
Formalized Burrows-Wheeler Transform

Louis Cheung and Christine Rizkallah

March 17, 2025

Abstract

The Burrows-Wheeler transform (BWT) [2] is an invertible lossless
transformation that permutes input sequences into alternate sequences
of the same length that frequently contain long localized regions that
involve clusters consisting of just a few distinct symbols, and sometimes
also include long runs of same-symbol repetitions. Moreover, there is a
one-to-one correspondence between the BWT and suffix arrays [7]. As
a consequence, the BWT is widely used in data compression and as an
indexing data structure for pattern search. In this formalization [4],
we present the formal verification of both the BWT and its inverse,
building on a formalization of suffix arrays [5]. This is the artefact of
our CPP paper [3].

Contents
1 Nat Modulo Helper 3

2 Rotated Sublists 3

3 Counting 11
3.1 Count List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Rank Definition 19

5 Rank Properties 19
5.1 List Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Counting Properties . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Bound Properties . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4 Sorted Properties . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Select Definition 26

1



7 Select Properties 27
7.1 Length Properties . . . . . . . . . . . . . . . . . . . . . . . . 27
7.2 List Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.3 Bound Properties . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.4 Nth Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.5 Sorted Properties . . . . . . . . . . . . . . . . . . . . . . . . . 32

8 Rank and Select Properties 37
8.1 Correctness of Rank and Select . . . . . . . . . . . . . . . . . 37

8.1.1 Rank Correctness . . . . . . . . . . . . . . . . . . . . . 37
8.1.2 Select Correctness . . . . . . . . . . . . . . . . . . . . 37

8.2 Rank and Select . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.3 Sorted Properties . . . . . . . . . . . . . . . . . . . . . . . . . 39

9 Suffix Array Properties 40
9.1 Bijections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.2 Suffix Properties . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.3 General Properties . . . . . . . . . . . . . . . . . . . . . . . . 43
9.4 Nth Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.5 Valid List Properties . . . . . . . . . . . . . . . . . . . . . . . 45

10 Counting Properties on Suffix Arays 46
10.1 Counting Properties . . . . . . . . . . . . . . . . . . . . . . . 46
10.2 Ordering Properties . . . . . . . . . . . . . . . . . . . . . . . 51

11 Burrows-Wheeler Transform 53

12 BWT Verification 54
12.1 List Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
12.2 Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
12.3 BWT Equivalence . . . . . . . . . . . . . . . . . . . . . . . . 56

13 BWT and Suffix Array Correspondence 56
13.1 BWT Using Suffix Arrays . . . . . . . . . . . . . . . . . . . . 57
13.2 BWT Rank Properties . . . . . . . . . . . . . . . . . . . . . . 65
13.3 Suffix Array and BWT Rank . . . . . . . . . . . . . . . . . . 68

14 Inverse Burrows-Wheeler Transform 71
14.1 Abstract Versions . . . . . . . . . . . . . . . . . . . . . . . . . 71
14.2 Concrete Versions . . . . . . . . . . . . . . . . . . . . . . . . . 71

15 List Filter 72

2



16 Verification of the Inverse Burrows-Wheeler Transform 73
16.1 LF-Mapping Simple Properties . . . . . . . . . . . . . . . . . 73
16.2 LF-Mapping Correctness . . . . . . . . . . . . . . . . . . . . . 75
16.3 Backwards Inverse BWT Simple Properties . . . . . . . . . . 76
16.4 Backwards Inverse BWT Correctness . . . . . . . . . . . . . . 78
16.5 Concretization . . . . . . . . . . . . . . . . . . . . . . . . . . 84
16.6 Inverse BWT Correctness . . . . . . . . . . . . . . . . . . . . 86

theory Nat-Mod-Helper
imports Main

begin

1 Nat Modulo Helper
lemma nat-mod-add-neq-self :
[[a < (n :: nat); b < n; b 6= 0 ]] =⇒ (a + b) mod n 6= a
by (metis add-diff-cancel-left ′ mod-if mod-mult-div-eq mod-mult-self1-is-0 )

lemma nat-mod-a-pl-b-eq1 :
[[n + b ≤ a; a < (n :: nat)]] =⇒ (a + b) mod n = b − (n − a)
using order-le-less-trans by blast

lemma not-mod-a-pl-b-eq2 :
[[n − a ≤ b; a < n; b < (n :: nat)]] =⇒ (a + b) mod n = b − (n − a)
using Nat.diff-diff-right add.commute mod-if by auto

end
theory Rotated-Substring

imports Nat-Mod-Helper
begin

2 Rotated Sublists
definition is-sublist :: ′a list ⇒ ′a list ⇒ bool

where
is-sublist xs ys = (∃ as bs. xs = as @ ys @ bs)

definition is-rot-sublist :: ′a list ⇒ ′a list ⇒ bool
where

is-rot-sublist xs ys = (∃n. is-sublist (rotate n xs) ys)

definition inc-one-bounded :: nat ⇒ nat list ⇒ bool
where

inc-one-bounded n xs ≡
(∀ i. Suc i < length xs −→ xs ! Suc i = Suc (xs ! i) mod n) ∧
(∀ i < length xs. xs ! i < n)

lemma inc-one-boundedD:

3



[[inc-one-bounded n xs; Suc i < length xs]] =⇒ xs ! Suc i = Suc (xs ! i) mod n
[[inc-one-bounded n xs; i < length xs]] =⇒ xs ! i < n
using inc-one-bounded-def by blast+

lemma inc-one-bounded-nth-plus:
[[inc-one-bounded n xs; i + k < length xs]] =⇒ xs ! (i + k) = (xs ! i + k) mod n

proof (induct k)
case 0
then show ?case

by (simp add: inc-one-boundedD(2 ))
next

case (Suc k)
then show ?case

by (metis Suc-lessD add-Suc-right inc-one-bounded-def mod-Suc-eq)
qed

lemma inc-one-bounded-neq:
[[inc-one-bounded n xs; length xs ≤ n; i + k < length xs; k 6= 0 ]] =⇒ xs ! (i + k)
6= xs ! i

using inc-one-bounded-nth-plus nat-mod-add-neq-self
by (simp add: inc-one-boundedD(2 ) linorder-not-le)

corollary inc-one-bounded-neq-nth:
assumes inc-one-bounded n xs
and length xs ≤ n
and i < length xs
and j < length xs
and i 6= j

shows xs ! i 6= xs ! j
proof (cases i < j)

assume i < j
then show ?thesis
by (metis assms(1 ,2 ,4 ) canonically-ordered-monoid-add-class.lessE inc-one-bounded-neq)

next
assume ¬ i < j
then show ?thesis
by (metis assms(1 ,2 ,3 ,5 ) canonically-ordered-monoid-add-class.lessE inc-one-bounded-neq

le-neq-implies-less linorder-not-le)
qed

lemma inc-one-bounded-distinct:
[[inc-one-bounded n xs; length xs ≤ n]] =⇒ distinct xs
using distinct-conv-nth inc-one-bounded-neq-nth by blast

lemma inc-one-bounded-subset-upt:
[[inc-one-bounded n xs; length xs ≤ n]] =⇒ set xs ⊆ {0 ..<n}
by (metis atLeastLessThan-iff in-set-conv-nth inc-one-boundedD(2 ) less-eq-nat.simps(1 )

subset-code(1 ))

4



lemma inc-one-bounded-consD:
inc-one-bounded n (x # xs) =⇒ inc-one-bounded n xs
unfolding inc-one-bounded-def
using bot-nat-0 .not-eq-extremum lessI less-zeroE mod-less-divisor by fastforce

lemma inc-one-bounded-nth:
[[inc-one-bounded n xs; i < length xs]] =⇒ xs ! i = ((λx. Suc x mod n)^^i) (xs !

0 )
proof (induct i)

case 0
then show ?case

by simp
next

case (Suc i)
note IH = this

from IH
have xs ! i = ((λx. Suc x mod n) ^^ i) (xs ! 0 )

by simp
hence Suc (xs ! i) mod n = ((λx. Suc x mod n) ^^ Suc i) (xs ! 0 )

by force
moreover
from inc-one-boundedD(1 )[OF IH (2 ,3 )]
have xs ! Suc i = Suc (xs ! i) mod n.
ultimately show ?case

by presburger
qed

lemma inc-one-bounded-nth-le:
[[inc-one-bounded n xs; i < length xs; (xs ! 0 ) + i < n]] =⇒
xs ! i = (xs ! 0 ) + i

by (metis add-cancel-right-left inc-one-bounded-nth-plus mod-if )

lemma inc-one-bounded-upt1 :
assumes inc-one-bounded n xs
and length xs = Suc k
and Suc k ≤ n
and (xs ! 0 ) + k < n

shows xs = [xs ! 0 ..<(xs ! 0 ) + Suc k]
proof (intro list-eq-iff-nth-eq[THEN iffD2 ] conjI impI allI )

show length xs = length [xs ! 0 ..<xs ! 0 + Suc k]
using assms(2 ) by force

next
fix i
assume i < length xs
hence [xs ! 0 ..<xs ! 0 + Suc k] ! i = xs ! 0 + i

by (metis add-less-cancel-left assms(2 ) nth-upt)
moreover
have xs ! 0 + i < n

5



using ‹i < length xs› assms(2 ,4 ) by linarith
with inc-one-bounded-nth-le[OF assms(1 ) ‹i < length xs›]
have xs ! i = xs ! 0 + i

by simp
ultimately show xs ! i = [xs ! 0 ..<xs ! 0 + Suc k] ! i

by presburger
qed

lemma inc-one-bounded-upt2 :
assumes inc-one-bounded n xs
and length xs = Suc k
and Suc k ≤ n
and n ≤ (xs ! 0 ) + k

shows xs = [xs ! 0 ..<n] @ [0 ..<(xs ! 0 ) + Suc k − n]
proof (intro list-eq-iff-nth-eq[THEN iffD2 ] conjI impI allI )

show length xs = length ([xs ! 0 ..<n] @ [0 ..<xs ! 0 + Suc k − n])
using assms(1 ) assms(2 ) assms(4 ) inc-one-boundedD(2 ) less-or-eq-imp-le by

auto
next

fix i
assume i < length xs
show xs ! i = ([xs ! 0 ..<n] @ [0 ..<xs ! 0 + Suc k − n]) ! i
proof (cases i < length [xs ! 0 ..<n])

assume i < length [xs ! 0 ..<n]
hence ([xs ! 0 ..<n] @ [0 ..<xs ! 0 + Suc k − n]) ! i = [xs ! 0 ..<n] ! i

by (meson nth-append)
moreover
have [xs ! 0 ..<n] ! i = xs ! 0 + i

using ‹i < length [xs ! 0 ..<n]› by force
moreover
have xs ! 0 + i < n

using ‹i < length [xs ! 0 ..<n]› by auto
with inc-one-bounded-nth-le[OF assms(1 ) ‹i < length xs›]
have xs ! i = xs ! 0 + i

by blast
ultimately show xs ! i = ([xs ! 0 ..<n] @ [0 ..<xs ! 0 + Suc k − n]) ! i

by simp
next

assume ¬ i < length [xs ! 0 ..<n]
hence ([xs ! 0 ..<n] @ [0 ..<xs ! 0 + Suc k − n]) ! i =

[0 ..<xs ! 0 + Suc k − n] ! (i − length [xs ! 0 ..<n] )
by (meson nth-append)

moreover
have [0 ..<xs ! 0 + Suc k − n] ! (i − length [xs ! 0 ..<n]) = i − (n − xs ! 0 )

using ‹i < length xs› add-0 assms(2 ) assms(4 ) by fastforce
moreover
{

have i < n
using ‹i < length xs› assms(2 ) assms(3 ) by linarith

6



moreover
from inc-one-boundedD(2 )[OF assms(1 ), of 0 ]
have xs ! 0 < n

by (simp add: assms(2 ))
moreover
have n − xs ! 0 ≤ i

using ‹¬ i < length [xs ! 0 ..<n]› by force
ultimately have xs ! i = i − (n − xs ! 0 )

using not-mod-a-pl-b-eq2 [of n xs ! 0 i]
inc-one-bounded-nth-plus[OF assms(1 ), of 0 i, simplified, OF ‹i <

length xs›]
by presburger

}
ultimately show xs ! i = ([xs ! 0 ..<n] @ [0 ..<xs ! 0 + Suc k − n]) ! i

by argo
qed

qed

lemmas inc-one-bounded-upt = inc-one-bounded-upt1 inc-one-bounded-upt2

lemma is-rot-sublist-nil:
is-rot-sublist xs []
by (metis append-Nil is-rot-sublist-def is-sublist-def )

lemma rotate-upt:
m ≤ n =⇒ rotate m [0 ..<n] = [m..<n] @ [0 ..<m]
by (metis diff-zero le-Suc-ex length-upt rotate-append upt-add-eq-append zero-order(1 ))

lemma inc-one-bounded-is-rot-sublist:
assumes inc-one-bounded n xs length xs ≤ n
shows is-rot-sublist [0 ..<n] xs
unfolding is-rot-sublist-def is-sublist-def

proof (cases length xs)
case 0
then show ∃na as bs. rotate na [0 ..<n] = as @ xs @ bs

using append-Nil by blast
next

case (Suc k)
hence Suc k ≤ n

using assms(2 ) by auto

have (xs ! 0 ) + k < n =⇒ ∃na as bs. rotate na [0 ..<n] = as @ xs @ bs
proof −

assume (xs ! 0 ) + k < n
with inc-one-bounded-upt(1 )[OF assms(1 ) Suc ‹Suc k ≤ n›]
have xs = [xs ! 0 ..<xs ! 0 + Suc k]

by blast
moreover
have xs ! 0 + Suc k ≤ n

7



by (simp add: Suc-leI ‹xs ! 0 + k < n›)
with upt-add-eq-append[of xs ! 0 xs ! 0 + Suc k n − (xs ! 0 + Suc k)]
have [xs ! 0 ..<n] = [xs ! 0 ..<xs ! 0 + Suc k] @ [xs ! 0 + Suc k..<n]

by (metis le-add1 le-add-diff-inverse)
with upt-add-eq-append[of 0 xs ! 0 n − xs ! 0 ]
have [0 ..<n] = [0 ..<xs ! 0 ] @ [xs ! 0 ..<xs ! 0 + Suc k] @ [xs ! 0 + Suc k..<n]

using ‹xs ! 0 + Suc k ≤ n› by fastforce
ultimately show ?thesis

by (metis append.right-neutral append-Nil rotate-append)
qed
moreover
have ¬ (xs ! 0 ) + k < n =⇒ ∃na as bs. rotate na [0 ..<n] = as @ xs @ bs
proof −

assume ¬ (xs ! 0 ) + k < n
hence (xs ! 0 ) + k ≥ n

by simp
with inc-one-bounded-upt(2 )[OF assms(1 ) Suc ‹Suc k ≤ n›]
have xs = [xs ! 0 ..<n] @ [0 ..<xs ! 0 + Suc k − n]

by blast
moreover
from inc-one-boundedD(2 )[OF assms(1 ), of 0 ]
have xs ! 0 < n

by (simp add: Suc)
with rotate-upt[of xs ! 0 n]
have rotate (xs ! 0 ) [0 ..<n] = [xs ! 0 ..<n] @ [0 ..<xs ! 0 ]

by linarith
moreover
{

have 0 ≤ xs ! 0 + Suc k − n
by simp

hence [0 ..<xs ! 0 + Suc k − n + (n − Suc k)] =
[0 ..<xs ! 0 + Suc k − n] @ [xs ! 0 + Suc k − n..<xs ! 0 + Suc k −

n + (n − Suc k)]
using upt-add-eq-append[of 0 xs ! 0 + Suc k − n n − Suc k] by blast

moreover
have xs ! 0 = xs ! 0 + Suc k − n + (n − Suc k)

using ‹Suc k ≤ n› ‹n ≤ xs ! 0 + k› by auto
ultimately have [0 ..<xs ! 0 ] = [0 ..<xs ! 0 + Suc k − n] @ [xs ! 0 + Suc k

− n..<xs ! 0 ]
by argo

}
ultimately show ?thesis

by (metis append.assoc append-Nil)
qed
ultimately show ∃na as bs. rotate na [0 ..<n] = as @ xs @ bs

by blast
qed

lemma is-rot-sublist-idx:

8



is-rot-sublist [0 ..<length xs] ys =⇒ is-rot-sublist xs (map ((!) xs) ys)
unfolding is-rot-sublist-def is-sublist-def

proof (elim exE)
fix n as bs
assume rotate n [0 ..<length xs] = as @ ys @ bs
hence rotate n xs = map ((!) xs) (as @ ys @ bs)

by (metis map-nth rotate-map)
then show ∃n as bs. rotate n xs = as @ map ((!) xs) ys @ bs

by auto
qed

lemma is-rot-sublist-upt-eq-upt-hd:
[[is-rot-sublist [0 ..<Suc n] ys; length ys = Suc n; ys ! 0 = 0 ]] =⇒ ys = [0 ..<Suc

n]
unfolding is-rot-sublist-def is-sublist-def

proof (elim exE)
fix m as bs
assume A: length ys = Suc n ys ! 0 = 0 rotate m [0 ..<Suc n] = as @ ys @ bs
with rotate-conv-mod[of m [0 ..<Suc n]]
have rotate (m mod length [0 ..<Suc n]) [0 ..<Suc n] = as @ ys @ bs

by simp
with rotate-upt[of m mod length [0 ..<Suc n] Suc n]
have [m mod length [0 ..<Suc n]..<Suc n] @ [0 ..<m mod length [0 ..<Suc n]] =

as @ ys @ bs
by (metis diff-zero le-Suc-eq length-upt mod-Suc-le-divisor)

hence [m mod Suc n..<Suc n] @ [0 ..<m mod Suc n] = as @ ys @ bs
by simp

moreover
have as = []

by (metis A(1 ) A(3 ) diff-zero length-append length-greater-0-conv length-rotate
length-upt

less-add-same-cancel2 not-add-less1 )
moreover
have bs = []
by (metis A(1 ) A(3 ) append.right-neutral append-eq-append-conv calculation(2 )

diff-zero
length-rotate length-upt self-append-conv2 )

moreover
have m mod Suc n = 0

by (metis A add.right-neutral append.right-neutral calculation(2 ,3 ) diff-zero
length-rotate

mod-less-divisor nth-rotate nth-upt self-append-conv2 zero-le zero-less-Suc
ordered-cancel-comm-monoid-diff-class.add-diff-inverse)

ultimately show ys = [0 ..<Suc n]
by simp

qed

lemma is-rot-sublist-upt-eq-upt-last:
[[is-rot-sublist [0 ..<Suc n] ys; length ys = Suc n; ys ! n = n]] =⇒ ys = [0 ..<Suc

9



n]
unfolding is-rot-sublist-def is-sublist-def

proof (elim exE)
fix m as bs
assume A: length ys = Suc n ys ! n = n rotate m [0 ..<Suc n] = as @ ys @ bs

with rotate-conv-mod[of m [0 ..<Suc n]]
have rotate (m mod length [0 ..<Suc n]) [0 ..<Suc n] = as @ ys @ bs

by simp
with rotate-upt[of m mod length [0 ..<Suc n] Suc n]
have [m mod length [0 ..<Suc n]..<Suc n] @ [0 ..<m mod length [0 ..<Suc n]] =

as @ ys @ bs
by (metis diff-zero le-Suc-eq length-upt mod-Suc-le-divisor)

hence [m mod Suc n..<Suc n] @ [0 ..<m mod Suc n] = as @ ys @ bs
by simp

moreover
have as = []

by (metis A(1 ) A(3 ) diff-zero length-append length-greater-0-conv length-rotate
length-upt

less-add-same-cancel2 not-add-less1 )
moreover
have bs = []
by (metis A(1 ) A(3 ) append.right-neutral append-eq-append-conv calculation(2 )

diff-zero
length-rotate length-upt self-append-conv2 )

moreover
from list-eq-iff-nth-eq[THEN iffD1 , OF calculation(1 ), simplified,

simplified calculation(2 ,3 ), simplified]
have Suc n = length ys ∀ i<Suc n. ([m mod Suc n..<n] @ n # [0 ..<m mod Suc

n]) ! i = ys ! i
by blast+

hence ([m mod Suc n..<n] @ n # [0 ..<m mod Suc n]) ! n = n
by (simp add: A(2 ))

with nth-append[of [m mod Suc n..<n] n # [0 ..<m mod Suc n] n]
have n < length [m mod Suc n..<n] ∨

(n # [0 ..<m mod Suc n]) ! (n − length [m mod Suc n..<n]) = n
by argo

hence m mod Suc n = 0
proof

assume n < length [m mod Suc n..<n]
then show m mod Suc n = 0

by simp
next

assume B: (n # [0 ..<m mod Suc n]) ! (n − length [m mod Suc n..<n]) = n
show m mod Suc n = 0
proof (cases n − length [m mod Suc n..<n])

case 0
then show ?thesis

by simp
next

10



case (Suc x)
then show ?thesis
by (metis B One-nat-def add-Suc diff-diff-cancel length-upt lessI mod-Suc-le-divisor

mod-less-divisor nless-le nth-Cons-Suc nth-upt plus-1-eq-Suc
zero-less-Suc)

qed
qed
ultimately show ys = [0 ..<Suc n]

by simp
qed

end
theory Count-Util

imports HOL−Library.Multiset
HOL−Combinatorics.List-Permutation
SuffixArray.List-Util
SuffixArray.List-Slice

begin

3 Counting
3.1 Count List
lemma count-in:

x ∈ set xs =⇒ count-list xs x > 0
by (meson count-list-0-iff gr0I )

lemma in-count:
count-list xs x > 0 =⇒ x ∈ set xs
by (metis count-notin less-irrefl)

lemma notin-count:
count-list xs x = 0 =⇒ x /∈ set xs
by (simp add: count-list-0-iff )

lemma count-list-eq-count:
count-list xs x = count (mset xs) x
by (induct xs; simp)

lemma count-list-perm:
xs <∼∼> ys =⇒ count-list xs x = count-list ys x
by (simp add: count-list-eq-count)

lemma in-count-nth-ex:
count-list xs x > 0 =⇒ ∃ i < length xs. xs ! i = x
by (meson in-count in-set-conv-nth)

lemma in-count-list-slice-nth-ex:

11



count-list (list-slice xs i j) x > 0 =⇒ ∃ k < length xs. i ≤ k ∧ k < j ∧ xs ! k = x
by (meson in-count nth-mem-list-slice)

3.2 Cardinality
lemma count-list-card:

count-list xs x = card {j. j < length xs ∧ xs ! j = x}
proof (induct xs rule: rev-induct)

case Nil
then show ?case

by simp
next

case (snoc y xs)

let ?A = {j. j < length xs ∧ xs ! j = x}
let ?B = {j. j < length (xs @ [y]) ∧ (xs @ [y]) ! j = x}

have length xs /∈ ?A
by simp

have ?B − {length xs} = ?A
by (intro equalityI subsetI ; clarsimp simp: nth-append)

{
have y = x =⇒ count-list (xs @ [y]) x = Suc (card ?A)

by (simp add: snoc)
moreover
have y = x =⇒ ?B = insert (length xs) ?A
by (metis (mono-tags, lifting) ‹?B − {length xs} = ?A› insert-Diff length-append-singleton

lessI mem-Collect-eq nth-append-length)
with card-insert-disjoint[OF - ‹length xs /∈ -›]
have y = x =⇒ card ?B = Suc (card ?A)

by simp
ultimately have y = x =⇒ ?case

by simp
}
moreover
have y 6= x =⇒ count-list (xs @ [y]) x = card ?A

by (simp add: snoc)
hence y 6= x =⇒ ?case

using ‹?B − {length xs} = ?A› by force
ultimately show ?case

by blast
qed

lemma card-le-eq-card-less-pl-count-list:
fixes s :: ′a :: linorder list
shows card {k. k < length s ∧ s ! k ≤ a} = card {k. k < length s ∧ s ! k < a}

+ count-list s a

12



proof −
let ?A = {k. k < length s ∧ s ! k ≤ a}
let ?B = {k. k < length s ∧ s ! k < a}
let ?C = {k. k < length s ∧ s ! k = a}

have ?B ∩ ?C = {}
by blast

hence card (?B ∪ ?C ) = card ?B + count-list s a
by (simp add: card-Un-disjoint count-list-card)

moreover
have ?A = ?B ∪ ?C
proof safe

fix x
assume s ! x ≤ a s ! x 6= a
then show s ! x < a

by simp
next

fix x
assume s ! x < a
then show s ! x ≤ a

by simp
qed
hence card ?A = card (?B ∪ ?C )

by simp
ultimately show ?thesis

by simp
qed

lemma card-less-idx-upper-strict:
fixes s :: ′a :: linorder list
assumes a ∈ set s
shows card {k. k < length s ∧ s ! k < a} < length s

proof −
have ∃ i < length s. s ! i = a

by (meson assms in-set-conv-nth)
then obtain i where P:

i < length s s ! i = a
by blast

have {k. k < length s ∧ s ! k < a} ⊆ {0 ..<length s}
using atLeastLessThan-iff by blast

moreover
have i ∈ {0 ..<length s}

by (simp add: P(1 ))
moreover
have i /∈ {k. k < length s ∧ s ! k < a}

by (simp add: P(2 ))
ultimately have {k. k < length s ∧ s ! k < a} ⊂ {0 ..<length s}

by blast

13



then show ?thesis
by (metis card-upt finite-atLeastLessThan psubset-card-mono)

qed

lemma card-less-idx-upper :
shows card {k. k < length s ∧ s ! k < a} ≤ length s
by (metis (no-types, lifting) atLeastLessThan-iff bot-nat-0 .extremum mem-Collect-eq

subsetI
subset-eq-atLeast0-lessThan-card)

lemma card-pl-count-list-strict-upper :
fixes s :: ′a :: linorder list
shows card {i. i < length s ∧ s ! i < a} + count-list s a ≤ length s

proof −
let ?X = {i. i < length s ∧ s ! i < a}
let ?Y = {i. i < length s ∧ s ! i = a}

have ?X ∩ ?Y = {}
by blast

hence card (?X ∪ ?Y ) = card ?X + card ?Y
by (simp add: card-Un-disjoint)

moreover
have card ?Y = count-list s a

by (simp add: count-list-card)
moreover
have ?X ∪ ?Y ⊆ {0 ..<length s}

by (simp add: subset-iff )
hence card (?X ∪ ?Y ) ≤ length s

using subset-eq-atLeast0-lessThan-card by blast
ultimately show ?thesis

by presburger
qed

3.3 Sorting
lemma sorted-nth-le:

assumes sorted xs
and card {k. k < length xs ∧ xs ! k < c} < length xs

shows c ≤ xs ! card {k. k < length xs ∧ xs ! k < c}
using assms

proof (induct xs)
case Nil
then show ?case

by simp
next

case (Cons a xs)
note IH = this

let ?A = {k. k < length (a # xs) ∧ (a # xs) ! k < c}

14



let ?B = {k. k < length xs ∧ xs ! k < c}

have a < c ∨ c ≤ a
by fastforce

then show ?case
proof

assume a < c

have finite ?B
by auto

hence finite (Suc ‘ ?B)
by blast

have card (Suc ‘ ?B) = card ?B
using card-image inj-Suc by blast

have {0} ∩ Suc ‘ ?B = {}
by blast

have ?A = {0} ∪ Suc ‘ ?B
proof (intro equalityI subsetI )

fix x
assume x ∈ {0} ∪ Suc ‘ ?B
then show x ∈ ?A
proof

assume x ∈ {0}
hence x = 0

by simp
then show ?thesis

by (simp add: ‹a < c›)
next

assume x ∈ Suc ‘ ?B
hence ∃ y. x = Suc y ∧ xs ! y < c

by blast
then show ?thesis

using ‹x ∈ Suc ‘ ?B› by force
qed

next
fix x
assume x ∈ ?A
hence x = 0 ∨ (∃ y. x = Suc y ∧ xs ! y < c)

using not0-implies-Suc by fastforce
then show x ∈ {0} ∪ Suc ‘ ?B
proof

assume x = 0
then show ?thesis

by blast
next

assume ∃ y. x = Suc y ∧ xs ! y < c

15



then show ?thesis
using ‹x ∈ ?A› by fastforce

qed
qed
with card-Un-disjoint[OF - ‹finite (Suc ‘ ?B)› ‹- ∩ - = -›]
have card ?A = Suc (card ?B)

by (simp add: ‹card (Suc ‘ ?B) = card ?B›)
hence (a # xs) ! card {k. k < length (a # xs) ∧ (a # xs) ! k < c} =

xs ! card {k. k < length xs ∧ xs ! k < c}
by simp

then show ?case
using Cons.hyps IH (2 ) IH (3 ) ‹card ?A = Suc (card ?B)› by auto

next
assume c ≤ a
have {k. k < length (a # xs) ∧ (a # xs) ! k < c} = {}
proof safe

fix x
assume A: x < length (a # xs) (a # xs) ! x < c
show x ∈ {}
proof (cases x)

case 0
then show ?thesis

using A(2 ) ‹c ≤ a› by auto
next

case (Suc n)
hence a ≤ (a # xs) ! x

using A(1 ) IH (2 ) by auto
then show ?thesis

using A(2 ) ‹c ≤ a› by auto
qed

qed
then show ?thesis

by (metis ‹c ≤ a› card.empty nth-Cons-0 )
qed

qed

lemma sorted-nth-le-gen:
assumes sorted xs
and card {k. k < length xs ∧ xs ! k < c} + i < length xs

shows c ≤ xs ! (card {k. k < length xs ∧ xs ! k < c} + i)
proof (cases i)

case 0
then show ?thesis

using assms(1 ) assms(2 ) sorted-nth-le by auto
next

let ?x = card {k. k < length xs ∧ xs ! k < c }
case (Suc n)
with sorted-wrt-nth-less[OF assms(1 ), of ?x ?x + i]
have xs ! ?x ≤ xs ! (?x + i)

16



using assms(1 ) assms(2 ) le-add1 sorted-nth-mono by blast
moreover
have c ≤ xs ! ?x

using add-lessD1 assms(1 ) assms(2 ) sorted-nth-le by blast
ultimately show ?thesis

by order
qed

lemma sorted-nth-less-gen:
assumes sorted xs
and i < card {k. k < length xs ∧ xs ! k < c}

shows xs ! i < c
proof (rule ccontr)

assume ¬ xs ! i < c
hence i /∈ {k. k < length xs ∧ xs ! k < c}

by simp
hence ∀ k < length xs. i ≤ k −→ k /∈ {k. k < length xs ∧ xs ! k < c}

using assms(1 ) sorted-iff-nth-mono by fastforce
hence {k. k < length xs ∧ xs ! k < c} ⊆ {0 ..<i}

by fastforce
moreover
have card {0 ..<i} = i

by auto
ultimately show False

by (metis assms(2 ) card-mono finite-atLeastLessThan verit-comp-simplify1 (3 ))
qed

lemma sorted-nth-gr-gen:
assumes sorted xs
and card {k. k < length xs ∧ xs ! k < c} + i < length xs
and count-list xs c ≤ i

shows xs ! (card {k. k < length xs ∧ xs ! k < c} + i) > c
proof −

let ?A = {k. k < length xs ∧ xs ! k < c}
have xs ! (card ?A + i) ≥ c

using assms(1 ) assms(2 ) sorted-nth-le-gen by blast
hence xs ! (card ?A + i) = c ∨ xs ! (card ?A + i) > c

by force
then show ?thesis
proof

assume xs ! (card ?A + i) > c
then show ?thesis .

next
assume xs ! (card ?A + i) = c

from sorted-nth-le-gen[OF assms(1 )]
have P1 : ∀ k < length xs. card ?A ≤ k −→ c ≤ xs ! k
by (metis (mono-tags, lifting) assms(1 ) dual-order .strict-trans2 linorder-not-le

sorted-iff-nth-mono sorted-nth-le)

17



have P2 : ∀ k < length xs. k < card ?A + Suc i −→ xs ! k ≤ c
by (metis (mono-tags, lifting) Suc-leI ‹xs ! (card ?A + i) = c› add-Suc-right

add-le-cancel-left assms(1 ,2 ) plus-1-eq-Suc
sorted-nth-mono)

have P3 : ∀ x ∈ {card ?A..<card ?A + Suc i}. xs ! x = c
proof safe

fix x
assume x ∈ {card ?A..<card ?A + Suc i}
hence A: card ?A ≤ x x < card ?A + Suc i

by simp+

have c ≤ xs ! x
using P1 A assms(2 ) by auto

moreover
have xs ! x ≤ c

using A(2 ) P2 assms(2 ) by force
ultimately show xs ! x = c

by simp
qed

have {card ?A..<card ?A + Suc i} ⊆ {k. k < length xs ∧ xs ! k = c}
proof

fix x
assume A: x ∈ {card ?A..<card ?A + Suc i}
have x < card ?A + Suc i

using A by simp+
hence x < length xs

using assms(2 ) by linarith
moreover
have xs ! x = c

using P3 A by blast
ultimately show x ∈ {k. k < length xs ∧ xs ! k = c}

by blast
qed
hence count-list xs c ≥ card {card ?A..<card ?A + Suc i}

using count-list-card[of xs c] card-mono
by (metis (mono-tags, lifting) ‹xs ! (card ?A + i) = c› assms(2 ) card-ge-0-finite

count-in
nth-mem)

moreover
have card {card ?A..<card ?A + Suc i} = Suc i

by simp
ultimately have False

using assms(3 ) by linarith
then show ?thesis

by blast

18



qed
qed

end
theory Rank-Util

imports HOL−Library.Multiset
Count-Util
SuffixArray.Prefix

begin

4 Rank Definition
Count how many occurrences of an element are in a certain index in the list

Definition 3.7 from [3]: Rank
definition rank :: ′a list ⇒ ′a ⇒ nat ⇒ nat

where
rank s x i ≡ count-list (take i s) x

5 Rank Properties
5.1 List Properties
lemma rank-cons-same:

rank (x # xs) x (Suc i) = Suc (rank xs x i)
by (simp add: rank-def )

lemma rank-cons-diff :
a 6= x =⇒ rank (a # xs) x (Suc i) = rank xs x i
by (simp add: rank-def )

5.2 Counting Properties
lemma rank-length:

rank xs x (length xs) = count-list xs x
by (simp add: rank-def )

lemma rank-gre-length:
length xs ≤ n =⇒ rank xs x n = count-list xs x
by (simp add: rank-def )

lemma rank-not-in:
x /∈ set xs =⇒ rank xs x i = 0
by (metis gr-zeroI in-count rank-def set-take-subset subset-code(1 ))

lemma rank-0 :
rank xs x 0 = 0
by (simp add: rank-def )

19



Theorem 3.11 from [3]: Rank Equivalence
lemma rank-card-spec:

rank xs x i = card {j. j < length xs ∧ j < i ∧ xs ! j = x}
proof −

have rank xs x i = count-list (take i xs) x
by (meson rank-def )

moreover
have count-list (take i xs) x = card {j. j < length (take i xs) ∧ (take i xs) ! j =

x}
by (metis count-list-card)

moreover
have {j. j < length (take i xs) ∧ (take i xs) ! j = x} =

{j. j < length xs ∧ j < i ∧ xs ! j = x}
by fastforce

ultimately show ?thesis
by simp

qed

lemma le-rank-plus-card:
i ≤ j =⇒
rank xs x j = rank xs x i + card {k. k < length xs ∧ i ≤ k ∧ k < j ∧ xs ! k =

x}
proof −

assume i ≤ j

let ?X = {k. k < length xs ∧ k < j ∧ xs ! k = x}
have rank xs x j = card ?X

by (simp add: rank-card-spec)
moreover
let ?Y = {k. k < length xs ∧ k < i ∧ xs ! k = x}
have rank xs x i = card ?Y

by (simp add: rank-card-spec)
moreover
let ?Z = {k. k < length xs ∧ i ≤ k ∧ k < j ∧ xs ! k = x}
have ?Y ∪ ?Z = ?X
proof safe

fix k
assume k < i
then show k < j

using ‹i ≤ j› order-less-le-trans by blast
next

fix k
assume ¬ i ≤ k
then show k < i

using linorder-le-less-linear by blast
qed
moreover
have ?Y ∩ ?Z = {}

20



by force
hence card (?Y ∪ ?Z ) = card ?Y + card ?Z

by (simp add: card-Un-disjoint)
ultimately show ?thesis

by presburger
qed

5.3 Bound Properties
lemma rank-lower-bound:

assumes k < rank xs x i
shows k < i

proof −
from rank-card-spec[of xs x i]
have rank xs x i = card {j. j < length xs ∧ j < i ∧ xs ! j = x} .
hence k < card {j. j < length xs ∧ j < i ∧ xs ! j = x}

using assms by presburger
moreover
{

have i ≤ length xs ∨ length xs < i
using linorder-not-less by blast

moreover
have i ≤ length xs =⇒ {j. j < length xs ∧ j < i ∧ xs ! j = x} ⊆ {0 ..<i}

using atLeast0LessThan by blast
hence i ≤ length xs =⇒ card {j. j < length xs ∧ j < i ∧ xs ! j = x} ≤ i

using subset-eq-atLeast0-lessThan-card by presburger
moreover
have length xs < i =⇒ {j. j < length xs ∧ j < i ∧ xs ! j = x} ⊆ {0 ..<length

xs}
using atLeast0LessThan by blast

hence length xs < i =⇒ card {j. j < length xs ∧ j < i ∧ xs ! j = x} ≤ length
xs

using subset-eq-atLeast0-lessThan-card by presburger
hence length xs < i =⇒ card {j. j < length xs ∧ j < i ∧ xs ! j = x} ≤ i

by linarith
ultimately have card {j. j < length xs ∧ j < i ∧ xs ! j = x} ≤ i

by blast
}
ultimately show ?thesis

using dual-order .strict-trans1 by blast
qed

corollary rank-Suc-ex:
assumes k < rank xs x i
shows ∃ l. i = Suc l
by (metis Nat.lessE assms rank-lower-bound)

lemma rank-upper-bound:
[[i < length xs; xs ! i = x]] =⇒ rank xs x i < count-list xs x

21



proof (induct xs arbitrary: i)
case Nil
then show ?case

by (simp add: rank-def )
next

case (Cons a xs i)
then show ?case
proof (cases i)

case 0
then show ?thesis

by (metis Cons.prems(2 ) count-in list.set-intros(1 ) nth-Cons-0 rank-0 )
next

case (Suc n)
then show ?thesis
by (metis Cons.hyps Cons.prems Suc-less-eq length-Cons nth-Cons-Suc rank-cons-diff

rank-cons-same rank-length)
qed

qed

lemma rank-idx-mono:
i ≤ j =⇒ rank xs x i ≤ rank xs x j

proof (cases i = j)
assume i = j
then show ?thesis

by simp
next

assume i ≤ j i 6= j
hence i < j

using antisym-conv2 by blast
hence prefix xs j = prefix xs i @ list-slice xs i j

by (metis ‹i ≤ j› append-take-drop-id list-slice.elims min.absorb1 take-take)
hence rank xs x j = rank xs x i + count-list (list-slice xs i j) x

by (metis count-list-append rank-def )
then show ?thesis

by fastforce
qed

lemma rank-less:
[[i < length xs; i < j; xs ! i = x]] =⇒ rank xs x i < rank xs x j

proof −
let ?X = {k. k < length xs ∧ i ≤ k ∧ k < j ∧ xs ! k = x}
assume i < length xs i < j xs ! i = x
with le-rank-plus-card[of i j xs x]
have rank xs x j = rank xs x i + card ?X

using nless-le by blast
moreover
have i ∈ ?X

using ‹i < j› ‹i < length xs› ‹xs ! i = x› by blast

22



hence card ?X > 0
using card-gt-0-iff by fastforce

ultimately show ?thesis
by linarith

qed

lemma rank-upper-bound-gen:
rank xs x i ≤ count-list xs x
by (metis nat-le-linear rank-gre-length rank-idx-mono)

5.4 Sorted Properties
lemma sorted-card-rank-idx:

assumes sorted xs
and i < length xs

shows i = card {j. j < length xs ∧ xs ! j < xs ! i} + rank xs (xs ! i) i
proof −

let ?A = {j. j < length xs ∧ xs ! j < xs ! i}
let ?B = {j. j < length xs ∧ xs ! j = xs ! i}

have ?B 6= {}
using assms(2 ) by blast

have Min ?B ∈ ?B
by (metis (no-types, lifting) Min-in ‹?B 6= {}› finite-nat-set-iff-bounded mem-Collect-eq)

hence Min ?B < length xs xs ! (Min ?B) = xs ! i
by simp-all

have Min ?B ≤ i
by (simp add: assms(2 ))

have P: ∀ k < Min ?B. xs ! k < xs ! i
proof (intro allI impI )

fix k
assume k < Min ?B
with sorted-nth-mono[OF assms(1 ) - ‹Min ?B < length xs›]
have xs ! k ≤ xs ! (Min ?B)

using le-eq-less-or-eq by presburger

show xs ! k < xs ! i
proof (rule ccontr)

assume ¬ xs ! k < xs ! i
with ‹xs ! k ≤ xs ! (Min ?B)› ‹xs ! (Min ?B) = xs ! i›
have xs ! k = xs ! i

by order
with ‹k < Min ?B› ‹Min ?B < length xs›
have k ∈ ?B

23



by auto
then show False

by (metis (mono-tags, lifting) Min-gr-iff ‹k < Min ?B› ‹?B 6= {}› fi-
nite-nat-set-iff-bounded

less-irrefl-nat mem-Collect-eq)
qed

qed

have ?A = {0 ..<Min ?B}
proof (intro equalityI subsetI )

fix x
assume x ∈ ?A
hence x < length xs xs ! x < xs ! i

by blast+
hence xs ! x < xs ! Min ?B

using ‹xs ! Min ?B = xs ! i› by simp
hence x < Min ?B

using assms(1 ) ‹x < length xs› ‹Min ?B < length xs›
by (meson dual-order .strict-iff-not not-le-imp-less sorted-nth-mono)

then show x ∈ {0 ..<Min ?B}
using atLeastLessThan-iff by blast

next
fix x
assume x ∈ {0 ..<Min ?B}
with P ‹Min ?B < length xs›
show x ∈ ?A

by auto
qed
moreover
{

let ?C = {j. j < length xs ∧ j < i ∧ xs ! j = xs ! i}
from rank-card-spec[of xs xs ! i i]
have rank xs (xs ! i) i = card ?C .
moreover
have ?C = {Min ?B..<i}
proof (intro equalityI subsetI )

fix x
assume x ∈ ?C
hence x < length xs x < i xs ! x = xs ! i

by blast+
hence Min ?B ≤ x

by simp
with ‹x < i›
show x ∈ {Min ?B..<i}

using atLeastLessThan-iff by blast
next

fix x
assume x ∈ {Min ?B..<i}
hence Min ?B ≤ x x < i

24



using atLeastLessThan-iff by blast+
moreover
have xs ! x = xs ! i
proof −

have xs ! x ≤ xs ! i
using assms(1 ,2 ) ‹x < i›
by (simp add: sorted-wrt-nth-less)

moreover
have xs ! Min ?B ≤ xs ! x

using assms(1 ,2 ) ‹Min ?B ≤ x› ‹x < i›
by (meson order .strict-trans sorted-iff-nth-mono)

ultimately show ?thesis
using ‹xs ! Min ?B = xs ! i› by order

qed
ultimately show x ∈ ?C

using assms(2 ) by fastforce
qed
ultimately have rank xs (xs ! i) i = card {Min ?B..<i}

by presburger
}
ultimately show ?thesis

by (simp add: ‹Min ?B ≤ i›)
qed

lemma sorted-rank:
assumes sorted xs
and i < length xs
and xs ! i = a

shows rank xs a i = i − card {k. k < length xs ∧ xs ! k < a}
using assms(1 ) assms(2 ) assms(3 ) sorted-card-rank-idx by fastforce

lemma sorted-rank-less:
assumes sorted xs
and i < length xs
and xs ! i < a

shows rank xs a i = 0
proof −

have rank xs a i = card {k. k < length xs ∧ k < i ∧ xs ! k = a}
by (simp add: rank-card-spec)

moreover
have {k. k < length xs ∧ k < i ∧ xs ! k = a} = {}

using assms sorted-wrt-nth-less by fastforce
ultimately show ?thesis

by fastforce
qed

lemma sorted-rank-greater :
assumes sorted xs
and i < length xs

25



and xs ! i > a
shows rank xs a i = count-list xs a
proof −

let ?A = {k. k < length xs ∧ k < i ∧ xs ! k = a}
have rank xs a i = card ?A

by (simp add: rank-card-spec)
moreover
let ?B = {k. k < length xs ∧ k ≥ i ∧ xs ! k = a}
let ?C = {k. k < length xs ∧ xs ! k = a}
{

have ?A ∪ ?B = ?C
proof safe

fix x
assume ¬ i ≤ x
then show x < i

using linorder-le-less-linear by blast
qed
moreover
have ?B = {}
proof −

have ∀ k < length xs. k ≥ i −→ xs ! k > a
by (meson assms(1 ) assms(3 ) dual-order .strict-trans1 sorted-nth-mono)

then show ?thesis
by blast

qed
ultimately have ?A = ?C

by blast
}
ultimately show ?thesis

by (simp add: count-list-card)
qed

end
theory Select-Util

imports Count-Util
SuffixArray.Sorting-Util

begin

6 Select Definition
Find nth occurrence of an element in a list

Definition 3.8 from [3]: Select
fun select :: ′a list ⇒ ′a ⇒ nat ⇒ nat

where
select [] - - = 0 |
select (a#xs) x 0 = (if x = a then 0 else Suc (select xs x 0 )) |
select (a#xs) x (Suc i)= (if x = a then Suc (select xs x i) else Suc (select xs x
(Suc i)))

26



7 Select Properties
7.1 Length Properties
lemma notin-imp-select-length:

x /∈ set xs =⇒ select xs x i = length xs
proof (induct xs arbitrary: i)

case Nil
then show ?case

by simp
next

case (Cons a xs i)
then show ?case
proof (cases i)

case 0
then show ?thesis

using Cons.hyps Cons.prems by fastforce
next

case (Suc n)
then show ?thesis

using Cons.hyps Cons.prems by force
qed

qed

lemma select-length-imp-count-list-less:
select xs x i = length xs =⇒ count-list xs x ≤ i
by (induct rule: select.induct[of - xs x i]; simp split: if-splits)

lemma select-Suc-length:
select xs x i = length xs =⇒ select xs x (Suc i) = length xs
by (induct rule: select.induct[of - xs x i]; clarsimp split: if-splits)

7.2 List Properties
lemma select-cons-neq:
[[select xs x i = j; x 6= a]] =⇒ select (a # xs) x i= Suc j
by (cases i; simp)

lemma cons-neq-select:
[[select (a # xs) x i = Suc j; x 6= a]] =⇒ select xs x i = j
by (cases i; simp)

lemma cons-eq-select:
select (x # xs) x (Suc i) = Suc j =⇒ select xs x i = j
by simp

lemma select-cons-eq:
select xs x i = j =⇒ select (x # xs) x (Suc i) = Suc j
by simp

27



7.3 Bound Properties
lemma select-max:

select xs x i ≤ length xs
by (induct rule: select.induct[of - xs x i]; simp)

7.4 Nth Properties
lemma nth-select:
[[j < length xs; count-list (take (Suc j) xs) x = Suc i; xs ! j = x]]
=⇒ select xs x i = j

proof (induct arbitrary: j rule: select.induct[of - xs x i])
case (1 uu uv)
then show ?case

by simp
next

case (2 a xs x)
then show ?case
proof (cases j)

case 0
then show ?thesis

using 2 .prems(3 ) by auto
next

case (Suc n)

have xs ! n = x
using 2 .prems(3 ) Suc by auto

moreover
have n < length xs

using 2 .prems(1 ) Suc by auto
moreover
have x 6= a
proof (rule ccontr)

assume ¬ x 6= a
hence x = a

by blast
moreover
have count-list (take (Suc n) xs) x > 0

by (simp add: ‹n < length xs› ‹xs ! n = x› take-Suc-conv-app-nth)
ultimately show False

using 2 .prems(2 ) Suc by auto
qed
moreover
have count-list (take (Suc n) xs) x = Suc 0

using 2 .prems(2 ) Suc calculation(3 ) by auto
ultimately have select xs x 0 = n

using 2 .hyps by blast
then show ?thesis

by (simp add: Suc ‹x 6= a›)
qed

28



next
case (3 a xs x i)
then show ?case
proof (cases j)

case 0
then show ?thesis

using 3 .prems(2 ) 3 .prems(3 ) by force
next

case (Suc n)
then show ?thesis
by (metis 3 .hyps 3 .prems Suc-inject Suc-less-eq add.right-neutral add-Suc-right

count-list.simps(2 ) length-Cons nth-Cons-Suc plus-1-eq-Suc se-
lect.simps(3 )

take-Suc-Cons)
qed

qed

lemma nth-select-alt:
[[j < length xs; count-list (take j xs) x = i; xs ! j = x]]
=⇒ select xs x i = j

proof (induct arbitrary: j rule: select.induct[of - xs x i])
case (1 uu uv)
then show ?case

by simp
next

case (2 a xs x j)
then show ?case
proof (cases j)

case 0
then show ?thesis

using 2 .prems(3 ) by auto
next

case (Suc n)
then show ?thesis
by (metis 2 .hyps 2 .prems Suc-less-eq count-in count-list.simps(2 ) length-Cons

list.set-intros(1 ) not-gr-zero nth-Cons-Suc select.simps(2 ) take-Suc-Cons)
qed

next
case (3 a xs x i)
then show ?case
proof (cases j)

case 0
then show ?thesis

using 3 .prems(2 ) by auto
next

case (Suc n)
then show ?thesis
by (metis 3 .hyps 3 .prems One-nat-def Suc-inject Suc-less-eq add.right-neutral

add-Suc-right count-list.simps(2 ) length-Cons nth-Cons-Suc se-

29



lect.simps(3 )
take-Suc-Cons)

qed
qed

lemma select-nth:
[[select xs x i = j; j < length xs]]
=⇒ count-list (take (Suc j) xs) x = Suc i ∧ xs ! j = x

proof (induct arbitrary: j rule: select.induct[of - xs x i])
case (1 uu uv)
then show ?case

by simp
next

case (2 a xs x j)
then show ?case
proof (cases j)

case 0
then show ?thesis
by (metis 2 .prems(1 ) One-nat-def add.right-neutral add-Suc-right count-list.simps

nat.simps(3 ) nth-Cons-0 select-cons-neq take0 take-Suc-Cons)
next

case (Suc n)
then show ?thesis

using 2 .hyps 2 .prems(1 ) 2 .prems(2 ) by auto
qed

next
case (3 a xs x i j)
then show ?case
proof (cases j)

case 0
then show ?thesis

by (metis 3 .prems(1 ) nat.simps(3 ) select-cons-eq select-cons-neq)
next

case (Suc n)
then show ?thesis
by (metis 3 .hyps 3 .prems One-nat-def Suc-le-eq add.right-neutral add-Suc-right

count-list.simps(2 ) length-Cons less-Suc-eq-le nth-Cons-Suc select-cons-eq
select-cons-neq take-Suc-Cons)

qed
qed

lemma select-nth-alt:
[[select xs x i = j; j < length xs]]
=⇒ count-list (take j xs) x = i ∧ xs ! j = x

proof (induct arbitrary: j rule: select.induct[of - xs x i])
case (1 uu uv)
then show ?case

by simp
next

30



case (2 a xs x j)
then show ?case
proof (cases j)

case 0
then show ?thesis

using 2 .prems(1 ) order .strict-iff-not by fastforce
next

case (Suc n)
then show ?thesis

by (metis 2 .prems(1 ) 2 .prems(2 ) nat.inject nth-select-alt select-nth)
qed

next
case (3 a xs x i j)
then show ?case
proof (cases j)

case 0
then show ?thesis

by (metis 3 .prems(1 ) nat.simps(3 ) select-cons-eq select-cons-neq)
next

case (Suc n)
then show ?thesis

by (metis 3 .prems nat.inject nth-select-alt select-nth)
qed

qed

lemma select-less-0-nth:
assumes i < length xs
and i < select xs x 0

shows xs ! i 6= x
proof (cases select xs x 0 < length xs)

assume select xs x 0 < length xs
with select-nth-alt[of xs x 0 select xs x 0 ]
have count-list (take (select xs x 0 ) xs) x = 0 xs ! select xs x 0 = x

by blast+
with count-list-0-iff
have x /∈ set (take (select xs x 0 ) xs)

by metis
then show ?thesis

by (simp add: ‹select xs x 0 < length xs› assms(2 ) in-set-conv-nth)
next

assume ¬ select xs x 0 < length xs
hence length xs ≤ select xs x 0

using linorder-le-less-linear by blast
with select-max[of xs x 0 ]
have select xs x 0 = length xs

by simp
with select-length-imp-count-list-less
have count-list xs x = 0

by (metis le-zero-eq)

31



with count-list-0-iff
have x /∈ set xs

by fastforce
then show ?thesis

using assms(1 ) nth-mem by blast
qed

7.5 Sorted Properties
Theorem 3.10 from [3]: Select Sorted Equivalence
lemma sorted-select:

assumes sorted xs
and i < count-list xs x

shows select xs x i = card {j. j < length xs ∧ xs ! j < x} + i
using assms

proof (induct rule: select.induct[of - xs x i])
case (1 uu uv)
then show ?case

by simp
next

case (2 a xs x)
note IH = this

from IH (2 )
have sorted xs

by simp

have x = a ∨ x 6= a
by blast

moreover
have x 6= a =⇒ ?case
proof −

assume x 6= a
hence 0 < count-list xs x

using IH (3 ) by fastforce
with IH (1 )[OF ‹x 6= a› ‹sorted xs›]
have select xs x 0 = card {j. j < length xs ∧ xs ! j < x}

by simp
moreover
{

from in-count[OF ‹0 < count-list xs x›]
have x ∈ set xs .
with IH (2 ) ‹x 6= a›
have a < x

by (simp add: order-less-le)
have {j. j < length (a # xs) ∧ (a # xs) ! j < x} =

{0} ∪ Suc ‘ {j. j < length xs ∧ xs ! j < x}
proof (safe)

show (a # xs) ! 0 < x

32



by (simp add: ‹a < x›)
next

fix y
assume y < length xs
then show Suc y < length (a # xs)

by simp
next

fix y
assume y < length xs xs ! y < x
then show (a # xs) ! Suc y < x

by simp
next

fix j
assume A: j /∈ Suc ‘ {v. v < length xs ∧ xs ! v < x} j < length (a # xs)

(a # xs) ! j < x

have ∃ k. j = Suc k =⇒ False
proof −

assume ∃ k. j = Suc k
then obtain k where
j = Suc k

by blast
hence B: k < length xs xs ! k < x k /∈ {v. v < length xs ∧ xs ! v < x}

using A by simp-all
then show False

by auto
qed
then show j = 0

using not0-implies-Suc by blast
qed
moreover
{

have finite {0}
by blast

moreover
have finite (Suc ‘ {j. j < length xs ∧ xs ! j < x})

by simp
moreover
have {0} ∩ Suc ‘ {j. j < length xs ∧ xs ! j < x} = {}

by blast
ultimately have

card ({0} ∪ Suc ‘ {j. j < length xs ∧ xs ! j < x}) =
Suc (card (Suc ‘ {j. j < length xs ∧ xs ! j < x}))

using card-Un-disjoint[of {0} Suc ‘ {j. j < length xs ∧ xs ! j < x}] by
simp

}
ultimately have

card {j. j < length (a # xs) ∧ (a # xs) ! j < x} =
Suc (card (Suc ‘{j. j < length xs ∧ xs ! j < x}))

33



by presburger
hence card {j. j < length (a # xs) ∧ (a # xs) ! j < x} =

Suc (card {j. j < length xs ∧ xs ! j < x})
by (simp add: card-image)

}
moreover
have select (a # xs) x 0 = Suc (select xs x 0 )

using ‹x 6= a› select.simps(2 )[of a xs x] by auto
ultimately show ?thesis

by simp
qed
moreover
have x = a =⇒ ?case
proof −

assume x = a
with IH (2 )
have {j. j < length (a # xs) ∧ (a # xs) ! j < x} = {}
by (metis (no-types, lifting) Collect-empty-eq less-nat-zero-code linorder-not-less

neq0-conv
nth-Cons-0 order-refl sorted-nth-less-mono)

with ‹x = a›
show ?thesis

by force
qed
ultimately show ?case

by blast
next

case (3 a xs x i)
note IH = this

have sorted xs

using IH (3 ) by auto
have a ≤ x
by (metis IH (3−) Suc-less-eq2 count-list.simps(2 ) in-count order-refl sorted-simps(2 )

zero-less-Suc)

have x = a ∨ x 6= a
by blast

moreover
have x = a =⇒ ?case
proof −

assume x = a
with IH (4 )
have i < count-list xs x

by auto
with IH (1 )[OF ‹x = a› ‹sorted xs›]
have select xs x i = card {j. j < length xs ∧ xs ! j < x} + i .
moreover

34



from select.simps(3 )[of a xs x i] ‹x = a›
have select (a # xs) x (Suc i) = Suc (select xs x i)

by simp
moreover
from ‹a ≤ x› ‹x = a› IH (3 )
have {j. j < length (a # xs) ∧ (a # xs) ! j < x} = {}

by (metis (no-types, lifting) Collect-empty-eq length-Cons less-nat-zero-code
linorder-not-less nth-Cons-0 sorted-nth-less-mono

zero-less-Suc)
hence card {j. j < length (a # xs) ∧ (a # xs) ! j < x} = 0

by simp
moreover
from ‹a ≤ x› ‹x = a› IH (3 )
have {j. j < length xs ∧ xs ! j < x} = {}

using nth-mem by fastforce
hence card {j. j < length xs ∧ xs ! j < x} = 0

by simp
ultimately show ?thesis

by simp
qed
moreover
have x 6= a =⇒ ?case
proof −

assume x 6= a
hence Suc i < count-list xs x

using IH (4 ) by force
with IH (2 )[OF ‹x 6= a› ‹sorted xs›]
have select xs x (Suc i) = card {j. j < length xs ∧ xs ! j < x} + Suc i .
moreover
from ‹x 6= a› select.simps(3 )[of a xs x i]
have select (a # xs) x (Suc i) = Suc (select xs x (Suc i))

by simp
moreover
{

have {j. j < length (a # xs) ∧ (a # xs) ! j < x} =
{0} ∪ Suc ‘ {j. j < length xs ∧ xs ! j < x}

proof safe
show (a # xs) ! 0 < x

using ‹a ≤ x› ‹x 6= a› by auto
next

fix y
assume y < length xs xs ! y < x
then show Suc y < length (a # xs)

by simp
next

fix y
assume y < length xs xs ! y < x
then show (a # xs) ! Suc y < x

by simp

35



next
fix k
assume A: k /∈ Suc ‘ {j. j < length xs ∧ xs ! j < x} k /∈ {} k < length (a

# xs)
(a # xs) ! k < x

have ∃ l. k = Suc l =⇒ False
proof −

assume ∃ l. k = Suc l
then obtain l where

k = Suc l
by blast

hence l /∈ {j. j < length xs ∧ xs ! j < x} l < length xs xs ! l < x
using A by simp-all

then show False
by blast

qed
then show k = 0

using not0-implies-Suc by blast
qed
moreover
have finite {0}

by blast
moreover
have finite (Suc ‘ {j. j < length xs ∧ xs ! j < x})

by simp
moreover
have {0} ∩ Suc ‘ {j. j < length xs ∧ xs ! j < x} = {}

by blast
ultimately have

card ({j. j < length (a # xs) ∧ (a # xs) ! j < x}) =
Suc (card (Suc ‘ {j. j < length xs ∧ xs ! j < x}))

by simp
hence card ({j. j < length (a # xs) ∧ (a # xs) ! j < x}) =

Suc (card {j. j < length xs ∧ xs ! j < x})
by (simp add: card-image)

}
ultimately show ?thesis

by simp
qed
ultimately show ?case

by blast
qed

corollary sorted-select-0-plus:
assumes sorted xs
and i < count-list xs x

shows select xs x i = select xs x 0 + i
using assms(1 ) assms(2 ) sorted-select by fastforce

36



corollary select-sorted-0 :
assumes sorted xs
and 0 < count-list xs x

shows select xs x 0 = card {j. j < length xs ∧ xs ! j < x}
by (simp add: assms(1 ) assms(2 ) sorted-select)

end
theory Rank-Select

imports Main
Rank-Util
Select-Util

begin

8 Rank and Select Properties
8.1 Correctness of Rank and Select
Correctness theorem statements based on [1].

8.1.1 Rank Correctness
lemma rank-spec:

rank s x i = count (mset (take i s)) x
by (simp add: count-list-eq-count rank-def )

8.1.2 Select Correctness
lemma select-spec:

select s x i = j
=⇒ (j < length s ∧ rank s x j = i) ∨ (j = length s ∧ count-list s x ≤ i )

by (metis le-eq-less-or-eq rank-def select-length-imp-count-list-less select-max se-
lect-nth-alt)

Theorem 3.9 from [3]: Correctness of Select
lemma select-correct:

select s x i ≤ length s ∧
(select s x i < length s −→ rank s x (select s x i) = i) ∧
(select s x i = length s −→ count-list s x ≤ i)

proof −
have select s x i ≤ length s

by (simp add: select-max)
moreover
have select s x i < length s −→ rank s x (select s x i) = i

by (metis rank-def select-nth-alt)
moreover
have select s x i = length s −→ count-list s x ≤ i

by (simp add: select-length-imp-count-list-less)

37



ultimately show ?thesis
by blast

qed

8.2 Rank and Select
lemma rank-select:

select xs x i < length xs =⇒ rank xs x (select xs x i) = i
proof −

let ?j = select xs x i

assume select xs x i < length xs
with select-spec[of xs x i ?j]
show rank xs x (select xs x i) = i

by auto
qed

lemma select-upper-bound:
i < rank xs x j =⇒ select xs x i < length xs

proof (induct xs arbitrary: i j)
case Nil
then show ?case

by (simp add: rank-def )
next

case (Cons a xs i j)
note IH = this

from rank-Suc-ex[OF Cons.prems]
obtain n where

j = Suc n
by blast

show ?case
proof (cases a = x)

assume a = x
show ?thesis
proof (cases i)

case 0
then show ?thesis

by (simp add: ‹a = x›)
next

case (Suc m)
with rank-cons-same[of a xs n] ‹j = Suc n› IH (2 ) ‹a = x›
have m < rank xs x n

by force
with IH (1 )
have select xs x m < length xs

by simp
then show ?thesis

38



by (simp add: Suc ‹a = x›)
qed

next
assume a 6= x
with Cons.prems rank-cons-diff [of a x xs n] ‹j = Suc n›
have i < rank xs x n

by force
with Cons.hyps
have select xs x i < length xs

by simp
then show ?thesis

by (metis ‹a 6= x› length-Cons not-less-eq select-cons-neq)
qed

qed

lemma select-out-of-range:
assumes count-list xs a ≤ i
and mset xs = mset ys

shows select ys a i = length ys
by (metis assms count-list-perm leD rank-select rank-upper-bound select-nth se-

lect-spec)

8.3 Sorted Properties
lemma sorted-nth-gen:

assumes sorted xs
and card {k. k < length xs ∧ xs ! k < c} < length xs
and count-list xs c > i

shows xs ! (card {k. k < length xs ∧ xs ! k < c} + i) = c
proof −

from sorted-select[OF assms(1 ,3 )]
have select xs c i = card {j. j < length xs ∧ xs ! j < c} + i .
with select-nth[of xs c i]
show ?thesis

by (metis assms(3 ) rank-length select-upper-bound)
qed

lemma sorted-nth-gen-alt:
assumes sorted xs
and card {k. k < length xs ∧ xs ! k < a} ≤ i
and i < card {k. k < length xs ∧ xs ! k < a} + card {k. k < length xs ∧ xs

! k = a}
shows xs ! i = a
proof (cases a ∈ set xs)

assume a /∈ set xs
hence card {k. k < length xs ∧ xs ! k = a} = 0

by auto
with assms(2−)
show ?thesis

39



by linarith
next

assume a ∈ set xs

have card {k. k < length xs ∧ xs ! k < a} < length xs
using ‹a ∈ set xs› card-less-idx-upper-strict by blast

moreover
have ∃ k. i = card {k. k < length xs ∧ xs ! k < a} + k

using assms(2 ) le-iff-add by blast
then obtain k where

i = card {k. k < length xs ∧ xs ! k < a} + k
by blast

moreover
have k < count-list xs a

by (metis (mono-tags, lifting) count-list-card nat-add-left-cancel-less assms(3 )
calculation(2 ))

ultimately show ?thesis
using sorted-nth-gen[OF assms(1 ), of a k]
by blast

qed

end
theory SA-Util

imports SuffixArray.Suffix-Array-Properties
SuffixArray.Simple-SACA-Verification
../counting/Rank-Select

begin

9 Suffix Array Properties
9.1 Bijections
lemma bij-betw-empty:

bij-betw f {} {}
using bij-betwI ′ by fastforce

lemma bij-betw-sort-idx-ex:
assumes xs = sort ys
shows ∃ f . bij-betw f {j. j < length ys ∧ ys ! j < x} {j. j < length xs ∧ xs ! j <

x}
proof −

let ?A = {j. j < length ys ∧ ys ! j < x}
let ?B = {j. j < length xs ∧ xs ! j < x}

have mset ys = mset xs
by (simp add: assms)

with permutation-Ex-bij[of ys xs]
obtain f where

40



bij-betw f {..<length ys} {..<length xs}
(∀ i<length ys. ys ! i = xs ! f i)
by blast

moreover
have ?A ⊆ {..<length ys}

by blast
moreover
have f ‘ ?A = ?B
proof safe

fix a
assume a < length ys ys ! a < x
then show f a < length xs

by (meson bij-betw-apply calculation(1 ) lessThan-iff )
next

fix a
assume a < length ys ys ! a < x
then show xs ! f a < x

by (simp add: calculation(2 ))
next

fix a
assume A: a < length xs xs ! a < x
from bij-betw-iff-bijections[THEN iffD1 , OF calculation(1 )]
obtain g where
∀ x∈{..<length ys}. f x ∈ {..<length xs} ∧ g (f x) = x
∀ y∈{..<length xs}. g y ∈ {..<length ys} ∧ f (g y) = y
by blast

then show a ∈ f ‘ ?A
by (metis (no-types, lifting) A calculation(2 ) imageI lessThan-iff mem-Collect-eq)

qed
ultimately show ?thesis

using bij-betw-subset
by blast

qed

9.2 Suffix Properties
lemma suffix-hd-set-eq:
{k. k < length s ∧ s ! k = c } = {k. k < length s ∧ (∃ xs. suffix s k = c # xs)}
using suffix-cons-ex by fastforce

lemma suffix-hd-set-less:
{k. k < length s ∧ s ! k < c } = {k. k < length s ∧ suffix s k < [c]}
using suffix-cons-ex by fastforce

lemma select-nth-suffix-start1 :
assumes i < card {k. k < length s ∧ (∃ as. suffix s k = a # as)}
and xs = sort s

shows select xs a i = card {k. k < length s ∧ suffix s k < [a]} + i
proof −

41



let ?A = {k. k < length s ∧ (∃ as. suffix s k = a # as)}
let ?A ′ = {k. k < length s ∧ s ! k = a}

have ?A = ?A ′

using suffix-cons-Suc by fastforce
with assms(1 )
have i < count-list s a

by (simp add: count-list-card)
hence i < count-list xs a

by (metis assms(2 ) count-list-perm mset-sort)
moreover
let ?B = {k. k < length s ∧ suffix s k < [a]}
let ?B ′ = {k. k < length s ∧ s ! k < a}
let ?B ′′ = {k. k < length xs ∧ xs ! k < a}
{

have ?B = ?B ′

using suffix-cons-ex by fastforce
moreover
have card ?B ′ = card ?B ′′

using bij-betw-sort-idx-ex[OF assms(2 ), of a] bij-betw-same-card
by blast

ultimately have card ?B = card ?B ′′

by presburger
}
ultimately show ?thesis

using sorted-select assms(2 ) by force
qed

lemma select-nth-suffix-start2 :
assumes card {k. k < length s ∧ (∃ as. suffix s k = a # as)} ≤ i
and xs = sort s

shows select xs a i = length xs
proof (rule select-out-of-range[of s])

show mset s = mset xs
by (simp add: assms(2 ))

next
let ?A = {k. k < length s ∧ (∃ as. suffix s k = a # as)}
let ?A ′ = {k. k < length s ∧ s ! k = a}
have ?A = ?A ′

using suffix-cons-Suc by fastforce
with assms(1 )
show count-list s a ≤ i

by (simp add: count-list-card)
qed

context Suffix-Array-General begin

42



9.3 General Properties
lemma sa-subset-upt:

set (sa s) ⊆ {0 ..< length s}
by (simp add: sa-set-upt)

lemma sa-suffix-sorted:
sorted (map (suffix s) (sa s))
using sa-g-sorted strict-sorted-imp-sorted by blast

9.4 Nth Properties
lemma sa-nth-suc-le:

assumes j < length s
and i < j
and s ! (sa s ! i) = s ! (sa s ! j)
and Suc (sa s ! i) < length s
and Suc (sa s ! j) < length s

shows s ! Suc (sa s ! i) ≤ s ! (Suc (sa s ! j))
proof −

from sorted-wrt-nth-less[OF sa-g-sorted[of s] assms(2 )] assms(1 ,2 )
have suffix s (sa s ! i) < suffix s (sa s ! j)

using sa-length by auto
with assms(3−)
have suffix s (Suc (sa s ! i)) < suffix s (Suc (sa s ! j))
by (metis Cons-less-Cons Cons-nth-drop-Suc Suc-lessD order-less-imp-not-less)

then show ?thesis
by (metis Cons-less-Cons assms(4 ,5 ) dual-order .asym suffix-cons-Suc verit-comp-simplify1 (3 ))

qed

lemma sa-nth-suc-le-ex:
assumes j < length s
and i < j
and s ! (sa s ! i) = s ! (sa s ! j)
and Suc (sa s ! i) < length s
and Suc (sa s ! j) < length s

shows ∃ k l. k < l ∧ sa s ! k = Suc (sa s ! i) ∧ sa s ! l = Suc (sa s ! j)
proof −

from sorted-wrt-nth-less[OF sa-g-sorted[of s] assms(2 )] assms(1 ,2 )
have suffix s (sa s ! i) < suffix s (sa s ! j)

using sa-length by auto
with assms(3−)
have suffix s (Suc (sa s ! i)) < suffix s (Suc (sa s ! j))
by (metis Cons-less-Cons Cons-nth-drop-Suc Suc-lessD order-less-imp-not-less)

moreover
from ex-sa-nth[OF assms(4 )]
obtain k where

k < length s
sa s ! k = Suc (sa s ! i)
by blast

43



moreover
from ex-sa-nth[OF assms(5 )]
obtain l where

l < length s
sa s ! l = Suc (sa s ! j)
by blast

ultimately have k < l
using sorted-nth-less-mono[OF strict-sorted-imp-sorted[OF sa-g-sorted[of s]]]
by (metis length-map not-less-iff-gr-or-eq nth-map sa-length)

with ‹sa s ! k = -› ‹sa s ! l = -›
show ?thesis

by blast
qed

lemma sorted-map-nths-sa:
sorted (map (nth s) (sa s))

proof (intro sorted-wrt-mapI )
fix i j
assume i < j j < length (sa s)
hence suffix s (sa s ! i) < suffix s (sa s ! j)

using sa-g-sorted sorted-wrt-mapD by blast
moreover
have suffix s (sa s ! i) = s ! (sa s ! i) # suffix s (Suc (sa s ! i))

by (metis ‹i < j› ‹j < length (sa s)› order .strict-trans sa-length sa-nth-ex
suffix-cons-Suc)

moreover
have suffix s (sa s ! j) = s ! (sa s ! j) # suffix s (Suc (sa s ! j))

by (metis ‹j < length (sa s)› sa-length sa-nth-ex suffix-cons-Suc)
ultimately show s ! (sa s ! i) ≤ s ! (sa s ! j)

by fastforce
qed

lemma perm-map-nths-sa:
s <∼∼> map (nth s) (sa s)
by (metis map-nth mset-map sa-g-permutation)

lemma sort-eq-map-nths-sa:
sort s = map (nth s) (sa s)
by (metis perm-map-nths-sa properties-for-sort sorted-map-nths-sa)

lemma sort-sa-nth:
i < length s =⇒ sort s ! i = s ! (sa s ! i)
by (simp add: sa-length sort-eq-map-nths-sa)

lemma inj-on-nth-sa-upt:
assumes j ≤ length s l ≤ length s

shows inj-on (nth (sa s)) ({i..<j} ∪ {k..<l})
proof

fix x y

44



assume x ∈ {i..<j} ∪ {k..<l} y ∈ {i..<j} ∪ {k..<l} sa s ! x = sa s ! y

have x < length s
using ‹x ∈ {i..<j} ∪ {k..<l}› assms(1 ) assms(2 ) by auto

moreover
have y < length s

using ‹y ∈ {i..<j} ∪ {k..<l}› assms(1 ) assms(2 ) by auto
ultimately show x = y

by (metis ‹sa s ! x = sa s ! y› nth-eq-iff-index-eq sa-distinct sa-length)
qed

lemma nth-sa-upt-set:
nth (sa s) ‘ {0 ..<length s} = {0 ..<length s}

proof safe
fix x
assume x ∈ {0 ..<length s}
then show sa s ! x ∈ {0 ..<length s}

using sa-nth-ex by force
next

fix x
assume x ∈ {0 ..<length s}
then show x ∈ (!) (sa s) ‘ {0 ..<length s}

by (metis ex-sa-nth image-iff in-set-conv-nth sa-length sa-set-upt)
qed

9.5 Valid List Properties
lemma valid-list-sa-hd:

assumes valid-list s
shows ∃n. length s = Suc n ∧ sa s ! 0 = n

proof −
from valid-list-ex-def [THEN iffD1 , OF assms]
obtain xs where

s = xs @ [bot]
by blast

hence valid-list (xs @ [bot])
using assms by simp

with valid-list-bot-min[of xs sa, OF - sa-g-permutation sa-g-sorted]
obtain ys where

sa (xs @ [bot]) = length xs # ys
by blast

with ‹s = xs @ [bot]›
show ?thesis

by simp
qed

lemma valid-list-not-last:
assumes valid-list s
and i < length s

45



and j < length s
and i 6= j
and s ! i = s ! j

shows i < length s − 1 ∧ j < length s − 1
by (metis One-nat-def Suc-pred assms hd-drop-conv-nth last-suffix-index less-Suc-eq

valid-list-length)

end

lemma Suffix-Array-General-ex:
∃ sa. Suffix-Array-General sa
using simple-saca.Suffix-Array-General-axioms by auto

end
theory SA-Count

imports Rank-Select
../util/SA-Util

begin

10 Counting Properties on Suffix Arays
context Suffix-Array-General begin

10.1 Counting Properties
lemma sa-card-index:

assumes i < length s
shows i = card {j. j < length s ∧ suffix s (sa s ! j) < suffix s (sa s ! i)}

(is i = card ?A)
proof −

let ?P = λj. j < length s ∧ suffix s (sa s ! j) < suffix s (sa s ! i)
have P: ∀ j < i. ?P j
proof (safe)

fix j
assume j < i
with assms
show j < length s

by simp
next

fix j
assume j < i
with sorted-wrt-nth-less[OF sa-g-sorted[of s] ‹j < i›] assms
show suffix s (sa s ! j) < suffix s (sa s ! i)

using assms sa-length by auto
qed

have ?A = {j. j < i}
proof (safe)

fix x

46



assume x < i
then show x < length s

using assms by simp
next

fix x
assume x < i
then show suffix s (sa s ! x) < suffix s (sa s ! i)

using P by auto
next

fix x
assume Q: x < length s suffix s (sa s ! x) < suffix s (sa s ! i)
hence x 6= i

by blast
with sorted-nth-less-mono[OF strict-sorted-imp-sorted[OF sa-g-sorted],

simplified length-map sa-length,
OF Q(1 ) assms]

Q assms
show x < i

by (simp add: sa-length)
qed
then show ?thesis

using card-Collect-less-nat by presburger
qed

corollary sa-card-s-index:
assumes i < length s
shows i = card {j. j < length s ∧ suffix s j < suffix s (sa s ! i)}

(is i = card ?A)
proof −

let ?i = sa s ! i
let ?v = s ! ?i
let ?B = {j. j < length s ∧ suffix s (sa s ! j) < suffix s ?i}

from sa-card-index[OF assms]
have i = card ?B .
moreover
have bij-betw (λx. sa s ! x) ?B ?A
proof (intro bij-betwI ′; safe)

fix x y
assume x < length s y < length s sa s ! x = sa s ! y
then show x = y

by (simp add: nth-eq-iff-index-eq sa-distinct sa-length)
next

fix x
assume x < length s
then show sa s ! x < length s

using sa-nth-ex by fastforce
next

fix x

47



assume x < length s suffix s x < suffix s ?i
then show ∃ y ∈ ?B. x = sa s ! y

using ex-sa-nth by blast
qed
hence card ?B = card ?A

using bij-betw-same-card by blast
ultimately show ?thesis

by simp
qed

lemma sa-card-s-idx:
assumes i < length s
shows i = card {j. j < length s ∧ s ! j < s ! (sa s ! i)} +

card {j. j < length s ∧ s ! j = s ! (sa s ! i) ∧ suffix s j < suffix s (sa s !
i)}
proof −

let ?i = sa s ! i
let ?v = s ! ?i
let ?A = {j. j < length s ∧ s ! j < ?v}
let ?B = {j. j < length s ∧ s ! j = ?v ∧ suffix s j < suffix s ?i}
let ?C = {j. j < length s ∧ suffix s j < suffix s ?i}

from sa-card-s-index[OF assms]
have i = card ?C

by simp
moreover
have ?A ∩ ?B = {}

by fastforce
moreover
have ?C = ?A ∪ ?B
proof (safe)

fix x
assume x < length s suffix s x < suffix s ?i ¬s ! x < s ! ?i
then show s ! x = s ! ?i

by (metis Cons-less-Cons sa-nth-ex assms suffix-cons-Suc)
next

fix x
assume x < length s s ! x < s ! ?i
then show suffix s x < suffix s ?i

by (metis Cons-less-Cons sa-nth-ex assms suffix-cons-Suc)
qed
ultimately show ?thesis

by (simp add: card-Un-disjoint)
qed

lemma sa-card-index-lower-bound:
assumes i < length s
shows card {j. j < length s ∧ s ! (sa s ! j) < s ! (sa s ! i)} ≤ i
(is card ?A ≤ i)

48



proof −
let ?B = {j. j < length s ∧ suffix s (sa s ! j) < suffix s (sa s ! i)}
have ?A ⊆ ?B
proof safe

fix x
assume x < length s s ! (sa s ! x) < s ! (sa s ! i)
then show suffix s (sa s ! x) < suffix s (sa s ! i)

by (metis Cons-less-Cons Cons-nth-drop-Suc assms sa-nth-ex)
qed
hence card ?A ≤ card ?B

by (simp add: card-mono)
then show ?thesis

using sa-card-index[OF assms] by simp
qed

lemma sa-card-rank-idx:
assumes i < length s
shows i = card {j. j < length s ∧ s ! (sa s ! j) < s ! (sa s ! i)}

+ rank (sort s) (s ! (sa s ! i)) i
proof −

from sorted-card-rank-idx[of sort s i]
have i = card {j. j < length (sort s) ∧ sort s ! j < sort s ! i} + rank (sort s)

(sort s ! i) i
using assms by fastforce

moreover
have sort s ! i = s ! (sa s ! i)

using assms sort-sa-nth by auto
moreover
have length (sort s) = length s

by simp
ultimately show ?thesis

using sort-sa-nth[of -s]
by (metis (no-types, lifting) Collect-cong)

qed

corollary sa-card-rank-s-idx:
assumes i < length s
shows i = card {j. j < length s ∧ s ! j < s ! (sa s ! i)}

+ rank (sort s) (s ! (sa s ! i)) i
proof −

let ?A = {j. j < length s ∧ s ! j < s ! (sa s ! i)}
and ?B = {j. j < length s ∧ s ! (sa s ! j) < s ! (sa s ! i)}
from sa-card-rank-idx[OF assms]
have i = card {j. j < length s ∧ s ! (sa s ! j) < s ! (sa s ! i)} +

rank (sort s) (s ! (sa s ! i)) i .
moreover
have bij-betw (λx. sa s ! x)

{j. j < length s ∧ s ! (sa s ! j) < s ! (sa s ! i)}
{j. j < length s ∧ s ! j < s ! (sa s ! i)}

49



proof (rule bij-betwI ′; safe)
fix x y
assume x < length s y < length s sa s ! x = sa s ! y
then show x = y

by (simp add: nth-eq-iff-index-eq sa-distinct sa-length)
next

fix x
assume x < length s
then show sa s ! x < length s

using sa-nth-ex by auto
next

fix x
assume x < length s s ! x < s ! (sa s ! i)
then show ∃ xa ∈ {j. j < length s ∧ s ! (sa s ! j) < s ! (sa s ! i)}. x = sa s !

xa
using ex-sa-nth by blast

qed
hence card ?B = card ?A

using bij-betw-same-card by blast
ultimately show ?thesis

by simp
qed

lemma sa-rank-nth:
assumes i < length s
shows rank (sort s) (s ! (sa s ! i)) i =

card {j. j < length s ∧ s ! j = s ! (sa s ! i) ∧
suffix s j < suffix s (sa s ! i)}

proof −
let ?i = sa s ! i
let ?v = s ! ?i
let ?A = {j. j < length s ∧ s ! j < ?v}
let ?B = {j. j < length s ∧ s ! j = ?v ∧ suffix s j < suffix s ?i}

from sa-card-rank-s-idx[OF assms]
have i = card ?A + rank (sort s) ?v i .
moreover
from sa-card-s-idx[OF assms]
have i = card ?A + card ?B .
ultimately show ?thesis

by linarith
qed

lemma sa-suffix-nth:
assumes card {k. k < length s ∧ s ! k < c } + i < length s
and i < count-list s c

shows ∃ as. suffix s (sa s ! (card {k. k < length s ∧ s ! k < c} + i)) = c # as
proof −

let ?A = {k. k < length s ∧ s ! k < c}

50



let ?i = card ?A
let ?A ′ = {k. k < length (sort s) ∧ (sort s) ! k < c}

have ∃ as. suffix s (sa s ! (?i + i)) = (s ! (sa s ! (?i + i))) # as
using assms sa-nth-ex suffix-cons-ex by blast

moreover
have s ! (sa s ! (?i + i)) = sort s ! (?i + i)

using assms(1 ) sort-sa-nth by presburger
moreover
{

have i < count-list (sort s) c
by (metis assms(2 ) count-list-perm sort-perm)

moreover
have card ?A = card ?A ′

proof −
have ∃ f . bij-betw f {n. n < length s ∧ s ! n < c} {n. n < length (sort s) ∧

sort s ! n < c}
using bij-betw-sort-idx-ex by blast

then show ?thesis
using bij-betw-same-card by blast

qed
ultimately have sort s ! (?i + i) = c

using sorted-nth-gen[of sort s c i] assms(1 ) by auto
}
ultimately show ?thesis

by force
qed

10.2 Ordering Properties
lemma sa-suffix-order-le:

assumes card {k. k < length s ∧ s ! k < c } < length s
shows [c] ≤ suffix s (sa s ! (card {k. k < length s ∧ s ! k < c}))

proof −
let ?A = {k. k < length s ∧ s ! k < c}
let ?A ′ = {k. k < length (sort s) ∧ (sort s) ! k < c}
let ?i = card ?A
let ?i ′ = card ?A ′

have ∃ as. suffix s (sa s ! ?i) = (s ! (sa s ! ?i)) # as
using assms sa-nth-ex suffix-cons-ex by blast

then obtain as where
suffix s (sa s ! ?i) = (s ! (sa s ! ?i)) # as
by blast

moreover
from sort-sa-nth[of ?i s]
have sort s ! ?i = s ! (sa s ! ?i)

using assms by blast
moreover

51



have ?i = ?i ′
proof −

have ∃ f . bij-betw f {n. n < length s ∧ s ! n < c} {n. n < length (sort s) ∧
sort s ! n < c}

using bij-betw-sort-idx-ex by blast
then show ?thesis

using bij-betw-same-card by blast
qed
hence c ≤ sort s ! ?i

using sorted-nth-le[of sort s c] assms by auto
ultimately show ?thesis

by fastforce
qed

lemma sa-suffix-order-le-gen:
assumes card {k. k < length s ∧ s ! k < c } + i < length s
shows [c] ≤ suffix s (sa s ! (card {k. k < length s ∧ s ! k < c} + i))

proof (cases i)
case 0
then show ?thesis

using assms sa-suffix-order-le by auto
next

let ?x = card {k. k < length s ∧ s ! k < c }
case (Suc m)
with sorted-wrt-mapD[OF sa-g-sorted, of ?x ?x + i s]
have suffix s (sa s ! ?x) < suffix s (sa s ! (?x + i))

using assms sa-length by auto
moreover
have [c] ≤ suffix s (sa s ! ?x)

using add-lessD1 assms sa-suffix-order-le by blast
ultimately show ?thesis

by order
qed

lemma sa-suffix-nth-less:
assumes i < card {k. k < length s ∧ s ! k < c}
shows ∀ as. suffix s (sa s ! i) < c # as

proof −
have i < length s

using assms card-less-idx-upper dual-order .strict-trans1 by blast
hence ∃ as. suffix s (sa s ! i) = s ! (sa s ! i) # as

using sa-nth-ex suffix-cons-Suc by blast
moreover
have i < card {k. k < length (sort s) ∧ (sort s) ! k < c}

using bij-betw-sort-idx-ex[of sort s s c] assms bij-betw-same-card by force
with sorted-nth-less-gen[of sort s i c]
have s ! (sa s ! i) < c

using sorted-nth-less-gen[of sort s i c] ‹i < length s› sort-sa-nth by force
ultimately show ?thesis

52



by fastforce
qed

lemma sa-suffix-nth-gr :
assumes card {k. k < length s ∧ s ! k < c} + i < length s
and count-list s c ≤ i

shows ∀ as. c # as < suffix s (sa s ! (card {k. k < length s ∧ s ! k < c} + i))
proof −

let ?x = card {k. k < length s ∧ s ! k < c}
let ?i = ?x + i
let ?y = card {k. k < length (sort s) ∧ sort s ! k < c}
have ∃ as. suffix s (sa s ! ?i) = s ! (sa s ! ?i) # as

using assms(1 ) sa-nth-ex suffix-cons-Suc by blast
moreover
{

have ?y = ?x
using bij-betw-sort-idx-ex[of sort s s c] bij-betw-same-card by force

moreover
have ?y + i < length (sort s)

using assms(1 ) calculation(1 ) by auto
moreover
have count-list (sort s) c ≤ i

by (metis assms(2 ) count-list-perm mset-sort)
ultimately have s ! (sa s ! ?i) > c

using sorted-nth-gr-gen[of sort s c i] sort-sa-nth by fastforce
}
ultimately show ?thesis

by fastforce
qed

end

end
theory BWT

imports ../../util/SA-Util

begin

11 Burrows-Wheeler Transform
Based on [2]

Definition 3.3 from [3]: Canonical BWT
definition bwt-canon :: ( ′a :: {linorder , order-bot}) list ⇒ ′a list

where
bwt-canon s = map last (sort (map (λx. rotate x s) [0 ..<length s]))

context Suffix-Array-General begin

53



Definition 3.4 from [3]: Suffix Array Version of the BWT
definition bwt-sa :: ( ′a :: {linorder , order-bot}) list ⇒ ′a list

where
bwt-sa s = map (λi. s ! ((i + length s − Suc 0 ) mod (length s))) (sa s)

end

12 BWT Verification
12.1 List Rotations
lemma rotate-suffix-prefix:

assumes i < length xs
shows rotate i xs = suffix xs i @ prefix xs i
by (simp add: assms rotate-drop-take)

lemma rotate-last:
assumes i < length xs
shows last (rotate i xs) = xs ! ((i + length xs − Suc 0 ) mod (length xs))
by (metis Nat.add-diff-assoc One-nat-def Suc-leI assms diff-less last-conv-nth

length-greater-0-conv length-rotate list.size(3 ) not-less-zero nth-rotate
zero-less-one)

lemma (in Suffix-Array-General) map-last-rotations:
map last (map (λi. rotate i s) (sa s)) = bwt-sa s

proof −
have ∀ x∈set (sa s). last (rotate x s) = s ! ((x + length s − Suc 0 ) mod length s)

by (meson atLeastLessThan-iff rotate-last sa-subset-upt subset-code(1 ))
then show ?thesis

unfolding bwt-sa-def by simp
qed

lemma distinct-rotations:
assumes valid-list s
and i < length s
and j < length s
and i 6= j

shows rotate i s 6= rotate j s
proof −

from rotate-suffix-prefix[OF assms(2 )]
rotate-suffix-prefix[OF assms(3 )]
suffix-has-no-prefix-suffix[OF assms, simplified]
suffix-has-no-prefix-suffix[OF assms(1 ,3 ,2 ) assms(4 )[symmetric], simplified]

show ?thesis
by (metis append-eq-append-conv2 )

qed

54



12.2 Ordering
lemma list-less-suffix-app-prefix-1 :

assumes valid-list xs
and i < length xs
and j < length xs
and suffix xs i < suffix xs j

shows suffix xs i @ prefix xs i < suffix xs j @ prefix xs j
proof −

from suffix-less-ex[OF assms]
obtain b c as bs cs where

suffix xs i = as @ b # bs
suffix xs j = as @ c # cs
b < c
by blast

hence suffix xs i @ prefix xs i = as @ b # bs @ prefix xs i
suffix xs j @ prefix xs j = as @ c # cs @ prefix xs j

by simp-all
with ‹b < c›
show ?thesis

by (metis list-less-ex)
qed

lemma list-less-suffix-app-prefix-2 :
assumes valid-list xs
and i < length xs
and j < length xs
and suffix xs i @ prefix xs i < suffix xs j @ prefix xs j

shows suffix xs i < suffix xs j
by (metis assms list-less-suffix-app-prefix-1 not-less-iff-gr-or-eq suffixes-neq)

corollary list-less-suffix-app-prefix:
assumes valid-list xs
and i < length xs
and j < length xs

shows suffix xs i < suffix xs j ←→
suffix xs i @ prefix xs i < suffix xs j @ prefix xs j

using assms list-less-suffix-app-prefix-1 list-less-suffix-app-prefix-2 by blast

Theorem 3.5 from [3]: Same Suffix and Rotation Order
lemma list-less-suffix-rotate:

assumes valid-list xs
and i < length xs
and j < length xs

shows suffix xs i < suffix xs j ←→ rotate i xs < rotate j xs
by (simp add: assms list-less-suffix-app-prefix rotate-suffix-prefix)

lemma (in Suffix-Array-General) sorted-rotations:
assumes valid-list s
shows strict-sorted (map (λi. rotate i s) (sa s))

55



proof (intro sorted-wrt-mapI )
fix i j
assume i < j j < length (sa s)
with sorted-wrt-nth-less[OF sa-g-sorted ‹i < j›, simplified, OF ‹j < -›]
have suffix s (sa s ! i) < suffix s (sa s ! j)

by force
with list-less-suffix-rotate[THEN iffD1 , OF assms, of sa s ! i sa s ! j]
show rotate (sa s ! i) s < rotate (sa s ! j) s
by (metis ‹i < j› ‹j < length (sa s)› dual-order .strict-trans sa-length sa-nth-ex)

qed

12.3 BWT Equivalence
Theorem 3.6 from [3]: BWT and Suffix Array Correspondence Canoncial
BWT and BWT via Suffix Array Correspondence
theorem (in Suffix-Array-General) bwt-canon-eq-bwt-sa:

assumes valid-list s
shows bwt-canon s = bwt-sa s

proof −
let ?xs = map (λx. rotate x s) [0 ..<length s]

have distinct ?xs
by (intro distinct-conv-nth[THEN iffD2 ] allI impI ; simp add: distinct-rotations[OF

assms])
hence strict-sorted (sort ?xs)

using distinct-sort sorted-sort strict-sorted-iff by blast
hence sort ?xs = map (λi. rotate i s) (sa s)

using sorted-rotations[OF assms]
by (simp add: strict-sorted-equal sa-set-upt)

with map-last-rotations[of s]
have map last (sort ?xs) = bwt-sa s

by presburger
then show ?thesis

by (metis bwt-canon-def )
qed

end
theory BWT-SA-Corres

imports BWT
../../counting/SA-Count
../../util/Rotated-Substring

begin

13 BWT and Suffix Array Correspondence
context Suffix-Array-General begin

Definition 3.12 from [3]: BWT Permutation

56



definition bwt-perm :: ( ′a :: {linorder , order-bot}) list ⇒ nat list
where

bwt-perm s = map (λi. (i + length s − Suc 0 ) mod (length s)) (sa s)

13.1 BWT Using Suffix Arrays
lemma map-bwt-indexes:

fixes s :: ( ′a :: {linorder , order-bot}) list
shows bwt-sa s = map (λi. s ! i) (bwt-perm s)
by (simp add: bwt-perm-def bwt-sa-def )

lemma map-bwt-indexes-perm:
fixes s :: ( ′a :: {linorder , order-bot}) list
shows bwt-perm s <∼∼> [0 ..<length s]

proof (intro distinct-set-imp-perm)
show distinct [0 ..<length s]

by simp
next

show set (bwt-perm s) = set [0 ..<length s]
unfolding bwt-perm-def

proof safe
fix x
assume x ∈ set (map (λi. (i + length s − Suc 0 ) mod length s) (sa s))
hence x < length s

by (metis (no-types, lifting) ex-map-conv length-map length-pos-if-in-set
mod-less-divisor

sa-length)
then show x ∈ set [0 ..<length s]

by simp
next

fix x
assume x ∈ set [0 ..<length s]
hence x ∈ {0 ..<length s}

using atLeastLessThan-upt by blast

have x ∈ (λi. (i + length s − Suc 0 ) mod length s) ‘ {0 ..<length s}
proof (cases Suc x < length s)

assume Suc x < length s
hence (λi. (i + length s − Suc 0 ) mod length s) (Suc x) = x

by simp
then show ?thesis

using ‹Suc x < length s› by force
next

assume ¬ Suc x < length s
with ‹x ∈ {0 ..<length s}›
have Suc x = length s

by simp
hence (λi. (i + length s − Suc 0 ) mod length s) 0 = x

using diff-Suc-1 ′ lessI mod-less by presburger

57



then show ?thesis
by (metis (mono-tags, lifting) ‹Suc x = length s› atLeastLessThan-iff imageI

zero-le
zero-less-Suc)

qed
then show x ∈ set (map (λi. (i + length s − Suc 0 ) mod length s) (sa s))

by (simp add: sa-set-upt)
qed

next
show distinct (bwt-perm s)
proof (intro distinct-conv-nth[THEN iffD2 ] allI impI )

fix i j
assume A: i < length (bwt-perm s) j < length (bwt-perm s) i 6= j

have bwt-perm s ! i = (sa s ! i + length s − Suc 0 ) mod (length s)
using A(1 ) bwt-perm-def by force

moreover
have bwt-perm s ! j = (sa s ! j + length s − Suc 0 ) mod (length s)

using A(2 ) bwt-perm-def by force
moreover
have sa s ! i 6= sa s ! j

by (metis A bwt-perm-def length-map nth-eq-iff-index-eq sa-distinct)

have (sa s ! i + length s − Suc 0 ) mod (length s) 6=
(sa s ! j + length s − Suc 0 ) mod (length s)

proof (cases sa s ! i)
case 0
hence (sa s ! i + length s − Suc 0 ) mod (length s) = length s − Suc 0

by (metis diff-Suc-less gen-length-def length-code length-greater-0-conv
list.size(3 )

mod-by-0 mod-less)
moreover
have ∃m. sa s ! j = Suc m

using 0 ‹sa s ! i 6= sa s ! j› not0-implies-Suc by force
then obtain m where

sa s ! j = Suc m
by blast

hence (sa s ! j + length s − Suc 0 ) mod (length s) = m
using A(2 ) bwt-perm-def sa-length sa-nth-ex by force

moreover
have Suc m ≤ length s − Suc 0
by (metis 0 A(1 ) A(2 ) Suc-pred ‹sa s ! j = Suc m› bwt-perm-def length-map

less-Suc-eq-le
sa-length sa-nth-ex)

hence m < length s − Suc 0
using Suc-le-eq by blast

ultimately show ?thesis
by (metis not-less-iff-gr-or-eq)

next

58



case (Suc n)
assume sa s ! i = Suc n
hence B: (sa s ! i + length s − Suc 0 ) mod (length s) = n

using A(1 ) bwt-perm-def sa-length sa-nth-ex by force
show ?thesis
proof (cases sa s ! j)

case 0
hence (sa s ! j + length s − Suc 0 ) mod (length s) = length s − Suc 0
by (metis add-eq-if diff-Suc-less length-greater-0-conv list.size(3 ) mod-by-0

mod-less)
moreover
have Suc n ≤ length s − Suc 0

by (metis 0 A(1 ,2 ) Suc Suc-pred bwt-perm-def length-map less-Suc-eq-le
sa-length

sa-nth-ex)
hence n < length s − Suc 0

using Suc-le-eq by blast
ultimately show ?thesis

by (simp add: B)
next

case (Suc m)
hence (sa s ! j + length s − Suc 0 ) mod (length s) = m

using A(2 ) add-Suc bwt-perm-def sa-length sa-nth-ex by force
moreover
have m 6= n

using Suc ‹sa s ! i = Suc n› ‹sa s ! i 6= sa s ! j› by auto
ultimately show ?thesis

using B by presburger
qed

qed
ultimately show bwt-perm s ! i 6= bwt-perm s ! j

by presburger
qed

qed

lemma bwt-sa-perm:
fixes s :: ( ′a :: {linorder , order-bot}) list
shows bwt-sa s <∼∼> s
by (metis map-bwt-indexes-perm map-bwt-indexes map-nth mset-map)

lemma bwt-sa-nth:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes i < length s
shows bwt-sa s ! i = s ! (((sa s ! i) + length s − 1 ) mod (length s))
using assms sa-length bwt-sa-def by force

lemma bwt-perm-nth:
fixes s :: ( ′a :: {linorder , order-bot}) list

59



fixes i :: nat
assumes i < length s
shows bwt-perm s ! i = ((sa s ! i) + length s − 1 ) mod (length s)
using assms sa-length bwt-perm-def by force

lemma bwt-perm-s-nth:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes i < length s
shows bwt-sa s ! i = s ! (bwt-perm s ! i)
using assms bwt-perm-nth bwt-sa-nth by presburger

lemma bwt-sa-length:
fixes s :: ( ′a :: {linorder , order-bot}) list
shows length (bwt-sa s) = length s
using sa-length bwt-sa-def by force

lemma bwt-perm-length:
fixes s :: ( ′a :: {linorder , order-bot}) list
shows length (bwt-perm s) = length s
using sa-length bwt-perm-def by force

lemma ex-bwt-perm-nth:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes k :: nat
assumes k < length s
shows ∃ i < length s. bwt-perm s ! i = k
using assms ex-perm-nth map-bwt-indexes-perm by blast

lemma valid-list-sa-index-helper :
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i j :: nat
assumes valid-list s
and i < length s
and j < length s
and i 6= j
and s ! (bwt-perm s ! i) = s ! (bwt-perm s ! j)

shows sa s ! i 6= 0
proof (rule ccontr)

assume ¬ sa s ! i 6= 0
hence sa s ! i = 0

by clarsimp

from valid-list-length-ex[OF assms(1 )]
obtain n where

length s = Suc n
by blast

60



let ?i = (sa s ! i + length s − 1 ) mod length s
and ?j = (sa s ! j + length s − 1 ) mod length s

from bwt-perm-nth[OF assms(2 )]
have bwt-perm s ! i = ?i .
moreover
from bwt-perm-nth[OF assms(3 )]
have bwt-perm s ! j = ?j .
moreover
have ?i = n

by (simp add: ‹length s = Suc n› ‹sa s ! i = 0 ›)
hence s ! ?i = bot

by (metis One-nat-def ‹length s = Suc n› assms(1 ) diff-Suc-Suc diff-zero
last-conv-nth

list.size(3 ) nat.distinct(1 ) valid-list-def )
moreover
have ∃ k. sa s ! j = Suc k

by (metis ‹length s = Suc n› ‹sa s ! i = 0 › assms(2−4 ) less-Suc-eq-0-disj
nth-eq-iff-index-eq

sa-distinct sa-length sa-nth-ex)
then obtain k where

sa s ! j = Suc k
by blast

hence ?j = k ∧ k < n
by (metis ‹length s = Suc n› add-Suc-right add-Suc-shift add-diff-cancel-left ′

assms(3 )
dual-order .strict-trans lessI mod-add-self2 mod-less not-less-eq plus-1-eq-Suc

sa-nth-ex)
hence s ! ?j 6= bot

by (metis ‹length s = Suc n› assms(1 ) diff-Suc-1 valid-list-def )
ultimately show False

by (metis assms(5 ))
qed

Theorem 3.13 from [3]: Suffix Relative Order Preservation Relative order
of the suffixes is maintained by the BWT permutation
lemma bwt-relative-order :

fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i j :: nat
assumes valid-list s
and i < j
and j < length s
and s ! (bwt-perm s ! i) = s ! (bwt-perm s ! j)

shows suffix s (bwt-perm s ! i) < suffix s (bwt-perm s ! j)
proof −

from valid-list-length-ex[OF assms(1 )]
obtain n where

length s = Suc n
by blast

61



let ?i = (sa s ! i + length s − 1 ) mod length s
and ?j = (sa s ! j + length s − 1 ) mod length s

from bwt-perm-nth[of i s] assms(2−3 )
have bwt-perm s ! i = ?i

using dual-order .strict-trans by blast
moreover
from bwt-perm-nth[OF assms(3 )]
have bwt-perm s ! j = ?j .
moreover
from sorted-wrt-nth-less[OF sa-g-sorted assms(2 )] assms(2 ,3 )
have suffix s (sa s ! i) < suffix s (sa s ! j)

using sa-length by force
moreover
have ∃ k. sa s ! i = Suc k
using valid-list-sa-index-helper [OF assms(1 ) - assms(3 ) - assms(4 )] assms(2 ,3 )

dual-order .strict-trans not0-implies-Suc by blast
then obtain k where

sa s ! i = Suc k
by blast

moreover
from calculation(4 )
have ?i = k

by (metis Suc-lessD add.assoc assms(2 ,3 ) diff-Suc-1 dual-order .strict-trans
mod-add-self2

mod-less plus-1-eq-Suc sa-nth-ex)
moreover
have ∃ l. sa s ! j = Suc l
using valid-list-sa-index-helper [OF assms(1 ) assms(3 ) - - assms(4 )[symmetric]]

assms(2 ,3 )
dual-order .strict-trans not0-implies-Suc by blast

then obtain l where
sa s ! j = Suc l
by blast

moreover
from calculation(6 )
have ?j = l

using assms(3 ) sa-nth-ex by force
ultimately show ?thesis
by (metis Cons-less-Cons Cons-nth-drop-Suc assms(1 ,4 ) mod-less-divisor valid-list-length)

qed

lemma bwt-sa-card-s-idx:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s
shows i = card {j. j < length s ∧ j < i ∧ bwt-sa s ! j 6= bwt-sa s ! i} +

62



card {j. j < length s ∧ s ! j = bwt-sa s ! i ∧
suffix s j < suffix s (bwt-perm s ! i)}

proof −
let ?bwt = bwt-sa s
let ?idx = bwt-perm s
let ?i = ?idx ! i
let ?v = ?bwt ! i
let ?A = {j. j < length s ∧ j < i ∧ ?bwt ! j 6= ?v}
let ?B = {j. j < length s ∧ s ! j = ?v ∧ suffix s j < suffix s ?i}
let ?C = {j. j < length s ∧ j < i ∧ ?bwt ! j = ?v}

have P:
∧

x. [[x < i; ¬x < length s]] =⇒ False
using assms(2 ) dual-order .strict-trans by blast

have ?A ∩ ?C = {}
by blast

moreover
have ?A ∪ ?C = {0 ..<i}

by (safe; clarsimp dest!: P)
ultimately have i = card ?A + card ?C

by (metis (no-types, lifting) List.finite-set atLeastLessThan-upt card-Un-disjnt
card-upt

disjnt-def finite-Un)
moreover
have bij-betw (λx. ?idx ! x) ?C ?B
proof (intro bij-betwI ′; safe)

fix x y
assume x < length s y < length s ?idx ! x = ?idx ! y
with perm-distinct-iff [OF map-bwt-indexes-perm, of s]
show x = y

by (simp add: bwt-perm-length nth-eq-iff-index-eq)
next

fix x
assume x < length s
with map-bwt-indexes-perm[of s]
show ?idx ! x < length s

using perm-nth-ex by blast
next

fix x
assume x < length s bwt-sa s ! x = ?v
then show s ! (?idx ! x) = ?v

using bwt-perm-s-nth by auto
next

fix x
assume x < length s x < i bwt-sa s ! x = ?v
then show suffix s (?idx ! x) < suffix s ?i
using bwt-relative-order [OF assms(1 ) - assms(2 ), of x] assms(2 ) bwt-perm-s-nth

by fastforce
next

63



fix x
assume Q: x < length s s ! x = ?v suffix s x < suffix s ?i

from perm-nth[OF map-bwt-indexes-perm[of s, symmetric],
simplified length-map sa-length length-upt]

have ∃ y < length s. x = ?idx ! y
using Q(1 ) bwt-perm-length by auto

then obtain y where
y < length s
x = ?idx ! y
by blast

moreover
from Q(2 ) calculation
have ?bwt ! y = ?v

by (simp add: bwt-perm-s-nth)
moreover
have y < i
proof (rule ccontr)

assume ¬ y < i
hence i ≤ y

by simp
moreover
from Q(3 ) ‹x = ?idx ! y›
have i = y =⇒ False

by blast
moreover
have i < y =⇒ False
proof −

assume i < y
from bwt-relative-order [OF assms(1 ) ‹i < y› ‹y < -›]

Q(2 ) ‹x = ?idx ! y›
have suffix s ?i < suffix s (?idx ! y)

by (simp add: bwt-perm-s-nth assms(2 ))
with Q(3 ) ‹x = ?idx ! y›
show False

using order .asym by blast
qed
ultimately show False

using nat-less-le by blast
qed
ultimately show ∃ y ∈ ?C . x = bwt-perm s ! y

by blast
qed
hence card ?C = card ?B

using bij-betw-same-card by blast
ultimately
show ?thesis

by presburger
qed

64



lemma bwt-perm-to-sa-idx:
assumes valid-list s
and i < length s

shows ∃ k < length s. sa s ! k = bwt-perm s ! i ∧
k = card {j. j < length s ∧ s ! j < bwt-sa s ! i} +

card {j. j < length s ∧ s ! j = bwt-sa s ! i ∧
suffix s j < suffix s (bwt-perm s ! i)}

proof −
let ?bwt = bwt-sa s
let ?v = ?bwt ! i
let ?i = bwt-perm s ! i
let ?A = {j. j < length s ∧ s ! j < ?v}
let ?B = {j. j < length s ∧ s ! j = ?v ∧ suffix s j < suffix s ?i}

have ∃ k < length s. sa s ! k = ?i
by (metis assms bwt-perm-nth ex-sa-nth mod-less-divisor valid-list-length)

then obtain k where
k < length s
sa s ! k = ?i
by blast

moreover
have s ! (sa s ! k) = ?v

using assms(2 ) bwt-perm-s-nth calculation(2 ) by presburger
with sa-card-s-idx[OF calculation(1 )]
have k = card ?A + card ?B

by (metis calculation(2 ))
ultimately show ?thesis

by blast
qed

corollary bwt-perm-eq:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s

shows bwt-perm s ! i =
sa s ! (card {j. j < length s ∧ s ! j < bwt-sa s ! i} +

card {j. j < length s ∧ s ! j = bwt-sa s ! i ∧
suffix s j < suffix s (bwt-perm s ! i)})

using assms bwt-perm-to-sa-idx by presburger

13.2 BWT Rank Properties
lemma bwt-perm-rank-nth:

fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s

65



shows rank (bwt-sa s) (bwt-sa s ! i) i =
card {j. j < length s ∧ s ! j = bwt-sa s ! i ∧

suffix s j < suffix s (bwt-perm s ! i)}
proof −

let ?bwt = bwt-sa s
let ?idx = bwt-perm s
let ?i = ?idx ! i
let ?v = ?bwt ! i
let ?A = {j. j < length s ∧ s ! j = ?v ∧ suffix s j < suffix s ?i}
let ?B = {j. j < length ?bwt ∧ j < i ∧ ?bwt ! j = ?v}
let ?C = {j. j < length s ∧ j < i ∧ ?bwt ! j = ?v}

from valid-list-length-ex[OF assms(1 )]
obtain n where

length s = Suc n
by blast

from rank-card-spec[of ?bwt ?v i]
have rank ?bwt ?v i = card ?B .
moreover
have ?B = ?C

by (simp add: bwt-sa-length sa-length)
moreover
have bij-betw (λx. ?idx ! x) ?C ?A
proof (rule bij-betwI ′; safe)

fix x y
assume x < length s y < length s ?idx ! x = ?idx ! y
then show x = y

by (metis map-bwt-indexes-perm bwt-perm-length nth-eq-iff-index-eq
perm-distinct-set-of-upt-iff )

next
fix x
assume x < length s
then show ?idx ! x < length s

using map-bwt-indexes-perm perm-nth-ex by blast
next

fix x
assume x < length s x < i ?bwt ! x = ?v
then show s ! (?idx ! x) = ?v

using bwt-perm-s-nth by auto
next

fix x
assume x < length s x < i ?bwt ! x = ?v
then show suffix s (?idx ! x) < suffix s ?i

by (simp add: assms(1 ,2 ) bwt-relative-order bwt-perm-s-nth)
next

fix x
assume x < length s s ! x = ?v suffix s x < suffix s ?i

66



from perm-nth[OF map-bwt-indexes-perm[of s, symmetric],
simplified length-map sa-length length-upt, of x]

have ∃ y < length s. x = ?idx ! y
using ‹x < length s› bwt-perm-length by auto

then obtain y where
y < length s
x = ?idx ! y
by blast

moreover
from calculation ‹s ! x = ?v›
have ?bwt ! y = ?v

using bwt-perm-s-nth by presburger
moreover
have y < i
proof (rule ccontr)

assume ¬ y < i
hence i ≤ y

by simp
moreover
from ‹suffix s x < suffix s ?i› ‹x = ?idx ! y›
have y = i =⇒ False

by blast
moreover
have i < y =⇒ False
proof −

assume i < y
with bwt-relative-order [OF assms(1 ) ‹i < y› ‹y < -›] ‹x = ?idx ! y› ‹s ! x

= bwt-sa s ! i›
have suffix s ?i < suffix s x

using assms(2 ) bwt-perm-s-nth by presburger
with ‹suffix s x < suffix s ?i›
show False

using less-not-sym by blast
qed
ultimately show False

by linarith
qed
ultimately show ∃ y ∈ ?C . x = bwt-perm s ! y

by blast
qed
hence card ?C = card ?A

using bij-betw-same-card by blast
ultimately show ?thesis

by presburger
qed

lemma bwt-sa-card-rank-s-idx:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat

67



assumes valid-list s
and i < length s

shows i = card {j. j < length s ∧ j < i ∧ bwt-sa s ! j 6= bwt-sa s ! i} +
rank (bwt-sa s) (bwt-sa s ! i) i

using assms bwt-sa-card-s-idx bwt-perm-rank-nth by presburger

13.3 Suffix Array and BWT Rank
lemma sa-bwt-perm-same-rank:

fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i j :: nat
assumes valid-list s
and i < length s
and j < length s
and sa s ! i = bwt-perm s ! j

shows rank (sort s) (s ! (sa s ! i)) i = rank (bwt-sa s) (bwt-sa s ! j) j
proof −

let ?i = sa s ! i
let ?v = s ! ?i
let ?A = {j. j < length s ∧ s ! j = ?v ∧ suffix s j < suffix s ?i}

have bwt-sa s ! j = ?v
using bwt-perm-s-nth[OF assms(3 )] assms(4 ) by presburger

from sa-rank-nth[OF assms(2 )]
have rank (sort s) ?v i = card ?A .
moreover
from bwt-perm-rank-nth[OF assms(1 ,3 ), simplified assms(4 )[symmetric]] ‹bwt-sa

s ! j = ?v›
have rank (bwt-sa s) (bwt-sa s ! j) j = card ?A

by simp
ultimately show ?thesis

by simp
qed

Theorem 3.17 from [3]: Same Rank Rank for each symbol is the same in
the BWT and suffix array
lemma rank-same-sa-bwt-perm:

fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i j :: nat
fixes v :: ′a
assumes valid-list s
and i < length s
and j < length s
and s ! (sa s ! i) = v
and bwt-sa s ! j = v
and rank (sort s) v i = rank (bwt-sa s) v j

shows sa s ! i = bwt-perm s ! j
proof −

68



let ?A = {j. j < length s ∧ s ! j < v}
from sa-card-rank-s-idx[OF assms(2 ), simplified assms(4 )]
have i = card ?A + rank (sort s) v i .
moreover
from bwt-perm-rank-nth[OF assms(1 ,3 ), simplified assms(5 )]

bwt-perm-eq[OF assms(1 ,3 ), simplified assms(5 )]
have bwt-perm s ! j = sa s ! (card ?A + rank (bwt-sa s) v j)

by presburger
with assms(6 )
have bwt-perm s ! j = sa s ! (card ?A + rank (sort s) v i)

by simp
ultimately show ?thesis

by simp
qed

lemma rank-bwt-card-suffix:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
fixes a :: ′a
assumes i < length s
shows rank (bwt-sa s) a i =

card {k. k < length s ∧ k < i ∧ bwt-sa s ! k = a ∧
a # suffix s (sa s ! k) < a # suffix s (sa s ! i)}

proof −
let ?X = {j. j < length (bwt-sa s) ∧ j < i ∧ bwt-sa s ! j = a}
let ?Y = {k. k < length s ∧ k < i ∧ bwt-sa s ! k = a ∧

a # suffix s (sa s ! k) < a # suffix s (sa s ! i)}

from rank-card-spec[of bwt-sa s a i]
have rank (bwt-sa s) a i = card ?X .
moreover
have ?Y ⊆ ?X

using bwt-sa-length by auto
moreover
have ?X ⊆ ?Y
proof safe

fix x
assume x < length (bwt-sa s)
then show x < length s

by (simp add: bwt-sa-length)
next

fix x
assume x < length (bwt-sa s) x < i a = bwt-sa s ! x
with sorted-wrt-mapD[OF sa-g-sorted, of x i s]
show bwt-sa s ! x # suffix s (sa s ! x) < bwt-sa s ! x # suffix s (sa s ! i)

by (simp add: assms sa-length)
qed
ultimately show ?thesis

by force

69



qed

lemma sa-to-bwt-perm-idx:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s

shows sa s ! i =
bwt-perm s ! (select (bwt-sa s) (s ! (sa s ! i)) (rank (sort s) (s ! (sa s ! i)) i))

proof −
let ?a = s ! (sa s ! i)
let ?r1 = rank (sort s) ?a i
let ?i = select (bwt-sa s) ?a ?r1
let ?r2 = rank (bwt-sa s) ?a ?i

have ?r1 < count-list (sort s) ?a
by (simp add: assms(2 ) rank-upper-bound sort-sa-nth)

hence ?r1< count-list (bwt-sa s) ?a
by (metis bwt-sa-perm count-list-perm mset-sort)

hence ?i < length (bwt-sa s)
by (metis rank-length select-upper-bound)

hence ?r1 = ?r2 ∧ bwt-sa s ! ?i = ?a
by (metis rank-select select-nth-alt)

with rank-same-sa-bwt-perm[OF assms, of ?i ?a]
show ?thesis

using ‹?i < length (bwt-sa s)› bwt-sa-length by fastforce
qed

lemma suffix-bwt-perm-sa:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s
and bwt-sa s ! i 6= bot

shows suffix s (bwt-perm s ! i) = bwt-sa s ! i # suffix s (sa s ! i)
proof −

from bwt-sa-nth[OF assms(2 )]
have bwt-sa s ! i = s ! ((sa s ! i + length s − 1 ) mod length s) .
moreover
have sa s ! i 6= 0
by (metis add-diff-cancel-left ′ assms(1 ,3 ) calculation diff-less diff-zero last-conv-nth

length-greater-0-conv less-one mod-less valid-list-def )
ultimately have bwt-sa s ! i = s ! (sa s ! i − 1 )
by (metis Nat.add-diff-assoc2 One-nat-def Suc-lessD Suc-pred assms(2 ) bot-nat-0 .not-eq-extremum

less-Suc-eq-le linorder-not-less mod-add-self2 mod-if sa-nth-ex)
hence bwt-sa s ! i # suffix s (sa s ! i) = suffix s (sa s ! i − 1 )

by (metis Suc-lessD ‹sa s ! i 6= 0 › add-diff-inverse-nat assms(2 ) less-one

70



plus-1-eq-Suc
sa-nth-ex suffix-cons-Suc)

moreover
have bwt-perm s ! i = sa s ! i − 1

by (metis Nat.add-diff-assoc2 One-nat-def Suc-leI Suc-lessD Suc-pred ‹sa s ! i
6= 0 › assms(2 )

bwt-perm-nth mod-add-self2 mod-less not-gr-zero sa-nth-ex)
ultimately show ?thesis

by presburger
qed

end

end
theory IBWT

imports BWT-SA-Corres
begin

14 Inverse Burrows-Wheeler Transform
Inverse BWT algorithm obtained from [6]

14.1 Abstract Versions
context Suffix-Array-General begin

These are abstract because they use additional information about the
original string and its suffix array.

Definition 3.15 from [3]: Abstract LF-Mapping
fun lf-map-abs :: ′a list ⇒ nat ⇒ nat
where
lf-map-abs s i = select (sort s) (bwt-sa s ! i) (rank (bwt-sa s) (bwt-sa s ! i) i)

Definition 3.16 from [3]: Inverse BWT Permutation
fun ibwt-perm-abs :: nat ⇒ ′a list ⇒ nat ⇒ nat list
where
ibwt-perm-abs 0 - - = [] |
ibwt-perm-abs (Suc n) s i = ibwt-perm-abs n s (lf-map-abs s i) @ [i]

end

14.2 Concrete Versions
These are concrete because they only rely on the BWT-transformed sequence
without any additional information.

Definition 3.14 from [3]: Inverse BWT - LF-mapping

71



fun lf-map-conc :: ( ′a :: {linorder , order-bot}) list ⇒ ′a list ⇒ nat ⇒ nat
where

lf-map-conc ss bs i = (select ss (bs ! i) 0 ) + (rank bs (bs ! i) i)

fun ibwt-perm-conc :: nat ⇒ ( ′a :: {linorder , order-bot}) list ⇒ ′a list ⇒ nat ⇒
nat list

where
ibwt-perm-conc 0 - - - = [] |
ibwt-perm-conc (Suc n) ss bs i = ibwt-perm-conc n ss bs (lf-map-conc ss bs i)

@ [i]

Definition 3.14 from [3]: Inverse BWT - Inverse BWT Rotated Subse-
quence
fun ibwtn :: nat ⇒ ( ′a :: {linorder , order-bot}) list ⇒ ′a list ⇒ nat ⇒ ′a list

where
ibwtn 0 - - - = [] |
ibwtn (Suc n) ss bs i = ibwtn n ss bs (lf-map-conc ss bs i) @ [bs ! i]

Definition 3.14 from [3]: Inverse BWT
fun ibwt :: ( ′a :: {linorder , order-bot}) list ⇒ ′a list

where
ibwt bs = ibwtn (length bs) (sort bs) bs (select bs bot 0 )

15 List Filter
lemma filter-nth-app-upt:

filter (λi. P (xs ! i)) [0 ..<length xs] = filter (λi. P ((xs @ ys) ! i)) [0 ..<length
xs]

by (induct xs arbitrary: ys rule: rev-induct; simp)

lemma filter-eq-nth-upt:
filter P xs = map (λi. xs ! i) (filter (λi. P (xs ! i)) [0 ..<length xs])

proof (induct xs rule: rev-induct)
case Nil
then show ?case

by simp
next

case (snoc x xs)
have ?case ←→

map ((!) xs) (filter (λi. P (xs ! i)) [0 ..<length xs]) =
map ((!) (xs @ [x])) (filter (λi. P ((xs @ [x]) ! i)) [0 ..<length xs])

using snoc by simp
moreover
have map ((!) (xs @ [x])) (filter (λi. P ((xs @ [x]) ! i)) [0 ..<length xs]) =

map ((!) (xs @ [x])) (filter (λi. P (xs ! i)) [0 ..<length xs])
using filter-nth-app-upt[of P xs [x]] by simp

moreover
have map ((!) xs) (filter (λi. P (xs ! i)) [0 ..<length xs]) =

72



map ((!) (xs @ [x])) (filter (λi. P (xs ! i)) [0 ..<length xs])
by (clarsimp simp: nth-append)

ultimately show ?case
by argo

qed

lemma distinct-filter-nth-upt:
distinct (filter (λi. P (xs ! i)) [0 ..<length xs])
by simp

lemma filter-nth-upt-set:
set (filter (λi. P (xs ! i)) [0 ..<length xs]) = {i. i < length xs ∧ P (xs ! i)}
using set-filter by simp

lemma filter-length-upt:
length (filter (λi. P (xs ! i)) [0 ..<length xs]) = card {i. i < length xs ∧ P (xs !

i)}
by (metis distinct-card distinct-filter-nth-upt filter-nth-upt-set)

lemma perm-filter-length:
xs <∼∼> ys =⇒
length (filter (λi. P (xs ! i)) [0 ..<length xs])
= length (filter (λi. P (ys ! i)) [0 ..<length ys])

by (metis filter-eq-nth-upt length-map mset-filter perm-length)

16 Verification of the Inverse Burrows-Wheeler Trans-
form

context Suffix-Array-General begin

16.1 LF-Mapping Simple Properties
lemma lf-map-abs-less-length:

fixes s :: ′a list
fixes i j :: nat
assumes i < length s

shows lf-map-abs s i < length s
proof −

let ?v = bwt-sa s ! i
let ?r = rank (bwt-sa s) ?v i
let ?i = lf-map-abs s i

have ?i = select (sort s) ?v ?r
by (metis lf-map-abs.simps)

have ?r < count-list (bwt-sa s) ?v
by (simp add: assms bwt-sa-length rank-upper-bound)

moreover

73



have bwt-sa s <∼∼> sort s
using bwt-sa-perm by auto

ultimately have ?r < count-list (sort s) ?v
by (metis (no-types, lifting) count-list-perm)

with rank-length[of sort s ?v, symmetric]
have ?r < rank (sort s) ?v (length s)

by simp
with select-upper-bound
have select (sort s) ?v ?r < length (sort s)

by metis
with ‹?i = select (sort s) ?v ?r›
show ?thesis

by (metis length-sort)
qed

corollary lf-map-abs-less-length-funpow:
fixes s :: ′a list
fixes i j :: nat
assumes i < length s

shows ((lf-map-abs s)^^k) i < length s
proof (induct k)

case 0
then show ?case

using assms by auto
next

case (Suc k)
then show ?case

by (metis comp-apply funpow.simps(2 ) lf-map-abs-less-length)
qed

lemma lf-map-abs-equiv:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i r :: nat
fixes v :: ′a
assumes i < length (bwt-sa s)
and v = bwt-sa s ! i
and r = rank (bwt-sa s) v i

shows lf-map-abs s i = card {j. j < length (bwt-sa s) ∧ bwt-sa s ! j < v} + r
proof −

have ∃ k. length s = Suc k
by (metis assms(1 ) bwt-sa-length less-nat-zero-code not0-implies-Suc)

then obtain n where
length s = Suc n
by blast

let ?P = (λx. x < v)

have lf-map-abs s i = select (sort s) v r

74



by (metis assms(2 ) assms(3 ) lf-map-abs.simps)
moreover
from rank-upper-bound[OF assms(1 ) assms(2 )[symmetric]] assms(3 )
have r < count-list (bwt-sa s) v

by simp
hence r < count-list (sort s) v

using count-list-perm[OF trans[OF bwt-sa-perm sort-perm]] by simp
with sorted-select[of sort s r v]
have select (sort s) v r = card {j. j < length (sort s) ∧ sort s ! j < v} + r

by simp
moreover
have length (filter (λx. ?P (sort s ! x)) [0 ..<length (sort s)])

= card {j. j < length (sort s) ∧ sort s ! j < v}
using filter-length-upt[of ?P sort s] by simp

moreover
have length (filter (λx. ?P (bwt-sa s ! x)) [0 ..<length (bwt-sa s)])

= card {j. j < length (bwt-sa s) ∧ bwt-sa s ! j < v}
using filter-length-upt[of ?P bwt-sa s] by simp

ultimately show ?thesis
using perm-filter-length[OF trans[OF bwt-sa-perm sort-perm], of ?P s]
by presburger

qed

16.2 LF-Mapping Correctness
lemma sa-lf-map-abs:

assumes valid-list s
and i < length s

shows sa s ! (lf-map-abs s i) = (sa s ! i + length s − Suc 0 ) mod (length s)
proof −

let ?v = bwt-sa s ! i
let ?r = rank (bwt-sa s) ?v i
let ?i = lf-map-abs s i

have ?i = select (sort s) ?v ?r
by (metis lf-map-abs.simps)

from lf-map-abs-less-length[OF assms(2 )]
have ?i < length s .
hence select (sort s) ?v ?r < length (sort s)

by (metis length-sort lf-map-abs.simps)
with rank-select
have rank (sort s) ?v (select (sort s) ?v ?r) = ?r

by metis
with ‹?i = select (sort s) ?v ?r›
have rank (sort s) ?v ?i = ?r

by simp
moreover
have ?i < length s

75



using ‹select (sort s) ?v ?r < length (sort s)› ‹?i = select (sort s) ?v ?r› by
auto

moreover
{

from select-nth[of sort s ?v ?r ?i]
have sort s ! lf-map-abs s i = bwt-sa s ! i

by (metis ‹?i = select (sort s) ?v ?r› calculation(2 ) length-sort)
moreover
have s ! (sa s ! ?i) = sort s ! ?i

using ‹?i < length s› sort-sa-nth by presburger
ultimately have s ! (sa s ! ?i) = ?v

by presburger
}
ultimately have sa s ! ?i = bwt-perm s ! i

using rank-same-sa-bwt-perm[OF assms(1 )- assms(2 ), of ?i ?v]
by blast

then show ?thesis
using bwt-perm-nth[OF assms(2 )]
by simp

qed

Theorem 3.18 from [3]: Abstract LF-Mapping Correctness
corollary bwt-perm-lf-map-abs:

fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s

shows bwt-perm s ! (lf-map-abs s i) = (bwt-perm s ! i + length s − Suc 0 ) mod
(length s)
by (metis One-nat-def bwt-perm-nth assms(1 ,2 ) lf-map-abs-less-length sa-lf-map-abs)

16.3 Backwards Inverse BWT Simple Properties
lemma ibwt-perm-abs-length:

fixes s :: ′a list
fixes n i :: nat
shows length (ibwt-perm-abs n s i) = n
by (induct n arbitrary: i; simp)

lemma ibwt-perm-abs-nth:
fixes s :: ′a list
fixes k n i :: nat
assumes k ≤ n
shows (ibwt-perm-abs (Suc n) s i) ! k = ((lf-map-abs s)^^(n−k)) i

using assms
proof (induct n arbitrary: i k)

case 0
then show ?case

by simp
next

76



case (Suc n i k)
note IH = this

have A: ibwt-perm-abs (Suc (Suc n)) s i = ibwt-perm-abs (Suc n) s (lf-map-abs
s i) @ [i]

by simp

have k ≤ n =⇒ ?case
proof −

assume k ≤ n
with IH (1 )[of k lf-map-abs s i]
have ibwt-perm-abs (Suc n) s (lf-map-abs s i) ! k = (lf-map-abs s ^^ (Suc n −

k)) i
by (metis Suc-diff-le comp-apply funpow.simps(2 ) funpow-swap1 )

then show ?thesis
by (metis ‹k ≤ n› A ibwt-perm-abs-length le-imp-less-Suc nth-append)

qed
moreover
have k = Suc n =⇒ ?case
proof −

assume k = Suc n
with ibwt-perm-abs-length[of Suc (Suc n) s i] A
have ibwt-perm-abs (Suc (Suc n)) s i ! k = i

by (metis ibwt-perm-abs-length nth-append-length)
moreover
have (lf-map-abs s ^^ (Suc n − k)) i = i

by (simp add: ‹k = Suc n›)
ultimately show ?thesis

by presburger
qed
ultimately show ?case

using Suc.prems le-Suc-eq by blast
qed

corollary ibwt-perm-abs-alt-nth:
fixes s :: ′a list
fixes n i k :: nat
assumes k < n
shows (ibwt-perm-abs n s i) ! k = ((lf-map-abs s)^^(n − Suc k)) i
by (metis assms add-diff-cancel-left ′ diff-diff-left le-add1 less-imp-Suc-add plus-1-eq-Suc

ibwt-perm-abs-nth)

lemma ibwt-perm-abs-nth-le-length:
fixes s :: ′a list
fixes n i k :: nat
assumes i < length s
assumes k < n
shows (ibwt-perm-abs n s i) ! k < length s
using assms ibwt-perm-abs-alt-nth lf-map-abs-less-length-funpow by force

77



lemma ibwt-perm-abs-map-ver :
ibwt-perm-abs n s i = map (λx. ((lf-map-abs s)^^x) i) (rev [0 ..<n])

proof (intro list-eq-iff-nth-eq[THEN iffD2 ] conjI allI impI )
show length (ibwt-perm-abs n s i) = length (map (λx. (lf-map-abs s ^^ x) i) (rev

[0 ..<n]))
by (simp add: ibwt-perm-abs-length)

next
fix j
assume j < length (ibwt-perm-abs n s i)
hence j < n

by (simp add: ibwt-perm-abs-length)

have map (λx. (lf-map-abs s ^^ x) i) (rev [0 ..<n]) ! j =
(λx. (lf-map-abs s ^^ x) i) (rev [0 ..<n] ! j)

by (simp add: ‹j < n›)
moreover
have (λx. (lf-map-abs s ^^ x) i) (rev [0 ..<n] ! j) = (lf-map-abs s ^^ (n − Suc

j)) i
by (metis ‹j < n› add-cancel-right-left diff-Suc-less diff-zero length-greater-0-conv

length-upt
less-nat-zero-code nth-upt rev-nth)

ultimately show ibwt-perm-abs n s i ! j = map (λx. (lf-map-abs s ^^ x) i) (rev
[0 ..<n]) ! j

using ibwt-perm-abs-alt-nth[OF ‹j < n›, of s i] by presburger
qed

16.4 Backwards Inverse BWT Correctness
lemma inc-one-bounded-sa-ibwt-perm-abs:

fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i n :: nat
assumes valid-list s
and i < length s

shows inc-one-bounded (length s) (map ((!) (sa s)) (ibwt-perm-abs n s i))
(is inc-one-bounded ?n ?xs)

unfolding inc-one-bounded-def
proof (safe)

fix j
assume Suc j < length (map ((!) (sa s)) (ibwt-perm-abs n s i))
hence Suc j < n

by (simp add: ibwt-perm-abs-length)
hence ∃ k. n = Suc k

using less-imp-Suc-add by blast
then obtain k where

n = Suc k
by blast

let ?i = ((lf-map-abs s)^^(k − Suc j)) i

78



have ibwt-perm-abs n s i ! Suc j = ?i
by (metis ‹Suc j < n› ‹n = Suc k› less-Suc-eq-le ibwt-perm-abs-nth)

moreover
{

have ibwt-perm-abs n s i ! j = ((lf-map-abs s)^^(k − j)) i
by (metis Suc-less-SucD ‹Suc j < n› ‹n = Suc k› nless-le ibwt-perm-abs-nth)

moreover
have ((lf-map-abs s)^^(k − j)) i = lf-map-abs s ?i

using ‹Suc j < n› ‹n = Suc k› less-imp-Suc-add by fastforce
ultimately have ibwt-perm-abs n s i ! j = lf-map-abs s ?i

by presburger
}
moreover
{

have ?i < length s
by (simp add: assms lf-map-abs-less-length-funpow)

with sa-lf-map-abs[OF assms(1 ), of ?i]
have sa s ! lf-map-abs s ?i = (sa s ! ?i + length s − Suc 0 ) mod length s

by fastforce
hence Suc (sa s ! lf-map-abs s ?i) mod length s

= Suc ((sa s ! ?i + length s − Suc 0 ) mod length s) mod length s
by simp

moreover
have Suc ((sa s ! ?i + length s − Suc 0 ) mod length s) mod length s = sa s ! ?i

using ‹?i < length s› assms(1 ) mod-Suc-eq sa-nth-ex valid-list-length by
fastforce

ultimately have sa s ! ?i = Suc (sa s ! lf-map-abs s ?i) mod length s
by presburger

}
ultimately have

sa s ! (ibwt-perm-abs n s i ! Suc j) = Suc (sa s ! (ibwt-perm-abs n s i ! j)) mod
length s

by presburger
then show

map ((!) (sa s)) (ibwt-perm-abs n s i) ! Suc j =
Suc (map ((!) (sa s)) (ibwt-perm-abs n s i) ! j) mod length s

using ‹Suc j < length (map ((!) (sa s)) (ibwt-perm-abs n s i))› by auto
next

fix j
assume j < length (map ((!) (sa s)) (ibwt-perm-abs n s i))
hence j < n

by (simp add: ibwt-perm-abs-length)
henceibwt-perm-abs n s i ! j = ((lf-map-abs s)^^(n − Suc j)) i

using ibwt-perm-abs-alt-nth by blast
moreover
have ((lf-map-abs s)^^(n − Suc j)) i < length s

using assms lf-map-abs-less-length-funpow by blast
hence sa s ! (((lf-map-abs s)^^(n − Suc j)) i) < length s

using sa-nth-ex by blast

79



ultimately have sa s ! (ibwt-perm-abs n s i ! j) < length s
by presburger

then show map ((!) (sa s)) (ibwt-perm-abs n s i) ! j < length s
by (simp add: ‹j < n› ibwt-perm-abs-length)

qed

corollary is-rot-sublist-sa-ibwt-perm-abs:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i n :: nat
assumes valid-list s
and i < length s
and n ≤ length s

shows is-rot-sublist [0 ..<length s] (map ((!) (sa s)) (ibwt-perm-abs n s i))
by (simp add: assms inc-one-bounded-is-rot-sublist inc-one-bounded-sa-ibwt-perm-abs

ibwt-perm-abs-length)

lemma inc-one-bounded-bwt-perm-ibwt-perm-abs:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i n :: nat
assumes valid-list s
and i < length s

shows inc-one-bounded (length s) (map ((!) (bwt-perm s)) (ibwt-perm-abs n s i))
unfolding inc-one-bounded-def

proof safe
fix j
assume Suc j < length (map ((!) (bwt-perm s)) (ibwt-perm-abs n s i))
hence Suc j < n

by (simp add: ibwt-perm-abs-length)
hence ∃ k. n = Suc k

using less-imp-Suc-add by auto
then obtain k where

n = Suc k
by blast

let ?i = ((lf-map-abs s)^^(k − Suc j)) i
from ibwt-perm-abs-nth[of Suc j k s i]
have ibwt-perm-abs n s i ! Suc j = ?i

using ‹Suc j < n› ‹n = Suc k› less-Suc-eq-le by blast
moreover
{

have ibwt-perm-abs n s i ! j = ((lf-map-abs s)^^(k − j)) i
by (metis Suc-less-SucD ‹Suc j < n› ‹n = Suc k› nless-le ibwt-perm-abs-nth)

moreover
have ((lf-map-abs s)^^(k − j)) i = lf-map-abs s ?i

using ‹Suc j < n› ‹n = Suc k› less-imp-Suc-add by fastforce
ultimately have ibwt-perm-abs n s i ! j = lf-map-abs s ?i

by presburger
}
moreover

80



{
have ?i < length s

by (simp add: assms lf-map-abs-less-length-funpow)
with bwt-perm-lf-map-abs[OF assms(1 ), of ?i]
have bwt-perm s ! lf-map-abs s ?i = (bwt-perm s ! ?i + length s − Suc 0 ) mod

length s
by blast

hence Suc (bwt-perm s ! lf-map-abs s ?i) mod length s =
Suc ((bwt-perm s ! ?i + length s − Suc 0 ) mod length s) mod length s

by presburger
moreover
from valid-list-length-ex[OF assms(1 )]
obtain n where

length s = Suc n
by blast

hence Suc ((bwt-perm s ! ?i + length s − Suc 0 ) mod length s) mod length s =
bwt-perm s ! ?i

by (metis (no-types, lifting) Suc-pred bwt-perm-nth ‹?i < length s› add-gr-0
assms(1 )

mod-Suc-eq mod-add-self2 mod-mod-trivial valid-list-length)
ultimately have bwt-perm s ! ?i = Suc (bwt-perm s ! lf-map-abs s ?i) mod

length s
by presburger

}
ultimately have bwt-perm s ! (ibwt-perm-abs n s i ! Suc j) =

Suc (bwt-perm s ! (ibwt-perm-abs n s i ! j)) mod length s
by presburger

then show map ((!) (bwt-perm s)) (ibwt-perm-abs n s i) ! Suc j =
Suc (map ((!) (bwt-perm s)) (ibwt-perm-abs n s i) ! j) mod length s

using ‹Suc j < length (map ((!) (bwt-perm s)) (ibwt-perm-abs n s i))› by auto
next

fix j
assume j < length (map ((!) (bwt-perm s)) (ibwt-perm-abs n s i))
hence j < n

by (simp add: ibwt-perm-abs-length)
hence ∃ k. n = Suc k

using less-imp-Suc-add by blast
then obtain k where

n = Suc k
by blast

hence ibwt-perm-abs n s i ! j = ((lf-map-abs s)^^(k − j)) i
by (metis ‹j < n› less-Suc-eq-le ibwt-perm-abs-nth)

moreover
have ((lf-map-abs s)^^(k − j)) i < length s

using assms lf-map-abs-less-length-funpow by blast
hence bwt-perm s ! ((lf-map-abs s)^^(k − j)) i < length s

using map-bwt-indexes-perm perm-nth-ex by blast
ultimately have bwt-perm s ! (ibwt-perm-abs n s i ! j) < length s

by presburger

81



then show map ((!) (bwt-perm s)) (ibwt-perm-abs n s i) ! j < length s
by (simp add: ‹j < n› ibwt-perm-abs-length)

qed

Theorem 3.19 from [3]: Abstract Inverse BWT Permutation Rotated
Sub-list
corollary is-rot-sublist-bwt-perm-ibwt-perm-abs:

fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i n :: nat
assumes valid-list s
and i < length s
and n ≤ length s
shows is-rot-sublist [0 ..<length s] (map ((!) (bwt-perm s)) (ibwt-perm-abs n s i))
by (simp add: assms inc-one-bounded-is-rot-sublist inc-one-bounded-bwt-perm-ibwt-perm-abs

ibwt-perm-abs-length)

lemma bwt-ibwt-perm-sa-lookup-idx:
assumes valid-list s
shows map ((!) (bwt-perm s)) (ibwt-perm-abs (length s) s (select (bwt-sa s) bot

0 ))
= [0 ..<length s]

proof −
from valid-list-length-ex[OF assms]
obtain n where

length s = Suc n
by blast

let ?i = select (bwt-sa s) bot 0
let ?xs = ibwt-perm-abs (length s) s ?i

have bot ∈ set s
by (metis assms in-set-conv-decomp valid-list-ex-def )

hence bot ∈ set (bwt-sa s)
by (metis bwt-sa-perm perm-set-eq)

hence count-list (bwt-sa s) bot > 0
by (meson count-in)

hence 0 < rank (bwt-sa s) bot (length (bwt-sa s))
by (metis rank-length)

hence ?i < length (bwt-sa s)
by (meson select-upper-bound)

hence ?i < length s
by (metis bwt-sa-length)

with is-rot-sublist-bwt-perm-ibwt-perm-abs[OF assms, of ?i length s] ‹length s =
Suc n›

have is-rot-sublist [0 ..<Suc n] (map ((!) (bwt-perm s)) ?xs)
by (metis nle-le)

moreover
have length (map ((!) (bwt-perm s)) ?xs) = Suc n

by (metis ‹length s = Suc n› length-map ibwt-perm-abs-length)

82



moreover
{

have (map ((!) (bwt-perm s)) ?xs) ! n = bwt-perm s ! ?i
by (simp add: ‹length s = Suc n› nth-append ibwt-perm-abs-length)

moreover
have bwt-sa s ! ?i = bot

by (simp add: ‹?i < length (bwt-sa s)› select-nth-alt)
hence bwt-perm s ! ?i = n
by (metis ‹length s = Suc n› ‹?i < length s› antisym-conv3 assms bwt-perm-nth

bwt-perm-s-nth diff-Suc-1 mod-less-divisor not-less-eq valid-list-def )
ultimately
have (map ((!) (bwt-perm s)) ?xs) ! n = n

by blast
}
ultimately show ?thesis

using is-rot-sublist-upt-eq-upt-last[of n map ((!) (bwt-perm s)) ?xs]
by (metis ‹length s = Suc n›)

qed

lemma map-bwt-sa-bwt-perm:
∀ x ∈ set xs. x < length s =⇒
map ((!) (bwt-sa s)) xs = map ((!) s) (map ((!) (bwt-perm s)) xs)

by (simp add: bwt-perm-s-nth)

theorem ibwt-perm-abs-bwt-sa-lookup-correct:
fixes s :: ( ′a :: {linorder , order-bot}) list
assumes valid-list s
shows map ((!) (bwt-sa s)) (ibwt-perm-abs (length s) s (select (bwt-sa s) bot 0 ))

= s
proof −

let ?i = select (bwt-sa s) bot 0
let ?xs = map ((!) (bwt-perm s)) (ibwt-perm-abs (length s) s ?i)

have bot ∈ set s
by (metis assms in-set-conv-decomp valid-list-ex-def )

hence bot ∈ set (bwt-sa s)
by (metis bwt-sa-perm perm-set-eq)

hence count-list (bwt-sa s) bot > 0
by (meson count-in)

hence 0 < rank (bwt-sa s) bot (length (bwt-sa s))
by (metis rank-length)

hence ?i < length (bwt-sa s)
by (meson select-upper-bound)

hence ?i < length s
by (metis bwt-sa-length)

have map ((!) (bwt-sa s)) (ibwt-perm-abs (length s) s ?i) = map ((!) s) ?xs
proof (intro map-bwt-sa-bwt-perm ballI )

fix x

83



assume x ∈ set (ibwt-perm-abs (length s) s ?i)

from in-set-conv-nth[THEN iffD1 , OF ‹x ∈ -›]
obtain i where

i < length (ibwt-perm-abs (length s) s ?i)
ibwt-perm-abs (length s) s ?i ! i = x
by blast

with ibwt-perm-abs-alt-nth[of i length s s ?i]
have x = (lf-map-abs s ^^ (length s − Suc i)) ?i

by (metis ibwt-perm-abs-length)
moreover
have (lf-map-abs s ^^ (length s − Suc i)) ?i < length s

using ‹?i < length s› assms lf-map-abs-less-length-funpow by presburger
ultimately show x < length s

by blast
qed
then show ?thesis

using bwt-ibwt-perm-sa-lookup-idx[OF assms] map-nth by auto
qed

16.5 Concretization
lemma lf-map-abs-eq-conc:

i < length s =⇒ lf-map-abs s i = lf-map-conc (sort (bwt-sa s)) (bwt-sa s) i
proof −

let ?v = bwt-sa s ! i
let ?r = rank (bwt-sa s) ?v i
let ?ss = sort (bwt-sa s)
assume i < length s
hence rank (bwt-sa s) ?v i < count-list (sort s) ?v

using rank-upper-bound[of i bwt-sa s ?v]
by (metis bwt-sa-length bwt-sa-perm count-list-perm mset-sort)

with sorted-select[of ?ss ?r ?v]
have select ?ss ?v ?r = card {j. j < length ?ss ∧ ?ss ! j < ?v} + ?r

by (metis (full-types) bwt-sa-perm sorted-list-of-multiset-mset sorted-sort)
moreover
have sort s = sort ?ss

by (simp add: bwt-sa-perm properties-for-sort)
moreover
have select (sort s) ?v ?r = card {j. j < length (sort s) ∧ (sort s) ! j < ?v} +

?r
by (simp add: ‹rank (bwt-sa s) ?v i < count-list (sort s) ?v› sorted-select)

ultimately show ?thesis
by (metis (full-types) ‹rank (bwt-sa s) ?v i < count-list (sort s) ?v› bwt-sa-perm

lf-map-abs.simps lf-map-conc.simps sorted-list-of-multiset-mset

sorted-select-0-plus sorted-sort)
qed

84



lemma ibwt-perm-abs-conc-eq:
i < length s =⇒ ibwt-perm-abs n s i = ibwt-perm-conc n (sort (bwt-sa s)) (bwt-sa

s) i
proof (induct n arbitrary: i)

case 0
then show ?case

by auto
next

case (Suc n)

let ?ss = sort (bwt-sa s)
let ?bs = bwt-sa s

have ibwt-perm-abs (Suc n) s i = ibwt-perm-abs n s (lf-map-abs s i) @ [i]
by simp

moreover
have ibwt-perm-conc (Suc n) ?ss ?bs i = ibwt-perm-conc n ?ss ?bs (lf-map-conc

?ss ?bs i) @ [i]
by simp

moreover
have lf-map-abs s i = lf-map-conc ?ss ?bs i

using Suc.prems lf-map-abs-eq-conc by blast
moreover
have lf-map-abs s i < length s

using Suc.prems lf-map-abs-less-length by blast
ultimately show ?case

using Suc.hyps by presburger
qed

theorem ibwtn-bwt-sa-lookup-correct:
fixes s xs ys :: ( ′a :: {linorder , order-bot}) list
assumes valid-list s
and xs = sort (bwt-sa s)
and ys = bwt-sa s

shows map ((!) ys) (ibwt-perm-conc (length ys) xs ys (select ys bot 0 )) = s
proof −

from ibwt-perm-abs-bwt-sa-lookup-correct[OF assms(1 )]
have map ((!) (bwt-sa s)) (ibwt-perm-abs (length s) s (select (bwt-sa s) bot 0 ))

= s .
moreover
have select (bwt-sa s) bot 0 < length s
by (metis (no-types, lifting) assms(1 ) bot-nat-0 .extremum-uniqueI bwt-sa-length

bwt-sa-perm
count-list-perm diff-Suc-1 last-conv-nth length-greater-0-conv

less-nat-zero-code rank-upper-bound sa-nth-ex select-spec
valid-list-def valid-list-sa-hd)

with ibwt-perm-abs-conc-eq
have ibwt-perm-abs (length s) s (select (bwt-sa s) bot 0 ) =

85



ibwt-perm-conc (length ys) xs ys (select ys bot 0 )
using assms(2 ) assms(3 ) bwt-sa-length by presburger

ultimately show ?thesis
using assms(3 ) by auto

qed

lemma ibwtn-eq-map-ibwt-perm-conc:
shows ibwtn n ss bs i = map ((!) bs) (ibwt-perm-conc n ss bs i)
by (induct n arbitrary: i; simp)

theorem ibwtn-correct:
fixes s xs ys :: ( ′a :: {linorder , order-bot}) list
assumes valid-list s
and xs = sort (bwt-sa s)
and ys = bwt-sa s

shows ibwtn (length ys) xs ys (select ys bot 0 ) = s
by (metis ibwtn-eq-map-ibwt-perm-conc ibwtn-bwt-sa-lookup-correct assms)

16.6 Inverse BWT Correctness
BWT (suffix array version) is invertible
theorem ibwt-correct:

fixes s :: ( ′a :: {linorder , order-bot}) list
assumes valid-list s
shows ibwt (bwt-sa s) = s
by (simp add: assms ibwtn-correct)

end

Theorem 3.20 from [3]: Correctness of the Inverse BWT
theorem ibwt-correct-canon:

fixes s :: ( ′a :: {linorder , order-bot}) list
assumes valid-list s
shows ibwt (bwt-canon s) = s
by (metis Suffix-Array-General.bwt-canon-eq-bwt-sa Suffix-Array-General.ibwt-correct

Suffix-Array-General-ex assms)

end

References
[1] R. Affeldt, J. Garrigue, X. Qi, and K. Tanaka. Proving tree algorithms

for succinct data structures. In Proc. Interactive Theorem Proving, vol-
ume 141 of LIPIcs, pages 5:1–5:19. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019.

[2] M. Burrows and D. Wheeler. A block-sorting lossless data compression
algorithm. Technical report, Digital SRC Research Report, 1994.

86



[3] L. Cheung, A. Moffat, and C. Rizkallah. Formalized Burrows-Wheeler
Transform. In Proc. Ceritifed Programs and Proofs. ACM, 2025. To
appear.

[4] L. Cheung and C. Rizkallah. Formalized Burrows-Wheeler Transform
(artefact), December 2024.

[5] L. Cheung and C. Rizkallah. Formally verified suffix array construction.
Archive of Formal Proofs, September 2024. https://isa-afp.org/entries/
SuffixArray.html, Formal proof development.

[6] P. Ferragina and G. Manzini. Opportunistic data structures with ap-
plications. In Foundations of Computer Science, pages 390–398. IEEE
Computer Society, 2000.

[7] U. Manber and E. W. Myers. Suffix arrays: A new method for on-line
string searches. SIAM Journal on Computing, 22(5):935–948, 1993.

87

https://isa-afp.org/entries/SuffixArray.html
https://isa-afp.org/entries/SuffixArray.html

	Nat Modulo Helper
	Rotated Sublists
	Counting
	Count List
	Cardinality
	Sorting

	Rank Definition
	Rank Properties
	List Properties
	Counting Properties
	Bound Properties
	Sorted Properties

	Select Definition
	Select Properties
	Length Properties
	List Properties
	Bound Properties
	Nth Properties
	Sorted Properties

	Rank and Select Properties
	Correctness of Rank and Select
	Rank Correctness
	Select Correctness

	Rank and Select
	Sorted Properties

	Suffix Array Properties
	Bijections
	Suffix Properties
	General Properties
	Nth Properties
	Valid List Properties

	Counting Properties on Suffix Arays
	Counting Properties
	Ordering Properties

	Burrows-Wheeler Transform
	BWT Verification
	List Rotations
	Ordering
	BWT Equivalence

	BWT and Suffix Array Correspondence
	BWT Using Suffix Arrays
	BWT Rank Properties
	Suffix Array and BWT Rank

	Inverse Burrows-Wheeler Transform
	Abstract Versions
	Concrete Versions

	List Filter
	Verification of the Inverse Burrows-Wheeler Transform
	LF-Mapping Simple Properties
	LF-Mapping Correctness
	Backwards Inverse BWT Simple Properties
	Backwards Inverse BWT Correctness
	Concretization
	Inverse BWT Correctness


