
Chamber complexes, Coxeter systems, and
buildings

Jeremy Sylvestre
University of Alberta, Augustana Campus

jeremy.sylvestre@ualberta.ca

March 17, 2025

Abstract

We provide a basic formal framework for the theory of chamber
complexes and Coxeter systems, and for buildings as thick chamber
complexes endowed with a system of apartments. Along the way, we
develop some of the general theory of abstract simplicial complexes and
of groups (relying on the group_add class for the basics), including free
groups and group presentations, and their universal properties. The
main results verified are that the deletion condition is both necessary
and sufficient for a group with a set of generators of order two to be a
Coxeter system, and that the apartments in a (thick) building are all
uniformly Coxeter.

Contents
1 Preliminaries 5

1.1 Natural numbers . 5
1.2 Logic . 6
1.3 Sets . 6
1.4 Functions and relations . 7

1.4.1 Miscellaneous . 7
1.4.2 Equality of functions restricted to a set 8
1.4.3 Injectivity, surjectivity, bijectivity, and inverses 10
1.4.4 Induced functions on sets of sets and lists of sets . . . 12
1.4.5 Induced functions on quotients 13
1.4.6 Support of a function 14

1.5 Lists . 15
1.5.1 Miscellaneous facts . 15
1.5.2 Cases . 15
1.5.3 Induction . 17
1.5.4 Alternating lists . 18

1

mailto:jeremy.sylvestre@ualberta.ca
jeremy.sylvestre@ualberta.ca

1.5.5 Binary relation chains 20
1.5.6 Set of subseqs . 23

1.6 Orders and posets . 24
1.6.1 Morphisms of posets 24
1.6.2 More arg-min . 27
1.6.3 Bottom of a set . 28
1.6.4 Minimal and pseudominimal elements in sets 29
1.6.5 Set of elements below another 31
1.6.6 Lower bounds . 34
1.6.7 Simplex-like posets . 35
1.6.8 The superset ordering 38

2 Algebra 39
2.1 Miscellaneous algebra facts 39
2.2 The type of permutations of a type 40
2.3 Natural action of nat on types of class monoid-add 42

2.3.1 Translation from class power. 42
2.3.2 Additive order of an element 43

2.4 Partial sums of a list . 45
2.5 Sums of alternating lists . 47
2.6 Conjugation in group-add . 48

2.6.1 Abbreviations and basic facts 48
2.6.2 The conjugation sequence 49
2.6.3 The action on signed group-add elements 52

2.7 Cosets . 54
2.7.1 Basic facts . 54
2.7.2 The supset order on cosets 55
2.7.3 The afforded partition 55

2.8 Groups . 56
2.8.1 Locale definition and basic facts 56
2.8.2 Sets with a suitable binary operation 57
2.8.3 Cosets of a Group . 60
2.8.4 The Group generated by a set 62
2.8.5 Homomorphisms and isomorphisms 65
2.8.6 Normal subgroups . 67
2.8.7 Quotient groups . 71
2.8.8 The induced homomorphism on a quotient group . . . 74

2.9 Free groups . 75
2.9.1 Words in letters of signed type 75
2.9.2 The collection of proper signed lists as a type 78
2.9.3 Lifts of functions on the letter type 81
2.9.4 Free groups on a set 86
2.9.5 Group presentations 90

2.10 Words over a generating set 96

2

3 Simplicial complexes 101
3.1 Geometric notions . 101

3.1.1 Facets . 101
3.1.2 Adjacency . 102
3.1.3 Chains of adjacent sets 104

3.2 Locale and basic facts . 104
3.3 Chains of maximal simplices 106
3.4 Isomorphisms of simplicial complexes 111
3.5 The complex associated to a poset 113

4 Chamber complexes 116
4.1 Locale definition and basic facts 116
4.2 The system of chambers and distance between chambers . . . 121
4.3 Labelling a chamber complex 123
4.4 Morphisms of chamber complexes 123

4.4.1 Morphism locale and basic facts 124
4.4.2 Action on pregalleries and galleries 127
4.4.3 Properties of the image 128
4.4.4 Action on the chamber system 129
4.4.5 Isomorphisms . 130
4.4.6 Endomorphisms . 135
4.4.7 Automorphisms . 139
4.4.8 Retractions . 141
4.4.9 Foldings of chamber complexes 142

4.5 Thin chamber complexes . 145
4.5.1 Locales and basic facts 146
4.5.2 The standard uniqueness argument for chamber mor-

phisms of thin chamber complexes 149
4.6 Foldings of thin chamber complexes 152

4.6.1 Locale definition and basic facts 152
4.6.2 Pairs of opposed foldings 160
4.6.3 The automorphism induced by a pair of opposed foldings164
4.6.4 Walls . 174

4.7 Thin chamber complexes with many foldings 187
4.7.1 Locale definition and basic facts 187
4.7.2 The group of automorphisms 190
4.7.3 Action of the group of automorphisms on the chamber

system . 194
4.7.4 A labelling by the vertices of the fundamental chamber 199
4.7.5 More on the action of the group of automorphisms on

chambers . 207
4.7.6 A bijection between the fundamental chamber and the

set of generating automorphisms 208
4.8 Thick chamber complexes . 210

3

5 Coxeter systems and complexes 211
5.1 Coxeter-like systems . 211

5.1.1 Locale definition and basic facts 212
5.1.2 Special cosets . 213
5.1.3 Transfer from the free group over generators 214
5.1.4 Words in generators containing alternating subwords . 218
5.1.5 Preliminary facts on the word problem 225
5.1.6 Preliminary facts related to the deletion condition . . 226

5.2 Coxeter-like systems with deletion 229
5.2.1 Locale definition . 229
5.2.2 Consequences of the deletion condition 229
5.2.3 The exchange condition 230
5.2.4 More on words in generators containing alternating

subwords . 231
5.2.5 The word problem . 233
5.2.6 Special subgroups and cosets 236

5.3 Coxeter systems . 243
5.3.1 Locale definition and transfer from the associated free

group . 243
5.3.2 The deletion condition is necessary 243
5.3.3 The deletion condition is sufficient 246
5.3.4 The Coxeter system associated to a thin chamber com-

plex with many foldings 249
5.4 Coxeter complexes . 256

5.4.1 Locale and complex definitions 256
5.4.2 As a simplicial complex 256
5.4.3 As a chamber complex 260
5.4.4 The Coxeter complex associated to a thin chamber

complex with many foldings 263

6 Buildings 271
6.1 Apartment systems . 271

6.1.1 Locale and basic facts 271
6.1.2 Isomorphisms between apartments 273
6.1.3 Retractions onto apartments 276
6.1.4 Distances in apartments 279
6.1.5 Special situation: a triangle of apartments and chambers282

6.2 Building locale and basic lemmas 300
6.3 Apartments are uniformly Coxeter 300

Note: A number of the proofs in this theory were modelled on or inspired
by proofs in the books on buildings by Abramenko and Brown [1] and by

4

Garrett [2]. As well, some of the definitions, statments, and proofs appearing
in the first two sections previously appeared in a submission to the Archive
of Formal Proofs by the author of the current submission [4].

1 Preliminaries

In this section, we establish some basic facts about natural numbers, logic,
sets, functions and relations, lists, and orderings and posets, that are ei-
ther not available in the HOL library or are in a form not suitable for our
purposes.
theory Prelim
imports Main HOL−Library.Set-Algebras
begin

declare image-cong-simp [cong del]

1.1 Natural numbers
lemma nat-cases-2Suc [case-names 0 1 SucSuc]:

assumes 0 : n = 0 =⇒ P
and 1 : n = 1 =⇒ P
and SucSuc:

∧
m. n = Suc (Suc m) =⇒ P

shows P
proof (cases n)

case (Suc m) with 1 SucSuc show ?thesis by (cases m) auto
qed (simp add: 0)

lemma nat-even-induct [case-names - 0 SucSuc]:
assumes even: even n
and 0 : P 0
and SucSuc:

∧
m. even m =⇒ P m =⇒ P (Suc (Suc m))

shows P n
proof−

from assms obtain k where n = 2∗k using evenE by auto
moreover from assms have P (2∗k) by (induct k) auto
ultimately show ?thesis by fast

qed

lemma nat-induct-step2 [case-names 0 1 SucSuc]:
assumes 0 : P 0
and 1 : P 1
and SucSuc:

∧
m. P m =⇒ P (Suc (Suc m))

shows P n
proof (cases even n)

case True

5

from this obtain k where n = 2∗k using evenE by auto
moreover have P (2∗k) using 0 SucSuc by (induct k) auto
ultimately show ?thesis by fast

next
case False
from this obtain k where n = 2∗k+1 using oddE by blast
moreover have P (2∗k+1) using 1 SucSuc by (induct k) auto
ultimately show ?thesis by fast

qed

1.2 Logic
lemma ex1-unique: ∃ !x. P x =⇒ P a =⇒ P b =⇒ a=b

by blast

lemma not-the1 :
assumes ∃ !x. P x y 6= (THE x. P x)
shows ¬ P y
using assms(2) the1-equality[OF assms(1)]
by auto

lemma two-cases [case-names both one other neither]:
assumes both : P =⇒ Q =⇒ R
and one : P =⇒ ¬Q =⇒ R
and other : ¬P =⇒ Q =⇒ R
and neither : ¬P =⇒ ¬Q =⇒ R
shows R
using assms
by fast

1.3 Sets
lemma bex1-equality: [[∃ !x∈A. P x; x∈A; P x; y∈A; P y]] =⇒ x=y

by blast

lemma prod-ballI : (
∧

a b. (a,b)∈A =⇒ P a b) =⇒ ∀ (a,b)∈A. P a b
by fast

lemmas seteqI = set-eqI [OF iffI]

lemma set-decomp-subset:
[[U = A∪B; A⊆X ; B⊆Y ; X⊆U ; X∩Y = {}]] =⇒ A = X
by auto

lemma insert-subset-equality: [[a /∈A; a /∈B; insert a A = insert a B]] =⇒ A=B
by auto

lemma insert-compare-element: a /∈A =⇒ insert b A = insert a A =⇒ b=a
by auto

6

lemma card1 :
assumes card A = 1
shows ∃ a. A = {a}

proof−
from assms obtain a where a: a ∈ A by fastforce
with assms show ?thesis using card-ge-0-finite[of A] card-subset-eq[of A {a}]

by auto
qed

lemma singleton-pow: a∈A =⇒ {a}∈Pow A
using Pow-mono Pow-top by fast

definition separated-by :: ′a set set ⇒ ′a ⇒ ′a ⇒ bool
where separated-by w x y ≡ ∃A B. w={A,B} ∧ x∈A ∧ y∈B

lemma separated-byI : x∈A =⇒ y∈B =⇒ separated-by {A,B} x y
using separated-by-def by fastforce

lemma separated-by-disjoint: [[separated-by {A,B} x y; A∩B={}; x∈A]] =⇒ y∈B
unfolding separated-by-def by fast

lemma separated-by-in-other : separated-by {A,B} x y =⇒ x /∈A =⇒ x∈B ∧ y∈A
unfolding separated-by-def by auto

lemma separated-by-not-empty: separated-by w x y =⇒ w 6={}
unfolding separated-by-def by fast

lemma not-self-separated-by-disjoint: A∩B={} =⇒ ¬ separated-by {A,B} x x
unfolding separated-by-def by auto

1.4 Functions and relations
1.4.1 Miscellaneous
lemma cong-let: (let x = y in f x) = f y by simp

lemma sym-sym: sym (A×A) by (fast intro: symI)

lemma trans-sym: trans (A×A) by (fast intro: transI)

lemma map-prod-sym: sym A =⇒ sym (map-prod f f ‘ A)
using symD[of A] map-prod-def by (fast intro: symI)

abbreviation restrict1 :: (′a⇒ ′a) ⇒ ′a set ⇒ (′a⇒ ′a)
where restrict1 f A ≡ (λa. if a∈A then f a else a)

lemma restrict1-image: B⊆A =⇒ restrict1 f A ‘ B = f‘B
by auto

7

1.4.2 Equality of functions restricted to a set
definition fun-eq-on f g A ≡ (∀ a∈A. f a = g a)

lemma fun-eq-onI : (
∧

a. a∈A =⇒ f a = g a) =⇒ fun-eq-on f g A
using fun-eq-on-def by fast

lemma fun-eq-onD: fun-eq-on f g A =⇒ a ∈ A =⇒ f a = g a
using fun-eq-on-def by fast

lemma fun-eq-on-UNIV : (fun-eq-on f g UNIV) = (f=g)
unfolding fun-eq-on-def by fast

lemma fun-eq-on-subset: fun-eq-on f g A =⇒ B⊆A =⇒ fun-eq-on f g B
unfolding fun-eq-on-def by fast

lemma fun-eq-on-sym: fun-eq-on f g A =⇒ fun-eq-on g f A
using fun-eq-onD by (fastforce intro: fun-eq-onI)

lemma fun-eq-on-trans: fun-eq-on f g A =⇒ fun-eq-on g h A =⇒ fun-eq-on f h A
using fun-eq-onD fun-eq-onD by (fastforce intro: fun-eq-onI)

lemma fun-eq-on-cong: fun-eq-on f h A =⇒ fun-eq-on g h A =⇒ fun-eq-on f g A
using fun-eq-on-trans fun-eq-on-sym by fastforce

lemma fun-eq-on-im : fun-eq-on f g A =⇒ B⊆A =⇒ f‘B = g‘B
using fun-eq-onD by force

lemma fun-eq-on-subset-and-diff-imp-eq-on:
assumes A⊆B fun-eq-on f g A fun-eq-on f g (B−A)
shows fun-eq-on f g B

proof (rule fun-eq-onI)
fix x assume x∈B with assms(1) show f x = g x

using fun-eq-onD[OF assms(2)] fun-eq-onD[OF assms(3)]
by (cases x∈A) auto

qed

lemma fun-eq-on-set-and-comp-imp-eq:
fun-eq-on f g A =⇒ fun-eq-on f g (−A) =⇒ f = g
using fun-eq-on-subset-and-diff-imp-eq-on[of A UNIV]
by (simp add: Compl-eq-Diff-UNIV fun-eq-on-UNIV)

lemma fun-eq-on-bij-betw: fun-eq-on f g A =⇒ bij-betw f A B = bij-betw g A B
using bij-betw-cong unfolding fun-eq-on-def by fast

lemma fun-eq-on-restrict1 : fun-eq-on (restrict1 f A) f A
by (auto intro: fun-eq-onI)

abbreviation fixespointwise f A ≡ fun-eq-on f id A

8

lemmas fixespointwiseI = fun-eq-onI [of - - id]
lemmas fixespointwiseD = fun-eq-onD [of - id]
lemmas fixespointwise-cong = fun-eq-on-trans [of - - - id]
lemmas fixespointwise-subset = fun-eq-on-subset [of - id]
lemmas fixespointwise2-imp-eq-on = fun-eq-on-cong [of - id]

lemmas fixespointwise-subset-and-diff-imp-eq-on =
fun-eq-on-subset-and-diff-imp-eq-on[of - - - id]

lemma id-fixespointwise: fixespointwise id A
using fun-eq-on-def by fast

lemma fixespointwise-im: fixespointwise f A =⇒ B⊆A =⇒ f‘B = B
by (auto simp add: fun-eq-on-im)

lemma fixespointwise-comp:
fixespointwise f A =⇒ fixespointwise g A =⇒ fixespointwise (g◦f) A
unfolding fun-eq-on-def by simp

lemma fixespointwise-insert:
assumes fixespointwise f A f ‘ (insert a A) = insert a A
shows fixespointwise f (insert a A)
using assms(2) insert-compare-element[of a A f a]

fixespointwiseD[OF assms(1)] fixespointwise-im[OF assms(1)]
by (cases a∈A) (auto intro: fixespointwiseI)

lemma fixespointwise-restrict1 :
fixespointwise f A =⇒ fixespointwise (restrict1 f B) A
using fixespointwiseD[of f] by (auto intro: fixespointwiseI)

lemma fold-fixespointwise:
∀ x∈set xs. fixespointwise (f x) A =⇒ fixespointwise (fold f xs) A

proof (induct xs)
case Nil show ?case using id-fixespointwise subst[of id] by fastforce

next
case (Cons x xs)
hence fixespointwise (fold f xs ◦ f x) A

using fixespointwise-comp[of f x A fold f xs] by fastforce
moreover have fold f xs ◦ f x = fold f (x#xs) by simp
ultimately show ?case using subst[of - - λf . fixespointwise f A] by fast

qed

lemma funpower-fixespointwise:
assumes fixespointwise f A
shows fixespointwise (f^^n) A

proof (induct n)
case 0 show ?case using id-fixespointwise subst[of id] by fastforce

next
case (Suc m)

9

with assms have fixespointwise (f ◦ (f^^m)) A
using fixespointwise-comp by fast

moreover have f ◦ (f^^m) = f^^(Suc m) by simp
ultimately show ?case using subst[of - - λf . fixespointwise f A] by fast

qed

1.4.3 Injectivity, surjectivity, bijectivity, and inverses
lemma inj-on-to-singleton:

assumes inj-on f A f‘A = {b}
shows ∃ a. A = {a}

proof−
from assms(2) obtain a where a: a∈A f a = b by force
with assms have A = {a} using inj-onD[of f A] by blast
thus ?thesis by fast

qed

lemmas inj-inj-on = subset-inj-on[of - UNIV , OF - subset-UNIV]

lemma inj-on-eq-image ′: [[inj-on f A; X⊆A; Y⊆A; f‘X⊆f‘Y]] =⇒ X⊆Y
unfolding inj-on-def by fast

lemma inj-on-eq-image: [[inj-on f A; X⊆A; Y⊆A; f‘X=f‘Y]] =⇒ X=Y
using inj-on-eq-image ′[of f A X Y] inj-on-eq-image ′[of f A Y X] by simp

lemmas inj-eq-image = inj-on-eq-image[OF - subset-UNIV subset-UNIV]

lemma induced-pow-fun-inj-on:
assumes inj-on f A
shows inj-on ((‘) f) (Pow A)
using inj-onD[OF assms] inj-onI [of Pow A (‘) f]
by blast

lemma inj-on-minus-set: inj-on ((−) A) (Pow A)
by (fast intro: inj-onI)

lemma induced-pow-fun-surj:
((‘) f) ‘ (Pow A) = Pow (f‘A)

proof (rule seteqI)
fix X show X ∈ ((‘) f) ‘ (Pow A) =⇒ X ∈ Pow (f‘A) by fast

next
fix Y assume Y : Y ∈ Pow (f‘A)
moreover hence Y = f‘{a∈A. f a ∈ Y } by fast
ultimately show Y∈ ((‘) f) ‘ (Pow A) by auto

qed

lemma bij-betw-f-the-inv-into-f :
bij-betw f A B =⇒ y∈B =⇒ f (the-inv-into A f y) = y

— an equivalent lemma appears in the HOL library, but this version avoids the

10

double bij-betw premises
unfolding bij-betw-def by (blast intro: f-the-inv-into-f)

lemma bij-betw-the-inv-into-onto: bij-betw f A B =⇒ the-inv-into A f ‘ B = A
unfolding bij-betw-def by force

lemma bij-betw-imp-bij-betw-Pow:
assumes bij-betw f A B
shows bij-betw ((‘) f) (Pow A) (Pow B)
unfolding bij-betw-def

proof (rule conjI , rule inj-onI)
show

∧
x y. [[x∈Pow A; y∈Pow A; f‘x = f‘y]] =⇒ x=y

using inj-onD[OF bij-betw-imp-inj-on, OF assms] by blast
show (‘) f ‘ Pow A = Pow B
proof

show (‘) f ‘ Pow A ⊆ Pow B using bij-betw-imp-surj-on[OF assms] by fast
show (‘) f ‘ Pow A ⊇ Pow B
proof

fix y assume y: y∈Pow B
with assms have y = f ‘ the-inv-into A f ‘ y

using bij-betw-f-the-inv-into-f [THEN sym] by fastforce
moreover from y assms have the-inv-into A f ‘ y ⊆ A

using bij-betw-the-inv-into-onto by fastforce
ultimately show y ∈ (‘) f ‘ Pow A by auto

qed
qed

qed

lemma comps-fixpointwise-imp-bij-betw:
assumes f‘X⊆Y g‘Y⊆X fixespointwise (g◦f) X fixespointwise (f ◦g) Y
shows bij-betw f X Y
unfolding bij-betw-def

proof
show inj-on f X
proof (rule inj-onI)

fix x y show [[x∈X ; y∈X ; f x = f y]] =⇒ x=y
using fixespointwiseD[OF assms(3), of x] fixespointwiseD[OF assms(3), of y]
by simp

qed
from assms(1 ,2) show f‘X = Y using fixespointwiseD[OF assms(4)] by force

qed

lemma set-permutation-bij-restrict1 :
assumes bij-betw f A A
shows bij (restrict1 f A)

proof (rule bijI)
have bij-f : inj-on f A f‘A = A using iffD1 [OF bij-betw-def , OF assms] by auto
show inj (restrict1 f A)
proof (rule injI)

11

fix x y show restrict1 f A x = restrict1 f A y =⇒ x=y
using inj-onD bij-f by (cases x∈A y∈A rule: two-cases) auto

qed
show surj (restrict1 f A)
proof (rule surjI)

fix x
define y where y ≡ restrict1 (the-inv-into A f) A x
thus restrict1 f A y = x

using the-inv-into-into[of f] bij-f f-the-inv-into-f [of f] by (cases x∈A) auto
qed

qed

lemma set-permutation-the-inv-restrict1 :
assumes bij-betw f A A
shows the-inv (restrict1 f A) = restrict1 (the-inv-into A f) A

proof (rule ext, rule the-inv-into-f-eq)
from assms show inj (restrict1 f A)

using bij-is-inj set-permutation-bij-restrict1 by fast
next

fix a from assms show restrict1 f A (restrict1 (the-inv-into A f) A a) = a
using bij-betw-def [of f] by (simp add: the-inv-into-into f-the-inv-into-f)

qed simp

lemma the-inv-into-the-inv-into:
inj-on f A =⇒ a∈A =⇒ the-inv-into (f‘A) (the-inv-into A f) a = f a
using inj-on-the-inv-into by (force intro: the-inv-into-f-eq imageI)

lemma the-inv-into-f-im-f-im:
assumes inj-on f A x⊆A
shows the-inv-into A f ‘ f ‘ x = x
using assms(2) the-inv-into-f-f [OF assms(1)]
by force

lemma f-im-the-inv-into-f-im:
assumes inj-on f A x⊆f‘A
shows f ‘ the-inv-into A f ‘ x = x
using assms(2) f-the-inv-into-f [OF assms(1)]
by force

lemma the-inv-leftinv: bij f =⇒ the-inv f ◦ f = id
using bij-def [of f] the-inv-f-f by fastforce

1.4.4 Induced functions on sets of sets and lists of sets

Here we create convenience abbreviations for distributing a function over a
set of sets and over a list of sets.
abbreviation setsetmapim :: (′a⇒ ′b) ⇒ ′a set set ⇒ ′b set set (infix ‹`› 70)

where f`X ≡ ((‘) f) ‘ X

12

abbreviation setlistmapim :: (′a⇒ ′b) ⇒ ′a set list ⇒ ′b set list (infix ‹|=› 70)
where f |=Xs ≡ map ((‘) f) Xs

lemma setsetmapim-comp: (f ◦g)`A = f`(g`A)
by (auto simp add: image-comp)

lemma setlistmapim-comp: (f ◦g)|=xs = f |=(g|=xs)
by auto

lemma setsetmapim-cong-subset:
assumes fun-eq-on g f (

⋃
A) B⊆A

shows g`B ⊆ f`B
proof

fix y assume y ∈ g`B
from this obtain x where x∈B y = g‘x by fast
with assms(2) show y ∈ f`B using fun-eq-on-im[OF assms(1), of x] by fast

qed

lemma setsetmapim-cong:
assumes fun-eq-on g f (

⋃
A) B⊆A

shows g`B = f`B
using setsetmapim-cong-subset[OF assms]

setsetmapim-cong-subset[OF fun-eq-on-sym, OF assms]
by fast

lemma setsetmapim-restrict1 : B⊆A =⇒ restrict1 f (
⋃

A) ` B = f`B
using setsetmapim-cong[of - f] fun-eq-on-restrict1 [of

⋃
A f] by simp

lemma setsetmapim-the-inv-into:
assumes inj-on f (

⋃
A)

shows (the-inv-into (
⋃

A) f) ` (f`A) = A
proof (rule seteqI)

fix x assume x ∈ (the-inv-into (
⋃

A) f) ` (f`A)
from this obtain y where y: y ∈ f`A x = the-inv-into (

⋃
A) f ‘ y by auto

from y(1) obtain z where z: z∈A y = f‘z by fast
moreover from z(1) have the-inv-into (

⋃
A) f ‘ f ‘ z = z

using the-inv-into-f-f [OF assms] by force
ultimately show x∈A using y(2) the-inv-into-f-im-f-im[OF assms] by simp

next
fix x assume x: x∈A
moreover hence the-inv-into (

⋃
A) f ‘ f ‘ x = x

using the-inv-into-f-im-f-im[OF assms, of x] by fast
ultimately show x ∈ (the-inv-into (

⋃
A) f) ` (f`A) by auto

qed

1.4.5 Induced functions on quotients

Here we construct the induced function on a quotient for an inducing func-
tion that respects the relation that defines the quotient.

13

lemma respects-imp-unique-image-rel: f respects r =⇒ y∈f‘r‘‘{a} =⇒ y = f a
using congruentD[of r f] by auto

lemma ex1-class-image:
assumes refl-on A r f respects r X∈A//r
shows ∃ !b. b∈f‘X

proof−
from assms(3) obtain a where a: a∈A X = r‘‘{a} by (auto intro: quotientE)
thus ?thesis

using refl-onD[OF assms(1)] ex1I [of - f a]
respects-imp-unique-image-rel[OF assms(2), of - a]

by force
qed

definition quotientfun :: (′a⇒ ′b) ⇒ ′a set ⇒ ′b
where quotientfun f X = (THE b. b∈f‘X)

lemma quotientfun-equality:
assumes refl-on A r f respects r X∈A//r b∈f‘X
shows quotientfun f X = b
unfolding quotientfun-def
using assms(4) ex1-class-image[OF assms(1−3)]
by (auto intro: the1-equality)

lemma quotientfun-classrep-equality:
[[refl-on A r ; f respects r ; a∈A]] =⇒ quotientfun f (r‘‘{a}) = f a
using refl-onD by (fastforce intro: quotientfun-equality quotientI)

1.4.6 Support of a function
definition supp :: (′a ⇒ ′b::zero) ⇒ ′a set where supp f = {x. f x 6= 0}

lemma suppI-contra: x /∈ supp f =⇒ f x = 0
using supp-def by fast

lemma suppD-contra: f x = 0 =⇒ x /∈ supp f
using supp-def by fast

abbreviation restrict0 :: (′a⇒ ′b::zero) ⇒ ′a set ⇒ (′a⇒ ′b)
where restrict0 f A ≡ (λa. if a ∈ A then f a else 0)

lemma supp-restrict0 : supp (restrict0 f A) ⊆ A
proof−

have
∧

a. a /∈ A =⇒ a /∈ supp (restrict0 f A)
using suppD-contra[of restrict0 f A] by simp

thus ?thesis by fast
qed

14

1.5 Lists
1.5.1 Miscellaneous facts
lemma snoc-conv-cons: ∃ x xs. ys@[y] = x#xs

by (cases ys) auto

lemma cons-conv-snoc: ∃ ys y. x#xs = ys@[y]
by (cases xs rule: rev-cases) auto

lemma distinct-count-list:
distinct xs =⇒ count-list xs a = (if a ∈ set xs then 1 else 0)
by (induct xs) auto

lemma map-fst-map-const-snd: map fst (map (λs. (s,b)) xs) = xs
by (induct xs) auto

lemma inj-on-distinct-setlistmapim:
assumes inj-on f A
shows ∀X∈set Xs. X ⊆ A =⇒ distinct Xs =⇒ distinct (f |=Xs)

proof (induct Xs)
case (Cons X Xs)
show ?case
proof (cases f‘X ∈ set (f |=Xs))

case True
from this obtain Y where Y : Y∈set Xs f‘X = f‘Y by auto
with assms Y (1) Cons(2 ,3) show ?thesis

using inj-on-eq-image[of f A X Y] by fastforce
next

case False with Cons show ?thesis by simp
qed

qed simp

1.5.2 Cases
lemma list-cases-Cons-snoc [case-names Nil Single Cons-snoc]:

assumes Nil: xs = [] =⇒ P
and Single:

∧
x. xs = [x] =⇒ P

and Cons-snoc:
∧

x ys y. xs = x # ys @ [y] =⇒ P
shows P

proof (cases xs, rule Nil)
case (Cons x xs) with Single Cons-snoc show ?thesis

by (cases xs rule: rev-cases) auto
qed

lemma two-lists-cases-Cons-Cons [case-names Nil1 Nil2 ConsCons]:
assumes Nil1 :

∧
ys. as = [] =⇒ bs = ys =⇒ P

and Nil2 :
∧

xs. as = xs =⇒ bs = [] =⇒ P
and ConsCons:

∧
x xs y ys. as = x # xs =⇒ bs = y # ys =⇒ P

shows P

15

proof (cases as)
case Cons with assms(2 ,3) show ?thesis by (cases bs) auto

qed (simp add: Nil1)

lemma two-lists-cases-snoc-Cons [case-names Nil1 Nil2 snoc-Cons]:
assumes Nil1 :

∧
ys. as = [] =⇒ bs = ys =⇒ P

and Nil2 :
∧

xs. as = xs =⇒ bs = [] =⇒ P
and snoc-Cons:

∧
xs x y ys. as = xs @ [x] =⇒ bs = y # ys =⇒ P

shows P
proof (cases as rule: rev-cases)

case snoc with Nil2 snoc-Cons show ?thesis by (cases bs) auto
qed (simp add: Nil1)

lemma two-lists-cases-snoc-Cons ′ [case-names both-Nil Nil1 Nil2 snoc-Cons]:
assumes both-Nil: as = [] =⇒ bs = [] =⇒ P
and Nil1 :

∧
y ys. as = [] =⇒ bs = y#ys =⇒ P

and Nil2 :
∧

xs x. as = xs@[x] =⇒ bs = [] =⇒ P
and snoc-Cons:

∧
xs x y ys. as = xs @ [x] =⇒ bs = y # ys =⇒ P

shows P
proof (cases as bs rule: two-lists-cases-snoc-Cons)

case (Nil1 ys) with assms(1 ,2) show P by (cases ys) auto
next

case (Nil2 xs) with assms(1 ,3) show P by (cases xs rule: rev-cases) auto
qed (rule snoc-Cons)

lemma two-prod-lists-cases-snoc-Cons:
assumes

∧
xs. as = xs =⇒ bs = [] =⇒ P

∧
ys. as = [] =⇒ bs = ys =⇒ P∧

xs aa ba ab bb ys. as = xs @ [(aa, ba)] ∧ bs = (ab, bb) # ys =⇒ P
shows P

proof (rule two-lists-cases-snoc-Cons)
from assms

show
∧

ys. as = [] =⇒ bs = ys =⇒ P
∧

xs. as = xs =⇒ bs = [] =⇒ P
by auto

from assms(3) show
∧

xs x y ys. as = xs @ [x] =⇒ bs = y # ys =⇒ P
by fast

qed

lemma three-lists-cases-snoc-mid-Cons
[case-names Nil1 Nil2 Nil3 snoc-single-Cons snoc-mid-Cons]:

assumes Nil1 :
∧

ys zs. as = [] =⇒ bs = ys =⇒ cs = zs =⇒ P
and Nil2 :

∧
xs zs. as = xs =⇒ bs = [] =⇒ cs = zs =⇒ P

and Nil3 :
∧

xs ys. as = xs =⇒ bs = ys =⇒ cs = [] =⇒ P
and snoc-single-Cons:∧

xs x y z zs. as = xs @ [x] =⇒ bs = [y] =⇒ cs = z # zs =⇒ P
and snoc-mid-Cons:∧

xs x w ys y z zs. as = xs @ [x] =⇒ bs = w # ys @ [y] =⇒
cs = z # zs =⇒ P

shows P
proof (cases as cs rule: two-lists-cases-snoc-Cons)

16

case Nil1 with assms(1) show P by simp
next

case Nil2 with assms(3) show P by simp
next

case snoc-Cons
with Nil2 snoc-single-Cons snoc-mid-Cons show P

by (cases bs rule: list-cases-Cons-snoc) auto
qed

1.5.3 Induction
lemma list-induct-CCons [case-names Nil Single CCons]:

assumes Nil : P []
and Single:

∧
x. P [x]

and CCons :
∧

x y xs. P (y#xs) =⇒ P (x # y # xs)
shows P xs

proof (induct xs)
case (Cons x xs) with Single CCons show ?case by (cases xs) auto

qed (rule Nil)

lemma list-induct-ssnoc [case-names Nil Single ssnoc]:
assumes Nil : P []
and Single:

∧
x. P [x]

and ssnoc :
∧

xs x y. P (xs@[x]) =⇒ P (xs@[x,y])
shows P xs

proof (induct xs rule: rev-induct)
case (snoc x xs) with Single ssnoc show ?case by (cases xs rule: rev-cases) auto

qed (rule Nil)

lemma list-induct2-snoc [case-names Nil1 Nil2 snoc]:
assumes Nil1 :

∧
ys. P [] ys

and Nil2 :
∧

xs. P xs []
and snoc:

∧
xs x ys y. P xs ys =⇒ P (xs@[x]) (ys@[y])

shows P xs ys
proof (induct xs arbitrary: ys rule: rev-induct, rule Nil1)

case (snoc b bs) with assms(2 ,3) show ?case by (cases ys rule: rev-cases) auto
qed

lemma list-induct2-snoc-Cons [case-names Nil1 Nil2 snoc-Cons]:
assumes Nil1 :

∧
ys. P [] ys

and Nil2 :
∧

xs. P xs []
and snoc-Cons:

∧
xs x y ys. P xs ys =⇒ P (xs@[x]) (y#ys)

shows P xs ys
proof (induct ys arbitrary: xs, rule Nil2)

case (Cons y ys) with Nil1 snoc-Cons show ?case
by (cases xs rule: rev-cases) auto

qed

lemma prod-list-induct3-snoc-Conssnoc-Cons-pairwise:

17

assumes
∧

ys zs. Q ([],ys,zs)
∧

xs zs. Q (xs,[],zs)
∧

xs ys. Q (xs,ys,[])∧
xs x y z zs. Q (xs@[x],[y],z#zs)

and step:∧
xs x y ys w z zs. Q (xs,ys,zs) =⇒ Q (xs,ys@[w],z#zs) =⇒
Q (xs@[x],y#ys,zs) =⇒ Q (xs@[x],y#ys@[w],z#zs)

shows Q t
proof (

induct t
taking: λ(xs,ys,zs). length xs + length ys + length zs
rule : measure-induct-rule

)
case (less t)
show ?case
proof (cases t)

case (fields xs ys zs) from assms less fields show ?thesis
by (cases xs ys zs rule: three-lists-cases-snoc-mid-Cons) auto

qed
qed

lemma list-induct3-snoc-Conssnoc-Cons-pairwise
[case-names Nil1 Nil2 Nil3 snoc-single-Cons snoc-Conssnoc-Cons]:

assumes Nil1 :
∧

ys zs. P [] ys zs
and Nil2 :

∧
xs zs. P xs [] zs

and Nil3 :
∧

xs ys. P xs ys []
and snoc-single-Cons :

∧
xs x y z zs. P (xs@[x]) [y] (z#zs)

and snoc-Conssnoc-Cons:∧
xs x y ys w z zs. P xs ys zs =⇒ P xs (ys@[w]) (z#zs) =⇒
P (xs@[x]) (y#ys) zs =⇒ P (xs@[x]) (y#ys@[w]) (z#zs)

shows P xs ys zs
using assms

prod-list-induct3-snoc-Conssnoc-Cons-pairwise[of λ(xs,ys,zs). P xs ys zs]
by auto

1.5.4 Alternating lists
primrec alternating-list :: nat ⇒ ′a ⇒ ′a ⇒ ′a list

where zero: alternating-list 0 s t = []
| Suc : alternating-list (Suc k) s t =

alternating-list k s t @ [if even k then s else t]
— could be defined using Cons, but we want the alternating list to always start
with the same letter as it grows, and it’s easier to do that via append

lemma alternating-list2 : alternating-list 2 s t = [s,t]
using arg-cong[OF Suc-1 , THEN sym, of λn. alternating-list n s t] by simp

lemma length-alternating-list: length (alternating-list n s t) = n
by (induct n) auto

lemma alternating-list-Suc-Cons:

18

alternating-list (Suc k) s t = s # alternating-list k t s
by (induct k) auto

lemma alternating-list-SucSuc-ConsCons:
alternating-list (Suc (Suc k)) s t = s # t # alternating-list k s t
using alternating-list-Suc-Cons[of Suc k s] alternating-list-Suc-Cons[of k t]
by simp

lemma alternating-list-alternates:
alternating-list n s t = as@[a,b,c]@bs =⇒ a=c

proof (induct n arbitrary: bs)
case (Suc m) hence prevcase:∧

xs. alternating-list m s t = as @ [a,b,c] @ xs =⇒ a = c
alternating-list (Suc m) s t = as @ [a,b,c] @ bs
by auto

show ?case
proof (cases bs rule: rev-cases)

case Nil show ?thesis
proof (cases m)

case 0 with prevcase(2) show ?thesis by simp
next

case (Suc k) with prevcase(2) Nil show ?thesis by (cases k) auto
qed

next
case (snoc ds d) with prevcase show ?thesis by simp

qed
qed simp

lemma alternating-list-split:
alternating-list (m+n) s t = alternating-list m s t @
(if even m then alternating-list n s t else alternating-list n t s)

using alternating-list-SucSuc-ConsCons[of - s]
by (induct n rule: nat-induct-step2) auto

lemma alternating-list-append:
even m =⇒

alternating-list m s t @ alternating-list n s t = alternating-list (m+n) s t
odd m =⇒

alternating-list m s t @ alternating-list n t s = alternating-list (m+n) s t
using alternating-list-split[THEN sym, of m] by auto

lemma rev-alternating-list:
rev (alternating-list n s t) =
(if even n then alternating-list n t s else alternating-list n s t)

using alternating-list-SucSuc-ConsCons[of - s]
by (induct n rule: nat-induct-step2) auto

lemma set-alternating-list: set (alternating-list n s t) ⊆ {s,t}
by (induct n) auto

19

lemma set-alternating-list1 :
assumes n ≥ 1
shows s ∈ set (alternating-list n s t)

proof (cases n)
case 0 with assms show ?thesis by simp

next
case (Suc m) thus ?thesis using alternating-list-Suc-Cons[of m s] by simp

qed

lemma set-alternating-list2 :
n ≥ 2 =⇒ set (alternating-list n s t) = {s,t}

proof (induct n rule: nat-induct-step2)
case (SucSuc m) thus ?case
using set-alternating-list alternating-list-SucSuc-ConsCons[of m s t] by fastforce

qed auto

lemma alternating-list-in-lists: a∈A =⇒ b∈A =⇒ alternating-list n a b ∈ lists A
by (induct n) auto

1.5.5 Binary relation chains

Here we consider lists where each pair of adjacent elements satisfy a given
relation.
fun binrelchain :: (′a ⇒ ′a ⇒ bool) ⇒ ′a list ⇒ bool

where binrelchain P [] = True
| binrelchain P [x] = True
| binrelchain P (x # y # xs) = (P x y ∧ binrelchain P (y#xs))

lemma binrelchain-Cons-reduce: binrelchain P (x#xs) =⇒ binrelchain P xs
by (induct xs) auto

lemma binrelchain-append-reduce1 : binrelchain P (xs@ys) =⇒ binrelchain P xs
proof (induct xs rule: list-induct-CCons)

case (CCons x y xs) with binrelchain-Cons-reduce show ?case by fastforce
qed auto

lemma binrelchain-append-reduce2 :
binrelchain P (xs@ys) =⇒ binrelchain P ys

proof (induct xs)
case (Cons x xs) with binrelchain-Cons-reduce show ?case by fastforce

qed simp

lemma binrelchain-Conssnoc-reduce:
binrelchain P (x#xs@[y]) =⇒ binrelchain P xs
using binrelchain-append-reduce1 binrelchain-Cons-reduce by fastforce

lemma binrelchain-overlap-join:
binrelchain P (xs@[x]) =⇒ binrelchain P (x#ys) =⇒ binrelchain P (xs@x#ys)

20

by (induct xs rule: list-induct-CCons) auto

lemma binrelchain-join:
[[binrelchain P (xs@[x]); binrelchain P (y#ys); P x y]] =⇒

binrelchain P (xs @ x # y # ys)
using binrelchain-overlap-join by fastforce

lemma binrelchain-snoc:
binrelchain P (xs@[x]) =⇒ P x y =⇒ binrelchain P (xs@[x,y])
using binrelchain-join by fastforce

lemma binrelchain-sym-rev:
assumes

∧
x y. P x y =⇒ P y x

shows binrelchain P xs =⇒ binrelchain P (rev xs)
proof (induct xs rule: list-induct-CCons)

case (CCons x y xs) with assms show ?case by (auto intro: binrelchain-snoc)
qed auto

lemma binrelchain-remdup-adj:
binrelchain P (xs@[x,x]@ys) =⇒ binrelchain P (xs@x#ys)
by (induct xs rule: list-induct-CCons) auto

abbreviation proper-binrelchain P xs ≡ binrelchain P xs ∧ distinct xs

lemma binrelchain-obtain-proper :
x 6=y =⇒ binrelchain P (x#xs@[y]) =⇒
∃ zs. set zs ⊆ set xs ∧ length zs ≤ length xs ∧ proper-binrelchain P (x#zs@[y])

proof (induct xs arbitrary: x)
case (Cons w ws)
show ?case
proof (cases w=x w=y rule: two-cases)

case one
from one(1) Cons(3) have binrelchain P (x#ws@[y])

using binrelchain-Cons-reduce by simp
with Cons(1 ,2) obtain zs

where set zs ⊆ set ws length zs ≤ length ws proper-binrelchain P (x#zs@[y])
by auto

thus ?thesis by auto
next

case other
with Cons(3) have proper-binrelchain P (x#[]@[y])

using binrelchain-append-reduce1 by simp
moreover have length [] ≤ length (w#ws) set [] ⊆ set (w#ws) by auto
ultimately show ?thesis by blast

next
case neither
from Cons(3) have binrelchain P (w#ws@[y])

using binrelchain-Cons-reduce by simp
with neither(2) Cons(1) obtain zs

21

where zs: set zs ⊆ set ws length zs ≤ length ws
proper-binrelchain P (w#zs@[y])

by auto
show ?thesis
proof (cases x∈set zs)

case True
from this obtain as bs where asbs: zs = as@x#bs

using in-set-conv-decomp[of x] by auto
with zs(3) have proper-binrelchain P (x#bs@[y])

using binrelchain-append-reduce2 [of P w#as] by auto
moreover from zs(1) asbs have set bs ⊆ set (w#ws) by auto
moreover from asbs zs(2) have length bs ≤ length (w#ws) by simp
ultimately show ?thesis by auto

next
case False
with zs(3) neither(1) Cons(2 ,3) have proper-binrelchain P (x#(w#zs)@[y])

by simp
moreover from zs(1) have set (w#zs) ⊆ set (w#ws) by auto
moreover from zs(2) have length (w#zs) ≤ length (w#ws) by simp
ultimately show ?thesis by blast

qed
qed (fastforce simp add: Cons(2))

qed simp

lemma binrelchain-trans-Cons-snoc:
assumes

∧
x y z. P x y =⇒ P y z =⇒ P x z

shows binrelchain P (x#xs@[y]) =⇒ P x y
proof (induct xs arbitrary: x)

case Cons with assms show ?case using binrelchain-Cons-reduce by auto
qed simp

lemma binrelchain-cong:
assumes

∧
x y. P x y =⇒ Q x y

shows binrelchain P xs =⇒ binrelchain Q xs
using assms binrelchain-Cons-reduce
by (induct xs rule: list-induct-CCons) auto

lemma binrelchain-funcong-Cons-snoc:
assumes

∧
x y. P x y =⇒ f y = f x binrelchain P (x#xs@[y])

shows f y = f x
using assms binrelchain-cong[of P]

binrelchain-trans-Cons-snoc[of λx y. f y = f x x xs y]
by auto

lemma binrelchain-funcong-extra-condition-Cons-snoc:
assumes

∧
x y. Q x =⇒ P x y =⇒ Q y

∧
x y. Q x =⇒ P x y =⇒ f y = f x

shows Q x =⇒ binrelchain P (x#zs@[y]) =⇒ f y = f x
proof (induct zs arbitrary: x)

case (Cons z zs) with assms show ?case

22

using binrelchain-Cons-reduce[of P x z#zs@[y]] by fastforce
qed (simp add: assms)

lemma binrelchain-setfuncong-Cons-snoc:
[[∀ x∈A. ∀ y. P x y −→ y∈A; ∀ x∈A. ∀ y. P x y −→ f y = f x; x∈A;

binrelchain P (x#zs@[y])]] =⇒ f y = f x
using binrelchain-funcong-extra-condition-Cons-snoc[of λx. x∈A P f x zs y]
by fast

lemma binrelchain-propcong-Cons-snoc:
assumes

∧
x y. Q x =⇒ P x y =⇒ Q y

shows Q x =⇒ binrelchain P (x#xs@[y]) =⇒ Q y
proof (induct xs arbitrary: x)

case Cons with assms show ?case using binrelchain-Cons-reduce by auto
qed (simp add: assms)

1.5.6 Set of subseqs
lemma subseqs-Cons: subseqs (x#xs) = map (Cons x) (subseqs xs) @ (subseqs xs)

using cong-let[of subseqs xs λxss. map (Cons x) xss @ xss] by simp

abbreviation ssubseqs xs ≡ set (subseqs xs)

lemma nil-ssubseqs: [] ∈ ssubseqs xs
proof (induct xs)

case (Cons x xs) thus ?case using subseqs-Cons[of x] by simp
qed simp

lemma ssubseqs-Cons: ssubseqs (x#xs) = (Cons x) ‘ (ssubseqs xs) ∪ ssubseqs xs
using subseqs-Cons[of x] by simp

lemma ssubseqs-refl: xs ∈ ssubseqs xs
proof (induct xs)

case (Cons x xs) thus ?case using ssubseqs-Cons by fast
qed (rule nil-ssubseqs)

lemma ssubseqs-subset: as ∈ ssubseqs bs =⇒ ssubseqs as ⊆ ssubseqs bs
proof (induct bs arbitrary: as)

case (Cons b bs) show ?case
proof (cases as ∈ set (subseqs bs))

case True with Cons show ?thesis using ssubseqs-Cons by fastforce
next

case False with Cons show ?thesis
using nil-ssubseqs[of b#bs] ssubseqs-Cons[of hd as] ssubseqs-Cons[of b]
by (cases as) auto

qed
qed simp

lemma ssubseqs-lists:

23

as ∈ lists A =⇒ bs ∈ ssubseqs as =⇒ bs ∈ lists A
proof (induct as arbitrary: bs)

case (Cons a as) thus ?case using ssubseqs-Cons[of a] by fastforce
qed simp

lemma delete1-ssubseqs:
as@bs ∈ ssubseqs (as@[a]@bs)

proof (induct as)
case Nil show ?case using ssubseqs-refl ssubseqs-Cons[of a bs] by auto

next
case (Cons x xs) thus ?case using ssubseqs-Cons[of x] by simp

qed

lemma delete2-ssubseqs:
as@bs@cs ∈ ssubseqs (as@[a]@bs@[b]@cs)
using delete1-ssubseqs[of as@[a]@bs] delete1-ssubseqs ssubseqs-subset
by fastforce

1.6 Orders and posets

We have chosen to work with the ordering locale instead of the order class
to more easily facilitate simultaneously working with both an order and its
dual.

1.6.1 Morphisms of posets
locale OrderingSetMap =

domain : ordering less-eq less
+ codomain: ordering less-eq ′ less ′

for less-eq :: ′a⇒ ′a⇒bool (infix ‹≤› 50)
and less :: ′a⇒ ′a⇒bool (infix ‹<› 50)
and less-eq ′ :: ′b⇒ ′b⇒bool (infix ‹≤∗› 50)
and less ′ :: ′b⇒ ′b⇒bool (infix ‹<∗› 50)

+ fixes P :: ′a set
and f :: ′a⇒ ′b
assumes ordsetmap: a∈P =⇒ b∈P =⇒ a ≤ b =⇒ f a ≤∗ f b

begin

lemma comp:
assumes OrderingSetMap less-eq ′ less ′ less-eq ′′ less ′′ Q g

f‘P ⊆ Q
shows OrderingSetMap less-eq less less-eq ′′ less ′′ P (g◦f)

proof −
from assms(1) interpret I : OrderingSetMap less-eq ′ less ′ less-eq ′′ less ′′ Q g .
show ?thesis

by standard (use assms(2) in ‹auto intro: ordsetmap I .ordsetmap›)
qed

lemma subset: Q⊆P =⇒ OrderingSetMap (≤) (<) (≤∗) (<∗) Q f

24

using ordsetmap by unfold-locales fast

end

locale OrderingSetIso = OrderingSetMap less-eq less less-eq ′ less ′ P f
for less-eq :: ′a⇒ ′a⇒bool (infix ‹≤› 50)
and less :: ′a⇒ ′a⇒bool (infix ‹<› 50)
and less-eq ′ :: ′b⇒ ′b⇒bool (infix ‹≤∗› 50)
and less ′ :: ′b⇒ ′b⇒bool (infix ‹<∗› 50)
and P :: ′a set
and f :: ′a⇒ ′b

+ assumes inj : inj-on f P
and rev-OrderingSetMap:

OrderingSetMap less-eq ′ less ′ less-eq less (f‘P) (the-inv-into P f)

abbreviation subset-ordering-iso ≡ OrderingSetIso (⊆) (⊂) (⊆) (⊂)

lemma (in OrderingSetMap) isoI :
assumes inj-on f P

∧
a b. a∈P =⇒ b∈P =⇒ f a ≤∗ f b =⇒ a ≤ b

shows OrderingSetIso less-eq less less-eq ′ less ′ P f
using assms the-inv-into-f-f [OF assms(1)]
by unfold-locales auto

lemma OrderingSetIsoI-orders-greater2less:
fixes f :: ′a::order ⇒ ′b::order
assumes inj-on f P

∧
a b. a ∈ P =⇒ b ∈ P =⇒ (b≤a) = (f a ≤ f b)

shows OrderingSetIso (greater-eq:: ′a⇒ ′a⇒bool) (greater :: ′a⇒ ′a⇒bool)
(less-eq:: ′b⇒ ′b⇒bool) (less:: ′b⇒ ′b⇒bool) P f

proof
from assms(2) show

∧
a b. a ∈ P =⇒ b ∈ P =⇒ b≤a =⇒ f a ≤ f b by auto

from assms(2)
show

∧
a b. a ∈ f ‘ P =⇒ b ∈ f ‘ P =⇒ b≤a =⇒

the-inv-into P f a ≤ the-inv-into P f b
using the-inv-into-f-f [OF assms(1)]
by force

qed (rule assms(1))

context OrderingSetIso
begin

lemmas ordsetmap = ordsetmap

lemma ordsetmap-strict: [[a∈P; b∈P; a<b]] =⇒ f a <∗ f b
using domain.strict-iff-order codomain.strict-iff-order ordsetmap inj

inj-on-contraD
by fastforce

lemmas inv-ordsetmap = OrderingSetMap.ordsetmap[OF rev-OrderingSetMap]

25

lemma rev-ordsetmap: [[a∈P; b∈P; f a ≤∗ f b]] =⇒ a ≤ b
using inv-ordsetmap the-inv-into-f-f [OF inj] by fastforce

lemma inv-iso: OrderingSetIso less-eq ′ less ′ less-eq less (f‘P) (the-inv-into P f)
using inv-ordsetmap inj-on-the-inv-into[OF inj] the-inv-into-onto[OF inj]

ordsetmap the-inv-into-the-inv-into[OF inj]
by unfold-locales auto

lemmas inv-ordsetmap-strict = OrderingSetIso.ordsetmap-strict[OF inv-iso]

lemma rev-ordsetmap-strict: [[a∈P; b∈P; f a <∗ f b]] =⇒ a < b
using inv-ordsetmap-strict the-inv-into-f-f [OF inj] by fastforce

lemma iso-comp:
assumes OrderingSetIso less-eq ′ less ′ less-eq ′′ less ′′ Q g f‘P ⊆ Q
shows OrderingSetIso less-eq less less-eq ′′ less ′′ P (g◦f)

proof (rule OrderingSetMap.isoI)
from assms show OrderingSetMap (≤) (<) less-eq ′′ less ′′ P (g ◦ f)

using OrderingSetIso.axioms(1) comp by fast
from assms(2) show inj-on (g ◦ f) P

using OrderingSetIso.inj[OF assms(1)]
comp-inj-on[OF inj, OF subset-inj-on]

by fast
next

fix a b
from assms(2) show [[a∈P; b∈P; less-eq ′′ ((g◦f) a) ((g◦f) b)]] =⇒ a≤b

using OrderingSetIso.rev-ordsetmap[OF assms(1)] rev-ordsetmap by force
qed

lemma iso-subset:
Q⊆P =⇒ OrderingSetIso (≤) (<) (≤∗) (<∗) Q f
using subset[of Q] subset-inj-on[OF inj] rev-ordsetmap
by (blast intro: OrderingSetMap.isoI)

lemma iso-dual:
‹OrderingSetIso (λa b. less-eq b a) (λa b. less b a)
(λa b. less-eq ′ b a) (λa b. less ′ b a) P f ›

apply (rule OrderingSetMap.isoI)
apply unfold-locales

using inj
apply (auto simp add: domain.refl codomain.refl

domain.irrefl codomain.irrefl
domain.order-iff-strict codomain.order-iff-strict
ordsetmap-strict rev-ordsetmap-strict inj-onD
intro: domain.trans codomain.trans
domain.strict-trans codomain.strict-trans
domain.antisym codomain.antisym)

done

26

end

lemma induced-pow-fun-subset-ordering-iso:
assumes inj-on f A
shows subset-ordering-iso (Pow A) ((‘) f)

proof
show

∧
a b. a ∈ Pow A =⇒ b ∈ Pow A =⇒ a ⊆ b =⇒ f ‘ a ⊆ f ‘ b by fast

from assms show 2 :inj-on ((‘) f) (Pow A)
using induced-pow-fun-inj-on by fast

show
∧

a b. a ∈ (‘) f ‘ Pow A =⇒ b ∈ (‘) f ‘ Pow A =⇒ a ⊆ b
=⇒ the-inv-into (Pow A) ((‘) f) a ⊆ the-inv-into (Pow A) ((‘) f) b

proof−
fix Y1 Y2
assume Y : Y1 ∈ ((‘) f) ‘ Pow A Y2 ∈ ((‘) f) ‘ Pow A Y1 ⊆ Y2
from Y (1 ,2) obtain X1 X2 where X1⊆A X2⊆A Y1 = f‘X1 Y2 = f‘X2

by auto
with assms Y (3)

show the-inv-into (Pow A) ((‘) f) Y1 ⊆ the-inv-into (Pow A) ((‘) f) Y2
using inj-onD[OF assms] the-inv-into-f-f [OF 2 , of X1]

the-inv-into-f-f [OF 2 , of X2]
by blast

qed
qed

1.6.2 More arg-min
lemma is-arg-minI :
[[P x;

∧
y. P y =⇒ ¬ m y < m x]] =⇒ is-arg-min m P x

by (simp add: is-arg-min-def)

lemma is-arg-min-linorderI :
[[P x;

∧
y. P y =⇒ m x ≤ (m y::-::linorder)]] =⇒ is-arg-min m P x

by (simp add: is-arg-min-linorder)

lemma is-arg-min-eq:
[[is-arg-min m P x; P z; m z = m x]] =⇒ is-arg-min m P z

by (metis is-arg-min-def)

lemma is-arg-minD1 : is-arg-min m P x =⇒ P x
unfolding is-arg-min-def by fast

lemma is-arg-minD2 : is-arg-min m P x =⇒ P y =⇒ ¬ m y < m x
unfolding is-arg-min-def by fast

lemma is-arg-min-size: fixes m :: ′a ⇒ ′b::linorder
shows is-arg-min m P x =⇒ m x = m (arg-min m P)
by (metis arg-min-equality is-arg-min-linorder)

27

lemma is-arg-min-size-subprop:
fixes m :: ′a⇒ ′b::linorder
assumes is-arg-min m P x Q x

∧
y. Q y =⇒ P y

shows m (arg-min m Q) = m (arg-min m P)
proof−

have ¬ is-arg-min m Q x =⇒ ¬ is-arg-min m P x
proof

assume x: ¬ is-arg-min m Q x
from assms(2 ,3) show False

using contrapos-nn[OF x, OF is-arg-minI] is-arg-minD2 [OF assms(1)] by
auto

qed
with assms(1) show ?thesis

using is-arg-min-size[of m] is-arg-min-size[of m] by fastforce
qed

1.6.3 Bottom of a set
context ordering
begin

definition has-bottom :: ′a set ⇒ bool
where has-bottom P ≡ ∃ z∈P. ∀ x∈P. z ≤ x

lemma has-bottomI : z∈P =⇒ (
∧

x. x∈P =⇒ z ≤ x) =⇒ has-bottom P
using has-bottom-def by auto

lemma has-uniq-bottom: has-bottom P =⇒ ∃ !z∈P. ∀ x∈P. z≤x
using has-bottom-def antisym by force

definition bottom :: ′a set ⇒ ′a
where bottom P ≡ (THE z. z∈P ∧ (∀ x∈P. z≤x))

lemma bottomD:
assumes has-bottom P
shows bottom P ∈ P x∈P =⇒ bottom P ≤ x
using assms has-uniq-bottom theI ′[of λz. z∈P ∧ (∀ x∈P. z≤x)]
unfolding bottom-def
by auto

lemma bottomI : z∈P =⇒ (
∧

y. y∈P =⇒ z ≤ y) =⇒ z = bottom P
using has-bottomI has-uniq-bottom

the1-equality[THEN sym, of λz. z∈P ∧ (∀ x∈P. z≤x)]
unfolding bottom-def
by simp

end

lemma has-bottom-pow: order .has-bottom (Pow A)

28

by (fast intro: order .has-bottomI)

lemma bottom-pow: order .bottom (Pow A) = {}
proof (rule order .bottomI [THEN sym]) qed auto

context OrderingSetMap
begin

abbreviation dombot ≡ domain.bottom P
abbreviation codbot ≡ codomain.bottom (f‘P)

lemma im-has-bottom: domain.has-bottom P =⇒ codomain.has-bottom (f‘P)
using domain.bottomD ordsetmap by (fast intro: codomain.has-bottomI)

lemma im-bottom: domain.has-bottom P =⇒ f dombot = codbot
using domain.bottomD ordsetmap by (auto intro: codomain.bottomI)

end

lemma (in OrderingSetIso) pullback-has-bottom:
assumes codomain.has-bottom (f‘P)
shows domain.has-bottom P

proof (rule domain.has-bottomI)
from assms show the-inv-into P f codbot ∈ P

using codomain.bottomD(1) the-inv-into-into[OF inj] by fast
from assms show

∧
x. x∈P =⇒ the-inv-into P f codbot ≤ x

using codomain.bottomD inv-ordsetmap[of codbot] the-inv-into-f-f [OF inj]
by fastforce

qed

lemma (in OrderingSetIso) pullback-bottom:
[[domain.has-bottom P; x∈P; f x = codomain.bottom (f‘P)]] =⇒

x = domain.bottom P
using im-has-bottom codomain.bottomD(2) rev-ordsetmap
by (auto intro: domain.bottomI)

1.6.4 Minimal and pseudominimal elements in sets

We will call an element of a poset pseudominimal if the only element below
it is the bottom of the poset.
context ordering
begin

definition minimal-in :: ′a set ⇒ ′a ⇒ bool
where minimal-in P x ≡ x∈P ∧ (∀ z∈P. ¬ z < x)

definition pseudominimal-in :: ′a set ⇒ ′a ⇒ bool
where pseudominimal-in P x ≡ minimal-in (P − {bottom P}) x

— only makes sense for has-bottom P

29

lemma minimal-inD1 : minimal-in P x =⇒ x∈P
using minimal-in-def by fast

lemma minimal-inD2 : minimal-in P x =⇒ z∈P =⇒ ¬ z < x
using minimal-in-def by fast

lemma pseudominimal-inD1 : pseudominimal-in P x =⇒ x∈P
using pseudominimal-in-def minimal-inD1 by fast

lemma pseudominimal-inD2 :
pseudominimal-in P x =⇒ z∈P =⇒ z<x =⇒ z = bottom P
using pseudominimal-in-def minimal-inD2 by fast

lemma pseudominimal-inI :
assumes x∈P x 6= bottom P

∧
z. z∈P =⇒ z<x =⇒ z = bottom P

shows pseudominimal-in P x
using assms
unfolding pseudominimal-in-def minimal-in-def
by fast

lemma pseudominimal-ne-bottom: pseudominimal-in P x =⇒ x 6= bottom P
using pseudominimal-in-def minimal-inD1 by fast

lemma pseudominimal-comp:
[[pseudominimal-in P x; pseudominimal-in P y; x≤y]] =⇒ x = y
using pseudominimal-inD1 pseudominimal-inD2 pseudominimal-ne-bottom

strict-iff-order [of x y]
by force

end

lemma pseudominimal-in-pow:
assumes order .pseudominimal-in (Pow A) x
shows ∃ a∈A. x = {a}

proof−
from assms obtain a where {a} ⊆ x

using order .pseudominimal-ne-bottom bottom-pow[of A] by fast
with assms show ?thesis

using order .pseudominimal-inD1 order .pseudominimal-inD2 [of - x {a}]
bottom-pow

by fast
qed

lemma pseudominimal-in-pow-singleton:
a∈A =⇒ order .pseudominimal-in (Pow A) {a}
using singleton-pow bottom-pow by (fast intro: order .pseudominimal-inI)

lemma no-pseudominimal-in-pow-is-empty:

30

(
∧

x. ¬ order .pseudominimal-in (Pow A) {x}) =⇒ A = {}
using pseudominimal-in-pow-singleton by (fast intro: equals0I)

lemma (in OrderingSetIso) pseudominimal-map:
domain.has-bottom P =⇒ domain.pseudominimal-in P x =⇒

codomain.pseudominimal-in (f‘P) (f x)
using domain.pseudominimal-inD1 pullback-bottom

domain.pseudominimal-ne-bottom rev-ordsetmap-strict
domain.pseudominimal-inD2 im-bottom

by (blast intro: codomain.pseudominimal-inI)

lemma (in OrderingSetIso) pullback-pseudominimal-in:
[[domain.has-bottom P; x∈P; codomain.pseudominimal-in (f‘P) (f x)]] =⇒

domain.pseudominimal-in P x
using im-bottom codomain.pseudominimal-ne-bottom ordsetmap-strict

codomain.pseudominimal-inD2 pullback-bottom
by (blast intro: domain.pseudominimal-inI)

1.6.5 Set of elements below another
abbreviation (in ordering) below-in :: ′a set ⇒ ′a ⇒ ′a set (infix ‹.≤› 70)

where P.≤x ≡ {y∈P. y≤x}

abbreviation (in ord) below-in :: ′a set ⇒ ′a ⇒ ′a set (infix ‹.≤› 70)
where P.≤x ≡ {y∈P. y≤x}

context ordering
begin

lemma below-in-refl: x∈P =⇒ x ∈ P.≤x
using refl by fast

lemma below-in-singleton: x∈P =⇒ P.≤x ⊆ {y} =⇒ y = x
using below-in-refl by fast

lemma bottom-in-below-in: has-bottom P =⇒ x∈P =⇒ bottom P ∈ P.≤x
using bottomD by fast

lemma below-in-singleton-is-bottom:
[[has-bottom P; x∈P; P.≤x = {x}]] =⇒ x = bottom P
using bottom-in-below-in by fast

lemma bottom-below-in:
has-bottom P =⇒ x∈P =⇒ bottom (P.≤x) = bottom P
using bottom-in-below-in by (fast intro: bottomI [THEN sym])

lemma bottom-below-in-relative:
[[has-bottom (P.≤y); x∈P; x≤y]] =⇒ bottom (P.≤x) = bottom (P.≤y)
using bottomD trans by (blast intro: bottomI [THEN sym])

31

lemma has-bottom-pseudominimal-in-below-inI :
assumes has-bottom P x∈P pseudominimal-in P y y≤x
shows pseudominimal-in (P.≤x) y
using assms(3 ,4) pseudominimal-inD1 [OF assms(3)]

pseudominimal-inD2 [OF assms(3)]
bottom-below-in[OF assms(1 ,2)] pseudominimal-ne-bottom

by (force intro: pseudominimal-inI)

lemma has-bottom-pseudominimal-in-below-in:
assumes has-bottom P x∈P pseudominimal-in (P.≤x) y
shows pseudominimal-in P y
using pseudominimal-inD1 [OF assms(3)]

pseudominimal-inD2 [OF assms(3)]
pseudominimal-ne-bottom[OF assms(3)]
bottom-below-in[OF assms(1 ,2)]
strict-implies-order [of - y] trans[of - y x]

by (force intro: pseudominimal-inI)

lemma pseudominimal-in-below-in:
assumes has-bottom (P.≤y) x∈P x≤y pseudominimal-in (P.≤x) w
shows pseudominimal-in (P.≤y) w
using assms(3) trans[of w x y] trans[of - w x] strict-iff-order

pseudominimal-inD1 [OF assms(4)]
pseudominimal-inD2 [OF assms(4)]
pseudominimal-ne-bottom[OF assms(4)]
bottom-below-in-relative[OF assms(1−3)]

by (force intro: pseudominimal-inI)

lemma collect-pseudominimals-below-in-less-eq-top:
assumes OrderingSetIso less-eq less (⊆) (⊂) (P.≤x) f

f‘(P.≤x) = Pow A a ⊆ {y. pseudominimal-in (P.≤x) y}
defines w ≡ the-inv-into (P.≤x) f (

⋃
(f‘a))

shows w ≤ x
proof−

from assms(2 ,3) have (
⋃
(f‘a)) ∈ f‘(P.≤x)

using pseudominimal-inD1 by fastforce
with assms(4) show ?thesis

using OrderingSetIso.inj[OF assms(1)] the-inv-into-into[of f P.≤x] by force
qed

lemma collect-pseudominimals-below-in-poset:
assumes OrderingSetIso less-eq less (⊆) (⊂) (P.≤x) f

f‘(P.≤x) = Pow A
a ⊆ {y. pseudominimal-in (P.≤x) y}

defines w ≡ the-inv-into (P.≤x) f (
⋃
(f‘a))

shows w ∈ P
using assms(2−4) OrderingSetIso.inj[OF assms(1)] pseudominimal-inD1

the-inv-into-into[of f P.≤x
⋃

(f‘a)]

32

by force

lemma collect-pseudominimals-below-in-eq:
assumes x∈P OrderingSetIso less-eq less (⊆) (⊂) (P.≤x) f

f‘(P.≤x) = Pow A a ⊆ {y. pseudominimal-in (P.≤x) y}
defines w: w ≡ the-inv-into (P.≤x) f (

⋃
(f‘a))

shows a = {y. pseudominimal-in (P.≤w) y}
proof

from assms(3) have has-bot-ltx: has-bottom (P.≤x)
using has-bottom-pow OrderingSetIso.pullback-has-bottom[OF assms(2)]
by auto

from assms(3 ,4) have Un-fa: (
⋃
(f‘a)) ∈ f‘(P.≤x)

using pseudominimal-inD1 by fastforce
from assms have w-le-x: w≤x and w-P: w∈P

using collect-pseudominimals-below-in-less-eq-top
collect-pseudominimals-below-in-poset

by auto
show a ⊆ {y. pseudominimal-in (P.≤w) y}
proof

fix y assume y: y ∈ a
show y ∈ {y. pseudominimal-in (P.≤w) y}
proof (rule CollectI , rule pseudominimal-inI , rule CollectI , rule conjI)

from y assms(4) have y-le-x: y ∈ P.≤x using pseudominimal-inD1 by fast
thus y∈P by simp
from y w show y ≤ w

using y-le-x Un-fa OrderingSetIso.inv-ordsetmap[OF assms(2)]
the-inv-into-f-f [OF OrderingSetIso.inj, OF assms(2), of y]

by fastforce
from assms(1) y assms(4) show y 6= bottom (P.≤w)

using w-P w-le-x has-bot-ltx bottom-below-in-relative
pseudominimal-ne-bottom

by fast
next

fix z assume z: z ∈ P.≤w z<y
with y assms(4) have z = bottom (P.≤x)

using w-le-x trans pseudominimal-inD2 [of P.≤x y z] by fast
moreover from assms(1) have bottom (P.≤w) = bottom (P.≤x)

using has-bot-ltx w-P w-le-x bottom-below-in-relative by fast
ultimately show z = bottom (P.≤w) by simp

qed
qed
show a ⊇ {y. pseudominimal-in (P.≤w) y}
proof

fix v assume v ∈ {y. pseudominimal-in (P.≤w) y}
hence pseudominimal-in (P.≤w) v by fast
moreover hence v-pm-ltx: pseudominimal-in (P.≤x) v

using has-bot-ltx w-P w-le-x pseudominimal-in-below-in by fast
ultimately

have f v ≤ (
⋃
(f‘a))

33

using w pseudominimal-inD1 [of - v] pseudominimal-inD1 [of - v] w-le-x w-P
OrderingSetIso.ordsetmap[OF assms(2), of v w] Un-fa
OrderingSetIso.inj[OF assms(2)]
f-the-inv-into-f

by force
with assms(3) obtain y where y∈a f v ⊆ f y

using v-pm-ltx has-bot-ltx pseudominimal-in-pow
OrderingSetIso.pseudominimal-map[OF assms(2)]

by force
with assms(2 ,4) show v ∈ a

using v-pm-ltx pseudominimal-inD1 pseudominimal-comp[of - v y]
OrderingSetIso.rev-ordsetmap[OF assms(2), of v y]

by fast
qed

qed

end

1.6.6 Lower bounds
context ordering
begin

definition lbound-of :: ′a ⇒ ′a ⇒ ′a ⇒ bool
where lbound-of x y b ≡ b≤x ∧ b≤y

lemma lbound-ofI : b≤x =⇒ b≤y =⇒ lbound-of x y b
using lbound-of-def by fast

lemma lbound-ofD1 : lbound-of x y b =⇒ b≤x
using lbound-of-def by fast

lemma lbound-ofD2 : lbound-of x y b =⇒ b≤y
using lbound-of-def by fast

definition glbound-in-of :: ′a set ⇒ ′a ⇒ ′a ⇒ ′a ⇒ bool
where glbound-in-of P x y b ≡

b∈P ∧ lbound-of x y b ∧ (∀ a∈P. lbound-of x y a −→ a≤b)

lemma glbound-in-ofI :
[[b∈P; lbound-of x y b;

∧
a. a∈P =⇒ lbound-of x y a =⇒ a≤b]] =⇒

glbound-in-of P x y b
using glbound-in-of-def by auto

lemma glbound-in-ofD-in: glbound-in-of P x y b =⇒ b∈P
using glbound-in-of-def by fast

lemma glbound-in-ofD-lbound: glbound-in-of P x y b =⇒ lbound-of x y b
using glbound-in-of-def by fast

34

lemma glbound-in-ofD-glbound:
glbound-in-of P x y b =⇒ a∈P =⇒ lbound-of x y a =⇒ a≤b
using glbound-in-of-def by fast

lemma glbound-in-of-less-eq1 : glbound-in-of P x y b =⇒ b≤x
using glbound-in-ofD-lbound lbound-ofD1 by fast

lemma glbound-in-of-less-eq2 : glbound-in-of P x y b =⇒ b≤y
using glbound-in-ofD-lbound lbound-ofD2 by fast

lemma pseudominimal-in-below-in-less-eq-glbound:
assumes pseudominimal-in (P.≤x) w pseudominimal-in (P.≤y) w

glbound-in-of P x y b
shows w ≤ b
using assms lbound-ofI glbound-in-ofD-glbound

pseudominimal-inD1 [of P.≤x] pseudominimal-inD1 [of P.≤y]
by fast

end

1.6.7 Simplex-like posets

Define a poset to be simplex-like if it is isomorphic to the power set of some
set.
context ordering
begin

definition simplex-like :: ′a set ⇒ bool
where simplex-like P ≡ finite P ∧

(∃ f A::nat set.
OrderingSetIso less-eq less (⊆) (⊂) P f ∧ f‘P = Pow A

)

lemma simplex-likeI :
assumes finite P OrderingSetIso less-eq less (⊆) (⊂) P f

f‘P = Pow (A::nat set)
shows simplex-like P
using assms simplex-like-def by auto

lemma simplex-likeD-finite: simplex-like P =⇒ finite P
using simplex-like-def by simp

lemma simplex-likeD-iso:
simplex-like P =⇒
∃ f A::nat set. OrderingSetIso less-eq less (⊆) (⊂) P f ∧ f‘P = Pow A

using simplex-like-def by simp

lemma simplex-like-has-bottom: simplex-like P =⇒ has-bottom P

35

using simplex-likeD-iso has-bottom-pow OrderingSetIso.pullback-has-bottom
by fastforce

lemma simplex-like-no-pseudominimal-imp-singleton:
assumes simplex-like P

∧
x. ¬ pseudominimal-in P x

shows ∃ p. P = {p}
proof−

obtain f and A::nat set
where fA: OrderingSetIso less-eq less (⊆) (⊂) P f f‘P = Pow A
using simplex-likeD-iso[OF assms(1)]
by auto

define e where e: e ≡ {}:: nat set
with fA(2) have e ∈ f‘P using Pow-bottom by simp
from this obtain p where p ∈ P f p = e by fast
have

∧
x. ¬ order .pseudominimal-in (Pow A) {x}

proof
fix x::nat assume order .pseudominimal-in (Pow A) {x}
moreover with fA(2) have {x} ∈ f‘P

using order .pseudominimal-inD1 by fastforce
ultimately show False

using assms fA simplex-like-has-bottom
OrderingSetIso.pullback-pseudominimal-in

by fastforce
qed
with e fA(2) show ?thesis

using no-pseudominimal-in-pow-is-empty
inj-on-to-singleton[OF OrderingSetIso.inj, OF fA(1)]

by force
qed

lemma simplex-like-no-pseudominimal-in-below-in-imp-singleton:
[[x∈P; simplex-like (P.≤x);

∧
z. ¬ pseudominimal-in (P.≤x) z]] =⇒

P.≤x = {x}
using simplex-like-no-pseudominimal-imp-singleton below-in-singleton[of x P]
by fast

lemma pseudo-simplex-like-has-bottom:
OrderingSetIso less-eq less (⊆) (⊂) P f =⇒ f‘P = Pow A =⇒

has-bottom P
using has-bottom-pow OrderingSetIso.pullback-has-bottom by fastforce

lemma pseudo-simplex-like-above-pseudominimal-is-top:
assumes OrderingSetIso less-eq less (⊆) (⊂) P f f‘P = Pow A t∈P∧

x. pseudominimal-in P x =⇒ x ≤ t
shows f t = A

proof
from assms(2 ,3) show f t ⊆ A by fast
show A ⊆ f t
proof

36

fix a assume a∈A
moreover with assms(2) have {a} ∈ f‘P by simp
ultimately show a ∈ f t

using assms pseudominimal-in-pow-singleton[of a A]
pseudo-simplex-like-has-bottom[of P f]
OrderingSetIso.pullback-pseudominimal-in[OF assms(1)]
OrderingSetIso.ordsetmap[OF assms(1), of - t]

by force
qed

qed

lemma pseudo-simplex-like-below-in-above-pseudominimal-is-top:
assumes x∈P OrderingSetIso less-eq less (⊆) (⊂) (P.≤x) f

f‘(P.≤x) = Pow A t ∈ P.≤x∧
y. pseudominimal-in (P.≤x) y =⇒ y ≤ t

shows t = x
using assms(1 ,3−5)

pseudo-simplex-like-above-pseudominimal-is-top[OF assms(2)]
below-in-refl[of x P] OrderingSetIso.ordsetmap[OF assms(2), of t x]
inj-onD[OF OrderingSetIso.inj[OF assms(2)], of t x]

by auto

lemma simplex-like-below-in-above-pseudominimal-is-top:
assumes x∈P simplex-like (P.≤x) t ∈ P.≤x∧

y. pseudominimal-in (P.≤x) y =⇒ y ≤ t
shows t = x
using assms simplex-likeD-iso

pseudo-simplex-like-below-in-above-pseudominimal-is-top[of x P - - t]
by blast

end

lemma (in OrderingSetIso) simplex-like-map:
assumes domain.simplex-like P
shows codomain.simplex-like (f‘P)

proof−
obtain g:: ′a ⇒ nat set and A::nat set

where gA: OrderingSetIso (≤) (<) (⊆) (⊂) P g g‘P = Pow A
using domain.simplex-likeD-iso[OF assms]
by auto

from gA(1) inj
have OrderingSetIso (≤∗) (<∗) (⊆) (⊂) (f‘P)

(g ◦ (the-inv-into P f))
using OrderingSetIso.iso-comp[OF inv-iso] the-inv-into-onto
by fast

moreover from gA(2) inj have (g ◦ (the-inv-into P f)) ‘ (f‘P) = Pow A
using the-inv-into-onto by (auto simp add: image-comp[THEN sym])

moreover from assms have finite (f‘P)
using domain.simplex-likeD-finite by fast

37

ultimately show ?thesis by (auto intro: codomain.simplex-likeI)
qed

lemma (in OrderingSetIso) pullback-simplex-like:
assumes finite P codomain.simplex-like (f‘P)
shows domain.simplex-like P

proof−
obtain g:: ′b ⇒ nat set and A::nat set

where gA: OrderingSetIso (≤∗) (<∗) (⊆) (⊂) (f‘P) g
g‘(f‘P) = Pow A

using codomain.simplex-likeD-iso[OF assms(2)]
by auto

from assms(1) gA(2) show ?thesis
using iso-comp[OF gA(1)]
by (auto intro: domain.simplex-likeI simp add: image-comp)

qed

lemma simplex-like-pow:
assumes finite A
shows order .simplex-like (Pow A)

proof−
from assms obtain f :: ′a⇒nat where inj-on f A

using finite-imp-inj-to-nat-seg[of A] by auto
hence subset-ordering-iso (Pow A) ((‘) f)

using induced-pow-fun-subset-ordering-iso by fast
with assms show ?thesis using induced-pow-fun-surj

by (blast intro: order .simplex-likeI)
qed

1.6.8 The superset ordering
abbreviation supset-has-bottom ≡ ordering.has-bottom (⊇)
abbreviation supset-bottom ≡ ordering.bottom (⊇)
abbreviation supset-lbound-of ≡ ordering.lbound-of (⊇)
abbreviation supset-glbound-in-of ≡ ordering.glbound-in-of (⊇)
abbreviation supset-simplex-like ≡ ordering.simplex-like (⊇) (⊃)
abbreviation supset-pseudominimal-in ≡

ordering.pseudominimal-in (⊇) (⊃)

abbreviation supset-below-in :: ′a set set ⇒ ′a set ⇒ ′a set set (infix ‹.⊇› 70)
where P.⊇A ≡ ordering.below-in (⊇) P A

lemma supset-poset: ordering (⊇) (⊃) ..

lemmas supset-bottomI = ordering.bottomI [OF supset-poset]
lemmas supset-pseudominimal-inI = ordering.pseudominimal-inI [OF supset-poset]
lemmas supset-pseudominimal-inD1 = ordering.pseudominimal-inD1 [OF supset-poset]
lemmas supset-pseudominimal-inD2 = ordering.pseudominimal-inD2 [OF supset-poset]
lemmas supset-lbound-ofI = ordering.lbound-ofI [OF supset-poset]

38

lemmas supset-lbound-of-def = ordering.lbound-of-def [OF supset-poset]
lemmas supset-glbound-in-ofI = ordering.glbound-in-ofI [OF supset-poset]
lemmas supset-pseudominimal-ne-bottom =

ordering.pseudominimal-ne-bottom[OF supset-poset]
lemmas supset-has-bottom-pseudominimal-in-below-inI =

ordering.has-bottom-pseudominimal-in-below-inI [OF supset-poset]
lemmas supset-has-bottom-pseudominimal-in-below-in =

ordering.has-bottom-pseudominimal-in-below-in[OF supset-poset]

lemma OrderingSetIso-pow-complement:
OrderingSetIso (⊇) (⊃) (⊆) (⊂) (Pow A) ((−) A)
using inj-on-minus-set by (fast intro: OrderingSetIsoI-orders-greater2less)

lemma simplex-like-pow-above-in:
assumes finite A X⊆A
shows supset-simplex-like ((Pow A).⊇X)

proof (
rule OrderingSetIso.pullback-simplex-like, rule OrderingSetIso.iso-subset,
rule OrderingSetIso-pow-complement

)
from assms(1) show finite ((Pow A).⊇X) by simp
from assms(1) have finite (Pow (A−X)) by fast
moreover from assms(2) have ((−) A) ‘ ((Pow A).⊇X) = Pow (A−X)

by auto
ultimately

show ordering.simplex-like (⊆) (⊂) (((−) A) ‘ ((Pow A).⊇X))
using simplex-like-pow
by fastforce

qed fast

end

2 Algebra

In this section, we develop the necessary algebra for developing the theory
of Coxeter systems, including groups, quotient groups, free groups, group
presentations, and words in a group over a set of generators.
theory Algebra
imports Prelim

begin

2.1 Miscellaneous algebra facts
lemma times2-conv-add: (j::nat) + j = 2∗j

by (induct j) auto

lemma (in comm-semiring-1) odd-n0 : odd m =⇒ m 6=0

39

using dvd-0-right by fast

lemma (in semigroup-add) add-assoc4 : a + b + c + d = a + (b + c + d)
using add.assoc by simp

lemmas (in monoid-add) sum-list-map-cong =
arg-cong[OF map-cong, OF refl, of - - - sum-list]

context group-add
begin

lemma map-uminus-order2 :
∀ s∈set ss. s+s=0 =⇒ map (uminus) ss = ss
by (induct ss) (auto simp add: minus-unique)

lemma uminus-sum-list: − sum-list as = sum-list (map uminus (rev as))
by (induct as) (auto simp add: minus-add)

lemma uminus-sum-list-order2 :
∀ s∈set ss. s+s=0 =⇒ − sum-list ss = sum-list (rev ss)
using uminus-sum-list map-uminus-order2 by simp

end

2.2 The type of permutations of a type

Here we construct a type consisting of all bijective functions on a type.
This is the prototypical example of a group, where the group operation is
composition, and every group can be embedded into such a type. It is for
this purpose that we construct this type, so that we may confer upon suitable
subsets of types that are not of class group-add the properties of that class,
via a suitable injective correspondence to this permutation type.
typedef ′a permutation = {f :: ′a⇒ ′a. bij f }

morphisms permutation Abs-permutation
by fast

setup-lifting type-definition-permutation

abbreviation permutation-apply :: ′a permutation ⇒ ′a ⇒ ′a (infixr ‹→› 90)
where p → a ≡ permutation p a

abbreviation permutation-image :: ′a permutation ⇒ ′a set ⇒ ′a set
(infixr ‹‘→› 90)
where p ‘→ A ≡ permutation p ‘ A

lemma permutation-eq-image: a ‘→ A = a ‘→ B =⇒ A=B
using permutation[of a] inj-eq-image[OF bij-is-inj] by auto

instantiation permutation :: (type) zero

40

begin
lift-definition zero-permutation :: ′a permutation is id:: ′a⇒ ′a by simp
instance ..
end

instantiation permutation :: (type) plus
begin
lift-definition plus-permutation :: ′a permutation ⇒ ′a permutation ⇒ ′a permu-
tation

is comp
using bij-comp
by fast

instance ..
end

lemma plus-permutation-abs-eq:
bij f =⇒ bij g =⇒

Abs-permutation f + Abs-permutation g = Abs-permutation (f ◦g)
by (simp add: plus-permutation.abs-eq eq-onp-same-args)

instance permutation :: (type) semigroup-add
proof

fix a b c :: ′a permutation show a + b + c = a + (b + c)
using comp-assoc[of permutation a permutation b permutation c]
by transfer simp

qed

instance permutation :: (type) monoid-add
proof

fix a :: ′a permutation
show 0 + a = a by transfer simp
show a + 0 = a by transfer simp

qed

instantiation permutation :: (type) uminus
begin
lift-definition uminus-permutation :: ′a permutation ⇒ ′a permutation

is λf . the-inv f
using bij-betw-the-inv-into
by fast

instance ..
end

instantiation permutation :: (type) minus
begin
lift-definition minus-permutation :: ′a permutation ⇒ ′a permutation ⇒ ′a per-
mutation

is λf g. f ◦ (the-inv g)
using bij-betw-the-inv-into bij-comp

41

by fast
instance ..
end

lemma minus-permutation-abs-eq:
bij f =⇒ bij g =⇒

Abs-permutation f − Abs-permutation g = Abs-permutation (f ◦ the-inv g)
by (simp add: minus-permutation.abs-eq eq-onp-same-args)

instance permutation :: (type) group-add
proof

fix a b :: ′a permutation
show − a + a = 0 using the-inv-leftinv[of permutation a] by transfer simp
show a + − b = a − b by transfer simp

qed

2.3 Natural action of nat on types of class monoid-add
2.3.1 Translation from class power.

Here we translate the power class to apply to types of class monoid-add.
context monoid-add
begin

sublocale nataction: power 0 plus .
sublocale add-mult-translate: monoid-mult 0 plus

by unfold-locales (auto simp add: add.assoc)

abbreviation nataction :: ′a ⇒ nat ⇒ ′a (infix ‹+^› 80)
where a+^n ≡ nataction.power a n

lemmas nataction-2 = add-mult-translate.power2-eq-square
lemmas nataction-Suc2 = add-mult-translate.power-Suc2

lemma alternating-sum-list-conv-nataction:
sum-list (alternating-list (2∗n) s t) = (s+t)+^n
by (induct n) (auto simp add: nataction-Suc2 [THEN sym])

lemma nataction-add-flip: (a+b)+^(Suc n) = a + (b+a)+^n + b
using nataction-Suc2 add.assoc by (induct n arbitrary: a b) auto

end

lemma (in group-add) nataction-add-eq0-flip:
assumes (a+b)+^n = 0
shows (b+a)+^n = 0

proof (cases n)
case (Suc k) with assms show ?thesis

using nataction-add-flip add.assoc[of −a a+b (a+b)+^k] by simp

42

qed simp

2.3.2 Additive order of an element
context monoid-add
begin

definition add-order :: ′a ⇒ nat
where add-order a ≡ if (∃n>0 . a+^n = 0) then

(LEAST n. n>0 ∧ a+^n = 0) else 0

lemma add-order : a+^(add-order a) = 0
using LeastI-ex[of λn. n>0 ∧ a+^n = 0] add-order-def by simp

lemma add-order-least: n>0 =⇒ a+^n = 0 =⇒ add-order a ≤ n
using Least-le[of λn. n>0 ∧ a+^n = 0] add-order-def by simp

lemma add-order-equality:
[[n>0 ; a+^n = 0 ; (

∧
m. m>0 =⇒ a+^m = 0 =⇒ n≤m)]] =⇒

add-order a = n
using Least-equality[of λn. n>0 ∧ a+^n = 0] add-order-def by auto

lemma add-order0 : add-order 0 = 1
using add-order-equality by simp

lemma add-order-gt0 : (add-order a > 0) = (∃n>0 . a+^n = 0)
using LeastI-ex[of λn. n>0 ∧ a+^n = 0] add-order-def by simp

lemma add-order-eq0 : add-order a = 0 =⇒ n>0 =⇒ a+^n 6= 0
using add-order-gt0 by force

lemma less-add-order-eq-0 :
assumes a+^k = 0 k < add-order a
shows k = 0

proof (cases k=0)
case False
moreover with assms(1) have ∃n>0 . a+^n = 0 by fast
ultimately show ?thesis

using assms add-order-def not-less-Least[of k λn. n>0 ∧ a+^n = 0]
by auto

qed simp

lemma less-add-order-eq-0-contra: k>0 =⇒ k < add-order a =⇒ a+^k 6= 0
using less-add-order-eq-0 by fast

lemma add-order-relator : add-order (a+^(add-order a)) = 1
using add-order by (auto intro: add-order-equality)

abbreviation pair-relator-list :: ′a ⇒ ′a ⇒ ′a list

43

where pair-relator-list s t ≡ alternating-list (2∗add-order (s+t)) s t
abbreviation pair-relator-halflist :: ′a ⇒ ′a ⇒ ′a list

where pair-relator-halflist s t ≡ alternating-list (add-order (s+t)) s t
abbreviation pair-relator-halflist2 :: ′a ⇒ ′a ⇒ ′a list

where pair-relator-halflist2 s t ≡
(if even (add-order (s+t)) then pair-relator-halflist s t else

pair-relator-halflist t s)

lemma sum-list-pair-relator-list: sum-list (pair-relator-list s t) = 0
by (auto simp add: add-order alternating-sum-list-conv-nataction)

end

context group-add
begin

lemma add-order-add-eq1 : add-order (s+t) = 1 =⇒ t = −s
using add-order [of s+t] by (simp add: minus-unique)

lemma add-order-add-sym: add-order (t+s) = add-order (s+t)
proof (cases add-order (t+s) = 0 add-order (s+t) = 0 rule: two-cases)

case one thus ?thesis
using add-order nataction-add-eq0-flip[of s t] add-order-eq0 by auto

next
case other thus ?thesis

using add-order nataction-add-eq0-flip[of t s] add-order-eq0 by auto
next

case neither thus ?thesis
using add-order [of s+t] add-order [of t+s]

nataction-add-eq0-flip[of s t] nataction-add-eq0-flip[of t s]
add-order-least[of add-order (s+t)] add-order-least[of add-order (t+s)]

by fastforce
qed simp

lemma pair-relator-halflist-append:
pair-relator-halflist s t @ pair-relator-halflist2 s t = pair-relator-list s t
using alternating-list-split[of add-order (s+t) add-order (s+t) s t]
by (auto simp add: times2-conv-add add-order-add-sym)

lemma rev-pair-relator-list: rev (pair-relator-list s t) = pair-relator-list t s
by (simp add:rev-alternating-list add-order-add-sym)

lemma pair-relator-halflist2-conv-rev-pair-relator-halflist:
pair-relator-halflist2 s t = rev (pair-relator-halflist t s)
by (auto simp add: add-order-add-sym rev-alternating-list)

end

44

2.4 Partial sums of a list

Here we construct a list that collects the results of adding the elements of a
given list together one-by-one.
context monoid-add
begin

primrec sums :: ′a list ⇒ ′a list
where

sums [] = [0]
| sums (x#xs) = 0 # map ((+) x) (sums xs)

lemma length-sums: length (sums xs) = Suc (length xs)
by (induct xs) auto

lemma sums-snoc: sums (xs@[x]) = sums xs @ [sum-list (xs@[x])]
by (induct xs) (auto simp add: add.assoc)

lemma sums-append2 :
sums (xs@ys) = butlast (sums xs) @ map ((+) (sum-list xs)) (sums ys)

proof (induct ys rule: rev-induct)
case Nil show ?case by (cases xs rule: rev-cases) (auto simp add: sums-snoc)

next
case (snoc y ys) thus ?case using sums-snoc[of xs@ys] by (simp add: sums-snoc)

qed

lemma sums-Cons-conv-append-tl:
sums (x#xs) = 0 # x # map ((+) x) (tl (sums xs))
by (cases xs) auto

lemma pullback-sums-map-middle2 :
map F (sums xs) = ds@[d,e]@es =⇒
∃ as a bs. xs = as@[a]@bs ∧ map F (sums as) = ds@[d] ∧

d = F (sum-list as) ∧ e = F (sum-list (as@[a]))
proof (induct xs es rule: list-induct2-snoc)

case (Nil2 xs)
show ?case
proof (cases xs rule: rev-cases)

case Nil with Nil2 show ?thesis by simp
next

case (snoc ys y) have ys: xs = ys@[y] by fact
with Nil2 (1) have y: map F (sums ys) = ds@[d] e = F (sum-list (ys@[y]))

by (auto simp add: sums-snoc)
show ?thesis
proof (cases ys rule: rev-cases)

case Nil
with ys y have

xs = []@[y]@[] map F (sums []) = ds@[d]
d = F (sum-list []) e = F (sum-list ([]@[y]))

45

by auto
thus ?thesis by fast

next
case (snoc zs z)
with y(1) have z: map F (sums zs) = ds d = F (sum-list (zs@[z]))

by (auto simp add: sums-snoc)
from z(1) ys y snoc have

xs = (zs@[z])@[y]@[] map F (sums (zs@[z])) = ds@[d]
e = F (sum-list ((zs@[z])@[y]))
by auto

with z(2) show ?thesis by fast
qed

qed
next

case snoc thus ?case by (fastforce simp add: sums-snoc)
qed simp

lemma pullback-sums-map-middle3 :
map F (sums xs) = ds@[d,e,f]@fs =⇒
∃ as a b bs. xs = as@[a,b]@bs ∧ d = F (sum-list as) ∧

e = F (sum-list (as@[a])) ∧ f = F (sum-list (as@[a,b]))
proof (induct xs fs rule: list-induct2-snoc)

case (Nil2 xs)
show ?case
proof (cases xs rule: rev-cases)

case Nil with Nil2 show ?thesis by simp
next

case (snoc ys y)
with Nil2 have y: map F (sums ys) = ds@[d,e] f = F (sum-list (ys@[y]))

by (auto simp add: sums-snoc)
from y(1) obtain as a bs where asabs:

ys = as@[a]@bs map F (sums as) = ds@[d]
d = F (sum-list as) e = F (sum-list (as@[a]))
using pullback-sums-map-middle2 [of F ys ds]
by fastforce

have bs = []
proof−

from y(1) asabs(1 ,2) have Suc (length bs) = Suc 0
by (auto simp add: sums-append2 map-butlast length-sums[THEN sym])

thus ?thesis by fast
qed
with snoc asabs(1) y(2) have xs = as@[a,y]@[] f = F (sum-list (as@[a,y]))

by auto
with asabs(3 ,4) show ?thesis by fast

qed
next

case snoc thus ?case by (fastforce simp add: sums-snoc)
qed simp

46

lemma pullback-sums-map-double-middle2 :
assumes map F (sums xs) = ds@[d,e]@es@[f ,g]@gs
shows ∃ as a bs b cs. xs = as@[a]@bs@[b]@cs ∧ d = F (sum-list as) ∧

e = F (sum-list (as@[a])) ∧ f = F (sum-list (as@[a]@bs)) ∧
g = F (sum-list (as@[a]@bs@[b]))

proof−
from assms obtain As b cs where Asbcs:

xs = As@[b]@cs map F (sums As) = ds@[d,e]@es@[f]
f = F (sum-list As) g = F (sum-list (As@[b]))
using pullback-sums-map-middle2 [of F xs ds@[d,e]@es]
by fastforce

from Asbcs show ?thesis
using pullback-sums-map-middle2 [of F As ds d e es@[f]] by fastforce

qed

end

2.5 Sums of alternating lists
lemma (in group-add) uminus-sum-list-alternating-order2 :

s+s=0 =⇒ t+t=0 =⇒ − sum-list (alternating-list n s t) =
sum-list (if even n then alternating-list n t s else alternating-list n s t)

using uminus-sum-list-order2 set-alternating-list[of n] rev-alternating-list[of n s]
by fastforce

context monoid-add
begin

lemma alternating-order2-cancel-1left:
s+s=0 =⇒

sum-list (s # (alternating-list (Suc n) s t)) = sum-list (alternating-list n t s)
using add.assoc[of s s] alternating-list-Suc-Cons[of n s] by simp

lemma alternating-order2-cancel-2left:
s+s=0 =⇒ t+t=0 =⇒

sum-list (t # s # (alternating-list (Suc (Suc n)) s t)) =
sum-list (alternating-list n s t)

using alternating-order2-cancel-1left[of s Suc n]
alternating-order2-cancel-1left[of t n]

by simp

lemma alternating-order2-even-cancel-right:
assumes st : s+s=0 t+t=0
and even-n: even n
shows m ≤ n =⇒ sum-list (alternating-list n s t @ alternating-list m t s) =

sum-list (alternating-list (n−m) s t)
proof (induct n arbitrary: m rule: nat-even-induct, rule even-n)

case (SucSuc k) with st show ?case
using alternating-order2-cancel-2left[of t s]

47

by (cases m rule: nat-cases-2Suc) auto
qed simp

end

2.6 Conjugation in group-add
2.6.1 Abbreviations and basic facts
context group-add
begin

abbreviation lconjby :: ′a⇒ ′a⇒ ′a
where lconjby x y ≡ x+y−x

abbreviation rconjby :: ′a⇒ ′a⇒ ′a
where rconjby x y ≡ −x+y+x

lemma lconjby-add: lconjby (x+y) z = lconjby x (lconjby y z)
by (auto simp add: algebra-simps)

lemma rconjby-add: rconjby (x+y) z = rconjby y (rconjby x z)
by (simp add: minus-add add.assoc[THEN sym])

lemma add-rconjby: rconjby x y + rconjby x z = rconjby x (y+z)
by (simp add: add.assoc)

lemma lconjby-uminus: lconjby x (−y) = − lconjby x y
using minus-unique[of lconjby x y, THEN sym] by (simp add: algebra-simps)

lemma rconjby-uminus: rconjby x (−y) = − rconjby x y
using minus-unique[of rconjby x y] add-assoc4 [of rconjby x y −x −y x] by simp

lemma lconjby-rconjby: lconjby x (rconjby x y) = y
by (simp add: algebra-simps)

lemma rconjby-lconjby: rconjby x (lconjby x y) = y
by (simp add: algebra-simps)

lemma lconjby-inj: inj (lconjby x)
using rconjby-lconjby by (fast intro: inj-on-inverseI)

lemma rconjby-inj: inj (rconjby x)
using lconjby-rconjby by (fast intro: inj-on-inverseI)

lemma lconjby-surj: surj (lconjby x)
using lconjby-rconjby surjI [of lconjby x] by fast

lemma lconjby-bij: bij (lconjby x)
unfolding bij-def using lconjby-inj lconjby-surj by fast

48

lemma the-inv-lconjby: the-inv (lconjby x) = (rconjby x)
using bij-betw-f-the-inv-into-f [OF lconjby-bij, of - x] lconjby-rconjby
by (force intro: inj-onD[OF lconjby-inj, of x])

lemma lconjby-eq-conv-rconjby-eq: w = lconjby x y =⇒ y = rconjby x w
using the-inv-lconjby the-inv-into-f-f [OF lconjby-inj] by force

lemma rconjby-order2 : s+s = 0 =⇒ rconjby x s + rconjby x s = 0
by (simp add: add-rconjby)

lemma rconjby-order2-eq-lconjby:
assumes s+s=0
shows rconjby s = lconjby s

proof−
have rconjby s = lconjby (−s) by simp
with assms show ?thesis using minus-unique by simp

qed

lemma lconjby-alternating-list-order2 :
assumes s+s=0 t+t=0
shows lconjby (sum-list (alternating-list k s t)) (if even k then s else t) =

sum-list (alternating-list (Suc (2∗k)) s t)
proof (induct k rule: nat-induct-step2)

case (SucSuc m)
have lconjby (sum-list (alternating-list (Suc (Suc m)) s t))

(if even (Suc (Suc m)) then s else t) = s + t +
lconjby (sum-list (alternating-list m s t)) (if even m then s else t) − t − s

using alternating-list-SucSuc-ConsCons[of m s t]
by (simp add: algebra-simps)

also from assms SucSuc
have . . . = sum-list (alternating-list (Suc (2∗Suc (Suc m))) s t)
using alternating-list-SucSuc-ConsCons[of Suc (2∗m) s t]

sum-list.append[of alternating-list (Suc (2∗Suc m)) s t [t]]
by (simp add: algebra-simps)

finally show ?case by fast
qed (auto simp add: assms(1) algebra-simps)

end

2.6.2 The conjugation sequence

Given a list in group-add, we create a new list by conjugating each term by
all the previous terms. This sequence arises in Coxeter systems.
context group-add
begin

primrec lconjseq :: ′a list ⇒ ′a list
where

49

lconjseq [] = []
| lconjseq (x#xs) = x # (map (lconjby x) (lconjseq xs))

lemma length-lconjseq: length (lconjseq xs) = length xs
by (induct xs) auto

lemma lconjseq-snoc: lconjseq (xs@[x]) = lconjseq xs @ [lconjby (sum-list xs) x]
by (induct xs) (auto simp add: lconjby-add)

lemma lconjseq-append:
lconjseq (xs@ys) = lconjseq xs @ (map (lconjby (sum-list xs)) (lconjseq ys))

proof (induct ys rule: rev-induct)
case (snoc y ys) thus ?case

using lconjseq-snoc[of xs@ys] lconjseq-snoc[of ys] by (simp add: lconjby-add)
qed simp

lemma lconjseq-alternating-order2-repeats ′:
fixes s t :: ′a
defines altst: altst ≡ λn. alternating-list n s t
and altts: altts ≡ λn. alternating-list n t s
assumes st : s+s=0 t+t=0 (s+t)+^k = 0
shows map (lconjby (sum-list (altst k)))

(lconjseq (if even k then altst m else altts m)) = lconjseq (altst m)
proof (induct m)

case (Suc j)
with altst altts

have map (lconjby (sum-list (altst k)))
(lconjseq (if even k then altst (Suc j) else altts (Suc j))) =
lconjseq (altst j) @
[lconjby (sum-list (altst k @ (if even k then altst j else altts j)))
(if even k then (if even j then s else t) else (if even j then t else s))]

by (auto simp add: lconjseq-snoc lconjby-add)
also from altst altts st(1 ,2)

have . . . = lconjseq (altst j) @ [sum-list (altst (Suc (2∗(k+j))))]
using lconjby-alternating-list-order2 [of s t k+j]
by (cases even k)

(auto simp add: alternating-list-append[of k])
finally show ?case using altst st

by (auto simp add:
alternating-list-append(1)[THEN sym]
alternating-sum-list-conv-nataction
lconjby-alternating-list-order2 lconjseq-snoc

)
qed (simp add: altst altts)

lemma lconjseq-alternating-order2-repeats:
fixes s t :: ′a and k :: nat
defines altst: altst ≡ λn. alternating-list n s t
and altts: altts ≡ λn. alternating-list n t s

50

assumes st: s+s=0 t+t=0 (s+t)+^k = 0
shows lconjseq (altst (2∗k)) = lconjseq (altst k) @ lconjseq (altst k)

proof−
from altst altts

have lconjseq (altst (2∗k)) = lconjseq (altst k) @
map (lconjby (sum-list (altst k)))
(lconjseq (if even k then altst k else altts k))

using alternating-list-append[THEN sym, of k k s t]
by (auto simp add: times2-conv-add lconjseq-append)

with altst altts st show ?thesis
using lconjseq-alternating-order2-repeats ′[of s t k k] by auto

qed

lemma even-count-lconjseq-alternating-order2 :
fixes s t :: ′a
assumes s+s=0 t+t=0 (s+t)+^k = 0
shows even (count-list (lconjseq (alternating-list (2∗k) s t)) x)

proof−
define xs where xs: xs ≡ lconjseq (alternating-list (2∗k) s t)
with assms obtain as where xs = as@as

using lconjseq-alternating-order2-repeats by fast
hence count-list xs x = 2 ∗ (count-list as x)

by (simp add: times2-conv-add)
with xs show ?thesis by simp

qed

lemma order2-hd-in-lconjseq-deletion:
shows s+s=0 =⇒ s ∈ set (lconjseq ss)

=⇒ ∃ as b bs. ss = as@[b]@bs ∧ sum-list (s#ss) = sum-list (as@bs)
proof (induct ss arbitrary: s rule: rev-induct)

case (snoc t ts) show ?case
proof (cases s ∈ set (lconjseq ts))

case True
with snoc(1 ,2) obtain as b bs

where asbbs: ts = as @[b]@bs sum-list (s#ts) = sum-list (as@bs)
by fastforce

from asbbs(2) have sum-list (s#ts@[t]) = sum-list (as@(bs@[t]))
using sum-list.append[of s#ts [t]] sum-list.append[of as@bs [t]] by simp

with asbbs(1) show ?thesis by fastforce
next

case False
with snoc(3) have s: s = lconjby (sum-list ts) t by (simp add: lconjseq-snoc)
with snoc(2) have t+t=0

using lconjby-eq-conv-rconjby-eq[of s sum-list ts t]
rconjby-order2 [of s sum-list ts]

by simp
moreover from s have sum-list (s#ts@[t]) = sum-list ts + t + t

using add.assoc[of sum-list ts + t − sum-list ts sum-list ts]
by (simp add: algebra-simps)

51

ultimately have sum-list (s#ts@[t]) = sum-list (ts@[])
by (simp add: algebra-simps)

thus ?thesis by fast
qed

qed simp

end

2.6.3 The action on signed group-add elements

Here we construct an action of a group on itself by conjugation, where
group elements are endowed with an auxiliary sign by pairing with a boolean
element. In multiple applications of this action, the auxiliary sign helps keep
track of how many times the elements conjugating and being conjugated
are the same. This action arises in exploring reduced expressions of group
elements as words in a set of generators of order two (in particular, in a
Coxeter group).
type-synonym ′a signed = ′a×bool

definition signed-funaction :: (′a⇒ ′a⇒ ′a) ⇒ ′a ⇒ ′a signed ⇒ ′a signed
where signed-funaction f s x ≡ map-prod (f s) (λb. b 6= (fst x = s)) x
— so the sign of x is flipped precisely when its first component is equal to s

context group-add
begin

abbreviation signed-lconjaction ≡ signed-funaction lconjby
abbreviation signed-rconjaction ≡ signed-funaction rconjby

lemmas signed-lconjactionD = signed-funaction-def [of lconjby]
lemmas signed-rconjactionD = signed-funaction-def [of rconjby]

abbreviation signed-lconjpermutation :: ′a ⇒ ′a signed permutation
where signed-lconjpermutation s ≡ Abs-permutation (signed-lconjaction s)

abbreviation signed-list-lconjaction :: ′a list ⇒ ′a signed ⇒ ′a signed
where signed-list-lconjaction ss ≡ foldr signed-lconjaction ss

lemma signed-lconjaction-fst: fst (signed-lconjaction s x) = lconjby s (fst x)
using signed-lconjactionD by simp

lemma signed-lconjaction-rconjaction:
signed-lconjaction s (signed-rconjaction s x) = x

proof−
obtain a:: ′a and b::bool where x = (a,b) by fastforce
thus ?thesis

using signed-lconjactionD signed-rconjactionD injD[OF rconjby-inj, of s a]
lconjby-rconjby[of s a]

52

by auto
qed

lemma signed-rconjaction-by-order2-eq-lconjaction:
s+s=0 =⇒ signed-rconjaction s = signed-lconjaction s
using signed-funaction-def [of lconjby s] signed-funaction-def [of rconjby s]

rconjby-order2-eq-lconjby[of s]
by auto

lemma inj-signed-lconjaction: inj (signed-lconjaction s)
proof (rule injI)

fix x y assume 1 : signed-lconjaction s x = signed-lconjaction s y
moreover obtain a1 a2 :: ′a and b1 b2 :: bool

where xy: x = (a1 ,b1) y = (a2 ,b2)
by fastforce

ultimately show x=y
using injD[OF lconjby-inj, of s a1 a2] signed-lconjactionD
by (cases a1=s a2=s rule: two-cases) auto

qed

lemma surj-signed-lconjaction: surj (signed-lconjaction s)
using signed-lconjaction-rconjaction[THEN sym] by fast

lemma bij-signed-lconjaction: bij (signed-lconjaction s)
using inj-signed-lconjaction surj-signed-lconjaction by (fast intro: bijI)

lemma the-inv-signed-lconjaction:
the-inv (signed-lconjaction s) = signed-rconjaction s

proof
fix x
show the-inv (signed-lconjaction s) x = signed-rconjaction s x
proof (rule the-inv-into-f-eq, rule inj-signed-lconjaction)

show signed-lconjaction s (signed-rconjaction s x) = x
using signed-lconjaction-rconjaction by fast

qed (simp add: surj-signed-lconjaction)
qed

lemma the-inv-signed-lconjaction-by-order2 :
s+s=0 =⇒ the-inv (signed-lconjaction s) = signed-lconjaction s
using the-inv-signed-lconjaction signed-rconjaction-by-order2-eq-lconjaction
by simp

lemma signed-list-lconjaction-fst:
fst (signed-list-lconjaction ss x) = lconjby (sum-list ss) (fst x)
using signed-lconjaction-fst lconjby-add by (induct ss) auto

lemma signed-list-lconjaction-snd:
shows ∀ s∈set ss. s+s=0 =⇒ snd (signed-list-lconjaction ss x)

= (if even (count-list (lconjseq (rev ss)) (fst x)) then snd x else ¬snd x)

53

proof (induct ss)
case (Cons s ss) hence prevcase:

snd (signed-list-lconjaction ss x) =
(if even (count-list (lconjseq (rev ss)) (fst x)) then snd x else ¬ snd x)

by simp
have 1 : snd (signed-list-lconjaction (s # ss) x) =

snd (signed-lconjaction s (signed-list-lconjaction ss x))
by simp

show ?case
proof (cases fst (signed-list-lconjaction ss x) = s)

case True
with 1 prevcase

have snd (signed-list-lconjaction (s # ss) x) =
(if even (count-list (lconjseq (rev ss)) (fst x)) then ¬ snd x else snd x)

by (simp add: signed-lconjactionD)
with True Cons(2) rconjby-lconjby show ?thesis

by (auto simp add: signed-list-lconjaction-fst lconjseq-snoc
simp flip: uminus-sum-list-order2

)
next

case False
hence rconjby (sum-list ss) (lconjby (sum-list ss) (fst x)) 6=

rconjby (sum-list ss) s
by (simp add: signed-list-lconjaction-fst)

with Cons(2)
have count-list (lconjseq (rev (s#ss))) (fst x) =

count-list (lconjseq (rev ss)) (fst x)
by (simp add:

rconjby-lconjby uminus-sum-list-order2 [THEN sym]
lconjseq-snoc

)
moreover from False 1 prevcase

have snd (signed-list-lconjaction (s # ss) x) =
(if even (count-list (lconjseq (rev ss)) (fst x)) then snd x else ¬ snd x)

by (simp add: signed-lconjactionD)
ultimately show ?thesis by simp

qed
qed simp

end

2.7 Cosets
2.7.1 Basic facts
lemma set-zero-plus ′ [simp]: (0 :: ′a::monoid-add) +o C = C
— lemma Set-Algebras.set-zero-plus is restricted to types of class comm-monoid-add;
here is a version in monoid-add.

by (auto simp add: elt-set-plus-def)

54

lemma lcoset-0 : (w:: ′a::monoid-add) +o 0 = {w}
using elt-set-plus-def [of w] by simp

lemma lcoset-refl: (0 :: ′a::monoid-add) ∈ A =⇒ a ∈ a +o A
using elt-set-plus-def by force

lemma lcoset-eq-reps-subset:
(a:: ′a::group-add) +o A ⊆ a +o B =⇒ A ⊆ B
using elt-set-plus-def [of a] by auto

lemma lcoset-eq-reps: (a:: ′a::group-add) +o A = a +o B =⇒ A = B
using lcoset-eq-reps-subset[of a A B] lcoset-eq-reps-subset[of a B A] by auto

lemma lcoset-inj-on: inj ((+o) (a:: ′a::group-add))
using lcoset-eq-reps inj-onI [of UNIV (+o) a] by auto

lemma lcoset-conv-set: (a:: ′g::group-add) ∈ b +o A =⇒ −b + a ∈ A
by (auto simp add: elt-set-plus-def)

2.7.2 The supset order on cosets
lemma supset-lbound-lcoset-shift:

supset-lbound-of X Y B =⇒
ordering.lbound-of (⊇) (a +o X) (a +o Y) (a +o B)

using ordering.lbound-of-def [OF supset-poset, of X Y B]
by (fast intro: ordering.lbound-ofI supset-poset)

lemma supset-glbound-in-of-lcoset-shift:
fixes P :: ′a::group-add set set
assumes supset-glbound-in-of P X Y B
shows supset-glbound-in-of ((+o) a ‘ P) (a +o X) (a +o Y) (a +o B)
using ordering.glbound-in-ofD-in[OF supset-poset, OF assms]

ordering.glbound-in-ofD-lbound[OF supset-poset, OF assms]
supset-lbound-lcoset-shift[of X Y B a]
supset-lbound-lcoset-shift[of a +o X a +o Y - −a]
ordering.glbound-in-ofD-glbound[OF supset-poset, OF assms]
ordering.glbound-in-ofI [

OF supset-poset, of a +o B (+o) a ‘ P a +o X a +o Y
]

by (fastforce simp add: set-plus-rearrange2)

2.7.3 The afforded partition
definition lcoset-rel :: ′a::{uminus,plus} set ⇒ (′a× ′a) set

where lcoset-rel A ≡ {(x,y). −x + y ∈ A}

lemma lcoset-relI : −x+y ∈ A =⇒ (x,y) ∈ lcoset-rel A
using lcoset-rel-def by fast

55

2.8 Groups

We consider groups as closed sets in a type of class group-add.

2.8.1 Locale definition and basic facts
locale Group =

fixes G :: ′g::group-add set
assumes nonempty : G 6= {}
and diff-closed:

∧
g h. g ∈ G =⇒ h ∈ G =⇒ g − h ∈ G

begin

abbreviation Subgroup :: ′g set ⇒ bool
where Subgroup H ≡ Group H ∧ H ⊆ G

lemma SubgroupD1 : Subgroup H =⇒ Group H by fast

lemma zero-closed : 0 ∈ G
proof−

from nonempty obtain g where g ∈ G by fast
hence g − g ∈ G using diff-closed by fast
thus ?thesis by simp

qed

lemma uminus-closed: g∈G =⇒ −g∈G
using zero-closed diff-closed[of 0 g] by simp

lemma add-closed: g∈G =⇒ h∈G =⇒ g+h ∈ G
using uminus-closed[of h] diff-closed[of g −h] by simp

lemma uminus-add-closed: g ∈ G =⇒ h ∈ G =⇒ −g + h ∈ G
using uminus-closed add-closed by fast

lemma lconjby-closed: g∈G =⇒ x∈G =⇒ lconjby g x ∈ G
using add-closed diff-closed by fast

lemma lconjby-set-closed: g∈G =⇒ A⊆G =⇒ lconjby g ‘ A ⊆ G
using lconjby-closed by fast

lemma set-lconjby-subset-closed:
H⊆G =⇒ A⊆G =⇒ (

⋃
h∈H . lconjby h ‘ A) ⊆ G

using lconjby-set-closed[of - A] by fast

lemma sum-list-map-closed: set (map f as) ⊆ G =⇒ (
∑

a←as. f a) ∈ G
using zero-closed add-closed by (induct as) auto

lemma sum-list-closed: set as ⊆ G =⇒ sum-list as ∈ G
using sum-list-map-closed by force

56

end

2.8.2 Sets with a suitable binary operation

We have chosen to only consider groups in types of class group-add so that we
can take advantage of all the algebra lemmas already proven in HOL.Groups,
as well as constructs like sum-list. The following locale builds a bridge
between this restricted view of groups and the usual notion of a binary
operation on a set satisfying the group axioms, by constructing an injective
map into type permutation (which is of class group-add with respect to the
composition operation) that respects the group operation. This bridge will
be necessary to define quotient groups, in particular.
locale BinOpSetGroup =

fixes G :: ′a set
and binop :: ′a⇒ ′a⇒ ′a
and e :: ′a
assumes closed : g∈G =⇒ h∈G =⇒ binop g h ∈ G
and assoc :
[[g∈G; h∈G; k∈G]] =⇒ binop (binop g h) k = binop g (binop h k)

and identity: e∈G g∈G =⇒ binop g e = g g∈G =⇒ binop e g = g
and inverses: g∈G =⇒ ∃ h∈G. binop g h = e ∧ binop h g = e

begin

lemma unique-identity1 : g∈G =⇒ ∀ x∈G. binop g x = x =⇒ g = e
using identity(1 ,2) by auto

lemma unique-inverse:
assumes g∈G
shows ∃ !h. h∈G ∧ binop g h = e ∧ binop h g = e

proof (rule ex-ex1I)
from assms show ∃ h. h ∈ G ∧ binop g h = e ∧ binop h g = e

using inverses by fast
next

fix h k
assume h∈G ∧ binop g h = e ∧ binop h g = e k∈G ∧

binop g k = e ∧ binop k g = e
hence h: h∈G binop g h = e binop h g = e

and k: k∈G binop g k = e binop k g = e
by auto

from assms h(1 ,3) k(1 ,2) show h=k using identity(2 ,3) assoc by force
qed

abbreviation G-perm g ≡ restrict1 (binop g) G

definition Abs-G-perm :: ′a ⇒ ′a permutation
where Abs-G-perm g ≡ Abs-permutation (G-perm g)

abbreviation p ≡ Abs-G-perm — the injection into type permutation

57

abbreviation ip ≡ the-inv-into G p — the reverse correspondence
abbreviation pG ≡ p‘G — the resulting Group of type permutation

lemma G-perm-comp:
g∈G =⇒ h∈G =⇒ G-perm g ◦ G-perm h = G-perm (binop g h)
using closed by (auto simp add: assoc)

definition the-inverse :: ′a ⇒ ′a
where the-inverse g ≡ (THE h. h∈G ∧ binop g h = e ∧ binop h g = e)

abbreviation i ≡ the-inverse

lemma the-inverseD:
assumes g∈G
shows i g ∈ G binop g (i g) = e binop (i g) g = e
using assms theI ′[OF unique-inverse]
unfolding the-inverse-def
by auto

lemma binop-G-comp-binop-iG: g∈G =⇒ x∈G =⇒ binop g (binop (i g) x) = x
using the-inverseD(1) assoc[of g i g x] by (simp add: identity(3) the-inverseD(2))

lemma bij-betw-binop-G:
assumes g∈G
shows bij-betw (binop g) G G
unfolding bij-betw-def

proof
show inj-on (binop g) G
proof (rule inj-onI)

fix h k assume hk: h∈G k∈G binop g h = binop g k
with assms have binop (binop (i g) g) h = binop (binop (i g) g) k

using the-inverseD(1) by (simp add: assoc)
with assms hk(1 ,2) show h=k using the-inverseD(3) identity by simp

qed
show binop g ‘ G = G
proof

from assms show binop g ‘ G ⊆ G using closed by fast
from assms show binop g ‘ G ⊇ G

using binop-G-comp-binop-iG[THEN sym] the-inverseD(1) closed by fast
qed

qed

lemma the-inv-into-G-binop-G:
assumes g∈G x∈G
shows the-inv-into G (binop g) x = binop (i g) x

proof (rule the-inv-into-f-eq)
from assms(1) show inj-on (binop g) G

using bij-betw-imp-inj-on[OF bij-betw-binop-G] by fast
from assms show binop g (binop (i g) x) = x

58

using binop-G-comp-binop-iG by fast
from assms show binop (i g) x ∈ G using closed the-inverseD(1) by fast

qed

lemma restrict1-the-inv-into-G-binop-G:
g∈G =⇒ restrict1 (the-inv-into G (binop g)) G = G-perm (i g)
using the-inv-into-G-binop-G by auto

lemma bij-G-perm: g∈G =⇒ bij (G-perm g)
using set-permutation-bij-restrict1 bij-betw-binop-G by fast

lemma G-perm-apply: g∈G =⇒ x∈G =⇒ p g → x = binop g x
using Abs-G-perm-def Abs-permutation-inverse bij-G-perm by fastforce

lemma G-perm-apply-identity: g∈G =⇒ p g → e = g
using G-perm-apply identity(1 ,2) by simp

lemma the-inv-G-perm:
g∈G =⇒ the-inv (G-perm g) = G-perm (i g)
using set-permutation-the-inv-restrict1 bij-betw-binop-G

restrict1-the-inv-into-G-binop-G
by fastforce

lemma Abs-G-perm-diff :
g∈G =⇒ h∈G =⇒ p g − p h = p (binop g (i h))
using Abs-G-perm-def minus-permutation-abs-eq[OF bij-G-perm bij-G-perm]

the-inv-G-perm G-perm-comp the-inverseD(1)
by simp

lemma Group: Group pG
using identity(1) Abs-G-perm-diff the-inverseD(1) closed by unfold-locales auto

lemma inj-on-p-G: inj-on p G
proof (rule inj-onI)

fix x y assume xy: x∈G y∈G p x = p y
hence Abs-permutation (G-perm (binop x (i y))) = Abs-permutation id

using Abs-G-perm-diff Abs-G-perm-def
by (fastforce simp add: zero-permutation.abs-eq)

moreover from xy(1 ,2) have 1 : binop x (i y) ∈ G
using bij-id closed the-inverseD(1) by fast

ultimately have 2 : G-perm (binop x (i y)) = id
using Abs-permutation-inject[of G-perm (binop x (i y))] bij-G-perm bij-id
by simp

have ∀ z∈G. binop (binop x (i y)) z = z
proof

fix z assume z∈G
thus binop (binop x (i y)) z = z using fun-cong[OF 2 , of z] by simp

qed
with xy(1 ,2) have binop x (binop (i y) y) = y

59

using unique-identity1 [OF 1] the-inverseD(1) by (simp add: assoc)
with xy(1 ,2) show x = y using the-inverseD(3) identity(2) by simp

qed

lemma homs:∧
g h. g∈G =⇒ h∈G =⇒ p (binop g h) = p g + p h∧
x y. x∈pG =⇒ y∈pG =⇒ binop (ip x) (ip y) = ip (x+y)

proof−
show 1 :

∧
g h. g∈G =⇒ h∈G =⇒ p (binop g h) = p g + p h

using Abs-G-perm-def G-perm-comp
plus-permutation-abs-eq[OF bij-G-perm bij-G-perm]

by simp
show

∧
x y. x∈pG =⇒ y∈pG =⇒ binop (ip x) (ip y) = ip (x+y)

proof−
fix x y assume x∈pG y∈pG
moreover hence ip (p (binop (ip x) (ip y))) = ip (x + y)

using 1 the-inv-into-into[OF inj-on-p-G] f-the-inv-into-f [OF inj-on-p-G]
by simp

ultimately show binop (ip x) (ip y) = ip (x+y)
using the-inv-into-into[OF inj-on-p-G] closed the-inv-into-f-f [OF inj-on-p-G]
by simp

qed
qed

lemmas inv-correspondence-into =
the-inv-into-into[OF inj-on-p-G, of - G, simplified]

lemma inv-correspondence-conv-apply: x ∈ pG =⇒ ip x = x→e
using G-perm-apply-identity inj-on-p-G by (auto intro: the-inv-into-f-eq)

end

2.8.3 Cosets of a Group
context Group
begin

lemma lcoset-refl: a ∈ a +o G
using lcoset-refl zero-closed by fast

lemma lcoset-el-reduce:
assumes a ∈ G
shows a +o G = G

proof (rule seteqI)
fix x assume x ∈ a +o G
from this obtain g where g∈G x = a+g using elt-set-plus-def [of a] by auto
with assms show x∈G by (simp add: add-closed)

next
fix x assume x∈G

60

with assms have −a + x ∈ G by (simp add: uminus-add-closed)
thus x ∈ a +o G using elt-set-plus-def by force

qed

lemma lcoset-el-reduce0 : 0 ∈ a +o G =⇒ a +o G = G
using elt-set-plus-def [of a G] minus-unique uminus-closed[of −a]

lcoset-el-reduce
by fastforce

lemma lcoset-subgroup-imp-eq-reps:
Group H =⇒ w +o H ⊆ w ′ +o G =⇒ w ′ +o G = w +o G
using Group.lcoset-refl[of H w] lcoset-conv-set[of w] lcoset-el-reduce

set-plus-rearrange2 [of w ′ −w ′+w G]
by force

lemma lcoset-closed: a∈G =⇒ A⊆G =⇒ a +o A ⊆ G
using elt-set-plus-def [of a] add-closed by auto

lemma lcoset-rel-sym: sym (lcoset-rel G)
proof (rule symI)

fix a b show (a,b) ∈ lcoset-rel G =⇒ (b,a) ∈ lcoset-rel G
using uminus-closed minus-add[of −a b] lcoset-rel-def [of G] by fastforce

qed

lemma lcoset-rel-trans: trans (lcoset-rel G)
proof (rule transI)

fix x y z assume xy: (x,y) ∈ lcoset-rel G and yz: (y,z) ∈ lcoset-rel G
from this obtain g g ′ where g∈G −x+y = g g ′∈G −y+z = g ′

using lcoset-rel-def [of G] by fast
thus (x, z) ∈ lcoset-rel G

using add.assoc[of g −y z] add-closed lcoset-rel-def [of G] by auto
qed

abbreviation LCoset-rel :: ′g set ⇒ (′g× ′g) set
where LCoset-rel H ≡ lcoset-rel H ∩ (G×G)

lemma refl-on-LCoset-rel: 0∈H =⇒ refl-on G (LCoset-rel H)
using lcoset-rel-def by (fastforce intro: refl-onI)

lemmas subgroup-refl-on-LCoset-rel =
refl-on-LCoset-rel[OF Group.zero-closed, OF SubgroupD1]

lemmas LCoset-rel-quotientI = quotientI [of - G LCoset-rel -]
lemmas LCoset-rel-quotientE = quotientE [of - G LCoset-rel -]

lemma lcoset-subgroup-rel-equiv:
Subgroup H =⇒ equiv G (LCoset-rel H)
using Group.lcoset-rel-sym sym-sym sym-Int Group.lcoset-rel-trans trans-sym

trans-Int subgroup-refl-on-LCoset-rel
by (blast intro: equivI)

61

lemma trivial-LCoset: H⊆G =⇒ H = LCoset-rel H ‘‘ {0}
using zero-closed unfolding lcoset-rel-def by auto

end

2.8.4 The Group generated by a set
inductive-set genby :: ′a::group-add set ⇒ ′a set (‹〈-〉›)

for S :: ′a set
where

genby-0-closed : 0∈〈S〉 — just in case S is empty
| genby-genset-closed: s∈S =⇒ s∈〈S〉
| genby-diff-closed : w∈〈S〉 =⇒ w ′∈〈S〉 =⇒ w − w ′ ∈ 〈S〉

lemma genby-Group: Group 〈S〉
using genby-0-closed genby-diff-closed by unfold-locales fast

lemmas genby-uminus-closed = Group.uminus-closed [OF genby-Group]
lemmas genby-add-closed = Group.add-closed [OF genby-Group]
lemmas genby-uminus-add-closed = Group.uminus-add-closed [OF genby-Group]
lemmas genby-lcoset-refl = Group.lcoset-refl [OF genby-Group]
lemmas genby-lcoset-el-reduce = Group.lcoset-el-reduce [OF genby-Group]
lemmas genby-lcoset-el-reduce0 = Group.lcoset-el-reduce0 [OF genby-Group]
lemmas genby-lcoset-closed = Group.lcoset-closed [OF genby-Group]

lemmas genby-lcoset-subgroup-imp-eq-reps =
Group.lcoset-subgroup-imp-eq-reps[OF genby-Group, OF genby-Group]

lemma genby-genset-subset: S ⊆ 〈S〉
using genby-genset-closed by fast

lemma genby-uminus-genset-subset: uminus ‘ S ⊆ 〈S〉
using genby-genset-subset genby-uminus-closed by auto

lemma genby-in-sum-list-lists:
fixes S
defines S-sum-lists: S-sum-lists ≡ (

⋃
ss∈lists (S ∪ uminus ‘ S). {sum-list ss})

shows w ∈ 〈S〉 =⇒ w ∈ S-sum-lists
proof (erule genby.induct)

have 0 = sum-list [] by simp
with S-sum-lists show 0 ∈ S-sum-lists by blast

next
fix s assume s∈S
hence [s] ∈ lists (S ∪ uminus ‘ S) by simp
moreover have s = sum-list [s] by simp
ultimately show s ∈ S-sum-lists using S-sum-lists by blast

next
fix w w ′ assume ww ′: w ∈ S-sum-lists w ′ ∈ S-sum-lists

62

with S-sum-lists obtain ss ts
where ss: ss ∈ lists (S ∪ uminus ‘ S) w = sum-list ss
and ts: ts ∈ lists (S ∪ uminus ‘ S) w ′ = sum-list ts
by fastforce

from ss(2) ts(2) have w−w ′ = sum-list (ss @ map uminus (rev ts))
by (simp add: diff-conv-add-uminus uminus-sum-list)

moreover from ss(1) ts(1)
have ss @ map uminus (rev ts) ∈ lists (S ∪ uminus ‘ S)
by fastforce

ultimately show w − w ′ ∈ S-sum-lists using S-sum-lists by fast
qed

lemma sum-list-lists-in-genby: ss ∈ lists (S ∪ uminus ‘ S) =⇒ sum-list ss ∈ 〈S〉
proof (induct ss)

case Nil show ?case using genby-0-closed by simp
next

case (Cons s ss) thus ?case
using genby-genset-subset[of S] genby-uminus-genset-subset

genby-add-closed[of s S sum-list ss]
by auto

qed

lemma sum-list-lists-in-genby-sym:
uminus ‘ S ⊆ S =⇒ ss ∈ lists S =⇒ sum-list ss ∈ 〈S〉
using sum-list-lists-in-genby by fast

lemma genby-eq-sum-lists: 〈S〉 = (
⋃

ss∈lists (S ∪ uminus ‘ S). {sum-list ss})
using genby-in-sum-list-lists sum-list-lists-in-genby by fast

lemma genby-mono: T ⊆ S =⇒ 〈T 〉 ⊆ 〈S〉
using genby-eq-sum-lists[of T] genby-eq-sum-lists[of S] by force

lemma (in Group) genby-closed:
assumes S ⊆ G
shows 〈S〉 ⊆ G

proof
fix x show x ∈ 〈S〉 =⇒ x ∈ G
proof (erule genby.induct, rule zero-closed)

from assms show
∧

s. s∈S =⇒ s∈G by fast
show

∧
w w ′. w∈G =⇒ w ′∈G =⇒ w−w ′ ∈ G using diff-closed by fast

qed
qed

lemma (in Group) genby-subgroup: S ⊆ G =⇒ Subgroup 〈S〉
using genby-closed genby-Group by simp

lemma genby-sym-eq-sum-lists:
uminus ‘ S ⊆ S =⇒ 〈S〉 = (

⋃
ss∈lists S . {sum-list ss})

using lists-mono genby-eq-sum-lists[of S] by force

63

lemma genby-empty ′: w ∈ 〈{}〉 =⇒ w = 0
proof (erule genby.induct) qed auto

lemma genby-order2 ′:
assumes s+s=0
shows w ∈ 〈{s}〉 =⇒ w = 0 ∨ w = s

proof (erule genby.induct)
fix w w ′ assume w = 0 ∨ w = s w ′ = 0 ∨ w ′ = s
with assms show w − w ′ = 0 ∨ w − w ′ = s

by (cases w ′=0) (auto simp add: minus-unique)
qed auto

lemma genby-order2 : s+s=0 =⇒ 〈{s}〉 = {0 ,s}
using genby-order2 ′[of s] genby-0-closed genby-genset-closed by auto

lemma genby-empty: 〈{}〉 = 0
using genby-empty ′ genby-0-closed by auto

lemma genby-lcoset-order2 : s+s=0 =⇒ w +o 〈{s}〉 = {w,w+s}
using elt-set-plus-def [of w] by (auto simp add: genby-order2)

lemma genby-lcoset-empty: (w:: ′a::group-add) +o 〈{}〉 = {w}
proof−

have 〈{}:: ′a set〉 = (0 :: ′a set) using genby-empty by fast
thus ?thesis using lcoset-0 by simp

qed

lemma (in Group) genby-set-lconjby-set-lconjby-closed:
fixes A :: ′g set
defines S ≡ (

⋃
g∈G. lconjby g ‘ A)

assumes g∈G
shows x ∈ 〈S〉 =⇒ lconjby g x ∈ 〈S〉

proof (erule genby.induct)
show lconjby g 0 ∈ 〈S〉 using genby-0-closed by simp
from assms show

∧
s. s ∈ S =⇒ lconjby g s ∈ 〈S〉

using add-closed genby-genset-closed[of - S] by (force simp add: lconjby-add)
next

fix w w ′

assume ww ′: lconjby g w ∈ 〈S〉 lconjby g w ′ ∈ 〈S〉
have lconjby g (w − w ′) = lconjby g w + lconjby g (−w ′)

by (simp add: algebra-simps)
with ww ′ show lconjby g (w − w ′) ∈ 〈S〉

using lconjby-uminus[of g] diff-conv-add-uminus[of - lconjby g w ′]
genby-diff-closed

by fastforce
qed

lemma (in Group) genby-set-lconjby-set-rconjby-closed:

64

fixes A :: ′g set
defines S ≡ (

⋃
g∈G. lconjby g ‘ A)

assumes g∈G x ∈ 〈S〉
shows rconjby g x ∈ 〈S〉
using assms uminus-closed genby-set-lconjby-set-lconjby-closed
by fastforce

2.8.5 Homomorphisms and isomorphisms
locale GroupHom = Group G

for G :: ′g::group-add set
+ fixes T :: ′g ⇒ ′h::group-add

assumes hom : g ∈ G =⇒ g ′ ∈ G =⇒ T (g + g ′) = T g + T g ′

and supp: supp T ⊆ G
begin

lemma im-zero: T 0 = 0
using zero-closed hom[of 0 0] add-diff-cancel[of T 0 T 0] by simp

lemma im-uminus: T (− g) = − T g
using im-zero hom[of g − g] uminus-closed[of g] minus-unique[of T g]

uminus-closed[of −g] supp suppI-contra[of g T]
suppI-contra[of −g T]

by fastforce

lemma im-uminus-add: g ∈ G =⇒ g ′ ∈ G =⇒ T (−g + g ′) = − T g + T g ′

by (simp add: uminus-closed hom im-uminus)

lemma im-diff : g ∈ G =⇒ g ′ ∈ G =⇒ T (g − g ′) = T g − T g ′

using hom uminus-closed hom[of g −g ′] im-uminus by simp

lemma im-lconjby: x ∈ G =⇒ g ∈ G =⇒ T (lconjby x g) = lconjby (T x) (T g)
using add-closed by (simp add: im-diff hom)

lemma im-sum-list-map:
set (map f as) ⊆ G =⇒ T (

∑
a←as. f a) = (

∑
a←as. T (f a))

using hom im-zero sum-list-closed by (induct as) auto

lemma comp:
assumes GroupHom H S T‘G ⊆ H
shows GroupHom G (S ◦ T)

proof
fix g g ′ assume g ∈ G g ′ ∈ G
with hom assms(2) show (S ◦ T) (g + g ′) = (S ◦ T) g + (S ◦ T) g ′

using GroupHom.hom[OF assms(1)] by fastforce
next

from supp have
∧

g. g /∈ G =⇒ (S ◦ T) g = 0
using suppI-contra GroupHom.im-zero[OF assms(1)] by fastforce

thus supp (S ◦ T) ⊆ G using suppD-contra by fast

65

qed

end

definition ker :: (′a⇒ ′b::zero) ⇒ ′a set
where ker f = {a. f a = 0}

lemma ker-subset-ker-restrict0 : ker f ⊆ ker (restrict0 f A)
unfolding ker-def by auto

context GroupHom
begin

abbreviation Ker ≡ ker T ∩ G

lemma uminus-add-in-Ker-eq-eq-im:
g∈G =⇒ h∈G =⇒ (−g + h ∈ Ker) = (T g = T h)
using neg-equal-iff-equal
by (simp add: uminus-add-closed ker-def im-uminus-add eq-neg-iff-add-eq-0)

end

locale UGroupHom = GroupHom UNIV T
for T :: ′g::group-add ⇒ ′h::group-add

begin

lemmas im-zero = im-zero
lemmas im-uminus = im-uminus

lemma hom: T (g+g ′) = T g + T g ′

using hom by simp

lemma im-diff : T (g − g ′) = T g − T g ′

using im-diff by simp

lemma im-lconjby: T (lconjby x g) = lconjby (T x) (T g)
using im-lconjby by simp

lemma restrict0 :
assumes Group G
shows GroupHom G (restrict0 T G)

proof (intro-locales, rule assms, unfold-locales)
from hom

show
∧

g g ′. g ∈ G =⇒ g ′ ∈ G =⇒
restrict0 T G (g + g ′) = restrict0 T G g + restrict0 T G g ′

using Group.add-closed[OF assms]
by auto

show supp (restrict0 T G) ⊆ G using supp-restrict0 [of G T] by fast

66

qed

end

lemma UGroupHomI :
assumes

∧
g g ′. T (g + g ′) = T g + T g ′

shows UGroupHom T
using assms
by unfold-locales auto

locale GroupIso = GroupHom G T
for G :: ′g::group-add set
and T :: ′g ⇒ ′h::group-add

+ assumes inj-on: inj-on T G

lemma (in GroupHom) isoI :
assumes

∧
k. k∈G =⇒ T k = 0 =⇒ k=0

shows GroupIso G T
proof (unfold-locales, rule inj-onI)

fix x y from assms show [[x∈G; y∈G; T x = T y]] =⇒ x = y
using im-diff diff-closed by force

qed

In a BinOpSetGroup, any map from the set into a type of class group-add
that respects the binary operation induces a GroupHom.
abbreviation (in BinOpSetGroup) lift-hom T ≡ restrict0 (T ◦ ip) pG

lemma (in BinOpSetGroup) lift-hom:
fixes T :: ′a ⇒ ′b::group-add
assumes ∀ g∈G. ∀ h∈G. T (binop g h) = T g + T h
shows GroupHom pG (lift-hom T)

proof (intro-locales, rule Group, unfold-locales)
from assms

show
∧

x y. x∈pG =⇒ y∈pG =⇒
lift-hom T (x+y) = lift-hom T x + lift-hom T y

using Group.add-closed[OF Group] inv-correspondence-into
by (simp add: homs(2)[THEN sym])

qed (rule supp-restrict0)

2.8.6 Normal subgroups
definition rcoset-rel :: ′a::{minus,plus} set ⇒ (′a× ′a) set

where rcoset-rel A ≡ {(x,y). x−y ∈ A}

context Group
begin

lemma rcoset-rel-conv-lcoset-rel:
rcoset-rel G = map-prod uminus uminus ‘ (lcoset-rel G)

67

proof (rule set-eqI)
fix x :: ′g× ′g
obtain a b where ab: x=(a,b) by fastforce
hence (x ∈ rcoset-rel G) = (a−b ∈ G) using rcoset-rel-def by auto
also have . . . = ((−b,−a) ∈ lcoset-rel G)

using uminus-closed lcoset-rel-def by fastforce
finally

show (x ∈ rcoset-rel G) = (x ∈ map-prod uminus uminus ‘ (lcoset-rel G))
using ab symD[OF lcoset-rel-sym] map-prod-def
by force

qed

lemma rcoset-rel-sym: sym (rcoset-rel G)
using rcoset-rel-conv-lcoset-rel map-prod-sym lcoset-rel-sym by simp

abbreviation RCoset-rel :: ′g set ⇒ (′g× ′g) set
where RCoset-rel H ≡ rcoset-rel H ∩ (G×G)

definition normal :: ′g set ⇒ bool
where normal H ≡ (∀ g∈G. LCoset-rel H ‘‘ {g} = RCoset-rel H ‘‘ {g})

lemma normalI :
assumes Group H ∀ g∈G. ∀ h∈H . ∃ h ′∈H . g+h = h ′+g

∀ g∈G. ∀ h∈H . ∃ h ′∈H . h+g = g+h ′

shows normal H
unfolding normal-def

proof
fix g assume g: g∈G
show LCoset-rel H ‘‘ {g} = RCoset-rel H ‘‘ {g}
proof (rule seteqI)

fix x assume x ∈ LCoset-rel H ‘‘ {g}
with g have x: x∈G −g+x ∈ H unfolding lcoset-rel-def by auto
from g x(2) assms(2) obtain h where h: h∈H g−x = −h
by (fastforce simp add: algebra-simps)
with assms(1) g x(1) show x ∈ RCoset-rel H ‘‘ {g}

using Group.uminus-closed unfolding rcoset-rel-def by simp
next

fix x assume x ∈ RCoset-rel H ‘‘ {g}
with g have x: x∈G g−x ∈ H unfolding rcoset-rel-def by auto
with assms(3) obtain h where h: h∈H −g+x = −h

by (fastforce simp add: algebra-simps minus-add)
with assms(1) g x(1) show x ∈ LCoset-rel H ‘‘ {g}

using Group.uminus-closed unfolding lcoset-rel-def by simp
qed

qed

lemma normal-lconjby-closed:
[[Subgroup H ; normal H ; g∈G; h∈H]] =⇒ lconjby g h ∈ H
using lcoset-relI [of g g+h H] add-closed[of g h] normal-def [of H]

68

symD[OF Group.rcoset-rel-sym, of H g g+h] rcoset-rel-def [of H]
by auto

lemma normal-rconjby-closed:
[[Subgroup H ; normal H ; g∈G; h∈H]] =⇒ rconjby g h ∈ H
using normal-lconjby-closed[of H −g h] uminus-closed[of g] by auto

abbreviation normal-closure A ≡ 〈
⋃

g∈G. lconjby g ‘ A〉

lemma (in Group) normal-closure:
assumes A⊆G
shows normal (normal-closure A)

proof (rule normalI , rule genby-Group)
show ∀ x∈G. ∀ h∈〈

⋃
g∈G. lconjby g ‘ A〉.

∃ h ′∈〈
⋃

g∈G. lconjby g ‘ A〉. x + h = h ′ + x
proof

fix x assume x: x∈G
show ∀ h∈〈

⋃
g∈G. lconjby g ‘ A〉.

∃ h ′∈〈
⋃

g∈G. lconjby g ‘ A〉. x + h = h ′ + x
proof (rule ballI , erule genby.induct)

show ∃ h∈〈
⋃

g∈G. lconjby g ‘ A〉. x + 0 = h + x
using genby-0-closed by force

next
fix s assume s ∈ (

⋃
g∈G. lconjby g ‘ A)

from this obtain g a where ga: g∈G a∈A s = lconjby g a by fast
from ga(3) have x + s = lconjby x (lconjby g a) + x

by (simp add: algebra-simps)
hence x + s = lconjby (x+g) a + x by (simp add: lconjby-add)
with x ga(1 ,2) show ∃ h∈〈

⋃
g∈G. lconjby g ‘ A〉. x + s = h + x

using add-closed by (blast intro: genby-genset-closed)
next

fix w w ′

assume w : w ∈ 〈
⋃

g∈G. lconjby g ‘ A〉
∃ h ∈〈

⋃
g∈G. lconjby g ‘ A〉. x + w = h + x

and w ′: w ′∈ 〈
⋃

g∈G. lconjby g ‘ A〉
∃ h ′∈〈

⋃
g∈G. lconjby g ‘ A〉. x + w ′ = h ′+ x

from w(2) w ′(2) obtain h h ′

where h : h ∈ 〈
⋃

g∈G. lconjby g ‘ A〉 x + w = h + x
and h ′: h ′∈ 〈

⋃
g∈G. lconjby g ‘ A〉 x + w ′ = h ′+ x

by fast
have x + (w − w ′) = x + w − (−x + (x + w ′))

by (simp add: algebra-simps)
also from h(2) h ′(2) have . . . = h + x + (−(h ′ + x) + x)

by (simp add: algebra-simps)
also have . . . = h + x + (−x + −h ′) + x

by (simp add: minus-add add.assoc)
finally have x + (w−w ′) = h − h ′ + x

using add.assoc[of h+x −x −h ′] by simp
with h(1) h ′(1)

69

show ∃ h∈〈
⋃

g∈G. lconjby g ‘ A〉. x + (w − w ′) = h + x
using genby-diff-closed
by fast

qed
qed
show ∀ x∈G. ∀ h∈〈

⋃
g∈G. lconjby g ‘ A〉.

∃ h ′∈〈
⋃

g∈G. lconjby g ‘ A〉. h + x = x + h ′

proof
fix x assume x: x∈G
show ∀ h∈〈

⋃
g∈G. lconjby g ‘ A〉.

∃ h ′∈〈
⋃

g∈G. lconjby g ‘ A〉. h + x = x + h ′

proof (rule ballI , erule genby.induct)
show ∃ h∈〈

⋃
g∈G. lconjby g ‘ A〉. 0 + x = x + h

using genby-0-closed by force
next

fix s assume s ∈ (
⋃

g∈G. lconjby g ‘ A)
from this obtain g a where ga: g∈G a∈A s = lconjby g a by fast
from ga(3) have s + x = x + (((−x + g) + a) + −g) + x

by (simp add: algebra-simps)
also have . . . = x + (−x + g + a + −g + x) by (simp add: add.assoc)
finally have s + x = x + lconjby (−x+g) a

by (simp add: algebra-simps lconjby-add)
with x ga(1 ,2) show ∃ h∈〈

⋃
g∈G. lconjby g ‘ A〉. s + x = x + h

using uminus-add-closed by (blast intro: genby-genset-closed)
next

fix w w ′

assume w : w ∈ 〈
⋃

g∈G. lconjby g ‘ A〉
∃ h ∈〈

⋃
g∈G. lconjby g ‘ A〉. w + x = x + h

and w ′: w ′∈ 〈
⋃

g∈G. lconjby g ‘ A〉
∃ h ′∈〈

⋃
g∈G. lconjby g ‘ A〉. w ′ + x = x + h ′

from w(2) w ′(2) obtain h h ′

where h : h ∈ 〈
⋃

g∈G. lconjby g ‘ A〉 w + x = x + h
and h ′: h ′∈ 〈

⋃
g∈G. lconjby g ‘ A〉 w ′ + x = x + h ′

by fast
have w − w ′ + x = w + x + (−x + −w ′) + x by (simp add: algebra-simps)
also from h(2) h ′(2) have . . . = x + h + (−h ′+−x) + x

using minus-add[of w ′ x] minus-add[of x h ′] by simp
finally have w − w ′ + x = x + (h − h ′) by (simp add: algebra-simps)
with h(1) h ′(1) show ∃ h∈〈

⋃
g∈G. lconjby g ‘ A〉. w − w ′ + x = x + h

using genby-diff-closed by fast
qed

qed
qed

end

70

2.8.7 Quotient groups

Here we use the bridge built by BinOpSetGroup to make the quotient of a
Group by a normal subgroup into a Group itself.
context Group
begin

lemma normal-quotient-add-well-defined:
assumes Subgroup H normal H g∈G g ′∈G
shows LCoset-rel H ‘‘ {g} + LCoset-rel H ‘‘ {g ′} = LCoset-rel H ‘‘ {g+g ′}

proof (rule seteqI)
fix x assume x ∈ LCoset-rel H ‘‘ {g} + LCoset-rel H ‘‘ {g ′}
from this obtain y z

where y ∈ LCoset-rel H ‘‘ {g} z ∈ LCoset-rel H ‘‘ {g ′} x = y+z
unfolding set-plus-def
by fast

with assms show x ∈ LCoset-rel H ‘‘ {g + g ′}
using lcoset-rel-def [of H] normal-lconjby-closed[of H g ′ −g ′+z]

Group.add-closed
normal-rconjby-closed[of H g ′ −g + y + (z − g ′)]
add.assoc[of −g ′ −g]
add-closed lcoset-relI [of g+g ′ y+z]

by (fastforce simp add: add.assoc minus-add)
next

fix x assume x ∈ LCoset-rel H ‘‘ {g + g ′}
moreover define h where h ≡ −(g+g ′) + x
moreover hence x = g + (g ′ + h)

using add.assoc[of −g ′ −g x] by (simp add: add.assoc minus-add)
ultimately show x ∈ LCoset-rel H ‘‘ {g} + LCoset-rel H ‘‘ {g ′}

using assms(1 ,3 ,4) lcoset-rel-def [of H] add-closed
refl-onD[OF subgroup-refl-on-LCoset-rel, of H]

by force
qed

abbreviation quotient-set H ≡ G // LCoset-rel H

lemma BinOpSetGroup-normal-quotient:
assumes Subgroup H normal H
shows BinOpSetGroup (quotient-set H) (+) H

proof
from assms(1) have H0 : H = LCoset-rel H ‘‘ {0}

using trivial-LCoset by auto

from assms(1) show H ∈ quotient-set H
using H0 zero-closed LCoset-rel-quotientI [of 0 H] by simp

fix x assume x ∈ quotient-set H
from this obtain gx where gx: gx∈G x = LCoset-rel H ‘‘ {gx}

by (fast elim: LCoset-rel-quotientE)

71

with assms(1 ,2) show x+H = x H+x = x
using normal-quotient-add-well-defined[of H gx 0]

normal-quotient-add-well-defined[of H 0 gx]
H0 zero-closed

by auto

from gx(1) have LCoset-rel H ‘‘ {−gx} ∈ quotient-set H
using uminus-closed by (fast intro: LCoset-rel-quotientI)

moreover from assms(1 ,2) gx
have x + LCoset-rel H ‘‘ {−gx} = H LCoset-rel H ‘‘ {−gx} + x = H
using H0 uminus-closed normal-quotient-add-well-defined
by auto

ultimately show ∃ x ′∈quotient-set H . x + x ′ = H ∧ x ′ + x = H by fast

fix y assume y ∈ quotient-set H
from this obtain gy where gy: gy∈G y = LCoset-rel H ‘‘ {gy}

by (fast elim: LCoset-rel-quotientE)
with assms gx show x+y ∈ quotient-set H

using add-closed normal-quotient-add-well-defined
by (auto intro: LCoset-rel-quotientI)

qed (rule add.assoc)

abbreviation abs-lcoset-perm H ≡
BinOpSetGroup.Abs-G-perm (quotient-set H) (+)

abbreviation abs-lcoset-perm-lift H g ≡ abs-lcoset-perm H (LCoset-rel H ‘‘ {g})
abbreviation abs-lcoset-perm-lift-arg-permutation g H ≡ abs-lcoset-perm-lift H g

notation abs-lcoset-perm-lift-arg-permutation (‹d-|-e› [51 ,51] 50)

end

abbreviation Group-abs-lcoset-perm-lift-arg-permutation G ′ g H ≡
Group.abs-lcoset-perm-lift-arg-permutation G ′ g H

notation Group-abs-lcoset-perm-lift-arg-permutation (‹d-|-|-e› [51 ,51 ,51] 50)

context Group
begin

lemmas lcoset-perm-def =
BinOpSetGroup.Abs-G-perm-def [OF BinOpSetGroup-normal-quotient]

lemmas lcoset-perm-comp =
BinOpSetGroup.G-perm-comp[OF BinOpSetGroup-normal-quotient]

lemmas bij-lcoset-perm =
BinOpSetGroup.bij-G-perm[OF BinOpSetGroup-normal-quotient]

lemma trivial-lcoset-perm:
assumes Subgroup H normal H h∈H
shows restrict1 ((+) (LCoset-rel H ‘‘ {h})) (quotient-set H) = id

72

proof (rule ext, simp, rule impI)
fix x assume x: x ∈ quotient-set H
then obtain k where k: k∈G x = LCoset-rel H ‘‘ {k}

by (blast elim: LCoset-rel-quotientE)
with x have LCoset-rel H ‘‘ {h} + x = LCoset-rel H ‘‘ {h+k}

using assms normal-quotient-add-well-defined by auto
with assms k show LCoset-rel H ‘‘ {h} + x = x

using add-closed[of h k] lcoset-relI [of k h+k H]
normal-rconjby-closed[of H k h]
eq-equiv-class-iff [OF lcoset-subgroup-rel-equiv, of H]

by (auto simp add: add.assoc)
qed

definition quotient-group :: ′g set ⇒ ′g set permutation set where
quotient-group H ≡ BinOpSetGroup.pG (quotient-set H) (+)

abbreviation natural-quotient-hom H ≡ restrict0 (λg. dg|H e) G

theorem quotient-group:
Subgroup H =⇒ normal H =⇒ Group (quotient-group H)
unfolding quotient-group-def
using BinOpSetGroup.Group[OF BinOpSetGroup-normal-quotient]
by auto

lemma natural-quotient-hom:
Subgroup H =⇒ normal H =⇒ GroupHom G (natural-quotient-hom H)
using add-closed bij-lcoset-perm lcoset-perm-def supp-restrict0

normal-quotient-add-well-defined[THEN sym]
LCoset-rel-quotientI [of - H]

by unfold-locales
(force simp add: lcoset-perm-comp plus-permutation-abs-eq)

lemma natural-quotient-hom-image:
natural-quotient-hom H ‘ G = quotient-group H
unfolding quotient-group-def
by (force elim: LCoset-rel-quotientE intro: LCoset-rel-quotientI)

lemma quotient-group-UN : quotient-group H = (λg. dg|H e) ‘ G
using natural-quotient-hom-image by auto

lemma quotient-identity-rule: [[Subgroup H ; normal H ; h∈H]] =⇒ dh|H e = 0
using lcoset-perm-def
by (simp add: trivial-lcoset-perm zero-permutation.abs-eq)

lemma quotient-group-lift-to-quotient-set:
[[Subgroup H ; normal H ; g∈G]] =⇒ (dg|H e) → H = LCoset-rel H ‘‘ {g}
using LCoset-rel-quotientI

BinOpSetGroup.G-perm-apply-identity[
OF BinOpSetGroup-normal-quotient

73

]
by simp

end

2.8.8 The induced homomorphism on a quotient group

A normal subgroup contained in the kernel of a homomorphism gives rise to a
homomorphism on the quotient group by that subgroup. When the subgroup
is the kernel itself (which is always normal), we obtain an isomorphism on
the quotient.
context GroupHom
begin

lemma respects-Ker-lcosets: H ⊆ Ker =⇒ T respects (LCoset-rel H)
using uminus-add-in-Ker-eq-eq-im
unfolding lcoset-rel-def
by (blast intro: congruentI)

abbreviation quotient-hom H ≡
BinOpSetGroup.lift-hom (quotient-set H) (+) (quotientfun T)

lemmas normal-subgroup-quotientfun-classrep-equality =
quotientfun-classrep-equality[

OF subgroup-refl-on-LCoset-rel, OF - respects-Ker-lcosets
]

lemma quotient-hom-im:
[[Subgroup H ; normal H ; H ⊆ Ker ; g∈G]] =⇒ quotient-hom H (dg|H e) = T g
using quotient-group-def quotient-group-UN quotient-group-lift-to-quotient-set

BinOpSetGroup.inv-correspondence-conv-apply[
OF BinOpSetGroup-normal-quotient

]
normal-subgroup-quotientfun-classrep-equality

by auto

lemma quotient-hom:
assumes Subgroup H normal H H ⊆ Ker
shows GroupHom (quotient-group H) (quotient-hom H)
unfolding quotient-group-def

proof (
rule BinOpSetGroup.lift-hom, rule BinOpSetGroup-normal-quotient, rule assms(1),
rule assms(2)

)
from assms

show ∀ x ∈ quotient-set H . ∀ y ∈ quotient-set H .
quotientfun T (x + y) = quotientfun T x + quotientfun T y

using normal-quotient-add-well-defined normal-subgroup-quotientfun-classrep-equality

74

add-closed hom
by (fastforce elim: LCoset-rel-quotientE)

qed

end

2.9 Free groups
2.9.1 Words in letters of signed type

Definitions and basic fact We pair elements of some type with type
bool, where the bool part of the pair indicates inversion.
abbreviation pairtrue ≡ λs. (s,True)
abbreviation pairfalse ≡ λs. (s,False)

abbreviation flip-signed :: ′a signed ⇒ ′a signed
where flip-signed ≡ apsnd (λb. ¬b)

abbreviation nflipped-signed :: ′a signed ⇒ ′a signed ⇒ bool
where nflipped-signed x y ≡ y 6= flip-signed x

lemma flip-signed-order2 : flip-signed (flip-signed x) = x
using apsnd-conv[of λb. ¬b fst x snd x] by simp

abbreviation charpair :: ′a::uminus set ⇒ ′a ⇒ ′a signed
where charpair S s ≡ if s∈S then (s,True) else (−s,False)

lemma map-charpair-uniform:
ss∈lists S =⇒ map (charpair S) ss = map pairtrue ss
by (induct ss) auto

lemma fst-set-map-charpair-un-uminus:
fixes ss :: ′a::group-add list
shows ss∈lists (S ∪ uminus ‘ S) =⇒ fst ‘ set (map (charpair S) ss) ⊆ S
by (induct ss) auto

abbreviation apply-sign :: (′a⇒ ′b::uminus) ⇒ ′a signed ⇒ ′b
where apply-sign f x ≡ (if snd x then f (fst x) else − f (fst x))

A word in such pairs will be considered proper if it does not contain consec-
utive letters that have opposite signs (and so are considered inverse), since
such consecutive letters would be cancelled in a group.
abbreviation proper-signed-list :: ′a signed list ⇒ bool

where proper-signed-list ≡ binrelchain nflipped-signed

lemma proper-map-flip-signed:
proper-signed-list xs =⇒ proper-signed-list (map flip-signed xs)
by (induct xs rule: list-induct-CCons) auto

75

lemma proper-rev-map-flip-signed:
proper-signed-list xs =⇒ proper-signed-list (rev (map flip-signed xs))
using proper-map-flip-signed binrelchain-sym-rev[of nflipped-signed] by fastforce

lemma uniform-snd-imp-proper-signed-list:
snd ‘ set xs ⊆ {b} =⇒ proper-signed-list xs

proof (induct xs rule: list-induct-CCons)
case CCons thus ?case by force

qed auto

lemma proper-signed-list-map-uniform-snd:
proper-signed-list (map (λs. (s,b)) as)
using uniform-snd-imp-proper-signed-list[of - b] by force

Algebra Addition is performed by appending words and recursively re-
moving any newly created adjacent pairs of inverse letters. Since we will
only ever be adding proper words, we only need to care about newly created
adjacent inverse pairs in the middle.
function prappend-signed-list :: ′a signed list ⇒ ′a signed list ⇒ ′a signed list

where prappend-signed-list xs [] = xs
| prappend-signed-list [] ys = ys
| prappend-signed-list (xs@[x]) (y#ys) = (

if y = flip-signed x then prappend-signed-list xs ys else xs @ x # y # ys
)

by (auto) (rule two-prod-lists-cases-snoc-Cons)
termination by (relation measure (λ(xs,ys). length xs + length ys)) auto

lemma proper-prappend-signed-list:
proper-signed-list xs =⇒ proper-signed-list ys
=⇒ proper-signed-list (prappend-signed-list xs ys)

proof (induct xs ys rule: list-induct2-snoc-Cons)
case (snoc-Cons xs x y ys)
show ?case
proof (cases y = flip-signed x)

case True with snoc-Cons show ?thesis
using binrelchain-append-reduce1 [of nflipped-signed]

binrelchain-Cons-reduce[of nflipped-signed y]
by auto

next
case False with snoc-Cons(2 ,3) show ?thesis

using binrelchain-join[of nflipped-signed] by simp
qed

qed auto

lemma fully-prappend-signed-list:
prappend-signed-list (rev (map flip-signed xs)) xs = []
by (induct xs) auto

76

lemma prappend-signed-list-single-Cons:
prappend-signed-list [x] (y#ys) = (if y = flip-signed x then ys else x#y#ys)
using prappend-signed-list.simps(3)[of [] x] by simp

lemma prappend-signed-list-map-uniform-snd:
prappend-signed-list (map (λs. (s,b)) xs) (map (λs. (s,b)) ys) =

map (λs. (s,b)) xs @ map (λs. (s,b)) ys
by (cases xs ys rule: two-lists-cases-snoc-Cons) auto

lemma prappend-signed-list-assoc-conv-snoc2Cons:
assumes proper-signed-list (xs@[y]) proper-signed-list (y#ys)
shows prappend-signed-list (xs@[y]) ys = prappend-signed-list xs (y#ys)

proof (cases xs ys rule: two-lists-cases-snoc-Cons ′)
case Nil1 with assms(2) show ?thesis

by (simp add: prappend-signed-list-single-Cons)
next

case Nil2 with assms(1) show ?thesis
using binrelchain-append-reduce2 by force

next
case (snoc-Cons as a b bs)
with assms show ?thesis

using prappend-signed-list.simps(3)[of as@[a]]
binrelchain-append-reduce2 [of nflipped-signed as [a,y]]

by simp
qed simp

lemma prappend-signed-list-assoc:
[[proper-signed-list xs; proper-signed-list ys; proper-signed-list zs]] =⇒

prappend-signed-list (prappend-signed-list xs ys) zs =
prappend-signed-list xs (prappend-signed-list ys zs)

proof (induct xs ys zs rule: list-induct3-snoc-Conssnoc-Cons-pairwise)
case (snoc-single-Cons xs x y z zs)
thus ?case

using prappend-signed-list.simps(3)[of [] y]
prappend-signed-list.simps(3)[of xs@[x]]

by (cases y = flip-signed x z = flip-signed y rule: two-cases)
(auto simp add:

flip-signed-order2 prappend-signed-list-assoc-conv-snoc2Cons
)

next
case (snoc-Conssnoc-Cons xs x y ys w z zs)
thus ?case

using binrelchain-Cons-reduce[of nflipped-signed y ys@[w]]
binrelchain-Cons-reduce[of nflipped-signed z zs]
binrelchain-append-reduce1 [of nflipped-signed xs]
binrelchain-append-reduce1 [of nflipped-signed y#ys]
binrelchain-Conssnoc-reduce[of nflipped-signed y ys]
prappend-signed-list.simps(3)[of y#ys]

77

prappend-signed-list.simps(3)[of xs@x#y#ys]
by (cases y = flip-signed x z = flip-signed w rule: two-cases) auto

qed auto

lemma fst-set-prappend-signed-list:
fst ‘ set (prappend-signed-list xs ys) ⊆ fst ‘ (set xs ∪ set ys)
by (induct xs ys rule: list-induct2-snoc-Cons) auto

lemma collapse-flipped-signed:
prappend-signed-list [(s,b)] [(s,¬b)] = []
using prappend-signed-list.simps(3)[of [] (s,b)] by simp

2.9.2 The collection of proper signed lists as a type

Here we create a type out of the collection of proper signed lists. This
type will be of class group-add, with the empty list as zero, the modified
append operation prappend-signed-list as addition, and inversion performed
by flipping the signs of the elements in the list and then reversing the order.

Type definition, instantiations, and instances Here we define the
type and instantiate it with respect to various type classes.
typedef ′a freeword = {as:: ′a signed list. proper-signed-list as}

morphisms freeword Abs-freeword
using binrelchain.simps(1) by fast

These two functions act as the natural injections of letters and words in the
letter type into the freeword type.
abbreviation Abs-freeletter :: ′a ⇒ ′a freeword

where Abs-freeletter s ≡ Abs-freeword [pairtrue s]

abbreviation Abs-freelist :: ′a list ⇒ ′a freeword
where Abs-freelist as ≡ Abs-freeword (map pairtrue as)

abbreviation Abs-freelistfst :: ′a signed list ⇒ ′a freeword
where Abs-freelistfst xs ≡ Abs-freelist (map fst xs)

setup-lifting type-definition-freeword

instantiation freeword :: (type) zero
begin
lift-definition zero-freeword :: ′a freeword is []:: ′a signed list by simp
instance ..
end

instantiation freeword :: (type) plus
begin
lift-definition plus-freeword :: ′a freeword ⇒ ′a freeword ⇒ ′a freeword

78

is prappend-signed-list
using proper-prappend-signed-list
by fast

instance ..
end

instantiation freeword :: (type) uminus
begin
lift-definition uminus-freeword :: ′a freeword ⇒ ′a freeword

is λxs. rev (map flip-signed xs)
by (rule proper-rev-map-flip-signed)

instance ..
end

instantiation freeword :: (type) minus
begin
lift-definition minus-freeword :: ′a freeword ⇒ ′a freeword ⇒ ′a freeword

is λxs ys. prappend-signed-list xs (rev (map flip-signed ys))
using proper-rev-map-flip-signed proper-prappend-signed-list by fast

instance ..
end

instance freeword :: (type) semigroup-add
proof

fix a b c :: ′a freeword show a + b + c = a + (b + c)
using prappend-signed-list-assoc[of freeword a freeword b freeword c]
by transfer simp

qed

instance freeword :: (type) monoid-add
proof

fix a b c :: ′a freeword
show 0 + a = a by transfer simp
show a + 0 = a by transfer simp

qed

instance freeword :: (type) group-add
proof

fix a b :: ′a freeword
show − a + a = 0

using fully-prappend-signed-list[of freeword a] by transfer simp
show a + − b = a − b by transfer simp

qed

Basic algebra and transfer facts in the freeword type Here we record
basic algebraic manipulations for the freeword type as well as various transfer
facts for dealing with representations of elements of freeword type as lists of
signed letters.

79

abbreviation Abs-freeletter-add :: ′a ⇒ ′a ⇒ ′a freeword (infixl ‹[+]› 65)
where s [+] t ≡ Abs-freeletter s + Abs-freeletter t

lemma Abs-freeword-Cons:
assumes proper-signed-list (x#xs)
shows Abs-freeword (x#xs) = Abs-freeword [x] + Abs-freeword xs

proof (cases xs)
case Nil thus ?thesis

using add-0-right[of Abs-freeword [x]] by (simp add: zero-freeword.abs-eq)
next

case (Cons y ys)
with assms

have freeword (Abs-freeword (x#xs)) =
freeword (Abs-freeword [x] + Abs-freeword xs)

by (simp add:
plus-freeword.rep-eq Abs-freeword-inverse
prappend-signed-list-single-Cons

)
thus ?thesis using freeword-inject by fast

qed

lemma Abs-freelist-Cons: Abs-freelist (x#xs) = Abs-freeletter x + Abs-freelist xs
using proper-signed-list-map-uniform-snd[of True x#xs] Abs-freeword-Cons
by simp

lemma plus-freeword-abs-eq:
proper-signed-list xs =⇒ proper-signed-list ys =⇒

Abs-freeword xs + Abs-freeword ys = Abs-freeword (prappend-signed-list xs ys)
using plus-freeword.abs-eq unfolding eq-onp-def by simp

lemma Abs-freeletter-add: s [+] t = Abs-freelist [s,t]
using Abs-freelist-Cons[of s [t]] by simp

lemma uminus-freeword-Abs-eq:
proper-signed-list xs =⇒
− Abs-freeword xs = Abs-freeword (rev (map flip-signed xs))

using uminus-freeword.abs-eq unfolding eq-onp-def by simp

lemma uminus-Abs-freeword-singleton:
− Abs-freeword [(s,b)] = Abs-freeword [(s,¬ b)]
using uminus-freeword-Abs-eq[of [(s,b)]] by simp

lemma Abs-freeword-append-uniform-snd:
Abs-freeword (map (λs. (s,b)) (xs@ys)) =

Abs-freeword (map (λs. (s,b)) xs) + Abs-freeword (map (λs. (s,b)) ys)
using proper-signed-list-map-uniform-snd[of b xs]

proper-signed-list-map-uniform-snd[of b ys]
plus-freeword-abs-eq prappend-signed-list-map-uniform-snd[of b xs ys]

by force

80

lemmas Abs-freelist-append = Abs-freeword-append-uniform-snd[of True]

lemma Abs-freelist-append-append:
Abs-freelist (xs@ys@zs) = Abs-freelist xs + Abs-freelist ys + Abs-freelist zs
using Abs-freelist-append[of xs@ys] Abs-freelist-append by simp

lemma Abs-freelist-inverse: freeword (Abs-freelist as) = map pairtrue as
using proper-signed-list-map-uniform-snd Abs-freeword-inverse by fast

lemma Abs-freeword-singleton-conv-apply-sign-freeletter :
Abs-freeword [x] = apply-sign Abs-freeletter x
by (cases x) (auto simp add: uminus-Abs-freeword-singleton)

lemma Abs-freeword-conv-freeletter-sum-list:
proper-signed-list xs =⇒

Abs-freeword xs = (
∑

x←xs. apply-sign Abs-freeletter x)
proof (induct xs)

case (Cons x xs) thus ?case
using Abs-freeword-Cons[of x] binrelchain-Cons-reduce[of - x]
by (simp add: Abs-freeword-singleton-conv-apply-sign-freeletter)

qed (simp add: zero-freeword.abs-eq)

lemma freeword-conv-freeletter-sum-list:
x = (

∑
s←freeword x. apply-sign Abs-freeletter s)

using Abs-freeword-conv-freeletter-sum-list[of freeword x] freeword
by (auto simp add: freeword-inverse)

lemma Abs-freeletter-prod-conv-Abs-freeword:
snd x =⇒ Abs-freeletter (fst x) = Abs-freeword [x]
using prod-eqI [of x pairtrue (fst x)] by simp

2.9.3 Lifts of functions on the letter type

Here we lift functions on the letter type to type freeword. In particular, we
are interested in the case where the function being lifted has codomain of
class group-add.

The universal property The universal property for free groups says that
every function from the letter type to some group-add type gives rise to a
unique homomorphism.
lemma extend-map-to-freeword-hom ′:

fixes f :: ′a ⇒ ′b::group-add
defines h: h:: ′a signed ⇒ ′b ≡ λ(s,b). if b then f s else − (f s)
defines g: g:: ′a signed list ⇒ ′b ≡ λxs. sum-list (map h xs)
shows g (prappend-signed-list xs ys) = g xs + g ys

proof (induct xs ys rule: list-induct2-snoc-Cons)

81

case (snoc-Cons xs x y ys)
show ?case
proof (cases y = flip-signed x)

case True
with h have h y = − h x

using split-beta ′[of λs b. if b then f s else − (f s)] by simp
with g have g (xs @ [x]) + g (y # ys) = g xs + g ys

by (simp add: algebra-simps)
with True snoc-Cons show ?thesis by simp

next
case False with g show ?thesis

using sum-list.append[of map h (xs@[x]) map h (y#ys)] by simp
qed

qed (auto simp add: h g)

lemma extend-map-to-freeword-hom1 :
fixes f :: ′a ⇒ ′b::group-add
defines h:: ′a signed ⇒ ′b ≡ λ(s,b). if b then f s else − (f s)
defines g:: ′a freeword ⇒ ′b ≡ λx. sum-list (map h (freeword x))
shows g (Abs-freeletter s) = f s
using assms
by (simp add: Abs-freeword-inverse)

lemma extend-map-to-freeword-hom2 :
fixes f :: ′a ⇒ ′b::group-add
defines h:: ′a signed ⇒ ′b ≡ λ(s,b). if b then f s else − (f s)
defines g:: ′a freeword ⇒ ′b ≡ λx. sum-list (map h (freeword x))
shows UGroupHom g
using assms
by (

auto intro: UGroupHomI
simp add: plus-freeword.rep-eq extend-map-to-freeword-hom ′

)

lemma uniqueness-of-extended-map-to-freeword-hom ′:
fixes f :: ′a ⇒ ′b::group-add
defines h: h:: ′a signed ⇒ ′b ≡ λ(s,b). if b then f s else − (f s)
defines g: g:: ′a signed list ⇒ ′b ≡ λxs. sum-list (map h xs)
assumes singles:

∧
s. k [(s,True)] = f s

and adds :
∧

xs ys. proper-signed-list xs =⇒ proper-signed-list ys
=⇒ k (prappend-signed-list xs ys) = k xs + k ys

shows proper-signed-list xs =⇒ k xs = g xs
proof−

have knil: k [] = 0 using adds[of [] []] add.assoc[of k [] k [] − k []] by simp
have ksingle:

∧
x. k [x] = g [x]

proof−
fix x :: ′a signed
obtain s b where x: x = (s,b) by fastforce
show k [x] = g [x]

82

proof (cases b)
case False
from adds x singles

have k (prappend-signed-list [x] [(s,True)]) = k [x] + f s
by simp

moreover have prappend-signed-list [(s,False)] [(s,True)] = []
using collapse-flipped-signed[of s False] by simp

ultimately have − f s = k [x] + f s + − f s using x False knil by simp
with x False g h show k [x] = g [x] by (simp add: algebra-simps)

qed (simp add: x g h singles)
qed
show proper-signed-list xs =⇒ k xs = g xs
proof (induct xs rule: list-induct-CCons)

case (CCons x y xs)
with g h show ?case

using adds[of [x] y#xs]
by (simp add:

prappend-signed-list-single-Cons
ksingle extend-map-to-freeword-hom ′

)
qed (auto simp add: g h knil ksingle)

qed

lemma uniqueness-of-extended-map-to-freeword-hom:
fixes f :: ′a ⇒ ′b::group-add
defines h:: ′a signed ⇒ ′b ≡ λ(s,b). if b then f s else − (f s)
defines g:: ′a freeword ⇒ ′b ≡ λx. sum-list (map h (freeword x))
assumes k: k ◦ Abs-freeletter = f UGroupHom k
shows k = g

proof
fix x:: ′a freeword
define k ′ where k ′: k ′ ≡ k ◦ Abs-freeword
have k ′ (freeword x) = g x unfolding h-def g-def
proof (rule uniqueness-of-extended-map-to-freeword-hom ′)

from k ′ k(1) show
∧

s. k ′ [pairtrue s] = f s by auto
show

∧
xs ys. proper-signed-list xs =⇒ proper-signed-list ys

=⇒ k ′ (prappend-signed-list xs ys) = k ′ xs + k ′ ys
proof−

fix xs ys :: ′a signed list
assume xsys: proper-signed-list xs proper-signed-list ys
with k ′

show k ′ (prappend-signed-list xs ys) = k ′ xs + k ′ ys
using UGroupHom.hom[OF k(2), of Abs-freeword xs Abs-freeword ys]
by (simp add: plus-freeword-abs-eq)

qed
show proper-signed-list (freeword x) using freeword by fast

qed
with k ′ show k x = g x using freeword-inverse[of x] by simp

qed

83

theorem universal-property:
fixes f :: ′a ⇒ ′b::group-add
shows ∃ !g:: ′a freeword⇒ ′b. g ◦ Abs-freeletter = f ∧ UGroupHom g

proof
define h where h: h ≡ λ(s,b). if b then f s else − (f s)
define g where g: g ≡ λx. sum-list (map h (freeword x))
from g h show g ◦ Abs-freeletter = f ∧ UGroupHom g

using extend-map-to-freeword-hom1 [of f] extend-map-to-freeword-hom2
by auto

from g h show
∧

k. k ◦ Abs-freeletter = f ∧ UGroupHom k =⇒ k = g
using uniqueness-of-extended-map-to-freeword-hom by auto

qed

Properties of homomorphisms afforded by the universal property
The lift of a function on the letter set is the unique additive function on
freeword that agrees with the original function on letters.
definition freeword-funlift :: (′a ⇒ ′b::group-add) ⇒ (′a freeword⇒ ′b::group-add)

where freeword-funlift f ≡ (THE g. g ◦ Abs-freeletter = f ∧ UGroupHom g)

lemma additive-freeword-funlift: UGroupHom (freeword-funlift f)
using theI ′[OF universal-property, of f] unfolding freeword-funlift-def by simp

lemma freeword-funlift-Abs-freeletter : freeword-funlift f (Abs-freeletter s) = f s
using theI ′[OF universal-property, of f]

comp-apply[of freeword-funlift f Abs-freeletter]
unfolding freeword-funlift-def
by fastforce

lemmas freeword-funlift-add = UGroupHom.hom [OF additive-freeword-funlift]
lemmas freeword-funlift-0 = UGroupHom.im-zero [OF additive-freeword-funlift]
lemmas freeword-funlift-uminus = UGroupHom.im-uminus [OF additive-freeword-funlift]
lemmas freeword-funlift-diff = UGroupHom.im-diff [OF additive-freeword-funlift]
lemmas freeword-funlift-lconjby = UGroupHom.im-lconjby [OF additive-freeword-funlift]

lemma freeword-funlift-uminus-Abs-freeletter :
freeword-funlift f (Abs-freeword [(s,False)]) = − f s
using freeword-funlift-uminus[of f Abs-freeword [(s,False)]]

uminus-freeword-Abs-eq[of [(s,False)]]
freeword-funlift-Abs-freeletter [of f]

by simp

lemma freeword-funlift-Abs-freeword-singleton:
freeword-funlift f (Abs-freeword [x]) = apply-sign f x

proof−
obtain s b where x: x = (s,b) by fastforce
thus ?thesis

using freeword-funlift-Abs-freeletter freeword-funlift-uminus-Abs-freeletter

84

by (cases b) auto
qed

lemma freeword-funlift-Abs-freeword-Cons:
assumes proper-signed-list (x#xs)
shows freeword-funlift f (Abs-freeword (x#xs)) =

apply-sign f x + freeword-funlift f (Abs-freeword xs)
proof−

from assms
have freeword-funlift f (Abs-freeword (x#xs)) =

freeword-funlift f (Abs-freeword [x]) +
freeword-funlift f (Abs-freeword xs)

using Abs-freeword-Cons[of x xs] freeword-funlift-add by simp
thus ?thesis

using freeword-funlift-Abs-freeword-singleton[of f x] by simp
qed

lemma freeword-funlift-Abs-freeword:
proper-signed-list xs =⇒ freeword-funlift f (Abs-freeword xs) =
(
∑

x←xs. apply-sign f x)
proof (induct xs)

case (Cons x xs) thus ?case
using freeword-funlift-Abs-freeword-Cons[of - - f]

binrelchain-Cons-reduce[of - x xs]
by simp

qed (simp add: zero-freeword.abs-eq[THEN sym] freeword-funlift-0)

lemma freeword-funlift-Abs-freelist:
freeword-funlift f (Abs-freelist xs) = (

∑
x←xs. f x)

proof (induct xs)
case (Cons x xs) thus ?case

using Abs-freelist-Cons[of x xs]
by (simp add: freeword-funlift-add freeword-funlift-Abs-freeletter)

qed (simp add: zero-freeword.abs-eq[THEN sym] freeword-funlift-0)

lemma freeword-funlift-im ′:
proper-signed-list xs =⇒ fst ‘ set xs ⊆ S =⇒

freeword-funlift f (Abs-freeword xs) ∈ 〈f‘S〉
proof (induct xs)

case Nil
have Abs-freeword ([]:: ′a signed list) = (0 :: ′a freeword)

using zero-freeword.abs-eq[THEN sym] by simp
thus freeword-funlift f (Abs-freeword ([]:: ′a signed list)) ∈ 〈f‘S〉

using freeword-funlift-0 [of f] genby-0-closed by simp
next

case (Cons x xs)
define y where y: y ≡ apply-sign f x
define z where z: z ≡ freeword-funlift f (Abs-freeword xs)
from Cons(3) have fst ‘ set xs ⊆ S by simp

85

with z Cons(1 ,2) have z ∈ 〈f‘S〉 using binrelchain-Cons-reduce by fast
with y Cons(3) have y + z ∈ 〈f‘S〉

using genby-genset-closed[of - f‘S]
genby-uminus-closed genby-add-closed[of y]

by fastforce
with Cons(2) y z show ?case

using freeword-funlift-Abs-freeword-Cons
subst[

OF sym,
of freeword-funlift f (Abs-freeword (x#xs)) y+z

λb. b∈〈f‘S〉
]

by fast
qed

2.9.4 Free groups on a set

We now take the free group on a set to be the set in the freeword type with
letters restricted to the given set.

Definition and basic facts Here we define the set of elements of the free
group over a set of letters, and record basic facts about that set.
definition FreeGroup :: ′a set ⇒ ′a freeword set

where FreeGroup S ≡ {x. fst ‘ set (freeword x) ⊆ S}

lemma FreeGroupI-transfer :
proper-signed-list xs =⇒ fst ‘ set xs ⊆ S =⇒ Abs-freeword xs ∈ FreeGroup S
using Abs-freeword-inverse unfolding FreeGroup-def by fastforce

lemma FreeGroupD: x ∈ FreeGroup S =⇒ fst ‘ set (freeword x) ⊆ S
using FreeGroup-def by fast

lemma FreeGroupD-transfer :
proper-signed-list xs =⇒ Abs-freeword xs ∈ FreeGroup S =⇒ fst ‘ set xs ⊆ S
using Abs-freeword-inverse unfolding FreeGroup-def by fastforce

lemma FreeGroupD-transfer ′:
Abs-freelist xs ∈ FreeGroup S =⇒ xs ∈ lists S
using proper-signed-list-map-uniform-snd FreeGroupD-transfer by fastforce

lemma FreeGroup-0-closed: 0 ∈ FreeGroup S
proof−

have (0 :: ′a freeword) = Abs-freeword [] using zero-freeword.abs-eq by fast
moreover have Abs-freeword [] ∈ FreeGroup S

using FreeGroupI-transfer [of []] by simp
ultimately show ?thesis by simp

qed

86

lemma FreeGroup-diff-closed:
assumes x ∈ FreeGroup S y ∈ FreeGroup S
shows x−y ∈ FreeGroup S

proof−
define xs where xs: xs ≡ freeword x
define ys where ys: ys ≡ freeword y
have freeword (x−y) =

prappend-signed-list (freeword x) (rev (map flip-signed (freeword y)))
by transfer simp

hence fst ‘ set (freeword (x−y)) ⊆ fst ‘ (set (freeword x) ∪ set (freeword y))
using fst-set-prappend-signed-list by force

with assms show ?thesis unfolding FreeGroup-def by fast
qed

lemma FreeGroup-Group: Group (FreeGroup S)
using FreeGroup-0-closed FreeGroup-diff-closed by unfold-locales fast

lemmas FreeGroup-add-closed = Group.add-closed [OF FreeGroup-Group]
lemmas FreeGroup-uminus-closed = Group.uminus-closed [OF FreeGroup-Group]

lemmas FreeGroup-genby-set-lconjby-set-rconjby-closed =
Group.genby-set-lconjby-set-rconjby-closed[OF FreeGroup-Group]

lemma Abs-freelist-in-FreeGroup: ss ∈ lists S =⇒ Abs-freelist ss ∈ FreeGroup S
using proper-signed-list-map-uniform-snd by (fastforce intro: FreeGroupI-transfer)

lemma Abs-freeletter-in-FreeGroup-iff : (Abs-freeletter s ∈ FreeGroup S) = (s∈S)
using Abs-freeword-inverse[of [pairtrue s]] unfolding FreeGroup-def by simp

Lifts of functions from the letter set to some type of class group-add
We again obtain a universal property for functions from the (restricted)
letter set to some type of class group-add.
abbreviation res-freeword-funlift f S ≡

restrict0 (freeword-funlift f) (FreeGroup S)

lemma freeword-funlift-im: x ∈ FreeGroup S =⇒ freeword-funlift f x ∈ 〈f ‘ S〉
using freeword[of x] freeword-funlift-im ′[of freeword x]

freeword-inverse[of x]
unfolding FreeGroup-def
by auto

lemma freeword-funlift-surj ′:
ys ∈ lists (f‘S ∪ uminus‘f‘S) =⇒ sum-list ys ∈ freeword-funlift f ‘ FreeGroup S

proof (induct ys)
case Nil thus ?case using FreeGroup-0-closed freeword-funlift-0 by fastforce

next
case (Cons y ys)
from this obtain x

87

where x: x ∈ FreeGroup S sum-list ys = freeword-funlift f x
by auto

show sum-list (y#ys) ∈ freeword-funlift f ‘ FreeGroup S
proof (cases y ∈ f‘S)

case True
from this obtain s where s: s∈S y = f s by fast
from s(1) x(1) have Abs-freeletter s + x ∈ FreeGroup S

using FreeGroupI-transfer [of - S] FreeGroup-add-closed[of - S] by force
moreover from s(2) x(2)

have freeword-funlift f (Abs-freeletter s + x) = sum-list (y#ys)
using freeword-funlift-add[of f] freeword-funlift-Abs-freeletter
by simp

ultimately show ?thesis by force
next

case False
with Cons(2) obtain s where s: s∈S y = − f s by auto
from s(1) x(1) have Abs-freeword [(s,False)] + x ∈ FreeGroup S

using FreeGroupI-transfer [of - S] FreeGroup-add-closed[of - S] by force
moreover from s(2) x(2)

have freeword-funlift f (Abs-freeword [(s,False)] + x) = sum-list (y#ys)
using freeword-funlift-add[of f] freeword-funlift-uminus-Abs-freeletter
by simp

ultimately show ?thesis by force
qed

qed

lemma freeword-funlift-surj:
fixes f :: ′a ⇒ ′b::group-add
shows freeword-funlift f ‘ FreeGroup S = 〈f‘S〉

proof (rule seteqI)
show

∧
a. a ∈ freeword-funlift f ‘ FreeGroup S =⇒ a ∈ 〈f‘S〉

using freeword-funlift-im by auto
next

fix w assume w∈〈f‘S〉
from this obtain ys where ys: ys ∈ lists (f‘S ∪ uminus‘f‘S) w = sum-list ys

using genby-eq-sum-lists[of f‘S] by auto
thus w ∈ freeword-funlift f ‘ FreeGroup S using freeword-funlift-surj ′ by simp

qed

lemma hom-restrict0-freeword-funlift:
GroupHom (FreeGroup S) (res-freeword-funlift f S)
using UGroupHom.restrict0 additive-freeword-funlift FreeGroup-Group
by auto

lemma uniqueness-of-restricted-lift:
assumes GroupHom (FreeGroup S) T ∀ s∈S . T (Abs-freeletter s) = f s
shows T = res-freeword-funlift f S

proof
fix x

88

define F where F ≡ res-freeword-funlift f S
define u-Abs where u-Abs ≡ λa:: ′a signed. apply-sign Abs-freeletter a
show T x = F x
proof (cases x ∈ FreeGroup S)

case True
have 1 : set (map u-Abs (freeword x)) ⊆ FreeGroup S

using u-Abs-def FreeGroupD[OF True]
Abs-freeletter-in-FreeGroup-iff [of - S]
FreeGroup-uminus-closed

by auto
moreover from u-Abs-def have x = (

∑
a←freeword x. u-Abs a)

using freeword-conv-freeletter-sum-list by fast
ultimately

have T x = (
∑

a←freeword x. T (u-Abs a))
F x = (

∑
a←freeword x. F (u-Abs a))

using F-def
GroupHom.im-sum-list-map[OF assms(1), of u-Abs freeword x]
GroupHom.im-sum-list-map[

OF hom-restrict0-freeword-funlift,
of u-Abs freeword x S f

]
by auto

moreover have ∀ a∈set (freeword x). T (u-Abs a) = F (u-Abs a)
proof

fix a assume a ∈ set (freeword x)
moreover define b where b ≡ Abs-freeletter (fst a)
ultimately show T (u-Abs a) = F (u-Abs a)

using F-def u-Abs-def True assms(2) FreeGroupD[of x S]
GroupHom.im-uminus[OF assms(1)]
Abs-freeletter-in-FreeGroup-iff [of fst a S]
GroupHom.im-uminus[OF hom-restrict0-freeword-funlift, of b S f]
freeword-funlift-Abs-freeletter [of f]

by auto
qed
ultimately show ?thesis

using F-def
sum-list-map-cong[of freeword x λs. T (u-Abs s) λs. F (u-Abs s)]

by simp
next

case False
with assms(1) F-def show ?thesis

using hom-restrict0-freeword-funlift GroupHom.supp suppI-contra[of x T]
suppI-contra[of x F]

by fastforce
qed

qed

theorem FreeGroup-universal-property:
fixes f :: ′a ⇒ ′b::group-add

89

shows ∃ !T :: ′a freeword⇒ ′b. (∀ s∈S . T (Abs-freeletter s) = f s) ∧
GroupHom (FreeGroup S) T

proof (rule ex1I , rule conjI)
show ∀ s∈S . res-freeword-funlift f S (Abs-freeletter s) = f s

using Abs-freeletter-in-FreeGroup-iff [of - S] freeword-funlift-Abs-freeletter
by auto

show
∧

T . (∀ s∈S . T (Abs-freeletter s) = f s) ∧
GroupHom (FreeGroup S) T =⇒
T = restrict0 (freeword-funlift f) (FreeGroup S)

using uniqueness-of-restricted-lift by auto
qed (rule hom-restrict0-freeword-funlift)

2.9.5 Group presentations

We now define a group presentation to be the quotient of a free group by
the subgroup generated by all conjugates of a set of relators. We are most
concerned with lifting functions on the letter set to the free group and with
the associated induced homomorphisms on the quotient.

A first group presentation locale and basic facts Here we define a lo-
cale that provides a way to construct a group by providing sets of generators
and relator words.
locale GroupByPresentation =

fixes S :: ′a set — the set of generators
and P :: ′a signed list set — the set of relator words
assumes P-S : ps∈P =⇒ fst ‘ set ps ⊆ S
and proper-P: ps∈P =⇒ proper-signed-list ps

begin

abbreviation P ′ ≡ Abs-freeword ‘ P — the set of relators
abbreviation Q ≡ Group.normal-closure (FreeGroup S) P ′

— the normal subgroup generated by relators inside the free group
abbreviation G ≡ Group.quotient-group (FreeGroup S) Q

lemmas G-UN = Group.quotient-group-UN [OF FreeGroup-Group, of S Q]

lemma P ′-FreeS : P ′ ⊆ FreeGroup S
using P-S proper-P by (blast intro: FreeGroupI-transfer)

lemma relators: P ′ ⊆ Q
using FreeGroup-0-closed genby-genset-subset by fastforce

lemmas lconjby-P ′-FreeS =
Group.set-lconjby-subset-closed[

OF FreeGroup-Group - P ′-FreeS , OF basic-monos(1)
]

90

lemmas Q-FreeS =
Group.genby-closed[OF FreeGroup-Group lconjby-P ′-FreeS]

lemmas Q-subgroup-FreeS =
Group.genby-subgroup[OF FreeGroup-Group lconjby-P ′-FreeS]

lemmas normal-Q = Group.normal-closure[OF FreeGroup-Group, OF P ′-FreeS]

lemmas natural-hom =
Group.natural-quotient-hom[

OF FreeGroup-Group Q-subgroup-FreeS normal-Q
]

lemmas natural-hom-image =
Group.natural-quotient-hom-image[OF FreeGroup-Group, of S Q]

end

Functions on the quotient induced from lifted functions A func-
tion on the generator set into a type of class group-add lifts to a unique
homomorphism on the free group. If this lift is trivial on relators, then it
factors to a homomorphism of the group described by the generators and
relators.
locale GroupByPresentationInducedFun = GroupByPresentation S P

for S :: ′a set
and P :: ′a signed list set — the set of relator words

+ fixes f :: ′a ⇒ ′b::group-add
assumes lift-f-trivial-P:

ps∈P =⇒ freeword-funlift f (Abs-freeword ps) = 0
begin

abbreviation lift-f ≡ freeword-funlift f

definition induced-hom :: ′a freeword set permutation ⇒ ′b
where induced-hom ≡ GroupHom.quotient-hom (FreeGroup S)

(restrict0 lift-f (FreeGroup S)) Q
— the restrict0 operation is really only necessary to make GroupByPresenta-

tionInducedFun.induced-hom a GroupHom
abbreviation F ≡ induced-hom

lemma lift-f-trivial-P ′: p∈P ′ =⇒ lift-f p = 0
using lift-f-trivial-P by fast

lemma lift-f-trivial-lconjby-P ′: p∈P ′ =⇒ lift-f (lconjby w p) = 0
using freeword-funlift-lconjby[of f] lift-f-trivial-P ′ by simp

lemma lift-f-trivial-Q: q∈Q =⇒ lift-f q = 0
proof (erule genby.induct, rule freeword-funlift-0)

91

show
∧

s. s ∈ (
⋃

w ∈ FreeGroup S . lconjby w ‘ P ′) =⇒ lift-f s = 0
using lift-f-trivial-lconjby-P ′ by fast

next
fix w w ′ :: ′a freeword assume ww ′: lift-f w = 0 lift-f w ′ = 0
have lift-f (w − w ′) = lift-f w − lift-f w ′

using freeword-funlift-diff [of f w] by simp
with ww ′ show lift-f (w−w ′) = 0 by simp

qed

lemma lift-f-ker-Q: Q ⊆ ker lift-f
using lift-f-trivial-Q unfolding ker-def by auto

lemma lift-f-Ker-Q: Q ⊆ GroupHom.Ker (FreeGroup S) lift-f
using lift-f-ker-Q Q-FreeS by fast

lemma restrict0-lift-f-Ker-Q:
Q ⊆ GroupHom.Ker (FreeGroup S) (restrict0 lift-f (FreeGroup S))
using lift-f-Ker-Q ker-subset-ker-restrict0 by fast

lemma induced-hom-equality:
w ∈ FreeGroup S =⇒ F (dFreeGroup S |w|Qe) = lift-f w

— algebraic properties of the induced homomorphism could be proved using its
properties as a group homomorphism, but it’s generally easier to prove them using
the algebraic properties of the lift via this lemma

unfolding induced-hom-def
using GroupHom.quotient-hom-im hom-restrict0-freeword-funlift

Q-subgroup-FreeS normal-Q restrict0-lift-f-Ker-Q
by fastforce

lemma hom-induced-hom: GroupHom G F
unfolding induced-hom-def
using GroupHom.quotient-hom hom-restrict0-freeword-funlift

Q-subgroup-FreeS normal-Q restrict0-lift-f-Ker-Q
by fast

lemma induced-hom-Abs-freeletter-equality:
s∈S =⇒ F (dFreeGroup S |Abs-freeletter s|Qe) = f s
using Abs-freeletter-in-FreeGroup-iff [of s S]
by (simp add: induced-hom-equality freeword-funlift-Abs-freeletter)

lemma uniqueness-of-induced-hom ′:
defines q ≡ Group.natural-quotient-hom (FreeGroup S) Q
assumes GroupHom G T ∀ s∈S . T (dFreeGroup S |Abs-freeletter s|Qe) = f s
shows T ◦ q = F ◦ q

proof−
from assms have T◦q = res-freeword-funlift f S

using natural-hom natural-hom-image Abs-freeletter-in-FreeGroup-iff [of - S]
by (force intro: uniqueness-of-restricted-lift GroupHom.comp)

moreover from q-def have F ◦ q = res-freeword-funlift f S

92

using induced-hom-equality GroupHom.im-zero[OF hom-induced-hom]
by auto

ultimately show ?thesis by simp
qed

lemma uniqueness-of-induced-hom:
assumes GroupHom G T ∀ s∈S . T (dFreeGroup S |Abs-freeletter s|Qe) = f s
shows T = F

proof
fix x
show T x = F x
proof (cases x∈G)

case True
define q where q ≡ Group.natural-quotient-hom (FreeGroup S) Q
from True obtain w where w ∈ FreeGroup S x = (dFreeGroup S |w|Qe)

using G-UN by fast
with q-def have T x = (T◦q) w F x = (F◦q) w by auto
with assms q-def show ?thesis using uniqueness-of-induced-hom ′ by simp

next
case False
with assms(1) show ?thesis

using hom-induced-hom GroupHom.supp suppI-contra[of x T]
suppI-contra[of x F]

by fastforce
qed

qed

theorem induced-hom-universal-property:
∃ !F . GroupHom G F ∧ (∀ s∈S . F (dFreeGroup S |Abs-freeletter s|Qe) = f s)
using hom-induced-hom induced-hom-Abs-freeletter-equality

uniqueness-of-induced-hom
by blast

lemma induced-hom-Abs-freelist-conv-sum-list:
ss∈lists S =⇒ F (dFreeGroup S |Abs-freelist ss|Qe) = (

∑
s←ss. f s)

by (simp add:
Abs-freelist-in-FreeGroup induced-hom-equality freeword-funlift-Abs-freelist

)

lemma induced-hom-surj: F‘G = 〈f‘S〉
proof (rule seteqI)

show
∧

x. x∈F‘G =⇒ x∈〈f‘S〉
using G-UN induced-hom-equality freeword-funlift-surj[of f S] by auto

next
fix x assume x∈〈f‘S〉
hence x ∈ lift-f ‘ FreeGroup S using freeword-funlift-surj[of f S] by fast
thus x ∈ F‘G using induced-hom-equality G-UN by force

qed

93

end

Groups affording a presentation The locale GroupByPresentation al-
lows the construction of a Group out of any type from a set of generating
letters and a set of relator words in (signed) letters. The following locale con-
cerns the question of when the Group generated by a set in class group-add
is isomorphic to a group presentation.
locale GroupWithGeneratorsRelators =

fixes S :: ′g::group-add set — the set of generators
and R :: ′g list set — the set of relator words
assumes relators: rs∈R =⇒ rs ∈ lists (S ∪ uminus ‘ S)

rs∈R =⇒ sum-list rs = 0
rs∈R =⇒ proper-signed-list (map (charpair S) rs)

begin

abbreviation P ≡ map (charpair S) ‘ R
abbreviation P ′ ≡ GroupByPresentation.P ′ P
abbreviation Q ≡ GroupByPresentation.Q S P
abbreviation G ≡ GroupByPresentation.G S P
abbreviation relator-freeword rs ≡ Abs-freeword (map (charpair S) rs)
— this maps R onto P’

abbreviation freeliftid ≡ freeword-funlift id

abbreviation induced-id :: ′g freeword set permutation ⇒ ′g
where induced-id ≡ GroupByPresentationInducedFun.induced-hom S P id

lemma GroupByPresentation-S-P: GroupByPresentation S P
proof

show
∧

ps. ps ∈ P =⇒ fst ‘ set ps ⊆ S
using fst-set-map-charpair-un-uminus relators(1) by fast

show
∧

ps. ps ∈ P =⇒ proper-signed-list ps using relators(3) by fast
qed

lemmas G-UN = GroupByPresentation.G-UN [OF GroupByPresentation-S-P]
lemmas P ′-FreeS = GroupByPresentation.P ′-FreeS [OF GroupByPresentation-S-P]

lemma freeliftid-trivial-relator-freeword-R:
rs∈R =⇒ freeliftid (relator-freeword rs) = 0
using relators(2 ,3) freeword-funlift-Abs-freeword[of map (charpair S) rs id]

sum-list-map-cong[of rs (apply-sign id) ◦ (charpair S) id]
by simp

lemma freeliftid-trivial-P: ps∈P =⇒ freeliftid (Abs-freeword ps) = 0
using freeliftid-trivial-relator-freeword-R by fast

lemma GroupByPresentationInducedFun-S-P-id:
GroupByPresentationInducedFun S P id

94

by (
intro-locales, rule GroupByPresentation-S-P,
unfold-locales, rule freeliftid-trivial-P

)

lemma induced-id-Abs-freelist-conv-sum-list:
ss∈lists S =⇒ induced-id (dFreeGroup S |Abs-freelist ss|Qe) = sum-list ss
by (simp add:

GroupByPresentationInducedFun.induced-hom-Abs-freelist-conv-sum-list[
OF GroupByPresentationInducedFun-S-P-id

]
)

lemma lconj-relator-freeword-R:
[[rs∈R; proper-signed-list xs; fst ‘ set xs ⊆ S]] =⇒

lconjby (Abs-freeword xs) (relator-freeword rs) ∈ Q
by (blast intro: genby-genset-closed FreeGroupI-transfer)

lemma rconj-relator-freeword:
assumes rs∈R proper-signed-list xs fst ‘ set xs ⊆ S
shows rconjby (Abs-freeword xs) (relator-freeword rs) ∈ Q

proof (rule genby-genset-closed, rule UN-I)
show − Abs-freeword xs ∈ FreeGroup S

using FreeGroupI-transfer [OF assms(2 ,3)] FreeGroup-uminus-closed by fast
from assms(1)

show rconjby (Abs-freeword xs) (relator-freeword rs) ∈
lconjby (− Abs-freeword xs) ‘ Abs-freeword ‘ P

by simp
qed

lemma lconjby-Abs-freelist-relator-freeword:
[[rs∈R; xs∈lists S]] =⇒ lconjby (Abs-freelist xs) (relator-freeword rs) ∈ Q
using proper-signed-list-map-uniform-snd by (force intro: lconj-relator-freeword-R)

Here we record that the lift of the identity map to the free group on S
induces a homomorphic surjection onto the group generated by S from the
group presentation on S, subject to the same relations as the elements of S.
theorem induced-id-hom-surj: GroupHom G induced-id induced-id ‘ G = 〈S〉

using GroupByPresentationInducedFun.hom-induced-hom[
OF GroupByPresentationInducedFun-S-P-id

]
GroupByPresentationInducedFun.induced-hom-surj[

OF GroupByPresentationInducedFun-S-P-id
]

by auto

end

locale GroupPresentation = GroupWithGeneratorsRelators S R

95

for S :: ′g::group-add set — the set of generators
and R :: ′g list set — the set of relator words

+ assumes induced-id-inj: inj-on induced-id G
begin

abbreviation inv-induced-id ≡ the-inv-into G induced-id

lemma inv-induced-id-sum-list-S :
ss ∈ lists S =⇒ inv-induced-id (sum-list ss) = (dFreeGroup S |Abs-freelist ss|Qe)
using G-UN induced-id-inj induced-id-Abs-freelist-conv-sum-list

Abs-freelist-in-FreeGroup
by (blast intro: the-inv-into-f-eq)

end

2.10 Words over a generating set

Here we gather the necessary constructions and facts for studying a group
generated by some set in terms of words in the generators.
context monoid-add
begin

abbreviation word-for A a as ≡ as ∈ lists A ∧ sum-list as = a

definition reduced-word-for :: ′a set ⇒ ′a ⇒ ′a list ⇒ bool
where reduced-word-for A a as ≡ is-arg-min length (word-for A a) as

abbreviation reduced-word A as ≡ reduced-word-for A (sum-list as) as
abbreviation reduced-words-for A a ≡ Collect (reduced-word-for A a)

abbreviation reduced-letter-set :: ′a set ⇒ ′a ⇒ ′a set
where reduced-letter-set A a ≡

⋃
(set ‘ (reduced-words-for A a))

— will be empty if a is not in the set generated by A

definition word-length :: ′a set ⇒ ′a ⇒ nat
where word-length A a ≡ length (arg-min length (word-for A a))

lemma reduced-word-forI :
assumes as ∈ lists A sum-list as = a∧

bs. bs ∈ lists A =⇒ sum-list bs = a =⇒ length as ≤ length bs
shows reduced-word-for A a as
using assms
unfolding reduced-word-for-def
by (force intro: is-arg-minI)

lemma reduced-word-forI-compare:
[[reduced-word-for A a as; bs ∈ lists A; sum-list bs = a; length bs = length as]]
=⇒ reduced-word-for A a bs

using reduced-word-for-def is-arg-min-eq[of length] by fast

96

lemma reduced-word-for-lists: reduced-word-for A a as =⇒ as ∈ lists A
using reduced-word-for-def is-arg-minD1 by fast

lemma reduced-word-for-sum-list: reduced-word-for A a as =⇒ sum-list as = a
using reduced-word-for-def is-arg-minD1 by fast

lemma reduced-word-for-minimal:
[[reduced-word-for A a as; bs ∈ lists A; sum-list bs = a]] =⇒

length as ≤ length bs
using reduced-word-for-def is-arg-minD2 [of length]
by fastforce

lemma reduced-word-for-length:
reduced-word-for A a as =⇒ length as = word-length A a
unfolding word-length-def reduced-word-for-def is-arg-min-def
by (fastforce intro: arg-min-equality[THEN sym])

lemma reduced-word-for-eq-length:
reduced-word-for A a as =⇒ reduced-word-for A a bs =⇒ length as = length bs
using reduced-word-for-length by simp

lemma reduced-word-for-arg-min:
as ∈ lists A =⇒ sum-list as = a =⇒

reduced-word-for A a (arg-min length (word-for A a))
using is-arg-min-arg-min-nat[of word-for A a]
unfolding reduced-word-for-def
by fast

lemma nil-reduced-word-for-0 : reduced-word-for A 0 []
by (auto intro: reduced-word-forI)

lemma reduced-word-for-0-imp-nil: reduced-word-for A 0 as =⇒ as = []
using nil-reduced-word-for-0 [of A] reduced-word-for-minimal[of A 0 as]
unfolding reduced-word-for-def is-arg-min-def
by (metis (mono-tags, opaque-lifting) length-0-conv length-greater-0-conv)

lemma not-reduced-word-for :
[[bs ∈ lists A; sum-list bs = a; length bs < length as]] =⇒
¬ reduced-word-for A a as

using reduced-word-for-minimal by fastforce

lemma reduced-word-for-imp-reduced-word:
reduced-word-for A a as =⇒ reduced-word A as

unfolding reduced-word-for-def is-arg-min-def
by (fast intro: reduced-word-forI)

lemma sum-list-zero-nreduced:
as 6= [] =⇒ sum-list as = 0 =⇒ ¬ reduced-word A as

97

using not-reduced-word-for [of []] by simp

lemma order2-nreduced: a+a=0 =⇒ ¬ reduced-word A [a,a]
using sum-list-zero-nreduced by simp

lemma reduced-word-append-reduce-contra1 :
assumes ¬ reduced-word A as
shows ¬ reduced-word A (as@bs)

proof (cases as ∈ lists A bs ∈ lists A rule: two-cases)
case both
define cs where cs: cs ≡ ARG-MIN length cs. cs ∈ lists A ∧ sum-list cs =

sum-list as
with both(1) have reduced-word-for A (sum-list as) cs

using reduced-word-for-def is-arg-min-arg-min-nat[of word-for A (sum-list as)]
by auto

with assms both show ?thesis
using reduced-word-for-lists reduced-word-for-sum-list

reduced-word-for-minimal[of A sum-list as cs as]
reduced-word-forI-compare[of A sum-list as cs as]
not-reduced-word-for [of cs@bs A sum-list (as@bs)]

by fastforce
next

case one thus ?thesis using reduced-word-for-lists by fastforce
next

case other thus ?thesis using reduced-word-for-lists by fastforce
next

case neither thus ?thesis using reduced-word-for-lists by fastforce
qed

lemma reduced-word-append-reduce-contra2 :
assumes ¬ reduced-word A bs
shows ¬ reduced-word A (as@bs)

proof (cases as ∈ lists A bs ∈ lists A rule: two-cases)
case both
define cs where cs: cs ≡ ARG-MIN length cs. cs ∈ lists A ∧ sum-list cs =

sum-list bs
with both(2) have reduced-word-for A (sum-list bs) cs

using reduced-word-for-def is-arg-min-arg-min-nat[of word-for A (sum-list bs)]
by auto

with assms both show ?thesis
using reduced-word-for-lists reduced-word-for-sum-list

reduced-word-for-minimal[of A sum-list bs cs bs]
reduced-word-forI-compare[of A sum-list bs cs bs]
not-reduced-word-for [of as@cs A sum-list (as@bs)]

by fastforce
next

case one thus ?thesis using reduced-word-for-lists by fastforce
next

case other thus ?thesis using reduced-word-for-lists by fastforce

98

next
case neither thus ?thesis using reduced-word-for-lists by fastforce

qed

lemma contains-nreduced-imp-nreduced:
¬ reduced-word A bs =⇒ ¬ reduced-word A (as@bs@cs)
using reduced-word-append-reduce-contra1 reduced-word-append-reduce-contra2
by fast

lemma contains-order2-nreduced: a+a=0 =⇒ ¬ reduced-word A (as@[a,a]@bs)
using order2-nreduced contains-nreduced-imp-nreduced by fast

lemma reduced-word-Cons-reduce-contra:
¬ reduced-word A as =⇒ ¬ reduced-word A (a#as)
using reduced-word-append-reduce-contra2 [of A as [a]] by simp

lemma reduced-word-Cons-reduce: reduced-word A (a#as) =⇒ reduced-word A as
using reduced-word-Cons-reduce-contra by fast

lemma reduced-word-singleton:
assumes a∈A a 6=0
shows reduced-word A [a]

proof (rule reduced-word-forI)
from assms(1) show [a] ∈ lists A by simp

next
fix bs assume bs: bs ∈ lists A sum-list bs = sum-list [a]
with assms(2) show length [a] ≤ length bs by (cases bs) auto

qed simp

lemma el-reduced:
assumes 0 /∈ A as ∈ lists A sum-list as ∈ A reduced-word A as
shows length as = 1

proof−
define n where n: n ≡ length as
from assms(3) obtain a where [a]∈lists A sum-list as = sum-list [a] by auto
with n assms(1 ,3 ,4) have n≤1 n>0

using reduced-word-for-minimal[of A - as [a]] by auto
hence n = 1 by simp
with n show ?thesis by fast

qed

lemma reduced-letter-set-0 : reduced-letter-set A 0 = {}
using reduced-word-for-0-imp-nil by simp

lemma reduced-letter-set-subset: reduced-letter-set A a ⊆ A
using reduced-word-for-lists by fast

lemma reduced-word-forI-length:
[[as ∈ lists A; sum-list as = a; length as = word-length A a]] =⇒

99

reduced-word-for A a as
using reduced-word-for-arg-min reduced-word-for-length

reduced-word-forI-compare[of A a - as]
by fastforce

lemma word-length-le:
as ∈ lists A =⇒ sum-list as = a =⇒ word-length A a ≤ length as
using reduced-word-for-arg-min reduced-word-for-length

reduced-word-for-minimal[of A]
by fastforce

lemma reduced-word-forI-length ′:
[[as ∈ lists A; sum-list as = a; length as ≤ word-length A a]] =⇒

reduced-word-for A a as
using word-length-le[of as A] reduced-word-forI-length[of as A] by fastforce

lemma word-length-lt:
as ∈ lists A =⇒ sum-list as = a =⇒ ¬ reduced-word-for A a as =⇒

word-length A a < length as
using reduced-word-forI-length ′ by fastforce

end

lemma in-genby-reduced-letter-set:
assumes as ∈ lists A sum-list as = a
shows a ∈ 〈reduced-letter-set A a〉

proof−
define xs where xs: xs ≡ arg-min length (word-for A a)
with assms have xs ∈ lists (reduced-letter-set A a) sum-list xs = a

using reduced-word-for-arg-min[of as A] reduced-word-for-sum-list by auto
thus ?thesis using genby-eq-sum-lists by force

qed

lemma reduced-word-for-genby-arg-min:
fixes A :: ′a::group-add set
defines B ≡ A ∪ uminus ‘ A
assumes a∈〈A〉
shows reduced-word-for B a (arg-min length (word-for B a))
using assms genby-eq-sum-lists[of A] reduced-word-for-arg-min[of - B a]
by auto

lemma reduced-word-for-genby-sym-arg-min:
assumes uminus ‘ A ⊆ A a∈〈A〉
shows reduced-word-for A a (arg-min length (word-for A a))

proof−
from assms(1) have A = A ∪ uminus ‘ A by auto
with assms(2) show ?thesis

using reduced-word-for-genby-arg-min[of a A] by simp
qed

100

lemma in-genby-imp-in-reduced-letter-set:
fixes A :: ′a::group-add set
defines B ≡ A ∪ uminus ‘ A
assumes a ∈ 〈A〉
shows a ∈ 〈reduced-letter-set B a〉
using assms genby-eq-sum-lists[of A] in-genby-reduced-letter-set[of - B]
by auto

lemma in-genby-sym-imp-in-reduced-letter-set:
uminus ‘ A ⊆ A =⇒ a ∈ 〈A〉 =⇒ a ∈ 〈reduced-letter-set A a〉
using in-genby-imp-in-reduced-letter-set by (fastforce simp add: Un-absorb2)

end

3 Simplicial complexes

In this section we develop the basic theory of abstract simplicial complexes
as a collection of finite sets, where the power set of each member set is
contained in the collection. Note that in this development we allow the
empty simplex, since allowing it or not seemed of no logical consequence,
but of some small practical consequence.
theory Simplicial
imports Prelim

begin

3.1 Geometric notions

The geometric notions attached to a simplicial complex of main interest to
us are those of facets (subsets of codimension one), adjacency (sharing a
facet in common), and chains of adjacent simplices.

3.1.1 Facets
definition facetrel :: ′a set ⇒ ′a set ⇒ bool (infix ‹C› 60)

where y C x ≡ ∃ v. v /∈ y ∧ x = insert v y

lemma facetrelI : v /∈ y =⇒ x = insert v y =⇒ y C x
using facetrel-def by fast

lemma facetrelI-card: y ⊆ x =⇒ card (x−y) = 1 =⇒ y C x
using card1 [of x−y] by (blast intro: facetrelI)

lemma facetrel-complement-vertex: yCx =⇒ x = insert v y =⇒ v /∈y
using facetrel-def [of y x] by fastforce

101

lemma facetrel-diff-vertex: v∈x =⇒ x−{v} C x
by (auto intro: facetrelI)

lemma facetrel-conv-insert: y C x =⇒ v ∈ x − y =⇒ x = insert v y
unfolding facetrel-def by fast

lemma facetrel-psubset: y C x =⇒ y ⊂ x
unfolding facetrel-def by fast

lemma facetrel-subset: y C x =⇒ y ⊆ x
using facetrel-psubset by fast

lemma facetrel-card: y C x =⇒ card (x−y) = 1
using insert-Diff-if [of - y y] unfolding facetrel-def by fastforce

lemma finite-facetrel-card: finite x =⇒ yCx =⇒ card x = Suc (card y)
using facetrel-def [of y x] card-insert-disjoint[of x] by auto

lemma facetrelI-cardSuc: z⊆x =⇒ card x = Suc (card z) =⇒ zCx
using card-ge-0-finite finite-subset[of z] card-Diff-subset[of z x]
by (force intro: facetrelI-card)

lemma facet2-subset: [[zCx; zCy; x∩y − z 6= {}]] =⇒ x ⊆ y
unfolding facetrel-def by force

lemma inj-on-pullback-facet:
assumes inj-on f x z C f‘x
obtains y where y C x f‘y = z

proof
from assms(2) obtain v where v: v /∈z f‘x = insert v z

using facetrel-def [of z] by auto
define u and y where u ≡ the-inv-into x f v and y: y ≡ {v∈x. f v ∈ z}
moreover with assms(2) v have x = insert u y

using the-inv-into-f-eq[OF assms(1)] the-inv-into-into[OF assms(1)]
by fastforce

ultimately show y C x
using v f-the-inv-into-f [OF assms(1)] by (force intro: facetrelI)

from y assms(2) show f‘y = z using facetrel-subset by fast
qed

3.1.2 Adjacency
definition adjacent :: ′a set ⇒ ′a set ⇒ bool (infix ‹∼› 70)

where x ∼ y ≡ ∃ z. zCx ∧ zCy

lemma adjacentI : zCx =⇒ zCy =⇒ x ∼ y
using adjacent-def by fast

lemma empty-not-adjacent: ¬ {} ∼ x

102

unfolding facetrel-def adjacent-def by fast

lemma adjacent-sym: x ∼ y =⇒ y ∼ x
unfolding adjacent-def by fast

lemma adjacent-refl:
assumes x 6= {}
shows x ∼ x

proof−
from assms obtain v where v: v∈x by fast
thus x ∼ x using facetrelI [of v x−{v}] unfolding adjacent-def by fast

qed

lemma common-facet: [[zCx; zCy; x 6= y]] =⇒ z = x ∩ y
using facetrel-subset facet2-subset by fast

lemma adjacent-int-facet1 : x ∼ y =⇒ x 6= y =⇒ (x ∩ y) C x
using common-facet unfolding adjacent-def by fast

lemma adjacent-int-facet2 : x ∼ y =⇒ x 6= y =⇒ (x ∩ y) C y
using adjacent-sym adjacent-int-facet1 by (fastforce simp add: Int-commute)

lemma adjacent-conv-insert: x ∼ y =⇒ v ∈ x − y =⇒ x = insert v (x∩y)
using adjacent-int-facet1 facetrel-conv-insert by fast

lemma adjacent-int-decomp:
x ∼ y =⇒ x 6= y =⇒ ∃ v. v /∈ y ∧ x = insert v (x∩y)
using adjacent-int-facet1 unfolding facetrel-def by fast

lemma adj-antivertex:
assumes x∼y x 6=y
shows ∃ !v. v∈x−y

proof (rule ex-ex1I)
from assms obtain w where w: w /∈y x = insert w (x∩y)

using adjacent-int-decomp by fast
thus ∃ v. v∈x−y by auto
from w have

∧
v. v∈x−y =⇒ v=w by fast

thus
∧

v v ′. v∈x−y =⇒ v ′∈x−y =⇒ v=v ′ by auto
qed

lemma adjacent-card: x ∼ y =⇒ card x = card y
unfolding adjacent-def facetrel-def by (cases finite x x=y rule: two-cases) auto

lemma adjacent-to-adjacent-int-subset:
assumes C ∼ D f‘C ∼ f‘D f‘C 6= f‘D
shows f‘C ∩ f‘D ⊆ f‘(C∩D)

proof
from assms(1 ,3) obtain v where v: v /∈ D C = insert v (C∩D)

using adjacent-int-decomp by fast

103

from assms(2 ,3) obtain w where w: w /∈ f‘D f‘C = insert w (f‘C∩f‘D)
using adjacent-int-decomp[of f‘C f‘D] by fast

from w have w ′: w ∈ f‘C − f‘D by fast
with v assms(1 ,2) have fv-w: f v = w using adjacent-conv-insert by fast
fix b assume b ∈ f‘C ∩ f‘D
from this obtain a1 a2

where a1 : a1 ∈ C b = f a1
and a2 : a2 ∈ D b = f a2
by fast

from v a1 a2 (2) have a1 /∈ D =⇒ f a2 = w using fv-w by auto
with a2 (1) w ′ have a1 ∈ D by fast
with a1 show b ∈ f‘(C∩D) by fast

qed

lemma adjacent-to-adjacent-int:
[[C ∼ D; f‘C ∼ f‘D; f‘C 6= f‘D]] =⇒ f‘(C∩D) = f‘C ∩ f‘D
using adjacent-to-adjacent-int-subset by fast

3.1.3 Chains of adjacent sets
abbreviation adjacentchain ≡ binrelchain adjacent
abbreviation padjacentchain ≡ proper-binrelchain adjacent

lemmas adjacentchain-Cons-reduce = binrelchain-Cons-reduce [of adjacent]
lemmas adjacentchain-obtain-proper = binrelchain-obtain-proper [of - - adjacent]

lemma adjacentchain-card: adjacentchain (x#xs@[y]) =⇒ card x = card y
using adjacent-card by (induct xs arbitrary: x) auto

3.2 Locale and basic facts
locale SimplicialComplex =

fixes X :: ′a set set
assumes finite-simplices: ∀ x∈X . finite x
and faces : x∈X =⇒ y⊆x =⇒ y∈X

context SimplicialComplex
begin

abbreviation Subcomplex Y ≡ Y ⊆ X ∧ SimplicialComplex Y

definition maxsimp x ≡ x∈X ∧ (∀ z∈X . x⊆z −→ z=x)

definition adjacentset :: ′a set ⇒ ′a set set
where adjacentset x = {y∈X . x∼y}

lemma finite-simplex: x∈X =⇒ finite x
using finite-simplices by simp

lemma singleton-simplex: v∈
⋃

X =⇒ {v} ∈ X

104

using faces by auto

lemma maxsimpI : x ∈ X =⇒ (
∧

z. z∈X =⇒ x⊆z =⇒ z=x) =⇒ maxsimp x
using maxsimp-def by auto

lemma maxsimpD-simplex: maxsimp x =⇒ x∈X
using maxsimp-def by fast

lemma maxsimpD-maximal: maxsimp x =⇒ z∈X =⇒ x⊆z =⇒ z=x
using maxsimp-def by auto

lemmas finite-maxsimp = finite-simplex[OF maxsimpD-simplex]

lemma maxsimp-nempty: X 6= {{}} =⇒ maxsimp x =⇒ x 6= {}
unfolding maxsimp-def by fast

lemma maxsimp-vertices: maxsimp x =⇒ x⊆
⋃

X
using maxsimpD-simplex by fast

lemma adjacentsetD-adj: y ∈ adjacentset x =⇒ x∼y
using adjacentset-def by fast

lemma max-in-subcomplex:
[[Subcomplex Y ; y ∈ Y ; maxsimp y]] =⇒ SimplicialComplex.maxsimp Y y
using maxsimpD-maximal by (fast intro: SimplicialComplex.maxsimpI)

lemma face-im:
assumes w ∈ X y ⊆ f‘w
defines u ≡ {a∈w. f a ∈ y}
shows y ∈ f`X
using assms faces[of w u] image-eqI [of y (‘) f u X]
by fast

lemma im-faces: x ∈ f ` X =⇒ y ⊆ x =⇒ y ∈ f ` X
using faces face-im[of - y] by (cases y={}) auto

lemma map-is-simplicial-morph: SimplicialComplex (f`X)
proof

show ∀ x∈f`X . finite x using finite-simplices by fast
show

∧
x y. x ∈f`X =⇒ y⊆x =⇒ y∈f`X using im-faces by fast

qed

lemma vertex-set-int:
assumes SimplicialComplex Y
shows

⋃
(X∩Y) =

⋃
X ∩

⋃
Y

proof
have

∧
v. v ∈

⋃
X ∩

⋃
Y =⇒ v∈

⋃
(X∩Y)

using faces SimplicialComplex.faces[OF assms] by auto
thus

⋃
(X∩Y) ⊇

⋃
X ∩

⋃
Y by fast

105

qed auto

end

3.3 Chains of maximal simplices

Chains of maximal simplices (with respect to adjacency) will allow us to
walk through chamber complexes. But there is much we can say about
them in simplicial complexes. We will call a chain of maximal simplices
proper (using the prefix p as a naming convention to denote proper) if no
maximal simplex appears more than once in the chain. (Some sources elect
to call improper chains prechains, and reserve the name chain to describe
a proper chain. And usually a slightly weaker notion of proper is used,
requiring only that no maximal simplex appear twice in succession. But it
essentially makes no difference, and we found it easier to use distinct rather
than binrelchain (6=).)
context SimplicialComplex
begin

definition maxsimpchain xs ≡ (∀ x∈set xs. maxsimp x) ∧ adjacentchain xs
definition pmaxsimpchain xs ≡ (∀ x∈set xs. maxsimp x) ∧ padjacentchain xs

function min-maxsimpchain :: ′a set list ⇒ bool
where

min-maxsimpchain [] = True
| min-maxsimpchain [x] = maxsimp x
| min-maxsimpchain (x#xs@[y]) =

(x 6=y ∧ is-arg-min length (λzs. maxsimpchain (x#zs@[y])) xs)
by (auto, rule list-cases-Cons-snoc)
termination by (relation measure length) auto

lemma maxsimpchain-snocI :
[[maxsimpchain (xs@[x]); maxsimp y; x∼y]] =⇒ maxsimpchain (xs@[x,y])
using maxsimpchain-def binrelchain-snoc maxsimpchain-def by auto

lemma maxsimpchainD-maxsimp:
maxsimpchain xs =⇒ x ∈ set xs =⇒ maxsimp x
using maxsimpchain-def by fast

lemma maxsimpchainD-adj: maxsimpchain xs =⇒ adjacentchain xs
using maxsimpchain-def by fast

lemma maxsimpchain-CConsI :
[[maxsimp w; maxsimpchain (x#xs); w∼x]] =⇒ maxsimpchain (w#x#xs)
using maxsimpchain-def by auto

lemma maxsimpchain-Cons-reduce:
maxsimpchain (x#xs) =⇒ maxsimpchain xs

106

using adjacentchain-Cons-reduce maxsimpchain-def by fastforce

lemma maxsimpchain-append-reduce1 :
maxsimpchain (xs@ys) =⇒ maxsimpchain xs
using binrelchain-append-reduce1 maxsimpchain-def by auto

lemma maxsimpchain-append-reduce2 :
maxsimpchain (xs@ys) =⇒ maxsimpchain ys
using binrelchain-append-reduce2 maxsimpchain-def by auto

lemma maxsimpchain-remdup-adj:
maxsimpchain (xs@[x,x]@ys) =⇒ maxsimpchain (xs@[x]@ys)
using maxsimpchain-def binrelchain-remdup-adj by auto

lemma maxsimpchain-rev: maxsimpchain xs =⇒ maxsimpchain (rev xs)
using maxsimpchainD-maxsimp adjacent-sym

binrelchain-sym-rev[of adjacent]
unfolding maxsimpchain-def
by fastforce

lemma maxsimpchain-overlap-join:
maxsimpchain (xs@[w]) =⇒ maxsimpchain (w#ys) =⇒

maxsimpchain (xs@w#ys)
using binrelchain-overlap-join maxsimpchain-def by auto

lemma pmaxsimpchain: pmaxsimpchain xs =⇒ maxsimpchain xs
using maxsimpchain-def pmaxsimpchain-def by fast

lemma pmaxsimpchainI-maxsimpchain:
maxsimpchain xs =⇒ distinct xs =⇒ pmaxsimpchain xs
using maxsimpchain-def pmaxsimpchain-def by fast

lemma pmaxsimpchain-CConsI :
[[maxsimp w; pmaxsimpchain (x#xs); w∼x; w /∈ set (x#xs)]] =⇒

pmaxsimpchain (w#x#xs)
using pmaxsimpchain-def by auto

lemmas pmaxsimpchainD-maxsimp =
maxsimpchainD-maxsimp[OF pmaxsimpchain]

lemmas pmaxsimpchainD-adj =
maxsimpchainD-adj [OF pmaxsimpchain]

lemma pmaxsimpchainD-distinct: pmaxsimpchain xs =⇒ distinct xs
using pmaxsimpchain-def by fast

lemma pmaxsimpchain-Cons-reduce:
pmaxsimpchain (x#xs) =⇒ pmaxsimpchain xs
using maxsimpchain-Cons-reduce pmaxsimpchain pmaxsimpchainD-distinct
by (fastforce intro: pmaxsimpchainI-maxsimpchain)

107

lemma pmaxsimpchain-append-reduce1 :
pmaxsimpchain (xs@ys) =⇒ pmaxsimpchain xs
using maxsimpchain-append-reduce1 pmaxsimpchain pmaxsimpchainD-distinct
by (fastforce intro: pmaxsimpchainI-maxsimpchain)

lemma maxsimpchain-obtain-pmaxsimpchain:
assumes x 6=y maxsimpchain (x#xs@[y])
shows ∃ ys. set ys ⊆ set xs ∧ length ys ≤ length xs ∧

pmaxsimpchain (x#ys@[y])
proof−

obtain ys
where ys: set ys ⊆ set xs length ys ≤ length xs padjacentchain (x#ys@[y])
using maxsimpchainD-adj[OF assms(2)]

adjacentchain-obtain-proper [OF assms(1)]
by auto

from ys(1) assms(2) have ∀ a∈set (x#ys@[y]). maxsimp a
using maxsimpchainD-maxsimp by auto

with ys show ?thesis unfolding pmaxsimpchain-def by auto
qed

lemma min-maxsimpchainD-maxsimpchain:
assumes min-maxsimpchain xs
shows maxsimpchain xs

proof (cases xs rule: list-cases-Cons-snoc)
case Nil thus ?thesis using maxsimpchain-def by simp

next
case Single with assms show ?thesis using maxsimpchain-def by simp

next
case Cons-snoc with assms show ?thesis using is-arg-minD1 by fastforce

qed

lemma min-maxsimpchainD-min-betw:
min-maxsimpchain (x#xs@[y]) =⇒ maxsimpchain (x#ys@[y]) =⇒

length ys ≥ length xs
using is-arg-minD2 by fastforce

lemma min-maxsimpchainI-betw:
assumes x 6=y maxsimpchain (x#xs@[y])∧

ys. maxsimpchain (x#ys@[y]) =⇒ length xs ≤ length ys
shows min-maxsimpchain (x#xs@[y])
using assms by (simp add: is-arg-min-linorderI)

lemma min-maxsimpchainI-betw-compare:
assumes x 6=y maxsimpchain (x#xs@[y])

min-maxsimpchain (x#ys@[y]) length xs = length ys
shows min-maxsimpchain (x#xs@[y])
using assms min-maxsimpchainD-min-betw min-maxsimpchainI-betw
by auto

108

lemma min-maxsimpchain-pmaxsimpchain:
assumes min-maxsimpchain xs
shows pmaxsimpchain xs

proof (
rule pmaxsimpchainI-maxsimpchain, rule min-maxsimpchainD-maxsimpchain,
rule assms, cases xs rule: list-cases-Cons-snoc

)
case (Cons-snoc x ys y)
have ¬ distinct (x#ys@[y]) =⇒ False
proof (cases x∈set ys y∈set ys rule: two-cases)

case both
from both(1) obtain as bs where ys = as@x#bs

using in-set-conv-decomp[of x ys] by fast
with assms Cons-snoc show False

using min-maxsimpchainD-maxsimpchain[OF assms]
maxsimpchain-append-reduce2 [of x#as]
min-maxsimpchainD-min-betw[of x ys y]

by fastforce
next

case one
from one(1) obtain as bs where ys = as@x#bs

using in-set-conv-decomp[of x ys] by fast
with assms Cons-snoc show False

using min-maxsimpchainD-maxsimpchain[OF assms]
maxsimpchain-append-reduce2 [of x#as]
min-maxsimpchainD-min-betw[of x ys y]

by fastforce
next

case other
from other(2) obtain as bs where ys = as@y#bs

using in-set-conv-decomp[of y ys] by fast
with assms Cons-snoc show False

using min-maxsimpchainD-maxsimpchain[OF assms]
maxsimpchain-append-reduce1 [of x#as@[y]]
min-maxsimpchainD-min-betw[of x ys y]

by fastforce
next

case neither
moreover assume ¬ distinct (x # ys @ [y])
ultimately obtain as a bs cs where ys = as@[a]@bs@[a]@cs

using assms Cons-snoc not-distinct-decomp[of ys] by auto
with assms Cons-snoc show False

using min-maxsimpchainD-maxsimpchain[OF assms]
maxsimpchain-append-reduce1 [of x#as@[a]]
maxsimpchain-append-reduce2 [of x#as@[a]@bs a#cs@[y]]
maxsimpchain-overlap-join[of x#as a cs@[y]]
min-maxsimpchainD-min-betw[of x ys y as@a#cs]

by auto

109

qed
with Cons-snoc show distinct xs by fast

qed auto

lemma min-maxsimpchain-rev:
assumes min-maxsimpchain xs
shows min-maxsimpchain (rev xs)

proof (cases xs rule: list-cases-Cons-snoc)
case Single with assms show ?thesis

using min-maxsimpchainD-maxsimpchain maxsimpchainD-maxsimp by simp
next

case (Cons-snoc x ys y)
moreover have min-maxsimpchain (y # rev ys @ [x])
proof (rule min-maxsimpchainI-betw)

from Cons-snoc assms show y 6=x
using min-maxsimpchain-pmaxsimpchain pmaxsimpchainD-distinct by auto

from Cons-snoc show maxsimpchain (y # rev ys @ [x])
using min-maxsimpchainD-maxsimpchain[OF assms] maxsimpchain-rev
by fastforce

from Cons-snoc assms
show

∧
zs. maxsimpchain (y#zs@[x]) =⇒ length (rev ys) ≤ length zs

using maxsimpchain-rev min-maxsimpchainD-min-betw[of x ys y]
by fastforce

qed
ultimately show ?thesis by simp

qed simp

lemma min-maxsimpchain-adj:
[[maxsimp x; maxsimp y; x∼y; x 6=y]] =⇒ min-maxsimpchain [x,y]
using maxsimpchain-def min-maxsimpchainI-betw[of x y []] by simp

lemma min-maxsimpchain-betw-CCons-reduce:
assumes min-maxsimpchain (w#x#ys@[z])
shows min-maxsimpchain (x#ys@[z])

proof (rule min-maxsimpchainI-betw)
from assms show x 6=z

using min-maxsimpchain-pmaxsimpchain pmaxsimpchainD-distinct
by fastforce

show maxsimpchain (x#ys@[z])
using min-maxsimpchainD-maxsimpchain[OF assms]

maxsimpchain-Cons-reduce
by fast

next
fix zs assume maxsimpchain (x#zs@[z])
hence maxsimpchain (w#x#zs@[z])

using min-maxsimpchainD-maxsimpchain[OF assms] maxsimpchain-def
by fastforce

with assms show length ys ≤ length zs
using min-maxsimpchainD-min-betw[of w x#ys z x#zs] by simp

110

qed

lemma min-maxsimpchain-betw-uniform-length:
assumes min-maxsimpchain (x#xs@[y]) min-maxsimpchain (x#ys@[y])
shows length xs = length ys
using min-maxsimpchainD-min-betw[OF assms(1)]

min-maxsimpchainD-min-betw[OF assms(2)]
min-maxsimpchainD-maxsimpchain[OF assms(1)]
min-maxsimpchainD-maxsimpchain[OF assms(2)]

by fastforce

lemma not-min-maxsimpchainI-betw:
[[maxsimpchain (x#ys@[y]); length ys < length xs]] =⇒
¬ min-maxsimpchain (x#xs@[y])

using min-maxsimpchainD-min-betw not-less by blast

lemma maxsimpchain-in-subcomplex:
[[Subcomplex Y ; set ys ⊆ Y ; maxsimpchain ys]] =⇒

SimplicialComplex.maxsimpchain Y ys
using maxsimpchain-def max-in-subcomplex

SimplicialComplex.maxsimpchain-def
by force

end

3.4 Isomorphisms of simplicial complexes

Here we develop the concept of isomorphism of simplicial complexes. Note
that we have not bothered to first develop the concept of morphism of simpli-
cial complexes, since every function on the vertex set of a simplicial complex
can be considered a morphism of complexes (see lemma map-is-simplicial-morph
above).
locale SimplicialComplexIsomorphism = SimplicialComplex X

for X :: ′a set set
+ fixes f :: ′a ⇒ ′b

assumes inj: inj-on f (
⋃

X)
begin

lemmas morph = map-is-simplicial-morph[of f]

lemma iso-codim-map:
x ∈ X =⇒ y ∈ X =⇒ card (f‘x − f‘y) = card (x−y)
using inj inj-on-image-set-diff [of f - x y] finite-simplex subset-inj-on[of f - x−y]

inj-on-iff-eq-card[of x−y]
by fastforce

lemma maxsimp-im-max: maxsimp x =⇒ w ∈ X =⇒ f‘x ⊆ f‘w =⇒ f‘w = f‘x
using maxsimpD-simplex inj-onD[OF inj] maxsimpD-maximal[of x w] by blast

111

lemma maxsimp-map:
maxsimp x =⇒ SimplicialComplex.maxsimp (f`X) (f‘x)
using maxsimpD-simplex maxsimp-im-max morph

SimplicialComplex.maxsimpI [of f`X f‘x]
by fastforce

lemma iso-adj-int-im:
assumes maxsimp x maxsimp y x∼y x 6=y
shows (f‘x ∩ f‘y) C f‘x

proof (rule facetrelI-card)
from assms(1 ,2) have 1 : f ‘ x ⊆ f ‘ y =⇒ f ‘ y = f ‘ x

using maxsimp-map SimplicialComplex.maxsimpD-simplex[OF morph]
SimplicialComplex.maxsimpD-maximal[OF morph]

by simp
thus f‘x ∩ f‘y ⊆ f‘x by fast

from assms(1) have card (f‘x − f‘x ∩ f‘y) ≤ card (f‘x − f‘(x∩y))
using finite-maxsimp card-mono[of f‘x − f‘(x∩y) f‘x − f‘x ∩ f‘y] by fast

moreover from assms(1 ,3 ,4) have card (f‘x − f‘(x∩y)) = 1
using maxsimpD-simplex faces[of x] maxsimpD-simplex

iso-codim-map adjacent-int-facet1 [of x y] facetrel-card
by fastforce

ultimately have card (f‘x − f‘x ∩ f‘y) ≤ 1 by simp
moreover from assms(1 ,2 ,4) have card (f‘x − f‘x ∩ f‘y) 6= 0

using 1 maxsimpD-simplex finite-maxsimp
inj-onD[OF induced-pow-fun-inj-on, OF inj, of x y]

by auto
ultimately show card (f‘x − f‘x ∩ f‘y) = 1 by simp

qed

lemma iso-adj-map:
assumes maxsimp x maxsimp y x∼y x 6=y
shows f‘x ∼ f‘y
using assms(3 ,4) iso-adj-int-im[OF assms] adjacent-sym

iso-adj-int-im[OF assms(2) assms(1)]
by (auto simp add: Int-commute intro: adjacentI)

lemma pmaxsimpchain-map:
pmaxsimpchain xs =⇒ SimplicialComplex.pmaxsimpchain (f`X) (f |=xs)

proof (induct xs rule: list-induct-CCons)
case Nil show ?case

using map-is-simplicial-morph SimplicialComplex.pmaxsimpchain-def
by fastforce

next
case (Single x) thus ?case

using map-is-simplicial-morph pmaxsimpchainD-maxsimp maxsimp-map
SimplicialComplex.pmaxsimpchain-def

by fastforce

112

next
case (CCons x y xs)
have SimplicialComplex.pmaxsimpchain (f ` X) (f‘x # f‘y # f |=xs)
proof (

rule SimplicialComplex.pmaxsimpchain-CConsI ,
rule map-is-simplicial-morph

)
from CCons(2) show SimplicialComplex.maxsimp (f`X) (f‘x)

using pmaxsimpchainD-maxsimp maxsimp-map by simp
from CCons show SimplicialComplex.pmaxsimpchain (f`X) (f‘y # f |=xs)

using pmaxsimpchain-Cons-reduce by simp
from CCons(2) show f‘x ∼ f‘y

using pmaxsimpchain-def iso-adj-map by simp
from inj CCons(2) have distinct (f |=(x#y#xs))

using maxsimpD-simplex inj-on-distinct-setlistmapim
unfolding pmaxsimpchain-def
by blast

thus f‘x /∈ set (f‘y # f |=xs) by simp
qed
thus ?case by simp

qed

end

3.5 The complex associated to a poset

A simplicial complex is naturally a poset under the subset relation. The
following develops the reverse direction: constructing a simplicial complex
from a suitable poset.
context ordering
begin

definition PosetComplex :: ′a set ⇒ ′a set set
where PosetComplex P ≡ (

⋃
x∈P. { {y. pseudominimal-in (P.≤x) y} })

lemma poset-is-SimplicialComplex:
assumes ∀ x∈P. simplex-like (P.≤x)
shows SimplicialComplex (PosetComplex P)

proof (rule SimplicialComplex.intro, rule ballI)
fix a assume a ∈ PosetComplex P
from this obtain x where x∈P a = {y. pseudominimal-in (P.≤x) y}

unfolding PosetComplex-def by fast
with assms show finite a

using pseudominimal-inD1 simplex-likeD-finite finite-subset[of a P.≤x] by fast
next

fix a b assume ab: a ∈ PosetComplex P b⊆a
from ab(1) obtain x where x: x∈P a = {y. pseudominimal-in (P.≤x) y}

unfolding PosetComplex-def by fast
from assms x(1) obtain f and A::nat set

113

where fA: OrderingSetIso less-eq less (⊆) (⊂) (P.≤x) f
f‘(P.≤x) = Pow A

using simplex-likeD-iso[of P.≤x]
by auto

define x ′ where x ′: x ′ ≡ the-inv-into (P.≤x) f (
⋃

(f‘b))
from fA x(2) ab(2) x ′ have x ′-P: x ′∈P

using collect-pseudominimals-below-in-poset[of P x f] by simp
moreover from x fA ab(2) x ′ have b = {y. pseudominimal-in (P.≤x ′) y}

using collect-pseudominimals-below-in-eq[of x P f] by simp
ultimately show b ∈ PosetComplex P unfolding PosetComplex-def by fast

qed

definition poset-simplex-map :: ′a set ⇒ ′a ⇒ ′a set
where poset-simplex-map P x = {y. pseudominimal-in (P.≤x) y}

lemma poset-to-PosetComplex-OrderingSetMap:
assumes

∧
x. x∈P =⇒ simplex-like (P.≤x)

shows OrderingSetMap (≤) (<) (⊆) (⊂) P (poset-simplex-map P)
proof

from assms
show

∧
a b. [[a∈P; b∈P; a≤b]] =⇒

poset-simplex-map P a ⊆ poset-simplex-map P b
using simplex-like-has-bottom pseudominimal-in-below-in
unfolding poset-simplex-map-def
by fast

qed

end

When a poset affords a simplicial complex, there is a natural morphism
of posets from the source poset into the poset of sets in the complex, as
above. However, some further assumptions are necessary to ensure that this
morphism is an isomorphism. These conditions are collected in the following
locale.
locale ComplexLikePoset = ordering less-eq less

for less-eq :: ′a⇒ ′a⇒bool (infix ‹≤› 50)
and less :: ′a⇒ ′a⇒bool (infix ‹<› 50)

+ fixes P :: ′a set
assumes below-in-P-simplex-like: x∈P =⇒ simplex-like (P.≤x)
and P-has-bottom : has-bottom P
and P-has-glbs : x∈P =⇒ y∈P =⇒ ∃ b. glbound-in-of P x y b

begin

abbreviation smap ≡ poset-simplex-map P

lemma smap-onto-PosetComplex: smap ‘ P = PosetComplex P
using poset-simplex-map-def PosetComplex-def by auto

lemma ordsetmap-smap: [[a∈P; b∈P; a≤b]] =⇒ smap a ⊆ smap b

114

using OrderingSetMap.ordsetmap[
OF poset-to-PosetComplex-OrderingSetMap, OF below-in-P-simplex-like

]
poset-simplex-map-def

by simp

lemma inj-on-smap: inj-on smap P
proof (rule inj-onI)

fix x y assume xy: x∈P y∈P smap x = smap y
show x = y
proof (cases smap x = {})

case True with xy show ?thesis
using poset-simplex-map-def below-in-P-simplex-like P-has-bottom

simplex-like-no-pseudominimal-in-below-in-imp-singleton[of x P]
simplex-like-no-pseudominimal-in-below-in-imp-singleton[of y P]
below-in-singleton-is-bottom[of P x] below-in-singleton-is-bottom[of P y]

by auto
next

case False
from this obtain z where z ∈ smap x by fast
with xy(3) have z1 : z ∈ P.≤x z ∈ P.≤y

using pseudominimal-inD1 poset-simplex-map-def by auto
hence lbound-of x y z by (auto intro: lbound-ofI)
with z1 (1) obtain b where b: glbound-in-of P x y b

using xy(1 ,2) P-has-glbs by fast
moreover have b ∈ P.≤x b ∈ P.≤y

using glbound-in-ofD-in[OF b] glbound-in-of-less-eq1 [OF b]
glbound-in-of-less-eq2 [OF b]

by auto
ultimately show ?thesis

using xy below-in-P-simplex-like
pseudominimal-in-below-in-less-eq-glbound[of P x - y b]
simplex-like-below-in-above-pseudominimal-is-top[of x P]
simplex-like-below-in-above-pseudominimal-is-top[of y P]

unfolding poset-simplex-map-def
by force

qed
qed

lemma OrderingSetIso-smap:
OrderingSetIso (≤) (<) (⊆) (⊂) P smap

proof (rule OrderingSetMap.isoI)
show OrderingSetMap (≤) (<) (⊆) (⊂) P smap

using poset-simplex-map-def below-in-P-simplex-like
poset-to-PosetComplex-OrderingSetMap

by simp
next

fix x y assume xy: x∈P y∈P smap x ⊆ smap y
from xy(2) have simplex-like (P.≤y) using below-in-P-simplex-like by fast

115

from this obtain g and A::nat set
where OrderingSetIso (≤) (<) (⊆) (⊂) (P.≤y) g

g‘(P.≤y) = Pow A
using simplex-likeD-iso[of P.≤y]
by auto

with xy show x≤y
using poset-simplex-map-def collect-pseudominimals-below-in-eq[of y P g]

collect-pseudominimals-below-in-poset[of P y g]
inj-onD[OF inj-on-smap, of the-inv-into (P.≤y) g (

⋃
(g ‘ smap x)) x]

collect-pseudominimals-below-in-less-eq-top[of P y g A smap x]
by simp

qed (rule inj-on-smap)

lemmas rev-ordsetmap-smap =
OrderingSetIso.rev-ordsetmap[OF OrderingSetIso-smap]

end

end

4 Chamber complexes

Now we develop the basic theory of chamber complexes, including both thin
and thick complexes. Some terminology: a maximal simplex is now called a
chamber, and a chain (with respect to adjacency) of chambers is now called
a gallery. A gallery in which no chamber appears more than once is called
proper, and we use the prefix p as a naming convention to denote proper.
Again, we remind the reader that some sources reserve the name gallery
for (a slightly weaker notion of) what we are calling a proper gallery, using
pregallery to denote an improper gallery.
theory Chamber
imports Algebra Simplicial

begin

4.1 Locale definition and basic facts
locale ChamberComplex = SimplicialComplex X

for X :: ′a set set
+ assumes simplex-in-max : y∈X =⇒ ∃ x. maxsimp x ∧ y⊆x

and maxsimp-connect: [[x 6= y; maxsimp x; maxsimp y]] =⇒
∃ xs. maxsimpchain (x#xs@[y])

context ChamberComplex
begin

abbreviation chamber ≡ maxsimp

116

abbreviation gallery ≡ maxsimpchain
abbreviation pgallery ≡ pmaxsimpchain
abbreviation min-gallery ≡ min-maxsimpchain
abbreviation supchamber v ≡ (SOME C . chamber C ∧ v∈C)

lemmas faces = faces
lemmas singleton-simplex = singleton-simplex
lemmas chamberI = maxsimpI
lemmas chamberD-simplex = maxsimpD-simplex
lemmas chamberD-maximal = maxsimpD-maximal
lemmas finite-chamber = finite-maxsimp
lemmas chamber-nempty = maxsimp-nempty
lemmas chamber-vertices = maxsimp-vertices
lemmas gallery-def = maxsimpchain-def
lemmas gallery-snocI = maxsimpchain-snocI
lemmas galleryD-chamber = maxsimpchainD-maxsimp
lemmas galleryD-adj = maxsimpchainD-adj
lemmas gallery-CConsI = maxsimpchain-CConsI
lemmas gallery-Cons-reduce = maxsimpchain-Cons-reduce
lemmas gallery-append-reduce1 = maxsimpchain-append-reduce1
lemmas gallery-append-reduce2 = maxsimpchain-append-reduce2
lemmas gallery-remdup-adj = maxsimpchain-remdup-adj
lemmas gallery-obtain-pgallery = maxsimpchain-obtain-pmaxsimpchain
lemmas pgallery-def = pmaxsimpchain-def
lemmas pgalleryI-gallery = pmaxsimpchainI-maxsimpchain
lemmas pgalleryD-chamber = pmaxsimpchainD-maxsimp
lemmas pgalleryD-adj = pmaxsimpchainD-adj
lemmas pgalleryD-distinct = pmaxsimpchainD-distinct
lemmas pgallery-Cons-reduce = pmaxsimpchain-Cons-reduce
lemmas pgallery-append-reduce1 = pmaxsimpchain-append-reduce1
lemmas pgallery = pmaxsimpchain
lemmas min-gallery-simps = min-maxsimpchain.simps
lemmas min-galleryI-betw = min-maxsimpchainI-betw
lemmas min-galleryI-betw-compare = min-maxsimpchainI-betw-compare
lemmas min-galleryD-min-betw = min-maxsimpchainD-min-betw
lemmas min-galleryD-gallery = min-maxsimpchainD-maxsimpchain
lemmas min-gallery-pgallery = min-maxsimpchain-pmaxsimpchain
lemmas min-gallery-rev = min-maxsimpchain-rev
lemmas min-gallery-adj = min-maxsimpchain-adj
lemmas not-min-galleryI-betw = not-min-maxsimpchainI-betw

lemmas min-gallery-betw-CCons-reduce =
min-maxsimpchain-betw-CCons-reduce

lemmas min-gallery-betw-uniform-length =
min-maxsimpchain-betw-uniform-length

lemmas vertex-set-int = vertex-set-int[OF ChamberComplex.axioms(1)]

lemma chamber-pconnect:
[[x 6= y; chamber x; chamber y]] =⇒ ∃ xs. pgallery (x#xs@[y])

117

using maxsimp-connect[of x y] gallery-obtain-pgallery[of x y] by fast

lemma supchamberD:
assumes v∈

⋃
X

defines C ≡ supchamber v
shows chamber C v∈C
using assms simplex-in-max someI [of λC . chamber C ∧ v∈C]
by auto

definition
ChamberSubcomplex Y ≡ Y ⊆ X ∧ ChamberComplex Y ∧
(∀C . ChamberComplex.chamber Y C −→ chamber C)

lemma ChamberSubcomplexI :
assumes Y⊆X ChamberComplex Y∧

y. ChamberComplex.chamber Y y =⇒ chamber y
shows ChamberSubcomplex Y
using assms ChamberSubcomplex-def
by fast

lemma ChamberSubcomplexD-sub: ChamberSubcomplex Y =⇒ Y ⊆ X
using ChamberSubcomplex-def by fast

lemma ChamberSubcomplexD-complex:
ChamberSubcomplex Y =⇒ ChamberComplex Y
unfolding ChamberSubcomplex-def by fast

lemma chambersub-imp-sub: ChamberSubcomplex Y =⇒ Subcomplex Y
using ChamberSubcomplex-def ChamberComplex.axioms(1) by fast

lemma chamber-in-subcomplex:
[[ChamberSubcomplex Y ; C ∈ Y ; chamber C]] =⇒

ChamberComplex.chamber Y C
using chambersub-imp-sub max-in-subcomplex by simp

lemma subcomplex-chamber :
ChamberSubcomplex Y =⇒ ChamberComplex.chamber Y C =⇒ chamber C
unfolding ChamberSubcomplex-def by fast

lemma gallery-in-subcomplex:
[[ChamberSubcomplex Y ; set ys ⊆ Y ; gallery ys]] =⇒

ChamberComplex.gallery Y ys
using chambersub-imp-sub maxsimpchain-in-subcomplex by simp

lemma subcomplex-gallery:
ChamberSubcomplex Y =⇒ ChamberComplex.gallery Y Cs =⇒ gallery Cs
using ChamberSubcomplex-def gallery-def ChamberComplex.gallery-def
by fastforce

118

lemma subcomplex-pgallery:
ChamberSubcomplex Y =⇒ ChamberComplex.pgallery Y Cs =⇒ pgallery Cs
using ChamberSubcomplex-def pgallery-def ChamberComplex.pgallery-def
by fastforce

lemma min-gallery-in-subcomplex:
assumes ChamberSubcomplex Y min-gallery Cs set Cs ⊆ Y
shows ChamberComplex.min-gallery Y Cs

proof (cases Cs rule: list-cases-Cons-snoc)
case Nil with assms(1) show ?thesis

using ChamberSubcomplexD-complex ChamberComplex.min-gallery-simps(1)
by fast

next
case Single with assms show ?thesis

using min-galleryD-gallery galleryD-chamber chamber-in-subcomplex
ChamberComplex.min-gallery-simps(2) ChamberSubcomplexD-complex

by force
next

case (Cons-snoc C Ds D)
with assms show ?thesis

using ChamberSubcomplexD-complex min-gallery-pgallery
pgalleryD-distinct[of C#Ds@[D]] pgallery
gallery-in-subcomplex[of Y] subcomplex-gallery
min-galleryD-min-betw
ChamberComplex.min-galleryI-betw[of Y]

by force
qed

lemma chamber-card: chamber C =⇒ chamber D =⇒ card C = card D
using maxsimp-connect[of C D] galleryD-adj adjacentchain-card
by (cases C=D) auto

lemma chamber-facet-is-chamber-facet:
[[chamber C ; chamber D; zCC ; z⊆D]] =⇒ zCD
using finite-chamber finite-facetrel-card chamber-card[of C]
by (fastforce intro: facetrelI-cardSuc)

lemma chamber-adj:
assumes chamber C D∈X C ∼ D
shows chamber D

proof−
from assms(2) obtain B where B: chamber B D⊆B

using simplex-in-max by fast
with assms(1 ,3) show ?thesis

using chamber-card[of B] adjacent-card finite-chamber card-subset-eq[of B D]
by force

qed

lemma chambers-share-facet:

119

assumes chamber C chamber (insert v z) zCC
shows zCinsert v z

proof (rule facetrelI)
from assms show v /∈z

using finite-chamber [of C] finite-chamber [of insert v z] card-insert-if [of z v]
by (auto simp add: finite-facetrel-card chamber-card)

qed simp

lemma adjacentset-chamber : chamber C =⇒ D∈adjacentset C =⇒ chamber D
using adjacentset-def chamber-adj by fast

lemma chamber-shared-facet: [[chamber C ; zCC ; D∈X ; zCD]] =⇒ chamber D
by (fast intro: chamber-adj adjacentI)

lemma adjacentset-conv-facetchambersets:
assumes X 6= {{}} chamber C
shows adjacentset C = (

⋃
v∈C . {D∈X . C−{v}CD})

proof (rule seteqI)
fix D assume D: D ∈ adjacentset C
show D ∈ (

⋃
v∈C . {D∈X . C−{v}CD})

proof (cases D=C)
case True with assms
have C 6= {} and C ∈ X

using chamber-nempty chamberD-simplex by auto
with True assms show ?thesis

using facetrel-diff-vertex by fastforce
next

case False
from D have D ′: C∼D using adjacentsetD-adj by fast
with False obtain v where v: v /∈D C = insert v (C∩D)

using adjacent-int-decomp by fast
hence C−{v} = C∩D by auto
with D ′ False have C−{v} C D using adjacent-int-facet2 by auto
with assms(2) D v(2) show ?thesis using adjacentset-def by fast

qed
next

from assms(2)
show

∧
D. D ∈ (

⋃
v∈C . {E∈X . C−{v}CE}) =⇒

D ∈ adjacentset C
using facetrel-diff-vertex adjacentI
unfolding adjacentset-def
by fastforce

qed

end

120

4.2 The system of chambers and distance between chambers

We now examine the system of all chambers in more detail, and explore the
distance function on this system provided by lengths of minimal galleries.
context ChamberComplex
begin

definition chamber-system :: ′a set set
where chamber-system ≡ {C . chamber C}

abbreviation C ≡ chamber-system

definition chamber-distance :: ′a set ⇒ ′a set ⇒ nat
where chamber-distance C D =

(if C=D then 0 else
Suc (length (ARG-MIN length Cs. gallery (C#Cs@[D]))))

definition closest-supchamber :: ′a set ⇒ ′a set ⇒ ′a set
where closest-supchamber F D =

(ARG-MIN (λC . chamber-distance C D) C .
chamber C ∧ F⊆C)

definition face-distance F D ≡ chamber-distance (closest-supchamber F D) D

lemma chamber-system-simplices: C ⊆ X
using chamberD-simplex unfolding chamber-system-def by fast

lemma gallery-chamber-system: gallery Cs =⇒ set Cs ⊆ C
using galleryD-chamber chamber-system-def by fast

lemmas pgallery-chamber-system = gallery-chamber-system[OF pgallery]

lemma chamber-distance-le:
gallery (C#Cs@[D]) =⇒ chamber-distance C D ≤ Suc (length Cs)
using chamber-distance-def

arg-min-nat-le[of λCs. gallery (C#Cs@[D]) - length]
by auto

lemma min-gallery-betw-chamber-distance:
min-gallery (C#Cs@[D]) =⇒ chamber-distance C D = Suc (length Cs)
using chamber-distance-def [of C D] is-arg-min-size[of length - Cs] by auto

lemma min-galleryI-chamber-distance-betw:
gallery (C#Cs@[D]) =⇒ Suc (length Cs) = chamber-distance C D =⇒

min-gallery (C#Cs@[D])
using chamber-distance-def chamber-distance-le min-galleryI-betw[of C D]
by fastforce

lemma gallery-least-length:
assumes chamber C chamber D C 6=D

121

defines Cs ≡ ARG-MIN length Cs. gallery (C#Cs@[D])
shows gallery (C#Cs@[D])
using assms maxsimp-connect[of C D] arg-min-natI
by fast

lemma min-gallery-least-length:
assumes chamber C chamber D C 6=D
defines Cs ≡ ARG-MIN length Cs. gallery (C#Cs@[D])
shows min-gallery (C#Cs@[D])
unfolding Cs-def
using assms gallery-least-length
by (blast intro: min-galleryI-betw arg-min-nat-le)

lemma pgallery-least-length:
assumes chamber C chamber D C 6=D
defines Cs ≡ ARG-MIN length Cs. gallery (C#Cs@[D])
shows pgallery (C#Cs@[D])
using assms min-gallery-least-length min-gallery-pgallery
by fast

lemma closest-supchamberD:
assumes F∈X chamber D
shows chamber (closest-supchamber F D) F ⊆ closest-supchamber F D
using assms arg-min-natI [of λC . chamber C ∧ F⊆C] simplex-in-max[of F]
unfolding closest-supchamber-def
by auto

lemma closest-supchamber-closest:
chamber C =⇒ F⊆C =⇒

chamber-distance (closest-supchamber F D) D ≤ chamber-distance C D
using arg-min-nat-le[of λC . chamber C ∧ F⊆C C] closest-supchamber-def
by simp

lemma face-distance-le:
chamber C =⇒ F⊆C =⇒ face-distance F D ≤ chamber-distance C D
unfolding face-distance-def closest-supchamber-def
by (auto intro: arg-min-nat-le)

lemma face-distance-eq-0 : chamber C =⇒ F⊆C =⇒ face-distance F C = 0
using chamber-distance-def closest-supchamber-def face-distance-def

arg-min-equality[
of λC . chamber C ∧ F⊆C C λD. chamber-distance D C

]
by simp

end

122

4.3 Labelling a chamber complex

A labelling of a chamber complex is a function on the vertex set so that each
chamber is in bijective correspondence with the label set (chambers all have
the same number of vertices).
context ChamberComplex
begin

definition label-wrt :: ′b set ⇒ (′a⇒ ′b) ⇒ bool
where label-wrt B f ≡ (∀C∈C. bij-betw f C B)

lemma label-wrtD: label-wrt B f =⇒ C∈C =⇒ bij-betw f C B
using label-wrt-def by fast

lemma label-wrtD ′: label-wrt B f =⇒ chamber C =⇒ bij-betw f C B
using label-wrt-def chamber-system-def by fast

lemma label-wrt-adjacent:
assumes label-wrt B f chamber C chamber D C∼D v∈C−D w∈D−C
shows f v = f w

proof−
from assms(5) have f‘D = insert (f v) (f‘(C∩D))

using adjacent-conv-insert[OF assms(4), of v] label-wrtD ′[OF assms(1 ,2)]
label-wrtD ′[OF assms(1 ,3)]
bij-betw-imp-surj-on[of f]

by force
with assms(6) show ?thesis

using adjacent-sym[OF assms(4)] adjacent-conv-insert[of D C]
inj-on-insert[of f w C∩D]
bij-betw-imp-inj-on[OF label-wrtD ′, OF assms(1 ,3)]

by (force simp add: Int-commute)
qed

lemma label-wrt-adjacent-shared-facet:
[[label-wrt B f ; chamber (insert v z); chamber (insert w z); v /∈z; w /∈z]] =⇒

f v = f w
by (auto intro: label-wrt-adjacent adjacentI facetrelI)

lemma label-wrt-elt-image: label-wrt B f =⇒ v∈
⋃

X =⇒ f v ∈ B
using simplex-in-max label-wrtD ′ bij-betw-imp-surj-on by fast

end

4.4 Morphisms of chamber complexes

While any function on the vertex set of a simplicial complex can be consid-
ered a morphism of simplicial complexes onto its image, for chamber com-
plexes we require the function send chambers onto chambers of the same

123

cardinality in some chamber complex of the codomain.

4.4.1 Morphism locale and basic facts
locale ChamberComplexMorphism = domain: ChamberComplex X + codomain:
ChamberComplex Y

for X :: ′a set set
and Y :: ′b set set

+ fixes f :: ′a⇒ ′b
assumes chamber-map: domain.chamber C =⇒ codomain.chamber (f‘C)
and dim-map : domain.chamber C =⇒ card (f‘C) = card C

lemma (in ChamberComplex) trivial-morphism:
ChamberComplexMorphism X X id
by unfold-locales auto

lemma (in ChamberComplex) inclusion-morphism:
assumes ChamberSubcomplex Y
shows ChamberComplexMorphism Y X id
by (

rule ChamberComplexMorphism.intro,
rule ChamberSubcomplexD-complex,
rule assms, unfold-locales

)
(auto simp add: subcomplex-chamber [OF assms])

context ChamberComplexMorphism
begin

lemmas domain-complex = domain.ChamberComplex-axioms
lemmas codomain-complex = codomain.ChamberComplex-axioms

lemmas simplicialcomplex-image = domain.map-is-simplicial-morph[of f]

lemma cong: fun-eq-on g f (
⋃

X) =⇒ ChamberComplexMorphism X Y g
using chamber-map domain.chamber-vertices fun-eq-on-im[of g f] dim-map

domain.chamber-vertices
by unfold-locales auto

lemma comp:
assumes ChamberComplexMorphism Y Z g
shows ChamberComplexMorphism X Z (g◦f)

proof (
rule ChamberComplexMorphism.intro, rule domain-complex,
rule ChamberComplexMorphism.axioms(2), rule assms, unfold-locales

)
fix C assume C : domain.chamber C
from C show SimplicialComplex.maxsimp Z ((g◦f)‘C)

using chamber-map ChamberComplexMorphism.chamber-map[OF assms]

124

by (force simp add: image-comp[THEN sym])
from C show card ((g ◦ f)‘C) = card C

using chamber-map dim-map ChamberComplexMorphism.dim-map[OF assms]
by (force simp add: image-comp[THEN sym])

qed

lemma restrict-domain:
assumes domain.ChamberSubcomplex W
shows ChamberComplexMorphism W Y f

proof (
rule ChamberComplexMorphism.intro, rule domain.ChamberSubcomplexD-complex,
rule assms, rule codomain-complex, unfold-locales

)
fix C assume ChamberComplex.chamber W C
with assms show codomain.chamber (f‘C) card (f‘C) = card C

using domain.subcomplex-chamber chamber-map dim-map by auto
qed

lemma restrict-codomain:
assumes codomain.ChamberSubcomplex Z f`X ⊆ Z
shows ChamberComplexMorphism X Z f

proof (
rule ChamberComplexMorphism.intro, rule domain-complex,
rule codomain.ChamberSubcomplexD-complex,
rule assms, unfold-locales

)
fix C assume domain.chamber C
with assms show SimplicialComplex.maxsimp Z (f‘C) card (f ‘ C) = card C

using domain.chamberD-simplex[of C] chamber-map
codomain.chamber-in-subcomplex dim-map

by auto
qed

lemma inj-on-chamber : domain.chamber C =⇒ inj-on f C
using domain.finite-chamber dim-map by (fast intro: eq-card-imp-inj-on)

lemma bij-betw-chambers: domain.chamber C =⇒ bij-betw f C (f‘C)
using inj-on-chamber by (fast intro: bij-betw-imageI)

lemma card-map: x∈X =⇒ card (f‘x) = card x
using domain.simplex-in-max subset-inj-on[OF inj-on-chamber]

domain.finite-simplex inj-on-iff-eq-card
by blast

lemma codim-map:
assumes domain.chamber C y ⊆ C
shows card (f‘C − f‘y) = card (C−y)
using assms dim-map domain.chamberD-simplex domain.faces[of C y]

domain.finite-simplex card-Diff-subset[of f‘y f‘C]

125

card-map card-Diff-subset[of y C]
by auto

lemma simplex-map: x∈X =⇒ f‘x∈Y
using chamber-map domain.simplex-in-max codomain.chamberD-simplex

codomain.faces[of - f‘x]
by force

lemma simplices-map: f`X ⊆ Y
using simplex-map by fast

lemma vertex-map: x ∈
⋃

X =⇒ f x ∈
⋃

Y
using simplex-map by fast

lemma facet-map: domain.chamber C =⇒ zCC =⇒ f‘z C f‘C
using facetrel-subset facetrel-card codim-map[of C z]
by (fastforce intro: facetrelI-card)

lemma adj-int-im:
assumes domain.chamber C domain.chamber D C ∼ D f‘C 6= f‘D
shows (f‘C ∩ f‘D) C f‘C

proof (rule facetrelI-card)
from assms(1 ,2) chamber-map have 1 : f‘C ⊆ f‘D =⇒ f‘C = f‘D

using codomain.chamberD-simplex codomain.chamberD-maximal[of f‘C f‘D]
by simp

thus f ‘ C ∩ f ‘ D ⊆ f ‘ C by fast

from assms(1) have card (f‘C − f‘C ∩ f‘D) ≤ card (f‘C − f‘(C∩D))
using domain.finite-chamber

card-mono[of f‘C − f‘(C∩D) f‘C − f‘C ∩ f‘D]
by fast

moreover from assms(1 ,3 ,4) have card (f‘C − f‘(C∩D)) = 1
using codim-map[of C C∩D] adjacent-int-facet1 facetrel-card
by fastforce

ultimately have card (f‘C − f‘C ∩ f‘D) ≤ 1 by simp
moreover from 1 assms(1 ,4) have card (f‘C − f‘C ∩ f‘D) 6= 0

using domain.finite-chamber by auto
ultimately show card (f‘C − f‘C ∩ f‘D) = 1 by simp

qed

lemma adj-map ′:
assumes domain.chamber C domain.chamber D C ∼ D f‘C 6= f‘D
shows f‘C ∼ f‘D
using assms(3 ,4) adj-int-im[OF assms] adjacent-sym

adj-int-im[OF assms(2) assms(1)]
by (auto simp add: Int-commute intro: adjacentI)

lemma adj-map:
[[domain.chamber C ; domain.chamber D; C ∼ D]] =⇒ f‘C ∼ f‘D

126

using adjacent-refl[of f‘C] adj-map ′ empty-not-adjacent[of D] by fastforce

lemma chamber-vertex-outside-facet-image:
assumes v /∈z domain.chamber (insert v z)
shows f v /∈ f‘z

proof−
from assms(1) have insert v z − z = {v} by force
with assms(2) show ?thesis using codim-map by fastforce

qed

lemma expand-codomain:
assumes ChamberComplex Z ChamberComplex.ChamberSubcomplex Z Y
shows ChamberComplexMorphism X Z f

proof (
rule ChamberComplexMorphism.intro, rule domain-complex, rule assms(1),
unfold-locales

)
from assms show∧

x. domain.chamber x =⇒ SimplicialComplex.maxsimp Z (f ‘ x)
using chamber-map ChamberComplex.subcomplex-chamber by fast

qed (auto simp add: dim-map)

end

4.4.2 Action on pregalleries and galleries
context ChamberComplexMorphism
begin

lemma gallery-map: domain.gallery Cs =⇒ codomain.gallery (f |=Cs)
proof (induct Cs rule: list-induct-CCons)

case (Single C) thus ?case
using domain.galleryD-chamber chamber-map codomain.gallery-def by auto

next
case (CCons B C Cs)
have codomain.gallery (f‘B # f‘C # f |=Cs)
proof (rule codomain.gallery-CConsI)

from CCons(2) show codomain.chamber (f ‘ B)
using domain.galleryD-chamber chamber-map by simp

from CCons show codomain.gallery (f‘C # f |=Cs)
using domain.gallery-Cons-reduce by auto

from CCons(2) show f‘B ∼ f‘C
using domain.gallery-Cons-reduce[of B C#Cs] domain.galleryD-adj

domain.galleryD-chamber adj-map
by fastforce

qed
thus ?case by simp

qed (simp add: codomain.maxsimpchain-def)

127

lemma gallery-betw-map:
domain.gallery (C#Cs@[D]) =⇒ codomain.gallery (f‘C # f |=Cs @ [f‘D])
using gallery-map by fastforce

end

4.4.3 Properties of the image
context ChamberComplexMorphism
begin

lemma subcomplex-image: codomain.Subcomplex (f`X)
using simplicialcomplex-image simplex-map by fast

lemmas chamber-in-image = codomain.max-in-subcomplex[OF subcomplex-image]

lemma maxsimp-map-into-image:
assumes domain.chamber x
shows SimplicialComplex.maxsimp (f`X) (f‘x)

proof (
rule SimplicialComplex.maxsimpI , rule simplicialcomplex-image, rule imageI ,
rule domain.chamberD-simplex, rule assms

)
from assms show

∧
z. z∈f`X =⇒ f‘x ⊆ z =⇒ z = f‘x

using chamber-map[of x] simplex-map codomain.chamberD-maximal[of f‘x]
by blast

qed

lemma maxsimp-preimage:
assumes C∈X SimplicialComplex.maxsimp (f`X) (f‘C)
shows domain.chamber C

proof−
from assms(1) obtain D where D: domain.chamber D C⊆D

using domain.simplex-in-max by fast
have C=D
proof (rule card-subset-eq)

from D(1) show finite D using domain.finite-chamber by fast
with assms D show card C = card D

using domain.chamberD-simplex simplicialcomplex-image
SimplicialComplex.maxsimpD-maximal[of f`X f‘C f‘D]
card-mono[of D C] domain.finite-simplex card-image-le[of C f] dim-map

by force
qed (rule D(2))
with D(1) show ?thesis by fast

qed

lemma chamber-preimage:
C∈X =⇒ codomain.chamber (f‘C) =⇒ domain.chamber C
using chamber-in-image maxsimp-preimage by simp

128

lemma chambercomplex-image: ChamberComplex (f`X)
proof (intro-locales, rule simplicialcomplex-image, unfold-locales)

show
∧

y. y∈f`X =⇒ ∃ x. SimplicialComplex.maxsimp (f`X) x ∧ y ⊆ x
using domain.simplex-in-max maxsimp-map-into-image by fast

next
fix x y
assume xy: x 6=y SimplicialComplex .maxsimp (f`X) x

SimplicialComplex.maxsimp (f`X) y
from xy(2 ,3) obtain zx zy where zxy: zx∈X x = f‘zx zy∈X y = f‘zy

using SimplicialComplex.maxsimpD-simplex[OF simplicialcomplex-image, of x]
SimplicialComplex.maxsimpD-simplex[OF simplicialcomplex-image, of y]

by fast
with xy obtain ws where ws: domain.gallery (zx#ws@[zy])

using maxsimp-preimage domain.maxsimp-connect[of zx zy] by auto
with ws zxy(2 ,4) have SimplicialComplex.maxsimpchain (f`X) (x#(f |=ws)@[y])

using gallery-map[of zx#ws@[zy]] domain.galleryD-chamber
domain.chamberD-simplex codomain.galleryD-chamber
codomain.max-in-subcomplex[OF subcomplex-image]
codomain.galleryD-adj
SimplicialComplex.maxsimpchain-def [OF simplicialcomplex-image]

by auto
thus ∃ xs. SimplicialComplex.maxsimpchain (f`X) (x#xs@[y]) by fast

qed

lemma chambersubcomplex-image: codomain.ChamberSubcomplex (f`X)
using simplices-map chambercomplex-image ChamberComplex.chamberD-simplex

chambercomplex-image maxsimp-preimage chamber-map
by (force intro: codomain.ChamberSubcomplexI)

lemma restrict-codomain-to-image: ChamberComplexMorphism X (f`X) f
using restrict-codomain chambersubcomplex-image by fast

end

4.4.4 Action on the chamber system
context ChamberComplexMorphism
begin

lemma chamber-system-into: f`domain.C ⊆ codomain.C
using chamber-map domain.chamber-system-def codomain.chamber-system-def
by auto

lemma chamber-system-image: f`domain.C = codomain.C ∩ (f`X)
proof

show f`domain.C ⊆ codomain.C ∩ (f`X)
using chamber-system-into domain.chamber-system-simplices by fast

show f`domain.C ⊇ codomain.C ∩ (f`X)

129

proof
fix D assume D ∈ codomain.C ∩ (f`X)
hence ∃C . domain.chamber C ∧ f‘C = D

using codomain.chamber-system-def chamber-preimage by fast
thus D ∈ f`domain.C using domain.chamber-system-def by auto

qed
qed

lemma image-chamber-system: ChamberComplex.C (f`X) = f ` domain.C
using ChamberComplex.chamber-system-def codomain.subcomplex-chamber

ChamberComplex.chamberD-simplex chambercomplex-image
chambersubcomplex-image chamber-system-image
codomain.chamber-in-subcomplex codomain.chamber-system-def

by auto

lemma image-chamber-system-image:
ChamberComplex.C (f`X) = codomain.C ∩ (f`X)
using image-chamber-system chamber-system-image by simp

lemma face-distance-eq-chamber-distance-map:
assumes domain.chamber C domain.chamber D C 6=D z⊆C

codomain.face-distance (f‘z) (f‘D) = domain.face-distance z D
domain.face-distance z D = domain.chamber-distance C D

shows codomain.face-distance (f‘z) (f‘D) =
codomain.chamber-distance (f‘C) (f‘D)

using assms codomain.face-distance-le[of f‘C f‘z f‘D] chamber-map
codomain.chamber-distance-le
gallery-betw-map[OF domain.gallery-least-length, of C D]
domain.chamber-distance-def

by force

lemma face-distance-eq-chamber-distance-min-gallery-betw-map:
assumes domain.chamber C domain.chamber D C 6=D z⊆C

codomain.face-distance (f‘z) (f‘D) = domain.face-distance z D
domain.face-distance z D = domain.chamber-distance C D
domain.min-gallery (C#Cs@[D])

shows codomain.min-gallery (f |=(C#Cs@[D]))
using assms face-distance-eq-chamber-distance-map[of C D z]

gallery-map[OF domain.min-galleryD-gallery, OF assms(7)]
domain.min-gallery-betw-chamber-distance[OF assms(7)]
codomain.min-galleryI-chamber-distance-betw[of f‘C f |=Cs f‘D]

by auto

end

4.4.5 Isomorphisms
locale ChamberComplexIsomorphism = ChamberComplexMorphism X Y f

for X :: ′a set set

130

and Y :: ′b set set
and f :: ′a⇒ ′b

+ assumes bij-betw-vertices: bij-betw f (
⋃

X) (
⋃

Y)
and surj-simplex-map : f`X = Y

lemma (in ChamberComplexIsomorphism) inj: inj-on f (
⋃

X)
using bij-betw-vertices bij-betw-def by fast

sublocale ChamberComplexIsomorphism < SimplicialComplexIsomorphism
using inj by (unfold-locales) fast

lemma (in ChamberComplex) trivial-isomorphism:
ChamberComplexIsomorphism X X id
using trivial-morphism bij-betw-id
by unfold-locales (auto intro: ChamberComplexIsomorphism.intro)

lemma (in ChamberComplexMorphism) isoI-inverse:
assumes ChamberComplexMorphism Y X g

fixespointwise (g◦f) (
⋃

X) fixespointwise (f ◦g) (
⋃

Y)
shows ChamberComplexIsomorphism X Y f

proof (rule ChamberComplexIsomorphism.intro)
show ChamberComplexMorphism X Y f ..
show ChamberComplexIsomorphism-axioms X Y f
proof

from assms show bij-betw f (
⋃

X) (
⋃

Y)
using vertex-map ChamberComplexMorphism.vertex-map

comps-fixpointwise-imp-bij-betw[of f
⋃

X
⋃

Y g]
by fast

show f`X = Y
proof (rule order .antisym, rule simplices-map, rule subsetI)

fix y assume y∈Y
moreover hence (f ◦g) ‘ y ∈ f`X

using ChamberComplexMorphism.simplex-map[OF assms(1)]
by (simp add: image-comp[THEN sym])

ultimately show y ∈ f`X
using fixespointwise-subset[OF assms(3), of y] fixespointwise-im by fastforce

qed
qed

qed

context ChamberComplexIsomorphism
begin

lemmas domain-complex = domain-complex
lemmas chamber-map = chamber-map
lemmas dim-map = dim-map
lemmas gallery-map = gallery-map
lemmas simplex-map = simplex-map
lemmas chamber-preimage = chamber-preimage

131

lemma chamber-morphism: ChamberComplexMorphism X Y f ..

lemma pgallery-map: domain.pgallery Cs =⇒ codomain.pgallery (f |=Cs)
using pmaxsimpchain-map surj-simplex-map by simp

lemma iso-cong:
assumes fun-eq-on g f (

⋃
X)

shows ChamberComplexIsomorphism X Y g
proof (

rule ChamberComplexIsomorphism.intro, rule cong, rule assms,
unfold-locales

)
from assms show bij-betw g (

⋃
X) (

⋃
Y)

using bij-betw-vertices fun-eq-on-bij-betw by blast
show g ` X = Y using setsetmapim-cong[OF assms] surj-simplex-map by simp

qed

lemma iso-comp:
assumes ChamberComplexIsomorphism Y Z g
shows ChamberComplexIsomorphism X Z (g◦f)
by (

rule ChamberComplexIsomorphism.intro, rule comp,
rule ChamberComplexIsomorphism.axioms(1),
rule assms, unfold-locales, rule bij-betw-trans,
rule bij-betw-vertices,
rule ChamberComplexIsomorphism.bij-betw-vertices,
rule assms

)
(simp add:

setsetmapim-comp surj-simplex-map assms
ChamberComplexIsomorphism.surj-simplex-map

)

lemma inj-on-chamber-system: inj-on ((‘) f) domain.C
proof (rule inj-onI)

fix C D show [[C ∈ domain.C; D ∈ domain.C; f‘C = f‘D]] =⇒ C=D
using domain.chamber-system-def domain.chamber-pconnect[of C D]

pgallery-map codomain.pgalleryD-distinct
by fastforce

qed

lemma inv: ChamberComplexIsomorphism Y X (the-inv-into (
⋃

X) f)
proof

show bij-betw (the-inv-into (
⋃

X) f) (
⋃

Y) (
⋃

X)
using bij-betw-vertices bij-betw-the-inv-into by fast

show 4 : (the-inv-into (
⋃

X) f) ` Y = X
using bij-betw-imp-inj-on[OF bij-betw-vertices] surj-simplex-map

setsetmapim-the-inv-into

132

by force
next

fix C assume C : codomain.chamber C
hence C ′: C∈f`X using codomain.chamberD-simplex surj-simplex-map by fast
show domain.chamber (the-inv-into (

⋃
X) f ‘ C)

proof (rule domain.chamberI)
from C ′ obtain D where D∈X the-inv-into (

⋃
X) f ‘ C = D

using the-inv-into-f-im-f-im[OF inj] by blast
thus the-inv-into (

⋃
X) f ‘ C ∈ X by simp

fix z assume z: z∈X the-inv-into (
⋃

X) f ‘ C ⊆ z
with C have f‘z = C

using C ′ f-im-the-inv-into-f-im[OF inj, of C] surj-simplex-map
codomain.chamberD-maximal[of C f‘z]

by blast
with z(1) show z = the-inv-into (

⋃
X) f ‘ C

using the-inv-into-f-im-f-im[OF inj] by auto
qed
from C show card (the-inv-into (

⋃
X) f ‘ C) = card C

using C ′ codomain.finite-chamber
subset-inj-on[OF inj-on-the-inv-into, OF inj, of C]

by (fast intro: inj-on-iff-eq-card[THEN iffD1])
qed

lemma chamber-distance-map:
assumes domain.chamber C domain.chamber D
shows codomain.chamber-distance (f‘C) (f‘D) =

domain.chamber-distance C D
proof (cases f‘C=f‘D)

case True
moreover with assms have C=D

using inj-onD[OF inj-on-chamber-system] domain.chamber-system-def
by simp

ultimately show ?thesis
using domain.chamber-distance-def codomain.chamber-distance-def by simp

next
case False
define Cs Ds where Cs = (ARG-MIN length Cs. domain.gallery (C#Cs@[D]))

and Ds = (ARG-MIN length Ds. codomain.gallery (f‘C # Ds @ [f‘D]))
from assms False Cs-def have codomain.gallery (f‘C # f |=Cs @ [f‘D])

using gallery-map domain.maxsimp-connect[of C D]
arg-min-natI [of λCs. domain.gallery (C#Cs@[D])]

by fastforce
moreover from assms Cs-def

have
∧

Es. codomain.gallery (f‘C # Es @ [f‘D]) =⇒
length (f |=Cs) ≤ length Es

using ChamberComplexIsomorphism.gallery-map[OF inv]
the-inv-into-f-im-f-im[OF inj, of C] the-inv-into-f-im-f-im[OF inj, of D]
domain.chamberD-simplex[of C] domain.chamberD-simplex[of D]
domain.maxsimp-connect[of C D]

133

arg-min-nat-le[of λCs. domain.gallery (C#Cs@[D]) - length]
by force

ultimately have length Ds = length (f |=Cs)
unfolding Ds-def by (fast intro: arg-min-equality)

with False Cs-def Ds-def show ?thesis
using domain.chamber-distance-def codomain.chamber-distance-def by auto

qed

lemma face-distance-map:
assumes domain.chamber C F∈X
shows codomain.face-distance (f‘F) (f‘C) = domain.face-distance F C

proof−
define D D ′ invf where D = domain.closest-supchamber F C

and D ′ = codomain.closest-supchamber (f‘F) (f‘C)
and invf = the-inv-into (

⋃
X) f

from assms D-def D ′-def invf-def have chambers:
codomain.chamber (f‘C) domain.chamber D codomain.chamber D ′

codomain.chamber (f‘D) domain.chamber (invf‘D ′)
using domain.closest-supchamberD(1) simplex-map

codomain.closest-supchamberD(1) chamber-map
ChamberComplexIsomorphism.chamber-map[OF inv]

by auto

have codomain.chamber-distance D ′ (f‘C) ≤ domain.chamber-distance D C
proof−

from assms D-def D ′-def
have codomain.chamber-distance D ′ (f‘C) ≤

codomain.chamber-distance (f‘D) (f‘C)
using chambers(4) domain.closest-supchamberD(2)

codomain.closest-supchamber-def
by (fastforce intro: arg-min-nat-le)

with assms D-def D ′-def show ?thesis
using chambers(2) chamber-distance-map by simp

qed
moreover

have domain.chamber-distance D C ≤ codomain.chamber-distance D ′ (f‘C)
proof−

from assms D ′-def have invf‘f‘F ⊆ invf‘D ′

using chambers(1) simplex-map codomain.closest-supchamberD(2) by fast
with assms(2) invf-def have F ⊆ invf‘D ′

using the-inv-into-f-im-f-im[OF inj, of F] by fastforce
with D-def

have domain.chamber-distance D C ≤
domain.chamber-distance (invf ‘ D ′) C

using chambers(5) domain.closest-supchamber-def
by (auto intro: arg-min-nat-le)

with assms(1) invf-def show ?thesis
using chambers(3 ,5) surj-simplex-map codomain.chamberD-simplex

134

f-im-the-inv-into-f-im[OF inj, of D ′]
chamber-distance-map[of invf‘D ′ C]

by fastforce
qed
ultimately show ?thesis

using D-def D ′-def domain.face-distance-def codomain.face-distance-def
by simp

qed

end

4.4.6 Endomorphisms
locale ChamberComplexEndomorphism = ChamberComplexMorphism X X f

for X :: ′a set set
and f :: ′a⇒ ′a

+ assumes trivial-outside : v /∈
⋃

X =⇒ f v = v
— to facilitate uniqueness arguments

lemma (in ChamberComplex) trivial-endomorphism:
ChamberComplexEndomorphism X id
by (

rule ChamberComplexEndomorphism.intro, rule trivial-morphism,
unfold-locales

)
simp

context ChamberComplexEndomorphism
begin

abbreviation ChamberSubcomplex ≡ domain.ChamberSubcomplex
abbreviation Subcomplex ≡ domain.Subcomplex
abbreviation chamber ≡ domain.chamber
abbreviation gallery ≡ domain.gallery
abbreviation C ≡ domain.chamber-system
abbreviation label-wrt ≡ domain.label-wrt

lemmas dim-map = dim-map
lemmas simplex-map = simplex-map
lemmas vertex-map = vertex-map
lemmas chamber-map = chamber-map
lemmas adj-map = adj-map
lemmas facet-map = facet-map
lemmas bij-betw-chambers = bij-betw-chambers
lemmas chamber-system-into = chamber-system-into
lemmas chamber-system-image = chamber-system-image
lemmas image-chamber-system = image-chamber-system
lemmas chambercomplex-image = chambercomplex-image
lemmas chambersubcomplex-image = chambersubcomplex-image

135

lemmas face-distance-eq-chamber-distance-map =
face-distance-eq-chamber-distance-map

lemmas face-distance-eq-chamber-distance-min-gallery-betw-map =
face-distance-eq-chamber-distance-min-gallery-betw-map

lemmas facedist-chdist-mingal-btwmap =
face-distance-eq-chamber-distance-min-gallery-betw-map

lemmas trivial-endomorphism = domain.trivial-endomorphism
lemmas finite-simplices = domain.finite-simplices
lemmas faces = domain.faces
lemmas maxsimp-connect = domain.maxsimp-connect
lemmas simplex-in-max = domain.simplex-in-max
lemmas chamberD-simplex = domain.chamberD-simplex
lemmas chamber-system-def = domain.chamber-system-def
lemmas chamber-system-simplices = domain.chamber-system-simplices
lemmas galleryD-chamber = domain.galleryD-chamber
lemmas galleryD-adj = domain.galleryD-adj
lemmas gallery-append-reduce1 = domain.gallery-append-reduce1
lemmas gallery-Cons-reduce = domain.gallery-Cons-reduce
lemmas gallery-chamber-system = domain.gallery-chamber-system
lemmas label-wrtD = domain.label-wrtD
lemmas label-wrt-adjacent = domain.label-wrt-adjacent

lemma endo-comp:
assumes ChamberComplexEndomorphism X g
shows ChamberComplexEndomorphism X (g◦f)

proof (rule ChamberComplexEndomorphism.intro)
from assms show ChamberComplexMorphism X X (g◦f)

using comp ChamberComplexEndomorphism.axioms by fast
from assms show ChamberComplexEndomorphism-axioms X (g◦f)

using trivial-outside ChamberComplexEndomorphism.trivial-outside
by unfold-locales auto

qed

lemma restrict-endo:
assumes ChamberSubcomplex Y f`Y ⊆ Y
shows ChamberComplexEndomorphism Y (restrict1 f (

⋃
Y))

proof (rule ChamberComplexEndomorphism.intro)
from assms show ChamberComplexMorphism Y Y (restrict1 f (

⋃
Y))

using ChamberComplexMorphism.cong[of Y Y]
ChamberComplexMorphism.restrict-codomain
restrict-domain fun-eq-on-restrict1

by fast
show ChamberComplexEndomorphism-axioms Y (restrict1 f (

⋃
Y))

by unfold-locales simp
qed

lemma funpower-endomorphism:

136

ChamberComplexEndomorphism X (f^^n)
proof (induct n)

case 0 show ?case using trivial-endomorphism subst[of id] by fastforce
next

case (Suc m)
hence ChamberComplexEndomorphism X (f^^m ◦ f)

using endo-comp by auto
moreover have f^^m ◦ f = f^^(Suc m)

by (simp add: funpow-Suc-right[THEN sym])
ultimately show ?case

using subst[of - - λf . ChamberComplexEndomorphism X f] by fast
qed

end

lemma (in ChamberComplex) fold-chamber-complex-endomorph-list:
∀ x∈set xs. ChamberComplexEndomorphism X (f x) =⇒

ChamberComplexEndomorphism X (fold f xs)
proof (induct xs)

case Nil show ?case using trivial-endomorphism subst[of id] by fastforce
next

case (Cons x xs)
hence ChamberComplexEndomorphism X (fold f xs ◦ f x)

using ChamberComplexEndomorphism.endo-comp by auto
moreover have fold f xs ◦ f x = fold f (x#xs) by simp
ultimately show ?case

using subst[of - - λf . ChamberComplexEndomorphism X f] by fast
qed

context ChamberComplexEndomorphism
begin

lemma split-gallery:
[[C∈f`C; D∈C−f`C; gallery (C#Cs@[D])]] =⇒
∃As A B Bs. A∈f`C ∧ B∈C−f`C ∧ C#Cs@[D] = As@A#B#Bs

proof (induct Cs arbitrary: C)
case Nil
define As :: ′a set list where As = []
hence C#[]@[D] = As@C#D#As by simp
with Nil(1 ,2) show ?case by auto

next
case (Cons E Es)
show ?case
proof (cases E∈f`C)

case True
from Cons(4) have gallery (E#Es@[D])

using gallery-Cons-reduce by simp
with True obtain As A B Bs

where 1 : A∈f`C B∈C−f`C E#Es@[D] = As@A#B#Bs

137

using Cons(1)[of E] Cons(3)
by blast

from 1 (3) have C#(E#Es)@[D] = (C#As)@A#B#Bs by simp
with 1 (1 ,2) show ?thesis by blast

next
case False
hence E∈C−f`C using gallery-chamber-system[OF Cons(4)] by simp
moreover have C#(E#Es)@[D] = []@C#E#(Es@[D]) by simp
ultimately show ?thesis using Cons(2) by blast

qed
qed

lemma respects-labels-adjacent:
assumes label-wrt B ϕ chamber C chamber D C∼D ∀ v∈C . ϕ (f v) = ϕ v
shows ∀ v∈D. ϕ (f v) = ϕ v

proof (cases C=D)
case False have CD: C 6=D by fact
with assms(4) obtain w where w: w /∈D C = insert w (C∩D)

using adjacent-int-decomp by fast
with assms(2) have fC : f w /∈ f‘(C∩D) f‘C = insert (f w) (f‘(C∩D))

using chamber-vertex-outside-facet-image[of w C∩D] by auto
show ?thesis
proof

fix v assume v: v∈D
show ϕ (f v) = ϕ v
proof (cases v∈C)

case False
with assms(3 ,4) v have fD: f v /∈ f‘(D∩C) f‘D = insert (f v) (f‘(D∩C))

using adjacent-sym[of C D] adjacent-conv-insert[of D C v]
chamber-vertex-outside-facet-image[of v D∩C]

by auto
have ϕ (f v) = ϕ (f w)
proof (cases f‘C=f‘D)

case True
with fC fD have f v = f w by (auto simp add: Int-commute)
thus ?thesis by simp

next
case False
from assms(2−4) have chamber (f‘C) chamber (f‘D) and fCfD: f‘C∼f‘D

using chamber-map adj-map by auto
moreover from assms(4) fC fCfD False have f w ∈ f‘C − f‘D

using adjacent-to-adjacent-int[of C D f] by auto
ultimately show ?thesis

using assms(4) fD fCfD False adjacent-sym
adjacent-to-adjacent-int[of D C f]
label-wrt-adjacent[OF assms(1), of f‘C f‘D f w f v, THEN sym]

by auto
qed
with False v w assms(5) show ?thesis

138

using label-wrt-adjacent[OF assms(1−4), of w v, THEN sym] by fastforce
qed (simp add: assms(5))

qed
qed (simp add: assms(5))

lemma respects-labels-gallery:
assumes label-wrt B ϕ ∀ v∈C . ϕ (f v) = ϕ v
shows gallery (C#Cs@[D]) =⇒ ∀ v∈D. ϕ (f v) = ϕ v

proof (induct Cs arbitrary: D rule: rev-induct)
case Nil with assms(2) show ?case

using galleryD-chamber galleryD-adj
respects-labels-adjacent[OF assms(1), of C D]

by force
next

case (snoc E Es)
with assms(2) show ?case

using gallery-append-reduce1 [of C#Es@[E]] galleryD-chamber galleryD-adj
binrelchain-append-reduce2 [of adjacent C#Es [E ,D]]
respects-labels-adjacent[OF assms(1), of E D]

by force
qed

lemma respect-label-fix-chamber-imp-fun-eq-on:
assumes label : label-wrt B ϕ
and chamber : chamber C f‘C = g‘C
and respect: ∀ v∈C . ϕ (f v) = ϕ v ∀ v∈C . ϕ (g v) = ϕ v
shows fun-eq-on f g C

proof (rule fun-eq-onI)
fix v assume v∈C
moreover with respect have ϕ (f v) = ϕ (g v) by simp
ultimately show f v = g v

using label chamber chamber-map chamber-system-def label-wrtD[of B ϕ f‘C]
bij-betw-imp-inj-on[of ϕ] inj-onD

by fastforce
qed

lemmas respects-label-fixes-chamber-imp-fixespointwise =
respect-label-fix-chamber-imp-fun-eq-on[of - - - id, simplified]

end

4.4.7 Automorphisms
locale ChamberComplexAutomorphism = ChamberComplexIsomorphism X X f

for X :: ′a set set
and f :: ′a⇒ ′a

+ assumes trivial-outside : v /∈
⋃

X =⇒ f v = v
— to facilitate uniqueness arguments

139

sublocale ChamberComplexAutomorphism < ChamberComplexEndomorphism
using trivial-outside by unfold-locales fast

lemma (in ChamberComplex) trivial-automorphism:
ChamberComplexAutomorphism X id
using trivial-isomorphism
by unfold-locales (auto intro: ChamberComplexAutomorphism.intro)

context ChamberComplexAutomorphism
begin

lemmas facet-map = facet-map
lemmas chamber-map = chamber-map
lemmas chamber-morphism = chamber-morphism
lemmas bij-betw-vertices = bij-betw-vertices
lemmas surj-simplex-map = surj-simplex-map

lemma bij: bij f
proof (rule bijI)

show inj f
proof (rule injI)

fix x y assume f x = f y thus x = y
using bij-betw-imp-inj-on[OF bij-betw-vertices] inj-onD[of f

⋃
X x y]

vertex-map trivial-outside
by (cases x∈

⋃
X y∈

⋃
X rule: two-cases) auto

qed
show surj f unfolding surj-def
proof

fix y show ∃ x. y = f x
using bij-betw-imp-surj-on[OF bij-betw-vertices]

trivial-outside[THEN sym, of y]
by (cases y∈

⋃
X) auto

qed
qed

lemma comp:
assumes ChamberComplexAutomorphism X g
shows ChamberComplexAutomorphism X (g◦f)

proof (
rule ChamberComplexAutomorphism.intro,
rule ChamberComplexIsomorphism.intro,
rule ChamberComplexMorphism.comp

)
from assms show ChamberComplexMorphism X X g

using ChamberComplexAutomorphism.chamber-morphism by fast
show ChamberComplexIsomorphism-axioms X X (g ◦ f)
proof

from assms show bij-betw (g◦f) (
⋃

X) (
⋃

X)
using bij-betw-vertices ChamberComplexAutomorphism.bij-betw-vertices

140

bij-betw-trans
by fast

from assms show (g◦f) ` X = X
using surj-simplex-map ChamberComplexAutomorphism.surj-simplex-map
by (force simp add: setsetmapim-comp)

qed
show ChamberComplexAutomorphism-axioms X (g ◦ f)

using trivial-outside ChamberComplexAutomorphism.trivial-outside[OF assms]
by unfold-locales auto

qed unfold-locales

lemma equality:
assumes ChamberComplexAutomorphism X g fun-eq-on f g (

⋃
X)

shows f = g
proof

fix x show f x = g x
using trivial-outside fun-eq-onD[OF assms(2)]

ChamberComplexAutomorphism.trivial-outside[OF assms(1)]
by force

qed

end

4.4.8 Retractions

A retraction of a chamber complex is an endomorphism that is the identity
on its image.
locale ChamberComplexRetraction = ChamberComplexEndomorphism X f

for X :: ′a set set
and f :: ′a⇒ ′a

+ assumes retraction: v∈
⋃

X =⇒ f (f v) = f v
begin

lemmas simplex-map = simplex-map
lemmas chamber-map = chamber-map
lemmas gallery-map = gallery-map

lemma vertex-retraction: v∈f‘(
⋃

X) =⇒ f v = v
using retraction by fast

lemma simplex-retraction1 : x∈f`X =⇒ fixespointwise f x
using retraction fixespointwiseI [of x f] by auto

lemma simplex-retraction2 : x∈f`X =⇒ f‘x = x
using retraction retraction[THEN sym] by blast

lemma chamber-retraction1 : C∈f`C =⇒ fixespointwise f C
using chamber-system-simplices simplex-retraction1 by auto

141

lemma chamber-retraction2 : C∈f`C =⇒ f‘C = C
using chamber-system-simplices simplex-retraction2 [of C] by auto

lemma respects-labels:
assumes label-wrt B ϕ v∈(

⋃
X)

shows ϕ (f v) = ϕ v
proof−

from assms(2) obtain C where chamber C v∈C using simplex-in-max by fast
thus ?thesis

using chamber-retraction1 [of C] chamber-system-def chamber-map
maxsimp-connect[of f‘C C] chamber-retraction1 [of f‘C]
respects-labels-gallery[OF assms(1), THEN bspec, of f‘C - C v]

by (force simp add: fixespointwiseD)
qed

end

4.4.9 Foldings of chamber complexes

A folding of a chamber complex is a retraction that literally folds the complex
in half, in that each chamber in the image is the image of precisely two
chambers: itself (since a folding is a retraction) and a unique chamber outside
the image.

Locale definition Here we define the locale and collect some lemmas
inherited from the ChamberComplexRetraction locale.
locale ChamberComplexFolding = ChamberComplexRetraction X f

for X :: ′a set set
and f :: ′a⇒ ′a

+ assumes folding:
chamber C =⇒ C∈f`X =⇒
∃ !D. chamber D ∧ D /∈f`X ∧ f‘D = C

begin

lemmas folding-ex = ex1-implies-ex[OF folding]
lemmas chamber-system-into = chamber-system-into
lemmas gallery-map = gallery-map
lemmas chamber-retraction1 = chamber-retraction1
lemmas chamber-retraction2 = chamber-retraction2

end

Decomposition into half chamber systems and half apartments
Here we describe how a folding splits the chamber system of the complex
into its image and the complement of its image. The chamber subcomplex
consisting of all simplices contained in a chamber of a given half of the
chamber system is called a half-apartment.

142

context ChamberComplexFolding
begin

definition opp-half-apartment :: ′a set set
where opp-half-apartment ≡ {x∈X . ∃C∈C−f`C. x⊆C}

abbreviation Y ≡ opp-half-apartment

lemma opp-half-apartment-subset-complex: Y⊆X
using opp-half-apartment-def by fast

lemma simplicialcomplex-opp-half-apartment: SimplicialComplex Y
proof

show ∀ x∈Y . finite x
using opp-half-apartment-subset-complex finite-simplices by fast

next
fix x y assume x∈Y y⊆x thus y∈Y

using opp-half-apartment-subset-complex faces[of x y]
unfolding opp-half-apartment-def
by auto

qed

lemma subcomplex-opp-half-apartment: Subcomplex Y
using opp-half-apartment-subset-complex simplicialcomplex-opp-half-apartment
by fast

lemma opp-half-apartmentI : [[x∈X ; C∈C−f`C; x⊆C]] =⇒ x∈Y
using opp-half-apartment-def by auto

lemma opp-chambers-subset-opp-half-apartment: C−f`C ⊆ Y
proof

fix C assume C ∈ C−f`C
thus C ∈ Y using chamber-system-simplices opp-half-apartmentI by auto

qed

lemma maxsimp-in-opp-half-apartment:
assumes SimplicialComplex.maxsimp Y C
shows C ∈ C−f`C

proof−
from assms obtain D where D: D∈C−f`C C⊆D

using SimplicialComplex.maxsimpD-simplex[
OF simplicialcomplex-opp-half-apartment, of C

]
opp-half-apartment-def

by auto
with assms show ?thesis

using opp-chambers-subset-opp-half-apartment
SimplicialComplex.maxsimpD-maximal[

OF simplicialcomplex-opp-half-apartment
]

143

by force
qed

lemma chamber-in-opp-half-apartment:
SimplicialComplex.maxsimp Y C =⇒ chamber C
using maxsimp-in-opp-half-apartment chamber-system-def by fast

end

Mapping between half chamber systems for foldings Since each
chamber in the image of the folding is the image of a unique chamber in the
complement of the image, we obtain well-defined functions from one half
chamber system to the other.
context ChamberComplexFolding
begin

abbreviation opp-chamber C ≡ THE D. D∈C−f`C ∧ f‘D = C
abbreviation flop C ≡ if C ∈ f`C then opp-chamber C else f‘C

lemma inj-on-opp-chambers ′:
assumes chamber C C /∈f`X chamber D D /∈f`X f‘C = f‘D
shows C=D

proof−
from assms(1) folding have ex1 : ∃ !B. chamber B ∧ B /∈f`X ∧ f‘B = f‘C

using chamberD-simplex chamber-map by auto
from assms show ?thesis using ex1-unique[OF ex1 , of C D] by blast

qed

lemma inj-on-opp-chambers ′′:
[[C ∈ C−f`C; D ∈ C−f`C; f‘C = f‘D]] =⇒ C=D
using chamber-system-def chamber-system-image inj-on-opp-chambers ′ by auto

lemma inj-on-opp-chambers: inj-on ((‘) f) (C−f`C)
using inj-on-opp-chambers ′′ inj-onI [of C−f`C (‘) f] by fast

lemma opp-chambers-surj: f`(C−(f`C)) = f`C
proof (rule seteqI)

fix D assume D: D ∈ f`C
from this obtain B where chamber B B /∈f`X f‘B = D

using chamber-system-def chamber-map chamberD-simplex folding-ex[of D]
by auto

thus D ∈ f`(C − f`C)
using chamber-system-image chamber-system-def by auto

qed fast

lemma opp-chambers-bij: bij-betw ((‘) f) (C−(f`C)) (f`C)
using inj-on-opp-chambers opp-chambers-surj bij-betw-def [of (‘) f] by auto

144

lemma folding ′:
assumes C∈f`C
shows ∃ !D∈C−f`C. f‘D = C

proof (rule ex-ex1I)
from assms show ∃D. D ∈ C−f`C ∧ f‘D = C

using chamber-system-image chamber-system-def folding-ex[of C] by auto
next

fix B D assume B ∈ C−f`C ∧ f‘B = C D ∈ C−f`C ∧ f‘D = C
with assms show B=D

using chamber-system-def chamber-system-image chamber-map
chamberD-simplex ex1-unique[OF folding, of C B D]

by auto
qed

lemma opp-chambers-distinct-map:
set Cs ⊆ C−f`C =⇒ distinct Cs =⇒ distinct (f |=Cs)
using distinct-map subset-inj-on[OF inj-on-opp-chambers] by auto

lemma opp-chamberD1 : C∈f`C =⇒ opp-chamber C ∈ C−f`C
using theI ′[OF folding ′] by simp

lemma opp-chamberD2 : C∈f`C =⇒ f‘(opp-chamber C) = C
using theI ′[OF folding ′] by simp

lemma opp-chamber-reverse: C∈C−f`C =⇒ opp-chamber (f‘C) = C
using the1-equality[OF folding ′] by simp

lemma f-opp-chamber-list:
set Cs ⊆ f`C =⇒ f |=(map opp-chamber Cs) = Cs
using opp-chamberD2 by (induct Cs) auto

lemma flop-chamber : chamber C =⇒ chamber (flop C)
using chamber-map opp-chamberD1 chamber-system-def by auto

end

4.5 Thin chamber complexes

A thin chamber complex is one in which every facet is a facet in exactly two
chambers. Slightly more generally, we first consider the case of a chamber
complex in which every facet is a facet of at most two chambers. One of
the main results obtained at this point is the so-called standard uniqueness
argument, which essentially states that two morphisms on a thin chamber
complex that agree on a particular chamber must in fact agree on the entire
complex. Following that, foldings of thin chamber complexes are investi-
gated. In particular, we are interested in pairs of opposed foldings.

145

4.5.1 Locales and basic facts
locale ThinishChamberComplex = ChamberComplex X

for X :: ′a set set
+ assumes thinish:
[[chamber C ; zCC ; ∃D∈X−{C}. zCD]] =⇒ ∃ !D∈X−{C}. zCD
— being adjacent to a chamber, such a D would also be a chamber (see lemma

chamber-adj)
begin

lemma facet-unique-other-chamber :
[[chamber B; zCB; chamber C ; zCC ; chamber D; zCD; C 6=B; D 6=B]]
=⇒ C=D

using chamberD-simplex bex1-equality[OF thinish, OF - - bexI , of B z C C D]
by auto

lemma finite-adjacentset:
assumes chamber C
shows finite (adjacentset C)

proof (cases X = {{}})
case True thus ?thesis using adjacentset-def by simp

next
case False
moreover have finite (

⋃
v∈C . {D∈X . C−{v}CD})

proof
from assms show finite C using finite-chamber by simp

next
fix v assume v∈C
with assms have Cv: C−{v}CC

using chamberD-simplex facetrel-diff-vertex by fast
with assms have C : C∈{D∈X . C−{v}CD}

using chamberD-simplex by fast
show finite {D∈X . C−{v}CD}
proof (cases {D∈X . C−{v}CD} − {C} = {})

case True
hence 1 : {D∈X . C−{v}CD} = {C} using C by auto
show ?thesis using ssubst[OF 1 , of finite] by simp

next
case False
from this obtain D where D: D∈X−{C} C−{v}CD by fast
with assms have 2 : {D∈X . C−{v}CD} ⊆ {C ,D}

using Cv chamber-shared-facet[of C] facet-unique-other-chamber [of C - D]
by fastforce

show ?thesis using finite-subset[OF 2] by simp
qed

qed
ultimately show ?thesis

using assms adjacentset-conv-facetchambersets by simp
qed

146

lemma label-wrt-eq-on-adjacent-vertex:
fixes v v ′ :: ′a
and z z ′ :: ′a set
defines D : D ≡ insert v z
and D ′: D ′ ≡ insert v ′ z ′

assumes label : label-wrt B f f v = f v ′

and chambers: chamber C chamber D chamber D ′ zCC z ′CC D 6=C D ′6=C
shows D = D ′

proof (
rule facet-unique-other-chamber , rule chambers(1), rule chambers(4),
rule chambers(2)

)
from D D ′ chambers(1−5) have z: zCD and z ′: z ′CD ′

using chambers-share-facet by auto
show zCD by fact

from chambers(4 ,5) obtain w w ′

where w : w /∈ z C = insert w z
and w ′: w ′/∈ z ′ C = insert w ′ z ′

unfolding facetrel-def
by fastforce

from w ′ D ′ chambers(1 ,3) have f‘z ′ = f‘C − {f v ′}
using z ′ label-wrtD ′[OF label(1), of C] bij-betw-imp-inj-on[of f C]

facetrel-complement-vertex[of z ′]
label-wrt-adjacent-shared-facet[OF label(1), of v ′]

by simp
moreover from w D chambers(1 ,2) have f‘z = f‘C − {f v}

using z label-wrtD ′[OF label(1), of C] bij-betw-imp-inj-on[of f C]
facetrel-complement-vertex[of z]
label-wrt-adjacent-shared-facet[OF label(1), of v]

by simp
ultimately show zCD ′

using z ′ chambers(1 ,4 ,5) label(2) facetrel-subset
label-wrtD ′[OF label(1), of C]
bij-betw-imp-inj-on[of f] inj-on-eq-image[of f C z ′ z]

by force
qed (rule chambers(3), rule chambers(6), rule chambers(7))

lemma face-distance-eq-chamber-distance-compare-other-chamber :
assumes chamber C chamber D zCC zCD C 6=D

chamber-distance C E ≤ chamber-distance D E
shows face-distance z E = chamber-distance C E
unfolding face-distance-def closest-supchamber-def

proof (
rule arg-min-equality, rule conjI , rule assms(1), rule facetrel-subset,
rule assms(3)

)
from assms

show
∧

B. chamber B ∧ z ⊆ B =⇒

147

chamber-distance C E ≤ chamber-distance B E
using chamber-facet-is-chamber-facet facet-unique-other-chamber
by blast

qed

end

lemma (in ChamberComplexIsomorphism) thinish-image-shared-facet:
assumes dom: domain.chamber C domain.chamber D zCC zCD C 6=D
and cod: ThinishChamberComplex Y codomain.chamber D ′ f‘z C D ′

D ′ 6= f‘C
shows f‘D = D ′

proof (rule ThinishChamberComplex.facet-unique-other-chamber , rule cod(1))
from dom(1 ,2) show codomain.chamber (f‘C) codomain.chamber (f‘D)

using chamber-map by auto
from dom show f‘z C f‘C f‘z C f‘D using facet-map by auto
from dom have domain.pgallery [C ,D]

using domain.pgallery-def adjacentI by fastforce
hence codomain.pgallery [f‘C ,f‘D] using pgallery-map[of [C ,D]] by simp
thus f‘D 6= f‘C using codomain.pgalleryD-distinct by fastforce

qed (rule cod(2), rule cod(3), rule cod(4))

locale ThinChamberComplex = ChamberComplex X
for X :: ′a set set

+ assumes thin: chamber C =⇒ zCC =⇒ ∃ !D∈X−{C}. zCD

sublocale ThinChamberComplex < ThinishChamberComplex
using thin by unfold-locales simp

context ThinChamberComplex
begin

lemma thinish: ThinishChamberComplex X ..

lemmas face-distance-eq-chamber-distance-compare-other-chamber =
face-distance-eq-chamber-distance-compare-other-chamber

abbreviation the-adj-chamber C z ≡ THE D. D∈X−{C} ∧ z C D

lemma the-adj-chamber-simplex:
chamber C =⇒ z C C =⇒ the-adj-chamber C z ∈ X
using theI ′[OF thin] by fast

lemma the-adj-chamber-facet: chamber C =⇒ zCC =⇒ z C the-adj-chamber C z
using theI ′[OF thin] by fast

lemma the-adj-chamber-is-adjacent:
chamber C =⇒ zCC =⇒ C ∼ the-adj-chamber C z
using the-adj-chamber-facet by (auto intro: adjacentI)

148

lemma the-adj-chamber :
chamber C =⇒ z C C =⇒ chamber (the-adj-chamber C z)
using the-adj-chamber-simplex the-adj-chamber-is-adjacent
by (fast intro: chamber-adj)

lemma the-adj-chamber-neq:
chamber C =⇒ z C C =⇒ the-adj-chamber C z 6= C
using theI ′[OF thin] by fast

lemma the-adj-chamber-adjacentset:
chamber C =⇒ zCC =⇒ the-adj-chamber C z ∈ adjacentset C
using adjacentset-def the-adj-chamber-simplex the-adj-chamber-is-adjacent
by fast

end

lemmas (in ChamberComplexIsomorphism) thin-image-shared-facet =
thinish-image-shared-facet[OF - - - - - ThinChamberComplex.thinish]

4.5.2 The standard uniqueness argument for chamber morphisms
of thin chamber complexes

context ThinishChamberComplex
begin

lemma standard-uniqueness-dbl:
assumes morph : ChamberComplexMorphism W X f

ChamberComplexMorphism W X g
and chambers: ChamberComplex.chamber W C

ChamberComplex.chamber W D
C∼D f‘D 6= f‘C g‘D 6= g‘C chamber (g‘D)

and funeq : fun-eq-on f g C
shows fun-eq-on f g D

proof (rule fun-eq-onI)
fix v assume v: v∈D
show f v = g v
proof (cases v∈C)

case True with funeq show ?thesis using fun-eq-onD by fast
next

case False
define F G where F = f‘C ∩ f‘D and G = g‘C ∩ g‘D

from morph(1) chambers(1−4) have 1 : f‘C ∼ f‘D
using ChamberComplexMorphism.adj-map ′ by fast

with F-def chambers(4) have F-facet: FCf‘C FCf‘D
using adjacent-int-facet1 [of f‘C] adjacent-int-facet2 [of f‘C] by auto

from F-def G-def chambers have G = F

149

using ChamberComplexMorphism.adj-map ′[OF morph(2)]
adjacent-to-adjacent-int[of C D g] 1
adjacent-to-adjacent-int[of C D f] funeq fun-eq-on-im[of f g]

by force
with G-def morph(2) chambers have F-facet ′: FCg‘D

using ChamberComplexMorphism.adj-map ′ adjacent-int-facet2 by blast
with chambers(1 ,2 ,4 ,5) have 2 : g‘D = f‘D

using ChamberComplexMorphism.chamber-map[OF morph(1)] F-facet
ChamberComplexMorphism.chamber-map[OF morph(2)]
fun-eq-on-im[OF funeq]
facet-unique-other-chamber [of f‘C F g‘D f‘D]

by auto
from chambers(3) v False have 3 : D = insert v (D∩C)

using adjacent-sym adjacent-conv-insert by fast
from chambers(4) obtain w where w: w /∈ f‘C w ∈ f‘D

using adjacent-int-decomp[OF adjacent-sym, OF 1] by blast
with 3 have w = f v by fast
moreover from 2 w(2) obtain v ′ where v ′∈D w = g v ′ by auto
ultimately show ?thesis

using w(1) 3 funeq by (fastforce simp add: fun-eq-on-im)
qed

qed

lemma standard-uniqueness-pgallery-betw:
assumes morph : ChamberComplexMorphism W X f

ChamberComplexMorphism W X g
and chambers: fun-eq-on f g C ChamberComplex.gallery W (C#Cs@[D])

pgallery (f |=(C#Cs@[D])) pgallery (g|=(C#Cs@[D]))
shows fun-eq-on f g D

proof−
from morph(1) have W : ChamberComplex W

using ChamberComplexMorphism.domain-complex by fast
have [[fun-eq-on f g C ; ChamberComplex.gallery W (C#Cs@[D]);

pgallery (f |=(C#Cs@[D])); pgallery (g|=(C#Cs@[D]))]] =⇒
fun-eq-on f g D

proof (induct Cs arbitrary: C)
case Nil from assms Nil(1) show ?case

using ChamberComplex.galleryD-chamber [OF W Nil(2)]
ChamberComplex.galleryD-adj[OF W Nil(2)]
pgalleryD-distinct[OF Nil(3)] pgalleryD-distinct[OF Nil(4)]
pgalleryD-chamber [OF Nil(4)] standard-uniqueness-dbl[of W f g C D]

by auto
next

case (Cons B Bs)
have fun-eq-on f g B
proof (rule standard-uniqueness-dbl, rule morph(1), rule morph(2))

show ChamberComplex.chamber W C ChamberComplex.chamber W B C∼B
using ChamberComplex.galleryD-chamber [OF W Cons(3)]

ChamberComplex.galleryD-adj[OF W Cons(3)]

150

by auto
show f‘B 6= f‘C using pgalleryD-distinct[OF Cons(4)] by fastforce
show g‘B 6= g‘C using pgalleryD-distinct[OF Cons(5)] by fastforce
show chamber (g‘B) using pgalleryD-chamber [OF Cons(5)] by fastforce

qed (rule Cons(2))
with Cons(1 ,3−5) show ?case

using ChamberComplex.gallery-Cons-reduce[OF W , of C B#Bs@[D]]
pgallery-Cons-reduce[of f‘C f |=(B#Bs@[D])]
pgallery-Cons-reduce[of g‘C g|=(B#Bs@[D])]

by force
qed
with chambers show ?thesis by simp

qed

lemma standard-uniqueness:
assumes morph : ChamberComplexMorphism W X f

ChamberComplexMorphism W X g
and chamber : ChamberComplex.chamber W C fun-eq-on f g C
and map-gals:∧

Cs. ChamberComplex.min-gallery W (C#Cs) =⇒ pgallery (f |=(C#Cs))∧
Cs. ChamberComplex.min-gallery W (C#Cs) =⇒ pgallery (g|=(C#Cs))

shows fun-eq-on f g (
⋃

W)
proof (rule fun-eq-onI)

from morph(1) have W : ChamberComplex W
using ChamberComplexMorphism.axioms(1) by fast

fix v assume v ∈
⋃

W
from this obtain D where ChamberComplex.chamber W D v∈D

using ChamberComplex.simplex-in-max[OF W] by auto
moreover define Cs where Cs = (ARG-MIN length Cs. ChamberComplex.gallery

W (C#Cs@[D]))
ultimately show f v = g v

using chamber map-gals[of Cs@[D]]
ChamberComplex.gallery-least-length[OF W]
ChamberComplex.min-gallery-least-length[OF W]
standard-uniqueness-pgallery-betw[OF morph(1 ,2) chamber(2), of Cs]
fun-eq-onD[of f g D]

by (cases D=C) auto
qed

lemma standard-uniqueness-isomorphs:
assumes ChamberComplexIsomorphism W X f

ChamberComplexIsomorphism W X g
ChamberComplex.chamber W C fun-eq-on f g C

shows fun-eq-on f g (
⋃

W)
using assms ChamberComplexIsomorphism.chamber-morphism

ChamberComplexIsomorphism.domain-complex
ChamberComplex.min-gallery-pgallery
ChamberComplexIsomorphism.pgallery-map

by (blast intro: standard-uniqueness)

151

lemma standard-uniqueness-automorphs:
assumes ChamberComplexAutomorphism X f

ChamberComplexAutomorphism X g
chamber C fun-eq-on f g C

shows f=g
using assms ChamberComplexAutomorphism.equality

standard-uniqueness-isomorphs
ChamberComplexAutomorphism.axioms(1)

by blast

end

context ThinChamberComplex
begin

lemmas standard-uniqueness = standard-uniqueness
lemmas standard-uniqueness-isomorphs = standard-uniqueness-isomorphs
lemmas standard-uniqueness-pgallery-betw = standard-uniqueness-pgallery-betw

end

4.6 Foldings of thin chamber complexes
4.6.1 Locale definition and basic facts
locale ThinishChamberComplexFolding =

ThinishChamberComplex X + folding: ChamberComplexFolding X f
for X :: ′a set set
and f :: ′a⇒ ′a

begin

abbreviation opp-chamber ≡ folding.opp-chamber

lemma adjacent-half-chamber-system-image:
assumes chambers: C ∈ f`C D ∈ C−f`C
and adjacent: C∼D
shows f‘D = C

proof−
from adjacent obtain z where z: zCC zCD using adjacent-def by fast
moreover from z(1) chambers(1) have fz: f‘z = z

using facetrel-subset[of z C] chamber-system-simplices
folding.simplicialcomplex-image
SimplicialComplex.faces[of f`X C z]
folding.simplex-retraction2 [of z]

by auto
moreover from chambers have f‘D 6= D C 6=D by auto
ultimately show ?thesis

using chambers chamber-system-def folding.chamber-map

152

folding.facet-map[of D z]
facet-unique-other-chamber [of D z f‘D C]

by force
qed

lemma adjacent-half-chamber-system-image-reverse:
[[C ∈ f`C; D ∈ C−f`C; C∼D]] =⇒ opp-chamber C = D
using adjacent-half-chamber-system-image[of C D]

the1-equality[OF folding.folding ′]
by fastforce

lemma chamber-image-closer :
assumes D∈C−f`C B∈f`C B 6=f‘D gallery (B#Ds@[D])
shows ∃Cs. gallery (B#Cs@[f‘D]) ∧ length Cs < length Ds

proof−
from assms(1 ,2 ,4) obtain As A E Es

where split: A∈f`C E∈C−f`C B#Ds@[D] = As@A#E#Es
using folding.split-gallery[of B D Ds]
by blast

from assms(4) split(3) have A∼E
using gallery-append-reduce2 [of As A#E#Es] galleryD-adj[of A#E#Es]
by simp

with assms(2) split(1 ,2)
have fB: f‘B = B and fA: f‘A = A and fE : f‘E = A
using folding.chamber-retraction2 adjacent-half-chamber-system-image[of A E]
by auto

show ∃Cs. gallery (B#Cs@[f‘D]) ∧ length Cs < length Ds
proof (cases As)

case Nil have As: As = [] by fact
show ?thesis
proof (cases Es rule: rev-cases)

case Nil with split(3) As assms(3) fE show ?thesis by simp
next

case (snoc Fs F)
with assms(4) split(3) As fE

have Ds = E#Fs gallery (B # f |=Fs @ [f‘D])
using fB folding.gallery-map[of B#E#Fs@[D]] gallery-Cons-reduce
by auto

thus ?thesis by auto
qed

next
case (Cons H Hs)
show ?thesis
proof (cases Es rule: rev-cases)

case Nil
with assms(4) Cons split(3)

have decomp: Ds = Hs@[A] D=E gallery (B#Hs@[A,D])
by auto

from decomp(2 ,3) fB fA fE have gallery (B # f |=Hs @ [f‘D])

153

using folding.gallery-map gallery-append-reduce1 [of B # f |=Hs @ [f‘D]]
by force

with decomp(1) show ?thesis by auto
next

case (snoc Fs F)
with split(3) Cons assms(4) fB fA fE

have decomp: Ds = Hs@A#E#Fs gallery (B # f |=(Hs@A#Fs) @ [f‘D])
using folding.gallery-map[of B#Hs@A#E#Fs@[D]]

gallery-remdup-adj[of B#f |=Hs A f |=Fs@[f‘D]]
by auto

from decomp(1) have length (f |=(Hs@A#Fs)) < length Ds by simp
with decomp(2) show ?thesis by blast

qed
qed

qed

lemma chamber-image-subset:
assumes D: D∈C−f`C
defines C : C ≡ f‘D
defines closerToC ≡ {B∈C. chamber-distance B C < chamber-distance B D}
shows f`C ⊆ closerToC

proof
fix B assume B: B∈f`C
hence B ′: B∈C using folding.chamber-system-into by fast
show B ∈ closerToC
proof (cases B=C)

case True with B D closerToC-def show ?thesis
using B ′ chamber-distance-def by auto

next
case False
define Ds where Ds = (ARG-MIN length Ds. gallery (B#Ds@[D]))
with B C D False closerToC-def show ?thesis

using chamber-system-def folding.chamber-map gallery-least-length[of B D]
chamber-image-closer [of D B Ds]
chamber-distance-le chamber-distance-def [of B D]

by fastforce
qed

qed

lemma gallery-double-cross-not-minimal-Cons1 :
[[B∈f`C; C∈C−f`C; D∈f`C; gallery (B#C#Cs@[D])]] =⇒
¬ min-gallery (B#C#Cs@[D])

using galleryD-adj[of B#C#Cs@[D]]
adjacent-half-chamber-system-image[of B C]
folding.gallery-map[of B#C#Cs@[D]]
gallery-Cons-reduce[of B B # f |=Cs @ [D]]
is-arg-minD2 [of length (λDs. maxsimpchain (B#Ds@[D])) - f |=Cs]
min-maxsimpchain.simps(3)[of B C#Cs D]

by(simp add: folding.chamber-retraction2)(meson impossible-Cons not-less)

154

lemma gallery-double-cross-not-minimal1 :
[[B∈f`C; C∈C−f`C; D∈f`C; gallery (B#Bs@C#Cs@[D])]] =⇒
¬ min-gallery (B#Bs@C#Cs@[D])

proof (induct Bs arbitrary: B)
case Nil thus ?case using gallery-double-cross-not-minimal-Cons1 by simp

next
case (Cons E Es)
show ?case
proof (cases E∈f`C)

case True
with Cons(1 ,3−5) show ?thesis

using gallery-Cons-reduce[of B E#Es@C#Cs@[D]]
min-gallery-betw-CCons-reduce[of B E Es@C#Cs D]

by auto
next

case False with Cons(2 ,4 ,5) show ?thesis
using gallery-chamber-system

gallery-double-cross-not-minimal-Cons1 [of B E D Es@C#Cs]
by force

qed
qed

end

locale ThinChamberComplexFolding =
ThinChamberComplex X + folding: ChamberComplexFolding X f
for X :: ′a set set
and f :: ′a⇒ ′a

sublocale ThinChamberComplexFolding < ThinishChamberComplexFolding ..

context ThinChamberComplexFolding
begin

abbreviation flop ≡ folding.flop

lemmas adjacent-half-chamber-system-image = adjacent-half-chamber-system-image
lemmas gallery-double-cross-not-minimal1 = gallery-double-cross-not-minimal1
lemmas gallery-double-cross-not-minimal-Cons1 =

gallery-double-cross-not-minimal-Cons1

lemma adjacent-preimage:
assumes chambers: C ∈ C−f`C D ∈ C−f`C
and adjacent: f‘C ∼ f‘D
shows C ∼ D

proof (cases f‘C=f‘D)
case True
with chambers show C ∼ D

155

using folding.inj-on-opp-chambers ′′[of C D] adjacent-refl[of C] by auto
next

case False
from chambers have CD: chamber C chamber D

using chamber-system-def by auto
hence ch-fCD: chamber (f‘C) chamber (f‘D)

using chamber-system-def folding.chamber-map by auto
from adjacent obtain z where z: z C f‘C z C f‘D

using adjacent-def by fast
from chambers(1) z(1) obtain y where y: y C C f‘y = z

using chamber-system-def folding.inj-on-chamber [of C]
inj-on-pullback-facet[of f C z]

by auto
define B where B = the-adj-chamber C y
with CD(1) y(1) have B: chamber B yCB B 6=C

using the-adj-chamber the-adj-chamber-facet the-adj-chamber-neq by auto
have f‘B 6= f‘C
proof (cases B ∈ f`C)

case False with chambers(1) show ?thesis
using B(1 ,3) chamber-system-def folding.inj-on-opp-chambers ′′[of B]
by auto

next
case True show ?thesis
proof

assume fB-fC : f‘B = f‘C
with True have B = f‘C using folding.chamber-retraction2 by auto
with z(1) y(2) B(2) chambers(1) have y = z

using facetrel-subset[of y B] chamber-system-def chamberD-simplex face-im
folding.simplex-retraction2 [of y]

by force
with chambers y(1) z(2) have f‘D = B

using CD(1) ch-fCD(2) B facet-unique-other-chamber [of C y] by auto
with z(2) chambers fB-fC False show False

using folding.chamber-retraction2 by force
qed

qed
with False z y(2) have fB-fD: f‘B = f‘D

using ch-fCD B(1 ,2) folding.chamber-map folding.facet-map
facet-unique-other-chamber [of f‘C z]

by force
have B = D
proof (cases B ∈ f`C)

case False
with B(1) chambers(2) show ?thesis

using chamber-system-def fB-fD folding.inj-on-opp-chambers ′′ by simp
next

case True
with fB-fD have B = f‘D using folding.chamber-retraction2 by auto
moreover with z(1) y(2) B(2) chambers(2) have y = z

156

using facetrel-subset[of y B] chamber-system-def chamberD-simplex face-im
folding.simplex-retraction2 [of y]

by force
ultimately show ?thesis

using CD y(1) B ch-fCD(1) z(1) False chambers(1)
facet-unique-other-chamber [of B y C f‘C]

by auto
qed
with y(1) B(2) show ?thesis using adjacentI by fast

qed

lemma adjacent-opp-chamber :
[[C∈f`C; D∈f`C; C∼D]] =⇒ opp-chamber C ∼ opp-chamber D
using folding.opp-chamberD1 folding.opp-chamberD2 adjacent-preimage by simp

lemma adjacentchain-preimage:
set Cs ⊆ C−f`C =⇒ adjacentchain (f |=Cs) =⇒ adjacentchain Cs
using adjacent-preimage by (induct Cs rule: list-induct-CCons) auto

lemma gallery-preimage: set Cs ⊆ C−f`C =⇒ gallery (f |=Cs) =⇒ gallery Cs
using galleryD-adj adjacentchain-preimage chamber-system-def gallery-def
by fast

lemma chambercomplex-opp-half-apartment: ChamberComplex folding.Y
proof (intro-locales, rule folding.simplicialcomplex-opp-half-apartment, unfold-locales)

define Y where Y = folding.Y
fix y assume y∈Y
with Y-def obtain C where C∈C−f`C y⊆C

using folding.opp-half-apartment-def by auto
with Y-def show ∃ x. SimplicialComplex.maxsimp Y x ∧ y ⊆ x

using folding.subcomplex-opp-half-apartment
folding.opp-chambers-subset-opp-half-apartment
chamber-system-def max-in-subcomplex[of Y]

by force
next

define Y where Y = folding.Y
fix C D
assume CD: SimplicialComplex.maxsimp Y C SimplicialComplex.maxsimp Y D

C 6=D
from CD(1 ,2) Y-def have CD ′: C ∈ C−f`C D ∈ C−f`C

using folding.maxsimp-in-opp-half-apartment by auto
with CD(3) obtain Ds

where Ds: ChamberComplex.gallery (f`X) ((f‘C)#Ds@[f‘D])
using folding.inj-on-opp-chambers ′′[of C D] chamber-system-def

folding.maxsimp-map-into-image folding.chambercomplex-image
ChamberComplex.maxsimp-connect[of f`X f‘C f‘D]

by auto
define Cs where Cs = map opp-chamber Ds
from Ds have Ds ′: gallery ((f‘C)#Ds@[f‘D])

157

using folding.chambersubcomplex-image subcomplex-gallery by fast
with Ds have Ds ′′: set Ds ⊆ f`C

using folding.chambercomplex-image folding.chamber-system-image
ChamberComplex.galleryD-chamber ChamberComplex.chamberD-simplex
gallery-chamber-system

by fastforce
have ∗: set Cs ⊆ C−f`C
proof

fix B assume B ∈ set Cs
with Cs-def obtain A where A∈set Ds B = opp-chamber A by auto
with Ds ′′ show B ∈ C−f`C using folding.opp-chamberD1 [of A] by auto

qed
moreover from Cs-def CD ′ Ds ′ Ds ′′ ∗ have gallery (C#Cs@[D])

using folding.f-opp-chamber-list gallery-preimage[of C#Cs@[D]] by simp
ultimately show ∃Cs. SimplicialComplex.maxsimpchain Y (C # Cs @ [D])

using Y-def CD ′ folding.subcomplex-opp-half-apartment
folding.opp-chambers-subset-opp-half-apartment
maxsimpchain-in-subcomplex[of Y C#Cs@[D]]

by fastforce
qed

lemma flop-adj:
assumes chamber C chamber D C∼D
shows flop C ∼ flop D

proof (cases C∈f`C D∈f`C rule: two-cases)
case both
with assms(3) show ?thesis using adjacent-opp-chamber by simp

next
case one
with assms(2 ,3) show ?thesis

using chamber-system-def adjacent-half-chamber-system-image[of C]
adjacent-half-chamber-system-image-reverse adjacent-sym

by simp
next

case other
with assms(1) show ?thesis

using chamber-system-def adjacent-sym[OF assms(3)]
adjacent-half-chamber-system-image[of D]
adjacent-half-chamber-system-image-reverse

by auto
qed (simp add: assms folding.adj-map)

lemma flop-gallery: gallery Cs =⇒ gallery (map flop Cs)
proof (induct Cs rule: list-induct-CCons)

case (CCons B C Cs)
have gallery (flop B # (flop C) # map flop Cs)
proof (rule gallery-CConsI)

from CCons(2) show chamber (flop B)
using galleryD-chamber folding.flop-chamber by simp

158

from CCons(1) show gallery (flop C # map flop Cs)
using gallery-Cons-reduce[OF CCons(2)] by simp

from CCons(2) show flop B ∼ flop C
using galleryD-chamber galleryD-adj flop-adj[of B C] by fastforce

qed
thus ?case by simp

qed (auto simp add: galleryD-chamber folding.flop-chamber gallery-def)

lemma morphism-half-apartments: ChamberComplexMorphism folding.Y (f`X) f
proof (

rule ChamberComplexMorphism.intro, rule chambercomplex-opp-half-apartment,
rule folding.chambercomplex-image, unfold-locales

)
show∧

C . SimplicialComplex.maxsimp folding.Y C =⇒
SimplicialComplex.maxsimp (f`X) (f‘C)∧
C . SimplicialComplex.maxsimp folding.Y C =⇒ card (f‘C) = card C

using folding.chamber-in-opp-half-apartment folding.chamber-map
folding.chambersubcomplex-image chamber-in-subcomplex
chamberD-simplex folding.dim-map

by auto
qed

lemma chamber-image-complement-closer :
[[D∈C−f`C; B∈C−f`C; B 6=D; gallery (B#Cs@[f‘D])]] =⇒
∃Ds. gallery (B#Ds@[D]) ∧ length Ds < length Cs

using flop-gallery chamber-image-closer [of D f‘B map flop Cs]
folding.opp-chamber-reverse folding.inj-on-opp-chambers ′′[of B D]

by force

lemma chamber-image-complement-subset:
assumes D: D∈C−f`C
defines C : C ≡ f‘D
defines closerToD ≡ {B∈C. chamber-distance B D < chamber-distance B C}
shows C−f`C ⊆ closerToD

proof
fix B assume B: B∈C−f`C
show B ∈ closerToD
proof (cases B=D)

case True with B C closerToD-def show ?thesis
using chamber-distance-def by auto

next
case False
define Cs where Cs = (ARG-MIN length Cs. gallery (B#Cs@[C]))
with B C D False closerToD-def show ?thesis

using chamber-system-def folding.chamber-map[of D]
gallery-least-length[of B C] chamber-distance-le
chamber-image-complement-closer [of D B Cs]
chamber-distance-def [of B C]

159

by fastforce
qed

qed

lemma chamber-image-and-complement:
assumes D: D∈C−f`C
defines C : C ≡ f‘D
defines closerToC ≡ {B∈C. chamber-distance B C < chamber-distance B D}
and closerToD ≡ {B∈C. chamber-distance B D < chamber-distance B C}
shows f`C = closerToC C−f`C = closerToD

proof−
from closerToC-def closerToD-def have closerToC ∩ closerToD = {} by auto
moreover from C D closerToC-def closerToD-def

have C = f ` C ∪ (C−f`C) closerToC ⊆ C closerToD ⊆ C
using folding.chamber-system-into
by auto

moreover from assms have f`C ⊆ closerToC C−f`C ⊆ closerToD
using chamber-image-subset chamber-image-complement-subset by auto

ultimately show f`C = closerToC C−f`C = closerToD
using set-decomp-subset[of C f`C] set-decomp-subset[of C C−f`C] by auto

qed

end

4.6.2 Pairs of opposed foldings

A pair of foldings of a thin chamber complex are opposed or opposite if there
is a corresponding pair of adjacent chambers, where each folding sends its
corresponding chamber to the other chamber.
locale OpposedThinChamberComplexFoldings =

ThinChamberComplex X
+ folding-f : ChamberComplexFolding X f
+ folding-g: ChamberComplexFolding X g

for X :: ′a set set
and f :: ′a⇒ ′a
and g :: ′a⇒ ′a

+ fixes C0 :: ′a set
assumes chambers: chamber C0 C0∼g‘C0 C0 6=g‘C0 f‘g‘C0 = C0

begin

abbreviation D0 ≡ g‘C0

lemmas chamber-D0 = folding-g.chamber-map[OF chambers(1)]

lemma ThinChamberComplexFolding-f : ThinChamberComplexFolding X f ..
lemma ThinChamberComplexFolding-g: ThinChamberComplexFolding X g ..

lemmas foldf = ThinChamberComplexFolding-f
lemmas foldg = ThinChamberComplexFolding-g

160

lemma fg-symmetric: OpposedThinChamberComplexFoldings X g f D0
using chambers(2−4) chamber-D0 adjacent-sym by unfold-locales auto

lemma basechambers-half-chamber-systems: C0∈f`C D0∈g`C
using chambers(1 ,4) chamber-D0 chamber-system-def by auto

lemmas basech-halfchsys =
basechambers-half-chamber-systems

lemma f-trivial-C0 : v∈C0 =⇒ f v = v
using chambers(4) chamber-D0 chamberD-simplex[of D0]

folding-f .vertex-retraction
by fast

lemmas g-trivial-D0 =
OpposedThinChamberComplexFoldings.f-trivial-C0 [OF fg-symmetric]

lemma double-fold-D0 :
assumes v ∈ D0 − C0
shows g (f v) = v

proof−
from assms chambers(2) have 1 : D0 = insert v (C0∩D0)

using adjacent-sym adjacent-conv-insert by fast
hence f‘D0 = insert (f v) (f‘(C0∩D0)) by fast
moreover have f‘(C0∩D0) = C0∩D0 using f-trivial-C0 by force
ultimately have C0 = insert (f v) (C0∩D0) using chambers(4) by simp
hence g‘C0 = insert (g (f v)) (g‘(C0∩D0)) by force
moreover have g‘(C0∩D0) = C0∩D0

using g-trivial-D0 fixespointwise-im[of g D0 C0∩D0]
by (fastforce intro: fixespointwiseI)

ultimately have D0 = insert (g (f v)) (C0∩D0) by simp
with assms show ?thesis using 1 by force

qed

lemmas double-fold-C0 =
OpposedThinChamberComplexFoldings.double-fold-D0 [OF fg-symmetric]

lemma flopped-half-chamber-systems-fg: C−f`C = g`C
proof−

from chambers(1 ,3 ,4) have D0∈C−f`C C0∈C−g`C
using chamber-system-def chamber-D0 folding-f .chamber-retraction2 [of D0]

folding-g.chamber-retraction2 [of C0]
by auto

with chambers(2 ,4) show ?thesis
using ThinChamberComplexFolding.chamber-image-and-complement[

OF ThinChamberComplexFolding-g, of C0
]
ThinChamberComplexFolding.chamber-image-and-complement[

161

OF ThinChamberComplexFolding-f , of D0
]
adjacent-sym[of C0 D0]

by force
qed

lemmas flopped-half-chamber-systems-gf =
OpposedThinChamberComplexFoldings.flopped-half-chamber-systems-fg[

OF fg-symmetric
]

lemma flopped-half-apartments-fg: folding-f .opp-half-apartment = g`X
proof (rule seteqI)

fix a assume a ∈ folding-f .Y
from this obtain C where C∈g`C a⊆C

using folding-f .opp-half-apartment-def flopped-half-chamber-systems-fg by auto
thus a∈g`X

using chamber-system-simplices
ChamberComplex.faces[OF folding-g.chambercomplex-image, of C]

by auto
next

fix b assume b: b ∈ g`X
from this obtain C where C : C∈C b ⊆ g‘C

using simplex-in-max chamber-system-def by fast
from C (1) have g‘C ∈ g`C by fast
hence g‘C ∈ C−f`C using flopped-half-chamber-systems-fg by simp
with C (2) have ∃C∈C−f`C. b⊆C by auto
moreover from b have b∈X using folding-g.simplex-map by fast
ultimately show b ∈ folding-f .Y

unfolding folding-f .opp-half-apartment-def by simp
qed

lemmas flopped-half-apartments-gf =
OpposedThinChamberComplexFoldings.flopped-half-apartments-fg[

OF fg-symmetric
]

lemma vertex-set-split:
⋃

X = f‘(
⋃

X) ∪ g‘(
⋃

X)
— f and g will both be the identity on the intersection
proof

show
⋃

X ⊇ f‘(
⋃

X) ∪ g‘(
⋃

X)
using folding-f .simplex-map folding-g.simplex-map by auto

show
⋃

X ⊆ f‘(
⋃

X) ∪ g‘(
⋃

X)
proof

fix a assume a∈
⋃

X
from this obtain C where C : chamber C a∈C

using simplex-in-max by fast
from C (1) have C∈f`C ∨ C∈g`C

using chamber-system-def flopped-half-chamber-systems-fg by auto

162

with C (2) show a ∈ (f‘
⋃

X) ∪ (g‘
⋃

X)
using chamber-system-simplices by fast

qed
qed

lemma half-chamber-system-disjoint-union:
C = f`C ∪ g`C (f`C) ∩ (g`C) = {}
using folding-f .chamber-system-into

flopped-half-chamber-systems-fg[THEN sym]
by auto

lemmas halfchsys-decomp =
half-chamber-system-disjoint-union

lemma chamber-in-other-half-fg: chamber C =⇒ C /∈f`C =⇒ C∈g`C
using chamber-system-def half-chamber-system-disjoint-union(1) by blast

lemma adjacent-half-chamber-system-image-fg:
C∈f`C =⇒ D∈g`C =⇒ C∼D =⇒ f‘D = C
using ThinChamberComplexFolding.adjacent-half-chamber-system-image[

OF ThinChamberComplexFolding-f
]

by (simp add: flopped-half-chamber-systems-fg)

lemmas adjacent-half-chamber-system-image-gf =
OpposedThinChamberComplexFoldings.adjacent-half-chamber-system-image-fg[

OF fg-symmetric
]

lemmas adjhalfchsys-image-gf =
adjacent-half-chamber-system-image-gf

lemma switch-basechamber :
assumes C∈f`C C∼g‘C
shows OpposedThinChamberComplexFoldings X f g C

proof
from assms(1) have C∈C−g`C using flopped-half-chamber-systems-gf by simp
with assms show chamber C C 6= g‘C f‘g‘C = C

using chamber-system-def adjacent-half-chamber-system-image-fg[of C g‘C]
by auto

qed (rule assms(2))

lemma unique-half-chamber-system-f :
assumes OpposedThinChamberComplexFoldings X f ′ g ′ C0 g ′‘C0 = D0
shows f ′̀ C = f`C

proof−
have 1 : OpposedThinChamberComplexFoldings X f g ′ C0
proof (rule OpposedThinChamberComplexFoldings.intro)

show ChamberComplexFolding X f ThinChamberComplex X ..

163

from assms(1) show ChamberComplexFolding X g ′

using OpposedThinChamberComplexFoldings.axioms(3) by fastforce
from assms(2) chambers

show OpposedThinChamberComplexFoldings-axioms X f g ′ C0
by unfold-locales auto

qed
define a b where a = f ′̀ C and b = f`C
hence a⊆C b⊆C C−a = C−b

using OpposedThinChamberComplexFoldings.axioms(2)[OF assms(1)]
OpposedThinChamberComplexFoldings.axioms(2)[OF 1]
ChamberComplexFolding.chamber-system-into[of X f]
ChamberComplexFolding.chamber-system-into[of X f ′]
OpposedThinChamberComplexFoldings.flopped-half-chamber-systems-fg[

OF assms(1)
]
OpposedThinChamberComplexFoldings.flopped-half-chamber-systems-fg[

OF 1
]

by auto
hence a=b by fast
with a-def b-def show ?thesis by simp

qed

lemma unique-half-chamber-system-g:
OpposedThinChamberComplexFoldings X f ′ g ′ C0 =⇒ g ′‘C0 = D0 =⇒

g ′̀ C = g`C
using unique-half-chamber-system-f flopped-half-chamber-systems-fg

OpposedThinChamberComplexFoldings.flopped-half-chamber-systems-fg[
of X f ′ g ′

]
by simp

lemma split-gallery-fg:
[[C∈f`C; D∈g`C; gallery (C#Cs@[D])]] =⇒
∃As A B Bs. A∈f`C ∧ B∈g`C ∧ C#Cs@[D] = As@A#B#Bs

using folding-f .split-gallery flopped-half-chamber-systems-fg by simp

lemmas split-gallery-gf =
OpposedThinChamberComplexFoldings.split-gallery-fg[OF fg-symmetric]

end

4.6.3 The automorphism induced by a pair of opposed foldings

Recall that a folding of a chamber complex is a special kind of chamber
complex retraction, and so is the identity on its image. Hence a pair of
opposed foldings will be the identity on the intersection of their images and
so we can stitch them together to create an automorphism of the chamber
complex, by allowing each folding to act on the complement of its image.

164

This automorphism will be of order two, and will be the unique automor-
phism of the chamber complex that fixes pointwise the facet shared by the
pair of adjacent chambers associated to the opposed foldings.
context OpposedThinChamberComplexFoldings
begin

definition induced-automorphism :: ′a⇒ ′a
where induced-automorphism v ≡

if v∈f‘(
⋃

X) then g v else if v∈g‘(
⋃

X) then f v else v
— f and g will both be the identity on the intersection of their images
abbreviation s ≡ induced-automorphism

lemma induced-automorphism-fg-symmetric:
s = OpposedThinChamberComplexFoldings.s X g f
by (auto simp add:

folding-f .vertex-retraction folding-g.vertex-retraction
induced-automorphism-def
OpposedThinChamberComplexFoldings.induced-automorphism-def [

OF fg-symmetric
]

)

lemma induced-automorphism-on-simplices-fg: x∈f`X =⇒ v∈x =⇒ s v = g v
using induced-automorphism-def by auto

lemma induced-automorphism-eq-foldings-on-chambers-fg:
C∈f`C =⇒ fun-eq-on s g C
using chamber-system-simplices induced-automorphism-on-simplices-fg[of C]
by (fast intro: fun-eq-onI)

lemmas indaut-eq-foldch-fg =
induced-automorphism-eq-foldings-on-chambers-fg

lemma induced-automorphism-eq-foldings-on-chambers-gf :
C∈g`C =⇒ fun-eq-on s f C
by (auto simp add:

OpposedThinChamberComplexFoldings.indaut-eq-foldch-fg[
OF fg-symmetric

]
induced-automorphism-fg-symmetric

)

lemma induced-automorphism-on-chamber-vertices-f :
chamber C =⇒ v∈C =⇒ s v = (if C∈f`C then g v else f v)
using chamber-system-def induced-automorphism-eq-foldings-on-chambers-fg

induced-automorphism-eq-foldings-on-chambers-gf
flopped-half-chamber-systems-fg[THEN sym]
fun-eq-onD[of s g C] fun-eq-onD[of s f C]

by auto

165

lemma induced-automorphism-simplex-image:
C∈f`C =⇒ x⊆C =⇒ s‘x = g‘x C∈g`C =⇒ x⊆C =⇒ s‘x = f‘x
using fun-eq-on-im[of s g C] fun-eq-on-im[of s f C]

induced-automorphism-eq-foldings-on-chambers-fg
induced-automorphism-eq-foldings-on-chambers-gf

by auto

lemma induced-automorphism-chamber-list-image-fg:
set Cs ⊆ f`C =⇒ s|=Cs = g|=Cs

proof (induct Cs)
case (Cons C Cs) thus ?case

using induced-automorphism-simplex-image(1)[of C] by simp
qed simp

lemma induced-automorphism-chamber-image-fg:
chamber C =⇒ s‘C = (if C∈f`C then g‘C else f‘C)
using chamber-system-def induced-automorphism-simplex-image

flopped-half-chamber-systems-fg[THEN sym]
by auto

lemma induced-automorphism-C0 : s‘C0 = D0
using chambers(1 ,4) basechambers-half-chamber-systems(1)

induced-automorphism-chamber-image-fg
by auto

lemma induced-automorphism-fixespointwise-C0-int-D0 :
fixespointwise s (C0∩D0)
using fun-eq-on-trans[of s g] fun-eq-on-subset[of s g C0]

fixespointwise-subset[of g D0]
induced-automorphism-eq-foldings-on-chambers-fg
basechambers-half-chamber-systems
folding-g.chamber-retraction1

by auto

lemmas indaut-fixes-fundfacet =
induced-automorphism-fixespointwise-C0-int-D0

lemma induced-automorphism-adjacent-half-chamber-system-image-fg:
[[C∈f`C; D∈g`C; C∼D]] =⇒ s‘D = C
using adjacent-half-chamber-system-image-fg[of C D]

induced-automorphism-simplex-image(2)
by auto

lemmas indaut-adj-halfchsys-im-fg =
induced-automorphism-adjacent-half-chamber-system-image-fg

lemma induced-automorphism-chamber-map: chamber C =⇒ chamber (s‘C)
using induced-automorphism-chamber-image-fg folding-f .chamber-map

166

folding-g.chamber-map
by auto

lemmas indaut-chmap = induced-automorphism-chamber-map

lemma induced-automorphism-ntrivial: s 6= id
proof

assume s: s = id
from chambers(2 ,3) obtain v where v: v /∈ D0 C0 = insert v (C0∩D0)

using adjacent-int-decomp[of C0 D0] by fast
from chambers(4) s v(2) have gv: g v = v

using chamberD-simplex[OF chamber-D0]
induced-automorphism-on-simplices-fg[of C0 v, THEN sym]

by auto
have g‘C0 = C0
proof (rule seteqI)

from v(2) gv show
∧

x. x∈C0 =⇒ x∈g‘C0 using g-trivial-D0 by force
next

fix x assume x∈g‘C0
from this obtain y where y: y∈C0 x = g y by fast
moreover from y(1) v(2) gv have g y = y

using g-trivial-D0 [of y] by (cases y=v) auto
ultimately show x∈C0 using y by simp

qed
with chambers(3) show False by fast

qed

lemma induced-automorphism-bij-between-half-chamber-systems-f :
bij-betw ((‘) s) (C−f`C) (f`C)
using induced-automorphism-simplex-image(2)

flopped-half-chamber-systems-fg
folding-f .opp-chambers-bij bij-betw-cong[of C−f`C (‘) s]

by auto

lemmas indaut-bij-btw-halfchsys-f =
induced-automorphism-bij-between-half-chamber-systems-f

lemma induced-automorphism-bij-between-half-chamber-systems-g:
bij-betw ((‘) s) (C−g`C) (g`C)
using induced-automorphism-fg-symmetric

OpposedThinChamberComplexFoldings.indaut-bij-btw-halfchsys-f [
OF fg-symmetric

]
by simp

lemma induced-automorphism-halfmorphism-fopp-to-fimage:
ChamberComplexMorphism folding-f .opp-half-apartment (f`X) s

proof (
rule ChamberComplexMorphism.cong,

167

rule ThinChamberComplexFolding.morphism-half-apartments,
rule ThinChamberComplexFolding-f , rule fun-eq-onI

)
show

∧
v. v ∈

⋃
folding-f .Y =⇒ s v = f v

using folding-f .opp-half-apartment-def chamber-system-simplices
by (force simp add:

flopped-half-chamber-systems-fg
induced-automorphism-fg-symmetric
OpposedThinChamberComplexFoldings.induced-automorphism-def [

OF fg-symmetric
]

)
qed

lemmas indaut-halfmorph-fopp-fim =
induced-automorphism-halfmorphism-fopp-to-fimage

lemma induced-automorphism-half-chamber-system-gallery-map-f :
set Cs ⊆ f`C =⇒ gallery Cs =⇒ gallery (s|=Cs)
using folding-g.gallery-map[of Cs]

induced-automorphism-chamber-list-image-fg[THEN sym]
by auto

lemma induced-automorphism-half-chamber-system-pgallery-map-f :
set Cs ⊆ f`C =⇒ pgallery Cs =⇒ pgallery (s|=Cs)
using induced-automorphism-half-chamber-system-gallery-map-f pgallery

flopped-half-chamber-systems-gf pgalleryD-distinct
folding-g.opp-chambers-distinct-map
induced-automorphism-chamber-list-image-fg[THEN sym]

by (auto intro: pgalleryI-gallery)

lemmas indaut-halfchsys-pgal-map-f =
induced-automorphism-half-chamber-system-pgallery-map-f

lemma induced-automorphism-half-chamber-system-pgallery-map-g:
set Cs ⊆ g`C =⇒ pgallery Cs =⇒ pgallery (s|=Cs)
using induced-automorphism-fg-symmetric

OpposedThinChamberComplexFoldings.indaut-halfchsys-pgal-map-f [
OF fg-symmetric

]
by simp

lemma induced-automorphism-halfmorphism-fimage-to-fopp:
ChamberComplexMorphism (f`X) folding-f .opp-half-apartment s
using OpposedThinChamberComplexFoldings.indaut-halfmorph-fopp-fim[

OF fg-symmetric
]

by (auto simp add:
flopped-half-apartments-gf flopped-half-apartments-fg

168

induced-automorphism-fg-symmetric
)

lemma induced-automorphism-selfcomp-halfmorphism-f :
ChamberComplexMorphism (f`X) (f`X) (s◦s)
using induced-automorphism-halfmorphism-fimage-to-fopp

induced-automorphism-halfmorphism-fopp-to-fimage
by (auto intro: ChamberComplexMorphism.comp)

lemma induced-automorphism-selfcomp-halftrivial-f : fixespointwise (s◦s) (
⋃
(f`X))

proof (
rule standard-uniqueness, rule ChamberComplexMorphism.expand-codomain,
rule induced-automorphism-selfcomp-halfmorphism-f

)
show ChamberComplexMorphism (f`X) X id

using folding-f .chambersubcomplex-image inclusion-morphism by fast
show SimplicialComplex.maxsimp (f`X) C0

using chambers(1 ,4) chamberD-simplex[OF chamber-D0]
chamber-in-subcomplex[OF folding-f .chambersubcomplex-image, of C0]

by auto
show fixespointwise (s◦s) C0
proof (rule fixespointwiseI)

fix v assume v: v∈C0
with chambers(4) have v∈f‘(

⋃
X)

using chamber-D0 chamberD-simplex by fast
hence 1 : s v = g v using induced-automorphism-def by simp
show (s◦s) v = id v
proof (cases v∈D0)

case True with v show ?thesis using 1 g-trivial-D0 by simp
next

case False
from v chambers(1 ,4) have s (g v) = f (g v)

using chamberD-simplex induced-automorphism-fg-symmetric
OpposedThinChamberComplexFoldings.induced-automorphism-def [

OF fg-symmetric, of g v
]

by force
with v False chambers(4) show ?thesis using double-fold-C0 1 by simp

qed
qed

next
fix Cs assume ChamberComplex.min-gallery (f`X) (C0#Cs)
hence Cs: ChamberComplex.pgallery (f`X) (C0#Cs)

using ChamberComplex.min-gallery-pgallery folding-f .chambercomplex-image
by fast

hence pCs: pgallery (C0#Cs)
using folding-f .chambersubcomplex-image subcomplex-pgallery by auto

thus pgallery (id|=(C0#Cs)) by simp
have set-Cs: set (C0#Cs) ⊆ f`C

169

using Cs pCs folding-f .chambersubcomplex-image
ChamberSubcomplexD-complex ChamberComplex.pgalleryD-chamber
ChamberComplex.chamberD-simplex pgallery-chamber-system
folding-f .chamber-system-image

by fastforce
hence pgallery (s|=(C0#Cs))
using pCs induced-automorphism-half-chamber-system-pgallery-map-f [of C0#Cs]
by auto

moreover have set (s|=(C0#Cs)) ⊆ g`C
proof−

have set (s|=(C0#Cs)) ⊆ s`(C−g`C)
using set-Cs flopped-half-chamber-systems-gf by auto

thus ?thesis
using bij-betw-imp-surj-on[

OF induced-automorphism-bij-between-half-chamber-systems-g
]

by simp
qed
ultimately have pgallery (s|=(s|=(C0#Cs)))

using induced-automorphism-half-chamber-system-pgallery-map-g[
of s|=(C0#Cs)

]
by auto

thus pgallery ((s◦s)|=(C0#Cs))
using ssubst[OF setlistmapim-comp, of pgallery, of s s C0#Cs] by fast

qed (unfold-locales, rule folding-f .chambersubcomplex-image)

lemmas indaut-selfcomp-halftriv-f =
induced-automorphism-selfcomp-halftrivial-f

lemma induced-automorphism-selfcomp-halftrivial-g: fixespointwise (s◦s) (
⋃
(g`X))

using induced-automorphism-fg-symmetric
OpposedThinChamberComplexFoldings.indaut-selfcomp-halftriv-f [

OF fg-symmetric
]

by simp

lemma induced-automorphism-trivial-outside:
assumes v /∈

⋃
X

shows s v = v
proof−

from assms have v /∈ f‘(
⋃

X) ∧ v /∈ g‘(
⋃

X) using vertex-set-split by fast
thus s v = v using induced-automorphism-def by simp

qed

lemma induced-automorphism-morphism: ChamberComplexEndomorphism X s
proof (unfold-locales, rule induced-automorphism-chamber-map, simp)

fix C assume chamber C
thus card (s‘C) = card C

170

using induced-automorphism-chamber-image-fg folding-f .dim-map
folding-g.dim-map
flopped-half-chamber-systems-fg[THEN sym]

by (cases C∈f`C) auto
qed (rule induced-automorphism-trivial-outside)

lemmas indaut-morph = induced-automorphism-morphism

lemma induced-automorphism-morphism-order2 : s◦s = id
proof

fix v
show (s◦s) v = id v
proof (cases v∈f‘(

⋃
X) v∈g‘(

⋃
X) rule: two-cases)

case both
from both(1) show ?thesis

using induced-automorphism-selfcomp-halftrivial-f fixespointwiseD[of s◦s]
by auto

next
case one thus ?thesis

using induced-automorphism-selfcomp-halftrivial-f fixespointwiseD[of s◦s]
by fastforce

next
case other thus ?thesis

using induced-automorphism-selfcomp-halftrivial-g fixespointwiseD[of s◦s]
by fastforce

qed (simp add: induced-automorphism-def)
qed

lemmas indaut-order2 = induced-automorphism-morphism-order2

lemmas induced-automorphism-bij =
o-bij[OF

induced-automorphism-morphism-order2
induced-automorphism-morphism-order2

]

lemma induced-automorphism-surj-on-vertexset: s‘(
⋃

X) =
⋃

X
proof

show s‘(
⋃

X) ⊆
⋃

X
using induced-automorphism-morphism

ChamberComplexEndomorphism.vertex-map
by fast

hence (s◦s)‘(
⋃

X) ⊆ s‘(
⋃

X) by fastforce
thus

⋃
X ⊆ s‘(

⋃
X) using induced-automorphism-morphism-order2 by simp

qed

lemma induced-automorphism-bij-betw-vertexset: bij-betw s (
⋃

X) (
⋃

X)
using induced-automorphism-bij induced-automorphism-surj-on-vertexset
by (auto intro: bij-betw-subset)

171

lemma induced-automorphism-surj-on-simplices: s`X = X
proof

show s`X ⊆ X
using induced-automorphism-morphism

ChamberComplexEndomorphism.simplex-map
by fast

hence s`(s`X) ⊆ s`X by auto
thus X ⊆ s`X

by (simp add:
setsetmapim-comp[THEN sym] induced-automorphism-morphism-order2

)
qed

lemma induced-automorphism-automorphism:
ChamberComplexAutomorphism X s
using induced-automorphism-chamber-map

ChamberComplexEndomorphism.dim-map
induced-automorphism-morphism
induced-automorphism-bij-betw-vertexset
induced-automorphism-surj-on-simplices
induced-automorphism-trivial-outside

by (intro-locales, unfold-locales, fast)

lemmas indaut-aut = induced-automorphism-automorphism

lemma induced-automorphism-unique-automorphism ′:
assumes ChamberComplexAutomorphism X s s 6=id fixespointwise s (C0∩D0)
shows fun-eq-on s s C0

proof (rule fun-eq-on-subset-and-diff-imp-eq-on)
from assms(3) show fun-eq-on s s (C0∩D0)

using induced-automorphism-fixespointwise-C0-int-D0
fixespointwise2-imp-eq-on

by fast
show fun-eq-on s s (C0 − (C0∩D0))
proof (rule fun-eq-onI)

fix v assume v: v ∈ C0 − C0∩D0
with chambers(2) have C0-insert: C0 = insert v (C0∩D0)

using adjacent-conv-insert by fast
hence s‘C0 = insert (s v) (s‘(C0∩D0)) s‘C0 = insert (s v) (s‘(C0∩D0))

by auto
with assms(3)

have insert: s‘C0 = insert (s v) (C0∩D0) D0 = insert (s v) (C0∩D0)
using basechambers-half-chamber-systems

induced-automorphism-fixespointwise-C0-int-D0
induced-automorphism-simplex-image(1)

by (auto simp add: fixespointwise-im)

from chambers(2 ,3) have C0D0-C0 : (C0∩D0) C C0

172

using adjacent-int-facet1 by fast
with assms(1) chambers(1) have s‘(C0∩D0) C s‘C0

using ChamberComplexAutomorphism.facet-map by fast
with assms(3) have C0D0-sC0 : (C0∩D0) C s‘C0

by (simp add: fixespointwise-im)
hence sv-nin-C0D0 : s v /∈ C0∩D0 using insert(1) facetrel-psubset by auto

from assms(1) chambers(1) have chamber (s‘C0)
using ChamberComplexAutomorphism.chamber-map by fast

moreover from chambers(2 ,3) have C0D0-D0 : (C0∩D0) C D0
using adjacent-sym adjacent-int-facet1 by (fastforce simp add: Int-commute)

ultimately have s‘C0 = C0 ∨ s‘C0 = D0
using chambers(1 ,3) chamber-D0 C0D0-C0 C0D0-sC0

facet-unique-other-chamber [of s‘C0 C0∩D0 C0 D0]
by auto

moreover have ¬ s‘C0 = C0
proof

assume sC0 : s‘C0 = C0
have s = id
proof (

rule standard-uniqueness-automorphs, rule assms(1),
rule trivial-automorphism, rule chambers(1),
rule fixespointwise-subset-and-diff-imp-eq-on,
rule Int-lower1 , rule assms(3), rule fixespointwiseI

)
fix a assume a ∈ C0−(C0∩D0)
with v have a = v using C0-insert by fast
with sC0 show s a = id a using C0-insert sv-nin-C0D0 by auto

qed
with assms(1 ,2) show False by fast

qed
ultimately have sC0-D0 : s‘C0 = D0 by fast

have s v /∈ C0∩D0 using insert(2) C0D0-D0 facetrel-psubset by force
thus s v = s v using insert sC0-D0 sv-nin-C0D0 by auto

qed
qed simp

lemma induced-automorphism-unique-automorphism:
[[ChamberComplexAutomorphism X s; s 6=id; fixespointwise s (C0∩D0)]]
=⇒ s = s

using chambers(1) induced-automorphism-unique-automorphism ′

standard-uniqueness-automorphs induced-automorphism-automorphism
by fastforce

lemmas indaut-uniq-aut =
induced-automorphism-unique-automorphism

lemma induced-automorphism-unique:

173

OpposedThinChamberComplexFoldings X f ′ g ′ C0 =⇒ g ′‘C0 = g‘C0 =⇒
OpposedThinChamberComplexFoldings.induced-automorphism X f ′ g ′ = s

using induced-automorphism-automorphism induced-automorphism-ntrivial
induced-automorphism-fixespointwise-C0-int-D0

by (auto intro:
OpposedThinChamberComplexFoldings.indaut-uniq-aut[

THEN sym
]

)

lemma induced-automorphism-sym:
OpposedThinChamberComplexFoldings.induced-automorphism X g f = s
using OpposedThinChamberComplexFoldings.indaut-aut[

OF fg-symmetric
]
OpposedThinChamberComplexFoldings.induced-automorphism-ntrivial[

OF fg-symmetric
]
OpposedThinChamberComplexFoldings.indaut-fixes-fundfacet[

OF fg-symmetric
]
induced-automorphism-unique-automorphism

by (simp add: chambers(4) Int-commute)

lemma induced-automorphism-respects-labels:
assumes label-wrt B ϕ v∈(

⋃
X)

shows ϕ (s v) = ϕ v
proof−

from assms(2) obtain C where chamber C v∈C using simplex-in-max by fast
with assms show ?thesis

by (simp add:
induced-automorphism-on-chamber-vertices-f folding-f .respects-labels
folding-g.respects-labels

)
qed

lemmas indaut-resplabels =
induced-automorphism-respects-labels

end

4.6.4 Walls

A pair of opposed foldings of a thin chamber complex defines a decompo-
sition of the chamber system into the two disjoint chamber system images.
Call such a decomposition a wall, as we image that disjointness erects a
wall between the two half chamber systems. By considering the collection
of all possible opposed folding pairs, and their associated walls, we can ob-

174

tain information about minimality of galleries by considering the walls they
cross.
context ThinChamberComplex
begin

definition foldpairs :: ((′a⇒ ′a) × (′a⇒ ′a)) set
where foldpairs ≡ {(f ,g). ∃C . OpposedThinChamberComplexFoldings X f g C}

abbreviation walls ≡
⋃
(f ,g)∈foldpairs. {{f`C,g`C}}

abbreviation the-wall-betw C D ≡
THE-default {} (λH . H∈walls ∧ separated-by H C D)

definition walls-betw :: ′a set ⇒ ′a set ⇒ ′a set set set set
where walls-betw C D ≡ {H∈walls. separated-by H C D}

fun wall-crossings :: ′a set list ⇒ ′a set set set list
where wall-crossings [] = []
| wall-crossings [C] = []
| wall-crossings (B#C#Cs) = the-wall-betw B C # wall-crossings (C#Cs)

lemma foldpairs-sym: (f ,g)∈foldpairs =⇒ (g,f)∈foldpairs
using foldpairs-def OpposedThinChamberComplexFoldings.fg-symmetric by fast-

force

lemma not-self-separated-by-wall: H∈walls =⇒ ¬ separated-by H C C
using foldpairs-def OpposedThinChamberComplexFoldings.halfchsys-decomp(2)

not-self-separated-by-disjoint
by force

lemma the-wall-betw-nempty:
assumes the-wall-betw C D 6= {}
shows the-wall-betw C D ∈ walls separated-by (the-wall-betw C D) C D

proof−
from assms have 1 : ∃ !H ′∈walls. separated-by H ′ C D

using THE-default-none[of λH . H∈walls ∧ separated-by H C D {}] by fast
show the-wall-betw C D ∈ walls separated-by (the-wall-betw C D) C D

using THE-defaultI ′[OF 1] by auto
qed

lemma the-wall-betw-self-empty: the-wall-betw C C = {}
proof−

{
assume ∗: the-wall-betw C C 6= {}
then obtain f g

where (f ,g)∈foldpairs the-wall-betw C C = {f`C,g`C}
using the-wall-betw-nempty(1)[of C C]
by blast

with ∗ have False
using the-wall-betw-nempty(2)[of C C] foldpairs-def

175

OpposedThinChamberComplexFoldings.halfchsys-decomp(2)[
of X

]
not-self-separated-by-disjoint[of f`C g`C]

by auto
}
thus ?thesis by fast

qed

lemma length-wall-crossings: length (wall-crossings Cs) = length Cs − 1
by (induct Cs rule: list-induct-CCons) auto

lemma wall-crossings-snoc:
wall-crossings (Cs@[D,E]) = wall-crossings (Cs@[D]) @ [the-wall-betw D E]
by (induct Cs rule: list-induct-CCons) auto

lemma wall-crossings-are-walls:
H∈set (wall-crossings Cs) =⇒ H 6={} =⇒ H∈walls

proof (induct Cs arbitrary: H rule: list-induct-CCons)
case (CCons B C Cs) thus ?case

using the-wall-betw-nempty(1)
by (cases H∈set (wall-crossings (C#Cs))) auto

qed auto

lemma in-set-wall-crossings-decomp:
H∈set (wall-crossings Cs) =⇒
∃As A B Bs. Cs = As@[A,B]@Bs ∧ H = the-wall-betw A B

proof (induct Cs rule: list-induct-CCons)
case (CCons C D Ds)
show ?case
proof (cases H ∈ set (wall-crossings (D#Ds)))

case True
with CCons(1) obtain As A B Bs

where C#(D#Ds) = (C#As)@[A,B]@Bs H = the-wall-betw A B
by fastforce

thus ?thesis by fast
next

case False
with CCons(2) have C#(D#Ds) = []@[C ,D]@Ds H = the-wall-betw C D

by auto
thus ?thesis by fast

qed
qed auto

end

context OpposedThinChamberComplexFoldings
begin

176

lemma foldpair : (f ,g)∈foldpairs
unfolding foldpairs-def

proof−
have OpposedThinChamberComplexFoldings X f g C0 ..
thus (f , g) ∈ {(f , g).

∃C . OpposedThinChamberComplexFoldings X f g C}
by fast

qed

lemma separated-by-this-wall-fg:
separated-by {f`C,g`C} C D =⇒ C∈f`C =⇒ D∈g`C
using separated-by-disjoint[

OF - half-chamber-system-disjoint-union(2), of C D
]

by fast

lemmas separated-by-this-wall-gf =
OpposedThinChamberComplexFoldings.separated-by-this-wall-fg[

OF fg-symmetric
]

lemma induced-automorphism-this-wall-vertex:
assumes C∈f`C D∈g`C v∈C∩D
shows s v = v

proof−
from assms have s v = g v

using chamber-system-simplices induced-automorphism-on-simplices-fg
by auto

with assms(2 ,3) show s v = v
using chamber-system-simplices folding-g.retraction by auto

qed

lemmas indaut-wallvertex =
induced-automorphism-this-wall-vertex

lemma unique-wall:
assumes opp ′ : OpposedThinChamberComplexFoldings X f ′ g ′ C ′

and chambers: A∈f`C A∈f ′̀ C B∈g`C B∈g ′̀ C A∼B
shows {f`C,g`C} = {f ′̀ C,g ′̀ C}

proof−
from chambers have B: B=g‘A B=g ′‘A

using adjacent-sym[of A B] adjacent-half-chamber-system-image-gf
OpposedThinChamberComplexFoldings.adjhalfchsys-image-gf [

OF opp ′

]
by auto

with chambers(1 ,2 ,5)
have A : OpposedThinChamberComplexFoldings X f g A
and A ′: OpposedThinChamberComplexFoldings X f ′ g ′ A

177

using switch-basechamber [of A]
OpposedThinChamberComplexFoldings.switch-basechamber [

OF opp ′, of A
]

by auto
with B show ?thesis

using OpposedThinChamberComplexFoldings.unique-half-chamber-system-f [
OF A A ′

]
OpposedThinChamberComplexFoldings.unique-half-chamber-system-g[

OF A A ′

]
by auto

qed

end

context ThinChamberComplex
begin

lemma separated-by-wall-ex-foldpair :
assumes H∈walls separated-by H C D
shows ∃ (f ,g)∈foldpairs. H = {f`C,g`C} ∧ C∈f`C ∧ D∈g`C

proof−
from assms(1) obtain f g where fg: (f ,g)∈foldpairs H = {f`C,g`C} by auto
show ?thesis
proof (cases C∈f`C)

case True
moreover with fg assms(2) have D∈g`C

using foldpairs-def
OpposedThinChamberComplexFoldings.separated-by-this-wall-fg[

of X f g - C D
]

by auto
ultimately show ?thesis using fg by auto

next
case False with assms(2) fg show ?thesis

using foldpairs-sym[of f g] separated-by-in-other [of f`C g`C C D] by auto
qed

qed

lemma not-separated-by-wall-ex-foldpair :
assumes chambers: chamber C chamber D
and wall : H∈walls ¬ separated-by H C D
shows ∃ (f ,g)∈foldpairs. H = {f`C,g`C} ∧ C∈f`C ∧ D∈f`C

proof−
from wall(1) obtain f g where fg: (f ,g)∈foldpairs H = {f`C,g`C} by auto
from fg(1) obtain A where A: OpposedThinChamberComplexFoldings X f g A

using foldpairs-def by fast

178

from chambers have chambers ′: C∈f`C ∨ C∈g`C D∈f`C ∨ D∈g`C
using chamber-system-def

OpposedThinChamberComplexFoldings.halfchsys-decomp(1)[
OF A

]
by auto

show ?thesis
proof (cases C∈f`C)

case True
moreover with chambers ′(2) fg(2) wall(2) have D∈f`C

unfolding separated-by-def by auto
ultimately show ?thesis using fg by auto

next
case False
with chambers ′(1) have C∈g`C by simp
moreover with chambers ′(2) fg(2) wall(2) have D∈g`C

using insert-commute[of f`C g`C {}] unfolding separated-by-def by auto
ultimately show ?thesis using fg foldpairs-sym[of f g] by auto

qed
qed

lemma adj-wall-imp-ex1-wall:
assumes adj : C∼D
and wall: H0∈walls separated-by H0 C D
shows ∃ !H∈walls. separated-by H C D

proof (rule ex1I , rule conjI , rule wall(1), rule wall(2))
fix H assume H : H∈walls ∧ separated-by H C D
from this obtain f g

where fg: (f ,g)∈foldpairs H={f`C,g`C} C∈f`C D∈g`C
using separated-by-wall-ex-foldpair [of H C D]
by auto

from wall obtain f0 g0
where f0g0 : (f0 ,g0)∈foldpairs H0={f0`C,g0`C} C∈f0`C D∈g0`C
using separated-by-wall-ex-foldpair [of H0 C D]
by auto

from fg(1) f0g0 (1) obtain A A0
where A : OpposedThinChamberComplexFoldings X f g A
and A0 : OpposedThinChamberComplexFoldings X f0 g0 A0
using foldpairs-def
by auto

from fg(2−4) f0g0 (2−4) adj show H = H0
using OpposedThinChamberComplexFoldings.unique-wall[OF A0 A] by auto

qed

end

context OpposedThinChamberComplexFoldings
begin

179

lemma this-wall-betwI :
assumes C∈f`C D∈g`C C∼D
shows the-wall-betw C D = {f`C,g`C}

proof (rule THE-default1-equality, rule adj-wall-imp-ex1-wall)
have OpposedThinChamberComplexFoldings X f g C0 ..
thus {f`C,g`C}∈walls using foldpairs-def by auto
moreover from assms(1 ,2) show separated-by {f`C,g`C} C D

by (auto intro: separated-byI)
ultimately show {f`C,g`C}∈walls ∧ separated-by {f`C,g`C} C D by simp

qed (rule assms(3))

lemma this-wall-betw-basechambers:
the-wall-betw C0 D0 = {f`C,g`C}
using basechambers-half-chamber-systems chambers(2) this-wall-betwI by auto

lemma this-wall-in-crossingsI-fg:
defines H : H ≡ {f`C,g`C}
assumes D: D∈g`C
shows C∈f`C =⇒ gallery (C#Cs@[D]) =⇒ H ∈ set (wall-crossings (C#Cs@[D]))

proof (induct Cs arbitrary: C)
case Nil
from Nil(1) assms have H∈walls separated-by H C D

using foldpair by (auto intro: separated-byI)
thus ?case

using galleryD-adj[OF Nil(2)]
THE-default1-equality[OF adj-wall-imp-ex1-wall]

by auto
next

case (Cons B Bs)
show ?case
proof (cases B∈f`C)

case True with Cons(1 ,3) show ?thesis using gallery-Cons-reduce by simp
next

case False
with Cons(2 ,3) H have H∈walls separated-by H C B

using galleryD-chamber [OF Cons(3)] chamber-in-other-half-fg[of B] foldpair
by (auto intro: separated-byI)

thus ?thesis
using galleryD-adj[OF Cons(3)]

THE-default1-equality[OF adj-wall-imp-ex1-wall]
by auto

qed
qed

end

lemma (in ThinChamberComplex) walls-betw-subset-wall-crossings:
assumes gallery (C#Cs@[D])
shows walls-betw C D ⊆ set (wall-crossings (C#Cs@[D]))

180

proof
fix H assume H ∈ walls-betw C D
hence H : H∈walls separated-by H C D using walls-betw-def by auto
from this obtain f g

where fg: (f ,g)∈foldpairs H = {f`C,g`C} C∈f`C D∈g`C
using separated-by-wall-ex-foldpair [of H C D]
by auto

from fg(1) obtain Z where Z : OpposedThinChamberComplexFoldings X f g Z
using foldpairs-def by fast

from assms H (2) fg(2−4) show H ∈ set (wall-crossings (C#Cs@[D]))
using OpposedThinChamberComplexFoldings.this-wall-in-crossingsI-fg[OF Z]
by auto

qed

context OpposedThinChamberComplexFoldings
begin

lemma same-side-this-wall-wall-crossings-not-distinct-f :
gallery (C#Cs@[D]) =⇒ C∈f`C =⇒ D∈f`C =⇒
{f`C,g`C}∈set (wall-crossings (C#Cs@[D])) =⇒
¬ distinct (wall-crossings (C#Cs@[D]))

proof (induct Cs arbitrary: C)
case Nil
hence {f`C,g`C} = the-wall-betw C D by simp
moreover hence the-wall-betw C D 6= {} by fast
ultimately show ?case

using Nil(2 ,3) the-wall-betw-nempty(2) separated-by-this-wall-fg[of C D]
half-chamber-system-disjoint-union(2)

by auto
next

case (Cons E Es)
show ?case
proof

assume 1 : distinct (wall-crossings (C # (E # Es) @ [D]))
show False
proof (

cases E∈f`C {f`C,g`C} ∈ set (wall-crossings (E#Es@[D]))
rule: two-cases

)
case both with Cons(1 ,2 ,4) 1 show False

using gallery-Cons-reduce by simp
next

case one
from one(2) Cons(5) have {f`C,g`C} = the-wall-betw C E by simp
moreover hence the-wall-betw C E 6= {} by fast
ultimately show False

using Cons(3) one(1) the-wall-betw-nempty(2)
separated-by-this-wall-fg[of C E]
half-chamber-system-disjoint-union(2)

181

by auto
next

case other with Cons(3) show False
using 1 galleryD-chamber [OF Cons(2)] galleryD-adj[OF Cons(2)]

chamber-in-other-half-fg this-wall-betwI
by force

next
case neither
from Cons(2) neither(1) have E∈g`C

using galleryD-chamber chamber-in-other-half-fg by auto
with Cons(4) have separated-by {g`C,f`C} E D

by (blast intro: separated-byI)
hence {f`C,g`C} ∈ walls-betw E D

using foldpair walls-betw-def by (auto simp add: insert-commute)
with neither(2) show False

using gallery-Cons-reduce[OF Cons(2)] walls-betw-subset-wall-crossings
by auto

qed
qed

qed

lemmas sside-wcrossings-ndistinct-f =
same-side-this-wall-wall-crossings-not-distinct-f

lemma separated-by-this-wall-chain3-fg:
assumes B∈f`C chamber C chamber D

separated-by {f`C,g`C} B C separated-by {f`C,g`C} C D
shows C∈g`C D∈f`C
using assms separated-by-this-wall-fg separated-by-this-wall-gf
by (auto simp add: insert-commute)

lemmas sepwall-chain3-fg =
separated-by-this-wall-chain3-fg

end

context ThinChamberComplex
begin

lemma wall-crossings-min-gallery-betwI :
assumes gallery (C#Cs@[D])

distinct (wall-crossings (C#Cs@[D]))
∀H∈set (wall-crossings (C#Cs@[D])). separated-by H C D

shows min-gallery (C#Cs@[D])
proof (rule min-galleryI-betw)

obtain B Bs where BBs: Cs@[D] = B#Bs using snoc-conv-cons by fast
define H where H = the-wall-betw C B
with BBs assms(3) have 1 : separated-by H C D by simp
show C 6=D

182

proof (cases H={})
case True thus ?thesis

using 1 unfolding separated-by-def by simp
next

case False
with H-def have H ∈ walls using the-wall-betw-nempty(1) by simp
from this obtain f g

where fg: (f ,g)∈foldpairs H = {f`C,g`C} C∈f`C D∈g`C
using 1 separated-by-wall-ex-foldpair [of H C D]
by auto

thus ?thesis
using foldpairs-def

OpposedThinChamberComplexFoldings.halfchsys-decomp(2)[
of X f g

]
by auto

qed
next

fix Ds assume Ds: gallery (C # Ds @ [D])
have Suc (length Cs) = card (walls-betw C D)
proof−

from assms(1 ,3) have set (wall-crossings (C#Cs@[D])) = walls-betw C D
using separated-by-not-empty wall-crossings-are-walls[of - C#Cs@[D]]

walls-betw-def
walls-betw-subset-wall-crossings[OF assms(1)]

unfolding separated-by-def
by auto

with assms(2) show ?thesis
using distinct-card[THEN sym] length-wall-crossings by fastforce

qed
moreover have card (walls-betw C D) ≤ Suc (length Ds)
proof−
from Ds have card (walls-betw C D) ≤ card (set (wall-crossings (C#Ds@[D])))

using walls-betw-subset-wall-crossings finite-set card-mono by force
also have . . . ≤ length (wall-crossings (C#Ds@[D]))

using card-length by auto
finally show ?thesis using length-wall-crossings by simp

qed
ultimately show length Cs ≤ length Ds by simp

qed (rule assms(1))

lemma ex-nonseparating-wall-imp-wall-crossings-not-distinct:
assumes gal : gallery (C#Cs@[D])
and wall: H∈set (wall-crossings (C#Cs@[D])) H 6={}

¬ separated-by H C D
shows ¬ distinct (wall-crossings (C#Cs@[D]))

proof−
from assms obtain f g

where fg: (f ,g)∈foldpairs H = {f`C,g`C} C∈f`C D∈f`C

183

using wall-crossings-are-walls[of H]
not-separated-by-wall-ex-foldpair [of C D H]
galleryD-chamber

by auto
from fg(1) obtain Z where Z : OpposedThinChamberComplexFoldings X f g Z

using foldpairs-def by fast
from wall fg(2−4) show ?thesis

using OpposedThinChamberComplexFoldings.sside-wcrossings-ndistinct-f [
OF Z gal

]
by blast

qed

lemma not-min-gallery-double-crosses-wall:
assumes gallery Cs ¬ min-gallery Cs {} /∈ set (wall-crossings Cs)
shows ¬ distinct (wall-crossings Cs)

proof (cases Cs rule: list-cases-Cons-snoc)
case Nil with assms(2) show ?thesis by simp

next
case Single with assms(1 ,2) show ?thesis using galleryD-chamber by simp

next
case (Cons-snoc B Bs C)
show ?thesis
proof (cases B=C)

case True show ?thesis
proof (cases Bs)

case Nil with True Cons-snoc assms(3) show ?thesis
using the-wall-betw-self-empty by simp

next
case (Cons E Es)
define H where H = the-wall-betw B E
with Cons have ∗: H ∈ set (wall-crossings (B#Bs@[C])) by simp
moreover from assms(3) Cons-snoc ∗ have H 6= {} by fast
ultimately show ?thesis

using assms(1) Cons-snoc Cons True H-def
the-wall-betw-nempty(1)[of B E] not-self-separated-by-wall[of H B]
ex-nonseparating-wall-imp-wall-crossings-not-distinct[of B Bs C H]

by fast
qed

next
case False
with assms Cons-snoc

have 1 : ¬ distinct (wall-crossings Cs) ∨
¬ (∀H∈set (wall-crossings Cs). separated-by H B C)

using wall-crossings-min-gallery-betwI
by force

moreover {
assume ¬ (∀H∈set (wall-crossings Cs). separated-by H B C)
from this obtain H

184

where H : H∈set (wall-crossings Cs) ¬ separated-by H B C
by auto

moreover from H (1) assms(3) have H 6={} by fast
ultimately have ?thesis

using assms(1) Cons-snoc
ex-nonseparating-wall-imp-wall-crossings-not-distinct

by simp
}
ultimately show ?thesis by fast

qed
qed

lemma not-distinct-crossings-split-gallery:
[[gallery Cs; {} /∈ set (wall-crossings Cs); ¬ distinct (wall-crossings Cs)]] =⇒
∃ f g As A B Bs E F Fs.
(f ,g)∈foldpairs ∧ A∈f`C ∧ B∈g`C ∧ E∈g`C ∧ F∈f`C ∧
(Cs = As@[A,B,F]@Fs ∨ Cs = As@[A,B]@Bs@[E ,F]@Fs)

proof (induct Cs rule: list-induct-CCons)
case (CCons C J Js)
show ?case
proof (cases distinct (wall-crossings (J#Js)))

case False
moreover from CCons(2) have gallery (J#Js)

using gallery-Cons-reduce by simp
moreover from CCons(3) have {} /∈ set (wall-crossings (J#Js)) by simp
ultimately obtain f g As A B Bs E F Fs where split:
(f ,g)∈foldpairs A∈f`C B∈g`C E∈g`C F∈f`C
J#Js = As@[A,B,F]@Fs ∨ J#Js = As@[A,B]@Bs@[E ,F]@Fs
using CCons(1)
by blast

from split(6)
have C#J#Js = (C#As)@[A,B,F]@Fs ∨

C#J#Js = (C#As)@[A,B]@Bs@[E ,F]@Fs
by simp

with split(1−5) show ?thesis by blast
next

case True
define H where H = the-wall-betw C J
with True CCons(4) have H∈set (wall-crossings (J#Js)) by simp
from this obtain Bs E F Fs

where split1 : J#Js = Bs@[E ,F]@Fs H = the-wall-betw E F
using in-set-wall-crossings-decomp
by fast

from H-def split1 (2) CCons(3)
have Hwall: H ∈ walls separated-by H C J separated-by H E F
using the-wall-betw-nempty[of C J] the-wall-betw-nempty[of E F]
by auto

from Hwall(1 ,2) obtain f g
where fg: (f ,g)∈foldpairs H={f`C,g`C} C∈f`C J∈g`C

185

using separated-by-wall-ex-foldpair [of H C J]
by auto

from fg(1) obtain Z
where Z : OpposedThinChamberComplexFoldings X f g Z
using foldpairs-def
by fast

show ?thesis
proof (cases Bs)

case Nil
with CCons(2) Hwall(2 ,3) fg(2−4) split1 (1)

have F∈f`C C#J#Js = []@[C ,J ,F]@Fs
using galleryD-chamber

OpposedThinChamberComplexFoldings.sepwall-chain3-fg(2)[
OF Z , of C J F

]
by auto

with fg(1 ,3 ,4) show ?thesis by blast
next

case (Cons K Ks) have Bs: Bs = K#Ks by fact
show ?thesis
proof (cases E∈f`C)

case True
from CCons(2) split1 (1) Bs have gallery (J#Ks@[E])

using gallery-Cons-reduce[of C J#Ks@E#F#Fs]
gallery-append-reduce1 [of J#Ks@[E] F#Fs]

by simp
with fg(4) True obtain Ls L M Ms

where LsLMMs: L∈g`C M∈f`C J#Ks@[E] = Ls@L#M#Ms
using OpposedThinChamberComplexFoldings.split-gallery-gf [

OF Z , of J E Ks
]

by blast
show ?thesis
proof (cases Ls)

case Nil
with split1 (1) Bs LsLMMs(3)

have C#J#Js = []@[C ,J ,M]@(Ms@F#Fs)
by simp

with fg(1 ,3 ,4) LsLMMs(2) show ?thesis by blast
next

case (Cons N Ns)
with split1 (1) Bs LsLMMs(3)

have C#J#Js = []@[C ,J]@Ns@[L,M]@(Ms@F#Fs)
by simp

with fg(1 ,3 ,4) LsLMMs(1 ,2) show ?thesis by blast
qed

next
case False
with Hwall(2 ,3) fg(2) split1 (1) Cons

186

have E∈g`C F∈f`C C#J#Js = []@[C ,J]@Ks@[E ,F]@Fs
using OpposedThinChamberComplexFoldings.separated-by-this-wall-fg[

OF Z
]
separated-by-in-other [of f`C g`C]

by auto
with fg(1 ,3 ,4) show ?thesis by blast

qed
qed

qed
qed auto

lemma not-min-gallery-double-split:
[[gallery Cs; ¬ min-gallery Cs; {} /∈ set (wall-crossings Cs)]] =⇒
∃ f g As A B Bs E F Fs.
(f ,g)∈foldpairs ∧ A∈f`C ∧ B∈g`C ∧ E∈g`C ∧ F∈f`C ∧
(Cs = As@[A,B,F]@Fs ∨ Cs = As@[A,B]@Bs@[E ,F]@Fs)

using not-min-gallery-double-crosses-wall not-distinct-crossings-split-gallery
by simp

end

4.7 Thin chamber complexes with many foldings

Here we begin to examine thin chamber complexes in which every pair of
adjacent chambers affords a pair of opposed foldings of the complex. This
condition will ultimately be shown to be sufficient to ensure that a thin
chamber complex is isomorphic to some Coxeter complex.

4.7.1 Locale definition and basic facts
locale ThinChamberComplexManyFoldings = ThinChamberComplex X

for X :: ′a set set
+ fixes C0 :: ′a set

assumes fundchamber : chamber C0
and ex-walls :
[[chamber C ; chamber D; C∼D; C 6=D]] =⇒
∃ f g. OpposedThinChamberComplexFoldings X f g C ∧ D=g‘C

lemma (in ThinChamberComplex) ThinChamberComplexManyFoldingsI :
assumes chamber C0
and

∧
C D. [[chamber C ; chamber D; C∼D; C 6=D]] =⇒
∃ f g. OpposedThinChamberComplexFoldings X f g C ∧ D=g‘C

shows ThinChamberComplexManyFoldings X C0
using assms
by (intro-locales, unfold-locales, fast)

lemma (in ThinChamberComplexManyFoldings) wall-crossings-subset-walls-betw:
assumes min-gallery (C#Cs@[D])

187

shows set (wall-crossings (C#Cs@[D])) ⊆ walls-betw C D
proof

fix H assume H ∈ set (wall-crossings (C#Cs@[D]))
from this obtain As A B Bs

where H : C#Cs@[D] = As@[A,B]@Bs H=the-wall-betw A B
using in-set-wall-crossings-decomp
by blast

from assms have pgal: pgallery (C#Cs@[D])
using min-gallery-pgallery by fast

with H (1) obtain f g
where fg: OpposedThinChamberComplexFoldings X f g A B=g‘A
using pgalleryD-chamber pgalleryD-adj

binrelchain-append-reduce2 [of adjacent As [A,B]@Bs]
pgalleryD-distinct[of As@[A,B]@Bs] ex-walls[of A B]

by auto
from H (2) fg have H ′: A∈f`C B∈g`C H = {f`C,g`C} H∈walls

using OpposedThinChamberComplexFoldings.basech-halfchsys[
OF fg(1)

]
OpposedThinChamberComplexFoldings.chambers(2)[OF fg(1)]
OpposedThinChamberComplexFoldings.this-wall-betwI [OF fg(1)]
foldpairs-def

by auto
have CD: C ∈ f`C ∪ g`C D ∈ f`C ∪ g`C

using pgal pgalleryD-chamber chamber-system-def
OpposedThinChamberComplexFoldings.halfchsys-decomp(1)[

OF fg(1)
]

by auto
show H ∈ walls-betw C D
proof (cases Bs As rule: two-lists-cases-snoc-Cons ′)

case both-Nil with H show ?thesis
using H ′(3) the-wall-betw-nempty[of A B] unfolding walls-betw-def by force

next
case (Nil1 E Es)
show ?thesis
proof (cases C∈f`C)

case True
with Nil1 H (1) have separated-by H C D

using H ′(2 ,3) by (auto intro: separated-byI)
thus ?thesis using H ′(4) unfolding walls-betw-def by simp

next
case False with assms Nil1 H (1) show ?thesis

using OpposedThinChamberComplexFoldings.foldg[
OF fg(1)

]
CD(1) H ′(1 ,2) pgal pgallery

OpposedThinChamberComplexFoldings.flopped-half-chamber-systems-gf [
OF fg(1)

188

]
ThinChamberComplexFolding.gallery-double-cross-not-minimal1 [

of X g E A B Es []
]

by force
qed

next
case (Nil2 Fs F)
show ?thesis
proof (cases D∈f`C)

case True
with assms Nil2 H (1) show ?thesis

using OpposedThinChamberComplexFoldings.foldf [
OF fg(1)

]
H ′(1 ,2) pgal pgallery
OpposedThinChamberComplexFoldings.flopped-half-chamber-systems-fg[

OF fg(1)
]
ThinChamberComplexFolding.gallery-double-cross-not-minimal-Cons1 [

of X f
]

by force
next

case False with Nil2 H (1) have separated-by H C D
using CD(2) H ′(1 ,3) by (auto intro: separated-byI)

thus ?thesis using H ′(4) unfolding walls-betw-def by simp
qed

next
case (snoc-Cons Fs F E Es) show ?thesis
proof (cases C∈f`C D∈g`C rule: two-cases)

case both thus ?thesis
using H ′(3 ,4) walls-betw-def unfolding separated-by-def by auto

next
case one
with snoc-Cons assms H (1) show ?thesis

using OpposedThinChamberComplexFoldings.foldf [
OF fg(1)

]
CD(2) H ′(2) pgal pgallery
OpposedThinChamberComplexFoldings.flopped-half-chamber-systems-fg[

OF fg(1)
]
ThinChamberComplexFolding.gallery-double-cross-not-minimal1 [

of X f C B D Es@[A]
]

by fastforce
next

case other

189

with snoc-Cons assms H (1) show ?thesis
using OpposedThinChamberComplexFoldings.ThinChamberComplexFolding-g[

OF fg(1)
]
CD(1) H ′(1) pgal pgallery

OpposedThinChamberComplexFoldings.flopped-half-chamber-systems-gf [
OF fg(1)

]
ThinChamberComplexFolding.gallery-double-cross-not-minimal1 [

of X g E A F Es B#Fs
]

by force
next

case neither
hence separated-by {g`C,f`C} C D using CD by (auto intro: separated-byI)
thus ?thesis

using H ′(3 ,4) walls-betw-def by (auto simp add: insert-commute)
qed

qed
qed

4.7.2 The group of automorphisms

Recall that a pair of opposed foldings of a thin chamber complex can be
stitched together to form an automorphism of the complex. Choosing an
arbitrary chamber in the complex to act as a sort of centre of the complex
(referred to as the fundamental chamber), we consider the group (under
composition) generated by the automorphisms afforded by the chambers
adjacent to the fundamental chamber via the pairs of opposed foldings that
we have assumed to exist.
context ThinChamberComplexManyFoldings
begin

definition fundfoldpairs :: ((′a⇒ ′a)×(′a⇒ ′a)) set
where fundfoldpairs ≡ {(f ,g). OpposedThinChamberComplexFoldings X f g C0}

abbreviation fundadjset ≡ adjacentset C0 − {C0}

abbreviation induced-automorph :: (′a⇒ ′a) ⇒ (′a⇒ ′a) ⇒ (′a⇒ ′a)
where induced-automorph f g ≡

OpposedThinChamberComplexFoldings.induced-automorphism X f g

abbreviation Abs-induced-automorph :: (′a⇒ ′a) ⇒ (′a⇒ ′a) ⇒ ′a permutation
where Abs-induced-automorph f g ≡ Abs-permutation (induced-automorph f g)

abbreviation S ≡
⋃
(f ,g)∈fundfoldpairs. {Abs-induced-automorph f g}

abbreviation W ≡ 〈S〉

190

lemma fundfoldpairs-induced-autormorph-bij:
(f ,g) ∈ fundfoldpairs =⇒ bij (induced-automorph f g)
using OpposedThinChamberComplexFoldings.induced-automorphism-bij
unfolding fundfoldpairs-def
by fast

lemmas permutation-conv-induced-automorph =
Abs-permutation-inverse[OF CollectI , OF fundfoldpairs-induced-autormorph-bij]

lemma fundfoldpairs-induced-autormorph-order2 :
(f ,g) ∈ fundfoldpairs =⇒ induced-automorph f g ◦ induced-automorph f g = id
using OpposedThinChamberComplexFoldings.indaut-order2
unfolding fundfoldpairs-def
by fast

lemma fundfoldpairs-induced-autormorph-ntrivial:
(f ,g) ∈ fundfoldpairs =⇒ induced-automorph f g 6= id
using OpposedThinChamberComplexFoldings.induced-automorphism-ntrivial
unfolding fundfoldpairs-def
by fast

lemma fundfoldpairs-fundchamber-image:
(f ,g)∈fundfoldpairs =⇒ Abs-induced-automorph f g ‘→ C0 = g‘C0
using fundfoldpairs-def
by (simp add:

permutation-conv-induced-automorph
OpposedThinChamberComplexFoldings.induced-automorphism-C0

)

lemma fundfoldpair-fundchamber-in-half-chamber-system-f :
(f ,g)∈fundfoldpairs =⇒ C0∈f`C
using fundfoldpairs-def

OpposedThinChamberComplexFoldings.basech-halfchsys(1)
by fast

lemma fundfoldpair-unique-half-chamber-system-f :
assumes (f ,g)∈fundfoldpairs (f ′,g ′)∈fundfoldpairs

Abs-induced-automorph f ′ g ′ = Abs-induced-automorph f g
shows f ′̀ C = f`C

proof−
from assms have g ′‘C0 = g‘C0

using fundfoldpairs-fundchamber-image[OF assms(1)]
fundfoldpairs-fundchamber-image[OF assms(2)]

by simp
with assms show f ′̀ C = f`C

using fundfoldpairs-def
OpposedThinChamberComplexFoldings.unique-half-chamber-system-f [

of X f g C0 f ′ g ′

]

191

by auto
qed

lemma fundfoldpair-unique-half-chamber-systems-chamber-ng-f :
assumes (f ,g)∈fundfoldpairs (f ′,g ′)∈fundfoldpairs

Abs-induced-automorph f ′ g ′ = Abs-induced-automorph f g
chamber C C /∈g`C

shows C∈f ′̀ C
using assms(1 ,3−5) fundfoldpairs-def chamber-system-def

OpposedThinChamberComplexFoldings.flopped-half-chamber-systems-gf [
THEN sym

]
fundfoldpair-unique-half-chamber-system-f [OF assms(1 ,2)]

by fastforce

lemma the-wall-betw-adj-fundchamber :
(f ,g)∈fundfoldpairs =⇒

the-wall-betw C0 (Abs-induced-automorph f g ‘→ C0) = {f`C,g`C}
using fundfoldpairs-def

OpposedThinChamberComplexFoldings.this-wall-betw-basechambers
OpposedThinChamberComplexFoldings.induced-automorphism-C0

by (fastforce simp add: permutation-conv-induced-automorph)

lemma zero-notin-S : 0 /∈S
proof

assume 0∈S
from this obtain f g

where (f ,g)∈fundfoldpairs 0 = Abs-induced-automorph f g
by fast

thus False
using Abs-permutation-inject[of id induced-automorph f g]

bij-id fundfoldpairs-induced-autormorph-bij
fundfoldpairs-induced-autormorph-ntrivial

by (force simp add: zero-permutation.abs-eq)
qed

lemma S-order2-add: s∈S =⇒ s + s = 0
using fundfoldpairs-induced-autormorph-bij zero-permutation.abs-eq
by (fastforce simp add:

plus-permutation-abs-eq fundfoldpairs-induced-autormorph-order2
)

lemma S-add-order2 :
assumes s∈S
shows add-order s = 2

proof (rule add-order-equality)
from assms show s+^2 = 0 using S-order2-add by (simp add: nataction-2)

next
fix m assume 0 < m s+^m = 0

192

with assms show 2 ≤ m using zero-notin-S by (cases m=1) auto
qed simp

lemmas S-uminus = minus-unique[OF S-order2-add]

lemma S-sym: uminus ‘ S ⊆ S
using S-uminus by auto

lemmas sum-list-S-in-W = sum-list-lists-in-genby-sym[OF S-sym]
lemmas W-conv-sum-lists = genby-sym-eq-sum-lists[OF S-sym]

lemma S-endomorphism:
s∈S =⇒ ChamberComplexEndomorphism X (permutation s)
using fundfoldpairs-def

OpposedThinChamberComplexFoldings.induced-automorphism-morphism
by (fastforce simp add: permutation-conv-induced-automorph)

lemma S-list-endomorphism:
ss∈lists S =⇒ ChamberComplexEndomorphism X (permutation (sum-list ss))
by (induct ss)

(auto simp add:
zero-permutation.rep-eq trivial-endomorphism plus-permutation.rep-eq
S-endomorphism ChamberComplexEndomorphism.endo-comp

)

lemma W-endomorphism:
w∈W =⇒ ChamberComplexEndomorphism X (permutation w)
using W-conv-sum-lists S-list-endomorphism by auto

lemma S-automorphism:
s∈S =⇒ ChamberComplexAutomorphism X (permutation s)
using fundfoldpairs-def

OpposedThinChamberComplexFoldings.induced-automorphism-automorphism
by (fastforce simp add: permutation-conv-induced-automorph)

lemma S-list-automorphism:
ss∈lists S =⇒ ChamberComplexAutomorphism X (permutation (sum-list ss))
by (induct ss)

(auto simp add:
zero-permutation.rep-eq trivial-automorphism plus-permutation.rep-eq
S-automorphism ChamberComplexAutomorphism.comp

)

lemma W-automorphism:
w∈W =⇒ ChamberComplexAutomorphism X (permutation w)
using W-conv-sum-lists S-list-automorphism by auto

lemma S-respects-labels: [[label-wrt B ϕ; s∈S ; v∈(
⋃

X)]] =⇒ ϕ (s → v) = ϕ v
using fundfoldpairs-def

193

OpposedThinChamberComplexFoldings.indaut-resplabels[
of X - - C0 B ϕ v

]
by (auto simp add: permutation-conv-induced-automorph)

lemma S-list-respects-labels:
[[label-wrt B ϕ; ss∈lists S ; v∈(

⋃
X)]] =⇒ ϕ (sum-list ss → v) = ϕ v

using S-endomorphism ChamberComplexEndomorphism.vertex-map[of X]
by (induct ss arbitrary: v rule: rev-induct)

(auto simp add:
plus-permutation.rep-eq S-respects-labels zero-permutation.rep-eq

)

lemma W-respects-labels:
[[label-wrt B ϕ; w∈W ; v∈(

⋃
X)]] =⇒ ϕ (w→v) = ϕ v

using W-conv-sum-lists S-list-respects-labels[of B ϕ - v] by auto

end

4.7.3 Action of the group of automorphisms on the chamber sys-
tem

Now we examine the action of the group W on the chamber system. In
particular, we show that the action is transitive.
context ThinChamberComplexManyFoldings
begin

lemma fundchamber-S-chamber : s∈S =⇒ chamber (s‘→C0)
using fundfoldpairs-def
by (fastforce simp add:

fundfoldpairs-fundchamber-image
OpposedThinChamberComplexFoldings.chamber-D0

)

lemma fundchamber-W-image-chamber :
w∈W =⇒ chamber (w‘→C0)
using fundchamber W-endomorphism

ChamberComplexEndomorphism.chamber-map
by auto

lemma fundchamber-S-adjacent: s∈S =⇒ C0 ∼ (s‘→C0)
using fundfoldpairs-def
by (auto simp add:

fundfoldpairs-fundchamber-image
OpposedThinChamberComplexFoldings.chambers(2)

)

lemma fundchamber-WS-image-adjacent:
w∈W =⇒ s∈S =⇒ (w‘→C0) ∼ ((w+s)‘→C0)

194

using fundchamber fundchamber-S-adjacent fundchamber-S-chamber
W-endomorphism
ChamberComplexEndomorphism.adj-map[of X permutation w C0 s‘→C0]

by (auto simp add: image-comp plus-permutation.rep-eq)

lemma fundchamber-S-image-neq-fundchamber : s∈S =⇒ s‘→C0 6= C0
using fundfoldpairs-def OpposedThinChamberComplexFoldings.chambers(3)
by (fastforce simp add: fundfoldpairs-fundchamber-image)

lemma fundchamber-next-WS-image-neq:
assumes s∈S
shows (w+s) ‘→ C0 6= w ‘→ C0

proof
assume (w+s) ‘→ C0 = w ‘→ C0
with assms show False

using fundchamber-S-image-neq-fundchamber [of s]
by (auto simp add: plus-permutation.rep-eq image-comp permutation-eq-image)

qed

lemma fundchamber-S-fundadjset: s∈S =⇒ s‘→C0 ∈ fundadjset
using fundchamber-S-adjacent fundchamber-S-image-neq-fundchamber

fundchamber-S-chamber chamberD-simplex adjacentset-def
by simp

lemma fundadjset-eq-S-image: D∈fundadjset =⇒ ∃ s∈S . D = s‘→C0
using fundchamber adjacentsetD-adj adjacentset-chamber ex-walls[of C0 D]

fundfoldpairs-def fundfoldpairs-fundchamber-image
by blast

lemma S-fixespointwise-fundchamber-image-int:
assumes s∈S
shows fixespointwise ((→) s) (C0∩s‘→C0)

proof−
from assms(1) obtain f g

where fg: (f ,g)∈fundfoldpairs s = Abs-induced-automorph f g
by fast

show ?thesis
proof (rule fixespointwise-cong)

from fg show fun-eq-on ((→) s) (induced-automorph f g) (C0∩s‘→C0)
using permutation-conv-induced-automorph fun-eq-onI by fastforce

from fg show fixespointwise (induced-automorph f g) (C0∩s‘→C0)
using fundfoldpairs-fundchamber-image fundfoldpairs-def

OpposedThinChamberComplexFoldings.indaut-fixes-fundfacet
by auto

qed
qed

lemma S-fixes-fundchamber-image-int:
s∈S =⇒ s‘→(C0∩s‘→C0) = C0∩s‘→C0

195

using fixespointwise-im[OF S-fixespointwise-fundchamber-image-int] by simp

lemma fundfacets:
assumes s∈S
shows C0∩s‘→C0 C C0 C0∩s‘→C0 C s‘→C0
using assms fundchamber-S-adjacent[of s]

fundchamber-S-image-neq-fundchamber [of s]
adjacent-int-facet1 [of C0] adjacent-int-facet2 [of C0]

by auto

lemma fundadjset-ex1-eq-S-image:
assumes D∈fundadjset
shows ∃ !s∈S . D = s‘→C0

proof (rule ex-ex1I)
from assms show ∃ s. s∈S ∧ D = s ‘→ C0

using fundadjset-eq-S-image by fast
next

fix s t assume s∈S ∧ D = s‘→C0 t∈S ∧ D = t‘→C0
hence s: s∈S D = s‘→C0

and t: t∈S D = t‘→C0
by auto

from s(1) t(1) obtain f g f ′ g ′

where (f ,g)∈fundfoldpairs s = Abs-induced-automorph f g
and (f ′,g ′)∈fundfoldpairs t = Abs-induced-automorph f ′ g ′

by auto
with s(2) t(2) show s=t

using fundfoldpairs-def fundfoldpairs-fundchamber-image
OpposedThinChamberComplexFoldings.induced-automorphism-unique[

of X f ′ g ′ C0 f g
]

by auto
qed

lemma fundchamber-S-image-inj-on: inj-on (λs. s‘→C0) S
proof (rule inj-onI)

fix s t assume s∈S t∈S s‘→C0 = t‘→C0 thus s=t
using fundchamber-S-fundadjset

bex1-equality[OF fundadjset-ex1-eq-S-image, of s‘→C0 s t]
by simp

qed

lemma S-list-image-gallery:
ss∈lists S =⇒ gallery (map (λw. w‘→C0) (sums ss))

proof (induct ss rule: list-induct-ssnoc)
case (Single s) thus ?case

using fundchamber fundchamber-S-chamber fundchamber-S-adjacent
gallery-def

by (fastforce simp add: zero-permutation.rep-eq)
next

196

case (ssnoc ss s t)
define Cs D E where Cs = map (λw. w ‘→ C0) (sums ss)

and D = sum-list (ss@[s]) ‘→ C0
and E = sum-list (ss@[s,t]) ‘→ C0

with ssnoc have gallery (Cs@[D,E])
using sum-list-S-in-W [of ss@[s,t]] sum-list-S-in-W [of ss@[s]]

fundchamber-W-image-chamber
fundchamber-WS-image-adjacent[of sum-list (ss@[s]) t]
sum-list-append[of ss@[s] [t]]

by (auto intro: gallery-snocI simp add: sums-snoc)
with Cs-def D-def E-def show ?case using sums-snoc[of ss@[s] t] by (simp add:

sums-snoc)
qed (auto simp add: gallery-def fundchamber zero-permutation.rep-eq)

lemma pgallery-last-eq-W-image:
pgallery (C0#Cs@[C]) =⇒ ∃w∈W . C = w‘→C0

proof (induct Cs arbitrary: C rule: rev-induct)
case Nil
hence C∈fundadjset

using pgallery-def chamberD-simplex adjacentset-def by fastforce
from this obtain s where s∈S C = s‘→C0

using fundadjset-eq-S-image[of C] by auto
thus ?case using genby-genset-closed[of s S] by fast

next
case (snoc D Ds)
have DC : chamber D chamber C D∼C D 6=C

using pgallery-def snoc(2)
binrelchain-append-reduce2 [of adjacent C0#Ds [D,C]]

by auto
from snoc obtain w where w: w∈W D = w‘→C0

using pgallery-append-reduce1 [of C0#Ds@[D] [C]] by force
from w(2) have (−w)‘→D = C0

by (simp add:
image-comp plus-permutation.rep-eq[THEN sym]
zero-permutation.rep-eq

)
with DC w(1) have C0 ∼ (−w)‘→C C0 6= (−w)‘→C (−w)‘→C ∈ X

using genby-uminus-closed W-endomorphism[of −w]
ChamberComplexEndomorphism.adj-map[of X - D C]
permutation-eq-image[of −w D] chamberD-simplex[of C]
ChamberComplexEndomorphism.simplex-map[of X permutation (−w) C]

by auto
hence (−w)‘→C ∈ fundadjset using adjacentset-def by fast
from this obtain s where s: s∈S (−w)‘→C = s‘→C0

using fundadjset-eq-S-image by force
from s(2) have
(permutation w ◦ permutation (−w))‘C = (permutation w ◦ permutation s)‘C0
by (simp add: image-comp[THEN sym])

hence C = (w+s)‘→C0

197

by (simp add: plus-permutation.rep-eq[THEN sym] zero-permutation.rep-eq)
with w(1) s(1) show ?case

using genby-genset-closed[of s S] genby-add-closed by blast
qed

lemma chamber-eq-W-image:
assumes chamber C
shows ∃w∈W . C = w‘→C0

proof (cases C=C0)
case True
hence 0∈W C = 0‘→C0

using genby-0-closed by (auto simp add: zero-permutation.rep-eq)
thus ?thesis by fast

next
case False with assms show ?thesis

using fundchamber chamber-pconnect pgallery-last-eq-W-image by blast
qed

lemma S-list-image-crosses-walls:
ss ∈ lists S =⇒ {} /∈ set (wall-crossings (map (λw. w‘→C0) (sums ss)))

proof (induct ss rule: list-induct-ssnoc)
case (Single s) thus ?case

using fundchamber fundchamber-S-chamber fundchamber-S-adjacent
fundchamber-S-image-neq-fundchamber [of s] ex-walls[of C0 s‘→C0]
OpposedThinChamberComplexFoldings.this-wall-betw-basechambers

by (force simp add: zero-permutation.rep-eq)
next

case (ssnoc ss s t)
moreover
define A B where A = sum-list (ss@[s]) ‘→ C0 and B = sum-list (ss@[s,t])

‘→ C0
moreover from ssnoc(2) A-def B-def obtain f g

where OpposedThinChamberComplexFoldings X f g A B=g‘A
using sum-list-S-in-W [of ss@[s]] sum-list-S-in-W [of ss@[s,t]]

fundchamber-W-image-chamber sum-list-append[of ss@[s] [t]]
fundchamber-next-WS-image-neq[of t sum-list (ss@[s])]
fundchamber-WS-image-adjacent[of sum-list (ss@[s]) t]
ex-walls[of A B]

by auto
ultimately show ?case

using OpposedThinChamberComplexFoldings.this-wall-betw-basechambers
sums-snoc[of ss@[s] t]

by (force simp add: sums-snoc wall-crossings-snoc)
qed (simp add: zero-permutation.rep-eq)

end

198

4.7.4 A labelling by the vertices of the fundamental chamber

Here we show that by repeatedly applying the composition of all the el-
ements in the collection S of fundamental automorphisms, we can retract
the entire chamber complex onto the fundamental chamber. This retraction
provides a means of labelling the chamber complex, using the vertices of the
fundamental chamber as labels.
context ThinChamberComplexManyFoldings
begin

definition Spair :: ′a permutation ⇒ (′a⇒ ′a)×(′a⇒ ′a)
where Spair s ≡

SOME fg. fg ∈ fundfoldpairs ∧ s = case-prod Abs-induced-automorph fg

lemma Spair-fundfoldpair : s∈S =⇒ Spair s ∈ fundfoldpairs
using Spair-def

someI-ex[of
λfg. fg ∈ fundfoldpairs ∧

s = case-prod Abs-induced-automorph fg
]

by auto

lemma Spair-induced-automorph:
s∈S =⇒ s = case-prod Abs-induced-automorph (Spair s)
using Spair-def

someI-ex[of
λfg. fg ∈ fundfoldpairs ∧

s = case-prod Abs-induced-automorph fg
]

by auto

lemma S-list-pgallery-decomp1 :
assumes ss: set ss = S and gal: Cs 6=[] pgallery (C0#Cs)
shows ∃ s∈set ss. ∃C∈set Cs. ∀ (f ,g)∈fundfoldpairs.

s = Abs-induced-automorph f g −→ C ∈ g`C
proof (cases Cs)

case (Cons D Ds)
with gal(2) have D∈fundadjset

using pgallery-def chamberD-simplex adjacentset-def by fastforce
from this obtain s where s: s∈S D = s‘→C0

using fundadjset-eq-S-image by blast
from s(2) have
∀ (f ,g)∈fundfoldpairs. s = Abs-induced-automorph f g −→ D∈g`C
using fundfoldpairs-def fundfoldpairs-fundchamber-image

OpposedThinChamberComplexFoldings.basechambers-half-chamber-systems(2)
by auto

with s(1) ss Cons show ?thesis by auto
qed (simp add: gal(1))

199

lemma S-list-pgallery-decomp2 :
assumes set ss = S Cs 6=[] pgallery (C0#Cs)
shows
∃ rs s ts. ss = rs@s#ts ∧
(∃C∈set Cs. ∀ (f ,g)∈fundfoldpairs.

s = Abs-induced-automorph f g −→ C ∈ g`C) ∧
(∀ r∈set rs. ∀C∈set Cs. ∀ (f ,g)∈fundfoldpairs.

r = Abs-induced-automorph f g −→ C∈f`C)
proof−

from assms obtain rs s ts where rs-s-ts:
ss = rs@s#ts
∃C∈set Cs. ∀ (f ,g)∈fundfoldpairs.

s = Abs-induced-automorph f g −→ C ∈ g`C
∀ r∈set rs. ∀C∈set Cs.
¬ (∀ (f ,g)∈fundfoldpairs. r = Abs-induced-automorph f g −→ C ∈ g`C)

using split-list-first-prop[OF S-list-pgallery-decomp1 , of ss Cs]
by auto

have ∀ r∈set rs. ∀C∈set Cs. ∀ (f ,g)∈fundfoldpairs.
r = Abs-induced-automorph f g −→ C∈f`C

proof (rule ballI , rule ballI , rule prod-ballI , rule impI)
fix r C f g
assume r ∈ set rs C ∈ set Cs (f ,g)∈fundfoldpairs

r = Abs-induced-automorph f g
with rs-s-ts(3) assms(3) show C∈f`C

using pgalleryD-chamber
fundfoldpair-unique-half-chamber-systems-chamber-ng-f [

of - - f g C
]

by fastforce
qed
with rs-s-ts(1 ,2) show ?thesis by auto

qed

lemma S-list-pgallery-decomp3 :
assumes set ss = S Cs 6=[] pgallery (C0#Cs)
shows
∃ rs s ts As B Bs. ss = rs@s#ts ∧ Cs = As@B#Bs ∧
(∀ (f ,g)∈fundfoldpairs. s = Abs-induced-automorph f g −→ B∈g`C) ∧
(∀A∈set As. ∀ (f ,g)∈fundfoldpairs.

s = Abs-induced-automorph f g −→ A∈f`C) ∧
(∀ r∈set rs. ∀C∈set Cs. ∀ (f ,g)∈fundfoldpairs.

r = Abs-induced-automorph f g −→ C∈f`C)
proof−

from assms obtain rs s ts where rs-s-ts:
ss = rs@s#ts
∃B∈set Cs. ∀ (f ,g)∈fundfoldpairs. s = Abs-induced-automorph f g −→ B ∈ g`C
∀ r∈set rs. ∀B∈set Cs. ∀ (f ,g)∈fundfoldpairs.

r = Abs-induced-automorph f g −→ B∈f`C

200

using S-list-pgallery-decomp2 [of ss Cs]
by auto

obtain As B Bs where As-B-Bs:
Cs = As@B#Bs
∀ (f ,g)∈fundfoldpairs. s = Abs-induced-automorph f g −→ B ∈ g`C
∀A∈set As. ∃ (f ,g)∈fundfoldpairs. s = Abs-induced-automorph f g ∧ A/∈g`C
using split-list-first-prop[OF rs-s-ts(2)]
by fastforce

from As-B-Bs(1 ,3) assms(3)
have ∀A∈set As. ∀ (f ,g)∈fundfoldpairs.

s = Abs-induced-automorph f g −→ A∈f`C
using pgalleryD-chamber

fundfoldpair-unique-half-chamber-systems-chamber-ng-f
by auto

with rs-s-ts(1 ,3) As-B-Bs(1 ,2) show ?thesis by fast
qed

lemma fundfold-trivial-f C:
r∈S =⇒ ∀ (f ,g)∈fundfoldpairs. r = Abs-induced-automorph f g −→ C∈f`C =⇒

fst (Spair r) ‘ C = C
using Spair-fundfoldpair [of r] Spair-induced-automorph[of r] fundfoldpairs-def

OpposedThinChamberComplexFoldings.axioms(2)[
of X fst (Spair r) snd (Spair r) C0

]
ChamberComplexFolding.chamber-retraction2 [of X fst (Spair r) C]

by fastforce

lemma fundfold-comp-trivial-f C:
set rs ⊆ S =⇒
∀ r∈set rs. ∀ (f ,g)∈fundfoldpairs.

r = Abs-induced-automorph f g −→ C∈f`C =⇒
fold fst (map Spair rs) ‘ C = C

proof (induct rs)
case (Cons r rs)
have fold fst (map Spair (r#rs)) ‘ C =

fold fst (map Spair rs) ‘ fst (Spair r) ‘ C
by (simp add: image-comp)

also from Cons have . . . = C by (simp add: fundfold-trivial-f C)
finally show ?case by fast

qed simp

lemma fundfold-trivial-f C-list:
r∈S =⇒
∀C∈set Cs. ∀ (f ,g)∈fundfoldpairs.

r = Abs-induced-automorph f g −→ C∈f`C =⇒
fst (Spair r) |= Cs = Cs

using fundfold-trivial-f C by (induct Cs) auto

lemma fundfold-comp-trivial-f C-list:

201

set rs ⊆ S =⇒
∀ r∈set rs. ∀C∈set Cs. ∀ (f ,g)∈fundfoldpairs.

r = Abs-induced-automorph f g −→ C∈f`C =⇒
fold fst (map Spair rs) |= Cs = Cs

proof (induct rs Cs rule: list-induct2 ′)
case (4 r rs C Cs)
from 4 (3)

have r : ∀D∈set (C#Cs). ∀ (f ,g)∈fundfoldpairs.
r = Abs-induced-automorph f g −→ D∈f`C

by simp
from 4 (2)

have fold fst (map Spair (r#rs)) |= (C#Cs) =
map ((‘) (fold fst (map Spair rs))) (fst (Spair r) |= (C#Cs))

by (auto simp add: image-comp)
also from 4 have . . . = C#Cs

using fundfold-trivial-f C-list[of r C#Cs]
by (simp add: fundfold-comp-trivial-f C)

finally show ?case by fast
qed auto

lemma fundfold-gallery-map:
s∈S =⇒ gallery Cs =⇒ gallery (fst (Spair s) |= Cs)
using Spair-fundfoldpair fundfoldpairs-def

OpposedThinChamberComplexFoldings.axioms(2)
ChamberComplexFolding.gallery-map[of X fst (Spair s)]

by fastforce

lemma fundfold-comp-gallery-map:
assumes pregal: gallery Cs
shows set ss ⊆ S =⇒ gallery (fold fst (map Spair ss) |= Cs)

proof (induct ss rule: rev-induct)
case (snoc s ss)
hence 1 : gallery (fst (Spair s) |= (fold fst (map Spair ss) |= Cs))

using fundfold-gallery-map by fastforce
have 2 : fst (Spair s) |= (fold fst (map Spair ss) |= Cs) =

fold fst (map Spair (ss@[s])) |= Cs
by (simp add: image-comp)

show ?case using 1 subst[OF 2 , of gallery, OF 1] by fast
qed (simp add: pregal galleryD-adj)

lemma fundfold-comp-pgallery-ex-funpow:
assumes ss: set ss = S
shows pgallery (C0#Cs@[C]) =⇒

∃n. (fold fst (map Spair ss) ^^ n) ‘ C = C0
proof (induct Cs arbitrary: C rule: length-induct)

fix Cs C
assume step : ∀ ys. length ys < length Cs −→

(∀ x. pgallery (C0 # ys @ [x]) −→
(∃n. (fold fst (map Spair ss) ^^ n) ‘ x = C0))

202

and set-up: pgallery (C0#Cs@[C])
from ss set-up obtain rs s ts As B Bs where decomps:

ss = rs@s#ts Cs@[C] = As@B#Bs
∀ (f ,g)∈fundfoldpairs. s = Abs-induced-automorph f g −→ B∈g`C
∀A∈set As. ∀ (f ,g)∈fundfoldpairs. s = Abs-induced-automorph f g −→ A∈f`C
∀ r∈set rs. ∀D∈set (Cs@[C]). ∀ (f ,g)∈fundfoldpairs.

r = Abs-induced-automorph f g −→ D∈f`C
using S-list-pgallery-decomp3 [of ss Cs@[C]]
by fastforce

obtain Es E where EsE : C0#As = Es@[E] using cons-conv-snoc by fast

have EsE-s-f C:
∀A∈set (Es@[E]). ∀ (f ,g)∈fundfoldpairs.

s = Abs-induced-automorph f g −→ A∈f`C
proof (rule ballI)

fix A assume A∈set (Es@[E])
with EsE decomps(4)

show ∀ (f , g)∈fundfoldpairs. s = Abs-induced-automorph f g −→ A ∈ f ` C
using fundfoldpair-fundchamber-in-half-chamber-system-f

set-ConsD[of A C0 As]
by auto

qed
moreover from decomps(2) EsE

have decomp2 : C0#Cs@[C] = Es@E#B#Bs
by simp

moreover from ss decomps(1) have s∈S by auto
ultimately have sB: fst (Spair s) ‘ B = E

using set-up decomps(3) Spair-fundfoldpair [of s]
Spair-induced-automorph[of s] fundfoldpairs-def
pgalleryD-adj
binrelchain-append-reduce2 [of adjacent Es E#B#Bs]

OpposedThinChamberComplexFoldings.adjacent-half-chamber-system-image-fg[
of X fst (Spair s) snd (Spair s) C0 E B

]
by auto

show ∃n. (fold fst (map Spair ss) ^^ n) ‘ C = C0
proof (cases Es=[] ∧ Bs = [])

case True
from decomps(5) have
∀ r∈set rs. ∀ (f ,g)∈fundfoldpairs. r = Abs-induced-automorph f g −→ C∈f`C
by auto

with decomps(1) ss
have fold fst (map Spair ss) ‘ C = fold fst (map Spair ts) ‘ fst (Spair s) ‘ C
using fundfold-comp-trivial-f C[of rs C]
by (fastforce simp add: image-comp[THEN sym])

moreover
have ∀ r∈set ts. ∀ (f ,g)∈fundfoldpairs.

r = Abs-induced-automorph f g −→ C0∈f`C

203

using fundfoldpair-fundchamber-in-half-chamber-system-f
by fast

ultimately have (fold fst (map Spair ss) ^^ 1) ‘ C = C0
using True decomps(1 ,2) ss EsE sB fundfold-comp-trivial-f C[of ts C0]

fundfold-comp-trivial-f C[of ts C0]
by fastforce

thus ?thesis by fast
next

case False have EsBs: ¬ (Es = [] ∧ Bs = []) by fact
show ?thesis
proof (cases fold fst (map Spair ss) ‘ C = C0)

case True
hence (fold fst (map Spair ss) ^^ 1) ‘ C = C0 by simp
thus ?thesis by fast

next
case False
from decomps(5) have C0CsC-rs-f C:
∀ r∈set rs. ∀D∈set (C0#Cs@[C]). ∀ (f ,g)∈fundfoldpairs.

r = Abs-induced-automorph f g −→ D∈f`C
using fundfoldpair-fundchamber-in-half-chamber-system-f
by auto

from decomps(1)
have fold fst (map Spair (rs@[s])) |= (C0#Cs@[C]) =

fst (Spair s) |= (fold fst (map Spair rs) |= (C0#Cs@[C]))
by (simp add: image-comp)

also from ss decomps(1)
have . . . = fst (Spair s) |= (C0#Cs@[C])
using C0CsC-rs-f C fundfold-comp-trivial-f C-list[of rs C0#Cs@[C]]
by fastforce

also from decomp2 have . . . = fst (Spair s) |= (Es@E#B#Bs)
by (simp add: image-comp)

finally
have fold fst (map Spair (rs@[s])) |= (C0#Cs@[C]) =

Es @ E # E # fst (Spair s) |= Bs
using decomps(1) ss sB EsE-s-f C fundfold-trivial-f C-list[of s Es@[E]]
by fastforce

with set-up ss decomps(1)
have gal: gallery (Es @ E # fst (Spair s) |= Bs)
using pgallery fundfold-comp-gallery-map[of - rs@[s]]

gallery-remdup-adj[of Es E fst (Spair s) |= Bs]
by fastforce

from EsBs decomp2 EsE
have ∃Zs. length Zs < length Cs ∧

Es @ E # fst (Spair s) |= Bs = C0 # Zs @ [fst (Spair s) ‘ C]
using sB
by (cases Bs Es rule: two-lists-cases-snoc-Cons ′) auto

from this obtain Zs where Zs:
length Zs < length Cs

204

Es @ E # fst (Spair s) |= Bs = C0 # Zs @ [fst (Spair s) ‘ C]
by fast

define Ys where Ys = fold fst (map Spair ts) |= Zs
with Zs(2) have

fold fst (map Spair ts) |= (Es @ E # fst (Spair s) |= Bs) =
fold fst (map Spair ts) ‘ C0 # Ys @ [fold fst (map Spair (s#ts)) ‘ C]

by (simp add: image-comp)
moreover

have ∀ r∈set ts. ∀ (f ,g)∈fundfoldpairs.
r = Abs-induced-automorph f g −→ C0∈f`C

using fundfoldpair-fundchamber-in-half-chamber-system-f
by fast

ultimately have
fold fst (map Spair ts) |= (Es @ E # fst (Spair s) |= Bs) =

C0 # Ys @ [fold fst (map Spair (s#ts)) ‘ fold fst (map Spair rs) ‘ C]
using decomps(1) ss C0CsC-rs-f C fundfold-comp-trivial-f C[of ts C0]

fundfold-comp-trivial-f C[of rs C]
by fastforce

with decomps(1) ss obtain Xs where Xs:
length Xs ≤ length Ys
pgallery (C0 # Xs @ [fold fst (map Spair ss) ‘ C])
using gal fundfold-comp-gallery-map[of Es @ E # fst (Spair s) |= Bs ts]

gallery-obtain-pgallery[OF False[THEN not-sym]]
by (fastforce simp add: image-comp)

from Ys-def Xs(1) Zs(1) have length Xs < length Cs by simp
with Xs(2) obtain n where (fold fst (map Spair ss) ^^ (Suc n)) ‘ C = C0

using step by (force simp add: image-comp funpow-Suc-right[THEN sym])
thus ?thesis by fast

qed
qed

qed

lemma fundfold-comp-chamber-ex-funpow:
assumes ss: set ss = S and C : chamber C
shows ∃n. (fold fst (map Spair ss) ^^ n) ‘ C = C0

proof (cases C=C0)
case True
hence (fold fst (map Spair ss) ^^ 0) ‘ C = C0 by simp
thus ?thesis by fast

next
case False with fundchamber assms show ?thesis

using chamber-pconnect[of C0 C] fundfold-comp-pgallery-ex-funpow
by fastforce

qed

lemma fundfold-comp-fixespointwise-C0 :
assumes set ss ⊆ S
shows fixespointwise (fold fst (map Spair ss)) C0

205

proof (rule fold-fixespointwise, rule ballI)
fix fg assume fg ∈ set (map Spair ss)
from this obtain s where s∈set ss fg = Spair s by auto
with assms

have fg ′: OpposedThinChamberComplexFoldings X (fst fg) (snd fg) C0
using Spair-fundfoldpair fundfoldpairs-def
by fastforce

show fixespointwise (fst fg) C0
using OpposedThinChamberComplexFoldings.axioms(2)[OF fg ′]

OpposedThinChamberComplexFoldings.chamber-D0 [OF fg ′]
OpposedThinChamberComplexFoldings.chambers(4)[OF fg ′]
chamber-system-def
ChamberComplexFolding.chamber-retraction1 [of X fst fg C0]

by auto
qed

lemma fundfold-comp-endomorphism:
assumes set ss ⊆ S
shows ChamberComplexEndomorphism X (fold fst (map Spair ss))

proof (rule fold-chamber-complex-endomorph-list, rule ballI)
fix fg assume fg: fg ∈set (map Spair ss)
from this obtain s where s∈set ss fg = Spair s by auto
with assms show ChamberComplexEndomorphism X (fst fg)

using Spair-fundfoldpair
OpposedThinChamberComplexFoldings.axioms(2)[of X]
ChamberComplexFolding.axioms(1)[of X]
ChamberComplexRetraction.axioms(1)[of X]

unfolding fundfoldpairs-def
by fastforce

qed

lemma finite-S : finite S
using fundchamber-S-fundadjset fundchamber finite-adjacentset
by (blast intro: inj-on-finite fundchamber-S-image-inj-on)

lemma ex-label-retraction: ∃ϕ. label-wrt C0 ϕ ∧ fixespointwise ϕ C0
proof−

obtain ss where ss: set ss = S using finite-S finite-list by fastforce

define fgs where fgs = map Spair ss
— for fg ∈ set fgs, have fst fg ‘ D = C0 for some D ∈ fundajdset

define ψ where ψ = fold fst fgs
define vdist where vdist v = (LEAST n. (ψ^^n) v ∈ C0) for v
define ϕ where ϕ v = (ψ^^(vdist v)) v for v

have label-wrt C0 ϕ
unfolding label-wrt-def

proof

206

fix C assume C : C∈C
show bij-betw ϕ C C0
proof−

from ψ-def fgs-def ss C obtain m where m: (ψ^^m)‘C = C0
using chamber-system-def fundfold-comp-chamber-ex-funpow by fastforce

have
∧

v. v∈C =⇒ (ψ^^m) v = ϕ v
proof−

fix v assume v: v∈C
define n where n = (LEAST n. (ψ^^n) v ∈ C0)
from v m ϕ-def vdist-def n-def have m ≥ n ϕ v ∈ C0

using Least-le[of λn. (ψ^^n) v ∈ C0 m]
LeastI-ex[of λn. (ψ^^n) v ∈ C0]

by auto
then show (ψ^^m) v = ϕ v

using ss ψ-def fgs-def ϕ-def vdist-def n-def funpow-add[of m−n n ψ]
fundfold-comp-fixespointwise-C0
funpower-fixespointwise fixespointwiseD

by fastforce
qed
with C m ss ψ-def fgs-def show ?thesis

using chamber-system-def fundchamber fundfold-comp-endomorphism
ChamberComplexEndomorphism.funpower-endomorphism[of X]
ChamberComplexEndomorphism.bij-betw-chambers[of X]
bij-betw-cong[of C ψ^^m ϕ C0]

by fastforce
qed

qed
moreover from vdist-def ϕ-def have fixespointwise ϕ C0

using Least-eq-0 by (fastforce intro: fixespointwiseI)
ultimately show ?thesis by fast

qed

lemma ex-label-map: ∃ϕ. label-wrt C0 ϕ
using ex-label-retraction by fast

end

4.7.5 More on the action of the group of automorphisms on
chambers

Recall that we have already verified that W acts transitively on the chamber
system. We now use the labelling of the chamber complex examined in the
previous section to show that this action is simply transitive.
context ThinChamberComplexManyFoldings
begin

lemma fundchamber-W-image-ker :
assumes w∈W w‘→C0 = C0

207

shows w = 0
proof−

obtain ϕ where ϕ: label-wrt C0 ϕ using ex-label-map by fast
have fixespointwise (permutation w) C0

using W-respects-labels[OF ϕ assms(1)] chamberD-simplex[OF fundchamber]
ChamberComplexEndomorphism.respects-label-fixes-chamber-imp-fixespointwise[

OF W-endomorphism, OF assms(1) ϕ fundchamber assms(2)
]

by fast
with assms(1) show ?thesis

using fundchamber W-automorphism trivial-automorphism
standard-uniqueness-automorphs
permutation-inject[of w 0]

by (auto simp add: zero-permutation.rep-eq)
qed

lemma fundchamber-W-image-inj-on:
inj-on (λw. w‘→C0) W

proof (rule inj-onI)
fix w w ′ assume ww ′: w∈W w ′∈W w‘→C0 = w ′‘→C0
from ww ′(3) have (−w ′)‘→w‘→C0 = (−w ′)‘→w ′‘→C0 by simp
with ww ′(1 ,2) show w = w ′

using fundchamber-W-image-ker [of −w ′+w] add.assoc[of w ′ −w ′ w]
by (simp add:

image-comp plus-permutation.rep-eq[THEN sym]
zero-permutation.rep-eq genby-uminus-add-closed

)
qed

end

4.7.6 A bijection between the fundamental chamber and the set
of generating automorphisms

Removing a single vertex from the fundamental chamber determines a facet,
a facet in the fundamental chamber determines an adjacent chamber (since
our complex is thin), and a chamber adjacent to the fundamental chamber
determines an automorphism (via some pair of opposed foldings) in our
generating set S. Here we show that this correspondence is bijective.
context ThinChamberComplexManyFoldings
begin

definition fundantivertex :: ′a permutation ⇒ ′a
where fundantivertex s ≡ (THE v. v ∈ C0−s‘→C0)

abbreviation fundantipermutation ≡ the-inv-into S fundantivertex

lemma fundantivertex: s∈S =⇒ fundantivertex s ∈ C0−s‘→C0

208

using fundchamber-S-adjacent[of s]
fundchamber-S-image-neq-fundchamber [of s]
fundantivertex-def [of s] theI ′[OF adj-antivertex]

by auto

lemma fundantivertex-fundchamber-decomp:
s∈S =⇒ C0 = insert (fundantivertex s) (C0∩s‘→C0)
using fundchamber-S-adjacent[of s]

fundchamber-S-image-neq-fundchamber [of s]
fundantivertex[of s] adjacent-conv-insert[of C0]

by auto

lemma fundantivertex-unstable:
s∈S =⇒ s → fundantivertex s 6= fundantivertex s

using fundantivertex-fundchamber-decomp[of s]
image-insert[of (→) s fundantivertex s C0∩s‘→C0]
S-fixes-fundchamber-image-int fundchamber-S-image-neq-fundchamber

by fastforce

lemma fundantivertex-inj-on: inj-on fundantivertex S
proof (rule inj-onI)

fix s t assume st: s∈S t∈S fundantivertex s = fundantivertex t
hence insert (fundantivertex s) (C0∩s‘→C0) =

insert (fundantivertex s) (C0∩t‘→C0)
using fundantivertex-fundchamber-decomp[of s]

fundantivertex-fundchamber-decomp[of t]
by auto

moreover from st
have fundantivertex s /∈ C0∩s‘→C0 fundantivertex s /∈ C0∩t‘→C0
using fundantivertex[of s] fundantivertex[of t]
by auto

ultimately have C0∩s‘→C0 = C0∩t‘→C0
using insert-subset-equality[of fundantivertex s] by simp

with st(1 ,2) show s=t
using fundchamber fundchamber-S-chamber [of s] fundchamber-S-chamber [of t]

fundfacets[of s] fundfacets(2)[of t]
fundchamber-S-image-neq-fundchamber [of s]
fundchamber-S-image-neq-fundchamber [of t]
facet-unique-other-chamber [of C0 C0∩s‘→C0 s‘→C0 t‘→C0]
genby-genset-closed[of - S]
inj-onD[OF fundchamber-W-image-inj-on, of s t]

by auto
qed

lemma fundantivertex-surj-on: fundantivertex ‘ S = C0
proof (rule seteqI)

show
∧

v. v ∈ fundantivertex ‘ S =⇒ v∈C0 using fundantivertex by fast
next

fix v assume v: v∈C0

209

define D where D = the-adj-chamber C0 (C0−{v})
with v have D∈fundadjset

using fundchamber facetrel-diff-vertex the-adj-chamber-adjacentset
the-adj-chamber-neq

by fastforce
from this obtain s where s: s∈S D = s‘→C0

using fundadjset-eq-S-image by blast
with v D-def [abs-def] have fundantivertex s = v

using fundchamber fundchamber-S-adjacent
fundchamber-S-image-neq-fundchamber [of s]
facetrel-diff-vertex[of v C0]
the-adj-chamber-facet facetrel-def [of C0−{v} D]

unfolding fundantivertex-def
by (force intro: the1-equality[OF adj-antivertex])

with s(1) show v ∈ fundantivertex ‘ S by fast
qed

lemma fundantivertex-bij-betw: bij-betw fundantivertex S C0
unfolding bij-betw-def
using fundantivertex-inj-on fundantivertex-surj-on
by fast

lemma card-S-fundchamber : card S = card C0
using bij-betw-same-card[OF fundantivertex-bij-betw] by fast

lemma card-S-chamber :
chamber C =⇒ card C = card S
using fundchamber chamber-card[of C0 C] card-S-fundchamber by auto

lemma fundantipermutation1 :
v∈C0 =⇒ fundantipermutation v ∈ S
using fundantivertex-surj-on the-inv-into-into[OF fundantivertex-inj-on] by blast

end

4.8 Thick chamber complexes

A thick chamber complex is one in which every facet is a facet of at least
three chambers.
locale ThickChamberComplex = ChamberComplex X

for X :: ′a set set
+ assumes thick:

chamber C =⇒ zCC =⇒
∃D E . D∈X−{C} ∧ zCD ∧ E∈X−{C ,D} ∧ zCE

begin

definition some-third-chamber :: ′a set ⇒ ′a set ⇒ ′a set ⇒ ′a set
where some-third-chamber C D z ≡ SOME E . E∈X−{C ,D} ∧ zCE

210

lemma facet-ex-third-chamber : chamber C =⇒ zCC =⇒ ∃E∈X−{C ,D}. zCE
using thick[of C z] by auto

lemma some-third-chamberD-facet:
chamber C =⇒ zCC =⇒ z C some-third-chamber C D z
using facet-ex-third-chamber [of C z D] someI-ex[of λE . E∈X−{C ,D} ∧ zCE]

some-third-chamber-def
by auto

lemma some-third-chamberD-simplex:
chamber C =⇒ zCC =⇒ some-third-chamber C D z ∈ X
using facet-ex-third-chamber [of C z D] someI-ex[of λE . E∈X−{C ,D} ∧ zCE]

some-third-chamber-def
by auto

lemma some-third-chamberD-adj:
chamber C =⇒ zCC =⇒ C ∼ some-third-chamber C D z
using some-third-chamberD-facet by (fast intro: adjacentI)

lemma chamber-some-third-chamber :
chamber C =⇒ zCC =⇒ chamber (some-third-chamber C D z)
using chamber-adj some-third-chamberD-simplex some-third-chamberD-adj
by fast

lemma some-third-chamberD-ne:
assumes chamber C zCC
shows some-third-chamber C D z 6= C some-third-chamber C D z 6= D
using assms facet-ex-third-chamber [of C z D]

someI-ex[of λE . E∈X−{C ,D} ∧ zCE] some-third-chamber-def
by auto

end

end

5 Coxeter systems and complexes

A Coxeter system is a group that affords a presentation, where each gener-
ator is of order two, and each relator is an alternating word of even length
in two generators.
theory Coxeter
imports Chamber

begin

5.1 Coxeter-like systems

First we work in a group generated by elements of order two.

211

5.1.1 Locale definition and basic facts
locale PreCoxeterSystem =

fixes S :: ′w::group-add set
assumes genset-order2 : s∈S =⇒ add-order s = 2

begin

abbreviation W ≡ 〈S〉
abbreviation S-length ≡ word-length S
abbreviation S-reduced-for ≡ reduced-word-for S
abbreviation S-reduced ≡ reduced-word S
abbreviation relfun ≡ λs t. add-order (s+t)

lemma no-zero-genset: 0 /∈S
proof

assume 0∈S
moreover have add-order (0 :: ′w) = 1 using add-order0 by fast
ultimately show False using genset-order2 by simp

qed

lemma genset-order2-add: s∈S =⇒ s + s = 0
using add-order [of s] by (simp add: genset-order2 nataction-2)

lemmas genset-uminus = minus-unique[OF genset-order2-add]

lemma relfun-S : s∈S =⇒ relfun s s = 1
using add-order-relator [of s] by (auto simp add: genset-order2 nataction-2)

lemma relfun-eq1 : [[s∈S ; relfun s t = 1]] =⇒ t=s
using add-order-add-eq1 genset-uminus by fastforce

lemma S-relator-list: s∈S =⇒ pair-relator-list s s = [s,s]
using relfun-S alternating-list2 by simp

lemma S-sym: T ⊆ S =⇒ uminus ‘ T ⊆ T
using genset-uminus by auto

lemmas special-subgroup-eq-sum-list =
genby-sym-eq-sum-lists[OF S-sym]

lemmas genby-S-reduced-word-for-arg-min =
reduced-word-for-genby-sym-arg-min[OF S-sym]

lemmas in-genby-S-reduced-letter-set =
in-genby-sym-imp-in-reduced-letter-set[OF S-sym]

end

212

5.1.2 Special cosets

From a Coxeter system we will eventually construct an associated chamber
complex. To do so, we will consider the collection of special cosets: left
cosets of subgroups generated by subsets of the generating set S. This col-
lection forms a poset under the supset relation that, under a certain extra
assumption, can be used to form a simplicial complex whose poset of sim-
plices is isomorphic to this poset of special cosets. In the literature, groups
generated by subsets of S are often referred to as parabolic subgroups of W,
and their cosets as parabolic cosets, but following Garrett [2] we have opted
for the names special subgroups and special cosets.
context PreCoxeterSystem
begin

definition special-cosets :: ′w set set
where special-cosets ≡ (

⋃
T∈Pow S . (

⋃
w∈W . { w +o 〈T 〉 }))

abbreviation P ≡ special-cosets

lemma special-cosetsI : T∈Pow S =⇒ w∈W =⇒ w +o 〈T 〉 ∈ P
using special-cosets-def by auto

lemma special-coset-singleton: w∈W =⇒ {w}∈P
using special-cosetsI genby-lcoset-empty[of w] by fastforce

lemma special-coset-nempty: X∈P =⇒ X 6= {}
using special-cosets-def genby-lcoset-refl by fastforce

lemma special-subgroup-special-coset: T∈Pow S =⇒ 〈T 〉 ∈ P
using genby-0-closed special-cosetsI [of T] by fastforce

lemma special-cosets-lcoset-closed: w∈W =⇒ X∈P =⇒ w +o X ∈ P
using genby-add-closed unfolding special-cosets-def
by (fastforce simp add: set-plus-rearrange2)

lemma special-cosets-lcoset-shift: w∈W =⇒ ((+o) w) ‘ P = P
using special-cosets-lcoset-closed genby-uminus-closed
by (force simp add: set-plus-rearrange2)

lemma special-cosets-has-bottom: supset-has-bottom P
proof (rule ordering.has-bottomI , rule supset-poset)

show W∈P using special-subgroup-special-coset by fast
next

fix X assume X : X∈P
from this obtain w T where wT : w∈W T∈Pow S X = w +o 〈T 〉

using special-cosets-def by auto
thus X ⊆ W using genby-mono[of T] genby-lcoset-closed[of w] by auto

qed

213

lemma special-cosets-bottom: supset-bottom P = W
proof (rule supset-bottomI [THEN sym])

fix X assume X∈P
from this obtain w T where w∈W T∈Pow S X = w +o 〈T 〉

using special-cosets-def by auto
thus X⊆W

using genby-mono[of T S] set-plus-mono[of 〈T 〉 W] genby-lcoset-el-reduce
by force

qed (auto simp add: special-subgroup-special-coset)

end

5.1.3 Transfer from the free group over generators

We form a set of relators and show that it and S form a GroupWithGener-
atorsRelators. The associated quotient group G maps surjectively onto W.
In the CoxeterSystem locale below, this correspondence will be assumed to
be injective as well.
context PreCoxeterSystem
begin

abbreviation R :: ′w list set where R ≡ (
⋃

s∈S .
⋃

t∈S . {pair-relator-list s t})
abbreviation P ≡ map (charpair S) ‘ R
abbreviation P ′ ≡ GroupWithGeneratorsRelators.P ′ S R
abbreviation Q ≡ GroupWithGeneratorsRelators.Q S R
abbreviation G ≡ GroupWithGeneratorsRelators.G S R
abbreviation relator-freeword ≡

GroupWithGeneratorsRelators.relator-freeword S
abbreviation pair-relator-freeword :: ′w ⇒ ′w ⇒ ′w freeword

where pair-relator-freeword s t ≡ Abs-freelist (pair-relator-list s t)

abbreviation freeliftid ≡ freeword-funlift id

abbreviation induced-id :: ′w freeword set permutation ⇒ ′w
where induced-id ≡ GroupWithGeneratorsRelators.induced-id S R

lemma S-relator-freeword: s∈S =⇒ pair-relator-freeword s s = s[+]s
by (simp add: S-relator-list Abs-freeletter-add)

lemma map-charpair-map-pairtrue-R:
s∈S =⇒ t∈S =⇒

map (charpair S) (pair-relator-list s t) = map pairtrue (pair-relator-list s t)
using set-alternating-list map-charpair-uniform by fastforce

lemma relator-freeword:
s∈S =⇒ t∈S =⇒

pair-relator-freeword s t = relator-freeword (pair-relator-list s t)
using set-alternating-list

214

arg-cong[OF map-charpair-map-pairtrue-R, of s t Abs-freeword]
by fastforce

lemma relator-freewords: Abs-freelist ‘ R = P ′

using relator-freeword by force

lemma GroupWithGeneratorsRelators-S-R: GroupWithGeneratorsRelators S R
proof

fix rs assume rs: rs∈R
hence rs ′: rs ∈ lists S using set-alternating-list by fast
from rs ′ show rs ∈ lists (S ∪ uminus ‘ S) by fast
from rs show sum-list rs = 0 using sum-list-pair-relator-list by fast
from rs ′ show proper-signed-list (map (charpair S) rs)

using proper-signed-list-map-uniform-snd
arg-cong[of map (charpair S) rs map pairtrue rs proper-signed-list]

by fastforce
qed

lemmas GroupByPresentation-S-P =
GroupWithGeneratorsRelators.GroupByPresentation-S-P[

OF GroupWithGeneratorsRelators-S-R
]

lemmas Q-FreeS = GroupByPresentation.Q-FreeS [OF GroupByPresentation-S-P]

lemma relator-freeword-Q: s∈S =⇒ t∈S =⇒ pair-relator-freeword s t ∈ Q
using relator-freeword

GroupByPresentation.relators[OF GroupByPresentation-S-P]
by fastforce

lemmas P ′-FreeS =
GroupWithGeneratorsRelators.P ′-FreeS [

OF GroupWithGeneratorsRelators-S-R
]

lemmas GroupByPresentationInducedFun-S-P-id =
GroupWithGeneratorsRelators.GroupByPresentationInducedFun-S-P-id[

OF GroupWithGeneratorsRelators-S-R
]

lemma rconj-relator-freeword:
[[s∈S ; t∈S ; proper-signed-list xs; fst ‘ set xs ⊆ S]] =⇒

rconjby (Abs-freeword xs) (pair-relator-freeword s t) ∈ Q
using GroupWithGeneratorsRelators.rconj-relator-freeword[

OF GroupWithGeneratorsRelators-S-R
]
relator-freeword

by force

215

lemma lconjby-Abs-freelist-relator-freeword:
[[s∈S ; t∈S ; xs∈lists S]] =⇒

lconjby (Abs-freelist xs) (pair-relator-freeword s t) ∈ Q
using GroupWithGeneratorsRelators.lconjby-Abs-freelist-relator-freeword[

OF GroupWithGeneratorsRelators-S-R
]
relator-freeword

by force

lemma Abs-freelist-rev-append-alternating-list-in-Q:
assumes s∈S t∈S
shows Abs-freelist (rev (alternating-list n s t) @ alternating-list n s t) ∈ Q

proof (induct n)
case (Suc m)
define u where u = (if even m then s else t)
define x where x = Abs-freelist (rev (alternating-list m s t) @ alternating-list

m s t)
from u-def x-def assms have

Abs-freelist (rev (alternating-list (Suc m) s t) @
alternating-list (Suc m) s t) =
(pair-relator-freeword u u) + rconjby (Abs-freeletter u) x

using Abs-freelist-append[of
u # rev (alternating-list m s t) @ alternating-list m s t
[u]

]
Abs-freelist-Cons[of

u
rev (alternating-list m s t) @ alternating-list m s t

]
by (simp add: add.assoc[THEN sym] S-relator-freeword)

moreover from Suc assms u-def x-def have rconjby (Abs-freeletter u) x ∈ Q
using Abs-freeletter-in-FreeGroup-iff [of - S]

FreeGroup-genby-set-lconjby-set-rconjby-closed
by fastforce

ultimately show ?case
using u-def assms relator-freeword-Q genby-add-closed by fastforce

qed (simp add: zero-freeword.abs-eq[THEN sym] genby-0-closed)

lemma Abs-freeword-freelist-uminus-add-in-Q:
proper-signed-list xs =⇒ fst ‘ set xs ⊆ S =⇒
− Abs-freelistfst xs + Abs-freeword xs ∈ Q

proof (induct xs)
case (Cons x xs)
from Cons(2) have 1 :
− Abs-freelistfst (x#xs) + Abs-freeword (x#xs) =
−Abs-freelistfst xs + −Abs-freeletter (fst x)
+ Abs-freeword [x] + Abs-freeword xs

using Abs-freelist-Cons[of fst x map fst xs]
by (simp add: Abs-freeword-Cons[THEN sym] add.assoc minus-add)

216

show ?case
proof (cases snd x)

case True
with Cons show ?thesis

using 1
by (simp add:

Abs-freeletter-prod-conv-Abs-freeword
binrelchain-Cons-reduce

)
next

case False
define s where s = fst x
with Cons(3) have s-S : s∈S by simp
define q where q = rconjby (Abs-freelistfst xs) (pair-relator-freeword s s)
from s-def False Cons(3) have
− Abs-freelistfst (x#xs) + Abs-freeword (x#xs) =
−Abs-freelistfst xs + −pair-relator-freeword s s + Abs-freeword xs

using 1 surjective-pairing[of x] S-relator-freeword[of s]
uminus-Abs-freeword-singleton[of s False, THEN sym]

by (simp add: add.assoc)
with q-def have 2 :
− Abs-freelistfst (x#xs) + Abs-freeword (x#xs) =
−q + (−Abs-freelistfst xs + Abs-freeword xs)

by (simp add: rconjby-uminus[THEN sym] add.assoc[THEN sym])
moreover from q-def s-def Cons(3) have −q∈Q

using proper-signed-list-map-uniform-snd[of True map fst xs]
rconj-relator-freeword genby-uminus-closed

by fastforce
moreover from Cons have −Abs-freelistfst xs + Abs-freeword xs ∈ Q

by (simp add: binrelchain-Cons-reduce)
ultimately show ?thesis using genby-add-closed by simp

qed
qed (simp add: zero-freeword.abs-eq[THEN sym] genby-0-closed)

lemma Q-freelist-freeword ′:
[[proper-signed-list xs; fst ‘ set xs ⊆ S ; Abs-freelistfst xs ∈ Q]] =⇒

Abs-freeword xs ∈ Q
using Abs-freeword-freelist-uminus-add-in-Q genby-add-closed
by fastforce

lemma Q-freelist-freeword:
c ∈ FreeGroup S =⇒ Abs-freelist (map fst (freeword c)) ∈ Q =⇒ c ∈ Q

using freeword FreeGroupD Q-freelist-freeword ′ freeword-inverse[of c]
by fastforce

Here we show that the lift of the identity map to the free group on S is
really just summation.
lemma freeliftid-Abs-freeword-conv-sum-list:

proper-signed-list xs =⇒ fst ‘ set xs ⊆ S =⇒

217

freeliftid (Abs-freeword xs) = sum-list (map fst xs)
using freeword-funlift-Abs-freeword[of xs id] genset-uminus

sum-list-map-cong[of xs apply-sign id fst]
by fastforce

end

5.1.4 Words in generators containing alternating subwords

Besides cancelling subwords equal to relators, the primary algebraic manip-
ulation in seeking to reduce a word in generators in a Coxeter system is to
reverse the order of alternating subwords of half the length of the associated
relator, in order to create adjacent repeated letters that can be cancelled.
Here we detail the mechanics of such manipulations.
context PreCoxeterSystem
begin

lemma sum-list-pair-relator-halflist-flip:
s∈S =⇒ t∈S =⇒

sum-list (pair-relator-halflist s t) = sum-list (pair-relator-halflist t s)
using add-order [of s+t] genset-order2-add

alternating-order2-even-cancel-right[of s t 2∗(relfun s t)]
by (simp add: alternating-sum-list-conv-nataction add-order-add-sym)

definition flip-altsublist-adjacent :: ′w list ⇒ ′w list ⇒ bool
where flip-altsublist-adjacent ss ts

≡ ∃ s t as bs. ss = as @ (pair-relator-halflist s t) @ bs ∧
ts = as @ (pair-relator-halflist t s) @ bs

abbreviation flip-altsublist-chain ≡ binrelchain flip-altsublist-adjacent

lemma flip-altsublist-adjacentI :
ss = as @ (pair-relator-halflist s t) @ bs =⇒

ts = as @ (pair-relator-halflist t s) @ bs =⇒
flip-altsublist-adjacent ss ts

using flip-altsublist-adjacent-def by fast

lemma flip-altsublist-adjacent-Cons-grow:
assumes flip-altsublist-adjacent ss ts
shows flip-altsublist-adjacent (a#ss) (a#ts)

proof−
from assms obtain s t as bs

where ssts: ss = as @ (pair-relator-halflist s t) @ bs
ts = as @ (pair-relator-halflist t s) @ bs

using flip-altsublist-adjacent-def
by auto

from ssts have
a#ss = (a#as) @ (pair-relator-halflist s t) @ bs
a#ts = (a#as) @ (pair-relator-halflist t s) @ bs

218

by auto
thus ?thesis by (fast intro: flip-altsublist-adjacentI)

qed

lemma flip-altsublist-chain-map-Cons-grow:
flip-altsublist-chain tss =⇒ flip-altsublist-chain (map ((#) t) tss)
by (induct tss rule: list-induct-CCons)

(auto simp add:
binrelchain-Cons-reduce[of flip-altsublist-adjacent]
flip-altsublist-adjacent-Cons-grow

)

lemma flip-altsublist-adjacent-refl:
ss 6= [] =⇒ ss∈lists S =⇒ flip-altsublist-adjacent ss ss

proof (induct ss rule: list-nonempty-induct)
case (single s)
hence [s] = [] @ pair-relator-halflist s s @ []

using relfun-S by simp
thus ?case by (fast intro: flip-altsublist-adjacentI)

next
case cons thus ?case using flip-altsublist-adjacent-Cons-grow by simp

qed

lemma flip-altsublist-adjacent-sym:
flip-altsublist-adjacent ss ts =⇒ flip-altsublist-adjacent ts ss
using flip-altsublist-adjacent-def flip-altsublist-adjacentI by auto

lemma rev-flip-altsublist-chain:
flip-altsublist-chain xss =⇒ flip-altsublist-chain (rev xss)
using flip-altsublist-adjacent-sym binrelchain-snoc[of flip-altsublist-adjacent]
by (induct xss rule: list-induct-CCons) auto

lemma flip-altsublist-adjacent-set:
assumes ss∈lists S flip-altsublist-adjacent ss ts
shows set ts = set ss

proof−
from assms obtain s t as bs where ssts:

ss = as @ (pair-relator-halflist s t) @ bs
ts = as @ (pair-relator-halflist t s) @ bs
using flip-altsublist-adjacent-def
by auto

with assms(1) show ?thesis
using set-alternating-list2 [of relfun s t s t]

set-alternating-list2 [of relfun t s t s]
add-order-add-sym[of t s] relfun-eq1

by (cases relfun s t rule: nat-cases-2Suc) auto
qed

lemma flip-altsublist-adjacent-set-ball:

219

∀ ss∈lists S . ∀ ts. flip-altsublist-adjacent ss ts −→ set ts = set ss
using flip-altsublist-adjacent-set by fast

lemma flip-altsublist-adjacent-lists:
ss ∈ lists S =⇒ flip-altsublist-adjacent ss ts =⇒ ts ∈ lists S
using flip-altsublist-adjacent-set by fast

lemma flip-altsublist-adjacent-lists-ball:
∀ ss∈lists S . ∀ ts. flip-altsublist-adjacent ss ts −→ ts ∈ lists S
using flip-altsublist-adjacent-lists by fast

lemma flip-altsublist-chain-lists:
ss ∈ lists S =⇒ flip-altsublist-chain (ss#xss@[ts]) =⇒ ts ∈ lists S
using flip-altsublist-adjacent-lists

binrelchain-propcong-Cons-snoc[of
λss. ss∈lists S flip-altsublist-adjacent ss xss ts

]
by fast

lemmas flip-altsublist-chain-funcong-Cons-snoc =
binrelchain-setfuncong-Cons-snoc[OF flip-altsublist-adjacent-lists-ball]

lemmas flip-altsublist-chain-set =
flip-altsublist-chain-funcong-Cons-snoc[

OF flip-altsublist-adjacent-set-ball
]

lemma flip-altsublist-adjacent-length:
flip-altsublist-adjacent ss ts =⇒ length ts = length ss
unfolding flip-altsublist-adjacent-def
by (auto simp add: add-order-add-sym length-alternating-list)

lemmas flip-altsublist-chain-length =
binrelchain-funcong-Cons-snoc[

of flip-altsublist-adjacent length, OF flip-altsublist-adjacent-length, simplified
]

lemma flip-altsublist-adjacent-sum-list:
assumes ss ∈ lists S flip-altsublist-adjacent ss ts
shows sum-list ts = sum-list ss

proof−
from assms(2) obtain s t as bs where stasbs:

ss = as @ (pair-relator-halflist s t) @ bs
ts = as @ (pair-relator-halflist t s) @ bs
using flip-altsublist-adjacent-def
by auto

show ?thesis
proof (cases relfun s t)

case 0 thus ?thesis using stasbs by (simp add: add-order-add-sym)

220

next
case Suc
with assms stasbs have s∈S t∈S

using set-alternating-list1 [of add-order (s+t) s t]
set-alternating-list1 [of add-order (t+s) t s]
add-order-add-sym[of t]
flip-altsublist-adjacent-lists[of ss ts]

by auto
with stasbs show ?thesis

using sum-list-pair-relator-halflist-flip by simp
qed

qed

lemma flip-altsublist-adjacent-sum-list-ball:
∀ ss∈lists S . ∀ ts. flip-altsublist-adjacent ss ts −→ sum-list ts = sum-list ss
using flip-altsublist-adjacent-sum-list by fast

lemma S-reduced-forI-flip-altsublist-adjacent:
S-reduced-for w ss =⇒ flip-altsublist-adjacent ss ts =⇒ S-reduced-for w ts
using reduced-word-for-lists[of S] reduced-word-for-sum-list

flip-altsublist-adjacent-lists flip-altsublist-adjacent-sum-list
flip-altsublist-adjacent-length

by (fastforce intro: reduced-word-forI-compare)

lemma flip-altsublist-adjacent-in-Q ′:
fixes as bs s t
defines xs: xs ≡ as @ pair-relator-halflist s t @ bs
and ys: ys ≡ as @ pair-relator-halflist t s @ bs
assumes Axs: Abs-freelist xs ∈ Q
shows Abs-freelist ys ∈ Q

proof−
define X Y A B half-st half2-st half-ts

where X = Abs-freelist xs
and Y = Abs-freelist ys
and A = Abs-freelist as
and B = Abs-freelist bs
and half-st = Abs-freelist (pair-relator-halflist s t)
and half2-st = Abs-freelist (pair-relator-halflist2 s t)
and half-ts = Abs-freelist (pair-relator-halflist t s)

define z where z = −half2-st + B
define w1 w2 where w1 = rconjby z (pair-relator-freeword s t)

and w2 = Abs-freelist (rev (pair-relator-halflist t s) @ pair-relator-halflist t s)
define w3 where w3 = rconjby B w2

from w1-def z-def
have w1 ′: w1 = rconjby B (lconjby half2-st (pair-relator-freeword s t))
by (simp add: rconjby-add)

hence −w1 = rconjby B (lconjby half2-st (−pair-relator-freeword s t))
using lconjby-uminus[of half2-st] by (simp add: rconjby-uminus[THEN sym])

221

moreover from X-def xs A-def half-st-def B-def have X = A + B + rconjby B
half-st

by (simp add:
Abs-freelist-append-append[THEN sym] add.assoc[THEN sym]

)
ultimately have

X + −w1 = A + B +
(rconjby B (half-st + (half2-st + −pair-relator-freeword s t − half2-st)))

by (simp add: add.assoc add-rconjby)
moreover from w2-def half2-st-def half-ts-def have w2 = half2-st + half-ts

by (simp add:
Abs-freelist-append[THEN sym]
pair-relator-halflist2-conv-rev-pair-relator-halflist

)
ultimately have

X + −w1 + w3 = A + B + (rconjby B (−half2-st + (half2-st + half-ts)))
using half-st-def half2-st-def w3-def add-assoc4 [

of half-st half2-st −pair-relator-freeword s t −half2-st
]

by (simp add:
Abs-freelist-append[THEN sym] pair-relator-halflist-append
add.assoc add-rconjby

)
hence Y ′: Y = X − w1 + w3

using A-def half-ts-def B-def ys Y-def
by (simp add:

add.assoc[THEN sym]
Abs-freelist-append-append[THEN sym]

)

from Axs have xs-S : xs ∈ lists S using Q-FreeS FreeGroupD-transfer ′ by fast
have w1∈Q ∧ w3∈Q
proof (cases relfun s t)

case 0 with w1-def w2-def w3-def show ?thesis using genby-0-closed
by (auto simp add:

zero-freeword.abs-eq[THEN sym]
add-order-add-sym

)
next

case (Suc m) have m: add-order (s+t) = Suc m by fact
have st: {s,t} ⊆ S
proof (cases m)

case 0 with m xs xs-S show ?thesis
using set-alternating-list1 relfun-eq1 by force

next
case Suc with m xs xs-S show ?thesis

using set-alternating-list2 [of add-order (s+t) s t] by fastforce
qed
from xs xs-S B-def have B-S : B ∈ FreeGroup S

222

using Abs-freelist-in-FreeGroup[of bs S] by simp
moreover from w2-def have w2∈Q

using st Abs-freelist-rev-append-alternating-list-in-Q[of t s add-order (t+s)]
by fast

ultimately have w3 ∈ Q
using w3-def FreeGroup-genby-set-lconjby-set-rconjby-closed by fast

moreover from half2-st-def have w1 ∈ Q
using w1 ′ st B-S alternating-list-in-lists[of s S] alternating-list-in-lists[of t S]

lconjby-Abs-freelist-relator-freeword[of s t]
by (force intro: FreeGroup-genby-set-lconjby-set-rconjby-closed)

ultimately show ?thesis by fast
qed
with X-def Y-def Axs show ?thesis

using Y ′ genby-diff-closed[of X] genby-add-closed[of X−w1 - w3] by simp

qed

lemma flip-altsublist-adjacent-in-Q:
Abs-freelist ss ∈ Q =⇒ flip-altsublist-adjacent ss ts =⇒ Abs-freelist ts ∈ Q
using flip-altsublist-adjacent-def flip-altsublist-adjacent-in-Q ′ by auto

lemma flip-altsublist-chain-G-in-Q:
[[Abs-freelist ss ∈ Q; flip-altsublist-chain (ss#xss@[ts])]] =⇒ Abs-freelist ts ∈ Q
using flip-altsublist-adjacent-in-Q

binrelchain-propcong-Cons-snoc[of
λss. Abs-freelist ss ∈ Q
flip-altsublist-adjacent

]
by fast

lemma alternating-S-no-flip:
assumes s∈S t∈S n > 0 n < relfun s t ∨ relfun s t = 0
shows sum-list (alternating-list n s t) 6= sum-list (alternating-list n t s)

proof
assume sum-list (alternating-list n s t) = sum-list (alternating-list n t s)
hence sum-list (alternating-list n s t) + − sum-list (alternating-list n t s) = 0

by simp
with assms(1 ,2) have sum-list (alternating-list (2∗n) s t) = 0

by (cases even n)
(auto simp add:

genset-order2-add uminus-sum-list-alternating-order2
sum-list.append[THEN sym]
alternating-list-append mult-2

)
with assms(3 ,4) less-add-order-eq-0-contra add-order-eq0 show False

by (auto simp add: alternating-sum-list-conv-nataction)
qed

lemma exchange-alternating-not-in-alternating:

223

assumes n ≥ 2 n < relfun s t ∨ relfun s t = 0
S-reduced-for w (alternating-list n s t @ cs)
alternating-list n s t @ cs = xs@[x]@ys S-reduced-for w (t#xs@ys)

shows length xs ≥ n
proof−

from assms(1) obtain m k where n: n = Suc m and m: m = Suc k
using gr0-implies-Suc by fastforce

define altnst altnts altmts altkst
where altnst = alternating-list n s t
and altnts = alternating-list n t s
and altmts = alternating-list m t s
and altkst = alternating-list k s t

from altnst-def altmts-def n have altnmst: altnst = s # altmts
using alternating-list-Suc-Cons[of m] by fastforce

with assms(3) altnst-def have s-S : s∈S using reduced-word-for-lists by fastforce
from assms(5) have t-S : t∈S using reduced-word-for-lists by fastforce
from m altnmst altmts-def altkst-def have altnkst: altnst = s # t # altkst

using alternating-list-Suc-Cons by fastforce
have ¬ length xs < n
proof (cases Suc (length xs) = n)

case True
with assms(4 ,5) n altnts-def have flip: S-reduced-for w (altnts @ cs)

using length-alternating-list[of n s t]
alternating-list-Suc-Cons[of m t s]

by auto
from altnst-def have sum-list altnst = sum-list altnts

using reduced-word-for-sum-list[OF assms(3)]
reduced-word-for-sum-list[OF flip]

by auto
with n assms(2) altnst-def altnts-def show ?thesis

using alternating-S-no-flip[OF s-S t-S] by fast
next

case False show ?thesis
proof (cases xs ys rule: two-lists-cases-snoc-Cons)

case Nil1
from Nil1 (1) assms(4) altnkst altnst-def have ys = t # altkst @ cs by auto
with Nil1 (1) assms(5) show ?thesis

using t-S genset-order2-add[of t]
contains-order2-nreduced[of t S [] altkst@cs]
reduced-word-for-imp-reduced-word

by force
next

case Nil2 with assms(4) altnst-def False show ?thesis
using length-append[of altnst cs]
by (fastforce simp add: length-alternating-list)

next
case (snoc-Cons us u z zs)
with assms(4 ,5) altnst-def

have 1 : altnst @ cs = us@[u,x,z]@zs S-reduced-for w (t#us@[u,z]@zs)

224

by auto
from 1 (1) snoc-Cons(1) False altnst-def show ?thesis

using take-append[of n altnst cs] take-append[of n us@[u,x,z] zs]
set-alternating-list[of n s t]
alternating-list-alternates[of n s t us u]
reduced-word-for-imp-reduced-word[OF 1 (2)]
s-S t-S genset-order2-add
contains-order2-nreduced[of u S t#us]

by (force simp add: length-alternating-list)
qed

qed
thus ?thesis by fastforce

qed

end

5.1.5 Preliminary facts on the word problem

The word problem seeks criteria for determining whether two words over
the generator set represent the same element in W. Here we establish one
direction of the word problem, as well as a preliminary step toward the other
direction.
context PreCoxeterSystem
begin

lemmas flip-altsublist-chain-sum-list =
flip-altsublist-chain-funcong-Cons-snoc[OF flip-altsublist-adjacent-sum-list-ball]

— This lemma represents one direction in the word problem: if a word in generators
can be transformed into another by a sequence of manipulations, each of which
consists of replacing a half-relator subword by its reversal, then the two words sum
to the same element of W.

lemma reduced-word-problem-eq-hd-step:
assumes step:

∧
y ss ts. [[

S-length y < S-length w; y 6=0 ; S-reduced-for y ss; S-reduced-for y ts
]] =⇒ ∃ xss. flip-altsublist-chain (ss # xss @ [ts])

and set-up: S-reduced-for w (a#ss) S-reduced-for w (a#ts)
shows ∃ xss. flip-altsublist-chain ((a#ss) # xss @ [a#ts])

proof (cases ss=ts)
case True
with set-up(1) have flip-altsublist-chain ((a#ss) # [] @ [a#ts])

using reduced-word-for-lists flip-altsublist-adjacent-refl by fastforce
thus ?thesis by fast

next
case False
define y where y = sum-list ss
with set-up(1) have ss: S-reduced-for y ss

using reduced-word-for-imp-reduced-word reduced-word-Cons-reduce by fast

225

moreover from y-def ss have ts: S-reduced-for y ts
using reduced-word-for-sum-list[OF set-up(1)]

reduced-word-for-sum-list[OF set-up(2)]
reduced-word-for-eq-length[OF set-up(1) set-up(2)]
reduced-word-for-lists[OF set-up(2)]

by (auto intro: reduced-word-forI-compare)
moreover from ss set-up(1) have S-length y < S-length w

using reduced-word-for-length reduced-word-for-length by fastforce
moreover from False have y 6= 0

using ss ts reduced-word-for-0-imp-nil reduced-word-for-0-imp-nil by fastforce
ultimately show ?thesis

using step flip-altsublist-chain-map-Cons-grow by fastforce
qed

end

5.1.6 Preliminary facts related to the deletion condition

The deletion condition states that in a Coxeter system, every non-reduced
word in the generating set can be shortened to an equivalent word by delet-
ing some particular pair of letters. This condition is both necessary and
sufficient for a group generated by elements of order two to be a Coxeter
system. Here we establish some facts related to the deletion condition that
are true in any group generated by elements of order two.
context PreCoxeterSystem
begin

abbreviation H ≡ (
⋃

w∈W . lconjby w ‘ S) — the set of reflections

abbreviation lift-signed-lconjperm ≡ freeword-funlift signed-lconjpermutation

lemma lconjseq-reflections: ss∈lists S =⇒ set (lconjseq ss) ⊆ H
using special-subgroup-eq-sum-list[of S]
by (induct ss rule: rev-induct) (auto simp add: lconjseq-snoc)

lemma deletion ′:
ss ∈ lists S =⇒ ¬ distinct (lconjseq ss) =⇒
∃ a b as bs cs. ss = as @ [a] @ bs @ [b] @ cs ∧

sum-list ss = sum-list (as@bs@cs)
proof (induct ss)

case (Cons s ss)
show ?case
proof (cases distinct (lconjseq ss))

case True with Cons(2 ,3) show ?thesis
using subset-inj-on[OF lconjby-inj, of set (lconjseq ss) s]

distinct-map[of lconjby s]
genset-order2-add order2-hd-in-lconjseq-deletion[of s ss]

by (force simp add: algebra-simps)

226

next
case False
with Cons(1 ,2) obtain a b as bs cs where

s#ss = (s#as) @ [a] @ bs @ [b] @ cs
sum-list (s#ss) = sum-list ((s#as) @ bs @ cs)
by auto

thus ?thesis by fast
qed

qed simp

lemma S-reduced-imp-distinct-lconjseq ′:
assumes ss ∈ lists S ¬ distinct (lconjseq ss)
shows ¬ S-reduced ss

proof
assume ss: S-reduced ss
from assms obtain as a bs b cs

where decomp: ss = as @ [a] @ bs @ [b] @ cs
sum-list ss = sum-list (as@bs@cs)

using deletion ′[of ss]
by fast

from ss decomp assms(1) show False
using reduced-word-for-minimal[of S - ss as@bs@cs] by auto

qed

lemma S-reduced-imp-distinct-lconjseq: S-reduced ss =⇒ distinct (lconjseq ss)
using reduced-word-for-lists S-reduced-imp-distinct-lconjseq ′ by fast

lemma permutation-lift-signed-lconjperm-eq-signed-list-lconjaction ′:
proper-signed-list xs =⇒ fst ‘ set xs ⊆ S =⇒

permutation (lift-signed-lconjperm (Abs-freeword xs)) =
signed-list-lconjaction (map fst xs)

proof (induct xs)
case Nil
have Abs-freeword ([]:: ′w signed list) = (0 :: ′w freeword)

using zero-freeword.abs-eq by simp
thus ?case by (simp add: zero-permutation.rep-eq freeword-funlift-0)

next
case (Cons x xs)
obtain s b where x: x=(s,b) by fastforce
with Cons show ?case

using Abs-freeword-Cons[of x xs]
binrelchain-Cons-reduce[of nflipped-signed x xs]
bij-signed-lconjaction[of s] genset-order2-add[of s]

by (cases b)
(auto simp add:

plus-permutation.rep-eq freeword-funlift-add
freeword-funlift-Abs-freeletter
Abs-permutation-inverse uminus-permutation.rep-eq
the-inv-signed-lconjaction-by-order2

227

freeword-funlift-uminus-Abs-freeletter
)

qed

lemma permutation-lift-signed-lconjperm-eq-signed-list-lconjaction:
x ∈ FreeGroup S =⇒

permutation (lift-signed-lconjperm x) =
signed-list-lconjaction (map fst (freeword x))

using freeword FreeGroup-def [of S] freeword-inverse[of x]
permutation-lift-signed-lconjperm-eq-signed-list-lconjaction ′

by force

lemma even-count-lconjseq-rev-relator :
s∈S =⇒ t∈S =⇒ even (count-list (lconjseq (rev (pair-relator-list s t))) x)
using even-count-lconjseq-alternating-order2 [of t]
by (simp add: genset-order2-add add-order rev-pair-relator-list)

lemma GroupByPresentationInducedFun-S-R-signed-lconjaction:
GroupByPresentationInducedFun S P signed-lconjpermutation

proof (intro-locales, rule GroupByPresentation-S-P, unfold-locales)
fix ps assume ps: ps∈P
define r where r = Abs-freeword ps
with ps have r : r∈P ′ by fast
then obtain s t where st: s∈S t∈S r = pair-relator-freeword s t

using relator-freewords by fast
from r st(3)

have 1 : permutation (lift-signed-lconjperm r) =
signed-list-lconjaction (pair-relator-list s t)

using P ′-FreeS
permutation-lift-signed-lconjperm-eq-signed-list-lconjaction
Abs-freelist-inverse[of pair-relator-list s t]
map-fst-map-const-snd[of True pair-relator-list s t]

by force
have permutation (lift-signed-lconjperm r) = id
proof

fix x
show lift-signed-lconjperm r → x = id x
proof

show snd (freeword-funlift signed-lconjpermutation r → x) = snd (id x)
using 1 st(1 ,2) even-count-lconjseq-rev-relator genset-order2-add

set-alternating-list[of 2∗relfun s t s t]
signed-list-lconjaction-snd[of pair-relator-list s t x]

by fastforce
qed (simp add: 1 signed-list-lconjaction-fst sum-list-pair-relator-list)

qed
moreover

have permutation (0 :: ′w signed permutation) = (id:: ′w signed ⇒ ′w signed)
using zero-permutation.rep-eq
by fast

228

ultimately show lift-signed-lconjperm r = 0
using permutation-inject by fastforce

qed

end

5.2 Coxeter-like systems with deletion

Here we add the so-called deletion condition as an assumption, and explore
its consequences.

5.2.1 Locale definition
locale PreCoxeterSystemWithDeletion = PreCoxeterSystem S

for S :: ′w::group-add set
+ assumes deletion:

ss ∈ lists S =⇒ ¬ reduced-word S ss =⇒
∃ a b as bs cs. ss = as @ [a] @ bs @ [b] @ cs ∧

sum-list ss = sum-list (as@bs@cs)

5.2.2 Consequences of the deletion condition
context PreCoxeterSystemWithDeletion
begin

lemma deletion-reduce:
ss ∈ lists S =⇒ ∃ ts. ts ∈ ssubseqs ss ∩ reduced-words-for S (sum-list ss)

proof (cases S-reduced ss)
case True
thus ss ∈ lists S =⇒

∃ ts. ts ∈ ssubseqs ss ∩ reduced-words-for S (sum-list ss)
by (force simp add: ssubseqs-refl)

next
case False
have ss ∈ lists S =⇒ ¬ S-reduced ss =⇒

∃ ts. ts ∈ ssubseqs ss ∩ reduced-words-for S (sum-list ss)
proof (induct ss rule: length-induct)

fix xs:: ′w list
assume xs:
∀ ys. length ys < length xs −→ ys ∈ lists S −→ ¬ S-reduced ys
−→ (∃ ts. ts ∈ ssubseqs ys ∩ reduced-words-for S (sum-list ys))

xs ∈ lists S ¬ S-reduced xs
from xs(2 ,3) obtain as a bs b cs

where asbscs: xs = as@[a]@bs@[b]@cs sum-list xs = sum-list (as@bs@cs)
using deletion[of xs]
by fast

show ∃ ts. ts ∈ ssubseqs xs ∩ reduced-words-for S (sum-list xs)
proof (cases S-reduced (as@bs@cs))

case True with asbscs xs(2) show ?thesis

229

using delete2-ssubseqs by fastforce
next

case False
moreover from asbscs(1) xs(2)

have length (as@bs@cs) < length xs as@bs@cs ∈ lists S
by auto

ultimately obtain ts
where ts: ts ∈ ssubseqs (as@bs@cs) ∩

reduced-words-for S (sum-list (as@bs@cs))
using xs(1 ,2) asbscs(1)
by fast

with asbscs show ?thesis
using delete2-ssubseqs[of as bs cs a b] ssubseqs-subset by auto

qed
qed
with False

show ss ∈ lists S =⇒
∃ ts. ts ∈ ssubseqs ss ∩ reduced-words-for S (sum-list ss)

by fast
qed

lemma deletion-reduce ′:
ss ∈ lists S =⇒ ∃ ts∈reduced-words-for S (sum-list ss). set ts ⊆ set ss
using deletion-reduce[of ss] subseqs-powset[of ss] by auto

end

5.2.3 The exchange condition

The exchange condition states that, given a reduced word in the generators,
if prepending a letter to the word does not remain reduced, then the new
word can be shortened to a word equivalent to the original one by deleting
some letter other than the prepended one. Thus, one able to exchange some
letter for the addition of a desired letter at the beginning of a word, without
changing the elemented represented.
context PreCoxeterSystemWithDeletion
begin

lemma exchange:
assumes s∈S S-reduced-for w ss ¬ S-reduced (s#ss)
shows ∃ t as bs. ss = as@t#bs ∧ reduced-word-for S w (s#as@bs)

proof−
from assms(2) have ss-lists: ss ∈ lists S using reduced-word-for-lists by fast
with assms(1) have s#ss ∈ lists S by simp
with assms(3) obtain a b as bs cs

where del: s#ss = as @ [a] @ bs @ [b] @ cs
sum-list (s#ss) = sum-list (as@bs@cs)

using deletion[of s#ss]

230

by fastforce
show ?thesis
proof (cases as)

case Nil with assms(1 ,2) del show ?thesis
using reduced-word-for-sum-list add.assoc[of s s w] genset-order2-add ss-lists
by (fastforce intro: reduced-word-forI-compare)

next
case (Cons d ds) with del assms(2) show ?thesis

using ss-lists reduced-word-for-imp-reduced-word
reduced-word-for-minimal[of S sum-list ss ss ds@bs@cs]

by fastforce
qed

qed

lemma reduced-head-imp-exchange:
assumes reduced-word-for S w (s#as) reduced-word-for S w cs
shows ∃ a ds es. cs = ds@[a]@es ∧ reduced-word-for S w (s#ds@es)

proof−
from assms(1) have s-S : s∈S using reduced-word-for-lists by fastforce
moreover have ¬ S-reduced (s#cs)
proof (rule not-reduced-word-for)

show as ∈ lists S using reduced-word-for-lists[OF assms(1)] by simp
from assms(1 ,2) show sum-list as = sum-list (s#cs)
using s-S reduced-word-for-sum-list[of S w] add.assoc[of s s] genset-order2-add
by fastforce

from assms(1 ,2) show length as < length (s#cs)
using reduced-word-for-length[of S w] by fastforce

qed
ultimately obtain a ds es

where cs = ds@[a]@es reduced-word-for S w (s#ds@es)
using assms(2) exchange[of s w cs]
by auto

thus ?thesis by fast
qed

end

5.2.4 More on words in generators containing alternating sub-
words

Here we explore more of the mechanics of manipulating words over S that
contain alternating subwords, in preparation of the word problem.
context PreCoxeterSystemWithDeletion
begin

lemma two-reduced-heads-imp-reduced-alt-step:
assumes s 6=t reduced-word-for S w (t#bs) n < relfun s t ∨ relfun s t = 0

reduced-word-for S w (alternating-list n s t @ cs)
shows ∃ ds. reduced-word-for S w (alternating-list (Suc n) t s @ ds)

231

proof−
define altnst where altnst = alternating-list n s t
with assms(2 ,4) obtain x xs ys

where xxsys: altnst @ cs = xs@[x]@ys reduced-word-for S w (t#xs@ys)
using reduced-head-imp-exchange
by fast

show ?thesis
proof (cases n rule: nat-cases-2Suc)

case 0 with xxsys(2) show ?thesis by auto
next

case 1 with assms(1 ,4) xxsys altnst-def show ?thesis
using reduced-word-for-sum-list[of S w s#cs]

reduced-word-for-sum-list[of S w t#cs]
by (cases xs) auto

next
case (SucSuc k)
with assms(3 ,4) xxsys altnst-def have length xs ≥ n

using exchange-alternating-not-in-alternating by simp
moreover define ds where ds = take (length xs − n) cs
ultimately have t#xs@ys = alternating-list (Suc n) t s @ ds @ ys

using xxsys(1) altnst-def take-append[of length xs altnst cs]
alternating-list-Suc-Cons[of n t]

by (fastforce simp add: length-alternating-list)
with xxsys(2) show ?thesis by auto

qed
qed

lemma two-reduced-heads-imp-reduced-alt ′:
assumes s 6=t reduced-word-for S w (s#as) reduced-word-for S w (t#bs)
shows n ≤ relfun s t ∨ relfun s t = 0 =⇒ (∃ cs.

reduced-word-for S w (alternating-list n s t @ cs) ∨
reduced-word-for S w (alternating-list n t s @ cs)

)
proof (induct n)

case 0 from assms(2) show ?case by auto
next

case (Suc m) thus ?case
using add-order-add-sym[of s t]

two-reduced-heads-imp-reduced-alt-step[
OF assms(1)[THEN not-sym] assms(2), of m

]
two-reduced-heads-imp-reduced-alt-step[OF assms(1 ,3), of m]

by fastforce
qed

lemma two-reduced-heads-imp-reduced-alt:
assumes s 6=t reduced-word-for S w (s#as) reduced-word-for S w (t#bs)
shows ∃ cs. reduced-word-for S w (pair-relator-halflist s t @ cs)

proof−

232

define altst altts
where altst = pair-relator-halflist s t

and altts = pair-relator-halflist t s
then obtain cs

where cs: reduced-word-for S w (altst @ cs) ∨
reduced-word-for S w (altts @ cs)

using add-order-add-sym[of t] two-reduced-heads-imp-reduced-alt ′[OF assms]
by auto

moreover from altst-def altts-def
have reduced-word-for S w (altts @ cs) =⇒ reduced-word-for S w (altst @ cs)
using reduced-word-for-lists[OF assms(2)] reduced-word-for-lists[OF assms(3)]

flip-altsublist-adjacent-def
by (force intro: S-reduced-forI-flip-altsublist-adjacent

simp add: add-order-add-sym)
ultimately show ∃ cs. reduced-word-for S w (altst @ cs) by fast

qed

lemma two-reduced-heads-imp-nzero-relfun:
assumes s 6=t reduced-word-for S w (s#as) reduced-word-for S w (t#bs)
shows relfun s t 6= 0

proof
assume 1 : relfun s t = 0
define altst altts

where altst = alternating-list (Suc (S-length w)) s t
and altts = alternating-list (Suc (S-length w)) t s

with 1 obtain cs
where reduced-word-for S w (altst @ cs) ∨

reduced-word-for S w (altts @ cs)
using two-reduced-heads-imp-reduced-alt ′[OF assms]
by fast

moreover from altst-def altts-def
have length (altst @ cs) > S-length w

length (altts @ cs) > S-length w
using length-alternating-list[of - s] length-alternating-list[of - t]
by auto

ultimately show False using reduced-word-for-length by fastforce
qed

end

5.2.5 The word problem

Here we establish the other direction of the word problem for reduced words.
context PreCoxeterSystemWithDeletion
begin

lemma reduced-word-problem-ConsCons-step:
assumes

∧
y ss ts. [[S-length y < S-length w; y 6=0 ; reduced-word-for S y ss;

reduced-word-for S y ts]] =⇒ ∃ xss. flip-altsublist-chain (ss # xss @ [ts])

233

reduced-word-for S w (a#as) reduced-word-for S w (b#bs) a 6=b
shows ∃ xss. flip-altsublist-chain ((a#as)#xss@[b#bs])

proof−
from assms(2−4) obtain cs

where cs: reduced-word-for S w (pair-relator-halflist a b @ cs)
using two-reduced-heads-imp-reduced-alt
by fast

define rs us where rs = pair-relator-halflist a b @ cs
and us = pair-relator-halflist b a @ cs

from assms(2 ,3) have a-S : a∈S and b-S : b∈S
using reduced-word-for-lists[of S - a#as] reduced-word-for-lists[of S - b#bs]
by auto

with rs-def us-def have midlink: flip-altsublist-adjacent rs us
using add-order-add-sym[of b a] flip-altsublist-adjacent-def by fastforce

from assms(2−4) have relfun a b 6= 0
using two-reduced-heads-imp-nzero-relfun by fast

from this obtain k where k: relfun a b = Suc k
using not0-implies-Suc by auto

define qs vs
where qs = alternating-list k b a @ cs

and vs = alternating-list k a b @ cs
with k rs-def us-def have rs ′: rs = a # qs and us ′: us = b # vs

using add-order-add-sym[of b a] alternating-list-Suc-Cons[of k] by auto
from assms(1 ,2) cs rs-def rs ′

have startlink: as 6= qs =⇒ ∃ xss. flip-altsublist-chain ((a#as) # xss @ [rs])
using reduced-word-problem-eq-hd-step
by fastforce

from assms(1 ,3) rs-def cs us ′

have endlink: bs 6= vs =⇒ ∃ xss. flip-altsublist-chain (us # xss @ [b#bs])
using midlink flip-altsublist-adjacent-sym

S-reduced-forI-flip-altsublist-adjacent[of w rs]
reduced-word-problem-eq-hd-step[of w]

by auto
show ?thesis
proof (cases as = qs bs = vs rule: two-cases)

case both
with rs ′ us ′ have flip-altsublist-chain ((a#as) # [] @ [b#bs])

using midlink by simp
thus ?thesis by fast

next
case one
with rs ′ obtain xss

where flip-altsublist-chain ((a#as) # (us # xss) @ [b#bs])
using endlink midlink
by auto

thus ?thesis by fast
next

case other
from other(1) obtain xss where flip-altsublist-chain ((a#as) # xss @ [rs])

234

using startlink by fast
with other(2) us ′ startlink

have flip-altsublist-chain ((a#as) # (xss@[rs]) @ [b#bs])
using midlink binrelchain-snoc[of flip-altsublist-adjacent (a#as)#xss]
by simp

thus ?thesis by fast
next

case neither
from neither(1) obtain xss

where flip-altsublist-chain ((a#as) # xss @ [rs])
using startlink
by fast

with neither(2) obtain yss
where flip-altsublist-chain ((a#as) # (xss @ [rs,us] @ yss) @ [b#bs])
using startlink midlink endlink

binrelchain-join[of flip-altsublist-adjacent (a#as)#xss]
by auto

thus ?thesis by fast
qed

qed

lemma reduced-word-problem:
[[w 6=0 ; reduced-word-for S w ss; reduced-word-for S w ts]] =⇒
∃ xss. flip-altsublist-chain (ss#xss@[ts])

proof (induct w arbitrary: ss ts rule: measure-induct-rule[of S-length])
case (less w)
show ?case
proof (cases ss ts rule: two-lists-cases-Cons-Cons)

case Nil1 from Nil1 (1) less(2 ,3) show ?thesis
using reduced-word-for-sum-list by fastforce

next
case Nil2 from Nil2 (2) less(2 ,4) show ?thesis

using reduced-word-for-sum-list by fastforce
next

case (ConsCons a as b bs)
show ?thesis
proof (cases a=b)

case True with less ConsCons show ?thesis
using reduced-word-problem-eq-hd-step[of w] by auto

next
case False with less ConsCons show ?thesis

using reduced-word-problem-ConsCons-step[of w] by simp
qed

qed
qed

lemma reduced-word-letter-set:
assumes S-reduced-for w ss
shows reduced-letter-set S w = set ss

235

proof (cases w=0)
case True with assms show ?thesis

using reduced-word-for-0-imp-nil[of S ss] reduced-letter-set-0 by simp
next

case False
show ?thesis
proof

from assms show set ss ⊆ reduced-letter-set S w by fast
show reduced-letter-set S w ⊆ set ss
proof

fix x assume x ∈ reduced-letter-set S w
from this obtain ts where reduced-word-for S w ts x ∈ set ts by fast
with False assms show x ∈ set ss

using reduced-word-for-lists[of S - ss] reduced-word-problem[of w ss]
flip-altsublist-chain-set

by force
qed

qed
qed

end

5.2.6 Special subgroups and cosets

Recall that special subgroups are those generated by subsets of the generat-
ing set S. Here we show that the presence of the deletion condition guarantees
that the collection of special subgroups and their left cosets forms a poset
under reverse inclusion that satisfies the necessary properties to ensure that
the poset of simplices in the associated simplicial complex is isomorphic to
this poset of special cosets.
context PreCoxeterSystemWithDeletion
begin

lemma special-subgroup-int-S :
assumes T ∈ Pow S
shows 〈T 〉 ∩ S = T

proof
show 〈T 〉 ∩ S ⊆ T
proof

fix t assume t: t ∈ 〈T 〉 ∩ S
with assms obtain ts where ts: ts ∈ lists T t = sum-list ts

using special-subgroup-eq-sum-list[of T] by fast
with assms obtain us

where us: reduced-word-for S (sum-list ts) us set us ⊆ set ts
using deletion-reduce ′[of ts]
by auto

with no-zero-genset ts(2) t have length us = 1
using reduced-word-for-lists[of S - us] reduced-word-for-sum-list[of S - us]

236

reduced-word-for-imp-reduced-word[of S - us] el-reduced[of S]
by auto

with us ts show t∈T
using reduced-word-for-sum-list[of S - us] by (cases us) auto

qed
from assms show T ⊆ 〈T 〉 ∩ S using genby-genset-subset by fast

qed

lemma special-subgroup-inj: inj-on genby (Pow S)
using special-subgroup-int-S inj-on-inverseI [of - λW . W∩S] by fastforce

lemma special-subgroup-genby-subset-ordering-iso:
subset-ordering-iso (Pow S) genby

proof (unfold-locales, rule genby-mono, simp, rule special-subgroup-inj)
fix X Y assume XY : X ∈ genby ‘ Pow S Y ∈ genby ‘ Pow S X⊆Y
from XY (1 ,2) obtain TX TY

where TX∈Pow S X = 〈TX〉 TY∈Pow S Y = 〈TY 〉
by auto

hence the-inv-into (Pow S) genby X = X∩S
the-inv-into (Pow S) genby Y = Y∩S

using the-inv-into-f-f [OF special-subgroup-inj] special-subgroup-int-S
by auto

with XY (3)
show the-inv-into (Pow S) genby X ⊆ the-inv-into (Pow S) genby Y
by auto

qed

lemmas special-subgroup-genby-rev-mono
= OrderingSetIso.rev-ordsetmap[OF special-subgroup-genby-subset-ordering-iso]

lemma special-subgroup-word-length:
assumes T∈Pow S w∈〈T 〉
shows word-length T w = S-length w

proof−
from assms obtain ts where ts: ts ∈ lists T w = sum-list ts

using special-subgroup-eq-sum-list by auto
with assms(1) obtain us where us ∈ ssubseqs ts S-reduced-for w us

using deletion-reduce[of ts] by fast
with assms(1) ts(1) show ?thesis

using ssubseqs-lists[of ts] reduced-word-for-sum-list
is-arg-min-size-subprop[of length word-for S w us word-for T w]

unfolding reduced-word-for-def word-length-def
by fast

qed

lemma S-subset-reduced-imp-S-reduced:
T∈Pow S =⇒ reduced-word T ts =⇒ S-reduced ts
using reduced-word-for-lists reduced-word-for-lists[of T - ts]

reduced-word-for-length[of T sum-list ts ts] special-subgroup-eq-sum-list[of T]

237

special-subgroup-word-length[of T sum-list ts]
by (fastforce intro: reduced-word-forI-length)

lemma smallest-genby: T∈Pow S =⇒ w∈〈T 〉 =⇒ reduced-letter-set S w ⊆ T
using genby-S-reduced-word-for-arg-min[of T]

reduced-word-for-imp-reduced-word[of T w]
S-subset-reduced-imp-S-reduced[of T arg-min length (word-for T w)]
reduced-word-for-sum-list[of T] reduced-word-for-lists reduced-word-letter-set

by fastforce

lemma special-cosets-below-in:
assumes w∈W T ∈ Pow S
shows P.⊇(w +o 〈T 〉) = (

⋃
R∈(Pow S).⊇T . {w +o 〈R〉})

proof (rule seteqI)
fix A assume A ∈ P.⊇(w +o 〈T 〉)
hence A: A∈P A ⊇ (w +o 〈T 〉) by auto
from A(1) obtain R w ′ where R∈Pow S A = w ′ +o 〈R〉

using special-cosets-def by auto
with A(2) assms(2) show A ∈ (

⋃
R∈(Pow S).⊇T . {w +o 〈R〉})

using genby-lcoset-subgroup-imp-eq-reps[of w T w ′ R]
lcoset-eq-reps-subset[of w 〈T 〉]
special-subgroup-genby-rev-mono[of T R]

by auto
next

fix B assume B ∈ (
⋃

R∈(Pow S).⊇T . {w +o 〈R〉})
from this obtain R where R: R ∈ (Pow S).⊇T B = w +o 〈R〉 by auto
moreover hence B ⊇ w +o 〈T 〉

using genby-mono elt-set-plus-def [of w] by auto
ultimately show B ∈ special-cosets .⊇ (w +o 〈T 〉)

using assms(1) special-cosetsI by auto
qed

lemmas special-coset-inj
= comp-inj-on[OF special-subgroup-inj, OF inj-inj-on, OF lcoset-inj-on]

lemma special-coset-eq-imp-eq-gensets:
[[T1∈Pow S ; T2∈Pow S ; w1 +o 〈T1 〉 = w2 +o 〈T2 〉]] =⇒ T1=T2
using set-plus-rearrange2 [of −w1 w1 〈T1 〉]

set-plus-rearrange2 [of −w1 w2 〈T2 〉]
genby-lcoset-subgroup-imp-eq-reps[of 0 T1 −w1+w2 T2]
inj-onD[OF special-subgroup-inj]

by force

lemma special-subgroup-special-coset-subset-ordering-iso:
subset-ordering-iso (genby ‘ Pow S) ((+o) w)

proof
show

∧
a b. a ⊆ b =⇒ w +o a ⊆ w +o b using elt-set-plus-def by auto

show 2 : inj-on ((+o) w) (genby ‘ Pow S)
using lcoset-inj-on inj-inj-on by fast

238

show
∧

a b. a ∈ (+o) w ‘ genby ‘ Pow S =⇒
b ∈ (+o) w ‘ genby ‘ Pow S =⇒
a ⊆ b =⇒
the-inv-into (genby ‘ Pow S) ((+o) w) a ⊆

the-inv-into (genby ‘ Pow S) ((+o) w) b
proof−

fix a b
assume ab : a ∈ (+o) w ‘ genby ‘ Pow S b ∈ (+o) w ‘ genby ‘ Pow S

and a-b: a⊆b
from ab obtain Ta Tb

where Ta∈Pow S a = w +o 〈Ta〉 Tb∈Pow S b = w +o 〈Tb〉
by auto

with a-b
show the-inv-into (genby ‘ Pow S) ((+o) w) a ⊆

the-inv-into (genby ‘ Pow S) ((+o) w) b
using the-inv-into-f-eq[OF 2] lcoset-eq-reps-subset[of w 〈Ta〉 〈Tb〉]
by simp

qed
qed

lemma special-coset-subset-ordering-iso:
subset-ordering-iso (Pow S) ((+o) w ◦ genby)
using special-subgroup-genby-subset-ordering-iso

special-subgroup-special-coset-subset-ordering-iso
by (fast intro: OrderingSetIso.iso-comp)

lemmas special-coset-subset-rev-mono =
OrderingSetIso.rev-ordsetmap[OF special-coset-subset-ordering-iso]

lemma special-coset-below-in-subset-ordering-iso:
subset-ordering-iso ((Pow S).⊇T) ((+o) w ◦ genby)
using special-coset-subset-ordering-iso by (auto intro: OrderingSetIso.iso-subset)

lemma special-coset-below-in-supset-ordering-iso:
OrderingSetIso (⊇) (⊃) (⊇) (⊃) ((Pow S).⊇T) ((+o) w ◦ genby)
using special-coset-below-in-subset-ordering-iso OrderingSetIso.iso-dual by fast

lemma special-coset-pseudominimals:
assumes supset-pseudominimal-in P X
shows ∃w s. w∈W ∧ s∈S ∧ X = w +o 〈S−{s}〉

proof−
from assms have X∈P using supset-pseudominimal-inD1 by fast
from this obtain w T where wT : w∈W T∈Pow S X = w +o 〈T 〉

using special-cosets-def by auto
show ?thesis
proof (cases T=S)

case True with wT (1 ,3) assms show ?thesis
using genby-lcoset-el-reduce supset-pseudominimal-ne-bottom

special-cosets-bottom

239

by fast
next

case False
with wT (2) obtain s where s: s∈S T ⊆ S−{s} by fast
from s(2) wT (1 ,3) assms have X ⊆ w +o 〈S−{s}〉

using genby-mono by auto
moreover from assms wT (1) s(1) have ¬ X ⊂ w +o 〈S−{s}〉

using special-cosetsI [of - w]
supset-pseudominimal-inD2 [of P X w +o 〈S−{s}〉]
lcoset-eq-reps[of w - 〈S〉]
inj-onD[OF special-subgroup-inj, of S−{s} S]

by (auto simp add: special-cosets-bottom genby-lcoset-el-reduce)
ultimately show ?thesis using wT (1) s(1) by fast

qed
qed

lemma special-coset-pseudominimal-in-below-in:
assumes w∈W T∈Pow S supset-pseudominimal-in (P.⊇(w +o 〈T 〉)) X
shows ∃ s∈S−T . X = w +o 〈S−{s}〉

proof−
from assms obtain v s where vs: v∈W s∈S X = v +o 〈S−{s}〉

using special-cosets-has-bottom special-cosetsI [of T w]
supset-has-bottom-pseudominimal-in-below-in
special-coset-pseudominimals

by force
from assms(3) have X : X ⊇ w +o 〈T 〉

using supset-pseudominimal-inD1 by fast
with vs(3) have 1 : X = w +o 〈S−{s}〉

using genby-lcoset-subgroup-imp-eq-reps[of w T v S−{s}] by fast
with X assms have T ⊆ S−{s}

using special-cosetsI special-coset-subset-rev-mono[of T S−{s}]
by fastforce

with vs(2) show ?thesis using 1 by fast
qed

lemma exclude-one-is-pseudominimal:
assumes w∈W t∈S
shows supset-pseudominimal-in P (w +o 〈S−{t}〉)

proof (rule supset-pseudominimal-inI , rule special-cosetsI)
show w ∈ W by fact
from assms have w +o 〈S − {t}〉 6= W

using genby-lcoset-el-reduce[of w] lcoset-eq-reps[of w - W]
inj-onD[OF special-subgroup-inj, of S−{t} S]

by auto
thus w +o 〈S − {t}〉 6= supset-bottom P

using special-cosets-bottom by fast
next

fix X assume X : X∈P w +o 〈S − {t}〉 ⊂ X
with assms(1) have X ∈ (

⋃
R∈(Pow S).⊇(S−{t}). {w +o 〈R〉})

240

using subst[OF special-cosets-below-in, of w S−{t} λA. X∈A] by fast
from this obtain R where R: R ∈ (Pow S).⊇(S−{t}) X = w +o 〈R〉 by auto
from R(2) X(2) have R 6= S−{t} by fast
with R(1) have R=S by auto
with assms(1) R(2) show X = supset-bottom P

using genby-lcoset-el-reduce special-cosets-bottom by fast
qed fast

lemma exclude-one-is-pseudominimal-in-below-in:
[[w∈W ; T∈Pow S ; s∈S−T]] =⇒

supset-pseudominimal-in (P.⊇(w +o 〈T 〉)) (w +o 〈S−{s}〉)
using special-cosets-has-bottom special-cosetsI

exclude-one-is-pseudominimal[of w s]
genby-mono[of T S−{s}]
supset-has-bottom-pseudominimal-in-below-inI [

of P w +o 〈T 〉 w +o 〈S−{s}〉
]

by auto

lemma glb-special-subset-coset:
assumes wTT ′: w∈ W T ∈ Pow S T ′ ∈ Pow S
defines U : U ≡ T ∪ T ′ ∪ reduced-letter-set S w
shows supset-glbound-in-of P 〈T 〉 (w +o 〈T ′〉) 〈U 〉

proof (rule supset-glbound-in-ofI)

from wTT ′(2 ,3) U show 〈U 〉 ∈ P
using reduced-letter-set-subset[of S] special-subgroup-special-coset by simp

show supset-lbound-of 〈T 〉 (w +o 〈T ′〉) 〈U 〉
proof (rule supset-lbound-ofI)

from U show 〈T 〉 ⊆ 〈U 〉 using genby-mono[of T U] by fast
show w +o 〈T ′〉 ⊆ 〈U 〉
proof

fix x assume x ∈ w +o 〈T ′〉
with wTT ′(3) obtain y where y: y ∈ 〈T ′〉 x = w + y

using elt-set-plus-def [of w] by auto
with wTT ′(1) U show x ∈ 〈U 〉

using in-genby-S-reduced-letter-set genby-mono[of - U]
genby-mono[of T ′ U] genby-add-closed[of w U y]

by auto
qed

qed

next

fix X assume X : X∈P supset-lbound-of 〈T 〉 (w +o 〈T ′〉) X
from X(1) obtain v R where vR: R∈Pow S X = v +o 〈R〉

using special-cosets-def by auto
from X(2) have X ′: X ⊇ 〈T 〉 X ⊇ w +o 〈T ′〉

241

using supset-lbound-of-def [of - - X] by auto
from X ′(1) vR(2) have R: X = 〈R〉

using genby-0-closed genby-lcoset-el-reduce0 by fast
with X ′(2) have w: w∈〈R〉 using genby-0-closed lcoset-refl by fast
have T ′ ⊆ R
proof (

rule special-subgroup-genby-rev-mono, rule wTT ′(3), rule vR(1), rule subsetI
)

fix x assume x ∈ 〈T ′〉
with X ′(2) R show x ∈ 〈R〉

using elt-set-plus-def [of w 〈T ′〉] w genby-uminus-add-closed[of w R w+x]
by auto

qed
with X ′(1) wTT ′(2) vR(1) show 〈U 〉⊆X

using special-subgroup-genby-rev-mono[of T R] w smallest-genby U R
genby-mono[of - R]

by simp

qed

lemma glb-special-subset-coset-ex:
assumes w∈ W T ∈ Pow S T ′ ∈ Pow S
shows ∃B. supset-glbound-in-of P 〈T 〉 (w +o 〈T ′〉) B
using glb-special-subset-coset[OF assms]
by fast

lemma special-cosets-have-glbs:
assumes X∈P Y∈P
shows ∃B. supset-glbound-in-of P X Y B

proof−
from assms obtain wx Tx wy Ty

where X : wx ∈ W Tx ∈ Pow S X = wx +o 〈Tx〉
and Y : wy ∈ W Ty ∈ Pow S Y = wy +o 〈Ty〉
using special-cosets-def
by auto

from X(1 ,2) Y (1 ,2) obtain A
where A: supset-glbound-in-of P 〈Tx〉 ((−wx+wy) +o 〈Ty〉) A
using genby-uminus-add-closed[of wx] glb-special-subset-coset-ex by fastforce

from X(1 ,3) Y (3) have supset-glbound-in-of P X Y (wx +o A)
using supset-glbound-in-of-lcoset-shift[OF A, of wx]
by (auto simp add: set-plus-rearrange2 special-cosets-lcoset-shift)

thus ?thesis by fast
qed

end

242

5.3 Coxeter systems
5.3.1 Locale definition and transfer from the associated free group

Now we consider groups generated by elements of order two with an addi-
tional assumption to ensure that the natural correspondence between the
group W and the group presentation on the generating set S and its rela-
tions is bijective. Below, such groups will be shown to satisfy the deletion
condition.
locale CoxeterSystem = PreCoxeterSystem S

for S :: ′w::group-add set
+ assumes induced-id-inj: inj-on induced-id G

lemma (in PreCoxeterSystem) CoxeterSystemI :
assumes

∧
g. g∈G =⇒ induced-id g = 0 =⇒ g=0

shows CoxeterSystem S
proof

from assms have GroupIso G induced-id
using GroupWithGeneratorsRelators-S-R

GroupWithGeneratorsRelators.induced-id-hom-surj(1)
by (fast intro: GroupHom.isoI)

thus inj-on induced-id G using GroupIso.inj-on by fast
qed

context CoxeterSystem
begin

abbreviation inv-induced-id ≡ GroupPresentation.inv-induced-id S R

lemma GroupPresentation-S-R: GroupPresentation S R
by (

intro-locales, rule GroupWithGeneratorsRelators-S-R,
unfold-locales, rule induced-id-inj

)

lemmas inv-induced-id-sum-list =
GroupPresentation.inv-induced-id-sum-list-S [OF GroupPresentation-S-R]

end

5.3.2 The deletion condition is necessary

Call an element of W a reflection if it is a conjugate of a generating element
(and so is also of order two). Here we use the action of words over S on such
reflections to show that Coxeter systems satisfy the deletion condition.
context CoxeterSystem
begin

243

abbreviation induced-signed-lconjperm ≡
GroupByPresentationInducedFun.induced-hom S P signed-lconjpermutation

definition flipped-reflections :: ′w ⇒ ′w set
where flipped-reflections w ≡

{t∈H. induced-signed-lconjperm (inv-induced-id (−w)) →
(t,True) = (rconjby w t, False)}

lemma induced-signed-lconjperm-inv-induced-id-sum-list:
ss ∈ lists S =⇒ induced-signed-lconjperm (inv-induced-id (sum-list ss)) =

sum-list (map signed-lconjpermutation ss)
by (simp add:

inv-induced-id-sum-list Abs-freelist-in-FreeGroup
GroupByPresentationInducedFun.induced-hom-Abs-freelist-conv-sum-list[

OF GroupByPresentationInducedFun-S-R-signed-lconjaction
]

)

lemma induced-signed-eq-lconjpermutation:
ss ∈ lists S =⇒

permutation (induced-signed-lconjperm (inv-induced-id (sum-list ss))) =
signed-list-lconjaction ss

proof (induct ss)
case Nil
have permutation (induced-signed-lconjperm (inv-induced-id (sum-list []))) = id

using induced-signed-lconjperm-inv-induced-id-sum-list[of []]
zero-permutation.rep-eq

by simp
thus ?case by fastforce

next
case (Cons s ss)
from Cons(2)

have induced-signed-lconjperm (inv-induced-id (sum-list (s#ss))) =
signed-lconjpermutation s + sum-list (map signed-lconjpermutation ss)

using induced-signed-lconjperm-inv-induced-id-sum-list[of s#ss]
by simp

with Cons(2) have
permutation (induced-signed-lconjperm (inv-induced-id (sum-list (s#ss)))) =

permutation (signed-lconjpermutation s) ◦
permutation (induced-signed-lconjperm (inv-induced-id (sum-list ss)))

using plus-permutation.rep-eq induced-signed-lconjperm-inv-induced-id-sum-list
by simp

with Cons show ?case
using bij-signed-lconjaction[of s] Abs-permutation-inverse by fastforce

qed

lemma flipped-reflections-odd-lconjseq:
assumes ss∈lists S
shows flipped-reflections (sum-list ss) = {t∈H. odd (count-list (lconjseq ss) t)}

244

proof (rule seteqI)
fix t assume t ∈ flipped-reflections (sum-list ss)
moreover with assms

have snd (signed-list-lconjaction (rev ss) (t,True)) = False
using flipped-reflections-def genset-order2-add uminus-sum-list-order2

induced-signed-eq-lconjpermutation[of rev ss]
by force

ultimately show t ∈ {t∈H. odd (count-list (lconjseq ss) t)}
using assms flipped-reflections-def genset-order2-add

signed-list-lconjaction-snd[of rev ss]
by auto

next
fix t assume t: t ∈ {t∈H. odd (count-list (lconjseq ss) t)}
with assms

have signed-list-lconjaction (rev ss) (t,True) =
(rconjby (sum-list ss) t, False)

using genset-order2-add signed-list-lconjaction-snd[of rev ss]
signed-list-lconjaction-fst[of rev ss]
uminus-sum-list-order2 [of ss, THEN sym]

by (auto intro: prod-eqI)
with t assms show t ∈ flipped-reflections (sum-list ss)

using induced-signed-eq-lconjpermutation[of rev ss] genset-order2-add
uminus-sum-list-order2 flipped-reflections-def

by fastforce
qed

lemma flipped-reflections-in-lconjseq:
ss∈lists S =⇒ flipped-reflections (sum-list ss) ⊆ set (lconjseq ss)
using flipped-reflections-odd-lconjseq odd-n0 count-notin[of - lconjseq ss]
by fastforce

lemma flipped-reflections-distinct-lconjseq-eq-lconjseq:
assumes ss∈lists S distinct (lconjseq ss)
shows flipped-reflections (sum-list ss) = set (lconjseq ss)

proof
from assms(1) show flipped-reflections (sum-list ss) ⊆ set (lconjseq ss)

using flipped-reflections-in-lconjseq by fast
show flipped-reflections (sum-list ss) ⊇ set (lconjseq ss)
proof

fix t assume t ∈ set (lconjseq ss)
moreover with assms(2) have count-list (lconjseq ss) t = 1

by (simp add: distinct-count-list)
ultimately show t ∈ flipped-reflections (sum-list ss)

using assms(1) flipped-reflections-odd-lconjseq lconjseq-reflections
by fastforce

qed
qed

lemma flipped-reflections-reduced-eq-lconjseq:

245

S-reduced ss =⇒ flipped-reflections (sum-list ss) = set (lconjseq ss)
using reduced-word-for-lists[of S] S-reduced-imp-distinct-lconjseq

flipped-reflections-distinct-lconjseq-eq-lconjseq
by fast

lemma card-flipped-reflections:
assumes w∈W
shows card (flipped-reflections w) = S-length w

proof−
define ss where ss = arg-min length (word-for S w)
with assms have S-reduced-for w ss

using genby-S-reduced-word-for-arg-min by simp
thus ?thesis

using reduced-word-for-sum-list flipped-reflections-reduced-eq-lconjseq
S-reduced-imp-distinct-lconjseq distinct-card length-lconjseq[of ss]
reduced-word-for-length

by fastforce
qed

end

sublocale CoxeterSystem < PreCoxeterSystemWithDeletion
proof

fix ss assume ss: ss ∈ lists S ¬ S-reduced ss
define w where w = sum-list ss
with ss(1)

have distinct (lconjseq ss) =⇒ card (flipped-reflections w) = length ss
by (simp add:

flipped-reflections-distinct-lconjseq-eq-lconjseq distinct-card
length-lconjseq)

moreover from w-def ss have length ss > S-length w using word-length-lt by
fast

moreover from w-def ss(1) have card (flipped-reflections w) = S-length w
using special-subgroup-eq-sum-list card-flipped-reflections by fast

ultimately have ¬ distinct (lconjseq ss) by auto
with w-def ss

show ∃ a b as bs cs. ss = as @ [a] @ bs @ [b] @ cs ∧
sum-list ss = sum-list (as @ bs @ cs)

using deletion ′

by fast
qed

5.3.3 The deletion condition is sufficient

Now we come full circle and show that a pair consisting of a group and
a generating set of order-two elements that satisfies the deletion condition
affords a presentation that makes it a Coxeter system.
context PreCoxeterSystemWithDeletion
begin

246

lemma reducible-by-flipping:
ss ∈ lists S =⇒ ¬ S-reduced ss =⇒
∃ xss as t bs. flip-altsublist-chain (ss # xss @ [as@[t,t]@bs])

proof (induct ss)
case (Cons s ss)
show ?case
proof (cases S-reduced ss)

case True
define w where w = sum-list ss
with True have ss-red-w: reduced-word-for S w ss by fast
moreover from Cons(2) have s∈S by simp
ultimately obtain as bs where asbs: reduced-word-for S w (s#as@bs)

using Cons(3) exchange by fast
show ?thesis
proof (cases w=0)

case True with asbs show ?thesis
using reduced-word-for-0-imp-nil by fast

next
case False
from this obtain xss where flip-altsublist-chain (ss # xss @ [s#as@bs])

using ss-red-w asbs reduced-word-problem by fast
hence flip-altsublist-chain (

(s#ss) # map ((#) s) xss @ [[]@[s,s]@(as@bs)]
)

using flip-altsublist-chain-map-Cons-grow by fastforce
thus ?thesis by fast

qed
next

case False
with Cons(1 ,2) obtain xss as t bs

where flip-altsublist-chain (
(s#ss) # map ((#) s) xss @ [(s#as)@[t,t]@bs]

)
using flip-altsublist-chain-map-Cons-grow
by fastforce

thus ?thesis by fast
qed

qed (simp add: nil-reduced-word-for-0)

lemma freeliftid-kernel ′:
ss ∈ lists S =⇒ sum-list ss = 0 =⇒ Abs-freelist ss ∈ Q

proof (induct ss rule: length-induct)
fix ss
assume step: ∀ ts. length ts < length ss −→ ts ∈ lists S −→

sum-list ts = 0 −→ Abs-freelist ts ∈ Q
and set-up: ss ∈ lists S sum-list ss = 0
show Abs-freelist ss ∈ Q
proof (cases ss=[])

247

case True thus ?thesis
using genby-0-closed[of

⋃
w∈FreeGroup S . lconjby w ‘ P ′]

by (auto simp add: zero-freeword.abs-eq)
next

case False
with set-up obtain xss as t bs

where xss: flip-altsublist-chain (ss # xss @ [as@[t,t]@bs])
using sum-list-zero-nreduced reducible-by-flipping[of ss]
by fast

with set-up
have astbs: length (as@[t,t]@bs) = length ss

as@[t,t]@bs ∈ lists S
sum-list (as@[t,t]@bs) = 0

using flip-altsublist-chain-length[of ss xss as@[t,t]@bs]
flip-altsublist-chain-sum-list[of ss xss as@[t,t]@bs]
flip-altsublist-chain-lists[of ss xss as@[t,t]@bs]

by auto
have listsS : as ∈ lists S t∈S bs∈lists S using astbs(2) by auto
have sum-list as + (t + t + sum-list bs) = 0

using astbs(3) by (simp add: add.assoc)
hence sum-list (as@bs) = 0

using listsS(2) by (simp add: genset-order2-add)
moreover have length (as@bs) < length ss using astbs(1) by simp
moreover have as@bs ∈ lists S using listsS(1 ,3) by simp
ultimately have Abs-freelist (as@bs) ∈ Q using step by fast
hence Abs-freelist as + pair-relator-freeword t t +

(− Abs-freelist as + (Abs-freelist as + Abs-freelist bs)) ∈ Q
using listsS(1 ,2) lconjby-Abs-freelist-relator-freeword[of t t as]

genby-add-closed
by (simp add: Abs-freelist-append[THEN sym] add.assoc[THEN sym])

hence Abs-freelist as + Abs-freelist [t,t] + Abs-freelist bs ∈ Q
using listsS(2) by (simp add: S-relator-freeword Abs-freeletter-add)

thus ?thesis
using Abs-freelist-append-append[of as [t,t] bs]

rev-flip-altsublist-chain[OF xss]
flip-altsublist-chain-G-in-Q[of as@[t,t]@bs rev xss ss]

by simp
qed

qed

lemma freeliftid-kernel:
assumes c ∈ FreeGroup S freeliftid c = 0
shows c∈Q

proof−
from assms(2) have freeliftid (Abs-freeword (freeword c)) = 0

by (simp add: freeword-inverse)
with assms(1) have sum-list (map fst (freeword c)) = 0

using FreeGroup-def freeword freeliftid-Abs-freeword-conv-sum-list by fastforce
with assms(1) show ?thesis

248

using FreeGroup-def freeliftid-kernel ′[of map fst (freeword c)]
Q-freelist-freeword

by fastforce
qed

lemma induced-id-kernel:
c ∈ FreeGroup S =⇒ induced-id (dFreeGroup S |c|Qe) = 0 =⇒ c∈Q
by (simp add:

freeliftid-kernel
GroupByPresentationInducedFun.induced-hom-equality[

OF GroupByPresentationInducedFun-S-P-id
]

)

theorem CoxeterSystem: CoxeterSystem S
proof (rule CoxeterSystemI)

fix x assume x: x∈G induced-id x = 0
from x(1) obtain c where c ∈ FreeGroup S x = (dFreeGroup S |c|Qe)

using Group.quotient-group-UN FreeGroup-Group by fast
with x(2) show x=0

using induced-id-kernel
Group.quotient-identity-rule[OF FreeGroup-Group]
GroupByPresentation.Q-subgroup-FreeS [OF GroupByPresentation-S-P]
GroupByPresentation.normal-Q[OF GroupByPresentation-S-P]

by auto
qed

end

5.3.4 The Coxeter system associated to a thin chamber complex
with many foldings

We now show that the fundamental automorphisms in a thin chamber com-
plex with many foldings satisfy the deletion condition, and hence form a
Coxeter system.
context ThinChamberComplexManyFoldings
begin

lemma not-reduced-word-not-min-gallery:
assumes ss ∈ lists S ¬ reduced-word S ss
shows ¬ min-gallery (map (λw. w‘→C0) (sums ss))

proof (cases ss rule: list-cases-Cons-snoc)
case Nil with assms(2) show ?thesis using nil-reduced-word-for-0 by auto

next
case (Single s) with assms show ?thesis

using zero-notin-S reduced-word-singleton[of s S] by fastforce
next

case (Cons-snoc s ts t) have ss: ss = s#ts@[t] by fact

249

define Ms where Ms = map (λw. w‘→C0) (map ((+) s) (sums ts))
with ss

have C0-ms-ss-C0 : map (λw. w‘→C0) (sums ss) =
C0 # Ms @ [sum-list ss ‘→ C0]

by (simp add: sums-snoc zero-permutation.rep-eq)
define rs where rs = arg-min length (word-for S (sum-list ss))
with assms(1) have rs: rs ∈ lists S sum-list rs = sum-list ss

using arg-min-natI [of λrs. word-for S (sum-list ss) rs ss length] by auto
show ?thesis
proof (cases rs rule: list-cases-Cons-snoc)

case Nil
hence sum-list ss ‘→ C0 = C0

using rs(2) by (fastforce simp add: zero-permutation.rep-eq)
with C0-ms-ss-C0 show ?thesis by simp

next
case (Single r)
from Single have min-gallery [C0 ,r‘→C0]

using rs(1) fundchamber fundchamber-S-chamber fundchamber-S-adjacent
fundchamber-S-image-neq-fundchamber

by (fastforce intro: min-gallery-adj)
with Single C0-ms-ss-C0 Ms-def show ?thesis

using rs(2) min-galleryD-min-betw[of C0 Ms sum-list ss ‘→ C0 []]
min-galleryD-gallery

by (fastforce simp add: length-sums)
next

case (Cons-snoc p qs q)
define Ns where Ns = map (λw. w‘→C0) (map ((+) p) (sums qs))
from assms rs-def have length rs < length ss

using word-length-lt[of ss S]
reduced-word-for-length reduced-word-for-arg-min[of ss S]

by force
with Cons-snoc ss Ms-def Ns-def have length Ns < length Ms

by (simp add: length-sums)
moreover from Ns-def Cons-snoc

have gallery (C0 # Ns @ [sum-list ss ‘→ C0])
using rs S-list-image-gallery[of rs]
by (auto simp add: sums-snoc zero-permutation.rep-eq)

ultimately show ?thesis using C0-ms-ss-C0 not-min-galleryI-betw by auto
qed

qed

lemma S-list-not-min-gallery-double-split:
assumes ss ∈ lists S ss 6=[] ¬ min-gallery (map (λw. w‘→C0) (sums ss))
shows
∃ f g as s bs t cs.
(f ,g)∈foldpairs ∧
sum-list as ‘→ C0 ∈ f`C ∧
sum-list (as@[s]) ‘→ C0 ∈ g`C ∧
sum-list (as@[s]@bs) ‘→ C0 ∈ g`C ∧

250

sum-list (as@[s]@bs@[t]) ‘→ C0 ∈ f`C ∧
ss = as@[s]@bs@[t]@cs

proof−
define Cs where Cs = map (λw. w‘→C0) (sums ss)
moreover from assms(1) Cs-def have gallery Cs

using S-list-image-gallery by fastforce
moreover from assms(1) Cs-def have {} /∈ set (wall-crossings Cs)

using S-list-image-crosses-walls by fastforce
ultimately obtain f g As A B Bs E F Fs

where fg : (f ,g)∈foldpairs
and sep : A∈f`C B∈g`C E∈g`C F∈f`C
and decomp-cases:

Cs = As@[A,B,F]@Fs ∨ Cs = As@[A,B]@Bs@[E ,F]@Fs
using assms(3) not-min-gallery-double-split[of Cs]
by blast

show ?thesis
proof (cases Cs = As@[A,B,F]@Fs)

case True
define bs :: ′a permutation list where bs = []
from True Cs-def obtain as s t cs where

ss = as@[s,t]@cs A = sum-list as ‘→ C0 B = sum-list (as@[s]) ‘→ C0
F = sum-list (as@[s,t]) ‘→ C0
using pullback-sums-map-middle3 [of λw. w‘→C0 ss As A B F Fs]
by auto

with sep(1 ,2 ,4) bs-def have
sum-list as ‘→ C0 ∈ f`C sum-list (as@[s]) ‘→ C0 ∈ g`C
sum-list (as@[s]@bs) ‘→ C0 ∈ g`C sum-list (as@[s]@bs@[t]) ‘→ C0 ∈ f`C
ss = as@[s]@bs@[t]@cs
by auto

with fg show ?thesis by blast
next

case False
with Cs-def decomp-cases obtain as s bs t cs where

ss = as@[s]@bs@[t]@cs A = sum-list as ‘→ C0 B = sum-list (as@[s]) ‘→ C0
E = sum-list (as@[s]@bs) ‘→ C0 F = sum-list (as@[s]@bs@[t]) ‘→ C0
using pullback-sums-map-double-middle2 [

of λw. w‘→C0 ss As A B Bs E F Fs
]

by auto
with sep have

sum-list as ‘→ C0 ∈ f`C sum-list (as@[s]) ‘→ C0 ∈ g`C
sum-list (as@[s]@bs) ‘→ C0 ∈ g`C sum-list (as@[s]@bs@[t]) ‘→ C0 ∈ f`C
ss = as@[s]@bs@[t]@cs
by auto

with fg show ?thesis by blast
qed

qed

lemma fold-end-sum-chain-fg:

251

fixes f g :: ′a⇒ ′a
defines s : s ≡ induced-automorph f g
assumes fg : (f ,g) ∈ foldpairs
and as : as ∈ lists S
and s : s∈S
and sep: sum-list as ‘→ C0 ∈ f`C sum-list (as@[s]) ‘→ C0 ∈ g`C
shows bs ∈lists S =⇒

s ‘ sum-list (as@[s]@bs) ‘→ C0 = sum-list (as@bs) ‘→ C0
proof−

from fg obtain C where C : OpposedThinChamberComplexFoldings X f g C
using foldpairs-def by fast

show bs ∈lists S =⇒ s ‘ sum-list (as@[s]@bs) ‘→ C0 = sum-list (as@bs) ‘→ C0
proof (induct bs rule: rev-induct)

case Nil
from s as s sep C show ?case

using sum-list-S-in-W [of as] sum-list-append[of as [s]]
fundchamber-WS-image-adjacent

by (auto simp add:
OpposedThinChamberComplexFoldings.indaut-adj-halfchsys-im-fg

)
next

case (snoc b bs)
define bC0 B where bC0 = b‘→C0 and B = sum-list (as@bs) ‘→ C0
define y where y = C0∩bC0
define z z ′

where z = s ‘ sum-list (as@[s]@bs) ‘→ y
and z ′ = sum-list (as@bs) ‘→ y

from snoc B-def have B ′: s ‘ sum-list (as@[s]@bs) ‘→ C0 = B by simp

obtain ϕ where ϕ: label-wrt C0 ϕ using ex-label-map by fast
from bC0-def y-def snoc(2) obtain u where u: bC0 = insert u y

using fundchamber-S-adjacent[of b] adjacent-sym
fundchamber-S-image-neq-fundchamber
adjacent-int-decomp[of bC0 C0]

by (auto simp add: Int-commute)
define v v ′

where v = s (sum-list (as@[s]@bs) → u)
and v ′ = sum-list (as@bs) → u

from bC0-def u v-def z-def v ′-def z ′-def
have ins-vz : s ‘ sum-list (as@[s]@bs@[b]) ‘→ C0 = insert v z
and ins-vz ′: sum-list (as@bs@[b]) ‘→ C0 = insert v ′ z ′

using image-insert[of permutation (sum-list (as@[s]@bs)) u y, THEN sym]
image-insert[

of s sum-list (as@[s]@bs)→u sum-list (as@[s]@bs)‘→y,
THEN sym]

image-insert[of permutation (sum-list (as@bs)) u y, THEN sym]
by (auto simp add: plus-permutation.rep-eq image-comp)

252

from as s snoc(2) have sums:
sum-list (as@[s]@bs) ∈ W sum-list (as@bs) ∈ W
sum-list (as@[s]@bs@[b]) ∈ W sum-list (as@bs@[b]) ∈ W
using sum-list-S-in-W [of as@[s]@bs] sum-list-S-in-W [of as@bs]

sum-list-S-in-W [of as@[s]@bs@[b]] sum-list-S-in-W [of as@bs@[b]]
by auto

from u bC0-def snoc(2) have u: u∈
⋃

X
using fundchamber-S-chamber [of b] chamberD-simplex[of bC0] by auto

moreover from as s snoc(2) u have sum-list (as@[s]@bs) → u ∈
⋃

X
using sums(1)

ChamberComplexEndomorphism.vertex-map[OF W-endomorphism]
by fastforce

ultimately have ϕ v = ϕ v ′

using s v-def v ′-def sums(1 ,2) W-respects-labels[OF ϕ, of sum-list (as@[s]@bs)
u]

W-respects-labels[OF ϕ, of sum-list (as@bs) u]
OpposedThinChamberComplexFoldings.indaut-resplabels[

OF C ϕ
]

by simp

moreover from s have chamber (insert v z) chamber (insert v ′ z ′)
using sums(3 ,4)

fundchamber-W-image-chamber [of sum-list (as@[s]@bs@[b])]
OpposedThinChamberComplexFoldings.indaut-chmap[

OF C
]
fundchamber-W-image-chamber [of sum-list (as@bs@[b])]

by (auto simp add: ins-vz[THEN sym] ins-vz ′[THEN sym])

moreover from y-def z-def z ′-def bC0-def B-def snoc(2) s have zCB z ′CB
using B ′ sums(1 ,2) fundchamber-S-adjacent[of b]

fundchamber-S-image-neq-fundchamber [of b]
adjacent-int-facet1 [of C0]
W-endomorphism[of sum-list (as@bs)]
W-endomorphism[of sum-list (as@[s]@bs)]
fundchamber fundchamber-W-image-chamber [of sum-list (as@[s]@bs)]
ChamberComplexEndomorphism.facet-map[of X]
OpposedThinChamberComplexFoldings.indaut-morph[

OF C
]
ChamberComplexEndomorphism.facet-map[

of X s sum-list (as@[s]@bs) ‘→ C0
]

by auto

moreover from snoc(2) B-def s have insert v z 6= B insert v ′ z ′ 6= B
using sum-list-append[of as@[s]@bs [b]] sum-list-append[of as@bs [b]]

253

fundchamber-next-WS-image-neq[of b sum-list (as@[s]@bs)]
fundchamber-next-WS-image-neq[of b sum-list (as@bs)]
OpposedThinChamberComplexFoldings.indaut-aut[

OF C
]
ChamberComplexAutomorphism.bij bij-is-inj B ′

inj-eq-image[
of s sum-list (as@[s]@bs@[b]) ‘→ C0 sum-list (as@[s]@bs) ‘→ C0

]
by (auto simp add: ins-vz[THEN sym] ins-vz ′[THEN sym])

ultimately show ?case
using B-def sums(2) fundchamber-W-image-chamber [of sum-list (as@bs)]

label-wrt-eq-on-adjacent-vertex[OF ϕ, of v v ′ B z z ′]
by (auto simp add: ins-vz[THEN sym] ins-vz ′[THEN sym])

qed
qed

lemma fold-end-sum-chain-gf :
fixes f g :: ′a⇒ ′a
defines s ≡ induced-automorph f g
assumes fg : (f ,g) ∈ foldpairs
and as ∈ lists S s∈S bs ∈lists S

sum-list as ‘→ C0 ∈ g`C
sum-list (as@[s]) ‘→ C0 ∈ f`C

shows s ‘ sum-list (as@[s]@bs) ‘→ C0 = sum-list (as@bs) ‘→ C0
proof−

from fg obtain C where C : OpposedThinChamberComplexFoldings X f g C
using foldpairs-def by fast

from assms show ?thesis
using foldpairs-sym fold-end-sum-chain-fg[of g f as s bs]

OpposedThinChamberComplexFoldings.induced-automorphism-sym[OF C]
by simp

qed

lemma fold-middle-sum-chain:
assumes fg : (f ,g) ∈ foldpairs
and S : as ∈ lists S s∈S bs ∈ lists S t∈S cs ∈lists S
and sep: sum-list as ‘→ C0 ∈ f`C

sum-list (as@[s]) ‘→ C0 ∈ g`C
sum-list (as@[s]@bs) ‘→ C0 ∈ g`C sum-list (as@[s]@bs@[t]) ‘→ C0

∈ f`C
shows sum-list (as@[s]@bs@[t]@cs) ‘→ C0 = sum-list (as@bs@cs) ‘→ C0

proof−
define s where s = induced-automorph f g
from fg obtain C

where OpposedThinChamberComplexFoldings X f g C
using foldpairs-def
by fast

254

then have id ‘ sum-list (as@[s]@bs@[t]@cs) ‘→ C0 = sum-list (as@bs@cs) ‘→
C0

using s-def fg S sep fold-end-sum-chain-gf [of f g as@[s]@bs t cs]
fold-end-sum-chain-fg[of f g as s bs@cs]

by (simp add:
image-comp[THEN sym]
OpposedThinChamberComplexFoldings.indaut-order2 [

THEN sym]
)

thus ?thesis by simp
qed

lemma S-list-not-min-gallery-deletion:
fixes ss :: ′a permutation list
defines w : w ≡ sum-list ss
assumes ss: ss∈lists S ss 6=[] ¬ min-gallery (map (λw. w‘→C0) (sums ss))
shows ∃ a b as bs cs. ss = as@[a]@bs@[b]@cs ∧ w = sum-list (as@bs@cs)

proof−
from w ss(1) have w-W : w∈W using sum-list-S-in-W by fast

define Cs where Cs = map (λw. w‘→C0) (sums ss)
from ss obtain f g as s bs t cs

where fg : (f ,g)∈foldpairs
and sep : sum-list as ‘→ C0 ∈ f`C

sum-list (as@[s]) ‘→ C0 ∈ g`C
sum-list (as@[s]@bs) ‘→ C0 ∈ g`C
sum-list (as@[s]@bs@[t]) ‘→ C0 ∈ f`C

and decomp: ss = as@[s]@bs@[t]@cs
using S-list-not-min-gallery-double-split[of ss]
by blast

from fg sep decomp w ss(1)
have w‘→C0 = sum-list (as@bs@cs) ‘→ C0
using fold-middle-sum-chain
by auto

with ss(1) decomp have w = sum-list (as@bs@cs)
using w-W sum-list-S-in-W [of as@bs@cs]
by (auto intro: inj-onD fundchamber-W-image-inj-on)

with decomp show ?thesis by fast
qed

lemma deletion:
ss ∈ lists S =⇒ ¬ reduced-word S ss =⇒
∃ a b as bs cs. ss = as@[a]@bs@[b]@cs ∧ sum-list ss = sum-list (as@bs@cs)

using nil-reduced-word-for-0 [of S] not-reduced-word-not-min-gallery
S-list-not-min-gallery-deletion

by fastforce

lemma PreCoxeterSystemWithDeletion: PreCoxeterSystemWithDeletion S
using S-add-order2 deletion by unfold-locales simp

255

lemma CoxeterSystem: CoxeterSystem S
using PreCoxeterSystemWithDeletion

PreCoxeterSystemWithDeletion.CoxeterSystem
by fast

end

5.4 Coxeter complexes
5.4.1 Locale and complex definitions

Now we add in the assumption that the generating set is finite, and construct
the associated Coxeter complex from the poset of special cosets.
locale CoxeterComplex = CoxeterSystem S

for S :: ′w::group-add set
+ assumes finite-genset: finite S
begin

definition TheComplex :: ′w set set set
where TheComplex ≡ ordering.PosetComplex (⊇) (⊃) P

abbreviation Σ ≡ TheComplex

end

5.4.2 As a simplicial complex

Here we record the fact that the Coxeter complex associated to a Coxeter
system is a simplicial complex, and note that the poset of special cosets is
complex-like. This last fact allows us to reason about the complex by rea-
soning about the poset, via the poset isomorphism ComplexLikePoset.smap.
context CoxeterComplex
begin

lemma simplex-like-special-cosets:
assumes X∈P
shows supset-simplex-like (P.⊇X)

proof−
have image-eq-UN :

∧
f A. f ‘ A = (

⋃
x∈A. {f x}) by blast

from assms obtain w T where w∈W T ∈ Pow S X = w +o 〈T 〉
using special-cosets-def by auto

thus ?thesis
using image-eq-UN [where f= (+o) w ◦ genby]

finite-genset simplex-like-pow-above-in
OrderingSetIso.simplex-like-map[

OF special-coset-below-in-supset-ordering-iso, of T w
]

256

special-cosets-below-in
by force

qed

lemma SimplicialComplex-Σ: SimplicialComplex Σ
unfolding TheComplex-def

proof (rule ordering.poset-is-SimplicialComplex)
show ordering (⊇) (⊃) ..
show ∀X∈P. supset-simplex-like (P.⊇X)

using simplex-like-special-cosets by fast
qed

lemma ComplexLikePoset-special-cosets: ComplexLikePoset (⊇) (⊃) P
using simplex-like-special-cosets special-cosets-has-bottom special-cosets-have-glbs
by unfold-locales

abbreviation smap ≡ ordering.poset-simplex-map (⊇) (⊃) P

lemmas smap-def = ordering.poset-simplex-map-def [OF supset-poset, of P]

lemma ordsetmap-smap: [[X∈P; Y∈P; X⊇Y]] =⇒ smap X ⊆ smap Y
using ComplexLikePoset.ordsetmap-smap[OF ComplexLikePoset-special-cosets]

smap-def
by simp

lemma rev-ordsetmap-smap: [[X∈P; Y∈P; smap X ⊆ smap Y]] =⇒ X⊇Y
using ComplexLikePoset.rev-ordsetmap-smap[

OF ComplexLikePoset-special-cosets
]
smap-def

by simp

lemma smap-onto-PosetComplex: smap ‘ P = Σ
using ComplexLikePoset.smap-onto-PosetComplex[

OF ComplexLikePoset-special-cosets
]
smap-def TheComplex-def

by simp

lemmas simplices-conv-special-cosets = smap-onto-PosetComplex[THEN sym]

lemma smap-into-PosetComplex: X∈P =⇒ smap X ∈ Σ
using smap-onto-PosetComplex by fast

lemma smap-pseudominimal:
w∈W =⇒ s∈S =⇒ smap (w +o 〈S−{s}〉) = {w +o 〈S−{s}〉}
using smap-def [of w +o 〈S−{s}〉]

special-coset-pseudominimal-in-below-in[of w S−{s}]
exclude-one-is-pseudominimal-in-below-in[of w S−{s}]

257

by auto

lemma exclude-one-notin-smap-singleton:
s∈S =⇒ w +o 〈S−{s}〉 /∈ smap (w +o 〈{s}〉)
using smap-def [of w +o 〈{s}〉]

supset-pseudominimal-inD1 [of P.⊇(w +o 〈{s}〉) w +o 〈S−{s}〉]
special-coset-subset-rev-mono[of {s} S−{s}]

by auto

lemma maxsimp-vertices: w∈W =⇒ s∈S =⇒ w +o 〈S−{s}〉 ∈ smap {w}
using special-cosetsI [of S−{s}] special-coset-singleton

ordsetmap-smap[of w +o 〈S−{s}〉] smap-pseudominimal
by (simp add: genby-lcoset-refl)

lemma maxsimp-singleton:
assumes w∈W
shows SimplicialComplex.maxsimp Σ (smap {w})

proof (rule SimplicialComplex.maxsimpI , rule SimplicialComplex-Σ)
from assms show smap {w} ∈ Σ

using special-coset-singleton smap-into-PosetComplex by fast
next

fix z assume z: z∈Σ smap {w} ⊆ z
from z(1) obtain X where X : X∈P z = smap X

using simplices-conv-special-cosets by auto
with assms z(2) have X = {w}

using special-coset-singleton rev-ordsetmap-smap special-coset-nempty by fast
with X(2) show z = smap {w} by fast

qed

lemma maxsimp-is-singleton:
assumes SimplicialComplex.maxsimp Σ x
shows ∃w∈W . smap {w} = x

proof−
from assms obtain X where X : X∈P smap X = x

using SimplicialComplex.maxsimpD-simplex[OF SimplicialComplex-Σ]
simplices-conv-special-cosets

by auto
from X(1) obtain w T where wT : w∈W T∈Pow S X = w +o 〈T 〉

using special-cosets-def by auto
from wT (1) have {w}∈P using special-coset-singleton by fast
moreover with X wT (3) have x ⊆ smap {w}

using genby-lcoset-refl ordsetmap-smap by fast
ultimately show ?thesis

using assms wT (1) smap-into-PosetComplex
SimplicialComplex.maxsimpD-maximal[OF SimplicialComplex-Σ]

by fast
qed

lemma maxsimp-vertex-conv-special-coset:

258

w∈W =⇒ X ∈ smap {w} =⇒ ∃ s∈S . X = w +o 〈S−{s}〉
using smap-def special-coset-pseudominimal-in-below-in[of w {}]
by (simp add: genby-lcoset-empty)

lemma vertices: w∈W =⇒ s∈S =⇒ w +o 〈S−{s}〉 ∈
⋃

Σ
using maxsimp-singleton SimplicialComplex.maxsimpD-simplex[OF Simplicial-

Complex-Σ]
maxsimp-vertices

by fast

lemma smap0-conv-special-subgroups:
smap 0 = (λs. 〈S − {s}〉) ‘ S
using genby-0-closed maxsimp-vertices maxsimp-vertex-conv-special-coset
by force

lemma S-bij-betw-chamber0 : bij-betw (λs. 〈S−{s}〉) S (smap 0)
unfolding bij-betw-def

proof
show inj-on (λs. 〈S−{s}〉) S
proof (rule inj-onI)

fix s t show [[s∈S ; t∈S ; 〈S−{s}〉 = 〈S−{t}〉]] =⇒ s = t
using inj-onD[OF special-subgroup-inj, of S−{s} S−{t}] by fast

qed
qed (rule smap0-conv-special-subgroups[THEN sym])

lemma smap-singleton-conv-W-image:
w∈W =⇒ smap {w} = ((+o) w) ‘ (smap 0)
using genby-0-closed[of S] maxsimp-vertices[of 0] maxsimp-vertices[of w]

maxsimp-vertex-conv-special-coset
by force

lemma W-lcoset-bij-betw-singletons:
assumes w∈W
shows bij-betw ((+o) w) (smap 0) (smap {w})
unfolding bij-betw-def

proof (rule conjI , rule inj-onI)
fix X Y assume XY : X ∈ smap 0 Y ∈ smap 0 w +o X = w +o Y
from XY (1 ,2) obtain sx sy where X = 〈S−{sx}〉 Y = 〈S−{sy}〉

using maxsimp-vertex-conv-special-coset[of 0 X]
maxsimp-vertex-conv-special-coset[of 0 Y] genby-0-closed[of S]

by auto
with XY (3) show X=Y

using inj-onD[OF special-coset-inj, of w S−{sx} S−{sy}] by force
qed (rule smap-singleton-conv-W-image[THEN sym], rule assms)

lemma facets:
assumes w∈W s∈S
shows smap (w +o 〈{s}〉) C smap {w}

proof (

259

rule facetrelI , rule exclude-one-notin-smap-singleton, rule assms(2),
rule order-antisym

)

show smap {w} ⊆ insert (w +o 〈S − {s}〉) (smap (w +o 〈{s}〉))
proof

fix X assume X ∈ smap {w}
with assms(1) obtain t where t∈S X = w +o 〈S−{t}〉

using maxsimp-vertex-conv-special-coset by fast
with assms show X∈ insert (w +o 〈S − {s}〉) (smap (w +o 〈{s}〉))

using exclude-one-is-pseudominimal-in-below-in smap-def
by (cases t=s) auto

qed

from assms show smap {w} ⊇ insert (w +o 〈S − {s}〉) (smap (w +o 〈{s}〉))
using genby-lcoset-refl special-cosetsI [of {s}] special-coset-singleton

ordsetmap-smap maxsimp-vertices
by fast

qed

lemma facets ′: w∈W =⇒ s∈S =⇒ smap {w,w+s} C smap {w}
using facets by (simp add: genset-order2-add genby-lcoset-order2)

lemma adjacent: w∈W =⇒ s∈S =⇒ smap {w+s} ∼ smap {w}
using facets ′[of w s] genby-genset-closed genby-add-closed[of w S]

facets ′[of w+s s]
by (

auto intro: adjacentI
simp add: genset-order2-add add.assoc insert-commute

)

lemma singleton-adjacent-0 : s∈S =⇒ smap {s} ∼ smap 0
using genby-genset-closed genby-0-closed facets ′[of 0] facets ′[of s]
by (fastforce intro: adjacentI simp add: genset-order2-add insert-commute)

end

5.4.3 As a chamber complex

Now we verify that a Coxeter complex is a chamber complex.
context CoxeterComplex
begin

abbreviation chamber ≡ SimplicialComplex.maxsimp Σ
abbreviation gallery ≡ SimplicialComplex.maxsimpchain Σ

lemmas chamber-singleton = maxsimp-singleton
lemmas chamber-vertex-conv-special-coset = maxsimp-vertex-conv-special-coset

260

lemmas chamber-vertices = maxsimp-vertices
lemmas chamber-is-singleton = maxsimp-is-singleton

lemmas faces = SimplicialComplex.faces [OF SimplicialComplex-Σ]
lemmas gallery-def = SimplicialComplex.maxsimpchain-def [OF SimplicialCom-
plex-Σ]
lemmas gallery-rev = SimplicialComplex.maxsimpchain-rev [OF SimplicialCom-
plex-Σ]

lemmas chamberD-simplex =
SimplicialComplex.maxsimpD-simplex[OF SimplicialComplex-Σ]

lemmas gallery-CConsI =
SimplicialComplex.maxsimpchain-CConsI [OF SimplicialComplex-Σ]

lemmas gallery-overlap-join =
SimplicialComplex.maxsimpchain-overlap-join[OF SimplicialComplex-Σ]

lemma word-gallery-to-0 :
ss 6= [] =⇒ ss∈ lists S =⇒ ∃ xs. gallery (smap {sum-list ss} # xs @ [smap 0])

proof (induct ss rule: rev-nonempty-induct)
case (single s)
hence gallery (smap {sum-list [s]} # [] @ [smap 0])

using genby-genset-closed genby-0-closed chamber-singleton
singleton-adjacent-0 gallery-def

by auto
thus ?case by fast

next
case (snoc s ss)
from snoc(2 ,3) obtain xs where gallery (smap {sum-list ss} # xs @ [smap 0])

by auto
moreover from snoc(3) have chamber (smap {sum-list (ss@[s])})

using special-subgroup-eq-sum-list chamber-singleton by fast
ultimately

have gallery (smap {sum-list (ss@[s])} #
(smap {sum-list ss} # xs) @ [smap 0])

using snoc(3) special-subgroup-eq-sum-list adjacent[of sum-list ss s]
by (auto intro: gallery-CConsI)

thus ?case by fast
qed

lemma gallery-to-0 :
assumes w∈W w 6=0
shows ∃ xs. gallery (smap {w} # xs @ [smap 0])

proof−
from assms(1) obtain ss where ss: ss∈lists S w = sum-list ss

using special-subgroup-eq-sum-list by auto
with assms(2) show ?thesis using word-gallery-to-0 [of ss] by fastforce

qed

261

lemma ChamberComplex-Σ: ChamberComplex Σ
proof (intro-locales, rule SimplicialComplex-Σ, unfold-locales)

fix y assume y∈Σ
from this obtain X where X : X∈P y = smap X

using simplices-conv-special-cosets by auto
from X(1) obtain w T where w∈W X = w +o 〈T 〉

using special-cosets-def by auto
with X show ∃ x. chamber x ∧ y ⊆ x

using genby-lcoset-refl special-coset-singleton ordsetmap-smap
chamber-singleton

by fastforce
next

fix x y
assume xy: x 6=y chamber x chamber y
from xy(2 ,3) obtain w w ′

where ww ′: w∈W x = smap {w} w ′∈W y = smap {w ′}
using chamber-is-singleton
by blast

show ∃ zs. gallery (x # zs @ [y])
proof (cases w=0 w ′=0 rule: two-cases)

case both with xy(1) ww ′(2 ,4) show ?thesis by fast
next

case one with ww ′(2−4) show ?thesis
using gallery-to-0 gallery-rev by fastforce

next
case other with ww ′(1 ,2 ,4) show ?thesis using gallery-to-0 by auto

next
case neither
from this ww ′ obtain xs ys

where gallery (x # xs @ [smap 0]) gallery (smap 0 # ys @ [y])
using gallery-to-0 gallery-rev
by force

hence gallery (x # (xs @ smap 0 # ys) @ [y])
using gallery-overlap-join[of x#xs] by simp

thus ?thesis by fast
qed

qed

lemma card-chamber : chamber x =⇒ card x = card S
using bij-betw-same-card[OF S-bij-betw-chamber0] chamber-singleton

genby-0-closed[of S]
ChamberComplex.chamber-card[OF ChamberComplex-Σ, of smap 0]

by simp

lemma vertex-conv-special-coset:
X∈

⋃
Σ =⇒ ∃w s. w∈W ∧ s∈S ∧ X = w +o 〈S−{s}〉

using ChamberComplex.simplex-in-max[OF ChamberComplex-Σ] chamber-is-singleton
chamber-vertex-conv-special-coset

by fast

262

end

5.4.4 The Coxeter complex associated to a thin chamber complex
with many foldings

Having previously verified that the fundamental automorphisms in a thin
chamber complex with many foldings form a Coxeter system, we now record
the existence of a chamber complex isomorphism onto the associated Coxeter
complex.
context ThinChamberComplexManyFoldings
begin

lemma CoxeterComplex: CoxeterComplex S
by (

rule CoxeterComplex.intro, rule CoxeterSystem, unfold-locales,
rule finite-S

)

abbreviation Σ ≡ CoxeterComplex.TheComplex S

lemma S-list-not-min-gallery-not-reduced:
assumes ss 6=[] ¬ min-gallery (map (λw. w‘→C0) (sums ss))
shows ¬ reduced-word S ss

proof (cases ss∈lists S)
case True
obtain a b as bs cs

where ss = as@[a]@bs@[b]@cs sum-list ss = sum-list (as@bs@cs)
using S-list-not-min-gallery-deletion [OF True assms]
by blast

with True show ?thesis using not-reduced-word-for [of as@bs@cs] by auto
next

case False thus ?thesis using reduced-word-for-lists by fast
qed

lemma reduced-S-list-min-gallery:
ss 6=[] =⇒ reduced-word S ss =⇒ min-gallery (map (λw. w‘→C0) (sums ss))
using S-list-not-min-gallery-not-reduced by fast

lemma fundchamber-vertex-stabilizer1 :
fixes t
defines v: v ≡ fundantivertex t
assumes tw: t∈S w∈W w→v = v
shows w ∈ 〈S−{t}〉

proof−
from v tw(1) have v-C0 : v∈C0 using fundantivertex by simp
define ss where ss = arg-min length (word-for S w)
moreover

263

have reduced-word S ss =⇒ sum-list ss → v = v =⇒ sum-list ss ∈ 〈S−{t}〉
proof (induct ss)

case (Cons s ss)
from Cons(2) have s-S : s∈S using reduced-word-for-lists by fastforce
from this obtain f g

where fg: (f ,g)∈fundfoldpairs s = Abs-induced-automorph f g
by auto

from fg(1) have opp-fg: OpposedThinChamberComplexFoldings X f g C0
using fundfoldpairs-def by auto

define Cs where Cs = map (λw. w‘→C0) (sums (s#ss))
with Cons(2) have minCs: min-gallery Cs

using reduced-S-list-min-gallery by fast
have sv: s→v = v
proof (cases ss rule: rev-cases)

case Nil with Cons(3) show ?thesis by simp
next

case (snoc ts t)
define Ms Cn

where Ms = map (λw. w‘→C0) (map ((+) s) (sums ts))
and Cn = sum-list (s#ss) ‘→ C0

with snoc Cs-def have Cs = C0 # Ms @ [Cn]
by (simp add: sums-snoc zero-permutation.rep-eq)

with minCs Cs-def fg have C0∈f`C Cn∈g`C
using sums-Cons-conv-append-tl[THEN sym, of s ss]

wall-crossings-subset-walls-betw[of C0 Ms Cn] fundfoldpairs-def
the-wall-betw-adj-fundchamber walls-betw-def
OpposedThinChamberComplexFoldings.basech-halfchsys(1)[

OF opp-fg
]
OpposedThinChamberComplexFoldings.separated-by-this-wall-fg[

OF opp-fg, of C0 Cn
]

by (auto simp add: zero-permutation.rep-eq)
moreover from Cons(3) Cn-def have v∈Cn using v-C0 by force
ultimately show s→v = v

using v-C0 fg
OpposedThinChamberComplexFoldings.indaut-wallvertex[

OF opp-fg
]

by (simp add: permutation-conv-induced-automorph)
qed
moreover from Cons(3) have 0 → sum-list ss → v = s→v

using s-S
by (simp add: plus-permutation.rep-eq S-order2-add[THEN sym])

ultimately have sum-list ss → v = v by (simp add: zero-permutation.rep-eq)
with Cons(1 ,2) have sum-list ss ∈ 〈S−{t}〉

using reduced-word-Cons-reduce by auto
moreover from tw(1) v have s∈〈S−{t}〉

using sv s-S genby-genset-closed[of s S−{t}] fundantivertex-unstable

264

by fastforce
ultimately show ?case using genby-add-closed by simp

qed (simp add: genby-0-closed)
ultimately show ?thesis

using tw(2 ,3) reduced-word-for-genby-sym-arg-min[OF S-sym]
reduced-word-for-sum-list

by fastforce
qed

lemma fundchamber-vertex-stabilizer2 :
assumes s: s∈S
defines v: v ≡ fundantivertex s
shows w ∈ 〈S−{s}〉 =⇒ w→v = v

proof (erule genby.induct)
show 0→v = v by (simp add: zero-permutation.rep-eq)

next
fix t assume t∈S−{s}
moreover with s v have v∈C0∩t‘→C0

using inj-on-eq-iff [OF fundantivertex-inj-on] fundchamber-S-adjacent
fundchamber-S-image-neq-fundchamber [THEN not-sym]
not-the1 [OF adj-antivertex, of C0 t‘→C0 v] fundantivertex

unfolding fundantivertex-def
by auto

ultimately show t→v = v
using S-fixespointwise-fundchamber-image-int fixespointwiseD by fastforce

next
fix w w ′ assume ww ′: w→v = v w ′→v = v
from ww ′(2) have (−w ′)→v = id v

using plus-permutation.rep-eq[of −w ′ w ′]
by (auto simp add: zero-permutation.rep-eq[THEN sym])

with ww ′(1) show (w−w ′)→v = v
using plus-permutation.rep-eq[of w −w ′] by simp

qed

lemma label-wrt-special-coset1 :
assumes label-wrt C0 ϕ fixespointwise ϕ C0 w0∈W s∈S
defines v ≡ fundantivertex s
shows {w∈W . w → ϕ (w0→v) = w0→v} = w0 +o 〈S−{s}〉

proof−
from assms(4 ,5) have v-C0 : v∈C0 using fundantivertex[of s] by simp
show ?thesis
proof (rule seteqI)

fix w assume w∈{w∈W . w→(ϕ (w0→v)) = w0→v}
hence w: w∈W w→(ϕ (w0→v)) = w0→v by auto
from assms(2 ,3) have (−w0 + w) → v = 0→v

using w(2) v-C0 fundchamber chamberD-simplex
W-respects-labels[OF assms(1)] plus-permutation.rep-eq[of −w0 w0]

by (fastforce simp add: plus-permutation.rep-eq fixespointwiseD)
with assms(3−5) show w ∈ w0 +o 〈S−{s}〉

265

using w(1) genby-uminus-add-closed[of w0 S w]
fundchamber-vertex-stabilizer1

by (force simp add: zero-permutation.rep-eq elt-set-plus-def)
next

fix w assume w: w ∈ w0 +o 〈S−{s}〉
from this obtain w1 where w1 : w1 ∈ 〈S−{s}〉 w = w0 + w1

using elt-set-plus-def by blast
moreover with w assms(3) have w-W : w∈W

using genby-mono[of S−{s} S] genby-add-closed by fastforce
ultimately show w∈{w∈W . w→(ϕ (w0→v)) = w0→v}

using assms(2−5) v-C0 fundchamber chamberD-simplex
W-respects-labels[OF assms(1), of w0 v]
fundchamber-vertex-stabilizer2 [of s w1]

by (fastforce simp add: fixespointwiseD plus-permutation.rep-eq)
qed

qed

lemma label-wrt-special-coset1 ′:
assumes label-wrt C0 ϕ fixespointwise ϕ C0 w0∈W v∈C0
defines s ≡ fundantipermutation v
shows {w∈W . w → ϕ (w0→v) = w0→v} = w0 +o 〈S−{s}〉
using assms fundantipermutation1 fundantivertex-bij-betw

bij-betw-f-the-inv-into-f label-wrt-special-coset1 [of ϕ w0 s]
by fastforce

lemma label-wrt-special-coset2 ′:
assumes label-wrt C0 ϕ fixespointwise ϕ C0 w0∈W v ∈ w0‘→C0
defines s ≡ fundantipermutation (ϕ v)
shows {w∈W . w → ϕ v = v} = w0 +o 〈S−{s}〉
using assms fundchamber chamberD-simplex W-respects-labels

label-wrt-special-coset1 ′[OF assms(1−3)]
by (fastforce simp add: fixespointwiseD)

lemma label-stab-map-W-fundchamber-image:
assumes label-wrt C0 ϕ fixespointwise ϕ C0 w0∈W
defines ψ ≡ λv. {w∈W . w→(ϕ v) = v}
shows ψ‘(w0‘→C0) = CoxeterComplex.smap S {w0}

proof (rule seteqI)
from assms

show
∧

x. x ∈ CoxeterComplex.smap S {w0} =⇒ x ∈ ψ‘(w0‘→C0)
using CoxeterComplex.chamber-vertex-conv-special-coset[

OF CoxeterComplex, of w0
]
label-wrt-special-coset1 fundantivertex

by fastforce
next

fix x assume x∈ ψ‘(w0‘→C0)
from this obtain v where v: v∈w0‘→C0 x = ψ v by fast
with assms have x = w0 +o 〈S−{fundantipermutation (ϕ v)}〉

266

using label-wrt-special-coset2 ′ by fast
moreover from v(1) assms(3) have v∈

⋃
X

using fundchamber chamberD-simplex W-endomorphism
ChamberComplexEndomorphism.vertex-map

by fastforce
ultimately show x ∈ CoxeterComplex.smap S {w0}

using assms(1 ,3) label-wrt-elt-image fundantipermutation1
CoxeterComplex.chamber-vertices[OF CoxeterComplex]

by fastforce
qed

lemma label-stab-map-chamber-map:
assumes ϕ: label-wrt C0 ϕ fixespointwise ϕ C0
and C : chamber C
defines ψ: ψ ≡ λv. {w∈W . w→(ϕ v) = v}
shows CoxeterComplex.chamber S (ψ‘C)

proof−
from C obtain w where w: w∈W C = w‘→C0

using chamber-eq-W-image by fast
with ϕ ψ have ψ‘C = CoxeterComplex.smap S {w}

using label-stab-map-W-fundchamber-image by simp
with w(1) show ?thesis

using CoxeterComplex.chamber-singleton[OF CoxeterComplex] by simp
qed

lemma label-stab-map-inj-on-vertices:
assumes ϕ: label-wrt C0 ϕ fixespointwise ϕ C0
defines ψ: ψ ≡ λv. {w∈W . w→(ϕ v) = v}
shows inj-on ψ (

⋃
X)

proof (rule inj-onI)
fix v1 v2 assume v: v1∈

⋃
X v2∈

⋃
X ψ v1 = ψ v2

from v(1 ,2) have ϕv: ϕ v1 ∈ C0 ϕ v2 ∈ C0
using label-wrt-elt-image[OF ϕ(1)] by auto

define s1 s2 where s1 = fundantipermutation (ϕ v1) and s2 = fundantiper-
mutation (ϕ v2)

from v(1 ,2) obtain w1 w2 where w1∈W v1∈w1‘→C0 w2∈W v2∈w2‘→C0
using simplex-in-max chamber-eq-W-image by blast

with assms s1-def s2-def have ψv: ψ v1 = w1 +o 〈S−{s1}〉 ψ v2 = w2 +o
〈S−{s2}〉

using label-wrt-special-coset2 ′ by auto
with v(3) have w1 +o 〈S−{s1}〉 = w2 +o 〈S−{s2}〉

using label-wrt-special-coset2 ′ by auto
with s1-def s2-def have ϕ v1 = ϕ v2

using PreCoxeterSystemWithDeletion.special-coset-eq-imp-eq-gensets[
OF PreCoxeterSystemWithDeletion, of S−{s1} S−{s2} w1 w2

]
ϕv fundantipermutation1 [of ϕ v1] fundantipermutation1 [of ϕ v2]
bij-betw-f-the-inv-into-f [OF fundantivertex-bij-betw, of ϕ v1]
bij-betw-f-the-inv-into-f [OF fundantivertex-bij-betw, of ϕ v2]

267

by fastforce
with v(3) ψ show v1=v2

using ψv(1) genby-0-closed[of S−{s1}] lcoset-refl[of 〈S−{s1}〉 w1]
by fastforce

qed

lemma label-stab-map-surj-on-vertices:
assumes label-wrt C0 ϕ fixespointwise ϕ C0
defines ψ ≡ λv. {w∈W . w→(ϕ v) = v}
shows ψ‘(

⋃
X) =

⋃
Σ

proof (rule seteqI)
fix u assume u ∈ ψ‘(

⋃
X)

from this obtain v where v: v∈
⋃

X u = ψ v by fast
from v(1) obtain w where w∈W v∈w‘→C0

using simplex-in-max chamber-eq-W-image by blast
with assms v show u∈

⋃
Σ

using label-wrt-special-coset2 ′ label-wrt-elt-image[OF assms(1)]
fundantipermutation1 CoxeterComplex.vertices[OF CoxeterComplex]

by auto
next

fix u assume u∈
⋃
Σ

from this obtain w s where w∈W s∈S u = w +o 〈S−{s}〉
using CoxeterComplex.vertex-conv-special-coset[OF CoxeterComplex] by blast

with assms show u ∈ ψ‘(
⋃

X)
using label-wrt-special-coset1 fundantivertex fundchamber chamberD-simplex

W-endomorphism ChamberComplexEndomorphism.vertex-map
by fast

qed

lemma label-stab-map-bij-betw-vertices:
assumes label-wrt C0 ϕ fixespointwise ϕ C0
defines ψ ≡ λv. {w∈W . w→(ϕ v) = v}
shows bij-betw ψ (

⋃
X) (

⋃
Σ)

unfolding bij-betw-def
using assms label-stab-map-inj-on-vertices label-stab-map-surj-on-vertices
by auto

lemma label-stab-map-bij-betw-W-chambers:
assumes label-wrt C0 ϕ fixespointwise ϕ C0 w0∈W
defines ψ ≡ λv. {w∈W . w→(ϕ v) = v}
shows bij-betw ψ (w0‘→C0) (CoxeterComplex.smap S {w0})
unfolding bij-betw-def

proof (rule conjI , rule inj-on-inverseI)
define f1 f2

where f1 = the-inv-into (CoxeterComplex.smap S 0) ((+o) w0)
and f2 = the-inv-into S (λs. 〈S−{s}〉)

define g where g = ((→) w0) ◦ fundantivertex ◦ f2 ◦ f1

from assms(3) have inj-opw0 : inj-on ((+o) w0) (CoxeterComplex.smap S 0)

268

using bij-betw-imp-inj-on[OF CoxeterComplex.W-lcoset-bij-betw-singletons]
CoxeterComplex

by fast
have inj-genby-minus-s: inj-on (λs. 〈S−{s}〉) S

using bij-betw-imp-inj-on[OF CoxeterComplex.S-bij-betw-chamber0]
CoxeterComplex

by fast

fix v assume v: v∈w0‘→C0
from this obtain v0 where v0 : v0∈C0 v = w0→v0 by fast
from v0 (1) have fap-v0 : fundantipermutation v0 ∈ S

using fundantipermutation1 by auto
with assms(3)

have v0 ′: 〈S−{fundantipermutation v0}〉 ∈ CoxeterComplex.smap S 0
using genby-0-closed[of S]

CoxeterComplex.chamber-vertices[OF CoxeterComplex, of 0]
by simp

from v0 assms have ψ v = w0 +o 〈S−{fundantipermutation v0}〉
using label-wrt-special-coset1 ′ by simp

with f1-def assms(3) f2-def v0 g-def show g (ψ v) = v
using v0 ′ fap-v0 the-inv-into-f-f [OF inj-opw0]

the-inv-into-f-f [OF inj-genby-minus-s]
bij-betw-f-the-inv-into-f [OF fundantivertex-bij-betw]

by simp
next

from assms show ψ‘(w0‘→C0) = CoxeterComplex.smap S {w0}
using label-stab-map-W-fundchamber-image by simp

qed

lemma label-stab-map-surj-on-simplices:
assumes ϕ: label-wrt C0 ϕ fixespointwise ϕ C0
defines ψ: ψ ≡ λv. {w∈W . w→(ϕ v) = v}
shows ψ ` X = Σ

proof (rule seteqI)
fix y assume y ∈ ψ ` X
from this obtain x where x: x∈X y = ψ ‘ x by fast
from x(1) obtain C where chamber C x⊆C using simplex-in-max by fast
with assms x(2) show y ∈ Σ

using label-stab-map-chamber-map
CoxeterComplex.chamberD-simplex[OF CoxeterComplex]
CoxeterComplex.faces[OF CoxeterComplex, of ψ‘C y]

by auto
next

fix y assume y ∈ Σ
from this obtain z where z: CoxeterComplex.chamber S z y⊆z

using ChamberComplex.simplex-in-max[
OF CoxeterComplex.ChamberComplex-Σ,
OF CoxeterComplex

269

]
by fast

from z(1) obtain w where w: w∈W z = CoxeterComplex.smap S {w}
using CoxeterComplex.chamber-is-singleton[OF CoxeterComplex] by fast

with assms have bij-betw ψ (w‘→C0) z
using label-stab-map-bij-betw-W-chambers by fast

hence 1 : bij-betw ((‘) ψ) (Pow (w‘→C0)) (Pow z)
using bij-betw-imp-bij-betw-Pow by fast

define x where x: x ≡ the-inv-into (Pow (w‘→C0)) ((‘) ψ) y
with z(2) have x ⊆ w‘→C0 using bij-betw-the-inv-into-onto[OF 1] by auto
with w(1) have x∈X

using faces fundchamber-W-image-chamber chamberD-simplex
by fastforce

moreover from x z(2) have y = ψ ‘ x
using bij-betw-f-the-inv-into-f [OF 1] by simp

ultimately show y ∈ ψ ` X by fast
qed

lemma label-stab-map-iso-to-coxeter-complex:
assumes label-wrt C0 ϕ fixespointwise ϕ C0
defines ψ ≡ λv. {w∈W . w→(ϕ v) = v}
shows ChamberComplexIsomorphism X Σ ψ

proof (
rule ChamberComplexIsomorphism.intro,
rule ChamberComplexMorphism.intro

)
show ChamberComplex X ..
show ChamberComplex Σ

using CoxeterComplex CoxeterComplex.ChamberComplex-Σ by fast
from assms show ChamberComplexMorphism-axioms X Σ ψ

using label-stab-map-chamber-map
CoxeterComplex.card-chamber [OF CoxeterComplex]
card-S-chamber

by unfold-locales auto
from assms show ChamberComplexIsomorphism-axioms X Σ ψ

using label-stab-map-bij-betw-vertices label-stab-map-surj-on-simplices
by unfold-locales auto

qed

lemma ex-iso-to-coxeter-complex ′:
∃ψ. ChamberComplexIsomorphism X (CoxeterComplex.TheComplex S) ψ
using CoxeterComplex ex-label-retraction label-stab-map-iso-to-coxeter-complex
by force

lemma ex-iso-to-coxeter-complex:
∃S :: ′a permutation set. CoxeterComplex S ∧

(∃ψ. ChamberComplexIsomorphism X (CoxeterComplex.TheComplex S) ψ)
using CoxeterComplex ex-iso-to-coxeter-complex ′ by fast

270

end

end

6 Buildings

In this section we collect the axioms for a (thick) building in a locale, and
prove that apartments in a building are uniformly Coxeter.
theory Building
imports Coxeter

begin

6.1 Apartment systems

First we describe and explore the basic structure of apartment systems. An
apartment system is a collection of isomorphic thin chamber subcomplexes
with certain intersection properties.

6.1.1 Locale and basic facts
locale ChamberComplexWithApartmentSystem = ChamberComplex X

for X :: ′a set set
+ fixes A :: ′a set set set

assumes subcomplexes : A∈A =⇒ ChamberSubcomplex A
and thincomplexes : A∈A =⇒ ThinChamberComplex A
and no-trivial-apartments: {}/∈A
and containtwo :

chamber C =⇒ chamber D =⇒ ∃A∈A. C∈A ∧ D∈A
and intersecttwo :
[[A∈A; A ′∈A; x∈A∩A ′; C∈A∩A ′; chamber C]] =⇒
∃ f . ChamberComplexIsomorphism A A ′ f ∧ fixespointwise f x ∧

fixespointwise f C
begin

lemmas complexes = ChamberSubcomplexD-complex [OF subcomplexes]
lemmas apartment-simplices = ChamberSubcomplexD-sub [OF subcomplexes]
lemmas chamber-in-apartment = chamber-in-subcomplex [OF subcomplexes]
lemmas apartment-chamber = subcomplex-chamber [OF subcomplexes]
lemmas gallery-in-apartment = gallery-in-subcomplex [OF subcomplexes]
lemmas apartment-gallery = subcomplex-gallery [OF subcomplexes]
lemmas min-gallery-in-apartment = min-gallery-in-subcomplex [OF subcomplexes]

lemmas apartment-simplex-in-max =
ChamberComplex.simplex-in-max [OF complexes]

271

lemmas apartment-faces =
ChamberComplex.faces [OF complexes]

lemmas apartment-chamber-system-def =
ChamberComplex.chamber-system-def [OF complexes]

lemmas apartment-chamberD-simplex =
ChamberComplex.chamberD-simplex [OF complexes]

lemmas apartment-chamber-distance-def =
ChamberComplex.chamber-distance-def [OF complexes]

lemmas apartment-galleryD-chamber =
ChamberComplex.galleryD-chamber [OF complexes]

lemmas apartment-gallery-least-length =
ChamberComplex.gallery-least-length [OF complexes]

lemmas apartment-min-galleryD-gallery =
ChamberComplex.min-galleryD-gallery [OF complexes]

lemmas apartment-min-gallery-pgallery =
ChamberComplex.min-gallery-pgallery [OF complexes]

lemmas apartment-trivial-morphism =
ChamberComplex.trivial-morphism [OF complexes]

lemmas apartment-chamber-system-simplices =
ChamberComplex.chamber-system-simplices [OF complexes]

lemmas apartment-min-gallery-least-length =
ChamberComplex.min-gallery-least-length [OF complexes]

lemmas apartment-vertex-set-int =
ChamberComplex.vertex-set-int[OF complexes complexes]

lemmas apartment-standard-uniqueness-pgallery-betw =
ThinChamberComplex.standard-uniqueness-pgallery-betw[OF thincomplexes]

lemmas apartment-standard-uniqueness =
ThinChamberComplex.standard-uniqueness[OF thincomplexes]

lemmas apartment-standard-uniqueness-isomorphs =
ThinChamberComplex.standard-uniqueness-isomorphs[OF thincomplexes]

abbreviation supapartment C D ≡ (SOME A. A∈A ∧ C∈A ∧ D∈A)

lemma supapartmentD:

272

assumes CD: chamber C chamber D
defines A : A ≡ supapartment C D
shows A∈A C∈A D∈A

proof−
from CD have 1 : ∃A. A∈A ∧ C∈A ∧ D∈A using containtwo by fast
from A show A∈A C∈A D∈A using someI-ex[OF 1] by auto

qed

lemma iso-fixespointwise-chamber-in-int-apartments:
assumes apartments: A ∈ A A ′ ∈ A
and chamber : chamber C C∈A∩A ′

and iso : ChamberComplexIsomorphism A A ′ f fixespointwise f C
shows fixespointwise f (

⋃
(A∩A ′))

proof (rule fixespointwiseI)
fix v assume v ∈

⋃
(A ∩ A ′)

from this obtain x where x: x ∈ A∩A ′ v ∈ x by fast
from apartments x(1) chamber intersecttwo[of A A ′] obtain g

where g: ChamberComplexIsomorphism A A ′ g
fixespointwise g x fixespointwise g C

by force
from assms g(1 ,3) have fun-eq-on f g (

⋃
A)

using chamber-in-apartment
by (auto intro:

apartment-standard-uniqueness-isomorphs
fixespointwise2-imp-eq-on

)
with x g(2) show f v = id v using fixespointwiseD fun-eq-onD by force

qed

lemma strong-intersecttwo:
[[A∈A; A ′∈A; chamber C ; C ∈ A∩A ′]] =⇒
∃ f . ChamberComplexIsomorphism A A ′ f ∧ fixespointwise f (

⋃
(A∩A ′))

using intersecttwo[of A A ′]
iso-fixespointwise-chamber-in-int-apartments[of A A ′ C]

by force

end

6.1.2 Isomorphisms between apartments

By standard uniqueness, the isomorphism between overlapping apartments
guaranteed by the axiom intersecttwo is unique.
context ChamberComplexWithApartmentSystem
begin

lemma ex1-apartment-iso:
assumes A∈A A ′∈A chamber C C∈A∩A ′

shows ∃ !f . ChamberComplexIsomorphism A A ′ f ∧
fixespointwise f (

⋃
(A∩A ′)) ∧ fixespointwise f (−

⋃
A)

273

— The third clause in the conjunction is to facilitate uniqueness.
proof (rule ex-ex1I)

from assms obtain f
where f : ChamberComplexIsomorphism A A ′ f fixespointwise f (

⋃
(A∩A ′))

using strong-intersecttwo
by fast

define f ′ where f ′ = restrict1 f (
⋃

A)
from f (1) f ′-def have ChamberComplexIsomorphism A A ′ f ′

by (fastforce intro: ChamberComplexIsomorphism.iso-cong fun-eq-onI)
moreover from f (2) f ′-def have fixespointwise f ′ (

⋃
(A∩A ′))

using fun-eq-onI [of
⋃
(A∩A ′) f ′ f]

by (fastforce intro: fixespointwise-cong)
moreover from f ′-def have fixespointwise f ′ (−

⋃
A)

by (auto intro: fixespointwiseI)
ultimately

show ∃ f . ChamberComplexIsomorphism A A ′ f ∧
fixespointwise f (

⋃
(A∩A ′)) ∧ fixespointwise f (−

⋃
A)

by fast
next

fix f g
assume ChamberComplexIsomorphism A A ′ f ∧

fixespointwise f (
⋃
(A ∩ A ′)) ∧ fixespointwise f (−

⋃
A)

ChamberComplexIsomorphism A A ′ g ∧
fixespointwise g (

⋃
(A ∩ A ′)) ∧ fixespointwise g (−

⋃
A)

with assms show f=g
using chamber-in-apartment fixespointwise2-imp-eq-on[of f C g] fun-eq-on-cong

fixespointwise-subset[of f
⋃

(A∩A ′) C]
fixespointwise-subset[of g

⋃
(A∩A ′) C]

apartment-standard-uniqueness-isomorphs
by (blast intro: fun-eq-on-set-and-comp-imp-eq)

qed

definition the-apartment-iso :: ′a set set ⇒ ′a set set ⇒ (′a⇒ ′a)
where the-apartment-iso A A ′ ≡

(THE f . ChamberComplexIsomorphism A A ′ f ∧
fixespointwise f (

⋃
(A∩A ′)) ∧ fixespointwise f (−

⋃
A))

lemma the-apartment-isoD:
assumes A∈A A ′∈A chamber C C∈A∩A ′

defines f ≡ the-apartment-iso A A ′

shows ChamberComplexIsomorphism A A ′ f fixespointwise f (
⋃

(A∩A ′))
fixespointwise f (−

⋃
A)

using assms theI ′[OF ex1-apartment-iso]
unfolding the-apartment-iso-def
by auto

lemmas the-apartment-iso-apartment-chamber-map =
ChamberComplexIsomorphism.chamber-map [OF the-apartment-isoD(1)]

274

lemmas the-apartment-iso-apartment-simplex-map =
ChamberComplexIsomorphism.simplex-map [OF the-apartment-isoD(1)]

lemma the-apartment-iso-chamber-map:
[[A∈A; B∈A; chamber C ; C∈A∩B; chamber D; D∈A]] =⇒

chamber (the-apartment-iso A B ‘ D)
using chamber-in-apartment[of A] apartment-chamber

the-apartment-iso-apartment-chamber-map
by auto

lemma the-apartment-iso-comp:
assumes apartments: A∈A A ′∈A A ′′∈A
and chamber : chamber C C∈A∩A ′∩A ′′

defines f ≡ the-apartment-iso A A ′

and g ≡ the-apartment-iso A ′ A ′′

and h ≡ the-apartment-iso A A ′′

defines gf ≡ restrict1 (g◦f) (
⋃

A)
shows h = gf

proof (
rule fun-eq-on-set-and-comp-imp-eq,
rule apartment-standard-uniqueness-isomorphs, rule apartments(3)

)
from gf-def have gf-cong1 : fun-eq-on gf (g◦f) (

⋃
A)

by (fastforce intro: fun-eq-onI)
from gf-def have gf-cong2 : fixespointwise gf (−

⋃
A)

by (auto intro: fixespointwiseI)

from apartments(1 ,3) chamber h-def
show ChamberComplexIsomorphism A A ′′ h
using the-apartment-isoD(1)
by fast

from apartments chamber f-def g-def
show ChamberComplexIsomorphism A A ′′ gf
using ChamberComplexIsomorphism.iso-cong[OF - gf-cong1]

ChamberComplexIsomorphism.iso-comp the-apartment-isoD(1)
by blast

from apartments(1) chamber show ChamberComplex.chamber A C
using chamber-in-apartment by fast

show fun-eq-on h gf C
proof (rule fixespointwise2-imp-eq-on)

from assms(1 ,3) chamber h-def show fixespointwise h C
using fixespointwise-subset the-apartment-isoD(2) by blast

have fun-eq-on gf (g◦f) (
⋃
(A∩A ′∩A ′′))

using fun-eq-on-subset[OF gf-cong1 , of
⋃
(A∩A ′∩A ′′)] by fast

moreover from f-def g-def apartments chamber
have fixespointwise (g◦f) (

⋃
(A∩A ′∩A ′′))

using fixespointwise-comp[of f
⋃
(A∩A ′∩A ′′) g]

fixespointwise-subset[

275

OF the-apartment-isoD(2), of - - C
⋃

(A∩A ′∩A ′′)
]

by auto
ultimately have fixespointwise gf (

⋃
(A∩A ′∩A ′′))

using fixespointwise-cong[of gf g◦f] by fast
with chamber(2) show fixespointwise gf C

using fixespointwise-subset by auto
qed
from h-def apartments(1 ,3) chamber show fun-eq-on h gf (−

⋃
A)

using the-apartment-isoD(3) gf-cong2 by (auto intro: fun-eq-on-cong)
qed

lemma the-apartment-iso-int-im:
assumes A∈A A ′∈A chamber C C∈A∩A ′ x∈A∩A ′

defines f ≡ the-apartment-iso A A ′

shows f‘x = x
using assms the-apartment-isoD(2) fixespointwise-im[of f

⋃
(A∩A ′) x]

by fast

end

6.1.3 Retractions onto apartments

Since the isomorphism between overlapping apartments is the identity on
their intersection, starting with a fixed chamber in a fixed apartment, we
can construct a retraction onto that apartment as follows. Given a vertex
in the complex, that vertex is contained a chamber, and that chamber lies
in a common apartment with the fixed chamber. We then apply to the
vertex the apartment isomorphism from that common apartment to the fixed
apartment. It turns out that the image of the vertex does not depend on the
containing chamber and apartment chosen, and so since the isomorphisms
between apartments used are unique, such a retraction onto an apartment
is canonical.
context ChamberComplexWithApartmentSystem
begin

definition canonical-retraction :: ′a set set ⇒ ′a set ⇒ (′a⇒ ′a)
where canonical-retraction A C =

restrict1 (λv. the-apartment-iso (supapartment (supchamber v) C) A v)
(
⋃

X)

lemma canonical-retraction-retraction:
assumes A∈A chamber C C∈A v∈

⋃
A

shows canonical-retraction A C v = v
proof−

define D where D = supchamber v
define B where B = supapartment D C
from D-def assms(1 ,4) have D-facts: chamber D v∈D

276

using apartment-simplices supchamberD[of v] by auto
from B-def assms(2) have B-facts: B∈A D∈B C∈B

using D-facts(1) supapartmentD[of D C] by auto
from assms(1 ,4) have v∈

⋃
(B∩A)

using D-facts(2) B-facts(1 ,2) apartment-vertex-set-int by fast
with assms(1−3) D-def B-def show ?thesis

using canonical-retraction-def B-facts(1 ,3) fixespointwiseD[of -
⋃
(B∩A) v]

the-apartment-isoD(2)[of B A C]
by simp

qed

lemma canonical-retraction-simplex-retraction1 :
[[A∈A; chamber C ; C∈A; a∈A]] =⇒

fixespointwise (canonical-retraction A C) a
using canonical-retraction-retraction by (force intro: fixespointwiseI)

lemma canonical-retraction-simplex-retraction2 :
[[A∈A; chamber C ; C∈A; a∈A]] =⇒ canonical-retraction A C ‘ a = a
using canonical-retraction-simplex-retraction1 fixespointwise-im[of - a a] by simp

lemma canonical-retraction-uniform:
assumes apartments: A∈A B∈A
and chambers : chamber C C∈A∩B
shows fun-eq-on (canonical-retraction A C) (the-apartment-iso B A) (

⋃
B)

proof (rule fun-eq-onI)
fix v assume v: v∈

⋃
B

define D ′ B ′ g f h
where D ′ = supchamber v

and B ′ = supapartment D ′ C
and g = the-apartment-iso B ′ A
and f = the-apartment-iso B B ′

and h = the-apartment-iso B A
from D ′-def v apartments(2) have D ′-facts: chamber D ′ v∈D ′

using apartment-simplices supchamberD[of v] by auto
from B ′-def chambers(1) have B ′-facts: B ′∈A D ′∈B ′ C∈B ′

using D ′-facts(1) supapartmentD[of D ′ C] by auto
from f-def apartments(2) chambers have fixespointwise f (

⋃
(B ∩ B ′))

using B ′-facts(1 ,3) the-apartment-isoD(2)[of B B ′ C] by fast
moreover from v apartments(2) have v∈

⋃
(B∩B ′)

using D ′-facts(2) B ′-facts(1 ,2) apartment-vertex-set-int by fast
ultimately show canonical-retraction A C v = h v

using D ′-def B ′-def g-def f-def h-def v apartments chambers fixespointwiseD[of
f
⋃

(B∩B ′) v]
canonical-retraction-def apartment-simplices[of B] B ′-facts(1 ,3)
the-apartment-iso-comp[of B B ′ A C]

by auto
qed

lemma canonical-retraction-uniform-im:

277

[[A∈A; B∈A; chamber C ; C∈A∩B; x∈B]] =⇒
canonical-retraction A C ‘ x = the-apartment-iso B A ‘ x

using canonical-retraction-uniform fun-eq-on-im[of - - - x] by fast

lemma canonical-retraction-simplex-im:
assumes A∈A chamber C C∈A
shows canonical-retraction A C ` X = A

proof (rule seteqI)
fix y assume y ∈ canonical-retraction A C ` X
from this obtain x where x: x∈X y = canonical-retraction A C ‘ x by fast
from x(1) obtain D where D: chamber D x⊆D using simplex-in-max by fast
from assms(2) D(1) obtain B where B∈A D∈B C∈B

using containtwo by fast
with assms D(2) x(2) show y∈A

using the-apartment-isoD(1)[of B A]
ChamberComplexIsomorphism.surj-simplex-map
canonical-retraction-uniform-im apartment-faces[of B D x]

by fastforce
next

fix a assume a∈A
with assms show a ∈ canonical-retraction A C ` X

using canonical-retraction-simplex-retraction2 [of A C a, THEN sym]
apartment-simplices

by fast
qed

lemma canonical-retraction-vertex-im:
[[A∈A; chamber C ; C∈A]] =⇒ canonical-retraction A C ‘

⋃
X =

⋃
A

using singleton-simplex ChamberComplex.singleton-simplex complexes
canonical-retraction-simplex-im[of A C]

by blast

lemma canonical-retraction:
assumes A∈A chamber C C∈A
shows ChamberComplexRetraction X (canonical-retraction A C)

proof
fix D assume chamber D
with assms

show chamber (canonical-retraction A C ‘ D)
card (canonical-retraction A C ‘ D) = card D

using containtwo[of C D] canonical-retraction-uniform-im
the-apartment-iso-chamber-map chamber-in-apartment
ChamberComplexIsomorphism.dim-map[OF the-apartment-isoD(1)]

by auto
next

fix v from assms
show v∈

⋃
X =⇒ canonical-retraction A C (canonical-retraction A C v) =

canonical-retraction A C v
using canonical-retraction-retraction canonical-retraction-vertex-im

278

by fast
qed (simp add: canonical-retraction-def)

lemma canonical-retraction-comp-endomorphism:
[[A∈A; B∈A; chamber C ; chamber D; C∈A; D∈B]] =⇒

ChamberComplexEndomorphism X
(canonical-retraction A C ◦ canonical-retraction B D)

using canonical-retraction[of A C] canonical-retraction[of B D]
ChamberComplexRetraction.axioms(1)
ChamberComplexEndomorphism.endo-comp

by fast

lemma canonical-retraction-comp-simplex-im-subset:
[[A∈A; B∈A; chamber C ; chamber D; C∈A; D∈B]] =⇒

(canonical-retraction A C ◦ canonical-retraction B D) ` X ⊆ A
using canonical-retraction[of B D] ChamberComplexRetraction.simplex-map

canonical-retraction-simplex-im[of A C]
by (force simp add: image-comp[THEN sym])

lemma canonical-retraction-comp-apartment-endomorphism:
[[A∈A; B∈A; chamber C ; chamber D; C∈A; D∈B]] =⇒

ChamberComplexEndomorphism A
(restrict1 (canonical-retraction A C ◦ canonical-retraction B D) (

⋃
A))

using ChamberComplexEndomorphism.restrict-endo[of X - A]
canonical-retraction-comp-endomorphism[of A B C D] subcomplexes[of A]
canonical-retraction-comp-simplex-im-subset[of A B C D]
apartment-simplices[of A]

by auto

end

6.1.4 Distances in apartments

Here we examine distances between chambers and between a facet and a
chamber, especially with respect to canonical retractions onto an apart-
ment. Note that a distance measured within an apartment is equal to the
distance measured between the same objects in the wider chamber com-
plex. In other words, the shortest distance between chambers can always be
achieved within an apartment.
context ChamberComplexWithApartmentSystem
begin

lemma apartment-chamber-distance:
assumes A∈A chamber C chamber D C∈A D∈A
shows ChamberComplex.chamber-distance A C D = chamber-distance C D

proof (cases C=D)
case True with assms(1) show ?thesis

using apartment-chamber-distance-def chamber-distance-def by simp

279

next
case False
define Cs Ds f

where Cs = (ARG-MIN length Cs. ChamberComplex.gallery A (C#Cs@[D]))
and Ds = (ARG-MIN length Ds. gallery (C#Ds@[D]))
and f = canonical-retraction A C

from assms(2 ,3) False Ds-def have 1 : gallery (C#Ds@[D])
using gallery-least-length by fast

with assms(1 ,2 ,4 ,5) f-def have gallery (C # f |=Ds @ [D])
using canonical-retraction ChamberComplexRetraction.gallery-map[of X]

canonical-retraction-simplex-retraction2
by fastforce

moreover from f-def assms(1 ,2 ,4) have set (f |=Ds) ⊆ A
using 1 galleryD-chamber chamberD-simplex

canonical-retraction-simplex-im[of A C]
by auto

ultimately have ChamberComplex.gallery A (C # f |=Ds @ [D])
using assms(1 ,4 ,5) gallery-in-apartment by simp

with assms(1) Ds-def False
have ChamberComplex.chamber-distance A C D ≤ chamber-distance C D
using ChamberComplex.chamber-distance-le[OF complexes]

chamber-distance-def
by force

moreover from assms False Cs-def
have chamber-distance C D ≤ ChamberComplex.chamber-distance A C D
using chamber-in-apartment apartment-gallery-least-length

subcomplex-gallery[OF subcomplexes]
chamber-distance-le apartment-chamber-distance-def

by simp
ultimately show ?thesis by simp

qed

lemma apartment-min-gallery:
assumes A∈A ChamberComplex.min-gallery A Cs
shows min-gallery Cs

proof (cases Cs rule: list-cases-Cons-snoc)
case Single with assms show ?thesis

using apartment-min-galleryD-gallery apartment-gallery galleryD-chamber
by fastforce

next
case (Cons-snoc C Ds D)
moreover with assms have min-gallery (C#Ds@[D])

using apartment-min-galleryD-gallery[of A Cs] apartment-gallery[of A Cs]
apartment-galleryD-chamber apartment-chamberD-simplex
ChamberComplex.min-gallery-betw-chamber-distance[

OF complexes, of A C Ds D
]
galleryD-chamber apartment-chamber-distance

280

min-galleryI-chamber-distance-betw
by auto

ultimately show ?thesis by fast
qed simp

lemma apartment-face-distance:
assumes A∈A chamber C C∈A F∈A
shows ChamberComplex.face-distance A F C = face-distance F C

proof−
define D D ′

where D = closest-supchamber F C
and D ′ = ChamberComplex.closest-supchamber A F C

from assms D ′-def have chamber-D ′: ChamberComplex.chamber A D ′

using chamber-in-apartment ChamberComplex.closest-supchamberD(1)
complexes

by fast
with assms(1 ,2 ,4) D-def have chambers: chamber D chamber D ′

using closest-supchamberD(1)[of F C] apartment-chamber
apartment-simplices

by auto
from assms(1−3)

have 1 : ChamberComplex.chamber-distance A D ′ C = chamber-distance D ′ C
using chamber-D ′ chambers(2) apartment-chamberD-simplex

apartment-chamber-distance
by fastforce

from assms D-def D ′-def have F-DD ′: F⊆D F⊆D ′

using apartment-simplices[of A] closest-supchamberD(2) chamber-in-apartment
ChamberComplex.closest-supchamberD(2)[OF complexes]

by auto

from assms(2) obtain B where B: B∈A C∈B D∈B
using chambers(1) containtwo by fast

moreover from assms B have the-apartment-iso B A ‘ F = F
using F-DD ′(1) apartment-faces the-apartment-iso-int-im by force

moreover have the-apartment-iso B A ‘ F ⊆ the-apartment-iso B A ‘ D
using F-DD ′(1) by fast

ultimately have chamber-distance D C ≥ chamber-distance D ′ C
using assms(1−3) D ′-def 1 chambers(1) apartment-chamber-distance[of B]

chamber-in-apartment[of B D] chamber-in-apartment[of B C]
ChamberComplexIsomorphism.chamber-map[

OF the-apartment-isoD(1), of B A]
ChamberComplex.closest-supchamber-closest[

OF complexes, of A the-apartment-iso B A ‘ D F C]
ChamberComplexIsomorphism.chamber-distance-map[

OF the-apartment-isoD(1), of B A C]
the-apartment-iso-int-im[of B A C C]

by force
moreover from assms D-def

281

have chamber-distance D C ≤ chamber-distance D ′ C
using closest-supchamber-closest chambers(2) F-DD ′(2)
by simp

ultimately show ?thesis
using assms(1) D-def D ′-def face-distance-def 1

ChamberComplex.face-distance-def [OF complexes]
by simp

qed

lemma apartment-face-distance-eq-chamber-distance-compare-other-chamber :
assumes A∈A chamber C chamber D chamber E C∈A D∈A E∈A

zCC zCD C 6=D chamber-distance C E ≤ chamber-distance D E
shows face-distance z E = chamber-distance C E
using assms apartment-chamber-distance apartment-face-distance

facetrel-subset[of z C] apartment-faces[of A C z] chamber-in-apartment
ThinChamberComplex.face-distance-eq-chamber-distance-compare-other-chamber [

OF thincomplexes, of A C D z E
]

by auto

lemma canonical-retraction-face-distance-map:
assumes A∈A chamber C chamber D C∈A F⊆C
shows face-distance F (canonical-retraction A C ‘ D) = face-distance F D

proof−
from assms(2 ,3) obtain B where B: B∈A C∈B D∈B

using containtwo by fast
with assms show ?thesis

using apartment-faces[of A C F] apartment-faces[of B C F]
apartment-face-distance chamber-in-apartment the-apartment-iso-int-im
the-apartment-iso-chamber-map the-apartment-iso-apartment-simplex-map
apartment-face-distance canonical-retraction-uniform-im
ChamberComplexIsomorphism.face-distance-map[

OF the-apartment-isoD(1), of B A C D F
]

by simp
qed

end

6.1.5 Special situation: a triangle of apartments and chambers

To facilitate proving that apartments in buildings have sufficient foldings
to be Coxeter, we explore the situation of three chambers sharing a com-
mon facet, along with three apartments, each of which contains two of the
chambers. A folding of one of the apartments is constructed by composing
two apartment retractions, and by symmetry we automatically obtain an
opposed folding.

282

locale ChamberComplexApartmentSystemTriangle =
ChamberComplexWithApartmentSystem X A
for X :: ′a set set
and A :: ′a set set set

+ fixes A B B ′ :: ′a set set
and C D E z :: ′a set
assumes apartments : A∈A B∈A B ′∈A
and chambers : chamber C chamber D chamber E
and facet : zCC zCD zCE
and in-apartments: C∈A∩B D∈A∩B ′ E∈B∩B ′

and chambers-ne : D 6=C E 6=D C 6=E
begin

abbreviation fold-A ≡ canonical-retraction A D ◦ canonical-retraction B C
abbreviation res-fold-A ≡ restrict1 fold-A (

⋃
A)

abbreviation opp-fold-A ≡ canonical-retraction A C ◦ canonical-retraction B ′ D
abbreviation res-opp-fold-A ≡ restrict1 opp-fold-A (

⋃
A)

lemma rotate: ChamberComplexApartmentSystemTriangle X A B ′ A B D E C z
using apartments chambers facet in-apartments chambers-ne
by unfold-locales auto

lemma reflect: ChamberComplexApartmentSystemTriangle X A A B ′ B D C E z
using apartments chambers facet in-apartments chambers-ne
by unfold-locales auto

lemma facet-in-chambers: z⊆C z⊆D z⊆E
using facet facetrel-subset by auto

lemma A-chambers:
ChamberComplex.chamber A C ChamberComplex.chamber A D
using apartments(1) chambers(1 ,2) in-apartments(1 ,2) chamber-in-apartment
by auto

lemma res-fold-A-A-chamber-image:
ChamberComplex.chamber A F =⇒ res-fold-A ‘ F = fold-A ‘ F
using apartments(1) apartment-chamberD-simplex restrict1-image
by fastforce

lemma the-apartment-iso-middle-im: the-apartment-iso A B ‘ D = E
proof (rule ChamberComplexIsomorphism.thin-image-shared-facet)

from apartments(1 ,2) chambers(1) in-apartments(1)
show ChamberComplexIsomorphism A B (the-apartment-iso A B)
using the-apartment-isoD(1)
by fast

from apartments(2) chambers(3) in-apartments(3)
show ChamberComplex.chamber B E ThinChamberComplex B
using chamber-in-apartment thincomplexes
by auto

283

from apartments(1 ,2) in-apartments(1) have z ∈ A∩B
using facet-in-chambers(1) apartment-faces by fastforce

with apartments(1 ,2) chambers(1) in-apartments(1) chambers-ne(3) facet(3)
show the-apartment-iso A B ‘ z C E E 6= the-apartment-iso A B ‘ C
using the-apartment-iso-int-im
by auto

qed (
rule A-chambers(1), rule A-chambers(2), rule facet(1), rule facet(2),
rule chambers-ne(1)[THEN not-sym]

)

lemma inside-canonical-retraction-chamber-images:
canonical-retraction B C ‘ C = C
canonical-retraction B C ‘ D = E
canonical-retraction B C ‘ E = E
using apartments(1 ,2) chambers(1 ,2) in-apartments

canonical-retraction-simplex-retraction2 [of B C C]
canonical-retraction-uniform-im the-apartment-iso-middle-im
canonical-retraction-simplex-retraction2

by auto

lemmas in-canretract-chimages =
inside-canonical-retraction-chamber-images

lemma outside-canonical-retraction-chamber-images:
canonical-retraction A D ‘ C = C
canonical-retraction A D ‘ D = D
canonical-retraction A D ‘ E = C
using ChamberComplexApartmentSystemTriangle.in-canretract-chimages[

OF rotate
]

by auto

lemma fold-A-chamber-images:
fold-A ‘ C = C fold-A ‘ D = C fold-A ‘ E = C
using inside-canonical-retraction-chamber-images

outside-canonical-retraction-chamber-images
image-comp[of canonical-retraction A D canonical-retraction B C C]
image-comp[of canonical-retraction A D canonical-retraction B C D]
image-comp[of canonical-retraction A D canonical-retraction B C E]

by auto

lemmas opp-fold-A-chamber-images =
ChamberComplexApartmentSystemTriangle.fold-A-chamber-images[OF reflect]

lemma res-fold-A-chamber-images: res-fold-A ‘ C = C res-fold-A ‘ D = C
using in-apartments(1 ,2) fold-A-chamber-images(1 ,2)

res-fold-A-A-chamber-image A-chambers(1 ,2)
by auto

284

lemmas res-opp-fold-A-chamber-images =
ChamberComplexApartmentSystemTriangle.res-fold-A-chamber-images[OF reflect]

lemma fold-A-fixespointwise1 : fixespointwise fold-A C
using apartments(1 ,2) chambers(1 ,2) in-apartments(1 ,2)

canonical-retraction-simplex-retraction1
by (auto intro: fixespointwise-comp)

lemmas opp-fold-A-fixespointwise2 =
ChamberComplexApartmentSystemTriangle.fold-A-fixespointwise1 [OF reflect]

lemma fold-A-facet-im: fold-A ‘ z = z
using facet-in-chambers(1) fixespointwise-im[OF fold-A-fixespointwise1] by simp

lemma fold-A-endo-X : ChamberComplexEndomorphism X fold-A
using apartments(1 ,2) chambers(1 ,2) in-apartments(1 ,2)

canonical-retraction-comp-endomorphism
by fast

lemma res-fold-A-endo-A: ChamberComplexEndomorphism A res-fold-A
using apartments(1 ,2) chambers(1 ,2) in-apartments(1 ,2)

canonical-retraction-comp-apartment-endomorphism
by fast

lemmas opp-res-fold-A-endo-A =
ChamberComplexApartmentSystemTriangle.res-fold-A-endo-A[OF reflect]

lemma fold-A-morph-A-A: ChamberComplexMorphism A A fold-A
using ChamberComplexEndomorphism.axioms(1)[OF res-fold-A-endo-A]

ChamberComplexMorphism.cong fun-eq-on-sym[OF fun-eq-on-restrict1]
by fast

lemmas opp-fold-A-morph-A-A =
ChamberComplexApartmentSystemTriangle.fold-A-morph-A-A[OF reflect]

lemma res-fold-A-A-im-fold-A-A-im: res-fold-A ` A = fold-A ` A
using setsetmapim-restrict1 [of A A fold-A] by simp

lemmas res-opp-fold-A-A-im-opp-fold-A-A-im =
ChamberComplexApartmentSystemTriangle.res-fold-A-A-im-fold-A-A-im[

OF reflect
]

lemma res-fold-A-C-A-im-fold-A-C-A-im:
res-fold-A ` (ChamberComplex.chamber-system A) =

fold-A ` (ChamberComplex.chamber-system A)
using setsetmapim-restrict1 [of (ChamberComplex.chamber-system A) A]

apartments(1) apartment-chamber-system-simplices

285

by blast

lemmas res-opp-fold-A-C-A-im-opp-fold-A-C-A-im =
ChamberComplexApartmentSystemTriangle.res-fold-A-C-A-im-fold-A-C-A-im[

OF reflect
]

lemma chambercomplex-fold-A-im: ChamberComplex (fold-A ` A)
using ChamberComplexMorphism.chambercomplex-image[OF fold-A-morph-A-A]
by simp

lemmas chambercomplex-opp-fold-A-im =
ChamberComplexApartmentSystemTriangle.chambercomplex-fold-A-im[

OF reflect
]

lemma chambersubcomplex-fold-A-im:
ChamberComplex.ChamberSubcomplex A (fold-A ` A)
using ChamberComplexMorphism.chambersubcomplex-image[OF fold-A-morph-A-A]
by simp

lemmas chambersubcomplex-opp-fold-A-im =
ChamberComplexApartmentSystemTriangle.chambersubcomplex-fold-A-im[

OF reflect
]

lemma fold-A-facet-distance-map:
chamber F =⇒ face-distance z (fold-A‘F) = face-distance z F
using apartments(1 ,2) chambers in-apartments(1 ,2) facet-in-chambers(1 ,2)

ChamberComplexRetraction.chamber-map[
OF canonical-retraction, of B C F

]
canonical-retraction-face-distance-map[of A D canonical-retraction B C ‘ F]
canonical-retraction-face-distance-map

by (simp add: image-comp)

lemma fold-A-min-gallery-betw-map:
assumes chamber F chamber G z⊆F

face-distance z G = chamber-distance F G min-gallery (F#Fs@[G])
shows min-gallery (fold-A|=(F#Fs@[G]))
using assms fold-A-facet-im fold-A-facet-distance-map

ChamberComplexEndomorphism.facedist-chdist-mingal-btwmap[
OF fold-A-endo-X , of F G z

]
by force

lemma fold-A-chamber-system-image-fixespointwise ′:
defines C-A : C-A ≡ ChamberComplex.C A
defines f C-A: f C-A ≡ {F∈C-A. face-distance z F = chamber-distance C F}

286

assumes F : F∈f C-A
shows fixespointwise fold-A F

proof−
show ?thesis
proof (cases F=C)

case True thus ?thesis
using fold-A-fixespointwise1 fixespointwise-restrict1 by fast

next
case False
from apartments(1) assms

have Achamber-F : ChamberComplex.chamber A F
using complexes ChamberComplex.chamber-system-def
by fast
define Fs where Fs = (ARG-MIN length Fs. ChamberComplex.gallery A

(C#Fs@[F]))
show ?thesis
proof (rule apartment-standard-uniqueness-pgallery-betw, rule apartments(1))

show ChamberComplexMorphism A A fold-A
using fold-A-morph-A-A by fast

from apartments(1) show ChamberComplexMorphism A A id
using apartment-trivial-morphism by fast

show fixespointwise fold-A C
using fold-A-fixespointwise1 fixespointwise-restrict1 by fast

from apartments(1) False Fs-def
show 1 : ChamberComplex.gallery A (C#Fs@[F])
using A-chambers(1) Achamber-F apartment-gallery-least-length
by fast

from False Fs-def apartments(1) have mingal: min-gallery (C # Fs @ [F])
using A-chambers(1) Achamber-F apartment-min-gallery

apartment-min-gallery-least-length
by fast

from apartments(1) have set-A: set (C#Fs@[F]) ⊆ A
using 1 apartment-galleryD-chamber apartment-chamberD-simplex
by fast

with apartments(1) have set (fold-A |= (C#Fs@[F])) ⊆ A
using ChamberComplexMorphism.simplex-map[OF fold-A-morph-A-A]
by auto

with f C-A F show ChamberComplex.pgallery A (fold-A |= (C#Fs@[F]))
using chambers(1) apartments(1) apartment-chamber Achamber-F

facet-in-chambers(1) mingal
fold-A-min-gallery-betw-map[of C F] min-gallery-in-apartment
apartment-min-gallery-pgallery

by auto
from apartments(1) False Fs-def

show ChamberComplex.pgallery A (id |= (C#Fs@[F]))
using A-chambers(1) Achamber-F

287

ChamberComplex.pgallery-least-length[OF complexes]
by auto

qed
qed

qed

lemma fold-A-chamber-system-image:
defines C-A : C-A ≡ ChamberComplex.C A
defines f C-A: f C-A ≡ {F∈C-A. face-distance z F = chamber-distance C F}
shows fold-A ` C-A = f C-A

proof (rule seteqI)
fix F assume F : F ∈ fold-A ` C-A
with C-A have F∈C-A

using ChamberComplexMorphism.chamber-system-into[OF fold-A-morph-A-A]
by fast

moreover have face-distance z F = chamber-distance C F
proof (cases F=C)

case False have F-ne-C : F 6=C by fact
from F obtain G where G: G∈C-A F = fold-A ‘ G by fast
with C-A apartments(1) have G ′: chamber G G∈A

using apartment-chamber-system-def complexes apartment-chamber
apartment-chamberD-simplex

by auto
show ?thesis
proof (cases chamber-distance C G ≤ chamber-distance D G)

case True thus face-distance z F = chamber-distance C F
using apartments(1) chambers(1 ,2) in-apartments(1 ,2) facet(1 ,2)

chambers-ne(1) F-ne-C G(2) G ′ fold-A-chamber-images(1)
facet-in-chambers(1) fold-A-facet-distance-map
fold-A-facet-im
apartment-face-distance-eq-chamber-distance-compare-other-chamber [

of A C D G z
]

ChamberComplexEndomorphism.face-distance-eq-chamber-distance-map[
OF fold-A-endo-X , of C G z

]
by auto

next
case False thus face-distance z F = chamber-distance C F

using apartments(1) chambers(1 ,2) in-apartments(1 ,2) facet(1 ,2)
chambers-ne(1) F-ne-C G(2) G ′ fold-A-chamber-images(2)
facet-in-chambers(2) fold-A-facet-distance-map fold-A-facet-im
apartment-face-distance-eq-chamber-distance-compare-other-chamber [

of A D C G z
]

ChamberComplexEndomorphism.face-distance-eq-chamber-distance-map[
OF fold-A-endo-X , of D G z

]
by auto

288

qed
qed (simp add: chambers(1) facet-in-chambers(1) face-distance-eq-0 chamber-distance-def)
ultimately show F∈f C-A using f C-A by fast

next
from C-A f C-A show

∧
F . F∈f C-A =⇒ F∈fold-A ` C-A

using fold-A-chamber-system-image-fixespointwise ′ fixespointwise-im by blast
qed

lemmas opp-fold-A-chamber-system-image =
ChamberComplexApartmentSystemTriangle.fold-A-chamber-system-image[

OF reflect
]

lemma fold-A-chamber-system-image-fixespointwise:
F ∈ ChamberComplex.C A =⇒ fixespointwise fold-A (fold-A‘F)
using fold-A-chamber-system-image

fold-A-chamber-system-image-fixespointwise ′[of fold-A‘F]
by auto

lemmas fold-A-chsys-imfix = fold-A-chamber-system-image-fixespointwise

lemmas opp-fold-A-chamber-system-image-fixespointwise =
ChamberComplexApartmentSystemTriangle.fold-A-chsys-imfix[

OF reflect
]

lemma chamber-in-fold-A-im:
chamber F =⇒ F ∈ fold-A ` A =⇒ F ∈ fold-A ` ChamberComplex.C A
using apartments(1)

ChamberComplexMorphism.chamber-system-image[OF fold-A-morph-A-A]
ChamberComplexMorphism.simplex-map[OF fold-A-morph-A-A]
chamber-in-apartment apartment-chamber-system-def

by fastforce

lemmas chamber-in-opp-fold-A-im =
ChamberComplexApartmentSystemTriangle.chamber-in-fold-A-im[OF reflect]

lemma simplex-in-fold-A-im-image:
assumes x ∈ fold-A ` A
shows fold-A ‘ x = x

proof−
from assms apartments(1) obtain C

where C ∈ ChamberComplex.C A x ⊆ fold-A‘C
using apartment-simplex-in-max apartment-chamber-system-def
by fast

thus ?thesis
using fold-A-chamber-system-image-fixespointwise fixespointwise-im
by blast

qed

289

lemma chamber1-notin-rfold-im: C /∈ opp-fold-A ` A
using chambers(1 ,2) facet(1 ,2) chambers-ne(1) facet-in-chambers(1)

min-gallery-adj adjacentI [of z] face-distance-eq-0
min-gallery-betw-chamber-distance[of D [] C]
chamber-in-opp-fold-A-im[of C] opp-fold-A-chamber-system-image

by auto

lemma fold-A-min-gallery-from1-map:
[[chamber F ; F ∈ fold-A ` A; min-gallery (C#Fs@[F])]] =⇒

min-gallery (C # fold-A |= Fs @ [F])
using chambers(1) chamber-in-fold-A-im fold-A-chamber-system-image

facet-in-chambers(1) fold-A-min-gallery-betw-map[of C F]
fold-A-chamber-images(1) simplex-in-fold-A-im-image

by simp

lemma fold-A-min-gallery-from2-map:
[[chamber F ; F ∈ opp-fold-A ` A; min-gallery (D#Fs@[F])]] =⇒

min-gallery (C # fold-A |= (Fs@[F]))
using chambers(2) facet-in-chambers(2) chamber-in-opp-fold-A-im

opp-fold-A-chamber-system-image fold-A-chamber-images(2)
fold-A-min-gallery-betw-map[of D F Fs]

by simp

lemma fold-A-min-gallery-to2-map:
assumes chamber F F ∈ opp-fold-A ` A min-gallery (F#Fs@[D])
shows min-gallery (fold-A |= (F#Fs) @ [C])
using assms(1 ,2) min-gallery-rev[of C # fold-A |= (rev Fs @ [F])]

min-gallery-rev[OF assms(3)] fold-A-min-gallery-from2-map[of F rev Fs]
fold-A-chamber-images(2)

by (simp add: rev-map[THEN sym])

lemmas opp-fold-A-min-gallery-from1-map =
ChamberComplexApartmentSystemTriangle.fold-A-min-gallery-from2-map[

OF reflect
]

lemmas opp-fold-A-min-gallery-to1-map =
ChamberComplexApartmentSystemTriangle.fold-A-min-gallery-to2-map[

OF reflect
]

lemma closer-to-chamber1-not-in-rfold-im-chamber-system:
assumes chamber-distance C F ≤ chamber-distance D F
shows F /∈ ChamberComplex.C (opp-fold-A ` A)

proof
assume F ∈ ChamberComplex.C (opp-fold-A ` A)
hence F : F ∈ res-opp-fold-A ` ChamberComplex.C A

using res-opp-fold-A-A-im-opp-fold-A-A-im

290

ChamberComplexEndomorphism.image-chamber-system[
OF opp-res-fold-A-endo-A

]
by simp

hence F ′: F ∈ opp-fold-A ` ChamberComplex.C A
using res-opp-fold-A-C-A-im-opp-fold-A-C-A-im by simp

from apartments(1) have Achamber-F : ChamberComplex.chamber A F
using F apartment-chamber-system-def [of A]

ChamberComplexEndomorphism.chamber-system-image[
OF opp-res-fold-A-endo-A

]
by auto

from apartments(1) have F-ne-C : F 6=C
using F ′ apartment-chamber-system-simplices[of A] chamber1-notin-rfold-im
by auto

have fixespointwise opp-fold-A C
proof (rule apartment-standard-uniqueness-pgallery-betw, rule apartments(1))

show ChamberComplexMorphism A A opp-fold-A
using opp-fold-A-morph-A-A by fast

from apartments(1) show ChamberComplexMorphism A A id
using apartment-trivial-morphism by fast

show fixespointwise opp-fold-A F
using F ′ opp-fold-A-chamber-system-image-fixespointwise by fast
define Fs where Fs = (ARG-MIN length Fs. ChamberComplex.gallery A

(F#Fs@[C]))
with apartments(1)

have mingal: ChamberComplex.min-gallery A (F#Fs@[C])
using A-chambers(1) Achamber-F F-ne-C

apartment-min-gallery-least-length[of A F C]
by fast

with apartments(1)
show 5 : ChamberComplex.gallery A (F#Fs@[C])
and ChamberComplex.pgallery A (id |= (F#Fs@[C]))
using apartment-min-galleryD-gallery apartment-min-gallery-pgallery
by auto

have min-gallery (opp-fold-A |= (F#Fs) @ [D])
proof (rule opp-fold-A-min-gallery-to1-map)

from apartments(1) show chamber F
using Achamber-F apartment-chamber by fast

from assms have F ∈ fold-A ` ChamberComplex.C A
using apartments(1) chambers(1 ,2) in-apartments(1 ,2) facet(1 ,2)

chambers-ne(1) Achamber-F apartment-chamber
apartment-chamberD-simplex
apartment-face-distance-eq-chamber-distance-compare-other-chamber
apartment-chamber-system-def fold-A-chamber-system-image
apartment-chamber-system-simplices

by simp
with apartments(1) show F ∈ fold-A ` A

using apartment-chamber-system-simplices[of A] by auto

291

from apartments(1) show min-gallery (F # Fs @ [C])
using mingal apartment-min-gallery by fast

qed
hence min-gallery (opp-fold-A |= (F#Fs@[C]))

using opp-fold-A-chamber-images(2) by simp
moreover from apartments(1) have set (opp-fold-A |= (F#Fs@[C])) ⊆ A

using 5 apartment-galleryD-chamber [of A]
apartment-chamberD-simplex[of A]
ChamberComplexMorphism.simplex-map[OF opp-fold-A-morph-A-A]

by auto
ultimately have ChamberComplex.min-gallery A (opp-fold-A |= (F#Fs@[C]))

using apartments(1) min-gallery-in-apartment by fast
with apartments(1)

show ChamberComplex.pgallery A (opp-fold-A |= (F#Fs@[C]))
using apartment-min-gallery-pgallery
by fast

qed
hence opp-fold-A ‘ C = C using fixespointwise-im by fast
with chambers-ne(1) show False using opp-fold-A-chamber-images(2) by fast

qed

lemmas clsrch1-nin-rfold-im-chsys =
closer-to-chamber1-not-in-rfold-im-chamber-system

lemmas closer-to-chamber2-not-in-fold-im-chamber-system =
ChamberComplexApartmentSystemTriangle.clsrch1-nin-rfold-im-chsys[

OF reflect
]

lemma fold-A-opp-fold-A-chamber-systems:
ChamberComplex.C A =
(ChamberComplex.C (fold-A ` A)) ∪ (ChamberComplex.C (opp-fold-A ` A))

(ChamberComplex.C (fold-A ` A)) ∩ (ChamberComplex.C (opp-fold-A ` A)) =
{}

proof (rule seteqI)
fix F assume F : F ∈ ChamberComplex.C A
with apartments(1) have F ′: ChamberComplex.chamber A F F∈A

using apartment-chamber-system-def apartment-chamber-system-simplices
apartment-chamber

by auto
from F ′(1) apartments(1) have F ′′: chamber F

using apartment-chamber by auto
show F ∈ (ChamberComplex.C (fold-A ` A)) ∪

(ChamberComplex.C (opp-fold-A ` A))
proof (cases chamber-distance C F ≤ chamber-distance D F)

case True thus ?thesis
using apartments(1) chambers(1 ,2) in-apartments(1 ,2) facet(1 ,2)

chambers-ne(1) F F ′(2) F ′′ fold-A-chamber-system-image
apartment-face-distance-eq-chamber-distance-compare-other-chamber

292

ChamberComplexMorphism.image-chamber-system[OF fold-A-morph-A-A]
by simp

next
case False thus ?thesis

using apartments(1) chambers(1 ,2) in-apartments(1 ,2) facet(1 ,2)
chambers-ne(1) F F ′(2) F ′′ opp-fold-A-chamber-system-image
apartment-face-distance-eq-chamber-distance-compare-other-chamber

ChamberComplexMorphism.image-chamber-system[OF opp-fold-A-morph-A-A]
by simp

qed
next

fix F
assume F : F ∈ (ChamberComplex.C (fold-A ` A)) ∪

(ChamberComplex.C (opp-fold-A ` A))
thus F ∈ ChamberComplex.C A

using ChamberComplexMorphism.image-chamber-system-image[
OF fold-A-morph-A-A

]
ChamberComplexMorphism.image-chamber-system-image[

OF opp-fold-A-morph-A-A
]

by fast
next

show (ChamberComplex.C (fold-A ` A)) ∩
(ChamberComplex.C (opp-fold-A ` A)) = {}

using closer-to-chamber1-not-in-rfold-im-chamber-system
closer-to-chamber2-not-in-fold-im-chamber-system

by force
qed

lemma fold-A-im-min-gallery ′:
assumes ChamberComplex.min-gallery (fold-A ` A) (C#Cs)
shows ChamberComplex.min-gallery A (C#Cs)

proof (cases Cs rule: rev-cases)
case Nil with apartments(1) show ?thesis

using A-chambers(1) ChamberComplex.min-gallery-simps(2)[OF complexes]
by simp

next
case (snoc Fs F)
from assms snoc apartments(1)

have ch: ∀H∈set (C#Fs@[F]). ChamberComplex.chamber A H
using ChamberComplex.min-galleryD-gallery

ChamberComplex.galleryD-chamber
chambercomplex-fold-A-im
ChamberComplex.subcomplex-chamber [OF complexes]
chambersubcomplex-fold-A-im

by fastforce
with apartments(1) have ch-F : chamber F using apartment-chamber by simp
have ChamberComplex.min-gallery A (C#Fs@[F])

293

proof (rule ChamberComplex.min-galleryI-betw-compare, rule complexes, rule
apartments(1))

define Gs where Gs = (ARG-MIN length Gs. ChamberComplex.gallery A
(C#Gs@[F]))

from assms snoc show C 6=F
using ChamberComplex.min-gallery-pgallery

ChamberComplex.pgalleryD-distinct
chambercomplex-fold-A-im

by fastforce
with chambers(1) apartments(1) assms snoc Gs-def

show 3 : ChamberComplex.min-gallery A (C#Gs@[F])
using ch apartment-min-gallery-least-length
by simp

from assms snoc apartments(1)
show ChamberComplex.gallery A (C#Fs@[F])
using ch ChamberComplex.min-galleryD-gallery

ChamberComplex.galleryD-adj
chambercomplex-fold-A-im
ChamberComplex.gallery-def [OF complexes]

by fastforce
show length Fs = length Gs
proof−

from apartments(1) have set-gal: set (C#Gs@[F]) ⊆ A
using 3 apartment-min-galleryD-gallery apartment-galleryD-chamber

apartment-chamberD-simplex
by fast

from assms snoc have F-in: F ∈ fold-A ` A
using ChamberComplex.min-galleryD-gallery

ChamberComplex.galleryD-chamber
ChamberComplex.chamberD-simplex chambercomplex-fold-A-im

by fastforce
with apartments(1) have min-gallery (C # fold-A |= Gs @ [F])

using ch-F 3 apartment-min-gallery fold-A-min-gallery-from1-map by fast
moreover have set (fold-A |= (C#Gs@[F])) ⊆ A

using set-gal
ChamberComplexMorphism.simplex-map[OF fold-A-morph-A-A]

by auto
ultimately have ChamberComplex.min-gallery A (C # fold-A |= Gs @ [F])

using apartments(1) F-in min-gallery-in-apartment
fold-A-chamber-images(1) fold-A-chamber-system-image-fixespointwise
simplex-in-fold-A-im-image

by simp
moreover have set (fold-A |= (C#Gs@[F])) ⊆ fold-A ` A

using set-gal by auto
ultimately show ?thesis

using assms snoc apartments(1) F-in fold-A-chamber-images(1)
simplex-in-fold-A-im-image
ChamberComplex.min-gallery-in-subcomplex[

OF complexes, OF - chambersubcomplex-fold-A-im

294

]
ChamberComplex.min-gallery-betw-uniform-length[

OF chambercomplex-fold-A-im, of C fold-A |= Gs F Fs
]

by simp
qed

qed
with snoc show ?thesis by fast

qed

lemma fold-A-im-min-gallery:
ChamberComplex.min-gallery (fold-A ` A) (C#Cs) =⇒ min-gallery (C#Cs)
using apartments(1) fold-A-im-min-gallery ′ apartment-min-gallery by fast

lemma fold-A-comp-fixespointwise:
fixespointwise (fold-A ◦ opp-fold-A) (

⋃
(fold-A ` A))

proof (rule apartment-standard-uniqueness, rule apartments(1))

have fun-eq-on (fold-A ◦ opp-fold-A) (res-fold-A ◦ res-opp-fold-A) (
⋃

A)
using ChamberComplexEndomorphism.vertex-map[OF opp-res-fold-A-endo-A]

fun-eq-onI [of
⋃

A fold-A ◦ opp-fold-A]
by auto

thus ChamberComplexMorphism (fold-A ` A) A (fold-A ◦ opp-fold-A)
using ChamberComplexEndomorphism.endo-comp[

OF opp-res-fold-A-endo-A res-fold-A-endo-A
]
ChamberComplexEndomorphism.axioms(1)
ChamberComplexMorphism.cong
ChamberComplexMorphism.restrict-domain
chambersubcomplex-fold-A-im

by fast

from apartments(1) show ChamberComplexMorphism (fold-A ` A) A id
using ChamberComplexMorphism.restrict-domain apartment-trivial-morphism

chambersubcomplex-fold-A-im
by fast

from apartments(1) show ChamberComplex.chamber (fold-A ` A) C
using A-chambers(1) apartment-chamberD-simplex fold-A-chamber-images(1)

ChamberComplex.chamber-in-subcomplex[
OF complexes, OF - chambersubcomplex-fold-A-im, of C

]
by fast

show fixespointwise (fold-A ◦ opp-fold-A) C
proof−

from facet(1) obtain v where v: v /∈z C = insert v z
using facetrel-def [of z C] by fast

have fixespointwise (fold-A ◦ opp-fold-A) (insert v z)

295

proof (rule fixespointwise-insert, rule fixespointwise-comp)
show fixespointwise opp-fold-A z

using facet-in-chambers(2) fixespointwise-subset[of opp-fold-A D z]
opp-fold-A-fixespointwise2

by fast
show fixespointwise fold-A z

using facet-in-chambers(1) fixespointwise-subset[of fold-A C z]
fold-A-fixespointwise1

by fast
have (fold-A ◦ opp-fold-A) ‘ C = C

using fold-A-chamber-images(2) opp-fold-A-chamber-images(2)
by (simp add: image-comp[THEN sym])

with v(2) show (fold-A ◦ opp-fold-A) ‘ (insert v z) = insert v z by simp
qed
with v(2) show ?thesis by fast

qed

show
∧

Cs. ChamberComplex.min-gallery (fold-A ` A) (C # Cs) =⇒
ChamberComplex.pgallery A ((fold-A ◦ opp-fold-A) |= (C # Cs))

proof−
fix Cs assume Cs: ChamberComplex.min-gallery (fold-A ` A) (C # Cs)
show ChamberComplex.pgallery A ((fold-A ◦ opp-fold-A) |= (C # Cs))
proof (cases Cs rule: rev-cases)

case Nil with apartments(1) show ?thesis
using fold-A-chamber-images(2) opp-fold-A-chamber-images(2)

A-chambers(1) ChamberComplex.pgallery-def [OF complexes]
by (auto simp add: image-comp[THEN sym])

next
case (snoc Fs F)
from Cs snoc apartments(1)

have F : F ∈ fold-A ` A ChamberComplex.chamber A F
using ChamberComplex.min-galleryD-gallery[

OF chambercomplex-fold-A-im
]
ChamberComplex.galleryD-chamber [

OF chambercomplex-fold-A-im, of C#Fs@[F]
]
ChamberComplex.chamberD-simplex[OF chambercomplex-fold-A-im]
ChamberComplex.subcomplex-chamber [

OF complexes, OF - chambersubcomplex-fold-A-im
]

by auto
from F(2) apartments(1) have F ′: chamber F

using apartment-chamber by fast
with F(1) apartments(1)

have zF-CF : face-distance z F = chamber-distance C F
using chamber-in-fold-A-im[of F] fold-A-chamber-system-image
by auto

have min-gallery (C # fold-A |= (opp-fold-A |= Fs @ [opp-fold-A ‘ F]))

296

proof (rule fold-A-min-gallery-from2-map)
from Cs snoc

have Cs ′: ChamberComplex.gallery (fold-A ` A) (C#Fs@[F])
using ChamberComplex.min-galleryD-gallery chambercomplex-fold-A-im
by fastforce

with apartments(1) have chF : ChamberComplex.chamber A F
using ChamberComplex.galleryD-chamber chambercomplex-fold-A-im

ChamberComplex.subcomplex-chamber [OF complexes]
chambersubcomplex-fold-A-im

by fastforce
with apartments(1) show chamber (opp-fold-A ‘ F)

using ChamberComplexMorphism.chamber-map opp-fold-A-morph-A-A
apartment-chamber

by fast
from apartments(1) show opp-fold-A ‘ F ∈ opp-fold-A ` A

using chF ChamberComplex.chamberD-simplex complexes by fast
from Cs snoc apartments(1)

show min-gallery (D # opp-fold-A |= Fs @ [opp-fold-A ‘ F])
using chF Cs ′ opp-fold-A-min-gallery-from1-map apartment-chamber

ChamberComplex.chamberD-simplex
ChamberComplex.galleryD-chamber
chambercomplex-fold-A-im fold-A-im-min-gallery

by fastforce
qed
with snoc have min-gallery (fold-A |= (opp-fold-A |= (C#Cs)))

using fold-A-chamber-images(2) opp-fold-A-chamber-images(2) by simp
with Cs apartments(1)

have ChamberComplex.min-gallery A
(fold-A |= (opp-fold-A |= (C#Cs)))

using ChamberComplex.min-galleryD-gallery[
OF chambercomplex-fold-A-im, of C#Cs

]
ChamberComplex.galleryD-chamber [

OF chambercomplex-fold-A-im, of C#Cs
]
ChamberComplex.subcomplex-chamber [

OF complexes, OF - chambersubcomplex-fold-A-im
]
apartment-chamberD-simplex
ChamberComplexMorphism.simplex-map[OF opp-fold-A-morph-A-A]
ChamberComplexMorphism.simplex-map[OF fold-A-morph-A-A]

by (force intro: min-gallery-in-apartment)
with apartments(1)

have ChamberComplex.pgallery A (fold-A |= (opp-fold-A |= (C#Cs)))
using apartment-min-gallery-pgallery
by fast

thus ?thesis
using ssubst[

OF setlistmapim-comp, of λCs. ChamberComplex.pgallery A Cs

297

]
by fast

qed
qed

from apartments(1)
show

∧
Cs. ChamberComplex.min-gallery (fold-A ` A) Cs =⇒

ChamberComplex.pgallery A (id |= Cs)
using chambersubcomplex-fold-A-im

ChamberComplex.min-gallery-pgallery[OF chambercomplex-fold-A-im]
ChamberComplex.subcomplex-pgallery[OF complexes, of A fold-A ` A]

by simp

qed

lemmas opp-fold-A-comp-fixespointwise =
ChamberComplexApartmentSystemTriangle.fold-A-comp-fixespointwise[OF reflect]

lemma fold-A-fold:
ChamberComplexIsomorphism (opp-fold-A ` A) (fold-A ` A) fold-A

proof (rule ChamberComplexMorphism.isoI-inverse)
show ChamberComplexMorphism (opp-fold-A ` A) (fold-A ` A) fold-A

using ChamberComplexMorphism.restrict-domain
ChamberComplexMorphism.restrict-codomain-to-image
ChamberComplexMorphism.cong fun-eq-on-sym[OF fun-eq-on-restrict1]
ChamberComplexEndomorphism.axioms(1) res-fold-A-endo-A
chambersubcomplex-opp-fold-A-im

by fast
show ChamberComplexMorphism (fold-A ` A) (opp-fold-A ` A) opp-fold-A

using ChamberComplexMorphism.restrict-domain
ChamberComplexMorphism.restrict-codomain-to-image
ChamberComplexMorphism.cong fun-eq-on-sym[OF fun-eq-on-restrict1]
ChamberComplexEndomorphism.axioms(1) opp-res-fold-A-endo-A
chambersubcomplex-fold-A-im

by fast
qed (rule opp-fold-A-comp-fixespointwise, rule fold-A-comp-fixespointwise)

lemma res-fold-A: ChamberComplexFolding A res-fold-A
proof (rule ChamberComplexFolding.intro)

have ChamberComplexEndomorphism A (res-fold-A)
using res-fold-A-endo-A by fast

thus ChamberComplexRetraction A (res-fold-A)
proof (rule ChamberComplexRetraction.intro, unfold-locales)

fix v assume v∈
⋃

A
moreover with apartments(1) obtain C

where C ∈ ChamberComplex.C A v∈C
using apartment-simplex-in-max apartment-chamber-system-def
by fast

298

ultimately show res-fold-A (res-fold-A v) = res-fold-A v
using fold-A-chamber-system-image-fixespointwise fixespointwiseD
by fastforce

qed

show ChamberComplexFolding-axioms A res-fold-A
proof

fix F assume F : ChamberComplex.chamber A F F ∈ res-fold-A ` A
from F(2) have F ′: F ∈ fold-A ` A

using setsetmapim-restrict1 [of A A fold-A] by simp
hence F ∈ fold-A ` (opp-fold-A ` A)

using ChamberComplexIsomorphism.surj-simplex-map[OF fold-A-fold]
by simp

from this obtain G where G: G ∈ opp-fold-A ` A F = fold-A ‘ G by auto
with F(1) F ′ apartments(1)

have G ′: ChamberComplex.chamber A G
G ∈ ChamberComplex.C (opp-fold-A ` A)

using ChamberComplex.chamber-in-subcomplex[OF complexes]
chambersubcomplex-fold-A-im
ChamberComplexIsomorphism.chamber-preimage[OF fold-A-fold, of G]
ChamberComplex.subcomplex-chamber [

OF complexes, OF apartments(1) chambersubcomplex-opp-fold-A-im
]
ChamberComplex.chamber-system-def [

OF chambercomplex-opp-fold-A-im
]

by auto

from apartments(1) G(2)
have 1 :

∧
H . ChamberComplex.chamber A H ∧ H /∈ fold-A ` A ∧

fold-A ‘ H = F =⇒ H=G
using G ′(2) apartment-chamber-system-def [of A]

fold-A-opp-fold-A-chamber-systems(1)
chambercomplex-fold-A-im ChamberComplex.chamber-system-def
ChamberComplex.chamberD-simplex
inj-onD[

OF ChamberComplexIsomorphism.inj-on-chamber-system,
OF fold-A-fold

]
by blast

with apartments(1)
have

∧
H . ChamberComplex.chamber A H ∧ H /∈ res-fold-A ` A ∧

res-fold-A ‘ H = F =⇒ H=G
using 1 res-fold-A-A-chamber-image apartment-chamberD-simplex

res-fold-A-A-im-fold-A-A-im
by auto

moreover from apartments(1) have G /∈ res-fold-A ` A
using G ′

ChamberComplex.chamber-system-def [OF chambercomplex-fold-A-im]

299

ChamberComplex.chamber-in-subcomplex[
OF complexes, OF - chambersubcomplex-fold-A-im

]
fold-A-opp-fold-A-chamber-systems(2) res-fold-A-A-im-fold-A-A-im

by auto
ultimately

show ∃ !G. ChamberComplex.chamber A G ∧ G /∈ res-fold-A ` A ∧
res-fold-A ‘ G = F

using G ′(1) G(2) res-fold-A-A-chamber-image ex1I [of - G]
by force

qed

qed

lemmas opp-res-fold-A =
ChamberComplexApartmentSystemTriangle.res-fold-A[OF reflect]

end

6.2 Building locale and basic lemmas

Finally, we define a (thick) building to be a thick chamber complex with a
system of apartments.
locale Building = ChamberComplexWithApartmentSystem X A

for X :: ′a set set
and A :: ′a set set set

+ assumes thick: ThickChamberComplex X
begin

abbreviation some-third-chamber ≡
ThickChamberComplex.some-third-chamber X

lemmas some-third-chamberD-facet =
ThickChamberComplex.some-third-chamberD-facet [OF thick]

lemmas some-third-chamberD-ne =
ThickChamberComplex.some-third-chamberD-ne [OF thick]

lemmas chamber-some-third-chamber =
ThickChamberComplex.chamber-some-third-chamber [OF thick]

end

6.3 Apartments are uniformly Coxeter

Using the assumption of thickness, we may use the special situation Cham-
berComplexApartmentSystemTriangle to verify that apartments have enough
pairs of opposed foldings to ensure that they are isomorphic to a Coxeter

300

complex. Since the apartments are all isomorphic, they are uniformly iso-
morphic to a single Coxeter complex.
context Building
begin

lemma apartments-have-many-foldings1 :
assumes A∈A chamber C chamber D C∼D C 6=D C∈A D∈A
defines E ≡ some-third-chamber C D (C∩D)
defines B ≡ supapartment C E
and B ′ ≡ supapartment D E
defines f ≡ restrict1 (canonical-retraction A D ◦ canonical-retraction B C)

(
⋃

A)
and g ≡ restrict1 (canonical-retraction A C ◦ canonical-retraction B ′ D)

(
⋃

A)
shows f‘D = C ChamberComplexFolding A f

g‘C = D ChamberComplexFolding A g
proof−

from assms have 1 :
ChamberComplexApartmentSystemTriangle X A A B B ′ C D E (C∩D)
using adjacent-int-facet1 [of C D] adjacent-int-facet2 [of C D]

some-third-chamberD-facet chamber-some-third-chamber
some-third-chamberD-ne[of C C∩D D] supapartmentD

by unfold-locales auto
from f-def g-def

show ChamberComplexFolding A f ChamberComplexFolding A g
f‘D = C g‘C = D

using ChamberComplexApartmentSystemTriangle.res-fold-A [OF 1]
ChamberComplexApartmentSystemTriangle.opp-res-fold-A[OF 1]
ChamberComplexApartmentSystemTriangle.res-fold-A-chamber-images(2)[

OF 1
]

ChamberComplexApartmentSystemTriangle.res-opp-fold-A-chamber-images(2)[
OF 1

]
by auto

qed

lemma apartments-have-many-foldings2 :
assumes A∈A chamber C chamber D C∼D C 6=D C∈A D∈A
defines E ≡ some-third-chamber C D (C∩D)
defines B ≡ supapartment C E
and B ′ ≡ supapartment D E
defines f ≡ restrict1 (canonical-retraction A D ◦ canonical-retraction B C)

(
⋃

A)
and g ≡ restrict1 (canonical-retraction A C ◦ canonical-retraction B ′ D)

(
⋃

A)
shows OpposedThinChamberComplexFoldings A f g C

proof (rule OpposedThinChamberComplexFoldings.intro)
from assms show ChamberComplexFolding A f ChamberComplexFolding A g

301

using apartments-have-many-foldings1 (2 ,4)[of A C D] by auto
show OpposedThinChamberComplexFoldings-axioms A f g C
proof (

unfold-locales, rule chamber-in-apartment, rule assms(1), rule assms(6),
rule assms(2)

)
from assms(1−7) E-def B-def B ′-def g-def f-def

have gC : g‘C = D
and fD: f‘D = C
using apartments-have-many-foldings1 (1)[of A C D]

apartments-have-many-foldings1 (3)[of A C D]
by auto

with assms(4 ,5) show C ∼ g‘C C 6= g‘C f‘g‘C = C by auto
qed

qed (rule thincomplexes, rule assms(1))

lemma apartments-have-many-foldings3 :
assumes A∈A chamber C chamber D C∼D C 6=D C∈A D∈A
shows ∃ f g. OpposedThinChamberComplexFoldings A f g C ∧ D=g‘C

proof
define E where E = some-third-chamber C D (C∩D)
define B where B = supapartment C E
define f where f = restrict1 (canonical-retraction A D ◦ canonical-retraction

B C) (
⋃

A)
show ∃ g. OpposedThinChamberComplexFoldings A f g C ∧ D = g ‘ C
proof

define B ′ where B ′ = supapartment D E
define g where g = restrict1 (canonical-retraction A C ◦ canonical-retraction

B ′ D) (
⋃

A)
from assms E-def B-def f-def B ′-def g-def

show OpposedThinChamberComplexFoldings A f g C ∧ D = g‘C
using apartments-have-many-foldings1 (3)[of A C D]

apartments-have-many-foldings2
by auto

qed
qed

lemma apartments-have-many-foldings:
assumes A∈A C∈A chamber C
shows ThinChamberComplexManyFoldings A C

proof (
rule ThinChamberComplex.ThinChamberComplexManyFoldingsI ,
rule thincomplexes, rule assms(1), rule chamber-in-apartment,
rule assms(1), rule assms(2), rule assms(3)

)
from assms(1)

show
∧

C D. ChamberComplex.chamber A C =⇒
ChamberComplex.chamber A D =⇒ C∼D =⇒
C 6=D =⇒

302

∃ f g. OpposedThinChamberComplexFoldings A f g C ∧ D = g ‘ C
using apartments-have-many-foldings3 apartment-chamber

apartment-chamberD-simplex
by simp

qed

theorem apartments-are-coxeter :
A∈A =⇒ ∃S :: ′a permutation set. (

CoxeterComplex S ∧
(∃ψ. ChamberComplexIsomorphism A (CoxeterComplex.TheComplex S) ψ)

)
using no-trivial-apartments apartment-simplex-in-max[of A]

apartment-chamberD-simplex[of A] apartment-chamber [of A]
apartments-have-many-foldings[of A]
ThinChamberComplexManyFoldings.ex-iso-to-coxeter-complex[of A]

by fastforce

corollary apartments-are-uniformly-coxeter :
assumes X 6={}
shows ∃S :: ′a permutation set. CoxeterComplex S ∧

(∀A∈A. ∃ψ.
ChamberComplexIsomorphism A (CoxeterComplex.TheComplex S) ψ

)
proof−

from assms obtain C where C : chamber C using simplex-in-max by fast
from this obtain A where A: A∈A C∈A using containtwo by fast
from A(1) obtain S :: ′a permutation set and ψ

where S : CoxeterComplex S
and ψ: ChamberComplexIsomorphism A (CoxeterComplex.TheComplex S) ψ
using apartments-are-coxeter
by fast

have ∀B∈A. ∃ϕ.
ChamberComplexIsomorphism B (CoxeterComplex.TheComplex S) ϕ

proof
fix B assume B: B∈A
hence B 6={} using no-trivial-apartments by fast
with B obtain C ′ where C ′: chamber C ′ C ′∈B

using apartment-simplex-in-max apartment-chamberD-simplex
apartment-chamber [OF B]

by force
from C C ′(1) obtain B ′ where B ′∈A C∈B ′ C ′∈B ′

using containtwo by fast
with A B C C ′ ψ

show ∃ϕ. ChamberComplexIsomorphism B
(CoxeterComplex.TheComplex S) ϕ

using strong-intersecttwo
ChamberComplexIsomorphism.iso-comp[of B ′ A - - ψ]
ChamberComplexIsomorphism.iso-comp[of B B ′]

by blast

303

qed
with S show ?thesis by auto

qed

end

end

304

Bibliography

[1] P. Abramenko and K. S. Brown. Buildings: Theory and applications,
volume 248 of Graduate Texts in Mathematics. Springer-Verlag, New
York, 2010.

[2] P. Garrett. Buildings and classical groups. Chapman & Hall, London,
1997.

[3] D. L. Johnson. Presentations of groups. Cambridge University Press,
Cambridge, U.K, 2 edition, 1997.

[4] J. Sylvestre. Representations of finite groups. Archive of Formal Proofs,
Aug. 2015. https://www.isa-afp.org/entries/Rep_Fin_Groups.shtml,
Formal proof development.

305

https://www.isa-afp.org/entries/Rep_Fin_Groups.shtml

	Preliminaries
	Natural numbers
	Logic
	Sets
	Functions and relations
	Miscellaneous
	Equality of functions restricted to a set
	Injectivity, surjectivity, bijectivity, and inverses
	Induced functions on sets of sets and lists of sets
	Induced functions on quotients
	Support of a function

	Lists
	Miscellaneous facts
	Cases
	Induction
	Alternating lists
	Binary relation chains
	Set of subseqs

	Orders and posets
	Morphisms of posets
	More 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 arg-min
	Bottom of a set
	Minimal and pseudominimal elements in sets
	Set of elements below another
	Lower bounds
	Simplex-like posets
	The superset ordering

	Algebra
	Miscellaneous algebra facts
	The type of permutations of a type
	Natural action of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nat on types of class 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 monoid-add
	Translation from class 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 power.
	Additive order of an element

	Partial sums of a list
	Sums of alternating lists
	Conjugation in 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 group-add
	Abbreviations and basic facts
	The conjugation sequence
	The action on signed 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 group-add elements

	Cosets
	Basic facts
	The supset order on cosets
	The afforded partition

	Groups
	Locale definition and basic facts
	Sets with a suitable binary operation
	Cosets of a 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Group
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Group generated by a set
	Homomorphisms and isomorphisms
	Normal subgroups
	Quotient groups
	The induced homomorphism on a quotient group

	Free groups
	Words in letters of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 signed type
	The collection of proper signed lists as a type
	Lifts of functions on the letter type
	Free groups on a set
	Group presentations

	Words over a generating set

	Simplicial complexes
	Geometric notions
	Facets
	Adjacency
	Chains of adjacent sets

	Locale and basic facts
	Chains of maximal simplices
	Isomorphisms of simplicial complexes
	The complex associated to a poset

	Chamber complexes
	Locale definition and basic facts
	The system of chambers and distance between chambers
	Labelling a chamber complex
	Morphisms of chamber complexes
	Morphism locale and basic facts
	Action on pregalleries and galleries
	Properties of the image
	Action on the chamber system
	Isomorphisms
	Endomorphisms
	Automorphisms
	Retractions
	Foldings of chamber complexes

	Thin chamber complexes
	Locales and basic facts
	The standard uniqueness argument for chamber morphisms of thin chamber complexes

	Foldings of thin chamber complexes
	Locale definition and basic facts
	Pairs of opposed foldings
	The automorphism induced by a pair of opposed foldings
	Walls

	Thin chamber complexes with many foldings
	Locale definition and basic facts
	The group of automorphisms
	Action of the group of automorphisms on the chamber system
	A labelling by the vertices of the fundamental chamber
	More on the action of the group of automorphisms on chambers
	A bijection between the fundamental chamber and the set of generating automorphisms

	Thick chamber complexes

	Coxeter systems and complexes
	Coxeter-like systems
	Locale definition and basic facts
	Special cosets
	Transfer from the free group over generators
	Words in generators containing alternating subwords
	Preliminary facts on the word problem
	Preliminary facts related to the deletion condition

	Coxeter-like systems with deletion
	Locale definition
	Consequences of the deletion condition
	The exchange condition
	More on words in generators containing alternating subwords
	The word problem
	Special subgroups and cosets

	Coxeter systems
	Locale definition and transfer from the associated free group
	The deletion condition is necessary
	The deletion condition is sufficient
	The Coxeter system associated to a thin chamber complex with many foldings

	Coxeter complexes
	Locale and complex definitions
	As a simplicial complex
	As a chamber complex
	The Coxeter complex associated to a thin chamber complex with many foldings

	Buildings
	Apartment systems
	Locale and basic facts
	Isomorphisms between apartments
	Retractions onto apartments
	Distances in apartments
	Special situation: a triangle of apartments and chambers

	Building locale and basic lemmas
	Apartments are uniformly Coxeter

