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Abstract

We provide a basic formal framework for the theory of chamber
complexes and Coxeter systems, and for buildings as thick chamber
complexes endowed with a system of apartments. Along the way, we
develop some of the general theory of abstract simplicial complexes and
of groups (relying on the group__add class for the basics), including free
groups and group presentations, and their universal properties. The
main results verified are that the deletion condition is both necessary
and sufficient for a group with a set of generators of order two to be a
Coxeter system, and that the apartments in a (thick) building are all
uniformly Coxeter.
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Garrett [2]. As well, some of the definitions, statments, and proofs appearing
in the first two sections previously appeared in a submission to the Archive
of Formal Proofs by the author of the current submission [4].

1 Preliminaries

In this section, we establish some basic facts about natural numbers, logic,
sets, functions and relations, lists, and orderings and posets, that are ei-
ther not available in the HOL library or are in a form not suitable for our
purposes.

theory Prelim
imports Main HOL— Library.Set-Algebras
begin

declare image-cong-simp [cong del]

1.1 Natural numbers

lemma nat-cases-2Suc [case-names 0 1 SucSuc):

assumes 0:n=0= P
and I:n=1=P
and  SucSuc: Am. n = Suc (Suc m) = P
shows P
(proof)

lemma nat-even-induct [case-names - 0 SucSuc]:
assumes even: even n
and 0: PO
and  SucSuc: Am. even m => P m = P (Suc (Suc m))
shows Pn

(proof)

lemma nat-induct-step2 [case-names 0 1 SucSuc]:
assumes 0: PO
and 1: P1

and  SucSuc: Am. P m = P (Suc (Suc m))
shows Pn

(proof)

1.2 Logic

lemma exl-unique: Ilx. Pz =— P a = P b = a=b
(proof)

lemma not-thel:



assumes Jlz. Pz y # (THE z. P 1)
shows - Py

{proof)

lemma two-cases [case-names both one other neither]:
assumes both : P — () — R
and one :P—-Q—=—=R
and other : =P — @ = R
and neither: -P — —-Q — R
shows R

(proof)

1.3 Sets

lemma bezl-equality: | 'z€A. P x; z€A; P x; yeA; Py | = 2=y
(proof )

lemma prod-balll: (Na b. (a,b)€A = P a b) = V(a,b)€A. Pab
{proof)

lemmas seteql = set-eql[OF iffI]

lemma set-decomp-subset:
[ U= AUB; ACX; BCY; XCU; XnY ={}]=A4=X
(proof)

lemma insert-subset-equality: | a¢A; a¢B; insert a A = insert a B | = A=B
{proof)

lemma insert-compare-element: a¢ A = insert b A = insert a A = b=a
(proof )

lemma cardl:
assumes card A = 1
shows Ja. A = {a}

(proof)

lemma singleton-pow: a€ A = {a}€Pow A
{proof)

definition separated-by :: 'a set set = 'a = 'a = bool
where separated-by wzy = 3A B. w={A,B} A z€A A yeB

lemma separated-byl: 1€ A = yeB = separated-by {A,B} = y
(proof )

lemma separated-by-disjoint: [ separated-by {A,B} = y; ANB={}; 1€ A ]| = y€B
(proof )



lemma separated-by-in-other: separated-by {A,B} z y = x¢ A —> z€B A yeA
{proof)

lemma separated-by-not-empty: separated-by w z y — w#{}
(proof )

lemma not-self-separated-by-disjoint: ANB={} = — separated-by {A,B} x x
(proof )

1.4 Functions and relations

1.4.1 Miscellaneous

lemma cong-let: (let x = y in fz) = fy (proof)
lemma sym-sym: sym (AxA) (proof)

lemma trans-sym: trans (AxA) (proof)

lemma map-prod-sym: sym A = sym (map-prod f f * A)
(proof )

abbreviation restrict! :: (‘a='a) = 'a set = ('a="a)
where restrict] f A = (Aa. if a€A then f a else a)

lemma restrictl-image: BCA = restrict] fA ‘B = ‘B
(proof )

1.4.2 Equality of functions restricted to a set
definition fun-eg-on fg A = (Va€A. fa = ga)

lemma fun-eq-onl: (Na. a€A = fa = g a) = fun-eq-on fg A
(proof )

lemma fun-eq-onD: fun-eqg-on fg A — a € A = fa=ga

(proof)

lemma fun-eq-on-UNIV: (fun-eq-on f g UNIV) = (f=g)
{proof)

lemma fun-eq-on-subset: fun-eq-on f g A = BCA = fun-eq-on f g B
(proof )

lemma fun-eq-on-sym: fun-eq-on f g A => fun-eq-on g f A
(proof)

lemma fun-eq-on-trans: fun-eq-on f g A = fun-eq-on g h A = fun-eq-on fh A
(proof)



lemma fun-eg-on-cong: fun-eq-on f h A = fun-eg-on g h A = fun-eq-on f g A
{proof )

lemma fun-eq-on-im : fun-eq-on f g A = BCA = f‘B = ¢‘B
(proof )

lemma fun-eq-on-subset-and-diff-imp-eq-on:
assumes ACB fun-eq-on f g A fun-eq-on f g (B—A)
shows fun-eq-on f g B

{(proof)

lemma fun-eq-on-set-and-comp-imp-eq:
fun-eg-on f g A = fun-eq-on fg (—A) = f =g
(proof )

lemma fun-eq-on-bij-betw: fun-eq-on f g A = bij-betw f A B = bij-betw g A B
(proof )

lemma fun-eq-on-restrictl: fun-eg-on (restrictl f A) f A

{proof)

abbreviation fizespointwise f A = fun-eq-on fid A

lemmas fizespointwisel = fun-eq-onl [of - -1id]
lemmas fizespointwiseD = fun-eq-onD [of - id]
lemmas fizespointwise-cong = fun-eg-on-trans [of - - - id]
lemmas fizespointwise-subset = fun-eq-on-subset [of - id]
lemmas fizespointwise2-imp-eq-on = fun-eq-on-cong [of - id]

lemmas fizespointwise-subset-and-diff-imp-eq-on =
fun-eq-on-subset-and-diff-imp-eq-on[of - - - id]

lemma id-fizespointwise: fixespointwise id A
{proof )

lemma fizespointwise-im: fizespointwise f A = BCA = f‘B =B
(proof )

lemma fizespointwise-comp:
fizespointwise f A = fizxespointwise ¢ A = fizespointwise (gof) A
(proof )

lemma fizespointwise-insert:
assumes fizespointwise f A f ¢ (insert a A) = insert a A
shows fizespointwise [ (insert a A)

{proof)

lemma fizespointwise-restrict1:
fizespointwise f A = fixespointwise (restrictl f B) A



{proof)

lemma fold-fizespointwise:
YV z€set xs. fixrespointwise (f ) A = fizespointwise (fold f xs) A

(proof)

lemma funpower-fizespointwise:
assumes fixespointwise f A
shows fizespointwise (f~ n) A

{(proof)

1.4.3 Injectivity, surjectivity, bijectivity, and inverses
lemma inj-on-to-singleton:

assumes inj-on f A f‘A = {b}

shows Ja. A = {a}
(proof )

lemmas inj-inj-on = subset-inj-on[of - UNIV, OF - subset-UNIV|

lemma inj-on-eq-image”: [ inj-on f A; XCA; YCA; f XCfY | = XCY
(proof)

lemma inj-on-eq-image: [ inj-on f A; XCA; YCA; f X=fY ]| = X=Y
(proof )

lemmas inj-eg-image = inj-on-eg-image| OF - subset-UNIV subset-UNIV|

lemma induced-pow-fun-inj-on:
assumes inj-on f A
shows inj-on ((¥) f) (Pow A)
(proof)

lemma inj-on-minus-set: inj-on ((—) A) (Pow A)
{proof)

lemma induced-pow-fun-surj:
(() f) “ (Pow A) = Pow (f*A)
(proof)

lemma bij-betw-f-the-inv-into-f:

bij-betw f A B = yeB = [ (the-inv-into A fy) =y
— an equivalent lemma appears in the HOL library, but this version avoids the
double bij-betw premises

{proof)

lemma bij-betw-the-inv-into-onto: bij-betw f A B = the-inv-into A f ‘B = A
(proof)



lemma bij-betw-imp-bij-betw-Pow:
assumes bij-betw f A B
shows  bij-betw ((°) f) (Pow A) (Pow B)

{proof)

lemma comps-fizpointwise-imp-bij-betw:
assumes f‘XCY ¢'YCX fizespointwise (gof) X fixespointwise (fog) Y
shows bij-betw f X Y
(proof )

lemma set-permutation-bij-restrict1:
assumes bij-betw f A A
shows  bij (restrictl f A)

(proof)

lemma set-permutation-the-inv-restrict1:
assumes bij-betw f A A
shows the-inv (restrictl f A) = restrictl (the-inv-into A f) A

(proof)

lemma the-inv-into-the-inv-into:
inj-on f A = a€A = the-inv-into (f‘A) (the-inv-into A f) a = fa
(proof)

lemma the-inv-into-f-im-f-im:
assumes inj-on f A xCA
shows the-inv-into A f ‘f‘x =z
(proof)

lemma f-im-the-inv-into-f-im:
assumes inj-on f A zCf‘A
shows f ‘ the-inv-into A f ‘z = x
(proof)

lemma the-inv-leftinv: bij f = the-inv f o f = id
(proof )

1.4.4 Induced functions on sets of sets and lists of sets

Here we create convenience abbreviations for distributing a function over a

set of sets and over a list of sets.

abbreviation setsetmapim :: (‘a='b) = 'a set set = 'b set set (infix <> 70)
where fFX = ((9) f) ‘ X

abbreviation setlistmapim :: (‘a='b) = 'a set list = 'b set list (infix (=> 70)
where fE=Xs = map ((9) f) Xs

lemma setsetmapim-comp: (fog)FA = fH(g-A)
(proof )
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lemma setlistmapim-comp: (fog)Ezs = fE=(gFws)
{proof)

lemma setsetmapim-cong-subset:
assumes fun-eqg-on g f (U A) BCA
shows g¢FB C f-B

(proof)

lemma setsetmapim-cong:
assumes fun-eqg-on g f (JA) BCA
shows g¢FB = f-B
{proof)

lemma setsetmapim-restrictl: BCA = restrictl] f (JA) + B = f+B
{proof)

lemma setsetmapim-the-inv-into:

assumes inj-on f (|J A)

shows (the-inv-into (JA) f) F (fFA) = A
(proof)

1.4.5 Induced functions on quotients

Here we construct the induced function on a quotient for an inducing func-
tion that respects the relation that defines the quotient.

lemma respects-imp-unique-image-rel: f respects r = yef‘r‘{a} = y = fa
{proof)

lemma ex1-class-image:
assumes refl-on A r f respects r XeA//r
shows 3J!b. befX

(proof)

definition quotientfun :: (‘a='b) = 'a set = 'b
where quotientfun f X = (THE b. bef‘X)

lemma quotientfun-equality:
assumes refl-on A r f respects r X€A//r bef'X
shows quotientfun f X = b
(proof )

lemma quotientfun-classrep-equality:
[ refl-on A r; f respects r; a€A | = quotientfun f (r‘{a}) = fa
(proof)

1.4.6 Support of a function

definition supp :: (‘a = ’b::zero) = 'a set where supp f = {z. fz # 0}

11



lemma suppl-contra: ¢ supp f = fz =0
(proof)

lemma suppD-contra: foz = 0 = = ¢ supp f
(proof)

abbreviation restrict0 :: (‘a="b::zero) = 'a set = (‘a='b)
where restrict0 f A = (Aa. if a € A then f a else 0)

lemma supp-restrict0 : supp (restrict0 f A) C A
(proof )

1.5 Lists

1.5.1 Miscellaneous facts

lemma snoc-conv-cons: Iz xs. ysQy] = z#wxs

{proof)

lemma cons-conv-snoc: Jys y. z#rs = ysQy]
(proof )

lemma distinct-count-list:
distinct xs = count-list xs a = (if a € set xs then 1 else 0)

{proof)

lemma map-fst-map-const-snd: map fst (map (As. (s,0)) zs) = xs
(proof)

lemma inj-on-distinct-setlistmapim:

assumes inj-on f A

shows V Xeset Xs. X C A = distinct Xs = distinct (fE=Xs)
(proof)

1.5.2 Cases

lemma list-cases-Cons-snoc [case-names Nil Single Cons-snoc]:
assumes Nil: zs =[] = P
and Single: N\z. s = [x] = P
and  Cons-snoc: Nz ysy. xs =z # ys Q [y = P
shows P

(proof)

lemma two-lists-cases-Cons-Cons [case-names Nill Nil2 ConsCons]:
assumes  Nill: N\ys. as =[] = bs = ys = P
and Nil2: N\as. as =2s = bs =[] = P

and ConsCons: Nz xs y ys. as =z # 18 = bs = y # ys = P
shows P

(proof)
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lemma two-lists-cases-snoc-Cons [case-names Nill Nil2 snoc-Cons:
assumes Nill: Nys. as =[] = bs = ys = P
and Nil2: Nzs. as = xs = bs =[] = P
and  snoc-Cons: Nzsxy ys. as = zs Q [2] = bs = y # ys = P
shows P

(proof)

lemma two-lists-cases-snoc-Cons’ [case-names both-Nil Nill Nil2 snoc-Consl:
assumes both-Nil: as =[] = bs=[] = P
and Nill: Ay ys. as = [| = bs = y#ys = P
and Nil2: \xs x. as = zsQ[z] = bs =[] = P
and  snoc-Cons: Nzs z y ys. as = zs Q [x] = bs = y # ys = P
shows P

(proof)

lemma two-prod-lists-cases-snoc-Cons:
assumes Azs. as = xs = bs =[] = P A\ys.as =[] = bs=ys = P
Azs aa ba ab bb ys. as = zs Q [(aa, ba)] A bs = (ab, bb) # ys = P
shows P

(proof)

lemma three-lists-cases-snoc-mid-Cons
[case-names Nill Nil2 Nil3 snoc-single-Cons snoc-mid-Consl:

assumes Nill: Nys zs. as =[] = bs = ys = ¢s = 2s = P
and Nil2: N\xs zs. as = 2s = bs = [| = ¢s = 2s = P
and Nil3: N\xs ys. as = xs = bs = ys = ¢cs = [| = P
and snoc-single-Cons:

Neszyzzs.as=asQz] = bs=[y = cs=z# 2s = P
and snoc-mid-Cons:
Neszwysyzzs.as =18 Qlz] = bs = w# ys Q [y] =
cs =2z F# 28— P
shows P
(proof)

1.5.3 Induction

lemma list-induct-CCons [case-names Nil Single CCons]:
assumes Nil : P ||
and  Single: \z. P [z]
and CCons: ANz yxs. P (y#as) = P (z # y # xs)
shows P zs

(proof)

lemma list-induct-ssnoc [case-names Nil Single ssnoc:
assumes Nil : P[]
and  Single: Az. P [z]
and  ssnoc: Azs xz y. P (xsQ[z]) = P (xsQ[z,y])
shows P zs

13



(proof)

lemma list-induct2-snoc [case-names Nill Nil2 snocl:
assumes Nill: Ays. P[] ys
and  Nil2: Azs. P as ||
and  snoc: N\zs x ys y. P xs ys = P (zsQ[z]) (ysQ[y])
shows P zs ys

(proof)

lemma list-induct2-snoc-Cons [case-names Nill Nil2 snoc-Cons:
assumes Nill  : Ays. P[] ys
and N2 : Awzs. Pus ]
and  snoc-Cons: A\zs z y ys. P s ys = P (2sQ[z]) (y#ys)
shows P xs ys

(proof)

lemma prod-list-induct3-snoc-Conssnoc-Cons-pairwise:

assumes Ays zs. Q ([],ys,zs) N\zs zs. Q (zs,[],zs) Nxzs ys. Q (ws,ys,[])

Nzs z y 2z zs. Q (xsQ[z],[y],2425)
and step:
Nxs z y ys wz zs. Q (zs,ys,28) = Q (x8,ysQlw],z#258) =
Q (sQ[z],y#tys,zs) = Q (2sQ[z],y#ysQ[w],2fzs)

shows @t

(proof)

lemma [list-induct3-snoc-Conssnoc-Cons-pairwise
[case-names Nill Nil2 Nil3 snoc-single-Cons snoc-Conssnoc-Cons:

assumes Nil! : A\ys zs. P[] ys zs
and  Nil2 s N\xs zs. Pas || zs
and N3 : N\ws ys. P as ys ]

and  snoc-single-Cons : Nxzs z y z zs. P (xsQlz]) [y] (z#25)
and  snoc-Conssnoc-Cons:
Nxs  y ys wz zs. Puas ys zs = P xs (ysQlw]) (2#2s) =
P (a58[s]) (yys) 25 = P (asG[a]) (yysOlul) (s29)
shows P xs ys zs
{proof)

1.5.4 Alternating lists

primrec alternating-list :: nat = 'a = 'a = 'a list
where zero: alternating-list 0 s t = |]
| Suc : alternating-list (Suc k) s t =
alternating-list k s t Q [if even k then s else t]
— could be defined using Cons, but we want the alternating list to always start
with the same letter as it grows, and it’s easier to do that via append

lemma alternating-list2: alternating-list 2 s t = [s,t]
(proof)
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lemma length-alternating-list: length (alternating-list n s t) = n
{proof )

lemma alternating-list-Suc-Cons:
alternating-list (Suc k) s t = s # alternating-list k ¢ s

{proof)

lemma alternating-list-SucSuc-ConsCons:
alternating-list (Suc (Suc k)) st = s # t # alternating-list k s t

(proof)

lemma alternating-list-alternates:
alternating-list n s t = asQla,b,c]|Qbs = a=c
(proof)

lemma alternating-list-split:
alternating-list (m+n) s t = alternating-list m s t @
(if even m then alternating-list n s t else alternating-list n t s)

{proof)

lemma alternating-list-append:
even m =
alternating-list m s t Q alternating-list n s t = alternating-list (m+n) st
odd m =
alternating-list m s t Q alternating-list n t s = alternating-list (m+n) s t

(proof)

lemma rev-alternating-list:
rev (alternating-list n s t) =
(if even n then alternating-list n t s else alternating-list n s t)

(proof)

lemma set-alternating-list: set (alternating-list n s t) C {s,t}
{proof)

lemma set-alternating-list1:
assumes n > I
shows s € set (alternating-list n s t)

(proof)

lemma set-alternating-list2:
n > 2 = set (alternating-list n s t) = {s,t}

(proof)

lemma alternating-list-in-lists: a€ A = b€ A = alternating-list n a b € lists A
(proof )
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1.5.5 Binary relation chains

Here we consider lists where each pair of adjacent elements satisfy a given
relation.

fun binrelchain :: ('a = 'a = bool) = 'a list = bool
where binrelchain P [| = True
| binrelchain P [z] = True
| binrelchain P (z # y # xs) = (P z y A binrelchain P (y#zs))

lemma binrelchain-Cons-reduce: binrelchain P (z#1s) = binrelchain P xs
{proof)

lemma binrelchain-append-reducel : binrelchain P (zsQys) = binrelchain P zs
(proof)

lemma binrelchain-append-reduce2:
binrelchain P (zsQys) = binrelchain P ys

(proof)

lemma binrelchain-Conssnoc-reduce:
binrelchain P (z#xsQ[y]) = binrelchain P xs

{proof)

lemma binrelchain-overlap-join:
binrelchain P (xsQ[z]) = binrelchain P (z#ys) = binrelchain P (zsQz#ys)

(proof)

lemma binrelchain-join:
[ binrelchain P (zsQ[z]); binrelchain P (y#ys); Pz y ]| =
binrelchain P (zs Q z # y # ys)
(proof)

lemma binrelchain-snoc:
binrelchain P (zsQ[z]) = P z y = binrelchain P (zsQ[z,y])

{proof)

lemma binrelchain-sym-rev:
assumes Az y. Pzy=— Pyzx
shows  binrelchain P xs = binrelchain P (rev xs)

(proof)

lemma binrelchain-remdup-ads:
binrelchain P (zsQ[z,x]Qys) = binrelchain P (zsQz#ys)
(proof)

abbreviation proper-binrelchain P xs = binrelchain P xs N\ distinct xs

lemma binrelchain-obtain-proper:
z#£y = binrelchain P (z#zsQy]) =
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Jzs. set zs C set xs A length zs < length xs A proper-binrelchain P (z#2zsQ[y])

(proof)

lemma binrelchain-trans-Cons-snoc:
assumes Az yz. Pry— Pyz—=— Puxz
shows binrelchain P (z#2sQy]) = Pz y

(proof)

lemma binrelchain-cong:
assumes A\zy. Pry = Quzy
shows binrelchain P xs = binrelchain @ xs
(proof)

lemma binrelchain-funcong-Cons-snoc:
assumes Az y. Pz y = fy = fz binrelchain P (xz#xsQ[y])
shows fy=fz
(proof)

lemma binrelchain-funcong-extra-condition-Cons-snoc:
assumes A\zy. Qr —= Pry— Qy Nry. Qz = Pry—= fy=fx
shows @Q x = binrelchain P (z#2z5Q[y]) = fy=fz

(proof)

lemma binrelchain-setfuncong-Cons-snoc:
[VzeA.Vy. Pxy — ycA; V€A . Vy. Pxy — fy = fux; x€A;
binrelchain P (z#25Q[y]) | = fy=fz
(proof)

lemma binrelchain-propcong-Cons-snoc:
assumes A\zy. Qz = Pzy=— Quy
shows @ x = binrelchain P (z#12sQ[y]) = Q y

(proof)

1.5.6 Set of subseqs

lemma subsegs-Cons: subseqs (z#xs) = map (Cons z) (subseqs xs) Q (subsegs xs)

(proof)

abbreviation ssubseqs xs = set (subsegs xs)

lemma nil-ssubsegs: [| € ssubseqs s

(proof)

lemma ssubsegs-Cons: ssubseqs (z#wxs) = (Cons x) ‘ (ssubsegs xs) U ssubseqs xs

{proof)

lemma ssubsegs-refl: xs € ssubseqs s

(proof)
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lemma ssubsegs-subset: as € ssubseqs bs =—> ssubseqs as C ssubseqs bs
(proof)

lemma ssubseqs-lists:
as € lists A = bs € ssubseqs as = bs € lists A

(proof)

lemma deletel-ssubseqs:
asQbs € ssubseqs (asQ[a]@bs)

{(proof)

lemma delete2-ssubseqs:
as@QbsQcs € ssubseqs (asQ[a]@QbsQ[b]Qcs)

{proof)

1.6 Orders and posets

We have chosen to work with the ordering locale instead of the order class
to more easily facilitate simultaneously working with both an order and its
dual.

1.6.1 Morphisms of posets

locale OrderingSetMap =
domain : ordering less-eq less
+ codomain: ordering less-eq’ less’
for less-eq :: ‘a='a=bool (infix «<» 50)

and less  :: ‘a='a=bool (infix <> 50)
and less-eq’ :: 'b="b=-bool (infix «<x> 50)
and less’ :: 'b="b=-bool (infix «<x» 50)

+ fixes P :: 'a set

and f: ‘a='b

assumes ordsetmap: a€P = beP — a < b= fa <« [
begin

lemma comp:
assumes OrderingSetMap less-eq’ less’ less-eq’ less'” Q g

fPca@
shows  OrderingSetMap less-eq less less-eq” less’”’ P (gof)
(proof)

lemma subset: QCP = OrderingSetMap (<) (<) (<x) (<*) Q f
{proof)

end
locale OrderingSetlso = OrderingSetMap less-eq less less-eq’ less’ P f

for less-eq :: 'a='a=bool (infix (<> 50)
and less  : 'a='a=bool (infix <<» 50)
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and less-eq’ :: 'b="b=-bool (infix «<x> 50)
and less’ :: 'b="b=bool (infix (<*x» 50)
and P :: ‘a set
and f :: 'a='b
+ assumes inj s inj-on f P
and rev-OrderingSet Map:
OrderingSetMap less-eq’ less’ less-eq less (f‘P) (the-inv-into P f)

abbreviation subset-ordering-iso = OrderingSetlso (C) (C) (C) ()

lemma (in OrderingSetMap) isol:
assumes inj-on f P Na b. a€P — beP —= fa<sxfb= a < b
shows OrderingSetlso less-eq less less-eq’ less’ P f

{proof)

lemma OrderingSetlsol-orders-greater2less:
fixes f :: 'a::order = 'b::order
assumes inj-on f P NAab.a € P=be P = (b<<a) = (fa < fb)
shows  OrderingSetlso (greater-eq::'a="a=>bool) (greater::'a="a=>bool)
(less-eq::"b="b=-bool) (less::'b="b=bool) P f
(proof)

context OrderingSetlso
begin

lemmas ordsetmap = ordsetmap

lemma ordsetmap-strict: [ a€P; beP; a<b ] = fa <x [ b
(proof)

lemmas inv-ordsetmap = OrderingSetMap.ordsetmap[OF rev-OrderingSetMap]

lemma rev-ordsetmap: [ a€P; beP; fa <x fb] = a < b
(proof)

lemma inv-iso: OrderingSetlso less-eq’ less’ less-eq less (f‘P) (the-inv-into P f)
(proof)

lemmas inv-ordsetmap-strict = OrderingSetlso.ordsetmap-strict|OF inv-iso]

lemma rev-ordsetmap-strict: | a€P; beP; fa <x fb] = a < b
(proof)

lemma iso-comp:
assumes OrderingSetlso less-eq’ less’ less-eq’’ less’ Q g f'P C Q
shows  OrderingSetlso less-eq less less-eq’’ less’” P (gof)

(proof)
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lemma iso-subset:
QCP = OrderingSetlso (<) (<) (<x) (<x) Q f
{proof)

lemma iso-dual:
«OrderingSetlso (Aa b. less-eq b a) (Aa b. less b a)
(Aa b. less-eq’ b a) (Aa b. less’ b a) P f»

{proof)

end

lemma induced-pow-fun-subset-ordering-iso:
assumes inj-on f A
shows subset-ordering-iso (Pow A) ((¥) f)
(proof)

1.6.2 More arg-min
lemma is-arg-minl:

[Px; AN\y. Py=—= - my < mz] = is-arg-min m Pz

(proof)

lemma is-arg-min-linorderl:
[Pz Ay. Py = maz < (m y:-:linorder) | = is-arg-min m P x

(proof)

lemma is-arg-min-eq:
[ is-arg-min m P z; P z; m z = m ¢ | = is-arg-min m P z

(proof)

lemma is-arg-minD1: is-arg-min m Px = Pz

(proof)

lemma is-arg-minD2: is-arg-min m P — Py— " my < mz

(proof)

lemma is-arg-min-size: fixes m :: 'a = 'b::linorder
shows is-arg-min m P x = m x = m (arg-min m P)

(proof)

lemma is-arg-min-size-subprop:
fixes m :: ‘a="b:linorder
assumes is-arg-min m Pz Qz N\y. Qy = Py
shows m (arg-min m Q) = m (arg-min m P)

(proof)

1.6.3 Bottom of a set

context ordering
begin
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definition has-bottom :: 'a set = bool
where has-bottom P = dz2€P.VzeP. 2 < x

lemma has-bottoml: zéP — (\z. 1€ P = 2z < ) = has-bottom P
{proof)

lemma has-unig-bottom: has-bottom P —> F1z€P. VzeP. 2Lz
(proof )

definition bottom :: 'a set = 'a
where bottom P = (THE z. zeP N\ (VzeP. 2<z))

lemma bottomD:
assumes has-bottom P
shows bottom P € P x€ P — bottom P < x

(proof)

lemma bottomI: zé P = (\y. yeP = 2 < y) = z = bottom P
(proof )

end

lemma has-bottom-pow: order.has-bottom (Pow A)
{proof)

lemma bottom-pow: order.bottom (Pow A) = {}

(proof)

context OrderingSetMap
begin

abbreviation dombot = domain.bottom P
abbreviation codbot = codomain.bottom (f*P)

lemma im-has-bottom: domain.has-bottom P = codomain.has-bottom (f*P)
(proof)

lemma im-bottom: domain.has-bottom P —> f dombot = codbot
(proof)

end
lemma (in OrderingSetlso) pullback-has-bottom:

assumes codomain.has-bottom (fP)
shows domain.has-bottom P

{(proof)

lemma (in OrderingSetlso) pullback-bottom:
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[ domain.has-bottom P; z€P; f x = codomain.bottom (f‘P) | =
x = domain.bottom P

{proof)

1.6.4 Minimal and pseudominimal elements in sets

We will call an element of a poset pseudominimal if the only element below
it is the bottom of the poset.

context ordering
begin

definition minimal-in = 'a set = 'a = bool
where minimal-in P x = z€P A (Vz€P. = 2 < 1)

definition pseudominimal-in :: 'a set = 'a = bool
where pseudominimal-in P z = minimal-in (P — {bottom P}) x
— only makes sense for has-bottom P

lemma minimal-inD1: minimal-in P v — z€P
(proof )

lemma minimal-inD2: minimal-in P x — 2€eP — - 2 < x

(proof)

lemma pseudominimal-inD1: pseudominimal-in P x —> z€P
(proof)

lemma pseudominimal-inD2:
pseudominimal-in P x — 26 P — 2<x —> z = bottom P

{proof)

lemma pseudominimal-inl:
assumes 2z€P z # bottom P Nz. 26 P = z<x = z = bottom P
shows pseudominimal-in P x

(proof)

lemma pseudominimal-ne-bottom: pseudominimal-in P © = x # bottom P
(proof)

lemma pseudominimal-comp:
[ pseudominimal-in P x; pseudominimal-in P y; e<y | = xz =y
{proof )

end

lemma pseudominimal-in-pow:
assumes order.pseudominimal-in (Pow A) x
shows JacA. z = {a}

(proof)
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lemma pseudominimal-in-pow-singleton:
a€A = order.pseudominimal-in (Pow A) {a}
(proof)

lemma no-pseudominimal-in-pow-is-empty:
(Az. = order.pseudominimal-in (Pow A) {z}) = A = {}
(proof )

lemma (in OrderingSetiso) pseudominimal-map:
domain.has-bottom P —> domain.pseudominimal-in P v —>
codomain.pseudominimal-in (f‘P) (f x)
(proof)

lemma (in OrderingSetlso) pullback-pseudominimal-in:
[ domain.has-bottom P; x€P; codomain.pseudominimal-in (f'P) (fz) ] =
domain.pseudominimal-in P x

{proof)

1.6.5 Set of elements below another

abbreviation (in ordering) below-in :: 'a set = 'a = 'a set (infix «.<> 70)
where P.<z = {yeP. y<z}

abbreviation (in ord) below-in :: 'a set = 'a = ’a set (infix «.<> 70)
where P.<z = {yeP. y<z}

context ordering
begin

lemma below-in-refl: xteP —> ¢ € P.<z
(proof)

lemma below-in-singleton: xéP — P.<z C {y} = y ==
(proof )

lemma bottom-in-below-in: has-bottom P — r€P — bottom P € P.<z
(proof)

lemma below-in-singleton-is-bottom:
[ has-bottom P; xeP; P.<zx = {z} | = = = bottom P
(proof)

lemma bottom-below-in:
has-bottom P = z€P = bottom (P.<z) = bottom P

{proof)

lemma bottom-below-in-relative:
[ has-bottom (P.<y); z€P; 2<y | = bottom (P.<z) = bottom (P.<y)
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{proof)

lemma has-bottom-pseudominimal-in-below-inl:
assumes has-bottom P x€P pseudominimal-in Py y<zx
shows pseudominimal-in (P.<z) y

{proof)

lemma has-bottom-pseudominimal-in-below-in:
assumes has-bottom P z€P pseudominimal-in (P.<z) y
shows pseudominimal-in Py

(proof)

lemma pseudominimal-in-below-in:
assumes has-bottom (P.<y) z€P 1<y pseudominimal-in (P.<z) w
shows  pseudominimal-in (P.<y) w
(proof )

lemma collect-pseudominimals-below-in-less-eq-top:
assumes OrderingSetlso less-eq less (C) (C) (P.<z) f
f(P.<z) = Pow A a C {y. pseudominimal-in (P.<z) y}
defines w = the-inv-into (P.<z) f (U (f‘a))
shows w<z
(proof)

lemma collect-pseudominimals-below-in-poset:
assumes OrderingSetiso less-eq less (C) (C) (P.<z) f
f(P.<z) = Pow A
a C {y. pseudominimal-in (P.<z) y}
defines w = the-inv-into (P.<z) f (U (f‘a))
shows w e P

(proof)

lemma collect-pseudominimals-below-in-eq:
assumes z€P OrderingSetlso less-eq less (C) (C) (P.<z) f
f(P.<z) = Pow A a C {y. pseudominimal-in (P.<z) y}
defines w: w = the-inv-into (P.<z) f (U (fa))
shows a = {y. pseudominimal-in (P.<w) y}

(proof)

end

1.6.6 Lower bounds

context ordering
begin

definition lbound-of :: 'a = 'a = 'a = bool
where lbound-of z y b = b<z N b<y
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lemma lbound-ofl: b<z = b<y = lbound-of z y b
{proof )

lemma lbound-ofD1: lbound-of z y b = b<zx
(proof )

lemma lbound-ofD2: lbound-of z y b = b<y
(proof)

definition glbound-in-of :: 'a set = 'a = 'a = 'a = bool
where glbound-in-of Px y b =
beP A lbound-of x y b A (VY a€P. lbound-of z y a — a<b)

lemma glbound-in-ofI:
[ beP; lbound-of x y b; Na. a€P = lbound-of x y a = a<b ]| =
glbound-in-of P x y b
(proof)

lemma glbound-in-ofD-in: glbound-in-of P x y b =—> beP
(proof )

lemma glbound-in-ofD-lbound: glbound-in-of P x y b = lbound-of = y b
(proof)

lemma glbound-in-ofD-glbound:
glbound-in-of P x y b = a€P = lbound-of x y a = a<b
(proof)

lemma glbound-in-of-less-eql: glbound-in-of P x y b = b<zx
(proof )

lemma glbound-in-of-less-eq2: glbound-in-of P x y b = b<y
(proof)

lemma pseudominimal-in-below-in-less-eq-glbound:
assumes pseudominimal-in (P.<z) w pseudominimal-in (P.<y) w
glbound-in-of P x y b
shows w<b
(proof)

end

1.6.7 Simplex-like posets

Define a poset to be simplex-like if it is isomorphic to the power set of some
set.

context ordering
begin
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definition simplex-like :: 'a set = bool
where simplez-like P = finite P A
(3f A::nat set.
OrderingSetiso less-eq less (C) (C) P f A f'P = Pow A

)

lemma simplez-likel:
assumes finite P OrderingSetlso less-eq less (C) (C) P f
fP = Pow (A::nat set)
shows simplex-like P
(proof)

lemma simplez-likeD-finite: simplez-like P = finite P
(proof )

lemma simplez-likeD-iso:
simplex-like P —>
3f A:inat set. OrderingSetlso less-eq less (C) (C) P f A f'P = Pow A
(proof )

lemma simplez-like-has-bottom: simplez-like P —> has-bottom P
(proof)

lemma simplez-like-no-pseudominimal-imp-singleton:
assumes simplez-like P \z. — pseudominimal-in P x
shows 3p. P = {p}

(proof)

lemma simplez-like-no-pseudominimal-in-below-in-imp-singleton:
[ zeP; simplex-like (P.<z); Nz. - pseudominimal-in (P.<z) z | =
P<z={z}
(proof )

lemma pseudo-simplex-like-has-bottom:
OrderingSetlso less-eq less (C) (C) P f = f'P = Pow A =
has-bottom P
(proof)

lemma pseudo-simplex-like-above-pseudominimal-is-top:
assumes OrderingSetlso less-eq less (C) (C) P f f'P = Pow A teP
Nz. pseudominimal-in Pz — z < ¢
shows ft=A
(proof)

lemma pseudo-simplex-like-below-in-above-pseudominimal-is-top:
assumes z€P OrderingSetlso less-eq less (C) (C) (P.<z) f
f(P.<z)=PowAte P<lz
Ny. pseudominimal-in (P.<z) y = y < t
shows t==z
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{proof)

lemma simplez-like-below-in-above-pseudominimal-is-top:
assumes z€P simplex-like (P.<z) t € P.<z
Ny. pseudominimal-in (P.<z) y = y < t
shows t==z
(proof)

end

lemma (in OrderingSetiso) simplex-like-map:
assumes domain.simplex-like P
shows codomain.simplex-like (f‘P)

(proof)

lemma (in OrderingSetiso) pullback-simplex-like:
assumes finite P codomain.simplex-like (f‘P)
shows domain.simplez-like P

(proof)

lemma simplez-like-pow:
assumes finite A
shows order.simplez-like (Pow A)

(proof)

1.6.8 The superset ordering

abbreviation supset-has-bottom = ordering.has-bottom (D)
abbreviation supset-bottom = ordering.bottom (2)
abbreviation supset-lbound-of = ordering.lbound-of (2)
abbreviation supset-glbound-in-of = ordering.glbound-in-of (D)
abbreviation supset-simplex-like = ordering.simplez-like  (2) (D)

abbreviation supset-pseudominimal-in =
ordering.pseudominimal-in (2) (D)

abbreviation supset-below-in :: 'a set set = 'a set = 'a set set (infix <.D» 70)
where P.DA = ordering.below-in (2) P A

lemma supset-poset: ordering (2) (D) (proof)

lemmas supset-bottoml = ordering.bottoml [OF supset-poset)
lemmas supset-pseudominimal-inl = ordering.pseudominimal-inI [OF supset-poset]
lemmas supset-pseudominimal-inD1 = ordering.pseudominimal-inD1 [OF supset-poset]
lemmas supset-pseudominimal-inD2 = ordering.pseudominimal-inD2 [OF supset-poset]

lemmas supset-lbound-ofI = ordering.lbound-ofI [OF supset-poset)
lemmas supset-lbound-of-def = ordering.lbound-of-def [OF supset-poset]
lemmas supset-glbound-in-ofl = ordering.glbound-in-ofl ~ [OF supset-poset]

lemmas supset-pseudominimal-ne-bottom =
ordering.pseudominimal-ne-bottom|[OF supset-poset]
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lemmas supset-has-bottom-pseudominimal-in-below-inl =
ordering.has-bottom-pseudominimal-in-below-inl [ OF supset-poset]

lemmas supset-has-bottom-pseudominimal-in-below-in =
ordering.has-bottom-pseudominimal-in-below-in| OF supset-poset)

lemma OrderingSetlso-pow-complement:
OrderingSetIso (2) (D) (C) (C) (Pow A) ((—) A)
(proof )

lemma simplez-like-pow-above-in:

assumes finite A XCA

shows  supset-simplez-like ((Pow A).2X)
(proof)

end

2 Algebra

In this section, we develop the necessary algebra for developing the theory
of Coxeter systems, including groups, quotient groups, free groups, group
presentations, and words in a group over a set of generators.

theory Algebra
imports Prelim

begin

2.1 Miscellaneous algebra facts

lemma times2-conv-add: (j::nat) + j = 2x%j
{proof )

lemma (in comm-semiring-1) odd-n0: odd m — m=#0
(proof )

lemma (in semigroup-add) add-assoc4: a + b+ c+d=a+ (b+ ¢+ d)
{proof)

lemmas (in monoid-add) sum-list-map-cong =
arg-cong| OF map-cong, OF refl, of - - - sum-list]

context group-add
begin

lemma map-uminus-order2:
V s€set ss. s+s=0 = map (uminus) ss = ss

{proof)

lemma uminus-sum-list: — sum-list as = sum-list (map uminus (rev as))
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{proof)

lemma uminus-sum-list-order2:
V s€set ss. s+s=0 = — sum-list ss = sum-list (rev ss)

(proof)

end

2.2 The type of permutations of a type

Here we construct a type consisting of all bijective functions on a type.
This is the prototypical example of a group, where the group operation is
composition, and every group can be embedded into such a type. It is for
this purpose that we construct this type, so that we may confer upon suitable
subsets of types that are not of class group-add the properties of that class,
via a suitable injective correspondence to this permutation type.

typedef ‘a permutation = {f::'a="a. bij f}
morphisms permutation Abs-permutation
(proof)

setup-lifting type-definition-permutation

abbreviation permutation-apply :: 'a permutation = ’'a = ‘a (infixr «(—> 90)
where p — a = permutation p a

abbreviation permutation-image :: 'a permutation = 'a set = 'a set
(infixr <= 90)
where p ‘— A = permutation p ‘ A

lemma permutation-eq-image: a ‘—+ A = a -+ B = A=DB
(proof)

instantiation permutation :: (type) zero

begin

lift-definition zero-permutation :: 'a permutation is id::'a="a (proof)
instance (proof)

end

instantiation permutation :: (type) plus
begin
lift-definition plus-permutation :: 'a permutation = 'a permutation = 'a permu-
tation
is  comp
(proof )
instance (proof)
end

lemma plus-permutation-abs-eq:
bij f = bij g =
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Abs-permutation f + Abs-permutation g = Abs-permutation (fog)
(proof)

instance permutation :: (type) semigroup-add

(proof)

instance permutation :: (type) monoid-add
(proof)

instantiation permutation :: (type) uminus

begin

lift-definition uminus-permutation :: 'a permutation = 'a permutation
is  Af. the-inv f
(proof )

instance (proof)

end

instantiation permutation :: (type) minus
begin
lift-definition minus-permutation :: 'a permutation = 'a permutation = ’a per-
mutation
is A g. f o (the-inv g)
(proof)
instance (proof)
end

lemma minus-permutation-abs-eq:
bij f = bij g =
Abs-permutation [ — Abs-permutation g = Abs-permutation (f o the-inv g)
(proof )

instance permutation :: (type) group-add

(proof)

2.3 Natural action of nat on types of class monoid-add
2.3.1 Translation from class power.

Here we translate the power class to apply to types of class monoid-add.

context monoid-add
begin

sublocale nataction: power 0 plus {(proof)
sublocale add-mult-translate: monoid-mult 0 plus

(proof)

abbreviation nataction :: 'a = nat = ‘o (infix +7 80)
where a+ n = nataction.power a n
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lemmas nataction-2 = add-mult-translate. power2-eq-square
lemmas nataction-Suc2 = add-mult-translate. power-Suc2

lemma alternating-sum-list-conv-nataction:
sum-list (alternating-list (2xn) s t) = (s+t)+ n
(proof)

lemma nataction-add-flip: (a+b)+ (Suc n) = a + (b+a)+ n + b
{proof)

end

lemma (in group-add) nataction-add-eq0-flip:
assumes (a+b)+"n = 0
shows (b+a)+n =0

(proof )

2.3.2 Additive order of an element

context monoid-add
begin

definition add-order :: 'a = nat
where add-order a = if (3n>0. a+"n = 0) then
(LEAST n. n>0 A a+"n = 0) else 0

lemma add-order: a+ (add-order a) = 0
(proof)

lemma add-order-least: n>0 = a+ n = 0 = add-order a < n
(proof)

lemma add-order-equality:
[ n>0; a+"n = 0; (Am. m>0 = a+"m =0 = n<m) | =
add-order a = n
(proof )

lemma add-order0: add-order 0 = 1
(proof )

lemma add-order-gt0: (add-order a > 0) = (In>0. a+"n = 0)
{proof)

lemma add-order-eq0: add-order a = 0 = n>0 = a+ n # 0
{proof )

lemma less-add-order-eq-0:

assumes a+ k = 0 k < add-order a
shows k=0
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(proof)

lemma less-add-order-eq-0-contra: k>0 = k < add-order a = a+ "k # 0
(proof )

lemma add-order-relator: add-order (a+ (add-order a)) = 1
(proof)

abbreviation pair-relator-list :: 'a = 'a = 'a list

where pair-relator-list s t = alternating-list (2xadd-order (s+t)) st
abbreviation pair-relator-halflist :: 'a = 'a = 'a list

where pair-relator-halflist s t = alternating-list (add-order (s+t)) st
abbreviation pair-relator-halflist2 :: 'a = 'a = 'a list

where pair-relator-halflist2 s t =

(if even (add-order (s+t)) then pair-relator-halflist s t else
pair-relator-halflist t s)

lemma sum-list-pair-relator-list: sum-list (pair-relator-list s t) = 0
(proof)

end

context group-add
begin

lemma add-order-add-eql: add-order (s+t) = 1 = t = —s
{proof)

lemma add-order-add-sym: add-order (t+s) = add-order (s+t)
(proof)

lemma pair-relator-halflist-append:
pair-relator-halflist s t Q pair-relator-halflist2 s t = pair-relator-list s t
(proof)

lemma rev-pair-relator-list: rev (pair-relator-list s t) = pair-relator-list t s
(proof )

lemma pair-relator-halflist2-conv-rev-pair-relator-halfiist:
pair-relator-halflist? s t = rev (pair-relator-halflist t s)
(proof )

end

2.4 Partial sums of a list

Here we construct a list that collects the results of adding the elements of a
given list together one-by-one.

context monoid-add
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begin

primrec sums :: ‘a list = 'a list
where
sums [| = [0]
| sums (xftxs) = 0 # map ((+) z) (sums zs)

lemma length-sums: length (sums xs) = Suc (length xs)
{proof)

lemma sums-snoc: sums (zsQ[z]) = sums zs @ [sum-list (zsQ[x])]
{proof)

lemma sums-append?2:
sums (xsQys) = butlast (sums zs) @ map ((+) (sum-list xs)) (sums ys)

(proof)

lemma sums-Cons-conv-append-tl:
sums (x#xs) = 0 # = # map ((+) =) (¢ (sums zs))
(proof)

lemma pullback-sums-map-middle2:
map F (sums xs) = dsQ[d,e]Qes =
Jas a bs. xs = asQ[a]Qbs A map F (sums as) = dsQ[d] A
d = F (sum-list as) A e = F (sum-list (asQla]))
(proof)

lemma pullback-sums-map-middle3:
map F (sums zs) = dsQ[d,e,f]Qfs =
Jas a b bs. xs = asQ[a,b]@Qbs A d = F (sum-list as) A
e = F (sum-list (asQ[a])) A f = F (sum-list (asQla,b]))
(proof)

lemma pullback-sums-map-double-middle?2:
assumes map F (sums xs) = dsQ[d,e]QesQ][f,g]|Qgs
shows Jas a bs b cs. zs = asQ[a]@QbsQ[b]Qcs A d = F (sum-list as) A
e = F (sum-list (asQla])) A f = F (sum-list (asQ[a]@bs)) A
g = F (sum-list (asQ[a]@bsQ[b]))
(proof )

end

2.5 Sums of alternating lists

lemma (in group-add) uminus-sum-list-alternating-order2:
s+s=0 = t+t=0 = — sum-list (alternating-list n s t) =
sum-list (if even n then alternating-list n t s else alternating-list n s t)
(proof)
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context monoid-add
begin

lemma alternating-order2-cancel-1left:
st+s=0 —
sum-list (s # (alternating-list (Suc n) s t)) = sum-list (alternating-list n t s)
(proof)

lemma alternating-order2-cancel-2left:
$+s=0 = t+t=0 =
sum-list (t # s # (alternating-list (Suc (Suc n)) s t)) =
sum-list (alternating-list n s t)

(proof)

lemma alternating-order2-even-cancel-right:
assumes st : s+s=0 t+t=0
and even-n: even n
shows m < n = sum-list (alternating-list n s t Q alternating-list m t s) =
sum-list (alternating-list (n—m) s t)
(proof)

end

2.6 Conjugation in group-add
2.6.1 Abbreviations and basic facts
context group-add

begin

abbreviation lconjby :: ‘a="a="a
where lconjby ¢y = z+y—=z

abbreviation rconjby :: ‘a="'a="a
where rconjby x y = —zx+y+z

lemma lconjby-add: lconjby (x+y) z = lecongby x (lconjby y z)
(proof )

lemma rconjby-add: rconjby (x+y) z = rconjby y (rconjby z z)
(proof )

lemma add-rconjby: rconjby x y + rconjby x z = rconjby x (y+2)
(proof)

lemma lconjby-uminus: lconjby x (—y) = — lconjby = y
(proof )

lemma rconjby-uminus: rconjby x (—y) = — rconjby z y
(proof )
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lemma lconjby-rconjby: lconjby x (rconjby x y) = y
(proof)

lemma rconjby-lconjby: rconjby x (lconjby x y) = y
(proof )

lemma lconjby-ing: inj (lconjby x)
(proof )

lemma rconjby-ing: inj (rconjby x)
(proof )

lemma lconjby-surj: surj (lconjby x)

(proof)

lemma lconjby-bij: bij (lconjby x)
{proof )

lemma the-inv-lconjby: the-inv (lconjby x) = (rconjby x)
(proof )

lemma Iconjby-eq-conv-rconjby-eq: w = lconjby x y = y = rconjby x w
(proof)

lemma rconjby-order2: s+s = 0 = rconjby x s + rconjby z s = 0
(proof)

lemma rconjby-order2-eq-lconjby:
assumes s+s=0
shows rconjby s = lconjby s

(proof)

lemma Iconjby-alternating-list-order2:
assumes s+s=0 t+t=0
shows lconjby (sum-list (alternating-list k s t)) (if even k then s else t) =
sum-list (alternating-list (Suc (2xk)) s t)
(proof )

end

2.6.2 The conjugation sequence

Given a list in group-add, we create a new list by conjugating each term by
all the previous terms. This sequence arises in Coxeter systems.

context group-add
begin

primrec lconjseq :: 'a list = 'a list
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where
leonjseq [| = ]
| lconjseq (z#xs) = x # (map (lconjby z) (lconjseq xs))

lemma length-lconjseq: length (lconjseq xs) = length xs
(proof)

lemma lconjseq-snoc: lconjseq (xsQ[z]) = lconjseq xs Q [lconjby (sum-list zs) x|
{proof)

lemma Iconjseq-append:
leconjseq (zsQys) = lconjseq zs @ (map (lconjby (sum-list zs)) (lconjseq ys))
(proof)

lemma Iconjseq-alternating-order2-repeats’:
fixes st:'a
defines altst: altst = An. alternating-list n s t
and altts: altts = An. alternating-list n t s
assumes st : s+s=0t+t=0 (s+t)+ k=0
shows map (lconjby (sum-list (altst k)))
(lcongjseq (if even k then altst m else altts m)) = lconjseq (altst m)

(proof)

lemma Iconjseq-alternating-order2-repeats:

fixes st: ’aandk :: nat

defines altst: altst = An. alternating-list n s t

and altts: altts = An. alternating-list n t s

assumes st: s+s5=0 t+t=0 (s+t)+ &k = 0

shows lconjseq (altst (2xk)) = lconjseq (altst k) @ lconjseq (altst k)
(proof)

lemma even-count-lconjseq-alternating-order2:

fixes st:'a

assumes s+s=0 t+t=0 (s+t)+ k = 0

shows even (count-list (lconjseq (alternating-list (2xk) s t)) x)
(proof)

lemma order2-hd-in-lconjseq-deletion:
shows s+s=0 = s € set (lconjseq ss)
= Jas b bs. ss = asQ[b]Qbs N sum-list (s#ss) = sum-list (asQbs)

(proof)

end

2.6.3 The action on signed group-add elements

Here we construct an action of a group on itself by conjugation, where
group elements are endowed with an auxiliary sign by pairing with a boolean
element. In multiple applications of this action, the auxiliary sign helps keep

36



track of how many times the elements conjugating and being conjugated
are the same. This action arises in exploring reduced expressions of group
elements as words in a set of generators of order two (in particular, in a
Coxeter group).

type-synonym ’a signed = 'ax bool

definition signed-funaction :: (‘a='a="a) = 'a = 'a signed = 'a signed
where signed-funaction f s x = map-prod (f s) (A\b. b # (fstz = s))
— so the sign of z is flipped precisely when its first component is equal to s

context group-add
begin

abbreviation signed-lconjaction = signed-funaction lconjby
abbreviation signed-rconjaction = signed-funaction rconjby

lemmas signed-lconjactionD = signed-funaction-def|of lconjby]
lemmas signed-rconjactionD = signed-funaction-def[of rconjby]

abbreviation signed-lconjpermutation :: 'a = 'a signed permutation
where signed-lconjpermutation s = Abs-permutation (signed-lconjaction s)

abbreviation signed-list-lconjaction :: 'a list = 'a signed = 'a signed
where signed-list-lconjaction ss = foldr signed-lconjaction ss

lemma signed-lconjaction-fst: fst (signed-lconjaction s x) = lconjby s (fst x)
(proof )

lemma signed-lconjaction-rconjaction:
signed-lconjaction s (signed-rconjaction s ) = x

(proof)

lemma signed-rconjaction-by-order2-eq-lconjaction:
s+s=0 = signed-rconjaction s = signed-lconjaction s
(proof )

lemma inj-signed-lconjaction: inj (signed-lconjaction s)
(proof)

lemma surj-signed-lconjaction: surj (signed-lconjaction s)
(proof)

lemma bij-signed-lconjaction: bij (signed-lconjaction s)
(proof )

lemma the-inv-signed-lconjaction:

the-inv (signed-lconjaction s) = signed-rconjaction s
(proof)
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lemma the-inv-signed-lconjaction-by-order2:
s+s=0 = the-inv (signed-lconjaction s) = signed-lconjaction s
{proof )

lemma signed-list-lconjaction-fst:
fst (signed-list-lconjaction ss x) = lconjby (sum-list ss) (fst x)
(proof)

lemma signed-list-lconjaction-snd:
shows V s€set ss. s+s=0 = snd (signed-list-lconjaction ss x)
= (if even (count-list (lconjseq (rev ss)) (fst x)) then snd x else —snd )

(proof)

end

2.7 Cosets
2.7.1 Basic facts

lemma set-zero-plus’ [simp]: (0::'a::monoid-add) +o C = C
— lemma Set-Algebras.set-zero-plus is restricted to types of class comm-monoid-add,;
here is a version in monoid-add.

{proof)

lemma lcoset-0: (w::'a::monoid-add) +o 0 = {w}
{proof)

lemma lcoset-refl: (0::'a::monoid-add) € A = a € a +0 A
(proof)

lemma Icoset-eq-reps-subset:

(a:'a::group-add) 40 A Ca+0B = ACB
(proof)

lemma lcoset-eq-reps: (a::'a::group-add) +0 A = a +0 B— A =B
(proof )

lemma lcoset-ing-on: inj ((+0) (a::'a::group-add))
{proof)

lemma lcoset-conv-set: (a::'g::group-add) € b +0 A = —b+ a € A
(proof )

2.7.2 The supset order on cosets

lemma supset-lbound-Icoset-shift:
supset-lbound-of X Y B —>
ordering.lbound-of (2) (a +0 X) (a +0Y) (a +0 B)
(proof)
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lemma supset-glbound-in-of-lcoset-shift:
fixes P :: 'a:group-add set set
assumes supset-glbound-in-of P X Y B
shows supset-glbound-in-of ((+0) a * P) (a +0 X) (a +0 Y) (a +0 B)
(proof )

2.7.3 The afforded partition

definition lcoset-rel :: 'a:{uminus,plus} set = (‘ax’a) set
where lcoset-rel A = {(z,y). —z + y € A}

lemma lcoset-rell: —z+y € A = (x,y) € lcoset-rel A
(proof )

2.8 Groups

We consider groups as closed sets in a type of class group-add.

2.8.1 Locale definition and basic facts

locale Group =

fixes G :: 'g::group-add set

assumes nonempty : G # {}

and diff-closed: Agh. g€ G = he G = g—heqG
begin

abbreviation Subgroup :: 'g set = bool
where Subgroup H = Group H N H C G

lemma SubgroupD1: Subgroup H = Group H (proof)

lemma zero-closed : 0 € G
(proof)

lemma uminus-closed: g€ G — —geG
(proof)

lemma add-closed: gc¢ G = heG = g+h € G
(proof )

lemma uminus-add-closed: g€ G = he G = —g+ he G
(proof )

lemma Iconjby-closed: g€ G —> € G = lconjby g x € G
(proof )

lemma Iconjby-set-closed: ge G — ACG = lconjby g ‘A C G
(proof)
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lemma set-lconjby-subset-closed:
HCG = ACG = (UheH. lconjby h * A) C G
{proof)

lemma sum-list-map-closed: set (map fas) C G = (3 a+as. fa) € G
{proof)

lemma sum-list-closed: set as C G = sum-list as € G

(proof)

end

2.8.2 Sets with a suitable binary operation

We have chosen to only consider groups in types of class group-add so that we
can take advantage of all the algebra lemmas already proven in HOL. Groups,
as well as constructs like sum-list. The following locale builds a bridge
between this restricted view of groups and the usual notion of a binary
operation on a set satisfying the group axioms, by constructing an injective
map into type permutation (which is of class group-add with respect to the
composition operation) that respects the group operation. This bridge will
be necessary to define quotient groups, in particular.

locale BinOpSetGroup =

fixes G :: 'a set
and binop :: 'a="a="a
and e¢ :'’a

assumes closed : g¢G = he G = binop gh € G
and assoc
[ g€G; heG; ke G | = binop (binop g h) k = binop g (binop h k)
and identity: e€G g€ G = binop g e = g g€G => binop e g = ¢
and inverses: g G = FheqG. binop g h = e N binop h g = e
begin

lemma unique-identityl: gc¢ G = Vz€G. binop gz =2 = g=¢

(proof)

lemma unique-inverse:
assumes geG
shows 3J!h. he G A binop g h = e A binop h g = e

(proof)

abbreviation G-perm g = restrictl (binop g) G

definition Abs-G-perm :: 'a = 'a permutation
where Abs-G-perm g = Abs-permutation (G-perm g)

abbreviation p = Abs-G-perm — the injection into type permutation
abbreviation ip = the-inv-into G p — the reverse correspondence
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abbreviation pG = p‘G — the resulting Group of type permutation

lemma G-perm-comp:
g€G = heG = G-perm g o G-perm h = G-perm (binop g h)
(proof )

definition the-inverse :: ‘a = 'a
where the-inverse ¢ = (THE h. h G A binop g h = e A binop h g = e)

abbreviation i = the-inverse

lemma the-inverseD:
assumes ¢geG
shows ig € Gbinopg (ig) =ebinop (ig) g=ce
(proof )

lemma binop-G-comp-binop-iG: g6 G = z€G = binop g (binop (i g) z) = x
(proof )

lemma bij-betw-binop-G:
assumes g¢ge@G
shows  bij-betw (binop g) G G

{proof)

lemma the-inv-into-G-binop-G:

assumes geG zeG

shows the-inv-into G (binop g) © = binop (i g) z
(proof)

lemma restrict!-the-inv-into-G-binop-G:
g€ G = restrict] (the-inv-into G (binop g)) G = G-perm (i g)
{proof)

lemma bij-G-perm: g€ G = bij (G-perm g)
(proof )

lemma G-perm-apply: ¢€G = 2€G = p g — = = binop g «
(proof)

lemma G-perm-apply-identity: gcG — p g > e=g
(proof )

lemma the-inv-G-perm:
g€G = the-inv (G-perm g) = G-perm (i g)
{proof )

lemma Abs-G-perm-diff:

9g€G = heG = p g — p h =p (binop g (i h))
(proof )
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lemma Group: Group pG
(proof)

lemma inj-on-p-G: inj-on p G

(proof)

lemma homs:

ANg h. g€G = he G = p (binop gh) =p g+ph

Az y. 2€pG = yepG = binop (ip z) (ip y) = ip (z+y)
(proof)

lemmas inv-correspondence-into =
the-inv-into-into| OF inj-on-p-G, of - G, simplified)

lemma inv-correspondence-conv-apply: © € pG = ip © = z—e
(proof)

end

2.8.3 Cosets of a Group

context Group
begin

lemma lcoset-refl: a € a +o G

{proof)

lemma Icoset-el-reduce:
assumes a € G
shows a +0 G = G

(proof)

lemma [coset-el-reduce0: 0 € a +0 G —= a +0 G = G
(proof)

lemma [coset-subgroup-imp-eq-reps:
Group H=— w40 H Cw 40 G = w' 40 G=w+0 G
(proof )

lemma [coset-closed: acG — ACG — a +0 A C G
(proof)

lemma lcoset-rel-sym: sym (lcoset-rel G)
(proof)

lemma lcoset-rel-trans: trans (lcoset-rel G)

(proof)
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abbreviation LCoset-rel :: 'g set = ('gx’'g) set
where LCoset-rel H = lcoset-rel H N (Gx G)

lemma refl-on-LCoset-rel: 06 H = refl-on G (LCoset-rel H)
{proof)

lemmas subgroup-refi-on-LCoset-rel =

refl-on-LCoset-rel|OF Group.zero-closed, OF SubgroupD1]
lemmas LCoset-rel-quotient] = quotientI[of - G LCoset-rel -]
lemmas LCoset-rel-quotientE = quotientE[of - G LCoset-rel -]

lemma Icoset-subgroup-rel-equiv:
Subgroup H = equiv G (LCoset-rel H)
(proof)

lemma trivial-LCoset: HCG = H = LCoset-rel H “ {0}
(proof)

end

2.8.4 The Group generated by a set

inductive-set genby :: ‘a::group-add set = 'a set («(-)»)
for S :: 'a set
where
genby-0-closed  : 0€(S) — just in case S is empty
| genby-genset-closed: s€S = s€(S)
| genby-diff-closed : we(S) = w'e(S) = w — w’ € (S)

lemma genby-Group: Group (S)

(proof )

lemmas genby-uminus-closed = Group.uminus-closed  [OF genby-Group]
lemmas genby-add-closed = Group.add-closed [OF genby-Group]
lemmas genby-uminus-add-closed = Group.uminus-add-closed [OF genby-Group)
lemmas genby-lcoset-refl = Group.lcoset-refl [OF genby-Group]
lemmas genby-lcoset-el-reduce = Group.lcoset-el-reduce [OF genby-Group
lemmas genby-lcoset-el-reducel = Group.lcoset-el-reduce0 [OF genby-Group]
lemmas genby-lcoset-closed = Group.lcoset-closed [OF genby-Group)

lemmas genby-lcoset-subgroup-imp-eq-reps =
Group.lcoset-subgroup-imp-eq-reps| OF genby-Group, OF genby-Group)

lemma genby-genset-subset: S C (S)
(proof )

lemma genby-uminus-genset-subset: uminus ¢S C (S)
(proof)
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lemma genby-in-sum-list-lists:
fixes S
defines S-sum-lists: S-sum-lists = (| ss€lists (S U uminus * S). {sum-list ss})
shows w € (§) = w € S-sum-lists

(proof)

lemma sum-list-lists-in-genby: ss € lists (S U uminus ¢ S) = sum-list ss € (S)
(proof)

lemma sum-list-lists-in-genby-sym:
uminus ‘S C S = ss € lists S = sum-list ss € (S)
(proof)

lemma genby-eq-sum-lists: (S) = (| ss€lists (S U uminus * S). {sum-list ss})
{proof)

lemma genby-mono: T C § = (T) C (S)
(proof)

lemma (in Group) genby-closed:
assumes S C ¢
shows (S) C G

(proof)

lemma (in Group) genby-subgroup: S C G = Subgroup (S)
(proof )

lemma genby-sym-eq-sum-lists:
uminus ‘S C S = (S) = (| ss€lists S. {sum-list ss})
(proof)

lemma genby-empty” w € ({}) = w =0

(proof)

lemma genby-order2’:
assumes s+s=0
shows we {s}) = w=0Vw=s

(proof)

lemma genby-order2: s+s=0 = ({s}) = {0,s}
(proof)

lemma genby-empty: ({}) = 0
(proof)

lemma genby-lcoset-order2: s+s=0 = w +o ({s}) = {w,w+s}

(proof)

lemma genby-lcoset-empty: (w::'a::group-add) +o ({}) = {w}
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(proof)

lemma (in Group) genby-set-lconjby-set-lconjby-closed:
fixes A ::'g set
defines S = (| g€G. lconjby g < A)
assumes ge @G
shows z € (S) = lconjby g x € (S)
(proof)

lemma (in Group) genby-set-lconjby-set-rconjby-closed:
fixes A ::'g set
defines S = (|Jg€G. lconjby g * A)
assumes geG z € (5)
shows rconjby g x € (S)

(proof)

2.8.5 Homomorphisms and isomorphisms

locale GroupHom = Group G
for G :: 'g:group-add set

+ fixes T :: 'g = 'h::group-add
assumes hom: g€ G =g ' € G =T (9+9)=Tg+ Ty’
and supp: supp T C G

begin

lemma im-zero: T 0 = 0

(proof )

lemma im-uminus: T (— g) = — Tg
(proof )

lemma im-uminus-add: g € G = g'€e G = T (—g+¢9)=-Tg+ Ty’
(proof )

lemma im-diff: g€ G = ¢g' e G= T (9g—9g)=Tg—Tyg'
(proof )

lemma im-lconjby: x € G = g € G = T (lconjby = g) = lconjby (T z) (T g)
{proof )

lemma im-sum-list-map:
set (map fas) C G = T (D a<+as. fa) = (> a+as. T (fa))
(proof )

lemma comp:
assumes GroupHom HS TG C H
shows GroupHom G (S o T)

(proof)
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end

definition ker :: (Ya='b::zero) = 'a set
where ker f = {a. fa = 0}

lemma ker-subset-ker-restrict0: ker f C ker (restrict0 f A)
{proof)

context GroupHom
begin

abbreviation Ker = ker T N G

lemma uminus-add-in-Ker-eq-eq-im:
9geG = heG = (—g+ he Ker)=(Tg=Th)
(proof )

end

locale UGroupHom = GroupHom UNIV T
for T :: 'g::group-add = 'h::group-add

begin
lemmas im-zero = im-zero
lemmas im-uminus = Im-uminus

lemma hom: T (g+9) = Tg+ T g’
(proof )

lemma im-diff: T (¢ — g)=Tg— Ty’
(proof)

lemma im-lconjby: T (Ilconjby x g) = lconjby (T z) (T g)
(proof )

lemma restrict0:
assumes Group G
shows  GroupHom G (restrict0 T G)

(proof)

end

lemma UGroupHomlI:
assumes A\gg’. T (g+g)=Tg+ Ty’
shows UGroupHom T
(proof )

locale Grouplso = GroupHom G T
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for G :: 'g:group-add set
and T : g = 'h:group-add
+ assumes inj-on: inj-on T G

lemma (in GroupHom) isol:
assumes A\k. keG = T k=0 = k=0
shows Grouplso G T

(proof)

In a BinOpSetGroup, any map from the set into a type of class group-add
that respects the binary operation induces a GroupHom.

abbreviation (in BinOpSetGroup) lift-hom T = restrict0 (T o ip) pG

lemma (in BinOpSetGroup) lift-hom:
fixes T :: 'a = 'b::group-add
assumes VgeG. VheG. T (binop gh) = Tg+ Th
shows GroupHom pG (lift-hom T)

(proof)

2.8.6 Normal subgroups

definition rcoset-rel :: ‘a::{minus,plus} set = (‘ax’a) set
where rcoset-rel A = {(z,y). z—y € A}

context Group
begin

lemma rcoset-rel-conv-lcoset-rel:
reoset-rel G = map-prod uminus uminus ¢ (lcoset-rel G)

(proof)

lemma rcoset-rel-sym: sym (rcoset-rel G)
(proof)

abbreviation RCoset-rel :: g set = ('gx’g) set
where RCoset-rel H = rcoset-rel H N (Gx Q)

definition normal :: 'g set = bool
where normal H = (V geG. LCoset-rel H ““ {g} = RCoset-rel H ““ {g})

lemma normall:
assumes Group HVgeG.VheH. 3h'eH. g+h = h'+g
VgeG.VheH. Ah'eH. h+g = g+h'
shows normal H

{proof)

lemma normal-lconjby-closed:
[ Subgroup H; normal H; g€ G; he H | = lconjby g h € H
(proof )
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lemma normal-rconjby-closed:
[ Subgroup H; normal H; geG; he H | = rconjby g h € H
(proof )

abbreviation normal-closure A = (| g€G. lconjby g * A)

lemma (in Group) normal-closure:
assumes ACG
shows normal (normal-closure A)

(proof)

end

2.8.7 Quotient groups

Here we use the bridge built by BinOpSetGroup to make the quotient of a
Group by a normal subgroup into a Group itself.

context Group
begin

lemma normal-quotient-add-well-defined:
assumes Subgroup H normal H geG g'eG
shows LCoset-rel H ““ {g} + LCoset-rel H “{g'} = LCoset-rel H ““ {g+g’'}

(proof)

abbreviation quotient-set H = G // LCoset-rel H

lemma BinOpSetGroup-normal-quotient:
assumes Subgroup H normal H
shows BinOpSetGroup (quotient-set H) (+) H

(proof)
abbreviation abs-lcoset-perm H =
BinOpSetGroup. Abs-G-perm (quotient-set H) (+)

abbreviation abs-lcoset-perm-lift H g = abs-lcoset-perm H (LCoset-rel H “ {g})
abbreviation abs-lcoset-perm-lift-arg-permutation g H = abs-lcoset-perm-lift H g
notation abs-lcoset-perm-lift-arg-permutation (<[-|-]> [51,51] 50)
end
abbreviation Group-abs-lcoset-perm-lift-arg-permutation G' g H =

Group.abs-lcoset-perm-lift-arg-permutation G’ g H
notation Group-abs-lcoset-perm-lift-arg-permutation (<[-|-|-]> [51,51,51] 50)

context Group
begin
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lemmas Icoset-perm-def =

BinOpSetGroup. Abs-G-perm-def | OF BinOpSetGroup-normal-quotient]
lemmas [coset-perm-comp =

BinOpSetGroup.G-perm-comp| OF BinOpSetGroup-normal-quotient)
lemmas bij-lcoset-perm =

BinOpSetGroup.bij-G-perm[OF BinOpSetGroup-normal-quotient]

lemma trivial-lcoset-perm:
assumes Subgroup H normal H he H
shows restrict] ((+) (LCoset-rel H ““ {h})) (quotient-set H) = id

(proof)

definition quotient-group :: ‘g set = 'g set permutation set where
quotient-group H = BinOpSetGroup.pG (quotient-set H) (+)

abbreviation natural-quotient-hom H = restrict0 (\g. [g|H]|) G

theorem quotient-group:
Subgroup H = normal H = Group (quotient-group H)

{proof)

lemma natural-quotient-hom:
Subgroup H = normal H = GroupHom G (natural-quotient-hom H)

{proof)

lemma natural-quotient-hom-image:
natural-quotient-hom H * G = quotient-group H

{proof)

lemma quotient-group-UN: quotient-group H = (Ag. [g|H]) ‘ G
(proof )

lemma quotient-identity-rule: [ Subgroup H; normal H; he H | = [h|H]| = 0
(proof )

lemma quotient-group-lift-to-quotient-set:
[ Subgroup H; normal H; g€ G | = ([g|H]) — H = LCoset-rel H “ {g}
(proof )

end

2.8.8 The induced homomorphism on a quotient group

A normal subgroup contained in the kernel of a homomorphism gives rise to a
homomorphism on the quotient group by that subgroup. When the subgroup
is the kernel itself (which is always normal), we obtain an isomorphism on
the quotient.

context GroupHom
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begin

lemma respects-Ker-lcosets: H C Ker = T respects (LCoset-rel H)
{proof)

abbreviation quotient-hom H =
BinOpSetGroup.lift-hom (quotient-set H) (+) (quotientfun T)

lemmas normal-subgroup-quotientfun-classrep-equality =
quotientfun-classrep-equality|
OF subgroup-refi-on-LCoset-rel, OF - respects-Ker-lcosets

)

lemma quotient-hom-im:
[ Subgroup H; normal H; H C Ker; ge G | = quotient-hom H ([g|H]|) = T g
{proof)

lemma quotient-hom:
assumes Subgroup H normal H H C Ker
shows  GroupHom (quotient-group H) (quotient-hom H)

(proof)

end

2.9 Free groups
2.9.1 Words in letters of signed type

Definitions and basic fact We pair elements of some type with type
bool, where the bool part of the pair indicates inversion.
abbreviation pairtrue = As. (s, True)

abbreviation pairfalse = As. (s,False)

abbreviation flip-signed :: 'a signed = 'a signed
where flip-signed = apsnd (Ab. —b)

abbreviation nflipped-signed :: 'a signed = 'a signed = bool
where nflipped-signed © y = y # flip-signed z

lemma flip-signed-order2: flip-signed (flip-signed ) = z
(proof )

abbreviation charpair :: 'a::uminus set = 'a = 'a signed
where charpair S s = if s€S then (s,True) else (—s,False)

lemma map-charpair-uniform:
ss€lists S = map (charpair S) ss = map pairtrue ss

(proof)
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lemma fst-set-map-charpair-un-uminus:
fixes ss :: 'a:group-add list
shows ss€lists (S U uminus ‘' S) = fst ‘ set (map (charpair S) ss) C S
(proof)

abbreviation apply-sign :: (‘a="b::uminus) = 'a signed = 'b
where apply-sign f x = (if snd z then [ (fst x) else — f (fst x))

A word in such pairs will be considered proper if it does not contain consec-
utive letters that have opposite signs (and so are considered inverse), since
such consecutive letters would be cancelled in a group.

abbreviation proper-signed-list :: 'a signed list = bool
where proper-signed-list = binrelchain nflipped-signed

lemma proper-map-flip-signed:
proper-signed-list ts = proper-signed-list (map flip-signed xs)
(proof)

lemma proper-rev-map-flip-signed:
proper-signed-list xs = proper-signed-list (rev (map flip-signed xs))
(proof )

lemma uniform-snd-imp-proper-signed-list:
snd ¢ set xs C {b} = proper-signed-list xs
(proof)

lemma proper-signed-list-map-uniform-snd:
proper-signed-list (map (As. (s,0)) as)
(proof )

Algebra Addition is performed by appending words and recursively re-
moving any newly created adjacent pairs of inverse letters. Since we will
only ever be adding proper words, we only need to care about newly created
adjacent inverse pairs in the middle.

function prappend-signed-list :: 'a signed list = 'a signed list = 'a signed list
where prappend-signed-list xs [| = xs
| prappend-signed-list || ys = ys
| prappend-signed-list (xsQ[z]) (y#ys) = (
if y = flip-signed x then prappend-signed-list xs ys else xs Q © # y # ys
)

(proof)
termination (proof)

lemma proper-prappend-signed-list:
proper-signed-list xs => proper-signed-list ys
= proper-signed-list (prappend-signed-list zs ys)
(proof)
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lemma fully-prappend-signed-list:
prappend-signed-list (rev (map flip-signed xs)) xs = ||
(proof)

lemma prappend-signed-list-single- Cons:
prappend-signed-list [z] (y#ys) = (if y = flip-signed z then ys else x#y#ys)
(proof )

lemma prappend-signed-list-map-uniform-snd:
prappend-signed-list (map (As. (s,0)) xs) (map (As. (s,0)) ys) =
map (As. (8,0)) xs @ map (As. (s,b)) ys
(proof)

lemma prappend-signed-list-assoc-conv-snoc2Cons:

assumes proper-signed-list (zsQ[y]) proper-signed-list (y#ys)

shows prappend-signed-list (zsQ[y]) ys = prappend-signed-list xs (y#ys)
(proof)

lemma prappend-signed-list-assoc:
[ proper-signed-list xs; proper-signed-list ys; proper-signed-list zs | =
prappend-signed-list (prappend-signed-list s ys) zs =
prappend-signed-list xs (prappend-signed-list ys zs)
(proof)

lemma fst-set-prappend-signed-list:
fst ¢ set (prappend-signed-list xs ys) C fst ¢ (set s U set ys)
(proof )

lemma collapse-flipped-signed:
prappend-signed-list [(s,b)] [(s,mb)] = |]
(proof)

2.9.2 The collection of proper signed lists as a type

Here we create a type out of the collection of proper signed lists. This
type will be of class group-add, with the empty list as zero, the modified
append operation prappend-signed-list as addition, and inversion performed
by flipping the signs of the elements in the list and then reversing the order.

Type definition, instantiations, and instances Here we define the
type and instantiate it with respect to various type classes.

typedef ‘a freeword = {as::'a signed list. proper-signed-list as}
morphisms freecword Abs-freeword

(proof)

These two functions act as the natural injections of letters and words in the
letter type into the freeword type.

52



abbreviation Abs-freeletter :: 'a = 'a freeword
where Abs-freeletter s = Abs-freeword [pairtrue s|

abbreviation Abs-freelist :: 'a list = 'a freeword
where Abs-freelist as = Abs-freeword (map pairtrue as)

abbreviation Abs-freelistfst :: 'a signed list = 'a freeword
where Abs-freelistfst xs = Abs-freelist (map fst xs)

setup-lifting type-definition-freeword

instantiation freecword :: (type) zero

begin

lift-definition zero-freeword :: 'a freeword is [|::'a signed list (proof)
instance (proof)

end

instantiation freeword :: (type) plus

begin

lift-definition plus-freeword :: 'a freeword = 'a freeword = 'a freeword
is  prappend-signed-list
(proof )

instance (proof)

end

instantiation freeword :: (type) uminus

begin

lift-definition uminus-freeword :: 'a freeword = 'a freeword
is Azs. rev (map flip-signed xs)
(proof )

instance (proof)

end

instantiation freeword :: (type) minus

begin

lift-definition minus-freecword :: 'a freeword = 'a freeword = 'a freeword
is Axs ys. prappend-signed-list xs (rev (map flip-signed ys))
(proof )

instance (proof)

end

instance freeword :: (type) semigroup-add

(proof)

instance freeword :: (type) monoid-add
(proof)

instance freeword :: (type) group-add

(proof)
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Basic algebra and transfer facts in the freeword type Here we record
basic algebraic manipulations for the freeword type as well as various transfer
facts for dealing with representations of elements of freeword type as lists of
signed letters.

abbreviation Abs-freeletter-add :: 'a = 'a = 'a freeword (infixl «[+]> 65)
where s [+] t = Abs-freeletter s + Abs-freeletter t

lemma Abs-freeword-Cons:

assumes proper-signed-list (z#ts)

shows Abs-freeword (x#xs) = Abs-freeword [z] + Abs-freeword xs
(proof)

lemma Abs-freelist-Cons: Abs-freelist (z#txs) = Abs-freeletter x + Abs-freelist xs
(proof)

lemma plus-frecword-abs-eq:
proper-signed-list s = proper-signed-list ys —
Abs-freeword xs + Abs-freeword ys = Abs-freeword (prappend-signed-list s ys)
(proof)

lemma Abs-freeletter-add: s [+] t = Abs-freelist [s,t]
{proof)

lemma uminus-freeword-Abs-eq:
proper-signed-list xs —>
— Abs-freeword xs = Abs-freeword (rev (map flip-signed xs))
(proof )

lemma uminus-Abs-freeword-singleton:
— Abs-freeword [(s,b)] = Abs-freeword [(s,~ b)]
(proof)

lemma Abs-freeword-append-uniform-snd:
Abs-freeword (map (As. (s,b)) (zsQys)) =
Abs-freeword (map (As. (s,b)) xs) + Abs-freeword (map (As. (s,b)) ys)
(proof)

lemmas Abs-freelist-append = Abs-freeword-append-uniform-snd|of True]

lemma Abs-freelist-append-append:
Abs-freelist (rsQysQzs) = Abs-freelist xs + Abs-freelist ys + Abs-freelist zs
(proof )

lemma Abs-freelist-inverse: freeword (Abs-freelist as) = map pairtrue as
(proof )

lemma Abs-freeword-singleton-conv-apply-sign-freeletter:
Abs-freeword [z] = apply-sign Abs-freeletter x

{proof)
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lemma Abs-freeword-conv-freeletter-sum-list:
proper-signed-list ts —>
Abs-freeword xs = (>, x+xs. apply-sign Abs-freeletter x)
(proof )

lemma freeword-conv-freeletter-sum-list:
z = (D s« freeword x. apply-sign Abs-freeletter s)

{proof)

lemma Abs-freeletter-prod-conv-Abs-freeword:
snd x = Abs-freeletter (fst x) = Abs-freeword [z]

{proof)

2.9.3 Lifts of functions on the letter type

Here we lift functions on the letter type to type freeword. In particular, we
are interested in the case where the function being lifted has codomain of
class group-add.

The universal property The universal property for free groups says that
every function from the letter type to some group-add type gives rise to a
unique homomorphism.

lemma extend-map-to-freeword-hom”:
fixes [ ::’a = 'bi:group-add
defines h: h::'a signed = 'b = A(s,b). if b then f s else — (f s)
defines g: g::'a signed list = 'b = Azs. sum-list (map h xs)
shows ¢ (prappend-signed-list xs ys) = g xs + g ys

(proof)

lemma extend-map-to-freeword-hom1 :
fixes f ::'a = 'bigroup-add
defines h::'a signed = 'b = A(s,b). if b then f s else — (f s)
defines g::'a freeword = 'b = Az. sum-list (map h (freeword z))
shows ¢ (Abs-freeletter s) = f s

{proof)

lemma extend-map-to-freeword-hom?2:
fixes [ : 'a = 'b:group-add
defines h::'a signed = 'b = A(s,b). if b then f s else — (f s)
defines g::'a freeword = 'b = Ax. sum-list (map h (freeword x))
shows UGroupHom g

(proof )
lemma uniqueness-of-extended-map-to-freeword-hom’:

fixes f ::'a = 'bigroup-add
defines h: h::'a signed = 'b = A(s,b). if b then f s else — (f s)
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defines g: g::'a signed list = 'b = Azs. sum-list (map h xs)

assumes singles: A\s. k [(s,True)] = f s

and adds : \zs ys. proper-signed-list s = proper-signed-list ys
= k (prappend-signed-list xs ys) = k zs + k ys

shows proper-signed-list xs = k xs = g ws

(proof)

lemma uniqueness-of-extended-map-to-freeword-hom:
fixes f ::'a = 'bigroup-add
defines h::'a signed = 'b = A(s,b). if b then f s else — (f s)
defines g::'a freeword = 'b = Ax. sum-list (map h (freeword x))
assumes k: k o Abs-freeletter = f UGroupHom k
shows k=g

(proof)

theorem universal-property:

fixes f :: 'a = 'b::group-add

shows 3!g::’a freeword=-'b. g o Abs-freeletter = f N UGroupHom g
(proof)

Properties of homomorphisms afforded by the universal property
The lift of a function on the letter set is the unique additive function on
freeword that agrees with the original function on letters.

definition freeword-funlift :: (‘a = 'b::group-add) = ('a freeword=-"b::group-add)
where freeword-funlift f = (THE g. g o Abs-freeletter = f A UGroupHom g)

lemma additive-freeword-funlift: UGroupHom (freeword-funlift f)
{proof )

lemma freeword-funlift-Abs-freeletter: freeword-funlift f (Abs-freeletter s) = f s
(proof )

lemmas freeword-funlift-add = UGroupHom.hom [OF additive-freeword-funlift]
lemmas freeword-funlift-0 = UGroupHom.im-zero [OF additive-freeword-funlift]
lemmas freeword-funlift-uminus = UGroupHom.im-uminus [OF additive-freeword-funlift]
lemmas freeword-funlift-diff = UGroupHom.im-diff [OF additive-freeword-funlift]

lemmas freeword-funlift-lconjby = UGroupHom.im-lconjby [OF additive-freeword-funlift]

lemma freeword-funlift-uminus-Abs-freeletter:
freeword-funlift f (Abs-freeword [(s,False)]) = — fs

(proof)

lemma freeword-funlift- Abs-freeword-singleton:
freeword-funlift f (Abs-freeword [x]) = apply-sign f
(proof)

lemma freeword-funlift-Abs-freeword-Cons:
assumes proper-signed-list (z#ts)
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shows  freeword-funlift f (Abs-freeword (z#xs)) =
apply-sign f x + freeword-funlift f (Abs-freeword xs)

(proof)

lemma freeword-funlift- Abs-freeword:
proper-signed-list s = freeword-funlift f (Abs-freeword xs) =
(>~ x<xs. apply-sign f x)
(proof)

lemma freeword-funlift-Abs-freelist:
freeword-funlift f (Abs-freelist xs) = (> z<—xs. f x)
(proof)

lemma freeword-funlift-im’:
proper-signed-list xs = fst ‘ set zs C § =
freeword-funlift f (Abs-freeword zs) € (f“S)
(proof)

2.9.4 Free groups on a set

We now take the free group on a set to be the set in the freeword type with
letters restricted to the given set.

Definition and basic facts Here we define the set of elements of the free
group over a set of letters, and record basic facts about that set.

definition FreeGroup :: 'a set = 'a frecword set
where FreeGroup S = {z. fst  set (freeword z) C S}

lemma FreeGroupl-transfer:
proper-signed-list xs = fst ‘ set s C S = Abs-freeword xs € FreeGroup S

{proof)

lemma FreeGroupD: x € FreeGroup S = fst * set (freeword z) C S
(proof )

lemma FreeGroupD-transfer:
proper-signed-list rs = Abs-freeword zs € FreeGroup S = fst ‘ set s C S

(proof)

lemma FreeGroupD-transfer’:
Abs-freelist xs € FreeGroup S = xs € lists S

{proof)

lemma FreeGroup-0-closed: 0 € FreeGroup S

(proof)

lemma FreeGroup-diff-closed:
assumes z € FreeGroup S y € FreeGroup S
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shows z—y € FreeGroup S

(proof)
lemma FreeGroup-Group: Group (FreeGroup S)
(proof )
lemmas FreeGroup-add-closed = Group.add-closed  [OF FreeGroup-Group)

lemmas FreeGroup-uminus-closed = Group.uminus-closed [OF FreeGroup-Group]

lemmas Free Group-genby-set-lconjby-set-rconjby-closed =
Group.genby-set-lconjby-set-rconjby-closed| OF Free Group-Group]

lemma Abs-freelist-in-FreeGroup: ss € lists S => Abs-freelist ss € FreeGroup S
(proof )

lemma Abs-freeletter-in-FreeGroup-iff: (Abs-freeletter s € FreeGroup S) = (s€S)
(proof)

Lifts of functions from the letter set to some type of class group-add
We again obtain a universal property for functions from the (restricted)
letter set to some type of class group-add.

abbreviation res-freeword-funlift f S =
restrict0 (freeword-funlift f) (FreeGroup S)

lemma freeword-funlift-im: © € FreeGroup S = freeword-funlift f x € (f  S)
(proof)

lemma freeword-funlift-surj’:
ys € lists (f'S U uminus‘f'S) = sum-list ys € freeword-funlift f * FreeGroup S

(proof)

lemma freeword-funlift-surj:

fixes [ :: 'a = 'b::group-add

shows freeword-funlift f ¢ FreeGroup S = (f*S)
(proof)

lemma hom-restrict0-freeword-funlift:
GroupHom (FreeGroup S) (res-freeword-funlift f S)

{proof)

lemma uniqueness-of-restricted-lift:
assumes GroupHom (FreeGroup S) T Vs€S. T (Abs-freeletter s) = fs
shows T = res-freeword-funlift f S

(proof)
theorem FreeGroup-universal-property:

fixes [ :: 'a = 'b:group-add
shows 31 T::"a freeword="b. (¥ s€S. T (Abs-freeletter s) = fs) A
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GroupHom (FreeGroup S) T
(proof)

2.9.5 Group presentations

We now define a group presentation to be the quotient of a free group by
the subgroup generated by all conjugates of a set of relators. We are most
concerned with lifting functions on the letter set to the free group and with
the associated induced homomorphisms on the quotient.

A first group presentation locale and basic facts Here we define a lo-
cale that provides a way to construct a group by providing sets of generators
and relator words.

locale GroupByPresentation =
fixes S ::'a set — the set of generators
and P :: 'a signed list set — the set of relator words
assumes P-S: pse P = fst ‘set ps C §
and proper-P: pse P = proper-signed-list ps
begin

abbreviation P’ = Abs-freeword ¢ P — the set of relators
abbreviation @ = Group.normal-closure (FreeGroup S) P’

— the normal subgroup generated by relators inside the free group
abbreviation G = Group.quotient-group (FreeGroup S) Q

lemmas G-UN = Group.quotient-group-UN|[OF FreeGroup-Group, of S Q)]

lemma P’-FreeS: P’ C FreeGroup S
(proof )

lemma relators: P’ C Q
{proof)

lemmas Iconjby-P’-FreeS =

Group.set-lconjby-subset-closed|
OF FreeGroup-Group - P’'-FreeS, OF basic-monos(1)

]

lemmas Q-FreeS =
Group.genby-closed|OF Free Group-Group lconjby-P’-FreeS|

lemmas Q-subgroup-FreeS =
Group.genby-subgroup[OF FreeGroup-Group lconjby-P’-FreeS]

lemmas normal-Q = Group.normal-closure[OF FreeGroup-Group, OF P’-FreeS]

lemmas natural-hom =
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Group.natural-quotient-hom|
OF FreeGroup-Group Q-subgroup-FreeS normal-@Q

]

lemmas natural-hom-image =
Group.natural-quotient-hom-image| OF FreeGroup-Group, of S Q]

end

Functions on the quotient induced from lifted functions A func-
tion on the generator set into a type of class group-add lifts to a unique
homomorphism on the free group. If this lift is trivial on relators, then it
factors to a homomorphism of the group described by the generators and
relators.

locale GroupByPresentationInducedFun = GroupByPresentation S P
for S ::’a set
and P :: 'a signed list set — the set of relator words
+ fixes [ :: 'a = 'b:group-add
assumes [ift-f-trivial-P:
ps€P = freeword-funlift f (Abs-freeword ps) = 0
begin

abbreviation [lift-f = freeword-funlift f

definition induced-hom :: 'a freeword set permutation = b
where induced-hom = GroupHom.quotient-hom (FreeGroup S)
(restrict0 lift-f (FreeGroup S)) Q
— the restrict0 operation is really only necessary to make GroupByPresenta-
tionInducedFun.induced-hom a GroupHom
abbreviation F' = induced-hom

lemma lift-f-trivial-P": pe P! = lift-f p = 0
(proof)

lemma lift-f-trivial-lconjby-P': pe P! = lift-f (lconjby w p) = 0
(proof )

lemma lift-f-trivial-Q: q€Q = lift-f ¢ = 0
(proof)

lemma lift-f-ker-Q: Q C ker lift-f
(proof)

lemma lift-f-Ker-Q: Q@ C GroupHom.Ker (FreeGroup S) lift-f
(proof)

lemma restrict0-lift-f-Ker-Q:
Q C GroupHom.Ker (FreeGroup S) (restrict0 lift-f (FreeGroup S))
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{proof)

lemma induced-hom-equality:

w € FreeGroup S = F ([ FreeGroup S|w|Q]) = lift-f w
— algebraic properties of the induced homomorphism could be proved using its
properties as a group homomorphism, but it’s generally easier to prove them using
the algebraic properties of the lift via this lemma

{proof)

lemma hom-induced-hom: GroupHom G F
(proof )

lemma induced-hom-Abs-freeletter-equality:
s€S = F ([FreeGroup S|Abs-freeletter s|Q]) = f s
(proof)

lemma uniqueness-of-induced-hom':
defines ¢ = Group.natural-quotient-hom (FreeGroup S) Q
assumes GroupHom G T Vs€S. T ([FreeGroup S|Abs-freeletter s|Q1) = f s
shows T og=Fogq

(proof)

lemma uniqueness-of-induced-hom:
assumes GroupHom G T Vs€S. T ([FreeGroup S|Abs-freeletter s|Q1) = f s
shows T =F

(proof)

theorem induced-hom-universal-property:
IVF. GroupHom G F' N (Vse€S. F ([FreeGroup S|Abs-freeletter s|Q]) = f s)
{proof)

lemma induced-hom-Abs-freelist-conv-sum-list:
ss€lists S = F ([ FreeGroup S|Abs-freelist ss|Q]) = (3 s<ss. [ s)

{proof)

lemma induced-hom-surj: F‘G = (fS)
{proof)

end

Groups affording a presentation The locale GroupByPresentation al-
lows the construction of a Group out of any type from a set of generating
letters and a set of relator words in (signed) letters. The following locale con-
cerns the question of when the Group generated by a set in class group-add
is isomorphic to a group presentation.

locale Group WithGeneratorsRelators =
fixes S :: ‘g::group-add set — the set of generators
and R :: g list set — the set of relator words
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assumes relators: rs€R = rs € lists (S U uminus ‘ S)
rs€ R = sum-list rs = 0
rs€ R = proper-signed-list (map (charpair S) rs)
begin

abbreviation P = map (charpair S) ‘R

abbreviation P’ = GroupByPresentation.P’ P

abbreviation ) = GroupByPresentation.Q S P

abbreviation G = GroupByPresentation.G S P

abbreviation relator-freeword rs = Abs-freeword (map (charpair S) rs)
— this maps R onto P’

abbreviation freeliftid = freeword-funlift id

abbreviation induced-id :: 'g freeword set permutation = 'g
where induced-id = GroupByPresentationInducedFun.induced-hom S P id

lemma GroupByPresentation-S-P: GroupByPresentation S P
(proof)

lemmas G-UN = GroupByPresentation.G-UN|[OF GroupByPresentation-S-P]
lemmas P’-FreeS = GroupByPresentation.P’-FreeS|OF GroupByPresentation-S-P]

lemma freeliftid-trivial-relator-freeword-R:
rs€R = freeliftid (relator-freeword rs) = 0

(proof)

lemma freeliftid-trivial-P: ps€ P = freeliftid (Abs-freeword ps) = 0
(proof )

lemma GroupByPresentationInducedFun-S-P-id:
GroupByPresentationInducedFun S P id

{proof)

lemma induced-id-Abs-freelist-conv-sum-list:
ss€lists S = induced-id ([ FreeGroup S|Abs-freelist ss|Q]) = sum-list ss

(proof)

lemma Iconj-relator-freeword-R:
[ rs€R; proper-signed-list zs; fst ‘ set zs C S | =
leonjby (Abs-freeword xs) (relator-freeword rs) € Q
(proof )

lemma rconj-relator-freeword:
assumes rs€ R proper-signed-list xs fst ¢ set s C S
shows rconjby (Abs-freeword xs) (relator-freeword rs) € Q

{(proof)

lemma lconjby-Abs-freelist-relator-freeword:
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[ rs€R; wselists S | = lconjby (Abs-freelist xs) (relator-freeword rs) € Q
{proof )

Here we record that the lift of the identity map to the free group on §
induces a homomorphic surjection onto the group generated by S from the
group presentation on S, subject to the same relations as the elements of S.

theorem induced-id-hom-surj: GroupHom G induced-id induced-id * G = (5)
(proof)

end

locale GroupPresentation = Group WithGeneratorsRelators S R
for S :: ‘g::group-add set — the set of generators
and R :: g list set — the set of relator words

+ assumes induced-id-inj: inj-on induced-id G

begin

abbreviation inv-induced-id = the-inv-into G induced-id

lemma inv-induced-id-sum-list-S:
ss € lists S = inv-induced-id (sum-list ss) = ([ FreeGroup S|Abs-freelist ss|Q])
(proof)

end

2.10 Words over a generating set

Here we gather the necessary constructions and facts for studying a group
generated by some set in terms of words in the generators.

context monoid-add
begin

abbreviation word-for A a as = as € lists A N\ sum-list as = a

definition reduced-word-for :: 'a set = 'a = 'a list = bool
where reduced-word-for A a as = is-arg-min length (word-for A a) as

abbreviation reduced-word A as = reduced-word-for A (sum-list as) as
abbreviation reduced-words-for A a = Collect (reduced-word-for A a)

abbreviation reduced-letter-set :: 'a set = 'a = 'a set
where reduced-letter-set A a = |J( set ‘ (reduced-words-for A a) )
— will be empty if a is not in the set generated by A

definition word-length :: 'a set = 'a = nat
where word-length A a = length (arg-min length (word-for A a))

lemma reduced-word-forl:
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assumes as € lists A sum-list as = a
Nbs. bs € lists A = sum-list bs = a = length as < length bs
shows reduced-word-for A a as

{proof)

lemma reduced-word-forl-compare:
[ reduced-word-for A a as; bs € lists A; sum-list bs = a; length bs = length as |
= reduced-word-for A a bs

{proof)

lemma reduced-word-for-lists: reduced-word-for A a as = as € lists A
(proof)

lemma reduced-word-for-sum-list: reduced-word-for A a as = sum-list as = a

(proof)

lemma reduced-word-for-minimal:
[ reduced-word-for A a as; bs € lists A; sum-list bs = a | =
length as < length bs

{proof)

lemma reduced-word-for-length:
reduced-word-for A a as = length as = word-length A a

{proof)

lemma reduced-word-for-eq-length:
reduced-word-for A a as = reduced-word-for A a bs = length as = length bs
(proof)

lemma reduced-word-for-arg-min:
as € lists A = sum-list as = o =
reduced-word-for A a (arg-min length (word-for A a))

{proof)

lemma nil-reduced-word-for-0: reduced-word-for A 0 ||
{proof)

lemma reduced-word-for-0-imp-nil: reduced-word-for A 0 as = as = ]
{proof)

lemma not-reduced-word-for:
[ bs € lists A; sum-list bs = a; length bs < length as | =
- reduced-word-for A a as

{proof)

lemma reduced-word-for-imp-reduced-word:
reduced-word-for A a as = reduced-word A as

(proof)
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lemma sum-list-zero-nreduced:
as # [| = sum-list as = 0 = — reduced-word A as

{proof)

lemma order2-nreduced: a+a=0 = — reduced-word A [a,a]
{proof)

lemma reduced-word-append-reduce-contral:
assumes — reduced-word A as
shows - reduced-word A (asQbs)

(proof)

lemma reduced-word-append-reduce-contra?2:
assumes — reduced-word A bs
shows - reduced-word A (asQbs)

(proof)

lemma contains-nreduced-imp-nreduced:
= reduced-word A bs = — reduced-word A (asQbsQcs)

{proof)

lemma contains-order2-nreduced: a+a=0 = — reduced-word A (asQ[a,a]@bs)
(proof)

lemma reduced-word-Cons-reduce-contra:
= reduced-word A as => — reduced-word A (a#as)

{proof)

lemma reduced-word-Cons-reduce: reduced-word A (a#as) = reduced-word A as
{proof)

lemma reduced-word-singleton:
assumes a€A a#0
shows reduced-word A [a

(proof)

lemma el-reduced:
assumes 0 ¢ A as € lists A sum-list as € A reduced-word A as
shows length as = 1

(proof)

lemma reduced-letter-set-0: reduced-letter-set A 0 = {}
(proof)

lemma reduced-letter-set-subset: reduced-letter-set A a C A
(proof )

lemma reduced-word-forl-length:
[ as € lists A; sum-list as = a; length as = word-length A a | =
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reduced-word-for A a as
{proof )

lemma word-length-le:
as € lists A = sum-list as = a = word-length A a < length as

{proof)

lemma reduced-word-forl-length’:
[ as € lists A; sum-list as = a; length as < word-length A a | =
reduced-word-for A a as
(proof)

lemma word-length-lIt:
as € lists A = sum-list as = a = — reduced-word-for A a as =
word-length A a < length as

(proof)

end

lemma in-genby-reduced-letter-set:
assumes as € lists A sum-list as = a
shows « € (reduced-letter-set A a)

(proof)

lemma reduced-word-for-genby-arg-min:
fixes A :: 'a::group-add set
defines B = A U uminus ‘* A
assumes ac(A)
shows reduced-word-for B a (arg-min length (word-for B a))

{proof)

lemma reduced-word-for-genby-sym-arg-min:
assumes uminus ‘ A C A a€(A)
shows reduced-word-for A a (arg-min length (word-for A a))

(proof)

lemma in-genby-imp-in-reduced-letter-set:
fixes A :: 'a::group-add set
defines B = A U uminus ‘ A
assumes a € (A)
shows a € (reduced-letter-set B a)

(proof)

lemma in-genby-sym-imp-in-reduced-letter-set:
uminus ‘A C A = a € (A) = a € (reduced-letter-set A a)
(proof)

end
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3 Simplicial complexes

In this section we develop the basic theory of abstract simplicial complexes
as a collection of finite sets, where the power set of each member set is
contained in the collection. Note that in this development we allow the
empty simplex, since allowing it or not seemed of no logical consequence,
but of some small practical consequence.

theory Simplicial
imports Prelim

begin

3.1 Geometric notions

The geometric notions attached to a simplicial complex of main interest to
us are those of facets (subsets of codimension one), adjacency (sharing a
facet in common), and chains of adjacent simplices.

3.1.1 Facets

definition facetrel :: 'a set = 'a set = bool (infix << 60)
where y <z =3v. v ¢ y ANz =insertvy

lemma facetrell: v ¢ y = z = insert vy = y < z
{proof )

lemma facetrell-card: y C © = card (z—y) = 1 = y <z
(proof )

lemma facetrel-complement-vertex: y<lo = = = insert vy = v¢y
(proof)

lemma facetrel-diff-vertex: vex = z—{v} < z
(proof)

lemma facetrel-conv-insert: y <z = v € x — y = x = insert v y
(proof)

lemma facetrel-psubset: y < v = y C x
(proof)

lemma facetrel-subset: y <o = y C
(proof )

lemma facetrel-card: y < x = card (z—y) = 1
(proof)

lemma finite-facetrel-card: finite 1 = y<x = card x = Suc (card y)
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{proof)

lemma facetrell-cardSuc: 2Cx = card x = Suc (card z) = z<z
{proof)

lemma facet2-subset: | z<z; z<ty; Ny — 2z #{} ] =z Cy
(proof )

lemma inj-on-pullback-facet:
assumes nj-on fr z < fz
obtains y where y < z fy = 2

(proof)

3.1.2 Adjacency

definition adjacent :: ‘a set = ’'a set = bool (infix «~) 70)
where z ~ y = 2. z<x A 2]y

lemma adjacent!l: 2<l0 = 2y =z ~ ¥y
(proof )

lemma empty-not-adjacent: = {} ~ x
{proof)

lemma adjacent-sym: v ~ y — y ~ x
(proof )

lemma adjacent-refi:
assumes z # {}
shows z ~z

(proof)

lemma common-facet: | z<x; 2<y; x 2y = z=zNy
(proof)

lemma adjacent-int-facetl: z ~y—= c#y = (z Ny) <z
(proof )

lemma adjacent-int-facet2: x ~y =z #y= (2 Ny) <y
(proof )

lemma adjacent-conv-insert: x ~ y = v € t — y = z = insert v (zNy)
(proof)

lemma adjacent-int-decomp:
r~y=z#y=— Jv.v¢yAz=insert v (zNy)
(proof )

lemma adj-antivertex:
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assumes T~y £y
shows 3lv. vex—y

(proof)

lemma adjacent-card: x ~ y = card x = card y

{proof)

lemma adjacent-to-adjacent-int-subset:
assumes C' ~ D f‘C ~ fD f‘C # fD
shows f‘C N f‘D C f(CND)

(proof)

lemma adjacent-to-adjacent-int:
[ C~D; f)C~ [D; fC#fD] = f(CND) = fCN fD
(proof )

3.1.3 Chains of adjacent sets

abbreviation adjacentchain binrelchain adjacent

abbreviation padjacentchain = proper-binrelchain adjacent

lemmas adjacentchain-Cons-reduce = binrelchain-Cons-reduce [of adjacent)]
lemmas adjacentchain-obtain-proper = binrelchain-obtain-proper [of - - adjacent]

lemma adjacentchain-card: adjacentchain (z#xsQly]) = card x = card y
{proof)

3.2 Locale and basic facts

locale SimplicialComplex =
fixes X :: 'a set set
assumes finite-simplices: ¥ x€X. finite
and  faces rreX = yCo = yeX

context SimplicialComplex
begin

abbreviation Subcomplexr Y = Y C X A SimplicialComplex Y
definition maxsimp © = z€X N (Vze€X. 2Cz — z=x)

definition adjacentset :: 'a set = 'a set set
where adjacentset x = {yeX. z~y}

lemma finite-simplex: t€ X = finite x
(proof)

lemma singleton-simplex: vel JX = {v} € X
(proof)
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lemma mazsimpl: ¢ € X = (\z. 26X = 2Cz = z=x) = mazsimp z
{proof)

lemma mazxsimpD-simplex: maxsimp x —> z€X
(proof )

lemma mazxsimpD-mazimal: mazxsimp x* = 26X — 1Cz = z=x
(proof)

lemmas finite-maxsimp = finite-simplex[OF mazsimpD-simplex]

lemma mazsimp-nempty: X # {{}} = mazsimp + = = # {}
{proof)

lemma mazxsimp-vertices: mazsimp © — zC|J X
(proof)

lemma adjacentsetD-adj: y € adjacentset © = x~y
(proof)

lemma maz-in-subcomplex:
[ Subcomplex Y; y € Y; mazsimp y | = SimplicialComplex.maxsimp Y y
(proof)

lemma face-im:
assumes w € X y C f'w
defines u = {acw. fa € y}
shows y € fFX

{proof)

lemma im-faces: x € fr X = yCr=yefrF X
(proof )

lemma map-is-simplicial-morph: SimplicialComplex (f+X)
(proof)

lemma vertex-set-int:

assumes SimplicialComplex Y
shows J(XnY)=UXnUY
(proof)

end

3.3 Chains of maximal simplices

Chains of maximal simplices (with respect to adjacency) will allow us to
walk through chamber complexes. But there is much we can say about
them in simplicial complexes. We will call a chain of maximal simplices
proper (using the prefix p as a naming convention to denote proper) if no
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maximal simplex appears more than once in the chain. (Some sources elect
to call improper chains prechains, and reserve the name chain to describe
a proper chain. And usually a slightly weaker notion of proper is used,
requiring only that no maximal simplex appear twice in succession. But it
essentially makes no difference, and we found it easier to use distinct rather
than binrelchain (#).)

context SimplicialComplex
begin

definition maxsimpchain ts = (VY zE€set zs. maxsimp x) A adjacentchain s
definition pmazsimpchain xs = (¥ x€set xs. maxsimp x) A padjacentchain xs

function min-mazsimpchain :: 'a set list = bool
where
min-maxsimpchain [| = True
| min-maxsimpchain [z] = maxsimp
| min-maxsimpchain (x#xsQly]) =
(z#y N is-arg-min length (Azs. mazsimpchain (z#25Q[y])) zs)
(proof)

termination (proof)

lemma mazxsimpchain-snocl:
[ mazsimpchain (xsQ[z]); maxsimp y; z~y | = mazxsimpchain (zsQ[z,y])
{proof)

lemma mazsimpchainD-mazxsimp:
mazxsimpchain ts = © € set xs = mazrsimp T
(proof )

lemma mazsimpchainD-adj: maxsimpchain xs = adjacentchain zs

{proof)

lemma mazxsimpchain-CConsl:
[ mazsimp w; maxsimpchain (x#xs); w~z | = mazsimpchain (wH#Hax#xs)
(proof )

lemma mazxsimpchain-Cons-reduce:
mazsimpchain (x#xs) = mazsimpchain xs

{proof)

lemma mazsimpchain-append-reducel :
mazxsimpchain (zsQys) = maxsimpchain s

(proof)

lemma mazsimpchain-append-reduce2:
mazsimpchain (zsQys) = mazsimpchain ys
(proof )

71



lemma mazsimpchain-remdup-adj:
mazxsimpchain (zsQlz,z]Qys) = mazsimpchain (zsQ[z]Qys)
{proof)

lemma maxsimpchain-rev: mazsimpchain ts = mazsimpchain (rev xs)
(proof)

lemma mazsimpchain-overlap-join:
mazxsimpchain (zsQw]) = mazsimpchain (w#ys) =
mazxsimpchain (zsQu#ys)
(proof )

lemma pmaxsimpchain: pmazsimpchain xs = mazxsimpchain s
(proof )

lemma pmazsimpchainl-mazsimpchain:
mazxsimpchain xs = distinct xs = pmazxsimpchain xs

{proof)

lemma pmaxsimpchain-CConslI:
[ maxsimp w; pmazsimpchain (z#xs); w~z; w ¢ set (z#wxs) | =
pmaxsimpchain (wH#x#xs)
(proof)

lemmas pmazsimpchainD-mazsimp =
mazsimpchainD-maxsimp| OF pmaxsimpchain)]

lemmas pmazsimpchainD-adj =
mazsimpchainD-adj [OF pmazxsimpchain)

lemma pmaxsimpchainD-distinct: pmazsimpchain ts = distinct xs

(proof)

lemma pmaxsimpchain-Cons-reduce:
pmazxsimpchain (x#xs) = pmazsimpchain xs
(proof)

lemma pmazsimpchain-append-reducel :
pmazxsimpchain (xsQys) = pmaxsimpchain s
(proof)

lemma mazxsimpchain-obtain-pmaxsimpchain:
assumes z#£y mazsimpchain (z#xsQ[y])
shows Jys. set ys C set zs A length ys < length xs N
pmazxsimpchain (x#ysQy])
(proof)

lemma min-mazxsimpchainD-mazsimpchain:

assumes min-mazxsimpchain xs
shows maxsimpchain xs
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(proof)

lemma min-mazsimpchainD-min-betw:
min-mazxsimpchain (x#xsQly]) = mazsimpchain (z#ysQly]) =
length ys > length s
(proof)

lemma min-mazxsimpchainl-betw:
assumes z#£y mazsimpchain (z#xsQ[y])
Nys. mazsimpchain (z#ysQly]) = length xs < length ys
shows  min-mazsimpchain (z#xsQ[y])
(proof)

lemma min-mazxsimpchainl-betw-compare:
assumes z#£y mazsimpchain (z#xsQ[y])
min-mazxsimpchain (x#ysQ[y]) length zs = length ys
shows min-maxsimpchain (x#xsQ[y])
(proof)

lemma min-mazsimpchain-pmaxsimpchain:
assumes min-mazxsimpchain xs
shows pmazsimpchain zs

(proof)

lemma min-mazsimpchain-rev:
assumes min-maxsimpchain xs
shows min-maxsimpchain (rev xs)

(proof)

lemma min-mazsimpchain-adyj:
[ maxsimp z; mazsimp y; x~y; £y | = min-mazsimpchain [z,y)
(proof)

lemma min-mazsimpchain-betw- CCons-reduce:
assumes min-mazsimpchain (w#a#ysQ[z])
shows min-mazsimpchain (z#ysQ[z])

(proof)

lemma min-mazsimpchain-betw-uniform-length:
assumes min-mazsimpchain (z#xsQ[y]) min-maxsimpchain (z#ysQly])
shows length xs = length ys

(proof )

lemma not-min-maxsimpchainl-betw:
[ maxsimpchain (z#ysQly]); length ys < length zs | =
= min-mazsimpchain (z#xsQ[y])

(proof)

lemma mazsimpchain-in-subcomplex:
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[ Subcomplex Y; set ys C Y; maxsimpchain ys | =
SimplicialComplex.mazxsimpchain Y ys
(proof )

end

3.4 Isomorphisms of simplicial complexes

Here we develop the concept of isomorphism of simplicial complexes. Note
that we have not bothered to first develop the concept of morphism of simpli-
cial complexes, since every function on the vertex set of a simplicial complex
can be considered a morphism of complexes (see lemma map-is-simplicial-morph
above).

locale SimplicialComplexIsomorphism = Simplicial Compler X
for X :: 'a set set

+ fixes f :: 'la = b
assumes inj: inj-on f (J X)

begin

lemmas morph = map-is-simplicial-morph[of f]

lemma iso-codim-map:
e X = y€X = card (fc — fY) = card (z—y)
(proof)

lemma mazsimp-im-maz: maxsimp t = w € X = fo C f'w = fw = fx

{proof)

lemma mazsimp-map:
mazsimp v = SimplicialComplex.mazsimp (f+X) (f‘c)
(proof)

lemma iso-adj-int-im:
assumes marsimp T Mmarsimp y T~y T£y
shows (fz N f9y) < f

(proof)

lemma iso-adj-map:
assumes marsimp T Maxsimp y T~y T£y
shows fz ~ fy
(proof)
lemma pmazsimpchain-map:
pmazsimpchain xs = SimplicialComplex.pmazsimpchain (fEX) (fE=xs)

(proof)

end
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3.5 The complex associated to a poset

A simplicial complex is naturally a poset under the subset relation. The
following develops the reverse direction: constructing a simplicial complex
from a suitable poset.

context ordering
begin

definition PosetComplex :: 'a set = 'a set set
where PosetComplex P = (Jz€P. { {y. pseudominimal-in (P.<z) y} })

lemma poset-is-Simplicial Complex:

assumes Vz€P. simplex-like (P.<x)

shows  SimplicialComplex (PosetComplex P)
(proof)

definition poset-simplexz-map :: 'a set = 'a = 'a set
where poset-simplex-map P x = {y. pseudominimal-in (P.<z) y}

lemma poset-to-PosetComplex-OrderingSetMap:

assumes A\z. z€P = simplex-like (P.<x)

shows  OrderingSetMap (<) (<) (€) (C) P (poset-simples-map P)
(proof)

end

When a poset affords a simplicial complex, there is a natural morphism
of posets from the source poset into the poset of sets in the complex, as
above. However, some further assumptions are necessary to ensure that this
morphism is an isomorphism. These conditions are collected in the following
locale.

locale ComplexLikePoset = ordering less-eq less
for less-eq :: ‘a='a=bool (infix «<» 50)
and less  :: 'a='a=bool (infix «<> 50)
+ fixes P :: 'a set
assumes below-in-P-simplex-like: x€ P = simplex-like (P.<x)

and P-has-bottom : has-bottom P
and P-has-glbs : 2€P = yeP = 3b. glbound-in-of Pz y b
begin

abbreviation smap = poset-simplez-map P

lemma smap-onto-PosetComplex: smap ¢ P = PosetComplex P
(proof )

lemma ordsetmap-smap: | a€P; beP; a<b ]| = smap a C smap b
(proof)
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lemma inj-on-smap: inj-on smap P
(proof)

lemma OrderingSetlso-smap:
OrderingSetlso (<) (<) (€) (C) P smap
(proof )

lemmas rev-ordsetmap-smap =
OrderingSetlso.rev-ordsetmap| OF OrderingSetIso-smap)

end

end

4 Chamber complexes

Now we develop the basic theory of chamber complexes, including both thin
and thick complexes. Some terminology: a maximal simplex is now called a
chamber, and a chain (with respect to adjacency) of chambers is now called
a gallery. A gallery in which no chamber appears more than once is called
proper, and we use the prefix p as a naming convention to denote proper.
Again, we remind the reader that some sources reserve the name gallery
for (a slightly weaker notion of) what we are calling a proper gallery, using
pregallery to denote an improper gallery.

theory Chamber

imports Algebra Simplicial

begin

4.1 Locale definition and basic facts

locale ChamberComplex = SimplicialComplex X
for X :: ‘a set set
+ assumes simplex-in-maz : y¢ X = Jx. mazxsimp x N\ yCx
and mazxsimp-connect: | x # y; mazsimp x; maxsimp y | =
Fas. mazsimpchain (zH#zsQly])

context ChamberComplex

begin

abbreviation chamber = mazrsimp
abbreviation gallery = mazsimpchain
abbreviation pgallery = pmaxsimpchain

abbreviation min-gallery = min-maxsimpchain
abbreviation supchamber v = (SOME C. chamber C N ve()

lemmas faces = faces
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lemmas singleton-simplex = singleton-simplex

lemmas chamberl = mazsimpl

lemmas chamberD-simplex = mazxsimpD-simplex

lemmas chamberD-mazimal = mazxsimpD-maximal

lemmas finite-chamber = finite-mazsimp

lemmas chamber-nempty = mazsimp-nempty

lemmas chamber-vertices = mazxsimp-vertices

lemmas gallery-def = mazxsimpchain-def

lemmas gallery-snocl = mazsimpchain-snocl

lemmas galleryD-chamber = mazxsimpchainD-mazsimp
lemmas galleryD-adj = maxsimpchainD-adj

lemmas gallery-CConsI = maxsimpchain-CConsl

lemmas gallery-Cons-reduce = mazxsimpchain-Cons-reduce
lemmas gallery-append-reducel = mazxsimpchain-append-reducel
lemmas gallery-append-reduce2 = mazxsimpchain-append-reduce?2
lemmas gallery-remdup-adj = mazxsimpchain-remdup-adj
lemmas gallery-obtain-pgallery = mazsimpchain-obtain-pmazsimpchain
lemmas pgallery-def = pmaxsimpchain-def

lemmas pgalleryl-gallery = pmazxsimpchainl-mazsimpchain
lemmas pgalleryD-chamber = pmaxsimpchainD-mazsimp
lemmas pgalleryD-adj = pmazsimpchainD-adj

lemmas pgalleryD-distinct = pmazxsimpchainD-distinct

lemmas pgallery-Cons-reduce = pmazsimpchain-Cons-reduce
lemmas pgallery-append-reducel = pmaxsimpchain-append-reducel
lemmas pgallery = pmaxsimpchain

lemmas min-gallery-simps = min-maxsimpchain.simps
lemmas min-galleryl-betw = min-maxsimpchainl-betw

lemmas min-galleryl-betw-compare = min-mazsimpchainl-betw-compare
lemmas min-galleryD-min-betw = min-maxsimpchainD-min-betw
lemmas min-galleryD-gallery = min-maxsimpchainD-mazxsimpchain
lemmas min-gallery-pgallery = min-mazxsimpchain-pmazsimpchain
lemmas min-gallery-rev = min-maxsimpchain-rev

lemmas min-gallery-adj = min-maxsimpchain-adj

lemmas not-min-galleryl-betw = not-min-mazxsimpchainl-betw

lemmas min-gallery-betw-CCons-reduce =
min-mazsimpchain-betw-CCons-reduce

lemmas min-gallery-betw-uniform-length =
min-mazxsimpchain-betw-uniform-length

lemmas vertex-set-int = vertez-set-int| OF ChamberComplez.azioms(1)]

lemma chamber-pconnect:
[ = # y; chamber x; chamber y | = Jxs. pgallery (z#zsQy])
(proof)

lemma supchamberD:
assumes velJ X
defines C' = supchamber v
shows chamber C veC
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{proof)

definition
ChamberSubcomplex Y = Y C X A ChamberComplex Y A
(V C. ChamberComplex.chamber Y C — chamber C)

lemma ChamberSubcomplex!:
assumes Y CX ChamberComplex Y
Ny. ChamberComplex.chamber Y y = chamber y
shows ChamberSubcomplexr Y

(proof)

lemma ChamberSubcomplexD-sub: ChamberSubcomplex ¥ — Y C X
(proof )

lemma ChamberSubcomplexD-complex:
ChamberSubcomplex Y =—> ChamberComplex Y

{proof)

lemma chambersub-imp-sub: ChamberSubcomplex Y =—> Subcomplex Y
(proof )

lemma chamber-in-subcomplex:
[ ChamberSubcomplex Y; C € Y; chamber C'| =
ChamberComplex.chamber Y C

(proof)

lemma subcomplex-chamber:
ChamberSubcomplex Y = ChamberComplezx.chamber Y C = chamber C

{proof)

lemma gallery-in-subcomplez:
[ ChamberSubcomplex Y; set ys C Y gallery ys | =
ChamberComplex.gallery Y ys

{proof)

lemma subcomplex-gallery:
ChamberSubcomplex Y =—> ChamberComplex.gallery Y Cs = gallery Cs
(proof)

lemma subcomplex-pgallery:
ChamberSubcomplex Y = ChamberComplex.pgallery Y Cs = pgallery Cs

{proof)

lemma min-gallery-in-subcomplezx:
assumes ChamberSubcomplex Y min-gallery Cs set Cs C Y
shows ChamberComplex.min-gallery Y Cs

(proof)
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lemma chamber-card: chamber C = chamber D — card C = card D
(proof )

lemma chamber-facet-is-chamber-facet:
[ chamber C; chamber D; z<1C; 2CD | = 2<1D

{proof)

lemma chamber-adj:
assumes chamber C DeX C ~ D
shows chamber D

(proof)

lemma chambers-share-facet:
assumes chamber C chamber (insert v z) z<1C
shows z<insert v z

(proof)

lemma adjacentset-chamber: chamber C = D€adjacentset C = chamber D
(proof)

lemma chamber-shared-facet: [ chamber C; z<C; DeX; 2<1D | = chamber D
(proof)

lemma adjacentset-conv-facetchambersets:
assumes X # {{}} chamber C
shows adjacentset C' = (|JveC. {DeX. C—{v}<D})

(proof)

end

4.2 The system of chambers and distance between chambers

We now examine the system of all chambers in more detail, and explore the
distance function on this system provided by lengths of minimal galleries.

context ChamberComplex
begin

definition chamber-system :: 'a set set
where chamber-system = {C. chamber C}
abbreviation C = chamber-system

definition chamber-distance :: 'a set = 'a set = nat
where chamber-distance C' D =
(if C=D then 0 else
Suc (length (ARG-MIN length Cs. gallery (C# CsQ[D)]))))

definition closest-supchamber :: 'a set = 'a set = 'a set
where closest-supchamber F' D =
(ARG-MIN (AC. chamber-distance C D) C.
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chamber C N FCC)
definition face-distance F' D = chamber-distance (closest-supchamber F D) D

lemma chamber-system-simplices: C C X
(proof)

lemma gallery-chamber-system: gallery Cs = set Cs C C
(proof )

lemmas pgallery-chamber-system = gallery-chamber-system[OF pgallery]

lemma chamber-distance-le:
gallery (C#CsQ[D]) = chamber-distance C' D < Suc (length Cs)

(proof)

lemma min-gallery-betw-chamber-distance:

min-gallery (C# CsQ[D]) = chamber-distance C D = Suc (length Cs)
{proof)

lemma min-galleryl-chamber-distance-betw:
gallery (C#CsQ[D]) = Suc (length Cs) = chamber-distance C D =
min-gallery (C# CsQ[D])
(proof)

lemma gallery-least-length:
assumes chamber C chamber D C#D
defines Cs = ARG-MIN length Cs. gallery (C# CsQ[D])
shows gallery (C# CsQ[D])

{proof)

lemma min-gallery-least-length:
assumes chamber C chamber D C#D
defines Cs = ARG-MIN length Cs. gallery (C# CsQ[D])
shows  min-gallery (C# CsQ[D])

{proof)

lemma pgallery-least-length:
assumes chamber C chamber D C#D
defines Cs = ARG-MIN length Cs. gallery (C#CsQ[D])
shows pgallery (C#CsQ[D))

(proof )

lemma closest-supchamberD:
assumes FecX chamber D
shows chamber (closest-supchamber F' D) F C closest-supchamber F' D

(proof)

lemma closest-supchamber-closest:
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chamber C — FC(C —
chamber-distance (closest-supchamber F D) D < chamber-distance C' D

{proof)

lemma face-distance-le:
chamber C = FC(C = face-distance F' D < chamber-distance C D

{proof)

lemma face-distance-eq-0: chamber C — FC(C = face-distance F' C = 0
(proof )

end

4.3 Labelling a chamber complex

A labelling of a chamber complex is a function on the vertex set so that each
chamber is in bijective correspondence with the label set (chambers all have
the same number of vertices).

context ChamberComplex
begin

definition label-wrt :: 'b set = (‘a="b) = bool
where label-wrt B f = (V CeC. bij-betw f C B)

lemma label-wrtD: label-wrt B f = CeC = bij-betw f C B
(proof)

lemma label-wrtD’: label-wrt B f = chamber C = bij-betw f C B
(proof)

lemma label-wrt-adjacent:
assumes label-wrt B f chamber C' chamber D C~D veC—D weD—C
shows fv=fuw

(proof)

lemma label-wrt-adjacent-shared-facet:
[ label-wrt B f; chamber (insert v z); chamber (insert w z); véz; wez | =

fo="Ffw
(proof)

lemma label-wrt-elt-image: label-wrt B f — velJX = fv € B
(proof )

end
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4.4 Morphisms of chamber complexes

While any function on the vertex set of a simplicial complex can be consid-
ered a morphism of simplicial complexes onto its image, for chamber com-
plexes we require the function send chambers onto chambers of the same
cardinality in some chamber complex of the codomain.

4.4.1 Morphism locale and basic facts

locale ChamberComplexMorphism = domain: ChamberComplex X + codomain:
ChamberComplex Y

for X ::'a set set

and Y 0 b set set
+ fixes [ :'a="b

assumes chamber-map: domain.chamber C = codomain.chamber (fC)

and dim-map  : domain.chamber C = card (fC') = card C

lemma (in ChamberComplex) trivial-morphism:

ChamberComplezMorphism X X id
(proof)

lemma (in ChamberComplex) inclusion-morphism:
assumes ChamberSubcomplexr Y
shows ChamberComplexMorphism Y X id

{proof)

context ChamberComplexMorphism
begin

lemmas domain-complexr = domain.ChamberComplex-axioms
lemmas codomain-complex = codomain. ChamberComplex-azioms

lemmas simplicialcomplez-image = domain.map-is-simplicial-morph[of f]

lemma cong: fun-eg-on g f (|JX) = ChamberComplexMorphism X Y g
(proof )

lemma comp:
assumes ChamberComplexMorphism Y Z g
shows  ChamberComplexMorphism X Z (gof)

(proof)

lemma restrict-domain:
assumes domain. ChamberSubcomplexr W
shows ChamberComplexMorphism W'Y f

(proof)

lemma restrict-codomain:
assumes codomain. ChamberSubcomplex Z f-X C Z
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shows ChamberComplexMorphism X Z f
(proof)

lemma inj-on-chamber: domain.chamber C = inj-on f C
(proof )

lemma bij-betw-chambers: domain.chamber C = bij-betw f C (f‘C)
{proof )

lemma card-map: € X = card (f‘z) = card
(proof)

lemma codim-map:
assumes domain.chamber C y C C
shows card (f‘C — fy) = card (C—y)
(proof )

lemma simplex-map: € X — fzeY
(proof)

lemma simplices-map: fFX C Y
(proof)

lemma vertez-map: z € JX = fz e Y
{proof)

lemma facet-map: domain.chamber C — 2<C = f2 < fC
(proof)

lemma adj-int-im:
assumes domain.chamber C domain.chamber D C' ~ D f‘C # f‘D
shows (f‘C N f‘D) < fC

(proof )

lemma adj-map":
assumes domain.chamber C domain.chamber D C ~ D f‘C # f‘D
shows fC ~ fD
(proof)

lemma adj-map:
[ domain.chamber C; domain.chamber D; C ~ D | = f‘C ~ fD

(proof )

lemma chamber-vertez-outside-facet-image:
assumes v¢z domain.chamber (insert v z)
shows fuv ¢ f%

(proof)

lemma expand-codomain:
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assumes ChamberComplex Z ChamberComplex. ChamberSubcomplex Z'Y
shows ChamberComplexMorphism X Z f

(proof)

end

4.4.2 Action on pregalleries and galleries

context ChamberComplexMorphism
begin

lemma gallery-map: domain.gallery Cs = codomain.gallery (f|=Cs)
(proof)

lemma gallery-betw-map:
domain.gallery (C#CsQ[D]) = codomain.gallery (f‘C # fl=Cs Q [f‘D])
(proof )

end

4.4.3 Properties of the image

context ChamberComplexMorphism
begin

lemma subcomplez-image: codomain.Subcomplex (fFX)
{proof )

lemmas chamber-in-image = codomain.maz-in-subcomplex| OF subcomplez-image]

lemma mazsimp-map-into-image:
assumes domain.chamber z
shows  SimplicialComplex.mazsimp (f-X) (f‘x)

(proof)

lemma mazsimp-preimage:
assumes CeX SimplicialComplex.mazxsimp (f=X) (fC)
shows domain.chamber C

(proof)

lemma chamber-preimage:
CeX = codomain.chamber (f‘C') = domain.chamber C
(proof)

lemma chambercomplez-image: ChamberComplez (fFX)

(proof)

lemma chambersubcomplez-image: codomain. ChamberSubcomplex (f+X)
{proof)
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lemma restrict-codomain-to-image: ChamberComplexMorphism X (f+X) f
(proof)

end

4.4.4 Action on the chamber system

context ChamberComplexMorphism
begin

lemma chamber-system-into: f-domain.C C codomain.C
{proof )

lemma chamber-system-image: ftdomain.C = codomain.C N (f+X)

(proof)

lemma image-chamber-system: ChamberComplex.C (fFX) = f + domain.C
(proof)

lemma image-chamber-system-image:
ChamberComplex.C (f-X) = codomain.C N (f+X)
(proof)

lemma face-distance-eq-chamber-distance-map:
assumes domain.chamber C domain.chamber D C#D 2CC
codomain.face-distance (f‘z) (f‘D) = domain.face-distance z D
domain.face-distance z D = domain.chamber-distance C' D
shows codomain.face-distance (fz) (f‘D) =
codomain.chamber-distance (f‘C) (f'D)

{proof)

lemma face-distance-eq-chamber-distance-min-gallery-betw-map:
assumes domain.chamber C domain.chamber D C#D zCC
codomain.face-distance (fz) (f‘D) = domain.face-distance z D
domain.face-distance z D = domain.chamber-distance C' D
domain.min-gallery (C# CsQ[D])
shows codomain.min-gallery (fl=(C# CsQ[D]))
(proof)

end

4.4.5 Isomorphisms

locale ChamberComplezlsomorphism = ChamberComplexMorphism X Y f
for X :: 'a set set
and Y :: 'b set set
and [ :: ‘a="b
+ assumes bij-betw-vertices: bij-betw f (JX) (UY)
and surj-simplex-map : fFX =Y
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lemma (in ChamberComplexIsomorphism) inj: inj-on f (|J X)
{proof)

sublocale ChamberComplexIsomorphism < SimplicialComplexIsomorphism
(proof )

lemma (in ChamberComplez) trivial-isomorphism:
ChamberComplexlsomorphism X X id

{proof)

lemma (in ChamberComplexMorphism) isol-inverse:
assumes ChamberComplexMorphism Y X g
fizespointwise (gof) (U X) fizespointwise (fog) (IJY)
shows ChamberComplexIsomorphism X Y f

{proof )

context ChamberComplexlsomorphism
begin

lemmas domain-compler = domain-complex
lemmas chamber-map = chamber-map
lemmas dim-map = dim-map
lemmas gallery-map = gallery-map
lemmas simplez-map = simplex-map

lemmas chamber-preimage = chamber-preimage
lemma chamber-morphism: ChamberComplexMorphism X Y f (proof)

lemma pgallery-map: domain.pgallery Cs = codomain.pgallery (fl=Cs)
(proof )

lemma iso-cong:

assumes fun-eg-on g f (I X)

shows ChamberComplexIsomorphism X Y g
(proof )

lemma iso-comp:
assumes ChamberComplexIsomorphism Y Z g
shows  ChamberComplexIsomorphism X Z (gof)

{proof)

lemma inj-on-chamber-system: inj-on ((9) f) domain.C

(proof)

lemma inv: ChamberComplezlsomorphism Y X (the-inv-into (|J X) f)
(proof)

lemma chamber-distance-map:
assumes domain.chamber C domain.chamber D
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shows codomain.chamber-distance (fC) (fD) =
domain.chamber-distance C D

(proof)

lemma face-distance-map:
assumes domain.chamber C FeX
shows codomain.face-distance (f°F) (f‘C) = domain.face-distance F C

(proof)

end

4.4.6 Endomorphisms

locale ChamberComplexEndomorphism = ChamberComplexMorphism X X f
for X :: 'a set set
and f :: 'a="a

+ assumes trivial-outside : v¢|JX = fvo =
— to facilitate uniqueness arguments

lemma (in ChamberComplex) trivial-endomorphism:
ChamberComplexEndomorphism X id

{proof)

context ChamberComplexEndomorphism
begin

abbreviation ChamberSubcompler = domain. ChamberSubcomplex
abbreviation Subcomplex = domain.Subcomplex

abbreviation chamber = domain.chamber

abbreviation gallery = domain.gallery

abbreviation C = domain.chamber-system

abbreviation label-wrt = domain.label-wrt

lemmas dim-map = dim-map

lemmas simplez-map = simplex-map

lemmas vertex-map = vertex-map

lemmas chamber-map = chamber-map

lemmas adj-map = adj-map

lemmas facet-map = facet-map

lemmas bij-betw-chambers = bij-betw-chambers
lemmas chamber-system-into = chamber-system-into
lemmas chamber-system-image = chamber-system-image
lemmas image-chamber-system = image-chamber-system
lemmas chambercomplex-image = chambercomplex-image

lemmas chambersubcomplez-image = chambersubcomplex-image
lemmas face-distance-eq-chamber-distance-map =

face-distance-eq-chamber-distance-map
lemmas face-distance-eq-chamber-distance-min-gallery-betw-map =
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face-distance-eq-chamber-distance-min-gallery-betw-map
lemmas facedist-chdist-mingal-btwmap =
face-distance-eq-chamber-distance-min-gallery-betw-map

lemmas trivial-endomorphism = domain.trivial-endomorphism
lemmas finite-simplices = domain.finite-simplices

lemmas faces = domain.faces

lemmas mazxsimp-connect = domain.maxsimp-connect
lemmas simplez-in-max = domain.simplex-in-max

lemmas chamberD-simplex = domain.chamberD-simplex
lemmas chamber-system-def = domain.chamber-system-def
lemmas chamber-system-simplices = domain.chamber-system-simplices
lemmas galleryD-chamber = domain.galleryD-chamber
lemmas galleryD-adj = domain.galleryD-adj

lemmas gallery-append-reducel = domain.gallery-append-reducel
lemmas gallery-Cons-reduce = domain.gallery-Cons-reduce
lemmas gallery-chamber-system = domain.gallery-chamber-system
lemmas label-wrtD = domain.label-wrtD

lemmas label-wrt-adjacent = domain.label-wrt-adjacent

lemma endo-comp:
assumes ChamberComplexEndomorphism X g
shows ChamberComplexEndomorphism X (gof)

(proof)

lemma restrict-endo:
assumes ChamberSubcomplex Y fFY C Y
shows  ChamberComplexEndomorphism Y (restrictl f (JY))

(proof)

lemma funpower-endomorphism:
ChamberComplexEndomorphism X (f~ n)

(proof)

end

lemma (in ChamberComplex) fold-chamber-complex-endomorph-list:
YV zeset xs. ChamberComplexEndomorphism X (f x) =
ChamberComplexEndomorphism X (fold f xs)

(proof)

context ChamberComplezEndomorphism
begin

lemma split-gallery:
[ CeftC; DeC—f+C; gallery (C#CsQ[D)) | =
JAs A B Bs. Aef+C N BeEC—fHC N C#CsQ[D] = AsQA# B# Bs
(proof)
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lemma respects-labels-adjacent:
assumes label-wrt B ¢ chamber C chamber D C~D Y veC. ¢ (fv) = p v
shows VYoveD. ¢ (fv) =9

(proof)

lemma respects-labels-gallery:

assumes label-wrt B p YveC. ¢ (fv) = p v

shows gallery (C#CsQ[D]) = YveD. ¢ (fv) = ¢ v
(proof)

lemma respect-label-fix-chamber-imp-fun-eq-on:
assumes label : label-wrt B ¢
and chamber: chamber C f'C = ¢‘C
and  respect: YveC. ¢ (fv) =pvVveC. ¢ (gv) =¢ v
shows fun-eq-on fg C
(proof )

lemmas respects-label-fixes-chamber-imp-fizespointwise =
respect-label-fix-chamber-imp-fun-eq-onlof - - - id, simplified)

end

4.4.7 Automorphisms

locale ChamberComplexAutomorphism = ChamberComplexIsomorphism X X f
for X :: 'a set set
and f :: 'a="a

+ assumes trivial-outside : v¢JX = fvo =
— to facilitate uniqueness arguments

sublocale ChamberComplexAutomorphism < ChamberComplexEndomorphism
(proof )

lemma (in ChamberComplez) trivial-automorphism:
ChamberComplexAutomorphism X id

(proof)

context ChamberComplexAutomorphism

begin

lemmas facet-map = facet-map

lemmas chamber-map = chamber-map
lemmas chamber-morphism = chamber-morphism

lemmas bij-betw-vertices = bij-betw-vertices
lemmas surj-simplex-map = surj-simplex-map

lemma bij: bij f
(proof)
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lemma comp:
assumes ChamberComplexAutomorphism X g
shows  ChamberComplexAutomorphism X (gof)

(proof)

lemma equality:
assumes ChamberComplexAutomorphism X g fun-eg-on f g (U X)
shows f=g¢g

(proof)

end

4.4.8 Retractions

A retraction of a chamber complex is an endomorphism that is the identity
on its image.
locale ChamberComplexRetraction = ChamberComplexEndomorphism X f
for X :: 'a set set
and f :: 'a="a
+ assumes retraction: velJX = f (fv) = fv
begin

lemmas simplez-map = simplex-map
lemmas chamber-map = chamber-map
lemmas gallery-map = gallery-map

lemma vertez-retraction: vef(JX) = fv =
{proof)

lemma simplex-retractionl: z€fr-X = fizespointwise f x
(proof )

lemma simplex-retraction2: zefrX — f'x = x
(proof)

lemma chamber-retractionl: Cef-C = fixespointwise f C
(proof)

lemma chamber-retraction2: CefF-C = f'C = C
(proof )

lemma respects-labels:
assumes label-wrt B ¢ ve(|J X)
shows ¢ (fv)=¢pwv

(proof)

end
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4.4.9 Foldings of chamber complexes

A folding of a chamber complex is a retraction that literally folds the complex
in half, in that each chamber in the image is the image of precisely two
chambers: itself (since a folding is a retraction) and a unique chamber outside
the image.

Locale definition Here we define the locale and collect some lemmas
inherited from the ChamberComplexRetraction locale.

locale ChamberComplezFolding = ChamberComplexRetraction X f
for X :: 'a set set
and f :: ‘a="a
+ assumes folding:
chamber C = CefFX —
3ID. chamber D N D¢fEX N fD = C

begin

lemmas folding-ex = exl-implies-ex[OF folding]
lemmas chamber-system-into = chamber-system-into
lemmas gallery-map = gallery-map

lemmas chamber-retractionl = chamber-retractionl
lemmas chamber-retraction?2 = chamber-retraction?

end

Decomposition into half chamber systems and half apartments
Here we describe how a folding splits the chamber system of the complex
into its image and the complement of its image. The chamber subcomplex
consisting of all simplices contained in a chamber of a given half of the
chamber system is called a half-apartment.

context ChamberComplexFolding
begin

definition opp-half-apartment :: 'a set set
where opp-half-apartment = {x€X. 3 CeC—f+-C. zCC}
abbreviation Y = opp-half-apartment

lemma opp-half-apartment-subset-complex: Y CX
(proof )

lemma simplicialcomplex-opp-half-apartment: SimplicialComplexr Y

(proof)

lemma subcomplex-opp-half-apartment: Subcomplex Y
(proof )
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lemma opp-half-apartmentl: | z€X; CeC—fHC; 2CC | = z€Y
(proof )

lemma opp-chambers-subset-opp-half-apartment: C—f+C C Y
(proof )

lemma mazxsimp-in-opp-half-apartment:
assumes SimplicialComplex.maxsimp Y C
shows C € C—fC

{(proof)

lemma chamber-in-opp-half-apartment:
Stmplicial Complex.mazxsimp Y C = chamber C

{proof)

end

Mapping between half chamber systems for foldings Since each
chamber in the image of the folding is the image of a unique chamber in the
complement of the image, we obtain well-defined functions from one half
chamber system to the other.

context ChamberComplexFolding
begin

abbreviation opp-chamber C = THE D. DeC—f+C N f'D = C
abbreviation flop C' = if C € f-C then opp-chamber C else f‘C

lemma inj-on-opp-chambers':
assumes chamber C' C¢ftX chamber D D¢f+X f‘C = f‘D
shows C=D

(proof)

lemma inj-on-opp-chambers’”:
[ CecC-f-C; D eC—f-C; f\C =fD]= C=D
(proof )

lemma inj-on-opp-chambers: inj-on ((*) f) (C—f+C)

(proof)

lemma opp-chambers-surj: f-(C—(f+C)) = fHC

(proof)

lemma opp-chambers-bij: bij-betw ((9) f) (C—(f+C)) (fHC)
(proof)

lemma folding”:
assumes Cef-C
shows 3J!DeC—fHC. f'D = C
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(proof)

lemma opp-chambers-distinct-map:
set Cs C C—fHC = distinct Cs = distinct (f=Cs)

(proof)

lemma opp-chamberD1: Cef-C = opp-chamber C € C—f+HC
(proof)

lemma opp-chamberD2: Cef-C = f(opp-chamber C) = C
(proof )

lemma opp-chamber-reverse: CeC—f-C = opp-chamber (f'C) = C
(proof )

lemma f-opp-chamber-list:
set Cs C f-C = fE=(map opp-chamber Cs) = Cs

{proof)

lemma flop-chamber: chamber C = chamber (flop C)
(proof )

end

4.5 Thin chamber complexes

A thin chamber complex is one in which every facet is a facet in exactly two
chambers. Slightly more generally, we first consider the case of a chamber
complex in which every facet is a facet of at most two chambers. One of
the main results obtained at this point is the so-called standard uniqueness
argument, which essentially states that two morphisms on a thin chamber
complex that agree on a particular chamber must in fact agree on the entire
complex. Following that, foldings of thin chamber complexes are investi-
gated. In particular, we are interested in pairs of opposed foldings.

4.5.1 Locales and basic facts

locale ThinishChamberCompler = ChamberComplexr X
for X :: 'a set set
+ assumes thinish:
[ chamber C; z<1C; 3DeX—{C}. 2<D | = I!DeX—{C}. z<aD
— being adjacent to a chamber, such a D would also be a chamber (see lemma
chamber-adj)
begin

lemma facet-unique-other-chamber:

[ chamber B; z<uB; chamber C; z<1C'; chamber D; 2<1D; C#£B; D#B |
— (C=D
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{proof)

lemma finite-adjacentset:
assumes chamber C
shows finite (adjacentset C)

(proof)

lemma label-wrt-eq-on-adjacent-vertex:
fixes vv' :'a
and zz2': ’a set
defines D : D = insert v z
and D’: D' = insert v’ 2’
assumes label : label-wrt B f fv = fo'
and  chambers: chamber C chamber D chamber D' 2<1C z'<aC D#C D'#C
shows D = D’

(proof)

lemma face-distance-eq-chamber-distance-compare-other-chamber:
assumes chamber C chamber D 2<1C z<1D C#D
chamber-distance C E < chamber-distance D E
shows  face-distance z E = chamber-distance C' E

{proof)

end

lemma (in ChamberComplexIsomorphism) thinish-image-shared-facet:
assumes dom: domain.chamber C domain.chamber D z<1C z<1D C#D
and cod: ThinishChamberComplex Y codomain.chamber D' fz < D’

D' # f<C

shows f‘D = D'

(proof)

locale ThinChamberCompler = ChamberComplexr X
for X :: 'a set set

+ assumes thin: chamber C = 2<1C = 31DeX—{C}. z<D

sublocale ThinChamberCompler < ThinishChamberComplex
(proof)

context ThinChamberComplex
begin

lemma thinish: ThinishChamberComplex X (proof)

lemmas face-distance-eq-chamber-distance-compare-other-chamber =
face-distance-eq-chamber-distance-compare-other-chamber

abbreviation the-adj-chamber C' z = THE D. DeX—{C} A z < D
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lemma the-adj-chamber-simplex:
chamber C = z < C = the-adj-chamber C z € X

{proof)

lemma the-adj-chamber-facet: chamber C = 2<1C = z < the-adj-chamber C z
(proof)

lemma the-adj-chamber-is-adjacent:
chamber C = 2<1C = C' ~ the-adj-chamber C z

(proof)

lemma the-adj-chamber:
chamber C = z < C = chamber (the-adj-chamber C z)

{proof)

lemma the-adj-chamber-neq:
chamber C = z < C = the-adj-chamber C z # C

{proof)

lemma the-adj-chamber-adjacentset:
chamber C = 2<1C = the-adj-chamber C z € adjacentset C

{proof)

end

lemmas (in ChamberComplexIsomorphism) thin-image-shared-facet =
thinish-image-shared-facet[OF - - - - - ThinChamberComplez.thinish]

4.5.2 The standard uniqueness argument for chamber morphisms
of thin chamber complexes

context ThinishChamberComplex
begin

lemma standard-uniqueness-dbl:
assumes morph : ChamberComplexMorphism W X f
ChamberComplezMorphism W X g
and chambers: ChamberComplex.chamber W C
ChamberComplex.chamber W D
C~D fD # fC g‘D # g‘C chamber (g‘D)
and  funeq : fun-eq-on fg C
shows fun-eq-on f g D
(proof)

lemma standard-uniqueness-pgallery-betw:
assumes morph : ChamberComplexMorphism W X f
ChamberComplexMorphism W X g
and chambers: fun-eg-on f g C ChamberComplex.gallery W (C# CsQ[D])

pgallery (f=(CH#CsQ[D))) pgallery (gF=(C#CsQ[D]))
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shows fun-eq-on fg D
(proof )

lemma standard-uniqueness:
assumes morph : ChamberComplexMorphism W X f
ChamberComplexMorphism W X g
and chamber : ChamberComplex.chamber W C fun-eq-on f g C
and map-gals:
N\ Cs. ChamberComplex.min-gallery W (C#Cs) = pgallery (fl=(C#Cs))
N Cs. ChamberComplex.min-gallery W (C#Cs) = pgallery (g=(C#Cs))
shows fun-eg-on f g (U W)
(proof)

lemma standard-uniqueness-isomorphs:
assumes ChamberComplexIsomorphism W X f
ChamberComplexIsomorphism W X g
ChamberComplex.chamber W C fun-eq-on f g C
shows fun-eg-on f g (U W)
(proof)

lemma standard-uniqueness-automorphs:
assumes ChamberComplezAutomorphism X f
ChamberComplexAutomorphism X g
chamber C fun-eq-on f g C
shows f=g¢g
(proof )

end

context ThinChamberComplex

begin
lemmas standard-uniqueness = standard-uniqueness
lemmas standard-uniqueness-isomorphs = standard-uniqueness-isomorphs

lemmas standard-uniqueness-pgallery-betw = standard-uniqueness-pgallery-betw

end

4.6 Foldings of thin chamber complexes
4.6.1 Locale definition and basic facts

locale ThinishChamberComplexFolding =
ThinishChamberComplex X + folding: ChamberComplexFolding X f
for X :: 'a set set
and [ :: 'a="a

begin

abbreviation opp-chamber = folding.opp-chamber
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lemma adjacent-half-chamber-system-image:
assumes chambers: C € fFC D € C—f+HC
and adjacent: C~D
shows fD=7C

(proof)

lemma adjacent-half-chamber-system-image-reverse:
[ C e f-C; D € C—fHC; C~D | = opp-chamber C = D
(proof )

lemma chamber-image-closer:
assumes DeC—f-C Bef+C B#f‘D gallery (B#DsQ[D])
shows 3 Cs. gallery (B#CsQ[f‘D]) A length Cs < length Ds

(proof)

lemma chamber-image-subset:
assumes D: DeC—fHC
defines C: C = fD
defines closerToC = {B€eC. chamber-distance B C < chamber-distance B D}
shows fC C closerToC

(proof)

lemma gallery-double-cross-not-minimal-Cons1 :
[ BefC; CeC—fHC; DefrC; gallery (B#C#CsQ[D)]) | =
- min-gallery (B#C# CsQ[D])
(proof)
lemma gallery-double-cross-not-minimall :
[ BeEf-C; CeC—fHC; DefHC; gallery (B#BsQC# CsQ[D]) | =
- min-gallery (B#BsQC# CsQ[D])
(proof)

end

locale ThinChamberComplexFolding =
ThinChamberComplexr X + folding: ChamberComplexFolding X f
for X :: ‘a set set
and [ :: ‘a="a

sublocale ThinChamberComplexFolding < ThinishChamberComplexFolding {proof)

context ThinChamberComplexFolding
begin

abbreviation flop = folding.flop

lemmas adjacent-half-chamber-system-image = adjacent-half-chamber-system-image
lemmas gallery-double-cross-not-minimall = gallery-double-cross-not-minimall

97



lemmas gallery-double-cross-not-minimal-Consl =
gallery-double-cross-not-minimal-Cons1

lemma adjacent-preimage:
assumes chambers: C € C—f-C D € C—f+C
and adjacent: f‘C ~ fD
shows C' ~ D

(proof)

lemma adjacent-opp-chamber:
[ Cef-C; DefrC; C~D | = opp-chamber C' ~ opp-chamber D
(proof)

lemma adjacentchain-preimage:
set Cs C C—fFC = adjacentchain (fl=Cs) = adjacentchain Cs
(proof )

lemma gallery-preimage: set Cs C C—f+-C = gallery (f=Cs) = gallery Cs
(proof )

lemma chambercomplez-opp-half-apartment: ChamberComplex folding.Y

(proof)

lemma flop-ady:
assumes chamber C' chamber D C~D
shows flop C ~ flop D

(proof)

lemma flop-gallery: gallery Cs = gallery (map flop Cs)
(proof)

lemma morphism-half-apartments: ChamberComplexMorphism folding. Y (f-X) f
(proof)

lemma chamber-image-complement-closer:
[ DeC—f+C; BEC—fHC; B#£D; gallery (B#CsQ[fD]) | =
3 Ds. gallery (B#DsQ[D]) A length Ds < length Cs
(proof)

lemma chamber-image-complement-subset:
assumes D: DeC—fHC
defines C: C = fD
defines closerToD = {BeC. chamber-distance B D < chamber-distance B C'}
shows C—fC C closerToD

(proof)
lemma chamber-image-and-complement:

assumes D: DeC—f+HC
defines C: C = f‘D
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defines closerToC = {BeC. chamber-distance B C < chamber-distance B D}
and closerToD = {BeC. chamber-distance B D < chamber-distance B C'}
shows fHC = closerToC C—f-C = closerToD

(proof)

end

4.6.2 Pairs of opposed foldings

A pair of foldings of a thin chamber complex are opposed or opposite if there
is a corresponding pair of adjacent chambers, where each folding sends its
corresponding chamber to the other chamber.
locale Opposed ThinChamberComplexFoldings =
ThinChamberComplex X
+ folding-f: ChamberComplexFolding X f
+ folding-g: ChamberComplexFolding X g
for X :: 'a set set
and f :: ‘a="a
and g :: ‘a="a
+ fixes C0 :: 'a set
assumes chambers: chamber CO CO~g‘CO CO#£g‘CO f'g‘CO = CO
begin

abbreviation D0 = ¢‘C0
lemmas chamber-D0 = folding-g.chamber-map[OF chambers(1)]

lemma ThinChamberComplexFolding-f: ThinChamberComplexFolding X f {proof)
lemma ThinChamberComplexFolding-g: ThinChamberComplexFolding X g (proof)

lemmas foldf = ThinChamberComplexFolding-f
lemmas foldg = ThinChamberComplexFolding-g

lemma fg-symmetric: Opposed ThinChamberComplexFoldings X g f DO
(proof)

lemma basechambers-half-chamber-systems: COef-C D0eg-C
(proof )

lemmas basech-halfchsys =
basechambers-half-chamber-systems

lemma f-trivial-C0: veC0 — fv =
(proof )

lemmas g-trivial-D0 =
Opposed ThinChamberComplexFoldings. f-trivial-CO[OF fg-symmetric]

lemma double-fold-D0:
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assumes v € D0 — C0
shows ¢ (fv)=v
(proof)

lemmas double-fold-C0O =
Opposed ThinChamberComplexFoldings.double-fold-DO[OF fg-symmetric]

lemma flopped-half-chamber-systems-fg: C—fHC = g-C
(proof)

lemmas flopped-half-chamber-systems-gf =
Opposed ThinChamberComplexFoldings. flopped-half-chamber-systems-fg[
OF fg-symmetric

]

lemma flopped-half-apartments-fg: folding-f.opp-half-apartment = g=X
(proof)

lemmas flopped-half-apartments-gf =
Opposed ThinChamberComplexFoldings.flopped-half-apartments-fg|
OF fg-symmetric

]

lemma vertez-set-split: | JX = f(UX) U g(UX)
— f and ¢ will both be the identity on the intersection
(proof)

lemma half-chamber-system-disjoint-union:
C =fFCUgHC (fFC) N (g-C) = {}
(proof )

lemmas halfchsys-decomp =
half-chamber-system-disjoint-union

lemma chamber-in-other-half-fg: chamber C — C¢f-C = Ceg-C
(proof )

lemma adjacent-half-chamber-system-image-fg:
CefrC = Deg-C = C~D = f'D=C
(proof)

lemmas adjacent-half-chamber-system-image-gf =
Opposed ThinChamberComplexFoldings. adjacent-half-chamber-system-image-fg[
OF fg-symmetric

]

lemmas adjhalfchsys-image-gf =
adjacent-half-chamber-system-image-gf
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lemma switch-basechamber:
assumes Ccf-C C~g‘C
shows Opposed ThinChamberComplexFoldings X f g C

(proof)

lemma unique-half-chamber-system-f:
assumes Opposed ThinChamberComplexFoldings X f' g’ C0 ¢'*C0 = DO
shows fH+C = fC

(proof)

lemma unique-half-chamber-system-g:
Opposed ThinChamberComplexFoldings X f' ¢’ C0 — ¢'‘C0 = D0 —
g'+C = ¢g-C
(proof )

lemma split-gallery-fg:
[ Cef-C; DeghkC; gallery (C#CsQ[D]) | =
JAs A B Bs. AcfC A Beg-C AN C#CsQ[D] = AsQA# B# Bs
(proof)

lemmas split-gallery-gf =
Opposed ThinChamberComplexFoldings.split-gallery-fg| OF fg-symmetric]

end

4.6.3 The automorphism induced by a pair of opposed foldings

Recall that a folding of a chamber complex is a special kind of chamber
complex retraction, and so is the identity on its image. Hence a pair of
opposed foldings will be the identity on the intersection of their images and
so we can stitch them together to create an automorphism of the chamber
complex, by allowing each folding to act on the complement of its image.
This automorphism will be of order two, and will be the unique automor-
phism of the chamber complex that fixes pointwise the facet shared by the

pair of adjacent chambers associated to the opposed foldings.

context OpposedThinChamberComplexFoldings
begin

/ !/

definition induced-automorphism :: ‘a="'a

where induced-automorphism v =
if vef(UX) then g v else if veg(U X) then f v else v
— f and ¢ will both be the identity on the intersection of their images
abbreviation s = induced-automorphism

lemma induced-automorphism-fg-symmetric:
s = Opposed ThinChamberComplexFoldings.s X g f

{proof)
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lemma induced-automorphism-on-simplices-fg: zr€frX — ver = sv=gv
(proof)

lemma induced-automorphism-eq-foldings-on-chambers-fg:
Ceft-C = fun-eq-ons g C
(proof)

lemmas indaut-eq-foldch-fg =
induced-automorphism-eq-foldings-on-chambers-fg

lemma induced-automorphism-eq-foldings-on-chambers-gf:
Ceg-C = fun-eq-on s f C
(proof)

lemma induced-automorphism-on-chamber-vertices-f:
chamber C = veC = s v = (if CEfFC then g v else f v)
(proof)

lemma induced-automorphism-simplex-image:
CeftC = 2CC = sz = gc CegH-C = 2CC = sz = f«
(proof )

lemma induced-automorphism-chamber-list-image-fg:
set Cs C fi-C = s=Cs = g=Cs
(proof)

lemma induced-automorphism-chamber-image-fg:
chamber C = s‘C = (if Cef-C then ¢‘C else fC)

{proof)

lemma induced-automorphism-C0: s‘C0O = D0
(proof)

lemma induced-automorphism-fizespointwise- CO-int-D0:
fizespointwise s (CONDO)

{proof)

lemmas indaut-fizes-fundfacet =
induced-automorphism-fizespointwise- C0-int-D0

lemma induced-automorphism-adjacent-half-chamber-system-image-fg:
[ CeftC; Deg-C; C~D | = s‘D = C
(proof)

lemmas indaut-adj-halfchsys-im-fg =
induced-automorphism-adjacent-half-chamber-system-image-fg

lemma induced-automorphism-chamber-map: chamber C = chamber (s‘C)

{proof)
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lemmas indaut-chmap = induced-automorphism-chamber-map

lemma induced-automorphism-ntrivial: s # id

(proof)

lemma induced-automorphism-bij-between-half-chamber-systems-f:
bij-betw ((°) s) (C—fFC) (fHC)
(proof )

lemmas indaut-bij-btw-halfchsys-f =
induced-automorphism-bij-between-half-chamber-systems-f

lemma induced-automorphism-bij-between-half-chamber-systems-g:
bij-betw (() s) (C—gkC) (gHC)
(proof )

lemma induced-automorphism-halfmorphism-fopp-to-fimage:
ChamberComplexMorphism folding-f.opp-half-apartment (fFX) s
(proof )

lemmas indaut-halfmorph-fopp-fim =
induced-automorphism-halfmorphism-fopp-to-fimage

lemma induced-automorphism-half-chamber-system-gallery-map-f:
set Cs C fHC = gallery Cs = gallery (sf=Cs)

{proof)

lemma induced-automorphism-half-chamber-system-pgallery-map-f:
set Cs C f-C = pgallery Cs = pygallery (sE=Cs)

(proof)

lemmas indaut-halfchsys-pgal-map-f =
induced-automorphism-half-chamber-system-pgallery-map-f

lemma induced-automorphism-half-chamber-system-pgallery-map-g:
set Cs C g-C = pygallery Cs = pygallery (s=Cs)

{proof)

lemma induced-automorphism-halfmorphism-fimage-to-fopp:
ChamberComplexMorphism (fEX) folding-f.opp-half-apartment s
(proof )

lemma induced-automorphism-selfcomp-halfmorphism-f:

ChamberComplexMorphism (fFX) (f-X) (sos)
{proof)

lemma induced-automorphism-selfcomp-halftrivial-f: fizespointwise (sos) (J (f-X))
(proof)
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lemmas indaut-selfcomp-halftriv-f =
induced-automorphism-selfcomp-halftrivial-f

lemma induced-automorphism-selfcomp-halftrivial-g: fixespointwise (sos) (U (g-X))
(proof )

lemma induced-automorphism-trivial-outside:
assumes vl J X
shows sv=w

(proof)

lemma induced-automorphism-morphism: ChamberComplexEndomorphism X s
(proof)

lemmas indaut-morph = induced-automorphism-morphism

lemma induced-automorphism-morphism-order2: sos = id
(proof)

lemmas indaut-order2 = induced-automorphism-morphism-order2

lemmas induced-automorphism-bij =
0-bij|OF
induced-automorphism-morphism-order?2
induced-automorphism-morphism-order2

]

lemma induced-automorphism-surj-on-vertezset: s{|JX) = JX
(proof)

lemma induced-automorphism-bij-betw-vertezset: bij-betw s (J X) (U X)
(proof)

lemma induced-automorphism-surj-on-simplices: s=X = X
(proof)

lemma induced-automorphism-automorphism:
ChamberComplexAutomorphism X s

(proof )
lemmas indaut-aut = induced-automorphism-automorphism
lemma induced-automorphism-unique-automorphism':

assumes ChamberComplexAutomorphism X s s#id fizespointwise s (CONDO)
shows fun-eq-on ss CO

{(proof)

lemma induced-automorphism-unique-automorphism:
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[ ChamberComplexAutomorphism X s; s#id; fixespointwise s (CONDO) ]
= s=s
(proof )

lemmas indaut-unig-aut =
induced-automorphism-unique-automorphism

lemma induced-automorphism-unique:
Opposed ThinChamberComplexFoldings X f' ¢’ C0 = ¢'‘C0 = ¢‘C0 =
Opposed ThinChamber ComplexFoldings.induced-automorphism X f' g’ = s

(proof)

lemma induced-automorphism-sym:
Opposed ThinChamberComplexFoldings.induced-automorphism X g f = s

(proof)

lemma induced-automorphism-respects-labels:
assumes label-wrt B ¢ ve(|J X)
shows ¢ (sv)=pwv

(proof)

lemmas indaut-resplabels =
induced-automorphism-respects-labels

end

4.6.4 Walls

A pair of opposed foldings of a thin chamber complex defines a decompo-
sition of the chamber system into the two disjoint chamber system images.
Call such a decomposition a wall, as we image that disjointness erects a
wall between the two half chamber systems. By considering the collection
of all possible opposed folding pairs, and their associated walls, we can ob-
tain information about minimality of galleries by considering the walls they
Cross.

context ThinChamberComplex

begin

definition foldpairs :: ((‘la="'a) x (‘a="a)) set
where foldpairs = {(f,g). 3 C. Opposed ThinChamberComplexFoldings X f g C'}

abbreviation walls = | (f,g9)€foldpairs. {{f+C,g-C}}
abbreviation the-wall-betw C D =
THE-default {} (AH. Hewalls N separated-by H C D)

definition walls-betw :: 'a set = 'a set = 'a set set set set
where walls-betw C D = {H€ewalls. separated-by H C D}
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fun wall-crossings :: 'a set list = 'a set set set list
where wall-crossings [| = []
| wall-crossings [C] =[]
| wall-crossings (B#C#Cs) = the-wall-betw B C # wall-crossings (C#Cs)

lemma foldpairs-sym: (f,g)€foldpairs = (g.,f)€Efoldpairs
(proof )

lemma not-self-separated-by-wall: HEwalls = — separated-by H C C
(proof )

lemma the-wall-betw-nempty:
assumes the-wall-betw C D # {}
shows the-wall-betw C D € walls separated-by (the-wall-betw C D) C D

(proof)

lemma the-wall-betw-self-empty: the-wall-betw C C = {}
(proof )

lemma length-wall-crossings: length (wall-crossings Cs) = length Cs — 1
(proof )

lemma wall-crossings-snoc:
wall-crossings (CsQ[D,E]) = wall-crossings (CsQ[D]) Q [the-wall-betw D E]
{proof)

lemma wall-crossings-are-walls:
Heset (wall-crossings Cs) = H#{} = Hecwalls

(proof)

lemma in-set-wall-crossings-decomp:
Heset (wall-crossings Cs) =
JAs A B Bs. Cs = AsQ[A,B|QBs A H = the-wall-betw A B

(proof)
end

context OpposedThinChamberComplexFoldings
begin

lemma foldpair: (f,g)€foldpairs
(proof )

lemma separated-by-this-wall-fg:
separated-by {f+C,g-C} C D = Cef-C = Deg-C

{proof)

lemmas separated-by-this-wall-gf =
Opposed ThinChamberComplexFoldings.separated-by-this-wall-fg[
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OF fg-symmetric

}

lemma induced-automorphism-this-wall-vertex:
assumes Cef-C Deg-C ve CND
shows sv=wv

(proof)

lemmas indaut-wallvertex =
induced-automorphism-this-wall-vertex

lemma unique-wall:
assumes opp’  : Opposed ThinChamberComplexFoldings X ' g’ C'
and chambers: Acf+C Aef’=C Beg-C Beg'-C A~B
shows {f+C,g-C} = {f+C,g"+-C}

{proof)

end

context ThinChamberComplex
begin

lemma separated-by-wall-ex-foldpair:

assumes Hcwalls separated-by H C D

shows 3 (f,g)€foldpairs. H = {fFC,g-C} N Cef-C N DeghC
(proof)

lemma not-separated-by-wall-ex-foldpair:
assumes chambers: chamber C chamber D
and wall : Hewalls — separated-by H C' D
shows 3 (f,g)€foldpairs. H = {fFC,g-C} N Cef-C N Deft-C

(proof)

lemma adj-wall-imp-ex1-wall:
assumes adj : C~D
and wall: HO€walls separated-by HO C' D
shows 3!Hecwalls. separated-by H C' D

(proof)

end

context OpposedThinChamberComplexFoldings
begin

lemma this-wall-betwl:
assumes Cef-C Deg-C C~D
shows the-wall-betw C D = {fFC,g-C}

(proof)
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lemma this-wall-betw-basechambers:
the-wall-betw CO DO = {f+C,g-C}
(proof )

lemma this-wall-in-crossingsl-fg:
defines H: H = {fC,g-C}
assumes D: DegHC
shows Cef-C = gallery (C#CsQ[D]) = H € set (wall-crossings (C# CsQ[D]))

(proof)

end

lemma (in ThinChamberComplex) walls-betw-subset-wall-crossings:
assumes gallery (C# CsQ[D])
shows walls-betw C D C set (wall-crossings (C# CsQ[D)]))

(proof)

context Opposed ThinChamberComplexFoldings
begin

lemma same-side-this-wall-wall-crossings-not-distinct-f:
gallery (C#CsQ[D]) = CefHC = Def-C =
{f-C,g-C}eset (wall-crossings (C#CsQ[D])) =
= distinct (wall-crossings (C# CsQ[D]))
(proof)

lemmas sside-wcrossings-ndistinct-f =
same-side-this-wall-wall-crossings-not-distinct-f

lemma separated-by-this-wall-chain3-fg:
assumes Bef-C chamber C chamber D
separated-by {f+C,g-C} B C separated-by {fFC,g+-C} C D
shows CegtC DefC

{proof)

lemmas sepwall-chain3-fg =
separated-by-this-wall-chain3-fg

end

context ThinChamberComplex
begin

lemma wall-crossings-min-gallery-betwl :
assumes gallery (C# CsQ[D])
distinct (wall-crossings (C#CsQ[D)]))
YV Heset (wall-crossings (C#CsQ[D])). separated-by H C D
shows min-gallery (C# CsQ[D])

(proof)
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lemma ex-nonseparating-wall-imp-wall-crossings-not-distinct:
assumes gal : gallery (C#CsQ[D])
and  wall: Heset (wall-crossings (C#CsQ[D])) H#{}
- separated-by H C' D
shows — distinct (wall-crossings (C# CsQ[D]))
(proof)

lemma not-min-gallery-double-crosses-wall:
assumes gallery Cs — min-gallery Cs {} ¢ set (wall-crossings Cs)
shows — distinct (wall-crossings Cs)

(proof)

lemma not-distinct-crossings-split-gallery:
[ gallery Cs; {} ¢ set (wall-crossings Cs); — distinct (wall-crossings Cs) | =
dfg As A B Bs E F Fs.
(f,9)efoldpairs N Acf=C N Beg-C N E€g-C N FeftC A
( Cs = AsQ[A,B,F|QFs vV Cs = AsQ[A,B|QBsQ[E,F|QFs )
(proof)

lemma not-min-gallery-double-split:
[ gallery Cs; = min-gallery Cs; {} ¢ set (wall-crossings Cs) | =
dfgAs A B Bs E F Fs.
(f,9)€foldpairs N Aef=C N Beg-C N E€g-C N FefEC A
( Cs = AsQ[A,B,F|QFs vV Cs = AsQ[A,B]|QBsQ[E,F|QFs )
(proof )

end

4.7 Thin chamber complexes with many foldings

Here we begin to examine thin chamber complexes in which every pair of
adjacent chambers affords a pair of opposed foldings of the complex. This
condition will ultimately be shown to be sufficient to ensure that a thin
chamber complex is isomorphic to some Coxeter complex.

4.7.1 Locale definition and basic facts

locale ThinChamberComplexManyFoldings = ThinChamberComplexr X
for X :: 'a set set
+ fixes C0 :: 'a set
assumes fundchamber: chamber CO
and ez-walls
[ chamber C; chamber D; C~D; C#£D | =
3f g. OpposedThinChamberComplexFoldings X f g C N D=g‘C

lemma (in ThinChamberComplex) ThinChamberComplexManyFoldingsI:
assumes chamber C0
and  AC D. [ chamber C; chamber D; C~D; C#D | =
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3f g. OpposedThinChamberComplexFoldings X fg C N D=g‘C
shows  ThinChamberComplexManyFoldings X CO

{proof)

lemma (in ThinChamberComplezManyFoldings) wall-crossings-subset-walls-betw:
assumes min-gallery (C# CsQ[D])
shows  set (wall-crossings (C# CsQ[D])) C walls-betw C D

(proof)

4.7.2 The group of automorphisms

Recall that a pair of opposed foldings of a thin chamber complex can be
stitched together to form an automorphism of the complex. Choosing an
arbitrary chamber in the complex to act as a sort of centre of the complex
(referred to as the fundamental chamber), we consider the group (under
composition) generated by the automorphisms afforded by the chambers
adjacent to the fundamental chamber via the pairs of opposed foldings that
we have assumed to exist.

context ThinChamberComplexManyFoldings
begin

definition fundfoldpairs :: ((‘a="a)x('a="a)) set
where fundfoldpairs = {(f,g). Opposed ThinChamberComplexFoldings X f g C0}

abbreviation fundadjset = adjacentset C0 — {C0}

abbreviation induced-automorph :: (‘a="a) = (‘a="a) = (‘a="a)
where induced-automorph f g =
Opposed ThinChamberComplexFoldings.induced-automorphism X f g

abbreviation Abs-induced-automorph :: (‘a="a) = (‘a='a) = 'a permutation
where Abs-induced-automorph f g = Abs-permutation (induced-automorph f g)

abbreviation S = |J (f,9)€fundfoldpairs. { Abs-induced-automorph f g}
abbreviation W = (5)

lemma fundfoldpairs-induced-autormorph-bij:
(f,9) € fundfoldpairs = bij (induced-automorph f g)
(proof)

lemmas permutation-conv-induced-automorph =
Abs-permutation-inverse[OF Collect], OF fundfoldpairs-induced-autormorph-bij)

lemma fundfoldpairs-induced-autormorph-order2:
(f,9) € fundfoldpairs —> induced-automorph f g o induced-automorph f g = id

{proof)

lemma fundfoldpairs-induced-autormorph-ntrivial:
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(f,9) € fundfoldpairs = induced-automorph f g # id
{proof )

lemma fundfoldpairs-fundchamber-image:
(f,9)Efundfoldpairs = Abs-induced-automorph f g ‘— C0 = ¢g‘C0

{proof)

lemma fundfoldpair-fundchamber-in-half-chamber-system-f:
(f,9)Efundfoldpairs = COefHC

(proof)

lemma fundfoldpair-unique-half-chamber-system-f:
assumes (f,g)€fundfoldpairs (f',g9")€fundfoldpairs
Abs-induced-automorph ' g’ = Abs-induced-automorph f g
shows fH+C = fC
(proof )

lemma fundfoldpair-unique-half-chamber-systems-chamber-ng-f:
assumes (f,g)€fundfoldpairs (f',g9")€fundfoldpairs
Abs-induced-automorph ' g’ = Abs-induced-automorph f g
chamber C C¢g-C
shows Cef+C

{proof)

lemma the-wall-betw-adj-fundchamber:
(f,9)Efundfoldpairs —
the-wall-betw CO (Abs-induced-automorph f g ‘— C0) = {f+C,g-C}
(proof )

lemma zero-notin-S: 0¢S

{(proof)

lemma S-order2-add: s€S —> s + s = 0
(proof )

lemma S-add-order2:
assumes s€S
shows add-order s = 2

(proof)
lemmas S-uminus = minus-unique[OF S-order2-add)]

lemma S-sym: uminus ‘S C S
(proof)

lemmas sum-list-S-in-W = sum-list-lists-in-genby-sym|[OF S-sym]
lemmas W-conv-sum-lists = genby-sym-eq-sum-lists|OF S-sym]

lemma S-endomorphism:
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s€S = ChamberComplexEndomorphism X (permutation s)
(proof)

lemma S-list-endomorphism:
ss€lists S = ChamberComplexEndomorphism X (permutation (sum-list ss))

{proof)

lemma W-endomorphism:
weW = ChamberComplexEndomorphism X (permutation w)

(proof)

lemma S-automorphism:
s€S = ChamberComplezAutomorphism X (permutation s)

{proof)

lemma S-list-automorphism:
ss€lists S = ChamberComplexAutomorphism X (permutation (sum-list ss))

{proof)

lemma W-automorphism:
weW = ChamberComplexAutomorphism X (permutation w)

{proof)

lemma S-respects-labels: [ label-wrt B ¢; s€S; ve(UX) ] = ¢ (s > v) =p v
{proof)

lemma S-list-respects-labels:
[ label-wrt B ; ss€lists S; ve(UX) | = ¢ (sum-list ss — v) = ¢ v
{proof )

lemma W-respects-labels:
[ label-wrt B p; weW; ve(UX) ] = ¢ (w—v) = p v
(proof )

end

4.7.3 Action of the group of automorphisms on the chamber sys-
tem

Now we examine the action of the group W on the chamber system. In
particular, we show that the action is transitive.

context ThinChamberComplexManyFoldings
begin

lemma fundchamber-S-chamber: s€S = chamber (s—C0)
(proof)

lemma fundchamber- W-image-chamber:
weW = chamber (w'—C0)

112



{proof)

lemma fundchamber-S-adjacent: s€S = C0O ~ (s‘—C0)
(proof)

lemma fundchamber- WS-image-adjacent:
weW = s€§ = (w'—C0) ~ ((w+s) —C0)
(proof)

lemma fundchamber-S-image-neq-fundchamber: s€S = s‘-C0 # C0
(proof)

lemma fundchamber-next- WS-image-neq:
assumes s€S
shows (w+s) — C0 # w ‘— C0
(proof )

lemma fundchamber-S-fundadjset: s€ S — s‘—C0 € fundadjset
(proof )

lemma fundadjset-eq-S-image: Defundadjset = 3s€S. D = s*=C0
(proof)

lemma S-fizespointwise-fundchamber-image-int:
assumes s€S
shows fizespointwise ((—) s) (CONs‘—CO)

(proof)

lemma S-fizes-fundchamber-image-int:
s€S = s—=(C0Ns‘—=C0) = CONs‘—C0
(proof )

lemma fundfacets:
assumes s€S5
shows CONs‘—C0 < CO CONs‘—CO < s*—C0O

{proof)

lemma fundadjset-ex1-eq-S-image:
assumes Defundadjset
shows dlse€S. D= s—C0

(proof)

lemma fundchamber-S-image-inj-on: inj-on (As. s“>C0) S

(proof)

lemma S-list-image-gallery:
ss€lists S = gallery (map (Aw. w—C0) (sums ss))

(proof)
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lemma pgallery-last-eq- W-image:
pgallery (CO#CsQ[C]) = JweW. C = w'—=C0
(proof )

lemma chamber-eq- W-image:
assumes chamber C
shows FJweW. C = w'—C0

(proof)

lemma S-list-image-crosses-walls:
ss € lists S = {} ¢ set (wall-crossings (map (Aw. w—CO) (sums ss)))

(proof)

end

4.7.4 A labelling by the vertices of the fundamental chamber

Here we show that by repeatedly applying the composition of all the el-
ements in the collection S of fundamental automorphisms, we can retract
the entire chamber complex onto the fundamental chamber. This retraction
provides a means of labelling the chamber complex, using the vertices of the
fundamental chamber as labels.

context ThinChamberComplexManyFoldings
begin

definition Spair :: ‘a permutation = (‘a="a)x('a="a)
where Spair s =
SOME fq. fg € fundfoldpairs N s = case-prod Abs-induced-automorph fg

lemma Spair-fundfoldpair: s€S = Spair s € fundfoldpairs
(proof )

lemma Spair-induced-automorph:
s€S = s = case-prod Abs-induced-automorph (Spair s)

{proof)

lemma S-list-pgallery-decomp1:
assumes ss: set ss = S and gal: Cs#[] pgallery (CO#Cs)
shows Jscset ss. 3 Ceset Cs. V (f,g)€fundfoldpairs.
s = Abs-induced-automorph f g — C € ¢g-C

(proof)

lemma S-list-pgallery-decomp2:
assumes set ss = S Cs#[| pgallery (CO#Cs)
shows
drs s ts. ss = rsQs#ts A
(3 Ceset Cs. V (f,g)€fundfoldpairs.
s = Abs-induced-automorph f g — C € g-C) A
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(Vreset rs. V Ceset Cs. ¥ (f,g)Efundfoldpairs.
r = Abs-induced-automorph f g — CEfHC)

(proof)

lemma S-list-pgallery-decomp3:
assumes set ss = S Cs#[] pgallery (CO# Cs)
shows
drs s ts As B Bs. ss = rsQs#ts A Cs = AsQB#Bs A
(V (f,9)Efundfoldpairs. s = Abs-induced-automorph f g — BegkC) A
(V Aeset As. Y (f,g) € fundfoldpairs.
s = Abs-induced-automorph f g — A€f-C) A
(Vreset rs. YV Ceset Cs. ¥V (f,g)€fundfoldpairs.
r = Abs-induced-automorph f ¢ — CefHC)

(proof)

lemma fundfold-trivial-fC:
reS = V(f,g9)€fundfoldpairs. r = Abs-induced-automorph f g — Ceft-C =
fst (Spairr) < C = C
{proof )

lemma fundfold-comp-trivial-fC:
setrs C § —
YV reset rs. V (f,9)€fundfoldpairs.
r = Abs-induced-automorph f g — CefHC =
fold fst (map Spair rs) * C = C
{proof )

lemma fundfold-trivial-fC-list:
reS =
YV Ceset Cs. Y (f,g)€fundfoldpairs.
r = Abs-induced-automorph f g — CefHFC —
fst (Spair r) = Cs = Cs
(proof)

lemma fundfold-comp-trivial-fC-list:
set rs C § =
Vreset rs. V Ceset Cs. Y (f,g)€fundfoldpairs.
r = Abs-induced-automorph f ¢ — Cef-C =
fold fst (map Spair rs) = Cs = Cs
(proof)

lemma fundfold-gallery-map:
s€S = gallery Cs = gallery (fst (Spair s) = Cs)
(proof)

lemma fundfold-comp-gallery-map:
assumes pregal: gallery Cs
shows set ss C S = gallery (fold fst (map Spair ss) = Cs)

(proof)
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lemma fundfold-comp-pgallery-ez-funpow:
assumes ss: set ss = S
shows pgallery (CO#CsQ[C]) =
In. (fold fst (map Spair ss) ~ " n) * C = CO
(proof )

lemma fundfold-comp-chamber-ex-funpow:

assumes ss: set ss = S and C: chamber C

shows I n. (fold fst (map Spair ss) ~ " n) * C = CO
(proof)

lemma fundfold-comp-fizespointwise-C0:

assumes set ss C S

shows fizespointwise (fold fst (map Spair ss)) CO
(proof )

lemma fundfold-comp-endomorphism:
assumes set ss C S
shows  ChamberComplexEndomorphism X (fold fst (map Spair ss))

(proof)

lemma finite-S: finite S
(proof)

lemma ex-label-retraction: 3. label-wrt CO ¢ A fizespointwise @ CO
(proof)

lemma ex-label-map: . label-wrt CO ¢
(proof )

end

4.7.5 More on the action of the group of automorphisms on
chambers

Recall that we have already verified that W acts transitively on the chamber
system. We now use the labelling of the chamber complex examined in the
previous section to show that this action is simply transitive.

context ThinChamberComplexManyFoldings
begin

lemma fundchamber- W-image-ker:
assumes we W w—C0 = C0
shows w =0

(proof)

lemma fundchamber- W-image-inj-on:
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inj-on (Aw. w—C0) W
(proof)

end

4.7.6 A bijection between the fundamental chamber and the set
of generating automorphisms

Removing a single vertex from the fundamental chamber determines a facet,
a facet in the fundamental chamber determines an adjacent chamber (since
our complex is thin), and a chamber adjacent to the fundamental chamber
determines an automorphism (via some pair of opposed foldings) in our
generating set S. Here we show that this correspondence is bijective.

context ThinChamberComplexManyFoldings
begin

definition fundantivertez :: 'a permutation = 'a
where fundantiverter s = (THE v. v € C0—s‘—C0)

abbreviation fundantipermutation = the-inv-into S fundantivertex

lemma fundantivertex: s€S = fundantivertex s € CO0—s‘— C0
(proof )

lemma fundantivertex-fundchamber-decomp:
s€S = C0 = insert (fundantivertex s) (CONs‘—CO)

{proof)

lemma fundantivertez-unstable:
s€S = s — fundantivertex s # fundantivertezr s

(proof)

lemma fundantivertez-inj-on: inj-on fundantivertexr S

(proof)

lemma fundantivertez-surj-on: fundantivertex S = C0

(proof)

lemma fundantivertez-bij-betw: bij-betw fundantiverter S CO
(proof)

lemma card-S-fundchamber: card S = card CO
(proof)

lemma card-S-chamber:
chamber C = card C = card S

{proof)
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lemma fundantipermutationl:
ve€CO = fundantipermutation v € S

{proof)

end

4.8 Thick chamber complexes

A thick chamber complex is one in which every facet is a facet of at least
three chambers.

locale ThickChamberCompler = ChamberComplexr X
for X :: 'a set set
+ assumes thick:
chamber € = 2<1C =
dD E. DeX—{C} N z<D N EeX—{C,D} N 2<E
begin

definition some-third-chamber :: 'a set = 'a set = 'a set = 'a set
where some-third-chamber C D z = SOME E. E€X—{C,D} A z<E

lemma facet-ex-third-chamber: chamber C = 2<1C = I EcX—{C,D}. 2<E
{proof)

lemma some-third-chamberD-facet:
chamber C — 2<1C = z < some-third-chamber C' D z

{proof)

lemma some-third-chamberD-simplex:
chamber C = 2<1C = some-third-chamber C' D z € X

(proof)

lemma some-third-chamberD-adj:
chamber C = 2<1C = C ~ some-third-chamber C D z

(proof)

lemma chamber-some-third-chamber:
chamber C = z<1C = chamber (some-third-chamber C D z)

(proof )
lemma some-third-chamberD-ne:

assumes chamber C z<1C
shows some-third-chamber C D z # C some-third-chamber C' D z # D

(proof)
end

end
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5 Coxeter systems and complexes

A Coxeter system is a group that affords a presentation, where each gener-
ator is of order two, and each relator is an alternating word of even length
in two generators.

theory Coxeter
imports Chamber

begin

5.1 Coxeter-like systems

First we work in a group generated by elements of order two.

5.1.1 Locale definition and basic facts

locale PreCoxeterSystem =

fixes S :: 'w::group-add set

assumes genset-order2: s€S = add-order s = 2
begin

abbreviation W = (5)

abbreviation S-length = word-length S
abbreviation S-reduced-for = reduced-word-for S
abbreviation S-reduced = reduced-word S
abbreviation relfun = As t. add-order (s+t)

lemma no-zero-genset: 0¢S
(proof)

lemma genset-order2-add: s€S§ — s + s =0
(proof)

lemmas genset-uminus = minus-unique[OF genset-order2-add)

lemma relfun-S: s€S = relfun s s = 1
(proof)

lemma relfun-eql: [ s€S; relfun st = 1 | = t=s
(proof)

lemma S-relator-list: s€S = pair-relator-list s s = [s,s]
(proof)

lemma S-sym: T C S = uminus ‘T C T
(proof)

lemmas special-subgroup-eq-sum-list =
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genby-sym-eq-sum-lists|OF S-sym)
lemmas genby-S-reduced-word-for-arg-min =
reduced-word-for-genby-sym-arg-min| OF S-sym]
lemmas in-genby-S-reduced-letter-set =
in-genby-sym-imp-in-reduced-letter-set| OF S-sym)|

end

5.1.2 Special cosets

From a Coxeter system we will eventually construct an associated chamber
complex. To do so, we will consider the collection of special cosets: left
cosets of subgroups generated by subsets of the generating set S. This col-
lection forms a poset under the supset relation that, under a certain extra
assumption, can be used to form a simplicial complex whose poset of sim-
plices is isomorphic to this poset of special cosets. In the literature, groups
generated by subsets of S are often referred to as parabolic subgroups of W,
and their cosets as parabolic cosets, but following Garrett [2] we have opted
for the names special subgroups and special cosets.

context PreCozeterSystem
begin

definition special-cosets :: 'w set set
where special-cosets = (| T€Pow S. ((JweW. { w +o0 (T) }))
abbreviation P = special-cosets

lemma special-cosetsl: T€Pow S = weW = w +o (T) € P
(proof)

lemma special-coset-singleton: we W = {w}eP
(proof)

lemma special-coset-nempty: XeP — X # {}
(proof)

lemma special-subgroup-special-coset: T€Pow S = (T) € P
(proof)

lemma special-cosets-lcoset-closed: we W —> XeP — w +0 X € P
(proof)

lemma special-cosets-lcoset-shift: we W = ((+o0) w) ‘P =P
(proof)

lemma special-cosets-has-bottom: supset-has-bottom P

(proof)

lemma special-cosets-bottom: supset-bottom P = W
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(proof)

end

5.1.3 Transfer from the free group over generators

We form a set of relators and show that it and S form a Group WithGener-
atorsRelators. The associated quotient group G maps surjectively onto W.
In the CozeterSystem locale below, this correspondence will be assumed to
be injective as well.

context PreCoxeterSystem
begin

abbreviation R :: ‘w list set where R = (|Js€S. |Jt€S. {pair-relator-list s t})
abbreviation P = map (charpair S) ‘ R
abbreviation P’ = Group WithGeneratorsRelators.P' S R
abbreviation @ = Group WithGeneratorsRelators.QQ S R
abbreviation G = Group WithGeneratorsRelators.G S R
abbreviation relator-frecword =
Group WithGeneratorsRelators.relator-freeword S
abbreviation pair-relator-freeword :: 'w = "w = 'w freeword
where pair-relator-freeword s t = Abs-freelist (pair-relator-list s t)

abbreviation freeliftid = freeword-funlift id

abbreviation induced-id :: 'w freeword set permutation = 'w
where induced-id = Group WithGeneratorsRelators.induced-id S R

lemma S-relator-freeword: s€S = pair-relator-freeword s s = s[+]s
(proof)

lemma map-charpair-map-pairtrue-R:
s€8 = te§ =
map (charpair S) (pair-relator-list s t) = map pairtrue (pair-relator-list s t)

{proof)

lemma relator-freeword:
s€S = teS =
pair-relator-freeword s t = relator-freeword (pair-relator-list s t)
(proof)

lemma relator-freewords: Abs-freelist ¢ R = P’
(proof )

lemma Group WithGeneratorsRelators-S-R: Group WithGeneratorsRelators S R
(proof)

lemmas GroupByPresentation-S-P =
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Group WithGeneratorsRelators. Group ByPresentation-S-P|
OF Group WithGeneratorsRelators-S-R

]

lemmas Q-FreeS = GroupByPresentation.Q-FreeS[OF GroupByPresentation-S-P]

lemma relator-freeword-Q: s€ S =—> teS = pair-relator-freeword s t € @
(proof)

lemmas P’-FreeS =
Group WithGeneratorsRelators. P'-FreeS]|
OF Group WithGeneratorsRelators-S-R

]

lemmas GroupByPresentationInducedFun-S-P-id =
Group WithGeneratorsRelators. Group ByPresentationInduced Fun-S-P-id|
OF Group WithGeneratorsRelators-S-R

]

lemma rconj-relator-freeword:
[ s€S; teS; proper-signed-list xs; fst  set xs C S | =
rconjby (Abs-freeword xs) (pair-relator-freeword s t) € Q
(proof )

lemma [conjby-Abs-freelist-relator-freeword:
[ s€S; teS; xselists S | =
leongby (Abs-freelist xs) (pair-relator-freeword s t) € Q
(proof)

lemma Abs-freelist-rev-append-alternating-list-in-Q:
assumes s€S teS
shows Abs-freelist (rev (alternating-list n s t) Q alternating-list n s t) € Q

(proof)

lemma Abs-freeword-freelist-uminus-add-in-Q:

proper-signed-list xs = fst ‘ set s C § —

— Abs-freelistfst xs + Abs-freeword xs € Q
(proof)

lemma Q-freelist-freeword’:
[ proper-signed-list xs; fst ‘ set xs C S; Abs-freelistfst xs € Q | =
Abs-freeword s € Q
(proof)

lemma Q-freelist-freeword:
¢ € FreeGroup S = Abs-freelist (map fst (freeword ¢)) € Q@ = ¢ € Q
(proof )

Here we show that the lift of the identity map to the free group on § is
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really just summation.

lemma freeliftid- Abs-freeword-conv-sum-list:
proper-signed-list s = fst ‘ set s C § =
freeliftid (Abs-freeword xs) = sum-list (map fst xs)
(proof)

end

5.1.4 Words in generators containing alternating subwords

Besides cancelling subwords equal to relators, the primary algebraic manip-
ulation in seeking to reduce a word in generators in a Coxeter system is to
reverse the order of alternating subwords of half the length of the associated
relator, in order to create adjacent repeated letters that can be cancelled.
Here we detail the mechanics of such manipulations.

context PreCozeterSystem
begin

lemma sum-list-pair-relator-halflist-flip:
s€8 = te§ =
sum-list (pair-relator-halflist s t) = sum-list (pair-relator-halflist t s)
{proof )

definition flip-altsublist-adjacent :: 'w list = 'w list = bool
where flip-altsublist-adjacent ss ts
= dst as bs. ss = as Q (pair-relator-halflist s t) @ bs A
ts = as @ (pair-relator-halflist t s) Q bs
abbreviation flip-altsublist-chain = binrelchain flip-altsublist-adjacent

lemma flip-altsublist-adjacentl:
ss = as @ (pair-relator-halflist s t) Q bs =
ts = as Q (pair-relator-halflist t s) Q bs =
flip-altsublist-adjacent ss ts

{proof)

lemma flip-altsublist-adjacent-Cons-grow:
assumes flip-altsublist-adjacent ss ts
shows  flip-altsublist-adjacent (a#ss) (a#ts)
(proof)

lemma flip-altsublist-chain-map-Cons-grow:
flip-altsublist-chain tss = flip-altsublist-chain (map ((#) t) tss)
(proof)

lemma flip-altsublist-adjacent-refl:
ss # [| = ss€lists S = flip-altsublist-adjacent ss ss

(proof)
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lemma flip-altsublist-adjacent-sym:
flip-altsublist-adjacent ss ts = flip-altsublist-adjacent ts ss
(proof)

lemma rev-flip-altsublist-chain:
flip-altsublist-chain xss = flip-altsublist-chain (rev zss)
(proof)

lemma flip-altsublist-adjacent-set:
assumes ss€lists S flip-altsublist-adjacent ss ts
shows set ts = set ss

(proof)

lemma flip-altsublist-adjacent-set-ball:
V ss€lists S. V ts. flip-altsublist-adjacent ss ts — set ts = set ss

(proof)

lemma flip-altsublist-adjacent-lists:
ss € lists S = flip-altsublist-adjacent ss ts = ts € lists S

{proof)

lemma flip-altsublist-adjacent-lists-ball:
V ss€lists S. V ts. flip-altsublist-adjacent ss ts — ts € lists S

{proof)

lemma flip-altsublist-chain-lists:
ss € lists S = flip-altsublist-chain (ss#wxssQts]) = ts € lists S
{proof )

lemmas flip-altsublist-chain-funcong-Cons-snoc =
binrelchain-setfuncong-Cons-snoc|OF flip-altsublist-adjacent-lists-ball]

lemmas flip-altsublist-chain-set =
flip-altsublist-chain-funcong-Cons-snoc|
OF flip-altsublist-adjacent-set-ball

]

lemma flip-altsublist-adjacent-length:
flip-altsublist-adjacent ss ts = length ts = length ss

{proof)

lemmas flip-altsublist-chain-length =
binrelchain-funcong-Cons-snoc|
of flip-altsublist-adjacent length, OF flip-altsublist-adjacent-length, simplified

]

lemma flip-altsublist-adjacent-sum-list:
assumes ss € lists S flip-altsublist-adjacent ss ts
shows sum-list ts = sum-list ss
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(proof)

lemma flip-altsublist-adjacent-sum-list-ball:
V ss€lists S. V ts. flip-altsublist-adjacent ss ts — sum-list ts = sum-list ss

(proof)

lemma S-reduced-forl-flip-altsublist-adjacent:
S-reduced-for w ss = flip-altsublist-adjacent ss ts => S-reduced-for w ts

{proof)

lemma flip-altsublist-adjacent-in-Q":
fixes asbsst
defines zs: s = as Q pair-relator-halflist s t Q bs
and ys: ys = as @ pair-relator-halflist t s @ bs
assumes Azxs: Abs-freelist s € @Q
shows Abs-freelist ys € Q

(proof)

lemma flip-altsublist-adjacent-in-Q:
Abs-freelist ss € Q = flip-altsublist-adjacent ss ts => Abs-freelist ts € Q
(proof )

lemma flip-altsublist-chain-G-in-Q:
[ Abs-freelist ss € Q; flip-altsublist-chain (ss#xssQ[ts]) | = Abs-freelist ts € Q
(proof)

lemma alternating-S-no-flip:
assumes sc€SteSn > 0n < relfun stV relfun st = 0
shows sum-list (alternating-list n s t) # sum-list (alternating-list n t s)

(proof)

lemma exchange-alternating-not-in-alternating:
assumes n > 2n < relfun st V relfun st = 0
S-reduced-for w (alternating-list n s t Q cs)
alternating-list n s t @Q cs = zsQ[z]Qys S-reduced-for w (t#xsQys)
shows length xs > n

(proof)

end

5.1.5 Preliminary facts on the word problem

The word problem seeks criteria for determining whether two words over
the generator set represent the same element in W. Here we establish one
direction of the word problem, as well as a preliminary step toward the other
direction.

context PreCozeterSystem
begin

125



lemmas flip-altsublist-chain-sum-list =

flip-altsublist-chain-funcong-Cons-snoc| OF flip-altsublist-adjacent-sum-list-ball]
— This lemma represents one direction in the word problem: if a word in generators
can be transformed into another by a sequence of manipulations, each of which
consists of replacing a half-relator subword by its reversal, then the two words sum
to the same element of W.

lemma reduced-word-problem-eq-hd-step:
assumes step: Ny ss ts. |
S-length y < S-length w; y#0; S-reduced-for y ss; S-reduced-for y ts
| = Fass. flip-altsublist-chain (ss # zss Q [ts])
and set-up: S-reduced-for w (a#ss) S-reduced-for w (aftts)
shows Juss. flip-altsublist-chain ((aftss) # zss Q [a#ts])
(proof)

end

5.1.6 Preliminary facts related to the deletion condition

The deletion condition states that in a Coxeter system, every non-reduced
word in the generating set can be shortened to an equivalent word by delet-
ing some particular pair of letters. This condition is both necessary and
sufficient for a group generated by elements of order two to be a Coxeter
system. Here we establish some facts related to the deletion condition that
are true in any group generated by elements of order two.

context PreCozeterSystem
begin

abbreviation H = (|JweW. lconjby w ¢ S) — the set of reflections
abbreviation lift-signed-lconjperm = freeword-funlift signed-lconjpermutation

lemma lconjseq-reflections: ss€lists S = set (lcongjseq ss) € H
(proof )

lemma deletion”:
ss € lists S = — distinct (lconjseq ss) =
Ja b as bscs. ss = as Q [a] Q bs Q [b] Q cs A
sum-list ss = sum-list (asQbsQcs)

(proof)
lemma S-reduced-imp-distinct-lconjseq':

assumes ss € lists S — distinct (Iconjseq ss)
shows — S-reduced ss

(proof)

lemma S-reduced-imp-distinct-lconjseq: S-reduced ss = distinct (lconjseq ss)
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{proof)

lemma permutation-lift-signed-lconjperm-eq-signed-list-lconjaction:
proper-signed-list xs = fst ‘ set zs C § =
permutation (lift-signed-lconjperm (Abs-freeword zs)) =
signed-list-lconjaction (map fst xs)
(proof)

lemma permutation-lift-signed-lconjperm-eq-signed-list-lconjaction:
z € FreeGroup S —
permutation (lift-signed-lconjperm x) =
signed-list-lconjaction (map fst (freeword x))
(proof)

lemma even-count-lconjseq-rev-relator:
s€S = t€S = even (count-list (lconjseq (rev (pair-relator-list s t))) x)
(proof)

lemma GroupByPresentationInduced Fun-S-R-signed-lconjaction:
GroupByPresentationInducedFun S P signed-lconjpermutation

(proof)

end

5.2 Coxeter-like systems with deletion

Here we add the so-called deletion condition as an assumption, and explore
its consequences.

5.2.1 Locale definition

locale PreCoxeterSystem WithDeletion = PreCoxeterSystem S
for S :: 'w::group-add set
+ assumes deletion:
ss € lists S = — reduced-word S ss =
Jabasbscs. ss=asQ[a] Qbs Q [b] Q cs A
sum-list ss = sum-list (asQbsQcs)

5.2.2 Consequences of the deletion condition
context PreCozeterSystem WithDeletion
begin

lemma deletion-reduce:
ss € lists S = Jts. ts € ssubseqs ss N reduced-words-for S (sum-list ss)

(proof)

lemma deletion-reduce”:
ss € lists S = tsereduced-words-for S (sum-list ss). set ts C set ss
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{proof)

end

5.2.3 The exchange condition

The exchange condition states that, given a reduced word in the generators,
if prepending a letter to the word does not remain reduced, then the new
word can be shortened to a word equivalent to the original one by deleting
some letter other than the prepended one. Thus, one able to exchange some
letter for the addition of a desired letter at the beginning of a word, without
changing the elemented represented.

context PreCozeterSystem WithDeletion
begin

lemma exchange:
assumes s€S S-reduced-for w ss = S-reduced (s#ss)
shows 3t as bs. ss = asQt#bs A reduced-word-for S w (s#asQbs)

(proof)

lemma reduced-head-imp-exchange:
assumes reduced-word-for S w (s#tas) reduced-word-for S w cs
shows Ja ds es. ¢cs = dsQ[a]Qes A reduced-word-for S w (s#dsQes)

(proof)

end

5.2.4 More on words in generators containing alternating sub-
words

Here we explore more of the mechanics of manipulating words over S that
contain alternating subwords, in preparation of the word problem.

context PreCozeterSystem WithDeletion
begin

lemma two-reduced-heads-imp-reduced-alt-step:
assumes s#£t reduced-word-for S w (t#bs) n < relfun s t V relfun st = 0
reduced-word-for S w (alternating-list n s t Q c¢s)
shows 3ds. reduced-word-for S w (alternating-list (Suc n) t s @ ds)

(proof)

lemma two-reduced-heads-imp-reduced-alt’:
assumes s#£t reduced-word-for S w (s#as) reduced-word-for S w (t#bs)
shows n < relfun s t V relfun s t = 0 = (Jes.
reduced-word-for S w (alternating-list n s t Q cs) V
reduced-word-for S w (alternating-list n t s Q cs)

)
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(proof)

lemma two-reduced-heads-imp-reduced-alt:
assumes s#t reduced-word-for S w (s#tas) reduced-word-for S w (t#bs)
shows 3 c¢s. reduced-word-for S w (pair-relator-halflist s t Q cs)

(proof)

lemma two-reduced-heads-imp-nzero-relfun:
assumes s#£t reduced-word-for S w (s#tas) reduced-word-for S w (t#bs)
shows relfun st # 0

(proof)

end

5.2.5 The word problem

Here we establish the other direction of the word problem for reduced words.

context PreCozeterSystem WithDeletion
begin

lemma reduced-word-problem-ConsCons-step:
assumes Ay ss ts. [ S-length y < S-length w; y#0; reduced-word-for S y ss;
reduced-word-for S y ts | = Juss. flip-altsublist-chain (ss # xss Q [ts])
reduced-word-for S w (a#as) reduced-word-for S w (b#bs) a#£b
shows Juss. flip-altsublist-chain ((a#as)#xssQ[bF#bs])
(proof)

lemma reduced-word-problem:
[ w#0; reduced-word-for S w ss; reduced-word-for S w ts | =
Jass. flip-altsublist-chain (ss#xssQlts])
(proof)

lemma reduced-word-letter-set:
assumes S-reduced-for w ss
shows reduced-letter-set S w = set ss

(proof)

end

5.2.6 Special subgroups and cosets

Recall that special subgroups are those generated by subsets of the generat-
ing set S. Here we show that the presence of the deletion condition guarantees
that the collection of special subgroups and their left cosets forms a poset
under reverse inclusion that satisfies the necessary properties to ensure that
the poset of simplices in the associated simplicial complex is isomorphic to
this poset of special cosets.

context PreCozeterSystem WithDeletion
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begin

lemma special-subgroup-int-S:
assumes T € Pow S
shows (T)'NS=T
(proof)

lemma special-subgroup-inj: inj-on genby (Pow S)
(proof )

lemma special-subgroup-genby-subset-ordering-iso:
subset-ordering-iso (Pow S) genby

(proof)

lemmas special-subgroup-genby-rev-mono
= OrderingSetlso.rev-ordsetmap| OF special-subgroup-genby-subset-ordering-iso]

lemma special-subgroup-word-length:
assumes T€Pow S we(T)
shows word-length T w = S-length w

(proof)

lemma S-subset-reduced-imp-S-reduced:
TePow S = reduced-word T ts = S-reduced ts

{proof)

lemma smallest-genby: T€Pow S = we(T) = reduced-letter-set S w C T
{proof )

lemma special-cosets-below-in:

assumes we W T € Pow S

shows P.O(w +o (T)) = (URE(Pow S).2T. {w 40 (R)})
(proof)

lemmas special-coset-inj
= comp-inj-on|OF special-subgroup-inj, OF inj-inj-on, OF lcoset-inj-on]

lemma special-coset-eq-imp-eq-gensets:
[ T1€Pow S; T2€Pow S; wl +o (T1) = w2 40 (T2) | = T1=T2
(proof )

lemma special-subgroup-special-coset-subset-ordering-iso:
subset-ordering-iso (genby ‘ Pow S) ((+0) w)
(proof)

lemma special-coset-subset-ordering-iso:
subset-ordering-iso (Pow S) ((+0) w o genby)
(proof)
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lemmas special-coset-subset-rev-mono =
OrderingSetiso.rev-ordsetmap| OF special-coset-subset-ordering-iso]

lemma special-coset-below-in-subset-ordering-iso:
subset-ordering-iso ((Pow §).2T) ((+0) w o genby)
(proof)

lemma special-coset-below-in-supset-ordering-iso:
OrderingSetIso (2) (D) (2) (D) ((Pow §).2T) ((+0) w o genby)
(proof)

lemma special-coset-pseudominimals:

assumes supset-pseudominimal-in P X

shows FJws. weW A s€S A X =w+o (S—{s})
(proof)

lemma special-coset-pseudominimal-in-below-in:
assumes we W Te€Pow S supset-pseudominimal-in (P.O(w +o (T))) X
shows JIs€S—-T. X = w +o (S—{s})

(proof)

lemma exclude-one-is-pseudominimal:

assumes we W teS

shows supset-pseudominimal-in P (w +o (S—{t}))
(proof)

lemma exclude-one-is-pseudominimal-in-below-in:
[ weW; TePow S; s€S—T | =
supset-pseudominimal-in (P.2(w +o (T))) (w +o (S—{s}))
(proof)

lemma glb-special-subset-coset:
assumes wTT" we WT € PowS T’ € PowS
defines U: U = T U T'U reduced-letter-set S w
shows  supset-glbound-in-of P (T) (w 4o (T")) (U)
(proof)

lemma glb-special-subset-coset-ex:
assumes w€ W T € PowS T’ € Pow S
shows 3 B. supset-glbound-in-of P (T) (w +o (T")) B
(proof )

lemma special-cosets-have-glbs:
assumes XeP YeP
shows 3 B. supset-glbound-in-of P X Y B

(proof)

end

131



5.3 Coxeter systems

5.3.1 Locale definition and transfer from the associated free group

Now we consider groups generated by elements of order two with an addi-
tional assumption to ensure that the natural correspondence between the
group W and the group presentation on the generating set S and its rela-
tions is bijective. Below, such groups will be shown to satisfy the deletion
condition.

locale CoxeterSystem = PreCoxeterSystem S
for S i "wigroup-add set
+ assumes induced-id-inj: inj-on induced-id G

lemma (in PreCozeterSystem) CozeterSysteml:
assumes Ag. g€ G = induced-id g = 0 = g=0
shows CozeterSystem S

(proof)

context CozeterSystem
begin

abbreviation inv-induced-id = GroupPresentation.inv-induced-id S R

lemma GroupPresentation-S-R: GroupPresentation S R

{proof)

lemmas inv-induced-id-sum-list =
GroupPresentation.inv-induced-id-sum-list-S[OF GroupPresentation-S-R)]

end

5.3.2 The deletion condition is necessary

Call an element of W a reflection if it is a conjugate of a generating element
(and so is also of order two). Here we use the action of words over S on such
reflections to show that Coxeter systems satisfy the deletion condition.

context CozeterSystem

begin

abbreviation induced-signed-lconjperm =
GroupByPresentationInduced Fun.induced-hom S P signed-lconjpermutation

definition flipped-reflections :: 'w = 'w set
where flipped-reflections w =
{teH. induced-signed-lconjperm (inv-induced-id (—w)) —
(t,True) = (rconjby w t, False)}

lemma induced-signed-lconjperm-inv-induced-id-sum-list:
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ss € lists S = induced-signed-lconjperm (inv-induced-id (sum-list ss)) =
sum-list (map signed-lconjpermutation ss)
{proof )

lemma induced-signed-eq-lconjpermutation:
ss € lists S =
permutation (induced-signed-lconjperm (inv-induced-id (sum-list ss))) =
stgned-list-lconjaction ss
(proof)

lemma flipped-reflections-odd-lconjseq:

assumes ss€lists S

shows flipped-reflections (sum-list ss) = {t€H. odd (count-list (lconjseq ss) t)}
(proof)

lemma flipped-reflections-in-lconjseq:
ss€lists S = flipped-reflections (sum-list ss) C set (lconjseq ss)
(proof )

lemma flipped-reflections-distinct-lconjseq-eq-lconjseq:
assumes ss€lists S distinct (lcongseq ss)
shows flipped-reflections (sum-list ss) = set (lconjseq ss)
(proof)

lemma flipped-reflections-reduced-eq-lconjseq:
S-reduced ss = flipped-reflections (sum-list ss) = set (lconjseq ss)
(proof )

lemma card-flipped-reflections:
assumes we W
shows card (flipped-reflections w) = S-length w

(proof)

end

sublocale CozxeterSystem < PreCoxeterSystem WithDeletion

(proof)

5.3.3 The deletion condition is sufficient

Now we come full circle and show that a pair consisting of a group and
a generating set of order-two elements that satisfies the deletion condition
affords a presentation that makes it a Coxeter system.

context PreCozeterSystem WithDeletion
begin

lemma reducible-by-flipping:

ss € lists S = — S-reduced ss =
Jass as t bs. flip-altsublist-chain (ss # zss Q [asQ]t,t]|Qbs])
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(proof)

lemma freeliftid-kernel”:
ss € lists S = sum-list ss = 0 = Abs-freelist ss € Q

(proof)

lemma freeliftid-kernel:
assumes ¢ € FreeGroup S freeliftid ¢ = 0
shows c€Q

{(proof)

lemma induced-id-kernel:
¢ € FreeGroup S = induced-id ([ FreeGroup S|c|Q]) = 0 = c€Q

{proof)

theorem CozeterSystem: CozxeterSystem S

(proof)

end

5.3.4 The Coxeter system associated to a thin chamber complex
with many foldings

We now show that the fundamental automorphisms in a thin chamber com-
plex with many foldings satisfy the deletion condition, and hence form a
Coxeter system.

context ThinChamberComplexManyFoldings
begin

lemma not-reduced-word-not-min-gallery:
assumes ss € lists S — reduced-word S ss
shows - min-gallery (map (Aw. w—C0O) (sums ss))

(proof)

lemma S-list-not-min-gallery-double-split:
assumes ss € lists S ss#[] - min-gallery (map (Aw. w—CO) (sums ss))
shows
dfgassbstcs.
(f,9)€foldpairs N
sum-list as ‘— CO € fHC A
sum-list (asQ[s]) ‘= CO € g=C A
sum-list (asQ[s]@bs) ‘— CO € g-C A
sum-list (asQ[s]@bsQ[t]) — CO € fFC A
ss = asQ[s]QbsQ[t]Qcs
(proof)

lemma fold-end-sum-chain-fg:
fixes fg: ‘a="a
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defines s : s = induced-automorph f g

assumes fg : (f,g) € foldpairs

and as : as € lists S

and s @ seS

and  sep: sum-list as ‘— CO € fFC sum-list (asQ[s]) ‘— CO € g-C

shows bs €lists § =

s ¢ sum-list (asQ[s]@Qbs) ‘— CO = sum-list (asQbs) ‘— CO

(proof)

lemma fold-end-sum-chain-gf:
fixes fg: ‘a="a
defines s = induced-automorph f g
assumes fg : (f,9) € foldpairs
and as € lists S s€S bs €lists S
sum-list as ‘— C0 € g-C
sum-list (asQ[s]) ‘— CO € fHC
shows s ‘ sum-list (asQ[s]@Qbs) ‘— CO = sum-list (asQbs) ‘— CO
(proof)

lemma fold-middle-sum-chain:
assumes fg : (f,g9) € foldpairs
and S : as € lists S s€8 bs € lists S teS cs €lists S
and sep: sum-list as ‘— CO € fr-C
sum-list (asQ[s]) ‘— CO € gHC
sum-list (asQ[s]@bs) ‘— CO € g-C sum-list (asQ[s|@bsQ[t]) ‘— CO
€ frC
shows sum-list (asQ[s]@QbsQ[t|Qcs) ‘— CO = sum-list (as@QbsQcs) ‘— CO
(proof)

lemma S-list-not-min-gallery-deletion:
fixes ss :: 'a permutation list
defines w : w = sum-list ss
assumes ss: ss€lists S ss#£[] - min-gallery (map (Aw. w—CO) (sums ss))
shows Ja b as bs cs. ss = asQ[a]QbsQ[b]Qcs A w = sum-list (asQbsQcs)

(proof)

lemma deletion:
ss € lists S = — reduced-word S ss =
Ja b as bs cs. ss = asQ[a]QbsQ[b]Qcs A sum-list ss = sum-list (asQbsQcs)

{proof)

lemma PreCozeterSystem WithDeletion: PreCoxeterSystem WithDeletion S
(proof)

lemma CozxeterSystem: CozeterSystem S
(proof )

end

135



5.4 Coxeter complexes

5.4.1 Locale and complex definitions

Now we add in the assumption that the generating set is finite, and construct
the associated Coxeter complex from the poset of special cosets.

locale CoxeterComplex = CoxeterSystem S
for S :: 'w::group-add set

+ assumes finite-genset: finite S

begin

definition TheComplex :: 'w set set set
where TheComplex = ordering. PosetComplex (2) (D) P
abbreviation ¥ = TheComplex

end

5.4.2 As a simplicial complex

Here we record the fact that the Coxeter complex associated to a Coxeter
system is a simplicial complex, and note that the poset of special cosets is
complex-like. This last fact allows us to reason about the complex by rea-
soning about the poset, via the poset isomorphism ComplexLikePoset.smap.

context CoxeterComplex
begin

lemma simplez-like-special-cosets:
assumes X€P
shows supset-simplex-like (P.2X)
(proof)

lemma SimplicialComplex-3: SimplicialComplex 3
(proof)

lemma ComplexLikePoset-special-cosets: ComplexLikePoset (2) (D) P
(proof)

abbreviation smap = ordering.poset-simplex-map (2) (D) P
lemmas smap-def = ordering.poset-simplez-map-def[OF supset-poset, of P|

lemma ordsetmap-smap: | XeP; YEP; XDV | = smap X C smap Y
(proof )

lemma rev-ordsetmap-smap: | XeP; YEP; smap X C smap V| = X2V

(proof)

lemma smap-onto-PosetComplex: smap ‘P = X
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(proof)
lemmas simplices-conv-special-cosets = smap-onto-PosetComplex| THEN sym)|

lemma smap-into-PosetCompler: XeP —> smap X € X
(proof)

lemma smap-pseudominimal:
weW = s€§ = smap (w +o0 (S—{s})) = {w +o (S—{s})}
(proof)

lemma exclude-one-notin-smap-singleton:
s€S = w 4o (S—{s}) ¢ smap (w +o ({s}))
(proof)

lemma mazsimp-vertices: we W = s€S = w +o (S—{s}) € smap {w}
(proof)

lemma mazsimp-singleton:
assumes we W
shows  SimplicialComplex.mazsimp ¥ (smap {w})

(proof)

lemma mazsimp-is-singleton:
assumes SimplicialComplex.mazxsimp ¥ x
shows ZFJweW. smap {w} ==z

(proof)

lemma mazsimp-vertez-conuv-special-coset:
weW = X € smap {w} = Fs€S. X = w 40 (S—{s})
(proof)

lemma vertices: we W = s€S = w 4o (S—{s}) e UZ
{proof)

lemma smap0-conv-special-subgroups:
smap 0 = (As. (S — {s})) “ S
(proof)

lemma S-bij-betw-chamber0: bij-betw (As. (S—{s})) S (smap 0)
{proof)

lemma smap-singleton-conv- W-image:
weW = smap {w} = ((+0) w)  (smap 0)
(proof)

lemma W-lcoset-bij-betw-singletons:

assumes we W
shows  bij-betw ((+0) w) (smap 0) (smap {w})
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{proof)

lemma facets:
assumes we W s€S
shows smap (w +o ({s})) < smap {w}

(proof)

lemma facets": we W = s€S = smap {w,w+s} < smap {w}
{proof)

lemma adjacent: we W = s€S = smap {w+s} ~ smap {w}
{proof)

lemma singleton-adjacent-0: s€S = smap {s} ~ smap 0

(proof)

end

5.4.3 As a chamber complex

Now we verify that a Coxeter complex is a chamber complex.

context CozeterComplex
begin

abbreviation chamber = SimplicialComplex.maxsimp %
abbreviation gallery = SimplicialComplex.mazsimpchain X

lemmas chamber-singleton = mazxsimp-singleton

lemmas chamber-vertez-conv-special-coset = mazsimp-vertex-conv-special-coset
lemmas chamber-vertices = mazsimp-vertices

lemmas chamber-is-singleton = maxsimp-is-singleton

lemmas faces = SimplicialComplex.faces [OF SimplicialComplex-X]
lemmas gallery-def = SimplicialComplex.mazsimpchain-def [OF SimplicialCom-
plex-X]
lemmas gallery-rev = SimplicialComplex.mazsimpchain-rev [OF SimplicialCom-
plez-Y]

lemmas chamberD-simpler =
SimplicialComplex.mazsimpD-simplex| OF SimplicialComplex-X]
lemmas gallery-CConsl =
Simplicial Complex.mazsimpchain-CConsI[OF SimplicialComplex-X)

lemmas gallery-overlap-join =
SimplicialComplex.mazsimpchain-overlap-join| OF Simplicial Complex-X]

lemma word-gallery-to-0:
ss # [| = ss€ lists S = Jus. gallery (smap {sum-list ss} # xs @ [smap 0])

(proof)
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lemma gallery-to-0:
assumes we W w#0
shows Jus. gallery (smap {w} # zs Q [smap 0])

(proof)

lemma ChamberComplex-3: ChamberCompler %
(proof)

lemma card-chamber: chamber x = card x = card S
(proof )

lemma vertex-conv-special-coset:
XeUY = FJws. weW A s€S A X =w+o (S—{s})

(proof)

end

5.4.4 The Coxeter complex associated to a thin chamber complex
with many foldings

Having previously verified that the fundamental automorphisms in a thin
chamber complex with many foldings form a Coxeter system, we now record
the existence of a chamber complex isomorphism onto the associated Coxeter
complex.

context ThinChamberComplexManyFoldings
begin

lemma CoxeterCompler: CoxeterComplex S

(proof)

abbreviation ¥ = CoxeterComplex. TheComplex S

lemma S-list-not-min-gallery-not-reduced:
assumes ss#£[| = min-gallery (map (Aw. w*—CO) (sums ss))
shows — reduced-word S ss

(proof)

lemma reduced-S-list-min-gallery:
ss#[] = reduced-word S ss => min-gallery (map (Aw. w'—CO) (sums ss))

(proof )

lemma fundchamber-vertez-stabilizeri:
fixes t
defines v: v = fundantivertex t
assumes tw: teS weW w—v = v
shows w € (S—{t})

(proof)
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lemma fundchamber-vertez-stabilizer2:
assumes s: s€S
defines v: v = fundantivertex s
shows w e (S—{s}) = w—ov=v

(proof)

lemma label-wrt-special-coset!:
assumes label-wrt CO ¢ fizespointwise o CO w0eW s€S
defines v = fundantiverter s
shows {weW. w — ¢ (w0—v) = w0—v} = w0 40 (S—{s})
(proof)

lemma label-wrt-special-coset1’:
assumes label-wrt CO ¢ fizespointwise o CO wO0eW ve CO
defines s = fundantipermutation v
shows {weW. w — ¢ (w0—v) = wl—v} = wl +o (S—{s})
(proof)

lemma label-wrt-special-coset2’:
assumes label-wrt CO ¢ fizespointwise o CO w0eW v € w0‘—C0O
defines s = fundantipermutation (¢ v)
shows {weW.w — ¢ v =0} = wl +o (S—{s})
(proof)

lemma label-stab-map- W-fundchamber-image:
assumes label-wrt CO ¢ fizespointwise ¢ CO w0e W
defines ¢ = Av. {weW. w—(p v) = v}
shows ¢ {(w0‘—C0) = CozxeterComplex.smap S {w0}
(proof)

lemma label-stab-map-chamber-map:
assumes ¢: label-wrt CO ¢ fixespointwise ¢ CO
and C: chamber C
defines ¢: ¢ = Av. {weW. w—(p v) = v}
shows  CoxeterComplex.chamber S (¢ ‘C')
(proof)

lemma label-stab-map-inj-on-vertices:
assumes ¢: label-wrt CO ¢ fixespointwise ¢ CO
defines ¢: ¢ = Av. {weW. w—(¢ v) = v}
shows inj-on ¢ (JX)

(proof )

lemma label-stab-map-surj-on-vertices:
assumes label-wrt CO ¢ fizespointwise @ CO
defines ¢ = Av. {weW. w—(p v) = v}
shows ¢{(UX)=UZ

(proof)
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lemma label-stab-map-bij-betw-vertices:
assumes label-wrt CO ¢ fixespointwise ¢ CO
defines ¢ = Av. {weW. w—(p v) = v}
shows  bij-betw ¢ (UX) (UX)
(proof)

lemma label-stab-map-bij-betw- W-chambers:
assumes label-wrt CO ¢ fizespointwise ¢ CO w0 W
defines ¢ = M. {weW. w—(p v) = v}
shows  bij-betw ¢ (w0‘—CO) (CozeterComplex.smap S {w0})
{proof )

lemma label-stab-map-surj-on-simplices:
assumes @: label-wrt CO ¢ fixespointwise @ CO
defines ¢: ¢ = Av. {weW. w—(p v) = v}
shows Y F X =%

(proof)

lemma label-stab-map-iso-to-coxeter-complex:
assumes label-wrt CO ¢ fixespointwise p CO
defines ¢ = \v. {weW. w—(¢ v) = v}
shows ChamberComplexIsomorphism X X 1
(proof)

lemma ex-iso-to-coxeter-complex’:
F4. ChamberComplexIsomorphism X (CozeterComplex. TheComplex S)

(proof)
lemma ex-iso-to-coxeter-complex:

35::’a permutation set. CoxeterComplex S A
(3v. ChamberComplexIsomorphism X (CoxeterComplex. TheComplex S) 1)

{proof)

end

end

6 Buildings

In this section we collect the axioms for a (thick) building in a locale, and
prove that apartments in a building are uniformly Coxeter.

theory Building
imports Cozeter

begin
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6.1 Apartment systems

First we describe and explore the basic structure of apartment systems. An
apartment system is a collection of isomorphic thin chamber subcomplexes
with certain intersection properties.

6.1.1 Locale and basic facts

locale ChamberComplexWithApartmentSystem = ChamberComplex X
for X ::'a set set
+ fixes A :: 'a set set set

assumes subcomplexes i Ae A = ChamberSubcomplex A
and thincomplezes . Ae A = ThinChamberComplex A
and  no-trivial-apartments: {}¢.A

and containtwo :

chamber C = chamber D = 3 Ac A. C€A N DeA
and intersecttwo
[ AcA; A’eA; ze ANA’; CeANA’; chamber C | =
3f. ChamberComplexIsomorphism A A’ f A fizespointwise f x A
fizxespointwise f C

begin

lemmas complexes = ChamberSubcomplexD-complex [OF subcomplexes]
lemmas apartment-simplices = ChamberSubcomplexD-sub  [OF subcomplexes]
lemmas chamber-in-apartment = chamber-in-subcomplex  [OF subcomplexes]
lemmas apartment-chamber = subcomplex-chamber [OF subcomplezes]
lemmas gallery-in-apartment = gallery-in-subcomplex [OF subcomplezes|
lemmas apartment-gallery = subcomplez-gallery [OF subcomplezes)

lemmas min-gallery-in-apartment = min-gallery-in-subcomplex [OF subcomplezes)

lemmas apartment-simplezx-in-mazxr =
ChamberComplex.simplez-in-max [OF complexes|

lemmas apartment-faces =
ChamberComplez.faces [OF complezes)

lemmas apartment-chamber-system-def =
ChamberComplex.chamber-system-def |[OF complexes]

lemmas apartment-chamberD-simplexr =
ChamberComplex.chamberD-simplex [OF complezes)

lemmas apartment-chamber-distance-def =
ChamberComplex.chamber-distance-def [OF complezes)

lemmas apartment-galleryD-chamber =
ChamberComplex.galleryD-chamber [OF complexes]

lemmas apartment-gallery-least-length =
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ChamberComplex.gallery-least-length [OF complezes]

lemmas apartment-min-galleryD-gallery =
ChamberComplex.min-galleryD-gallery [OF complexes]

lemmas apartment-min-gallery-pgallery =
ChamberComplex.min-gallery-pgallery [OF complezes)

lemmas apartment-trivial-morphism =
ChamberComplez.trivial-morphism [OF complezes)

lemmas apartment-chamber-system-simplices =
ChamberComplex.chamber-system-simplices [OF complezes]

lemmas apartment-min-gallery-least-length =
ChamberComplex.min-gallery-least-length [OF complezes)

lemmas apartment-vertezx-set-int =
ChamberComplex.vertez-set-int| OF complexes complexes]

lemmas apartment-standard-uniqueness-pgallery-betw =
ThinChamberComplex.standard-uniqueness-pgallery-betw|[ OF thincomplezes]

lemmas apartment-standard-uniqueness =
ThinChamberComplez.standard-uniqueness| OF thincomplezes|

lemmas apartment-standard-uniqueness-isomorphs =
ThinChamberComplex.standard-uniqueness-isomorphs|OF thincomplezes)

abbreviation supapartment C D = (SOME A. AcA N CeA N DeA)

lemma supapartmentD:
assumes CD: chamber C chamber D
defines A : A = supapartment C D
shows AeA CeA DeA

(proof)

lemma iso-fixespointwise-chamber-in-int-apartments:
assumes apartments: A € A A'e€ A
and chamber : chamber C CeANA’

and 180 : ChamberComplexlsomorphism A A’ f fizespointwise f C
shows fizespointwise f (| (ANA’))
(proof)

lemma strong-intersecttwo:
[ AcA; A’eA; chamber C; C € ANA' ]| =
3f. ChamberComplexIsomorphism A A’ f A fizespointwise f (|J (ANA"))
(proof)
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end

6.1.2 Isomorphisms between apartments

By standard uniqueness, the isomorphism between overlapping apartments
guaranteed by the axiom intersecttwo is unique.

context ChamberComplex WithApartmentSystem
begin

lemma exi-apartment-iso:
assumes A€ A A'e A chamber C CeANA’
shows 3!f. ChamberComplexIsomorphism A A’ f A
fizespointwise f ((J (ANA')) A fizespointwise f (—J A)
— The third clause in the conjunction is to facilitate uniqueness.

(proof)

definition the-apartment-iso :: 'a set set = 'a set set = ('a="a)
where the-apartment-iso A A’ =
(THE f. ChamberComplexlsomorphism A A’ f A
fizespointwise f (U (ANA')) A fizespointwise f (—|J A))

lemma the-apartment-isoD:
assumes AeA A'eA chamber C CeANA’
defines [ = the-apartment-iso A A’
shows  ChamberComplexIsomorphism A A’ f fizespointwise f (|J (ANA"))
fizespointwise f (—|J A)
(proof)

lemmas the-apartment-iso-apartment-chamber-map =
ChamberComplexIsomorphism.chamber-map [OF the-apartment-isoD(1)]

lemmas the-apartment-iso-apartment-simplex-map =
ChamberComplexIsomorphism.simplex-map [OF the-apartment-isoD(1)]

lemma the-apartment-iso-chamber-map:
[ AeA; BEA; chamber C; CeANB; chamber D; DEA | =
chamber (the-apartment-iso A B ¢ D)

(proof)

lemma the-apartment-iso-comp:
assumes apartments: AcA A'e A A'e A
and  chamber : chamber C Ce ANANA"
defines f = the-apartment-iso A A’
and ¢ = the-apartment-iso A’ A"
and h = the-apartment-iso A A"
defines gf = restrictl (gof) (I A)
shows h = ¢gf

(proof)
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lemma the-apartment-iso-int-im:
assumes AcA A'e A chamber C CeANA’ xze ANA’
defines [ = the-apartment-iso A A’
shows fo ==z
(proof)

end

6.1.3 Retractions onto apartments

Since the isomorphism between overlapping apartments is the identity on
their intersection, starting with a fixed chamber in a fixed apartment, we
can construct a retraction onto that apartment as follows. Given a vertex
in the complex, that vertex is contained a chamber, and that chamber lies
in a common apartment with the fixed chamber. We then apply to the
vertex the apartment isomorphism from that common apartment to the fixed
apartment. It turns out that the image of the vertex does not depend on the
containing chamber and apartment chosen, and so since the isomorphisms
between apartments used are unique, such a retraction onto an apartment
is canonical.

context ChamberComplex WithApartmentSystem
begin

definition canonical-retraction :: 'a set set = 'a set = (‘a="a)
where canonical-retraction A C =
restrict] (Av. the-apartment-iso (supapartment (supchamber v) C) A v)

Ux)

lemma canonical-retraction-retraction:
assumes A€A chamber C CeA vel A
shows canonical-retraction A C v = v

(proof)

lemma canonical-retraction-simplex-retractionl:
[ A€A; chamber C; CeA; acd | =
fizespointwise (canonical-retraction A C) a

(proof)

lemma canonical-retraction-simplex-retraction2:
[ A€ A; chamber C; CeA; a€A | = canonical-retraction A C ‘a = a

{proof)

lemma canonical-retraction-uniform:
assumes apartments: Ac¢ A BEA
and chambers : chamber C C€ANB
shows  fun-eg-on (canonical-retraction A C) (the-apartment-iso B A) (U B)

(proof)
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lemma canonical-retraction-uniform-im:
[ AeA; BEA; chamber C; C€EANB; z€B | =
canonical-retraction A C ‘ © = the-apartment-iso B A ‘x

(proof)

lemma canonical-retraction-simplex-im:
assumes Ac A chamber C CeA
shows canonical-retraction A CFH X = A

{(proof)

lemma canonical-retraction-vertez-im:
[ AeA; chamber C; CeA | = canonical-retraction A C ‘| JX =JA
(proof )

lemma canonical-retraction:
assumes AeA chamber C Ce€A
shows ChamberComplezRetraction X (canonical-retraction A C')

(proof)

lemma canonical-retraction-comp-endomorphism:
[ AcA; BEA; chamber C; chamber D; C€A; DEB | =
ChamberComplexEndomorphism X
(canonical-retraction A C o canonical-retraction B D)

{proof)

lemma canonical-retraction-comp-simplezx-im-subset:
[ AeA; BeA; chamber C; chamber D; CeA; DeEB | =
(canonical-retraction A C o canonical-retraction B D) = X C A

{proof)

lemma canonical-retraction-comp-apartment-endomorphism:
[ AcA; BeA; chamber C; chamber D; CeA; DEB | =
ChamberComplexEndomorphism A
(restrictl (canonical-retraction A C' o canonical-retraction B D) (U A))

{proof)

end

6.1.4 Distances in apartments

Here we examine distances between chambers and between a facet and a
chamber, especially with respect to canonical retractions onto an apart-
ment. Note that a distance measured within an apartment is equal to the
distance measured between the same objects in the wider chamber com-
plex. In other words, the shortest distance between chambers can always be
achieved within an apartment.

context ChamberComplexWithApartmentSystem
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begin

lemma apartment-chamber-distance:
assumes AcA chamber C chamber D CeA DeA
shows ChamberComplex.chamber-distance A C D = chamber-distance C D

(proof)

lemma apartment-min-gallery:
assumes A€ A ChamberComplex.min-gallery A Cs
shows min-gallery Cs

(proof)

lemma apartment-face-distance:
assumes A€ A chamber C CeA FeA
shows ChamberComplez.face-distance A F C = face-distance F C

(proof)

lemma apartment-face-distance-eq-chamber-distance-compare-other-chamber:
assumes AcA chamber C chamber D chamber E CeA DeA E€A
2<1C z<1D C#D chamber-distance C E < chamber-distance D E
shows face-distance z E = chamber-distance C' E

{proof)

lemma canonical-retraction-face-distance-map:
assumes Ac A chamber C chamber D CeA FCC
shows face-distance F (canonical-retraction A C ¢ D) = face-distance F D

(proof)

end

6.1.5 Special situation: a triangle of apartments and chambers

To facilitate proving that apartments in buildings have sufficient foldings
to be Coxeter, we explore the situation of three chambers sharing a com-
mon facet, along with three apartments, each of which contains two of the
chambers. A folding of one of the apartments is constructed by composing
two apartment retractions, and by symmetry we automatically obtain an
opposed folding.

locale ChamberComplexApartmentSystem Triangle =
ChamberComplex WithApartmentSystem X A
for X :: 'a set set
and A :: 'a set set set
+ fixes A B B’ :: 'a set set
and CDFEz: 'aset
assumes apartments : AcA BeA B'eA
and chambers : chamber C chamber D chamber E
and facet 1 2<C z<aD z<E
and  in-apartments: C€ANB DeANB’' E€BNB’
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and chambers-ne : D#C E#D C#E
begin

abbreviation fold-A = canonical-retraction A D o canonical-retraction B C
abbreviation res-fold-A = restrict! fold-A (|J A)

abbreviation opp-fold-A = canonical-retraction A C o canonical-retraction B’ D
abbreviation res-opp-fold-A = restrictl opp-fold-A (|J A)

lemma rotate: ChamberComplezApartmentSystemTriangle X A B’ A BD E C 2
(proof )

lemma reflect: ChamberComplexApartmentSystemTriangle X A A B’ BD CFE z
(proof)

lemma facet-in-chambers: 2zCC zCD 2CE
(proof )

lemma A-chambers:
ChamberComplex.chamber A C ChamberComplex.chamber A D

{proof)

lemma res-fold-A-A-chamber-image:
ChamberComplex.chamber A F = res-fold-A * F = fold-A ‘ F

{proof)

lemma the-apartment-iso-middle-im: the-apartment-iso A B ‘D = FE

(proof)

lemma inside-canonical-retraction-chamber-images:
canonical-retraction B C < C = C
canonical-retraction B C ‘D = FE
canonical-retraction B C ‘ E = F

{proof)

lemmas in-canretract-chimages =
inside-canonical-retraction-chamber-images

lemma outside-canonical-retraction-chamber-images:
canonical-retraction A D * C = C
canonical-retraction A D ‘D = D
canonical-retraction A D ‘E = C

(proof )

lemma fold-A-chamber-images:
fold-A < C = C fold-A D = C fold-A ‘FE = C
(proof )

lemmas opp-fold-A-chamber-images =
ChamberComplexApartmentSystem Triangle.fold-A-chamber-images| OF reflect]
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lemma res-fold-A-chamber-images: res-fold-A < C = C res-fold-A ‘D = C
(proof)

lemmas res-opp-fold-A-chamber-images =
ChamberComplexApartmentSystem Triangle.res-fold- A-chamber-images| OF reflect)

lemma fold-A-fixespointwisel: fizespointwise fold-A C
(proof )

lemmas opp-fold-A-fixespointwise2 =
ChamberComplexApartmentSystem Triangle.fold-A-fizespointwisel [OF reflect]

lemma fold-A-facet-im: fold-A ‘ z = z
(proof )

lemma fold-A-endo-X: ChamberComplexEndomorphism X fold-A
(proof)

lemma res-fold-A-endo-A: ChamberComplexEndomorphism A res-fold-A
(proof )

lemmas opp-res-fold-A-endo-A =
ChamberComplexzApartmentSystem Triangle.res-fold-A-endo-A[OF reflect]

lemma fold-A-morph-A-A: ChamberComplexMorphism A A fold-A
(proof )

lemmas opp-fold-A-morph-A-A =
ChamberComplexzApartmentSystem Triangle.fold-A-morph-A-A[OF reflect]

lemma res-fold-A-A-im-fold-A-A-im: res-fold-A + A = fold-A + A
(proof )

lemmas res-opp-fold-A-A-im-opp-fold-A-A-im =
ChamberComplexApartmentSystem Triangle.res-fold-A-A-im-fold-A-A-im|
OF reflect

]

lemma res-fold-A-C-A-im-fold-A-C-A-im:
res-fold-A + (ChamberComplex.chamber-system A) =
fold-A + (ChamberComplex.chamber-system A)

{proof)

lemmas res-opp-fold-A-C-A-im-opp-fold-A-C-A-im =
ChamberComplexApartmentSystem Triangle.res-fold-A-C-A-im-fold-A-C-A-im|
OF reflect
]
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lemma chambercomplez-fold-A-im: ChamberComplex (fold-A + A)
(proof )

lemmas chambercomplex-opp-fold-A-im =
ChamberComplexApartmentSystem Triangle. chambercomplez-fold-A-im|
OF reflect

]

lemma chambersubcomplex-fold-A-im:
ChamberComplex. ChamberSubcomplex A (fold-A + A)

(proof)

lemmas chambersubcomplez-opp-fold-A-im =
ChamberComplexApartmentSystem Triangle. chambersubcomplezx-fold-A-im|
OF reflect

]

lemma fold-A-facet-distance-map:
chamber F = face-distance z (fold-A‘F) = face-distance z F

{proof)

lemma fold-A-min-gallery-betw-map:
assumes chamber F' chamber G zCF
face-distance z G = chamber-distance F' G min-gallery (F#FsQ[G])
shows min-gallery (fold-AE(F#FsQ[G)))
(proof )

lemma fold-A-chamber-system-image-fizespointwise’:
defines C-A : C-A = ChamberComplex.C A
defines fC-A: fC-A = {FeC-A. face-distance z F = chamber-distance C F}
assumes ' : FefC-A
shows fizespointwise fold-A F

(proof)

lemma fold-A-chamber-system-image:
defines C-A : C-A = ChamberComplex.C A
defines fC-A: fC-A = {FeC-A. face-distance z F = chamber-distance C F}
shows fold-A - C-A = fC-A

(proof)

lemmas opp-fold-A-chamber-system-image =
ChamberComplexApartmentSystem Triangle.fold-A-chamber-system-image|
OF reflect

]

lemma fold-A-chamber-system-image-fizespointwise:
F € ChamberComplex.C A = fizespointwise fold-A (fold-A‘F)
(proof )

150



lemmas fold-A-chsys-imfix = fold-A-chamber-system-image-fixespointwise

lemmas opp-fold-A-chamber-system-image-fixespointwise =
ChamberComplexzApartmentSystem Triangle. fold-A-chsys-imfiz|
OF reflect

]

lemma chamber-in-fold-A-im:
chamber F — F € fold-A - A = F € fold-A = ChamberComplex.C A
(proof )

lemmas chamber-in-opp-fold-A-im =
ChamberComplexApartmentSystem Triangle. chamber-in-fold-A-im|OF reflect]

lemma simplex-in-fold-A-im-image:
assumes z € fold-A - A
shows fold-A ‘x ==z

(proof)

lemma chamberl-notin-rfold-im: C ¢ opp-fold-A + A
(proof )

lemma fold-A-min-gallery-from1-map:
[ chamber F; F € fold-A + A; min-gallery (C#FsQ[F]) | =
min-gallery (C # fold-A | Fs @ [F])
(proof)

lemma fold-A-min-gallery-from2-map:
[ chamber F; F € opp-fold-A + A; min-gallery (D#FsQ[F]) | =
min-gallery (C # fold-A = (FsQ[F)))
(proof)

lemma fold-A-min-gallery-to2-map:
assumes chamber F' F € opp-fold-A + A min-gallery (F#FsQ[D])
shows min-gallery (fold-A |= (F#Fs) @Q [C])
(proof )

lemmas opp-fold-A-min-gallery-from1-map =
ChamberComplexApartmentSystem Triangle.fold-A-min-gallery-from2-map|
OF reflect

]

lemmas opp-fold-A-min-gallery-tol-map =
ChamberComplexApartmentSystem Triangle.fold-A-min-gallery-to2-map|
OF reflect

]

lemma closer-to-chamberi-not-in-rfold-im-chamber-system:
assumes chamber-distance C' F < chamber-distance D F
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shows F ¢ ChamberComplex.C (opp-fold-A + A)
(proof)

lemmas clsrch1-nin-rfold-im-chsys =
closer-to-chamberi1-not-in-rfold-im-chamber-system

lemmas closer-to-chamber2-not-in-fold-im-chamber-system =
ChamberComplexApartmentSystem Triangle. clsrch1-nin-rfold-im-chsys|
OF reflect

]

lemma fold-A-opp-fold-A-chamber-systems:
ChamberComplez.C A =
(ChamberComplex.C (fold-A = A))
(ChamberComplex.C (fold-A F A)) N
{}
(proof)

U (ChamberComplex.C (opp-fold-A + A))
(ChamberComplex.C (opp-fold-A F A)) =

lemma fold-A-im-min-gallery’:
assumes ChamberComplex.min-gallery (fold-A F A) (C#Cs)
shows  ChamberComplex.min-gallery A (C#Cs)

(proof)

lemma fold-A-im-min-gallery:
ChamberComplex.min-gallery (fold-A b A) (C#Cs) = min-gallery (C#Cs)
(proof )

lemma fold-A-comp-fizespointwise:
fizespointwise (fold-A o opp-fold-A) (U (fold-A F A))
(proof)

lemmas opp-fold-A-comp-fizespointwise =
ChamberComplexApartmentSystem Triangle. fold- A-comp-fizespointwise| OF reflect)

lemma fold-A-fold:
ChamberComplexIsomorphism (opp-fold-A = A) (fold-A = A) fold-A

(proof)

lemma res-fold-A: ChamberComplexFolding A res-fold-A
(proof)

lemmas opp-res-fold-A =
ChamberComplexApartmentSystem Triangle.res-fold-A[OF reflect]

end
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6.2 Building locale and basic lemmas

Finally, we define a (thick) building to be a thick chamber complex with a
system of apartments.

locale Building = ChamberComplex WithApartmentSystem X A
for X :: 'a set set
and A :: ‘a set set set

+ assumes thick: ThickChamberComplexr X

begin

abbreviation some-third-chamber =
ThickChamberComplex.some-third-chamber X

lemmas some-third-chamberD-facet =
ThickChamberComplex.some-third-chamberD-facet [OF thick]

lemmas some-third-chamberD-ne =

ThickChamberComplex.some-third-chamberD-ne [OF thick]

lemmas chamber-some-third-chamber =
ThickChamberComplex.chamber-some-third-chamber [OF thick]

end

6.3 Apartments are uniformly Coxeter

Using the assumption of thickness, we may use the special situation Cham-
berComplexApartmentSystem Triangle to verify that apartments have enough
pairs of opposed foldings to ensure that they are isomorphic to a Coxeter
complex. Since the apartments are all isomorphic, they are uniformly iso-
morphic to a single Coxeter complex.

context Building
begin

lemma apartments-have-many-foldings1:

assumes AcA chamber C chamber D C~D C#D CeA DeA

defines F = some-third-chamber C D (CND)

defines B = supapartment C' E

and B’ = supapartment D E

defines f = restrict! (canonical-retraction A D o canonical-retraction B C)
UA4)

and g = restrict! (canonical-retraction A C o canonical-retraction B’ D)
U4)

shows f‘D = C ChamberComplexFolding A f

9‘C = D ChamberComplexFolding A g

(proof)

lemma apartments-have-many-foldings2:
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assumes AcA chamber C chamber D C~D C#D CeA DeA

defines F = some-third-chamber C D (CND)

defines B = supapartment C' E

and B’ = supapartment D E

defines f = restrict! (canonical-retraction A D o canonical-retraction B C)
UA4)

and g = restrict] (canonical-retraction A C o canonical-retraction B’ D)
UA)

shows  OpposedThinChamberComplexFoldings A f g C

{(proof)

lemma apartments-have-many-foldings3:
assumes A€ A chamber C chamber D C~D C#D CeA DeA
shows 3 fg. OpposedThinChamberComplexFoldings A f g C N D=g‘C

(proof)

lemma apartments-have-many-foldings:
assumes Ac A CeA chamber C
shows  ThinChamberComplexManyFoldings A C

(proof)

theorem apartments-are-cozeter:
Ae A = 3 8:'a permutation set. (
CoxeterComplex S N
(9. ChamberComplexlsomorphism A (CoxeterComplex. TheComplex S) 1))

)

{proof)

corollary apartments-are-uniformly-coxeter:
assumes X#{}
shows 35::'a permutation set. CoxeterComplex S A
(VAeA. F.
ChamberComplexIsomorphism A (CozeterComplex. TheComplex S) 1)

)
(proof)

end

end
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