0..<Suc n]) [0..<Suc n] = as @ ys @ bsby simp with rotate-upt[of m mod length [0..<Suc n] Suc n] have $[m \mod length \ [0..<Suc \ n]..<Suc \ n] @ [0..<m \mod length \ [0..<Suc \ n]] =$ as @ ys @ bs **by** (*metis diff-zero le-Suc-eq length-upt mod-Suc-le-divisor*) hence $[m \mod Suc \ n..< Suc \ n] @ [0..< m \mod Suc \ n] = as @ ys @ bs$ by simp moreover have as = []by (metis A(1) A(3) diff-zero length-append length-greater-0-conv length-rotate *length-upt* less-add-same-cancel2 not-add-less1) moreover have bs = []by (metrix A(1) A(3) append.right-neutral append-eq-append-conv calculation(2) diff-zero *length-rotate length-upt self-append-conv2*) moreover have $m \mod Suc \ n = 0$ by (metrix A add.right-neutral append.right-neutral calculation (2,3) diff-zero *length-rotate* mod-less-divisor nth-rotate nth-upt self-append-conv2 zero-le zero-less-Suc ordered-cancel-comm-monoid-diff-class.add-diff-inverse) ultimately show $ys = [0.. < Suc \ n]$ by simp qed **lemma** *is-rot-sublist-upt-eq-upt-last*:

 $\llbracket is\text{-rot-sublist} \ [0..<\!Suc \ n] \ ys; \ length \ ys = Suc \ n; \ ys \ ! \ n = n \rrbracket \Longrightarrow ys = [0..<\!Suc \ n] \ sublists \ \ su$

nunfolding is-rot-sublist-def is-sublist-def **proof** (*elim* exE) fix m as bsassume A: length $ys = Suc \ n \ ys \ ! \ n = n \ rotate \ m \ [0..<Suc \ n] = as @ ys @ bs$ with rotate-conv-mod[of m [0..<Suc n]] have rotate (m mod length [0..<Suc n]) [0..<Suc n] = as @ ys @ bs by simp with rotate-upt of $m \mod length [0..<Suc n]$ Suc n have $[m \mod length [0..<Suc n]..<Suc n] @ [0..<m \mod length [0..<Suc n]] =$ as @ ys @ bs**by** (*metis diff-zero le-Suc-eq length-upt mod-Suc-le-divisor*) hence $[m \mod Suc \ n..< Suc \ n] @ [0..< m \mod Suc \ n] = as @ ys @ bs$ by simp moreover have as = []by (metis A(1) A(3) diff-zero length-append length-greater-0-conv length-rotate *length-upt* less-add-same-cancel2 not-add-less1) moreover have bs = []by (metis A(1) A(3) append.right-neutral append-eq-append-conv calculation(2) diff-zero *length-rotate length-upt self-append-conv2*) moreover **from** *list-eq-iff-nth-eq*[*THEN iffD1*, *OF calculation*(1), *simplified*, simplified calculation(2,3), simplified] have Suc n = length ys $\forall i < Suc n$. ([m mod Suc n..<n] @ n # [0..<m mod Sucn]) ! i = ys ! iby blast+ hence $([m \mod Suc n..< n] @ n \# [0..< m \mod Suc n]) ! n = n$ by (simp add: A(2)) with nth-append[of $[m \mod Suc \ n..< n]$ $n \# [0..< m \mod Suc \ n]$ n]have $n < length [m \mod Suc \ n... < n] \lor$ $(n \# [0.. < m \mod Suc n]) ! (n - length [m \mod Suc n.. < n]) = n$ by argo hence $m \mod Suc \ n = 0$ proof assume $n < length [m \mod Suc n..< n]$ then show $m \mod Suc \ n = 0$ by simp \mathbf{next} assume B: $(n \# [0.. < m \mod Suc n]) ! (n - length [m \mod Suc n.. < n]) = n$ show $m \mod Suc \ n = 0$ **proof** (cases $n - length [m \mod Suc n..< n]$) case θ then show ?thesis by simp \mathbf{next}

case (Suc x)
then show ?thesis
by (metis B One-nat-def add-Suc diff-diff-cancel length-upt lessI mod-Suc-le-divisor

mod-less-divisor nless-le nth-Cons-Suc nth-upt plus-1-eq-Suc

```
 \begin{array}{c} \textit{zero-less-Suc}) \\ \textbf{qed} \\ \textbf{qed} \\ \textbf{ultimately show } ys = [0..<\!Suc \; n] \\ \textbf{by } simp \\ \textbf{qed} \end{array}
```

\mathbf{end}

```
theory Count-Util

imports HOL-Library.Multiset

HOL-Combinatorics.List-Permutation

SuffixArray.List-Util

SuffixArray.List-Slice
```

```
\mathbf{begin}
```

3 Counting

3.1 Count List

lemma count-in: $x \in set \ xs \implies count-list \ xs \ x > 0$ **by** (meson count-list-0-iff gr0I)

lemma in-count: count-list $xs \ x > 0 \implies x \in set \ xs$ **by** (metis count-notin less-irrefl)

lemma notin-count: count-list $xs \ x = 0 \implies x \notin set \ xs$ **by** (simp add: count-list-0-iff)

lemma count-list-eq-count: count-list $xs \ x = count \ (mset \ xs) \ x$ **by** (induct xs; simp)

lemma count-list-perm: $xs <^{\sim} > ys \Longrightarrow$ count-list $xs \ x =$ count-list $ys \ x$ **by** (simp add: count-list-eq-count)

lemma in-count-nth-ex: count-list $xs \ x > 0 \implies \exists i < length xs. xs ! i = x$ by (meson in-count in-set-conv-nth)

lemma *in-count-list-slice-nth-ex*:

count-list (list-slice $xs \ i \ j$) $x > 0 \implies \exists k < length xs. \ i \leq k \land k < j \land xs \ k = x$ by (meson in-count nth-mem-list-slice)

3.2 Cardinality

```
lemma count-list-card:
  count-list xs \ x = card \ \{j. \ j < length \ xs \land xs \ ! \ j = x\}
proof (induct xs rule: rev-induct)
 \mathbf{case} \ Nil
 then show ?case
   by simp
\mathbf{next}
 case (snoc \ y \ xs)
 let ?A = \{j, j < length xs \land xs \mid j = x\}
 let ?B = \{j, j < length (xs @ [y]) \land (xs @ [y]) ! j = x\}
 have length xs \notin ?A
   by simp
 have ?B - {length xs} = ?A
   by (intro equalityI subsetI; clarsimp simp: nth-append)
  {
   have y = x \Longrightarrow count-list (xs @ [y]) x = Suc (card ?A)
     by (simp add: snoc)
   moreover
   have y = x \implies ?B = insert (length xs) ?A
    by (metis (mono-tags, lifting) \langle B - \{ length xs \} = A \rangle insert-Diff length-append-singleton
                                  lessI mem-Collect-eq nth-append-length)
   with card-insert-disjoint [OF - \langle length \ xs \notin - \rangle]
   have y = x \Longrightarrow card ?B = Suc (card ?A)
     by simp
   ultimately have y = x \implies ?case
     by simp
  }
 moreover
 have y \neq x \Longrightarrow count-list (xs @ [y]) x = card ?A
   by (simp add: snoc)
 hence y \neq x \implies ?case
   using \langle ?B - \{ length \ xs \} = ?A \rangle by force
  ultimately show ?case
   by blast
qed
lemma card-le-eq-card-less-pl-count-list:
 fixes s :: 'a :: linorder list
```

shows card $\{k. \ k < length \ s \land s \ ! \ k \leq a\} = card \ \{k. \ k < length \ s \land s \ ! \ k < a\} + count-list \ s \ a$

```
proof -
 let ?A = \{k. \ k < length \ s \land s \ ! \ k \leq a\}
 let ?B = \{k. \ k < length \ s \land s \ ! \ k < a\}
 let ?C = \{k. \ k < length \ s \land s \mid k = a\}
 have ?B \cap ?C = \{\}
   by blast
 hence card (?B \cup ?C) = card ?B + count-list s a
   by (simp add: card-Un-disjoint count-list-card)
 moreover
 have ?A = ?B \cup ?C
 proof safe
   fix x
   assume s \mid x \leq a \ s \mid x \neq a
   then show s \mid x < a
     by simp
 next
   fix x
   assume s \mid x < a
   then show s \mid x \leq a
     by simp
  qed
 hence card ?A = card (?B \cup ?C)
   by simp
 ultimately show ?thesis
   by simp
qed
lemma card-less-idx-upper-strict:
 fixes s :: 'a :: linorder list
 assumes a \in set s
 shows card \{k. \ k < length \ s \land s \ ! \ k < a\} < length \ s
proof -
 have \exists i < length s. s ! i = a
   by (meson assms in-set-conv-nth)
 then obtain i where P:
   i < length \ s \ s \ ! \ i = a
   by blast
 have \{k. \ k < length \ s \land s \ ! \ k < a\} \subseteq \{0..< length \ s\}
   using atLeastLessThan-iff by blast
 moreover
 have i \in \{0.. < length s\}
   by (simp add: P(1))
 moreover
 have i \notin \{k. \ k < length \ s \land s \ ! \ k < a\}
   by (simp add: P(2))
  ultimately have \{k. \ k < length \ s \land s \mid k < a\} \subset \{0..< length \ s\}
   by blast
```

13

then show ?thesis

lemma card-less-idx-upper:

shows card $\{k. \ k < length \ s \land s \ ! \ k < a\} \leq length \ s$ **by** (metis (no-types, lifting) atLeastLessThan-iff bot-nat-0.extremum mem-Collect-eq subsetI

subset-eq-atLeast0-lessThan-card)

lemma card-pl-count-list-strict-upper: fixes s :: 'a :: linorder list **shows** card $\{i. i < length s \land s \mid i < a\} + count-list s a \leq length s$ proof – let $?X = \{i. i < length \ s \land s \mid i < a\}$ let $?Y = \{i. i < length s \land s \mid i = a\}$ have $?X \cap ?Y = \{\}$ **by** blast hence card $(?X \cup ?Y) = card ?X + card ?Y$ **by** (*simp add: card-Un-disjoint*) moreover have card $?Y = count-list \ s \ a$ **by** (*simp add: count-list-card*) moreover have $?X \cup ?Y \subseteq \{0..< length s\}$ **by** (*simp add: subset-iff*) hence card $(?X \cup ?Y) \leq length s$ using subset-eq-atLeast0-lessThan-card by blast ultimately show ?thesis by presburger qed

3.3 Sorting

lemma sorted-nth-le: assumes sorted xs and card $\{k. \ k < length \ xs \land xs \ k < c\} < length \ xs$ shows $c \leq xs \ card \ \{k. \ k < length \ xs \land xs \ k < c\}$ using assms proof (induct xs) case Nil then show ?case by simp next case (Cons a xs) note IH = this

let $?A = \{k. \ k < length \ (a \ \# \ xs) \land (a \ \# \ xs) \ ! \ k < c\}$

let $?B = \{k. \ k < length \ xs \land xs \ ! \ k < c\}$

```
have a < c \lor c \leq a
 by fastforce
then show ?case
proof
 assume a < c
 have finite ?B
   by auto
 hence finite (Suc ' ?B)
   by blast
 have card (Suc '?B) = card ?B
   using card-image inj-Suc by blast
 have \{0\} \cap Suc \ `?B = \{\}
   by blast
 have ?A = \{0\} \cup Suc '?B
 proof (intro equalityI subsetI)
   fix x
   assume x \in \{0\} \cup Suc '?B
   then show x \in ?A
   proof
     assume x \in \{\theta\}
     hence x = \theta
       by simp
     then show ?thesis
       by (simp add: \langle a < c \rangle)
   \mathbf{next}
     assume x \in Suc '?B
     hence \exists y. x = Suc \ y \land xs \ ! \ y < c
       by blast
     then show ?thesis
       using \langle x \in Suc \ `?B \rangle by force
   qed
 \mathbf{next}
   fix x
   assume x \in ?A
   hence x = 0 \lor (\exists y. x = Suc y \land xs ! y < c)
     using not0-implies-Suc by fastforce
   then show x \in \{0\} \cup Suc '?B
   proof
     assume x = \theta
     then show ?thesis
       by blast
   \mathbf{next}
     assume \exists y. x = Suc \ y \land xs \ ! \ y < c
```

```
then show ?thesis
                           using \langle x \in ?A \rangle by fastforce
                qed
          qed
          with card-Un-disjoint [OF - \langle finite (Suc `?B) \rangle \langle - \cap - = - \rangle]
          have card ?A = Suc (card ?B)
                by (simp add: (card (Suc ' ?B) = card ?B)
          hence (a \# xs) ! card \{k. k < length (a \# xs) \land (a \# xs) ! k < c\} =
                              xs \mid card \mid k. \mid k < length \mid xs \land xs \mid k < c \mid k < 
                by simp
          then show ?case
                using Cons.hyps IH(2) IH(3) \langle card ?A = Suc (card ?B) \rangle by auto
     \mathbf{next}
          assume c \leq a
          have \{k. \ k < length \ (a \ \# \ xs) \land (a \ \# \ xs) \ ! \ k < c\} = \{\}
          proof safe
                fix x
                assume A: x < length (a \# xs) (a \# xs) ! x < c
                show x \in \{\}
                proof (cases x)
                     case \theta
                     then show ?thesis
                           using A(2) < c \leq a by auto
                \mathbf{next}
                     case (Suc n)
                     hence a \leq (a \# xs) ! x
                           using A(1) IH(2) by auto
                     then show ?thesis
                           using A(2) < c \leq a by auto
                qed
          qed
          then show ?thesis
                by (metis \langle c \leq a \rangle card.empty nth-Cons-0)
     qed
qed
lemma sorted-nth-le-gen:
     assumes sorted xs
                                 card {k. k < length xs \land xs ! k < c} + i < length xs
     and
shows c \leq xs ! (card \{k. k < length xs \land xs ! k < c\} + i)
proof (cases i)
     case \theta
     then show ?thesis
          using assms(1) assms(2) sorted-nth-le by auto
\mathbf{next}
     let ?x = card \{k. \ k < length \ xs \land xs \ k < c \}
     case (Suc n)
     with sorted-wrt-nth-less[OF assms(1), of ?x ?x + i]
     have xs ! ?x \le xs ! (?x + i)
```

```
using assms(1) assms(2) le-add1 sorted-nth-mono by blast
moreover
have c \le xs ! ?x
using add-lessD1 assms(1) assms(2) sorted-nth-le by blast
ultimately show ?thesis
by order
qed
```

```
lemma sorted-nth-less-gen:
  assumes sorted xs
 and
           i < card \{k. k < length xs \land xs \mid k < c\}
shows
            xs \mid i < c
proof (rule ccontr)
  assume \neg xs \mid i < c
 hence i \notin \{k. \ k < length \ xs \land xs \ ! \ k < c\}
   by simp
 hence \forall k < length xs. i \leq k \longrightarrow k \notin \{k. k < length xs \land xs \mid k < c\}
   using assms(1) sorted-iff-nth-mono by fastforce
  hence \{k. \ k < length \ xs \land xs \ ! \ k < c\} \subseteq \{0..< i\}
   by fastforce
  moreover
  have card \{\theta ... < i\} = i
   by auto
  ultimately show False
   by (metis \ assms(2) \ card-mono \ finite-atLeastLessThan \ verit-comp-simplify1(3))
qed
```

```
lemma sorted-nth-gr-gen:
 assumes sorted xs
          card {k. k < length xs \land xs ! k < c} + i < length xs
 and
          count-list xs c \leq i
 and
shows
           xs ! (card \{k. k < length xs \land xs ! k < c\} + i) > c
proof -
 let ?A = \{k. \ k < length \ xs \land xs \ ! \ k < c\}
 have xs ! (card ?A + i) \ge c
   using assms(1) assms(2) sorted-nth-le-qen by blast
 hence xs ! (card ?A + i) = c \lor xs ! (card ?A + i) > c
   by force
 then show ?thesis
 proof
   assume xs ! (card ?A + i) > c
   then show ?thesis .
 next
   assume xs ! (card ?A + i) = c
   from sorted-nth-le-gen[OF assms(1)]
   have P1: \forall k < length xs. card ?A \leq k \longrightarrow c \leq xs ! k
   by (metis (mono-tags, lifting) assms(1) dual-order.strict-trans2 linorder-not-le
                               sorted-iff-nth-mono sorted-nth-le)
```

have P2: $\forall k < length xs. k < card ?A + Suc i \longrightarrow xs ! k \leq c$ by (metis (mono-tags, lifting) Suc-leI $\langle xs | (card ?A + i) = c \rangle$ add-Suc-right add-le-cancel-left assms(1,2) plus-1-eq-Suc sorted-nth-mono) have $P3: \forall x \in \{ card ?A.. < card ?A + Suc i \}$. xs ! x = c**proof** safe fix xassume $x \in \{ card ?A.. < card ?A + Suc i \}$ hence A: card $?A \leq x x < card ?A + Suc i$ by simp+ have $c \leq xs \mid x$ using $P1 \ A \ assms(2)$ by automoreover have $xs ! x \leq c$ using A(2) P2 assms(2) by force ultimately show $xs \mid x = c$ by simp \mathbf{qed} have {card ?A..<card ?A + Suc i} \subseteq {k. k < length xs \land xs ! k = c} proof fix xassume $A: x \in \{ card ?A.. < card ?A + Suc i \}$ have x < card ?A + Suc iusing A by simp+hence x < length xsusing assms(2) by linarithmoreover have $xs \mid x = c$ using P3 A by blast ultimately show $x \in \{k. \ k < length \ xs \land xs \ | \ k = c\}$ by blast qed hence count-list xs $c \ge card \{card ?A.. < card ?A + Suc i\}$ using count-list-card[of xs c] card-mono **by** (metis (mono-tags, lifting) $\langle xs | (card ?A + i) = c \rangle assms(2) card-ge-0-finite$ count-in *nth-mem*)

moreover
have card {card ?A..<card ?A + Suc i} = Suc i
by simp
ultimately have False
using assms(3) by linarith
then show ?thesis
by blast</pre>

```
qed
qed
end
theory Rank-Util
imports HOL-Library.Multiset
Count-Util
SuffixArray.Prefix
begin
```

0

4 Rank Definition

Count how many occurrences of an element are in a certain index in the list

Definition 3.7 from [3]: Rank

definition rank :: 'a list \Rightarrow 'a \Rightarrow nat \Rightarrow nat where rank s x i \equiv count-list (take i s) x

5 Rank Properties

5.1 List Properties

lemma rank-cons-same: rank (x # xs) x (Suc i) = Suc (rank xs x i)**by** (simp add: rank-def)

lemma rank-cons-diff: $a \neq x \Longrightarrow$ rank (a # xs) x (Suc i) = rank xs x i**by** (simp add: rank-def)

5.2 Counting Properties

lemma rank-length: rank xs x (length xs) = count-list xs x by (simp add: rank-def)

lemma rank-gre-length: length $xs \le n \implies rank xs \ x \ n = count-list xs \ x$ **by** (simp add: rank-def)

lemma rank-not-in: $x \notin set xs \implies rank xs x i = 0$ **by** (metis gr-zeroI in-count rank-def set-take-subset subset-code(1))

```
lemma rank-0:
rank xs x 0 = 0
by (simp add: rank-def)
```

Theorem 3.11 from [3]: Rank Equivalence **lemma** rank-card-spec: rank xs x $i = card \{j, j < length xs \land j < i \land xs \mid j = x\}$ proof have rank $xs \ x \ i = count-list$ (take $i \ xs$) xby (meson rank-def) moreover have count-list (take i xs) $x = card \{j, j < length (take i xs) \land (take i xs) ! j =$ xby (metis count-list-card) moreover have $\{j, j < length (take i xs) \land (take i xs) ! j = x\} =$ $\{j. \ j < length \ xs \land j < i \land xs \ ! \ j = x\}$ by *fastforce* ultimately show ?thesis by simp \mathbf{qed}

```
lemma le-rank-plus-card:
        i \leq j \Longrightarrow
            rank \ xs \ x \ j = rank \ xs \ x \ i + card \ \{k. \ k < length \ xs \land i \leq k \land k < j \land xs \ ! \ k = k = k \ i \leq k \ 
x
proof -
       assume i \leq j
       let ?X = \{k. \ k < length \ xs \land k < j \land xs \ ! \ k = x\}
       have rank xs x j = card ?X
                by (simp add: rank-card-spec)
        moreover
        let ?Y = \{k. \ k < length \ xs \land k < i \land xs \ ! \ k = x\}
       have rank xs x i = card ?Y
                by (simp add: rank-card-spec)
       moreover
        let ?Z = \{k, k < length xs \land i \leq k \land k < j \land xs \mid k = x\}
        have ?Y \cup ?Z = ?X
        proof safe
                fix k
                assume k < i
                then show k < j
                        using \langle i \leq j \rangle order-less-le-trans by blast
         \mathbf{next}
                fix k
                assume \neg i \leq k
                then show k < i
                         using linorder-le-less-linear by blast
        qed
        moreover
       have ?Y \cap ?Z = \{\}
```

```
by force
hence card (?Y \cup ?Z) = card ?Y + card ?Z
by (simp \ add: \ card-Un-disjoint)
ultimately show ?thesis
by presburger
qed
```

5.3 Bound Properties

```
lemma rank-lower-bound:
  assumes k < rank xs x i
 shows k < i
proof -
  from rank-card-spec [of xs \ x \ i]
  have rank xs \ x \ i = card \ \{j. \ j < length \ xs \land j < i \land xs \ ! \ j = x\}.
 hence k < card \{j, j < length xs \land j < i \land xs \mid j = x\}
   using assms by presburger
 moreover
  Ł
   have i \leq length xs \vee length xs < i
      \mathbf{using} \ linorder\text{-}not\text{-}less \ \mathbf{by} \ blast
   moreover
   have i \leq length xs \implies \{j, j < length xs \land j < i \land xs \mid j = x\} \subseteq \{0, ... < i\}
      using atLeast0LessThan by blast
   hence i \leq length xs \implies card \{j, j < length xs \land j < i \land xs \mid j = x\} \leq i
      using subset-eq-atLeast0-lessThan-card by presburger
   moreover
   have length xs < i \Longrightarrow \{j, j < length xs \land j < i \land xs \mid j = x\} \subseteq \{0..< length xs \land j < i \land xs \mid j = x\}
xs
      using atLeast0LessThan by blast
   hence length xs < i \implies card \{j, j < length <math>xs \land j < i \land xs \mid j = x\} \leq length
xs
      using subset-eq-atLeast0-lessThan-card by presburger
   hence length xs < i \implies card \{j, j < length <math>xs \land j < i \land xs \mid j = x\} \leq i
     by linarith
   ultimately have card \{j, j < length xs \land j < i \land xs \mid j = x\} \leq i
      by blast
  }
  ultimately show ?thesis
   using dual-order.strict-trans1 by blast
qed
corollary rank-Suc-ex:
  assumes k < rank xs x i
  shows \exists l. i = Suc l
 by (metis Nat.lessE assms rank-lower-bound)
lemma rank-upper-bound:
  \llbracket i < length xs; xs ! i = x \rrbracket \implies rank xs x i < count-list xs x
```

```
proof (induct xs arbitrary: i)
    case Nil
    then show ?case
    by (simp add: rank-def)
next
    case (Cons a xs i)
    then show ?case
    proof (cases i)
        case 0
        then show ?thesis
        by (metis Cons.prems(2) count-in list.set-intros(1) nth-Cons-0 rank-0)
    next
    case (Suc n)
    then show ?thesis
    by (metis Cons.hyps Cons.prems Suc-less-eq length-Cons nth-Cons-Suc rank-cons-diff
```

rank-cons-same rank-length)

qed qed

```
lemma rank-idx-mono:
  i \leq j \Longrightarrow rank \ xs \ x \ i \leq rank \ xs \ x \ j
proof (cases i = j)
  assume i = j
  then show ?thesis
   by simp
\mathbf{next}
  assume i \leq j \ i \neq j
 hence i < j
   using antisym-conv2 by blast
  hence prefix xs \ j = prefix \ xs \ i \ @ list-slice xs \ i \ j
   by (metis \langle i \leq j \rangle append-take-drop-id list-slice.elims min.absorb1 take-take)
 hence rank xs \ x \ j = rank \ xs \ x \ i + count-list (list-slice \ xs \ i \ j) \ x
   by (metis count-list-append rank-def)
  then show ?thesis
   by fastforce
\mathbf{qed}
lemma rank-less:
  \llbracket i < length xs; i < j; xs ! i = x \rrbracket \implies rank xs x i < rank xs x j
proof -
 let ?X = \{k. \ k < length \ xs \land i \leq k \land k < j \land xs \mid k = x\}
 assume i < length xs i < j xs ! i = x
  with le-rank-plus-card[of i j xs x]
  have rank xs \ x \ j = rank \ xs \ x \ i + card \ ?X
```

have $i \in ?X$

moreover

using *nless-le* by *blast*

using $\langle i < j \rangle \langle i < length xs \rangle \langle xs ! i = x \rangle$ by blast

hence card ?X > 0using card-gt-0-iff by fastforce ultimately show ?thesis by linarith qed

lemma rank-upper-bound-gen: $rank \ xs \ x \ i \leq count-list \ xs \ x$ **by** (*metis nat-le-linear rank-gre-length rank-idx-mono*)

$\mathbf{5.4}$ Sorted Properties

lemma *sorted-card-rank-idx*: assumes sorted xs and i < length xsshows $i = card \{j, j < length xs \land xs \mid j < xs \mid i\} + rank xs (xs \mid i) i$ proof -

let $?A = \{j, j < length xs \land xs \mid j < xs \mid i\}$ let $?B = \{j, j < length xs \land xs \mid j = xs \mid i\}$

have $?B \neq \{\}$ using assms(2) by blast

have $Min ?B \in ?B$ by (metis (no-types, lifting) Min-in $\langle ?B \neq \{\}$) finite-nat-set-iff-bounded mem-Collect-eq) hence Min ?B < length xs xs ! (Min ?B) = xs ! iby simp-all

have Min ?B < iby $(simp \ add: assms(2))$

have $P: \forall k < Min ?B. xs ! k < xs ! i$ **proof** (*intro allI impI*) fix kassume k < Min ?Bwith sorted-nth-mono[OF assms(1) - $\langle Min ?B < length xs \rangle$] have $xs \mid k \leq xs \mid (Min ?B)$ using le-eq-less-or-eq by presburger

show $xs \mid k < xs \mid i$ **proof** (*rule ccontr*) assume $\neg xs \mid k < xs \mid i$ with $\langle xs \mid k \leq xs \mid (Min ?B) \rangle \langle xs \mid (Min ?B) = xs \mid i \rangle$ have $xs \mid k = xs \mid i$ by order with $\langle k < Min ?B \rangle \langle Min ?B < length xs \rangle$ have $k \in ?B$

```
by auto
     then show False
         by (metis (mono-tags, lifting) Min-gr-iff \langle k < Min ?B \rangle \langle ?B \neq \{\}\rangle fi-
nite-nat-set-iff-bounded
                                     less-irrefl-nat mem-Collect-eq)
   qed
 qed
 have ?A = \{0.. < Min ?B\}
 proof (intro equalityI subsetI)
   fix x
   \textbf{assume} \ x \in \ ?A
   hence x < length xs xs ! x < xs ! i
     by blast+
   hence xs \mid x < xs \mid Min ?B
     using \langle xs \mid Min \rangle B = xs \mid i \rangle by simp
   hence x < Min ?B
     using assms(1) \langle x < length xs \rangle \langle Min ?B < length xs \rangle
     by (meson dual-order.strict-iff-not not-le-imp-less sorted-nth-mono)
   then show x \in \{0.. < Min ?B\}
     using atLeastLessThan-iff by blast
 \mathbf{next}
   fix x
   assume x \in \{0 .. < Min ?B\}
   with P \langle Min ? B < length xs \rangle
   show x \in ?A
     by auto
 \mathbf{qed}
 moreover
  Ł
   let ?C = \{j, j < length xs \land j < i \land xs \mid j = xs \mid i\}
   from rank-card-spec[of xs xs ! i i]
   have rank xs (xs ! i) i = card ?C.
   moreover
   have ?C = \{Min \ ?B.. < i\}
   proof (intro equalityI subsetI)
     fix x
     assume x \in ?C
     hence x < length xs x < i xs ! x = xs ! i
       by blast+
     hence Min ?B \leq x
       by simp
     with \langle x < i \rangle
     show x \in \{Min \ ?B.. < i\}
       \mathbf{using} \ at \textit{LeastLessThan-iff} \ \mathbf{by} \ blast
   \mathbf{next}
     fix x
     assume x \in \{Min \ ?B..< i\}
     hence Min ?B \le x x < i
```

```
using atLeastLessThan-iff by blast+
     moreover
     have xs \mid x = xs \mid i
     proof -
      have xs \mid x \leq xs \mid i
        using assms(1,2) \langle x < i \rangle
        by (simp add: sorted-wrt-nth-less)
       moreover
       have xs ! Min ?B \le xs ! x
        using assms(1,2) < Min ?B \le x < i >
        by (meson order.strict-trans sorted-iff-nth-mono)
       ultimately show ?thesis
        using \langle xs \mid Min \ ?B = xs \mid i \rangle by order
     \mathbf{qed}
     ultimately show x \in ?C
       using assms(2) by fastforce
   \mathbf{qed}
   ultimately have rank xs (xs ! i) i = card \{Min ?B.. < i\}
     by presburger
  }
 ultimately show ?thesis
   by (simp add: \langle Min ?B \leq i \rangle)
\mathbf{qed}
lemma sorted-rank:
 assumes sorted xs
 and
          i < length xs
 and
          xs \mid i = a
shows rank xs a i = i - card \{k. k < length xs \land xs \mid k < a\}
 using assms(1) assms(2) assms(3) sorted-card-rank-idx by fastforce
lemma sorted-rank-less:
 assumes sorted xs
        i < length xs
 and
 and
          xs \mid i < a
shows rank xs \ a \ i = 0
proof –
 have rank xs a i = card \{k. k < length xs \land k < i \land xs \mid k = a\}
   by (simp add: rank-card-spec)
 moreover
 have \{k. \ k < length \ xs \land k < i \land xs \ ! \ k = a\} = \{\}
   using assms sorted-wrt-nth-less by fastforce
  ultimately show ?thesis
   by fastforce
qed
lemma sorted-rank-greater:
 assumes sorted xs
```

```
and i < length xs
```

```
and
          xs \mid i > a
shows rank xs \ a \ i = count-list \ xs \ a
proof -
 let ?A = \{k. \ k < length \ xs \land k < i \land xs \ ! \ k = a\}
 have rank xs \ a \ i = card \ ?A
   by (simp add: rank-card-spec)
 moreover
 let ?B = \{k. \ k < length \ xs \land k \ge i \land xs \ ! \ k = a\}
 let ?C = \{k. \ k < length \ xs \land xs \ ! \ k = a\}
  Ł
   have ?A \cup ?B = ?C
   proof safe
     fix x
     assume \neg i \leq x
     then show x < i
       using linorder-le-less-linear by blast
   qed
   moreover
   have ?B = \{\}
   proof –
     have \forall k < length xs. k \geq i \longrightarrow xs ! k > a
       by (meson assms(1) assms(3) dual-order.strict-trans1 sorted-nth-mono)
     then show ?thesis
       by blast
   \mathbf{qed}
   ultimately have ?A = ?C
     by blast
  }
 ultimately show ?thesis
   by (simp add: count-list-card)
qed
\mathbf{end}
theory Select-Util
 imports Count-Util
         SuffixArray.Sorting-Util
```

6 Select Definition

begin

Find nth occurrence of an element in a list

```
Definition 3.8 from [3]: Select

fun select :: 'a list \Rightarrow 'a \Rightarrow nat \Rightarrow nat

where

select [] - - = 0 |

select (a#xs) x 0 = (if x = a then 0 else Suc (select xs x 0)) |

select (a#xs) x (Suc i)= (if x = a then Suc (select xs x i) else Suc (select xs x (Suc i)))
```

7 Select Properties

7.1 Length Properties

```
lemma notin-imp-select-length:
 x \notin set xs \Longrightarrow select xs x i = length xs
proof (induct xs arbitrary: i)
 case Nil
 then show ?case
   by simp
\mathbf{next}
 case (Cons a xs i)
 then show ?case
 proof (cases i)
   case \theta
   then show ?thesis
     using Cons.hyps Cons.prems by fastforce
 \mathbf{next}
   case (Suc n)
   then show ?thesis
     using Cons.hyps Cons.prems by force
 qed
qed
```

lemma select-length-imp-count-list-less: select $xs \ x \ i = length \ xs \implies count-list \ xs \ x \le i$ **by** (induct rule: select.induct[of - $xs \ x \ i$]; simp split: if-splits)

```
lemma select-Suc-length:
select xs \ x \ i = length \ xs \implies select \ xs \ x \ (Suc \ i) = length \ xs
by (induct rule: select.induct[of - xs \ x \ i]; clarsimp split: if-splits)
```

7.2 List Properties

lemma select-cons-neq: $[\![select \ xs \ x \ i = j; \ x \neq a]\!] \implies select \ (a \ \# \ xs) \ x \ i = Suc \ j$ **by** (cases i; simp)

lemma cons-neq-select: $[select (a \# xs) x i = Suc j; x \neq a] \implies select xs x i = j$ **by** (cases i; simp)

lemma cons-eq-select: select $(x \# xs) x (Suc i) = Suc j \Longrightarrow$ select xs x i = jby simp

lemma select-cons-eq:

select $xs \ x \ i = j \Longrightarrow$ select $(x \ \# \ xs) \ x \ (Suc \ i) = Suc \ j$ by simp

7.3 Bound Properties

lemma select-max: select $xs \ x \ i \leq length \ xs$ **by** (induct rule: select.induct[of - $xs \ x \ i$]; simp)

7.4 Nth Properties

```
lemma nth-select:
  [j < length xs; count-list (take (Suc j) xs) x = Suc i; xs ! j = x]
   \implies select xs x i = j
proof (induct arbitrary: j rule: select.induct[of - xs | x |])
 case (1 \ uu \ uv)
 then show ?case
   by simp
\mathbf{next}
 case (2 \ a \ xs \ x)
 then show ?case
 proof (cases j)
   \mathbf{case} \ \theta
   then show ?thesis
     using 2.prems(3) by auto
 next
   case (Suc n)
   have xs ! n = x
     using 2.prems(3) Suc by auto
   moreover
   have n < length xs
     using 2.prems(1) Suc by auto
   moreover
   have x \neq a
   proof (rule ccontr)
     assume \neg x \neq a
     hence x = a
      by blast
     moreover
     have count-list (take (Suc n) xs) x > 0
      by (simp add: \langle n < length xs \rangle \langle xs ! n = x \rangle take-Suc-conv-app-nth)
     ultimately show False
      using 2.prems(2) Suc by auto
   qed
   moreover
   have count-list (take (Suc n) xs) x = Suc 0
     using 2.prems(2) Suc calculation(3) by auto
   ultimately have select xs \ x \ \theta = n
     using 2.hyps by blast
   then show ?thesis
     by (simp add: Suc \langle x \neq a \rangle)
 qed
```

```
\mathbf{next}
 case (3 a xs x i)
 then show ?case
 proof (cases j)
   case \theta
   then show ?thesis
     using 3.prems(2) 3.prems(3) by force
  \mathbf{next}
   case (Suc n)
   then show ?thesis
   by (metis 3.hyps 3.prems Suc-inject Suc-less-eq add.right-neutral add-Suc-right
                   count-list.simps(2) length-Cons nth-Cons-Suc plus-1-eq-Suc se-
lect.simps(3)
              take-Suc-Cons)
 \mathbf{qed}
qed
lemma nth-select-alt:
  [j < length xs; count-list (take j xs) x = i; xs ! j = x]
   \implies select xs x i = j
proof (induct arbitrary: j rule: select.induct[of - xs x i])
 case (1 \ uu \ uv)
 then show ?case
   by simp
\mathbf{next}
  case (2 \ a \ xs \ x \ j)
 then show ?case
 proof (cases j)
   case \theta
   then show ?thesis
     using 2.prems(3) by auto
 \mathbf{next}
   case (Suc n)
   then show ?thesis
    by (metis 2.hyps 2.prems Suc-less-eq count-in count-list.simps(2) length-Cons
          list.set-intros(1) not-gr-zero nth-Cons-Suc select.simps(2) take-Suc-Cons)
 qed
\mathbf{next}
 case (3 a xs x i)
 then show ?case
 proof (cases j)
   case \theta
   then show ?thesis
     using 3.prems(2) by auto
 \mathbf{next}
   case (Suc n)
   then show ?thesis
    by (metis 3.hyps 3.prems One-nat-def Suc-inject Suc-less-eq add.right-neutral
                  add-Suc-right count-list.simps(2) length-Cons nth-Cons-Suc se-
```

```
lect.simps(3)
              take-Suc-Cons)
 qed
qed
lemma select-nth:
  [select xs \ x \ i = j; j < length \ xs]
   \implies count-list (take (Suc j) xs) x = Suc i \land xs ! j = x
proof (induct arbitrary: j rule: select.induct[of - xs x i])
 \mathbf{case}~(1~uu~uv)
 then show ?case
   by simp
next
 case (2 \ a \ xs \ x \ j)
 then show ?case
 proof (cases j)
   case \theta
   then show ?thesis
   by (metis 2.prems(1) One-nat-def add.right-neutral add-Suc-right count-list.simps
              nat.simps(3) nth-Cons-0 select-cons-neq take0 take-Suc-Cons)
  \mathbf{next}
   case (Suc n)
   then show ?thesis
     using 2.hyps 2.prems(1) 2.prems(2) by auto
 qed
\mathbf{next}
 case (3 \ a \ xs \ x \ i \ j)
 then show ?case
 proof (cases j)
   case \theta
   then show ?thesis
     by (metis 3.prems(1) nat.simps(3) select-cons-eq select-cons-neq)
 \mathbf{next}
   case (Suc n)
   then show ?thesis
   by (metis 3.hyps 3.prems One-nat-def Suc-le-eq add.right-neutral add-Suc-right
          count-list.simps(2) length-Cons less-Suc-eq-lenth-Cons-Suc select-cons-eq
              select-cons-neq take-Suc-Cons)
 qed
qed
lemma select-nth-alt:
  [select xs \ x \ i = j; j < length \ xs]
   \implies count-list (take j xs) x = i \land xs ! j = x
proof (induct arbitrary: j rule: select.induct[of - xs x i])
 case (1 \ uu \ uv)
 then show ?case
   by simp
```

```
nexť
```

```
case (2 \ a \ xs \ x \ j)
  then show ?case
 proof (cases j)
   case \theta
   then show ?thesis
     using 2.prems(1) order.strict-iff-not by fastforce
 next
   case (Suc n)
   then show ?thesis
     by (metis 2.prems(1) 2.prems(2) nat.inject nth-select-alt select-nth)
 \mathbf{qed}
\mathbf{next}
 case (3 \ a \ xs \ x \ i \ j)
 then show ?case
 proof (cases j)
   case \theta
   then show ?thesis
     by (metis \ 3.prems(1) \ nat.simps(3) \ select-cons-eq \ select-cons-neq)
 \mathbf{next}
   case (Suc n)
   then show ?thesis
     by (metis 3.prems nat.inject nth-select-alt select-nth)
  qed
qed
lemma select-less-0-nth:
 assumes i < length xs
 and
          i < select \ xs \ x \ \theta
shows xs \mid i \neq x
proof (cases select xs \ x \ 0 < \text{length } xs)
 assume select xs \ x \ \theta < length \ xs
  with select-nth-alt[of xs \ x \ 0 select xs \ x \ 0]
 have count-list (take (select xs \ x \ 0) xs) x = 0 \ xs ! select xs \ x \ 0 = x
   by blast+
 with count-list-0-iff
 have x \notin set (take (select xs \ x \ 0) xs)
   by metis
 then show ?thesis
   by (simp add: (select xs x \ 0 < \text{length } xs) assms(2) in-set-conv-nth)
next
 assume \neg select xs x \theta < length xs
 hence length xs \leq select \ xs \ x \ \theta
   using linorder-le-less-linear by blast
  with select-max[of xs \ x \ 0]
 have select xs \ x \ \theta = length \ xs
   by simp
  with select-length-imp-count-list-less
 have count-list xs \ x = 0
   by (metis le-zero-eq)
```

```
with count-list-0-iff

have x \notin set xs

by fastforce

then show ?thesis

using assms(1) nth-mem by blast

qed
```

7.5 Sorted Properties

```
Theorem 3.10 from [3]: Select Sorted Equivalence
lemma sorted-select:
 assumes sorted xs
           i < count-list xs x
 and
shows select xs \ x \ i = card \ \{j. \ j < length \ xs \land xs \ ! \ j < x\} + i
 using assms
proof (induct rule: select.induct[of - xs \ x \ i])
 case (1 \ uu \ uv)
 then show ?case
   by simp
next
 case (2 \ a \ xs \ x)
 note IH = this
 from IH(2)
 have sorted xs
   by simp
 have x = a \lor x \neq a
   by blast
 moreover
 have x \neq a \implies ?case
 proof –
   \textbf{assume} \ x \neq a
   hence \theta < count-list xs x
     using IH(3) by fastforce
   with IH(1)[OF \langle x \neq a \rangle \langle sorted xs \rangle]
   have select xs \ x \ 0 = card \ \{j. \ j < length \ xs \land xs \ ! \ j < x\}
     by simp
   moreover
    {
     from in-count[OF \langle 0 < count-list xs x \rangle]
     have x \in set xs.
     with IH(2) \langle x \neq a \rangle
     have a < x
       by (simp add: order-less-le)
     have \{j, j < length (a \# xs) \land (a \# xs) ! j < x\} =
             \{0\} \cup Suc ` \{j. j < length xs \land xs ! j < x\}
     proof (safe)
       show (a \# xs) ! 0 < x
```

by (simp add: $\langle a < x \rangle$) \mathbf{next} fix y**assume** y < length xsthen show Suc y < length (a # xs)**by** simp \mathbf{next} fix yassume y < length xs xs ! y < xthen show (a # xs) ! Suc y < xby simp \mathbf{next} fix j**assume** A: $j \notin Suc$ ' {v. $v < length xs \land xs ! v < x$ } j < length (a # xs)(a # xs) ! j < xhave $\exists k. j = Suc k \Longrightarrow False$ proof assume $\exists k. j = Suc k$ then obtain k where j = Suc kby blast **hence** *B*: $k < length xs xs ! k < x k \notin \{v. v < length xs \land xs ! v < x\}$ using A by simp-all then show False by auto qed then show $j = \theta$ using not0-implies-Suc by blast qed moreover ł have finite $\{0\}$ by blast moreover have finite (Suc ' {j. $j < length xs \land xs ! j < x$ }) by simp moreover have $\{0\} \cap Suc \ (j, j < length xs \land xs ! j < x\} = \{\}$ by blast ultimately have card $(\{0\} \cup Suc ` \{j, j < length xs \land xs ! j < x\}) =$ Suc (card (Suc ' { $j. j < length xs \land xs ! j < x$ })) using card-Un-disjoint[of $\{0\}$ Suc ' $\{j, j < length xs \land xs \mid j < x\}$] by simp} ultimately have card {*j*. *j* < length $(a \# xs) \land (a \# xs) ! j < x} =$

Suc (card (Suc '{j. $j < length xs \land xs ! j < x$ }))

```
by presburger
     hence card \{j, j < length (a \# xs) \land (a \# xs) ! j < x\} =
            Suc (card {j. j < length xs \land xs ! j < x})
      by (simp add: card-image)
   }
   moreover
   have select (a \# xs) x \theta = Suc (select xs x \theta)
     using \langle x \neq a \rangle select.simps(2)[of a xs x] by auto
   ultimately show ?thesis
     by simp
 \mathbf{qed}
 moreover
 have x = a \implies ?case
 proof -
   assume x = a
   with IH(2)
   have \{j, j < length (a \# xs) \land (a \# xs) ! j < x\} = \{\}
   by (metis (no-types, lifting) Collect-empty-eq less-nat-zero-code linorder-not-less
neq0-conv
                               nth-Cons-0 order-refl sorted-nth-less-mono)
```

```
with \langle x = a \rangle
   show ?thesis
     by force
 qed
 ultimately show ?case
   by blast
\mathbf{next}
 case (3 a xs x i)
 note IH = this
 have sorted xs
   using IH(3) by auto
 have a \leq x
  by (metis IH(3-) Suc-less-eq2 count-list.simps(2) in-count order-refl sorted-simps(2)
            zero-less-Suc)
 have x = a \lor x \neq a
   by blast
 moreover
 have x = a \implies ?case
 proof –
   assume x = a
   with IH(4)
   have i < count-list xs x
     by auto
   with IH(1)[OF \langle x = a \rangle \langle sorted xs \rangle]
   have select xs \ x \ i = card \ \{j. \ j < length \ xs \land xs \ ! \ j < x\} + i.
   moreover
```

from select.simps(3)[of a xs x i] $\langle x = a \rangle$ have select (a # xs) x (Suc i) = Suc (select xs x i) by simp moreover from $\langle a \leq x \rangle \langle x = a \rangle IH(3)$ have $\{j, j < length (a \# xs) \land (a \# xs) ! j < x\} = \{\}$ by (metis (no-types, lifting) Collect-empty-eq length-Cons less-nat-zero-code linorder-not-less nth-Cons-0 sorted-nth-less-mono *zero-less-Suc*) hence card $\{j, j < length (a \# xs) \land (a \# xs) ! j < x\} = 0$ by simp moreover from $\langle a \leq x \rangle \langle x = a \rangle IH(3)$ have $\{j, j < length xs \land xs \mid j < x\} = \{\}$ using *nth-mem* by *fastforce* hence card $\{j, j < length xs \land xs \mid j < x\} = 0$ by simp ultimately show ?thesis by simp qed moreover have $x \neq a \implies ?case$ proof assume $x \neq a$ hence Suc i < count-list xs xusing IH(4) by force with $IH(2)[OF \langle x \neq a \rangle \langle sorted xs \rangle]$ have select xs x (Suc i) = card $\{j, j < length xs \land xs \mid j < x\} + Suc i$. moreover **from** $\langle x \neq a \rangle$ select.simps(3)[of a xs x i] have select (a # xs) x (Suc i) = Suc (select xs x (Suc i)) by simp moreover { have $\{j, j < length (a \# xs) \land (a \# xs) ! j < x\} =$ $\{0\} \cup Suc \ (j, j < length xs \land xs \mid j < x\}$ **proof** safe show $(a \# xs) ! \theta < x$ using $\langle a \leq x \rangle \langle x \neq a \rangle$ by auto \mathbf{next} fix yassume y < length xs xs ! y < xthen show Suc y < length (a # xs)by simp \mathbf{next} fix yassume y < length xs xs ! y < xthen show (a # xs) ! Suc y < x

 $\mathbf{by} \ simp$

 \mathbf{next} fix k**assume** A: $k \notin Suc$ ' {j. j < length $xs \wedge xs \mid j < x$ } $k \notin$ {} k < length (a # xs) (a # xs) ! k < xhave $\exists l. k = Suc \ l \Longrightarrow False$ proof assume $\exists l. k = Suc l$ then obtain l where $k = Suc \ l$ by blast **hence** $l \notin \{j, j < length xs \land xs \mid j < x\}$ $l < length xs xs \mid l < x$ using A by simp-all then show False **by** blast qed then show k = 0using not0-implies-Suc by blast qed moreover have finite $\{0\}$ by blast moreover have finite (Suc ' {j. $j < length xs \land xs ! j < x$ }) by simp moreover have $\{0\} \cap Suc$ ' $\{j, j < length xs \land xs \mid j < x\} = \{\}$ **by** blast ultimately have card $(\{j, j < length (a \# xs) \land (a \# xs) ! j < x\}) =$ Suc (card (Suc ' {j. $j < length xs \land xs ! j < x$ })) by simp hence card $(\{j, j < length (a \# xs) \land (a \# xs) ! j < x\}) =$ Suc (card {j. $j < length xs \land xs ! j < x$ }) **by** (*simp add: card-image*) } ultimately show ?thesis by simp \mathbf{qed} ultimately show ?case by blast qed **corollary** *sorted-select-0-plus*: assumes sorted xs and i < count-list xs x**shows** select $xs \ x \ i = select \ xs \ x \ 0 + i$ using assms(1) assms(2) sorted-select by fastforce

corollary select-sorted-0: **assumes** sorted xs **and** 0 < count-list xs x **shows** select xs $x \ 0 = \text{card} \{j. \ j < \text{length} xs \land xs \mid j < x\}$ **by** (simp add: assms(1) assms(2) sorted-select)

end theory Rank-Select imports Main Rank-Util Select-Util

begin

8 Rank and Select Properties

8.1 Correctness of Rank and Select

Correctness theorem statements based on [1].

8.1.1 Rank Correctness

lemma rank-spec: rank s x i = count (mset (take i s)) x by (simp add: count-list-eq-count rank-def)

8.1.2 Select Correctness

lemma select-spec: select $s \ x \ i = j$ $\implies (j < length \ s \land rank \ s \ x \ j = i) \lor (j = length \ s \land count-list \ s \ x \le i)$ **by** (metis le-eq-less-or-eq rank-def select-length-imp-count-list-less select-max select-nth-alt)

Theorem 3.9 from [3]: Correctness of Select

lemma select-correct:

ultimately show ?thesis by blast qed

8.2 Rank and Select

```
lemma rank-select:
 select xs \ x \ i < length \ xs \Longrightarrow rank \ xs \ x \ (select \ xs \ x \ i) = i
proof -
 let ?j = select xs x i
 assume select xs \ x \ i < length \ xs
 with select-spec[of xs \ x \ i \ ?j]
 show rank xs x (select xs x i) = i
   by auto
qed
lemma select-upper-bound:
 i < rank xs x j \Longrightarrow select xs x i < length xs
proof (induct xs arbitrary: i j)
 case Nil
 then show ?case
   by (simp add: rank-def)
\mathbf{next}
 case (Cons a xs i j)
 note IH = this
 from rank-Suc-ex[OF Cons.prems]
 obtain n where
   j = Suc n
   by blast
 show ?case
 proof (cases a = x)
   assume a = x
   show ?thesis
   proof (cases i)
     case \theta
     then show ?thesis
       by (simp add: \langle a = x \rangle)
   \mathbf{next}
     case (Suc m)
     with rank-cons-same[of a xs n] \langle j = Suc n \rangle IH(2) \langle a = x \rangle
     have m < rank xs x n
       by force
     with IH(1)
     have select xs \ x \ m < length \ xs
       by simp
     then show ?thesis
```

```
by (simp add: Suc \langle a = x \rangle)

qed

next

assume a \neq x

with Cons.prems rank-cons-diff[of a \ x \ xs \ n] \langle j = Suc \ n \rangle

have i < rank \ xs \ x \ n

by force

with Cons.hyps

have select xs \ x \ i < length \ xs

by simp

then show ?thesis

by (metis \langle a \neq x \rangle length-Cons not-less-eq select-cons-neq)

qed

qed
```

```
lemma select-out-of-range:

assumes count-list xs \ a \le i

and mset \ xs = mset \ ys

shows select ys \ a \ i = length \ ys

by (metis assms count-list-perm leD rank-select rank-upper-bound select-nth se-

lect-spec)
```

8.3 Sorted Properties

```
lemma sorted-nth-gen:
 assumes sorted xs
          card {k. k < length xs \land xs ! k < c} < length xs
 and
 and
          count-list xs c > i
shows xs ! (card {k. k < length xs \land xs ! k < c} + i) = c
proof -
 from sorted-select[OF assms(1,3)]
 have select xs \ c \ i = card \ \{j. \ j < length \ xs \land xs \ ! \ j < c\} + i.
 with select-nth[of xs c i]
 show ?thesis
   by (metis assms(3) rank-length select-upper-bound)
qed
lemma sorted-nth-gen-alt:
 assumes sorted xs
          card {k. k < length xs \land xs ! k < a} \leq i
 and
 and
          i < card \{k. \ k < length \ xs \land xs \ ! \ k < a\} + card \ \{k. \ k < length \ xs \land xs
! k = a
shows xs \mid i = a
proof (cases a \in set xs)
 assume a \notin set xs
 hence card \{k. \ k < length \ xs \land xs \ ! \ k = a\} = 0
   by auto
 with assms(2-)
 show ?thesis
```

```
by linarith
\mathbf{next}
 assume a \in set xs
 have card \{k, k < length xs \land xs \mid k < a\} < length xs
   using \langle a \in set xs \rangle card-less-idx-upper-strict by blast
  moreover
 have \exists k. i = card \{k. k < length xs \land xs \mid k < a\} + k
   using assms(2) le-iff-add by blast
 then obtain k where
   i = card \{k. k < length xs \land xs \mid k < a\} + k
   by blast
 moreover
 have k < count-list xs a
   by (metis (mono-tags, lifting) count-list-card nat-add-left-cancel-less assms(3)
calculation(2))
 ultimately show ?thesis
   using sorted-nth-gen[OF assms(1), of a k]
   by blast
qed
end
theory SA-Util
```

```
begin
```

9 Suffix Array Properties

../counting/Rank-Select

imports SuffixArray.Suffix-Array-Properties SuffixArray.Simple-SACA-Verification

9.1 Bijections

lemma bij-betw-empty: bij-betw f {} {} using bij-betwI' by fastforce

```
\begin{array}{l} \textbf{lemma bij-betw-sort-idx-ex:} \\ \textbf{assumes } xs = sort \; ys \\ \textbf{shows } \exists f. \; bij\text{-betw } f \; \{j. \; j < \textit{length } ys \land ys \; ! \; j < x\} \; \{j. \; j < \textit{length } xs \land xs \; ! \; j < x\} \\ \textbf{proof } - \end{array}
```

```
let ?A = \{j, j < length ys \land ys ! j < x\}
let ?B = \{j, j < length xs \land xs ! j < x\}
```

have mset ys = mset xs by (simp add: assms) with permutation-Ex-bij[of ys xs] obtain f where

 $bij-betw f \{..< length ys\} \{..< length xs\}$ $(\forall i < length ys. ys ! i = xs ! f i)$ by blast moreover have $?A \subseteq \{..< length ys\}$ **by** blast moreover have $f \, `?A = ?B$ **proof** safe fix a**assume** a < length ys ys ! a < xthen show f a < length xs**by** (meson bij-betw-apply calculation(1) less Than-iff) \mathbf{next} fix a**assume** a < length ys ys ! a < xthen show $xs \mid f \mid a < x$ by (simp add: calculation(2)) \mathbf{next} fix a assume A: a < length xs xs ! a < x**from** *bij-betw-iff-bijections*[*THEN iffD1*, *OF calculation*(1)] obtain g where $\forall x \in \{.. < length ys\}. f x \in \{.. < length xs\} \land g (f x) = x$ $\forall y \in \{.. < length xs\}. g y \in \{.. < length ys\} \land f (g y) = y$ by blast then show $a \in f$ '?A by (metis (no-types, lifting) A calculation(2) imageI lessThan-iff mem-Collect-eq) \mathbf{qed} ultimately show ?thesis using *bij-betw-subset* **by** blast qed

qeu

9.2 Suffix Properties

lemma suffix-hd-set-eq: {k. $k < length \ s \land s \ ! \ k = c$ } = {k. $k < length \ s \land (\exists xs. suffix \ s \ k = c \ \# \ xs)$ } using suffix-cons-ex by fastforce

lemma *suffix-hd-set-less*:

 $\{k. \ k < length \ s \land s \ ! \ k < c \ \} = \{k. \ k < length \ s \land suffix \ s \ k < [c]\}$ using suffix-cons-ex by fastforce

lemma select-nth-suffix-start1: **assumes** $i < card \{k. \ k < length \ s \land (\exists as. suffix \ s \ k = a \ \# \ as)\}$ and $xs = sort \ s$ **shows** select $xs \ a \ i = card \ \{k. \ k < length \ s \land suffix \ s \ k < [a]\} + i$ **proof** -

let $?A = \{k, k < length \ s \land (\exists as. suffix \ s \ k = a \ \# \ as)\}$ let $?A' = \{k. \ k < length \ s \land s \ ! \ k = a\}$ have ?A = ?A'using *suffix-cons-Suc* by *fastforce* with assms(1) have $i < count-list \ s \ a$ by (simp add: count-list-card) hence i < count-list xs a**by** (*metis* assms(2) count-list-perm mset-sort) moreover let $?B = \{k, k < length s \land suffix s k < [a]\}$ let $?B' = \{k. \ k < length \ s \land s \ ! \ k < a\}$ let $B'' = \{k, k < length xs \land xs \mid k < a\}$ ł have ?B = ?B'using suffix-cons-ex by fastforce moreover have card ?B' = card ?B''using bij-betw-sort-idx-ex[OF assms(2), of a] bij-betw-same-card **by** blast ultimately have card ?B = card ?B''by presburger } ultimately show *?thesis* using sorted-select assms(2) by force qed **lemma** *select-nth-suffix-start2*: **assumes** card $\{k, k < length s \land (\exists as. suffix s k = a \# as)\} \leq i$ and xs = sort s**shows** select xs a i = length xs**proof** (*rule select-out-of-range*[*of s*]) **show** $mset \ s = mset \ xs$ by $(simp \ add: assms(2))$ \mathbf{next} let $?A = \{k. \ k < length \ s \land (\exists as. suffix \ s \ k = a \ \# \ as)\}$ let $?A' = \{k, k < length s \land s \mid k = a\}$ have ?A = ?A'using suffix-cons-Suc by fastforce with assms(1) show count-list $s \ a \leq i$ by (simp add: count-list-card) qed

context Suffix-Array-General begin

9.3 General Properties

```
lemma sa-subset-upt:
set (sa \ s) \subseteq \{0.. < length \ s\}
by (simp \ add: sa-set-upt)
```

```
lemma sa-suffix-sorted:
  sorted (map (suffix s) (sa s))
  using sa-g-sorted strict-sorted-imp-sorted by blast
```

9.4 Nth Properties

```
lemma sa-nth-suc-le:
 assumes j < length s
 and
          i < j
 and
          s ! (sa \ s ! \ i) = s ! (sa \ s ! \ j)
          Suc (sa \ s \ ! \ i) < length \ s
 and
 and
          Suc (sa \ s \ ! \ j) < length \ s
shows s \mid Suc \ (sa \ s \mid i) \leq s \mid (Suc \ (sa \ s \mid j))
proof -
  from sorted-wrt-nth-less[OF sa-g-sorted[of s] assms(2)] assms(1,2)
 have suffix s (sa s \mid i) < suffix s (sa s \mid j)
   using sa-length by auto
 with assms(3-)
 have suffix s (Suc (sa s ! i)) < suffix s (Suc (sa s ! j))
  by (metis Cons-less-Cons Cons-nth-drop-Suc Suc-lessD order-less-imp-not-less)
 then show ?thesis
  by (metis Cons-less-Cons assms(4,5) dual-order. asym suffix-cons-Suc verit-comp-simplify I(3))
qed
```

lemma sa-nth-suc-le-ex:

assumes j < length sand i < jand $s \mid (sa \ s \mid i) = s \mid (sa \ s \mid j)$ and Suc $(sa \ s \ ! \ i) < length \ s$ and Suc $(sa \ s \ ! \ j) < length \ s$ shows $\exists k \ l. \ k < l \land sa \ s \ l \ k = Suc \ (sa \ s \ l \ i) \land sa \ s \ l \ l = Suc \ (sa \ s \ l \ j)$ proof – **from** sorted-wrt-nth-less [OF sa-g-sorted [of s] assms(2)] assms(1,2)have suffix s (sa s ! i) < suffix s (sa s ! j) using sa-length by auto with assms(3-)have suffix s (Suc (sa s ! i)) < suffix s (Suc (sa s ! j)) by (metis Cons-less-Cons Cons-nth-drop-Suc Suc-lessD order-less-imp-not-less) moreover **from** ex-sa-nth[OF assms(4)]obtain k where k < length s $sa \ s \ ! \ k = Suc \ (sa \ s \ ! \ i)$ by blast

```
moreover
 from ex-sa-nth[OF assms(5)]
 obtain l where
   l < length s
   sa \ s \ ! \ l = Suc \ (sa \ s \ ! \ j)
   by blast
  ultimately have k < l
   using sorted-nth-less-mono[OF strict-sorted-imp-sorted[OF sa-g-sorted[of s]]]
   by (metis length-map not-less-iff-gr-or-eq nth-map sa-length)
  with \langle sa \ s \ ! \ k = - \rangle \langle sa \ s \ ! \ l = - \rangle
 show ?thesis
   by blast
\mathbf{qed}
lemma sorted-map-nths-sa:
  sorted (map (nth s) (sa s))
proof (intro sorted-wrt-mapI)
 fix i j
 assume i < j j < length (sa s)
 hence suffix s (sa s ! i) < suffix s (sa s ! j)
   using sa-g-sorted sorted-wrt-mapD by blast
 moreover
 have suffix s (sa s \mid i) = s \mid (sa s \mid i) # suffix s (Suc (sa s \mid i))
     by (metis \langle i < j \rangle \langle j < length (sa s)) order.strict-trans sa-length sa-nth-ex
suffix-cons-Suc)
 moreover
 have suffix s (sa s \mid j) = s \mid (sa s \mid j) # suffix s (Suc (sa s \mid j))
   by (metis \langle j < length (sa s) \rangle sa-length sa-nth-ex suffix-cons-Suc)
 ultimately show s ! (sa \ s ! i) \le s ! (sa \ s ! j)
   by fastforce
qed
lemma perm-map-nths-sa:
 s < \sim \sim > map (nth s) (sa s)
 by (metis map-nth mset-map sa-g-permutation)
lemma sort-eq-map-nths-sa:
  sort s = map (nth s) (sa s)
 by (metis perm-map-nths-sa properties-for-sort sorted-map-nths-sa)
lemma sort-sa-nth:
  i < length \ s \Longrightarrow sort \ s \ i = s \ i \ (sa \ s \ i)
 by (simp add: sa-length sort-eq-map-nths-sa)
lemma inj-on-nth-sa-upt:
 assumes j \leq length \ s \ l \leq length \ s
shows inj-on (nth (sa s)) (\{i..< j\} \cup \{k..< l\})
proof
 fix x y
```

assume $x \in \{i... < j\} \cup \{k... < l\} \ y \in \{i... < j\} \cup \{k... < l\} \ sa \ s \ ! \ x = sa \ s \ ! \ y$

have x < length susing $\langle x \in \{i... < j\} \cup \{k... < l\}\rangle$ assms(1) assms(2) by automoreover have y < length susing $\langle y \in \{i... < j\} \cup \{k... < l\}\rangle$ assms(1) assms(2) by autoultimately show x = yby (metis $\langle sa \ s \ ! \ x = sa \ s \ ! \ y\rangle$ nth-eq-iff-index-eq sa-distinct sa-length) qed

lemma nth-sa-upt-set: nth (sa s) ' {0..<length s} = {0..<length s} proof safe fix x assume $x \in {0..<length s}$ then show sa s ! $x \in {0..<length s}$ using sa-nth-ex by force next fix x assume $x \in {0..<length s}$ then show $x \in {0..<length s}$ then show $x \in {0..<length s}$ by (metis ex-sa-nth image-iff in-set-conv-nth sa-length sa-set-upt) qed

9.5 Valid List Properties

```
lemma valid-list-sa-hd:
 assumes valid-list s
 shows \exists n. length s = Suc \ n \land sa \ s \ ! \ 0 = n
proof -
 from valid-list-ex-def[THEN iffD1, OF assms]
 obtain xs where
   s = xs @ [bot]
   by blast
 hence valid-list (xs @ [bot])
   using assms by simp
 with valid-list-bot-min[of xs sa, OF - sa-g-permutation sa-g-sorted]
 obtain ys where
   sa (xs @ [bot]) = length xs \# ys
   by blast
 with \langle s = xs @ [bot] \rangle
 show ?thesis
   by simp
qed
lemma valid-list-not-last:
 assumes valid-list s
 and i < length s
```

```
\begin{array}{ll} \text{and} & j < \textit{length } s \\ \text{and} & i \neq j \\ \text{and} & s \mid i = s \mid j \\ \text{shows } i < \textit{length } s - 1 \land j < \textit{length } s - 1 \\ \text{by (metis One-nat-def Suc-pred assms hd-drop-conv-nth last-suffix-index less-Suc-eq} \\ & valid-list-length) \end{array}
```

 \mathbf{end}

```
lemma Suffix-Array-General-ex:
∃ sa. Suffix-Array-General sa
using simple-saca.Suffix-Array-General-axioms by auto
```

 \mathbf{end}

```
theory SA-Count
imports Rank-Select
../util/SA-Util
begin
```

begin

10 Counting Properties on Suffix Arays

context Suffix-Array-General begin

10.1 Counting Properties

```
lemma sa-card-index:
 assumes i < length s
 shows i = card \{j, j < length s \land suffix s (sa s ! j) < suffix s (sa s ! i)\}
       (is i = card ?A)
proof -
 let P = \lambda j. j < length \ s \land suffix \ s \ (sa \ s \ ! \ j) < suffix \ s \ (sa \ s \ ! \ i)
 have P: \forall j < i. ? P j
 proof (safe)
   fix j
   assume j < i
   with assms
   show j < length s
     by simp
 \mathbf{next}
   fix j
   assume j < i
   with sorted-wrt-nth-less[OF sa-g-sorted[of s] \langle j < i \rangle] assms
   show suffix s (sa s \mid j) < suffix s (sa s \mid i)
     using assms sa-length by auto
 qed
 have ?A = \{j, j < i\}
 proof (safe)
   fix x
```

```
assume x < i
   then show x < length s
     using assms by simp
 \mathbf{next}
   fix x
   assume x < i
   then show suffix s (sa s \mid x) < suffix s (sa s \mid i)
     using P by auto
 next
   fix x
   assume Q: x < length s suffix s (sa s ! x) < suffix s (sa s ! i)
   hence x \neq i
     by blast
   with sorted-nth-less-mono[OF strict-sorted-imp-sorted]OF sa-g-sorted],
                            simplified length-map sa-length,
                         OF \ Q(1) \ assms]
       Q \ assms
   show x < i
     by (simp add: sa-length)
 qed
 then show ?thesis
   using card-Collect-less-nat by presburger
qed
corollary sa-card-s-index:
 assumes i < length s
 shows i = card \{j, j < length s \land suffix s j < suffix s (sa s ! i)\}
      (is i = card ?A)
proof –
 let ?i = sa \ s \ ! \ i
 let ?v = s ! ?i
 let ?B = \{j, j < length \ s \land suffix \ s \ (sa \ s \ ! \ j) < suffix \ s \ ?i\}
 from sa-card-index[OF assms]
 have i = card ?B.
 moreover
 have bij-betw (\lambda x. sa s ! x) ?B ?A
 proof (intro bij-betwI'; safe)
   fix x y
   assume x < length s y < length s sa s ! x = sa s ! y
   then show x = y
     by (simp add: nth-eq-iff-index-eq sa-distinct sa-length)
 \mathbf{next}
   fix x
   assume x < length s
   then show sa s ! x < length s
     using sa-nth-ex by fastforce
 next
   fix x
```

47

```
assume x < length s suffix s x < suffix s?
   then show \exists y \in ?B. x = sa s ! y
     using ex-sa-nth by blast
 qed
 hence card ?B = card ?A
   using bij-betw-same-card by blast
  ultimately show ?thesis
   by simp
\mathbf{qed}
lemma sa-card-s-idx:
 assumes i < length s
 shows i = card \{j, j < length s \land s \mid j < s \mid (sa s \mid i)\} +
           card {j. j < length \ s \land s \mid j = s \mid (sa \ s \mid i) \land suffix \ s \ j < suffix \ s \ (sa \ s \mid i)
i)\}
proof –
 let ?i = sa \ s \ ! \ i
 let ?v = s ! ?i
 let ?A = \{j, j < length \ s \land s \mid j < ?v\}
 let ?B = \{j, j < length \ s \land s \mid j = ?v \land suffix \ s \ j < suffix \ s \ ?i\}
 let ?C = \{j, j < length \ s \land suffix \ s \ j < suffix \ s \ ?i\}
 from sa-card-s-index[OF assms]
 have i = card ?C
   by simp
 moreover
 have ?A \cap ?B = \{\}
   by fastforce
 moreover
 have ?C = ?A \cup ?B
 proof (safe)
   fix x
   assume x < length s suffix s x < suffix s ?i \neg s ! x < s ! ?i
   then show s \mid x = s \mid ?i
     by (metis Cons-less-Cons sa-nth-ex assms suffix-cons-Suc)
 \mathbf{next}
   fix x
   assume x < length \ s \ s \ ! \ x < s \ ! \ ?i
   then show suffix s x < suffix s ?i
     by (metis Cons-less-Cons sa-nth-ex assms suffix-cons-Suc)
 \mathbf{qed}
 ultimately show ?thesis
   by (simp add: card-Un-disjoint)
qed
lemma sa-card-index-lower-bound:
 assumes i < length s
 shows card \{j, j < length \ s \land s \mid (sa \ s \mid j) < s \mid (sa \ s \mid i)\} \le i
 (is card ?A \leq i)
```

```
proof –
 let P = \{j, j < length \ s \land suffix \ s \ (sa \ s \ ! \ j) < suffix \ s \ (sa \ s \ ! \ i)\}
 have ?A \subseteq ?B
 proof safe
   fix x
   assume x < length \ s \ s \ (sa \ s \ x) < s \ (sa \ s \ i)
   then show suffix s (sa s \mid x) < suffix s (sa s \mid i)
     by (metis Cons-less-Cons Cons-nth-drop-Suc assms sa-nth-ex)
 qed
 hence card ?A \leq card ?B
   by (simp add: card-mono)
 then show ?thesis
   using sa-card-index[OF assms] by simp
qed
lemma sa-card-rank-idx:
 assumes i < length s
 shows i = card \{j, j < length s \land s \mid (sa s \mid j) < s \mid (sa s \mid i)\}
             + rank (sort s) (s ! (sa s ! i)) i
proof –
 from sorted-card-rank-idx[of sort s i]
  have i = card \{j, j < length (sort s) \land sort s \mid j < sort s \mid i\} + rank (sort s)
(sort \ s \ ! \ i) \ i
   using assms by fastforce
 moreover
 have sort s \mid i = s \mid (sa \ s \mid i)
   using assms sort-sa-nth by auto
 moreover
 have length (sort s) = length s
   by simp
 ultimately show ?thesis
   using sort-sa-nth[of -s]
   by (metis (no-types, lifting) Collect-cong)
qed
corollary sa-card-rank-s-idx:
 assumes i < length s
 shows i = card \{j, j < length s \land s \mid j < s \mid (sa s \mid i)\}
             + rank (sort s) (s ! (sa s ! i)) i
proof -
 let ?A = \{j, j < length \ s \land s \ ! \ j < s \ ! \ (sa \ s \ ! \ i)\}
 and ?B = \{j, j < length \ s \land s \mid (sa \ s \mid j) < s \mid (sa \ s \mid i)\}
 from sa-card-rank-idx[OF assms]
 have i = card \{j. j < length s \land s ! (sa s ! j) < s ! (sa s ! i)\} +
           rank (sort s) (s ! (sa s ! i)) i.
  moreover
 have bij-betw (\lambda x. sa s ! x)
         \{j, j < length \ s \land s \mid (sa \ s \mid j) < s \mid (sa \ s \mid i)\}
         \{j, j < length \ s \land s \mid j < s \mid (sa \ s \mid i)\}
```

```
proof (rule bij-betwI'; safe)
   fix x y
   assume x < length s y < length s sa s ! x = sa s ! y
   then show x = y
     by (simp add: nth-eq-iff-index-eq sa-distinct sa-length)
 \mathbf{next}
   fix x
   assume x < length s
   then show sa s ! x < length s
     using sa-nth-ex by auto
 \mathbf{next}
   fix x
   assume x < length \ s \ s \ ! \ x < s \ ! \ (sa \ s \ ! \ i)
   then show \exists xa \in \{j, j < length s \land s \mid (sa s \mid j) < s \mid (sa s \mid i)\}. x = sa s \mid j \neq s
xa
     using ex-sa-nth by blast
 \mathbf{qed}
 hence card ?B = card ?A
   using bij-betw-same-card by blast
 ultimately show ?thesis
   by simp
qed
lemma sa-rank-nth:
 assumes i < length s
 shows rank (sort s) (s ! (sa s ! i)) i =
         card { j. j < length \ s \land s \mid j = s \mid (sa \ s \mid i) \land
                 suffix s j < suffix s (sa s ! i)
proof -
 let ?i = sa \ s \ ! \ i
 let ?v = s ! ?i
 let ?A = \{j, j < length \ s \land s \mid j < ?v\}
 let ?B = \{j, j < length \ s \land s \mid j = ?v \land suffix \ s \ j < suffix \ s \ ?i\}
 from sa-card-rank-s-idx[OF assms]
 have i = card ?A + rank (sort s) ?v i.
 moreover
 from sa-card-s-idx[OF assms]
 have i = card ?A + card ?B.
 ultimately show ?thesis
   by linarith
qed
lemma sa-suffix-nth:
 assumes card \{k. \ k < length \ s \land s \ ! \ k < c \ \} + i < length \ s
 and
           i < count-list \ s \ c
shows \exists as. suffix s (sa s ! (card \{k. k < length s \land s ! k < c\} + i)) = c \# as
proof -
 let ?A = \{k, k < length s \land s \mid k < c\}
```

let ?i = card ?Alet $?A' = \{k, k < length (sort s) \land (sort s) \mid k < c\}$ have $\exists as. suffix s (sa s ! (?i + i)) = (s ! (sa s ! (?i + i))) \# as$ using assms sa-nth-ex suffix-cons-ex by blast moreover have $s ! (sa \ s ! (?i + i)) = sort \ s ! (?i + i)$ using assms(1) sort-sa-nth by presburger moreover Ł have i < count-list (sort s) cby (metis assms(2) count-list-perm sort-perm) moreover have card ?A = card ?A'proof – have $\exists f. bij$ -betw $f \{n. n < length s \land s \mid n < c\} \{n. n < length (sort s) \land$ sort $s \mid n < c$ using *bij-betw-sort-idx-ex* by *blast* then show ?thesis using *bij-betw-same-card* by *blast* qed ultimately have sort s ! (?i + i) = cusing sorted-nth-gen[of sort s c i] assms(1) by auto } ultimately show ?thesis by force qed

10.2 Ordering Properties

lemma *sa-suffix-order-le*: **assumes** card $\{k, k < length s \land s \mid k < c \} < length s$ shows $[c] \leq suffix \ s \ (sa \ s \ ! \ (card \ \{k. \ k < length \ s \land s \ ! \ k < c\}))$ proof let $?A = \{k. \ k < length \ s \land s \ ! \ k < c\}$ let $?A' = \{k. \ k < length (sort s) \land (sort s) ! k < c\}$ let ?i = card ?Alet ?i' = card ?A'have $\exists as. suffix s (sa s ! ?i) = (s ! (sa s ! ?i)) \# as$ using assms sa-nth-ex suffix-cons-ex by blast then obtain as where suffix s (sa s ! ?i) = (s ! (sa s ! ?i)) # as by blast moreover **from** sort-sa-nth[of ?i s] have sort $s ! ?i = s ! (sa \ s ! ?i)$ using assms by blast moreover

```
have ?i = ?i'
 proof -
   have \exists f. bij-betw f \{n. n < length s \land s \mid n < c\} \{n. n < length (sort s) \land
sort s \mid n < c
     using bij-betw-sort-idx-ex by blast
   then show ?thesis
     using bij-betw-same-card by blast
 qed
 hence c \leq sort \ s \ ?i
   using sorted-nth-le[of sort s c] assms by auto
 ultimately show ?thesis
   by fastforce
qed
lemma sa-suffix-order-le-gen:
 assumes card \{k, k < length \ s \land s \mid k < c \} + i < length \ s
 shows [c] \leq suffix \ s \ (sa \ s \ ! \ (card \ \{k. \ k < length \ s \land s \ ! \ k < c\} + i))
proof (cases i)
 case \theta
 then show ?thesis
   using assms sa-suffix-order-le by auto
\mathbf{next}
 let ?x = card \{k. k < length s \land s \mid k < c \}
 case (Suc m)
 with sorted-wrt-mapD[OF sa-g-sorted, of ?x ?x + i s]
 have suffix s (sa s ! ?x) < suffix s (sa s ! (?x + i))
   using assms sa-length by auto
 moreover
 have [c] \leq suffix \ s \ (sa \ s \ ! \ ?x)
   using add-lessD1 assms sa-suffix-order-le by blast
  ultimately show ?thesis
   by order
\mathbf{qed}
lemma sa-suffix-nth-less:
 assumes i < card \{k. k < length s \land s \mid k < c\}
 shows \forall as. suffix s (sa s ! i) < c # as
proof -
 have i < length s
   using assms card-less-idx-upper dual-order.strict-trans1 by blast
 hence \exists as. suffix s (sa s ! i) = s ! (sa s ! i) \# as
   using sa-nth-ex suffix-cons-Suc by blast
 moreover
 have i < card \{k. \ k < length (sort s) \land (sort s) ! k < c\}
   using bij-betw-sort-idx-ex[of sort s s c] assms bij-betw-same-card by force
  with sorted-nth-less-gen[of sort s i c]
 have s \mid (sa \ s \mid i) < c
   using sorted-nth-less-gen[of sort s i c] \langle i < length s \rangle sort-sa-nth by force
 ultimately show ?thesis
```

```
by fastforce
qed
lemma sa-suffix-nth-gr:
 assumes card \{k, k < length s \land s \mid k < c\} + i < length s
 and
          count-list s c \leq i
shows \forall as. c \# as < suffix s (sa s ! (card \{k. k < length s \land s ! k < c\} + i))
proof –
 let ?x = card \{k. k < length s \land s \mid k < c\}
 let ?i = ?x + i
 let ?y = card \{k. \ k < length (sort s) \land sort s \mid k < c\}
 have \exists as. suffix s (sa s ! ?i) = s ! (sa s ! ?i) \# as
   using assms(1) sa-nth-ex suffix-cons-Suc by blast
 moreover
 ł
   have ?y = ?x
     using bij-betw-sort-idx-ex[of sort s s c] bij-betw-same-card by force
   moreover
   have ?y + i < length (sort s)
     using assms(1) calculation(1) by auto
   moreover
   have count-list (sort s) c \leq i
     by (metis assms(2) count-list-perm mset-sort)
   ultimately have s ! (sa \ s ! ?i) > c
     using sorted-nth-gr-gen[of sort s c i] sort-sa-nth by fastforce
 }
 ultimately show ?thesis
   by fastforce
qed
end
end
```

theory BWT imports ../../util/SA-Util

begin

11 Burrows-Wheeler Transform

```
Based on [2]
```

Definition 3.3 from [3]: Canonical BWT

definition bwt-canon :: ('a :: {linorder, order-bot}) list \Rightarrow 'a list where bwt-canon s = map last (sort (map (λx . rotate x s) [0..<length s]))

context Suffix-Array-General begin

Definition 3.4 from [3]: Suffix Array Version of the BWT

definition bwt- $sa :: ('a :: \{linorder, order-bot\})$ $list \Rightarrow 'a \ list$ **where** bwt- $sa \ s = map \ (\lambda i. \ s \ ! \ ((i + length \ s - Suc \ 0) \ mod \ (length \ s))) \ (sa \ s)$

 \mathbf{end}

12 BWT Verification

12.1 List Rotations

lemma rotate-suffix-prefix: **assumes** i < length xs **shows** rotate i xs = suffix xs i @ prefix xs i**by** (simp add: assms rotate-drop-take)

lemma rotate-last:

assumes i < length xsshows last (rotate i xs) = xs ! ((i + length xs - Suc 0) mod (length xs))by (metis Nat.add-diff-assoc One-nat-def Suc-leI assms diff-less last-conv-nth length-greater-0-conv length-rotate list.size(3) not-less-zero nth-rotate zero-less-one)

```
lemma (in Suffix-Array-General) map-last-rotations:
  map last (map (\lambda i. rotate i s) (sa s)) = bwt-sa s
proof -
 have \forall x \in set (sa s). last (rotate x s) = s ! ((x + length s - Suc \theta) mod length s)
   by (meson \ at Least Less \ Than-iff \ rotate-last \ sa-subset-upt \ subset-code(1))
 then show ?thesis
   unfolding bwt-sa-def by simp
qed
lemma distinct-rotations:
 assumes valid-list s
 and
         i < length s
 and
          j < length s
 and
          i \neq j
shows rotate i \ s \neq rotate j \ s
proof -
 from rotate-suffix-prefix[OF assms(2)]
      rotate-suffix-prefix[OF assms(3)]
      suffix-has-no-prefix-suffix[OF assms, simplified]
      suffix-has-no-prefix-suffix[OF assms(1,3,2) assms(4)[symmetric], simplified]
 show ?thesis
```

```
by (metis append-eq-append-conv2)
```

 \mathbf{qed}

12.2 Ordering

```
lemma list-less-suffix-app-prefix-1:
 assumes valid-list xs
          i < length xs
 and
 and
          j < length xs
 and
          suffix xs \ i < suffix \ xs \ j
shows suffix xs \ i \ @ prefix xs \ i < suffix \ xs \ j \ @ prefix xs \ j
proof -
 from suffix-less-ex[OF assms]
 obtain b c as bs cs where
   suffix xs \ i = as @ b \ \# bs
   suffix xs \ j = as @ c \ \# cs
   b < c
   by blast
 hence suffix xs i @ prefix xs i = as @ b \# bs @ prefix xs i
       suffix xs j @ prefix xs j = as @ c \# cs @ prefix xs j
   by simp-all
  with \langle b < c \rangle
 show ?thesis
   by (metis list-less-ex)
qed
lemma list-less-suffix-app-prefix-2:
 assumes valid-list xs
          i < length xs
 and
          j < length xs
 and
 and
          suffix xs i @ prefix xs i < suffix xs j @ prefix xs j
shows suffix xs \ i < suffix \ xs \ j
 by (metis assms list-less-suffix-app-prefix-1 not-less-iff-gr-or-eq suffixes-neq)
corollary list-less-suffix-app-prefix:
```

```
assumes valid-list xs

and i < length xs

and j < length xs

shows suffix xs i < suffix xs j \leftrightarrow

suffix xs i @ prefix xs i < suffix xs j @ prefix xs j

using assms list-less-suffix-app-prefix-1 list-less-suffix-app-prefix-2 by blast
```

Theorem 3.5 from [3]: Same Suffix and Rotation Order

```
lemma list-less-suffix-rotate:

assumes valid-list xs

and i < length xs

and j < length xs

shows suffix xs \ i < suffix xs \ j \leftrightarrow rotate i \ xs < rotate \ j \ xs

by (simp add: assms list-less-suffix-app-prefix rotate-suffix-prefix)

lemma (in Suffix Array Company) control metations:
```

```
lemma (in Suffix-Array-General) sorted-rotations:
assumes valid-list s
shows strict-sorted (map (\lambda i. rotate i s) (sa s))
```

 $\begin{array}{l} \textbf{proof} \ (intro\ sorted-wrt-mapI) \\ \textbf{fix}\ i\ j \\ \textbf{assume}\ i < j\ j < length\ (sa\ s) \\ \textbf{with}\ sorted-wrt-nth-less[OF\ sa-g-sorted\ \langle i < j \rangle,\ simplified,\ OF\ \langle j < -\rangle] \\ \textbf{have}\ suffix\ s\ (sa\ s\ !\ i) < suffix\ s\ (sa\ s\ !\ j) \\ \textbf{by}\ force \\ \textbf{with}\ list-less-suffix-rotate[THEN\ iffD1,\ OF\ assms,\ of\ sa\ s\ !\ i\ sa\ s\ !\ j] \\ \textbf{show}\ rotate\ (sa\ s\ !\ i)\ s < rotate\ (sa\ s\ !\ j)\ s \\ \textbf{by}\ (metis\ \langle i < j \rangle\ \langle j < length\ (sa\ s) \rangle\ dual-order.strict-trans\ sa-length\ sa-nth-ex) \\ \textbf{qed} \end{array}$

12.3 BWT Equivalence

Theorem 3.6 from [3]: BWT and Suffix Array Correspondence Canoncial BWT and BWT via Suffix Array Correspondence

```
theorem (in Suffix-Array-General) bwt-canon-eq-bwt-sa:
 assumes valid-list s
 shows bwt-canon s = bwt-sa s
proof -
 let ?xs = map (\lambda x. rotate x s) [0..< length s]
 have distinct ?xs
  by (intro distinct-conv-nth[THEN iffD2] all impI; simp add: distinct-rotations[OF
assms)
 hence strict-sorted (sort ?xs)
   using distinct-sort sorted-sort strict-sorted-iff by blast
 hence sort ?xs = map(\lambda i. rotate i s)(sa s)
   using sorted-rotations[OF assms]
   by (simp add: strict-sorted-equal sa-set-upt)
 with map-last-rotations of s
 have map last (sort ?xs) = bwt-sa s
   by presburger
 then show ?thesis
   by (metis bwt-canon-def)
qed
end
theory BWT-SA-Corres
 imports BWT
        ../../counting/SA-Count
        ../../util/Rotated-Substring
```

begin

13 BWT and Suffix Array Correspondence

 ${\bf context} \ {\it Suffix-Array-General} \ {\bf begin}$

Definition 3.12 from [3]: BWT Permutation

definition bwt-perm :: ('a :: {linorder, order-bot}) list \Rightarrow nat list where bwt-perm s = map (λi . (i + length s - Suc 0) mod (length s)) (sa s)

13.1 BWT Using Suffix Arrays

```
lemma map-bwt-indexes:
 fixes s :: ('a :: \{linorder, order-bot\}) list
 shows bwt-sa s = map (\lambda i. s ! i) (bwt-perm s)
 by (simp add: bwt-perm-def bwt-sa-def)
lemma map-bwt-indexes-perm:
 fixes s :: ('a :: \{linorder, order-bot\}) list
 shows bwt-perm s < \sim > [0.. < length s]
proof (intro distinct-set-imp-perm)
 show distinct [0..< length s]
   by simp
\mathbf{next}
 show set (bwt-perm s) = set [0..< length s]
   unfolding bwt-perm-def
  proof safe
   fix x
   assume x \in set (map (\lambda i. (i + length s - Suc 0) mod length s) (sa s))
   hence x < length s
        by (metis (no-types, lifting) ex-map-conv length-map length-pos-if-in-set
mod\-less\-divisor
                                sa-length)
   then show x \in set [0.. < length s]
     \mathbf{by} \ simp
 \mathbf{next}
   fix x
   assume x \in set [0..< length s]
   hence x \in \{0.. < length s\}
     using atLeastLessThan-upt by blast
   have x \in (\lambda i. (i + length s - Suc 0) \mod length s) ' \{0..< length s\}
   proof (cases Suc x < length s)
     assume Suc x < length s
     hence (\lambda i. (i + length s - Suc 0) \mod length s) (Suc x) = x
       by simp
     then show ?thesis
       using \langle Suc \ x < length \ s \rangle by force
   \mathbf{next}
     assume \neg Suc x < length s
     with \langle x \in \{0.. < length \ s\} \rangle
     have Suc x = length s
      by simp
     hence (\lambda i. (i + length s - Suc \theta) \mod length s) \theta = x
       using diff-Suc-1' lessI mod-less by presburger
```

then show ?thesis

by (metis (mono-tags, lifting) $\langle Suc \ x = length \ s \rangle$ at Least Less Than-iff image I zero-le zero-less-Suc) ged then show $x \in set (map (\lambda i. (i + length s - Suc 0) mod length s) (sa s))$ by (simp add: sa-set-upt) qed next **show** distinct (bwt-perm s) **proof** (*intro distinct-conv-nth*[*THEN iffD2*] *allI impI*) fix i j**assume** A: i < length (bwt-perm s) j < length (bwt-perm s) $i \neq j$ have bwt-perm $s \mid i = (sa \ s \mid i + length \ s - Suc \ 0) \mod (length \ s)$ using A(1) bwt-perm-def by force moreover have bwt-perm $s \mid j = (sa \ s \mid j + length \ s - Suc \ 0) \mod (length \ s)$ using A(2) bwt-perm-def by force moreover have $sa \ s \ i \neq sa \ s \ j$ by (metis A bwt-perm-def length-map nth-eq-iff-index-eq sa-distinct) have $(sa \ s \ ! \ i + length \ s - Suc \ 0) \mod (length \ s) \neq$ $(sa \ s \ j + length \ s - Suc \ 0) \mod (length \ s)$ **proof** (cases sa $s \mid i$) case θ hence $(sa \ s \ ! \ i + length \ s - Suc \ 0) \mod (length \ s) = length \ s - Suc \ 0$ by (metis diff-Suc-less gen-length-def length-code length-greater-0-conv list.size(3)mod-by-0 mod-less) moreover have $\exists m. sa s \mid j = Suc m$ using $0 \langle sa \ s \ ! \ i \neq sa \ s \ ! \ j \rangle$ not0-implies-Suc by force then obtain m where sa s ! j = Suc mby blast hence $(sa \ s \ ! \ j + length \ s - Suc \ 0) \mod (length \ s) = m$ using A(2) bwt-perm-def sa-length sa-nth-ex by force moreover have Suc $m \leq length \ s - Suc \ \theta$ by (metis 0 A(1) A(2) Suc-pred (sa s ! j = Suc m) bwt-perm-def length-map less-Suc-eq-le sa-length sa-nth-ex) hence m < length s - Suc 0using Suc-le-eq by blast ultimately show ?thesis **by** (*metis not-less-iff-gr-or-eq*) next

case (Suc n) assume sa s ! i = Suc nhence B: $(sa \ s \ ! \ i + length \ s - Suc \ 0) \mod (length \ s) = n$ using A(1) bwt-perm-def sa-length sa-nth-ex by force show ?thesis **proof** (cases sa $s \mid j$) $\mathbf{case} \ \theta$ hence $(sa \ s \ j + length \ s - Suc \ 0) \mod (length \ s) = length \ s - Suc \ 0$ by (metis add-eq-if diff-Suc-less length-greater-0-conv list.size(3) mod-by-0 mod-less) moreover have Suc $n \leq length s - Suc \theta$ by (metis 0 A(1,2)) Suc Suc-pred bwt-perm-def length-map less-Suc-eq-le sa-length sa-nth-ex)hence $n < length s - Suc \theta$ using Suc-le-eq by blast ultimately show ?thesis by (simp add: B) \mathbf{next} case (Suc m) hence $(sa \ s \ j + length \ s - Suc \ 0) \mod (length \ s) = m$ using A(2) add-Suc bwt-perm-def sa-length sa-nth-ex by force moreover have $m \neq n$ using Suc $\langle sa \ s \ ! \ i = Suc \ n \rangle \langle sa \ s \ ! \ i \neq sa \ s \ ! \ j \rangle$ by auto ultimately show *?thesis* using B by presburger qed qed **ultimately show** *bwt-perm* $s \mid i \neq bwt$ -*perm* $s \mid j$ by presburger \mathbf{qed} qed lemma *bwt-sa-perm*: fixes $s :: ('a :: \{linorder, order-bot\})$ list shows bwt-sa s $<^{\sim}>$ s by (metis map-bwt-indexes-perm map-bwt-indexes map-nth mset-map) lemma *bwt-sa-nth*: fixes $s :: ('a :: \{linorder, order-bot\})$ list fixes i :: nat**assumes** i < length sshows bwt-sa $s \mid i = s \mid (((sa \ s \mid i) + length \ s - 1) \mod (length \ s))$ using assms sa-length bwt-sa-def by force **lemma** *bwt-perm-nth*:

fixes $s :: ('a :: \{linorder, order-bot\})$ list

fixes i :: nat**assumes** i < length s**shows** bwt-perm $s \mid i = ((sa \ s \mid i) + length \ s - 1) \mod (length \ s)$ using assms sa-length bwt-perm-def by force **lemma** *bwt-perm-s-nth*: fixes $s :: ('a :: \{linorder, order-bot\})$ list fixes i :: nat**assumes** i < length sshows bwt-sa $s \mid i = s \mid (bwt-perm \ s \mid i)$ ${\bf using} \ assms \ bwt-perm-nth \ bwt-sa-nth \ {\bf by} \ presburger$ **lemma** *bwt-sa-length*: fixes $s :: ('a :: \{linorder, order-bot\})$ list **shows** length (bwt-sa s) = length susing sa-length bwt-sa-def by force **lemma** *bwt-perm-length*: fixes $s :: ('a :: \{linorder, order-bot\})$ list **shows** length (bwt-perm s) = length susing sa-length bwt-perm-def by force **lemma** *ex-bwt-perm-nth*: **fixes** $s :: ('a :: \{linorder, order-bot\})$ list fixes k :: nat**assumes** k < length sshows $\exists i < length s. bwt-perm s ! i = k$ using assms ex-perm-nth map-bwt-indexes-perm by blast **lemma** valid-list-sa-index-helper: fixes $s :: ('a :: \{linorder, order-bot\})$ list fixes i j :: natassumes valid-list s and i < length sand j < length sand $i \neq j$ $s ! (bwt-perm \ s ! \ i) = s ! (bwt-perm \ s ! \ j)$ and shows sa s ! $i \neq 0$ **proof** (*rule ccontr*) assume $\neg sa s ! i \neq 0$ hence sa s ! i = 0by clarsimp **from** valid-list-length-ex[OF assms(1)]obtain n where length s = Suc n**by** blast

let $?i = (sa \ s \ ! \ i + length \ s - 1) \mod length \ s$ and $?j = (sa \ s \ ! \ j + length \ s - 1) \mod length \ s$ from bwt-perm- $nth[OF \ assms(2)]$ have bwt-perm $s \ ! \ i = ?i$.

```
moreover
 from bwt-perm-nth[OF assms(3)]
 have bwt-perm s \mid j = ?j.
 moreover
 have ?i = n
   by (simp add: (length s = Suc \ n) (sa s \mid i = 0)
 hence s ! ?i = bot
    by (metis One-nat-def (length s = Suc n) assms(1) diff-Suc-Suc diff-zero
last-conv-nth
           list.size(3) nat.distinct(1) valid-list-def)
 moreover
 have \exists k. sa s ! j = Suc k
    by (metris (length s = Suc n) (so s ! i = 0) assms(2-4) less-Suc-eq-0-disj
nth-eq-iff-index-eq
           sa-distinct sa-length sa-nth-ex)
 then obtain k where
   sa s ! j = Suc k
   by blast
 hence ?j = k \land k < n
   by (metis (length s = Suc n) add-Suc-right add-Suc-shift add-diff-cancel-left'
assms(3)
        dual-order.strict-trans lessI mod-add-self2 mod-less not-less-eq plus-1-eq-Suc
           sa-nth-ex)
 hence s \not: ?j \neq bot
   by (metis (length s = Suc \ n) assms(1) diff-Suc-1 valid-list-def)
 ultimately show False
   by (metis \ assms(5))
```

\mathbf{qed}

Theorem 3.13 from [3]: Suffix Relative Order Preservation Relative order of the suffixes is maintained by the BWT permutation

```
lemma bwt-relative-order:
```

```
fixes s :: ('a :: \{linorder, order-bot\}) list
fixes i j :: nat
assumes valid-list s
and i < j
and j < length s
and s ! (bwt-perm s ! i) = s ! (bwt-perm s ! j)
shows suffix s (bwt-perm s ! i) < suffix <math>s (bwt-perm s ! j)
proof –
from valid-list-length-ex[OF assms(1)]
obtain n where
length s = Suc n
by blast
```

let $?i = (sa \ s \ ! \ i + length \ s - 1) \mod length \ s$ and $?j = (sa \ s \ ! \ j + length \ s - 1) \mod length \ s$

```
from bwt-perm-nth[of i s] assms(2-3)
 have bwt-perm s \mid i = ?i
   using dual-order.strict-trans by blast
 moreover
 from bwt-perm-nth[OF assms(3)]
 have bwt-perm s \mid j = ?j.
 moreover
 from sorted-wrt-nth-less [OF \ sa-g-sorted \ assms(2)] \ assms(2,3)
 have suffix s (sa s \mid i) < suffix s (sa s \mid j)
   using sa-length by force
 moreover
 have \exists k. sa s ! i = Suc k
  using valid-list-sa-index-helper [OF assms(1) - assms(3) - assms(4)] assms(2,3)
        dual-order.strict-trans not0-implies-Suc by blast
 then obtain k where
   sa s ! i = Suc k
   by blast
 moreover
 from calculation(4)
 have ?i = k
    by (metis Suc-lessD add.assoc assms(2,3) diff-Suc-1 dual-order.strict-trans
mod-add-self2
           mod-less plus-1-eq-Suc sa-nth-ex)
 moreover
 have \exists l. sa s ! j = Suc l
 using valid-list-sa-index-helper [OF assms(1) assms(3) - assms(4)[symmetric]]
assms(2,3)
        dual-order.strict-trans not0-implies-Suc by blast
 then obtain l where
   sa s ! j = Suc l
   by blast
 moreover
 from calculation(6)
 have ?j = l
   using assms(3) sa-nth-ex by force
 ultimately show ?thesis
  by (metis Cons-less-Cons Cons-nth-drop-Suc assms(1,4) mod-less-divisor valid-list-length)
qed
```

```
lemma bwt-sa-card-s-idx:

fixes s :: ('a :: \{linorder, order-bot\}) list

fixes i :: nat

assumes valid-list s

and i < length s

shows i = card \{j, j < length s \land j < i \land bwt-sa s ! j \neq bwt-sa s ! i\} +
```

card {j. $j < length \ s \land s \ ! \ j = bwt\text{-sa} \ s \ ! \ i \land$ suffix s j < suffix s (bwt-perm s ! i)proof let ?bwt = bwt-sa s let ?idx = bwt-perm s let ?i = ?idx ! ilet ?v = ?bwt ! ilet $?A = \{j, j < length \ s \land j < i \land ?bwt \ ! \ j \neq ?v\}$ let $?B = \{j, j < length \ s \land s \mid j = ?v \land suffix \ s \ j < suffix \ s \ ?i\}$ let $?C = \{j, j < length \ s \land j < i \land ?bwt \ ! \ j = ?v\}$ have $P: \bigwedge x. [x < i; \neg x < length s] \Longrightarrow False$ using assms(2) dual-order.strict-trans by blast have $?A \cap ?C = \{\}$ **by** blast moreover have $?A \cup ?C = \{0..< i\}$ **by** (*safe*; *clarsimp dest*!: *P*) ultimately have i = card ?A + card ?Cby (metis (no-types, lifting) List.finite-set atLeastLessThan-upt card-Un-disjnt card-upt*disjnt-def finite-Un*) moreover have bij-betw (λx . ?idx ! x) ?C ?B **proof** (*intro bij-betwI'*; *safe*) fix x yassume x < length s y < length s ?idx ! x = ?idx ! ywith *perm-distinct-iff*[OF map-bwt-indexes-perm, of s] show x = y**by** (*simp add: bwt-perm-length nth-eq-iff-index-eq*) \mathbf{next} fix xassume x < length swith map-bwt-indexes-perm[of s] **show** ?*idx* ! x < length susing *perm-nth-ex* by *blast* \mathbf{next} fix xassume $x < length \ s \ bwt-sa \ s \ ! \ x = ?v$ then show s ! (?idx ! x) = ?vusing bwt-perm-s-nth by auto \mathbf{next} fix xassume x < length s x < i bwt-sa s ! x = ?vthen show suffix s (?idx ! x) < suffix s ?i using bwt-relative-order [OF assms(1) - assms(2), of x] assms(2) bwt-perm-s-nth **by** *fastforce* \mathbf{next}

fix xassume Q: $x < length \ s \ s \ ! \ x = ?v \ suffix \ s \ x < suffix \ s \ ?i$ **from** *perm-nth*[*OF map-bwt-indexes-perm*[*of s*, *symmetric*], simplified length-map sa-length length-upt] have $\exists y < length s. x = ?idx ! y$ using Q(1) bwt-perm-length by auto then obtain y where y < length sx = ?idx ! yby blast moreover from Q(2) calculation have ?bwt ! y = ?vby (simp add: bwt-perm-s-nth) moreover have y < i**proof** (*rule ccontr*) assume $\neg y < i$ hence $i \leq y$ by simp moreover from $Q(3) \langle x = ?idx ! y \rangle$ have $i = y \Longrightarrow$ False by blast moreover have $i < y \Longrightarrow False$ proof assume i < yfrom *bwt-relative-order*[OF $assms(1) \langle i < y \rangle \langle y < - \rangle$] $Q(2) \langle x = ?idx ! y \rangle$ have suffix s ?i < suffix s (?idx ! y)by (simp add: bwt-perm-s-nth assms(2)) with $Q(3) \langle x = ?idx \mid y \rangle$ show False using order.asym by blast qed ultimately show False using *nat-less-le* by *blast* \mathbf{qed} ultimately show $\exists y \in ?C. x = bwt\text{-}perm \ s \ ! y$ **by** blast qed hence card ?C = card ?Busing bij-betw-same-card by blast ultimately show ?thesis by presburger qed

lemma *bwt-perm-to-sa-idx*: assumes valid-list s i < length sand **shows** $\exists k < length s. sa s ! k = bwt-perm s ! i \land$ $k = card \{j. j < length \ s \land s \mid j < bwt\text{-}sa \ s \mid i\} +$ card {j. $j < length \ s \land s \ ! \ j = bwt-sa \ s \ ! \ i \land$ $suffix \ s \ j < suffix \ s \ (bwt-perm \ s \ ! \ i)$ proof let ?bwt = bwt-sa s let ?v = ?bwt ! ilet ?i = bwt-perm s ! ilet $?A = \{j, j < length \ s \land s \mid j < ?v\}$ let $?B = \{j, j < length s \land s \mid j = ?v \land suffix s j < suffix s ?i\}$ have $\exists k < length s. sa s ! k = ?i$ by (metis assms bwt-perm-nth ex-sa-nth mod-less-divisor valid-list-length) then obtain k where k < length ssa s ! k = ?i**by** *blast* moreover have $s ! (sa \ s ! k) = ?v$ using assms(2) bwt-perm-s-nth calculation(2) by presburger with *sa-card-s-idx*[*OF calculation*(1)] have k = card ?A + card ?Bby (metis calculation(2)) ultimately show ?thesis **by** blast qed **corollary** *bwt-perm-eq*: fixes $s :: ('a :: \{linorder, order-bot\})$ list fixes i :: natassumes valid-list s and i < length sshows bwt-perm s ! i =sa s ! (card {j. $j < length \ s \land s \mid j < bwt$ -sa s ! i} + card { $j. j < length \ s \land s \ ! \ j = bwt-sa \ s \ ! \ i \land$ suffix s j < suffix s (bwt-perm s ! i)} using assms bwt-perm-to-sa-idx by presburger

13.2 BWT Rank Properties

lemma bwt-perm-rank-nth: **fixes** $s :: ('a :: \{linorder, order-bot\})$ list **fixes** i :: nat **assumes** valid-list s**and** i < length s shows rank (bwt-sa s) (bwt-sa s ! i) i =card {j. $j < length \ s \land s \ ! \ j = bwt-sa \ s \ ! \ i \land$ suffix s j < suffix s (bwt-perm s ! i)proof let ?bwt = bwt-sa s let ?idx = bwt-perm s let ?i = ?idx ! ilet ?v = ?bwt ! ilet $?A = \{j, j < length \ s \land s \mid j = ?v \land suffix \ s \ j < suffix \ s \ ?i\}$ let $?B = \{j, j < length ?bwt \land j < i \land ?bwt ! j = ?v\}$ let $?C = \{j, j < length \ s \land j < i \land ?bwt \ ! \ j = ?v\}$ **from** valid-list-length-ex[OF assms(1)]obtain n where length s = Suc n**by** blast **from** rank-card-spec[of ?bwt ?v i] have rank ?bwt ?v i = card ?B. moreover have ?B = ?C**by** (*simp add: bwt-sa-length sa-length*) moreover have bij-betw (λx . ?idx ! x) ?C ?A **proof** (rule bij-betwI'; safe) fix x yassume x < length s y < length s ?idx ! x = ?idx ! ythen show x = yby (metis map-bwt-indexes-perm bwt-perm-length nth-eq-iff-index-eq perm-distinct-set-of-upt-iff) \mathbf{next} fix xassume x < length sthen show ?idx ! x < length susing map-bwt-indexes-perm perm-nth-ex by blast \mathbf{next} fix xassume $x < length \ s \ x < i \ ?bwt \ ! \ x = \ ?v$ then show s ! (?idx ! x) = ?vusing *bwt-perm-s-nth* by *auto* \mathbf{next} fix xassume $x < length \ s \ x < i \ ?bwt \ ! \ x = ?v$ then show suffix s (?idx ! x) < suffix s ?i $\mathbf{by} \ (simp \ add: \ assms(1,2) \ bwt-relative-order \ bwt-perm-s-nth)$ \mathbf{next} fix xassume $x < length \ s \ s \ ! \ x = ?v \ suffix \ s \ x < suffix \ s \ ?i$

```
from perm-nth[OF map-bwt-indexes-perm[of s, symmetric],
                simplified length-map sa-length length-upt, of x]
   have \exists y < length s. x = ?idx ! y
     using \langle x < length s \rangle bwt-perm-length by auto
   then obtain y where
     y < length s
     x = ?idx ! y
     by blast
   moreover
   from calculation \langle s \mid x = ?v \rangle
   have ?bwt ! y = ?v
     using bwt-perm-s-nth by presburger
   moreover
   have y < i
   proof (rule ccontr)
     assume \neg y < i
     hence i \leq y
       by simp
     moreover
     from \langle suffix \ s \ x < suffix \ s \ ?i \rangle \ \langle x = ?idx \ ! \ y \rangle
     have y = i \Longrightarrow False
       by blast
     moreover
     have i < y \Longrightarrow False
     proof -
       assume i < y
       with bwt-relative-order [OF assms(1) \langle i < y \rangle \langle y < - \rangle] \langle x = ?idx \mid y \rangle \langle s \mid x
= bwt-sa s ! i>
       have suffix s ?i < suffix s x
         using assms(2) bwt-perm-s-nth by presburger
       with \langle suffix \ s \ x < suffix \ s \ ?i \rangle
       show False
         using less-not-sym by blast
     qed
     ultimately show False
       by linarith
   \mathbf{qed}
   ultimately show \exists y \in ?C. x = bwt\text{-}perm \ s \ ! y
     by blast
 \mathbf{qed}
 hence card ?C = card ?A
   using bij-betw-same-card by blast
  ultimately show ?thesis
   by presburger
qed
lemma bwt-sa-card-rank-s-idx:
 fixes s :: ('a :: \{linorder, order-bot\}) list
```

```
fixes i :: nat
```

assumes valid-list s and i < length sshows $i = card \{j. j < length s \land j < i \land bwt\text{-sa } s \mid j \neq bwt\text{-sa } s \mid i\} + rank (bwt\text{-sa } s) (bwt\text{-sa } s \mid i) i$ using assms bwt-sa-card-s-idx bwt-perm-rank-nth by presburger

13.3 Suffix Array and BWT Rank

lemma *sa-bwt-perm-same-rank*: fixes $s :: ('a :: \{linorder, order-bot\})$ list fixes i j :: natassumes valid-list s and i < length sand j < length sand $sa \ s \ ! \ i = bwt\text{-}perm \ s \ ! \ j$ shows rank (sort s) (s ! (sa s ! i)) i = rank (bwt-sa s) (bwt-sa s ! j) j proof let $?i = sa \ s \ ! \ i$ let ?v = s ! ?ilet $?A = \{j, j < length \ s \land s \mid j = ?v \land suffix \ s \ j < suffix \ s \ ?i\}$ have *bwt-sa* $s \mid j = ?v$ using bwt-perm-s-nth[OF assms(3)] assms(4) by presburger **from** sa-rank-nth[OF assms(2)] have rank (sort s) ?v i = card ?A. moreover **from** bwt-perm-rank-nth[OF assms(1,3), simplified assms(4)[symmetric]] $\langle bwt$ -sa s ! j = ?vhave rank (bwt-sa s) (bwt-sa s ! j) j = card ?A by simp ultimately show ?thesis by simp qed

Theorem 3.17 from [3]: Same Rank Rank for each symbol is the same in the BWT and suffix array

lemma rank-same-sa-bwt-perm:

```
fixes s :: ('a :: \{linorder, order-bot\}) list
 fixes i j :: nat
 fixes v :: 'a
 assumes valid-list s
          i < length s
 and
          j < length s
 and
 and
          s \mid (sa \ s \mid i) = v
 and
          bwt-sa s ! j = v
          rank (sort s) v i = rank (bwt-sa s) v j
 and
shows sa s \mid i = bwt-perm s \mid j
proof -
```

let $?A = \{j, j < length \ s \land s \mid j < v\}$ **from** sa-card-rank-s-idx[OF assms(2), simplified assms(4)] have i = card ?A + rank (sort s) v i. moreover **from** bwt-perm-rank-nth[OF assms(1,3), simplified assms(5)] bwt-perm-eq[OF assms(1,3), simplified assms(5)] have bwt-perm $s \mid j = sa \ s \mid (card \ ?A + rank \ (bwt-sa \ s) \ v \ j)$ by presburger with assms(6)have bwt-perm $s \mid j = sa \ s \mid (card \ ?A + rank \ (sort \ s) \ v \ i)$ by simp ultimately show *?thesis* by simp qed **lemma** rank-bwt-card-suffix: fixes $s :: ('a :: \{linorder, order-bot\})$ list fixes i :: natfixes a :: 'aassumes i < length sshows rank (bwt-sa s) a i =card {k. $k < length \ s \land k < i \land bwt-sa \ s \ l \ k = a \land$ $a \# suffix \ s \ (sa \ s \ ! \ k) < a \# suffix \ s \ (sa \ s \ ! \ i) \}$ proof let $?X = \{j, j < length (bwt-sa s) \land j < i \land bwt-sa s ! j = a\}$ let $?Y = \{k. \ k < length \ s \land k < i \land bwt-sa \ s \ ! \ k = a \land$ $a \# suffix \ s \ (sa \ s \ ! \ k) < a \# suffix \ s \ (sa \ s \ ! \ i) \}$ **from** rank-card-spec[of bwt-sa s a i] have rank (bwt-sa s) a i = card ?X. moreover have $?Y \subset ?X$ using bwt-sa-length by auto moreover have $?X \subseteq ?Y$ **proof** safe fix xassume x < length (bwt-sa s) then show x < length s**by** (*simp add: bwt-sa-length*) \mathbf{next} fix xassume x < length (bwt-sa s) x < i a = bwt-sa s ! x with sorted-wrt-mapD[OF sa-g-sorted, of x i s] show bwt-sa $s \mid x \#$ suffix s (sa $s \mid x$) < bwt-sa $s \mid x \#$ suffix s (sa $s \mid i$) **by** (*simp add: assms sa-length*) ged ultimately show ?thesis by force

qed

```
lemma sa-to-bwt-perm-idx:
 fixes s :: ('a :: \{linorder, order-bot\}) list
 fixes i :: nat
 assumes valid-list s
          i < length s
 and
shows sa s ! i =
      bwt-perm s \mid (select \ (bwt-sa s) \ (s \mid (sa \ s \mid i)) \ (rank \ (sort \ s) \ (s \mid (sa \ s \mid i)) \ i))
proof -
 let ?a = s ! (sa s ! i)
 let ?r1 = rank (sort s) ?a i
 let ?i = select (bwt-sa s) ?a ?r1
 let ?r2 = rank (bwt-sa s) ?a ?i
 have ?r1 < count-list (sort s) ?a
   by (simp add: assms(2) rank-upper-bound sort-sa-nth)
 hence ?r1 < count-list (bwt-sa s) ?a
   by (metis bwt-sa-perm count-list-perm mset-sort)
 hence ?i < length (bwt-sa s)
   by (metis rank-length select-upper-bound)
 hence ?r1 = ?r2 \land bwt-sa s ! ?i = ?a
   by (metis rank-select select-nth-alt)
  with rank-same-sa-bwt-perm[OF assms, of ?i ?a]
 show ?thesis
   using \langle ?i < length (bwt-sa s) \rangle bwt-sa-length by fastforce
qed
lemma suffix-bwt-perm-sa:
 fixes s :: ('a :: \{linorder, order-bot\}) list
 fixes i :: nat
 assumes valid-list s
          i < length s
 and
 and
          bwt-sa s ! i \neq bot
shows suffix s (bwt-perm s \mid i) = bwt-sa s \mid i \# suffix s (sa s \mid i)
proof -
 from bwt-sa-nth[OF assms(2)]
 have bwt-sa s \mid i = s \mid ((sa \ s \mid i + length \ s - 1) \mod length \ s).
 moreover
  have sa s ! i \neq 0
  by (metis add-diff-cancel-left' assms(1,3) calculation diff-less diff-zero last-conv-nth
```

```
length-greater-0-conv less-one mod-less valid-list-def)

ultimately have bwt-sa s \mid i = s \mid (sa \ s \mid i - 1)

by (metis Nat.add-diff-assoc2 One-nat-def Suc-lessD Suc-pred assms(2) bot-nat-0.not-eq-extremum
```

 $less-Suc-eq-le\ linorder-not-less\ mod-add-self2\ mod-if\ sa-nth-ex)$ hence bwt-sa s ! i # suffix s (sa s ! i) = suffix s (sa s ! i - 1) by (metis\ Suc-lessD <sa s ! i \neq 0> add-diff-inverse-nat\ assms(2)\ less-one

14 Inverse Burrows-Wheeler Transform

Inverse BWT algorithm obtained from [6]

14.1 Abstract Versions

context Suffix-Array-General begin

These are abstract because they use additional information about the original string and its suffix array.

Definition 3.15 from [3]: Abstract LF-Mapping

fun *lf-map-abs* :: 'a *list* \Rightarrow *nat* \Rightarrow *nat* **where** *lf-map-abs* s *i* = select (sort s) (bwt-sa s ! i) (rank (bwt-sa s) (bwt-sa s ! i) i)

Definition 3.16 from [3]: Inverse BWT Permutation

fun *ibwt-perm-abs* :: $nat \Rightarrow 'a \ list \Rightarrow nat \Rightarrow nat \ list$ **where** *ibwt-perm-abs* 0 - - = [] |*ibwt-perm-abs* $(Suc \ n) \ s \ i = ibwt-perm-abs \ n \ s \ (lf-map-abs \ s \ i) @ [i]$

 \mathbf{end}

14.2 Concrete Versions

These are concrete because they only rely on the BWT-transformed sequence without any additional information.

Definition 3.14 from [3]: Inverse BWT - LF-mapping

fun *lf-map-conc* ::: ('a ::: {*linorder*, *order-bot*}) *list* \Rightarrow 'a *list* \Rightarrow *nat* \Rightarrow *nat* **where**

lf-map-conc ss bs i = (select ss (bs ! i) 0) + (rank bs (bs ! i) i)

fun *ibwt-perm-conc* :: *nat* \Rightarrow (*'a* ::: {*linorder*, *order-bot*}) *list* \Rightarrow *'a list* \Rightarrow *nat* \Rightarrow *nat list*

where

ibwt-perm-conc 0 - - - = []

ibwt-perm-conc (Suc n) ss b
si = ibwt-perm-conc n ss bs (lf-map-conc ss bs i)
 $@\ [i]$

Definition 3.14 from [3]: Inverse BWT - Inverse BWT Rotated Subsequence

fun *ibwtn* :: $nat \Rightarrow ('a :: \{linorder, order-bot\})$ *list* \Rightarrow *'a list* \Rightarrow *nat* \Rightarrow *'a list* **where**

 $ibwtn \ 0 \ - \ - \ - = [] \mid$

ibwtn (Suc n) ss bs i = ibwtn n ss bs (lf-map-conc ss bs i) @ [bs ! i]

Definition 3.14 from [3]: Inverse BWT

fun *ibwt* :: ('a :: {*linorder*, *order-bot*}) *list* \Rightarrow 'a *list* **where** *ibwt* bs = *ibwtn* (*length* bs) (sort bs) bs (select bs bot 0)

15 List Filter

lemma *filter-nth-app-upt*: filter $(\lambda i. P(xs \mid i)) [0..< length xs] = filter (\lambda i. P((xs @ ys) \mid i)) [0..< length$ xs**by** (*induct xs arbitrary: ys rule: rev-induct; simp*) **lemma** *filter-eq-nth-upt*: filter $P xs = map (\lambda i. xs ! i) (filter (\lambda i. P (xs ! i)) [0..< length xs])$ **proof** (*induct xs rule: rev-induct*) case Nil then show ?case by simp \mathbf{next} **case** $(snoc \ x \ xs)$ have $?case \leftrightarrow \rightarrow$ map ((!) xs) (filter (λi . P (xs ! i)) [0..<length xs]) = map ((!) (xs @ [x])) (filter (λi . P ((xs @ [x]) ! i)) [0..<length xs]) using snoc by simp moreover have map ((!) (xs @ [x])) (filter (λi . P ((xs @ [x]) ! i)) [0..<length xs]) = map ((!) (xs @ [x])) (filter (λi . P (xs ! i)) [0..<length xs]) using filter-nth-app-upt[of P xs [x]] by simp moreover have map ((!) xs) (filter (λi . P (xs ! i)) [0..<length xs]) =

```
map ((!) (xs @ [x])) (filter (\lambda i. P (xs ! i)) [0..<length xs])
   by (clarsimp simp: nth-append)
  ultimately show ?case
   by argo
qed
lemma distinct-filter-nth-upt:
  distinct (filter (\lambda i. P (xs ! i)) [\theta..<length xs])
 by simp
lemma filter-nth-upt-set:
  set (filter (\lambda i. P(xs \mid i)) [0..<length xs]) = {i. i < length xs \land P(xs \mid i)}
 using set-filter by simp
lemma filter-length-upt:
 length (filter (\lambda i. P(xs ! i)) [0..<length xs]) = card {i. i < length xs \land P(xs ! i)
i)\}
 by (metis distinct-card distinct-filter-nth-upt filter-nth-upt-set)
lemma perm-filter-length:
 xs <^{\sim} > ys \Longrightarrow
  length (filter (\lambda i. P (xs ! i)) [0..<length xs])
```

= length (filter (λi . P (ys ! i)) [0..<length ys]) by (metis filter-eq-nth-upt length-map mset-filter perm-length)

16 Verification of the Inverse Burrows-Wheeler Transform

context Suffix-Array-General begin

16.1 LF-Mapping Simple Properties

lemma lf-map-abs-less-length: fixes s :: 'a list fixes i j :: nat assumes i < length sshows lf-map-abs s i < length s proof let ?v = bwt-sa s ! i let ?r = rank (bwt-sa s) ?v i let ?i = lf-map-abs s i have ?i = select (sort s) ?v ?r by (metis lf-map-abs.simps) have ?r < count-list (bwt-sa s) ?v by (simp add: assms bwt-sa-length rank-upper-bound)

moreover

```
have bwt-sa s <\sim \sim > sort s
   using bwt-sa-perm by auto
 ultimately have ?r < count-list (sort s) ?v
   by (metis (no-types, lifting) count-list-perm)
 with rank-length[of sort s ?v, symmetric]
 have ?r < rank (sort s) ?v (length s)
   by simp
 with select-upper-bound
 have select (sort s) ?v ?r < length (sort s)
   by metis
 with \langle ?i = select (sort s) ?v ?r \rangle
 show ?thesis
   by (metis length-sort)
\mathbf{qed}
corollary lf-map-abs-less-length-funpow:
 fixes s :: 'a \ list
 fixes i j :: nat
 assumes i < length s
shows ((lf-map-abs \ s) \ k) \ i < length \ s
proof (induct k)
 case \theta
 then show ?case
   using assms by auto
\mathbf{next}
 case (Suc k)
 then show ?case
   by (metis comp-apply funpow.simps(2) lf-map-abs-less-length)
qed
lemma lf-map-abs-equiv:
 fixes s :: ('a :: \{linorder, order-bot\}) list
 fixes i r :: nat
 fixes v :: 'a
 assumes i < length (bwt-sa s)
 and
          v = bwt-sa s ! i
 and
          r = rank (bwt-sa s) v i
shows lf-map-abs s \ i = card \ \{j, j < length \ (bwt-sa \ s) \land bwt-sa \ s \ j < v\} + r
proof –
 have \exists k. length s = Suc k
   by (metis assms(1) bwt-sa-length less-nat-zero-code not0-implies-Suc)
 then obtain n where
   length s = Suc n
   by blast
```

let $?P = (\lambda x. x < v)$

have *lf-map-abs* $s \ i = select \ (sort \ s) \ v \ r$

by $(metis \ assms(2) \ assms(3) \ lf-map-abs.simps)$ moreover **from** rank-upper-bound[OF assms(1) assms(2)[symmetric]] assms(3)have r < count-list (bwt-sa s) vby simp hence r < count-list (sort s) vusing count-list-perm[OF trans[OF bwt-sa-perm sort-perm]] by simp with sorted-select of sort s r vhave select (sort s) $v r = card \{j, j < length (sort s) \land sort s \mid j < v\} + r$ by simp moreover have length (filter (λx . ?P (sort s ! x)) [0..<length (sort s)]) $= card \{j. j < length (sort s) \land sort s ! j < v\}$ using filter-length-upt[of ?P sort s] by simp moreover have length (filter (λx . ?P (bwt-sa s ! x)) [0..<length (bwt-sa s)]) $= card \{j, j < length (bwt-sa s) \land bwt-sa s \mid j < v\}$ using filter-length-upt[of ?P bwt-sa s] by simp ultimately show ?thesis using perm-filter-length[OF trans[OF bwt-sa-perm sort-perm], of ?P s] by presburger qed

16.2 LF-Mapping Correctness

lemma sa-lf-map-abs: assumes valid-list s and i < length sshows sa s ! (lf-map-abs s i) = (sa s ! i + length s - Suc 0) mod (length s) proof - let ?v = bwt-sa s ! i let ?v = bwt-sa s ! i let ?r = rank (bwt-sa s) ?v i let ?i = lf-map-abs s i have ?i = select (sort s) ?v ?r by (metis lf-map-abs.simps) from lf-map-abs-less-length[OF assms(2)] have ?i < length s . hence select (sort s) ?v ?r < length (sort s) by (metis length-sort lf-map-abs.simps)

with rank-select have rank (sort s) ?v (select (sort s) ?v ?r) = ?r by metis with <?i = select (sort s) ?v ?r> have rank (sort s) ?v ?i = ?r by simp moreover have ?i < length s</pre>

using (select (sort s) ?v ?r < length (sort s)) (?i = select (sort s) ?v ?r) by automoreover ł **from** select-nth[of sort s ?v ?r ?i] have sort $s \mid lf$ -map-abs $s \mid i = bwt$ -sa $s \mid i$ by (metis $\langle ?i = select (sort s) ?v ?r \rangle$ calculation(2) length-sort) moreover have $s ! (sa \ s ! \ ?i) = sort \ s ! \ ?i$ using $\langle ?i < length s \rangle$ sort-sa-nth by presburger ultimately have $s ! (sa \ s ! ?i) = ?v$ by presburger } ultimately have sa s ! ?i = bwt-perm s ! iusing rank-same-sa-bwt-perm[OF assms(1)- assms(2), of ?i ?v] **by** blast then show ?thesis using bwt-perm-nth[OF assms(2)] by simp qed Theorem 3.18 from [3]: Abstract LF-Mapping Correctness **corollary** *bwt-perm-lf-map-abs*: fixes $s :: ('a :: \{linorder, order-bot\})$ list fixes i :: natassumes valid-list s and i < length sshows bwt-perm $s ! (lf-map-abs \ s \ i) = (bwt-perm \ s \ ! \ i + length \ s - Suc \ 0) \mod$ (length s)by (metis One-nat-def bwt-perm-nth assms(1,2) lf-map-abs-less-length sa-lf-map-abs)

16.3 Backwards Inverse BWT Simple Properties

```
lemma ibwt-perm-abs-length:
 fixes s :: 'a \ list
 fixes n i :: nat
 shows length (ibwt-perm-abs n \ s \ i) = n
 by (induct n arbitrary: i; simp)
lemma ibwt-perm-abs-nth:
 fixes s :: 'a \ list
 fixes k n i :: nat
 assumes k \leq n
 shows (ibwt-perm-abs (Suc n) s i) ! k = ((lf-map-abs s) (n-k)) i
using assms
proof (induct n arbitrary: i k)
 case \theta
 then show ?case
   by simp
\mathbf{next}
```

```
case (Suc n i k)
     note IH = this
    have A: ibwt-perm-abs (Suc (Suc n)) s i = ibwt-perm-abs (Suc n) s (lf-map-abs
s i) @ [i]
         by simp
     have k \leq n \implies ?case
     proof -
         assume k \leq n
         with IH(1)[of \ k \ lf-map-abs \ s \ i]
         have ibwt-perm-abs (Suc n) s (lf-map-abs s i) ! k = (lf-map-abs s \frown (Suc n - abs s \frown (S
k)) i
               by (metis Suc-diff-le comp-apply funpow.simps(2) funpow-swap1)
         then show ?thesis
               by (metis \langle k \leq n \rangle A ibwt-perm-abs-length le-imp-less-Suc nth-append)
     qed
     moreover
     have k = Suc \ n \implies ?case
     proof –
         assume k = Suc n
         with ibwt-perm-abs-length [of Suc (Suc n) s i] A
         have ibwt-perm-abs (Suc (Suc n)) s i ! k = i
               by (metis ibwt-perm-abs-length nth-append-length)
         moreover
         have (lf\text{-map-abs } s \frown (Suc \ n-k)) \ i = i
               by (simp add: \langle k = Suc n \rangle)
         ultimately show ?thesis
              by presburger
     qed
     ultimately show ?case
         using Suc.prems le-Suc-eq by blast
\mathbf{qed}
corollary ibwt-perm-abs-alt-nth:
     fixes s :: 'a \ list
    fixes n \ i \ k :: nat
    assumes k < n
    shows (ibwt-perm-abs n \ s \ i) ! k = ((lf-map-abs \ s) \frown (n - Suc \ k)) \ i
   by (metis assms add-diff-cancel-left' diff-diff-left le-add1 less-imp-Suc-add plus-1-eq-Suc
                              ibwt-perm-abs-nth)
lemma ibwt-perm-abs-nth-le-length:
     fixes s :: 'a \ list
     fixes n \ i \ k :: nat
    assumes i < length s
     assumes k < n
     shows (ibwt-perm-abs n \ s \ i) ! k < length \ s
```

using assms ibwt-perm-abs-alt-nth lf-map-abs-less-length-funpow by force

lemma *ibwt-perm-abs-map-ver*:

ibwt-perm-abs $n \ s \ i = map \ (\lambda x. \ ((lf-map-abs \ s) \ x) \ i) \ (rev \ [0..< n])$ **proof** (*intro list-eq-iff-nth-eq*[*THEN iffD2*] *conjI allI impI*) **show** length (*ibwt-perm-abs* n s i) = length (map (λx . (lf-map-abs $s \frown x$) i) (rev [0..< n]))**by** (*simp add: ibwt-perm-abs-length*) \mathbf{next} fix jassume j < length (*ibwt-perm-abs* $n \ s \ i$) hence j < n**by** (*simp add: ibwt-perm-abs-length*) have map (λx . (lf-map-abs s $\widehat{\ } x$) i) (rev [0..< n]) ! j = $(\lambda x. (lf-map-abs \ s \ \ x) \ i) \ (rev \ [0..< n] \ ! j)$ by (simp add: $\langle j < n \rangle$) moreover have $(\lambda x. (lf-map-abs \ s \ \ x) \ i) \ (rev \ [0..<n] ! j) = (lf-map-abs \ s \ \ (n - Suc$ j)) iby (metis $\langle j < n \rangle$ add-cancel-right-left diff-Suc-less diff-zero length-greater-0-conv *length-upt less-nat-zero-code* nth-upt rev-nth) ultimately show *ibwt-perm-abs* $n \ s \ i \ j = map (\lambda x. (lf-map-abs \ s \ x) \ i) (rev$ [0..< n]) ! jusing *ibwt-perm-abs-alt-nth*[OF $\langle j < n \rangle$, of s i] by presburger qed

16.4 Backwards Inverse BWT Correctness

lemma inc-one-bounded-sa-ibwt-perm-abs: fixes $s :: ('a :: \{linorder, order-bot\})$ list fixes i n :: natassumes valid-list s and i < length s**shows** inc-one-bounded (length s) (map ((!) (sa s)) (ibwt-perm-abs n s i)) (is inc-one-bounded ?n ?xs) unfolding inc-one-bounded-def **proof** (safe) fix jassume Suc j < length (map ((!) (sa s)) (ibwt-perm-abs n s i))hence Suc j < n**by** (*simp add: ibwt-perm-abs-length*) hence $\exists k. n = Suc k$ using less-imp-Suc-add by blast then obtain k where n = Suc kby blast

let $?i = ((lf\text{-map-abs } s) \frown (k - Suc j)) i$

have *ibwt-perm-abs* $n \ s \ i \ Suc \ j = ?i$ by (metis $(Suc \ j < n) \ (n = Suc \ k)$ less-Suc-eq-le ibwt-perm-abs-nth) moreover ł have *ibwt-perm-abs* $n \ s \ i \ j = ((lf-map-abs \ s) \frown (k - j)) \ i$ by (metis Suc-less-SucD (Suc j < n) (n = Suc k) nless-le ibwt-perm-abs-nth) moreover have $((lf\text{-map-abs } s) \cap (k - j))$ i = lf-map-abs s ?iusing $(Suc \ j < n) \ (n = Suc \ k) \ less-imp-Suc-add$ by fastforce ultimately have *ibwt-perm-abs* $n \ s \ i \ j = lf$ -map-abs $s \ ?i$ by presburger } moreover ł have ?i < length s**by** (*simp add: assms lf-map-abs-less-length-funpow*) with sa-lf-map-abs[OF assms(1), of ?i]have sa s ! lf-map-abs s $?i = (sa \ s \ ! \ ?i + length \ s - Suc \ 0) \mod length \ s$ by *fastforce* hence Suc (sa s ! lf-map-abs s ?i) mod length s = Suc ((sa s ! ?i + length s - Suc 0) mod length s) mod length s by simp moreover have Suc ((sa s ! ?i + length s - Suc 0) mod length s) mod length s = sa s ! ?iusing $\langle ?i < length s \rangle$ assms(1) mod-Suc-eq sa-nth-ex valid-list-length by fastforce ultimately have sa s ! ?i = Suc (sa s ! lf-map-abs s ?i) mod length s by presburger } ultimately have sa s ! (ibwt-perm-abs n s i ! Suc j) = Suc (sa s ! (ibwt-perm-abs n s i ! j)) mod length sby presburger then show map ((!) (sa s)) (*ibwt-perm-abs* n s i) ! Suc j =Suc (map ((!) (sa s)) (ibwt-perm-abs n s i) ! j) mod length susing $(Suc \ j < length \ (map \ ((!) \ (sa \ s)) \ (ibwt-perm-abs \ n \ s \ i)))$ by auto next fix jassume j < length (map ((!) (sa s)) (ibwt-perm-abs n s i))hence j < n**by** (*simp add: ibwt-perm-abs-length*) **hence***ibwt-perm-abs* $n \ s \ i \ j = ((lf-map-abs \ s) \frown (n - Suc \ j)) \ i$ using *ibwt-perm-abs-alt-nth* by *blast* moreover have $((lf\text{-map-abs } s) \cap (n - Suc j))$ i < length susing assms lf-map-abs-less-length-funpow by blast hence sa s ! $(((lf-map-abs s) \frown (n - Suc j)) i) < length s$ using sa-nth-ex by blast

```
ultimately have sa s ! (ibwt-perm-abs n s i ! j) < length s
   by presburger
 then show map ((!) (sa s)) (ibwt-perm-abs n s i) ! j < length s
   by (simp add: \langle j < n \rangle ibwt-perm-abs-length)
qed
corollary is-rot-sublist-sa-ibwt-perm-abs:
 fixes s :: ('a :: \{linorder, order-bot\}) list
 fixes i n :: nat
 assumes valid-list s
 and
          i < length s
 and
          n \leq length s
shows is-rot-sublist [0..< length s] (map ((!) (sa s)) (ibwt-perm-abs n s i))
 by (simp add: assms inc-one-bounded-is-rot-sublist inc-one-bounded-sa-ibwt-perm-abs
             ibwt-perm-abs-length)
lemma inc-one-bounded-bwt-perm-ibwt-perm-abs:
 fixes s :: ('a :: \{linorder, order-bot\}) list
 fixes i n :: nat
 assumes valid-list s
 and
          i < length s
shows inc-one-bounded (length s) (map ((!) (bwt-perm s)) (ibwt-perm-abs n s i))
 unfolding inc-one-bounded-def
proof safe
 fix j
 assume Suc j < length (map ((!) (bwt-perm s)) (ibwt-perm-abs n s i))
 hence Suc j < n
   by (simp add: ibwt-perm-abs-length)
 hence \exists k. n = Suc k
   using less-imp-Suc-add by auto
 then obtain k where
   n = Suc k
   by blast
 let ?i = ((lf \text{-map-abs } s) \frown (k - Suc j)) i
 from ibwt-perm-abs-nth[of Suc \ j \ k \ s \ i]
 have ibwt-perm-abs n \ s \ i \ Suc \ j = \ ?i
   using (Suc \ j < n) \ (n = Suc \ k) \ less-Suc-eq-le by blast
 moreover
 {
   have ibwt-perm-abs n \ s \ i \ j = ((lf-map-abs \ s) \frown (k - j)) \ i
    by (metis Suc-less-SucD (Suc j < n) (n = Suc k) nless-le ibwt-perm-abs-nth)
   moreover
   have ((lf\text{-map-abs } s) (k - j)) = lf\text{-map-abs } s ?i
     using (Suc \ j < n) \ (n = Suc \ k) less-imp-Suc-add by fastforce
   ultimately have ibwt-perm-abs n \ s \ i \ j = lf-map-abs s \ ?i
     by presburger
 }
 moreover
```

{

have ?i < length s**by** (*simp add: assms lf-map-abs-less-length-funpow*) with bwt-perm-lf-map-abs[OF assms(1), of ?i]have bwt-perm $s \mid lf$ -map-abs $s ?i = (bwt-perm s \mid ?i + length s - Suc 0) mod$ length sby blast hence Suc (bwt-perm s ! lf-map-abs s ?i) mod length s =Suc $((bwt-perm \ s \ ! \ ?i + length \ s - Suc \ 0) \mod length \ s) \mod length \ s$ by presburger moreover **from** valid-list-length-ex[OF assms(1)]obtain n where length s = Suc nby blast hence Suc ((bwt-perm s ! ?i + length s - Suc 0) mod length s) mod length s =bwt-perm s ! ?iby (metis (no-types, lifting) Suc-pred bwt-perm-nth $\langle ?i < length s \rangle$ add-gr-0 assms(1)mod-Suc-eq mod-add-self2 mod-mod-trivial valid-list-length) ultimately have bwt-perm s ! ?i = Suc (bwt-perm s ! lf-map-abs s ?i) modlength sby presburger } **ultimately have** *bwt-perm s* ! (*ibwt-perm-abs n s i* ! *Suc j*) = Suc (bwt-perm s ! (ibwt-perm-abs n s i ! j)) mod length sby presburger then show map ((!) (bwt-perm s)) (ibwt-perm-abs $n \ s \ i$) ! Suc j =Suc (map ((!) (bwt-perm s)) (ibwt-perm-abs n s i) ! j) mod length susing $(Suc \ j < length \ (map \ ((!) \ (bwt-perm \ s)) \ (ibwt-perm-abs \ n \ s \ i)))$ by auto \mathbf{next} fix jassume j < length (map ((!) (bwt-perm s)) (ibwt-perm-abs n s i))hence j < n**by** (*simp add: ibwt-perm-abs-length*) hence $\exists k. n = Suc k$ using less-imp-Suc-add by blast then obtain k where n = Suc k**by** blast hence *ibwt-perm-abs* $n \ s \ i \ j = ((lf-map-abs \ s) \frown (k - j)) \ i$ by (metis $\langle j < n \rangle$ less-Suc-eq-le ibwt-perm-abs-nth) moreover have $((lf\text{-map-abs } s) \widehat{(k-j)}) \ i < length \ s$ using assms lf-map-abs-less-length-funpow by blast **hence** bwt-perm $s ! ((lf-map-abs s) \frown (k - j)) i < length s$ using map-bwt-indexes-perm perm-nth-ex by blast ultimately have bwt-perm $s ! (ibwt-perm-abs \ n \ s \ i ! j) < length \ s$ by presburger

then show map ((!) (bwt-perm s)) (ibwt-perm-abs $n \ s \ i$) ! $j < length \ s$ by (simp add: $\langle j < n \rangle$ ibwt-perm-abs-length) qed

Theorem 3.19 from [3]: Abstract Inverse BWT Permutation Rotated Sub-list

corollary *is-rot-sublist-bwt-perm-ibwt-perm-abs*: fixes $s :: ('a :: \{linorder, order-bot\})$ list fixes i n :: natassumes valid-list s i < length sand and n < length s**shows** is-rot-sublist [0..<length s] (map ((!) (bwt-perm s)) (ibwt-perm-abs n s i)) by (simp add: assms inc-one-bounded-is-rot-sublist inc-one-bounded-bwt-perm-ibwt-perm-abs *ibwt-perm-abs-length*) **lemma** *bwt-ibwt-perm-sa-lookup-idx*: **assumes** valid-list s **shows** map ((!) (bwt-perm s)) (ibwt-perm-abs (length s) s (select (bwt-sa s) bot $\theta))$ = [0.. < length s]proof **from** valid-list-length-ex[OF assms] obtain n where length s = Suc nby blast let ?i = select (bwt-sa s) bot 0let ?xs = ibwt-perm-abs (length s) s ?i have $bot \in set \ s$ by (metis assms in-set-conv-decomp valid-list-ex-def) hence $bot \in set (bwt-sa s)$ by (metis bwt-sa-perm perm-set-eq) hence count-list (bwt-sa s) bot > 0by (meson count-in) hence 0 < rank (bwt-sa s) bot (length (bwt-sa s)) by (metis rank-length) hence ?i < length (bwt-sa s)by (meson select-upper-bound) hence ?i < length s**by** (*metis bwt-sa-length*) with is-rot-sublist-bwt-perm-ibwt-perm-abs[OF assms, of ?i length s] $\langle length s =$ Suc n> have is-rot-sublist [0..<Suc n] (map ((!) (bwt-perm s)) ?xs) by (metis nle-le) moreover have length (map ((!) (bwt-perm s)) ?xs) = Suc nby (metis (length s = Suc n) length-map ibwt-perm-abs-length)

moreover

{ have (map ((!) (bwt-perm s)) ?xs) ! n = bwt-perm s ! ?iby (simp add: (length s = Suc n) nth-append ibwt-perm-abs-length) moreover have bwt-sa s ! ?i = botby (simp add: $\langle ?i < length (bwt-sa s) \rangle$ select-nth-alt) hence bwt-perm s ! ?i = nby (metis (length s = Suc n) (?i < length s) antisym-conv3 assms bwt-perm-nth bwt-perm-s-nth diff-Suc-1 mod-less-divisor not-less-eq valid-list-def) ultimately have (map ((!) (bwt-perm s)) ?xs) ! n = nby blast } ultimately show *?thesis* using *is-rot-sublist-upt-eq-upt-last*[of n map ((!) (*bwt-perm* s)) ?xs] **by** (metis (length s = Suc n)) qed **lemma** *map-bwt-sa-bwt-perm*: $\forall x \in set xs. x < length s \Longrightarrow$ map((!) (bwt-sa s)) xs = map((!) s) (map((!) (bwt-perm s)) xs)**by** (*simp add: bwt-perm-s-nth*) **theorem** *ibwt-perm-abs-bwt-sa-lookup-correct*: fixes $s :: ('a :: \{linorder, order-bot\})$ list assumes valid-list s **shows** map ((!) (bwt-sa s)) (ibwt-perm-abs (length s) s (select (bwt-sa s) bot θ)) = sproof let ?i = select (bwt-sa s) bot 0let ?xs = map((!) (bwt-perm s)) (ibwt-perm-abs (length s) s ?i)have $bot \in set s$ by (metis assms in-set-conv-decomp valid-list-ex-def) hence $bot \in set (bwt-sa s)$ **by** (*metis bwt-sa-perm perm-set-eq*) hence count-list (bwt-sa s) bot > 0by (meson count-in) hence 0 < rank (bwt-sa s) bot (length (bwt-sa s)) by (metis rank-length) hence ?i < length (bwt-sa s)by (meson select-upper-bound) hence ?i < length s**by** (*metis bwt-sa-length*) have map ((!) (bwt-sa s)) (ibwt-perm-abs (length s) s ?i) = map ((!) s) ?xs

```
nave map ((!) (bwt-sa s)) (bwt-perm-abs (length s) s (!) = map ((!) s) (:x)

proof (intro map-bwt-sa-bwt-perm ballI)

fix x
```

assume $x \in set$ (*ibwt-perm-abs* (*length s*) s ?*i*)

from *in-set-conv-nth*[*THEN iffD1*, *OF* $\langle x \in - \rangle$] obtain i where i < length (ibwt-perm-abs (length s) s ?i)*ibwt-perm-abs* (*length* s) s ?*i* ! i = xby blast with *ibwt-perm-abs-alt-nth*[of *i* length *s s* ?*i*] have $x = (lf\text{-map-abs } s \frown (length \ s - Suc \ i))$?i **by** (*metis ibwt-perm-abs-length*) moreover have $(lf\text{-map-abs } s \frown (length \ s - Suc \ i))$? $i < length \ s$ using $\langle ?i < length s \rangle$ assms lf-map-abs-less-length-funpow by presburger ultimately show x < length sby blast qed then show ?thesis using bwt-ibwt-perm-sa-lookup-idx[OF assms] map-nth by auto qed

16.5 Concretization

lemma *lf-map-abs-eq-conc*: $i < length \ s \implies lf$ -map-abs $s \ i = lf$ -map-conc (sort (bwt-sa s)) (bwt-sa s) i proof let ?v = bwt-sa s ! i let ?r = rank (bwt-sa s) ?v ilet ?ss = sort (bwt-sa s)**assume** i < length shence rank (bwt-sa s) ?v i < count-list (sort s) ?v using rank-upper-bound [of i bwt-sa s ?v] by (metis bwt-sa-length bwt-sa-perm count-list-perm mset-sort) with sorted-select of ?ss ?r ?v] have select ?ss ?v ?r = card $\{j, j < length ?ss \land ?ss ! j < ?v\} + ?r$ by (metis (full-types) bwt-sa-perm sorted-list-of-multiset-mset sorted-sort) moreover have sort s = sort ?ss **by** (*simp add: bwt-sa-perm properties-for-sort*) moreover have select (sort s) $?v ?r = card \{j, j < length (sort s) \land (sort s) ! j < ?v\} +$?rby (simp add: (rank (bwt-sa s) ?v i < count-list (sort s) ?v) sorted-select) ultimately show ?thesis by (metis (full-types) (rank (bwt-sa s) ?v i < count-list (sort s) ?v) bwt-sa-perm lf-map-abs.simps lf-map-conc.simps sorted-list-of-multiset-mset

sorted-select-0-plus sorted-sort)

 \mathbf{qed}

```
lemma ibwt-perm-abs-conc-eq:
 i < length \ s \implies ibwt-perm-abs n \ s \ i = ibwt-perm-conc n \ (sort \ (bwt-sa s)) \ (bwt-sa
s) i
proof (induct n arbitrary: i)
 case \theta
 then show ?case
   by auto
next
 case (Suc n)
 let ?ss = sort (bwt-sa s)
 let ?bs = bwt-sa s
 have ibwt-perm-abs (Suc n) s i = ibwt-perm-abs n s (lf-map-abs s i) @ [i]
   by simp
 moreover
 have ibwt-perm-conc (Suc n) ?ss ?bs i = ibwt-perm-conc n ?ss ?bs (lf-map-conc
(ss \ (bs \ i) \ (a) \ [i])
   by simp
 moreover
 have lf-map-abs s \ i = lf-map-conc ?ss ?bs i
   using Suc.prems lf-map-abs-eq-conc by blast
 moreover
 have lf-map-abs s i < length s
   using Suc.prems lf-map-abs-less-length by blast
 ultimately show ?case
   using Suc.hyps by presburger
\mathbf{qed}
theorem ibwtn-bwt-sa-lookup-correct:
 fixes s xs ys :: ('a :: \{linorder, order-bot\}) list
 assumes valid-list s
 and
          xs = sort (bwt-sa s)
 and
          ys = bwt-sa s
shows map ((!) ys) (ibwt-perm-conc (length ys) xs ys (select ys bot 0)) = s
proof -
 from ibwt-perm-abs-bwt-sa-lookup-correct[OF assms(1)]
 have map ((!) (bwt-sa s)) (ibwt-perm-abs (length s) s (select (bwt-sa s) bot <math>\theta))
= s.
 moreover
 have select (bwt-sa s) bot 0 < length s
  by (metis (no-types, lifting) assms(1) bot-nat-0.extremum-uniqueI bwt-sa-length
bwt-sa-perm
                      count-list-perm diff-Suc-1 last-conv-nth length-greater-0-conv
                          less-nat-zero-code rank-upper-bound sa-nth-ex select-spec
                            valid-list-def valid-list-sa-hd)
 with ibwt-perm-abs-conc-eq
```

have *ibwt-perm-abs* (length s) s (select (bwt-sa s) bot 0) =

```
ibwt-perm-conc (length ys) xs ys (select ys bot 0)
using assms(2) assms(3) bwt-sa-length by presburger
ultimately show ?thesis
using assms(3) by auto
qed
```

```
lemma ibwtn-eq-map-ibwt-perm-conc:

shows ibwtn n ss bs i = map ((!) bs) (ibwt-perm-conc n ss bs i)

by (induct n arbitrary: i; simp)
```

```
theorem ibwtn-correct:

fixes s xs ys :: ('a :: {linorder, order-bot}) list

assumes valid-list s

and xs = sort (bwt-sa s)

and ys = bwt-sa s

shows ibwtn (length ys) xs ys (select ys bot 0) = s

by (metis ibwtn-eq-map-ibwt-perm-conc ibwtn-bwt-sa-lookup-correct assms)
```

16.6 Inverse BWT Correctness

BWT (suffix array version) is invertible

theorem *ibwt-correct*: **fixes** $s :: ('a :: \{linorder, order-bot\})$ *list* **assumes** *valid-list* s **shows** *ibwt* (*bwt-sa* s) = s**by** (*simp* add: *assms ibwtn-correct*)

end

Theorem 3.20 from [3]: Correctness of the Inverse BWT

```
theorem ibwt-correct-canon:
fixes s :: ('a :: {linorder, order-bot}) list
assumes valid-list s
shows ibwt (bwt-canon s) = s
by (metis Suffix-Array-General.bwt-canon-eq-bwt-sa Suffix-Array-General.ibwt-correct
Suffix-Array-General-ex assms)
```

 \mathbf{end}

References

- R. Affeldt, J. Garrigue, X. Qi, and K. Tanaka. Proving tree algorithms for succinct data structures. In *Proc. Interactive Theorem Proving*, volume 141 of *LIPIcs*, pages 5:1–5:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
- [2] M. Burrows and D. Wheeler. A block-sorting lossless data compression algorithm. Technical report, Digital SRC Research Report, 1994.

- [3] L. Cheung, A. Moffat, and C. Rizkallah. Formalized Burrows-Wheeler Transform. In Proc. Ceritifed Programs and Proofs. ACM, 2025. To appear.
- [4] L. Cheung and C. Rizkallah. Formalized Burrows-Wheeler Transform (artefact), December 2024.
- [5] L. Cheung and C. Rizkallah. Formally verified suffix array construction. Archive of Formal Proofs, September 2024. https://isa-afp.org/entries/ SuffixArray.html, Formal proof development.
- [6] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In *Foundations of Computer Science*, pages 390–398. IEEE Computer Society, 2000.
- [7] U. Manber and E. W. Myers. Suffix arrays: A new method for on-line string searches. SIAM Journal on Computing, 22(5):935–948, 1993.