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Abstract

We provide a basic formal framework for the theory of chamber
complexes and Coxeter systems, and for buildings as thick chamber
complexes endowed with a system of apartments. Along the way, we
develop some of the general theory of abstract simplicial complexes and
of groups (relying on the group__add class for the basics), including free
groups and group presentations, and their universal properties. The
main results verified are that the deletion condition is both necessary
and sufficient for a group with a set of generators of order two to be a
Coxeter system, and that the apartments in a (thick) building are all
uniformly Coxeter.
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Garrett [2]. As well, some of the definitions, statments, and proofs appearing
in the first two sections previously appeared in a submission to the Archive
of Formal Proofs by the author of the current submission [4].

1 Preliminaries

In this section, we establish some basic facts about natural numbers, logic,
sets, functions and relations, lists, and orderings and posets, that are ei-
ther not available in the HOL library or are in a form not suitable for our
purposes.

theory Prelim
imports Main HOL— Library.Set-Algebras
begin

declare image-cong-simp [cong del]

1.1 Natural numbers

lemma nat-cases-2Suc [case-names 0 1 SucSuc):

assumes 0:n=0= P

and I:n=1=P

and  SucSuc: Am. n = Suc (Suc m) = P
shows P

proof (cases n)
case (Suc m) with 1 SucSuc show ?thesis by (cases m) auto
qed (simp add: 0)

lemma nat-even-induct [case-names - 0 SucSuc]:
assumes even: even n
and 0: PO
and  SucSuc: Am. even m = P m = P (Suc (Suc m))
shows Pn

proof—
from assms obtain k where n = 2xk using evenE by auto
moreover from assms have P (2xk) by (induct k) auto
ultimately show “thesis by fast

qed

lemma nat-induct-step2 [case-names 0 1 SucSuc]:
assumes 0: PO
and 1: P1
and  SucSuc: Am. P m = P (Suc (Suc m))
shows Pn

proof (cases even n)
case True



from this obtain k£ where n = 2%k using evenE by auto
moreover have P (2xk) using 0 SucSuc by (induct k) auto
ultimately show ?thesis by fast

next
case Fulse
from this obtain k£ where n = 2xk+1 using oddE by blast
moreover have P (2xk+1) using 1 SucSuc by (induct k) auto
ultimately show ?thesis by fast

qed

1.2 Logic

lemma exl-unique: 3lx. Px — P a = P b = a=b
by blast

lemma not-thel:
assumes Jlz. Pz y # (THE z. P x)
shows - Py
using assms(2) thel-equality]OF assms(1)]
by auto

lemma two-cases [case-names both one other neither]:
assumes both : P — () — R
and one :P—-Q=—=R
and other : =P — () = R
and neither: -P — —~(Q = R
shows R
using assms
by fast

1.3 Sets

lemma bex!-equality: | 3lz€A. P x; x€A; P x; yeA; Py | = z=y
by blast

lemma prod-balll: (Na b. (a,b)€A = P a b) = V(a,b)€A. Pab
by fast

lemmas seteql = set-eql[OF iffI]

lemma set-decomp-subset:
[ U= AUB; ACX; BCY; XCU; XnY ={}]=A4=X
by auto

lemma insert-subset-equality: | a¢ A; a¢B; insert a A = insert a B — A=B
by auto

lemma insert-compare-element: a¢ A = insert b A = insert a A = b=a
by auto



lemma cardi:
assumes card A = 1
shows Ja. A = {a}
proof—
from assms obtain a where a: a € A by fastforce
with assms show ?thesis using card-ge-0-finite[of A] card-subset-eqlof A {a}]
by auto
qed

lemma singleton-pow: a€ A = {a}€Pow A
using Pow-mono Pow-top by fast

definition separated-by :: 'a set set = 'a = 'a = bool
where separated-by wzy =3 A B. w={A,B} N\ z€A N yeB

lemma separated-byl: 1€ A = yeB = separated-by {A,B} = y
using separated-by-def by fastforce

lemma separated-by-disjoint: | separated-by {A,B} = y; ANB={}; 1€ A ]| = y€B
unfolding separated-by-def by fast

lemma separated-by-in-other: separated-by {A,B} x y = z¢ A = z€B A yeA
unfolding separated-by-def by auto

lemma separated-by-not-empty: separated-by w z y — w#{}
unfolding separated-by-def by fast

lemma not-self-separated-by-disjoint: ANB={} = — separated-by {A,B} x x
unfolding separated-by-def by auto

1.4 Functions and relations

1.4.1 Miscellaneous

lemma cong-let: (let x = y in fz) = fy by simp
lemma sym-sym: sym (AxA) by (fast intro: symlI)
lemma trans-sym: trans (Ax A) by (fast intro: transl)

lemma map-prod-sym: sym A = sym (map-prod f f * A)
using symD|of A] map-prod-def by (fast intro: symlI)

abbreviation restrict! :: (‘a='a) = 'a set = (‘a="a)
where restrict] f A = (Aa. if a€A then f a else a)

lemma restrictl-image: BCA = restrict] fA ‘B = f‘B
by auto



1.4.2 Equality of functions restricted to a set

definition fun-eg-on fg A = (Va€A. fa = ga)

lemma fun-eg-onl: (Na. a€A = fa = g a) = fun-eq-on fg A
using fun-eq-on-def by fast

lemma fun-eq-onD: fun-eq-on fg A =— a € A = fa=ga
using fun-eq-on-def by fast

lemma fun-eq-on-UNIV: (fun-eq-on f g UNIV) = (f=g)
unfolding fun-eq-on-def by fast

lemma fun-eq-on-subset: fun-eq-on f g A = BCA = fun-eq-on f g B
unfolding fun-eq-on-def by fast

lemma fun-eq-on-sym: fun-eq-on f g A = fun-eq-on g f A
using fun-eq-onD by (fastforce intro: fun-eq-onl)

lemma fun-eq-on-trans: fun-eq-on f g A = fun-eq-on ¢ h A = fun-eq-on fh A
using fun-eg-onD fun-eq-onD by (fastforce intro: fun-eg-onlI)

lemma fun-eq-on-cong: fun-eq-on f h A = fun-eq-on g h A = fun-eq-on f g A
using fun-eq-on-trans fun-eg-on-sym by fastforce

lemma fun-eq-on-im : fun-eq-on f g A = BCA = f‘B = ¢‘B
using fun-eq-onD by force

lemma fun-eq-on-subset-and-diff-imp-eq-on:
assumes ACB fun-eq-on f g A fun-eq-on f g (B—A)
shows fun-eq-on f g B
proof (rule fun-eg-onI)
fix x assume z€B with assms(1) show fz =gz
using fun-eq-onD[OF assms(2)] fun-eq-onD][OF assms(3)]
by (cases z€A) auto
qed

lemma fun-eg-on-set-and-comp-imp-eq:
fun-eg-on f g A = fun-eq-on fg (—A) = f =g
using fun-eq-on-subset-and-diff-imp-eq-on[of A UNIV]
by  (simp add: Compl-eq-Diff-UNIV fun-eq-on-UNIV)

lemma fun-eq-on-bij-betw: fun-eq-on f g A = bij-betw f A B = bij-betw g A B
using bij-betw-cong unfolding fun-eq-on-def by fast

lemma fun-eq-on-restrictl: fun-eg-on (restrictl f A) f A
by (auto intro: fun-eq-onl)

abbreviation fizespointwise f A = fun-eq-on fid A



lemmas fizespointwisel = fun-eq-onl [of --1id]

lemmas fizespointwiseD = fun-eq-onD [of - 1id]
lemmas fixespointwise-cong = fun-eg-on-trans [of - - - id]
lemmas fizespointwise-subset = fun-eq-on-subset [of - id]
lemmas fizespointwise2-imp-eq-on = fun-eq-on-cong [of - id]

lemmas fizespointwise-subset-and-diff-imp-eq-on =
fun-eq-on-subset-and-diff-imp-eq-on[of - - - id]

lemma id-fizespointwise: fixespointwise id A
using fun-eq-on-def by fast

lemma fizespointwise-im: fizespointwise f A = BCA — f'‘B =B
by (auto simp add: fun-eq-on-im)

lemma fizespointwise-comp:
fizespointwise f A = fixespointwise ¢ A = fizespointwise (gof) A
unfolding fun-eq-on-def by simp

lemma fizespointwise-insert:
assumes fizespointwise f A f ¢ (insert a A) = insert a A
shows fizespointwise [ (insert a A)
using assms(2) insert-compare-element[of a A f a]
fizespointwise D[OF assms(1)] fizxespointwise-im|[OF assms(1)]
by (cases a€A) (auto intro: fizespointwisel)

lemma fizespointwise-restrict1:
fizespointwise f A = fixespointwise (restrictl f B) A
using fizespointwiseD[of f] by (auto intro: fixespointwisel)

lemma fold-fixespointwise:

Vzeset xs. fizespointwise (f ©) A = fizespointwise (fold f xs) A
proof (induct xs)

case Nil show ?case using id-fizespointwise subst[of id] by fastforce
next

case (Cons z zs)

hence fizespointwise (fold fxs o fz) A

using fizespointwise-complof f x A fold f xs] by fastforce

moreover have fold f zs o f x = fold f (z#tzs) by simp

ultimately show ?case using subst[of - - \f. fizespointwise f A] by fast
qed

lemma funpower-fizespointwise:

assumes fizespointwise f A

shows fizespointwise (f~ n) A
proof (induct n)

case () show ?case using id-fixespointwise subst|of id] by fastforce
next

case (Suc m)



with assms have fizespointwise (f o (f~ m)) A
using fizespointwise-comp by fast
moreover have f o (f""m) = f~ (Suc m) by simp
ultimately show ?case using subst[of - - \f. fizespointwise f A] by fast
qed

1.4.3 Injectivity, surjectivity, bijectivity, and inverses

lemma inj-on-to-singleton:
assumes inj-on f A f‘A = {b}
shows Ja. A = {a}

proof—
from assms(2) obtain a where a: a€A fa = b by force
with assms have A = {a} using inj-onD|of f A] by blast
thus %thesis by fast

qed

lemmas inj-inj-on = subset-inj-on[of - UNIV, OF - subset-UNIV|

lemma inj-on-eq-image”: [ inj-on f A; XCA; YCA; f XCfY | = XCVY
unfolding inj-on-def by fast

lemma inj-on-eq-image: [ inj-on f A; XCA; YCA; f X=fY ]| = X=Y
using inj-on-eq-image’[of f A X Y] inj-on-eq-image’of f A Y X] by simp

lemmas inj-eq-image = inj-on-eq-image[OF - subset-UNIV subset-UNIV]

lemma induced-pow-fun-inj-on:
assumes inj-on f A
shows inj-on ((¥) f) (Pow A)
using inj-onD[OF assms| inj-onl[of Pow A () f]
by blast

lemma inj-on-minus-set: inj-on ((—) A) (Pow A)
by (fast intro: inj-onI)

lemma induced-pow-fun-surj:
(() /) * (Pow A) = Pow (f'A)
proof (rule seteql)
fix X show X € (() f) ‘ (Pow A) = X € Pow (f‘A) by fast
next
fix Y assume Y: Y € Pow (f‘A)
moreover hence Y = f{a€A. fa € Y} by fast
ultimately show Ye ((¥) f) < (Pow A) by auto
qed

lemma bij-betw-f-the-inv-into-f:

bij-betw f A B = yeB = [ (the-inv-into A fy) =y
— an equivalent lemma appears in the HOL library, but this version avoids the
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double bij-betw premises
unfolding bij-betw-def by (blast intro: f-the-inv-into-f)

lemma bij-betw-the-inv-into-onto: bij-betw f A B = the-inv-into A f ‘B = A
unfolding bij-betw-def by force

lemma bij-betw-imp-bij-betw- Pow:
assumes bij-betw f A B
shows  bij-betw ((9) f) (Pow A) (Pow B)
unfolding bij-betw-def
proof (rule conjl, rule inj-onlI)
show Az y. [ z€Pow A; yePow A; f'o = fiy | = 2=y
using inj-onD[OF bij-betw-imp-inj-on, OF assms| by blast
show (9) f * Pow A = Pow B
proof
show () f * Pow A C Pow B using bij-betw-imp-surj-on|OF assms] by fast
show (9) f * Pow A O Pow B
proof
fix y assume y: ycPow B
with assms have y = f ‘ the-inv-into A f ‘ y
using bij-betw-f-the-inv-into-f[THEN sym] by fastforce
moreover from y assms have the-inv-into A f ‘y C A
using bij-betw-the-inv-into-onto by fastforce
ultimately show y € () f ¢ Pow A by auto
qed
qged
qed

lemma comps-fizpointwise-imp-bij-betw:
assumes f‘XCY g'YCX fizespointwise (gof) X fizespointwise (fog) Y
shows bij-betw f X Y
unfolding bij-betw-def
proof
show inj-on f X
proof (rule inj-onl)
fix x y show [ zeX; yeX; fz = fy ] = 2=y
using fizespointwise D|OF assms(3), of z] fizrespointwiseD[OF assms(3), of y]
by  simp
qed
from assms(1,2) show f‘X = Y using fizespointwiseD[OF assms(4)] by force
qed

lemma set-permutation-bij-restrict1:
assumes bij-betw f A A
shows  bij (restrictl f A)
proof (rule bijl)
have bij-f: inj-on f A f‘A = A using iffD1[OF bij-betw-def, OF assms| by auto
show inj (restrictl f A)
proof (rule injl)

11



fix z y show restrict! f A © = restrictl fA y — z=y
using inj-onD bij-f by (cases x€A yEA rule: two-cases) auto
qed
show surj (restrictl f A)
proof (rule surjl)
fix z
define y where y = restrict! (the-inv-into A f) A z
thus restrict] fAy ==z
using the-inv-into-into|of f] bij-f f-the-inv-into-f[of f] by (cases z€A) auto
qged
qged

lemma set-permutation-the-inv-restrict1:
assumes bij-betw f A A
shows the-inv (restrictl f A) = restrictl (the-inv-into A f) A
proof (rule ext, rule the-inv-into-f-eq)
from assms show inj (restrict! f A)
using bij-is-inj set-permutation-bij-restrictl by fast
next
fix a from assms show restrict! f A (restrictl (the-inv-into A f) A a) = a
using bij-betw-def[of f] by (simp add: the-inv-into-into f-the-inv-into-f)
qed simp

lemma the-inv-into-the-inv-into:
inj-on f A = a€A = the-inv-into (f‘A) (the-inv-into A ) a = fa
using inj-on-the-inv-into by (force intro: the-inv-into-f-eq imagel)

lemma the-inv-into-f-im-f-im:
assumes inj-on f A zCA
shows the-inv-into A f ‘f‘x =z
using assms(2) the-inv-into-f-f[OF assms(1)]
by force

lemma f-im-the-inv-into-f-im:
assumes inj-on f A 2Cf‘A
shows f ¢ the-inv-into A f ‘x =z
using assms(2) f-the-inv-into-f[OF assms(1)]
by force

lemma the-inv-leftinv: bij f = the-inv f o f = id
using bij-def|of f] the-inv-f-f by fastforce

1.4.4 Induced functions on sets of sets and lists of sets

Here we create convenience abbreviations for distributing a function over a
set of sets and over a list of sets.

abbreviation setsetmapim :: (‘a='b) = 'a set set = 'b set set (infix <> 70)
where fFX = ((9) f) ‘ X

12



abbreviation setlistmapim :: (‘a='b) = 'a set list = 'b set list (infix <=> 70)
where fEXs = map ((9) f) Xs

lemma setsetmapim-comp: (fog)FA = fH(g-A4)
by (auto simp add: image-comp)

lemma setlistmapim-comp: (fog)l=xs = fl=(gF=s)
by auto

lemma setsetmapim-cong-subset:

assumes fun-eqg-on g f (JA) BCA

shows g¢FB C f-B
proof

fix y assume y € g-B

from this obtain x where z€B y = g‘c by fast

with assms(2) show y € f-B using fun-eq-on-im[OF assms(1), of z] by fast
qed

lemma setsetmapim-cong:
assumes fun-eq-on g f ((JA) BCA
shows g¢-B = f-B
using  setsetmapim-cong-subset| OF assms]
setsetmapim-cong-subset| OF fun-eq-on-sym, OF assms]
by fast

lemma setsetmapim-restrictl: BCA = restrict!] f (JA) + B = f+-B
using setsetmapim-conglof - f] fun-eq-on-restrict![of |J A f] by simp

lemma setsetmapim-the-inv-into:
assumes inj-on f (|J A)
shows (the-inv-into (JA) f) F (fFA) = A
proof (rule seteql)
fix x assume z € (the-inv-into (|JA) f) F (fFA)
from this obtain y where y: y € fFA z = the-inv-into ((JA) f ¢ y by auto
from y(1) obtain z where z: 2z€ A y = f‘z by fast
moreover from z(1) have the-inv-into (JA) ff ‘2= 2
using the-inv-into-f-f[OF assms] by force
ultimately show z€A using y(2) the-inv-into-f-im-f-im[OF assms] by simp
next
fix z assume z: z€A
moreover hence the-inv-into (JA) ff‘z ==z
using the-inv-into-f-im-f-im[OF assms, of x| by fast
ultimately show z € (the-inv-into (JA) f) - (fFA4) by auto
qed

1.4.5 1Induced functions on quotients

Here we construct the induced function on a quotient for an inducing func-
tion that respects the relation that defines the quotient.
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lemma respects-imp-unique-image-rel: f respects r = yef‘r‘{a} = y = fa
using congruentD[of r f] by auto

lemma ex1-class-image:
assumes refl-on A r f respects r XeA//r
shows 3!b. befX
proof—
from assms(3) obtain a where a: a€ A X = r*{a} by (auto intro: quotientE)
thus %thesis
using refl-onD[OF assms(1)] exll]of - f a
respects-imp-unique-image-rel[OF assms(2), of - a]
by  force
qed

definition quotientfun :: (‘a='b) = 'a set = 'b
where quotientfun f X = (THE b. bef‘X)

lemma quotientfun-equality:
assumes refl-on A r f respects r X€A//r bef'X
shows quotientfun f X = b
unfolding quotientfun-def
using  assms(4) exl-class-image| OF assms(1—3)]
by (auto intro: thel-equality)

lemma quotientfun-classrep-equality:
[ refi-on A r; f respects r; a€A | = quotientfun f (r‘{a}) = fa
using refl-onD by (fastforce intro: quotientfun-equality quotientI)

1.4.6 Support of a function

definition supp :: (‘a = 'b::zero) = 'a set where supp f = {z. fx # 0}

lemma suppl-contra: ¢ supp f = fz =0
using supp-def by fast

lemma suppD-contra: foz = 0 = = ¢ supp f
using supp-def by fast

abbreviation restrict0 :: (‘a="b::zero) = 'a set = (‘a='b)
where restrict0 f A = (Aa. if a € A then f a else 0)

lemma supp-restrict0 : supp (restrict0 f A) C A
proof—
have Aa. a ¢ A = a ¢ supp (restrict0 f A)
using suppD-contralof restrict0 f A] by simp
thus ?thesis by fast
qed

14



1.5 Lists

1.5.1 Miscellaneous facts

lemma snoc-conv-cons: Jx zs. ysQly| = z#xs
by (cases ys) auto

lemma cons-conv-snoc: Jys y. z#rs = ysQly]
by (cases xs rule: rev-cases) auto

lemma distinct-count-list:
distinct xs = count-list xs a = (if a € set xs then 1 else 0)
by (induct xs) auto

lemma map-fst-map-const-snd: map fst (map (As. (s,b)) xzs) = xs
by (induct zs) auto

lemma inj-on-distinct-setlistmapim:
assumes nj-on f A
shows V Xeset Xs. X C A = distinct Xs = distinct (fE=Xs)
proof (induct Xs)
case (Cons X Xs)
show ?Zcase
proof (cases f'X € set (fl=Xs))
case True
from this obtain Y where Y: Yeset Xs f'X = fY by auto
with assms Y (1) Cons(2,3) show ?Zthesis
using inj-on-eq-image[of f A X Y] by fastforce
next
case False with Cons show ?thesis by simp
qed
qed simp

1.5.2 Cases

lemma list-cases-Cons-snoc [case-names Nil Single Cons-snoc]:
assumes Nil: zs =[] = P
and Single: \x. zs = [z] = P
and Cons-snoc: Nz ys y. s =z # ys Q [y = P
shows P
proof (cases xs, rule Nil)
case (Cons z zs) with Single Cons-snoc show ?thesis
by (cases xs rule: rev-cases) auto

qed

lemma two-lists-cases-Cons-Cons [case-names Nill Nil2 ConsCons]:
assumes  Nill: Ays. as =[] = bs=ys = P
and Nil2: N\ws. as = xs = bs =[] = P

and ConsCons: Nz xs y ys. as =z # 18 = bs =y # ys = P
shows P
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proof (cases as)
case Cons with assms(2,3) show %thesis by (cases bs) auto
qed (simp add: Nill)

lemma two-lists-cases-snoc-Cons [case-names Nill Nil2 snoc-Consl:
assumes Nilt: Nys. as =[] = bs =ys = P
and Nil2: \zs. as = 12s = bs =[] = P
and  snoc-Cons: N\zs ¢y ys. as = xs Q [z] = bs =y # ys = P
shows P

proof (cases as rule: rev-cases)
case snoc with Nil2 snoc-Cons show ?thesis by (cases bs) auto

qed (simp add: Nill)

lemma two-lists-cases-snoc-Cons’ [case-names both-Nil Nill Nil2 snoc-Cons):

assumes both-Nil: as =[] = bs =[] = P
and Nill: Ay ys. as = [| = bs = y#ys = P
and Nil2: Axs x. as = zsQ[z] = bs =[] = P

and snoc-Cons: Nzs x y ys. as = zs Q [z] = bs =y # ys = P
shows P
proof (cases as bs rule: two-lists-cases-snoc-Cons)
case (Nill ys) with assms(1,2) show P by (cases ys) auto
next
case (Nil2 zs) with assms(1,3) show P by (cases xs rule: rev-cases) auto
qed (rule snoc-Cons)

lemma two-prod-lists-cases-snoc-Cons:
assumes Azs. as = xs = bs =[] = P A\ys.as =[] = bs=ys = P
Nzs aa ba ab bb ys. as = xs Q [(aa, ba)] A bs = (ab, bb) # ys = P
shows P
proof (rule two-lists-cases-snoc-Cons)
from assms
show Ays.as=[ = bs=ys=—= P N\uzs. as=1zs = bs =[] = P
by auto
from assms(3) show Azsz y ys. as = s Q [z] = bs =y # ys = P
by fast
qed

lemma three-lists-cases-snoc-mid-Cons
[case-names Nill Nil2 Nil3 snoc-single-Cons snoc-mid-Cons]:

assumes Nill: Nys zs. as =[] = bs = ys = ¢s = 2s = P
and Nil2: Nxs zs. as =1s = bs =[] = ¢s = 2s = P
and Nil3: Nzs ys. as = xs = bs = ys = ¢cs =[] = P

and snoc-single-Cons:
Neszyzzs.as=a2sQz] = bs=[y = cs=z# 2s = P
and snoc-mid-Cons:
Neszwysy zzs as =125 Q2] = bs = w # ys Q [y] =
cs=2zH# 28— P
shows P
proof (cases as cs rule: two-lists-cases-snoc-Cons)
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case Nill with assms(1) show P by simp
next
case Nil2 with assms(3) show P by simp
next
case snoc-Cons
with Nil2 snoc-single-Cons snoc-mid-Cons show P
by (cases bs rule: list-cases-Cons-snoc) auto
qed

1.5.3 Induction

lemma list-induct-CCons [case-names Nil Single CCons]:

assumes Nil : P[]

and  Single: \z. P [z]

and  CCons: ANz yxs. P (y#as) = P (z # y # xs)

shows P zs
proof (induct xs)

case (Cons z zs) with Single CCons show ?case by (cases zs) auto
qed (rule Nil)

lemma list-induct-ssnoc [case-names Nil Single ssnoc]:

assumes Nil : P ||

and  Single: Az. P [z]

and  ssnoc : Aws z y. P (zsQ[z]) = P (2sQz,y])

shows P zs
proof (induct zs rule: rev-induct)

case (snoc = zs) with Single ssnoc show ?case by (cases xs rule: rev-cases) auto
qed (rule Nil)

lemma list-induct2-snoc [case-names Nill Nil2 snoc]:

assumes Nill: Ays. P[] ys

and  Nil2: Azs. P as ||

and  snoc: Aws z ys y. P as ys = P (zsQ[z]) (ysQ[y])

shows P xs ys
proof (induct zs arbitrary: ys rule: rev-induct, rule Nill)

case (snoc b bs) with assms(2,3) show Zcase by (cases ys rule: rev-cases) auto
qed

lemma list-induct2-snoc-Cons [case-names Nill Nil2 snoc-Cons]:
assumes Nill  : Ays. P[] ys
and Nil2 : Azs. Pus|]
and  snoc-Cons: Nzs x y ys. P xs ys = P (xsQ[z]) (y#ys)
shows P s ys
proof (induct ys arbitrary: zs, rule Nil2)
case (Cons y ys) with Nill snoc-Cons show ?Zcase
by (cases xs rule: rev-cases) auto
qed

lemma prod-list-induct3-snoc-Conssnoc-Cons-pairwise:
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assumes Ays zs. Q ([],ys,28) N\zs zs. Q (zs,[],2s) Nxzs ys. Q (ws,ys,[])
Nzs zy z zs. Q (zsQ[z],[y],2#2s)
and step:
Nxs z y ys w z zs. Q (z8,y8,28) = Q (8,ysQlw],z#28) =
Q (zsQx],y#ys,zs) = Q (xsQ[z],y#ysQ[w],z# 2s)
shows @t
proof (
induct t
taking: \(zs,ys,zs). length xs + length ys + length zs
rule : measure-induct-rule
)
case (less t)
show ?Zcase
proof (cases t)
case (fields zs ys zs) from assms less fields show ?thesis
by (cases xs ys zs rule: three-lists-cases-snoc-mid-Cons) auto
qed
qed

lemma [list-induct3-snoc-Conssnoc-Cons-pairwise
[case-names Nill Nil2 Nil3 snoc-single-Cons snoc-Conssnoc-Cons:

assumes Nil! : A\ys zs. P[] ys zs
and  Nil2 s N\xs zs. Pas || zs
and N3 : N\ws ys. P as ys ]

and  snoc-single-Cons : Nxzs z y z zs. P (zsQlz]) [y] (24 25)
and snoc-Conssnoc-Cons:
Nxs © y ys wz zs. Puas ys zs => P xs (ysQlw]) (2#2s) =
P (2sQ[a]) (y#ys) 25 — P (2sa]) (y#ys@lu]) (425)
shows P xs ys zs
using assms
prod-list-induct3-snoc- Conssnoc-Cons-pairwise[of A(xs,ys,zs). P xs ys zs]
by auto

1.5.4 Alternating lists

primrec alternating-list :: nat = 'a = 'a = ’a list
where zero: alternating-list 0 s t = |]
| Suc : alternating-list (Suc k) st =
alternating-list k s t Q [if even k then s else t]
— could be defined using Cons, but we want the alternating list to always start
with the same letter as it grows, and it’s easier to do that via append

lemma alternating-list2: alternating-list 2 s t = [s,t]
using arg-cong[OF Suc-1, THEN sym, of An. alternating-list n s t] by simp

lemma length-alternating-list: length (alternating-list n s t) = n
by (induct n) auto

lemma alternating-list-Suc-Cons:
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alternating-list (Suc k) s t = s # alternating-list k ¢ s
by (induct k) auto

lemma alternating-list-SucSuc-ConsCons:
alternating-list (Suc (Suc k)) st = s # t # alternating-list k s t
using alternating-list-Suc-Cons[of Suc k s| alternating-list-Suc-Cons|of k t]
by  simp

lemma alternating-list-alternates:
alternating-list n s t = asQla,b,c]Qbs = a=c
proof (induct n arbitrary: bs)
case (Suc m) hence prevcase:
Nzs. alternating-list m s t = as @Q [a,b,c] Q zs = a = ¢
alternating-list (Suc m) s t = as @ [a,b,c] @ bs
by auto
show Zcase
proof (cases bs rule: rev-cases)
case Nil show ?thesis
proof (cases m)
case ( with prevcase(2) show ?thesis by simp
next
case (Suc k) with prevcase(2) Nil show ?thesis by (cases k) auto
qed
next
case (snoc ds d) with prevcase show ?thesis by simp
qged
qed simp

lemma alternating-list-split:
alternating-list (m+n) s t = alternating-list m s t Q
(if even m then alternating-list n s t else alternating-list n t s)
using alternating-list-SucSuc-ConsCons|of - s]
by  (induct n rule: nat-induct-step2) auto

lemma alternating-list-append:
even m =
alternating-list m s t Q alternating-list n s t = alternating-list (m+n) s t
odd m =
alternating-list m s t Q alternating-list n t s = alternating-list (m+n) s t
using alternating-list-split| THEN sym, of m] by auto

lemma rev-alternating-list:
rev (alternating-list n s t) =
(if even n then alternating-list n t s else alternating-list n s t)
using alternating-list-SucSuc-ConsCons|of - s]
by  (induct n rule: nat-induct-step2) auto

lemma set-alternating-list: set (alternating-list n s t) C {s,t}
by (induct n) auto
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lemma set-alternating-listi:
assumes n > I
shows s € set (alternating-list n s t)
proof (cases n)
case ( with assms show ?thesis by simp
next
case (Suc m) thus ?thesis using alternating-list-Suc-Cons|of m s| by simp
qed

lemma set-alternating-list2:

n > 2 = set (alternating-list n s t) = {s,t}
proof (induct n rule: nat-induct-step2)

case (SucSuc m) thus ?case

using set-alternating-list alternating-list-SucSuc-ConsCons|of m s t] by fastforce
qed auto

lemma alternating-list-in-lists: a€ A = b€ A = alternating-list n a b € lists A
by (induct n) auto

1.5.5 Binary relation chains

Here we consider lists where each pair of adjacent elements satisfy a given
relation.

fun binrelchain :: ('a = 'a = bool) = 'a list = bool
where binrelchain P [| = True
| binrelchain P [z] = True
| binrelchain P (z # y # xzs) = (P z y A binrelchain P (y#zs))

lemma binrelchain-Cons-reduce: binrelchain P (x#xs) = binrelchain P xs
by (induct zs) auto

lemma binrelchain-append-reducel : binrelchain P (xsQys) = binrelchain P xs
proof (induct zs rule: list-induct-CCons)

case (CCons x y xs) with binrelchain-Cons-reduce show ?Zcase by fastforce
qed auto

lemma binrelchain-append-reduce2:

binrelchain P (xsQys) = binrelchain P ys
proof (induct s)

case (Cons z zs) with binrelchain-Cons-reduce show ?Zcase by fastforce
qed simp

lemma binrelchain-Conssnoc-reduce:
binrelchain P (z#xsQ[y]) = binrelchain P zs

using binrelchain-append-reducel binrelchain-Cons-reduce by fastforce

lemma binrelchain-overlap-join:
binrelchain P (xsQ[z]) = binrelchain P (z#ys) = binrelchain P (xsQz#ys)
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by (induct xs rule: list-induct-CCons) auto

lemma binrelchain-join:
[ binrelchain P (xsQ[z]); binrelchain P (y#ys); Pz y ] =
binrelchain P (zs Q z # y # ys)
using binrelchain-overlap-join by fastforce

lemma binrelchain-snoc:
binrelchain P (zsQ[z]) = P x y = binrelchain P (zsQ[z,y])
using binrelchain-join by fastforce

lemma binrelchain-sym-rev:

assumes A\zy. Pzy=— Pyzx

shows binrelchain P xs = binrelchain P (rev xs)
proof (induct zs rule: list-induct-CCons)

case (CCons x y zs) with assms show ?case by (auto intro: binrelchain-snoc)
qed auto

lemma binrelchain-remdup-ady:
binrelchain P (zsQ[x,x]Qys) = binrelchain P (zsQz#ys)
by (induct xs rule: list-induct-CCons) auto

abbreviation proper-binrelchain P xs = binrelchain P xs N\ distinct xs

lemma binrelchain-obtain-proper:
z#£y = binrelchain P (z#zsQy]) =
Jzs. set zs C set xs A\ length zs < length zs A proper-binrelchain P (z#zsQ[y])
proof (induct xs arbitrary: x)
case (Cons w ws)
show ?Zcase
proof (cases w=z w=y rule: two-cases)
case one
from one(1) Cons(3) have binrelchain P (z#wsQ[y])
using binrelchain-Cons-reduce by simp
with Cons(1,2) obtain zs
where set zs C set ws length zs < length ws proper-binrelchain P (z#2sQ[y])
by auto
thus ?thesis by auto
next
case other
with Cons(3) have proper-binrelchain P (z#[]Q[y])
using binrelchain-append-reducel by simp
moreover have length [| < length (w#ws) set [| C set (w#ws) by auto
ultimately show ¢thesis by blast
next
case neither
from Cons(3) have binrelchain P (w#wsQly])
using binrelchain-Cons-reduce by simp
with neither(2) Cons(1) obtain zs
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where zs: set zs C set ws length zs < length ws
proper-binrelchain P (w#2zsQ[y])
by auto
show ?thesis
proof (cases z€set zs)
case True
from this obtain as bs where asbs: zs = asQx#bs
using in-set-conv-decomp|of x| by auto
with zs(3) have proper-binrelchain P (z#bsQ[y])
using binrelchain-append-reduce2]of P w#as] by auto
moreover from zs(1) asbs have set bs C set (w#ws) by auto
moreover from asbs zs(2) have length bs < length (w#ws) by simp
ultimately show ?thesis by auto
next
case Fulse
with zs(8) neither(1) Cons(2,3) have proper-binrelchain P (z#(w#zs)Q[y])
by simp
moreover from zs(1) have set (w#zs) C set (w#ws) by auto
moreover from zs(2) have length (w#zs) < length (w#ws) by simp
ultimately show ?thesis by blast
qed
qed (fastforce simp add: Cons(2))
qed simp

lemma binrelchain-trans-Cons-snoc:

assumes Az yz. Pry— Pyz—=— Puxz

shows binrelchain P (z#xzsQly]) = Pz y
proof (induct xs arbitrary: x)

case Cons with assms show ?case using binrelchain-Cons-reduce by auto
qed simp

lemma binrelchain-cong:
assumes A\zy. Pz y=— Quxy
shows binrelchain P xs = binrelchain @ xs
using assms binrelchain-Cons-reduce
by (induct xs rule: list-induct-CCons) auto

lemma binrelchain-funcong-Cons-snoc:
assumes Az y. Pz y = fy = fx binrelchain P (z#xsQ[y])
shows fy=/fz
using assms binrelchain-cong|of P)]
binrelchain-trans-Cons-snoclof Az y. fy = fx x xs y]
by auto

lemma binrelchain-funcong-extra-condition-Cons-snoc:
assumes A\zy. Qz —= Pry— Qy Nzy. Qz = Przy—= fy=fx
shows @ x = binrelchain P (z#25Q[y]) = fy=fz

proof (induct zs arbitrary: x)
case (Cons z zs) with assms show ?Zcase
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using binrelchain-Cons-reduce|of P x z42sQ[y]] by fastforce
qed (simp add: assms)

lemma binrelchain-setfuncong-Cons-snoc:
[VzeA.Vy. Py — ycA;Va€A. Yy. Pzy — fy = fux; €A,
binrelchain P (z#2sQ[y]) | = fy=fz
using binrelchain-funcong-extra-condition-Cons-snoclof Ax. x€A P f x zs y]
by  fast

lemma binrelchain-propcong-Cons-snoc:

assumes A\zy. Qz = Przy=— Quy

shows @ z = binrelchain P (z#zsQ[y]) = Q y
proof (induct xs arbitrary: x)

case Cons with assms show ?case using binrelchain-Cons-reduce by auto
qed (simp add: assms)

1.5.6 Set of subseqs

lemma subsegs-Cons: subseqs (z#xs) = map (Cons z) (subseqs zs) Q (subsegs xs)
using cong-let[of subseqs xs Axss. map (Cons x) xss Q xss] by simp

abbreviation ssubseqs xs = set (subsegqs xs)

lemma nil-ssubsegs: [| € ssubsegs s
proof (induct s)

case (Cons z zs) thus ?case using subsegs-Cons|of x| by simp
qed simp

lemma ssubsegs-Cons: ssubseqs (x#xs) = (Cons x) ‘ (ssubseqs xs) U ssubseqs xs
using subseqs-Cons|of x] by simp

lemma ssubsegs-refl: xs € ssubseqs zs
proof (induct xs)

case (Cons z xs) thus Zcase using ssubsegs-Cons by fast
qed (rule nil-ssubsegs)

lemma ssubseqs-subset: as € ssubseqs bs =—> ssubseqs as C ssubseqs bs
proof (induct bs arbitrary: as)
case (Cons b bs) show Zcase
proof (cases as € set (subseqs bs))
case True with Cons show ?thesis using ssubseqs-Cons by fastforce
next
case False with Cons show ?thesis
using nil-ssubseqs|of b#bs] ssubseqs-Cons|of hd as] ssubseqs-Cons|of b]
by (cases as) auto
qed
qed simp

lemma ssubseqs-lists:
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as € lists A = bs € ssubseqs as = bs € lists A
proof (induct as arbitrary: bs)

case (Cons a as) thus ?case using ssubsegs-Cons|of a] by fastforce
qed simp

lemma deletel-ssubseqs:
asQbs € ssubseqs (asQ[a]@bs)
proof (induct as)
case Nil show ?case using ssubsegs-refl ssubsegs-Cons|of a bs|] by auto
next
case (Cons z zs) thus ?case using ssubsegs-Cons|of x| by simp
qed

lemma delete2-ssubseqs:
as@bsQcs € ssubsegs (asQ[a]@bsQ[b]Qcs)
using deletel-ssubsegs|of asQ[a]@Qbs] deletel-ssubseqs ssubseqs-subset
by  fastforce

1.6 Orders and posets

We have chosen to work with the ordering locale instead of the order class
to more easily facilitate simultaneously working with both an order and its
dual.

1.6.1 Morphisms of posets

locale OrderingSetMap =
domain : ordering less-eq less
+ codomain: ordering less-eq’ less’
for less-eq :: 'a='a=bool (infix «<» 50)

and less  :: ‘a='a=bool (infix «<> 50)
and less-eq’ :: 'b="b=bool (infix «<*» 50)
and less’ :: 'b="b=-bool (infix (x> 50)

+ fixes P :: 'a set

and f: ‘a="b

assumes ordsetmap: acP = beP —= a < b= fa <x fb
begin

lemma comp:
assumes OrderingSetMap less-eq’ less’ less-eq’’ less” Q g

'PC@
shows  OrderingSetMap less-eq less less-eq’’ less'’ P (gof)
proof —

from assms(1) interpret I: OrderingSetMap less-eq’ less’ less-eq” less” Q g .
show ?thesis
by standard (use assms(2) in <auto intro: ordsetmap I.ordsetmap))
qed

lemma subset: QCP = OrderingSetMap (<) (<) (<x) (<*) Q f
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using ordsetmap by unfold-locales fast
end

locale OrderingSetlso = OrderingSetMap less-eq less less-eq’ less’ P f
for less-eq :: 'a='a=bool (infix «<> 50)

and less  :: ‘a='a=bool (infix «<> 50)
and less-eq’ :: 'b="b=>bool (infix «<*» 50)
and less’ i 'b='b=-bool (infix (<> 50)

and P :: 'a set
and f :: ‘a="b
+ assumes inj :inj-on f P
and rev-OrderingSetMap:
OrderingSetMap less-eq’ less’ less-eq less (fP) (the-inv-into P f)

abbreviation subset-ordering-iso = OrderingSetIso (C) (C) (C) ()
lemma (in OrderingSetMap) isol:
assumes inj-on f P Na b. a€P — beP = fa <sx fb= a < }
shows OrderingSetlso less-eq less less-eq’ less’ P f
using assms the-inv-into-f-f[OF assms(1)]
by unfold-locales auto

lemma OrderingSetlsol-orders-greater2less:
fixes f :: 'a::order = 'b::order
assumes inj-on f P Nab.a € P=—= b€ P = (b<a) = (fa < fb)
shows OrderingSetlso (greater-eq::'a="a=>bool) (greater::'a="a=>bool)
(less-eq::"b="b=>bool) (less::'b=-"b=>bool) P f
proof
from assms(2) show Aab. a € P= b€ P = b<a = fa < fb by auto
from assms(2)
show Aab. aef‘P=becf‘P= b<a =
the-inv-into P f a < the-inv-into P f b
using the-inv-into-f-f[OF assms(1)]
by  force
qed (rule assms(1))

context OrderingSetlso
begin
lemmas ordsetmap = ordsetmap
lemma ordsetmap-strict: [ a€P; beP; a<b ] = fa <x fb
using domain.strict-iff-order codomain.strict-iff-order ordsetmap inj
inj-on-contraD

by  fastforce

lemmas inv-ordsetmap = OrderingSetMap.ordsetmap| OF rev-OrderingSetMap]
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lemma rev-ordsetmap: [ a€P; be€P; fa <x fb] = a < b
using inv-ordsetmap the-inv-into-f-f[OF inj] by fastforce

lemma inv-iso: OrderingSetlso less-eq’ less’ less-eq less (f*P) (the-inv-into P f)
using inv-ordsetmap inj-on-the-inv-into[ OF inj] the-inv-into-onto[ OF inj]
ordsetmap the-inv-into-the-inv-into[ OF inj]
by  unfold-locales auto

lemmas inv-ordsetmap-strict = OrderingSetlso.ordsetmap-strict[OF inv-iso]

lemma rev-ordsetmap-strict: [ a€P; beP; fa <x fb] = a < b
using inv-ordsetmap-strict the-inv-into-f-f|OF inj] by fastforce

lemma iso-comp:
assumes OrderingSetlso less-eq’ less’ less-eq’ less’”’ Q g f'P C Q
shows  OrderingSetlso less-eq less less-eq’’ less” P (gof)
proof (rule OrderingSetMap.isol)
from assms show OrderingSetMap (<) (<) less-eq” less” P (g o f)
using OrderingSetlso.axioms(1) comp by fast
from assms(2) show inj-on (g o f) P
using OrderingSetlso.inj|OF assms(1)]
comp-inj-on|OF inj, OF subset-inj-on|
by  fast
next
fix a b
from assms(2) show [ a€P; beP; less-eq” ((gof) a) ((gof) b) | = a<b
using OrderingSetlso.rev-ordsetmap[OF assms(1)] rev-ordsetmap by force
qed

lemma iso-subset:
QCP = OrderingSetlso (<) (<) (<x) (<x) Q f
using subset]of Q] subset-inj-on|OF inj] rev-ordsetmap
by  (blast intro: OrderingSetMap.isol)

lemma iso-dual:
<OrderingSetlso (Aa b. less-eq b a) (Aa b. less b a)
(Aa b. less-eq’ b a) (Aa b. less’ b a) P f»
apply (rule OrderingSetMap.isol)
apply unfold-locales
using inj
apply (auto simp add: domain.refl codomain.refl
domain.irrefl codomain.irrefl
domain.order-iff-strict codomain.order-iff-strict
ordsetmap-strict rev-ordsetmap-strict inj-onD
intro: domain.trans codomain.trans
domain.strict-trans codomain.strict-trans
domain.antisym codomain.antisym)
done

26



end

lemma induced-pow-fun-subset-ordering-iso:
assumes inj-on f A
shows  subset-ordering-iso (Pow A) ((9) f)
proof
show Aab. a € PowA = be PowA=— aC b= f‘aC [f*‘bby fast
from assms show 2:inj-on ((¥) f) (Pow A)
using induced-pow-fun-inj-on by fast
show Aab.ac () f‘PowA=be () f PowA= aCh
= the-inv-into (Pow A) ((‘) f) a C the-inv-into (Pow A) (() f) b
proof—
fix Y1 Y2
assume Y: Y1 € (() f) ‘Pow A Y2 € (()f) “‘PowAYl CY2
from Y (1,2) obtain X7 X2 where X1CA X2CA Y1 = f'X1 Y2 = f'X2
by auto
with assms Y (3)
show the-inv-into (Pow A) ((‘) f) Y1 C the-inv-into (Pow A) (() f) Y2
using inj-onD[OF assms] the-inv-into-f-f[OF 2, of X1]
the-inv-into-f-f[OF 2, of X2]
by  blast
qed
qed

1.6.2 More arg-min

lemma is-arg-minli:
[Paz; A\y. Py= -my < mz] = is-arg-min m Pz
by (simp add: is-arg-min-def)

lemma is-arg-min-linorderl:
[ Px; Ny. Py = maz < (m y:-:linorder) | = is-arg-min m P x
by (simp add: is-arg-min-linorder)

lemma is-arg-min-eq:
[ is-arg-min m P x; P z; m z = m z | = 4s-arg-min m P z
by (metis is-arg-min-def)

lemma is-arg-minD1: is-arg-min m Pz — Pz
unfolding is-arg-min-def by fast

lemma is-arg-minD2: is-arg-min m Pt — Py— - my < mz
unfolding is-arg-min-def by fast

lemma is-arg-min-size: fixes m :: ‘a = 'b::linorder

shows is-arg-min m P x = m x = m (arg-min m P)
by (metis arg-min-equality is-arg-min-linorder)
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lemma is-arg-min-size-subprop:
fixes m :: ‘a="'b:linorder
assumes is-arg-min m Pz Qz N\y. Qy = Py
shows m (arg-min m Q) = m (arg-min m P)
proof—
have — is-arg-min m Q v = - is-arg-min m Pz
proof
assume z: - is-arg-min m Q x
from assms(2,3) show False
using contrapos-nn|[OF z, OF is-arg-minl| is-arg-minD2[OF assms(1)] by
auto
qed
with assms(1) show ?thesis
using is-arg-min-size[of m| is-arg-min-size[of m] by fastforce
qed

1.6.3 Bottom of a set

context ordering
begin

definition has-bottom :: 'a set = bool
where has-bottom P = d2€P.VzeP. 2 < zx

lemma has-bottoml: zé P — (\z. t€éP = 2z < ) = has-bottom P
using has-bottom-def by auto

lemma has-unig-bottom: has-bottom P —> 3!zeP. VzeP. <z
using has-bottom-def antisym by force

definition bottom :: 'a set = 'a
where bottom P = (THE z. zeP A (VzeP. 2<z))

lemma bottomD:
assumes has-bottom P
shows bottom P € P x€P = bottom P < x
using  assms has-unig-bottom thel’[of Az. zeP N (Vz€P. 2<z)]
unfolding bottom-def
by auto

lemma bottomI: zé P = (A\y. yeP = 2 < y) = z = bottom P
using has-bottomlI has-unig-bottom
thel-equality| THEN sym, of \z. 26 P A (Vz€P. 2<z)]
unfolding bottom-def
by simp

end

lemma has-bottom-pow: order.has-bottom (Pow A)
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by (fast intro: order.has-bottomlI)

lemma bottom-pow: order.bottom (Pow A) = {}
proof (rule order.bottomI[THEN sym]) qed auto

context OrderingSetMap
begin

abbreviation dombot = domain.bottom P
abbreviation codbot = codomain.bottom (f*P)

lemma im-has-bottom: domain.has-bottom P = codomain.has-bottom (f‘P)
using domain.bottomD ordsetmap by (fast intro: codomain.has-bottomI)

lemma im-bottom: domain.has-bottom P = f dombot = codbot
using domain.bottomD ordsetmap by (auto intro: codomain.bottoml)

end

lemma (in OrderingSetlso) pullback-has-bottom:
assumes codomain.has-bottom (f‘P)
shows domain.has-bottom P
proof (rule domain.has-bottomI)
from assms show the-inv-into P f codbot € P
using codomain.bottomD(1) the-inv-into-into[ OF inj] by fast
from assms show Axz. t€P = the-inv-into P f codbot < x
using codomain.bottomD inv-ordsetmap|of codbot] the-inv-into-f-f[OF inj]
by  fastforce
qed

lemma (in OrderingSetlso) pullback-bottom:
[ domain.has-bottom P; z€P; f x = codomain.bottom (fP) | =
x = domain.bottom P
using ¢m-has-bottom codomain.bottomD(2) rev-ordsetmap
by  (auto intro: domain.bottoml)

1.6.4 Minimal and pseudominimal elements in sets

We will call an element of a poset pseudominimal if the only element below
it is the bottom of the poset.

context ordering

begin

definition minimal-in :: 'a set = 'a = bool
where minimal-in Pz = z€P N (V2€P. - 2 < 1)

definition pseudominimal-in :: 'a set = 'a = bool

where pseudominimal-in P z = minimal-in (P — {bottom P}) x
— only makes sense for has-bottom P
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lemma minimal-inD1: minimal-in P x — z€P
using minimal-in-def by fast

lemma minimal-inD2: minimal-in P 1 — 2€P — - 2 < 7
using minimal-in-def by fast

lemma pseudominimal-inD1: pseudominimal-in P x — z€P
using pseudominimal-in-def minimal-inD1 by fast

lemma pseudominimal-inD2:
pseudominimal-in P t —> 26 P —> 2<x =—> z = bottom P
using pseudominimal-in-def minimal-inD2 by fast

lemma pseudominimal-inl:
assumes zE€P x # bottom P Nz. 26 P = 2<x = z = bottom P
shows pseudominimal-in P x
using assms
unfolding pseudominimal-in-def minimal-in-def
by fast

lemma pseudominimal-ne-bottom: pseudominimal-in P © = x # bottom P
using pseudominimal-in-def minimal-inD1 by fast

lemma pseudominimal-comp:
[ pseudominimal-in P x; pseudominimal-in P y; e<y | = x =y
using pseudominimal-inD1 pseudominimal-inD2 pseudominimal-ne-bottom
strict-iff-order|of z y|
by  force

end

lemma pseudominimal-in-pow:
assumes order.pseudominimal-in (Pow A) z
shows JacA. z = {a}
proof—
from assms obtain a where {a} C z
using order.pseudominimal-ne-bottom bottom-pow|of A] by fast
with assms show ?thesis
using order.pseudominimal-inD1 order.pseudominimal-inD2[of - z {a}]
bottom-pow
by  fast
qed

lemma pseudominimal-in-pow-singleton:
a€A = order.pseudominimal-in (Pow A) {a}

using singleton-pow bottom-pow by (fast intro: order.pseudominimal-inl)

lemma no-pseudominimal-in-pow-is-empty:
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(Az. = order.pseudominimal-in (Pow A) {z}) = A = {}
using pseudominimal-in-pow-singleton by (fast intro: equalsOI)

lemma (in OrderingSetlso) pseudominimal-map:
domain.has-bottom P —> domain.pseudominimal-in P 1 —>
codomain.pseudominimal-in (fP) (f x)
using domain.pseudominimal-inD1 pullback-bottom
domain.pseudominimal-ne-bottom rev-ordsetmap-strict
domain.pseudominimal-inD2 im-bottom
by  (blast intro: codomain.pseudominimal-inI)

lemma (in OrderingSetlso) pullback-pseudominimal-in:
[ domain.has-bottom P; z€P; codomain.pseudominimal-in (fP) (fz) | =
domain.pseudominimal-in P x
using im-bottom codomain.pseudominimal-ne-bottom ordsetmap-strict
codomain.pseudominimal-inD2 pullback-bottom
by  (blast intro: domain.pseudominimal-inl)

1.6.5 Set of elements below another

abbreviation (in ordering) below-in :: 'a set = 'a = 'a set (infix «.<» 70)
where P.<z = {yeP. y<z}

abbreviation (in ord) below-in :: 'a set = 'a = 'a set (infix «.<» 70)
where P.<z = {yeP. y<z}

context ordering
begin

lemma below-in-refl: x€eP —> ¢ € P.<z
using refl by fast

lemma below-in-singleton: xéP — P.<z C {y} = y ==
using below-in-refl by fast

lemma bottom-in-below-in: has-bottom P —> € P = bottom P € P.<z
using bottomD by fast

lemma below-in-singleton-is-bottom:
[ has-bottom P; zeP; P.<z = {z} | = x = bottom P
using bottom-in-below-in by fast

lemma bottom-below-in:
has-bottom P = z€P = bottom (P.<z) = bottom P
using bottom-in-below-in by (fast intro: bottomI[ THEN sym)])

lemma bottom-below-in-relative:

[ has-bottom (P.<y); z€P; 1<y ]| = bottom (P.<xz) = bottom (P.<y)
using bottomD trans by (blast intro: bottomI[ THEN sym])
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lemma has-bottom-pseudominimal-in-below-inl:
assumes has-bottom P x€P pseudominimal-in Py y<z
shows pseudominimal-in (P.<z) y
using assms(3,4) pseudominimal-inD1[OF assms(3)]
pseudominimal-inD2[OF assms(3))
bottom-below-in| OF assms(1,2)] pseudominimal-ne-bottom
by (force intro: pseudominimal-inl)

lemma has-bottom-pseudominimal-in-below-in:

assumes has-bottom P z€P pseudominimal-in (P.<x) y

shows pseudominimal-in Py

using pseudominimal-inD1[OF assms(3)]
pseudominimal-inD2[OF assms(3)]
pseudominimal-ne-bottom[OF assms(3)]
bottom-below-in[ OF assms(1,2)]
strict-implies-order|of - y| trans[of - y z]

by (force intro: pseudominimal-inl)

lemma pseudominimal-in-below-in:

assumes has-bottom (P.<y) z€P 1<y pseudominimal-in (P.<z) w

shows  pseudominimal-in (P.<y) w

using  assms(3) trans[of w z y| trans[of - w z] strict-iff-order
pseudominimal-inD1[OF assms(4)]
pseudominimal-inD2[OF assms(4)]
pseudominimal-ne-bottom|OF assms(4)]
bottom-below-in-relative] OF assms(1—3)]

by (force intro: pseudominimal-inl)

lemma collect-pseudominimals-below-in-less-eq-top:
assumes OrderingSetlso less-eq less (C) (C) (P.<z) f
f(P.<z) = Pow A a C {y. pseudominimal-in (P.<z) y}
defines w = the-inv-into (P.<z) f (U (f‘a))
shows w<z
proof—
from assms(2,3) have (| (fa)) € f{(P.<z)
using pseudominimal-inD1 by fastforce
with assms(4) show %thesis
using OrderingSetlso.inj|OF assms(1)] the-inv-into-into|of f P.<z| by force
qed

lemma collect-pseudominimals-below-in-poset:

assumes OrderingSetiso less-eq less (C) (C) (P.<z) f
f(P.<z) = Pow A
a C {y. pseudominimal-in (P.<z) y}

defines w = the-inv-into (P.<z) f (U (f‘a))

shows we P

using  assms(2—4) OrderingSetlso.inj|OF assms(1)] pseudominimal-inD1
the-inv-into-intolof f P.<z |J (f‘a)]
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by force

lemma collect-pseudominimals-below-in-eq:
assumes z€P OrderingSetlso less-eq less (C) (C) (P.<z) f
f(P.<z) = Pow A a C {y. pseudominimal-in (P.<z) y}
defines w: w = the-inv-into (P.<z) f (U (f‘a))
shows a = {y. pseudominimal-in (P.<w) y}
proof
from assms(3) have has-bot-ltz: has-bottom (P.<z)
using has-bottom-pow OrderingSetiso.pullback-has-bottom|[OF assms(2)]
by auto
from assms(3,4) have Un-fa: (U (f‘a)) € f(P.<z)
using pseudominimal-inD1 by fastforce
from assms have w-le-z: w<z and w-P: weP
using collect-pseudominimals-below-in-less-eq-top
collect-pseudominimals-below-in-poset

by auto
show a C {y. pseudominimal-in (P.<w) y}
proof

fix y assume y: y € a
show y € {y. pseudominimal-in (P.<w) y}
proof (rule Collectl, rule pseudominimal-inl, rule Collectl, rule conjI)
from y assms(4) have y-le-z: y € P.<z using pseudominimal-inD1 by fast
thus yeP by simp
from y w show y < w
using y-le-z Un-fa OrderingSetlso.inv-ordsetmap| OF assms(2)]
the-inv-into-f-f[OF OrderingSetlso.inj, OF assms(2), of y]
by  fastforce
from assms(1) y assms(4) show y # bottom (P.<w)
using w-P w-le-x has-bot-ltx bottom-below-in-relative
pseudominimal-ne-bottom
by  fast
next
fix z assume z: z € P.<w z<y
with y assms(4) have z = bottom (P.<z)
using w-le-z trans pseudominimal-inD2[ of P.<z y z] by fast
moreover from assms(1) have bottom (P.<w) = bottom (P.<x)
using has-bot-ltx w-P w-le-z bottom-below-in-relative by fast
ultimately show z = bottom (P.<w) by simp
qed
qed
show a D {y. pseudominimal-in (P.<w) y}
proof
fix v assume v € {y. pseudominimal-in (P.<w) y}
hence pseudominimal-in (P.<w) v by fast
moreover hence v-pm-ltz: pseudominimal-in (P.<z) v
using has-bot-ltx w-P w-le-z pseudominimal-in-below-in by fast
ultimately

have fv < (U(f*))
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using w pseudominimal-inD1[of - v] pseudominimal-inD1[of - v] w-le-z w-P
OrderingSetIso.ordsetmap| OF assms(2), of v w| Un-fa
OrderingSetIso.inj|OF assms(2)]
f-the-inv-into-f

by  force

with assms(3) obtain y where yca fv C fy

using v-pm-ltz has-bot-ltx pseudominimal-in-pow
OrderingSetiso.pseudominimal-map[OF assms(2)]

by  force

with assms(2,4) show v € a

using v-pm-ltz pseudominimal-inD1 pseudominimal-comp|of - v y]
OrderingSetiso.rev-ordsetmap|OF assms(2), of v y]

by fast

qed
qed

end

1.6.6 Lower bounds

context ordering
begin

definition lbound-of :: ‘a = 'a = 'a = bool
where lbound-of x y b = b<z A b<y

lemma lbound-ofl: b<z — b<y = lbound-of x y b
using lbound-of-def by fast

lemma lbound-ofD1: lbound-of z y b = b<zx
using lbound-of-def by fast

lemma lbound-ofD2: lbound-of z y b — b<y
using lbound-of-def by fast

definition glbound-in-of :: 'a set = 'a = 'a = 'a = bool
where glbound-in-of Px y b =
beP A lbound-of x y b A (VY a€P. lbound-of z y a — a<b)

lemma glbound-in-ofI:
[ beP; lbound-of x y b; Na. a€P = lbound-of x y a = a<b ]| =
glbound-in-of P x y b
using glbound-in-of-def by auto

lemma glbound-in-ofD-in: glbound-in-of P x y b =—> beP
using glbound-in-of-def by fast

lemma glbound-in-ofD-lbound: glbound-in-of P x y b = lbound-of z y b
using glbound-in-of-def by fast

34



lemma glbound-in-ofD-glbound:
glbound-in-of P x y b = a€P = lbound-of z y a = a<b
using glbound-in-of-def by fast

lemma glbound-in-of-less-eql: glbound-in-of P x y b — b<zx
using glbound-in-ofD-lbound lbound-ofD1 by fast

lemma glbound-in-of-less-eq2: glbound-in-of P x y b = <y
using glbound-in-ofD-lbound lbound-ofD2 by fast

lemma pseudominimal-in-below-in-less-eq-glbound:
assumes pseudominimal-in (P.<z) w pseudominimal-in (P.<y) w
glbound-in-of P x y b
shows w<b
using assms lbound-ofI glbound-in-ofD-glbound
pseudominimal-inD1 [of P.<z]| pseudominimal-inD1[of P.<y]
by fast

end

1.6.7 Simplex-like posets

Define a poset to be simplex-like if it is isomorphic to the power set of some
set.

context ordering
begin

definition simplex-like :: 'a set = bool
where simplex-like P = finite P N
(3f A::nat set.
OrderingSetiso less-eq less (C) (C) P f N f'P = Pow A
)

lemma simplez-likel:
assumes finite P OrderingSetIso less-eq less (C) (C) P f
fP = Pow (A::nat set)
shows simplex-like P
using assms simplex-like-def by auto

lemma simplex-likeD-finite: simplex-like P —> finite P
using simplex-like-def by simp
lemma simplez-likeD-iso:
simplex-like P —
3f A:nat set. OrderingSetlso less-eq less (C) (C) P f A fP = Pow A
using simplex-like-def by simp

lemma simplex-like-has-bottom: simplex-like P =—> has-bottom P

35



using simplez-likeD-iso has-bottom-pow OrderingSetlso.pullback-has-bottom
by  fastforce

lemma simplez-like-no-pseudominimal-imp-singleton:
assumes simplez-like P \z. = pseudominimal-in P x
shows dp. P = {p}
proof—
obtain f and A::nat set
where fA: OrderingSetlso less-eq less (C) (C) P f f‘P = Pow A
using simplex-likeD-iso[OF assms(1)]
by auto
define e where e: e = {}:: nat set
with fA(2) have e € f‘P using Pow-bottom by simp
from this obtain p where p € P fp = e by fast
have Az. — order.pseudominimal-in (Pow A) {z}
proof
fix z::nat assume order.pseudominimal-in (Pow A) {x}
moreover with fA(2) have {z} € f‘P
using order.pseudominimal-inD1 by fastforce
ultimately show False
using assms fA simplex-like-has-bottom
OrderingSetlso.pullback-pseudominimal-in
by  fastforce
qed
with e fA(2) show ?Zthesis
using no-pseudominimal-in-pow-is-empty
inj-on-to-singleton| OF OrderingSetlso.inj, OF fA(1)]
by  force
qed

lemma simplez-like-no-pseudominimal-in-below-in-imp-singleton:
[ zeP; simplex-like (P.<z); Az. = pseudominimal-in (P.<z) z | =
P.<z = {z}
using simplez-like-no-pseudominimal-imp-singleton below-in-singleton|of = P)
by  fast

lemma pseudo-simplex-like-has-bottom:
OrderingSetlso less-eq less (C) (C) P f = f‘P = Pow A =
has-bottom P
using has-bottom-pow OrderingSetlso.pullback-has-bottom by fastforce

lemma pseudo-simplex-like-above-pseudominimal-is-top:
assumes OrderingSetlso less-eq less (C) (C) P f f‘P = Pow A teP
Nz. pseudominimal-in Pz — ¢ < ¢
shows ft=A
proof
from assms(2,8) show ft C A by fast
show A C ft
proof

36



fix a assume acA
moreover with assms(2) have {a} € f'P by simp
ultimately show a € ft
using assms pseudominimal-in-pow-singleton|of a A]
pseudo-simplez-like-has-bottom[of P f]
OrderingSetIso.pullback-pseudominimal-in[OF assms(1)]
OrderingSetIso.ordsetmap| OF assms(1), of - t]
by  force
qed
qed

lemma pseudo-simplex-like-below-in-above-pseudominimal-is-top:

assumes z€P OrderingSetlso less-eq less (C) (C) (P.<z) f
f{(P.<z) =Pow Ate P<Lz
Ny. pseudominimal-in (P.<z) y = y < t

shows t=z

using assms(1,3—5)
pseudo-simplez-like-above-pseudominimal-is-top[ OF assms(2)]
below-in-refl[of x P] OrderingSetlso.ordsetmap[OF assms(2), of t z]
inj-onD[OF OrderingSetIso.inj|OF assms(2)], of t z]

by auto

lemma simplez-like-below-in-above-pseudominimal-is-top:
assumes z€ P simplez-like (P.<z) t € P.<z
Ny. pseudominimal-in (P.<z) y = y < t
shows t=z
using assms simplex-likeD-iso
pseudo-simplex-like-below-in-above-pseudominimal-is-top[of = P - - t
by  blast

end

lemma (in OrderingSetlso) simplex-like-map:
assumes domain.simplex-like P
shows codomain.simplez-like (f‘P)
proof—
obtain ¢::’a = nat set and A::nat set
where gA: OrderingSetIso (<) (<) () (C) PggP = Pow A
using domain.simplez-likeD-iso[ OF assms]
by auto
from gA(1) inj
have OrderingSetiso (<x) (<x*) (C) (CQ) (f‘P)
(g o (the-inv-into P f))
using OrderingSetlso.iso-comp|[OF inv-iso| the-inv-into-onto
by  fast
moreover from gA(2) inj have (g o (the-inv-into P f)) ‘ (f‘P) = Pow A
using the-inv-into-onto by (auto simp add: image-comp|THEN sym])
moreover from assms have finite (f'P)
using domain.simplex-likeD-finite by fast
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ultimately show ?thesis by (auto intro: codomain.simplez-likel)
qed

lemma (in OrderingSetlso) pullback-simplex-like:
assumes finite P codomain.simplez-like (f‘P)
shows domain.simplez-like P
proof—
obtain ¢::'b = nat set and A::nat set
where gA: OrderingSetlso (<x) (<x) (C) (C) (f'P) ¢
g (f‘P) = Pow A
using codomain.simplex-likeD-iso[OF assms(2))
by auto
from assms(1) gA(2) show %thesis
using iso-comp|OF gA(1)]
by  (auto intro: domain.simplex-likel simp add: image-comp)
qed

lemma simplez-like-pow:
assumes finite A
shows order.simplez-like (Pow A)
proof—
from assms obtain f::’a=-nat where inj-on f A
using finite-imp-inj-to-nat-seg[of A] by auto
hence subset-ordering-iso (Pow A) ((¥) f)
using induced-pow-fun-subset-ordering-iso by fast
with assms show ?thesis using induced-pow-fun-surj
by (blast intro: order.simplex-likel)
qed

1.6.8 The superset ordering

abbreviation supset-has-bottom = ordering.has-bottom (2)
abbreviation supset-bottom = ordering.bottom (2)
abbreviation supset-lbound-of = ordering.lbound-of (2)
abbreviation supset-glbound-in-of = ordering.glbound-in-of (D)

abbreviation supset-simplez-like = ordering.simplez-like  (2) (D)
abbreviation supset-pseudominimal-in =
ordering.pseudominimal-in (2) (D)

abbreviation supset-below-in :: 'a set set = 'a set = 'a set set (infix .2y 70)
where P.OA = ordering.below-in (2) P A

lemma supset-poset: ordering (2) (D) ..

lemmas supset-bottoml = ordering.bottoml [OF supset-poset)
lemmas supset-pseudominimal-inl = ordering.pseudominimal-inI [OF supset-poset]
lemmas supset-pseudominimal-inD1 = ordering.pseudominimal-inD1 [OF supset-poset]
lemmas supset-pseudominimal-inD2 = ordering.pseudominimal-inD2 [OF supset-poset]
lemmas supset-lbound-ofl = ordering.lbound-ofI [OF supset-poset]
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lemmas supset-lbound-of-def = ordering.lbound-of-def [OF supset-poset]

lemmas supset-glbound-in-ofl ~ = ordering.glbound-in-ofI [OF supset-poset]

lemmas supset-pseudominimal-ne-bottom =
ordering.pseudominimal-ne-bottom|OF supset-poset)

lemmas supset-has-bottom-pseudominimal-in-below-inl =
ordering.has-bottom-pseudominimal-in-below-inl | OF supset-poset]

lemmas supset-has-bottom-pseudominimal-in-below-in =
ordering.has-bottom-pseudominimal-in-below-in| OF supset-poset)

lemma OrderingSetlso-pow-complement:
OrderingSetiso (2) (D) (C) (C) (Pow A) ((—) A)

using inj-on-minus-set by (fast intro: OrderingSetisol-orders-greater2less)

lemma simplez-like-pow-above-in:
assumes finite A XCA
shows  supset-simplez-like ((Pow A).2X)
proof (
rule OrderingSetlso.pullback-simplez-like, rule OrderingSetlso.iso-subset,
rule OrderingSetlso-pow-complement

)

from assms(1) show finite ((Pow A).DX) by simp

from assms(1) have finite (Pow (A—X)) by fast

moreover from assms(2) have ((—=) A) ‘ ((Pow A).2X) = Pow (A—X)
by auto

ultimately
show ordering.simplez-like (C) (C) ( ((—) A) ‘ ((Pow A).2X))
using simplez-like-pow
by  fastforce

ged fast

end

2 Algebra

In this section, we develop the necessary algebra for developing the theory
of Coxeter systems, including groups, quotient groups, free groups, group
presentations, and words in a group over a set of generators.

theory Algebra
imports Prelim

begin

2.1 Miscellaneous algebra facts

lemma times2-conv-add: (j::nat) + j = 2x%j
by (induct j) auto

lemma (in comm-semiring-1) odd-n0: odd m = m=#0
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using dvd-0-right by fast

lemma (in semigroup-add) add-assoc4: a + b+ c+d=a+ (b+ c+ d)
using add.assoc by simp

lemmas (in monoid-add) sum-list-map-cong =
arg-cong| OF map-cong, OF refl, of - - - sum-list|

context group-add
begin

lemma map-uminus-order2:
V seset ss. s+s=0 = map (uminus) ss = ss
by (induct ss) (auto simp add: minus-unique)

lemma uminus-sum-list: — sum-list as = sum-list (map uminus (rev as))
by (induct as) (auto simp add: minus-add)

lemma uminus-sum-list-order2:
V s€set ss. s+s=0 = — sum-list ss = sum-list (rev ss)
using uminus-sum-list map-uminus-order2 by simp

end

2.2 The type of permutations of a type

Here we construct a type consisting of all bijective functions on a type.
This is the prototypical example of a group, where the group operation is
composition, and every group can be embedded into such a type. It is for
this purpose that we construct this type, so that we may confer upon suitable
subsets of types that are not of class group-add the properties of that class,
via a suitable injective correspondence to this permutation type.
typedef ‘a permutation = {f::'a="a. bij f}

morphisms permutation Abs-permutation

by fast

setup-lifting type-definition-permutation

abbreviation permutation-apply :: 'a permutation = ’‘a = ‘a (infixr «(—) 90)
where p — a = permutation p a

abbreviation permutation-image :: 'a permutation = 'a set = 'a set
(infixr <‘—» 90)

where p ‘— A = permutation p ‘ A

lemma permutation-eq-image: a ‘—+ A = a ‘& B = A=DB
using permutation|[of a] inj-eq-image| OF bij-is-inj] by auto

instantiation permutation :: (type) zero
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begin

lift-definition zero-permutation :: 'a permutation is id::'a="a by simp
instance ..

end

instantiation permutation :: (type) plus
begin
lift-definition plus-permutation :: 'a permutation = 'a permutation = 'a permu-
tation
is  comp
using bij-comp
by  fast
instance ..
end

lemma plus-permutation-abs-eq:
bij f = bij g =
Abs-permutation f + Abs-permutation g = Abs-permutation (fog)
by (simp add: plus-permutation.abs-eq eq-onp-same-args)

instance permutation :: (type) semigroup-add
proof
fix a b ¢ :: 'a permutation show a + b+ ¢ =a + (b + ¢)
using comp-assoc|of permutation a permutation b permutation c|
by  transfer simp
qged

instance permutation :: (type) monoid-add
proof

fix a :: 'a permutation

show 0 + a = a by transfer simp

show a + 0 = a by transfer simp
qed

instantiation permutation :: (type) uminus

begin

lift-definition uminus-permutation :: ‘a permutation = 'a permutation
is  Af. the-inv f
using bij-betw-the-inv-into

by  fast
instance ..
end

instantiation permutation :: (type) minus
begin
lift-definition minus-permutation :: ‘a permutation = 'a permutation = 'a per-
mutation
is M g. f o (the-inv g)
using bij-betw-the-inv-into bij-comp
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by  fast
instance ..
end

lemma minus-permutation-abs-eq:
bij f = bij g =
Abs-permutation f — Abs-permutation g = Abs-permutation (f o the-inv g)
by (simp add: minus-permutation.abs-eq eq-onp-same-args)

instance permutation :: (type) group-add

proof
fix a b :: 'a permutation
show — a + a = 0 using the-inv-leftinv]of permutation a] by transfer simp
show a + — b = a — b by transfer simp

qed

2.3 Natural action of nat on types of class monoid-add

2.3.1 Translation from class power.

Here we translate the power class to apply to types of class monoid-add.

context monoid-add
begin

sublocale nataction: power 0 plus .
sublocale add-mult-translate: monoid-mult 0 plus
by unfold-locales (auto simp add: add.assoc)

abbreviation nataction :: '‘a = nat = 'a (infix <+7 80)
where a+"n = nataction.power a n

lemmas nataction-2 = add-mult-translate.power2-eq-square
lemmas nataction-Suc2 = add-mult-translate.power-Suc2

lemma alternating-sum-list-conv-nataction:
sum-list (alternating-list (2xn) s t) = (s+t)+ n
by (induct n) (auto simp add: nataction-Suc2|[THEN sym))

lemma nataction-add-flip: (a+b)+ (Suc n) = a + (b+a)+ n + b
using nataction-Suc2 add.assoc by (induct n arbitrary: a b) auto

end

lemma (in group-add) nataction-add-eq0-flip:
assumes (a+b)+ n = 0
shows (b+a)+ n =0
proof (cases n)
case (Suc k) with assms show ?Zthesis
using nataction-add-flip add.assoclof —a a+b (a+b)+ k] by simp
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qed simp

2.3.2 Additive order of an element

context monoid-add
begin

definition add-order :: 'a = nat
where add-order a = if (3n>0. a+"n = 0) then
(LEAST n. n>0 A a+"n = 0) else 0

lemma add-order: a+ {add-order a) = 0
using Leastl-ex[of An. n>0 A a+"n = 0] add-order-def by simp

lemma add-order-least: n>0 —> a+ n = 0 = add-order a < n
using Least-le[of An. n>0 A a+"n = 0] add-order-def by simp

lemma add-order-equality:
[ n>0; a+"n = 0; (Am. m>0 = a+ " m =0 = n<m) | =
add-order a = n
using Least-equality[of An. n>0 A a+"n = 0] add-order-def by auto

lemma add-order0: add-order 0 = 1
using add-order-equality by simp

lemma add-order-gt0: (add-order a > 0) = (In>0. a+"n = 0)
using Leastl-ex[of An. n>0 A a+"n = 0] add-order-def by simp

lemma add-order-eq0: add-order a = 0 = n>0 = a+ n # 0
using add-order-gt0 by force

lemma less-add-order-eq-0:
assumes a+ k = 0 k < add-order a
shows k=0
proof (cases k=0)
case Fulse
moreover with assms(1) have 3n>0. a+"n = 0 by fast
ultimately show ?thesis
using assms add-order-def not-less-Least[of k An. n>0 A a+"n = 0]
by auto
qed simp

lemma less-add-order-eq-0-contra: k>0 —> k < add-order a = a+ "k # 0
using less-add-order-eq-0 by fast

lemma add-order-relator: add-order (a+ (add-order a)) = 1
using add-order by (auto intro: add-order-equality)

abbreviation pair-relator-list :: 'a = 'a = 'a list
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where pair-relator-list s t = alternating-list (2xadd-order (s+t)) st
abbreviation pair-relator-halflist :: 'a = 'a = 'a list
where pair-relator-halflist s t = alternating-list (add-order (s+t)) st
abbreviation pair-relator-halflist2 :: 'a = 'a = 'a list
where pair-relator-halflist2 s t =
(if even (add-order (s+t)) then pair-relator-halflist s t else
pair-relator-halflist t s)

lemma sum-list-pair-relator-list: sum-list (pair-relator-list s t) = 0
by (auto simp add: add-order alternating-sum-list-conv-nataction)

end

context group-add
begin

lemma add-order-add-eql: add-order (s+t) = 1 = t = —s
using add-order|[of s+t| by (simp add: minus-unique)

lemma add-order-add-sym: add-order (t+s) = add-order (s+t)
proof (cases add-order (t+s) = 0 add-order (s+t) = 0 rule: two-cases)
case one thus ?thesis
using add-order nataction-add-eq0-flip[of s t] add-order-eq0 by auto
next
case other thus ?thesis
using add-order nataction-add-eq0-flip[of t s] add-order-eq0 by auto
next
case neither thus ?thesis
using add-order|[of s+t]| add-order[of t+s5]
nataction-add-eq0-flipof s t] nataction-add-eq0-flip[of t s
add-order-least|of add-order (s+t)] add-order-least[of add-order (t+s)]
by fastforce
qed simp

lemma pair-relator-halflist-append:
pair-relator-halflist s t Q pair-relator-halflist2 s t = pair-relator-list s t
using alternating-list-split[of add-order (s+t) add-order (s+t) s t]
by (auto simp add: times2-conv-add add-order-add-sym)

lemma rev-pair-relator-list: rev (pair-relator-list s t) = pair-relator-list t s
by (simp add:rev-alternating-list add-order-add-sym)

lemma pair-relator-halflist2-conv-rev-pair-relator-halfiist:
pair-relator-halflist? s t = rev (pair-relator-halflist t s)
by (auto simp add: add-order-add-sym rev-alternating-list)

end
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2.4 Partial sums of a list

Here we construct a list that collects the results of adding the elements of a
given list together one-by-one.

context monoid-add
begin

primrec sums :: ‘a list = 'a list
where
sums [| = [0]
| sums (xftxs) = 0 # map ((+) z) (sums zs)

lemma length-sums: length (sums xs) = Suc (length xs)
by (induct zs) auto

lemma sums-snoc: sums (zsQ[z]) = sums zs @ [sum-list (zsQ[xz])]
by (induct zs) (auto simp add: add.assoc)

lemma sums-append?2:

sums (xsQys) = butlast (sums zs) @ map ((4+) (sum-list xs)) (sums ys)
proof (induct ys rule: rev-induct)

case Nil show ?case by (cases xs rule: rev-cases) (auto simp add: sums-snoc)
next

case (snoc y ys) thus ?case using sums-snoc|of zsQys| by (simp add: sums-snoc)
qed

lemma sums-Cons-conv-append-tl:
sums (x#xs) = 0 # x # map ((+) z) (¢ (sums zs))
by (cases xs) auto

lemma pullback-sums-map-middle2:
map F (sums xs) = dsQ[d,e]Qes =
Jas a bs. xs = asQ[a]Qbs A map F (sums as) = dsQ[d] A
d = F (sum-list as) A\ e = F (sum-list (asQ[a]))
proof (induct zs es rule: list-induct2-snoc)
case (Nil2 zs)
show ?case
proof (cases s rule: rev-cases)
case Nil with Nil2 show ?thesis by simp
next
case (snoc ys y) have ys: s = ysQ[y] by fact
with Nil2(1) have y: map F (sums ys) = dsQ[d] e = F (sum-list (ysQ[y]))
by (auto simp add: sums-snoc)
show ?thesis
proof (cases ys rule: rev-cases)
case Nil
with ys y have
zs = [|Q[y]Q[] map F (sums [|) = dsQ[d]
d = F (sum-list []) e = F (sum-list ([]Q[y]))
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by auto
thus ?thesis by fast
next
case (snoc zs z)
with y(1) have z: map F (sums zs) = ds d = F (sum-list (zsQ[z]))
by (auto simp add: sums-snoc)
from z(1) ys y snoc have
zs = (25Q[2])Q[y]Q[] map F (sums (25Ql[z])) = dsQ[d]
e = F (sum-list ((2sQ[z])@Qly]))
by auto
with 2(2) show %thesis by fast
qed
qed
next
case snoc thus ?case by (fastforce simp add: sums-snoc)
qed simp

lemma pullback-sums-map-middle3:
map F (sums zs) = dsQ[d,e,f]Qfs =
Jas a b bs. xs = asQ[a,b]@Qbs A d = F (sum-list as) A
e = F (sum-list (asQ[a])) A f = F (sum-list (asQ[a,b]))
proof (induct xs fs rule: list-induct2-snoc)
case (Nil2 zs)
show Zcase
proof (cases xs rule: rev-cases)
case Nil with Nil2 show ?thesis by simp
next
case (snoc ys y)
with Nil2 have y: map F (sums ys) = dsQ[d,e] f = F (sum-list (ysQ[y]))
by (auto simp add: sums-snoc)
from y(1) obtain as a bs where asabs:
ys = asQ[a)@Qbs map F (sums as) = dsQ[d]
d = F (sum-list as) e = F (sum-list (asQ[a)]))
using pullback-sums-map-middle2[of F ys ds)
by  fastforce
have bs = ||
proof—
from y(1) asabs(1,2) have Suc (length bs) = Suc 0
by (auto simp add: sums-append?2 map-butlast length-sums[THEN sym))
thus ?thesis by fast
qed
with snoc asabs(1) y(2) have zs = asQ[a,y]|Q[] f = F (sum-list (asQa,y]))
by auto
with asabs(3,4) show ?thesis by fast
qed
next
case snoc thus ?case by (fastforce simp add: sums-snoc)
qed simp

46



lemma pullback-sums-map-double-middle2:
assumes map F (sums zs) = dsQ[d,e]QesQ[f,g|Qgs
shows Jas a bs b cs. zs = asQ[a]@QbsQ[b]Qcs A d = F (sum-list as) N
e = F (sum-list (asQla])) A f = F (sum-list (asQ[a]@bs)) A
g = F (sum-list (asQ[a]@bsQ[d]))
proof—
from assms obtain As b cs where Asbcs:
zs = AsQ[b]Qcs map F (sums As) = dsQ[d,e]QesQ[f]
f = F (sum-list As) g = F (sum-list (AsQ[b]))
using pullback-sums-map-middle2]of F xs dsQ[d,e]Qes]
by  fastforce
from Asbcs show ?thesis
using pullback-sums-map-middle2]of F As ds d e esQ[f]] by fastforce
qed

end

2.5 Sums of alternating lists

lemma (in group-add) uminus-sum-list-alternating-order2:
s+s=0 = t+1t=0 = — sum-list (alternating-list n s t) =
sum-list (if even n then alternating-list n t s else alternating-list n s t)
using uminus-sum-list-order2 set-alternating-list[of n| rev-alternating-list[of n s]
by  fastforce

context monoid-add
begin

lemma alternating-order2-cancel-1left:
s+s=0 =
sum-list (s # (alternating-list (Suc n) s t)) = sum-list (alternating-list n t s)
using add.assoc|of s s] alternating-list-Suc-Cons[of n s| by simp

lemma alternating-order2-cancel-2left:
s+s=0 = t+t=0 =
sum-list (t # s # (alternating-list (Suc (Suc n)) s t)) =
sum-list (alternating-list n s t)
using alternating-order2-cancel-1left[of s Suc n]
alternating-order2-cancel-1left[of t n]
by  simp

lemma alternating-order2-even-cancel-right:
assumes st : s+s=0 t+t=0
and even-n: even n
shows m < n = sum-list (alternating-list n s t Q alternating-list m t s) =
sum-list (alternating-list (n—m) s t)
proof (induct n arbitrary: m rule: nat-even-induct, rule even-n)
case (SucSuc k) with st show ?case
using alternating-order2-cancel-2left[of t s
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by  (cases m rule: nat-cases-25uc) auto
qed simp

end
2.6 Conjugation in group-add

2.6.1 Abbreviations and basic facts

context group-add
begin

abbreviation lconjby :: 'a="a="a
where lconjby z y = z+y—=z

abbreviation rconjby :: 'a='a="a
where rconjby r y = —x+y+x

lemma lconjby-add: lconjby (z+y) z = lconjby = (lconjby y z)
by (auto simp add: algebra-simps)

lemma rconjby-add: rconjby (z+y) z = rconjby y (rconjby x 2)
by (simp add: minus-add add.assoc]THEN sym])

lemma add-rconjby: rconjby © y + rconjby x z = rconjby x (y+2)
by (simp add: add.assoc)

lemma lconjby-uminus: lconjby x (—y) = — leconjby = y
using minus-unique|of lconjby x y, THEN sym| by (simp add: algebra-simps)

lemma rconjby-uminus: rconjby x (—y) = — rconjby z y
using minus-unique|of rconjby x y| add-assocs|of rconjby x y —x —y x| by simp

lemma lconjby-rconjby: lconjby x (rconjby x y) = y
by (simp add: algebra-simps)

lemma rconjby-lconjby: rconjby = (lconjby = y) = y
by (simp add: algebra-simps)

lemma lconjby-inj: inj (lconjby x)
using rconjby-lconjby by (fast intro: inj-on-inversel)

lemma rconjby-ing: inj (rconjby x)
using lconjby-rconjby by (fast intro: inj-on-inversel)

lemma lconjby-surj: surj (lconjby x)
using leconjby-rconjby surjl|of lconjby z] by fast

lemma lconjby-bij: bij (lconjby x)
unfolding bij-def using lconjby-inj lconjby-surj by fast
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lemma the-inv-lconjby: the-inv (lconjby x) = (rconjby x)
using bij-betw-f-the-inv-into-f[OF lconjby-bij, of - x] lconjby-rconjby
by  (force intro: inj-onD[OF lconjby-inj, of x])

lemma [conjby-eq-conv-rconjby-eq: w = lconjby x y = y = rconjby x w
using the-inv-lconjby the-inv-into-f-f[OF lconjby-inj] by force

lemma rconjby-order2: s+s = 0 = rconjby x s + rconjby x s = 0
by (simp add: add-rconjby)

lemma rconjby-order2-eq-lconjby:

assumes s+s=0

shows rconjby s = lconjby s
proof—

have rconjby s = lconjby (—s) by simp

with assms show ?thesis using minus-unique by simp
qed

lemma [conjby-alternating-list-order2:
assumes s+s=0 t+t=0
shows lconjby (sum-list (alternating-list k s t)) (if even k then s else t) =
sum-list (alternating-list (Suc (2xk)) s t)
proof (induct k rule: nat-induct-step2)
case (SucSuc m)
have lconjby (sum-list (alternating-list (Suc (Suc m)) s t))
(if even (Suc (Suc m)) then s else t) = s + t +
leongby (sum-list (alternating-list m s t)) (if even m then s else t) — t — s
using alternating-list-SucSuc-ConsCons|of m s t]
by (simp add: algebra-simps)
also from assms SucSuc
have ... = sum-list (alternating-list (Suc (2xSuc (Suc m))) s t)
using alternating-list-SucSuc-ConsCons[of Suc (2xm) s t]
sum-list.append|of alternating-list (Suc (2xSuc m)) s t [t]]
by  (simp add: algebra-simps)
finally show ?case by fast
qed (auto simp add: assms(1) algebra-simps)

end

2.6.2 The conjugation sequence

Given a list in group-add, we create a new list by conjugating each term by
all the previous terms. This sequence arises in Coxeter systems.

context group-add

begin

primrec lconjseq :: 'a list = 'a list
where
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leongseq [| = |
| lconjseq (z#txs) = x # (map (lconjby x) (lconjseq xs))

lemma length-lconjseq: length (lconjseq xs) = length xs
by (induct zs) auto

lemma lconjseq-snoc: lconjseq (xsQ[z]) = lconjseq xzs Q [lconjby (sum-list xs) x]
by (induct zs) (auto simp add: lconjby-add)

lemma Iconjseq-append:
leconjseq (zsQys) = lconjseq zs @ (map (lconjby (sum-list zs)) (lconjseq ys))
proof (induct ys rule: rev-induct)
case (snoc y ys) thus ?case
using lconjseq-snoclof xsQys| lconjseq-snoc|of ys| by (simp add: lconjby-add)
qed simp

lemma lconjseq-alternating-order2-repeats’:
fixes st:'a
defines altst: altst = An. alternating-list n s t
and altts: altts = An. alternating-list n t s
assumes st : s+s=0t+t=0 (s+t)+ k=0
shows map (lconjby (sum-list (altst k)))
(lcongseq (if even k then altst m else altts m)) = lconjseq (altst m)
proof (induct m)
case (Suc j)
with altst altts
have map (Ilconjby (sum-list (altst k)))
(lcongseq (if even k then altst (Suc j) else altts (Suc j))) =
lcongseq (altst j) @
[lconjby (sum-list (altst k @Q (if even k then altst j else altts j)))
(if even k then (if even j then s else t) else (if even j then t else s))]
by (auto simp add: lconjseq-snoc lconjby-add)
also from altst altts st(1,2)
have ... = lconjseq (altst j) Q [sum-list (altst (Suc (2%(k+7))))]
using lconjby-alternating-list-order2|of s t k+j)
by  (cases even k)
(auto simp add: alternating-list-append|of k))
finally show ?case using altst st
by (auto simp add:
alternating-list-append(1)[THEN sym)
alternating-sum-list-conv-nataction
lconjby-alternating-list-order? lconjseq-snoc

qed (simp add: altst altts)
lemma Iconjseq-alternating-order2-repeats:
fixes st: ’aand k:: nat

defines altst: altst = An. alternating-list n s t
and altts: altts = An. alternating-list n t s
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assumes st: s+s=0 t+t=0 (s+t)+ &k = 0
shows lconjseq (altst (2xk)) = lconjseq (altst k) @ lconjseq (altst k)
proof—
from altst altts
have lconjseq (altst (2xk)) = lconjseq (altst k) @
map (lconjby (sum-list (altst k)))
(lcongseq (if even k then altst k else altts k))
using alternating-list-append| THEN sym, of k k s
by  (auto simp add: times2-conv-add lconjseq-append)
with altst altts st show ?thesis
using lconjseq-alternating-order2-repeats’[of s t k k] by auto
qed

lemma even-count-lconjseq-alternating-order2:
fixes st:'a
assumes s+s=0 t+t=0 (s+t)+ k=0
shows even (count-list (lconjseq (alternating-list (2xk) s t)) x)
proof—
define zs where xs: s = lconjseq (alternating-list (2xk) s t)
with assms obtain as where zs = asQas
using lconjseq-alternating-order2-repeats by fast
hence count-list xs © = 2 * (count-list as x)
by (simp add: times2-conv-add)
with zs show ?thesis by simp
qed

lemma order2-hd-in-lconjseq-deletion:
shows s+s=0 = s € set (lconjseq ss)
= Jas b bs. ss = asQ[b|Qbs A sum-list (s#ss) = sum-list (asQbs)
proof (induct ss arbitrary: s rule: rev-induct)
case (snoc t ts) show ?case
proof (cases s € set (lconjseq ts))
case True
with snoc(1,2) obtain as b bs
where asbbs: ts = as Q[b]Qbs sum-list (s#ts) = sum-list (asQ@Qbs)
by fastforce
from asbbs(2) have sum-list (s#tsQ[t]) = sum-list (asQ(bsQ[t]))
using sum-list.append|of s#ts [t]] sum-list.append[of asQbs [t]] by simp
with asbbs(1) show ?thesis by fastforce
next
case Fulse
with snoc(3) have s: s = lconjby (sum-list ts) t by (simp add: lconjseg-snoc)
with snoc(2) have t+t=0
using lconjby-eq-conv-rconjby-eq[of s sum-list ts t]
reconjby-order2|of s sum-list ts]
by simp
moreover from s have sum-list (s#tsQ[t]) = sum-list ts + ¢t + ¢
using add.assoc|of sum-list ts + t — sum-list ts sum-list ts]
by  (simp add: algebra-simps)
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ultimately have sum-list (s#tsQ[t]) = sum-list (tsQ[])
by (simp add: algebra-simps)
thus ?thesis by fast
qed
qed simp

end

2.6.3 The action on signed group-add elements

Here we construct an action of a group on itself by conjugation, where
group elements are endowed with an auxiliary sign by pairing with a boolean
element. In multiple applications of this action, the auxiliary sign helps keep
track of how many times the elements conjugating and being conjugated
are the same. This action arises in exploring reduced expressions of group
elements as words in a set of generators of order two (in particular, in a
Coxeter group).

type-synonym ‘a signed = 'ax bool

definition signed-funaction :: (‘a='a="a) = 'a = 'a signed = 'a signed
where signed-funaction f s x = map-prod (f s) (A\b. b # (fstz = s))
— so the sign of z is flipped precisely when its first component is equal to s

context group-add
begin

abbreviation signed-lconjaction = signed-funaction lconjby
abbreviation signed-rconjaction = signed-funaction rconjby

lemmas signed-lconjactionD = signed-funaction-def|of lconjby]
lemmas signed-rconjactionD = signed-funaction-def|of rconjby]

abbreviation signed-lconjpermutation :: 'a = 'a signed permutation
where signed-lconjpermutation s = Abs-permutation (signed-lconjaction s)

abbreviation signed-list-lconjaction :: 'a list = 'a signed = 'a signed
where signed-list-lconjaction ss = foldr signed-lconjaction ss

lemma signed-lconjaction-fst: fst (signed-lconjaction s x) = lconjby s (fst x)
using signed-lconjactionD by simp

lemma signed-lconjaction-rconjaction:
signed-lconjaction s (signed-rconjaction s ) = x
proof—
obtain a::’a and b::bool where = = (a,b) by fastforce
thus ?thesis
using signed-lconjactionD signed-rconjactionD injD|OF rconjby-inj, of s al
leongjby-recongby|of s a]
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by auto
qed

lemma signed-rconjaction-by-order2-eq-lconjaction:
s+s=0 = signed-rconjaction s = signed-lconjaction s
using signed-funaction-def[of lconjby s| signed-funaction-def|of rconjby s]
rconjby-order2-eq-lconjby|of s]
by auto

lemma inj-signed-lconjaction: inj (signed-lconjaction s)
proof (rule injI)
fix x y assume 1: signed-lconjaction s x = signed-lconjaction s y
moreover obtain al a2 :: ‘a and b1 b2 :: bool
where zy: = (al,b1) y = (a2,02)
by  fastforce
ultimately show z=y
using injD][OF lconjby-inj, of s al a2] signed-lconjactionD
by (cases al=s a2=s rule: two-cases) auto
qed

lemma surj-signed-lconjaction: surj (signed-lconjaction s)
using signed-lconjaction-rconjaction] THEN sym| by fast

lemma bij-signed-lconjaction: bij (signed-lconjaction s)
using inj-signed-lconjaction surj-signed-lconjaction by (fast intro: bijI)

lemma the-inv-signed-lconjaction:
the-inv (signed-lconjaction s) = signed-rconjaction s
proof
fix z
show the-inv (signed-lconjaction s) © = signed-rconjaction s
proof (rule the-inv-into-f-eq, rule inj-signed-lconjaction)
show signed-lconjaction s (signed-rconjaction s ) = x
using signed-lconjaction-rconjaction by fast
qed (simp add: surj-signed-lconjaction)
qed

lemma the-inv-signed-lconjaction-by-order2:
s+s=0 = the-inv (signed-lconjaction s) = signed-lconjaction s
using the-inv-signed-lconjaction signed-rconjaction-by-order2-eq-lconjaction
by  simp

lemma signed-list-lconjaction-fst:
fst (signed-list-lconjaction ss ) = lconjby (sum-list ss) (fst x)
using signed-lconjaction-fst lconjby-add by (induct ss) auto

lemma signed-list-lconjaction-snd:

shows V s€set ss. s+s=0 = snd (signed-list-lconjaction ss x)
= (if even (count-list (lconjseq (rev ss)) (fst x)) then snd z else —snd x)
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proof (induct ss)
case (Cons s ss) hence prevcase:
snd (signed-list-lconjaction ss x) =
(if even (count-list (lconjseq (rev ss)) (fst x)) then snd x else — snd z)
by simp
have 1: snd (signed-list-lconjaction (s # ss) x) =
snd (signed-lconjaction s (signed-list-lconjaction ss x))
by simp
show Zcase
proof (cases fst (signed-list-lconjaction ss x) = s)
case True
with 1 prevcase
have snd (signed-list-lconjaction (s # ss) x) =
(if even (count-list (lconjseq (rev ss)) (fst z)) then — snd z else snd z)
by  (simp add: signed-lconjactionD)
with True Cons(2) rconjby-lconjby show ?thesis
by  (auto simp add: signed-list-lconjaction-fst lconjseq-snoc
simp flip: uminus-sum-list-order2

)
next
case Fulse
hence rconjby (sum-list ss) (lconjby (sum-list ss) (fst z)) #
reconjby (sum-list ss) s
by (simp add: signed-list-lconjaction-fst)
with Cons(2)
have count-list (lconjseq (rev (s#ss))) (fst x) =
count-list (lconjseq (rev ss)) (fst )
by (simp add:
reconjby-lconjby uminus-sum-list-order2[ THEN sym]
lconjseq-snoc
)
moreover from Fualse 1 prevcase
have snd (signed-list-lconjaction (s # ss) z) =
(if even (count-list (lconjseq (rev ss)) (fst x)) then snd x else = snd x)
by (simp add: signed-lconjactionD)
ultimately show ?thesis by simp
qged
qed simp

end

2.7 Cosets
2.7.1 Basic facts

lemma set-zero-plus’ [simp: (0::'a::monoid-add) +o C = C
— lemma Set-Algebras.set-zero-plus is restricted to types of class comm-monoid-add,
here is a version in monoid-add.

by (auto simp add: elt-set-plus-def)
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lemma lcoset-0: (w::'a::monoid-add) +o0 0 = {w}
using elt-set-plus-def|of w] by simp

lemma lcoset-refl: (0::'a::monoid-add) € A = a € a +0 A
using elt-set-plus-def by force

lemma lcoset-eq-reps-subset:
(a::'a::group-add) +0 A Ca+0o B=— A C B
using elt-set-plus-def|of a] by auto

lemma lcoset-eq-reps: (a::'a::group-add) +0 A = a +0 B=—= A = B
using lcoset-eq-reps-subset[of a A B] lcoset-eq-reps-subset|of a B A] by auto

lemma Icoset-inj-on: inj ((+0) (a::’a::group-add))
using lcoset-eq-reps inj-onl[of UNIV (+o0) a] by auto

lemma lcoset-conv-set: (a::'g::group-add) € b +0 A = —b+ a € A
by (auto simp add: elt-set-plus-def)

2.7.2 The supset order on cosets

lemma supset-lbound-lcoset-shift:
supset-lbound-of X Y B —>
ordering.lbound-of (2) (a +0 X) (a +0 Y) (a +0 B)
using ordering.lbound-of-def[OF supset-poset, of X Y B]
by  (fast intro: ordering.lbound-ofI supset-poset)

lemma supset-glbound-in-of-lcoset-shift:

fixes P :: 'a::group-add set set

assumes supset-glbound-in-of P X Y B

shows  supset-glbound-in-of ((+0) a * P) (a +0 X) (a 40 Y) (a +0 B)

using ordering.glbound-in-ofD-in|OF supset-poset, OF assms]
ordering. glbound-in-ofD-lbound[OF supset-poset, OF assms|
supset-lbound-lcoset-shift[of X Y B a]
supset-lbound-lcoset-shift[of a +0 X a 40 Y - —a
ordering.glbound-in-ofD-glbound|OF supset-poset, OF assms]
ordering.glbound-in-ofI|

OF supset-poset, of a +0 B (+0) a ‘Pa+o0oXa+oY

]

by (fastforce simp add: set-plus-rearrange2)

2.7.3 The afforded partition

definition lcoset-rel :: 'a:{uminus,plus} set = (‘ax’a) set
where lcoset-rel A = {(z,y). —x + y € A}

lemma lcoset-rell: —z+y € A = (x,y) € lcoset-rel A
using lcoset-rel-def by fast
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2.8 Groups

We consider groups as closed sets in a type of class group-add.

2.8.1 Locale definition and basic facts

locale  Group =

fixes G :: 'g::group-add set

assumes nonempty : G # {}

and diff-closed: Agh. g€ G =—=he G= g—heqG
begin

abbreviation Subgroup :: 'g set = bool
where Subgroup H = Group H N H C G

lemma SubgroupD1: Subgroup H = Group H by fast

lemma zero-closed : 0 € G

proof—
from nonempty obtain g where g € G by fast
hence g — g € G using diff-closed by fast
thus %thesis by simp

qed

lemma uminus-closed: g¢ G — —geG
using zero-closed diff-closed[of 0 g] by simp

lemma add-closed: gc G = heG = g+h € G
using uminus-closed[of h] diff-closed[of g —h] by simp

lemma uminus-add-closed: g€ G = he G = —g+ he G
using uminus-closed add-closed by fast

lemma Iconjby-closed: g€ G = € G = lconjby g x € G
using add-closed diff-closed by fast

lemma lconjby-set-closed: gc G — ACG = lconjby g ‘A C G
using lconjby-closed by fast

lemma set-lconjby-subset-closed:
HCG = ACG = (|JheH. lconjby h * A) C G
using lconjby-set-closed|of - A] by fast

lemma sum-list-map-closed: set (map fas) C G = (> a+as. fa) € G
using zero-closed add-closed by (induct as) auto

lemma sum-list-closed: set as C G = sum-list as € G
using sum-list-map-closed by force
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end

2.8.2 Sets with a suitable binary operation

We have chosen to only consider groups in types of class group-add so that we
can take advantage of all the algebra lemmas already proven in HOL. Groups,
as well as constructs like sum-list. The following locale builds a bridge
between this restricted view of groups and the usual notion of a binary
operation on a set satisfying the group axioms, by constructing an injective
map into type permutation (which is of class group-add with respect to the
composition operation) that respects the group operation. This bridge will
be necessary to define quotient groups, in particular.

locale BinOpSetGroup =

fixes G  'a set
and binop :: 'a="a="a
and e a

assumes closed : g€¢G = he G = binop gh € G
and assoc
[ 9€G; heG; keG | = binop (binop g h) k = binop g (binop h k)
and identity: e€G g€ G = binop g e = g g€ G => binop e g =g
and inverses: g€ G = FheG. binop g h = e A binop h g = e
begin

lemma unique-identityl: gc G = Vz€G. binop gz =2 = g= ¢
using identity(1,2) by auto

lemma unique-inverse:
assumes ¢geG
shows 3!h. he G A binop g h = e A\ binop h g = e
proof (rule ex-exll)
from assms show 3h. h € G A binop gh = e A binop h g = e
using inverses by fast
next
fix h k
assume heG A binop g h = e A binop h g = e ke G A
binop gk = e N binopkg= e
hence h: heG binop g h = e binop h g = e
and k: k€G binop gk = e binop k g = e
by auto
from assms h(1,3) k(1,2) show h=Fk using identity(2,3) assoc by force
qed

abbreviation G-perm g = restrictl (binop g) G

definition Abs-G-perm :: 'a = 'a permutation
where Abs-G-perm g = Abs-permutation (G-perm g)

abbreviation p = Abs-G-perm — the injection into type permutation
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abbreviation ip = the-inv-into G p — the reverse correspondence
abbreviation pG = p‘G — the resulting Group of type permutation

lemma G-perm-comp:
g€G = he G = G-perm g o G-perm h = G-perm (binop g h)
using closed by (auto simp add: assoc)

definition the-inverse :: 'a = a
where the-inverse g = (THE h. he G A binop g h = e A binop h g = e)

abbreviation i = the-inverse

lemma the-inverseD:
assumes g¢geG
shows ig € Gbinopg (ig) =ebinop (ig) g=e
using  assms thel [OF unique-inverse]
unfolding the-inverse-def
by auto

lemma binop-G-comp-binop-iG: g6 G = z€G = binop g (binop (i g) ) = z
using the-inverseD(1) assoc|of g i g x] by (simp add: identity(3) the-inverseD(2))

lemma bij-betw-binop-G:
assumes ¢geG
shows bij-betw (binop g) G G
unfolding bij-betw-def
proof
show inj-on (binop g) G
proof (rule inj-onl)
fix h k assume hk: he G k€ G binop g h = binop g k
with assms have binop (binop (i g) g) h = binop (binop (i g) g) k
using the-inverseD(1) by (simp add: assoc)
with assms hk(1,2) show h=Fk using the-inverseD(3) identity by simp
qed
show binop g ‘G = G
proof
from assms show binop g * G C G using closed by fast
from assms show binop g * G O G
using binop-G-comp-binop-iG[THEN sym)| the-inverseD(1) closed by fast
qed
qed

lemma the-inv-into-G-binop-G:
assumes geG z€G
shows the-inv-into G (binop g) = binop (i g) =
proof (rule the-inv-into-f-eq)
from assms(1) show inj-on (binop g) G
using bij-betw-imp-inj-on| OF bij-betw-binop-G] by fast
from assms show binop g (binop (i g) z) = =
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using binop-G-comp-binop-iG by fast
from assms show binop (i g) z € G using closed the-inverseD(1) by fast
qed

lemma restricti-the-inv-into-G-binop-G:
g€ G = restrictl (the-inv-into G (binop g)) G = G-perm (i g)
using the-inv-into-G-binop-G by auto

lemma bij-G-perm: g€ G = bij (G-perm g)
using set-permutation-bij-restrict1 bij-betw-binop-G by fast

lemma G-perm-apply: g€ G — z€G = p g — = = binop g x
using Abs-G-perm-def Abs-permutation-inverse bij-G-perm by fastforce

lemma G-perm-apply-identity: g€G = p g > e =g
using G-perm-apply identity(1,2) by simp

lemma the-inv-G-perm:
g€ G = the-inv (G-perm g) = G-perm (i g)
using set-permutation-the-inv-restrict! bij-betw-binop-G
restrict1-the-inv-into-G-binop-G
by  fastforce

lemma Abs-G-perm-diff:
g€EG = heG = p g — p h = p (binop g (i h))
using Abs-G-perm-def minus-permutation-abs-eq| OF bij-G-perm bij-G-perm]
the-inv-G-perm G-perm-comp the-inverseD(1)
by  simp

lemma Group: Group pG
using identity(1) Abs-G-perm-diff the-inverseD(1) closed by unfold-locales auto

lemma inj-on-p-G: inj-on p G
proof (rule inj-onlI)
fix z y assume zy: z€eGyeGpr=p y
hence Abs-permutation (G-perm (binop x (i y))) = Abs-permutation id
using Abs-G-perm-diff Abs-G-perm-def
by (fastforce simp add: zero-permutation.abs-eq)
moreover from zy(1,2) have 1: binop z (i y) € G
using bij-id closed the-inverseD(1) by fast
ultimately have 2: G-perm (binop z (i y)) = id
using Abs-permutation-inject[of G-perm (binop z (i y))] bij-G-perm bij-id
by  simp
have V ze G. binop (binop z (1 y)) z = 2
proof
fix z assume z€G
thus binop (binop z (i y)) z = z using fun-cong[OF 2, of z] by simp
qged
with zy(1,2) have binop x (binop (i y) y) =y
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using unique-identityl [OF 1] the-inverseD(1) by (simp add: assoc)
with zy(1,2) show z = y using the-inverseD(3) identity(2) by simp
qed

lemma homs:
Ng h. g6G = heG = p (binop gh) =p g+ ph
Nz y. 2€pG = yepG = binop (ip z) (ip y) = ip (z+y)
proof—
show 1: Ag h. g6G = heG = p (binop gh) =pg+ph
using Abs-G-perm-def G-perm-comp
plus-permutation-abs-eq| OF bij-G-perm bij-G-perm]
by  simp
show Az y. 1epG = yepG = binop (ip z) (ip y) = ip (z+y)
proof—
fix 2 y assume z€pG yepG
moreover hence ip (p (binop (ip z) (ip v))) = ip (z + v)
using 1 the-inv-into-into[ OF inj-on-p-G| f-the-inv-into-f[OF inj-on-p-G|
by simp
ultimately show binop (ip z) (ip y) = ip (z+y)
using the-inv-into-into| OF inj-on-p-G] closed the-inv-into-f-f[OF inj-on-p-G]
by  simp
qed
qed

lemmas inv-correspondence-into =
the-inv-into-into| OF inj-on-p-G, of - G, simplified]

lemma inv-correspondence-conv-apply: © € pG = ip © = z—e
using G-perm-apply-identity inj-on-p-G by (auto intro: the-inv-into-f-eq)

end

2.8.3 Cosets of a Group

context Group
begin

lemma [coset-refl: a € a +o G
using lcoset-refl zero-closed by fast

lemma [coset-el-reduce:
assumes a € G
shows a +0 G = G
proof (rule seteql)
fix z assume z € a +o0 G
from this obtain g where g€ G © = a+g using elt-set-plus-def[of a] by auto
with assms show z€G by (simp add: add-closed)
next
fix z assume z€G
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with assms have —a + z € G by (simp add: uminus-add-closed)
thus z € a 40 G using elt-set-plus-def by force
qed

lemma Icoset-el-reduce: 0 € a +0o G = a +0 G = G
using elt-set-plus-def|of a G] minus-unique uminus-closed[of —a]
lcoset-el-reduce
by  fastforce

lemma [coset-subgroup-imp-eq-reps:
Group H=—= w+o0HCw +0G = w' +0 G =w+o0 G
using Group.lcoset-refl[of H w| lcoset-conv-set[of w] lcoset-el-reduce
set-plus-rearrange2[of w' —w'+w G]
by  force

lemma Icoset-closed: acG =— ACG =— a +0 A C G
using elt-set-plus-def|of a] add-closed by auto

lemma lcoset-rel-sym: sym (lcoset-rel G)
proof (rule symlI)
fix a b show (a,b) € lcoset-rel G => (b,a) € lcoset-rel G
using uminus-closed minus-add[of —a b] lcoset-rel-def|of G] by fastforce
qed

lemma lcoset-rel-trans: trans (lcoset-rel G)
proof (rule transl)
fix z y » assume zy: (z,y) € lcoset-rel G and yz: (y,2) € lcoset-rel G
from this obtain g ¢’ where geG —2+y = g ¢'€G —y+2z = g’
using lcoset-rel-def|of G] by fast
thus (z, z) € lcoset-rel G
using add.assoc|of g —y z] add-closed lcoset-rel-def[of G] by auto
qed

abbreviation LCoset-rel :: 'g set = (‘gx’g) set
where LCoset-rel H = lcoset-rel H N (Gx G)

lemma refl-on-LCoset-rel: 06 H = refl-on G (LCoset-rel H)
using lcoset-rel-def by (fastforce intro: refl-onl)

lemmas subgroup-refl-on-LCoset-rel =

refl-on-LCoset-rel|OF Group.zero-closed, OF SubgroupD1]
lemmas LCoset-rel-quotient] = quotientI[of - G LCoset-rel -]
lemmas LCoset-rel-quotientEl = quotientE[of - G LCoset-rel -]

lemma Icoset-subgroup-rel-equiv:
Subgroup H = equiv G (LCoset-rel H)

using Group.lcoset-rel-sym sym-sym sym-Int Group.lcoset-rel-trans trans-sym

trans-Int subgroup-refl-on-LCoset-rel
by  (blast intro: equivl)
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lemma trivial-LCoset: HCG = H = LCoset-rel H “ {0}
using zero-closed unfolding lcoset-rel-def by auto

end

2.8.4 The Group generated by a set

inductive-set genby :: ‘a:group-add set = 'a set («(-))
for S :: ‘a set
where
genby-0-closed  : 0€(S) — just in case S is empty
| genby-genset-closed: s€S = s€(S)
| genby-diff-closed : we(S) = w'e(S) = w — w’ € (S)

lemma genby-Group: Group (S)
using genby-0-closed genby-diff-closed by unfold-locales fast

lemmas genby-uminus-closed = Group.uminus-closed  [OF genby-Group]
lemmas genby-add-closed = Group.add-closed [OF genby-Group]
lemmas genby-uminus-add-closed = Group.uminus-add-closed [OF genby-Group)
lemmas genby-lcoset-refl = Group.lcoset-refl [OF genby-Group)
lemmas genby-lcoset-el-reduce = Group.lcoset-el-reduce [OF genby-Group]
lemmas genby-lcoset-el-reducel = Group.lcoset-el-reduce0 [OF genby-Groupl
lemmas genby-lcoset-closed = Group.lcoset-closed [OF genby-Group]

lemmas genby-lcoset-subgroup-imp-eq-reps =
Group.lcoset-subgroup-imp-eq-reps| OF genby-Group, OF genby-Group)

lemma genby-genset-subset: S C (5)
using genby-genset-closed by fast

lemma genby-uminus-genset-subset: uminus ‘S C (S)
using genby-genset-subset genby-uminus-closed by auto

lemma genby-in-sum-list-lists:
fixes S
defines S-sum-lists: S-sum-lists = (| ss€lists (S U uminus ¢ S). {sum-list ss})
shows w € (S) = w € S-sum-lists
proof (erule genby.induct)
have 0 = sum-list [| by simp
with S-sum-lists show 0 € S-sum-lists by blast
next
fix s assume s€S
hence [s] € lists (S U uminus © S) by simp
moreover have s = sum-list [s] by simp
ultimately show s € S-sum-lists using S-sum-lists by blast
next
fix w w’ assume ww” w € S-sum-lists w' € S-sum-lists
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with S-sum-lists obtain ss ts
where ss: ss € lists (S U uminus * S) w = sum-list ss
and ts: ts € lists (S U uminus © S) w’ = sum-list ts
by fastforce
from ss(2) ts(2) have w—w' = sum-list (ss @ map uminus (rev ts))
by (simp add: diff-conv-add-uminus uminus-sum-list)
moreover from ss(1) ts(1)
have ss @ map uminus (rev ts) € lists (S U uminus © S)
by  fastforce
ultimately show w — w’ € S-sum-lists using S-sum-lists by fast
qged

lemma sum-list-lists-in-genby: ss € lists (S U uminus © S) = sum-list ss € (S)
proof (induct ss)
case Nil show ?case using genby-0-closed by simp
next
case (Cons s ss) thus ?case
using genby-genset-subset[of S| genby-uminus-genset-subset
genby-add-closed|of s S sum-list ss]
by auto
qed

lemma sum-list-lists-in-genby-sym:
uminus ‘S C § = ss € lists S = sum-list ss € (5)
using sum-list-lists-in-genby by fast

lemma genby-eq-sum-lists: (S) = (| ss€lists (S U uminus ‘ S). {sum-list ss})
using genby-in-sum-list-lists sum-list-lists-in-genby by fast

lemma genby-mono: T C S = (T) C (S)
using genby-eq-sum-lists|of T| genby-eq-sum-lists|of S| by force

lemma (in Group) genby-closed:
assumes S C G
shows (S) C G
proof
fix z show z € (S) =z € G
proof (erule genby.induct, rule zero-closed)
from assms show As. s€S = s€G by fast
show A\w w’. weG = w'eG = w—w’ € G using diff-closed by fast
qed
qged

lemma (in Group) genby-subgroup: S C G = Subgroup (S)
using genby-closed genby-Group by simp

lemma genby-sym-eq-sum-lists:

uminus ‘S C S = (S) = (U sselists S. {sum-list ss})
using lists-mono genby-eq-sum-lists[of S| by force

63



lemma genby-empty” w € ({}) = w =10
proof (erule genby.induct) qed auto

lemma genby-order2’:

assumes s+s=0

shows we {s})) = w=0Vw=s
proof (erule genby.induct)

fixww assume w=0Vw=sw =0V w =s

with assms show w — w' =0V w — w' = s

by (cases w'=0) (auto simp add: minus-unique)

qed auto

lemma genby-order2: s+s=0 = ({s}) = {0,s}
using genby-order2’[of s| genby-0-closed genby-genset-closed by auto

lemma genby-empty: ({}) = 0
using genby-empty’ genby-0-closed by auto

lemma genby-lcoset-order?2: s+s=0 = w +o ({s}) = {w,w+s}
using elt-set-plus-def|of w] by (auto simp add: genby-order2)

lemma genby-lcoset-empty: (w::'a::group-add) +o ({}) = {w}
proof—
have ({}::’a set) = (0::'a set) using genby-empty by fast
thus “thesis using lcoset-0 by simp
qged

lemma (in Group) genby-set-lconjby-set-lconjby-closed:
fixes A :: g set
defines S = (|Jg€G. lconjby g < A)
assumes ge G
shows =z € (S) = lconjby g x € (S)
proof (erule genby.induct)
show lconjby g 0 € (S) using genby-0-closed by simp
from assms show As. s € § = leonjby g s € (S)
using add-closed genby-genset-closed|of - S| by (force simp add: lconjby-add)
next
fix w w’
assume wuw”: lconjby g w € (S) leonjby g w’ € (9)
have lconjby g (w — w’) = lconjby g w + leonjby g (—w’)
by (simp add: algebra-simps)
with ww’ show lconjby g (w — w’) € (S)
using lconjby-uminus|of g| diff-conv-add-uminus|of - lconjby g w’]
genby-diff-closed
by  fastforce
qed

lemma (in Group) genby-set-lconjby-set-rconjby-closed:
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fixes A ::'g set

defines S = (|JgeG. lconjby g “ A)

assumes geG z € (5)

shows rconjby g z € (S)

using assms uminus-closed genby-set-lconjby-set-lconjby-closed
by fastforce

2.8.5 Homomorphisms and isomorphisms

locale GroupHom = Group G
for G : 'g:group-add set

+ fixes T :: 'g = 'h::group-add
assumes hom : g€ G = g’ €e G = T (g+g)=Tg+ Ty’
and supp: supp T C G

begin

lemma im-zero: T 0 = 0
using zero-closed hom[of 0 0] add-diff-cancellof T 0 T 0] by simp

lemma im-uminus: T (— g) =—Tg
using im-zero hom[of g — g] uminus-closed|of g] minus-uniquelof T g]
uminus-closed[of —g| supp suppl-contralof g T)
suppl-contra[of —g T
by  fastforce

lemma im-uminus-add: g € G = g€ G = T (—g+9)=—-Tg+ Ty’
by (simp add: uminus-closed hom im-uminus)

lemma im-diff: g€ G = ¢g' € G= T (9g—9g)=Tg—Tyg'
using hom uminus-closed hom[of g —g'] im-uminus by simp

lemma im-lconjby: x € G = g € G = T (lconjby = g) = lconjby (T z) (T g)
using add-closed by (simp add: im-diff hom)

lemma im-sum-list-map:
set (map fas) C G = T (D a+as. fa) = (> a+as. T (fa))
using hom im-zero sum-list-closed by (induct as) auto

lemma comp:
assumes GroupHom HS TG C H
shows GroupHom G (S o T)
proof
fix gg’assume g€ Gg' € G
with hom assms(2) show (So T) (g +g)=(SoT)g+ (SoT)g’
using GroupHom.hom|[OF assms(1)] by fastforce
next
from supp have A\g. g¢ G = (So T) g=10
using suppl-contra GroupHom.im-zero|OF assms(1)] by fastforce
thus supp (S o T) C G using suppD-contra by fast
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qed

end

definition ker :: (‘a='b::zero) = 'a set
where ker f = {a. fa = 0}

lemma ker-subset-ker-restrict0: ker f C ker (restrict0 f A)
unfolding ker-def by auto

context GroupHom
begin

abbreviation Ker = ker T N G

lemma uminus-add-in-Ker-eq-eq-im:
g€G = heG = (—g+ h€ Ker) = (T'g= Th)
using neg-equal-iff-equal
by  (simp add: uminus-add-closed ker-def im-uminus-add eg-neg-iff-add-eq-0)

end

locale UGroupHom = GroupHom UNIV T
for T :: 'g::group-add = 'h::group-add

begin
lemmas im-zero = im-zero
lemmas im-uminus = iMm-uminus

lemma hom: T (g+g9))=Tg+ Ty’
using hom by simp

lemma im-diff: T (¢ — ¢ =Tg— Ty’
using im-diff by simp

lemma im-lconjby: T (lconjby x g) = lconjby (T z) (T g)
using im-lconjby by simp

lemma restrict0:
assumes Group G
shows  GroupHom G (restrict0 T Q)
proof (intro-locales, rule assms, unfold-locales)
from hom
show Agg. ge G = ¢ '€ G =
restrict0 T G (g + g') = restrict0 T G g + restrict0 T G g’
using Group.add-closed[OF assms]
by auto
show supp (restrict0 T G) C G using supp-restrictO[of G T] by fast
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qed
end

lemma UGroupHomlI:
assumes Agg’. T (¢g+¢g)=Tg+ Ty’
shows UGroupHom T
using assms
by unfold-locales auto

locale Grouplso = GroupHom G T
for G :: 'g::group-add set
and T :'g = 'h:group-add

+ assumes inj-on: inj-on T G

lemma (in GroupHom) isol:
assumes A\k. ke = Tk =0 = k=0
shows Grouplso G T
proof (unfold-locales, rule inj-onl)
fix x y from assms show [ 2€G; yeG; Te =Ty =z =y
using im-diff diff-closed by force
qged

In a BinOpSetGroup, any map from the set into a type of class group-add
that respects the binary operation induces a GroupHom.

abbreviation (in BinOpSetGroup) lift-hom T = restrict0 (T o ip) pG

lemma (in BinOpSetGroup) lift-hom:
fixes T :: 'a = 'b::group-add
assumes V geG. VheG. T (binop gh) = T g+ Th
shows GroupHom pG (lift-hom T
proof (intro-locales, rule Group, unfold-locales)
from assms
show Az y. 2€pG = yepG —
lift-hom T (z+y) = lift-hom T x + lift-hom Ty
using Group.add-closed[OF Group| inv-correspondence-into
by  (simp add: homs(2)[THEN sym))
qed (rule supp-restrict0)

2.8.6 Normal subgroups

definition rcoset-rel :: ‘a::{minus,plus} set = (‘ax’a) set
where rcoset-rel A = {(z,y). z—y € A}

context Group
begin

lemma rcoset-rel-conv-lcoset-rel:
reoset-rel G = map-prod uminus uminus ¢ (lcoset-rel G)
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proof (rule set-eql)
fix z :: 'gx’g
obtain a b where ab: z=(a,b) by fastforce
hence (z € rcoset-rel G) = (a—b € G) wusing rcoset-rel-def by auto

also have ... = ( (—=b,—a) € lcoset-rel G )
using uminus-closed Ilcoset-rel-def by fastforce
finally

show (z € rcoset-rel G) = (z € map-prod uminus uminus ‘ (lcoset-rel G))
using ab symD|[OF lcoset-rel-sym] map-prod-def
by  force

qed

lemma rcoset-rel-sym: sym (rcoset-rel G)
using rcoset-rel-conv-lcoset-rel map-prod-sym lcoset-rel-sym by simp

abbreviation RCoset-rel :: 'g set = (‘gx’q) set
where RCoset-rel H = rcoset-rel H N (GX Q)

definition normal :: 'g set = bool
where normal H = (V geG. LCoset-rel H ““ {g} = RCoset-rel H ““ {g})

lemma normall:
assumes Group HVgeG.VheH. 3h'eH. g+h = h'+g
VYgeG.VheH. 3h'eH. h+g = g+h'
shows normal H
unfolding normal-def
proof
fix ¢ assume ¢g: g G
show LCoset-rel H ““ {g} = RCoset-rel H ““ {g}
proof (rule seteql)
fix z assume z € LCoset-rel H ““ {g}
with g have z: 1€ G —g+x € H unfolding lcoset-rel-def by auto
from g z(2) assms(2) obtain h where h: he H g—z = —h
by (fastforce simp add: algebra-simps)
with assms(1) g (1) show 2 € RCoset-rel H ““ {g}
using Group.uminus-closed unfolding rcoset-rel-def by simp
next
fix © assume = € RCoset-rel H ““ {g}
with g have z: € G g—z € H unfolding rcoset-rel-def by auto
with assms(3) obtain h where h: he H —g+z = —h
by (fastforce simp add: algebra-simps minus-add)
with assms(1) g z(1) show z € LCoset-rel H ““ {g}
using Group.uminus-closed unfolding Icoset-rel-def by simp
qed
qed

lemma normal-lconjby-closed:

[ Subgroup H; normal H; g€ G; he H | = lconjby g h € H
using lcoset-rell[of g g+h H| add-closed|of g h] normal-def[of H]
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symD[OF Group.rcoset-rel-sym, of H g g+h] rcoset-rel-def[of H]
by auto

lemma normal-rconjby-closed:
[ Subgroup H; normal H; g€ G; he H | = rconjby g h € H
using normal-lconjby-closed[of H —g h] uminus-closed|of g] by auto

abbreviation normal-closure A = {|J g€G. lconjby g * A)

lemma (in Group) normal-closure:
assumes ACG
shows normal (normal-closure A)
proof (rule normall, rule genby-Group)
show VzeG. Vhe(J geG. lconjby g < A).
In'e(Jgeq. leonjby g * A). x + h=h' +
proof
fix z assume z: z€G
show V he(lJ g€ G. lconjby g < A).
In'e(JgeG. lconjby g  A). x + h=h"+ x
proof (rule balll, erule genby.induct)
show Fhe(J geq. leonjby g “A). .+ 0 = h + z
using genby-0-closed by force
next
fix s assume s € (|Jg€G. lconjby g * A)
from this obtain g a where ga: g€ G a€A s = lconjby g a by fast
from ga(3) have x + s = lconjby x (lconjby g a) + «
by (simp add: algebra-simps)
hence z + s = lconjby (z+¢g) a + = by (simp add: lconjby-add)
with z ga(1,2) show Ihe(JgeG. lconjby g “ A). z + s=h + x
using add-closed by (blast intro: genby-genset-closed)
next
fix w w’
assume w: w € {{JgeG. lconjby g * A)
Ih €{(JgeG. lconjby g “A). z +w =h + =«
and w”" w’e (JgeG. lconjby g * A)
Ih'e(geG. leonjby g “ A). x + w' = h'+ =
from w(2) w'(2) obtain h h’
where h: h € ((JgeG. lconjby g “A) v +w =h + z
and A1’ h'e (JgeG. leonjby g “ A) =+ w' = h'+ =z
by  fast
have z + (w — w) =2 4+ w — (—z + (z + w’))
by (simp add: algebra-simps)

also from h(2) h'(2) have ... = h + z + (—(h' + z) + x)
by (simp add: algebra-simps)
alsohave ... =h+ a2+ (—z+ —h') +z

by (simp add: minus-add add.assoc)
finally have z + (w—w’) = h — h/ + z

using add.assoc[of h+x —z —h'] by simp
with (1) h'(1)
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show Jhe(JgeG. leonjby g “ A). z + (w — w') = h + x
using genby-diff-closed
by  fast

qed
qed
show VzeG. Vhe(JgeG. lconjby g * A).

An'e(JgeG. lconjby g “ A). h + z =z + h'

proof
fix z assume z: 2€G
show Vhe(lJ geG. lconjby g ¢ A).

Ih'e(JgeG. leonjby g “ A). h + =z + h'

proof (rule balll, erule genby.induct)

show Jhe(|JgeG. leconjby g * A). 0 + x =2z + h
using genby-0-closed by force

next

fix s assume s € (|Jg€G. lconjby g < A)
from this obtain g a where ga: g€ G a€A s = lconjby g a by fast
from ga(3) have s + s =z + (2 + g) + a) + —g) + z
by (simp add: algebra-simps)
alsohave ... =z + (-2 4+ g+ a + —g + z) by (simp add: add.assoc)
finally have s + © = z + lconjby (—z+g) a
by (simp add: algebra-simps lconjby-add)
with z ga(1,2) show Ihe(JgeG. lconjby g ‘ A). s+ c =2 + h
using uminus-add-closed by (blast intro: genby-genset-closed)

next

fix ww'
assume w: w € {{Jg€G. lconjby g < A)
Jh e(UgeQG. leonjby g “ A). w +x =z + h
and w”" w’e ({JgeG. lconjby g * A)
Ir'e{geG. leonjby g “ A). w' + xz =2 + h'
from w(2) w'(2) obtain h b’
where h : h € (JgeG. leonjby g “A) w+xz =2+ h
and 1" h'e (JgeG. lconjby g “ A) w' + z =z + h’

by  fast
have w — w'+ 2 =w + z + (—z + —w’) + z by (simp add: algebra-simps)
also from h(2) h'(2) have ... =2 + h + (—h'+—2) + =

using minus-add[of w' z] minus-add[of x h'] by simp
finally have w — w' 4+ z = = + (h — h') by (simp add: algebra-simps)
with h(1) h'(1) show Fhe(Jgeq. lconjby g “ A). w — w' +x =z + h
using genby-diff-closed by fast

qed
qed

qed

end
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2.8.7 Quotient groups

Here we use the bridge built by BinOpSetGroup to make the quotient of a
Group by a normal subgroup into a Group itself.

context Group
begin

lemma normal-quotient-add-well-defined:
assumes Subgroup H normal H geG g'eG
shows LCoset-rel H ““ {g} + LCoset-rel H “ {¢g'} = LCoset-rel H ““ {g+g'}
proof (rule seteql)
fix x assume z € LCoset-rel H ““ {g} + LCoset-rel H ““ {g'}
from this obtain y z
where  y € LCoset-rel H ““{g} z € LCoset-rel H “{g'} = = y+=
unfolding set-plus-def
by fast
with assms show © € LCoset-rel H ““ {g + g’}
using lcoset-rel-def[of H| normal-lconjby-closed|of H g' —g'+2]
Group.add-closed
normal-rcongby-closed[of H ¢’ —g + y + (2 — ¢")]
add.assoc[of —g' —¢]
add-closed lcoset-rell [of g+g’ y+2]
by  (fastforce simp add: add.assoc minus-add)
next
fix z assume z € LCoset-rel H “ {g + ¢'}
moreover define h where h = —(g+¢') + z
moreover hence z = g + (¢’ + h)
using add.assoc[of —g' —g z] by (simp add: add.assoc minus-add)
ultimately show z € LCoset-rel H ““ {g} + LCoset-rel H ““ {g'}
using assms(1,3,4) leoset-rel-def[of H| add-closed
refl-onD|OF subgroup-refl-on-LCoset-rel, of H]
by  force
qed

abbreviation quotient-set H = G // LCoset-rel H

lemma BinOpSetGroup-normal-quotient:
assumes Subgroup H normal H
shows BinOpSetGroup (quotient-set H) (+) H
proof
from assms(1) have HO: H = LCoset-rel H ““ {0}
using trivial-LCoset by auto

from assms(1) show H € quotient-set H
using HO zero-closed LCoset-rel-quotientI[of 0 H] by simp

fix £ assume z € quotient-set H

from this obtain gz where gz: gz€ G x = LCoset-rel H ““ {gz}
by (fast elim: LCoset-rel-quotientE)
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with assms(1,2) show z+H =z H+z =z
using normal-quotient-add-well-defined[of H gz 0]
normal-quotient-add-well-defined[of H 0 gz]
HO zero-closed
by auto

from gz(1) have LCoset-rel H ““ {—gz} € quotient-set H
using uminus-closed by (fast intro: LCoset-rel-quotientl)
moreover from assms(1,2) gz
have = + LCoset-rel H ““ {—gz} = H LCoset-rel H ““ {—gx} + ¢ = H
using HO uminus-closed normal-quotient-add-well-defined
by auto
ultimately show 3z’cquotient-set H. x + ' = H A ' + © = H by fast

fix y assume y € quotient-set H

from this obtain gy where gy: gy€G y = LCoset-rel H ““ {gy}
by (fast elim: LCoset-rel-quotientE)

with assms gr show z+y € quotient-set H
using add-closed normal-quotient-add-well-defined
by  (auto intro: LCoset-rel-quotientl)

qed (rule add.assoc)

abbreviation abs-lcoset-perm H =

BinOpSetGroup. Abs-G-perm (quotient-set H) (+)
abbreviation abs-lcoset-perm-lift H g = abs-lcoset-perm H (LCoset-rel H ““ {g})
abbreviation abs-lcoset-perm-lift-arg-permutation ¢ H = abs-lcoset-perm-lift H g

notation abs-lcoset-perm-lift-arg-permutation (<[-|-]» [51,51] 50)
end

abbreviation Group-abs-lcoset-perm-lift-arg-permutation G' g H =
Group.abs-lcoset-perm-lift-arg-permutation G’ g H
notation Group-abs-lcoset-perm-lift-arg-permutation (<[-|-|-]» [51,51,51] 50)

context Group
begin

lemmas [coset-perm-def =

BinOpSetGroup. Abs-G-perm-def| OF BinOpSetGroup-normal-quotient)
lemmas lcoset-perm-comp =

BinOpSetGroup. G-perm-comp| OF BinOpSetGroup-normal-quotient]
lemmas bij-lcoset-perm =

BinOpSetGroup.bij-G-perm|[OF BinOpSetGroup-normal-quotient)]

lemma trivial-lcoset-perm:

assumes Subgroup H normal H he H
shows restrict] ((+) (LCoset-rel H ““ {h})) (quotient-set H) = id
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proof (rule ext, simp, rule impI)
fix z assume z: z € quotient-set H
then obtain k where k: k€ G x = LCoset-rel H ““ {k}
by (blast elim: LCoset-rel-quotientE)
with z have LCoset-rel H “ {h} + = LCoset-rel H *‘ {h+k}
using assms normal-quotient-add-well-defined by auto
with assms k show LCoset-rel H ““ {h} + z =z
using add-closed|of h k| lcoset-rell[of k h+k H]
normal-rcongby-closed|of H k h]
eq-equiv-class-iff [OF lcoset-subgroup-rel-equiv, of H|
by (auto simp add: add.assoc)
qed

definition quotient-group :: 'g set = 'q set permutation set where
quotient-group H = BinOpSetGroup.pG (quotient-set H) (+)

abbreviation natural-quotient-hom H = restrict0 (\g. [g|H]|) G

theorem quotient-group:
Subgroup H = normal H = Group (quotient-group H)
unfolding quotient-group-def
using BinOpSetGroup. Group[OF BinOpSetGroup-normal-quotient]
by auto

lemma natural-quotient-hom:
Subgroup H = normal H = GroupHom G (natural-quotient-hom H)
using add-closed bij-lcoset-perm lcoset-perm-def supp-restrict(
normal-quotient-add-well-defined| THEN sym)
LCoset-rel-quotient][of - H]
by  unfold-locales
(force simp add: lcoset-perm-comp plus-permutation-abs-eq)

lemma natural-quotient-hom-image:
natural-quotient-hom H * G = quotient-group H
unfolding quotient-group-def
by (force elim: LCoset-rel-quotientE intro: LCoset-rel-quotientl )

lemma quotient-group-UN: quotient-group H = (A\g. [g|H]) ‘ G
using natural-quotient-hom-image by auto

lemma quotient-identity-rule: | Subgroup H; normal H; he H | = [h|H| = 0
using lcoset-perm-def
by  (simp add: trivial-lcoset-perm zero-permutation.abs-eq)

lemma quotient-group-lift-to-quotient-set:
[ Subgroup H; normal H; g¢ G | = ([g|H]|) — H = LCoset-rel H ““ {g}
using L Coset-rel-quotient]
BinOpSetGroup. G-perm-apply-identity|
OF BinOpSetGroup-normal-quotient
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}

by  simp

end

2.8.8 The induced homomorphism on a quotient group

A normal subgroup contained in the kernel of a homomorphism gives rise to a
homomorphism on the quotient group by that subgroup. When the subgroup
is the kernel itself (which is always normal), we obtain an isomorphism on
the quotient.

context GroupHom
begin

lemma respects-Ker-lcosets: H C Ker = T respects (LCoset-rel H)
using uminus-add-in-Ker-eq-eq-im
unfolding lcoset-rel-def
by (blast intro: congruentl)

abbreviation quotient-hom H =
BinOpSetGroup.lift-hom (quotient-set H) (+) (quotientfun T)

lemmas normal-subgroup-quotientfun-classrep-equality =
quotientfun-classrep-equality|
OF subgroup-refl-on-LCoset-rel, OF - respects-Ker-lcosets

]

lemma quotient-hom-im:
[ Subgroup H; normal H; H C Ker; geG | = quotient-hom H ([g|H]) = T g
using quotient-group-def quotient-group-UN quotient-group-lift-to-quotient-set
BinOpSetGroup.inv-correspondence-conv-apply|
OF BinOpSetGroup-normal-quotient
]
normal-subgroup-quotientfun-classrep-equality
by auto

lemma quotient-hom:
assumes Subgroup H normal H H C Ker
shows  GroupHom (quotient-group H) (quotient-hom H)
unfolding quotient-group-def
proof (
rule BinOpSetGroup.lift--hom, rule BinOpSetGroup-normal-quotient, rule assms(1),
rule assms(2)
)
from assms
show Vz € quotient-set H. Vy € quotient-set H.
quotientfun T (z + y) = quotientfun T x + quotientfun T y
using normal-quotient-add-well-defined normal-subgroup-quotientfun-classrep-equality

74



add-closed hom
by  (fastforce elim: LCoset-rel-quotientE)
qed

end

2.9 Free groups
2.9.1 Words in letters of signed type

Definitions and basic fact We pair elements of some type with type
bool, where the bool part of the pair indicates inversion.

abbreviation pairtrue = As. (s, True)
abbreviation pairfalse = \s. (s,False)

abbreviation flip-signed :: 'a signed = 'a signed
where flip-signed = apsnd (Ab. —b)

abbreviation nflipped-signed :: 'a signed = 'a signed = bool
where nflipped-signed x y = y # flip-signed x

lemma flip-signed-order2: flip-signed (flip-signed z) = x
using apsnd-conv[of \b. =b fst x snd z] by simp

abbreviation charpair :: 'a::uminus set = ‘a = 'a signed
where charpair S s = if s€S then (s, True) else (—s,False)

lemma map-charpair-uniform:
ss€lists S = map (charpair S) ss = map pairtrue ss
by (induct ss) auto

lemma fst-set-map-charpair-un-uminus:
fixes ss :: 'a:group-add list
shows ss€lists (S U uminus ‘ S) = fst ‘ set (map (charpair S) ss) C S
by (induct ss) auto

abbreviation apply-sign :: (‘a="b::uminus) = 'a signed = b
where apply-sign fx = (if snd z then f (fst x) else — f (fst z))

A word in such pairs will be considered proper if it does not contain consec-
utive letters that have opposite signs (and so are considered inverse), since
such consecutive letters would be cancelled in a group.

abbreviation proper-signed-list :: 'a signed list = bool

where proper-signed-list = binrelchain nflipped-signed

lemma proper-map-flip-signed:
proper-signed-list ts = proper-signed-list (map flip-signed xs)
by (induct zs rule: list-induct-CCons) auto
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lemma proper-rev-map-flip-signed:
proper-signed-list xs = proper-signed-list (rev (map flip-signed xs))
using proper-map-flip-signed binrelchain-sym-rev|of nflipped-signed] by fastforce

lemma uniform-snd-imp-proper-signed-list:
snd ¢ set s C {b} = proper-signed-list xs

proof (induct zs rule: list-induct-CCons)
case CCons thus ?case by force

qged auto

lemma proper-signed-list-map-uniform-snd:
proper-signed-list (map (As. (s,b)) as)
using uniform-snd-imp-proper-signed-list[of - b] by force

Algebra Addition is performed by appending words and recursively re-
moving any newly created adjacent pairs of inverse letters. Since we will
only ever be adding proper words, we only need to care about newly created
adjacent inverse pairs in the middle.

function prappend-signed-list :: 'a signed list = 'a signed list = 'a signed list
where prappend-signed-list xs [| = xs
| prappend-signed-list || ys = ys
| prappend-signed-list (xsQ[z]) (y#ys) = (
if y = flip-signed x then prappend-signed-list xs ys else xs Q © # y # ys

by (auto) (rule two-prod-lists-cases-snoc-Cons)
termination by (relation measure (A(zs,ys). length zs + length ys)) auto

lemma proper-prappend-signed-list:
proper-signed-list xs => proper-signed-list ys
= proper-signed-list (prappend-signed-list xs ys)
proof (induct zs ys rule: list-induct2-snoc-Cons)
case (snoc-Cons s x y ys)
show ?Zcase
proof (cases y = flip-signed x)
case True with snoc-Cons show Zthesis
using binrelchain-append-reducel [of nflipped-signed]
binrelchain-Cons-reduce|of nflipped-signed y]
by auto
next
case Fulse with snoc-Cons(2,3) show ?thesis
using binrelchain-join|[of nflipped-signed] by simp
qed
qed auto

lemma fully-prappend-signed-list:

prappend-signed-list (rev (map flip-signed xs)) xs = ||
by (induct zs) auto
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lemma prappend-signed-list-single- Cons:

prappend-signed-list [z] (y#ys) = (if y = flip-signed z then ys else z#y#ys)
using prappend-signed-list.simps(3)[of [ x] by simp

lemma prappend-signed-list-map-uniform-snd:
prappend-signed-list (map (Xs. (s,b)) xs) (map (As. (s,b)) ys) =
map (As. (s,0)) xs @ map (As. (s,b)) ys
by (cases xs ys rule: two-lists-cases-snoc-Cons) auto

lemma prappend-signed-list-assoc-conv-snoc2Cons:
assumes proper-signed-list (zsQ[y]) proper-signed-list (y#ys)
shows prappend-signed-list (zsQ[y]) ys = prappend-signed-list zs (y#ys)
proof (cases zs ys rule: two-lists-cases-snoc-Cons’)
case Nill with assms(2) show ?thesis
by (simp add: prappend-signed-list-single-Cons)
next
case Nil2 with assms(1) show ?thesis
using binrelchain-append-reduce2 by force
next
case (snoc-Cons as a b bs)
with assms show ?thesis
using prappend-signed-list.simps(3)[of asQ[al]
binrelchain-append-reduce2|of nflipped-signed as |a,y])
by  simp
qged simp

lemma prappend-signed-list-assoc:
[ proper-signed-list xs; proper-signed-list ys; proper-signed-list zs | =
prappend-signed-list (prappend-signed-list xs ys) zs =
prappend-signed-list xs (prappend-signed-list ys zs)
proof (induct xs ys zs rule: list-induct3-snoc-Conssnoc-Cons-pairwise)
case (snoc-single-Cons s x y z zs)
thus ?case
using prappend-signed-list.simps(3)[of [] ]
prappend-signed-list.simps(8)[of zsQ[z]]
by  (cases y = flip-signed x z = flip-signed y rule: two-cases)
(auto simp add:
flip-signed-order2 prappend-signed-list-assoc-conv-snoc2Cons

)
next
case (snoc-Conssnoc-Cons xs & y ys w z z8)
thus ?case
using binrelchain-Cons-reduce|of nflipped-signed y ysQ[wl]]

binrelchain-Cons-reduce[of nflipped-signed z zs]
binrelchain-append-reducel [of nflipped-signed xs]
binrelchain-append-reducel [of nflipped-signed y#tys]
binrelchain-Conssnoc-reduce|of nflipped-signed y ys]
prappend-signed-list.simps(3)[of y#ys]
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prappend-signed-list.simps(3)[of zsQz#yH#ys]
by (cases y = flip-signed x z = flip-signed w rule: two-cases) auto
qed auto

lemma fst-set-prappend-signed-list:
fst ¢ set (prappend-signed-list xs ys) C fst “ (set xs U set ys)
by (induct xs ys rule: list-induct2-snoc-Cons) auto

lemma collapse-flipped-signed:
prappend-signed-list [(s,b)] [(s,7D)] = ]
using prappend-signed-list.simps(3)[of [] (s,b)] by simp

2.9.2 The collection of proper signed lists as a type

Here we create a type out of the collection of proper signed lists. This
type will be of class group-add, with the empty list as zero, the modified
append operation prappend-signed-list as addition, and inversion performed
by flipping the signs of the elements in the list and then reversing the order.

Type definition, instantiations, and instances Here we define the
type and instantiate it with respect to various type classes.
typedef ‘a freeword = {as::'a signed list. proper-signed-list as}

morphisms freeword Abs-freeword

using binrelchain.simps(1) by fast

These two functions act as the natural injections of letters and words in the
letter type into the freeword type.

abbreviation Abs-freeletter :: 'a = 'a freeword
where Abs-freeletter s = Abs-freeword [pairtrue s|

abbreviation Abs-freelist :: 'a list = 'a freeword
where Abs-freelist as = Abs-freeword (map pairtrue as)

abbreviation Abs-freelistfst :: 'a signed list = 'a frecword
where Abs-freelistfst xs = Abs-freelist (map fst zs)

setup-lifting type-definition-freeword

instantiation freeword :: (type) zero

begin

lift-definition zero-freeword :: 'a freeword is [|::'a signed list by simp
instance ..

end

instantiation freeword :: (type) plus

begin
lift-definition plus-freeword :: 'a freeword = 'a freeword = 'a freeword
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is  prappend-signed-list
using proper-prappend-signed-list

by  fast
instance ..
end

instantiation freeword :: (type) uminus

begin

lift-definition uminus-freeword :: 'a freeword = 'a freeword
is Axs. rev (map flip-signed xs)
by (rule proper-rev-map-flip-signed)

instance ..

end

instantiation freeword :: (type) minus
begin
lift-definition minus-freeword :: 'a freeword = 'a freeword = 'a freeword
is \zs ys. prappend-signed-list s (rev (map flip-signed ys))
using proper-rev-map-flip-signed proper-prappend-signed-list by fast
instance ..
end

instance freeword :: (type) semigroup-add
proof
fix a b ¢ :: 'a freeword show a + b+ ¢ =a + (b + ¢)
using prappend-signed-list-assoc|of freeword a freeword b freeword c]
by  transfer simp
qed

instance freeword :: (type) monoid-add
proof

fix a b c:: 'a freeword

show 0 + a = a by transfer simp

show a + 0 = a by transfer simp
qed

instance freeword :: (type) group-add
proof
fix a b :: 'a freeword
show —a+ a =0
using fully-prappend-signed-list[of freeword a] by transfer simp
show a + — b = a — b by transfer simp
qed

Basic algebra and transfer facts in the freeword type Here we record
basic algebraic manipulations for the frecword type as well as various transfer
facts for dealing with representations of elements of freeword type as lists of
signed letters.
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abbreviation Abs-freeletter-add :: 'a = 'a = ’a freeword (infixl [+]> 65)
where s [+] t = Abs-freeletter s + Abs-freeletter t

lemma Abs-freeword-Cons:
assumes proper-signed-list (z#ts)
shows Abs-freeword (x#xs) = Abs-freeword [z] + Abs-freeword s
proof (cases xs)
case Nil thus ?thesis
using add-0-right[of Abs-freeword [z]] by (simp add: zero-freeword.abs-eq)
next
case (Cons y ys)
with assms
have freeword (Abs-freeword (z#xs)) =
freeword (Abs-freeword [z] + Abs-freeword xs)
by (simp add:
plus-freeword.rep-eq Abs-freeword-inverse
prappend-signed-list-single-Cons
)
thus ?thesis using freeword-inject by fast
qed

lemma Abs-freelist-Cons: Abs-freelist (z#txs) = Abs-freeletter x + Abs-freelist xs
using proper-signed-list-map-uniform-snd|of True x#xs| Abs-freeword-Cons
by  simp

lemma plus-frecword-abs-eq:
proper-signed-list ts => proper-signed-list ys =
Abs-freeword xs + Abs-freeword ys = Abs-freeword (prappend-signed-list xs ys)
using plus-freeword.abs-eq unfolding eq-onp-def by simp

lemma Abs-freeletter-add: s [4+] t = Abs-freelist [s,t]
using Abs-freelist-Cons|of s [t]] by simp

lemma uminus-freeword-Abs-eq:
proper-signed-list ts —>
— Abs-freeword xs = Abs-freeword (rev (map flip-signed xs))
using uminus-freeword.abs-eq unfolding eg-onp-def by simp

lemma uminus-Abs-freeword-singleton:
— Abs-freeword [(s,b)] = Abs-freeword [(s,~ b)]
using uminus-freeword-Abs-eq|of [(s,0)]] by simp

lemma Abs-freeword-append-uniform-snd:
Abs-freeword (map (As. (s,b)) (zsQys)) =
Abs-freeword (map (As. (s,b)) xs) + Abs-freeword (map (As. (s,b)) ys)
using proper-signed-list-map-uniform-snd[of b zs
proper-signed-list-map-uniform-snd[of b ys]
plus-freeword-abs-eq prappend-signed-list-map-uniform-snd[of b xs ys]
by  force
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lemmas Abs-freelist-append = Abs-freeword-append-uniform-snd|of True]

lemma Abs-freelist-append-append:
Abs-freelist (zsQysQzs) = Abs-freelist xs + Abs-freelist ys + Abs-freelist zs
using Abs-freelist-append|[of zsQys] Abs-freelist-append by simp

lemma Abs-freelist-inverse: freeword (Abs-freelist as) = map pairtrue as
using proper-signed-list-map-uniform-snd Abs-freeword-inverse by fast

lemma Abs-freeword-singleton-conv-apply-sign-freeletter:
Abs-freeword [z] = apply-sign Abs-freeletter x
by (cases x) (auto simp add: uminus-Abs-freeword-singleton)

lemma Abs-freeword-conuv-freeletter-sum-list:
proper-signed-list s =—>
Abs-freeword zs = (D x+xs. apply-sign Abs-freeletter x)
proof (induct xs)
case (Cons z zs) thus ?case
using Abs-freeword-Cons|of x] binrelchain-Cons-reduce|of - x]
by (simp add: Abs-freeword-singleton-conv-apply-sign-freeletter)
qed (simp add: zero-freeword.abs-eq)

lemma freeword-conv-freeletter-sum-list:
z = (D s« freeword x. apply-sign Abs-freeletter s)
using Abs-freeword-conv-freeletter-sum-list|of freeword z] freeword
by (auto simp add: freeword-inverse)

lemma Abs-freeletter-prod-conv-Abs-freeword:
snd © = Abs-freeletter (fst ©) = Abs-freeword [z]
using prod-eql[of x pairtrue (fst z)] by simp

2.9.3 Lifts of functions on the letter type

Here we lift functions on the letter type to type freeword. In particular, we
are interested in the case where the function being lifted has codomain of
class group-add.

The universal property The universal property for free groups says that
every function from the letter type to some group-add type gives rise to a
unique homomorphism.

lemma extend-map-to-freeword-hom”:
fixes f ::'a = 'bigroup-add
defines h: h::'a signed = 'b = A(s,b). if b then f s else — (f s)
defines g: g::'a signed list = 'b = Azs. sum-list (map h s)
shows ¢ (prappend-signed-list xs ys) = g xs + g ys

proof (induct zs ys rule: list-induct2-snoc-Cons)
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case (snoc-Cons xs x y ys)
show ?Zcase
proof (cases y = flip-signed x)
case True
with h have hy = — hz
using split-beta[of As b. if b then [ s else — (f s)] by simp
with g have g (xs Q [z]) + g (y # ys) = g xs + g ys
by (simp add: algebra-simps)
with True snoc-Cons show ?thesis by simp
next
case Fulse with g show ?thesis
using sum-list.append[of map h (zsQ[z]) map h (y#ys)] by simp
qed
qed (auto simp add: h g)

lemma extend-map-to-freeword-hom1 :
fixes f ::'a = 'bigroup-add
defines h::'a signed = 'b = A(s,b). if b then [ s else — (f s)
defines g::'a freeword = 'b = Az. sum-list (map h (freeword z))
shows ¢ (Abs-freeletter s) = fs
using assms
by (simp add: Abs-freeword-inverse)

lemma extend-map-to-freeword-hom2:
fixes f ::'a = 'bigroup-add
defines h::'a signed = 'b = A(s,b). if b then f s else — (f s)
defines g::'a freeword = 'b = Ax. sum-list (map h (freeword x))
shows UGroupHom g
using assms
by
auto intro: UGroupHoml
simp add: plus-freeword.rep-eq extend-map-to-freeword-hom’

)

lemma uniqueness-of-extended-map-to-freeword-hom':
fixes f ::’a = 'bigroup-add
defines h: h::'a signed = b = A(s,b). if b then f s else — (f s)
defines g: g::'a signed list = 'b = Azs. sum-list (map h s)
assumes singles: A\s. k [(s,True)] = fs
and adds : \zs ys. proper-signed-list s = proper-signed-list ys
= k (prappend-signed-list xs ys) = k zs + k ys
shows proper-signed-list s = k xs = g ws
proof—
have knil: k [| = 0 using adds[of [] []] add.assoclof k [] k [] — k []] by simp
have ksingle: N\z. k [z] = g [z]
proof—
fix = :: 'a signed
obtain s b where z: z = (s,b) by fastforce
show k [z] = ¢ [7]
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proof (cases b)
case Fulse
from adds z singles
have k (prappend-signed-list [z] [(s,True)]) = k [z] + s
by  simp
moreover have prappend-signed-list [(s,False)] [(s, True)] = []
using collapse-flipped-signed|of s False] by simp
ultimately have — fs = k [z] + fs + — f s using z False knil by simp
with x False g h show k [z] = g [z] by (simp add: algebra-simps)
qged (simp add: z g h singles)
qed
show proper-signed-list xs = k xs = g wxs
proof (induct zs rule: list-induct-CCons)
case (CCons z y xs)
with g h show ?Zcase
using adds|of [z] y#xs]
by (simp add:
prappend-signed-list-single-Cons
ksingle extend-map-to-freeword-hom’

qged (auto simp add: g h knil ksingle)
qged

lemma uniqueness-of-extended-map-to-freeword-hom:
fixes f ::'a = 'bigroup-add
defines h::'a signed = 'b = A(s,b). if b then f s else — (f s)
defines g::'a freeword = 'b = Ax. sum-list (map h (freeword x))
assumes k: k o Abs-freeletter = f UGroupHom k
shows k=g
proof
fix z::'a freeword
define k' where k- k' = k o Abs-freeword
have k' (freeword x) = g x unfolding h-def g-def
proof (rule uniqueness-of-extended-map-to-freeword-hom’)
from k' k(1) show As. k/ [pairtrue s] = f s by auto
show Azs ys. proper-signed-list xs = proper-signed-list ys
= k' (prappend-signed-list xs ys) = k' zs + k' ys
proof—
fix zs ys :: 'a signed list
assume zsys: proper-signed-list xs proper-signed-list ys
with &’
show k' (prappend-signed-list xs ys) = k' xs + k' ys
using UGroupHom.hom[OF k(2), of Abs-freeword xs Abs-freeword ys)
by  (simp add: plus-freeword-abs-eq)
qed
show proper-signed-list (freeword x) using freeword by fast
qed
with k£’ show k z = g z using freeword-inverse|of x] by simp
qed
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theorem universal-property:
fixes [ :: 'a = 'b:group-add
shows 3!g::’a freeword="b. g o Abs-freeletter = f N UGroupHom g
proof
define h where h: h = A\(s,b). if b then f s else — (f s)
define g where g: g = Az. sum-list (map h (freeword x))
from g h show g o Abs-freeletter = f A UGroupHom g
using extend-map-to-freeword-hom1 [of f] extend-map-to-freeword-hom2
by auto
from g h show Ak. k o Abs-freeletter = f A UGroupHom k = k = ¢
using uniqueness-of-extended-map-to-freeword-hom by auto
qed

Properties of homomorphisms afforded by the universal property
The lift of a function on the letter set is the unique additive function on
freeword that agrees with the original function on letters.

definition freeword-funlift :: (‘a = 'b::group-add) = ('a freeword=-'b::group-add)
where freeword-funlift f = (THE g. g o Abs-freeletter = f A UGroupHom g)

lemma additive-freeword-funlift: UGroupHom (freeword-funlift f)
using thel [OF universal-property, of f] unfolding freeword-funlift-def by simp

lemma freeword-funlift-Abs-freeletter: freeword-funlift f (Abs-freeletter s) = f s
using  thel [OF universal-property, of f]
comp-apply|of freeword-funlift f Abs-freeletter]
unfolding freeword-funlift-def

by fastforce
lemmas freeword-funlift-add = UGroupHom.hom [OF additive-freeword-funlift)
lemmas freeword-funlift-0 = UGroupHom.im-zero |OF additive-freeword-funlift]
lemmas freeword-funlift-uminus = UGroupHom.im-uminus [OF additive-freeword-funlift]
lemmas freeword-funlift-diff = UGroupHom.im-diff [OF additive-freeword-funlift]

lemmas freeword-funlift-lconjby = UGroupHom.im-lconjby [OF additive-freeword-funlift]

lemma freeword-funlift-uminus-Abs-freeletter:
freeword-funlift f (Abs-freeword [(s,False)]) = — fs
using freeword-funlift-uminus|of f Abs-freeword [(s,False)]]
uminus-freeword-Abs-eqof [(s,False)]]
freeword-funlift- Abs-freeletter|of f]
by  simp

lemma freeword-funlift- Abs-freeword-singleton:
freeword-funlift f (Abs-freeword [x]) = apply-sign f
proof—
obtain s b where z: z = (s,b) by fastforce
thus ?thesis
using freeword-funlift- Abs-freeletter freeword-funlift-uminus-Abs-freeletter
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by (cases b) auto
qed

lemma freeword-funlift-Abs-freeword-Cons:
assumes proper-signed-list (z#ts)
shows  freeword-funlift f (Abs-freeword (x#xs)) =
apply-sign f x + freeword-funlift f (Abs-freeword xs)
proof—
from assms
have freeword-funlift f (Abs-freeword (z#xs)) =
freeword-funlift f (Abs-freeword [z]) +
freeword-funlift f (Abs-freeword xs)
using Abs-freeword-Cons|of © xs] freeword-funlift-add by simp
thus ?thesis
using freeword-funlift- Abs-freeword-singleton|of f z] by simp
qed

lemma freeword-funlift- Abs-freeword:
proper-signed-list xs = freeword-funlift f (Abs-freeword zs) =
(>~ z«wxs. apply-sign f x)
proof (induct xs)
case (Cons z zs) thus ?case
using freeword-funlift-Abs-freeword-Cons|of - - f]
binrelchain-Cons-reduce|of - x xs]
by  simp
qed (simp add: zero-freeword.abs-eq| THEN sym) freeword-funlift-0)

lemma freeword-funlift-Abs-freelist:
freeword-funlift f (Abs-freelist zs) = (> x+uaxs. f x)
proof (induct s)
case (Cons z zs) thus ?case
using Abs-freelist-Cons|of  xs]
by  (simp add: freeword-funlift-add freeword-funlift- Abs-freeletter)
qed (simp add: zero-freeword.abs-eq THEN sym)| freeword-funlift-0)

lemma freeword-funlift-im’:
proper-signed-list xs => fst ‘ set zs C § =
freeword-funlift f (Abs-freeword zs) € (f*S)
proof (induct xs)
case Nil
have Abs-freeword ([]::'a signed list) = (0::'a freeword)
using zero-freeword.abs-eq[ THEN sym| by simp
thus freeword-funlift f (Abs-freeword ([]::'a signed list)) € (f‘S)
using freeword-funlift-0[of f] genby-0-closed by simp
next
case (Cons z zs)
define y where y: y = apply-sign [ x
define 2z where 2: z = freeword-funlift f (Abs-freeword xs)
from Cons(3) have fst ‘ set zs C S by simp

85



with z Cons(1,2) have z € (fS) using binrelchain-Cons-reduce by fast
with y Cons(3) have y + z € (f‘S)
using genby-genset-closed|of - f°S]
genby-uminus-closed genby-add-closed|of y]
by  fastforce
with Cons(2) y z show ?case
using freeword-funlift- Abs-freeword-Cons
subst|
OF sym,
of freeword-funlift f (Abs-freeword (z#tzs)) y+z
Ab. be(f4S)
]

by  fast
qed

2.9.4 Free groups on a set

We now take the free group on a set to be the set in the freeword type with
letters restricted to the given set.

Definition and basic facts Here we define the set of elements of the free
group over a set of letters, and record basic facts about that set.

definition FreeGroup :: 'a set = 'a freeword set
where FreeGroup S = {z. fst ‘ set (freeword ) C S}

lemma FreeGroupl-transfer:
proper-signed-list xs = fst ‘ set s C § = Abs-freeword zs € FreeGroup S
using Abs-frecword-inverse unfolding FreeGroup-def by fastforce

lemma FreeGroupD: x € FreeGroup S = fst * set (freeword z) C S
using FreeGroup-def by fast

lemma FreeGroupD-transfer:
proper-signed-list xs = Abs-freeword xs € FreeGroup S = fst ‘ set s C S
using Abs-freeword-inverse unfolding FreeGroup-def by fastforce

lemma FreeGroupD-transfer’:
Abs-freelist xs € FreeGroup S = wxs € lists S
using proper-signed-list-map-uniform-snd Free GroupD-transfer by fastforce

lemma FreeGroup-0-closed: 0 € FreeGroup S
proof—
have (0::'a freeword) = Abs-freeword || using zero-freeword.abs-eq by fast
moreover have Abs-freeword [| € FreeGroup S
using FreeGroupI-transfer|[of []] by simp
ultimately show ?thesis by simp
qed
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lemma FreeGroup-diff-closed:
assumes z € FreeGroup S y € FreeGroup S
shows z—y € FreeGroup S
proof—
define zs where zs: zs = freeword z
define ys where ys: ys = freeword y
have freeword (z—y) =
prappend-signed-list (freeword x) (rev (map flip-signed (freeword y)))
by transfer simp
hence fst ¢ set (freeword (z—y)) C fst ‘ (set (freeword x) U set (freeword y))
using fst-set-prappend-signed-list by force
with assms show ?thesis unfolding FreeGroup-def by fast
qed

lemma FreeGroup-Group: Group (FreeGroup S)
using FreeGroup-0-closed FreeGroup-diff-closed by unfold-locales fast

lemmas FreeGroup-add-closed = Group.add-closed  [OF FreeGroup-Group)
lemmas FreeGroup-uminus-closed = Group.uminus-closed [OF FreeGroup-Group]

lemmas Free Group-genby-set-lconjby-set-rconjby-closed =
Group. genby-set-lconjby-set-rconjby-closed| OF FreeGroup-Group]

lemma Abs-freelist-in-FreeGroup: ss € lists S => Abs-freelist ss € FreeGroup S
using proper-signed-list-map-uniform-snd by (fastforce intro: Free Groupl-transfer)

lemma Abs-freeletter-in-FreeGroup-iff: (Abs-freeletter s € FreeGroup S) = (s€S)
using Abs-freeword-inverse|[of [pairtrue s|| unfolding FreeGroup-def by simp

Lifts of functions from the letter set to some type of class group-add
We again obtain a universal property for functions from the (restricted)
letter set to some type of class group-add.

abbreviation res-freeword-funlift f S =
restrict0 (freeword-funlift f) (FreeGroup S)

lemma freeword-funlift-im: © € FreeGroup S = freeword-funlift f x € (f  S)
using  freeword|of z] freeword-funlift-im’[of freeword z]
freeword-inverse|of x
unfolding FreeGroup-def
by auto

lemma freeword-funlift-surj”:

ys € lists (f'S U uminus‘f'S) = sum-list ys € freeword-funlift f * FreeGroup S
proof (induct ys)

case Nil thus ?case using FreeGroup-0-closed freeword-funlift-0 by fastforce
next

case (Cons y ys)

from this obtain z
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where z: © € FreeGroup S sum-list ys = freeword-funlift f =
by auto
show sum-list (y#ys) € freeword-funlift f ¢ FreeGroup S
proof (cases y € fS)
case True
from this obtain s where s: s€S y = f s by fast
from s(1) z(1) have Abs-freeletter s + © € FreeGroup S
using FreeGroupI-transfer|of - S] FreeGroup-add-closed|of - S] by force
moreover from s(2) z(2)
have freeword-funlift f (Abs-freeletter s + x) = sum-list (y#ys)
using freeword-funlift-add[of f] freeword-funlift-Abs-freeletter
by  simp
ultimately show ?thesis by force
next
case False
with Cons(2) obtain s where s: s€S y = — f s by auto
from s(1) z(1) have Abs-freeword [(s,False)] + = € FreeGroup S
using FreeGroupl-transfer|of - S| FreeGroup-add-closed[of - S] by force
moreover from s(2) z(2)
have freeword-funlift f (Abs-freeword [(s,False)] + x) = sum-list (y#ys)
using freeword-funlift-add[of f] freeword-funlift-uminus-Abs-freeletter

by  simp
ultimately show ?thesis by force
qed

qed

lemma freeword-funlift-surj:
fixes f :: 'a = 'b::group-add
shows freeword-funlift f ¢ FreeGroup S = (f‘S)
proof (rule seteql)
show Aa. a € freeword-funlift f ¢ FreeGroup S = a € (f*S)
using freeword-funlift-im by auto
next
fix w assume we(f*S)
from this obtain ys where ys: ys € lists (f'S U uminus‘f'S) w = sum-list ys
using genby-eq-sum-lists[of f'S] by auto
thus w € freeword-funlift f * FreeGroup S using frecword-funlift-surj’ by simp
qged

lemma hom-restrict0-freeword-funlift:
GroupHom (FreeGroup S) (res-freeword-funlift f S)
using UGroupHom.restrict0 additive-freeword-funlift FreeGroup-Group
by auto

lemma uniqueness-of-restricted-lift:
assumes GroupHom (FreeGroup S) T VseS. T (Abs-freeletter s) = fs
shows T = res-freeword-funlift f S

proof
fix z
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define F where F' = res-freeword-funlift f S
define u-Abs where u-Abs = \a::'a signed. apply-sign Abs-frecletter a
show T'z = Fz
proof (cases x € FreeGroup S)
case True
have 1: set (map u-Abs (freeword x)) C FreeGroup S
using u-Abs-def FreeGroupD[OF True]
Abs-freeletter-in-Free Group-iff[of - S|
Free Group-uminus-closed
by auto
moreover from u-Abs-def have = = (> a<freeword x. u-Abs a)
using freeword-conv-freeletter-sum-list by fast
ultimately
have Tz = (3 a«freeword z. T (u-Abs a))
Fz = (> a+freeword x. F (u-Abs a))
using F-def
GroupHom.im-sum-list-map|OF assms(1), of u-Abs freeword x]
GroupHom.im-sum-list-map|
OF hom-restrict0-freeword-funlift,
of u-Abs freeword x S f
]
by auto
moreover have Vacset (freeword x). T (u-Abs a) = F (u-Abs a)
proof
fix a assume a € set (freeword z)
moreover define b where b = Abs-freeletter (fst a)
ultimately show T (u-Abs a) = F (u-Abs a)
using F-def u-Abs-def True assms(2) FreeGroupDlof z S|
GroupHom.im-uminus| OF assms(1)]
Abs-freeletter-in-Free Group-iff [of fst a S]
GroupHom.im-uminus|OF hom-restrict0-freeword-funlift, of b S f]
freeword-funlift-Abs-freeletter|of f]
by auto
qed
ultimately show #thesis
using F-def
sum-list-map-cong|of freeword x As. T (u-Abs s) As. F (u-Abs s)]
by  simp
next
case Fulse
with assms(1) F-def show ?thesis
using hom-restrict0-freeword-funlift GroupHom.supp suppl-contralof = T
suppl-contra|of © F)
by  fastforce
qed
qed

theorem FreeGroup-universal-property:
fixes [ :: 'a = 'b:group-add
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shows 3!T::"a freeword="b. (Vs€S. T (Abs-freeletter s) = fs) A
GroupHom (FreeGroup S) T
proof (rule ex1l, rule conjI)
show V s€S. res-freeword-funlift f S (Abs-freeletter s) = fs
using Abs-freeletter-in-FreeGroup-iff[of - S| freeword-funlift-Abs-freeletter
by auto
show AT. (VseS. T (Abs-freeletter s) = fs) A
GroupHom (FreeGroup S) T =
T = restrict0 (freeword-funlift f) (FreeGroup S)
using uniqueness-of-restricted-lift by auto
qed (rule hom-restrict0-freeword-funlift)

2.9.5 Group presentations

We now define a group presentation to be the quotient of a free group by
the subgroup generated by all conjugates of a set of relators. We are most
concerned with lifting functions on the letter set to the free group and with
the associated induced homomorphisms on the quotient.

A first group presentation locale and basic facts Here we define a lo-
cale that provides a way to construct a group by providing sets of generators
and relator words.

locale GroupByPresentation =
fixes S ::'a set — the set of generators
and P :: 'a signed list set — the set of relator words
assumes P-S: pse P = fst ‘ set ps C §
and proper-P: ps€ P = proper-signed-list ps
begin

abbreviation P’ = Abs-freeword ¢ P — the set of relators
abbreviation @ = Group.normal-closure (FreeGroup S) P’

— the normal subgroup generated by relators inside the free group
abbreviation G = Group.quotient-group (FreeGroup S) Q

lemmas G-UN = Group.quotient-group-UN|[OF FreeGroup-Group, of S Q)]

lemma P’-FreeS: P’ C FreeGroup S
using P-S proper-P by (blast intro: FreeGroupl-transfer)

lemma relators: P’ C Q
using FreeGroup-0-closed genby-genset-subset by fastforce

lemmas Iconjby-P’-FreeS =
Group.set-lconjby-subset-closed|
OF FreeGroup-Group - P'-FreeS, OF basic-monos(1)

]
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lemmas Q-FreeS =
Group.genby-closed|OF Free Group-Group lconjby-P’-FreeS|

lemmas Q-subgroup-FreeS =
Group.genby-subgroup[ OF FreeGroup-Group lconjby-P’-FreeS]

lemmas normal-Q = Group.normal-closure[OF FreeGroup-Group, OF P’-FreeS]

lemmas natural-hom =
Group.natural-quotient-hom]
OF FreeGroup-Group Q-subgroup-FreeS normal-Q

)

lemmas natural-hom-image =
Group.natural-quotient-hom-image| OF FreeGroup-Group, of S Q)]

end

Functions on the quotient induced from lifted functions A func-
tion on the generator set into a type of class group-add lifts to a unique
homomorphism on the free group. If this lift is trivial on relators, then it
factors to a homomorphism of the group described by the generators and
relators.

locale GroupByPresentationInducedFun = GroupByPresentation S P
for S :'’aset
and P :: 'a signed list set — the set of relator words
+ fixes [ : 'a = 'b:group-add
assumes [ift-f-trivial-P:
psEP = freeword-funlift f (Abs-freeword ps) = 0
begin

abbreviation [lift-f = freeword-funlift f

definition induced-hom :: 'a freeword set permutation = 'b
where induced-hom = GroupHom.quotient-hom (FreeGroup S)
(restrict0 lift-f (FreeGroup S)) @
— the restrict0 operation is really only necessary to make GroupByPresenta-
tionInducedFun.induced-hom a GroupHom
abbreviation F' = induced-hom

lemma lift-f-trivial-P’: pe P! = lift-f p = 0
using lift-f-trivial-P by fast

lemma lift-f-trivial-lconjby-P" pe P = lift-f (Ilconjby w p) = 0
using freeword-funlift-lconjby[of f] lift-f-trivial-P’ by simp

lemma lift-f-trivial-Q: g€ Q = lift-f ¢ = 0
proof (erule genby.induct, rule freeword-funlift-0)
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show As. s € (Uw € FreeGroup S. lconjby w * P') = lift-f s = 0
using lift-f-trivial-lconjby-P’ by fast
next
fix w w’ :: 'a freeword assume ww’: lift-f w = 0 lift-f w' = 0
have lift-f (w — w') = lift-f w — lift-f v’
using freeword-funlift-diff[of f w] by simp
with ww’ show lift-f (w—w’) = 0 by simp
qed

lemma lift-f-ker-Q: @ C ker lift-f
using lift-f-trivial-@Q) unfolding ker-def by auto

lemma lift-f-Ker-Q: Q@ C GroupHom.Ker (FreeGroup S) lift-f
using lift-f-ker-Q Q-FreeS by fast

lemma restrict0-lift-f-Ker-Q:
Q C GroupHom.Ker (FreeGroup S) (restrict0 lift-f (FreeGroup S))
using lift-f-Ker-Q ker-subset-ker-restrict0) by fast

lemma induced-hom-equality:

w € FreeGroup S = F ([ FreeGroup S|w|Q]) = lift-f w
— algebraic properties of the induced homomorphism could be proved using its
properties as a group homomorphism, but it’s generally easier to prove them using
the algebraic properties of the lift via this lemma

unfolding induced-hom-def

using GroupHom.quotient-hom-im hom-restrict0-freeword-funlift
Q-subgroup-FreeS normal-Q restrict0-lift-f-Ker-Q
by fastforce

lemma hom-induced-hom: GroupHom G F
unfolding induced-hom-def

using GroupHom.quotient-hom hom-restrict0-freeword-funlift
Q-subgroup-FreeS normal-Q restrict0-lift-f-Ker-Q
by fast

lemma induced-hom-Abs-freeletter-equality:
s€S = F ([FreeGroup S|Abs-freeletter s|Q]) = f s
using Abs-freeletter-in-FreeGroup-iff [of s S]
by  (simp add: induced-hom-equality freeword-funlift-Abs-freeletter)

lemma uniqueness-of-induced-hom':
defines ¢ = Group.natural-quotient-hom (FreeGroup S) Q
assumes GroupHom G T Vs€S. T ([FreeGroup S|Abs-freeletter s|Q]) = fs
shows T og=Fogq
proof—
from assms have Toq = res-frecword-funlift f S
using natural-hom natural-hom-image Abs-freeletter-in-FreeGroup-iff[of - S]
by  (force intro: uniqueness-of-restricted-lift GroupHom.comp)
moreover from ¢-def have F o g = res-freeword-funlift f S

92



using induced-hom-equality GroupHom.im-zero|OF hom-induced-hom]
by auto
ultimately show ?thesis by simp
qed

lemma uniqueness-of-induced-hom:
assumes GroupHom G T Vs€S. T ([FreeGroup S|Abs-freeletter s|Q]) = fs
shows T =F
proof
fix z
show Tz = Fz
proof (cases z€@)
case True
define ¢ where ¢ = Group.natural-quotient-hom (FreeGroup S) Q
from True obtain w where w € FreeGroup S © = ([ FreeGroup S|w|Q])
using G-UN by fast
with ¢-def have T z = (Toq) w F z = (Foq) w by auto
with assms ¢-def show ?thesis using uniqueness-of-induced-hom’ by simp
next
case Fulse
with assms(1) show ?thesis
using hom-induced-hom GroupHom.supp suppl-contraof z T
suppl-contra[of = F]
by  fastforce
qed
qged

theorem induced-hom-universal-property:
IVF. GroupHom G F' N (Vse€S. F ([FreeGroup S|Abs-freeletter s|Q]) = f s)
using hom-induced-hom induced-hom-Abs-freeletter-equality
uniqueness-of-induced-hom
by  blast

lemma induced-hom-Abs-freelist-conv-sum-list:
ss€lists S = F ([FreeGroup S|Abs-freelist ss|Q]) = (3 s<ss. fs)
by (simp add:
Abs-freelist-in-FreeGroup induced-hom-equality freeword-funlift-Abs-freelist

)

lemma induced-hom-surj: F‘G = (f‘S)
proof (rule seteql)
show Az. 1€ F‘G = z€(f‘S)
using G-UN induced-hom-equality freeword-funlift-surj[of f S] by auto
next
fix x assume ze(f‘S)
hence = € lift-f  FreeGroup S using freeword-funlift-surj[of f S] by fast
thus z € F‘G using induced-hom-equality G-UN by force
qed
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end

Groups affording a presentation The locale GroupByPresentation al-
lows the construction of a Group out of any type from a set of generating
letters and a set of relator words in (signed) letters. The following locale con-
cerns the question of when the Group generated by a set in class group-add
is isomorphic to a group presentation.

locale Group WithGeneratorsRelators =
fixes S :: 'g::group-add set — the set of generators
and R :: g list set — the set of relator words
assumes relators: s€ER = rs € lists (S U uminus  S)
rs€ R = sum-list rs = 0
rs€ R = proper-signed-list (map (charpair S) rs)
begin

abbreviation P = map (charpair S) ‘ R

abbreviation P’ = GroupByPresentation.P’ P

abbreviation @ = GroupByPresentation.QQ S P

abbreviation G = GroupByPresentation.G S P

abbreviation relator-freeword rs = Abs-freeword (map (charpair S) rs)
— this maps R onto P’

abbreviation freeliftid = freeword-funlift id

abbreviation induced-id :: 'g freeword set permutation = 'g
where induced-id = GroupByPresentationInducedFun.induced-hom S P id

lemma GroupByPresentation-S-P: GroupByPresentation S P
proof
show Aps. ps € P = fst ‘set ps C S
using fst-set-map-charpair-un-uminus relators(1) by fast
show Aps. ps € P = proper-signed-list ps using relators(3) by fast
qed

lemmas G-UN = GroupByPresentation. G-UN[OF GroupByPresentation-S-P)|
lemmas P’-FreeS = GroupByPresentation.P’-FreeS[OF GroupByPresentation-S-P)]

lemma freeliftid-trivial-relator-freeword-R:
rs€ R = freeliftid (relator-freeword rs) = 0
using relators(2,3) freeword-funlift- Abs-freeword[of map (charpair S) rs id)
sum-list-map-cong|of rs (apply-sign id) o (charpair S) id]
by  simp

lemma freeliftid-trivial-P: ps€ P = freeliftid (Abs-freeword ps) = 0
using freeliftid-trivial-relator-freeword-R by fast

lemma GroupByPresentationInduced Fun-S-P-id:
GroupByPresentationInducedFun S P id
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by (
intro-locales, rule GroupByPresentation-S-P,
unfold-locales, rule freeliftid-trivial-P

)

lemma induced-id- Abs-freelist-conv-sum-list:
ss€lists S = induced-id ([ FreeGroup S|Abs-freelist ss|Q]) = sum-list ss
by (simp add:
GroupByPresentationInduced Fun.induced-hom-Abs-freelist-conv-sum-list|
OF GroupByPresentationInducedFun-S-P-id

}
)

lemma [conj-relator-freeword-R:
[ rs€R; proper-signed-list zs; fst ‘ set xs C S | =
leongby (Abs-freeword xs) (relator-freeword rs) € Q
by (blast intro: genby-genset-closed FreeGroupl-transfer)

lemma rconj-relator-freeword:
assumes rs€ R proper-signed-list xs fst < set s C S
shows rconjby (Abs-freeword xs) (relator-freeword rs) € Q
proof (rule genby-genset-closed, rule UN-I)
show — Abs-freecword zs € FreeGroup S
using FreeGroupI-transfer[OF assms(2,3)] FreeGroup-uminus-closed by fast
from assms(1)
show rconjby (Abs-freeword xs) (relator-freeword rs) €
leongby (— Abs-freeword xzs) ¢ Abs-freeword ¢ P
by  simp
qed

lemma [conjby-Abs-freelist-relator-freeword:
[ rseR; xs€lists S | = lconjby (Abs-freelist xs) (relator-freeword rs) € Q
using proper-signed-list-map-uniform-snd by (force intro: lconj-relator-freeword-R)

Here we record that the lift of the identity map to the free group on S
induces a homomorphic surjection onto the group generated by S from the
group presentation on S, subject to the same relations as the elements of S.
theorem induced-id-hom-surj: GroupHom G induced-id induced-id * G = (S)
using GroupByPresentationInduced Fun.hom-induced-hom|
OF GroupByPresentationInducedFun-S-P-id

]

GroupByPresentationInduced Fun.induced-hom-surj|
OF GroupByPresentationInduced Fun-S-P-id

]
by auto

end

locale GroupPresentation = Group WithGeneratorsRelators S R
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for S :: 'g::group-add set — the set of generators
and R :: 'g list set — the set of relator words
+ assumes induced-id-inj: inj-on induced-id G
begin

abbreviation inv-induced-id = the-inv-into G induced-id

lemma inv-induced-id-sum-list-S:
ss € lists S = inv-induced-id (sum-list ss) = ([ FreeGroup S|Abs-freelist ss|Q])
using G-UN induced-id-inj induced-id- Abs-freelist-conv-sum-list
Abs-freelist-in-Free Group
by  (blast intro: the-inv-into-f-eq)

end

2.10 Words over a generating set

Here we gather the necessary constructions and facts for studying a group
generated by some set in terms of words in the generators.

context monoid-add
begin

abbreviation word-for A a as = as € lists A N\ sum-list as = a

definition reduced-word-for :: 'a set = 'a = 'a list = bool
where reduced-word-for A a as = is-arg-min length (word-for A a) as

abbreviation reduced-word A as = reduced-word-for A (sum-list as) as
abbreviation reduced-words-for A a = Collect (reduced-word-for A a)

abbreviation reduced-letter-set :: 'a set = 'a = 'a set
where reduced-letter-set A a = |J( set ‘ (reduced-words-for A a) )
— will be empty if a is not in the set generated by A

definition word-length :: 'a set = 'a = nat
where word-length A a = length (arg-min length (word-for A a))

lemma reduced-word-forl:
assumes as € lists A sum-list as = a
N\bs. bs € lists A = sum-list bs = a = length as < length bs
shows reduced-word-for A a as
using assms
unfolding reduced-word-for-def
by (force intro: is-arg-minl)

lemma reduced-word-forl-compare:
[ reduced-word-for A a as; bs € lists A; sum-list bs = a; length bs = length as |
= reduced-word-for A a bs
using reduced-word-for-def is-arg-min-eq|of length] by fast
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lemma reduced-word-for-lists: reduced-word-for A a as = as € lists A
using reduced-word-for-def is-arg-minD1 by fast

lemma reduced-word-for-sum-list: reduced-word-for A a as —> sum-list as = a
using reduced-word-for-def is-arg-minD1 by fast

lemma reduced-word-for-minimal:
[ reduced-word-for A a as; bs € lists A; sum-list bs = a | =
length as < length bs
using reduced-word-for-def is-arg-minD2]of length]
by fastforce

lemma reduced-word-for-length:
reduced-word-for A a as = length as = word-length A a
unfolding word-length-def reduced-word-for-def is-arg-min-def
by (fastforce intro: arg-min-equality] THEN sym))

lemma reduced-word-for-eq-length:
reduced-word-for A a as = reduced-word-for A a bs = length as = length bs
using reduced-word-for-length by simp

lemma reduced-word-for-arg-min:
as € lists A = sum-list as = o =
reduced-word-for A a (arg-min length (word-for A a))
using  is-arg-min-arg-min-nat[of word-for A a]
unfolding reduced-word-for-def
by fast

lemma nil-reduced-word-for-0: reduced-word-for A 0 ||
by (auto intro: reduced-word-forl)

lemma reduced-word-for-0-imp-nil: reduced-word-for A 0 as = as = ]
using  nil-reduced-word-for-0[of A] reduced-word-for-minimal[of A 0 as)
unfolding reduced-word-for-def is-arg-min-def
by (metis (mono-tags, opaque-lifting) length-0-conv length-greater-0-conv)

lemma not-reduced-word-for:
[ bs € lists A; sum-list bs = a; length bs < length as | =
= reduced-word-for A a as
using reduced-word-for-minimal by fastforce

lemma reduced-word-for-imp-reduced-word:

reduced-word-for A a as = reduced-word A as
unfolding reduced-word-for-def is-arg-min-def
by (fast intro: reduced-word-forl)

lemma sum-list-zero-nreduced:
as # [| = sum-list as = 0 = — reduced-word A as
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using not-reduced-word-for[of []] by simp

lemma order2-nreduced: a+a=0 = — reduced-word A [a,a]
using sum-list-zero-nreduced by simp

lemma reduced-word-append-reduce-contral:
assumes — reduced-word A as
shows - reduced-word A (asQbs)
proof (cases as € lists A bs € lists A rule: two-cases)
case both
define cs where cs: ¢s = ARG-MIN length cs. cs € lists A N sum-list cs =
sum-list as
with both(1) have reduced-word-for A (sum-list as) cs
using reduced-word-for-def is-arg-min-arg-min-nat|of word-for A (sum-list as)]
by auto
with assms both show ?thesis
using reduced-word-for-lists reduced-word-for-sum-list
reduced-word-for-minimal[of A sum-list as cs as]
reduced-word-forI-compare[of A sum-list as cs as]
not-reduced-word-for[of csQbs A sum-list (asQbs)]
by  fastforce
next
case one thus ?thesis using reduced-word-for-lists by fastforce
next
case other thus ?thesis using reduced-word-for-lists by fastforce
next
case neither thus ?thesis using reduced-word-for-lists by fastforce
qed

lemma reduced-word-append-reduce-contra2:
assumes - reduced-word A bs
shows - reduced-word A (asQbs)
proof (cases as € lists A bs € lists A rule: two-cases)
case both
define cs where cs: ¢s = ARG-MIN length cs. cs € lists A N\ sum-list ¢cs =
sum-list bs
with both(2) have reduced-word-for A (sum-list bs) cs
using reduced-word-for-def is-arg-min-arg-min-nat|of word-for A (sum-list bs) |
by auto
with assms both show ?thesis
using reduced-word-for-lists reduced-word-for-sum-list
reduced-word-for-minimal[of A sum-list bs cs bs]
reduced-word-forI-compare[of A sum-list bs cs bs]
not-reduced-word-for|of asQcs A sum-list (asQbs)]
by  fastforce
next
case one thus ?thesis using reduced-word-for-lists by fastforce
next
case other thus ?thesis using reduced-word-for-lists by fastforce
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next
case neither thus ?thesis using reduced-word-for-lists by fastforce
qed

lemma contains-nreduced-imp-nreduced:
= reduced-word A bs = — reduced-word A (asQbsQcs)
using reduced-word-append-reduce-contral reduced-word-append-reduce-contra2
by  fast

lemma contains-order2-nreduced: a+a=0 = — reduced-word A (asQ[a,a]@bs)
using order2-nreduced contains-nreduced-imp-nreduced by fast

lemma reduced-word- Cons-reduce-contra:
- reduced-word A as => - reduced-word A (a#as)
using reduced-word-append-reduce-contra2[of A as [a]] by simp

lemma reduced-word-Cons-reduce: reduced-word A (a#tas) = reduced-word A as
using reduced-word-Cons-reduce-contra by fast

lemma reduced-word-singleton:
assumes a€A a#0
shows reduced-word A [a]
proof (rule reduced-word-forl)
from assms(1) show [a] € lists A by simp
next
fix bs assume bs: bs € lists A sum-list bs = sum-list [a]
with assms(2) show length [a] < length bs by (cases bs) auto
qed simp

lemma el-reduced:
assumes 0 ¢ A as € lists A sum-list as € A reduced-word A as
shows length as = 1
proof—
define n where n: n = length as
from assms(3) obtain a where [a]€lists A sum-list as = sum-list [a] by auto
with n assms(1,3,4) have n<1 n>0
using reduced-word-for-minimal[of A - as [a]] by auto
hence n = 1 by simp
with n show ?thesis by fast
qed

lemma reduced-letter-set-0: reduced-letter-set A 0 = {}
using reduced-word-for-0-imp-nil by simp

lemma reduced-letter-set-subset: reduced-letter-set A a C A
using reduced-word-for-lists by fast

lemma reduced-word-forl-length:
[ as € lists A; sum-list as = a; length as = word-length A a | =
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reduced-word-for A a as
using reduced-word-for-arg-min reduced-word-for-length
reduced-word-forl-compare[of A a - as]
by  fastforce

lemma word-length-le:
as € lists A = sum-list as = a = word-length A a < length as
using reduced-word-for-arg-min reduced-word-for-length
reduced-word-for-minimal|of A]
by  fastforce

lemma reduced-word-forl-length’:
[ as € lists A; sum-list as = a; length as < word-length A a | =
reduced-word-for A a as
using word-length-le[of as A] reduced-word-forI-length|of as A] by fastforce

lemma word-length-lt:
as € lists A = sum-list as = a => — reduced-word-for A a as =
word-length A a < length as
using reduced-word-forl-length’ by fastforce

end

lemma in-genby-reduced-letter-set:
assumes as € lists A sum-list as = a
shows a € (reduced-letter-set A a)
proof—
define xs where xs: ©s = arg-min length (word-for A a)
with assms have zs € lists (reduced-letter-set A a) sum-list s = a
using reduced-word-for-arg-min|of as A] reduced-word-for-sum-list by auto
thus “thesis using genby-eq-sum-lists by force
qed

lemma reduced-word-for-genby-arg-min:
fixes A :: 'a::group-add set
defines B = A U uminus ‘ A
assumes a€(A)
shows reduced-word-for B a (arg-min length (word-for B a))
using assms genby-eg-sum-lists|of A] reduced-word-for-arg-min[of - B a)
by auto

lemma reduced-word-for-genby-sym-arg-min:

assumes uminus ‘ A C A a€(A)

shows reduced-word-for A a (arg-min length (word-for A a))
proof—

from assms(1) have A = A U uminus * A by auto

with assms(2) show %thesis

using reduced-word-for-genby-arg-minf[of a A] by simp

qed
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lemma in-genby-imp-in-reduced-letter-set:
fixes A :: 'a::group-add set
defines B = A U uminus ‘ A
assumes a € (A)
shows a € (reduced-letter-set B a)
using assms genby-eg-sum-lists|of A] in-genby-reduced-letter-set|of - B|
by auto

lemma in-genby-sym-imp-in-reduced-letter-set:
uminus ‘A C A = a € (A) = a € (reduced-letter-set A a)
using in-genby-imp-in-reduced-letter-set by (fastforce simp add: Un-absorb2)

end

3 Simplicial complexes

In this section we develop the basic theory of abstract simplicial complexes
as a collection of finite sets, where the power set of each member set is
contained in the collection. Note that in this development we allow the
empty simplex, since allowing it or not seemed of no logical consequence,
but of some small practical consequence.

theory Simplicial
imports Prelim

begin

3.1 Geometric notions

The geometric notions attached to a simplicial complex of main interest to
us are those of facets (subsets of codimension one), adjacency (sharing a
facet in common), and chains of adjacent simplices.

3.1.1 Facets

definition facetrel :: 'a set = 'a set = bool (infix << 60)
where y <z =3v. v ¢ y ANz =insertvy

lemma facetrell: v ¢ y = z = insert vy = y <z
using facetrel-def by fast

lemma facetrell-card: y C © = card (z—y) = 1 = y <z
using cardl[of z—y| by (blast intro: facetrell)

lemma facetrel-complement-vertex: y<lo = & = insert vy = véy
using facetrel-def|of y x| by fastforce
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lemma facetrel-diff-vertex: ver = z—{v} < z
by (auto intro: facetrell)

lemma facetrel-conv-insert: y <z = v € ¢ — y => = = insert v y
unfolding facetrel-def by fast

lemma facetrel-psubset: y <<z = y C x
unfolding facetrel-def by fast

lemma facetrel-subset: y <z = y C z
using facetrel-psubset by fast

lemma facetrel-card: y < x = card (z—y) = 1
using insert-Diff-if [of - y y] unfolding facetrel-def by fastforce

lemma finite-facetrel-card: finite 1 = y<\x = card x = Suc (card y)
using facetrel-def|of y x| card-insert-disjoint|of x] by auto

lemma facetrell-cardSuc: 2Cx = card x = Suc (card z) = z<z
using card-ge-0-finite finite-subset|of z] card-Diff-subset|of z ]
by  (force intro: facetrell-card)

lemma facet2-subset: | z<iz; z2<ty; 2Ny — 2 # {} | =z C y
unfolding facetrel-def by force

lemma inj-on-pullback-facet:
assumes nj-on fr z < fz
obtains y where y < z f'y = 2
proof
from assms(2) obtain v where v: véz fc = insert v z
using facetrel-def[of z] by auto
define u and y where u = the-inv-into = fv and y: y = {vez. fv € 2}
moreover with assms(2) v have © = insert u y
using the-inv-into-f-eq|OF assms(1)] the-inv-into-into[OF assms(1)]
by fastforce
ultimately show y <
using v f-the-inv-into-f[OF assms(1)] by (force intro: facetrell)
from y assms(2) show fy = z using facetrel-subset by fast
qed

3.1.2 Adjacency

definition adjacent :: 'a set = 'a set = bool (infix <~y 70)
where z ~ y = 2. z<x A 2y

lemma adjacentl: 2<l0 = 2y = T ~ ¥y
using adjacent-def by fast

lemma empty-not-adjacent: = {} ~ x
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unfolding facetrel-def adjacent-def by fast

lemma adjacent-sym: x ~ y = y ~
unfolding adjacent-def by fast

lemma adjacent-refi:

assumes z # {}

shows z ~z
proof—

from assms obtain v where v: vex by fast

thus = ~ z using facetrell[of v z—{v}] unfolding adjacent-def by fast
qed

lemma common-facet: | 2<1z; z<7y; x £y = z=z Ny
using facetrel-subset facet2-subset by fast

lemma adjacent-int-facetl: x ~y = x4 y= (xNy) <z
using common-facet unfolding adjacent-def by fast

lemma adjacent-int-facet2: z ~ y =z 4+ y= (zNy) <y
using adjacent-sym adjacent-int-facet! by (fastforce simp add: Int-commute)

lemma adjacent-conv-insert: © ~ y = v € x — y = z = insert v (zNy)
using adjacent-int-facetl facetrel-conv-insert by fast

lemma adjacent-int-decomp:
r~y=x#y= Jv.vé¢yAzx=insert v (zNy)
using adjacent-int-facet! unfolding facetrel-def by fast

lemma adj-antivertex:
assumes T~y TF£Yy
shows 3Jlv. vex—y
proof (rule ex-exlI)
from assms obtain w where w: w¢y v = insert w (zNy)
using adjacent-int-decomp by fast
thus Jv. vex—y by auto
from w have A\v. v€z—y — v=w by fast
thus Av v’ ver—y = v'ez—y = v=0v' by auto
qed

lemma adjacent-card: x ~ y = card x = card y
unfolding adjacent-def facetrel-def by (cases finite x =y rule: two-cases) auto

lemma adjacent-to-adjacent-int-subset:
assumes C ~ D f‘C ~ fD f‘C # fD
shows f‘C N fD C f(CND)
proof
from assms(1,3) obtain v where v: v ¢ D C = insert v (CND)
using adjacent-int-decomp by fast
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from assms(2,3) obtain w where w: w ¢ f‘D f‘C = insert w (f‘CNf‘D)
using adjacent-int-decomp|of f‘C fD] by fast
from w have w”: w € f‘C — f‘D by fast
with v assms(1,2) have fo-w: f v = w using adjacent-conv-insert by fast
fix b assume b € f°'C N fD
from this obtain al a2
where a1: al € Cb= fal
and a2: a2 € Db=fa2
by  fast
from v al a2(2) have ol ¢ D = f a2 = w using fv-w by auto
with a2(1) w’ have al € D by fast
with al show b € f(CND) by fast
qed

lemma adjacent-to-adjacent-int:
[ C~ D; f'C~ fD; f)C#fD] = f(CND) = fC N fD
using adjacent-to-adjacent-int-subset by fast

3.1.3 Chains of adjacent sets

abbreviation adjacentchain = binrelchain adjacent
abbreviation padjacentchain = proper-binrelchain adjacent

lemmas adjacentchain-Cons-reduce = binrelchain-Cons-reduce [of adjacent)]
lemmas adjacentchain-obtain-proper = binrelchain-obtain-proper [of - - adjacent]

lemma adjacentchain-card: adjacentchain (z#xsQ[y]) = card © = card y
using adjacent-card by (induct zs arbitrary: x) auto

3.2 Locale and basic facts

locale SimplicialComplex =
fixes X :: 'a set set
assumes finite-simplices: VY x€ X. finite
and  faces rreX = yCor = yeX

context SimplicialComplex
begin

abbreviation Subcomplex Y = Y C X A SimplicialComplex Y
definition mazsimp © = 2€X A (VzeX. 2Cz — 2=x)

definition adjacentset :: 'a set = 'a set set
where adjacentset x = {yeX. z~y}

lemma finite-simplex: € X = finite x
using finite-simplices by simp

lemma singleton-simplex: vel JX — {v} € X
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using faces by auto

lemma mazsimpl: © € X = (\z. 26X = 2Cz = z=1) = mazsimp &
using maxsimp-def by auto

lemma mazxsimpD-simplex: mazsimp x —> z€X
using mazsimp-def by fast

lemma mazsimpD-mazimal: maxsimp x —> 26X — 1Cz — z=x
using maxsimp-def by auto

lemmas finite-mazsimp = finite-simplex| OF mazxsimpD-simplex)

lemma mazsimp-nempty: X # {{}} = mazsimp © = = # {}
unfolding mazsimp-def by fast

lemma mazxsimp-vertices: mazsimp r —> zC|J X
using mazxsimpD-simplex by fast

lemma adjacentsetD-adj: y € adjacentset 1 — x~y
using adjacentset-def by fast

lemma maz-in-subcomplex:
[ Subcomplex Y; y € Y; mazxsimp y | = SimplicialComplex.maxsimp Y y
using maxsimpD-mazimal by (fast intro: SimplicialComplex.maxsimpl)

lemma face-im:
assumes w € X y C f'w
defines u = {a€w. fa € y}
shows y € f-X
using assms faces[of w u] image-eqI[of y () fu X]
by  fast

lemma im-faces: x €e fHF X —=yCaor=—=yec fFH X
using faces face-im[of - y] by (cases y={}) auto

lemma map-is-simplicial-morph: SimplicialComplex (f+-X)
proof

show Vzef-X. finite x using finite-simplices by fast

show Az y. z €frX — yCo = yeftX using im-faces by fast
qed

lemma vertez-set-int:
assumes SimplicialComplex Y
shows |J(XNY)=UXnUY
proof
have Av.v e JX N Y = ve J(XNY)
using faces SimplicialComplez.faces|OF assms| by auto
thus J(XNY) D UJUX NUY by fast
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qed auto

end

3.3 Chains of maximal simplices

Chains of maximal simplices (with respect to adjacency) will allow us to
walk through chamber complexes. But there is much we can say about
them in simplicial complexes. We will call a chain of maximal simplices
proper (using the prefix p as a naming convention to denote proper) if no
maximal simplex appears more than once in the chain. (Some sources elect
to call improper chains prechains, and reserve the name chain to describe
a proper chain. And usually a slightly weaker notion of proper is used,
requiring only that no maximal simplex appear twice in succession. But it
essentially makes no difference, and we found it easier to use distinct rather
than binrelchain (#).)

context SimplicialComplex
begin

definition mazsimpchain s = (VY zE€set xs. mazsimp x) A adjacentchain s
definition pmazsimpchain zs = (VY x€set xs. mazsimp ) A padjacentchain xs

function min-mazsimpchain :: 'a set list = bool
where
min-mazxsimpchain [| = True
| min-maxsimpchain [z] = maxsimp
| min-maxsimpchain (x#zsQly]) =
(z#y A is-arg-min length (\zs. mazsimpchain (z#2sQ[y])) zs)
by (auto, rule list-cases-Cons-snoc)
termination by (relation measure length) auto

lemma maxsimpchain-snocl:
[ maxsimpchain (xsQ[z]); maxsimp y; r~y | = mazxsimpchain (zsQ[z,y])
using maxsimpchain-def binrelchain-snoc maxsimpchain-def by auto

lemma mazsimpchainD-maxsimp:
mazxsimpchain xs = = € set xs = mazrsimp
using maxsimpchain-def by fast

lemma mazsimpchainD-adj: maxsimpchain xs = adjacentchain zs
using mazsimpchain-def by fast

lemma mazsimpchain-CConsl:
[ maxsimp w; mazsimpchain (x#xs); w~z | = mazsimpchain (wH#zzs)

using maxsimpchain-def by auto

lemma mazsimpchain-Cons-reduce:
mazsimpchain (z#1zs) = mazxsimpchain xs
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using adjacentchain-Cons-reduce mazxsimpchain-def by fastforce

lemma mazsimpchain-append-reducel :
mazxsimpchain (zsQys) = maxsimpchain s
using binrelchain-append-reducel maxsimpchain-def by auto

lemma mazsimpchain-append-reduce2:
mazsimpchain (zsQys) = mazsimpchain ys
using binrelchain-append-reduce?2 mazxsimpchain-def by auto

lemma mazsimpchain-remdup-adj:
mazxsimpchain (zsQlz,z]Qys) = mazsimpchain (zsQ[z]Qys)
using maxsimpchain-def binrelchain-remdup-adj by auto

lemma mazsimpchain-rev: mazsimpchain s = mazsimpchain (rev s)
using mazsimpchainD-mazxsimp adjacent-sym
binrelchain-sym-rev|of adjacent]
unfolding maxsimpchain-def
by fastforce

lemma mazsimpchain-overlap-join:
mazsimpchain (zsQw]) = mazsimpchain (w#ys) =
mazxsimpchain (xsQuw#ys)
using binrelchain-overlap-join maxsimpchain-def by auto

lemma pmazsimpchain: pmazsimpchain rs —> mazsimpchain s
using maxsimpchain-def pmazsimpchain-def by fast

lemma pmazsimpchainl-mazsimpchain:
mazxsimpchain xs = distinct xs = pmazxsimpchain s
using maxsimpchain-def pmazsimpchain-def by fast

lemma pmaxsimpchain-CConslI:
[ mazsimp w; pmazsimpchain (z#zs); w~z; w ¢ set (z#xs) | =
pmazxsimpchain (wH#Hx#xs)
using pmazsimpchain-def by auto

lemmas pmazsimpchainD-mazsimp =
mazsimpchainD-mazsimp| OF pmazsimpchain)]

lemmas pmazsimpchainD-adj =
mazsimpchainD-adj [OF pmaxsimpchain]

lemma pmazsimpchainD-distinct: pmazxsimpchain xs —> distinct xs
using pmaxsimpchain-def by fast

lemma pmazsimpchain-Cons-reduce:
pmazsimpchain (z#xs) = pmazsimpchain xs
using maxsimpchain-Cons-reduce pmazxsimpchain pmazsimpchainD-distinct
by  (fastforce intro: pmaxsimpchainI-maxsimpchain)
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lemma pmazsimpchain-append-reducel :
pmazsimpchain (zsQys) = pmazsimpchain s
using maxsimpchain-append-reducel pmazxsimpchain pmaxsimpchainD-distinct
by  (fastforce intro: pmazsimpchainI-mazsimpchain)

lemma mazxsimpchain-obtain-pmaxsimpchain:
assumes £y mazsimpchain (z#zsQ[y])
shows Jys. set ys C set xs A length ys < length xs N
pmazsimpchain (x#ysQ[y])
proof—
obtain ys
where ys: set ys C set zs length ys < length zs padjacentchain (z#ysQ[y])
using maxsimpchainD-adj|OF assms(2)]
adjacentchain-obtain-proper[OF assms(1)]
by auto
from ys(1) assms(2) have V acset (z#ysQ[y]). mazsimp a
using maxsimpchainD-mazsimp by auto
with ys show ?thesis unfolding pmaxsimpchain-def by auto
qed

lemma min-mazsimpchainD-mazsimpchain:

assumes min-mazrsimpchain s

shows mazsimpchain s
proof (cases s rule: list-cases-Cons-snoc)

case Nil thus ?thesis using mazsimpchain-def by simp
next

case Single with assms show ?thesis using mazsimpchain-def by simp
next

case Cons-snoc with assms show ?thesis using is-arg-minD1 by fastforce
qed

lemma min-mazsimpchainD-min-betw:
min-mazsimpchain (x#xsQly]) = mazxsimpchain (z#ysQly]) =
length ys > length xs
using is-arg-minD2 by fastforce

lemma min-mazsimpchainl-betw:
assumes z#£y mazsimpchain (z#xsQy])
Nys. maxsimpchain (z#ysQly]) = length xs < length ys
shows min-mazsimpchain (z#xsQ[y])
using assms by (simp add: is-arg-min-linorderl)

lemma min-mazsimpchainl-betw-compare:
assumes z#£y mazsimpchain (z#xsQy])
min-mazxsimpchain (x#ysQ[y]) length zs = length ys
shows min-mazsimpchain (z#xsQ[y])
using assms min-mazsimpchainD-min-betw min-mazsimpchainl-betw
by auto
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lemma min-mazsimpchain-pmazsimpchain:
assumes min-mazsimpchain s
shows pmazsimpchain zs
proof (
rule pmaxsimpchainl-mazsimpchain, rule min-mazsimpchainD-maxsimpchain,
rule assms, cases s rule: list-cases-Cons-snoc
)
case (Cons-snoc  ys y)
have — distinct (z#ysQly]) = False
proof (cases z€set ys yEset ys rule: two-cases)
case both
from both(1) obtain as bs where ys = asQz#bs
using in-set-conv-decomp|of = ys| by fast
with assms Cons-snoc show False
using min-mazsimpchainD-mazsimpchain]| OF assms]
maxsimpchain-append-reduce2|of z# as]
min-mazxsimpchainD-min-betw|of x ys y]
by  fastforce
next
case one
from one(1) obtain as bs where ys = asQx#bs
using in-set-conv-decomplof z ys| by fast
with assms Cons-snoc show False
using min-mazsimpchainD-mazsimpchain|OF assms]
mazsimpchain-append-reduce2|of z#as]
min-maxsimpchainD-min-betw(of = ys y]
by  fastforce
next
case other
from other(2) obtain as bs where ys = asQy+#bs
using in-set-conv-decomp|of y ys] by fast
with assms Cons-snoc show False
using min-mazsimpchainD-mazsimpchain[OF assms]
mazsimpchain-append-reducel [of T#asQ[y]]
min-maxsimpchainD-min-betw(of = ys y]
by  fastforce
next
case neither
moreover assume — distinct (z # ys Q [y])
ultimately obtain as a bs cs where ys = asQ[a]|@Qbs@Q[a]Qcs
using assms Cons-snoc not-distinct-decomplof ys|] by auto
with assms Cons-snoc show False
using min-mazsimpchainD-mazsimpchain[OF assms]
maxsimpchain-append-reducel [of z#asQ[al]
mazsimpchain-append-reduce2|of z#asQ[a]Qbs a#tcsQ[y]]
mazsimpchain-overlap-join[of z#as a ¢sQy]]
min-maxsimpchainD-min-betw|of x ys y asQa# cs)
by auto
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qed
with Cons-snoc show distinct xs by fast
qed auto

lemma min-mazsimpchain-rev:
assumes min-mazxsimpchain xs
shows min-maxsimpchain (rev s)
proof (cases zs rule: list-cases-Cons-snoc)
case Single with assms show ?thesis
using min-mazxsimpchainD-mazsimpchain maxsimpchainD-mazsimp by simp
next
case (Cons-snoc T ys y)
moreover have min-maxsimpchain (y # rev ys Q [z])
proof (rule min-mazxsimpchainl-betw)
from Cons-snoc assms show y#z
using min-maxsimpchain-pmazxsimpchain pmazxsimpchainD-distinct by auto
from Cons-snoc show mazsimpchain (y # rev ys Q [z])
using min-mazsimpchainD-mazsimpchain[OF assms| maxsimpchain-rev
by  fastforce
from Cons-snoc assms
show Azs. maxsimpchain (y#2zsQ[z]) = length (rev ys) < length zs
using mazxsimpchain-rev min-mazsimpchainD-min-betw|of = ys y]
by  fastforce
qed
ultimately show ?thesis by simp
qged simp

lemma min-mazsimpchain-adyj:
[ maxsimp z; mazsimp y; x~y; £y | = min-mazsimpchain [z,y)
using maxsimpchain-def min-mazsimpchainl-betw|of = y []] by simp

lemma min-mazsimpchain-betw-CCons-reduce:
assumes min-mazsimpchain (w#z#ysQ[z])
shows min-mazsimpchain (z#ysQlz])
proof (rule min-mazsimpchainl-betw)
from assms show z#z
using min-mazxsimpchain-pmaxsimpchain pmazxsimpchainD-distinct
by  fastforce
show mazsimpchain (z#ysQ[z])
using min-mazsimpchainD-mazsimpchain|OF assms]
mazxsimpchain-Cons-reduce
by  fast
next
fix zs assume mazsimpchain (z#25Q[z])
hence mazsimpchain (wH#a#25Q]z])
using min-mazsimpchainD-mazsimpchain|OF assms] mazxsimpchain-def
by  fastforce
with assms show length ys < length zs
using min-mazsimpchainD-min-betw[of w x#ys z x#2s] by simp
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qed

lemma min-mazsimpchain-betw-uniform-length:

assumes min-mazsimpchain (z#xsQ[y]) min-maxsimpchain (z#ysQly])

shows length s = length ys

using  min-maxsimpchainD-min-betw|OF assms(1)]
min-mazxsimpchainD-min-betw[OF assms(2)]
min-mazsimpchainD-mazsimpchain| OF assms(1)]
min-mazxsimpchainD-mazsimpchain] OF assms(2))

by fastforce

lemma not-min-maxsimpchainl-betw:
[ maxsimpchain (z#ysQly]); length ys < length zs | =
- min-mazsimpchain (z#xsQ[y])
using min-maxsimpchainD-min-betw not-less by blast

lemma mazxsimpchain-in-subcomplex:
[ Subcomplex Y; set ys C Y; mazsimpchain ys | =
SimplicialComplex.mazxsimpchain Y ys
using maxsimpchain-def max-in-subcomplex
Simplicial Complex.mazxsimpchain-def
by  force

end

3.4 Isomorphisms of simplicial complexes

Here we develop the concept of isomorphism of simplicial complexes. Note
that we have not bothered to first develop the concept of morphism of simpli-
cial complexes, since every function on the vertex set of a simplicial complex
can be considered a morphism of complexes (see lemma map-is-simplicial-morph
above).

locale SimplicialComplexIsomorphism = SimplicialComplex X
for X :: 'a set set

+ fixes f:: 'la= b
assumes inj: inj-on f (|JX)

begin

lemmas morph = map-is-simplicial-morph[of f]

lemma iso-codim-map:
z€X = ye X = card (fx — fY) = card (z—y)
using inj inj-on-image-set-diff [of f - = y] finite-simplex subset-inj-on[of f - x—y]
inj-on-iff-eq-card[of x—y]
by  fastforce

lemma mazsimp-im-max: mazsimp x — w € X = foz C f'w = f'w = fx
using maxsimpD-simplex inj-onD[OF inj] mazsimpD-mazimal|of  w] by blast
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lemma maxsimp-map:
mazsimp ¢ => Simplicial Complex.mazsimp (f=X) (fz)
using maxsimpD-simplex mazxsimp-im-mazx morph
SimplicialComplex.mazsimpl[of fEX fz]
by  fastforce

lemma iso-adj-int-im:
assumes marsimp T Mmaxsimp y T~y T£y
shows (fz N fy) < f
proof (rule facetrell-card)
from assms(1,2) have 1:f‘z Cfy= f‘y=f‘z
using mazsimp-map SimplicialComplex.mazsimpD-simplex| OF morph]
Simplicial Complex.mazsimpD-mazimal| OF morph)
by  simp
thus fo N f'y C fo by fast

from assms(1) have card (f'c — fo N fy) < card (fo — f(xNy))
using finite-mazxsimp card-mono|of f'x — f{(zNy) fz — fz N f9y] by fast
moreover from assms(1,3,4) have card (f'x — f{(zNy)) = 1
using maxsimpD-simplex faces|of ©] mazsimpD-simplex
iso-codim-map adjacent-int-facet! [of x y| facetrel-card
by  fastforce
ultimately have card (f'c — fz N fy) < 1 by simp
moreover from assms(1,2,4) have card (f'x — fx 0 fy) # 0
using 1 mazsimpD-simplex finite-mazxsimp
inj-onD][OF induced-pow-fun-inj-on, OF inj, of = y]

by auto
ultimately show card (f'x — fo N fy) = 1 by simp
qed

lemma iso-adj-map:
assumes maxsimp T maxrsimp y r~y r£y
shows fo ~ fY
using assms(3,4) iso-adj-int-im[OF assms] adjacent-sym
iso-adj-int-im[OF assms(2) assms(1)]
by  (auto simp add: Int-commute intro: adjacentl)

lemma pmazsimpchain-map:
pmazxsimpchain ts = SimplicialComplex.pmazsimpchain (fFX) (fE=xs)
proof (induct zs rule: list-induct-CCons)
case Nil show ?case
using map-is-simplicial-morph SimplicialComplex.pmazsimpchain-def
by  fastforce
next
case (Single =) thus Zcase
using map-is-simplicial-morph pmazsimpchainD-mazsimp maxsimp-map
Simplicial Complex.pmazsimpchain-def
by  fastforce
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next
case (CCons z y xs)
have SimplicialComplex.pmazsimpchain (f = X) ( f'o # fy # fEwxs)
proof (
rule SimplicialComplex.pmazsimpchain-CConsl,
rule map-is-simplicial-morph

from CCons(2) show SimplicialComplex.maxsimp (f-X) (f‘z)
using pmazxsimpchainD-maxsimp maxsimp-map by simp
from CCons show SimplicialComplex.pmazsimpchain (fEX) (fy # flExs)
using pmazxsimpchain-Cons-reduce by simp
from CCons(2) show fo ~ f%
using pmazsimpchain-def iso-adj-map by simp
from inj CCons(2) have distinct (f=(x#yH#xs))
using mazsimpD-simplex inj-on-distinct-setlistmapim
unfolding pmazsimpchain-def
by blast
thus fz ¢ set (f'y # fE=xs) by simp
qed
thus ?case by simp
qed

end

3.5 The complex associated to a poset

A simplicial complex is naturally a poset under the subset relation. The
following develops the reverse direction: constructing a simplicial complex
from a suitable poset.

context ordering
begin

definition PosetComplex :: 'a set = 'a set set
where PosetComplex P = (Jz€P. { {y. pseudominimal-in (P.<z) y} })

lemma poset-is-Simplicial Complex:
assumes YV z€P. simplez-like (P.<z)
shows  SimplicialComplex (PosetComplex P)
proof (rule SimplicialComplex.intro, rule balll)
fix a assume a € PosetComplexr P
from this obtain z where z€P a = {y. pseudominimal-in (P.<z) y}
unfolding PosetComplez-def by fast
with assms show finite a
using pseudominimal-inD1 simplex-likeD-finite finite-subset[of a P.<z] by fast
next
fix a b assume ab: a € PosetComplex P bCa
from ab(1) obtain z where z: z€P a = {y. pseudominimal-in (P.<z) y}
unfolding PosetComplex-def by fast
from assms z(1) obtain f and A::nat set
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where fA: OrderingSetlso less-eq less (C) (C) (P.<z) f
f(P.<z) = Pow A
using simplez-likeD-iso[of P.<z]
by auto
define z’ where z”: 2’ = the-inv-into (P.<z) f (U (f*D))
from fA z(2) ab(2) z’ have z'-P: z'€eP
using collect-pseudominimals-below-in-poset[of P x f] by simp
moreover from z f4 ab(2) 2’ have b = {y. pseudominimal-in (P.<z') y}
using collect-pseudominimals-below-in-eq|of © P f] by simp
ultimately show b € PosetComplex P unfolding PosetComplex-def by fast
qged

definition poset-simplex-map :: 'a set = 'a = 'a set
where poset-simplex-map P z = {y. pseudominimal-in (P.<z) y}

lemma poset-to-PosetComplex-OrderingSetMap:
assumes Az. z€P = simplex-like (P.<x)
shows  OrderingSetMap (<) (<) (€) (C) P (poset-simplez-map P)
proof
from assms
show Aa b. [ a€P; beP; a<b | =
poset-simplex-map P a C poset-simplex-map P b
using simplez-like-has-bottom pseudominimal-in-below-in
unfolding poset-simplex-map-def
by fast
qged

end

When a poset affords a simplicial complex, there is a natural morphism
of posets from the source poset into the poset of sets in the complex, as
above. However, some further assumptions are necessary to ensure that this
morphism is an isomorphism. These conditions are collected in the following
locale.

locale ComplexLikePoset = ordering less-eq less
for less-eq :: 'a='a=bool (infix «<» 50)
and less  : ‘a='a=bool (infix <<» 50)
+ fixes P ::’a set
assumes below-in-P-simplez-like: € P —> simplex-like (P.<z)

and P-has-bottom : has-bottom P
and P-has-glbs : x€P = yeP = 3b. glbound-in-of Px y b
begin

abbreviation smap = poset-simplex-map P

lemma smap-onto-PosetComplex: smap ¢ P = PosetComplex P
using poset-simplex-map-def PosetComplex-def by auto

lemma ordsetmap-smap: [ a€P; beP; a<b ]| = smap a C smap b
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using OrderingSetMap.ordsetmap]
OF poset-to-PosetComplex-OrderingSetMap, OF below-in-P-simplex-like
]
poset-simplex-map-def
by  simp

lemma inj-on-smap: inj-on smap P
proof (rule inj-onl)
fix  y assume zy: z€P yeP smap x = smap y
show z =y
proof (cases smap © = {})
case True with xy show Zthesis
using poset-simplex-map-def below-in-P-simplex-like P-has-bottom
simplex-like-no-pseudominimal-in-below-in-imp-singleton|of x P]
simplex-like-no-pseudominimal-in-below-in-imp-singleton|of y P]
below-in-singleton-is-bottom[of P x| below-in-singleton-is-bottom[of P y]

by auto
next
case Fulse

from this obtain z where z € smap z by fast
with zy(8) have z21: 2 € P.<z 2z € P.<y
using pseudominimal-inD1 poset-simplex-map-def by auto
hence lbound-of = y z by (auto intro: lbound-ofI)
with 21(1) obtain b where b: glbound-in-of P x y b
using zy(1,2) P-has-glbs by fast
moreover have b € P.<z b € P.<y
using glbound-in-ofD-in[OF b] glbound-in-of-less-eq1 [OF b]
glbound-in-of-less-eq2[OF b]
by auto
ultimately show #thesis
using xy below-in-P-simplex-like
pseudominimal-in-below-in-less-eg-glbound[of P x - y b
simplez-like-below-in-above-pseudominimal-is-top[of = P]
simplez-like-below-in-above-pseudominimal-is-toplof y P)
unfolding poset-simplex-map-def
by force
qged
qged

lemma OrderingSetlso-smap:
OrderingSetlso (<) (<) (€) (C) P smap
proof (rule OrderingSetMap.isol)
show OrderingSetMap (<) (<) (C) (C) P smap
using poset-simplex-map-def below-in-P-simplex-like
poset-to-PosetComplex-OrderingSetMap
by  simp
next
fix z y assume zy: z€P yeP smap x C smap y
from zy(2) have simplex-like (P.<y) using below-in-P-simplez-like by fast
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from this obtain g and A::nat set
where OrderingSetlso (<) (<) (€) (C) (P.<y) g
g(P.<y) = Pow A
using simplex-likeD-iso[of P.<y]
by auto
with zy show 2<y
using poset-simplex-map-def collect-pseudominimals-below-in-eq[of y P g]
collect-pseudominimals-below-in-poset[of P y g]
inj-onD[OF inj-on-smap, of the-inv-into (P.<y) g (U (g ‘ smap z)) 1]
collect-pseudominimals-below-in-less-eq-top[of Py g A smap 1]
by  simp
qed (rule inj-on-smap)

lemmas rev-ordsetmap-smap =
OrderingSetlso.rev-ordsetmap|OF OrderingSetIso-smap)

end

end

4 Chamber complexes

Now we develop the basic theory of chamber complexes, including both thin
and thick complexes. Some terminology: a maximal simplex is now called a
chamber, and a chain (with respect to adjacency) of chambers is now called
a gallery. A gallery in which no chamber appears more than once is called
proper, and we use the prefix p as a naming convention to denote proper.
Again, we remind the reader that some sources reserve the name gallery
for (a slightly weaker notion of) what we are calling a proper gallery, using
pregallery to denote an improper gallery.

theory Chamber
imports Algebra Simplicial

begin

4.1 Locale definition and basic facts

locale ChamberComplex = SimplicialComplex X
for X :: 'a set set
+ assumes simplex-in-maz : ye X = Jx. mazsimp x N\ yCx
and maxsimp-connect: [ x # y; mazsimp x; mazsimp y | =
Jxs. mazsimpchain (z#2sQ[y))

context ChamberComplex
begin

abbreviation chamber = mazrsimp
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abbreviation gallery = mazsimpchain

abbreviation pgallery = pmaxsimpchain

abbreviation min-gallery = min-maxsimpchain
abbreviation supchamber v = (SOME C. chamber C N ve(C')

lemmas faces = faces

lemmas singleton-simplex = singleton-simplex

lemmas chamberl = mazsimpl

lemmas chamberD-simplex = mazxsimpD-simplex

lemmas chamberD-mazximal = mazsimpD-maximal

lemmas finite-chamber = finite-mazsimp

lemmas chamber-nempty = mazsimp-nempty

lemmas chamber-vertices = mazxsimp-vertices

lemmas gallery-def = maxsimpchain-def

lemmas gallery-snocl = mazsimpchain-snocl

lemmas galleryD-chamber = mazxsimpchainD-mazsimp
lemmas galleryD-adj = maxsimpchainD-adj

lemmas gallery-CConsl = mazsimpchain-CConsl

lemmas gallery-Cons-reduce = mazxsimpchain-Cons-reduce
lemmas gallery-append-reducel = mazxsimpchain-append-reducel
lemmas gallery-append-reduce2 = maxsimpchain-append-reduce2
lemmas gallery-remdup-adj = maxsimpchain-remdup-adj
lemmas gallery-obtain-pgallery = maxsimpchain-obtain-pmaxsimpchain
lemmas pgallery-def = pmazsimpchain-def

lemmas pgalleryl-gallery = pmaxsimpchainl-maxsimpchain
lemmas pgalleryD-chamber = pmazxsimpchainD-mazsimp
lemmas pgalleryD-adj = pmazsimpchainD-adj

lemmas pgalleryD-distinct = pmaxsimpchainD-distinct

lemmas pgallery-Cons-reduce = pmazsimpchain-Cons-reduce
lemmas pgallery-append-reducel = pmaxsimpchain-append-reducel
lemmas pgallery = pmaxsimpchain

lemmas min-gallery-simps = min-maxsimpchain.simps
lemmas min-galleryl-betw = min-maxsimpchainl-betw

lemmas min-galleryl-betw-compare = min-mazsimpchainl-betw-compare
lemmas min-galleryD-min-betw = min-maxsimpchainD-min-betw
lemmas min-galleryD-gallery = min-mazxsimpchainD-mazsimpchain
lemmas min-gallery-pgallery = min-maxsimpchain-pmaxsimpchain
lemmas min-gallery-rev = min-maxsimpchain-rev

lemmas min-gallery-adj = min-maxsimpchain-adj

lemmas not-min-galleryl-betw = not-min-mazxsimpchainl-betw

lemmas min-gallery-betw-CCons-reduce =
min-mazxsimpchain-betw-CCons-reduce

lemmas min-gallery-betw-uniform-length =
min-maxsimpchain-betw-uniform-length

lemmas vertex-set-int = vertez-set-int[OF ChamberComplez.azioms(1)]

lemma chamber-pconnect:
[ = # y; chamber x; chamber y | = Jxs. pgallery (z#xsQy])
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using maxsimp-connect[of = y| gallery-obtain-pgallery|of x y] by fast

lemma supchamberD:
assumes velJ X
defines C' = supchamber v
shows chamber C veC
using assms simplez-in-mazx somel[of NC. chamber C' N veC]
by auto

definition
ChamberSubcomplex Y = Y C X A ChamberComplex Y A
(V C. ChamberComplex.chamber Y C — chamber C)

lemma ChamberSubcomplex!:
assumes Y CX ChamberComplex Y
Ny. ChamberComplex.chamber Y y = chamber y
shows ChamberSubcompler Y
using assms ChamberSubcomplez-def
by fast

lemma ChamberSubcomplexD-sub: ChamberSubcompler ¥ — Y C X
using ChamberSubcomplex-def by fast

lemma ChamberSubcomplexD-complez:
ChamberSubcomplex Y =—> ChamberComplex Y
unfolding ChamberSubcomplex-def by fast

lemma chambersub-imp-sub: ChamberSubcomplex Y —> Subcomplex Y
using ChamberSubcomplex-def ChamberComplex.axioms(1) by fast

lemma chamber-in-subcomplez:
[ ChamberSubcomplex Y; C € Y; chamber C | =
ChamberComplex.chamber Y C
using chambersub-imp-sub max-in-subcomplexr by simp

lemma subcomplex-chamber:
ChamberSubcomplex Y —> ChamberComplex.chamber Y C' —> chamber C
unfolding ChamberSubcomplex-def by fast

lemma gallery-in-subcomplex:
[ ChamberSubcomplex Y; set ys C Y; gallery ys | =
ChamberComplex.gallery Y ys
using chambersub-imp-sub mazxsimpchain-in-subcomplexr by simp

lemma subcomplex-gallery:
ChamberSubcomplex Y = ChamberComplez.gallery Y Cs = gallery Cs
using ChamberSubcomplex-def gallery-def ChamberComplex.gallery-def
by  fastforce
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lemma subcomplex-pgallery:
ChamberSubcomplex Y = ChamberComplez.pgallery Y Cs => pgallery Cs
using ChamberSubcomplex-def pgallery-def ChamberComplez.pgallery-def
by  fastforce

lemma min-gallery-in-subcomplex:
assumes ChamberSubcomplex Y min-gallery Cs set Cs C Y
shows ChamberComplex.min-gallery Y Cs
proof (cases Cs rule: list-cases-Cons-snoc)
case Nil with assms(1) show ?thesis
using ChamberSubcomplexD-complex ChamberComplex.min-gallery-simps(1)
by fast
next
case Single with assms show ?thesis
using min-galleryD-gallery galleryD-chamber chamber-in-subcomplex
ChamberComplex.min-gallery-simps(2) ChamberSubcomplexD-complex
by  force
next
case (Cons-snoc C Ds D)
with assms show ?thesis
using ChamberSubcomplexD-complex min-gallery-pgallery
pgalleryD-distinct[of C#DsQ[D]| pgallery
gallery-in-subcomplez[of Y] subcomplez-gallery
min-galleryD-min-betw
ChamberComplex.min-galleryl-betw|[of Y
by  force
qged

lemma chamber-card: chamber C = chamber D = card C = card D
using maxsimp-connect[of C D] galleryD-adj adjacentchain-card
by (cases C=D) auto

lemma chamber-facet-is-chamber-facet:
[ chamber C; chamber D; 2<1C; 2CD | = z<1D
using finite-chamber finite-facetrel-card chamber-card|of C]
by  (fastforce intro: facetrell-cardSuc)

lemma chamber-ady:
assumes chamber C DeX C ~ D
shows chamber D
proof—
from assms(2) obtain B where B: chamber B DCB
using simplez-in-max by fast
with assms(1,3) show ?thesis
using chamber-card|[of B] adjacent-card finite-chamber card-subset-eq[of B D]
by  force
qed

lemma chambers-share-facet:

119



assumes chamber C' chamber (insert v z) z<1C
shows z<insert v z
proof (rule facetrell)
from assms show vé¢z
using finite-chamber|of C| finite-chamber|of insert v z] card-insert-if [of z v]
by  (auto simp add: finite-facetrel-card chamber-card)
qed simp

lemma adjacentset-chamber: chamber C = De&adjacentset C = chamber D
using adjacentset-def chamber-adj by fast

lemma chamber-shared-facet: | chamber C; z<1C; DeX; 2<1D | = chamber D
by (fast intro: chamber-adj adjacentl)

lemma adjacentset-conv-facetchambersets:
assumes X # {{}} chamber C
shows adjacentset C = (|JveC. {DeX. C—{v}<D})
proof (rule seteql)
fix D assume D: D € adjacentset C
show D € (|JveC. {DeX. C—{v}<D})
proof (cases D=C)
case True with assms
have C # {} and C € X
using chamber-nempty chamberD-simplex by auto
with True assms show ?thesis
using facetrel-diff-vertex by fastforce
next
case Fulse
from D have D’: C~D using adjacentsetD-adj by fast
with False obtain v where v: v¢D C = insert v (CND)
using adjacent-int-decomp by fast
hence C—{v} = CND by auto
with D’ Fulse have C—{v} < D using adjacent-int-facet2 by auto
with assms(2) D v(2) show ?thesis using adjacentset-def by fast
qed
next
from assms(2)
show AD. D e (JveC. {FeX. C—{v}<FE}) =
D € adjacentset C
using  facetrel-diff-vertex adjacentl
unfolding adjacentset-def
by fastforce
qed

end
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4.2 The system of chambers and distance between chambers

We now examine the system of all chambers in more detail, and explore the
distance function on this system provided by lengths of minimal galleries.

context ChamberComplex
begin

definition chamber-system :: 'a set set
where chamber-system = {C. chamber C}
abbreviation C = chamber-system

definition chamber-distance :: 'a set = 'a set = nat
where chamber-distance C' D =
(if C=D then 0 else
Suc (length (ARG-MIN length Cs. gallery (C# CsQ[D)]))))

definition closest-supchamber :: 'a set = 'a set = 'a set
where closest-supchamber F' D =
(ARG-MIN (AC. chamber-distance C D) C.
chamber C N FCC)

definition face-distance F D = chamber-distance (closest-supchamber F D) D

lemma chamber-system-simplices: C C X
using chamberD-simpler unfolding chamber-system-def by fast

lemma gallery-chamber-system: gallery Cs = set Cs C C
using galleryD-chamber chamber-system-def by fast

lemmas pgallery-chamber-system = gallery-chamber-system[OF pgallery]

lemma chamber-distance-le:
gallery (C#CsQ[D]) = chamber-distance C D < Suc (length Cs)
using chamber-distance-def
arg-min-nat-le[of ACs. gallery (C#CsQ[D]) - length]
by auto

lemma min-gallery-betw-chamber-distance:
min-gallery (C# CsQ[D]) = chamber-distance C D = Suc (length Cs)
using chamber-distance-def[of C' D] is-arg-min-size|of length - Cs] by auto

lemma min-galleryl-chamber-distance-betw:
gallery (C#CsQ[D]) = Suc (length Cs) = chamber-distance C D =
min-gallery (C# CsQ[D])
using chamber-distance-def chamber-distance-le min-galleryl-betw|of C D)
by  fastforce

lemma gallery-least-length:
assumes chamber C chamber D C#D
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defines Cs = ARG-MIN length Cs. gallery (C# CsQ[D])
shows gallery (C# CsQ[D])

using assms mazsimp-connect[of C D] arg-min-natl
by fast

lemma min-gallery-least-length:
assumes chamber C chamber D C#D
defines Cs = ARG-MIN length Cs. gallery (C# CsQ[D])
shows  min-gallery (C#CsQ[D)])
unfolding Cs-def
using assms gallery-least-length
by (blast intro: min-galleryl-betw arg-min-nat-le)

lemma pgallery-least-length:
assumes chamber C chamber D C#D
defines Cs = ARG-MIN length Cs. gallery (C# CsQ[D])
shows pgallery (C# CsQ[D])
using assms min-gallery-least-length min-gallery-pgallery
by fast

lemma closest-supchamberD:
assumes FeX chamber D
shows chamber (closest-supchamber F' D) F C closest-supchamber F D
using  assms arg-min-natl[of A\C. chamber C N FCC'| simplex-in-maz|of F)]
unfolding closest-supchamber-def
by auto

lemma closest-supchamber-closest:
chamber C = FCC —
chamber-distance (closest-supchamber F' D) D < chamber-distance C D
using arg-min-nat-le[of NC. chamber C N FCC C] closest-supchamber-def
by simp

lemma face-distance-le:
chamber C = FC(C = face-distance F' D < chamber-distance C D
unfolding face-distance-def closest-supchamber-def
by (auto intro: arg-min-nat-le)

lemma face-distance-eq-0: chamber C — FCC = face-distance F C = 0
using chamber-distance-def closest-supchamber-def face-distance-def
arg-min-equality|
of AC. chamber C N FCC C AD. chamber-distance D C
]

by simp

end
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4.3 Labelling a chamber complex

A labelling of a chamber complex is a function on the vertex set so that each
chamber is in bijective correspondence with the label set (chambers all have
the same number of vertices).

context ChamberComplex
begin

definition label-wrt :: 'b set = (‘a="b) = bool
where label-wrt B f = (V CeC. bij-betw f C B)

lemma label-wrtD: label-wrt B f = CeC = bij-betw f C' B
using label-wrt-def by fast

lemma label-wrtD": label-wrt B f = chamber C = bij-betw f C B
using label-wrt-def chamber-system-def by fast

lemma label-wrt-adjacent:
assumes label-wrt B f chamber C' chamber D C~D veC—D weD—C
shows fv=fuw
proof—
from assms(9) have f‘D = insert (f v) (f(CND))
using adjacent-conv-insert|OF assms(4), of v] label-wrtD'[OF assms(1,2)]
label-wrtD'|OF assms(1,3)]
bij-betw-imp-surj-on|of f]
by  force
with assms(6) show ?thesis
using adjacent-sym[OF assms(4)] adjacent-conv-insert[of D C|
inj-on-insert[of f w CND]
bij-betw-imp-ing-on[OF label-wrtD’, OF assms(1,3)]
by  (force simp add: Int-commute)
qed

lemma label-wrt-adjacent-shared-facet:
[ label-wrt B f; chamber (insert v z); chamber (insert w z); véz; wez | =

fo="fw
by (auto intro: label-wrt-adjacent adjacentl facetrell)

lemma label-wrt-elt-image: label-wrt B f — ve| JX = fv € B
using simplex-in-mazx label-wrtD’ bij-betw-imp-surj-on by fast

end

4.4 Morphisms of chamber complexes

While any function on the vertex set of a simplicial complex can be consid-
ered a morphism of simplicial complexes onto its image, for chamber com-
plexes we require the function send chambers onto chambers of the same
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cardinality in some chamber complex of the codomain.

4.4.1 Morphism locale and basic facts

locale ChamberComplexMorphism = domain: ChamberComplex X + codomain:
ChamberComplex Y

for X ::'a set set

and Y :: b set set
+ fixes [ ::'a="b

assumes chamber-map: domain.chamber C = codomain.chamber (f‘C)

and  dim-map : domain.chamber C = card (fC') = card C

lemma (in ChamberComplex) trivial-morphism:
ChamberComplexMorphism X X id
by unfold-locales auto

lemma (in ChamberComplez) inclusion-morphism:
assumes ChamberSubcomplex Y
shows ChamberComplexMorphism Y X id
by
rule ChamberComplexMorphism.intro,
rule ChamberSubcomplexD-complex,
rule assms, unfold-locales

(auto simp add: subcomplex-chamber[OF assms])

context ChamberComplexMorphism
begin

lemmas domain-complex = domain. ChamberComplex-axioms
lemmas codomain-complex = codomain.ChamberComplez-axioms

lemmas simplicialcomplez-image = domain.map-is-simplicial-morph[of f]

lemma cong: fun-eq-on g f (JX) = ChamberComplezMorphism X Y g
using chamber-map domain.chamber-vertices fun-eq-on-imlof g f] dim-map
domain.chamber-vertices
by  unfold-locales auto

lemma comp:
assumes ChamberComplexMorphism Y Z g
shows  ChamberComplexMorphism X Z (gof)
proof (
rule ChamberComplexMorphism.intro, rule domain-complez,
rule ChamberComplexMorphism.azioms(2), rule assms, unfold-locales
)
fix C assume C: domain.chamber C
from C show SimplicialComplex.mazsimp Z ((gof)‘C)
using chamber-map ChamberComplexMorphism.chamber-map[OF assms)
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by  (force simp add: image-comp| THEN sym)])
from C show card ((g o f)‘C) = card C
using chamber-map dim-map ChamberComplexMorphism.dim-map[OF assms)
by  (force simp add: image-comp| THEN sym])
qed

lemma restrict-domain:
assumes domain. ChamberSubcompler W
shows ChamberComplexMorphism W'Y f
proof (
rule ChamberComplexMorphism.intro, rule domain. ChamberSubcomplexD-complez,
rule assms, rule codomain-complex, unfold-locales
)
fix C assume ChamberComplex.chamber W C
with assms show codomain.chamber (f‘C) card (f‘C) = card C
using domain.subcomplex-chamber chamber-map dim-map by auto
qed

lemma restrict-codomain:
assumes codomain. ChamberSubcomplex Z f-X C Z
shows ChamberComplexMorphism X Z f
proof (
rule ChamberComplexMorphism.intro, rule domain-complez,
rule codomain. ChamberSubcomplexD-complez,
rule assms, unfold-locales
)
fix C' assume domain.chamber C
with assms show SimplicialComplex.maxsimp Z (fC) card (f < C) = card C
using domain.chamberD-simplexz[of C| chamber-map
codomain.chamber-in-subcomplex dim-map
by auto
qed

lemma inj-on-chamber: domain.chamber C = inj-on f C
using domain.finite-chamber dim-map by (fast intro: eq-card-imp-ing-on)

lemma bij-betw-chambers: domain.chamber C = bij-betw f C (f‘C)
using inj-on-chamber by (fast intro: bij-betw-imagel)

lemma card-map: x€X = card (fz) = card x
using domain.simplez-in-maz subset-inj-on|OF inj-on-chamber]
domain.finite-simplex inj-on-iff-eq-card
by  blast

lemma codim-map:
assumes domain.chamber C y C C
shows card (f‘C — fy) = card (C—y)
using assms dim-map domain.chamberD-simplex domain.faces[of C y]
domain.finite-simplex card-Diff-subset|of fy f‘C|
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card-map card-Diff-subset[of y C|
by auto

lemma simplex-map: € X = fz€Y
using chamber-map domain.simplez-in-max codomain.chamberD-simplex
codomain.faces|of - fz]
by  force

lemma simplices-map: fFX C Y
using simplez-map by fast

lemma vertez-map: z € JX = fz e Y
using simplez-map by fast

lemma facet-map: domain.chamber C = 2<1C = f2 < fC
using facetrel-subset facetrel-card codim-map|of C 2]
by  (fastforce intro: facetrell-card)

lemma adj-int-im:
assumes domain.chamber C domain.chamber D C ~ D f‘C # f‘D
shows (f‘C' n fD) < fC
proof (rule facetrell-card)
from assms(1,2) chamber-map have 1: f‘C C f'D = f‘C = fD
using codomain.chamberD-simplex codomain.chamberD-mazimal|of f*C f*D]
by  simp
thus fCnNf‘DCf°‘C by fast

from assms(1) have card (f‘C — f‘C N f‘D) < card (f‘C — f(CND))

using domain.finite-chamber
card-mono|of f*C — f(CND) fC — fC N fD]

by  fast

moreover from assms(1,3,4) have card (f‘C — f(CND)) = 1
using codim-maplof C CND] adjacent-int-facetl facetrel-card
by  fastforce

ultimately have card (f‘C — f‘C N f‘D) < 1 by simp

moreover from 1 assms(1,4) have card (f°C — f°C N fD) # 0
using domain.finite-chamber by auto

ultimately show card (f‘C — f‘C N f‘D) = 1 by simp

qed

lemma adj-map”:
assumes domain.chamber C domain.chamber D C ~ D f‘C # f‘D
shows f‘C ~ f'D
using  assms(3.,4) adj-int-im[OF assms| adjacent-sym
adj-int-im[OF assms(2) assms(1)]
by (auto simp add: Int-commute intro: adjacentl)

lemma adj-map:
[ domain.chamber C; domain.chamber D; C ~ D | = f‘C ~ f‘D
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using adjacent-reflof fC| adj-map’ empty-not-adjacent|of D] by fastforce

lemma chamber-vertex-outside-facet-image:

assumes v¢z domain.chamber (insert v z)

shows fuv ¢ f2
proof—

from assms(1) have insert v z — z = {v} by force

with assms(2) show ?thesis using codim-map by fastforce
qed

lemma expand-codomain:
assumes ChamberComplex Z ChamberComplex. ChamberSubcomplex Z'Y
shows ChamberComplexMorphism X Z f
proof (
rule ChamberComplexMorphism.intro, rule domain-complex, rule assms(1),
unfold-locales
)
from assms show
Az. domain.chamber z = SimplicialComplez.maxsimp Z (f * z)
using chamber-map ChamberComplex.subcomplex-chamber by fast
qged (auto simp add: dim-map)

end

4.4.2 Action on pregalleries and galleries

context ChamberComplexMorphism
begin

lemma gallery-map: domain.gallery Cs = codomain.gallery (f=Cs)
proof (induct Cs rule: list-induct-CCons)
case (Single C) thus ?Zcase
using domain.galleryD-chamber chamber-map codomain.gallery-def by auto
next
case (CCons B C Cs)
have codomain.gallery (f'B # f‘C # fECs)
proof (rule codomain.gallery-CConsI)
from CCons(2) show codomain.chamber (f * B)
using domain.galleryD-chamber chamber-map by simp
from CCons show codomain.gallery (f‘C # fE=Cs)
using domain.gallery-Cons-reduce by auto
from CCons(2) show f‘B ~ f‘C
using domain.gallery-Cons-reduce|of B C# Cs] domain.galleryD-adj
domain.galleryD-chamber adj-map
by  fastforce
qed
thus “case by simp
qed (simp add: codomain.mazsimpchain-def)
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lemma gallery-betw-map:
domain.gallery (C#CsQ[D]) = codomain.gallery (f'C # fl=Cs Q [f‘D))
using gallery-map by fastforce

end

4.4.3 Properties of the image

context ChamberComplexMorphism
begin

lemma subcomplez-image: codomain.Subcomplex (fFX)
using simplicialcomplez-image simplex-map by fast

lemmas chamber-in-image = codomain.maz-in-subcomplex| OF subcomplez-image]

lemma mazxsimp-map-into-image:
assumes domain.chamber x
shows  SimplicialComplex.mazsimp (fEX) (fz)
proof (
rule SimplicialComplex.maxsimpl, rule simplicialcomplex-image, rule imagel,
rule domain.chamberD-simplex, rule assms
)
from assms show Az. z€frX — f2 C 2 = 2z = f%
using chamber-map|of x] simplez-map codomain.chamberD-mazimal|of fx]
by  blast
qed

lemma maxsimp-preimage:
assumes CeX SimplicialComplex.mazxsimp (f-X) (fC)
shows domain.chamber C
proof—
from assms(1) obtain D where D: domain.chamber D CCD
using domain.simplex-in-mazx by fast
have C=D
proof (rule card-subset-eq)
from D(1) show finite D using domain.finite-chamber by fast
with assms D show card C' = card D
using domain.chamberD-simplex simplicialcomplex-image
Simplicial Complex.mazsimpD-mazimal|of f-X fC D)
card-monolof D C] domain.finite-simplex card-image-le[of C f] dim-map
by  force
qed (rule D(2))
with D(1) show ?thesis by fast
qed

lemma chamber-preimage:

CeX = codomain.chamber (f‘C') = domain.chamber C
using chamber-in-image maxsimp-preimage by simp
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lemma chambercomplez-image: ChamberComplez (fFX)
proof (intro-locales, rule simplicialcomplez-image, unfold-locales)
show Ay. yefFX = Ja. SimplicialComplex.mazsimp (fF-X) 2 Ay C x
using domain.simplex-in-mazx mazxsimp-map-into-image by fast
next
fix z y
assume zy: z#y SimplicialComplex.mazsimp (f-X)
SimplicialComplex.mazsimp (fEX) y
from zy(2,3) obtain zz zy where zzy: ze€X ¢ = f2r 2yeX y = f2y
using SimplicialComplex.maxsimpD-simplex[OF simplicialcomplex-image, of ]
SimplicialComplex.mazsimpD-simplex[OF simplicialcomplex-image, of y]
by  fast
with zy obtain ws where ws: domain.gallery (zz#wsQ[zy))
using maxsimp-preimage domain.mazsimp-connect|of zx zy] by auto
with ws zzy(2,4) have Simplicial Complex.mazsimpchain (fFX) (x#(f=ws)Q[y])
using gallery-map|of zz#wsQ[zy]] domain.galleryD-chamber
domain.chamberD-simplex codomain.galleryD-chamber
codomain.maz-in-subcomplex| OF subcomplex-image]
codomain.galleryD-adj
Simplicial Complex.mazsimpchain-def | OF simplicialcomplez-image]
by auto
thus Jzs. Simplicial Complex.mazxsimpchain (frX) (x#2sQ[y]) by fast
qed

lemma chambersubcomplez-image: codomain. ChamberSubcomplex (f+X)
using simplices-map chambercomplex-image Chamber Complex.chamberD-simplex
chambercomplex-image maxsimp-preimage chamber-map
by  (force intro: codomain.ChamberSubcomplexI)

lemma restrict-codomain-to-image: ChamberComplexMorphism X (fEX) f
using restrict-codomain chambersubcomplex-image by fast

end

4.4.4 Action on the chamber system

context ChamberComplexMorphism
begin

lemma chamber-system-into: f-domain.C C codomain.C
using chamber-map domain.chamber-system-def codomain.chamber-system-def
by auto

lemma chamber-system-image: frdomain.C = codomain.C N (f+X)
proof
show fkdomain.C C codomain.C N (fFX)
using chamber-system-into domain.chamber-system-simplices by fast
show fkdomain.C O codomain.C N (f-X)
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proof
fix D assume D € codomain.C N (fFX)
hence 3 C. domain.chamber C N f‘C = D
using codomain.chamber-system-def chamber-preimage by fast
thus D € fldomain.C using domain.chamber-system-def by auto
qed
qed

lemma image-chamber-system: ChamberComplex.C (fFX) = f + domain.C
using ChamberComplex.chamber-system-def codomain.subcomplex-chamber
ChamberComplex.chamberD-simplex chambercomplez-image
chambersubcomplex-image chamber-system-image
codomain.chamber-in-subcomplex codomain.chamber-system-def
by auto

lemma image-chamber-system-image:
ChamberComplez.C (fFX) = codomain.C N (fFX)
using image-chamber-system chamber-system-image by simp

lemma face-distance-eq-chamber-distance-map:

assumes domain.chamber C domain.chamber D C#D 2CC
codomain.face-distance (fz) (f‘D) = domain.face-distance z D
domain.face-distance z D = domain.chamber-distance C' D

shows codomain.face-distance (fz) (f‘D) =

codomain.chamber-distance (f‘C) (fD)

using assms codomain.face-distance-le[of fC f‘z f*D] chamber-map
codomain.chamber-distance-le
gallery-betw-map[OF domain.gallery-least-length, of C D]
domain.chamber-distance-def

by force

lemma face-distance-eq-chamber-distance-min-gallery-betw-map:

assumes domain.chamber C domain.chamber D C#D zCC
codomain.face-distance (fz) (f‘D) = domain.face-distance z D
domain.face-distance z D = domain.chamber-distance C D
domain.min-gallery (C# CsQ[D])

shows codomain.min-gallery (fl=(C# CsQ[D]))

using assms face-distance-eq-chamber-distance-map|of C D 2]
gallery-map[OF domain.min-galleryD-gallery, OF assms(7)]
domain.min-gallery-betw-chamber-distance| OF assms(7)]
codomain.min-galleryl-chamber-distance-betw|of f‘C fl=Cs f*D]

by auto

end

4.4.5 Isomorphisms

locale ChamberComplexIsomorphism = ChamberComplexMorphism X Y f
for X :: 'a set set
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and Y :: 'b set set
and [ :: ‘a="b

+ assumes bij-betw-vertices: bij-betw f (JX) (JY)
and surj-simplex-map : fFX =Y

lemma (in ChamberComplexIsomorphism) inj: inj-on f (|J X)
using bij-betw-vertices bij-betw-def by fast

sublocale ChamberComplexIsomorphism < SimplicialComplexIsomorphism
using inj by (unfold-locales) fast

lemma (in ChamberComplez) trivial-isomorphism:
ChamberComplexIsomorphism X X id
using trivial-morphism bij-betw-id
by  unfold-locales (auto intro: ChamberComplexIsomorphism.intro)

lemma (in ChamberComplexMorphism) isol-inverse:
assumes ChamberComplexMorphism Y X g
fizespointwise (gof) (I X) fizespointwise (fog) (U Y)
shows ChamberComplexlsomorphism X Y f
proof (rule ChamberComplexIsomorphism.intro)
show ChamberComplexMorphism X Y f ..
show ChamberComplexIsomorphism-axioms X Y f
proof
from assms show bij-betw f (UX) (JY)
using vertez-map ChamberComplexMorphism.vertez-map
comps-fizpointwise-imp-bij-betwlof f | JX U Y g]
by  fast
show fEFX =Y
proof (rule order.antisym, rule simplices-map, rule subsetl)
fix y assume yeY
moreover hence (fog) ‘y € fFX
using ChamberComplexMorphism.simplez-map[OF assms(1)]
by  (simp add: image-comp|THEN sym])
ultimately show y € frX
using fizespointwise-subset| OF assms(8), of y] fixespointwise-im by fastforce
qged
qed
qed

context ChamberComplexlsomorphism

begin

lemmas domain-complex = domain-complex
lemmas chamber-map = chamber-map
lemmas dim-map = dim-map
lemmas gallery-map = gallery-map
lemmas simplez-map = simplex-map

lemmas chamber-preimage = chamber-preimage
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lemma chamber-morphism: ChamberComplexMorphism X Y f ..

lemma pgallery-map: domain.pgallery Cs = codomain.pgallery (fl=Cs)
using pmazsimpchain-map surj-simplex-map by simp

lemma iso-cong:

assumes fun-eg-on g f (IJX)

shows ChamberComplexlsomorphism X Y g
proof (

rule ChamberComplexIsomorphism.intro, rule cong, rule assms,
unfold-locales

)
from assms show bij-betw g (IJX) (UY)
using bij-betw-vertices fun-eq-on-bij-betw by blast
show g - X = Y using setsetmapim-cong|OF assms] surj-simplez-map by simp
qed

lemma iso-comp:

assumes ChamberComplexIsomorphism Y Z g

shows  ChamberComplexIsomorphism X Z (gof)

by
rule ChamberComplexIsomorphism.intro, rule comp,
rule ChamberComplezIsomorphism.azioms(1),
rule assms, unfold-locales, rule bij-betw-trans,
rule bij-betw-vertices,

rule ChamberComplexIsomorphism.bij-betw-vertices,
rule assms

)

(simp add:
setsetmapim-comp surj-simplex-map assms
ChamberComplexlsomorphism.surj-simplez-map

)

lemma inj-on-chamber-system: inj-on ((°) f) domain.C
proof (rule inj-onl)
fix C D show [ C' € domain.C; D € domain.C; f'C = f'D ]| = C=D
using domain.chamber-system-def domain.chamber-pconnect[of C D]
pgallery-map codomain.pgalleryD-distinct
by  fastforce
qed

lemma inv: ChamberComplexlsomorphism Y X (the-inv-into (| X) f)
proof
show bij-betw (the-inv-into (JX) f) (UY) (UX)
using bij-betw-vertices bij-betw-the-inv-into by fast
show /: (the-inv-into (JX) f)F Y =X
using bij-betw-imp-inj-on| OF bij-betw-vertices| surj-simplex-map
setsetmapim-the-inv-into
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by  force
next
fix C assume C: codomain.chamber C
hence C': CeftX using codomain.chamberD-simplex surj-simplex-map by fast
show domain.chamber (the-inv-into (JX) f © C)
proof (rule domain.chamberl)
from C’ obtain D where DeX the-inv-into ((JX) f‘C =D
using the-inv-into-f~im-f~im[OF inj] by blast
thus the-inv-into (|JX) f “ C € X by simp
fix z assume z: z€X the-inv-into (UX) f‘C C 2
with C have fz = C
using C' f-im-the-inv-into-f-im[OF inj, of C] surj-simplex-map
codomain.chamberD-mazimal[of C f]
by  blast
with z(1) show z = the-inv-into (JX) f “ C
using the-inv-into-f-im-f-~im[OF inj] by auto
qed
from C show card (the-inv-into (JX) f* C) = card C
using C' codomain.finite-chamber
subset-inj-on| OF inj-on-the-inv-into, OF inj, of C)|
by  (fast intro: inj-on-iff-eq-card[ THEN iffD1])
qged

lemma chamber-distance-map:
assumes domain.chamber C domain.chamber D
shows codomain.chamber-distance (fC") (f‘D) =
domain.chamber-distance C' D
proof (cases f‘C=f‘D)
case True
moreover with assms have C=D
using inj-onD[OF inj-on-chamber-system] domain.chamber-system-def
by  simp
ultimately show ?thesis
using domain.chamber-distance-def codomain.chamber-distance-def by simp
next
case Fulse
define Cs Ds where Cs = (ARG-MIN length Cs. domain.gallery (C# CsQ[D]))
and Ds = (ARG-MIN length Ds. codomain.gallery (f‘C # Ds @ [f‘D]))
from assms False Cs-def have codomain.gallery (f‘C # f=Cs Q [fD])
using gallery-map domain.maxsimp-connect[of C D]
arg-min-natl[of A\Cs. domain.gallery (C# CsQ[D)])]
by  fastforce
moreover from assms Cs-def
have AFEs. codomain.gallery (f‘C # Es Q [f‘D]) =
length (fl=Cs) < length Es
using ChamberComplexIsomorphism.gallery-map|OF inv)
the-inv-into-f-im-f~im[OF inj, of C] the-inv-into-f-im-f-im[OF inj, of D]
domain.chamberD-simplex|[of C| domain.chamberD-simplex[of D]
domain.maxsimp-connect[of C D]
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arg-min-nat-le[of ACs. domain.gallery (C# CsQ[D]) - length]
by  force
ultimately have length Ds = length (f=Cs)
unfolding Ds-def by (fast intro: arg-min-equality)
with False Cs-def Ds-def show ?thesis
using domain.chamber-distance-def codomain.chamber-distance-def by auto
qed

lemma face-distance-map:
assumes domain.chamber C FeX
shows codomain.face-distance (f‘F) (f‘C) = domain.face-distance F C
proof—
define D D’ invf where D = domain.closest-supchamber F C
and D’ = codomain.closest-supchamber (f‘F) (fC)
and inuf = the-inv-into (JX) f

from assms D-def D’-def invf-def have chambers:
codomain.chamber (f‘C) domain.chamber D codomain.chamber D’
codomain.chamber (f*D) domain.chamber (invf‘D’)
using domain.closest-supchamberD(1) simplex-map
codomain.closest-supchamberD(1) chamber-map
ChamberComplexIsomorphism.chamber-map| OF inv)
by auto

have codomain.chamber-distance D' (f*C) < domain.chamber-distance D C
proof—
from assms D-def D’-def
have codomain.chamber-distance D' (f'C) <
codomain.chamber-distance (f'D) (f‘C)
using chambers(4) domain.closest-supchamberD(2)
codomain. closest-supchamber-def
by  (fastforce intro: arg-min-nat-le)
with assms D-def D’-def show ?thesis
using chambers(2) chamber-distance-map by simp
qed
moreover
have domain.chamber-distance D C < codomain.chamber-distance D’ (f‘C')
proof—
from assms D’-def have invf‘f'F C invf‘D’
using chambers(1) simplez-map codomain.closest-supchamberD(2) by fast
with assms(2) invf-def have F C inufD’
using the-inv-into-f-im-f~im[OF inj, of F] by fastforce
with D-def
have domain.chamber-distance D C <
domain.chamber-distance (invf ¢ D) C
using chambers(5) domain.closest-supchamber-def
by (auto intro: arg-min-nat-le)
with assms(1) invf-def show ?thesis
using chambers(3,5) surj-simplez-map codomain.chamberD-simplex
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f-im-the-inv-into-f~im[OF inj, of D’
chamber-distance-mapl|of invf‘D’ C]
by  fastforce
qed
ultimately show ?thesis
using D-def D'-def domain.face-distance-def codomain.face-distance-def
by  simp
qed

end

4.4.6 Endomorphisms

locale ChamberComplexEndomorphism = ChamberComplexMorphism X X f
for X :: 'a set set
and f :: 'a="a

+ assumes trivial-outside : v¢|JX = fvo =
— to facilitate uniqueness arguments

lemma (in ChamberComplex) trivial-endomorphism:
ChamberComplexEndomorphism X id
by (
rule ChamberComplexEndomorphism.intro, rule trivial-morphism,
unfold-locales

)

simp

context ChamberComplexEndomorphism
begin

abbreviation ChamberSubcomplexr = domain.ChamberSubcomplex
abbreviation Subcompler = domain.Subcomplex

abbreviation chamber = domain.chamber

abbreviation gallery = domain.gallery

abbreviation C = domain.chamber-system

abbreviation label-wrt = domain.label-wrt

lemmas dim-map = dim-map

lemmas simplez-map = simplex-map

lemmas vertex-map = vertex-map

lemmas chamber-map = chamber-map

lemmas adj-map = adj-map

lemmas facet-map = facet-map

lemmas bij-betw-chambers = bij-betw-chambers
lemmas chamber-system-into = chamber-system-into
lemmas chamber-system-image = chamber-system-image
lemmas image-chamber-system = image-chamber-system
lemmas chambercomplez-image = chambercomplez-image

lemmas chambersubcomplez-image = chambersubcomplez-image
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lemmas face-distance-eq-chamber-distance-map =
face-distance-eq-chamber-distance-map

lemmas face-distance-eq-chamber-distance-min-gallery-betw-map =
face-distance-eq-chamber-distance-min-gallery-betw-map

lemmas facedist-chdist-mingal-btwmap =
face-distance-eq-chamber-distance-min-gallery-betw-map

lemmas trivial-endomorphism = domain.trivial-endomorphism
lemmas finite-simplices = domain.finite-simplices

lemmas faces = domain.faces

lemmas mazxsimp-connect = domain.maxsimp-connect
lemmas simplez-in-max = domain.simplex-in-max
lemmas chamberD-simplex = domain.chamberD-simplex
lemmas chamber-system-def = domain.chamber-system-def
lemmas chamber-system-simplices = domain.chamber-system-simplices
lemmas galleryD-chamber = domain.galleryD-chamber
lemmas galleryD-adj = domain.galleryD-adj

lemmas gallery-append-reducel = domain.gallery-append-reducel
lemmas gallery-Cons-reduce = domain.gallery-Cons-reduce
lemmas gallery-chamber-system = domain.gallery-chamber-system
lemmas label-wrtD = domain.label-wrtD

lemmas label-wrt-adjacent = domain.label-wrt-adjacent

lemma endo-comp:
assumes ChamberComplexEndomorphism X g
shows  ChamberComplexEndomorphism X (gof)
proof (rule ChamberComplexEndomorphism.intro)
from assms show ChamberComplexMorphism X X (gof)
using comp ChamberComplexEndomorphism.azioms by fast
from assms show ChamberComplexEndomorphism-azioms X (gof)
using trivial-outside ChamberComplexEndomorphism.trivial-outside
by  unfold-locales auto
qed

lemma restrict-endo:
assumes ChamberSubcomplex Y fEY C Y
shows  ChamberComplexEndomorphism Y (restrictl f (JY))
proof (rule ChamberComplexEndomorphism.intro)
from assms show ChamberComplezMorphism Y'Y (restrictl f (U Y))
using ChamberComplezMorphism.cong[of Y Y]
ChamberComplexMorphism.restrict-codomain
restrict-domain fun-eq-on-restrict1
by fast
show ChamberComplexEndomorphism-azioms Y (restrictl f (U Y))
by unfold-locales simp
qed

lemma funpower-endomorphism:
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ChamberComplexEndomorphism X (f~n)
proof (induct n)
case () show ?case using trivial-endomorphism subst|of id] by fastforce
next
case (Suc m)
hence ChamberComplexEndomorphism X (f~"m o f)
using endo-comp by auto
moreover have [~ "m o f = [~ (Suc m)
by (simp add: funpow-Suc-right| THEN sym))
ultimately show Zcase
using subst[of - - Af. ChamberComplexEndomorphism X f] by fast
qed

end

lemma (in ChamberComplex) fold-chamber-complex-endomorph-list:
YV zeset xs. ChamberComplexEndomorphism X (f ) =
ChamberComplexEndomorphism X (fold f xs)
proof (induct xs)
case Nil show ?case using trivial-endomorphism subst|of id] by fastforce
next
case (Cons z zs)
hence ChamberComplexEndomorphism X (fold f xs o f x)
using ChamberComplexEndomorphism.endo-comp by auto
moreover have fold fzs o fz = fold f (z#xs) by simp
ultimately show “case
using subst[of - - \f. ChamberComplexEndomorphism X f] by fast
qed

context ChamberComplexEndomorphism
begin

lemma split-gallery:
[ Ceft-C; DeC—fHC; gallery (C#CsQ[D]) | =
JAs A B Bs. AeftC N BEC—fHC N C#CsQ[D] = AsQA# B# Bs
proof (induct Cs arbitrary: C)
case Nil
define As :: 'a set list where As = [
hence C#[|Q[D] = AsQCH# D+ As by simp
with Nil(1,2) show ?case by auto
next
case (Cons E Es)
show ?case
proof (cases E€f-C)
case True
from Cons(4) have gallery (E#EsQ[D])
using gallery-Cons-reduce by simp
with True obtain As A B Bs
where 1: Acf-C BeC—f-C E#FEsQ[D] = AsQA# B#Bs
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using Cons(1)[of E] Cons(3)
by  blast
from 1(3) have C#(E#Es)Q[D] = (C#As)QA# B#Bs by simp
with 1(1,2) show ?Zthesis by blast
next
case Fulse
hence FeC—fHC using gallery-chamber-system[OF Cons(4)] by simp
moreover have C#(E#Es)Q[D] = [|QC#E#(EsQ[D]) by simp
ultimately show ?thesis using Cons(2) by blast
qged
qged

lemma respects-labels-adjacent:
assumes label-wrt B ¢ chamber C chamber D C~D Y veC. ¢ (fv) = ¢ v
shows VveD. ¢ (fv)=¢ v
proof (cases C=D)
case False have CD: C#D by fact
with assms(4) obtain w where w: w¢D C = insert w (CND)
using adjacent-int-decomp by fast
with assms(2) have fC: fw ¢ f(CND) f‘C = insert (f w) (f(CND))
using chamber-vertez-outside-facet-image[of w CND] by auto
show ?thesis
proof
fix v assume v: veD
show ¢ (fv) =p v
proof (cases ve()
case Fulse
with assms(3,4) v have fD: fv ¢ f(DNC) f'D = insert (f v) (f(DNC))
using adjacent-sym|of C D] adjacent-conv-insert[of D C v]
chamber-vertex-outside-facet-image[of v DNC]
by auto
have ¢ (f 1) = ¢ (f w)
proof (cases f‘C=f‘D)
case True
with fC fD have fv = fw by (auto simp add: Int-commute)
thus ?thesis by simp
next
case Fulse
from assms(2—4) have chamber (f‘C") chamber (f‘D) and fCfD: f‘C~f‘D
using chamber-map adj-map by auto
moreover from assms(4) fC fCfD False have fw € f‘C — f‘D
using adjacent-to-adjacent-int[of C D f] by auto
ultimately show ?thesis
using assms(4) fD fCfD False adjacent-sym
adjacent-to-adjacent-int[of D C f]
label-wrt-adjacent| OF assms(1), of f°C fD f w f v, THEN sym]
by auto
qed
with False v w assms(5) show ?thesis
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using label-wrt-adjacent] OF assms(1—4), of w v, THEN sym| by fastforce
qed (simp add: assms(5))
qed
qed (simp add: assms(5))

lemma respects-labels-gallery:
assumes label-wrt B p YveC. ¢ (fv) = p v
shows gallery (C#CsQ[D]) = YveD. ¢ (fv) = ¢ v
proof (induct Cs arbitrary: D rule: rev-induct)
case Nil with assms(2) show ?case
using galleryD-chamber galleryD-adj
respects-labels-adjacent[ OF assms(1), of C D]
by  force
next
case (snoc E Es)
with assms(2) show ?case
using gallery-append-reducel [of C#EsQ[E]] galleryD-chamber galleryD-adj
binrelchain-append-reduce2|of adjacent C#Es [E,D]]
respects-labels-adjacent| OF assms(1), of E D]
by  force
qed

lemma respect-label-fix-chamber-imp-fun-eq-on:
assumes label : label-wrt B ¢
and chamber: chamber C f‘C = ¢g‘C
and  respect: YveC. ¢ (fv) =p v VveC. ¢ (gv) =¢p v
shows fun-eq-on fg C
proof (rule fun-eg-onlI)
fix v assume ve(C
moreover with respect have ¢ (f v) = ¢ (g v) by simp
ultimately show fv =g v
using label chamber chamber-map chamber-system-def label-wrtD]of B ¢ f‘C|
bij-betw-imp-ing-on[of ] inj-onD
by  fastforce
qed

lemmas respects-label-fixes-chamber-imp-fizespointwise =
respect-label-fix-chamber-imp-fun-eq-onlof - - - id, simplified)

end

4.4.7 Automorphisms

locale ChamberComplezAutomorphism = ChamberComplexIsomorphism X X f
for X :: 'a set set
and f :: 'a="a

+ assumes trivial-outside : v¢|JX = fv =
— to facilitate uniqueness arguments
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sublocale ChamberComplexAutomorphism < ChamberComplexEndomorphism
using trivial-outside by unfold-locales fast

lemma (in ChamberComplex) trivial-automorphism:
ChamberComplexAutomorphism X id
using trivial-isomorphism
by  unfold-locales (auto intro: ChamberComplexAutomorphism.intro)

context ChamberComplezAutomorphism

begin

lemmas facet-map = facet-map

lemmas chamber-map = chamber-map
lemmas chamber-morphism = chamber-morphism

lemmas bij-betw-vertices = bij-betw-vertices
lemmas surj-simplex-map = surj-simplez-map

lemma bij: bij f
proof (rule bijI)
show inj f
proof (rule injI)
fix z y assume fz = fy thusz =y
using bij-betw-imp-inj-on[OF bij-betw-vertices] inj-onD[of f |J X x ]
vertex-map trivial-outside
by  (cases zelJ X yelJ X rule: two-cases) auto
qged
show surj f unfolding surj-def
proof
fix y show Jz. y = fz
using bij-betw-imp-surj-on| OF bij-betw-vertices)
trivial-outside| THEN sym, of y]
by  (cases yelJ X) auto
qed
qed

lemma comp:
assumes ChamberComplexAutomorphism X g
shows  ChamberComplexAutomorphism X (gof)
proof (
rule ChamberComplexAutomorphism.intro,
rule ChamberComplexIsomorphism.intro,
rule ChamberComplexMorphism.comp
)
from assms show ChamberComplexMorphism X X g
using ChamberComplexAutomorphism.chamber-morphism by fast
show ChamberComplexIsomorphism-azioms X X (g o f)
proof
from assms show bij-betw (gof) (U X) (UX)
using bij-betw-vertices ChamberComplexAutomorphism.bij-betw-vertices
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bij-betw-trans
by fast
from assms show (gof) F X = X
using surj-simplez-map ChamberComplexAutomorphism.surj-simplex-map
by  (force simp add: setsetmapim-comp)
qed
show ChamberComplexAutomorphism-azioms X (g o f)
using trivial-outside ChamberComplexAutomorphism.trivial-outside[OF assms]
by  unfold-locales auto
qed unfold-locales

lemma equality:
assumes ChamberComplexAutomorphism X g fun-eg-on f g (U X)
shows f=g¢g
proof
fix z show fz =g
using trivial-outside fun-eq-onD[OF assms(2)]
ChamberComplexAutomorphism.trivial-outside] OF assms(1)]
by  force
qed

end

4.4.8 Retractions

A retraction of a chamber complex is an endomorphism that is the identity
on its image.

locale ChamberComplexRetraction = ChamberComplexEndomorphism X f
for X :: 'a set set
and f :: 'a="a

+ assumes retraction: velJX = f (fv) = fv

begin

lemmas simplex-map = simplex-map
lemmas chamber-map = chamber-map

lemmas gallery-map = gallery-map

lemma vertez-retraction: vef{(UX) = fv =
using retraction by fast

lemma simplex-retractionl: zefr-X —> fizespointwise f x
using retraction fizespointwisel [of z f] by auto

lemma simplex-retraction?2: z€frX = fx = x
using retraction retraction| THEN sym] by blast

lemma chamber-retractionl: Cef-C = fixespointwise f C
using chamber-system-simplices simplex-retractionl by auto
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lemma chamber-retraction2: Cef-C = f'C = C
using chamber-system-simplices simplex-retraction2[of C]| by auto

lemma respects-labels:
assumes label-wrt B ¢ ve(|J X)
shows ¢ (fv)=pw
proof—
from assms(2) obtain C where chamber C ve C using simplez-in-mazx by fast
thus ?thesis
using chamber-retractionl[of C| chamber-system-def chamber-map
mazsimp-connect[of f‘C C] chamber-retraction! [of f*C|
respects-labels-gallery[OF assms(1), THEN bspec, of f‘C - C v]
by  (force simp add: fizespointwiseD)
qed

end

4.4.9 Foldings of chamber complexes

A folding of a chamber complex is a retraction that literally folds the complex
in half, in that each chamber in the image is the image of precisely two
chambers: itself (since a folding is a retraction) and a unique chamber outside
the image.

Locale definition Here we define the locale and collect some lemmas
inherited from the ChamberComplezRetraction locale.

locale ChamberComplexFolding = ChamberComplexRetraction X f
for X :: 'a set set
and [ :: ‘a="a
+ assumes folding:
chamber C = CefrX —
3ID. chamber D A D¢f-X N f‘D = C

begin

lemmas folding-ex = exl-implies-ex| OF folding)
lemmas chamber-system-into = chamber-system-into
lemmas gallery-map = gallery-map

lemmas chamber-retractionl = chamber-retractionl
lemmas chamber-retraction?2 = chamber-retraction?

end

Decomposition into half chamber systems and half apartments
Here we describe how a folding splits the chamber system of the complex
into its image and the complement of its image. The chamber subcomplex
consisting of all simplices contained in a chamber of a given half of the
chamber system is called a half-apartment.
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context ChamberComplexFolding
begin

definition opp-half-apartment :: 'a set set
where opp-half-apartment = {x€X. 3 CeC—f+-C. zCC}
abbreviation Y = opp-half-apartment

lemma opp-half-apartment-subset-complex: YCX
using opp-half-apartment-def by fast

lemma simplicialcomplex-opp-half-apartment: SimplicialComplexr Y
proof
show VzeY. finite x
using opp-half-apartment-subset-complex finite-simplices by fast
next
fix z y assume z€Y yCux thus yeV
using opp-half-apartment-subset-complex faces[of x y]
unfolding opp-half-apartment-def
by auto
qed

lemma subcomplex-opp-half-apartment: Subcomplex Y
using opp-half-apartment-subset-complex simplicialcomplex-opp-half-apartment
by  fast

lemma opp-half-apartmentl: | z€X; CeC—fHC; 2CC | = z€Y
using opp-half-apartment-def by auto

lemma opp-chambers-subset-opp-half-apartment: C—fHC C Y
proof

fix ¢ assume C € C—f+C

thus C € Y using chamber-system-simplices opp-half-apartment] by auto
qed

lemma mazsimp-in-opp-half-apartment:
assumes SimplicialComplex.mazsimp Y C
shows C € C—fC
proof—
from assms obtain D where D: DeC—f-C CCD
using SimplicialComplex.mazsimpD-simplex|
OF simplicialcomplex-opp-half-apartment, of C
]
opp-half-apartment-def
by auto
with assms show ?thesis
using opp-chambers-subset-opp-half-apartment
Simplicial Complex.mazsimpD-mazimal|
OF simplicialcomplez-opp-half-apartment

]
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by  force
qed

lemma chamber-in-opp-half-apartment:
Simplicial Complex.mazxsimp Y C —> chamber C
using maxsimp-in-opp-half-apartment chamber-system-def by fast

end

Mapping between half chamber systems for foldings Since each
chamber in the image of the folding is the image of a unique chamber in the
complement of the image, we obtain well-defined functions from one half
chamber system to the other.

context ChamberComplexFolding
begin

abbreviation opp-chamber C = THE D. DeC—f+C A f'D = C
abbreviation flop C = if C € fC then opp-chamber C else fC

lemma inj-on-opp-chambers':

assumes chamber C C¢f-X chamber D D¢f+X fC = fD

shows C=D
proof—

from assms(1) folding have exl: 3!B. chamber B A B¢f+-X A f‘B = fC

using chamberD-simplex chamber-map by auto

from assms show ?thesis using exIl-unique[OF exl, of C' D] by blast

qed

lemma inj-on-opp-chambers’”:
[ CecC—f-C; D e C—f-C; f\C =fD] = C=D

using chamber-system-def chamber-system-image inj-on-opp-chambers’ by auto

lemma inj-on-opp-chambers: inj-on ((‘) f) (C—fFC)
using inj-on-opp-chambers’’ inj-onlI[of C—f+C () f] by fast

lemma opp-chambers-surj: fH(C—(fFC)) = fHC
proof (rule seteql)
fix D assume D: D € f-C
from this obtain B where chamber B B¢f-X f‘B = D
using chamber-system-def chamber-map chamberD-simplex folding-ex|of D]
by auto
thus D € f-(C — fHC)
using chamber-system-image chamber-system-def by auto
ged fast

lemma opp-chambers-bij: bij-betw ((9) f) (C—(f+C)) (fHC)
using inj-on-opp-chambers opp-chambers-surj bij-betw-def[of () f] by auto
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lemma folding":
assumes Cef-C
shows 3J!DeC—fHC. f'D = C
proof (rule ex-exll)
from assms show 3D. D € C—fFC A f'D = C
using chamber-system-image chamber-system-def folding-ex[of C]| by auto
next
fix B D assume Be C—fFC N f'B=CD e C—fFC A f'D="C
with assms show B=D
using chamber-system-def chamber-system-image chamber-map
chamberD-simplex exl-unique[OF folding, of C B D]
by auto
qed

lemma opp-chambers-distinct-map:
set Cs C C—fHC = distinct Cs = distinct (fl=Cs)
using distinct-map subset-inj-on|OF inj-on-opp-chambers] by auto

lemma opp-chamberD1: Cef-C = opp-chamber C' € C—fHC
using thel [OF folding’] by simp

lemma opp-chamberD2: Cef-C = f“(opp-chamber C) = C
using thel [OF folding’] by simp

lemma opp-chamber-reverse: CeC—fHC = opp-chamber (fC) = C
using thel-equality[OF folding’] by simp

lemma f-opp-chamber-list:
set Cs C f-C = fE=(map opp-chamber Cs) = Cs
using opp-chamberD2 by (induct Cs) auto

lemma flop-chamber: chamber C = chamber (flop C)
using chamber-map opp-chamberD1 chamber-system-def by auto

end

4.5 Thin chamber complexes

A thin chamber complex is one in which every facet is a facet in exactly two
chambers. Slightly more generally, we first consider the case of a chamber
complex in which every facet is a facet of at most two chambers. One of
the main results obtained at this point is the so-called standard uniqueness
argument, which essentially states that two morphisms on a thin chamber
complex that agree on a particular chamber must in fact agree on the entire
complex. Following that, foldings of thin chamber complexes are investi-
gated. In particular, we are interested in pairs of opposed foldings.
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4.5.1 Locales and basic facts

locale ThinishChamberComplex = ChamberComplexr X
for X :: 'a set set
+ assumes thinish:
[ chamber C; z<C; 3DeX—{C}. 2D | = I!DeX—{C}. 2<D
— being adjacent to a chamber, such a D would also be a chamber (see lemma
chamber-ady)
begin

lemma facet-unique-other-chamber:
[ chamber B; z<uB; chamber C; z<1C'; chamber D; z<1D; C#B; D#B |
= C=D
using chamberD-simplex bex-equality|OF thinish, OF - - bexl, of B z C C D]
by auto

lemma finite-adjacentset:
assumes chamber C
shows finite (adjacentset C')
proof (cases X = {{}})
case True thus ?thesis using adjacentset-def by simp
next
case Fulse
moreover have finite (| JveC. {DeX. C—{v}<D})
proof
from assms show finite C' using finite-chamber by simp
next
fix v assume ve(C
with assms have Cv: C—{v}<C
using chamberD-simplex facetrel-diff-vertex by fast
with assms have C: Ce{DeX. C—{v}<D}
using chamberD-simplex by fast
show finite {DeX. C—{v}<D}
proof (cases {DeX. C—{v}<D} — {C} = {})
case True
hence I1: {DeX. C—{v}<D} = {C} using C by auto
show ?thesis using ssubst[OF 1, of finite] by simp
next
case Fulse
from this obtain D where D: DeX—{C} C—{v}<D by fast
with assms have 2: {DeX. C—{v}<D} C {C,D}
using Cv chamber-shared-facet[of C] facet-unique-other-chamber|of C - D]
by  fastforce
show %thesis using finite-subset|OF 2] by simp
qed
qed
ultimately show ?thesis
using assms adjacentset-conv-facetchambersets by simp
qed
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lemma label-wrt-eq-on-adjacent-vertex:
fixes vv' :'a
and z2': a set
defines D : D = insert v z
and D" D' = insert v’ 2’
assumes label : label-wrt B ffv = fv’
and  chambers: chamber C chamber D chamber D' 2<1C z'<1C D#C D'#£C
shows D =D’
proof (
rule facet-unique-other-chamber, rule chambers(1), rule chambers(4),
rule chambers(2)
)
from D D' chambers(1—5) have z: z<1D and 2" z'<D’
using chambers-share-facet by auto
show z<1D by fact

from chambers(4,5) obtain w w’
where w: w ¢ 2z C = insert w z
and w” w'¢ 2z’ C = insert w' 2z’
unfolding facetrel-def
by fastforce
from w’ D’ chambers(1,3) have f2' = f‘C — {f v’}
using z’ label-wrtD'[OF label(1), of C] bij-betw-imp-inj-onlof f C]
facetrel-complement-vertez|of 2]
label-wrt-adjacent-shared-facet| OF label(1), of v’]
by  simp
moreover from w D chambers(1,2) have fz = f‘C — {f v}
using z label-wrtD'[OF label(1), of C] bij-betw-imp-inj-on[of f C]
facetrel-complement-vertez|of z]
label-wrt-adjacent-shared-facet| OF label(1), of v]
by  simp
ultimately show z<1D’
using z’ chambers(1,4,5) label(2) facetrel-subset
label-wrtD'[OF label(1), of C)|
bij-betw-imp-ing-on[of f] inj-on-eq-image|of f C 2’ 2]
by  force
qged (rule chambers(3), rule chambers(6), rule chambers(7))

lemma face-distance-eq-chamber-distance-compare-other-chamber:

assumes chamber C' chamber D z2<1C z<1D C#D
chamber-distance C E < chamber-distance D E

shows  face-distance z E = chamber-distance C' E
unfolding face-distance-def closest-supchamber-def

proof (
rule arg-min-equality, rule conjl, rule assms(1), rule facetrel-subset,
rule assms(3)

from assms
show AB. chamber B A z C B =

147



chamber-distance C' E < chamber-distance B E
using chamber-facet-is-chamber-facet facet-unique-other-chamber
by  blast
qed

end

lemma (in ChamberComplexIsomorphism) thinish-image-shared-facet:
assumes dom: domain.chamber C domain.chamber D z<1C z2<1D C+#D
and cod: ThinishChamberComplex Y codomain.chamber D' fz < D’
D'+ f<C
shows f‘D = D’
proof (rule ThinishChamberComplex.facet-unique-other-chamber, rule cod(1))
from dom(1,2) show codomain.chamber (f‘C) codomain.chamber (f‘D)
using chamber-map by auto
from dom show f%2 < f‘C f'z < f‘D using facet-map by auto
from dom have domain.pgallery [C,D]
using domain.pgallery-def adjacent] by fastforce
hence codomain.pgallery [f‘C.f*D] using pgallery-map|of [C,D]] by simp
thus f‘D # f‘C' using codomain.pgalleryD-distinct by fastforce
qed (rule cod(2), rule cod(3), rule cod(4))

locale ThinChamberCompler = ChamberComplex X
for X :: 'a set set

+ assumes thin: chamber C = 2<C = 3!1DeX—{C}. 2<D

sublocale ThinChamberComplexr < ThinishChamberComplex
using thin by unfold-locales simp

context ThinChamberComplex
begin

lemma thinish: ThinishChamberComplex X ..

lemmas face-distance-eq-chamber-distance-compare-other-chamber =
face-distance-eq-chamber-distance-compare-other-chamber

abbreviation the-adj-chamber C 2 = THE D. DeX—{C} AN z < D
lemma the-adj-chamber-simplex:
chamber C = z < C = the-adj-chamber C z € X

using thel [OF thin] by fast

lemma the-adj-chamber-facet: chamber C —> 2<1C = z < the-adj-chamber C z
using thel |OF thin] by fast

lemma the-adj-chamber-is-adjacent:

chamber C = 2<1C = C' ~ the-adj-chamber C z
using the-adj-chamber-facet by (auto intro: adjacentl)
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lemma the-adj-chamber:
chamber C = z < C == chamber (the-adj-chamber C z)
using the-adj-chamber-simplex the-adj-chamber-is-adjacent
by  (fast intro: chamber-adj)

lemma the-adj-chamber-neq:
chamber C = z < C = the-adj-chamber C z # C
using thel [OF thin] by fast

lemma the-adj-chamber-adjacentset:
chamber C —> 2<1C = the-adj-chamber C z € adjacentset C
using adjacentset-def the-adj-chamber-simplex the-adj-chamber-is-adjacent
by  fast

end

lemmas (in ChamberComplexlsomorphism) thin-image-shared-facet =
thinish-image-shared-facet|OF - - - - - ThinChamberComplez.thinish]

4.5.2 The standard uniqueness argument for chamber morphisms
of thin chamber complexes

context ThinishChamberComplex
begin

lemma standard-uniqueness-dbl:
assumes morph : ChamberComplexMorphism W X f
ChamberComplexMorphism W X g
and chambers: ChamberComplex.chamber W C'
ChamberComplex.chamber W D
C~D f‘D #+ fC g‘D # g‘C chamber (¢‘D)
and  funeq : fun-eq-on fg C
shows fun-eg-on f g D
proof (rule fun-eg-onI)
fix v assume v: veD
show fv =g
proof (cases ve (')
case True with funeq show ?thesis using fun-eq-onD by fast
next
case Fulse
define F' G where F = f‘C N f‘Dand G = ¢‘C N ¢g‘D

from morph(1) chambers(1—/) have 1: f‘C ~ f‘D
using ChamberComplexMorphism.adj-map’ by fast
with F-def chambers(4) have F-facet: F<f‘C F<f‘D
using adjacent-int-facet! [of f‘C] adjacent-int-facet2[of fC| by auto

from F-def G-def chambers have G = F

149



using ChamberComplexMorphism.adj-map’|OF morph(2)]
adjacent-to-adjacent-int[of C D g 1
adjacent-to-adjacent-int[of C' D f] funeq fun-eq-on-im[of f g]
by  force
with G-def morph(2) chambers have F-facet’: F<ig‘D
using ChamberComplexMorphism.adj-map’ adjacent-int-facet2 by blast
with chambers(1,2,4,5) have 2: ¢‘D = f‘D
using ChamberComplezMorphism.chamber-map[OF morph(1)] F-facet
ChamberComplexMorphism.chamber-map| OF morph(2)]
fun-eq-on-im[OF funeq|
facet-unique-other-chamber|of f‘C F ¢g‘D f‘D|
by auto
from chambers(3) v Fulse have 3: D = insert v (DNC)
using adjacent-sym adjacent-conv-insert by fast
from chambers(4) obtain w where w: w ¢ f‘C w € fD
using adjacent-int-decomp|OF adjacent-sym, OF 1] by blast
with & have w = f v by fast
moreover from 2 w(2) obtain v’ where v'eD w = g v’ by auto
ultimately show #thesis
using w(1) 3 funeq by (fastforce simp add: fun-eq-on-im)
qged
qged

lemma standard-uniqueness-pgallery-betw:
assumes morph : ChamberComplexMorphism W X f
ChamberComplexMorphism W X g
and chambers: fun-eq-on f g C ChamberComplex.gallery W (C# CsQ[D])
pgallery (fi=(C#CsQ[D])) pgallery (gi=(C# Csa[D]))
shows fun-eq-on f g D
proof—
from morph(1) have W: ChamberComplex W
using ChamberComplexMorphism.domain-compler by fast
have [ fun-eq-on f g C; ChamberComplex.gallery W (C# CsQ[D]);
pyallery (f=(C#C5G[D])); pgallery (g(CHC5a[D]) | =
fun-eg-on f g D
proof (induct Cs arbitrary: C')
case Nil from assms Nil(1) show ?case
using ChamberComplez.galleryD-chamber|OF W Nil(2)]
ChamberComplex.galleryD-adj|OF W Nil(2)]
pgalleryD-distinct|OF Nil(3)] pgalleryD-distinct| OF Nil(4)]
pgalleryD-chamber[OF Nil(4)] standard-uniqueness-dbllof W f g C D]
by auto
next
case (Cons B Bs)
have fun-eq-on f g B
proof (rule standard-uniqueness-dbl, rule morph(1), rule morph(2))
show ChamberComplex.chamber W C ChamberComplex.chamber W B C~B
using ChamberComplez.galleryD-chamber[OF W Cons(3)]
ChamberComplex.galleryD-adj|OF W Cons(3)]
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by auto
show f‘B # f‘C using pgalleryD-distinct[OF Cons(4)] by fastforce
show ¢‘B # ¢‘C using pgalleryD-distinct|OF Cons(5)] by fastforce
show chamber (¢‘B) using pgalleryD-chamber[OF Cons(5)] by fastforce
qed (rule Cons(2))
with Cons(1,3—5) show ?case
using ChamberComplez.gallery-Cons-reduce|OF W, of C B# BsQ[D]]
pgallery-Cons-reduce|of f‘C fl=(B#BsQ[D])]
pgallery-Cons-reduce|of g‘C' g=(B# BsQ[D])]

by  force
qed
with chambers show ?thesis by simp

qed

lemma standard-uniqueness:
assumes morph : ChamberComplexMorphism W X f
ChamberComplexMorphism W X g
and chamber : ChamberComplex.chamber W C fun-eq-on f g C
and map-gals:
N\ Cs. ChamberComplex.min-gallery W (C#Cs) = pgallery (fl=(C#Cs))
N\ Cs. ChamberComplex.min-gallery W (C#Cs) = pgallery (g=(C#Cs))
shows  fun-eg-on fg (U W)
proof (rule fun-eg-onlI)
from morph(1) have W: ChamberComplex W
using ChamberComplexMorphism.azioms(1) by fast
fix v assume v € J W
from this obtain D where ChamberComplex.chamber W D veD
using ChamberComplex.simplex-in-maz[OF W] by auto
moreover define Cs where Cs = (ARG-MIN length Cs. ChamberComplex.gallery
W (C#Csa[D]))
ultimately show fv =g v
using chamber map-gals[of CsQ[D]]
ChamberComplex.gallery-least-length| OF W]
ChamberComplex.min-gallery-least-length| OF W
standard-uniqueness-pgallery-betw|OF morph(1,2) chamber(2), of Cs]
fun-eq-onD|of f g D]
by (cases D=C) auto
qged

lemma standard-uniqueness-isomorphs:

assumes ChamberComplexIsomorphism W X f
ChamberComplexIsomorphism W X g
ChamberComplex.chamber W C fun-eq-on f g C

shows  fun-eg-on f g (J W)

using assms ChamberComplexIsomorphism.chamber-morphism
ChamberComplexIsomorphism.domain-complex
ChamberComplex.min-gallery-pgallery
ChamberComplexIsomorphism.pgallery-map

by (blast intro: standard-uniqueness)
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lemma standard-uniqueness-automorphs:

assumes ChamberComplezAutomorphism X f
ChamberComplexAutomorphism X g
chamber C fun-eq-on f g C

shows f=g¢g

using assms ChamberComplexAutomorphism.equality
standard-uniqueness-isomorphs
ChamberComplexAutomorphism.axioms(1)

by blast

end

context ThinChamberComplex

begin
lemmas standard-uniqueness = standard-uniqueness
lemmas standard-uniqueness-isomorphs = standard-uniqueness-isomorphs

lemmas standard-uniqueness-pgallery-betw = standard-uniqueness-pgallery-betw

end

4.6 Foldings of thin chamber complexes
4.6.1 Locale definition and basic facts

locale ThinishChamberComplexFolding =
ThinishChamberComplex X + folding: ChamberComplexFolding X f
for X :: 'a set set
and [ :: 'a="a

begin

abbreviation opp-chamber = folding.opp-chamber

lemma adjacent-half-chamber-system-image:
assumes chambers: C € fFC D € C—f+HC
and adjacent: C~D
shows f'D="C
proof—
from adjacent obtain z where z: 2<1C 2<1D using adjacent-def by fast
moreover from z(1) chambers(1) have fz: f2 = z
using facetrel-subset|of z C] chamber-system-simplices
folding.simplicialcomplez-image
SimplicialComplez.faces|of fF-X C z]
folding.simplex-retraction2]|of z|
by auto
moreover from chambers have f‘D # D C#D by auto
ultimately show ?thesis
using chambers chamber-system-def folding.chamber-map
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folding.facet-map[of D z|
facet-unique-other-chamber|of D z f‘D C]
by  force
qed

lemma adjacent-half-chamber-system-image-reverse:
[ C e f-C; D e C—fHC; C~D | = opp-chamber C = D
using adjacent-half-chamber-system-image[of C D]
thel-equality| OF folding.folding’)
by  fastforce

lemma chamber-image-closer:
assumes DeC—f-C Bef+C B#f‘D gallery (B#DsQ[D])
shows 3 Cs. gallery (B#CsQ[f‘D]) A length Cs < length Ds
proof—
from assms(1,2,4) obtain As A E Es
where split: Acf-C E€C—f+C B#DsQ[D] = AsQA#E#FEs
using folding.split-gallery[of B D Ds]
by  blast
from assms(4) split(3) have A~F
using gallery-append-reduce2|of As A# E#Es| galleryD-adj[of A# E# Es)
by  simp
with assms(2) split(1,2)
have fB: f‘'B = B and fA: f'A = A and fE: f'E = A
using folding.chamber-retraction2 adjacent-half-chamber-system-imagelof A E]
by auto
show 3 Cs. gallery (B#CsQ[f‘D]) A length Cs < length Ds
proof (cases As)
case Nil have As: As =[] by fact
show ?thesis
proof (cases Es rule: rev-cases)
case Nil with split(3) As assms(3) fE show Zthesis by simp
next
case (snoc Fs F)
with assms(4) split(3) As fE
have Ds = E#Fs gallery (B # f=Fs Q [f‘D])
using fB folding.gallery-map|of B#E#FsQ[D]] gallery-Cons-reduce

by auto
thus ?thesis by auto
qed
next

case (Cons H Hs)
show ?thesis
proof (cases Es rule: rev-cases)
case Nil
with assms(4) Cons split(3)
have decomp: Ds = HsQ[A] D=F gallery (B# HsQ[A,D)])
by auto
from decomp(2,3) fB fA fE have gallery (B # fl=Hs Q [f‘D])
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using folding.gallery-map gallery-append-reducel [of B # fl=Hs @ [f‘D]]

by  force
with decomp(1) show ?thesis by auto
next

case (snoc Fs F)

with split(3) Cons assms(4) [B fA fE
have decomp: Ds = HsQA#FE#Fs gallery (B # fE=(HsQA#Fs) Q [f‘D])
using folding.gallery-map|of B# HsQA# E# FsQ[D]]

gallery-remdup-adjlof B#f=Hs A flEFsQ[f‘D]]

by auto

from decomp(1) have length (fEE(HsQA#Fs)) < length Ds by simp

with decomp(2) show ?thesis by blast

qed
qed
qed

lemma chamber-image-subset:
assumes D: DeC—fHC
defines C: C = fD
defines closerToC = {B€eC. chamber-distance B C < chamber-distance B D}
shows fC C closerToC
proof
fix B assume B: Bef-C
hence B’: BeC using folding.chamber-system-into by fast
show B € closerToC
proof (cases B=C)
case True with B D closerToC-def show #?thesis
using B’ chamber-distance-def by auto
next
case Fulse
define Ds where Ds = (ARG-MIN length Ds. gallery (B# DsQ[D]))
with B C D False closerToC-def show ?thesis
using chamber-system-def folding.chamber-map gallery-least-length[of B D]
chamber-image-closer[of D B Ds]
chamber-distance-le chamber-distance-def|of B D]
by  fastforce
qged
qged

lemma gallery-double-cross-not-minimal-Cons1 :
[ BefC; CeC—fHC; DefrC; gallery (B#C#CsQ[D)]) | =
- min-gallery (B#C# CsQ[D])

using galleryD-adj[of B# C# CsQ[D]]
adjacent-half-chamber-system-image[of B C)|
folding.gallery-map|of B# C# CsQ[D]]
gallery-Cons-reduce[of B B # fl=Cs Q [D]]
is-arg-minD2[of length (ADs. mazsimpchain (B#DsQ[D])) - fl=Cs]
min-mazxsimpchain.simps(3)[of B C# Cs D]

by (simp add: folding.chamber-retraction2)(meson impossible-Cons not-less)
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lemma gallery-double-cross-not-minimall :
[ Bef-C; CeC—fHC; DefHC; gallery (B#BsQC# CsQ[D]) | =
- min-gallery (B#BsQC# CsQ[D])
proof (induct Bs arbitrary: B)
case Nil thus ?case using gallery-double-cross-not-minimal-Consl by simp
next
case (Cons E Es)
show ?Zcase
proof (cases E€f-C)
case True
with Cons(1,3—5) show %thesis
using gallery-Cons-reduce|of B E# EsQC+# CsQ|[D]]
min-gallery-betw-CCons-reducelof B E EsQC+#Cs D)
by auto
next
case Fulse with Cons(2,4,5) show ?thesis
using gallery-chamber-system
gallery-double-cross-not-minimal-Consl [of B E D EsQC#Cs|
by  force
qged
qged

end

locale ThinChamberComplexFolding =
ThinChamberComplex X + folding: ChamberComplexFolding X f
for X :: 'a set set
and f :: 'a="a

sublocale ThinChamberComplexFolding < ThinishChamberComplexFolding ..

context ThinChamberComplexFolding
begin

abbreviation flop = folding.flop

lemmas adjacent-half-chamber-system-image = adjacent-half-chamber-system-image

lemmas gallery-double-cross-not-minimall = gallery-double-cross-not-minimall

lemmas gallery-double-cross-not-minimal-Consl =
gallery-double-cross-not-minimal-Cons1

lemma adjacent-preimage:
assumes chambers: C € C—f+C D € C—fFC
and adjacent: f‘C ~ fD
shows C' ~ D
proof (cases f‘C=f‘D)
case True
with chambers show C' ~ D
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using folding.inj-on-opp-chambers’[of C D] adjacent-refi[of C] by auto
next
case Fulse
from chambers have CD: chamber C' chamber D
using chamber-system-def by auto
hence ch-fCD: chamber (f‘C) chamber (fD)
using chamber-system-def folding.chamber-map by auto
from adjacent obtain z where 2: z < f°C z < fD
using adjacent-def by fast
from chambers(1) z(1) obtain y where y: y < C fy = 2
using chamber-system-def folding.inj-on-chamber|of C|
inj-on-pullback-facet[of f C 2]
by auto
define B where B = the-adj-chamber C'y
with CD(1) y(1) have B: chamber B y<iB B#£C
using the-adj-chamber the-adj-chamber-facet the-adj-chamber-neq by auto
have f‘B # fC
proof (cases B € f+C)
case Fulse with chambers(1) show ?thesis
using B(1,3) chamber-system-def folding.inj-on-opp-chambers’[of B]
by auto
next
case True show ?thesis
proof
assume fB-fC: ‘B = f‘C
with True have B = f‘C using folding.chamber-retraction2 by auto
with 2(1) y(2) B(2) chambers(1) have y = 2
using facetrel-subset[of y B] chamber-system-def chamberD-simplex face-im
folding.simplezx-retraction2]of y]
by  force
with chambers y(1) z(2) have f‘D = B
using CD(1) ch-fCD(2) B facet-unique-other-chamber|of C y] by auto
with 2(2) chambers fB-fC False show False
using folding.chamber-retraction2 by force
qed
qed
with False z y(2) have fB-fD: f‘B = f‘D
using ch-fCD B(1,2) folding.chamber-map folding.facet-map
facet-unique-other-chamber|of f‘C 2]
by  force
have B =D
proof (cases B € f+C)
case Fulse
with B(1) chambers(2) show ?Zthesis
using chamber-system-def fB-fD folding.inj-on-opp-chambers'’ by simp
next
case True
with fB-fD have B = f‘D using folding.chamber-retraction2 by auto
moreover with z(1) y(2) B(2) chambers(2) have y = z
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using facetrel-subset[of y B] chamber-system-def chamberD-simplex face-im
folding.simplex-retraction2]of y]
by  force
ultimately show ?thesis
using CD y(1) B ch-fCD(1) z(1) False chambers(1)
facet-unique-other-chamber|of By C f‘C]

by auto
qed
with y(1) B(2) show ?thesis using adjacent] by fast

qed

lemma adjacent-opp-chamber:
[ Cef-C; DefC; C~D | = opp-chamber C' ~ opp-chamber D
using folding.opp-chamberD1 folding.opp-chamberD2 adjacent-preimage by simp

lemma adjacentchain-preimage:
set Cs C C—fHC = adjacentchain (f=Cs) = adjacentchain Cs
using adjacent-preimage by (induct Cs rule: list-induct-CCons) auto

lemma gallery-preimage: set Cs C C—fHC = gallery (f=Cs) = gallery Cs
using galleryD-adj adjacentchain-preimage chamber-system-def gallery-def
by  fast

lemma chambercomplex-opp-half-apartment: ChamberComplex folding.Y
proof (intro-locales, rule folding.simplicialcomplex-opp-half-apartment, unfold-locales)
define Y where Y = folding. Y
fix y assume yeY
with Y-def obtain C where CeC—f+C yCC
using folding.opp-half-apartment-def by auto
with Y-def show dz. SimplicialComplex.maxsimp Yz ANy C z
using folding.subcomplez-opp-half-apartment
folding. opp-chambers-subset-opp-half-apartment
chamber-system-def maz-in-subcomplez|of Y|

by  force
next
define Y where Y = folding. Y
fix C D
assume CD: SimplicialComplex.mazsimp Y C Simplicial Complex.mazxsimp Y D
C#D

from CD(1,2) Y-def have CD": C € C—fHC D € C—f+C
using folding.mazxsimp-in-opp-half-apartment by auto
with CD(3) obtain Ds
where Ds: ChamberComplex.gallery (fEX) ((f‘C)#DsQ[f*D])
using folding.inj-on-opp-chambers’’of C' D] chamber-system-def
folding.mazxsimp-map-into-image folding.chambercomplex-image
ChamberComplex.maxsimp-connect[of fEX f‘C f*D]
by auto
define Cs where Cs = map opp-chamber Ds
from Ds have Ds” gallery ((f‘C)# DsQ[f‘D])
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using folding.chambersubcomplez-image subcomplez-gallery by fast
with Ds have Ds'": set Ds C fC
using folding.chambercomplex-image folding.chamber-system-image
ChamberComplex.galleryD-chamber ChamberComplex.chamberD-simplex
gallery-chamber-system
by  fastforce
have *: set Cs C C—f+HC
proof
fix B assume B € set Cs
with Cs-def obtain A where Acset Ds B = opp-chamber A by auto
with Ds’’ show B € C—fFC using folding.opp-chamberD1[of A] by auto
qed
moreover from Cs-def CD' Ds’ Ds' x have gallery (C# CsQ[D])
using folding.f-opp-chamber-list gallery-preimage|of C# CsQ[D]] by simp
ultimately show 3 Cs. SimplicialComplex.maxsimpchain Y (C # Cs Q [D])
using Y-def CD’ folding.subcomplezx-opp-half-apartment
folding.opp-chambers-subset-opp-half-apartment
mazsimpchain-in-subcomplez|of Y C# CsQ[D]]
by  fastforce
qed

lemma flop-adj:

assumes chamber C' chamber D C~D

shows flop C ~ flop D
proof (cases Cef-C DefHC rule: two-cases)

case both

with assms(3) show ?thesis using adjacent-opp-chamber by simp
next

case one

with assms(2,3) show ?thesis

using chamber-system-def adjacent-half-chamber-system-image[of C|
adjacent-half-chamber-system-image-reverse adjacent-sym

by  simp
next
case other

with assms(1) show ?thesis
using chamber-system-def adjacent-sym[OF assms(3)]
adjacent-half-chamber-system-image[of D]
adjacent-half-chamber-system-image-reverse
by auto
qed (simp add: assms folding.adj-map)

lemma flop-gallery: gallery Cs = gallery (map flop Cs)
proof (induct Cs rule: list-induct-CCons)
case (CCons B C Cs)
have gallery (flop B # (flop C) # map flop Cs)
proof (rule gallery-CConsI)
from CCons(2) show chamber (flop B)
using galleryD-chamber folding.flop-chamber by simp
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from CCons(1) show gallery (flop C # map flop Cs)
using gallery-Cons-reduce] OF CCons(2)] by simp
from CCons(2) show flop B ~ flop C
using galleryD-chamber galleryD-adj flop-adj[of B C] by fastforce
qged
thus ?case by simp
qed (auto simp add: galleryD-chamber folding.flop-chamber gallery-def)

lemma morphism-half-apartments: ChamberComplexMorphism folding.Y (f+X) f
proof (
rule ChamberComplexMorphism.intro, rule chambercomplex-opp-half-apartment,
rule folding.chambercomplex-image, unfold-locales
)
show
NC. SimplicialComplex.mazsimp folding.Y C =
SimplicialComplex.mazsimp (fEX) (fC)
NC. SimplicialComplex.mazsimp folding.Y C = card (f‘C) = card C
using folding.chamber-in-opp-half-apartment folding.chamber-map
folding.chambersubcomplex-image chamber-in-subcomplex
chamberD-simplex folding.dim-map
by auto
qged

lemma chamber-image-complement-closer:
[ DeC—f+C; BEC—fHC; B#D; gallery (B# CsQ[f‘D]) | =
3 Ds. gallery (B#DsQ[D]) A length Ds < length Cs
using flop-gallery chamber-image-closer[of D f‘B map flop Cs]
folding.opp-chamber-reverse folding.inj-on-opp-chambers''[of B D]
by  force

lemma chamber-image-complement-subset:
assumes D: DeC—f+HC
defines C: C = f‘D
defines closerToD = {BeC. chamber-distance B D < chamber-distance B C'}
shows C—f+C C closerToD
proof
fix B assume B: BeC—f+C
show B € closerToD
proof (cases B=D)
case True with B C closerToD-def show ?thesis
using chamber-distance-def by auto
next
case Fulse
define Cs where Cs = (ARG-MIN length Cs. gallery (B# CsQ[C)))
with B C' D Fulse closerToD-def show ?thesis
using chamber-system-def folding.chamber-map|of D]
gallery-least-length[of B C| chamber-distance-le
chamber-image-complement-closer[of D B Cs]
chamber-distance-def|of B C]
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by  fastforce
qed
qed

lemma chamber-image-and-complement:
assumes D: DeC—fHC
defines C: C = f'D
defines closerToC = {BeC. chamber-distance B C < chamber-distance B D}
and closerToD = {BeC. chamber-distance B D < chamber-distance B C}
shows fFC = closerToC C—f+C = closerToD
proof—
from closerToC-def closerToD-def have closerToC N closerToD = {} by auto
moreover from C D closerToC-def closerToD-def
have C = f F C U (C—f+C) closerToC C C closerToD C C
using folding.chamber-system-into
by auto
moreover from assms have fi-C C closerToC C—f+C C closerToD
using chamber-image-subset chamber-image-complement-subset by auto
ultimately show f-C = closerToC C—f+C = closerToD
using set-decomp-subset[of C f-C] set-decomp-subset[of C C—fFC] by auto
qed

end

4.6.2 Pairs of opposed foldings

A pair of foldings of a thin chamber complex are opposed or opposite if there
is a corresponding pair of adjacent chambers, where each folding sends its
corresponding chamber to the other chamber.
locale Opposed ThinChamberComplexFoldings =
ThinChamberCompler X
+ folding-f: ChamberComplexFolding X f
+ folding-g: ChamberComplexFolding X g
for X :: 'a set set
and f :: 'a="a
and g :: 'a="a
+ fixes CO :: 'a set
assumes chambers: chamber CO CO~g‘CO CO#£g‘CO f'g‘CO = CO
begin

abbreviation D0 = ¢‘C0
lemmas chamber-D0 = folding-g.chamber-map|OF chambers(1)]

lemma ThinChamberComplexFolding-f: ThinChamberComplexFolding X f ..
lemma ThinChamberComplexFolding-g: ThinChamberComplexFolding X g ..

lemmas foldf = ThinChamberComplexFolding-f
lemmas foldg = ThinChamberComplexFolding-g
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lemma fg-symmetric: Opposed ThinChamberComplexFoldings X g f DO
using chambers(2—4) chamber-D0 adjacent-sym by unfold-locales auto

lemma basechambers-half-chamber-systems: COef-C DOegHC
using chambers(1,4) chamber-D0 chamber-system-def by auto

lemmas basech-halfchsys =
basechambers-half-chamber-systems

lemma f-trivial-C0: veC0 = fv =
using chambers(4) chamber-D0 chamberD-simplex[of DO0]
folding-f .vertex-retraction
by  fast

lemmas g-trivial-D0 =
Opposed ThinChamberComplexFoldings. f-trivial-CO[OF fg-symmetric]

lemma double-fold-D0:
assumes v € D0 — C0
shows ¢ (fv)=v
proof—
from assms chambers(2) have 1: DO = insert v (CONDO)
using adjacent-sym adjacent-conv-insert by fast
hence ‘D0 = insert (f v) (f(CONDO)) by fast
moreover have f{COND0) = CONDO using f-trivial-CO by force
ultimately have C0 = insert (f v) (CONDO) using chambers(4) by simp
hence ¢‘C0 = insert (g (f v)) (¢(CONDO)) by force
moreover have ¢{(C0ND0) = CONDO
using g-trivial-D0 fixespointwise-im[of g DO CONDO)
by  (fastforce intro: fizespointwisel)
ultimately have D0 = insert (¢ (f v)) (CONDO) by simp
with assms show ?thesis using 1 by force
qed

lemmas double-fold-C0O =
Opposed ThinChamberComplexFoldings.double-fold-DO[OF fg-symmetric]

lemma flopped-half-chamber-systems-fg: C—f-C = g-C
proof—
from chambers(1,3,4) have DOeC—f+C COeC—g-C
using chamber-system-def chamber-D0 folding-f.chamber-retraction2]of D0]
folding-g.chamber-retraction2][of C0]
by auto
with chambers(2,4) show ?thesis
using ThinChamberComplexFolding.chamber-image-and-complement|
OF ThinChamberComplexFolding-g, of C0O

]

ThinChamberComplexFolding. chamber-image-and-complement|
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OF ThinChamberComplexFolding-f, of DO
]
adjacent-sym[of CO DO]
by  force
qed

lemmas flopped-half-chamber-systems-gf =
Opposed ThinChamberComplexFoldings.flopped-half-chamber-systems-fg|
OF fg-symmetric

]

lemma flopped-half-apartments-fg: folding-f.opp-half-apartment = g-=X
proof (rule seteql)
fix a assume a € folding-f.Y
from this obtain C where Ceg-C aCC
using folding-f.opp-half-apartment-def flopped-half-chamber-systems-fg by auto
thus acg-X
using chamber-system-simplices
ChamberComplez.faces|OF folding-g.chambercomplex-image, of C)|
by auto
next
fix b assume b: b € g-X
from this obtain C where C: CeC b C ¢g‘'C
using simplez-in-max chamber-system-def by fast
from C(1) have g‘C € ¢g-C by fast
hence ¢‘C € C—fFC using flopped-half-chamber-systems-fg by simp
with C(2) have 3 CeC—f+HC. bCC by auto
moreover from b have be X using folding-g.simplez-map by fast
ultimately show b € folding-f.Y
unfolding folding-f.opp-half-apartment-def by simp
qed

lemmas flopped-half-apartments-gf =
OpposedThinChamberComplexFoldings. flopped-half-apartments-fg[
OF fg-symmetric

)

lemma vertex-set-split: | JX = f(UJX) U ¢(UX)
— f and ¢ will both be the identity on the intersection
proof
show U X 2 f(UX) U g(UX)
using folding-f.simplex-map folding-g.simplex-map by auto
show UJ X C f(UX) U g(UX)
proof
fix a assume aclJX
from this obtain C' where C: chamber C acC
using simplez-in-max by fast
from C(1) have CefC v CegtC
using chamber-system-def flopped-half-chamber-systems-fg by auto
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with C(2) show a € (fUX) U (¢gUUX)
using chamber-system-simplices by fast
qed
qed

lemma half-chamber-system-disjoint-union:
C =fFCUgHC (fHC) N (g-C) = {}
using folding-f.chamber-system-into
flopped-half-chamber-systems-fg| THEN sym)
by auto

lemmas halfchsys-decomp =
half-chamber-system-disjoint-union

lemma chamber-in-other-half-fg: chamber C — C¢f-C — CegtC
using chamber-system-def half-chamber-system-disjoint-union(1) by blast

lemma adjacent-half-chamber-system-image-fg:
CeftC = DegHC = C~D = f'D = C
using ThinChamberComplexFolding.adjacent-half-chamber-system-image|
OF ThinChamberComplexFolding-f

]
by  (simp add: flopped-half-chamber-systems-fg)

lemmas adjacent-half-chamber-system-image-gf =
Opposed ThinChamberComplexFoldings. adjacent-half-chamber-system-image-fg[
OF fg-symmetric

)

lemmas adjhalfchsys-image-gf =
adjacent-half-chamber-system-image-gf

lemma switch-basechamber:
assumes Cef-C C~g‘C
shows  Opposed ThinChamberComplexFoldings X f g C
proof
from assms(1) have CeC—gtC using flopped-half-chamber-systems-gf by simp
with assms show chamber C' C # ¢g‘C f'¢‘'C = C
using chamber-system-def adjacent-half-chamber-system-image-fg[of C ¢‘C]
by auto
qed (rule assms(2))

lemma unique-half-chamber-system-f:
assumes Opposed ThinChamberComplexFoldings X f' g’ C0 ¢'*C0 = DO
shows f4+C = f-C
proof—
have 1: OpposedThinChamberComplexFoldings X f g’ CO
proof (rule Opposed ThinChamberComplexFoldings.intro)
show ChamberComplexFolding X f ThinChamberComplex X ..
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from assms(1) show ChamberComplezFolding X g’
using Opposed ThinChamberComplexFoldings.axioms(3) by fastforce
from assms(2) chambers
show Opposed ThinChamber ComplexFoldings-axioms X f g’ C0
by  unfold-locales auto
qed
define a b where ¢ = f+C and b = fHC
hence aCC bCC C—a = C—b
using Opposed ThinChamberComplexFoldings.axioms(2)[OF assms(1)]
Opposed ThinChamberComplexFoldings.axioms(2)[OF 1]
ChamberComplexFolding.chamber-system-intolof X f]
ChamberComplexFolding.chamber-system-into[of X f]
OpposedThinChamberComplexFoldings. flopped-half-chamber-systems-fg[
OF assms(1)
]
Opposed ThinChamberComplexFoldings.flopped-half-chamber-systems-fg]
OF 1
]
by auto
hence a=b by fast
with a-def b-def show ?thesis by simp
qed

lemma unique-half-chamber-system-g:
Opposed ThinChamberComplexFoldings X f' ¢’ C0 = ¢’‘C0 = D0 =
g'=C = ¢g-C
using unique-half-chamber-system-f flopped-half-chamber-systems-fg
Opposed ThinChamberComplexFoldings. flopped-half-chamber-systems-fg[
of X fg'
]

by  simp
lemma split-gallery-fg:
[ Cefi-C; DeghC; gallery (C#CsQ[D)) | =
JAs A B Bs. Aef-C N BegkC A C#CsQ[D] = AsQA# B#Bs
using folding-f.split-gallery flopped-half-chamber-systems-fg by simp

lemmas split-gallery-gf =
Opposed ThinChamberComplexFoldings.split-gallery-fg| OF fg-symmetric]

end

4.6.3 The automorphism induced by a pair of opposed foldings

Recall that a folding of a chamber complex is a special kind of chamber
complex retraction, and so is the identity on its image. Hence a pair of
opposed foldings will be the identity on the intersection of their images and
so we can stitch them together to create an automorphism of the chamber
complex, by allowing each folding to act on the complement of its image.
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This automorphism will be of order two, and will be the unique automor-
phism of the chamber complex that fixes pointwise the facet shared by the
pair of adjacent chambers associated to the opposed foldings.

context OpposedThinChamberComplexFoldings
begin
definition induced-automorphism :: 'a="a
where induced-automorphism v =
if vef(UX) then g v else if veg(U X) then f v else v
— f and ¢ will both be the identity on the intersection of their images
abbreviation s = induced-automorphism

lemma induced-automorphism-fg-symmetric:

s = OpposedThinChamberComplexFoldings.s X g f

by (auto simp add:
folding-f .vertex-retraction folding-g.vertex-retraction
induced-automorphism-def
Opposed ThinChamberComplexFoldings.induced-automorphism-def]

OF fg-symmetric
]
)

lemma induced-automorphism-on-simplices-fg: r€frX = v€x = sv=gv
using induced-automorphism-def by auto

lemma induced-automorphism-eq-foldings-on-chambers-fg:
CefHFC = fun-eq-on s g C
using chamber-system-simplices induced-automorphism-on-simplices-fg[of C]
by  (fast intro: fun-eq-onl)

lemmas indaut-eq-foldch-fg =
induced-automorphism-eq-foldings-on-chambers-fg

lemma induced-automorphism-eq-foldings-on-chambers-gf:
CegH-C = fun-eq-on s f C
by (auto simp add:
Opposed ThinChamberComplexFoldings.indaut-eq-foldch-fq]
OF fg-symmetric
]

induced-automorphism-fg-symmetric

)

lemma induced-automorphism-on-chamber-vertices-f:
chamber C = veC = s v = (if CEfC then g v else f v)
using chamber-system-def induced-automorphism-eq-foldings-on-chambers-fg
induced-automorphism-eq-foldings-on-chambers-gf
flopped-half-chamber-systems-fg| THEN sym]
fun-eg-onD[of s g C|] fun-eq-onD[of s f C]
by auto
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lemma induced-automorphism-simplex-image:
CeftC = 2CC = sz = gc CegHC = 2CC = sz = f«
using fun-eq-on-im[of s g C] fun-eg-on-im[of s f C]
induced-automorphism-eq-foldings-on-chambers-fg
induced-automorphism-eq-foldings-on-chambers-gf
by auto

lemma induced-automorphism-chamber-list-image-fg:
set Cs C fHC = s=Cs = g=Cs
proof (induct Cs)
case (Cons C Cs) thus ?case
using induced-automorphism-simplez-image(1)[of C]| by simp
qed simp

lemma induced-automorphism-chamber-image-fg:
chamber C = s‘C = (if Cef-C then ¢g‘C else fC)
using chamber-system-def induced-automorphism-simplez-image
flopped-half-chamber-systems-fg| THEN sym)
by auto

lemma induced-automorphism-C0: s‘C0O = D0
using chambers(1,4) basechambers-half-chamber-systems(1)
induced-automorphism-chamber-image-fg
by auto

lemma induced-automorphism-fixespointwise- CO-int-D0:

fizespointwise s (CONDO)

using fun-eq-on-trans[of s g| fun-eq-on-subset[of s g CO]
fizespointwise-subset|[of g DO)]
induced-automorphism-eq-foldings-on-chambers-fg
basechambers-half-chamber-systems
folding-g.chamber-retraction1

by auto

lemmas indaut-fizes-fundfacet =
induced-automorphism-fixespointwise- C0-int-D0

lemma induced-automorphism-adjacent-half-chamber-system-image-fg:
[ Cef-C; DegrC; C~D ] = s‘D = C
using adjacent-half-chamber-system-image-fg[of C D]
induced-automorphism-simplex-image(2)
by auto

lemmas indaut-adj-halfchsys-im-fg =
induced-automorphism-adjacent-half-chamber-system-image-fg

lemma induced-automorphism-chamber-map: chamber C = chamber (s‘C)
using induced-automorphism-chamber-image-fg folding-f.chamber-map
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folding-g.chamber-map
by auto

lemmas indaut-chmap = induced-automorphism-chamber-map

lemma induced-automorphism-ntrivial: s # id
proof
assume s: s = id
from chambers(2,3) obtain v where v: v ¢ D0 CO = insert v (CONDO)
using adjacent-int-decomplof C0O DO] by fast
from chambers(4) s v(2) have gv: gv = v
using chamberD-simplex| OF chamber-D0)
induced-automorphism-on-simplices-fg[of CO v, THEN sym)|
by auto
have ¢‘C0 = C0
proof (rule seteql)
from v(2) gv show Az. z€ C0 = z€¢‘C0 using g-trivial-D0 by force
next
fix z assume z€g‘C0O
from this obtain y where y: ycC0 © = g y by fast
moreover from y(1) v(2) gv have gy =y
using g-trivial-D0[of y] by (cases y=v) auto
ultimately show z€ C0 using y by simp
qed
with chambers(3) show Fulse by fast
qged

lemma induced-automorphism-bij-between-half-chamber-systems-f:
bij-betw ((9) s) (C—fFC) (fFC)
using induced-automorphism-simplez-image(2)
flopped-half-chamber-systems-fg
folding-f.opp-chambers-bij bij-betw-conglof C—fHC () s]
by auto

lemmas indaut-bij-btw-halfchsys-f =
induced-automorphism-bij-between-half-chamber-systems-f

lemma induced-automorphism-bij-between-half-chamber-systems-g:
bij-betw ((°) s) (C—gkC) (gFC)
using induced-automorphism-fg-symmetric
Opposed ThinChamberComplexFoldings.indaut-bij-btw-halfchsys-f|
OF fg-symmetric

]

by  simp

lemma induced-automorphism-halfmorphism-fopp-to-fimage:
ChamberComplexMorphism folding-f.opp-half-apartment (fEX) s
proof (
rule ChamberComplexMorphism.cong,
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rule ThinChamberComplexFolding.morphism-half-apartments,
rule ThinChamberComplexFolding-f, rule fun-eq-onl

show Av. v € Jfolding-f.Y = sv=fuv

using folding-f.opp-half-apartment-def chamber-system-simplices

by  (force simp add:
flopped-half-chamber-systems-fg
induced-automorphism-fg-symmetric
Opposed ThinChamber ComplexFoldings.induced-automorphism-def|

OF fg-symmetric

]

)
qed

lemmas indaut-halfmorph-fopp-fim =
induced-automorphism-halfmorphism-fopp-to-fimage

lemma induced-automorphism-half-chamber-system-gallery-map-f:
set Cs C f-C = gallery Cs = gallery (s=Cs)
using folding-g.gallery-maplof Cs]
induced-automorphism-chamber-list-image-fg| THEN sym]
by auto

lemma induced-automorphism-half-chamber-system-pgallery-map-f:
set Cs C fHC = pgallery Cs = pgallery (sf=Cs)
using induced-automorphism-half-chamber-system-gallery-map-f pgallery
flopped-half-chamber-systems-gf pgalleryD-distinct
folding-g.opp-chambers-distinct-map
induced-automorphism-chamber-list-image-fg| THEN sym]
by  (auto intro: pgalleryl-gallery)

lemmas indaut-halfchsys-pgal-map-f =
induced-automorphism-half-chamber-system-pgallery-map-f

lemma induced-automorphism-half-chamber-system-pgallery-map-g:
set Cs C g-C = pygallery Cs = pygallery (sE=Cs)
using induced-automorphism-fg-symmetric
Opposed ThinChamberComplexFoldings.indaut-halfchsys-pgal-map-f|
OF fg-symmetric

]

by  simp

lemma induced-automorphism-halfmorphism-fimage-to-fopp:
ChamberComplexMorphism (f-X) folding-f.opp-half-apartment s
using Opposed ThinChamberComplexFoldings.indaut-halfmorph-fopp-fim|
OF fg-symmetric
]
by (auto simp add:
flopped-half-apartments-gf flopped-half-apartments-fg
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induced-automorphism-fg-symmetric

)

lemma induced-automorphism-selfcomp-halfmorphism-f:
ChamberComplexMorphism (fEX) (fFX) (sos)
using induced-automorphism-halfmorphism-fimage-to-fopp
induced-automorphism-halfmorphism-fopp-to-fimage
by  (auto intro: ChamberComplexMorphism.comp)

lemma induced-automorphism-selfcomp-halftrivial-f: fizespointwise (sos) (J (f-X))
proof (
rule standard-uniqueness, rule ChamberComplexMorphism.expand-codomain,
rule induced-automorphism-selfcomp-halfmorphism-f
)
show ChamberComplexMorphism (fFX) X id
using folding-f.chambersubcomplex-image inclusion-morphism by fast
show SimplicialComplex.mazsimp (f+X) CO
using chambers(1,4) chamberD-simplex[OF chamber-D0]
chamber-in-subcomplex| OF folding-f.chambersubcomplez-image, of CO)|
by auto
show fizespointwise (sos) CO
proof (rule fixespointwisel)
fix v assume v: ve C0
with chambers(4) have vef(|JX)
using chamber-D0 chamberD-simplex by fast
hence 1: s v = g v using induced-automorphism-def by simp
show (sos) v = id v
proof (cases veDO0)
case True with v show ?thesis using 1 g-trivial-D0 by simp
next
case Fulse
from v chambers(1,4) have s (g v) = f (g v)
using chamberD-simplex induced-automorphism-fg-symmetric
Opposed ThinChamberComplexFoldings.induced-automorphism-def|
OF fg-symmetric, of g v
]
by  force
with v False chambers(4) show ?thesis using double-fold-C0 1 by simp
qed
qed
next
fix Cs assume ChamberComplex.min-gallery (fEX) (CO#Cs)
hence Cs: ChamberComplex.pgallery (fEX) (CO#Cs)
using ChamberComplex.min-gallery-pgallery folding-f.chambercomplex-image
by  fast
hence pCs: pgallery (CO#Cs)
using folding-f.chambersubcomplex-image subcomplex-pgallery by auto
thus pgallery (id=(C0#Cs)) by simp
have set-Cs: set (CO#Cs) C f-C
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using Cs pCs folding-f.chambersubcomplex-image
ChamberSubcomplexD-complex ChamberComplex.pgalleryD-chamber
ChamberComplex.chamberD-simplex pgallery-chamber-system
folding-f.chamber-system-image
by  fastforce
hence pgallery (sE=(CO#Cs))
using pCs induced-automorphism-half-chamber-system-pgallery-map-f|of CO# Cs|
by auto
moreover have set (sE=(C0#Cs)) C g-C
proof—
have set (sE=(CO0#Cs)) C sH(C—gHC)
using set-Cs flopped-half-chamber-systems-gf by auto
thus ?thesis
using bij-betw-imp-surj-on|
OF induced-automorphism-bij-between-half-chamber-systems-g
]
by  simp
qed
ultimately have pgallery (sE=(s=(C0#Cs)))
using induced-automorphism-half-chamber-system-pgallery-map-g|

| of sE=(C0#Cs)

by auto
thus pgallery ((sos)=(C0#Cs))
using ssubst|OF setlistmapim-comp, of pgallery, of s s CO#Cs] by fast
qed (unfold-locales, rule folding-f.chambersubcomplex-image)

lemmas indaut-selfcomp-halftriv-f =
induced-automorphism-selfcomp-halftrivial-f

lemma induced-automorphism-selfcomp-halftrivial-g: fixespointwise (sos) (| (g-X))
using induced-automorphism-fg-symmetric
Opposed ThinChamber ComplexFoldings.indaut-selfcomp-halftriv-f|
OF fg-symmetric

]

by  simp

lemma induced-automorphism-trivial-outside:
assumes v¢| ) X
shows sv=wv
proof—
from assms have v ¢ f(JX) A v ¢ g{(|JX) using vertez-set-split by fast
thus s v = v using induced-automorphism-def by simp
qed

lemma induced-automorphism-morphism: ChamberComplexEndomorphism X s
proof (unfold-locales, rule induced-automorphism-chamber-map, simp)

fix C' assume chamber C

thus card (s‘C") = card C
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using induced-automorphism-chamber-image-fg folding-f.dim-map
folding-g.dim-map
flopped-half-chamber-systems-fg| THEN sym)
by (cases CefFC) auto
qed (rule induced-automorphism-trivial-outside)

lemmas indaut-morph = induced-automorphism-morphism

lemma induced-automorphism-morphism-order2: sos = id
proof
fix v
show (sos) v = id v
proof (cases vef{(JX) veg(UX) rule: two-cases)
case both
from both(1) show ?Zthesis
using induced-automorphism-selfcomp-halftrivial-f fizespointwiseD[of sos]
by auto
next
case one thus ?thesis
using induced-automorphism-selfcomp-halftrivial-f fizespointwiseD[of sos]
by  fastforce
next
case other thus ?thesis
using induced-automorphism-selfcomp-halftrivial-g fizespointwiseD|of sos]
by  fastforce
qged (simp add: induced-automorphism-def)
qged

lemmas indaut-order?2 = induced-automorphism-morphism-order?2

lemmas induced-automorphism-bij =
0-bij|OF
induced-automorphism-morphism-order2
induced-automorphism-morphism-order?2

]

lemma induced-automorphism-surj-on-vertezset: s(|JX) = UX
proof
show s{(UX) CUX
using induced-automorphism-morphism
ChamberComplexEndomorphism.vertex-map
by  fast
hence (sos) (U X) C s{(|JX) by fastforce
thus |J X C s{(JX) using induced-automorphism-morphism-order2 by simp
qed

lemma induced-automorphism-bij-betw-vertexset: bij-betw s (J X) (U X)

using induced-automorphism-bij induced-automorphism-surj-on-vertexset
by  (auto intro: bij-betw-subset)
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lemma induced-automorphism-surj-on-simplices: s-X = X
proof
show s X C X
using induced-automorphism-morphism
ChamberComplexEndomorphism.simplex-map
by  fast
hence st(skX) C stX by auto
thus X C sk-X
by (simp add:
setsetmapim-comp| THEN sym] induced-automorphism-morphism-order2

)
qed

lemma induced-automorphism-automorphism:

ChamberComplexAutomorphism X s

using induced-automorphism-chamber-map
ChamberComplezEndomorphism.dim-map
induced-automorphism-morphism
induced-automorphism-bij-betw-verterset
induced-automorphism-surj-on-simplices
induced-automorphism-trivial-outside

by  (intro-locales, unfold-locales, fast)

lemmas indaut-aut = induced-automorphism-automorphism

lemma induced-automorphism-unique-automorphism':
assumes ChamberComplexAutomorphism X s s#£id fizespointwise s (CONDO)
shows fun-eq-on ss CO
proof (rule fun-eq-on-subset-and-diff-imp-eq-on)
from assms(3) show fun-eg-on s s (CONDO)
using induced-automorphism-fizespointwise- CO-int-D0
fixespointwise2-imp-eq-on
by fast
show fun-eg-on s s (CO — (CONDO))
proof (rule fun-eq-onl)
fix v assume v: v € CO — CONDO
with chambers(2) have CO-insert: C0 = insert v (CONDO)
using adjacent-conv-insert by fast
hence s‘C0 = insert (s v) (s(CONDO)) s‘CO = insert (s v) (s(CONDO))
by auto
with assms(3)
have insert: s‘C0 = insert (s v) (CONDO) DO = insert (s v) (CONDO)
using basechambers-half-chamber-systems
induced-automorphism-firespointwise-C0-int-D0
induced-automorphism-simplex-image(1)
by  (auto simp add: fizespointwise-im)

from chambers(2,3) have C0OD0-C0: (CONDO) <1 CO
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using adjacent-int-facet! by fast
with assms(1) chambers(1) have s{(COND0O) < s‘CO
using ChamberComplexAutomorphism.facet-map by fast
with assms(8) have COD0-sC0: (CONDO) < s‘CO
by (simp add: fizespointwise-im)
hence sv-nin-C0OD0: s v ¢ CONDO using insert(1) facetrel-psubset by auto

from assms(1) chambers(1) have chamber (s‘C0)
using ChamberComplezAutomorphism.chamber-map by fast
moreover from chambers(2,3) have C0D0-D0: (CONDO) < DO
using adjacent-sym adjacent-int-facet! by (fastforce simp add: Int-commute)
ultimately have s‘C0 = C0 V s‘C0 = D0
using chambers(1,8) chamber-D0 CODO-C0 C0DO-sCO
facet-unique-other-chamber|of s‘CO CONDO CO DO]
by auto
moreover have = s‘C0 = C0
proof
assume sC0: s‘C0 = C0
have s = id
proof (
rule standard-uniqueness-automorphs, rule assms(1),
rule trivial-automorphism, rule chambers(1),
rule fizespointwise-subset-and-diff-imp-eq-on,
rule Int-lowerl, rule assms(3), rule fizespointwisel
)
fix a assume a € CO—(CONDO)
with v have a = v using C0-insert by fast
with sC0 show s a = id a using C0-insert sv-nin-C0OD0 by auto
qed
with assms(1,2) show Fulse by fast
qed
ultimately have sC0-D0: s‘C0 = D0 by fast

have s v ¢ CONDO using insert(2) CODO-DO facetrel-psubset by force
thus s v = s v using insert sC0-D0 sv-nin-CODO by auto

qed

qed simp

lemma induced-automorphism-unique-automorphism:
[ ChamberComplexAutomorphism X s; s#id; fizespointwise s (CONDO) |
= s=s
using chambers(1) induced-automorphism-unique-automorphism’
standard-uniqueness-automorphs induced-automorphism-automorphism
by  fastforce

lemmas indaut-uniq-aut =
induced-automorphism-unique-automorphism

lemma induced-automorphism-unique:
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Opposed ThinChamberComplexFoldings X f' ¢’ C0 — ¢'‘C0 = ¢‘C0 =
Opposed ThinChamber ComplexFoldings.induced-automorphism X f' g’ = s
using induced-automorphism-automorphism induced-automorphism-ntrivial
induced-automorphism-fixespointwise- CO-int-D0
by  (auto intro:
Opposed ThinChamberComplexFoldings.indaut-uniq-aut|
THEN sym

]
)

lemma induced-automorphism-sym:
Opposed ThinChamberComplexFoldings.induced-automorphism X g f = s
using Opposed ThinChamberComplexFoldings.indaut-aut|
OF fg-symmetric
]
Opposed ThinChamberComplexFoldings.induced-automorphism-ntrivial|
OF fg-symmetric
]
Opposed ThinChamberComplexFoldings.indaut-fizes-fundfacet|
OF fg-symmetric
]
induced-automorphism-unique-automorphism
by  (simp add: chambers(4) Int-commute)

lemma induced-automorphism-respects-labels:
assumes label-wrt B ¢ ve(|J X)
shows ¢ (sv) = ¢ v
proof—
from assms(2) obtain C where chamber C ve C using simplez-in-mazx by fast
with assms show ?thesis
by (simp add:
induced-automorphism-on-chamber-vertices-f folding-f.respects-labels
folding-g.respects-labels

)
qed

lemmas indaut-resplabels =
induced-automorphism-respects-labels

end

4.6.4 Walls

A pair of opposed foldings of a thin chamber complex defines a decompo-
sition of the chamber system into the two disjoint chamber system images.
Call such a decomposition a wall, as we image that disjointness erects a
wall between the two half chamber systems. By considering the collection
of all possible opposed folding pairs, and their associated walls, we can ob-
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tain information about minimality of galleries by considering the walls they
Cross.

context ThinChamberComplex
begin

definition foldpairs :: (('a="a) x (‘a="a)) set
where foldpairs = {(f,g). 3 C. Opposed ThinChamberComplexFoldings X f g C}

abbreviation walls = | (f,g)€foldpairs. {{f+C,g-C}}
abbreviation the-wall-betw C D =
THE-default {} (AH. Hewalls A separated-by H C' D)

definition walls-betw :: 'a set = 'a set = 'a set set set set
where walls-betw C' D = {H€ewalls. separated-by H C D}

fun wall-crossings :: 'a set list = 'a set set set list
where wall-crossings [| = |]
| wall-crossings [C] = |]
| wall-crossings (B# C#Cs) = the-wall-betw B C # wall-crossings (C#Cs)

lemma foldpairs-sym: (f,g)€foldpairs = (g,f)€Efoldpairs
using foldpairs-def Opposed ThinChamberComplexFoldings.fg-symmetric by fast-
force

lemma not-self-separated-by-wall: Hcwalls = — separated-by H C C
using foldpairs-def Opposed ThinChamberComplexFoldings.halfchsys-decomp(2)
not-self-separated-by-disjoint
by  force

lemma the-wall-betw-nempty:
assumes the-wall-betw C D # {}
shows the-wall-betw C D € walls separated-by (the-wall-betw C D) C D
proof—
from assms have 1: 3'H'cwalls. separated-by H' C D
using THE-default-nonelof N\H. Hewalls N separated-by H C D {}] by fast
show the-wall-betw C D € walls separated-by (the-wall-betw C' D) C D
using THE-defaultI'|OF 1] by auto
qed

lemma the-wall-betw-self-empty: the-wall-betw C C = {}
proof—
{
assume *: the-wall-betw C C # {}
then obtain f g
where (f,g)€foldpairs the-wall-betw C C = {f+C,g-C}
using the-wall-betw-nempty(1)[of C C]
by  blast
with x have Fualse
using the-wall-betw-nempty(2)[of C C] foldpairs-def
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Opposed ThinChamber ComplexFoldings.halfchsys-decomp(2)]
of X
]
not-self-separated-by-disjoint[of fFC gHC]
by auto
}
thus ?thesis by fast
qed

lemma length-wall-crossings: length (wall-crossings Cs) = length Cs — 1
by (induct Cs rule: list-induct-CCons) auto

lemma wall-crossings-snoc:
wall-crossings (CsQ[D,E]) = wall-crossings (CsQ[D]) Q [the-wall-betw D F)
by (induct Cs rule: list-induct-CCons) auto

lemma wall-crossings-are-walls:
Heset (wall-crossings Cs) = H#{} = Hecwalls
proof (induct Cs arbitrary: H rule: list-induct-CCons)
case (CCons B C Cs) thus ?case
using the-wall-betw-nempty(1)
by  (cases Heset (wall-crossings (C#Cs))) auto
qged auto

lemma in-set-wall-crossings-decomp:
Heset (wall-crossings Cs) =
JAs A B Bs. Cs = AsQ[A,B|QBs A H = the-wall-betw A B
proof (induct Cs rule: list-induct-CCons)
case (CCons C D Ds)
show Zcase
proof (cases H € set (wall-crossings (D#Ds)))
case True
with CCons(1) obtain As A B Bs
where C#(D#Ds) = (C#As)Q[A,B|QBs H = the-wall-betw A B
by  fastforce
thus ?thesis by fast
next
case False
with CCons(2) have C#(D#Ds) = [|Q[C,D|QDs H = the-wall-betw C D
by auto
thus ?thesis by fast
qed
qged auto

end

context OpposedThinChamberComplexFoldings
begin
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lemma foldpair: (f,g)€foldpairs
unfolding foldpairs-def
proof—
have Opposed ThinChamberComplexFoldings X f g CO ..
thus (f, g) € {(f, g).
3 C. Opposed ThinChamberComplexFoldings X f g C}
by fast
qed

lemma separated-by-this-wall-fg:
separated-by {fFC,g-C} C D = CefFC = DegtC
using separated-by-disjoint]
OF - half-chamber-system-disjoint-union(2), of C D
]

by  fast

lemmas separated-by-this-wall-gf =
OpposedThinChamberComplexFoldings.separated-by-this-wall-fg[
OF fg-symmetric

)

lemma induced-automorphism-this-wall-vertex:
assumes Cef-C DegH-C ve CND
shows sv=wv
proof—
from assms have s v = g v
using chamber-system-simplices induced-automorphism-on-simplices-fg
by auto
with assms(2,3) show s v = v
using chamber-system-simplices folding-g.retraction by auto
qed

lemmas indaut-wallvertex =
induced-automorphism-this-wall-vertex

lemma unique-wall:
assumes opp’ : Opposed ThinChamberComplexFoldings X ' g’ C'
and chambers: Aef-C Aef'=C Beg-C Beg'-C A~B
shows {f+C,gtC} = {f'+C,g+-C}
proof—
from chambers have B: B=g‘A B=g'‘A
using adjacent-sym[of A B] adjacent-half-chamber-system-image-gf
Opposed ThinChamberComplexFoldings.adjhalfchsys-image-gf|
OF opp’
]
by auto
with chambers(1,2,5)
have A : OpposedThinChamberComplexFoldings X f g A
and A2 OpposedThinChamberComplexFoldings X f' g’ A
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using switch-basechamber|of A
Opposed ThinChamberComplexFoldings. switch-basechamber]
OF opp’, of A
]
by auto
with B show ?thesis
using Opposed ThinChamberComplexFoldings.unique-half-chamber-system-f]

OF A A’
]
Opposed ThinChamberComplexFoldings.unique-half-chamber-system-g|
OF A A’
]
by auto
qed
end

context ThinChamberComplex
begin

lemma separated-by-wall-ex-foldpair:
assumes Hecwalls separated-by H C D
shows 3 (f,g)€foldpairs. H = {fFC,g-C} N Ceft-C N DegC
proof—
from assms(1) obtain f g where fg: (f,g9)€foldpairs H = {fFC,g-C} by auto
show ?thesis
proof (cases Cef-C)
case True
moreover with fg assms(2) have DegHC
using foldpairs-def
Opposed ThinChamberComplexFoldings. separated-by-this-wall-fg]

of Xfg-CD
]
by auto
ultimately show ?thesis using fg by auto

next
case Fulse with assms(2) fg show ?thesis
using foldpairs-sym|of f g] separated-by-in-other[of fFC g-C C D] by auto
qed
qed

lemma not-separated-by-wall-ex-foldpair:
assumes chambers: chamber C chamber D
and wall : Hewalls — separated-by H C' D
shows 3 (f,g)€foldpairs. H = {f-C,g+C} N Ceft-C N DeftC
proof—
from wall(1) obtain f g where fg: (f,g)€foldpairs H = {f+C,g-C} by auto
from fg(1) obtain A where A: Opposed ThinChamberComplexFoldings X f g A
using foldpairs-def by fast
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from chambers have chambers”: Cef-C v Cegt-C Deft-C vV Deg-C
using chamber-system-def
Opposed ThinChamberComplexFoldings.halfchsys-decomp(1)|
OF A
]
by auto
show ?thesis
proof (cases CefC)
case True
moreover with chambers’(2) fg(2) wall(2) have Def-C
unfolding separated-by-def by auto
ultimately show ?thesis using fg by auto
next
case Fulse
with chambers’(1) have Ceg-C by simp
moreover with chambers’(2) fg(2) wall(2) have Deg-C
using insert-commute[of fHC gHC {}] unfolding separated-by-def by auto
ultimately show ?thesis using fg foldpairs-sym|of f g] by auto
qed
qed

lemma adj-wall-imp-exI-wall:
assumes adj : C~D
and wall: HOE€walls separated-by HO C' D
shows 3!Hecwalls. separated-by H C' D
proof (rule ex1I, rule conjl, rule wall(1), rule wall(2))
fix H assume H: Hcwalls A\ separated-by H C' D
from this obtain f g
where fg: (f,g9)€foldpairs H={fFC,g-C} Cef-C Deg-C
using separated-by-wall-ex-foldpair[of H C D]
by auto
from wall obtain f0 g0
where f0g0: (f0,90)€foldpairs HO={f0+C,g0FC} CefOrC DegO-C
using separated-by-wall-ex-foldpair[of HO C D]
by auto
from fg(1) f0g0(1) obtain A A0
where A : OpposedThinChamberComplexFoldings X f g A
and A0: Opposed ThinChamberComplexFoldings X f0 g0 A0
using foldpairs-def
by auto
from fg(2—4) f090(2—4) adj show H = HO
using Opposed ThinChamberComplexFoldings.unique-wall|OF A0 A] by auto
qed

end

context OpposedThinChamberComplexFoldings
begin
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lemma this-wall-betwl:

assumes Cef-C Deg-C C~D

shows the-wall-betw C D = {fFC,g-C}
proof (rule THE-default!-equality, rule adj-wall-imp-exI-wall)

have Opposed ThinChamberComplexFoldings X f g CO ..

thus {fFC,¢g-C}€walls using foldpairs-def by auto

moreover from assms(1,2) show separated-by {f+-C,g=C} C D

by (auto intro: separated-byl)

ultimately show {f+C,g-C}€walls A separated-by {f+C,g=C} C D by simp

qged (rule assms(3))

lemma this-wall-betw-basechambers:
the-wall-betw CO DO = {f+C,g-C}
using basechambers-half-chamber-systems chambers(2) this-wall-betwl by auto

lemma this-wall-in-crossingsl-fg:
defines H: H = {fC,g-C}
assumes D: Deg-C
shows Cef-C = gallery (C#CsQ[D]) = H € set (wall-crossings (C# CsQ[D)))
proof (induct Cs arbitrary: C)
case Nil
from Nil(1) assms have Hecwalls separated-by H C' D
using foldpair by (auto intro: separated-byl)
thus ?case
using galleryD-adj[OF Nil(2)]
THE-default1-equality| OF adj-wall-imp-exI-wall]
by auto
next
case (Cons B Bs)
show ?Zcase
proof (cases BEfC)
case True with Cons(1,3) show ?thesis using gallery-Cons-reduce by simp
next
case Fulse
with Cons(2,3) H have Hewalls separated-by H C' B
using galleryD-chamber|OF Cons(3)] chamber-in-other-half-fglof B] foldpair
by  (auto intro: separated-byl)
thus ?thesis
using galleryD-adj[OF Cons(3)]
THE-default1-equality| OF adj-wall-imp-ex1-wall]
by auto
qed
qed

end
lemma (in ThinChamberComplex) walls-betw-subset-wall-crossings:

assumes gallery (C# CsQ[D])
shows walls-betw C' D C set (wall-crossings (C# CsQ[D]))
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proof
fix H assume H € walls-betw C D
hence H: Hecwalls separated-by H C' D using walls-betw-def by auto
from this obtain f g
where fg: (f,g9)€foldpairs H = {fFC,g-C} Cef-C DegC
using separated-by-wall-ex-foldpair[of H C D]
by auto
from fg(1) obtain Z where Z: Opposed ThinChamberComplexFoldings X f g Z
using foldpairs-def by fast
from assms H(2) fg(2—4) show H € set (wall-crossings (C# CsQ[D]))
using Opposed ThinChamberComplexFoldings.this-wall-in-crossingsI-fg] OF Z|
by auto
qed

context OpposedThinChamberComplexFoldings
begin

lemma same-side-this-wall-wall-crossings-not-distinct-f:
gallery (C#CsQ[D]) = CeftC = DefHC =
{fFC,g-C}eset (wall-crossings (C#CsQ[D])) =
= distinct (wall-crossings (C# CsQ[D]))
proof (induct Cs arbitrary: C)
case Nil
hence {f+C,g-C} = the-wall-betw C D by simp
moreover hence the-wall-betw C D # {} by fast
ultimately show “case
using Nil(2,3) the-wall-betw-nempty(2) separated-by-this-wall-fglof C D]
half-chamber-system-disjoint-union(2)
by auto
next
case (Cons E Es)
show Zcase
proof
assume 1: distinct (wall-crossings (C' # (E # Es) Q [D]))
show Fulse
proof (
cases EefFC {fC,gFC} € set (wall-crossings (E# EsQ[D]))
rule: two-cases
)
case both with Cons(1,2,4) 1 show Fulse
using gallery-Cons-reduce by simp
next
case one
from one(2) Cons(5) have {f-C,g-C} = the-wall-betw C E by simp
moreover hence the-wall-betw C E # {} by fast
ultimately show Fulse
using Cons(3) one(1) the-wall-betw-nempty(2)
separated-by-this-wall-fgof C E]
half-chamber-system-disjoint-union(2)
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by auto
next
case other with Cons(3) show Fulse
using 1 galleryD-chamber[OF Cons(2)] galleryD-adj|OF Cons(2)]
chamber-in-other-half-fg this-wall-betwl
by  force
next
case neither
from Cons(2) neither(1) have Ecg-C
using galleryD-chamber chamber-in-other-half-fg by auto
with Cons(4) have separated-by {g+C,f-C} E D
by (blast intro: separated-byl)
hence {f-C,g-C} € walls-betw E D
using foldpair walls-betw-def by (auto simp add: insert-commute)
with neither(2) show False
using gallery-Cons-reduce] OF Cons(2)] walls-betw-subset-wall-crossings
by auto
qed
qed
qed

lemmas sside-wcrossings-ndistinct-f =
same-side-this-wall-wall-crossings-not-distinct-f

lemma separated-by-this-wall-chain3-fg:
assumes BefC chamber C chamber D
separated-by {f+C,g-C} B C separated-by {f+C,g+-C} C D
shows Ceg-C DefC
using assms separated-by-this-wall-fg separated-by-this-wall-gf
by (auto simp add: insert-commute)

lemmas sepwall-chain3-fg =
separated-by-this-wall-chain3-fg

end

context ThinChamberComplex
begin

lemma wall-crossings-min-gallery-betwl:
assumes gallery (C# CsQ[D])
distinct (wall-crossings (C# CsQ[D]))
V Heset (wall-crossings (C# CsQ[D))). separated-by H C' D
shows min-gallery (C# CsQ[D])
proof (rule min-galleryl-betw)
obtain B Bs where BBs: CsQ[D] = B#Bs using snoc-conv-cons by fast
define H where H = the-wall-betw C' B
with BBs assms(3) have 1: separated-by H C' D by simp
show C#D
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proof (cases H={})
case True thus ?thesis
using 1 unfolding separated-by-def by simp
next
case Fulse
with H-def have H € walls using the-wall-betw-nempty(1) by simp
from this obtain f g
where fg: (f,9)€foldpairs H = {f+C,g+-C} CefH-C Deg-C
using 1 separated-by-wall-ex-foldpair[of H C D)
by auto
thus ?thesis
using foldpairs-def
Opposed ThinChamber ComplexFoldings.halfchsys-decomp(2)]
| of Xfyg
by auto
qed
next
fix Ds assume Ds: gallery (C # Ds Q [D])
have Suc (length Cs) = card (walls-betw C D)
proof—
from assms(1,3) have set (wall-crossings (C# CsQ[D])) = walls-betw C D
using  separated-by-not-empty wall-crossings-are-walls[of - C# CsQ[D]]
walls-betw-def
walls-betw-subset-wall-crossings| OF assms(1))
unfolding separated-by-def
by auto
with assms(2) show ?thesis
using distinct-card[THEN sym)| length-wall-crossings by fastforce
qed
moreover have card (walls-betw C D) < Suc (length Ds)
proof—
from Ds have card (walls-betw C D) < card (set (wall-crossings (C#DsQ[D])))
using walls-betw-subset-wall-crossings finite-set card-mono by force
also have ... < length (wall-crossings (C# DsQ[D]))
using card-length by auto
finally show %thesis using length-wall-crossings by simp
qed
ultimately show length Cs < length Ds by simp
qed (rule assms(1))

lemma ex-nonseparating-wall-imp-wall-crossings-not-distinct:
assumes gal : gallery (C# CsQ[D])
and  wall: Heset (wall-crossings (C# CsQ[D])) H#{}
= separated-by H C' D
shows - distinct (wall-crossings (C# CsQ[D]))
proof—
from assms obtain f g
where fg: (f,g9)€foldpairs H = {f+-C,g-C} Cef-C DefHC
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using wall-crossings-are-walls[of H]
not-separated-by-wall-ex-foldpair[of C D H]
galleryD-chamber
by auto
from fg(1) obtain Z where Z: Opposed ThinChamberComplexFoldings X f g Z
using foldpairs-def by fast
from wall fg(2—4) show ?thesis
using Opposed ThinChamberComplexFoldings.sside-wcrossings-ndistinct-f |
OF Z gal
]
by  blast
qed

lemma not-min-gallery-double-crosses-wall:
assumes gallery Cs = min-gallery Cs {} ¢ set (wall-crossings Cs)
shows — distinct (wall-crossings Cs)
proof (cases Cs rule: list-cases-Cons-snoc)
case Nil with assms(2) show ?thesis by simp
next
case Single with assms(1,2) show ?thesis using galleryD-chamber by simp
next
case (Cons-snoc B Bs C)
show ?thesis
proof (cases B=C)
case True show ?thesis
proof (cases Bs)
case Nil with True Cons-snoc assms(3) show ?thesis
using the-wall-betw-self-empty by simp
next
case (Cons E FEs)
define H where H = the-wall-betw B E
with Cons have x: H € set (wall-crossings (B#BsQ[C])) by simp
moreover from assms(3) Cons-snoc x have H # {} by fast
ultimately show ?thesis
using assms(1) Cons-snoc Cons True H-def
the-wall-betw-nempty(1)[of B E] not-self-separated-by-walllof H B]
ex-nonseparating-wall-imp-wall-crossings-not-distinct[of B Bs C H|

by  fast
qed
next
case Fualse

with assms Cons-snoc
have 1: - distinct (wall-crossings Cs) V
- (V Heset (wall-crossings Cs). separated-by H B C)
using wall-crossings-min-gallery-betwl
by  force
moreover {
assume — (VY Heset (wall-crossings Cs). separated-by H B C')
from this obtain H
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where H: Heset (wall-crossings Cs) — separated-by H B C
by auto
moreover from H(1) assms(3) have H#{} by fast
ultimately have ?thesis
using assms(1) Cons-snoc
ex-nonseparating-wall-imp-wall-crossings-not-distinct

by simp
}
ultimately show ?thesis by fast
qged
qged

lemma not-distinct-crossings-split-gallery:
[ gallery Cs; {} ¢ set (wall-crossings Cs); = distinct (wall-crossings Cs) | =
dfgAs A B Bs EF Fs.
(f,g9)€foldpairs N Aef=C N Beg-C A E€g-C N FEfFC A
( Cs = AsQ[A,B,F|QFs vV Cs = AsQ[A,B]|QBsQ[E,F|QFs )
proof (induct Cs rule: list-induct-CCons)
case (CCons C J Js)
show Zcase
proof (cases distinct (wall-crossings (J#Js)))
case Fulse
moreover from CCons(2) have gallery (J#Js)
using gallery-Cons-reduce by simp
moreover from CCons(3) have {} ¢ set (wall-crossings (J#Js)) by simp
ultimately obtain f g As A B Bs E F Fs where split:
(f,9)Efoldpairs Acf-C Beg-C Ecg-C FeftC
J#Js = AsQ[A,B,F|QFs vV J#Js = AsQ[A,B|QBsQ[E,F|QFs
using CCons(1)
by  blast
from split(6)
have C#J#Js = (C#As)Q[A,B,F|QFs Vv
CH#J#Js = (C#As)Q[A,B|QBsQ[E,F]QFs
by simp
with split(1—5) show ?thesis by blast
next
case True
define H where H = the-wall-betw C' J
with True CCons(4) have Heset (wall-crossings (J#Js)) by simp
from this obtain Bs E F Fs
where splitl: J#Js = BsQ[E,F|QFs H = the-wall-betw E F
using in-set-wall-crossings-decomp
by  fast
from H-def split1(2) CCons(3)
have Huwall: H € walls separated-by H C' J separated-by H E F
using the-wall-betw-nemptylof C J| the-wall-betw-nemptylof E F)
by auto
from Hwall(1,2) obtain fg
where fg: (f,g9)€foldpairs H={f+C,g-C} Cef-C Jeg-C
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using separated-by-wall-ex-foldpair[of H C J|
by auto
from fg(1) obtain Z
where Z: Opposed ThinChamberComplexFoldings X f g Z
using foldpairs-def
by  fast
show ?thesis
proof (cases Bs)
case Nil
with CCons(2) Hwall(2,3) fg(2—4) splitl (1)
have FeftC C#J#Js = [|Q[C,J,F|QFs
using galleryD-chamber
Opposed ThinChamberComplexFoldings.sepwall-chain3-fg(2)]

OF Z, of CJF
]
by auto
with fg(1,3,4) show ?thesis by blast

next
case (Cons K Ks) have Bs: Bs = K#Ks by fact
show ?thesis
proof (cases E€ftC)
case True
from CCons(2) split1 (1) Bs have gallery (J#KsQ[E))
using gallery-Cons-reduce|of C J# KsQE#F#Fs|
gallery-append-reducel [of J# KsQ[E] F#Fs]
by  simp
with fg(4) True obtain Ls L M Ms
where LsLMMs: Leg-C MefH-C J# KsQ[FE] = LsQL#MH#Ms
using Opposed ThinChamberComplexFoldings.split-gallery-gf|
OF Z, of J E Ks
]
by  blast
show ?thesis
proof (cases Ls)
case Nil
with split! (1) Bs LsLMMs(3)
have C#J#Js = [|Q[C,J,M|Q(MsQF#Fs)
by simp
with fg(1,3,4) LsLMMs(2) show #?thesis by blast
next
case (Cons N Ns)
with split! (1) Bs LsLMMs(3)
have C#J#Js = [|Q[C,JJQNsQ[L,M]|Q(MsQF+#Fs)
by simp
with fg(1,3,4) LsLMMs(1,2) show ?thesis by blast
qed
next
case Fulse
with Hwall(2,3) fg(2) split1 (1) Cons
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have FegtC Feft-C C#J#Js = [|Q[C,J|QKsQ[E,F|QFs
using Opposed ThinChamberComplexFoldings.separated-by-this-wall-fq]
OF 7
]
separated-by-in-other|of f=C gHC]
by auto
with fg(1,3,4) show %thesis by blast
qed
qed
qged
qged auto

lemma not-min-gallery-double-split:
[ gallery Cs; = min-gallery Cs; {} ¢ set (wall-crossings Cs) | =
dfgAs A B Bs EF Fs.
(f,g9)€foldpairs N Aef=C N Beg-C A E€g-C N FEfFC A
( Cs = AsQ[A,B,F|QFs vV Cs = AsQ[A,B]|QBsQ[E,F|QFs )
using not-min-gallery-double-crosses-wall not-distinct-crossings-split-gallery
by  simp

end

4.7 Thin chamber complexes with many foldings

Here we begin to examine thin chamber complexes in which every pair of
adjacent chambers affords a pair of opposed foldings of the complex. This
condition will ultimately be shown to be sufficient to ensure that a thin
chamber complex is isomorphic to some Coxeter complex.

4.7.1 Locale definition and basic facts

locale ThinChamberComplexManyFoldings = ThinChamberComplex X
for X :: 'a set set
+ fixes CO :: 'a set
assumes fundchamber: chamber CO
and ez-walls
[ chamber C; chamber D; C~D; C#£D | =
3f g. Opposed ThinChamberComplezFoldings X f g C N D=g‘C

lemma (in ThinChamberComplex) ThinChamberComplexManyFoldingsI:
assumes chamber C0
and  AC D. [ chamber C; chamber D; C~D; C#D | =
3f g. Opposed ThinChamberComplexFoldings X f g C N D=g‘C
shows  ThinChamberComplexManyFoldings X CO
using assms
by (intro-locales, unfold-locales, fast)

lemma (in ThinChamberComplezManyFoldings) wall-crossings-subset-walls-betw:
assumes min-gallery (C# CsQ[D])
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shows  set (wall-crossings (C# CsQ[D])) C walls-betw C D
proof
fix H assume H € set (wall-crossings (C# CsQ[D)))
from this obtain As A B Bs
where H: C#CsQ[D] = AsQ[A,B|QBs H=the-wall-betw A B
using in-set-wall-crossings-decomp
by  blast
from assms have pgal: pgallery (C# CsQ[D))
using min-gallery-pgallery by fast
with H(1) obtain fg
where fg: Opposed ThinChamberComplexFoldings X f g A B=g‘A
using pgalleryD-chamber pgalleryD-adj
binrelchain-append-reduce2|of adjacent As [A,B]QBs]
pgalleryD-distinct[of AsQ[A,B]QBs] ex-walls[of A B
by auto
from H(2) fg have H": Acf-C Beg-C H = {fFC,g+-C} Hewalls
using Opposed ThinChamberComplexFoldings.basech-halfchsys|
] OF fg(1)
Opposed ThinChamberComplexFoldings.chambers(2)[OF fg(1)]
Opposed ThinChamberComplexFoldings.this-wall-betwI [OF fg(1)]
foldpairs-def
by auto
have CD: C € fFC U g-C D € f-C U g-C
using pgal pgalleryD-chamber chamber-system-def
Opposed ThinChamberComplexFoldings.halfchsys-decomp(1)]
| OF fg(1)

by auto
show H € walls-betw C D
proof (cases Bs As rule: two-lists-cases-snoc-Cons’)
case both-Nil with H show ?thesis
using H'(3) the-wall-betw-nempty[of A B] unfolding walls-betw-def by force
next
case (Nill E Es)
show ?thesis
proof (cases CeftC)
case True
with Nil1 H(1) have separated-by H C' D
using H'(2,3) by (auto intro: separated-byl)
thus ?thesis using H'(4) unfolding walls-betw-def by simp
next
case Fulse with assms Nill H(1) show ?thesis
using Opposed ThinChamberComplexFoldings.foldg|

OF fg(1)
CD(1) H'(1,2) pgal pgallery

Opposed ThinChamberComplexFoldings.flopped-half-chamber-systems-gf |
OF fg(1)
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]

ThinChamberComplexFolding.gallery-double-cross-not-minimall |
of XgEABEs |
]
by  force
qed
next
case (Nil2 Fs F)
show ?thesis
proof (cases DEfFC)
case True
with assms Nil2 H(1) show ?thesis
using Opposed ThinChamberComplexFoldings.foldf|
| OF fg(1)
H'(1,2) pgal pgallery
Opposed ThinChamber ComplexFoldings. flopped-half-chamber-systems-fg[
] OF fy(1)
ThinChamberComplexFolding. gallery-double-cross-not-minimal-Cons1 |
of X f
]
by  force
next
case Fulse with Nil2 H(1) have separated-by H C D
using CD(2) H'(1,3) by (auto intro: separated-byl)
thus ?thesis using H'(4) unfolding walls-betw-def by simp
qed
next
case (snoc-Cons Fs F' E Es) show ?thesis
proof (cases CefFC DegtC rule: two-cases)
case both thus ?thesis
using H'(3,4) walls-betw-def unfolding separated-by-def by auto
next
case one
with snoc-Cons assms H(1) show ?thesis
using Opposed ThinChamberComplexFoldings.foldf|
| OF fg(1)
CD(2) H'(2) pgal pgallery
Opposed ThinChamber ComplexFoldings.flopped-half-chamber-systems-fg|
] OF fy(1)
ThinChamberComplexFolding.gallery-double-cross-not-minimall |
of X f C B D EsQ[A]
]
by  fastforce
next
case other
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with snoc-Cons assms H(1) show ?thesis

using Opposed ThinChamberComplexFoldings. ThinChamberComplezFolding-g|
] OF fy(1)
CD(1) H'(1) pgal pgallery
Opposed ThinChamber ComplexFoldings.flopped-half-chamber-systems-gf |
] OF fg(1)

ThinChamberComplexFolding.gallery-double-cross-not-minimall |
of XgFE A F Es B#Fs

]

by  force
next
case neither
hence separated-by {g+-C,f-C} C D using CD by (auto intro: separated-byl)
thus ?thesis
using H'(3,4) walls-betw-def by (auto simp add: insert-commute)
qed
qed
qed

4.7.2 The group of automorphisms

Recall that a pair of opposed foldings of a thin chamber complex can be
stitched together to form an automorphism of the complex. Choosing an
arbitrary chamber in the complex to act as a sort of centre of the complex
(referred to as the fundamental chamber), we consider the group (under
composition) generated by the automorphisms afforded by the chambers
adjacent to the fundamental chamber via the pairs of opposed foldings that
we have assumed to exist.

context ThinChamberComplexManyFoldings
begin

definition fundfoldpairs :: (('a='a)x('a="a)) set
where fundfoldpairs = {(f,g). Opposed ThinChamberComplexFoldings X f g C0}

abbreviation fundadjset = adjacentset CO — {C0}
abbreviation induced-automorph :: ('a="a) = ('a="a) = (‘a="a)
where induced-automorph f g =

Opposed ThinChamberComplexFoldings.induced-automorphism X f g

abbreviation Abs-induced-automorph :: (‘a="a) = (‘a='a) = 'a permutation
where Abs-induced-automorph f g = Abs-permutation (induced-automorph f g)

abbreviation S = |J (f,g9)€fundfoldpairs. { Abs-induced-automorph f g}
abbreviation W = (95)
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lemma fundfoldpairs-induced-autormorph-bij:
(f,9) € fundfoldpairs => bij (induced-automorph f g)
using Opposed ThinChamber ComplexFoldings.induced-automorphism-bij
unfolding fundfoldpairs-def
by fast

lemmas permutation-conv-induced-automorph =
Abs-permutation-inverse[OF Collectl, OF fundfoldpairs-induced-autormorph-bij)

lemma fundfoldpairs-induced-autormorph-order2:
(f,9) € fundfoldpairs = induced-automorph f g o induced-automorph f g = id
using Opposed ThinChamberComplexFoldings.indaut-order?2
unfolding fundfoldpairs-def
by fast

lemma fundfoldpairs-induced-autormorph-ntrivial:
(f,9) € fundfoldpairs = induced-automorph f g # id
using Opposed ThinChamberComplexFoldings.induced-automorphism-ntrivial
unfolding fundfoldpairs-def
by fast

lemma fundfoldpairs-fundchamber-image:
(f,9) € fundfoldpairs = Abs-induced-automorph f g — CO = ¢‘C0
using fundfoldpairs-def
by (simp add:
permutation-conv-induced-automorph
Opposed ThinChamberComplexFoldings.induced-automorphism-C0

)

lemma fundfoldpair-fundchamber-in-half-chamber-system-f:
(f,9)Efundfoldpairs = COefHC
using fundfoldpairs-def
Opposed ThinChamberComplexFoldings.basech-halfchsys(1)
by  fast

lemma fundfoldpair-unique-half-chamber-system-f:
assumes (f,g)€fundfoldpairs (f',g9")€fundfoldpairs
Abs-induced-automorph ' g = Abs-induced-automorph [ g
shows [+C = fHC
proof—
from assms have ¢’‘C0 = ¢‘C0
using fundfoldpairs-fundchamber-image| OF assms(1)]
fundfoldpairs-fundchamber-image| OF assms(2)]
by  simp
with assms show f+C = fHC
using fundfoldpairs-def
Opposed ThinChamberComplexFoldings.unique-half-chamber-system-f|
of XfgCOf'g'
]
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by auto
qed

lemma fundfoldpair-unique-half-chamber-systems-chamber-ng-f:
assumes (f,g)€fundfoldpairs (f',g9")€fundfoldpairs
Abs-induced-automorph ' g’ = Abs-induced-automorph [ g
chamber C Cé¢g-C
shows Cef'+C
using assms(1,3—5) fundfoldpairs-def chamber-system-def
Opposed ThinChamberComplexFoldings.flopped-half-chamber-systems-gf|
THEN sym
]
fundfoldpair-unique-half-chamber-system-f[OF assms(1,2)]
by  fastforce

lemma the-wall-betw-adj-fundchamber:
(f,9) € fundfoldpairs —>
the-wall-betw CO (Abs-induced-automorph f g ‘= C0) = {fFC,¢g-C}
using fundfoldpairs-def
Opposed Thin ChamberComplexFoldings.this-wall-betw-basechambers
Opposed ThinChamberComplexFoldings.induced-automorphism-C0
by  (fastforce simp add: permutation-conv-induced-automorph)

lemma zero-notin-S: 0¢S
proof
assume (€S
from this obtain f g
where (f,g)€fundfoldpairs 0 = Abs-induced-automorph f g
by  fast
thus Fulse
using Abs-permutation-inject[of id induced-automorph f g|
bij-id fundfoldpairs-induced-autormorph-bij
Sfundfoldpairs-induced-autormorph-ntrivial
by  (force simp add: zero-permutation.abs-eq)
qed

lemma S-order2-add: s€S = s+ s = 0
using fundfoldpairs-induced-autormorph-bij zero-permutation.abs-eq
by  (fastforce simp add:
plus-permutation-abs-eq fundfoldpairs-induced-autormorph-order2

)

lemma S-add-order2:

assumes s€S

shows add-order s = 2
proof (rule add-order-equality)

from assms show s+ 72 = 0 using S-order2-add by (simp add: nataction-2)
next

fix m assume 0 < m s+ " m = 0
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with assms show 2 < m using zero-notin-S by (cases m=1) auto
qed simp

lemmas S-uminus = minus-unique[OF S-order2-add)

lemma S-sym: uminus S C S
using S-uminus by auto

lemmas sum-list-S-in-W = sum-list-lists-in-genby-sym|[OF S-sym]
lemmas W-conv-sum-lists = genby-sym-eq-sum-lists|OF S-sym]

lemma S-endomorphism:
s€S = ChamberComplexEndomorphism X (permutation s)
using fundfoldpairs-def
Opposed Thin ChamberComplexFoldings.induced-automorphism-morphism
by  (fastforce simp add: permutation-conv-induced-automorph)

lemma S-list-endomorphism:
ss€lists S = ChamberComplexEndomorphism X (permutation (sum-list ss))
by (induct ss)
(auto simp add:
zero-permutation.rep-eq trivial-endomorphism plus-permutation.rep-eq
S-endomorphism ChamberComplezEndomorphism.endo-comp

)

lemma W-endomorphism:
weW = ChamberComplezEndomorphism X (permutation w)
using W-conv-sum-lists S-list-endomorphism by auto

lemma S-automorphism:
s€S = ChamberComplexAutomorphism X (permutation s)
using fundfoldpairs-def
Opposed ThinChamberComplexFoldings.induced-automorphism-automorphism
by  (fastforce simp add: permutation-conv-induced-automorph)

lemma S-list-automorphism:
ss€lists S = ChamberComplexAutomorphism X (permutation (sum-list ss))
by (induct ss)
(auto simp add:
zero-permutation.rep-eq trivial-automorphism plus-permutation.rep-eq
S-automorphism ChamberComplexAutomorphism.comp

)

lemma W-automorphism:
weW = ChamberComplezAutomorphism X (permutation w)
using W-conv-sum-lists S-list-automorphism by auto

lemma S-respects-labels: [ label-wrt B ¢; s€S; ve(UX) ] = w (s > v) = v
using fundfoldpairs-def
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Opposed ThinChamberComplexFoldings.indaut-resplabels]
of X--COByw
]

by  (auto simp add: permutation-conv-induced-automorph)

lemma S-list-respects-labels:
[ label-wrt B ; ss€lists S; ve(UX) | = ¢ (sum-list ss — v) = @ v
using S-endomorphism ChamberComplexEndomorphism.vertez-map|of X|
by  (induct ss arbitrary: v rule: rev-induct)
(auto simp add:
plus-permutation.rep-eq S-respects-labels zero-permutation.rep-eq

)

lemma W-respects-labels:
[ label-wrt B p; weW; ve(UX) ] = ¢ (w—v) = p v
using W-conv-sum-lists S-list-respects-labels[of B ¢ - v] by auto

end

4.7.3 Action of the group of automorphisms on the chamber sys-
tem

Now we examine the action of the group W on the chamber system. In
particular, we show that the action is transitive.

context ThinChamberComplexManyFoldings
begin

lemma fundchamber-S-chamber: s€S = chamber (s—C0)
using fundfoldpairs-def
by  (fastforce simp add:
fundfoldpairs-fundchamber-image
Opposed ThinChamberComplexFoldings.chamber-D0

)

lemma fundchamber- W-image-chamber:
weW = chamber (w— C0)
using fundchamber W-endomorphism
ChamberComplezEndomorphism.chamber-map
by auto

lemma fundchamber-S-adjacent: s€S = C0O ~ (s‘—C0)
using fundfoldpairs-def
by (auto simp add:
Sfundfoldpairs-fundchamber-image
Opposed ThinChamberComplexFoldings.chambers(2)

)

lemma fundchamber- WS-image-adjacent:
weW = s€§ = (w'—=C0) ~ ((w+s)‘—C0)
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using fundchamber fundchamber-S-adjacent fundchamber-S-chamber
W-endomorphism
ChamberComplexEndomorphism.adj-maplof X permutation w CO s*— C0]
by  (auto simp add: image-comp plus-permutation.rep-eq)

lemma fundchamber-S-image-neq-fundchamber: s€S = s‘->C0 # C0
using fundfoldpairs-def OpposedThinChamberComplexFoldings.chambers(3)
by  (fastforce simp add: fundfoldpairs-fundchamber-image)

lemma fundchamber-next-WS-image-neq:

assumes scS

shows (w+s) ‘— C0 # w ‘— C0
proof

assume (w+s) ‘— CO0 = w ‘— C0

with assms show Fualse

using fundchamber-S-image-neq-fundchamber|of s

by (auto simp add: plus-permutation.rep-eq image-comp permutation-eq-image)

qed

lemma fundchamber-S-fundadjset: s€ S — s‘—C0 € fundadjset
using fundchamber-S-adjacent fundchamber-S-image-neg-fundchamber
fundchamber-S-chamber chamberD-simplex adjacentset-def
by  simp

lemma fundadjset-eq-S-image: D€ fundadjset = Js€S. D = s‘-C0
using fundchamber adjacentsetD-adj adjacentset-chamber ex-walls[of CO D]
fundfoldpairs-def fundfoldpairs-fundchamber-image
by  blast

lemma S-fizespointwise-fundchamber-image-int:
assumes s€S
shows fizespointwise ((—) s) (CONs‘—CO)
proof—
from assms(1) obtain f g
where fg: (f,g9)€fundfoldpairs s = Abs-induced-automorph f ¢
by  fast
show ?thesis
proof (rule fixespointwise-cong)
from fg show fun-eg-on ((—) s) (induced-automorph f g) (CONs‘— CO)
using permutation-conv-induced-automorph fun-eq-onl by fastforce
from fg show fizespointwise (induced-automorph f g) (CONs‘—CO)
using fundfoldpairs-fundchamber-image fundfoldpairs-def
Opposed ThinChamberComplexFoldings.indaut-fizes-fundfacet
by auto
qed
qed

lemma S-fizes-fundchamber-image-int:
s€S = s—=(CONs‘—CO) = CONs‘—CO
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using fizespointwise-im[OF S-fixespointwise-fundchamber-image-int] by simp

lemma fundfacets:
assumes s€S
shows CONs‘—CO < CO CONs‘—CO <1 s—C0O
using assms fundchamber-S-adjacent|of s
fundchamber-S-image-neq-fundchamber|of s]
adjacent-int-facet1 [of CO] adjacent-int-facet2[of CO)
by auto

lemma fundadjset-ex1-eq-S-image:
assumes Defundadjset
shows 3dlse€S. D = s—C0
proof (rule ex-exll)
from assms show 3s. seS A D =s ‘— C0
using fundadjset-eq-S-image by fast
next
fix s t assume s€S A D = s—C0teS N D = t—=C0
hence s: s€S D = s‘—-C0
and t: teS D = t‘—C0
by auto
from s(1) ¢(1) obtain fg f' ¢’
where (f,g)€fundfoldpairs s = Abs-induced-automorph f ¢
and (f',g')efundfoldpairs t = Abs-induced-automorph f' g’
by auto
with s(2) ¢(2) show s=t
using fundfoldpairs-def fundfoldpairs-fundchamber-image
Opposed ThinChamber ComplexFoldings.induced-automorphism-unique|
of Xf'g"COfyg
]
by auto
qed

lemma fundchamber-S-image-inj-on: inj-on (As. s‘=>C0) S
proof (rule inj-onl)
fix s t assume s€§ teS s—(C0 = t‘-C0 thus s=t
using fundchamber-S-fundadjset
bex1-equality|OF fundadjset-ex1-eq-S-image, of s‘—C0 s t]
by  simp
qed

lemma S-list-image-gallery:
ss€lists S = gallery (map (Aw. w—C0) (sums ss))
proof (induct ss rule: list-induct-ssnoc)
case (Single s) thus ?Zcase
using fundchamber fundchamber-S-chamber fundchamber-S-adjacent
gallery-def
by  (fastforce simp add: zero-permutation.rep-eq)
next
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case (ssnoc ss s t)
define Cs D E where Cs = map (Aw. w ‘— C0) (sums ss)
and D = sum-list (ssQ[s]) “— C0
and E = sum-list (ssQ[s,t]) — CO
with ssnoc have gallery (CsQ[D,E])
using sum-list-S-in- W of ssQ[s,t]] sum-list-S-in-Wof ssQ]s]]
fundchamber- W-image-chamber
fundchamber-WS-image-adjacent[of sum-list (ssQ][s]) t]
sum-list-append|of ssQ[s] [t]]
by  (auto intro: gallery-snocl simp add: sums-snoc)
with Cs-def D-def E-def show ?case using sums-snoclof ssQ[s] t] by (simp add:
sums-snoc)
qed (auto simp add: gallery-def fundchamber zero-permutation.rep-eq)

lemma pgallery-last-eq- W-image:
pgallery (CO#CsQ[C]) = FJweW. C = w'—C0
proof (induct Cs arbitrary: C rule: rev-induct)
case Nil
hence Cefundadjset
using pgallery-def chamberD-simplex adjacentset-def by fastforce
from this obtain s where s€§ C' = s‘—=C0
using fundadjset-eq-S-image|of C] by auto
thus ?case using genby-genset-closed|of s S] by fast
next
case (snoc D Ds)
have DC': chamber D chamber C D~C D#C
using pgallery-def snoc(2)
binrelchain-append-reduce2|of adjacent CO# Ds [D,C|]
by auto
from snoc obtain w where w: weW D = w—C0
using pgallery-append-reducel[of CO#DsQ[D] [C]] by force
from w(2) have (—w)‘—D = C0
by (simp add:
image-comp plus-permutation.rep-eq| THEN sym)]
zero-permutation.rep-eq

with DC w(1) have C0 ~ (—w)—=C C0 # (—w)—=C (—w)'=C € X
using genby-uminus-closed W-endomorphism[of —w)
ChamberComplexEndomorphism.adj-maplof X - D C)|
permutation-eq-image[of —w D] chamberD-simplex|of C)|
ChamberComplexEndomorphism.simplez-map|of X permutation (—w) C]
by auto
hence (—w)‘—=C € fundadjset using adjacentset-def by fast
from this obtain s where s: s€S (—w)‘—-C = s> C0
using fundadjset-eq-S-image by force
from s(2) have
(permutation w o permutation (—w))‘C = (permutation w o permutation s)‘CO
by (simp add: image-comp| THEN sym))
hence C = (w+s)—C0
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by (simp add: plus-permutation.rep-eq[ THEN sym] zero-permutation.rep-eq)
with w(1) s(1) show Zcase
using genby-genset-closed[of s S] genby-add-closed by blast
qed

lemma chamber-eq- W-image:
assumes chamber C
shows JweW. C = w'—=C0
proof (cases C=C0)
case True
hence 0eW C = 0‘=C0
using genby-0-closed by (auto simp add: zero-permutation.rep-eq)
thus ?thesis by fast
next
case Fulse with assms show ?thesis
using fundchamber chamber-pconnect pgallery-last-eq- W-image by blast
qed

lemma S-list-image-crosses-walls:
ss € lists S = {} ¢ set (wall-crossings (map (Aw. w*—CO) (sums ss)))
proof (induct ss rule: list-induct-ssnoc)
case (Single s) thus Zcase
using fundchamber fundchamber-S-chamber fundchamber-S-adjacent
fundchamber-S-image-neq-fundchamber|of s| ex-walls[of CO s~ C0)
Opposed ThinChamberComplexFoldings.this-wall-betw-basechambers
by  (force simp add: zero-permutation.rep-eq)
next
case (ssnoc ss s t)
moreover
define A B where A = sum-list (ssQ[s]) ‘— CO and B = sum-list (ssQ]s,t])
‘— C0
moreover from ssnoc(2) A-def B-def obtain f g
where OpposedThinChamberComplexFoldings X f g A B=g‘A
using sum-list-S-in- W of ssQ[s]| sum-list-S-in-W[of ssQ][s,t]]
fundchamber-W-image-chamber sum-list-append|of ssQ[s] [t]]
fundchamber-next-WS-image-neg|of t sum-list (ssQ[s])]
fundchamber-WS-image-adjacent|[of sum-list (ssQ[s]) ]
ex-walls[of A B|
by auto
ultimately show ?case
using Opposed ThinChamberComplexFoldings.this-wall-betw-basechambers
sums-snoc|of ssQ[s] t]
by  (force simp add: sums-snoc wall-crossings-snoc)
qed (simp add: zero-permutation.rep-eq)

end
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4.7.4 A labelling by the vertices of the fundamental chamber

Here we show that by repeatedly applying the composition of all the el-
ements in the collection S of fundamental automorphisms, we can retract
the entire chamber complex onto the fundamental chamber. This retraction
provides a means of labelling the chamber complex, using the vertices of the
fundamental chamber as labels.

context ThinChamberComplexManyFoldings
begin

definition Spair :: 'a permutation = (‘a="'a)x('a="a)
where Spair s =
SOME fq. fg € fundfoldpairs N\ s = case-prod Abs-induced-automorph fg

lemma Spair-fundfoldpair: s€S = Spair s € fundfoldpairs
using Spair-def
somel-ex[of
Ag. fg € fundfoldpairs N
s = case-prod Abs-induced-automorph fg

]

by auto

lemma Spair-induced-automorph:
s€S = s = case-prod Abs-induced-automorph (Spair s)
using Spair-def
somel-ex[of
Mgq. fg € fundfoldpairs N
s = case-prod Abs-induced-automorph fq

]

by auto

lemma S-list-pgallery-decomp1:
assumes ss: set ss = S and gal: Cs#[] pgallery (CO#Cs)
shows Jscset ss. 3 Ceset Cs. V (f,g)€fundfoldpairs.
s = Abs-induced-automorph f g — C € ¢g-C
proof (cases Cs)
case (Cons D Ds)
with gal(2) have Defundadjset
using pgallery-def chamberD-simplex adjacentset-def by fastforce
from this obtain s where s: s€S D = s —C0
using fundadjset-eq-S-image by blast
from s(2) have
Y (f,9)Efundfoldpairs. s = Abs-induced-automorph f g — DegHC
using fundfoldpairs-def fundfoldpairs-fundchamber-image
Opposed ThinChamberComplexFoldings.basechambers-half-chamber-systems(2)
by auto
with s(1) ss Cons show ?thesis by auto
qed (simp add: gal(1))
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lemma S-list-pgallery-decomp2:
assumes set ss = S Cs#[| pgallery (CO#Cs)
shows
drs s ts. ss = rsQs#ts A
(3 Ceset Cs. Y (f,g)€fundfoldpairs.
s = Abs-induced-automorph f g — C € gFC) A
(Vreset rs. V Ceset Cs. ¥V (f,g)€fundfoldpairs.
r = Abs-induced-automorph f g — C€fFC)

proof—
from assms obtain rs s ts where rs-s-ts:
ss = rsQs#ts

3 Ceset Cs. VY (f,9)€fundfoldpairs.
s = Abs-induced-automorph f g — C € ¢g-C
Vreset rs. ¥V Ceset Cs.
= (Y (f,g9)€fundfoldpairs. r = Abs-induced-automorph f g — C € ¢-C)
using split-list-first-prop[ OF S-list-pgallery-decomp1, of ss Cs]
by auto
have Vreset rs. V Ceset Cs. V (f,9)€ fundfoldpairs.
r = Abs-induced-automorph f g — CefC
proof (rule balll, rule balll, rule prod-balll, rule impl)
fixrCfyg
assume 1 € set rs C € set Cs (f,g)€fundfoldpairs
r = Abs-induced-automorph f g
with rs-s-ts(8) assms(3) show Cef-C
using pgalleryD-chamber
fundfoldpair-unique-half-chamber-systems-chamber-ng-f|

of--fgC
]
by  fastforce
qed
with rs-s-ts(1,2) show ?Zthesis by auto
qed

lemma S-list-pgallery-decomp3:
assumes set ss = S Cs#£[| pgallery (CO#Cs)
shows
drs s ts As B Bs. ss = rsQs#ts A Cs = AsQB#Bs A
(Y (f,g9)Efundfoldpairs. s = Abs-induced-automorph f g — Beg-C) A
(V Aeset As. ¥V (f,g)€fundfoldpairs.
s = Abs-induced-automorph f g — A€fHC) A
(Vreset rs. YV Ceset Cs. Y (f,g)€fundfoldpairs.
r = Abs-induced-automorph f g — CefHC)

proof—
from assms obtain rs s ts where rs-s-ts:
ss = rsQs#ts

3 Beset Cs. V (f,g)Efundfoldpairs. s = Abs-induced-automorph f g — B € gHC
Vreset rs. YV Beset Cs. ¥V (f,g)€fundfoldpairs.
r = Abs-induced-automorph f g — BefHC
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using S-list-pgallery-decomp?2|of ss Cs]

by auto
obtain As B Bs where As-B-Bs:
Cs = AsQB+#Bs

Y (f,9)Efundfoldpairs. s = Abs-induced-automorph f g — B € g-C
YV Aeset As. 3(f,g9)E€fundfoldpairs. s = Abs-induced-automorph f g N A¢g-C
using split-list-first-prop[ OF rs-s-ts(2)]
by  fastforce
from As-B-Bs(1,3) assms(3)
have V Acset As. ¥ (f,g)€fundfoldpairs.
s = Abs-induced-automorph f g — A€f-C
using pgalleryD-chamber
Sfundfoldpair-unique-half-chamber-systems-chamber-ng-f
by auto
with rs-s-ts(1,3) As-B-Bs(1,2) show ?thesis by fast
qed

lemma fundfold-trivial-fC:
reS = V (f,g9)€fundfoldpairs. r = Abs-induced-automorph f g — Cef-C =
fst (Spairr) < C = C

using Spair-fundfoldpair[of r] Spair-induced-automorphlof r| fundfoldpairs-def

Opposed ThinChamberComplexFoldings.azioms(2)[
of X fst (Spair r) snd (Spair r) CO

]
ChamberComplexFolding.chamber-retraction2[of X fst (Spair r) C)|

by  fastforce

lemma fundfold-comp-trivial-fC:
setrs C § —
Vreset rs. V (f,g)€fundfoldpairs.
r = Abs-induced-automorph f g — CefHFC —
fold fst (map Spair rs) * C = C
proof (induct rs)
case (Cons r rs)
have fold fst (map Spair (r#rs)) < C =
fold fst (map Spair rs) * fst (Spair r) < C
by (simp add: image-comp)
also from Cons have ... = C by (simp add: fundfold-trivial-fC)
finally show ?case by fast
qed simp

lemma fundfold-trivial-fC-list:
reS =
YV Ceset Cs. V (f,g) € fundfoldpairs.
r = Abs-induced-automorph f g — CefHC =
fst (Spair r) = Cs = Cs
using fundfold-trivial-fC by (induct Cs) auto

lemma fundfold-comp-trivial-fC-list:
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setrs C S —
Vreset rs. YV Ceset Cs. Y (f,g)€fundfoldpairs.
r = Abs-induced-automorph f g — CefFC =
fold fst (map Spair rs) = Cs = Cs
proof (induct rs Cs rule: list-induct2’)
case (4 rrs C Cs)
from 4(3)
have r:V Deset (C#Cs). V (f,9)€fundfoldpairs.
r = Abs-induced-automorph f g — Def-C
by  simp
from 4(2)
have fold fst (map Spair (r#vrs)) = (C#Cs) =
map ((°) (fold fst (map Spair rs))) (fst (Spair r) = (C#Cs))
by (auto simp add: image-comp)
also from / have ... = C#Cs
using fundfold-trivial-fC-list[of r C#Cs]
by  (simp add: fundfold-comp-trivial-fC)
finally show ?case by fast
qed auto

lemma fundfold-gallery-map:
s€S = gallery Cs = gallery (fst (Spair s) = Cs)
using Spair-fundfoldpair fundfoldpairs-def
OpposedThinChamberComplexFoldings.azioms(2)
ChamberComplexFolding.gallery-map[of X fst (Spair s))
by  fastforce

lemma fundfold-comp-gallery-map:
assumes pregal: gallery Cs
shows set ss C S = gallery (fold fst (map Spair ss) = Cs)
proof (induct ss rule: rev-induct)
case (snoc s ss)
hence 1: gallery (fst (Spair s) = (fold fst (map Spair ss) = Cs))
using fundfold-gallery-map by fastforce
have 2: fst (Spair s) = (fold fst (map Spair ss) = Cs) =
fold fst (map Spair (ssQ[s])) | Cs
by (simp add: image-comp)
show ?case using 1 subst|OF 2, of gallery, OF 1] by fast
qed (simp add: pregal galleryD-adyj)

lemma fundfold-comp-pgallery-ez-funpow:
assumes ss: set ss = S
shows pgallery (CO#CsQ[C]) =
In. (fold fst (map Spair ss) ~~n) *C = CO
proof (induct Cs arbitrary: C rule: length-induct)
fix Cs C
assume step : Vys. length ys < length Cs —
(Vz. pgallery (CO # ys @Q [z]) —
(I n. (fold fst (map Spair ss) ~n) ‘x = C0O))
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and set-up: pgallery (CO#CsQ[C])
from ss set-up obtain rs s ts As B Bs where decomps:
ss = rsQs#ts CsQ[C] = AsQB#Bs
Y (f,9)Efundfoldpairs. s = Abs-induced-automorph f g — BegHC
YV Aeset As. YV (f,g)€fundfoldpairs. s = Abs-induced-automorph f g — A€fHC
YV reset rs. YV Deset (CsQ[C)). V (f,g) € fundfoldpairs.
r = Abs-induced-automorph f g — DefC
using S-list-pgallery-decomp3|of ss CsQ[C]]
by  fastforce
obtain Es E where EsE: CO#As = EsQ[E] using cons-conv-snoc by fast

have EsE-s-fC:
YV Aeset (EsQ[E)). V (f,g)€fundfoldpairs.
s = Abs-induced-automorph f g — Aef-C
proof (rule balll)
fix A assume A€cset (EsQ[E])
with EsE decomps(4)
show V (f, g)€fundfoldpairs. s = Abs-induced-automorph fg — A€ f+C
using fundfoldpair-fundchamber-in-half-chamber-system-f
set-ConsD[of A CO As]
by auto
qed
moreover from decomps(2) EsE
have decomp2: CO# CsQ[C] = EsQE# B#Bs
by  simp
moreover from ss decomps(1) have s€S by auto
ultimately have sB: fst (Spair s) ‘B =F
using set-up decomps(3) Spair-fundfoldpair|of s|
Spair-induced-automorph[of s| fundfoldpairs-def
pgalleryD-adj
binrelchain-append-reduce2|of adjacent Es E+ B# Bs]
Opposed ThinChamberComplexFoldings. adjacent-half-chamber-system-image-fg[
of X fst (Spair s) snd (Spair s) C0O E B
]

by auto

show I n. (fold fst (map Spair ss) " n) * C = CO
proof (cases Es=[| A Bs = [])
case True
from decomps(5) have
Vreset rs. ¥ (f,9)€fundfoldpairs. r = Abs-induced-automorph f g — CefHC
by auto
with decomps(1) ss
have fold fst (map Spair ss) ¢ C = fold fst (map Spair ts)  fst (Spair s) < C
using fundfold-comp-trivial-fC[of rs C)|
by  (fastforce simp add: image-comp|THEN sym))
moreover
have Vreset ts. V(f,g9)€fundfoldpairs.
r = Abs-induced-automorph f g — COEfHC
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using fundfoldpair-fundchamber-in-half-chamber-system-f
by fast
ultimately have (fold fst (map Spair ss) ~ 1) * C = CO
using True decomps(1,2) ss EsE sB fundfold-comp-trivial-fClof ts CO]
fundfold-comp-trivial-fC[of ts C0]
by  fastforce
thus ?thesis by fast
next
case Fulse have EsBs: - (Es =[] A Bs = []) by fact
show ?thesis
proof (cases fold fst (map Spair ss) ¢ C = C0)
case True
hence (fold fst (map Spair ss) ~ 1) * C = CO by simp
thus ?thesis by fast
next
case Fulse
from decomps(5) have COCsC-rs-fC:
Vreset rs. ¥V Deset (CO#CsQ[C)). V (f,g) € fundfoldpairs.
r = Abs-induced-automorph f g — Def-C
using fundfoldpair-fundchamber-in-half-chamber-system-f
by auto
from decomps(1)
have fold fst (map Spair (rsQ[s])) = (CO#CsQ[C]) =
fst (Spair s) = (fold fst (map Spair rs) = (CO#CsQ[C)))
by  (simp add: image-comp)
also from ss decomps(1)
have ... = fst (Spair s) E (CO#CsQ[C])
using CO0CsC-rs-fC fundfold-comp-trivial-fC-list[of rs CO# CsQ[C]]
by  fastforce
also from decomp2 have ... = fst (Spair s) | (EsQE+# B#Bs)
by (simp add: image-comp)
finally
have fold fst (map Spair (rsQ[s])) E (CO#CsQ[C]) =
Es @ F # E # fst (Spair s) = Bs
using decomps(1) ss sB EsE-s-fC fundfold-trivial-fC-list[of s EsQ[E]]
by  fastforce
with set-up ss decomps(1)
have gal: gallery (Es Q E # fst (Spair s) = Bs)
using pgallery fundfold-comp-gallery-maplof - rsQ[s]]
gallery-remdup-adj[of Es E fst (Spair s) = Bs]
by  fastforce

from FEsBs decomp?2 EsE
have dZs. length Zs < length Cs N
Es Q@ E # fst (Spair s) = Bs = CO # Zs Q [fst (Spair s) ‘ C]
using sB
by  (cases Bs Es rule: two-lists-cases-snoc-Cons’) auto
from this obtain Zs where Zs:
length Zs < length C's
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Es Q E # fst (Spair s) = Bs = CO # Zs Q [fst (Spair s) ‘ C]
by fast
define Ys where Ys = fold fst (map Spair ts) = Zs
with Zs(2) have
fold fst (map Spair ts) = (Es Q E # fst (Spair s) = Bs) =
fold fst (map Spair ts) < CO # Ys @ [fold fst (map Spair (s#ts)) ¢ C]
by (simp add: image-comp)
moreover
have Vreset ts. V(f,g)€fundfoldpairs.
r = Abs-induced-automorph f g — CO€f-C
using fundfoldpair-fundchamber-in-half-chamber-system-f
by  fast
ultimately have
fold fst (map Spair ts) = (Es Q E # fst (Spair s) = Bs) =
CO # Ys Q@ [fold fst (map Spair (s#ts))  fold fst (map Spair rs) * C|
using decomps(1) ss COCsC-rs-fC fundfold-comp-trivial-fClof ts CO]
fundfold-comp-trivial-fC[of rs C]
by  fastforce
with decomps(1) ss obtain Xs where Xs:
length Xs < length Ys
pgallery (CO # Xs Q [fold fst (map Spair ss) ¢ C))
using gal fundfold-comp-gallery-maplof Es Q@ E # fst (Spair s) |E Bs ts]
gallery-obtain-pgallery|OF False[ THEN not-sym]]
by  (fastforce simp add: image-comp)
from Ys-def Xs(1) Zs(1) have length Xs < length Cs by simp
with Xs(2) obtain n where (fold fst (map Spair ss) = (Suc n)) * C = CO
using step by (force simp add: image-comp funpow-Suc-right| THEN sym])
thus ?thesis by fast
qed
qed

qed

lemma fundfold-comp-chamber-ez-funpow:
assumes ss: set ss = S and C: chamber C
shows 3Jn. (fold fst (map Spair ss) ~ " n) * C = CO
proof (cases C=C0)
case True
hence (fold fst (map Spair ss) =~ 0) * C = C0O by simp
thus ?thesis by fast
next
case Fulse with fundchamber assms show ?thesis
using chamber-pconnect[of CO C| fundfold-comp-pgallery-ex-funpow
by  fastforce
qed

lemma fundfold-comp-fizespointwise-CO:

assumes set ss C S
shows fizespointwise (fold fst (map Spair ss)) CO
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proof (rule fold-fizespointwise, rule balll)
fix fg assume fg € set (map Spair ss)
from this obtain s where s€set ss fg = Spair s by auto
with assms
have fg": Opposed ThinChamberComplexFoldings X (fst fg) (snd fg) CO
using Spair-fundfoldpair fundfoldpairs-def
by  fastforce
show fizespointwise (fst fg) CO
using Opposed ThinChamberComplexFoldings.axioms(2)[OF fg']
Opposed ThinChamberComplexFoldings.chamber-DO[OF fg']
Opposed ThinChamberComplexFoldings.chambers(4)[OF fg']
chamber-system-def
ChamberComplexFolding.chamber-retractionl [of X fst fg CO]
by auto
qed

lemma fundfold-comp-endomorphism:
assumes set ss C S
shows  ChamberComplexEndomorphism X (fold fst (map Spair ss))
proof (rule fold-chamber-complez-endomorph-list, rule balll)
fix fg assume fg: fg €set (map Spair ss)
from this obtain s where s€set ss fg = Spair s by auto
with assms show ChamberComplezEndomorphism X (fst fg)
using Spair-fundfoldpair
Opposed ThinChamberComplexFoldings.axioms(2)[of X]
ChamberComplexFolding.azioms(1)[of X]
ChamberComplexRetraction.azioms(1)[of X|
unfolding fundfoldpairs-def
by fastforce
qed

lemma finite-S: finite S
using fundchamber-S-fundadjset fundchamber finite-adjacentset
by  (blast intro: inj-on-finite fundchamber-S-image-inj-on)

lemma ex-label-retraction: 3. label-wrt CO ¢ A fizespointwise @ CO
proof—
obtain ss where ss: set ss = S using finite-S finite-list by fastforce

define fgs where fgs = map Spair ss
— for fg € set fgs, have fst fg * D = CO0 for some D € fundajdset

define ¢y where ¢ = fold fst fgs
define vdist where vdist v = (LEAST n. (¢~ n) v € C0) for v
define ¢ where ¢ v = (¢~ (vdist v)) v for v

have label-wrt CO ¢

unfolding label-wrt-def
proof
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fix C' assume C: CeC
show bij-betw ¢ C CO
proof—
from v-def fgs-def ss C obtain m where m: (¢v""m)‘C = C0
using chamber-system-def fundfold-comp-chamber-ex-funpow by fastforce
have Av. veC = (v "m) v=p v
proof—
fix v assume v: ve(C
define n where n = (LEAST n. (¢ ""n) v € C0)
from v m p-def vdist-def n-def have m > n ¢ v € C0O
using Least-le[of An. (1" n) v € CO m]
LeastI-ex[of An. (v ""n) v € C0]
by auto
then show (¢ ""m) v = ¢ v
using ss y-def fgs-def o-def vdist-def n-def funpow-add]of m—n n 1)
fundfold-comp-fixespointwise-C0
funpower-fizespointwise fixespointwiseD
by  fastforce
qed
with C m ss ¢-def fgs-def show ?thesis
using chamber-system-def fundchamber fundfold-comp-endomorphism
ChamberComplexEndomorphism.funpower-endomorphism[of X|
ChamberComplexEndomorphism.bij-betw-chambers|of X]
bij-betw-conglof C ¥ ™"m ¢ CO]
by  fastforce
qged
qed
moreover from vdist-def p-def have fizespointwise ¢ CO
using Least-eq-0 by (fastforce intro: fizespointwisel)
ultimately show ?thesis by fast
qed

lemma ex-label-map: F . label-wrt CO ¢
using ez-label-retraction by fast

end

4.7.5 More on the action of the group of automorphisms on
chambers

Recall that we have already verified that W acts transitively on the chamber
system. We now use the labelling of the chamber complex examined in the
previous section to show that this action is simply transitive.

context ThinChamberComplexManyFoldings
begin

lemma fundchamber- W-image-ker:
assumes we W w'—C0 = C0

207



shows w =0
proof—
obtain ¢ where ¢: label-wrt CO ¢ using ex-label-map by fast
have fizespointwise (permutation w) CO
using W-respects-labels|OF ¢ assms(1)] chamberD-simplex|OF fundchamber)
ChamberComplexEndomorphism.respects-label-fixes-chamber-imp-fixespointwise|
OF W-endomorphism, OF assms(1) ¢ fundchamber assms(2)
]
by  fast
with assms(1) show %thesis
using fundchamber W-automorphism trivial-automorphism
standard-uniqueness-automorphs
permutation-inject[of w 0]
by  (auto simp add: zero-permutation.rep-eq)
qed

lemma fundchamber- W-image-inj-on:
inj-on (Aw. w—C0) W
proof (rule inj-onl)
fix w w' assume ww”: we W w'e W w—C0 = w'*—C0
from ww'(3) have (—w’) ww'—C0 = (—w") ‘—ww’*—C0O by simp
with ww’(1,2) show w = w’
using fundchamber-W-image-ker[of —w'+w] add.assoc[of w' —w’ w]
by (simp add:
image-comp plus-permutation.rep-eq THEN sym]
zero-permutation.rep-eq genby-uminus-add-closed

)
qed

end

4.7.6 A bijection between the fundamental chamber and the set
of generating automorphisms

Removing a single vertex from the fundamental chamber determines a facet,
a facet in the fundamental chamber determines an adjacent chamber (since
our complex is thin), and a chamber adjacent to the fundamental chamber
determines an automorphism (via some pair of opposed foldings) in our
generating set S. Here we show that this correspondence is bijective.

context ThinChamberComplexManyFoldings
begin

definition fundantiverter :: 'a permutation = 'a
where fundantiverter s = (THE v. v € C0—s‘—(C0)

abbreviation fundantipermutation = the-inv-into S fundantivertex

lemma fundantivertex: s€S = fundantivertex s € C0—s‘— C0
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using fundchamber-S-adjacent|of s
fundchamber-S-image-neq-fundchamber|of s]

fundantivertez-def[of s] thel |OF adj-antivertex]
by auto

lemma fundantivertez-fundchamber-decomp:
s€S = C0 = insert (fundantivertex s) (CONs‘— CO)
using fundchamber-S-adjacent|of s]
fundchamber-S-image-neg-fundchamber|of s]
fundantivertex|of s| adjacent-conv-insert[of CO]
by auto

lemma fundantivertez-unstable:
s€S = s — fundantivertex s # fundantivertezr s
using fundantivertex-fundchamber-decomp|of s]
image-insert[of (=) s fundantivertex s CONs‘— CO)]

S-fizes-fundchamber-image-int fundchamber-S-image-neq-fundchamber
by  fastforce

lemma fundantivertez-inj-on: inj-on fundantivertexr S
proof (rule inj-onl)
fix s t assume st: s€S teS fundantiverter s = fundantivertex t
hence insert (fundantivertex s) (CONs‘—CO) =
insert (fundantivertex s) (CONt‘—CO)
using fundantivertex-fundchamber-decomp|of s|
fundantivertex-fundchamber-decomp|of t]
by auto
moreover from st
have fundantivertex s ¢ CONs‘— CO fundantivertex s ¢ CONt‘—CO
using fundantivertex|of s] fundantivertez|of t]
by auto
ultimately have CONs‘—C0 = CoNt‘—CO
using insert-subset-equality|of fundantivertex s| by simp
with st(1,2) show s=t
using fundchamber fundchamber-S-chamber|of s| fundchamber-S-chamber|of t]
fundfacets|of s| fundfacets(2)]of t]
fundchamber-S-image-neq-fundchamber|of s
fundchamber-S-image-neq-fundchamber|of t]
facet-unique-other-chamber|of CO CONs‘—CO s‘—CO t— CO]
genby-genset-closed|of - S|
inj-onD[OF fundchamber- W-image-inj-on, of s t]
by auto
qged

lemma fundantivertex-surj-on: fundantivertex S = CO
proof (rule seteql)

show Av. v € fundantiverter ¢ S = ve€ C0 using fundantivertex by fast
next

fix v assume v: v C0
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define D where D = the-adj-chamber CO (CO—{v})
with v have Defundadjset
using fundchamber facetrel-diff-vertex the-adj-chamber-adjacentset
the-adj-chamber-neq
by  fastforce
from this obtain s where s: s€S D = s~ C0
using fundadjset-eq-S-image by blast
with v D-def [abs-def] have fundantiverter s = v
using  fundchamber fundchamber-S-adjacent
fundchamber-S-image-neq-fundchamber|of s]
facetrel-diff-vertex[of v CO]
the-adj-chamber-facet facetrel-def[of CO—{v} D]
unfolding fundantivertez-def

by (force intro: thel-equality|OF adj-antivertez])
with s(1) show v € fundantivertex ‘S by fast
qed

lemma fundantivertex-bij-betw: bij-betw fundantivertex S CO
unfolding bij-betw-def
using  fundantivertez-inj-on fundantivertex-surj-on
by fast

lemma card-S-fundchamber: card S = card CO
using bij-betw-same-card|OF fundantivertez-bij-betw] by fast

lemma card-S-chamber:
chamber C = card C = card S
using fundchamber chamber-card[of CO C] card-S-fundchamber by auto

lemma fundantipermutationl:
veCO0 = fundantipermutation v € S
using fundantivertez-surj-on the-inv-into-into| OF fundantivertez-inj-on] by blast

end

4.8 Thick chamber complexes

A thick chamber complex is one in which every facet is a facet of at least
three chambers.

locale ThickChamberComplex = ChamberComplex X
for X :: 'a set set
+ assumes thick:
chamber C = 2<1C =
3D E. DeX—{C} N z<D N EeX—{C,D} A z2<FE
begin

definition some-third-chamber :: 'a set = 'a set = 'a set = 'a set
where some-third-chamber C D z = SOME E. EeX—{C,D} A 2<FE
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lemma facet-ex-third-chamber: chamber C = 2<1C = I E€X—{C,D}. 2<E
using thick[of C z] by auto

lemma some-third-chamberD-facet:
chamber C = 2<1C = z < some-third-chamber C' D z
using facet-ex-third-chamber[of C z D] somel-ex[of \E. E€X—{C,D} A z<E]
some-third-chamber-def
by auto

lemma some-third-chamberD-simplex:
chamber C = 2<1C = some-third-chamber C'D z € X
using facet-ex-third-chamber[of C z D] somel-ex[of N\E. E€X—{C,D} A z<E]
some-third-chamber-def
by auto

lemma some-third-chamberD-adj:
chamber C = 2<1C = C' ~ some-third-chamber C D z
using some-third-chamberD-facet by (fast intro: adjacentl)

lemma chamber-some-third-chamber:
chamber C => 2<1C = chamber (some-third-chamber C' D z)
using chamber-adj some-third-chamberD-simplex some-third-chamberD-adj
by  fast

lemma some-third-chamberD-ne:
assumes chamber C z<1C
shows some-third-chamber C D z # C some-third-chamber C D z # D
using assms facet-ex-third-chamber|of C z D]
somel-ex[of N\E. E€X—{C,D} A z<E] some-third-chamber-def
by auto

end

end

5 Coxeter systems and complexes

A Coxeter system is a group that affords a presentation, where each gener-
ator is of order two, and each relator is an alternating word of even length
in two generators.

theory Cozxeter
imports Chamber

begin

5.1 Coxeter-like systems

First we work in a group generated by elements of order two.
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5.1.1 Locale definition and basic facts

locale PreCoxeterSystem =

fixes S :: 'w:group-add set

assumes genset-order2: s€S = add-order s = 2
begin

abbreviation W = (95)

abbreviation S-length = word-length S
abbreviation S-reduced-for = reduced-word-for S
abbreviation S-reduced = reduced-word S
abbreviation relfun = A\s t. add-order (s+t)

lemma no-zero-genset: 0¢S

proof
assume 0cS
moreover have add-order (0::'w) = 1 using add-order0 by fast
ultimately show Fulse using genset-order2 by simp

qed

lemma genset-order2-add: s€S = s + s = 0
using add-order[of s] by (simp add: genset-order2 nataction-2)

lemmas genset-uminus = minus-unique[OF genset-order2-add)]

lemma relfun-S: s€S = relfun s s = 1
using add-order-relator|of s| by (auto simp add: genset-order2 nataction-2)

lemma relfun-eql: [ s€S; relfun st =1 ] = t=s
using add-order-add-eql genset-uminus by fastforce

lemma S-relator-list: s€S = pair-relator-list s s = [s,]
using relfun-S alternating-list2 by simp

lemma S-sym: T C S = uminus ‘T C T
using genset-uminus by auto

lemmas special-subgroup-eq-sum-list =
genby-sym-eq-sum-lists|OF S-sym)|

lemmas genby-S-reduced-word-for-arg-min =
reduced-word-for-genby-sym-arg-min| OF S-sym]

lemmas in-genby-S-reduced-letter-set =
in-genby-sym-imp-in-reduced-letter-set| OF S-sym)|

end
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5.1.2 Special cosets

From a Coxeter system we will eventually construct an associated chamber
complex. To do so, we will consider the collection of special cosets: left
cosets of subgroups generated by subsets of the generating set S. This col-
lection forms a poset under the supset relation that, under a certain extra
assumption, can be used to form a simplicial complex whose poset of sim-
plices is isomorphic to this poset of special cosets. In the literature, groups
generated by subsets of S are often referred to as parabolic subgroups of W,
and their cosets as parabolic cosets, but following Garrett [2] we have opted
for the names special subgroups and special cosets.

context PreCozeterSystem
begin

definition special-cosets :: 'w set set
where special-cosets = (| T€Pow S. ((JweW. { w 4o (T) }))
abbreviation P = special-cosets

lemma special-cosetsl: TePow S = weW = w +o (T) € P
using special-cosets-def by auto

lemma special-coset-singleton: we W —> {w}eP
using special-cosetsl genby-lcoset-empty|of w] by fastforce

lemma special-coset-nempty: XeP — X # {}
using special-cosets-def genby-lcoset-refl by fastforce

lemma special-subgroup-special-coset: T€Pow S = (T) € P
using genby-0-closed special-cosetsI[of T| by fastforce

lemma special-cosets-lcoset-closed: we W =—> XeEP = w +0 X € P
using genby-add-closed unfolding special-cosets-def
by  (fastforce simp add: set-plus-rearrange2)

lemma special-cosets-lcoset-shift: we W = ((+o0) w) ‘P =P
using special-cosets-lcoset-closed genby-uminus-closed
by  (force simp add: set-plus-rearrange2)

lemma special-cosets-has-bottom: supset-has-bottom P
proof (rule ordering.has-bottoml, rule supset-poset)
show WeP using special-subgroup-special-coset by fast
next
fix X assume X: XeP
from this obtain w T where wT: we W T€Pow S X = w +o (T)
using special-cosets-def by auto
thus X C W using genby-monolof T] genby-lcoset-closed[of w] by auto
qed
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lemma special-cosets-bottom: supset-bottom P = W
proof (rule supset-bottomI[ THEN sym)])
fix X assume XeP
from this obtain w T where we W TePow S X = w 4o (T)
using special-cosets-def by auto
thus XCW
using genby-monolof T S] set-plus-monolof (T) W] genby-lcoset-el-reduce
by  force
qed (auto simp add: special-subgroup-special-coset)

end

5.1.3 Transfer from the free group over generators

We form a set of relators and show that it and S form a Group WithGener-
atorsRelators. The associated quotient group G maps surjectively onto W.
In the CozeterSystem locale below, this correspondence will be assumed to
be injective as well.

context PreCozeterSystem
begin

abbreviation R :: ‘w list set where R = (|Js€S. |JteS. {pair-relator-list s t})
abbreviation P = map (charpair S) ‘R
abbreviation P’ = Group WithGeneratorsRelators.P' S R
abbreviation @ = Group WithGeneratorsRelators.QQ S R
abbreviation G = Group WithGeneratorsRelators.G S R
abbreviation relator-freeword =
Group WithGeneratorsRelators.relator-freeword S
abbreviation pair-relator-freeword :: 'w = 'w = 'w freeword
where pair-relator-freeword s t = Abs-freelist (pair-relator-list s t)

abbreviation freeliftid = freeword-funlift id

abbreviation induced-id :: 'w freeword set permutation = 'w
where induced-id = Group WithGeneratorsRelators.induced-id S R

lemma S-relator-freeword: s€S = pair-relator-freeword s s = s[+]s
by (simp add: S-relator-list Abs-freeletter-add)

lemma map-charpair-map-pairtrue-R:
s€S = te§ =
map (charpair S) (pair-relator-list s t) = map pairtrue (pair-relator-list s t)
using set-alternating-list map-charpair-uniform by fastforce

lemma relator-freeword:
s€S = e =
pair-relator-freeword s t = relator-freeword (pair-relator-list s t)
using set-alternating-list
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arg-cong| OF map-charpair-map-pairtrue-R, of s t Abs-freeword]
by  fastforce

lemma relator-freewords: Abs-freelist ¢ R = P’
using relator-freecword by force

lemma Group WithGeneratorsRelators-S-R: Group WithGeneratorsRelators S R
proof
fix rs assume rs: rs€ER
hence rs”: rs € lists S using set-alternating-list by fast
from rs’ show rs € lists (S U uminus ¢ S) by fast
from rs show sum-list rs = 0 using sum-list-pair-relator-list by fast
from rs’ show proper-signed-list (map (charpair S) rs)
using proper-signed-list-map-uniform-snd
arg-conglof map (charpair S) rs map pairtrue rs proper-signed-list)
by  fastforce
qed

lemmas GroupByPresentation-S-P =
Group WithGeneratorsRelators. Group ByPresentation-S-P|
OF Group WithGeneratorsRelators-S-R

]

lemmas Q-FreeS = GroupByPresentation. Q-FreeS[OF GroupByPresentation-S-P]

lemma relator-freeword-Q: s€S = t€S = pair-relator-freeword s t € Q
using relator-freeword
GroupByPresentation.relators| OF GroupByPresentation-S-P]
by  fastforce

lemmas P’-FreeS =
Group WithGeneratorsRelators. P'-FreeS]|
OF Group WithGeneratorsRelators-S-R

]

lemmas GroupByPresentationInducedFun-S-P-id =
Group WithGeneratorsRelators. Group ByPresentationInduced Fun-S-P-id|
OF Group WithGeneratorsRelators-S-R

]

lemma rconj-relator-freeword:
[ s€S; teS; proper-signed-list xs; fst ‘< set xs C S | =
rconjby (Abs-freeword xs) (pair-relator-freeword s t) € Q
using Group WithGeneratorsRelators.rconj-relator-freeword|
OF Group WithGeneratorsRelators-S-R
]
relator-freeword
by  force
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lemma Iconjby-Abs-freelist-relator-freeword:
[ s€S; teS; as€lists S | =
lcongby (Abs-freelist xs) (pair-relator-freeword s t) € @
using Group WithGeneratorsRelators.lconjby-Abs-freelist-relator-freeword|
OF Group WithGeneratorsRelators-S-R

]
relator-freeword

by  force

lemma Abs-freelist-rev-append-alternating-list-in-Q:
assumes s€S teS
shows Abs-freelist (rev (alternating-list n s t) Q alternating-list n s t) € @
proof (induct n)
case (Suc m)
define u where u = (if even m then s else t)
define © where z = Abs-freelist (rev (alternating-list m s t) @ alternating-list
m s t)
from u-def z-def assms have
Abs-freelist (rev (alternating-list (Suc m) s t) @
alternating-list (Suc m) s t) =
(pair-relator-freeword u u) + rconjby (Abs-freeletter u)
using Abs-freelist-append|of
u # rev (alternating-list m s t) Q alternating-list m s ¢
[u]
]
Abs-freelist-Cons|of
u
rev (alternating-list m s t) Q alternating-list m s t
]
by  (simp add: add.assoc[THEN sym| S-relator-freeword)
moreover from Suc assms u-def z-def have rconjby (Abs-freeletter u) © € Q
using Abs-freeletter-in-Free Group-iff[of - S|
Free Group-genby-set-lconjby-set-rconjby-closed
by  fastforce
ultimately show ?case
using u-def assms relator-frecword-Q genby-add-closed by fastforce
qed (simp add: zero-freeword.abs-eq| THEN sym] genby-0-closed)

lemma Abs-freeword-freelist-uminus-add-in-Q:
proper-signed-list xs = fst ‘ set s C § =
— Abs-freelistfst xs + Abs-freeword xs € @
proof (induct s)
case (Cons z zs)
from Cons(2) have 1:
— Abs-freelistfst (z#xs) + Abs-freeword (z#xs) =
— Abs-freelistfst vs + — Abs-freeletter (fst x)
+ Abs-freeword [z] + Abs-freeword xs
using Abs-freelist-Cons|of fst © map fst xs]
by (simp add: Abs-freeword-Cons|THEN sym| add.assoc minus-add)
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show ?case
proof (cases snd x)
case True
with Cons show Zthesis
using 1
by (simp add:
Abs-freeletter-prod-conv-Abs-freeword
binrelchain-Cons-reduce

)
next
case Fulse
define s where s = fst x
with Cons(3) have s-S: s€S by simp
define ¢ where ¢ = rconjby (Abs-freelistfst xs) (pair-relator-freeword s s)
from s-def False Cons(3) have
— Abs-freelistfst (z#xs) + Abs-freeword (z#xs) =
— Abs-freelistfst xs + —pair-relator-freeword s s + Abs-freeword xs
using 1 surjective-pairing|of x| S-relator-freeword|[of s|
uminus-Abs-freeword-singleton|of s False, THEN sym)]
by (simp add: add.assoc)
with ¢-def have 2:
— Abs-freelistfst (z#xs) + Abs-freeword (x#zs) =
—q + (—Abs-freelistfst xs + Abs-freeword xs)
by (simp add: rconjby-uminus| THEN sym] add.assoc| THEN sym))
moreover from g¢-def s-def Cons(3) have —¢e@
using proper-signed-list-map-uniform-snd|of True map fst xs
rconj-relator-freeword genby-uminus-closed
by  fastforce
moreover from Cons have — Abs-freelistfst xs + Abs-freeword xs € @
by (simp add: binrelchain-Cons-reduce)
ultimately show ?thesis using genby-add-closed by simp
qed
qed (simp add: zero-freeword.abs-eq THEN sym] genby-0-closed)

lemma Q-freelist-frecword’:
[ proper-signed-list xs; fst ‘ set xs C S; Abs-freelistfst xs € Q | =
Abs-freeword zs € Q
using Abs-freeword-freelist-uminus-add-in-Q genby-add-closed
by  fastforce

lemma Q-freelist-freeword:

¢ € FreeGroup S = Abs-freelist (map fst (freeword ¢)) € Q@ = ¢ € Q
using freeword FreeGroupD Q-freelist-freeword’ freeword-inverse[of ]

by  fastforce

Here we show that the lift of the identity map to the free group on S is
really just summation.

lemma freeliftid- Abs-freeword-conv-sum-list:
proper-signed-list ts =—> fst ‘ set xs C § —
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freeliftid (Abs-freeword xs) = sum-list (map fst xs)
using freeword-funlift-Abs-freeword|of zs id] genset-uminus
sum-list-map-cong|of zs apply-sign id fst]
by  fastforce

end

5.1.4 Words in generators containing alternating subwords

Besides cancelling subwords equal to relators, the primary algebraic manip-
ulation in seeking to reduce a word in generators in a Coxeter system is to
reverse the order of alternating subwords of half the length of the associated
relator, in order to create adjacent repeated letters that can be cancelled.
Here we detail the mechanics of such manipulations.

context PreCozeterSystem
begin

lemma sum-list-pair-relator-halflist-flip:
s€S = teS =
sum-list (pair-relator-halflist s t) = sum-list (pair-relator-halfiist t s)
using add-order|of s+t]| genset-order2-add
alternating-order2-even-cancel-right[of s t 2x(relfun s t)]
by  (simp add: alternating-sum-list-conv-nataction add-order-add-sym)

definition flip-altsublist-adjacent :: 'w list = 'w list = bool
where flip-altsublist-adjacent ss ts
= dstas bs. ss = as Q (pair-relator-halflist s t) @ bs A
ts = as @ (pair-relator-halflist t s) Q bs
abbreviation flip-altsublist-chain = binrelchain flip-altsublist-adjacent

lemma flip-altsublist-adjacentl:
ss = as Q (pair-relator-halflist s t) Q bs =
ts = as Q (pair-relator-halflist t s) Q bs =
flip-altsublist-adjacent ss ts
using flip-altsublist-adjacent-def by fast

lemma flip-altsublist-adjacent-Cons-grow:
assumes flip-altsublist-adjacent ss ts
shows  flip-altsublist-adjacent (a#ss) (a#ts)
proof—
from assms obtain s t as bs
where ssts: ss = as @ (pair-relator-halflist s t) @ bs
ts = as @ (pair-relator-halflist t s) Q bs
using flip-altsublist-adjacent-def
by auto
from ssts have
a#tss = (a#tas) Q (pair-relator-halflist s t) Q bs
a#ts = (aftas) Q (pair-relator-halfiist t s) Q bs
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by auto
thus ?thesis by (fast intro: flip-altsublist-adjacentl)
qed

lemma flip-altsublist-chain-map-Cons-grow:
flip-altsublist-chain tss = flip-altsublist-chain (map ((#) t) tss)
by (induct tss rule: list-induct-CCons)
(auto simp add:
binrelchain-Cons-reduce|of flip-altsublist-adjacent]
flip-altsublist-adjacent-Cons-grow

)

lemma flip-altsublist-adjacent-refl:

ss # [| = ss€lists S = flip-altsublist-adjacent ss ss
proof (induct ss rule: list-nonempty-induct)

case (single s)

hence [s] =[] @ pair-relator-halflist s s Q ||

using relfun-S by simp

thus ?case by (fast intro: flip-altsublist-adjacentl)
next

case cons thus ?case using flip-altsublist-adjacent-Cons-grow by simp
qged

lemma flip-altsublist-adjacent-sym:
flip-altsublist-adjacent ss ts = flip-altsublist-adjacent ts ss
using flip-altsublist-adjacent-def flip-altsublist-adjacentl by auto

lemma rev-flip-altsublist-chain:
flip-altsublist-chain ss = flip-altsublist-chain (rev xss)
using flip-altsublist-adjacent-sym binrelchain-snoc|of flip-altsublist-adjacent]
by  (induct xss rule: list-induct-CCons) auto

lemma flip-altsublist-adjacent-set:
assumes ss€lists S flip-altsublist-adjacent ss ts
shows set ts = set ss
proof—
from assms obtain s t as bs where ssts:
ss = as @ (pair-relator-halflist s t) @ bs
ts = as @ (pair-relator-halflist t s) Q bs
using flip-altsublist-adjacent-def
by auto
with assms(1) show ?thesis
using set-alternating-list2[of relfun s t s t]
set-alternating-list2[of relfun t s t s]
add-order-add-sym[of t s] relfun-eql
by  (cases relfun s t rule: nat-cases-25uc) auto
qed

lemma flip-altsublist-adjacent-set-ball:
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V sselists S. ¥V ts. flip-altsublist-adjacent ss ts — set ts = set ss
using flip-altsublist-adjacent-set by fast

lemma flip-altsublist-adjacent-lists:
ss € lists S = flip-altsublist-adjacent ss ts => ts € lists S
using flip-altsublist-adjacent-set by fast

lemma flip-altsublist-adjacent-lists-ball:
V ss€lists S. V ts. flip-altsublist-adjacent ss ts — ts € lists S
using flip-altsublist-adjacent-lists by fast

lemma flip-altsublist-chain-lists:
ss € lists S = flip-altsublist-chain (ss#xssQts]) = ts € lists S
using flip-altsublist-adjacent-lists
binrelchain-propcong- Cons-snoclof
Ass. ss€lists S flip-altsublist-adjacent ss xss ts

]
by fast

lemmas flip-altsublist-chain-funcong-Cons-snoc =
binrelchain-setfuncong-Cons-snoc|OF flip-altsublist-adjacent-lists-ball]

lemmas flip-altsublist-chain-set =
flip-altsublist-chain-funcong-Cons-snoc|
OF flip-altsublist-adjacent-set-ball

]

lemma flip-altsublist-adjacent-length:
flip-altsublist-adjacent ss ts = length ts = length ss
unfolding flip-altsublist-adjacent-def
by (auto simp add: add-order-add-sym length-alternating-list)

lemmas flip-altsublist-chain-length =
binrelchain-funcong-Cons-snoc|
of flip-altsublist-adjacent length, OF flip-altsublist-adjacent-length, simplified

]

lemma flip-altsublist-adjacent-sum-list:
assumes ss € lists S flip-altsublist-adjacent ss ts
shows sum-list ts = sum-list ss
proof—
from assms(2) obtain s t as bs where stasbs:
ss = as @ (pair-relator-halflist s t) @ bs
ts = as @ (pair-relator-halflist t s) Q bs
using flip-altsublist-adjacent-def
by auto
show ?thesis
proof (cases relfun s t)
case 0 thus ?thesis using stasbs by (simp add: add-order-add-sym)
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next
case Suc
with assms stasbs have s€S t€S
using set-alternating-list1 [of add-order (s+t) s t]
set-alternating-list1 [of add-order (t+s) t s]
add-order-add-sym[of t]
flip-altsublist-adjacent-lists[of ss ts]
by auto
with stasbs show ?thesis
using sum-list-pair-relator-halflist-flip by simp
qed
qed

lemma flip-altsublist-adjacent-sum-list-ball:
V ss€lists S. V ts. flip-altsublist-adjacent ss ts — sum-list ts = sum-list ss
using flip-altsublist-adjacent-sum-list by fast

lemma S-reduced-forl-flip-altsublist-adjacent:
S-reduced-for w ss = flip-altsublist-adjacent ss ts = S-reduced-for w ts
using reduced-word-for-lists[of S| reduced-word-for-sum-list
flip-altsublist-adjacent-lists flip-altsublist-adjacent-sum-list
flip-altsublist-adjacent-length
by  (fastforce intro: reduced-word-forl-compare)

lemma flip-altsublist-adjacent-in-Q":
fixes asbsst
defines zs: s = as Q pair-relator-halflist s t @ bs
and ys: ys = as Q pair-relator-halflist t s Q bs
assumes Axs: Abs-freelist zs € @
shows Abs-freelist ys € Q
proof—
define X Y A B half-st half2-st half-ts
where X = Abs-freelist s
and Y = Abs-freelist ys
and A = Abs-freelist as
and B = Abs-freelist bs
and half-st = Abs-freelist (pair-relator-halflist s t)
and half2-st = Abs-freelist (pair-relator-halflist2 s t)
and half-ts = Abs-freelist (pair-relator-halflist t s)
define z where z = —half2-st + B
define w! w2 where wl = rconjby z (pair-relator-freeword s t)
and w2 = Abs-freelist (rev (pair-relator-halflist t s) Q pair-relator-halfiist t s)
define w3 where w3 = rconjby B w2

from wi-def z-def
have wl’ w1 = rconjby B (lconjby half2-st (pair-relator-freeword s t))
by  (simp add: rconjby-add)
hence —wl = rconjby B (lconjby half2-st (—pair-relator-freeword s t))
using lconjby-uminus[of half2-st] by (simp add: rconjby-uminus| THEN sym))
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moreover from X-def zs A-def half-st-def B-def have X = A + B + rconjby B
half-st
by (simp add:
Abs-freelist-append-append| THEN sym] add.assoc[ THEN sym)]

ultimately have
X+ -—wl=A+B+
( rconjby B (half-st + (half2-st + —pair-relator-freeword s t — half2-st)) )
by (simp add: add.assoc add-rconjby)
moreover from w2-def half2-st-def half-ts-def have w2 = half2-st + half-ts
by (simp add:
Abs-freelist-append| THEN sym)]
pair-relator-halflist2-conv-rev-pair-relator-halflist
)
ultimately have
X + —wl + w8 = A+ B + (rconjby B (—half2-st + (half2-st + half-ts)))
using half-st-def half2-st-def w3-def add-assoc4 |
of half-st half2-st —pair-relator-freeword s t —half2-st
]
by  (simp add:
Abs-freelist-append| THEN sym| pair-relator-halflist-append
add.assoc add-rconjby

hence Y"Y = X — wl + w3
using A-def half-ts-def B-def ys Y-def
by  (simp add:
add.assoc[THEN sym]
Abs-freelist-append-append| THEN sym)

)

from Azs have zs-S: zs € lists S using Q-FreeS FreeGroupD-transfer’ by fast
have wieQ N w3e€(Q
proof (cases relfun s t)
case 0 with wi-def w2-def w3-def show ?thesis using genby-0-closed
by (auto simp add:
zero-freeword.abs-eq| THEN sym]
add-order-add-sym
)
next
case (Suc m) have m: add-order (s+t) = Suc m by fact
have st: {s,t} C S
proof (cases m)
case 0 with m zs zs-S show ?thesis
using set-alternating-list1 relfun-eql by force
next
case Suc with m zs zs-S show ?thesis
using set-alternating-list2[of add-order (s+t) s t] by fastforce
qed
from zs xs-S B-def have B-S: B € FreeGroup S
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using Abs-freelist-in-FreeGroup[of bs S| by simp
moreover from w2-def have w2€Q
using st Abs-freelist-rev-append-alternating-list-in-Q[of t s add-order (t+s)]
by fast
ultimately have w3 € @
using w3-def FreeGroup-genby-set-lconjby-set-rconjby-closed by fast
moreover from half2-st-def have wi € @
using w1’ st B-S alternating-list-in-lists|of s S] alternating-list-in-lists[of t S]
leonjby- Abs-freelist-relator-freeword|of s t]
by  (force intro: FreeGroup-genby-set-lconjby-set-rconjby-closed)
ultimately show ?thesis by fast
qed
with X-def Y-def Axs show ?thesis
using Y’ genby-diff-closed|of X] genby-add-closed[of X—wl - w3] by simp

qed

lemma flip-altsublist-adjacent-in-Q:
Abs-freelist ss € Q = flip-altsublist-adjacent ss ts => Abs-freelist ts € Q
using flip-altsublist-adjacent-def flip-altsublist-adjacent-in-Q’ by auto

lemma flip-altsublist-chain-G-in-Q:
[ Abs-freelist ss € Q; flip-altsublist-chain (ss#xssQ[ts]) | = Abs-freelist ts € Q
using flip-altsublist-adjacent-in-Q
binrelchain-propcong- Cons-snoclof
Ass. Abs-freelist ss € Q
flip-altsublist-adjacent

]
by  fast

lemma alternating-S-no-flip:
assumes s€SteSn > 0n < relfun stV relfun st = 0
shows sum-list (alternating-list n s t) # sum-list (alternating-list n t s)
proof
assume sum-list (alternating-list n s t) = sum-list (alternating-list n t s)
hence sum-list (alternating-list n s t) + — sum-list (alternating-list n t s) = 0
by simp
with assms(1,2) have sum-list (alternating-list (2xn) s t) = 0
by (cases even n)
(auto simp add:
genset-order2-add uminus-sum-list-alternating-order?2
sum-list.append| THEN sym]
alternating-list-append mult-2
)
with assms(3,4) less-add-order-eg-0-contra add-order-eq0 show False
by (auto simp add: alternating-sum-list-conv-nataction)
qed

lemma exchange-alternating-not-in-alternating:
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assumes n > 2n < relfun st V relfun st = 0
S-reduced-for w (alternating-list n s t Q cs)
alternating-list n s t @Q cs = zsQ[z]Qys S-reduced-for w (t#xsQys)
shows length xs > n
proof—
from assms(1) obtain m k where n: n = Suc m and m: m = Suc k
using gr0-implies-Suc by fastforce
define altnst altnts altmts altkst
where altnst = alternating-list n s t
and altnts = alternating-list n t s
and altmts = alternating-list m t s
and altkst = alternating-list k s t
from altnst-def altmts-def n have altnmst: alitnst = s # altmts
using alternating-list-Suc-Cons[of m| by fastforce
with assms(8) altnst-def have s-S: s€ S using reduced-word-for-lists by fastforce
from assms(5) have t-S: t€S using reduced-word-for-lists by fastforce
from m altnmst altmts-def altkst-def have altnkst: altnst = s # t # altkst
using alternating-list-Suc-Cons by fastforce
have — length zs < n
proof (cases Suc (length xs) = n)
case True
with assms(4,5) n altnts-def have flip: S-reduced-for w (altnts Q cs)
using length-alternating-list[of n s t]
alternating-list-Suc-Cons[of m t s]
by auto
from altnst-def have sum-list altnst = sum-list altnts
using reduced-word-for-sum-list{ OF assms(3)]
reduced-word-for-sum-list| OF flip]
by auto
with n assms(2) altnst-def altnts-def show Zthesis
using alternating-S-no-flip[OF s-S t-S] by fast
next
case Fulse show ?Zthesis
proof (cases s ys rule: two-lists-cases-snoc-Cons)
case Nill
from Nill(1) assms(4) altnkst altnst-def have ys = t # altkst Q cs by auto
with Nil1(1) assms(5) show ?thesis
using t-S genset-order2-add|of t]
contains-order2-nreduced[of t S || altkstQcs]
reduced-word-for-imp-reduced-word
by  force
next
case Nil2 with assms(4) altnst-def False show ?thesis
using length-append|of altnst cs]
by  (fastforce simp add: length-alternating-list)
next
case (snoc-Cons us u z 28)
with assms(4,5) altnst-def
have I: altnst @ cs = usQ[u,z,2]Qzs S-reduced-for w (t#usQ[u,z]Qzs)
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by auto
from 1(1) snoc-Cons(1) False altnst-def show ?thesis
using take-append|of n altnst cs] take-append|of n usQ[u,z,z] zs]
set-alternating-list[of n s t]
alternating-list-alternates[of n s t us u)
reduced-word-for-imp-reduced-word[ OF 1(2)]
s-S t-S genset-order2-add
contains-order2-nreduced|of u S t#us]
by  (force simp add: length-alternating-list)
qed
qed
thus ?thesis by fastforce
qed

end

5.1.5 Preliminary facts on the word problem

The word problem seeks criteria for determining whether two words over
the generator set represent the same element in W. Here we establish one
direction of the word problem, as well as a preliminary step toward the other
direction.

context PreCozeterSystem
begin

lemmas flip-altsublist-chain-sum-list =

flip-altsublist-chain-funcong-Cons-snoc| OF flip-altsublist-adjacent-sum-list-ball]
— This lemma represents one direction in the word problem: if a word in generators
can be transformed into another by a sequence of manipulations, each of which
consists of replacing a half-relator subword by its reversal, then the two words sum
to the same element of W.

lemma reduced-word-problem-eq-hd-step:
assumes step: Ay ss ts. |
S-length y < S-length w; y£0; S-reduced-for y ss; S-reduced-for y ts
| = Jass. flip-altsublist-chain (ss # xss Q [ts])
and  set-up: S-reduced-for w (a#ss) S-reduced-for w (a#tts)
shows Juss. flip-altsublist-chain ((a#tss) # xss Q [a#ts])
proof (cases ss=ts)
case True
with set-up(1) have flip-altsublist-chain ((a#ss) # [] @ [a#ts])
using reduced-word-for-lists flip-altsublist-adjacent-refl by fastforce
thus %thesis by fast
next
case Fulse
define y where y = sum-list ss
with set-up(1) have ss: S-reduced-for y ss
using reduced-word-for-imp-reduced-word reduced-word-Cons-reduce by fast
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moreover from y-def ss have ts: S-reduced-for y ts
using reduced-word-for-sum-list|OF set-up(1)]
reduced-word-for-sum-list|OF set-up(2)]
reduced-word-for-eq-length| OF set-up(1) set-up(2)]
reduced-word-for-lists| OF set-up(2)]
by  (auto intro: reduced-word-forl-compare)
moreover from ss set-up(1) have S-length y < S-length w
using reduced-word-for-length reduced-word-for-length by fastforce
moreover from Fualse have y # 0
using ss ts reduced-word-for-0-imp-nil reduced-word-for-0-imp-nil by fastforce
ultimately show %thesis
using step flip-altsublist-chain-map-Cons-grow by fastforce
qed

end

5.1.6 Preliminary facts related to the deletion condition

The deletion condition states that in a Coxeter system, every non-reduced
word in the generating set can be shortened to an equivalent word by delet-
ing some particular pair of letters. This condition is both necessary and
sufficient for a group generated by elements of order two to be a Coxeter
system. Here we establish some facts related to the deletion condition that
are true in any group generated by elements of order two.

context PreCozeterSystem
begin

abbreviation H = (|JweW. lconjby w * S) — the set of reflections
abbreviation lift-signed-lconjperm = freeword-funlift signed-lconjpermutation

lemma lconjseq-reflections: ss€lists S = set (lconjseq ss) C H
using special-subgroup-eq-sum-list[of S|
by  (induct ss rule: rev-induct) (auto simp add: lconjseg-snoc)

lemma deletion”:
ss € lists S = — distinct (lconjseq ss) =
Ja b as bscs. ss = as Q [a] Q bs Q [b] @ cs A
sum-list ss = sum-list (asQbsQcs)
proof (induct ss)
case (Cons s ss)
show Zcase
proof (cases distinct (Iconjseq ss))
case True with Cons(2,3) show ?thesis
using subset-inj-on[OF lconjby-ing, of set (lconjseq ss) s
distinct-map|of lconjby s
genset-order2-add order2-hd-in-lconjseq-deletion[of s ss]
by  (force simp add: algebra-simps)
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next
case Fulse
with Cons(1,2) obtain a b as bs cs where
s#ss = (s#as) Q [a] Q bs @ [b] Q cs
sum-list (s#tss) = sum-list ((s#as) Q bs Q cs)
by auto
thus ?thesis by fast
qed
qed simp

lemma S-reduced-imp-distinct-lconjseq’:
assumes ss € lists S — distinct (lconjseq ss)
shows — S-reduced ss
proof
assume ss: S-reduced ss
from assms obtain as a bs b cs
where decomp: ss = as @Q [a] @ bs @ [b] @ cs
sum-list ss = sum-list (asQbsQcs)
using deletion’[of ss]
by  fast
from ss decomp assms(1) show False
using reduced-word-for-minimal[of S - ss as@QbsQcs] by auto
qed

lemma S-reduced-imp-distinct-lconjseq: S-reduced ss = distinct (lconjseq ss)
using reduced-word-for-lists S-reduced-imp-distinct-lconjseq’ by fast

lemma permutation-lift-signed-lconjperm-eq-signed-list-lconjaction’:
proper-signed-list xs = fst ‘ set zs C § =
permutation (lift-signed-lconjperm (Abs-freeword xzs)) =
signed-list-lconjaction (map fst xs)
proof (induct xs)
case Nil
have Abs-freeword ([]::'w signed list) = (0::'w freeword)
using zero-frecword.abs-eq by simp
thus ?case by (simp add: zero-permutation.rep-eq freeword-funlift-0)
next
case (Cons z zs)
obtain s b where z: z=(s,b) by fastforce
with Cons show ?case
using Abs-freeword-Cons|of x xs]
binrelchain-Cons-reduce|of nflipped-signed z xs]
bij-signed-lconjaction|of s| genset-order2-add|of s
by (cases b)
(auto simp add:
plus-permutation.rep-eq freeword-funlift-add
freeword-funlift- Abs-freeletter
Abs-permutation-inverse uminus-permutation.rep-eq
the-inv-signed-lconjaction-by-order2

227



freeword-funlift-uminus- Abs-freeletter

)
qed

lemma permutation-lift-signed-lconjperm-eq-signed-list-lconjaction:
z € FreeGroup S —
permutation (lift-signed-lconjperm x) =
signed-list-lconjaction (map fst (freeword x))
using freeword FreeGroup-def|of S] freeword-inverse|of x
permutation-lift-signed-lconjperm-eq-signed-list-lconjaction’
by  force

lemma even-count-lconjseq-rev-relator:
s€S = teS = even (count-list (lconjseq (rev (pair-relator-list s t))) x)
using even-count-lconjseq-alternating-order2|of t]
by (simp add: genset-order2-add add-order rev-pair-relator-list)

lemma GroupByPresentationInduced Fun-S-R-signed-lconjaction:
GroupByPresentationInducedFun S P signed-lconjpermutation
proof (intro-locales, rule GroupByPresentation-S-P, unfold-locales)
fix ps assume ps: pseP
define r where r = Abs-freeword ps
with ps have r: re P’ by fast
then obtain s t where st: s€S t€S r = pair-relator-frecword s t
using relator-frecwords by fast
from r st(3)
have 1: permutation (lift-signed-lconjperm r) =
signed-list-lconjaction (pair-relator-list s t)
using P’-FreeS
permutation-lift-signed-lconjperm-eq-signed-list-lconjaction
Abs-freelist-inverse|of pair-relator-list s t)
map-fst-map-const-snd|of True pair-relator-list s t]
by  force
have permutation (lift-signed-lconjperm r) = id
proof
fix z
show lift-signed-lconjperm r — x = id x
proof
show snd (freeword-funlift signed-lconjpermutation r — z) = snd (id x)
using 1 st(1,2) even-count-lconjseg-rev-relator genset-order2-add
set-alternating-list[of 2xrelfun s t s t]
signed-list-lconjaction-snd|of pair-relator-list s t x]
by  fastforce
qaed (simp add: 1 signed-list-lconjaction-fst sum-list-pair-relator-list)
qed
moreover
have permutation (0::'w signed permutation) = (id::'w signed = "w signed)
using zero-permutation.rep-eq
by fast
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ultimately show lift-signed-lconjperm r = 0
using permutation-inject by fastforce
qed

end

5.2 Coxeter-like systems with deletion

Here we add the so-called deletion condition as an assumption, and explore
its consequences.

5.2.1 Locale definition

locale PreCoxeterSystem WithDeletion = PreCoxeterSystem S
for S :: 'w::group-add set
+ assumes deletion:
ss € lists S = — reduced-word S ss =
Jabasbscs. ss=asQ[a] Q bs Q [b] Q cs A
sum-list ss = sum-list (asQbsQcs)

5.2.2 Consequences of the deletion condition

context PreCoxeterSystem WithDeletion
begin

lemma deletion-reduce:
ss € lists S = Jts. ts € ssubseqs ss N reduced-words-for S (sum-list ss)
proof (cases S-reduced ss)
case True
thus ss € lists S =
Jts. ts € ssubsegs ss N reduced-words-for S (sum-list ss)
by (force simp add: ssubsegs-refl)
next
case Fulse
have ss € lists S = — S-reduced ss =
Jts. ts € ssubseqs ss N reduced-words-for S (sum-list ss)
proof (induct ss rule: length-induct)
fix @s:'w list
assume zs:
YV ys. length ys < length xs — ys € lists S — — S-reduced ys
— (Jts. ts € ssubseqs ys N reduced-words-for S (sum-list ys))
xzs € lists S — S-reduced xs
from zs(2,3) obtain as a bs b cs
where asbscs: zs = asQ[a]QbsQ[b]Qcs sum-list zs = sum-list (asQbsQcs)
using deletion[of xs]
by  fast
show Jts. ts € ssubseqs xs N reduced-words-for S (sum-list xs)
proof (cases S-reduced (asQbsQcs))
case True with asbscs zs(2) show ?Zthesis

229



using delete2-ssubseqs by fastforce
next
case Fulse
moreover from asbscs(1) zs(2)
have length (asQbsQcs) < length zs asQbsQcs € lists S
by auto
ultimately obtain ts
where ts: ts € ssubseqs (as@bsQcs) N
reduced-words-for S (sum-list (asQbsQcs))
using xs(1,2) asbscs(1)
by  fast
with asbscs show ?thesis
using delete2-ssubsegs|of as bs cs a b] ssubsegs-subset by auto
qed
qed
with False
show ss € lists S =
Jts. ts € ssubsegs ss N reduced-words-for S (sum-list ss)
by  fast
qed

lemma deletion-reduce’:
ss € lists S = Jtsereduced-words-for S (sum-list ss). set ts C set ss
using deletion-reduce|of ss] subsegs-powset|of ss] by auto

end

5.2.3 The exchange condition

The exchange condition states that, given a reduced word in the generators,
if prepending a letter to the word does not remain reduced, then the new
word can be shortened to a word equivalent to the original one by deleting
some letter other than the prepended one. Thus, one able to exchange some
letter for the addition of a desired letter at the beginning of a word, without
changing the elemented represented.

context PreCozeterSystem WithDeletion
begin

lemma exchange:
assumes s€S S-reduced-for w ss = S-reduced (s#£ss)
shows 3t as bs. ss = asQt#bs A reduced-word-for S w (s#asQbs)
proof—
from assms(2) have ss-lists: ss € lists S using reduced-word-for-lists by fast
with assms(1) have s#ss € lists S by simp
with assms(3) obtain a b as bs cs
where del: s#ss = as @ [a] @ bs @ [b] Q cs
sum-list (s#tss) = sum-list (as@bsQcs)
using deletion|of s#ss]
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by  fastforce
show ?thesis
proof (cases as)
case Nil with assms(1,2) del show ?thesis
using reduced-word-for-sum-list add.assoc[of s s w| genset-order2-add ss-lists
by  (fastforce intro: reduced-word-forI-compare)
next
case (Cons d ds) with del assms(2) show ?thesis
using ss-lists reduced-word-for-imp-reduced-word
reduced-word-for-minimal[of S sum-list ss ss dsQbsQcs]
by  fastforce
qed
qed

lemma reduced-head-imp-exchange:
assumes reduced-word-for S w (s#tas) reduced-word-for S w cs
shows Ja ds es. ¢s = dsQ[a]Qes A reduced-word-for S w (s#dsQes)
proof—
from assms(1) have s-S: s€S using reduced-word-for-lists by fastforce
moreover have — S-reduced (s#:cs)
proof (rule not-reduced-word-for)
show as € lists S using reduced-word-for-lists|OF assms(1)] by simp
from assms(1,2) show sum-list as = sum-list (s#cs)
using s-S reduced-word-for-sum-list[of S w] add.assoc|of s s] genset-order2-add
by  fastforce
from assms(1,2) show length as < length (s#cs)
using reduced-word-for-length[of S w] by fastforce
qed
ultimately obtain a ds es
where cs = dsQ[a]Qes reduced-word-for S w (s#dsQes)
using assms(2) exchangelof s w cs]

by auto
thus ?thesis by fast
qed
end

5.2.4 More on words in generators containing alternating sub-
words

Here we explore more of the mechanics of manipulating words over S that
contain alternating subwords, in preparation of the word problem.

context PreCozeterSystem WithDeletion
begin

lemma two-reduced-heads-imp-reduced-alt-step:
assumes s#£t reduced-word-for S w (t#bs) n < relfun s t V relfun s t = 0
reduced-word-for S w (alternating-list n s t Q cs)
shows 3ds. reduced-word-for S w (alternating-list (Suc n) t s @ ds)
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proof—
define altnst where alinst = alternating-list n s t
with assms(2,4) obtain z zs ys
where zzsys: altnst Q cs = xsQ[z]Qys reduced-word-for S w (t#xsQys)
using reduced-head-imp-exchange
by  fast
show ?thesis
proof (cases n rule: nat-cases-2Suc)
case 0 with zzsys(2) show ?thesis by auto
next
case 1 with assms(1,4) xzsys altnst-def show ?thesis
using reduced-word-for-sum-list[of S w s#cs]
reduced-word-for-sum-list|of S w t#cs]
by (cases xs) auto
next
case (SucSuc k)
with assms(3,4) zzsys altnst-def have length zs > n
using exchange-alternating-not-in-alternating by simp
moreover define ds where ds = take (length xs — n) cs
ultimately have t#xsQys = alternating-list (Suc n) t s Q ds Q ys
using zzsys(1) altnst-def take-append|of length s altnst cs
alternating-list-Suc-Cons|of n t]
by  (fastforce simp add: length-alternating-list)
with zzsys(2) show ?thesis by auto
qed
qged

lemma two-reduced-heads-imp-reduced-alt’:
assumes s#t reduced-word-for S w (s#as) reduced-word-for S w (t4#bs)
shows n < relfun s t V relfun s t = 0 = (Jcs.
reduced-word-for S w (alternating-list n s t Q cs) V
reduced-word-for S w (alternating-list n t s Q cs)
)
proof (induct n)
case 0 from assms(2) show ?case by auto
next
case (Suc m) thus ?case
using add-order-add-sym[of s t]
two-reduced-heads-imp-reduced-alt-step|
OF assms(1)[THEN not-sym] assms(2), of m
]
two-reduced-heads-imp-reduced-alt-step[ OF assms(1,3), of m)
by  fastforce
qed

lemma two-reduced-heads-imp-reduced-alt:
assumes s#t reduced-word-for S w (s#tas) reduced-word-for S w (t#bs)
shows 3 c¢s. reduced-word-for S w (pair-relator-halflist s t Q cs)
proof—
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define altst altts
where altst = pair-relator-halflist s t
and altts = pair-relator-halflist t s
then obtain cs
where cs: reduced-word-for S w (altst @ cs) V
reduced-word-for S w (altts @ cs)
using add-order-add-sym|of t] two-reduced-heads-imp-reduced-alt'|OF assms]
by auto
moreover from altst-def altts-def
have reduced-word-for S w (altts Q cs) = reduced-word-for S w (altst Q cs)
using reduced-word-for-lists|OF assms(2)] reduced-word-for-lists|OF assms(3)]
flip-altsublist-adjacent-def
by (force intro: S-reduced-forl-flip-altsublist-adjacent
stmp add: add-order-add-sym)
ultimately show 3 cs. reduced-word-for S w (altst @ cs) by fast
qed

lemma two-reduced-heads-imp-nzero-relfun:
assumes s#t reduced-word-for S w (s#as) reduced-word-for S w (t#bs)
shows relfun st # 0
proof
assume 1: relfun st = 0
define altst altts
where altst = alternating-list (Suc (S-length w)) st
and altts = alternating-list (Suc (S-length w)) t s
with I obtain cs
where reduced-word-for S w (altst @ cs) V
reduced-word-for S w (altts Q cs)
using two-reduced-heads-imp-reduced-alt'|OF assms]
by  fast
moreover from altst-def altts-def
have length (altst @ cs) > S-length w
length (altts @ cs) > S-length w
using length-alternating-list[of - s| length-alternating-list|of - t]
by auto
ultimately show Fulse using reduced-word-for-length by fastforce
qed

end

5.2.5 The word problem

Here we establish the other direction of the word problem for reduced words.
context PreCozeterSystem WithDeletion
begin

lemma reduced-word-problem-ConsCons-step:
assumes Ay ss ts. [ S-length y < S-length w; y#0; reduced-word-for S y ss;
reduced-word-for S y ts | = Jxss. flip-altsublist-chain (ss # xss Q [ts])
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reduced-word-for S w (a#as) reduced-word-for S w (b#bs) a#b
shows Juass. flip-altsublist-chain ((a#as)#xssQ[bF#bs])
proof—
from assms(2—4) obtain cs
where cs: reduced-word-for S w (pair-relator-halflist a b Q cs)
using two-reduced-heads-imp-reduced-alt
by  fast
define rs us where rs = pair-relator-halflist a b Q cs
and us = pair-relator-halflist b a Q cs
from assms(2,3) have a-S: a€S and b-S: beS
using reduced-word-for-lists|of S - a#as| reduced-word-for-lists[of S - b#bs]
by auto
with rs-def us-def have midlink: flip-altsublist-adjacent rs us
using add-order-add-sym|[of b a] flip-altsublist-adjacent-def by fastforce
from assms(2—4) have relfun a b # 0
using two-reduced-heads-imp-nzero-relfun by fast
from this obtain k£ where k: relfun a b = Suc k
using not0-implies-Suc by auto
define g¢s vs
where ¢s = alternating-list k b a Q cs
and vs = alternating-list k a b Q cs
with & rs-def us-def have rs”: rs = a # gs and us”: us = b # vs
using add-order-add-sym|of b a] alternating-list-Suc-Cons|of k] by auto
from assms(1,2) cs rs-def rs’
have startlink: as # qs = Jxss. flip-altsublist-chain ((a#as) # xss Q [rs])
using reduced-word-problem-eq-hd-step
by  fastforce
from assms(1,3) rs-def cs us’
have endlink: bs # vs = Jxss. flip-altsublist-chain (us # xss Q [b#bs])
using midlink flip-altsublist-adjacent-sym
S-reduced-forl-flip-altsublist-adjacent[of w rs]
reduced-word-problem-eq-hd-step|of w]
by auto
show ?thesis
proof (cases as = gs bs = vs rule: two-cases)
case both
with rs’ us’ have flip-altsublist-chain ((aftas) # [] Q [b#bs])
using midlink by simp
thus ?thesis by fast
next
case one
with rs’ obtain xss
where flip-altsublist-chain ((a#tas) # (us # xss) Q [b#bs])
using endlink midlink
by auto
thus ?thesis by fast
next
case other
from other(1) obtain zss where flip-altsublist-chain ((a#tas) # zss Q [rs])
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using startlink by fast
with other(2) us’ startlink
have flip-altsublist-chain ((a#as) # (zssQ[rs]) @ [b#bs])
using midlink binrelchain-snoc[of flip-altsublist-adjacent (aftas)#xss]

by  simp
thus ?thesis by fast
next

case neither
from neither(1) obtain zss
where flip-altsublist-chain ((a#as) # xss Q [rs])
using startlink
by  fast
with neither(2) obtain yss
where flip-altsublist-chain ((a#tas) # (zss Q [rs,us] Q yss) Q [b#bs])
using startlink midlink endlink
binrelchain-join[of flip-altsublist-adjacent (a#as)#xss]

by auto
thus ?thesis by fast
qed

qed

lemma reduced-word-problem:
[ w#0; reduced-word-for S w ss; reduced-word-for S w ts | =
Jaxss. flip-altsublist-chain (ss#xssQlts])
proof (induct w arbitrary: ss ts rule: measure-induct-rule[of S-length])
case (less w)
show ?Zcase
proof (cases ss ts rule: two-lists-cases-Cons-Cons)
case Nill from Nil1(1) less(2,3) show ?thesis
using reduced-word-for-sum-list by fastforce
next
case Nil2 from Nil2(2) less(2,4) show ?thesis
using reduced-word-for-sum-list by fastforce
next
case (ConsCons a as b bs)
show ?thesis
proof (cases a=b)
case True with less ConsCons show ?thesis
using reduced-word-problem-eq-hd-step[of w] by auto
next
case Fulse with less ConsCons show ?thesis
using reduced-word-problem-ConsCons-step[of w| by simp
qed
qed
qed

lemma reduced-word-letter-set:

assumes S-reduced-for w ss
shows reduced-letter-set S w = set ss
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proof (cases w=0)
case True with assms show Zthesis
using reduced-word-for-0-imp-nil[of S ss| reduced-letter-set-0 by simp
next
case Fulse
show ?thesis
proof
from assms show set ss C reduced-letter-set S w by fast
show reduced-letter-set S w C set ss
proof
fix x assume z € reduced-letter-set S w
from this obtain ts where reduced-word-for S w ts x € set ts by fast
with Fulse assms show x € set ss
using reduced-word-for-lists[of S - ss| reduced-word-problem|[of w ss]
flip-altsublist-chain-set
by  force
qed
qed
qed

end

5.2.6 Special subgroups and cosets

Recall that special subgroups are those generated by subsets of the generat-
ing set S. Here we show that the presence of the deletion condition guarantees
that the collection of special subgroups and their left cosets forms a poset
under reverse inclusion that satisfies the necessary properties to ensure that
the poset of simplices in the associated simplicial complex is isomorphic to

this poset of special cosets.

context PreCozeterSystem WithDeletion
begin

lemma special-subgroup-int-S:
assumes T € Pow S
shows (T)NS=T
proof
show (T) NS C T
proof
fix t assume ¢: t € (T) N S
with assms obtain ts where ts: ts € lists T t = sum-list ts
using special-subgroup-eq-sum-list[of T| by fast
with assms obtain us
where us: reduced-word-for S (sum-list ts) us set us C set ts
using deletion-reduce’|of ts]
by auto
with no-zero-genset ts(2) t have length us = 1

using reduced-word-for-lists[of S - us] reduced-word-for-sum-list[of S - us]
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reduced-word-for-imp-reduced-word[of S - us| el-reduced|of S|
by auto
with us ts show teT
using reduced-word-for-sum-list[of S - us] by (cases us) auto
qed
from assms show T C (T) N S using genby-genset-subset by fast
qed

lemma special-subgroup-inj: inj-on genby (Pow S)
using special-subgroup-int-S inj-on-inversel[of - A\W. WNS] by fastforce

lemma special-subgroup-genby-subset-ordering-iso:
subset-ordering-iso (Pow S) genby
proof (unfold-locales, rule genby-mono, simp, rule special-subgroup-inyj)
fix X Y assume XY: X € genby ‘ Pow S Y € genby ‘* Pow S XCY
from XY (1,2) obtain TX TY
where TXePow S X = (TX) TYe€Pow S Y = (TY)
by auto
hence the-inv-into (Pow S) genby X = XNS
the-inv-into (Pow S) genby Y = YNS
using the-inv-into-f-f[OF special-subgroup-inj] special-subgroup-int-S
by auto
with XY (3)
show the-inv-into (Pow S) genby X C the-inv-into (Pow S) genby Y
by auto
qged

lemmas special-subgroup-genby-rev-mono
= OrderingSetlso.rev-ordsetmap[OF special-subgroup-genby-subset-ordering-iso]

lemma special-subgroup-word-length:
assumes T€Pow S we(T)
shows word-length T w = S-length w
proof—
from assms obtain ts where ts: ts € lists T w = sum-list ts
using special-subgroup-eq-sum-list by auto
with assms(1) obtain us where us € ssubsegs ts S-reduced-for w us
using deletion-reduce|of ts] by fast
with assms(1) ts(1) show ?thesis
using ssubsegs-lists|of ts| reduced-word-for-sum-list
is-arg-min-size-subprop|of length word-for S w us word-for T w)
unfolding reduced-word-for-def word-length-def
by fast
qed

lemma S-subset-reduced-imp-S-reduced:
TePow S = reduced-word T ts = S-reduced ts
using reduced-word-for-lists reduced-word-for-lists[of T - ts]
reduced-word-for-length[of T sum-list ts ts] special-subgroup-eq-sum-list[of T
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special-subgroup-word-length[of T sum-list ts]
by  (fastforce intro: reduced-word-forl-length)

lemma smallest-genby: T€Pow S = we(T) = reduced-letter-set S w C T
using genby-S-reduced-word-for-arg-min[of T)
reduced-word-for-imp-reduced-word[of T w]
S-subset-reduced-imp-S-reduced|of T arg-min length (word-for T w)]
reduced-word-for-sum-list[of T| reduced-word-for-lists reduced-word-letter-set
by  fastforce

lemma special-cosets-below-in:
assumes we W T € Pow S
shows P.DO(w +o (T)) = (JRe(Pow §).OT. {w 40 (R)})
proof (rule seteql)
fix A assume A € P.O(w +o (7))
hence A: AeP A D (w +o (T)) by auto
from A(1) obtain R w’ where RePow S A = w' +o0 (R)
using special-cosets-def by auto
with A(2) assms(2) show A € (|JRe(Pow §).2T. {w 4o (R)})
using genby-lcoset-subgroup-imp-eq-reps[of w T w’ R]
lcoset-eq-reps-subset[of w (T)]
special-subgroup-genby-rev-monolof T R]
by auto
next
fix B assume B € (|JRe(Pow S).2T. {w 40 (R)})
from this obtain R where R: R € (Pow S).2T B = w +o0 (R) by auto
moreover hence B D w +o (T)
using genby-mono elt-set-plus-def[of w] by auto
ultimately show B € special-cosets .O (w +o (T))
using assms(1) special-cosets] by auto
qed

lemmas special-coset-inj
= comp-inj-on|OF special-subgroup-inj, OF inj-inj-on, OF lcoset-inj-on)]

lemma special-coset-eq-imp-eq-gensets:
[ T1€Pow S; T2€Pow S; wl +o0 (T1) = w2 40 (T2) | = T1=T2
using set-plus-rearrange2[of —wl w1 (T1)]
set-plus-rearrange2[of —wl w2 (T2)]
genby-leoset-subgroup-imp-eq-reps[of 0 T1 —wl+w2 T?2)
inj-onD[OF special-subgroup-inj)
by  force

lemma special-subgroup-special-coset-subset-ordering-iso:
subset-ordering-iso (genby * Pow S) ((+0) w)
proof
show Aa b. a C b= w+o0a C w+o b using elt-set-plus-def by auto
show 2: inj-on ((+0) w) (genby ¢ Pow S)
using lcoset-inj-on inj-inj-on by fast
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show Aa b. a € (+0) w ‘ genby ‘ Pow S =
be (+o0) w‘genby * Pow S =
aCb=
the-inv-into (genby ‘ Pow S) ((+0) w) a C
the-inv-into (genby < Pow S) ((+0) w) b
proof—
fixabd
assume ab : a € (+0) w ‘ genby ‘ Pow S b € (+0) w ‘ genby ‘ Pow S
and a-b: aCh
from ab obtain Ta Tb
where TacPow S a = w +o (Ta) TbePow S b = w +o (Th)
by auto
with a-b
show the-inv-into (genby ¢ Pow S) ((+0) w) a C
the-inv-into (genby ‘ Pow S) ((+0) w) b
using the-inv-into-f-eq| OF 2] lcoset-eq-reps-subset[of w (Ta) (Th)]
by  simp
qed
qed

lemma special-coset-subset-ordering-iso:
subset-ordering-iso (Pow S) ((+0) w o genby)
using special-subgroup-genby-subset-ordering-iso
special-subgroup-special-coset-subset-ordering-iso
by  (fast intro: OrderingSetlso.iso-comp)

lemmas special-coset-subset-rev-mono =
OrderingSetiso.rev-ordsetmap| OF special-coset-subset-ordering-iso)

lemma special-coset-below-in-subset-ordering-iso:
subset-ordering-iso ((Pow §).2T) ((+0) w o genby)
using special-coset-subset-ordering-iso by (auto intro: OrderingSetlso.iso-subset)

lemma special-coset-below-in-supset-ordering-iso:
OrderingSetlso (2) (0) (2) (3) ((Pow $).2T) ((+0) w o genby)

using special-coset-below-in-subset-ordering-iso OrderingSetlso.iso-dual by fast

lemma special-coset-pseudominimals:
assumes supset-pseudominimal-in P X
shows Jws. weW A seSAX=w+o (S—{s})
proof—
from assms have Xe€P using supset-pseudominimal-inD1 by fast
from this obtain w T where wT: we W T€Pow S X = w 4o (T)
using special-cosets-def by auto
show ?thesis
proof (cases T=S5)
case True with wT(1,3) assms show ?thesis
using genby-lcoset-el-reduce supset-pseudominimal-ne-bottom
special-cosets-bottom
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by  fast
next
case Fulse
with wT(2) obtain s where s: s€S T C S—{s} by fast
from s(2) wT(1,3) assms have X C w +o (S—{s})
using genby-mono by auto
moreover from assms wT (1) s(1) have = X C w 40 (S—{s})
using special-cosetsI|of - w]
supset-pseudominimal-inD2[of P X w +o (S—{s})]
leoset-eg-reps[of w - (S)]
inj-onD[OF special-subgroup-inj, of S—{s} S]
by (auto simp add: special-cosets-bottom genby-lcoset-el-reduce)
ultimately show ?thesis using wT (1) s(1) by fast
qed
qed

lemma special-coset-pseudominimal-in-below-in:
assumes we W Te€Pow S supset-pseudominimal-in (P.O(w +o (T))) X
shows JIs€S—-T. X = w +o (S—{s})
proof—
from assms obtain v s where vs: ve W s€S X = v 40 (S—{s})
using special-cosets-has-bottom special-cosetsI[of T w]
supset-has-bottom-pseudominimal-in-below-in
special-coset-pseudominimals
by  force
from assms(3) have X: X D w +o (T)
using supset-pseudominimal-inD1 by fast
with vs(3) have 1: X = w +o (S—{s})
using genby-lcoset-subgroup-imp-eq-reps[of w T v S—{s}] by fast
with X assms have T C S—{s}
using special-cosetsl special-coset-subset-rev-monolof T S—{s}]
by  fastforce
with vs(2) show ?thesis using I by fast
qed

lemma exclude-one-is-pseudominimal:
assumes we W tes
shows  supset-pseudominimal-in P (w +o0 (S—{t}))
proof (rule supset-pseudominimal-inl, rule special-cosetsl)
show w € W by fact
from assms have w +o (S — {t}) # W
using genby-lcoset-el-reducelof w| lcoset-eq-reps[of w - W)
inj-onD][OF special-subgroup-inj, of S—{t} S|
by auto
thus w +o (S — {t}) # supset-bottom P
using special-cosets-bottom by fast
next
fix X assume X: XeP w 4o (S — {t}) C X
with assms(1) have X € (|J Re(Pow S).2(S—{t}). {w +0 (R)})
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using subst|OF special-cosets-below-in, of w S—{t} AA. X€A] by fast
from this obtain R where R: R € (Pow 5).2(S—{t}) X = w +0 (R) by auto
from R(2) X(2) have R # S—{t} by fast
with R(!) have R=S by auto
with assms(1) R(2) show X = supset-bottom P
using genby-lcoset-el-reduce special-cosets-bottom by fast
qed fast

lemma exclude-one-is-pseudominimal-in-below-in:
[ weW; TePow S; s€S—T | =
supset-pseudominimal-in (P.2(w +o (T))) (w +o (S—{s}))

using special-cosets-has-bottom special-cosetsl
exclude-one-is-pseudominimal|of w s]
genby-monolof T S—{s}]
supset-has-bottom-pseudominimal-in-below-inl |

of Pw+o (T) w-+o (S—{s})

]

by auto

lemma glb-special-subset-coset:
assumes wTT" we WT € PowS T’ € PowS
defines U: U = T U T'U reduced-letter-set S w
shows  supset-glbound-in-of P (T) (w +o (T")) (U)
proof (rule supset-glbound-in-ofI)

from wTT'(2,3) U show (U) € P
using reduced-letter-set-subset[of S| special-subgroup-special-coset by simp

show supset-lbound-of (T) (w +o (T")) (U)
proof (rule supset-lbound-ofI)
from U show (T) C (U) using genby-mono|of T U] by fast
show w +o (T") C (U)
proof
fix  assume z € w +o (T
with wTT'(3) obtain y where y: y € (T) 2z =w + y
using elt-set-plus-def[of w] by auto
with wTT'(1) U show z € (U)
using in-genby-S-reduced-letter-set genby-mono|of - U]
genby-monolof T' U] genby-add-closed[of w U y|
by auto
qed
qed

next

fix X assume X: X€P supset-lbound-of (T) (w +o (T')) X

from X(1) obtain v R where vR: REPow S X = v o0 (R)
using special-cosets-def by auto

from X(2) have X" X D (T) X D w 4o (T
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using supset-lbound-of-def[of - - X] by auto
from X'(1) vR(2) have R: X = (R)
using genby-0-closed genby-lcoset-el-reduce by fast
with X'(2) have w: we(R) using genby-0-closed lcoset-refl by fast
have T'C R
proof (
rule special-subgroup-genby-rev-mono, rule wTT'(3), rule vR(1), rule subset]
)
fix z assume z € (T)
with X'(2) R show z € (R)
using elt-set-plus-def[of w (T")] w genby-uminus-add-closed[of w R w+z]
by auto
qed
with X'(1) wTT'(2) vR(1) show (U)CX
using special-subgroup-genby-rev-monolof T R] w smallest-genby U R
genby-monolof - R]
by  simp

qed

lemma glb-special-subset-coset-ex:
assumes we€ W T € PowS T’ € Pow S
shows 3 B. supset-glbound-in-of P (T) (w 4o (T')) B
using  glb-special-subset-coset| OF assms]
by fast

lemma special-cosets-have-glbs:
assumes XeP YeP
shows 3 B. supset-glbound-in-of P X Y B
proof—
from assms obtain wx Tz wy Ty
where X: wz € W Tx € Pow S X = wx 4o (Tx)
and Y:wye WTye PowSY = wy +o (Ty)
using special-cosets-def
by auto
from X(1,2) Y(1,2) obtain A
where A: supset-glbound-in-of P (Tz) ((—wz+wy) +o (Ty)) A
using genby-uminus-add-closed[of wz] glb-special-subset-coset-ex by fastforce
from X(1,3) Y(3) have supset-glbound-in-of P X Y (wz +o0 A)
using supset-glbound-in-of-lcoset-shift[OF A, of wi)
by (auto simp add: set-plus-rearrange?2 special-cosets-lcoset-shift)
thus %thesis by fast
qed

end
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5.3 Coxeter systems

5.3.1 Locale definition and transfer from the associated free group

Now we consider groups generated by elements of order two with an addi-
tional assumption to ensure that the natural correspondence between the
group W and the group presentation on the generating set S and its rela-
tions is bijective. Below, such groups will be shown to satisfy the deletion
condition.

locale CoxeterSystem = PreCoxeterSystem S
for S i "wigroup-add set
+ assumes induced-id-inj: inj-on induced-id G

lemma (in PreCozeterSystem) CozeterSysteml:
assumes Ag. g€ G = induced-id g = 0 = g=0
shows CozeterSystem S
proof
from assms have Grouplso G induced-id
using Group WithGeneratorsRelators-S-R
Group WithGeneratorsRelators.induced-id-hom-surj(1)
by  (fast intro: GroupHom.isol)
thus inj-on induced-id G using Grouplso.inj-on by fast
qed

context CoxeterSystem
begin

abbreviation inv-induced-id = GroupPresentation.inv-induced-id S R

lemma GroupPresentation-S-R: GroupPresentation S R

by (
intro-locales, rule Group WithGeneratorsRelators-S-R,
unfold-locales, rule induced-id-inj

)

lemmas inv-induced-id-sum-list =
GroupPresentation.inv-induced-id-sum-list-S|OF GroupPresentation-S-R)]

end

5.3.2 The deletion condition is necessary

Call an element of W a reflection if it is a conjugate of a generating element
(and so is also of order two). Here we use the action of words over S on such
reflections to show that Coxeter systems satisfy the deletion condition.

context CozeterSystem
begin
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abbreviation induced-signed-lconjperm =
GroupByPresentationInducedFun.induced-hom S P signed-lconjpermutation

definition flipped-reflections :: 'w = 'w set
where flipped-refiections w =
{teH. induced-signed-lconjperm (inv-induced-id (—w)) —
(t,True) = (rconjby w t, False)}

lemma induced-signed-lconjperm-inv-induced-id-sum-list:
ss € lists S = induced-signed-lconjperm (inv-induced-id (sum-list ss)) =
sum-list (map signed-lconjpermutation ss)
by (simp add:
inv-induced-id-sum-list Abs-freelist-in-FreeGroup
GroupByPresentationInduced Pun.induced-hom-Abs-freelist-conv-sum-list|
OF GroupByPresentationInducedFun-S-R-signed-lconjaction
]

)

lemma induced-signed-eq-lconjpermutation:
ss € lists S =
permutation (induced-signed-lconjperm (inv-induced-id (sum-list ss))) =
signed-list-lconjaction ss
proof (induct ss)
case Nil
have permutation (induced-signed-lconjperm (inv-induced-id (sum-list []))) = id
using induced-signed-lconjperm-inv-induced-id-sum-list[of []]
zero-permutation.rep-eq

by  simp
thus ?case by fastforce
next

case (Cons s ss)

from Cons(2)
have induced-signed-lconjperm (inv-induced-id (sum-list (s#ss))) =

signed-lconjpermutation s + sum-list (map signed-lconjpermutation ss)

using induced-signed-lconjperm-inv-induced-id-sum-list[of s#tss]
by  simp

with Cons(2) have
permutation (induced-signed-lconjperm (inv-induced-id (sum-list (s#£ss)))) =

permutation (signed-lconjpermutation s) o
permutation (induced-signed-lconjperm (inv-induced-id (sum-list ss)))

using plus-permutation.rep-eq induced-signed-lconjperm-inv-induced-id-sum-list
by  simp

with Cons show ?Zcase
using bij-signed-lconjaction[of s| Abs-permutation-inverse by fastforce

qed

lemma flipped-reflections-odd-lconjseq:

assumes ssclists S
shows flipped-reflections (sum-list ss) = {t€H. odd (count-list (lconjseq ss) t)}
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proof (rule seteql)
fix ¢ assume ¢ € flipped-reflections (sum-list ss)
moreover with assms
have snd (signed-list-lconjaction (rev ss) (t,True)) = False
using flipped-reflections-def genset-order2-add uminus-sum-list-order2
induced-signed-eq-lconjpermutation|of rev ss
by  force
ultimately show ¢ € {t€H. odd (count-list (lconjseq ss) t)}
using assms flipped-reflections-def genset-order2-add
signed-list-lconjaction-snd[of rev ss]
by auto
next
fix t assume t: ¢t € {t€H. odd (count-list (lconjseq ss) t)}
with assms
have signed-list-lconjaction (rev ss) (t,True) =
(reconjby (sum-list ss) t, False)
using genset-order2-add signed-list-lconjaction-snd[of rev ss]
signed-list-lconjaction-fst[of rev ss]
uminus-sum-list-order2|of ss, THEN sym)|
by  (auto intro: prod-eql)
with ¢ assms show ¢ € flipped-reflections (sum-list ss)
using induced-signed-eg-lconjpermutation|of rev ss| genset-order2-add
uminus-sum-list-order? flipped-refiections-def
by  fastforce
qed

lemma flipped-reflections-in-lconjseq:
ss€lists S = flipped-reflections (sum-list ss) C set (lconjseq ss)
using flipped-reflections-odd-lconjseq odd-n0 count-notin|of - lconjseq ss
by  fastforce

lemma flipped-reflections-distinct-lconjseq-eq-lconjseq:
assumes ss€lists S distinct (lconjseq ss)
shows flipped-reflections (sum-list ss) = set (lconjseq ss)
proof
from assms(1) show flipped-reflections (sum-list ss) C set (lconjseq ss)
using flipped-reflections-in-lconjseq by fast
show flipped-reflections (sum-list ss) O set (lconjseq ss)
proof
fix t assume t € set (lconjseq ss)
moreover with assms(2) have count-list (lconjseq ss) t = 1
by (simp add: distinct-count-list)
ultimately show t € flipped-reflections (sum-list ss)
using assms(1) flipped-reflections-odd-lconjseq lconjseq-reflections
by  fastforce
qed
qed

lemma flipped-reflections-reduced-eq-lconjseq:
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S-reduced ss = flipped-reflections (sum-list ss) = set (lconjseq ss)

using reduced-word-for-lists[of S| S-reduced-imp-distinct-lconjseq
flipped-refilections-distinct-lconjseq-eq-lconjseq

by  fast

lemma card-flipped-reflections:
assumes we W
shows card (flipped-reflections w) = S-length w
proof—
define ss where ss = arg-min length (word-for S w)
with assms have S-reduced-for w ss
using genby-S-reduced-word-for-arg-min by simp
thus ?thesis
using reduced-word-for-sum-list flipped-reflections-reduced-eq-lconjseq
S-reduced-imp-distinct-lconjseq distinct-card length-lconjseq[of ss]
reduced-word-for-length
by  fastforce
qed

end

sublocale CozxeterSystem < PreCoxeterSystem WithDeletion
proof
fix ss assume ss: ss € lists S = S-reduced ss
define w where w = sum-list ss
with ss(1)
have distinct (lconjseq ss) = card (flipped-reflections w) = length ss
by  (simp add:
flipped-reflections-distinct-lconjseq-eq-lconjseq distinct-card
length-lconjseq)
moreover from w-def ss have length ss > S-length w using word-length-lt by
fast
moreover from w-def ss(1) have card (flipped-reflections w) = S-length w
using special-subgroup-eq-sum-list card-flipped-reflections by fast
ultimately have — distinct (lconjseq ss) by auto
with w-def ss
show Ja b as bs cs. ss = as Q [a] Q bs Q [b] @ cs A
sum-list ss = sum-list (as Q@ bs @ cs)
using deletion’
by  fast
qed

5.3.3 The deletion condition is sufficient

Now we come full circle and show that a pair consisting of a group and
a generating set of order-two elements that satisfies the deletion condition
affords a presentation that makes it a Coxeter system.

context PreCozeterSystem WithDeletion
begin

246



lemma reducible-by-flipping:
ss € lists S = — S-reduced ss =
Jass as t bs. flip-altsublist-chain (ss # zss Q [asQlt,t]|Qbs])
proof (induct ss)
case (Cons s ss)
show ?Zcase
proof (cases S-reduced ss)
case True
define w where w = sum-list ss
with True have ss-red-w: reduced-word-for S w ss by fast
moreover from Cons(2) have s€S by simp
ultimately obtain as bs where asbs: reduced-word-for S w (s#asQbs)
using Cons(3) exchange by fast
show ?thesis
proof (cases w=0)
case True with asbs show ?thesis
using reduced-word-for-0-imp-nil by fast
next
case Fulse
from this obtain zss where flip-altsublist-chain (ss # xzss Q [s#asQbs])
using ss-red-w asbs reduced-word-problem by fast
hence flip-altsublist-chain (

(s#ss) # map ((#) s) zss Q [[|Q]s,s]Q(as@bs)]

using flip-altsublist-chain-map-Cons-grow by fastforce
thus ?thesis by fast
qed
next
case Fulse
with Cons(1,2) obtain zss as t bs
where flip-altsublist-chain (

(s#ss) # map ((#) s) zss Q [(s#as)Qlt,t]Qbs]

using flip-altsublist-chain-map-Cons-grow
by  fastforce
thus ?thesis by fast
qed
qed (simp add: nil-reduced-word-for-0)

lemma freeliftid-kernel”:

ss € lists S = sum-list ss = 0 = Abs-freelist ss € Q
proof (induct ss rule: length-induct)

fix ss

assume step: Vts. length ts < length ss — ts € lists S —

sum-list ts = 0 — Abs-freelist ts € Q

and set-up: ss € lists S sum-list ss = 0

show Abs-freelist ss € @

proof (cases ss=[])
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case True thus ?thesis
using genby-0-closed|of | J we FreeGroup S. lconjby w * P’
by (auto simp add: zero-freeword.abs-eq)
next
case Fulse
with set-up obtain zss as t bs
where zss: flip-altsublist-chain (ss # xss Q [asQ[t,t]Qbs])
using sum-list-zero-nreduced reducible-by-flipping|of ss]
by fast
with set-up
have astbs: length (asQ[t,t]Qbs) = length ss
asQ[t,t|Qbs € lists S
sum-list (asQ[t,t]@Qbs) = 0
using flip-altsublist-chain-length[of ss xss asQ[t,t]Qbs]
flip-altsublist-chain-sum-list[of ss xss asQ[t,t]Qbs]
flip-altsublist-chain-lists[of ss xss asQ[t,t]Qbs]
by auto
have listsS: as € lists S t€S bs€lists S using astbs(2) by auto
have sum-list as + (t + t + sum-list bs) = 0
using astbs(8) by (simp add: add.assoc)
hence sum-list (asQbs) = 0
using listsS(2) by (simp add: genset-order2-add)
moreover have length (asQbs) < length ss using astbs(1) by simp
moreover have asQbs € lists S using listsS(1,3) by simp
ultimately have Abs-freelist (as@Qbs) € @ using step by fast
hence Abs-freelist as + pair-relator-freeword t ¢t +
(— Abs-freelist as + (Abs-freelist as + Abs-freelist bs)) € Q
using listsS(1,2) lconjby-Abs-freelist-relator-freeword[of t t as]
genby-add-closed
by (simp add: Abs-freelist-append| THEN sym] add.assoc[ THEN sym))
hence Abs-freelist as + Abs-freelist [t,t] + Abs-freelist bs € Q
using listsS(2) by (simp add: S-relator-freeword Abs-freeletter-add)
thus ?thesis
using Abs-freelist-append-append|of as [t,t] bs]
rev-flip-altsublist-chain| OF xss]
flip-altsublist-chain-G-in-Q|of asQ[t,t]Qbs rev xss ss]
by  simp
qed
qed

lemma freeliftid-kernel:
assumes c € FreeGroup S freeliftid ¢ = 0
shows ceQ
proof—
from assms(2) have freeliftid (Abs-freeword (freeword c)) = 0
by (simp add: freeword-inverse)
with assms(1) have sum-list (map fst (freeword ¢)) = 0
using FreeGroup-def frecword freeliftid- Abs-freeword-conv-sum-list by fastforce
with assms(1) show %thesis
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using FreeGroup-def freeliftid-kernel’[of map fst (freeword c))
Q-freelist-freeword
by  fastforce
qed

lemma induced-id-kernel:
¢ € FreeGroup S = induced-id ([ FreeGroup S|c|Q]) = 0 = c€Q
by (simp add:
freeliftid-kernel
GroupByPresentationInduced Fun.induced-hom-equality|
OF GroupByPresentationInduced Fun-S-P-id

}
)

theorem CozeterSystem: CozxeterSystem S
proof (rule CoxeterSysteml)
fix  assume z: z€G induced-id x = 0
from z(1) obtain ¢ where ¢ € FreeGroup S x = ([ FreeGroup S|c|Q])
using Group.quotient-group-UN Free Group-Group by fast
with z(2) show z=0
using induced-id-kernel
Group. quotient-identity-rule[ OF FreeGroup-Group)
GroupByPresentation. Q-subgroup-FreeS[OF GroupByPresentation-S-P]
GroupByPresentation.normal-Q[OF GroupByPresentation-S-P]
by auto
qged

end

5.3.4 The Coxeter system associated to a thin chamber complex
with many foldings

We now show that the fundamental automorphisms in a thin chamber com-
plex with many foldings satisfy the deletion condition, and hence form a
Coxeter system.

context ThinChamberComplexManyFoldings
begin

lemma not-reduced-word-not-min-gallery:

assumes ss € lists S — reduced-word S ss

shows - min-gallery (map (Aw. w—C0) (sums ss))
proof (cases ss rule: list-cases-Cons-snoc)

case Nil with assms(2) show ?thesis using nil-reduced-word-for-0 by auto
next

case (Single s) with assms show ?thesis

using zero-notin-S reduced-word-singleton|of s S| by fastforce

next

case (Cons-snoc s ts t) have ss: ss = s#tsQl[t] by fact
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define Ms where Ms = map (Aw. w*—C0) (map ((+) s) (sums ts))
with ss
have C0-ms-ss-C0: map (Aw. w'—C0) (sums ss) =
CO # Ms @ [sum-list ss “— C0]
by  (simp add: sums-snoc zero-permutation.rep-eq)
define rs where rs = arg-min length (word-for S (sum-list ss))
with assms(1) have rs: rs € lists S sum-list rs = sum-list ss
using arg-min-natl[of Ars. word-for S (sum-list ss) rs ss length] by auto
show ?thesis
proof (cases rs rule: list-cases-Cons-snoc)
case Nil
hence sum-list ss ‘— C0 = C0
using 7s(2) by (fastforce simp add: zero-permutation.rep-eq)
with C0-ms-ss-C0 show ?thesis by simp
next
case (Single 1)
from Single have min-gallery [CO,r— CO]
using 7s(1) fundchamber fundchamber-S-chamber fundchamber-S-adjacent
fundchamber-S-image-neq-fundchamber
by  (fastforce intro: min-gallery-ady)
with Single CO-ms-ss-C0O Ms-def show ?thesis
using 7s(2) min-galleryD-min-betw|of CO Ms sum-list ss ‘“— CO []]
min-galleryD-gallery
by  (fastforce simp add: length-sums)
next
case (Cons-snoc p s q)
define Ns where Ns = map (Aw. w*—C0) (map ((+) p) (sums gs))
from assms rs-def have length rs < length ss
using word-length-lt[of ss S]
reduced-word-for-length reduced-word-for-arg-min|of ss S]
by  force
with Cons-snoc ss Ms-def Ns-def have length Ns < length Ms
by (simp add: length-sums)
moreover from Ns-def Cons-snoc
have gallery (CO # Ns @Q [sum-list ss ‘= C0])
using rs S-list-image-gallery|of rs]
by (auto simp add: sums-snoc zero-permutation.rep-eq)
ultimately show %thesis using C0-ms-ss-C0 not-min-galleryl-betw by auto
qed
qed

lemma S-list-not-min-gallery-double-split:
assumes ss € lists S ss#£[| = min-gallery (map (Aw. w'—CO) (sums ss))
shows
dfgassbstcs.
(f,9)€foldpairs N
sum-list as ‘— C0 € fFC A
sum-list (asQ[s]) ‘= CO € g=C A
sum-list (asQ[s]@Qbs) — CO € g-C A
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sum-list (asQ[s]@bsQ[t]) ‘— CO € fr-C A
ss = asQ[s|@QbsQ[t]Qcs
proof—
define Cs where Cs = map (Aw. w—=C0) (sums ss)
moreover from assms(1) Cs-def have gallery Cs
using S-list-image-gallery by fastforce
moreover from assms(1) Cs-def have {} ¢ set (wall-crossings Cs)
using S-list-image-crosses-walls by fastforce
ultimately obtain f g As A B Bs E F Fs

where fg : (f,9)€foldpairs
and sep 1 Aef-C Beg-C Eeg-C FefC
and decomp-cases:

Cs = AsQ[A,B,F|QFs vV Cs = AsQ[A,B|QBsQ[E,F|QFs
using assms(3) not-min-gallery-double-split[of Cs]
by blast
show ?thesis
proof (cases Cs = AsQ[A,B,F|QFs)
case True
define bs :: ‘a permutation list where bs = ||
from True Cs-def obtain as s t cs where
ss = asQ[s,t|Qcs A = sum-list as ‘— CO B = sum-list (asQ[s]) ‘— CO
F = sum-list (asQ[s,t]) ‘— CO
using pullback-sums-map-middled[of Aw. w—C0 ss As A B F Fs|
by auto
with sep(1,2,4) bs-def have
sum-list as ‘= CO € fFC sum-list (asQ[s]) — CO € g-C
sum-list (asQ[s]@Qbs) ‘— CO € g-C sum-list (asQ[s]@QbsQ[t]) ‘— CO € f+-C
ss = asQ[s]@QbsQ[t]Qcs
by auto
with fg show ?thesis by blast
next
case Fulse
with Cs-def decomp-cases obtain as s bs t cs where
ss = asQ[s|@QbsQ[t]Qcs A = sum-list as ‘— CO B = sum-list (asQ[s]) ‘— CO
E = sum-list (asQ[s]@bs) ‘— CO F = sum-list (asQ[s]QbsQ[¢]) — CO
using pullback-sums-map-double-middle2|
of Aw. w—C0 ss As A BBs E F Fs
]
by auto
with sep have
sum-list as ‘= CO € fFC sum-list (asQ[s]) — CO € g-C
sum-list (asQ[s]@Qbs) — CO € g-C sum-list (asQ[s]@QbsQ[t]) ‘— CO € f+-C
ss = asQ[s]QbsQ[t]Qcs
by auto
with fg show ?thesis by blast
qed
qed

lemma fold-end-sum-chain-fg:
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fixes fg: ‘a="a
defines s : s = induced-automorph f g
assumes fg : (f,9) € foldpairs
and as: as € lists S
and s 1 seS
and  sep: sum-list as ‘— CO € f-C sum-list (asQ[s]) ‘= CO € g-C
shows bs €lists S =
s ‘ sum-list (asQ[s]@Qbs) ‘— CO = sum-list (asQbs) — CO
proof—
from fg obtain C' where C: OpposedThinChamberComplexFoldings X f g C
using foldpairs-def by fast
show bs €lists S = s ‘ sum-list (asQ[s]Qbs) ‘— CO = sum-list (asQbs) ‘— CO
proof (induct bs rule: rev-induct)
case Nil
from s as s sep C show ?Zcase
using sum-list-S-in-Wof as] sum-list-append|of as [s]]
fundchamber-WS-image-adjacent
by (auto simp add:
Opposed ThinChamber ComplexFoldings.indaut-adj-halfchsys-im-fg

)
next
case (snoc b bs)
define bC0 B where bC0O = b‘—-C0 and B = sum-list (asQbs) — C0
define y where y = CONbCO
define z 2’
where z = s ‘ sum-list (asQ[s]Qbs) — y
and 2’ = sum-list (asQbs) ‘— y

from snoc B-def have B’ s ‘ sum-list (asQ[s]@Qbs) — CO = B by simp

obtain ¢ where ¢: label-wrt CO ¢ using ez-label-map by fast
from bCO-def y-def snoc(2) obtain u where u: bC0O = insert u y
using fundchamber-S-adjacent]of b] adjacent-sym
fundchamber-S-image-neq-fundchamber
adjacent-int-decomp|of bCO CO]
by (auto simp add: Int-commute)
define v v’
where v = s (sum-list (asQ[s]@Qbs) — u)
and v’ = sum-list (asQbs) — u

from bCO-def u v-def z-def v'-def z'-def
have ins-vz : s ¢ sum-list (asQ[s]@QbsQ[b]) ‘= CO = insert v z
and ins-vz”: sum-list (as@QbsQ[b]) ‘— CO = insert v’ 2’
using image-insert[of permutation (sum-list (asQ[s|@Qbs)) vy, THEN sym]
image-insert|
of s sum-list (asQ[s]@Qbs)—u sum-list (asQ[s]Qbs) =y,
THEN sym]
image-insert[of permutation (sum-list (asQbs)) u y, THEN sym)
by (auto simp add: plus-permutation.rep-eq image-comp)
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from as s snoc(2) have sums:
sum-list (asQ[s]@Qbs) € W sum-list (asQbs) € W
sum-list (asQ[s]QbsQ[b]) € W sum-list (asQbsQ[b]) € W
using sum-list-S-in- W of asQ[s]Qbs] sum-list-S-in-W[of asQbs]
sum-list-S-in-Wof asQ[s]@bsQ[b]] sum-list-S-in-W|of as@bsQ[b]]
by auto
from u bC0-def snoc(2) have u: uely X
using fundchamber-S-chamber|of b] chamberD-simplex|[of bCO] by auto
moreover from as s snoc(2) u have sum-list (asQ[s]@Qbs) — u € JX
using sums(1)
ChamberComplexEndomorphism.vertex-map| OF W-endomorphism)]
by  fastforce
ultimately have ¢ v = ¢ v’
using s v-def v’-def sums(1,2) W-respects-labels|OF @, of sum-list (asQ[s]@Qbs)

W-respects-labels|OF ¢, of sum-list (asQbs) u]

Opposed ThinChamber ComplexFoldings.indaut-resplabels]
OF C ¢

]

by  simp

moreover from s have chamber (insert v z) chamber (insert v’ z’)
using sums(3,4)
fundchamber-W-image-chamber|of sum-list (asQ[s]@QbsQ[b])]
Opposed ThinChamberComplexFoldings.indaut-chmap|
OF C
]
fundchamber- W-image-chamber|of sum-list (as@QbsQ[b])]
by  (auto simp add: ins-vz[THEN sym] ins-vz'|[THEN sym])

moreover from y-def z-def z’-def bCO-def B-def snoc(2) s have z<1B z'<1B
using B’ sums(1,2) fundchamber-S-adjacent|of b]
fundchamber-S-image-neg-fundchamber|of b
adjacent-int-facetl|[of CO]
W-endomorphism[of sum-list (as@Qbs)]
W-endomorphism|of sum-list (asQ[s|@Qbs)]
fundchamber fundchamber-W-image-chamber|of sum-list (asQ[s]Qbs)]
ChamberComplexEndomorphism.facet-map|of X]
Opposed ThinChamberComplexFoldings.indaut-morph|
OF C
]

ChamberComplexEndomorphism.facet-map]
of X s sum-list (asQ[s]@Qbs) — CO
]
by auto
moreover from snoc(2) B-def s have insert v z # B insert v’ 2’ # B

using sum-list-append[of asQ[s]|Qbs [b]] sum-list-append|of asQbs [b]]
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fundchamber-next-WS-image-neg[of b sum-list (asQ[s]Qbs)]
fundchamber-next-WS-image-negq[of b sum-list (asQbs)]
Opposed ThinChamberComplexFoldings.indaut-aut|
OF C
]
ChamberComplexAutomorphism.bij bij-is-inj B’
inj-eq-image|
of s sum-list (asQ[s]@Qbs@[b]) ‘— CO sum-list (asQ[s]@Qbs) — CO
]

by  (auto simp add: ins-vz[THEN sym] ins-vz'|[THEN sym])

ultimately show ?case
using B-def sums(2) fundchamber-W-image-chamber|of sum-list (asQbs)]
label-wrt-eg-on-adjacent-vertex| OF @, of v v’ B z 2]
by  (auto simp add: ins-vz[THEN sym] ins-vz'|[THEN sym)])
qged
qed

lemma fold-end-sum-chain-gf:
fixes fg: ‘a="a
defines s = induced-automorph f g
assumes fg : (f,g) € foldpairs
and as € lists S s€8S bs €lists S
sum-list as ‘— CO € g-C
sum-list (asQ[s]) ‘— CO € fHC
shows s  sum-list (asQ[s]@Qbs) ‘— CO = sum-list (asQbs) ‘— CO
proof—
from fg obtain C' where C: Opposed ThinChamberComplezFoldings X f g C
using foldpairs-def by fast
from assms show ?thesis
using foldpairs-sym fold-end-sum-chain-fglof g f as s bs]
Opposed ThinChamberComplexFoldings.induced-automorphism-sym|[OF C]
by  simp
qed

lemma fold-middle-sum-chain:
assumes fg : (f,g9) € foldpairs
and S : as € lists S s€8 bs € lists S teS cs €lists S
and sep: sum-list as ‘— CO € fr-C
sum-list (asQ[s]) ‘— CO € gHC
sum-list (asQ[s]@bs) ‘— CO € g-C sum-list (asQ[s|@bsQ[t]) ‘— CO
e fHC
shows sum-list (asQ[s]@QbsQ[t|Qcs) ‘— CO = sum-list (as@QbsQcs) ‘— CO
proof—
define s where s = induced-automorph f g
from fg obtain C
where Opposed ThinChamberComplexFoldings X f g C
using foldpairs-def
by fast
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then have id ‘ sum-list (asQ[s]@QbsQ[t]Qcs) ‘— CO = sum-list (asQbsQcs) —
Cco
using s-def fg S sep fold-end-sum-chain-gf[of f g asQ[s]@bs ¢ cs
fold-end-sum-chain-fglof f g as s bsQcs]
by  (simp add:
image-comp| THEN sym]
Opposed ThinChamber ComplexFoldings.indaut-order2|
THEN sym]
)

thus %thesis by simp
qged

lemma S-list-not-min-gallery-deletion:
fixes ss :: 'a permutation list
defines w : w = sum-list ss
assumes ss: ss€lists S ss#£[] - min-gallery (map (Aw. w—CO) (sums ss))
shows Ja b as bs cs. ss = asQ[a]QbsQ[b]Qcs A w = sum-list (asQbsQcs)
proof—
from w ss(1) have w-W: we W using sum-list-S-in-W by fast

define Cs where Cs = map (Aw. w'—=C0) (sums ss)
from ss obtain f g as s bs t cs
where fg : (f,g9)Efoldpairs
and sep : sum-list as ‘— CO € fHC
sum-list (asQ[s]) ‘= CO € g-C
sum-list (asQ[s]@Qbs) — CO € g-C
sum-list (as@[s]@QbsQ[t]) — CO € f-C
and decomp: ss = asQ[s|@QbsQ][t]Qcs
using S-list-not-min-gallery-double-split|of ss]
by  blast
from fg sep decomp w ss(1)
have w‘—C0 = sum-list (asQbsQcs) ‘— CO
using fold-middle-sum-chain
by auto
with ss(1) decomp have w = sum-list (asQbsQcs)
using w-W sum-list-S-in- W |of asQbsQcs]
by  (auto intro: inj-onD fundchamber- W-image-inj-on)
with decomp show ?thesis by fast
qed

lemma deletion:
ss € lists S = — reduced-word S ss =
Ja b as bs cs. ss = asQ[a]QbsQ[b]Qcs A sum-list ss = sum-list (asQbsQcs)
using nil-reduced-word-for-0[of S| not-reduced-word-not-min-gallery
S-list-not-min-gallery-deletion
by  fastforce

lemma PreCozxeterSystem WithDeletion: PreCoxeterSystem WithDeletion S
using S-add-order?2 deletion by unfold-locales simp
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lemma CozxeterSystem: CozeterSystem S
using PreCoxeterSystem WithDeletion
PreCozeterSystem WithDeletion. CozeterSystem
by  fast

end

5.4 Coxeter complexes

5.4.1 Locale and complex definitions

Now we add in the assumption that the generating set is finite, and construct
the associated Coxeter complex from the poset of special cosets.

locale CozxeterComplex = CoxeterSystem S
for S :: 'w::group-add set

+ assumes finite-genset: finite S

begin

definition TheComplez :: 'w set set set
where TheComplex = ordering.PosetComplex (2) (D) P
abbreviation ¥ = TheComplex

end

5.4.2 As a simplicial complex

Here we record the fact that the Coxeter complex associated to a Coxeter
system is a simplicial complex, and note that the poset of special cosets is
complex-like. This last fact allows us to reason about the complex by rea-
soning about the poset, via the poset isomorphism ComplexLikePoset.smap.

context CoxeterComplex
begin

lemma simplez-like-special-cosets:
assumes Xe€P
shows supset-simplez-like (P.2X)
proof—
have image-eq-UN: N\f A. f A = (Jz€A. {f z}) by blast

from assms obtain w T where we W T € Pow S X = w 4o (T)
using special-cosets-def by auto
thus ?thesis
using image-eq-UN[where f= (4+0) w o genby]
finite-genset simplex-like-pow-above-in
OrderingSetlso.simplex-like-map|
OF special-coset-below-in-supset-ordering-iso, of T w

]

256



special-cosets-below-in
by  force
qed

lemma SimplicialComplex-3: Simplicial Complex 3
unfolding TheComplex-def
proof (rule ordering.poset-is-Simplicial Complex)
show ordering (D) (D) ..
show V XeP. supset-simplez-like (P.2X)
using simplez-like-special-cosets by fast
qged

lemma ComplexLikePoset-special-cosets: ComplexLikePoset (2) (D) P
using simplex-like-special-cosets special-cosets-has-bottom special-cosets-have-glbs
by  unfold-locales

abbreviation smap = ordering.poset-simplex-map (2) (D) P
lemmas smap-def = ordering.poset-simplez-map-def|OF supset-poset, of P|

lemma ordsetmap-smap: | X€P; YEP; XDV | = smap X C smap Y
using ComplexLikePoset.ordsetmap-smap[OF ComplexLikePoset-special-cosets]
smap-def
by  simp

lemma rev-ordsetmap-smap: | XeP; YEP; smap X C smap V]| = X2V
using ComplexLikePoset.rev-ordsetmap-smap]
OF ComplexLikePoset-special-cosets
]
smap-def
by  simp

lemma smap-onto-PosetComplex: smap ‘P = X
using ComplexLikePoset.smap-onto-PosetComplex|
OF ComplezxLikePoset-special-cosets
]
smap-def TheComplez-def
by  simp

lemmas simplices-conv-special-cosets = smap-onto-PosetComplex| THEN sym)|

lemma smap-into-PosetCompler: XeP —> smap X € X
using smap-onto-PosetComplex by fast

lemma smap-pseudominimal:
weW = s€S = smap (w +o0 (S—{s})) = {w +o (S—{s})}
using smap-def[of w +o0 (S—{s})]
special-coset-pseudominimal-in-below-in[of w S—{s}]
exclude-one-is-pseudominimal-in-below-in[of w S—{s}]
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by auto

lemma exclude-one-notin-smap-singleton:
s€S = w 4o (S—{s}) ¢ smap (w +o ({s}))
using smap-def[of w +o ({s})]
supset-pseudominimal-inD1[of P.2(w +o ({s})) w +o (S—{s})]
special-coset-subset-rev-monolof {s} S—{s}]
by auto

lemma mazsimp-vertices: we W = s€S = w 4o (S—{s}) € smap {w}
using special-cosetsI[of S—{s}] special-coset-singleton
ordsetmap-smap[of w +o (S—{s})] smap-pseudominimal
by (simp add: genby-lcoset-refl)

lemma mazsimp-singleton:
assumes we W
shows  SimplicialComplex.mazsimp ¥ (smap {w})
proof (rule SimplicialComplex.mazsimpl, rule SimplicialComplex-X)
from assms show smap {w} € &
using special-coset-singleton smap-into-PosetCompler by fast
next
fix z assume z: z€¥ smap {w} C z
from 2(1) obtain X where X: X€P z = smap X
using simplices-conv-special-cosets by auto
with assms z(2) have X = {w}
using special-coset-singleton rev-ordsetmap-smap special-coset-nempty by fast
with X(2) show z = smap {w} by fast
qed

lemma mazsimp-is-singleton:
assumes SimplicialComplex.mazxsimp ¥ x
shows ZFJweW. smap {w} ==z
proof—
from assms obtain X where X: X€P smap X =
using SimplicialComplex.mazsimpD-simplex|OF SimplicialComplez-Y]
simplices-conv-special-cosets
by auto
from X(1) obtain w T where wT: weW T€Pow S X = w 4o (T)
using special-cosets-def by auto
from w7 (1) have {w}€P using special-coset-singleton by fast
moreover with X wT(3) have = C smap {w}
using genby-lcoset-refl ordsetmap-smap by fast
ultimately show %thesis
using assms wT(1) smap-into-PosetComplex
SimplicialComplex.mazsimpD-mazimal| OF SimplicialComplez-Y]
by fast
qed

lemma mazsimp-vertez-conv-special-coset:
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weW = X € smap {w} = Is€S. X = w +o0 (S—{s})
using smap-def special-coset-pseudominimal-in-below-in[of w {}]
by (simp add: genby-lcoset-empty)

lemma vertices: we W — s€S = w +o (S—{s}) e U=
using maxsimp-singleton SimplicialComplex.maxsimpD-simplex|OF Simplicial-
Complez-X]
mazsimp-vertices
by  fast

lemma smap0-conv-special-subgroups:
smap 0 = (As. (S — {s})) “ S
using genby-0-closed maxsimp-vertices mazxsimp-vertex-conv-special-coset
by  force

lemma S-bij-betw-chamber0: bij-betw (As. (S—{s})) S (smap 0)
unfolding bij-betw-def
proof
show inj-on (As. (S—{s})) S
proof (rule inj-onl)
fix s t show [ s€S; teS; (S—{s}) = (S—{t}) | = s =t
using inj-onD[OF special-subgroup-inj, of S—{s} S—{t}] by fast
qed
qed (rule smap0-conv-special-subgroups| THEN sym))

lemma smap-singleton-conv- W-image:
weW = smap {w} = ((+0) w) ‘ (smap 0)
using genby-0-closed|of S| mazsimp-vertices|of 0] mazxsimp-vertices|of w]
mazxsimp-vertex-conv-special-coset
by  force

lemma W-[coset-bij-betw-singletons:
assumes we W
shows  bij-betw ((+0) w) (smap 0) (smap {w})
unfolding bij-betw-def
proof (rule conjl, rule inj-onI)
fix X YV assume XY: X € smap 0 Y € smap 0w +0 X = w +o Y
from XY (1,2) obtain sz sy where X = (S—{sz}) Y = (S—{sy})
using mazsimp-vertez-conv-special-coset[of 0 X]
mazsimp-vertez-conv-special-coset[of 0 Y] genby-0-closed[of S|
by auto
with XY (38) show X=Y
using inj-onD[OF special-coset-inj, of w S—{sz} S—{sy}] by force
qed (rule smap-singleton-conv-W-image] THEN sym)|, rule assms)

lemma facets:

assumes we W s€S

shows smap (w +o ({s})) < smap {w}
proof (
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rule facetrell, rule exclude-one-notin-smap-singleton, rule assms(2),
rule order-antisym

)

show smap {w} C insert (w 4o (S — {s})) (smap (w +o ({s})))
proof
fix X assume X € smap {w}
with assms(1) obtain ¢t where t€S X = w +o (S—{t})
using mazxsimp-vertex-conv-special-coset by fast
with assms show Xe€ insert (w +o (S — {s})) (smap (w +o0 ({s})))
using ezclude-one-is-pseudominimal-in-below-in smap-def
by (cases t=s) auto
qed

from assms show smap {w} 2 insert (w +o (S — {s})) (smap (w 4o {{s})))
using genby-lcoset-refi special-cosetsI|of {s}] special-coset-singleton
ordsetmap-smap mazxsimp-vertices
by fast

qed

lemma facets we W = s€S = smap {w,w+s} < smap {w}
using facets by (simp add: genset-order2-add genby-lcoset-order2)

lemma adjacent: we W = s€S = smap {w+s} ~ smap {w}
using facets’[of w s] genby-genset-closed genby-add-closed|of w S]
facetslof w+s s

by  (
auto intro: adjacent]
simp add: genset-order2-add add.assoc insert-commute

)

lemma singleton-adjacent-0: s€S = smap {s} ~ smap 0
using genby-genset-closed genby-0-closed facets'[of 0] facets’|of s
by  (fastforce intro: adjacentl simp add: genset-order2-add insert-commute)

end

5.4.3 As a chamber complex

Now we verify that a Coxeter complex is a chamber complex.

context CozeterComplex
begin

abbreviation chamber = SimplicialComplex.maxsimp %
abbreviation gallery = Simplicial Complex.mazsimpchain %

lemmas chamber-singleton = mazsimp-singleton
lemmas chamber-vertex-conv-special-coset = mazxsimp-vertex-conv-special-coset
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lemmas chamber-vertices = mazsimp-vertices
lemmas chamber-is-singleton = mazsimp-is-singleton

lemmas faces = SimplicialComplex.faces [OF SimplicialComplex-X]
lemmas gallery-def = SimplicialComplex.maxsimpchain-def [OF SimplicialCom-
plez-Y]
lemmas gallery-rev = SimplicialComplex.mazsimpchain-rev [OF SimplicialCom-
plez-Y]

lemmas chamberD-simpler =
SimplicialComplex.mazsimpD-simplex| OF Simplicial Complez-X]

lemmas gallery-CConsl =
SimplicialComplez.mazsimpchain-CConsI[OF SimplicialComplez-Y]

lemmas gallery-overlap-join =
SimplicialComplex.mazsimpchain-overlap-join| OF SimplicialComplez-X)

lemma word-gallery-to-0:
ss # [| = ss€ lists S = Juas. gallery (smap {sum-list ss} # xs Q [smap 0])
proof (induct ss rule: rev-nonempty-induct)
case (single s)
hence gallery (smap {sum-list [s]} # [] @ [smap 0])
using genby-genset-closed genby-0-closed chamber-singleton
singleton-adjacent-0 gallery-def

by auto
thus “case by fast
next

case (snoc s ss)

from snoc(2,3) obtain zs where gallery (smap {sum-list ss} # xs Q [smap 0])
by auto

moreover from snoc(3) have chamber (smap {sum-list (ssQ[s])})
using special-subgroup-eq-sum-list chamber-singleton by fast

ultimately
have gallery (smap {sum-list (ssQ[s])} #

(smap {sum-list ss} # xs) Q [smap 0])

using snoc(3) special-subgroup-eq-sum-list adjacent|of sum-list ss s]
by  (auto intro: gallery-CConslI)

thus ?case by fast

qed

lemma gallery-to-0:

assumes we W w#0

shows Jus. gallery (smap {w} # zs Q [smap 0])
proof—

from assms(1) obtain ss where ss: ss€lists S w = sum-list ss

using special-subgroup-eq-sum-list by auto

with assms(2) show %thesis using word-gallery-to-0[of ss] by fastforce

qed
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lemma ChamberComplex-Y: ChamberCompler %
proof (intro-locales, rule SimplicialComplex-%, unfold-locales)
fix y assume yeX
from this obtain X where X: X€P y = smap X
using simplices-conv-special-cosets by auto
from X (1) obtain w T where we W X = w +o (T)
using special-cosets-def by auto
with X show Jz. chamber x AN y C x
using genby-lcoset-refl special-coset-singleton ordsetmap-smap
chamber-singleton
by  fastforce
next
fix x y
assume zy: £y chamber x chamber y
from 2zy(2,3) obtain w w’
where ww” we Wz = smap {w} w'e Wy = smap {w'}
using chamber-is-singleton
by  blast
show 3 zs. gallery (z # zs Q [y])
proof (cases w=0 w'=0 rule: two-cases)
case both with zy(1) ww'(2,4) show ?thesis by fast
next
case one with ww'(2—4) show ?thesis
using gallery-to-0 gallery-rev by fastforce
next
case other with ww’(1,2,4) show ?thesis using gallery-to-0 by auto
next
case neither
from this ww’ obtain zs ys
where gallery (z # zs Q [smap 0]) gallery (smap 0 # ys Q [y])
using gallery-to-0 gallery-rev
by  force
hence gallery (x # (zs Q smap 0 # ys) Q [y])
using gallery-overlap-join|of z#txs] by simp
thus ?thesis by fast
qed
qed

lemma card-chamber: chamber © = card x = card S
using bij-betw-same-card|OF S-bij-betw-chamber0] chamber-singleton
genby-0-closed|of S|
ChamberComplex.chamber-card[OF ChamberComplex-%, of smap 0]
by  simp

lemma vertex-conv-special-coset:
XeUY = Jws. weW A seS A X =w+o (S—{s})
using ChamberComplez.simplez-in-max| OF ChamberComplex-3| chamber-is-singleton
chamber-vertex-conv-special-coset
by  fast
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end

5.4.4 The Coxeter complex associated to a thin chamber complex
with many foldings

Having previously verified that the fundamental automorphisms in a thin
chamber complex with many foldings form a Coxeter system, we now record
the existence of a chamber complex isomorphism onto the associated Coxeter
complex.

context ThinChamberComplexManyFoldings
begin

lemma CozeterComplex: CoxeterComplex S
by (
rule CozeterComplex.intro, rule CoxeterSystem, unfold-locales,
rule finite-S

)

abbreviation ¥ = CozeterComplex. TheComplex S

lemma S-list-not-min-gallery-not-reduced:
assumes ssZ[] - min-gallery (map (Aw. w'—CO) (sums ss))
shows — reduced-word S ss
proof (cases ss€lists S)
case True
obtain a b as bs cs
where ss = asQ[a]|QbsQ[b]Qcs sum-list ss = sum-list (as@bsQcs)
using S-list-not-min-gallery-deletion [OF True assms]
by blast
with True show ?thesis using not-reduced-word-for|of as@QbsQcs] by auto
next
case Fulse thus ?thesis using reduced-word-for-lists by fast
qed

lemma reduced-S-list-min-gallery:
ss#£[| = reduced-word S ss = min-gallery (map (Aw. w—C0) (sums ss))
using S-list-not-min-gallery-not-reduced by fast

lemma fundchamber-vertez-stabilizerl:
fixes t
defines v: v = fundantivertex t
assumes tw: teS weW w—v = v
shows w € (S—{t})
proof—
from v tw(1) have v-C0: v€C0 using fundantivertex by simp
define ss where ss = arg-min length (word-for S w)
moreover
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have reduced-word S ss => sum-list ss — v = v => sum-list ss € (S—{t})
proof (induct ss)
case (Cons s ss)
from Cons(2) have s-S: s€S using reduced-word-for-lists by fastforce
from this obtain f g
where fg: (f,g9)€fundfoldpairs s = Abs-induced-automorph f g
by auto
from fg(1) have opp-fg: OpposedThinChamberComplexFoldings X f g CO
using fundfoldpairs-def by auto
define Cs where Cs = map (Aw. w'—C0) (sums (s#ss))
with Cons(2) have minCs: min-gallery Cs
using reduced-S-list-min-gallery by fast
have sv: s—v = v
proof (cases ss rule: rev-cases)
case Nil with Cons(3) show ?thesis by simp
next
case (snoc ts t)
define Ms Cn
where Ms = map (Aw. w—C0) (map ((+) s) (sums ts))
and Cn = sum-list (s#ss) ‘= C0
with snoc Cs-def have Cs = CO # Ms @Q [Ch)
by (simp add: sums-snoc zero-permutation.rep-eq)
with minCs Cs-def fg have COef-C Cneg-C
using sums-Cons-conv-append-tl| THEN sym, of s ss]
wall-crossings-subset-walls-betw[of CO Ms Cn] fundfoldpairs-def
the-wall-betw-adj-fundchamber walls-betw-def
Opposed ThinChamberComplexFoldings.basech-halfchsys(1)]

OF opp-fg

]
Opposed ThinChamberComplexFoldings. separated-by-this-wall-fg]

OF opp-fg, of CO Cn
]
by (auto simp add: zero-permutation.rep-eq)
moreover from Cons(3) Cn-def have ve Cn using v-C0 by force
ultimately show s—v = v
using v-C0 fg
Opposed ThinChamberComplexFoldings.indaut-wallvertex|
| OF opp-fg

by  (simp add: permutation-conv-induced-automorph)

qed
moreover from Cons(3) have 0 — sum-list ss — v = s—v

using s-S

by  (simp add: plus-permutation.rep-eq S-order2-add[THEN sym])
ultimately have sum-list ss — v = v by (simp add: zero-permutation.rep-eq)
with Cons(1,2) have sum-list ss € (S—{t})

using reduced-word-Cons-reduce by auto
moreover from tw(1) v have se(S—{t})

using sv s-S genby-genset-closed[of s S—{t}] fundantivertez-unstable
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by  fastforce

ultimately show ?case using genby-add-closed by simp
qed (simp add: genby-0-closed)
ultimately show “thesis

using tw(2,3) reduced-word-for-genby-sym-arg-min[OF S-sym)|

reduced-word-for-sum-list
by  fastforce
qed

lemma fundchamber-vertez-stabilizer2:
assumes s: s€S
defines v: v = fundantivertex s
shows w € (S—{s}) = w—v =1
proof (erule genby.induct)
show 0—wv = v by (simp add: zero-permutation.rep-eq)
next
fix t assume teS—{s}
moreover with s v have ve CONt‘— CO
using inj-on-eq-iff [OF fundantivertex-inj-on] fundchamber-S-adjacent
fundchamber-S-image-neg-fundchamber| THEN not-sym)|
not-thel [OF adj-antivertex, of CO t*—CO v] fundantivertex
unfolding fundantivertez-def
by auto
ultimately show t—v = v
using S-fizespointwise-fundchamber-image-int fizespointwiseD by fastforce
next
fix w w’ assume ww”: w—v=vw'—sv ="
from ww'(2) have (—w’)—v = id v
using plus-permutation.rep-eq(of —w’ w’]
by  (auto simp add: zero-permutation.rep-eq| THEN sym))
with ww’(1) show (w—w’)—v = v
using plus-permutation.rep-eq[of w —w’] by simp
qed

lemma label-wrt-special-coset!:
assumes label-wrt CO ¢ fixespointwise @ CO wOeW s€S
defines v = fundantiverter s
shows {weW. w — ¢ (wW0—v) = wl—v} = wl +o (S—{s})
proof—
from assms(4,5) have v-C0: ve CO using fundantivertex|of s| by simp
show ?thesis
proof (rule seteql)
fix w assume we{weW. w—(¢ (W0—v)) = wl—v}
hence w: we W w—(¢ (w0—v)) = w0—v by auto
from assms(2,3) have (—w0 + w) - v = 0—v
using w(2) v-CO fundchamber chamberD-simplex
W-respects-labels| OF assms(1)] plus-permutation.rep-eqlof —w0 w0)
by  (fastforce simp add: plus-permutation.rep-eq fizespointwiseD)
with assms(8—5) show w € w0 +o (S—{s})
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using w(1) genby-uminus-add-closed[of w0 S w]
Sfundchamber-vertez-stabilizerl
by  (force simp add: zero-permutation.rep-eq elt-set-plus-def)
next
fix w assume w: w € w0 4o (S—{s})
from this obtain w! where wi: wl € (S—{s}) w = w0 + wl
using elt-set-plus-def by blast
moreover with w assms(3) have w-W: we W
using genby-monolof S—{s} S] genby-add-closed by fastforce
ultimately show we{we W. w—(¢ (w0—v)) = wl0—v}
using assms(2—5) v-CO fundchamber chamberD-simplex
W-respects-labels| OF assms(1), of w0 v]
fundchamber-vertez-stabilizer2[of s wl]
by  (fastforce simp add: fizespointwiseD plus-permutation.rep-eq)
qed
qed

lemma label-wrt-special-coset1’:

assumes label-wrt CO ¢ fizespointwise o CO wO0eW ve CO

defines s = fundantipermutation v

shows {weW.w — ¢ (w0—v) = wl—v} = wl +o (S—{s})

using assms fundantipermutation! fundantivertex-bij-betw
bij-betw-f-the-inv-into-f label-wrt-special-coset1 [of © w0 s

by fastforce

lemma label-wrt-special-coset2’:

assumes label-wrt CO ¢ fizespointwise o CO w0eW v € w0‘—C0

defines s = fundantipermutation (¢ v)

shows {weW.w — ¢ v =0} = wl +o (S—{s})

using assms fundchamber chamberD-simplex W-respects-labels
label-wrt-special-coset1 '|OF assms(1—3)]

by (fastforce simp add: fixespointwiseD)

lemma label-stab-map- W-fundchamber-image:
assumes label-wrt CO ¢ fizespointwise ¢ CO w0e W
defines ¢ = Av. {weW. w—(p v) = v}
shows ¢ {w0‘—C0) = CozxeterComplex.smap S {w0}
proof (rule seteql)
from assms
show Az. z € CozeterComplex.smap S {w0} = = € ¥ {(w0‘—=C0)
using CoxeterComplex.chamber-vertez-conv-special-coset|
OF CozeterComplex, of w0
]
label-wrt-special-coset] fundantivertex
by  fastforce

next

fix x assume z€ ¢ (w0‘— C0)
from this obtain v where v: vew0‘—C0 z = 1 v by fast
with assms have z = w0 +o (S—{fundantipermutation (¢ v)})
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using label-wrt-special-coset2’ by fast
moreover from v(1) assms(3) have vel J X
using fundchamber chamberD-simplex W-endomorphism
ChamberComplexEndomorphism.vertex-map
by  fastforce
ultimately show z € CoxeterComplex.smap S {w0}
using assms(1,3) label-wrt-elt-image fundantipermutation!
CozxeterComplex.chamber-vertices| OF CozeterComplex]
by  fastforce
qed

lemma label-stab-map-chamber-map:
assumes : label-wrt CO ¢ fixespointwise ¢ CO
and C: chamber C
defines ¥: ¢ = Av. {weW. w—(p v) = v}
shows CozeterComplex.chamber S (¢ ‘C)
proof—
from C obtain w where w: we W C = w—C0
using chamber-eq- W-image by fast
with ¢ ¢ have ¢ ‘C = CoxeterComplex.smap S {w}
using label-stab-map- W-fundchamber-image by simp
with w(1) show ?thesis
using CozeterComplex.chamber-singleton[OF CozeterComplex] by simp
qed

lemma label-stab-map-inj-on-vertices:
assumes @: label-wrt CO ¢ fizespointwise @ CO
defines ¥: ¢ = Av. {weW. w—(p v) = v}
shows inj-on ¥ (|JX)
proof (rule inj-onl)
fix vI v2 assume v: vI€(JX v2elJX ¢ vl = ¢ v2
from v(1,2) have pv: ¢ v1 € CO ¢ v2 € CO
using label-wrt-elt-image]|OF ¢(1)] by auto
define s! s2 where s1 = fundantipermutation (p v1) and s2 = fundantiper-
mutation (¢ v2)
from v(1,2) obtain wl w2 where wleW vicwl‘—C0 w2e W v2€w2‘— C0
using simplez-in-max chamber-eq- W-image by blast
with assms s1-def s2-def have Yv: ¢ v = wl +o (S—{sl}) ¥ v2 = w2 +o
(§—{s2})
using label-wrt-special-coset2’ by auto
with v(8) have wl +o (S—{s1}) = w2 40 (S—{s2})
using label-wrt-special-coset2’ by auto
with si-def s2-def have ¢ vl = ¢ v2
using PreCozxeterSystem WithDeletion.special-coset-eq-imp-eq-gensets|
OF PreCozxeterSystem WithDeletion, of S—{s1} S—{s2} w1 w2
]
v fundantipermutationl [of ¢ v1] fundantipermutationl[of ¢ v2]
bij-betw-f-the-inv-into-f[OF fundantivertez-bij-betw, of ¢ vl]
bij-betw-f-the-inv-into-f[OF fundantivertez-bij-betw, of ¢ v2]
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by  fastforce
with v(8) ¢ show v1=v2
using (1) genby-0-closed[of S—{s1}] lcoset-refljof (S—{sl}) wl]
by  fastforce
qed

lemma label-stab-map-surj-on-vertices:
assumes label-wrt CO ¢ fizespointwise ¢ CO
defines ¢ = Av. {weW. w—(p v) = v}
shows ¢{(UX)=UZ
proof (rule seteql)
fix u assume u € (U X)
from this obtain v where v: velJX u = ¢ v by fast
from v(1) obtain w where we W vew—C0
using simplex-in-maz chamber-eq- W-image by blast
with assms v show ueJX
using label-wrt-special-coset2’ label-wrt-elt-image| OF assms(1)]
fundantipermutationl CozeterComplex.vertices|OF CozeterComplex)
by auto
next
fix u assume uel X
from this obtain w s where we W s€S u = w 4o (S—{s})
using CozeterComplex.vertex-conv-special-coset| OF CozeterComplex] by blast
with assms show v € ¥ (|J X)
using label-wrt-special-cosetl fundantivertex fundchamber chamberD-simplex
W-endomorphism ChamberComplezEndomorphism.vertez-map
by  fast
qed

lemma label-stab-map-bij-betw-vertices:
assumes label-wrt CO ¢ fixespointwise p CO
defines ¢ = Av. {weW. w—(p v) = v}
shows  bij-betw ¥ (UX) (UX)
unfolding bij-betw-def
using assms label-stab-map-inj-on-vertices label-stab-map-surj-on-vertices
by auto

lemma label-stab-map-bij-betw- W-chambers:
assumes label-wrt CO ¢ fizespointwise p CO wOe W
defines ¢ = Av. {weW. w—(p v) = v}
shows  bij-betw ¢ (w0‘—CO) (CozeterComplex.smap S {w0})
unfolding bij-betw-def
proof (rule conjl, rule inj-on-inversel)
define f1 f2
where fI = the-inv-into (CozeterComplez.smap S 0) ((+0) w0)
and f2 = the-inv-into S (As. (S—{s}))
define g where g = ((—) w0) o fundantivertex o f2 o f1

from assms(3) have inj-opw0: inj-on ((+0) w0) (CozxeterComplex.smap S 0)
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using bij-betw-imp-inj-on[OF CozeterComplex. W-lcoset-bij-betw-singletons)
CoxeterComplex
by  fast
have inj-genby-minus-s: inj-on (As. (S—{s})) S
using bij-betw-imp-inj-on| OF CoxeterComplex.S-bij-betw-chamber0]
CozeterComplex
by  fast

fix v assume v: vew0‘—CO
from this obtain v0 where v0: v0€C0 v = w0—v0 by fast
from v0(1) have fap-v0: fundantipermutation v0 € S
using fundantipermutationl by auto
with assms(3)
have v0" (S—{fundantipermutation v0}) € CoxeterComplex.smap S 0
using genby-0-closed|of S]
CoxeterComplex.chamber-vertices| OF CoxeterComplex, of 0]
by  simp

from v0 assms have ¥ v = w0 +o (S—{fundantipermutation v0})
using label-wrt-special-cosetl’ by simp
with fI-def assms(3) f2-def v0 g-def show g (¢ v) = v
using v0’ fap-v0 the-inv-into-f-f{OF inj-opw0]
the-inv-into-f-f[ OF inj-genby-minus-s|
bij-betw-f-the-inv-into-f[ OF fundantivertex-bij-betw]
by  simp
next
from assms show ¢ (w0‘— C0) = CoxeterComplex.smap S {w0}
using label-stab-map- W-fundchamber-image by simp
qed

lemma label-stab-map-surj-on-simplices:
assumes @: label-wrt CO ¢ fizespointwise @ CO
defines ¢: ¢ = Av. {weW. w—(p v) = v}
shows Y F X =%
proof (rule seteql)
fix y assume y € Y F X
from this obtain = where z: z€X y = ¢ ‘ z by fast
from z(1) obtain C' where chamber C tCC using simplez-in-max by fast
with assms z(2) show y € ¥
using label-stab-map-chamber-map
CoxeterComplex.chamberD-simplex|OF CozeterComplex]
CoxeterComplex.faces| OF CoxeterComplex, of 1 ‘C y)
by auto
next
fix y assume y € X
from this obtain z where 2: CozxeterComplex.chamber S z yCz
using ChamberComplex.simplez-in-max|
OF CozeterComplex. ChamberComplex-X,
OF CozxeterComplex

269



]
by  fast

from z(1) obtain w where w: we W z = CoxeterComplex.smap S {w}
using CozxeterComplex.chamber-is-singleton| OF CozeterComplez] by fast
with assms have bij-betw 1 (w—C0) z
using label-stab-map-bij-betw- W-chambers by fast
hence 1: bij-betw (() ¢) (Pow (w'—C0)) (Pow z)
using bij-betw-imp-bij-betw-Pow by fast
define z where z: © = the-inv-into (Pow (w'—=C0)) (() ¢¥) y
with 2(2) have ¢ C w'— C0 using bij-betw-the-inv-into-onto| OF 1] by auto
with w(1) have z€ X
using faces fundchamber- W-image-chamber chamberD-simplex
by  fastforce
moreover from z z(2) have y = ¢ ‘z
using bij-betw-f-the-inv-into-f[OF 1] by simp
ultimately show y € ¥ - X by fast
qed

lemma label-stab-map-iso-to-coxeter-complex:
assumes label-wrt CO ¢ fixespointwise p CO
defines ¢ = \v. {weW. w—(p v) = v}
shows ChamberComplexlsomorphism X X
proof (
rule ChamberComplexIsomorphism.intro,
rule ChamberComplexMorphism.intro
)
show ChamberComplexr X ..
show ChamberComplex ¥
using CozxeterComplex CoxeterComplex. ChamberComplex-3 by fast
from assms show ChamberComplexMorphism-azxioms X X 1
using label-stab-map-chamber-map
CoxeterComplex. card-chamber| OF CoxeterComplex)]
card-S-chamber
by  unfold-locales auto
from assms show ChamberComplexIsomorphism-azxioms X X 1
using label-stab-map-bij-betw-vertices label-stab-map-surj-on-simplices
by  unfold-locales auto
qged

lemma ex-iso-to-coxeter-complex’:
3. ChamberComplexIsomorphism X (CozeterComplex. TheComplex S) 1
using CoxeterComplez ex-label-retraction label-stab-map-iso-to-coxeter-complex
by  force

lemma ex-iso-to-coxeter-complex:
35::'a permutation set. CoxzeterComplex S A
(3. ChamberComplexlsomorphism X (CoxeterComplex. TheComplex S) 1))
using CoxeterComplex ex-iso-to-cozeter-complex’ by fast
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end

end

6 Buildings

In this section we collect the axioms for a (thick) building in a locale, and
prove that apartments in a building are uniformly Coxeter.
theory Building

imports Cozeter

begin

6.1 Apartment systems

First we describe and explore the basic structure of apartment systems. An
apartment system is a collection of isomorphic thin chamber subcomplexes
with certain intersection properties.

6.1.1 Locale and basic facts

locale ChamberComplexWithApartmentSystem = ChamberComplex X
for X ::'a set set
+ fixes A :: ‘a set set set

assumes subcomplezxes i Ae A = ChamberSubcomplex A
and thincomplezes . Ae A = ThinChamberComplex A
and  no-trivial-apartments: {}¢.A

and containtwo :

chamber C = chamber D — 3 AcA. CeA N DeA
and intersecttwo :
[ AcA; A'eA; e ANAY; CeANA'; chamber C | =
3f. ChamberComplexIsomorphism A A’ f A fizespointwise f x A
fizespointwise f C

begin

lemmas complezxes = ChamberSubcomplexD-complex [OF subcomplexes]
lemmas apartment-simplices = ChamberSubcomplexD-sub  [OF subcomplexes]
lemmas chamber-in-apartment = chamber-in-subcomplex [OF subcomplezes]
lemmas apartment-chamber = subcomplex-chamber [OF subcomplezes]
lemmas gallery-in-apartment = gallery-in-subcomplex [OF subcomplezes)
lemmas apartment-gallery = subcomplex-gallery [OF subcomplezes]

lemmas min-gallery-in-apartment = min-gallery-in-subcomplex [OF subcomplezes]

lemmas apartment-simplex-in-mazr =
ChamberComplex.simplez-in-max [OF complexes]
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lemmas apartment-faces =
ChamberComplez.faces [OF complezes)

lemmas apartment-chamber-system-def =
ChamberComplex.chamber-system-def [OF complezes]

lemmas apartment-chamberD-simplex =
ChamberComplex.chamberD-simplex [OF complezes)

lemmas apartment-chamber-distance-def =
ChamberComplex.chamber-distance-def [OF complexes]

lemmas apartment-galleryD-chamber =
ChamberComplex.galleryD-chamber [OF complezes)

lemmas apartment-gallery-least-length =
ChamberComplex.gallery-least-length [OF complezes]

lemmas apartment-min-galleryD-gallery =
ChamberComplex.min-galleryD-gallery [OF complexes]

lemmas apartment-min-gallery-pgallery =
ChamberComplex.min-gallery-pgallery [OF complexes]

lemmas apartment-trivial-morphism =
ChamberComplez.trivial-morphism [OF complezes)

lemmas apartment-chamber-system-simplices =
ChamberComplex.chamber-system-simplices [OF complezes)

lemmas apartment-min-gallery-least-length =
ChamberComplex.min-gallery-least-length [OF complezes)

lemmas apartment-vertezx-set-int =
ChamberComplex.vertez-set-int[OF complexes complexes]

lemmas apartment-standard-uniqueness-pgallery-betw =
ThinChamberComplex.standard-uniqueness-pgallery-betw|[OF thincomplezes]

lemmas apartment-standard-uniqueness =
ThinChamberComplex.standard-uniqueness| OF thincomplezes]

lemmas apartment-standard-uniqueness-isomorphs =
ThinChamberComplex.standard-uniqueness-isomorphs|OF thincomplezes)

abbreviation supapartment C D = (SOME A. AcA N CeA N DEA)

lemma supapartmentD:
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assumes CD: chamber C chamber D
defines A : A = supapartment C D
shows AeA CeA DeA
proof—
from CD have 1: 3A. AcA N CeA N DEA using containtwo by fast
from A show Ae A CeA DeA using somel-ex[OF 1] by auto
qed

lemma iso-fizespointwise-chamber-in-int-apartments:
assumes apartments: A € A A’ e A
and chamber : chamber C Ce ANA’
and 150 : ChamberComplexIsomorphism A A’ f fizespointwise f C
shows fizespointwise f (|J (ANA’))
proof (rule fixespointwisel )
fix v assume v € (A N A7)
from this obtain z where z: x € ANA’ v € x by fast
from apartments x(1) chamber intersecttwolof A A'] obtain ¢
where ¢g:  ChamberComplexIsomorphism A A’ g
fizespointwise g x fizespointwise g C
by  force
from assms ¢(1,3) have fun-eq-on f g (JA4)
using chamber-in-apartment
by  (auto intro:
apartment-standard-uniqueness-isomorphs
fixespointwise2-imp-eq-on

with z ¢(2) show f v = id v using fizespointwiseD fun-eg-onD by force
qed

lemma strong-intersecttwo:
[ AcA; A’eA; chamber C; C € ANA' ]| =
3f. ChamberComplexIsomorphism A A’ f A fizespointwise f (|J (ANA"))
using intersecttwol[of A A’]
iso-fizespointwise-chamber-in-int-apartments[of A A’ C]
by  force

end

6.1.2 Isomorphisms between apartments

By standard uniqueness, the isomorphism between overlapping apartments
guaranteed by the axiom intersecttwo is unique.

context ChamberComplex WithApartmentSystem
begin

lemma exi-apartment-iso:
assumes AeA A'e A chamber C CeANA’
shows 3!f. ChamberComplexIsomorphism A A’ f N
fizespointwise f (|J (ANA")) A fizespointwise f (—J A)
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— The third clause in the conjunction is to facilitate uniqueness.
proof (rule ex-ex1I)
from assms obtain f
where f: ChamberComplexlsomorphism A A’ f fizespointwise f (| (ANA"))
using strong-intersecttwo
by  fast
define f’ where [’ = restrict! f ((JA)
from f(1) f’-def have ChamberComplexlsomorphism A A’ f'
by (fastforce intro: ChamberComplexlsomorphism.iso-cong fun-eq-onl)
moreover from f(2) f’-def have fizespointwise f' (| (ANA'))
using fun-eq-onllof |J(4ANA") f' f]
by  (fastforce intro: fixespointwise-cong)
moreover from f’-def have fizespointwise f' (—|J A4)
by (auto intro: fizespointwisel)
ultimately
show 3f. ChamberComplexlsomorphism A A’ f A
fizespointwise f (U (ANA’)) A fizespointwise f (—J A)
by fast
next

fix fg
assume ChamberComplexlsomorphism A A’ f A

fizespointwise f (|J(A N A")) A fizespointwise f (—|J A)
ChamberComplexIsomorphism A A’ g A
fizespointwise g (|J (A N A') A fizespointwise g (—|J A)
with assms show f=g
using chamber-in-apartment fizespointwise2-imp-eg-on[of f C g] fun-eq-on-cong
fizespointwise-subset[of f | (ANA") C]
fizespointwise-subset[of g | J (ANA") C]
apartment-standard-uniqueness-isomorphs
by  (blast intro: fun-eq-on-set-and-comp-imp-eq)
qed

definition the-apartment-iso :: 'a set set = 'a set set = (‘a="a)
where the-apartment-iso A A’ =
(THE f. ChamberComplexIsomorphism A A’ f A
fizespointwise f (U (ANA')) A fizespointwise f (—|J A))

lemma the-apartment-isoD:
assumes AcA A'€A chamber C CeANA’
defines f = the-apartment-iso A A’
shows ChamberComplexIsomorphism A A’ f fizespointwise f (|J (ANA))
fizespointwise f (—|J A)
using  assms thel [OF exI-apartment-iso]
unfolding the-apartment-iso-def
by auto

lemmas the-apartment-iso-apartment-chamber-map =
ChamberComplexIsomorphism.chamber-map [OF the-apartment-isoD(1)]
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lemmas the-apartment-iso-apartment-simplex-map =
ChamberComplexIsomorphism.simplez-map [OF the-apartment-isoD(1)]

lemma the-apartment-iso-chamber-map:
[ AcA; BEA; chamber C; C€ANB; chamber D; DEA | =
chamber (the-apartment-iso A B ‘ D)
using chamber-in-apartment|of A] apartment-chamber
the-apartment-iso-apartment-chamber-map
by auto

lemma the-apartment-iso-comp:
assumes apartments: AcA A'e A A'e A
and chamber : chamber C Ce ANANA"
defines [ = the-apartment-iso A A’
and ¢ = the-apartment-iso A’ A"’
and h = the-apartment-iso A A"
defines gf = restrictl (gof) (I A)
shows h = ¢gf

proof (
rule fun-eq-on-set-and-comp-imp-eq,
rule apartment-standard-uniqueness-isomorphs, rule apartments(3)

from gf-def have gf-congl: fun-eg-on gf (gof) (U A4)
by (fastforce intro: fun-eq-onl)

from gf-def have gf-cong2: fizespointwise gf (—J A)
by (auto intro: fizespointwisel)

from apartments(1,3) chamber h-def
show ChamberComplexIsomorphism A A" h
using the-apartment-isoD(1)
by  fast
from apartments chamber f-def g-def
show ChamberComplexIsomorphism A A" gf
using ChamberComplexIsomorphism.iso-cong|OF - gf-congl1]
ChamberComplexIsomorphism.iso-comp the-apartment-isoD(1)
by  blast
from apartments(1) chamber show ChamberComplex.chamber A C
using chamber-in-apartment by fast
show fun-eq-on h gf C
proof (rule fizespointwise2-imp-eq-on)
from assms(1,3) chamber h-def show fizespointwise h C
using fizespointwise-subset the-apartment-isoD(2) by blast
have fun-eg-on gf (gof) (J(ANANA"))
using fun-eq-on-subset|OF gf-congl, of |J(ANA'NA")] by fast
moreover from f-def g-def apartments chamber
have fizespointwise (gof) (U (ANANA"))
using fizespointwise-complof f | (ANA'NA") g]
fizespointwise-subset]
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OF the-apartment-isoD(2), of - - C |J(ANANA")
]
by auto
ultimately have fizespointwise gf (J(ANANA"))
using fizespointwise-cong|of gf gof] by fast
with chamber(2) show fizespointwise gf C
using fizespointwise-subset by auto
qed
from h-def apartments(1,3) chamber show fun-eq-on h gf (— |JA)
using the-apartment-isoD(3) gf-cong2 by (auto intro: fun-eq-on-cong)
qged

lemma the-apartment-iso-int-im:
assumes AcA A'e A chamber C CeANA’ xz€ ANA’
defines [ = the-apartment-iso A A’
shows for ==z
using  assms the-apartment-isoD(2) fizespointwise-im[of f |J (ANA") z]
by fast

end

6.1.3 Retractions onto apartments

Since the isomorphism between overlapping apartments is the identity on
their intersection, starting with a fixed chamber in a fixed apartment, we
can construct a retraction onto that apartment as follows. Given a vertex
in the complex, that vertex is contained a chamber, and that chamber lies
in a common apartment with the fixed chamber. We then apply to the
vertex the apartment isomorphism from that common apartment to the fixed
apartment. It turns out that the image of the vertex does not depend on the
containing chamber and apartment chosen, and so since the isomorphisms
between apartments used are unique, such a retraction onto an apartment
is canonical.

context ChamberComplex WithApartmentSystem
begin

definition canonical-retraction :: 'a set set = 'a set = (‘a="a)
where canonical-retraction A C =
restrict] (Av. the-apartment-iso (supapartment (supchamber v) C) A v)

Ux)

lemma canonical-retraction-retraction:
assumes A€A chamber C CeA velJ A
shows canonical-retraction A C v = v
proof—
define D where D = supchamber v
define B where B = supapartment D C
from D-def assms(1,4) have D-facts: chamber D ve€D
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using apartment-simplices supchamberD[of v] by auto

from B-def assms(2) have B-facts: BEA DeB CeB
using D-facts(1) supapartmentD[of D C] by auto

from assms(1,4) have velJ (BNA)
using D-facts(2) B-facts(1,2) apartment-vertex-set-int by fast

with assms(1—3) D-def B-def show ?thesis
using canonical-retraction-def B-facts(1,3) fizespointwiseD[of - |J (BNA) v]

the-apartment-isoD(2)[of B A C]
by  simp
qed

lemma canonical-retraction-simplex-retractionl:
[ A€A; chamber C; CeA; acd | =
fizespointwise (canonical-retraction A C) a
using canonical-retraction-retraction by (force intro: fizespointwisel)

lemma canonical-retraction-simplex-retraction2:
[ AeA; chamber C; C€A; a€A | = canonical-retraction A C “a = a
using canonical-retraction-simplex-retractionl fizespointwise-im[of - a a] by simp

lemma canonical-retraction-uniform:
assumes apartments: Ac A BeA
and chambers : chamber C C€ANB
shows  fun-eg-on (canonical-retraction A C) (the-apartment-iso B A) (U B)
proof (rule fun-eq-onl)
fix v assume v: velJ B
define D' B’ g f h
where D’ = supchamber v
and B’ = supapartment D' C
and ¢ = the-apartment-iso B’ A
and f = the-apartment-iso B B’
and h = the-apartment-iso B A
from D’-def v apartments(2) have D'-facts: chamber D' ve D’
using apartment-simplices supchamberD[of v] by auto
from B’-def chambers(1) have B'-facts: B'e A D'eB’ CeB’
using D’-facts(1) supapartmentD[of D’ C] by auto
from f-def apartments(2) chambers have fizespointwise f (|J (B N B'))
using B'-facts(1,3) the-apartment-isoD(2)[of B B’ C] by fast
moreover from v apartments(2) have vel J (BNB')
using D’-facts(2) B'-facts(1,2) apartment-vertez-set-int by fast
ultimately show canonical-retraction A C v = h v
using D’-def B'-def g-def f-def h-def v apartments chambers fixespointwiseD|[of
FUBNB) o
canonical-retraction-def apartment-simplices|of B] B'-facts(1,3)
the-apartment-iso-comp|of B B’ A C)|
by auto
qed

lemma canonical-retraction-uniform-im:
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[ AeA; BeA; chamber C; C€ANB; z€B | =
canonical-retraction A C “ © = the-apartment-iso B A ‘ x
using canonical-retraction-uniform fun-eg-on-im|of - - - x| by fast

lemma canonical-retraction-simplex-im:
assumes A€ A chamber C C€A
shows canonical-retraction A C+- X = A
proof (rule seteql)
fix y assume y € canonical-retraction A C + X
from this obtain = where z: € X y = canonical-retraction A C ‘ z by fast
from z(1) obtain D where D: chamber D xCD using simplex-in-maz by fast
from assms(2) D(1) obtain B where BeA DeB CeB
using containtwo by fast
with assms D(2) z(2) show yeA
using the-apartment-isoD(1)[of B A]
ChamberComplexlsomorphism.surj-simplex-map
canonical-retraction-uniform-im apartment-faces|of B D 1]
by  fastforce
next
fix a assume a€A
with assms show a € canonical-retraction A C + X
using canonical-retraction-simplez-retraction2of A C a, THEN sym)|
apartment-simplices
by  fast
qed

lemma canonical-retraction-vertex-im:

[ A€ A; chamber C; C€A ]| = canonical-retraction A C ‘| JX = U4

using singleton-simplex ChamberComplex.singleton-simplex complexes
canonical-retraction-simplex-im[of A C]

by  blast

lemma canonical-retraction:
assumes AcA chamber C CeA
shows ChamberComplezRetraction X (canonical-retraction A C')
proof
fix D assume chamber D
with assms
show chamber (canonical-retraction A C * D)
card (canonical-retraction A C “ D) = card D
using containtwolof C D] canonical-retraction-uniform-im
the-apartment-iso-chamber-map chamber-in-apartment
ChamberComplexIsomorphism.dim-map|OF the-apartment-isoD(1)]
by auto
next
fix v from assms
show velJX = canonical-retraction A C' (canonical-retraction A C v) =
canonical-retraction A C v
using canonical-retraction-retraction canonical-retraction-vertex-im
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by fast
qed (simp add: canonical-retraction-def)

lemma canonical-retraction-comp-endomorphism:
[ AcA; BEA; chamber C; chamber D; C€A; DEB | =
ChamberComplexEndomorphism X
(canonical-retraction A C o canonical-retraction B D)
using canonical-retraction[of A C| canonical-retraction|of B D]
ChamberComplezRetraction.azioms(1)
ChamberComplexEndomorphism.endo-comp
by  fast

lemma canonical-retraction-comp-simplex-im-subset:
[ AeA; BEA; chamber C; chamber D; CeA; DEB | =
(canonical-retraction A C o canonical-retraction B D) - X C A
using canonical-retraction[of B D] ChamberComplexRetraction.simplez-map
canonical-retraction-simplex-im[of A C]
by  (force simp add: image-comp| THEN sym])

lemma canonical-retraction-comp-apartment-endomorphism:
[ AeA; BeA; chamber C; chamber D; C€A; DEB | =
ChamberComplexEndomorphism A
(restrictl (canonical-retraction A C o canonical-retraction B D) (|J A))

using ChamberComplexEndomorphism.restrict-endo[of X - A]
canonical-retraction-comp-endomorphism|of A B C D] subcomplezes|of A]
canonical-retraction-comp-simplex-im-subset[of A B C D]
apartment-simplices[of A]

by auto

end

6.1.4 Distances in apartments

Here we examine distances between chambers and between a facet and a
chamber, especially with respect to canonical retractions onto an apart-
ment. Note that a distance measured within an apartment is equal to the
distance measured between the same objects in the wider chamber com-
plex. In other words, the shortest distance between chambers can always be
achieved within an apartment.

context ChamberComplex WithApartmentSystem
begin

lemma apartment-chamber-distance:
assumes A€ A chamber C chamber D CeA DeA
shows ChamberComplex.chamber-distance A C D = chamber-distance C' D
proof (cases C=D)
case True with assms(1) show ?thesis
using apartment-chamber-distance-def chamber-distance-def by simp
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next
case Fulse
define Cs Ds f
where Cs = (ARG-MIN length Cs. ChamberComplex.gallery A (C# CsQ[D]))
and Ds = (ARG-MIN length Ds. gallery (C#DsQ[D]))
and f = canonical-retraction A C

from assms(2,3) False Ds-def have 1: gallery (C# DsQ[D])
using gallery-least-length by fast
with assms(1,2,4,5) f-def have gallery (C # f=Ds Q [D])
using canonical-retraction ChamberComplexRetraction.gallery-map|of X
canonical-retraction-simplez-retraction?
by  fastforce
moreover from f-def assms(1,2,/) have set (f=EDs) C A
using 1 galleryD-chamber chamberD-simplex
canonical-retraction-simplex-im[of A C]
by auto
ultimately have ChamberComplex.gallery A (C # fE=Ds @ [D])
using assms(1,4,5) gallery-in-apartment by simp
with assms(1) Ds-def False
have ChamberComplex.chamber-distance A C D < chamber-distance C' D
using ChamberComplex.chamber-distance-le]OF complezes)
chamber-distance-def
by  force
moreover from assms False Cs-def
have chamber-distance C D < ChamberComplex.chamber-distance A C D
using chamber-in-apartment apartment-gallery-least-length
subcomplez-gallery[ OF subcomplexes]
chamber-distance-le apartment-chamber-distance-def

by simp
ultimately show ?thesis by simp
qed

lemma apartment-min-gallery:
assumes Ac A ChamberComplex.min-gallery A Cs
shows min-gallery Cs
proof (cases Cs rule: list-cases-Cons-snoc)
case Single with assms show ?thesis
using apartment-min-galleryD-gallery apartment-gallery galleryD-chamber
by  fastforce
next
case (Cons-snoc C Ds D)
moreover with assms have min-gallery (C#DsQ[D))
using apartment-min-galleryD-gallery[of A Cs] apartment-gallery[of A Cs]
apartment-galleryD-chamber apartment-chamberD-simplex
ChamberComplex.min-gallery-betw-chamber-distance|
OF complezes, of A C Ds D

]

galleryD-chamber apartment-chamber-distance
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min-galleryl-chamber-distance-betw
by auto
ultimately show ?thesis by fast
qed simp

lemma apartment-face-distance:
assumes A€ A chamber C CeA FeA
shows ChamberComplex.face-distance A F C = face-distance F' C
proof—
define D D’
where D = closest-supchamber F C
and D’ = ChamberComplex.closest-supchamber A F C

from assms D’-def have chamber-D’": ChamberComplex.chamber A D’
using chamber-in-apartment ChamberComplex.closest-supchamberD(1)
complezes
by  fast
with assms(1,2,4) D-def have chambers: chamber D chamber D’
using closest-supchamberD(1)[of F' C| apartment-chamber
apartment-simplices
by auto
from assms(1—3)
have 1: ChamberComplex.chamber-distance A D' C = chamber-distance D' C
using chamber-D’ chambers(2) apartment-chamberD-simplex
apartment-chamber-distance
by  fastforce
from assms D-def D’-def have F-DD": FCD FCD'
using apartment-simplices|of A| closest-supchamberD(2) chamber-in-apartment
ChamberComplez. closest-supchamberD(2)[OF complezes|
by auto

from assms(2) obtain B where B: BeA CeB DeB
using chambers(1) containtwo by fast
moreover from assms B have the-apartment-iso BA ‘F = F
using F-DD'(1) apartment-faces the-apartment-iso-int-im by force
moreover have the-apartment-iso B A ‘ F C the-apartment-iso B A * D
using F-DD'(1) by fast
ultimately have chamber-distance D C > chamber-distance D' C
using assms(1—3) D’-def 1 chambers(1) apartment-chamber-distance|[of B]
chamber-in-apartment[of B D] chamber-in-apartment[of B C)|
ChamberComplexIsomorphism.chamber-map]
OF the-apartment-isoD(1), of B A]
ChamberComplez. closest-supchamber-closest|
OF complezxes, of A the-apartment-iso B A ‘D F (]
ChamberComplexIsomorphism.chamber-distance-map]
OF the-apartment-isoD(1), of B A (]
the-apartment-iso-int-im[of B A C C]
by  force
moreover from assms D-def
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have chamber-distance D C < chamber-distance D' C
using closest-supchamber-closest chambers(2) F-DD'(2)
by simp
ultimately show “thesis
using assms(1) D-def D'-def face-distance-def 1
ChamberComplex.face-distance-def[OF complezes|
by  simp

qed

lemma apartment-face-distance-eq-chamber-distance-compare-other-chamber:

assumes A€ A chamber C chamber D chamber E C€EA DeA FE€A
2<1C z<1D C#D chamber-distance C' E < chamber-distance D E

shows face-distance z E = chamber-distance C' E

using assms apartment-chamber-distance apartment-face-distance
facetrel-subset|of z C] apartment-facesjof A C z] chamber-in-apartment

ThinChamberComplez.face-distance-eq-chamber-distance-compare-other-chamber|
OF thincomplezes, of A C D z E

]

by auto

lemma canonical-retraction-face-distance-map:
assumes Ae A chamber C chamber D CeA FCC
shows face-distance F (canonical-retraction A C * D) = face-distance F D
proof—
from assms(2,3) obtain B where B: BeA C<B DeB
using containtwo by fast
with assms show ?thesis
using apartment-faces|of A C F| apartment-faces|of B C F]
apartment-face-distance chamber-in-apartment the-apartment-iso-int-im
the-apartment-iso-chamber-map the-apartment-iso-apartment-simplex-map
apartment-face-distance canonical-retraction-uniform-im
ChamberComplexIsomorphism.face-distance-map|

OF the-apartment-isoD(1), of BA CD F
]

by  simp
qed

end

6.1.5 Special situation: a triangle of apartments and chambers

To facilitate proving that apartments in buildings have sufficient foldings
to be Coxeter, we explore the situation of three chambers sharing a com-
mon facet, along with three apartments, each of which contains two of the
chambers. A folding of one of the apartments is constructed by composing
two apartment retractions, and by symmetry we automatically obtain an
opposed folding.
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locale ChamberComplexApartmentSystem Triangle =
ChamberComplex WithApartmentSystem X A
for X :: 'a set set
and A :: 'a set set set

+ fixes A B B’ :: 'a set set
and CDEz: ' aset
assumes apartments : A€ A BEA B'e A
and chambers : chamber C chamber D chamber E
and  facet 1 2<1C 2D 2<E
and in-apartments: C€EANB De ANB’ E€ BNB'
and chambers-ne : DAC E#D C#E

begin

abbreviation fold-A = canonical-retraction A D o canonical-retraction B C
abbreviation res-fold-A = restrict1 fold-A (|J 4)

abbreviation opp-fold-A = canonical-retraction A C o canonical-retraction B’ D
abbreviation res-opp-fold-A = restrictl opp-fold-A (|J A)

lemma rotate: ChamberComplexApartmentSystemTriangle X A B’ A BDFE C z
using apartments chambers facet in-apartments chambers-ne
by  unfold-locales auto

lemma reflect: ChamberComplexApartmentSystemTriangle X A A B’ BD CFE z
using apartments chambers facet in-apartments chambers-ne
by  unfold-locales auto

lemma facet-in-chambers: 2zCC z2CD 2CE
using facet facetrel-subset by auto

lemma A-chambers:
ChamberComplex.chamber A C ChamberComplex.chamber A D
using apartments(1) chambers(1,2) in-apartments(1,2) chamber-in-apartment
by auto

lemma res-fold-A-A-chamber-image:
ChamberComplex.chamber A F = res-fold-A ‘ F = fold-A ‘ F
using apartments(1) apartment-chamberD-simplex restrict1-image
by  fastforce

lemma the-apartment-iso-middle-im: the-apartment-iso A B ‘D = E
proof (rule ChamberComplexIsomorphism.thin-image-shared-facet)
from apartments(1,2) chambers(1) in-apartments(1)
show ChamberComplexIsomorphism A B (the-apartment-iso A B)
using the-apartment-isoD(1)
by  fast
from apartments(2) chambers(3) in-apartments(3)
show ChamberComplex.chamber B E ThinChamberComplex B
using chamber-in-apartment thincomplexes
by auto
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from apartments(1,2) in-apartments(1) have z € ANB
using facet-in-chambers(1) apartment-faces by fastforce

with apartments(1,2) chambers(1) in-apartments(1) chambers-ne(3) facet(3)
show the-apartment-iso A B ‘ z << E E # the-apartment-iso A B * C
using the-apartment-iso-int-im
by auto

qged (
rule A-chambers(1), rule A-chambers(2), rule facet(1), rule facet(2),
rule chambers-ne(1)[THEN not-sym)

)

lemma inside-canonical-retraction-chamber-images:

canonical-retraction B C * C = C

canonical-retraction B C * D = F

canonical-retraction B C ‘' E = F

using apartments(1,2) chambers(1,2) in-apartments
canonical-retraction-simplex-retraction2[of B C C]
canonical-retraction-uniform-im the-apartment-iso-middle-im
canonical-retraction-simplezx-retraction?

by auto

lemmas in-canretract-chimages =
inside-canonical-retraction-chamber-images

lemma outside-canonical-retraction-chamber-images:
canonical-retraction A D < C = C
canonical-retraction A D ‘D = D
canonical-retraction A D ‘E = C
using ChamberComplexzApartmentSystem Triangle.in-canretract-chimages|
OF rotate

]

by auto

lemma fold-A-chamber-images:

fold-A < C = C fold-A ‘D = C fold-A ‘E = C

using inside-canonical-retraction-chamber-images
outside-canonical-retraction-chamber-images
image-comp|of canonical-retraction A D canonical-retraction B C C)|
image-comp|of canonical-retraction A D canonical-retraction B C D]
image-comp|of canonical-retraction A D canonical-retraction B C' E]

by auto

lemmas opp-fold-A-chamber-images =
ChamberComplexApartmentSystem Triangle.fold-A-chamber-images| OF reflect]

lemma res-fold-A-chamber-images: res-fold-A < C' = C res-fold-A ‘D = C
using in-apartments(1,2) fold-A-chamber-images(1,2)
res-fold-A-A-chamber-image A-chambers(1,2)
by auto
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lemmas res-opp-fold-A-chamber-images =
ChamberComplexApartmentSystem Triangle.res-fold-A-chamber-images| OF reflect]

lemma fold-A-fixespointwisel: fixespointwise fold-A C
using apartments(1,2) chambers(1,2) in-apartments(1,2)
canonical-retraction-simplez-retraction1
by  (auto intro: fizespointwise-comp)

lemmas opp-fold-A-fizespointwise2 =
ChamberComplexApartmentSystem Triangle. fold-A-fizespointwisel [OF reflect]

lemma fold-A-facet-im: fold-A ‘ z = z
using facet-in-chambers(1) fizespointwise-im|[OF fold-A-fixespointwisel] by simp

lemma fold-A-endo-X: ChamberComplexEndomorphism X fold-A
using apartments(1,2) chambers(1,2) in-apartments(1,2)
canonical-retraction-comp-endomorphism
by  fast

lemma res-fold-A-endo-A: ChamberComplexEndomorphism A res-fold-A
using apartments(1,2) chambers(1,2) in-apartments(1,2)
canonical-retraction-comp-apartment-endomorphism
by  fast

lemmas opp-res-fold-A-endo-A =
ChamberComplexApartmentSystem Triangle.res-fold-A-endo-A[OF reflect]

lemma fold-A-morph-A-A: ChamberComplexMorphism A A fold-A
using ChamberComplexEndomorphism.azioms(1)[OF res-fold-A-endo-A]
ChamberComplexMorphism.cong fun-eq-on-sym[OF fun-eq-on-restrict1]
by  fast

lemmas opp-fold-A-morph-A-A =
ChamberComplexApartmentSystem Triangle.fold-A-morph-A-A[OF reflect]

lemma res-fold-A-A-im-fold-A-A-im: res-fold-A + A = fold-A + A
using setsetmapim-restrictl [of A A fold-A] by simp

lemmas res-opp-fold-A-A-im-opp-fold-A-A-im =
ChamberComplexzApartmentSystem Triangle.res-fold-A-A-im-fold-A-A-im|
OF reflect

]

lemma res-fold-A-C-A-im-fold-A-C-A-im:
res-fold-A + (ChamberComplez.chamber-system A) =
fold-A + (ChamberComplex.chamber-system A)
using setsetmapim-restrictl [of (ChamberComplex.chamber-system A) A
apartments(1) apartment-chamber-system-simplices
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by  blast

lemmas res-opp-fold-A-C-A-im-opp-fold-A-C-A-im =
ChamberComplexApartmentSystem Triangle.res-fold-A-C-A-im-fold-A-C-A-im|
OF reflect
]

lemma chambercomplez-fold-A-im: ChamberComplex (fold-A + A)
using ChamberComplexMorphism.chambercomplez-image| OF fold-A-morph-A-A]
by  simp

lemmas chambercomplex-opp-fold-A-im =
ChamberComplexApartmentSystem Triangle. chambercomplex-fold-A-im|
OF reflect

)

lemma chambersubcomplex-fold-A-im:
ChamberComplex. ChamberSubcomplex A (fold-A + A)
using ChamberComplezMorphism.chambersubcomplex-image| OF fold-A-morph-A-A|
by  simp

lemmas chambersubcomplex-opp-fold-A-im =
ChamberComplexApartmentSystem Triangle.chambersubcomplex-fold-A-im]
OF reflect

]

lemma fold-A-facet-distance-map:

chamber F = face-distance z (fold-A‘F) = face-distance z F

using apartments(1,2) chambers in-apartments(1,2) facet-in-chambers(1,2)
ChamberComplexRetraction.chamber-map|

OF canonical-retraction, of B C' F

]
canonical-retraction-face-distance-map[of A D canonical-retraction B C ¢ F)|
canonical-retraction-face-distance-map

by (simp add: image-comp)

lemma fold-A-min-gallery-betw-map:
assumes chamber F chamber G zCF
face-distance z G = chamber-distance F' G min-gallery (F# FsQ[G])
shows min-gallery (fold-Al=(F#FsQ[G]))
using assms fold-A-facet-im fold-A-facet-distance-map
ChamberComplexEndomorphism.facedist-chdist-mingal-btwmap|
OF fold-A-endo-X, of F G z

]
by force

lemma fold-A-chamber-system-image-fizespointwise’:

defines C-A : C-A = ChamberComplex.C A
defines fC-A: fC-A = {FeC-A. face-distance z F = chamber-distance C F}
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assumes F : FefC-A
shows fizespointwise fold-A F
proof—
show ?thesis
proof (cases F=C)
case True thus ?thesis
using fold-A-fizespointwisel fixespointwise-restrictl by fast
next
case Fulse
from apartments(1) assms
have Achamber-F: ChamberComplex.chamber A F
using complezes ChamberComplex.chamber-system-def
by fast
define Fs where Fs = (ARG-MIN length Fs. ChamberComplex.gallery A
(C#Fsa[F))
show ?thesis
proof (rule apartment-standard-uniqueness-pgallery-betw, rule apartments(1))
show ChamberComplexMorphism A A fold-A
using fold-A-morph-A-A by fast
from apartments(1) show ChamberComplexMorphism A A id
using apartment-trivial-morphism by fast
show fixespointwise fold-A C
using fold-A-fizespointwisel fizespointwise-restrictl by fast

from apartments(1) False Fs-def
show 1: ChamberComplex.gallery A (C#FsQ[F))
using A-chambers(1) Achamber-F apartment-gallery-least-length
by  fast

from False Fs-def apartments(1) have mingal: min-gallery (C # Fs Q [F))
using A-chambers(1) Achamber-F apartment-min-gallery
apartment-min-gallery-least-length
by  fast

from apartments(1) have set-A: set (C#FsQ[F]) C A
using 1 apartment-galleryD-chamber apartment-chamberD-simplex
by  fast
with apartments(1) have set (fold-A = (C#FsQ[F])) C A
using ChamberComplezMorphism.simplex-map|OF fold-A-morph-A-A]
by auto
with fC-A F show ChamberComplez.pgallery A (fold-A | (C#FsQ[F]))
using chambers(1) apartments(1) apartment-chamber Achamber-F
facet-in-chambers(1) mingal
fold-A-min-gallery-betw-map|of C F| min-gallery-in-apartment
apartment-min-gallery-pgallery
by auto
from apartments(1) False Fs-def
show ChamberComplex.pgallery A (id = (C#FsQ[F)))
using A-chambers(1) Achamber-F
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ChamberComplex.pgallery-least-length[OF complexes]
by auto
qed
qed
qed

lemma fold-A-chamber-system-image:
defines C-A : C-A = ChamberComplex.C A
defines fC-A: fC-A = {FeC-A. face-distance z F = chamber-distance C F}
shows fold-A+ C-A = fC-A
proof (rule seteql)
fix F assume F: F € fold-A+ C-A
with C-A have FeC-A
using ChamberComplezMorphism.chamber-system-into| OF fold-A-morph-A-A]
by  fast
moreover have face-distance z F = chamber-distance C F
proof (cases F=C)
case Fulse have F-ne-C: F#£C by fact
from F' obtain G where G: GeC-A F = fold-A ‘ G by fast
with C-A apartments(1) have G’ chamber G GEA
using apartment-chamber-system-def complexes apartment-chamber
apartment-chamberD-simplex
by auto
show ?thesis
proof (cases chamber-distance C G < chamber-distance D G)
case True thus face-distance z F = chamber-distance C' F
using apartments(1) chambers(1,2) in-apartments(1,2) facet(1,2)
chambers-ne(1) F-ne-C G(2) G’ fold-A-chamber-images(1)
facet-in-chambers(1) fold-A-facet-distance-map
fold-A-facet-im
apartment-face-distance-eq-chamber-distance-compare-other-chamber|
of ACD Gz
]
ChamberComplexEndomorphism.face-distance-eq-chamber-distance-map|
OF fold-A-endo-X, of C G z
]
by auto
next
case Fulse thus face-distance z F = chamber-distance C' F
using apartments(1) chambers(1,2) in-apartments(1,2) facet(1,2)
chambers-ne(1) F-ne-C G(2) G’ fold-A-chamber-images(2)
facet-in-chambers(2) fold-A-facet-distance-map fold-A-facet-im
apartment-face-distance-eq-chamber-distance-compare-other-chamber|
of ADCGz
]
ChamberComplexEndomorphism.face-distance-eq-chamber-distance-map|
OF fold-A-endo-X, of D G z
]

by auto
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qed
qed (simp add: chambers(1) facet-in-chambers(1) face-distance-eq-0 chamber-distance-def)
ultimately show FefC-A using fC-A by fast
next
from C-A fC-A show A\F. FefC-A — Fefold-A+ C-A
using fold-A-chamber-system-image-fizespointwise’ fizespointwise-im by blast
qed

lemmas opp-fold-A-chamber-system-image =
ChamberComplexApartmentSystem Triangle. fold-A-chamber-system-image|
OF reflect

]

lemma fold-A-chamber-system-image-fizespointwise:
F € ChamberComplex.C A = fizespointwise fold-A (fold-A‘F)
using fold-A-chamber-system-image
fold-A-chamber-system-image-fizespointwise'[of fold-A‘F]
by auto

lemmas fold-A-chsys-imfiz = fold-A-chamber-system-image-fizespointwise

lemmas opp-fold-A-chamber-system-image-fizespointwise =
ChamberComplexApartmentSystem Triangle.fold-A-chsys-imfiz|
OF reflect

]

lemma chamber-in-fold-A-im:
chamber F = F € fold-AF A = F € fold-A + ChamberComplex.C A
using apartments(1)
ChamberComplexMorphism.chamber-system-image|[ OF fold-A-morph-A-A]
ChamberComplexMorphism.simplex-map|OF fold-A-morph-A-A]
chamber-in-apartment apartment-chamber-system-def
by  fastforce

lemmas chamber-in-opp-fold-A-im =
ChamberComplexApartmentSystem Triangle. chamber-in-fold- A-im[OF reflect]

lemma simplex-in-fold-A-im-image:
assumes z € fold-AF- A
shows fold-A ‘z ==z
proof—
from assms apartments(1) obtain C
where C € ChamberComplex.C A x C fold-A‘C
using apartment-simplex-in-max apartment-chamber-system-def
by  fast
thus ?thesis
using fold-A-chamber-system-image-firespointwise fixespointwise-im
by  blast
qed
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lemma chamberI-notin-rfold-im: C ¢ opp-fold-A + A
using chambers(1,2) facet(1,2) chambers-ne(1) facet-in-chambers(1)
min-gallery-adj adjacentl|of z| face-distance-eq-0
min-gallery-betw-chamber-distance[of D || C]
chamber-in-opp-fold-A-im[of C] opp-fold-A-chamber-system-image
by auto

lemma fold-A-min-gallery-from1-map:
[ chamber F; F € fold-A = A; min-gallery (C#FsQ[F]) | =
min-gallery (C # fold-A |= Fs Q [F])
using chambers(1) chamber-in-fold-A-im fold-A-chamber-system-image
facet-in-chambers(1) fold-A-min-gallery-betw-map|of C F]
fold-A-chamber-images(1) simplez-in-fold-A-im-image
by  simp

lemma fold-A-min-gallery-from2-map:
[ chamber F; F € opp-fold-A = A; min-gallery (D#FsQ[F]) | =
min-gallery (C # fold-A |= (FsQ[F)))
using chambers(2) facet-in-chambers(2) chamber-in-opp-fold-A-im
opp-fold-A-chamber-system-image fold-A-chamber-images(2)
fold-A-min-gallery-betw-maplof D F Fs]
by  simp

lemma fold-A-min-gallery-to2-map:
assumes chamber F F € opp-fold-A = A min-gallery (F#FsQ[D])
shows min-gallery (fold-A |= (F#Fs) Q [C])
using assms(1,2) min-gallery-revjof C # fold-A |= (rev Fs Q [F])]
min-gallery-rev]|OF assms(3)] fold-A-min-gallery-from2-map|of F rev Fs|
fold-A-chamber-images(2)
by (simp add: rev-map|THEN sym))

lemmas opp-fold-A-min-gallery-from1-map =
ChamberComplexApartmentSystem Triangle.fold-A-min-gallery-from2-map|
OF reflect

]

lemmas opp-fold-A-min-gallery-tol-map =
ChamberComplexApartmentSystem Triangle.fold- A-min-gallery-to2-map|
OF reflect

]

lemma closer-to-chamberi-not-in-rfold-im-chamber-system:
assumes chamber-distance C' F < chamber-distance D F
shows F ¢ ChamberComplex.C (opp-fold-A + A)
proof
assume F € ChamberComplex.C (opp-fold-A + A)
hence F: F € res-opp-fold-A = ChamberComplex.C A
using res-opp-fold-A-A-im-opp-fold-A-A-im
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ChamberComplexEndomorphism.image-chamber-system|
OF opp-res-fold-A-endo-A
]
by  simp
hence F': F € opp-fold-A = ChamberComplez.C A
using res-opp-fold-A-C-A-im-opp-fold-A-C-A-im by simp
from apartments(1) have Achamber-F: ChamberComplex.chamber A F
using F apartment-chamber-system-def[of A
ChamberComplexEndomorphism.chamber-system-image|
OF opp-res-fold-A-endo-A
]
by auto
from apartments(1) have F-ne-C: F#C
using F' apartment-chamber-system-simplices[of A] chamberi-notin-rfold-im
by auto
have fixespointwise opp-fold-A C
proof (rule apartment-standard-uniqueness-pgallery-betw, rule apartments(1))
show ChamberComplezMorphism A A opp-fold-A
using opp-fold-A-morph-A-A by fast
from apartments(1) show ChamberComplexMorphism A A id
using apartment-trivial-morphism by fast
show fixespointwise opp-fold-A F
using F'/ opp-fold-A-chamber-system-image-fizespointwise by fast
define Fs where Fs = (ARG-MIN length Fs. ChamberComplex.gallery A
(F#Fsa[C]))
with apartments(1)
have mingal: ChamberComplex.min-gallery A (F#FsQ[C)
using A-chambers(1) Achamber-F F-ne-C
apartment-min-gallery-least-length[of A F' C]
by  fast
with apartments(1)
show &5: ChamberComplex.gallery A (F#FsQ[C])
and ChamberComplex.pgallery A (id = (F#FsQ[C]))
using apartment-min-galleryD-gallery apartment-min-gallery-pgallery
by auto
have min-gallery (opp-fold-A |= (F#Fs) Q [D))
proof (rule opp-fold-A-min-gallery-tol-map)
from apartments(1) show chamber F
using Achamber-F apartment-chamber by fast
from assms have F € fold-A = ChamberComplez.C A
using apartments(1) chambers(1,2) in-apartments(1,2) facet(1,2)
chambers-ne(1) Achamber-F apartment-chamber
apartment-chamberD-simplex
apartment-face-distance-eq-chamber-distance-compare-other-chamber
apartment-chamber-system-def fold-A-chamber-system-image
apartment-chamber-system-simplices
by  simp
with apartments(1) show F € fold-A F A
using apartment-chamber-system-simplices[of A] by auto
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from apartments(1) show min-gallery (F # Fs Q [C])
using mingal apartment-min-gallery by fast
qed
hence min-gallery (opp-fold-A = (F#FsQ[C)))
using opp-fold-A-chamber-images(2) by simp
moreover from apartments(1) have set (opp-fold-A = (F#FsQ[C])) C A
using 5 apartment-galleryD-chamber|of A
apartment-chamberD-simplez|of A
ChamberComplexMorphism.simplex-map[OF opp-fold-A-morph-A-A]
by auto
ultimately have ChamberComplex.min-gallery A (opp-fold-A = (F#FsQ[C]))
using apartments(1) min-gallery-in-apartment by fast
with apartments(1)
show ChamberComplez.pgallery A (opp-fold-A = (F#FsQ[C]))
using apartment-min-gallery-pgallery
by  fast
qed
hence opp-fold-A ¢ C = C using fizespointwise-im by fast
with chambers-ne(1) show False using opp-fold-A-chamber-images(2) by fast
qed

lemmas clsrch1-nin-rfold-im-chsys =
closer-to-chamber1-not-in-rfold-im-chamber-system

lemmas closer-to-chamber2-not-in-fold-im-chamber-system =
ChamberComplexApartmentSystem Triangle. clsrch1-nin-rfold-im-chsys|
OF reflect

]

lemma fold-A-opp-fold-A-chamber-systems:
ChamberComplex.C A =
(ChamberComplex.C (fold-A F A))
(ChamberComplex.C (fold-A + A)) N
{}
proof (rule seteql)
fix F assume F: F € ChamberComplex.C A
with apartments(1) have F'. ChamberComplex.chamber A F FEA
using apartment-chamber-system-def apartment-chamber-system-simplices
apartment-chamber
by auto
from F'(1) apartments(1) have F'": chamber F
using apartment-chamber by auto
show F' € (ChamberComplex.C (fold-A F A)) U
(ChamberComplex.C (opp-fold-A + A))
proof (cases chamber-distance C F < chamber-distance D F')
case True thus ?thesis
using apartments(1) chambers(1,2) in-apartments(1,2) facet(1,2)
chambers-ne(1) F F'(2) F" fold-A-chamber-system-image
apartment-face-distance-eq-chamber-distance-compare-other-chamber

U (ChamberComplex.C (opp-fold-A + A))
(ChamberComplex.C (opp-fold-A F A)) =
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ChamberComplexMorphism.image-chamber-system|OF fold-A-morph-A-A]
by simp
next
case Fulse thus ?thesis
using apartments(1) chambers(1,2) in-apartments(1,2) facet(1,2)
chambers-ne(1) F F'(2) F'' opp-fold-A-chamber-system-image
apartment-face-distance-eq-chamber-distance-compare-other-chamber
ChamberComplexMorphism.image-chamber-system|OF opp-fold-A-morph-A-A]
by simp
qged
next
fix F
assume F: F' € (ChamberComplex.C (fold-A - A)) U
(ChamberComplex.C (opp-fold-A = A))
thus F € ChamberComplex.C A
using ChamberComplexMorphism.image-chamber-system-image|
OF fold-A-morph-A-A
]
ChamberComplexMorphism.image-chamber-system-image|
OF opp-fold-A-morph-A-A
]
by  fast
next
show (ChamberComplex.C (fold-A + A)) N
(ChamberComplex.C (opp-fold-A F A)) = {}
using closer-to-chamber1-not-in-rfold-im-chamber-system
closer-to-chamber2-not-in-fold-im-chamber-system
by  force
qed

lemma fold-A-im-min-gallery’:
assumes ChamberComplex.min-gallery (fold-A = A) (C#Cs)
shows  ChamberComplex.min-gallery A (C#Cs)
proof (cases Cs rule: rev-cases)
case Nil with apartments(1) show ?thesis
using A-chambers(1) ChamberComplex.min-gallery-simps(2)[OF complezes)]
by  simp
next
case (snoc Fs F)
from assms snoc apartments(1)
have ch: V Heset (C#FsQ[F]). ChamberComplex.chamber A H
using ChamberComplex.min-galleryD-gallery
ChamberComplex.galleryD-chamber
chambercomplex-fold-A-im
ChamberComplex.subcomplez-chamber| OF complezes|
chambersubcomplex-fold-A-im
by  fastforce
with apartments(1) have ch-F: chamber F using apartment-chamber by simp
have ChamberComplex.min-gallery A (C#FsQ[F])
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proof (rule ChamberComplex.min-galleryl-betw-compare, rule complexes, rule
apartments(1))
define Gs where Gs = (ARG-MIN length Gs. ChamberComplex.gallery A
(C#G5a[F)))
from assms snoc show C#F
using ChamberComplex.min-gallery-pgallery
ChamberComplex.pgalleryD-distinct
chambercomplex-fold-A-im
by  fastforce
with chambers(1) apartments(1) assms snoc Gs-def
show &: ChamberComplex.min-gallery A (C# GsQ[F])
using ch apartment-min-gallery-least-length
by simp
from assms snoc apartments(1)
show ChamberComplez.gallery A (C#FsQ[F))
using ch ChamberComplex.min-galleryD-gallery
ChamberComplez.galleryD-adj
chambercomplex-fold-A-im
ChamberComplex. gallery-def [ OF complezes]
by  fastforce
show length Fs = length Gs
proof—
from apartments(1) have set-gal: set (C#GsQ[F]) C A
using 3 apartment-min-galleryD-gallery apartment-galleryD-chamber
apartment-chamberD-simplex
by  fast
from assms snoc have F-in: F € fold-AF A
using ChamberComplex.min-galleryD-gallery
ChamberComplez.galleryD-chamber
ChamberComplez.chamberD-simplex chambercomplex-fold-A-im
by  fastforce
with apartments(1) have min-gallery (C # fold-A = Gs @ [F])
using ch-F 3 apartment-min-gallery fold-A-min-gallery-from1-map by fast
moreover have set (fold-A |= (C#GsQ[F])) C A
using set-gal
ChamberComplexMorphism.simplex-map|OF fold-A-morph-A-A]
by auto
ultimately have ChamberComplex.min-gallery A (C # fold-A |= Gs Q [F])
using apartments(1) F-in min-gallery-in-apartment
fold-A-chamber-images(1) fold-A-chamber-system-image-fizespointwise
simplex-in-fold-A-im-image
by  simp
moreover have set (fold-A = (C#GsQ[F])) C fold-A+ A
using set-gal by auto
ultimately show ?thesis
using assms snoc apartments(1) F-in fold-A-chamber-images(1)
simplex-in-fold-A-im-image
ChamberComplex.min-gallery-in-subcomplex|
OF complexes, OF - chambersubcomplex-fold-A-im
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]

ChamberComplex.min-gallery-betw-uniform-length|
OF chambercomplez-fold-A-im, of C fold-A = Gs F Fs
]

by  simp
qed
qed
with snoc show ?thesis by fast
qed

lemma fold-A-im-min-gallery:

ChamberComplex.min-gallery (fold-A = A) (C#Cs) = min-gallery (C#Cs)
using apartments(1) fold-A-im-min-gallery’ apartment-min-gallery by fast

lemma fold-A-comp-fizespointwise:
fizespointwise (fold-A o opp-fold-A) (IJ (fold-A - A))

proof (rule apartment-standard-uniqueness, rule apartments(1))

have fun-eg-on (fold-A o opp-fold-A) (res-fold-A o res-opp-fold-A) (|J A)
using ChamberComplexEndomorphism.vertex-map[OF opp-res-fold-A-endo-A]
fun-eq-onllof |J A fold-A o opp-fold-A]
by auto
thus ChamberComplexMorphism (fold-A + A) A (fold-A o opp-fold-A)
using ChamberComplexEndomorphism.endo-comp|
OF opp-res-fold-A-endo-A res-fold-A-endo-A
]
ChamberComplexEndomorphism.azioms(1)
ChamberComplexMorphism.cong
ChamberComplexMorphism.restrict-domain
chambersubcomplex-fold-A-im
by  fast

from apartments(1) show ChamberComplexMorphism (fold-A + A) A id
using ChamberComplexMorphism.restrict-domain apartment-trivial-morphism
chambersubcomplex-fold-A-im
by  fast

from apartments(1) show ChamberComplex.chamber (fold-A - A) C
using A-chambers(1) apartment-chamberD-simplex fold-A-chamber-images(1)
ChamberComplex.chamber-in-subcomplez|
OF complezes, OF - chambersubcomplex-fold-A-im, of C

]

by  fast

show fizespointwise (fold-A o opp-fold-A) C
proof—
from facet(1) obtain v where v: v¢z C = insert v z
using facetrel-def[of z C] by fast
have fizespointwise (fold-A o opp-fold-A) (insert v z)

295



proof (rule fixespointwise-insert, rule fizespointwise-comp)
show fizespointwise opp-fold-A z
using facet-in-chambers(2) fixespointwise-subset|of opp-fold-A D z]
opp-fold-A-fixespointwise2
by  fast
show fizespointwise fold-A z
using facet-in-chambers(1) fizespointwise-subset|of fold-A C z]
fold-A-fixespointwisel
by  fast
have (fold-A o opp-fold-A) < C = C
using fold-A-chamber-images(2) opp-fold-A-chamber-images(2)
by  (simp add: image-comp|THEN sym])
with v(2) show (fold-A o opp-fold-A) * (insert v z) = insert v z by simp
qed
with v(2) show ?thesis by fast
qged

show ACs. ChamberComplex.min-gallery (fold-A = A) (C # Cs) =
ChamberComplex.pgallery A ((fold-A o opp-fold-A) = (C # Cs))
proof—
fix Cs assume Cs: ChamberComplex.min-gallery (fold-A = A) (C # Cs)
show ChamberComplex.pgallery A ((fold-A o opp-fold-A) = (C # Cs))
proof (cases Cs rule: rev-cases)
case Nil with apartments(1) show ?thesis
using fold-A-chamber-images(2) opp-fold-A-chamber-images(2)
A-chambers(1) ChamberComplex.pgallery-def[OF complezes]
by  (auto simp add: image-comp|THEN sym))
next
case (snoc Fs F)
from Cs snoc apartments(1)
have F: F € fold-A - A ChamberComplex.chamber A F
using ChamberComplex.min-galleryD-gallery|
OF chambercomplex-fold-A-im
]
ChamberComplez.galleryD-chamber|
OF chambercomplez-fold-A-im, of C#FsQ[F)
]
ChamberComplex.chamberD-simplex|OF chambercomplex-fold-A-im)
ChamberComplex.subcomplez-chamber]
OF complexes, OF - chambersubcomplex-fold-A-im
]
by  auto
from F(2) apartments(1) have F': chamber F
using apartment-chamber by fast
with F(1) apartments(1)
have 2F-CF: face-distance z F = chamber-distance C F
using chamber-in-fold-A-im[of F| fold-A-chamber-system-image
by auto
have min-gallery (C # fold-A |= (opp-fold-A |= Fs @ [opp-fold-A ‘ F)))
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proof (rule fold-A-min-gallery-from2-map)
from Cs snoc
have Cs”: ChamberComplex.gallery (fold-A = A) (C#FsQ[F])
using ChamberComplex.min-galleryD-gallery chambercomplez-fold-A-im
by  fastforce
with apartments(1) have chF: ChamberComplex.chamber A F
using ChamberComplex.galleryD-chamber chambercomplex-fold-A-im
ChamberComplex.subcomplex-chamber[OF complezes)
chambersubcomplex-fold-A-im
by  fastforce
with apartments(1) show chamber (opp-fold-A  F)
using ChamberComplexMorphism.chamber-map opp-fold-A-morph-A-A
apartment-chamber
by  fast
from apartments(1) show opp-fold-A “ F € opp-fold-A+ A
using chF ChamberComplex.chamberD-simplex complexes by fast
from Cs snoc apartments(1)
show min-gallery (D # opp-fold-A |= Fs Q [opp-fold-A ‘ F])
using chF Cs’ opp-fold-A-min-gallery-from1-map apartment-chamber
ChamberComplex.chamberD-simplex
ChamberComplex.galleryD-chamber
chambercomplez-fold-A-im fold-A-im-min-gallery
by  fastforce
qed
with snoc have min-gallery (fold-A = (opp-fold-A |= (C#Cs)))
using fold-A-chamber-images(2) opp-fold-A-chamber-images(2) by simp
with Cs apartments(1)
have ChamberComplex.min-gallery A
(fold-A = (opp-fold-A = (CHC5)))
using ChamberComplex.min-galleryD-gallery|
OF chambercomplex-fold-A-im, of C#Cs
]
ChamberComplex.galleryD-chamber|
OF chambercomplex-fold-A-im, of C#Cs
]
ChamberComplex. subcomplex-chamber|
OF complezes, OF - chambersubcomplex-fold-A-im
]
apartment-chamberD-simplex
ChamberComplexMorphism.simplex-map|OF opp-fold-A-morph-A-A]
ChamberComplexMorphism.simplex-map|OF fold-A-morph-A-A]
by  (force intro: min-gallery-in-apartment)
with apartments(1)
have ChamberComplez.pgallery A (fold-A = (opp-fold-A = (C#Cs)))
using apartment-min-gallery-pgallery
by  fast
thus ?thesis
using ssubst]
OF setlistmapim-comp, of ACs. ChamberComplex.pgallery A Cs
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]
by fast

qed
qed

from apartments(1)
show A Cs. ChamberComplex.min-gallery (fold-A + A) Cs =
ChamberComplez.pgallery A (id = Cs)
using chambersubcomplez-fold-A-im
ChamberComplex.min-gallery-pgallery| OF chambercomplex-fold-A-im)]
ChamberComplex.subcomplex-pgallery| OF complezes, of A fold-A = A]
by  simp

qed

lemmas opp-fold-A-comp-fizespointwise =
ChamberComplexApartmentSystem Triangle. fold- A-comp-fizespointwise| OF reflect)

lemma fold-A-fold:
ChamberComplexIsomorphism (opp-fold-A - A) (fold-A - A) fold-A
proof (rule ChamberComplexMorphism.isol-inverse)
show ChamberComplexMorphism (opp-fold-A - A) (fold-A + A) fold-A
using ChamberComplexMorphism.restrict-domain
ChamberComplezMorphism.restrict-codomain-to-image
ChamberComplexMorphism.cong fun-eg-on-sym[OF fun-eq-on-restrict1]
ChamberComplexEndomorphism.axioms(1) res-fold-A-endo-A
chambersubcomplex-opp-fold-A-im
by fast
show ChamberComplexMorphism (fold-A = A) (opp-fold-A = A) opp-fold-A
using ChamberComplexMorphism.restrict-domain
ChamberComplexMorphism.restrict-codomain-to-image
ChamberComplexMorphism.cong fun-eg-on-sym[OF fun-eq-on-restrict1]
ChamberComplexEndomorphism.azioms(1) opp-res-fold-A-endo-A
chambersubcomplex-fold-A-im
by  fast
qed (rule opp-fold-A-comp-fixespointwise, rule fold-A-comp-fizespointwise)

lemma res-fold-A: ChamberComplexFolding A res-fold-A
proof (rule ChamberComplexFolding.intro)

have ChamberComplexEndomorphism A (res-fold-A)
using res-fold-A-endo-A by fast
thus ChamberComplexRetraction A (res-fold-A)
proof (rule ChamberComplexzRetraction.intro, unfold-locales)
fix v assume velJ A
moreover with apartments(1) obtain C
where C' € ChamberComplex.C A veC
using apartment-simplex-in-mazx apartment-chamber-system-def
by  fast
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ultimately show res-fold-A (res-fold-A v) = res-fold-A v
using fold-A-chamber-system-image-fixespointwise fixespointwiseD
by  fastforce
qed

show ChamberComplexFolding-azioms A res-fold-A
proof
fix F assume F: ChamberComplex.chamber A F I' € res-fold-A + A
from F(2) have F". F € fold-A+ A
using setsetmapim-restrictl[of A A fold-A] by simp
hence F € fold-A - (opp-fold-A - A)
using ChamberComplexIsomorphism.surj-simplez-map[OF fold-A-fold)
by simp
from this obtain G where G: G € opp-fold-A+ A F = fold-A ¢ G by auto
with F(1) F' apartments(1)
have G’ ChamberComplex.chamber A G
G € ChamberComplex.C (opp-fold-A F A)
using ChamberComplex.chamber-in-subcomplex| OF complexes]
chambersubcomplex-fold-A-im
ChamberComplexIsomorphism.chamber-preimage[ OF fold-A-fold, of G]
ChamberComplex. subcomplex-chamber]|
OF complexes, OF apartments(1) chambersubcomplex-opp-fold-A-im
]
ChamberComplex.chamber-system-def|
OF chambercomplex-opp-fold-A-im

]

by auto

from apartments(1) G(2)
have 1: AH. ChamberComplex.chamber A H N H ¢ fold-A+ A A
fold-A “H = F = H=G
using G'(2) apartment-chamber-system-def|of A]
fold-A-opp-fold-A-chamber-systems(1)
chambercomplex-fold-A-im ChamberComplex.chamber-system-def
ChamberComplex.chamberD-simplex
inj-onD|
OF ChamberComplexlsomorphism.inj-on-chamber-system,
OF fold-A-fold
]
by  blast
with apartments(1)
have AH. ChamberComplex.chamber A H N H ¢ res-fold-A F A A
res-fold-A ‘H = F — H=G
using 1 res-fold-A-A-chamber-image apartment-chamberD-simplex
res-fold-A-A-im-fold-A-A-im
by auto
moreover from apartments(1) have G ¢ res-fold-A + A
using G’
ChamberComplex.chamber-system-def[ OF chambercomplex-fold-A-im)
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ChamberComplex.chamber-in-subcomplex|
OF complexes, OF - chambersubcomplex-fold-A-im

]
fold-A-opp-fold-A-chamber-systems(2) res-fold-A-A-im-fold-A-A-im
by auto
ultimately
show 3I!G. ChamberComplex.chamber A G N G ¢ res-fold-AF A A
res-fold-A * G = F
using G'(1) G(2) res-fold-A-A-chamber-image exlI[of - G]
by  force
qed

qed

lemmas opp-res-fold-A =
ChamberComplexApartmentSystem Triangle.res-fold-A[OF reflect]

end

6.2 Building locale and basic lemmas

Finally, we define a (thick) building to be a thick chamber complex with a
system of apartments.
locale Building = ChamberComplex WithApartmentSystem X A
for X :: 'a set set
and A :: 'a set set set
+ assumes thick: ThickChamberComplex X
begin

abbreviation some-third-chamber =
ThickChamberComplex.some-third-chamber X

lemmas some-third-chamberD-facet =
ThickChamberComplex.some-third-chamberD-facet [OF thick)]

lemmas some-third-chamberD-ne =
ThickChamberComplex.some-third-chamberD-ne [OF thick]

lemmas chamber-some-third-chamber =
ThickChamberComplex.chamber-some-third-chamber [OF thick]

end

6.3 Apartments are uniformly Coxeter

Using the assumption of thickness, we may use the special situation Cham-
berComplexApartmentSystem Triangle to verify that apartments have enough
pairs of opposed foldings to ensure that they are isomorphic to a Coxeter
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complex. Since the apartments are all isomorphic, they are uniformly iso-
morphic to a single Coxeter complex.

context Building
begin

lemma apartments-have-many-foldings1:
assumes A€ A chamber C chamber D C~D C#D CeA DeA
defines E = some-third-chamber C D (CND)
defines B = supapartment C' E
and B’ = supapartment D E
defines [ = restrict! (canonical-retraction A D o canonical-retraction B C)
U4
and g = restrict! (canonical-retraction A C o canonical-retraction B’ D)
U4
shows f‘D = C ChamberComplexFolding A f
g‘C = D ChamberComplexFolding A g
proof—
from assms have 1:
ChamberComplexApartmentSystem Triangle X A A B B’ C D E (CND)
using adjacent-int-facet![of C D] adjacent-int-facet2|of C D]
some-third-chamberD-facet chamber-some-third-chamber
some-third-chamberD-ne[of C CND D] supapartmentD
by  unfold-locales auto
from f-def g-def
show ChamberComplexFolding A f ChamberComplexFolding A g
fD=CgC=D
using ChamberComplezApartmentSystem Triangle.res-fold-A [OF 1]
ChamberComplexApartmentSystem Triangle. opp-res-fold-A[OF 1]
ChamberComplexApartmentSystem Triangle.res-fold-A-chamber-images(2)|
OF 1
]
ChamberComplexApartmentSystem Triangle.res-opp-fold-A-chamber-images(2)]
OF 1
]
by auto
qed

lemma apartments-have-many-foldings2:
assumes A€ A chamber C chamber D C~D C#D CeA DeA
defines E = some-third-chamber C' D (CND)
defines B = supapartment C' E
and B’ = supapartment D E
defines f = restrict! (canonical-retraction A D o canonical-retraction B C)
U4)
and g = restrict] (canonical-retraction A C o canonical-retraction B’ D)
U4
shows Opposed ThinChamberComplexFoldings A f g C
proof (rule Opposed ThinChamberComplezFoldings.intro)
from assms show ChamberComplexFolding A f ChamberComplexFolding A g
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using apartments-have-many-foldings1(2,4)[of A C D] by auto
show Opposed ThinChamberComplexFoldings-axioms A f g C
proof (
unfold-locales, rule chamber-in-apartment, rule assms(1), rule assms(6),
rule assms(2)
)
from assms(1—7) E-def B-def B'-def g-def f-def
have ¢C: ¢‘C = D
and fD: f'D=C
using apartments-have-many-foldings1(1)[of A C D]
apartments-have-many-foldings1 (3)[of A C D]
by auto
with assms(4,5) show C ~ ¢‘C C # ¢‘C f‘9‘C = C by auto
qed
qed (rule thincomplexes, rule assms(1))

lemma apartments-have-many-foldings3:
assumes AcA chamber C chamber D C~D C#D CeA DeA
shows 3fg. OpposedThinChamberComplexFoldings A fg C N D=g‘C
proof
define E where E = some-third-chamber C' D (CND)
define B where B = supapartment C E
define [ where [ = restrictl (canonical-retraction A D o canonical-retraction
B C) (UA)
show 3 g. Opposed ThinChamberComplexFoldings A fg C N D =g ‘C
proof
define B’ where B’ = supapartment D E
define g where g = restrict! (canonical-retraction A C o canonical-retraction
B' D) (UA4)
from assms E-def B-def f-def B'-def g-def
show OpposedThinChamberComplexFoldings A fg C N D = g‘C
using apartments-have-many-foldings1(3)[of A C D]
apartments-have-many-foldings2
by auto
qed
qed

lemma apartments-have-many-foldings:
assumes Ac A CeA chamber C
shows ThinChamberComplexManyFoldings A C
proof (
rule ThinChamberComplex. ThinChamberComplexManyFoldingslI,
rule thincomplexes, rule assms(1), rule chamber-in-apartment,
rule assms(1), rule assms(2), rule assms(3)
)
from assms(1)
show AC D. ChamberComplex.chamber A C =
ChamberComplex.chamber A D — C~D —
C#D =
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3f g. OpposedThinChamberComplexFoldings A fg C N D =g ‘C
using apartments-have-many-foldings3 apartment-chamber
apartment-chamberD-simplex
by  simp
qed

theorem apartments-are-cozeter:
Ae A = 3 5::'a permutation set. (
CozeterComplex S N
(9. ChamberComplexIsomorphism A (CoxeterComplex. TheComplex S) 1))
)
using no-trivial-apartments apartment-simplex-in-maz|of A]
apartment-chamberD-simplex|of A] apartment-chamber|of A]
apartments-have-many-foldings[of A
ThinChamberComplexManyFoldings.ex-iso-to-coxeter-complez|of A]
by  fastforce

corollary apartments-are-uniformly-coxeter:
assumes X#{}
shows 35::'a permutation set. CozeterComplex S A
(VAeA. 3.
ChamberComplexIsomorphism A (CozeterComplex. TheComplex S) 1
)
proof—
from assms obtain C' where C: chamber C using simplez-in-max by fast
from this obtain A where A: Ac A C€A using containtwo by fast
from A(1) obtain S :: ‘a permutation set and ¢
where S: CoxeterComplex S
and ¢: ChamberComplexlsomorphism A (CozeterComplex. TheComplex S) 1
using apartments-are-cozxeter
by  fast
have V BeA. Jo.
ChamberComplexIsomorphism B (CozeterComplex. TheComplex S) ¢
proof
fix B assume B: BeA
hence B#{} using no-trivial-apartments by fast
with B obtain C’ where C’: chamber C’' C'eB
using apartment-simplex-in-max apartment-chamberD-simplex
apartment-chamber[OF B]
by  force
from C C'(1) obtain B’ where B'e A CeB’ C'eB’
using containtwo by fast
with A B C C' v
show d¢. ChamberComplexlsomorphism B
(CozeterComplex. TheComplex S) ¢
using strong-intersecttwo
ChamberComplexIsomorphism.iso-complof B A - - 9]
ChamberComplexIsomorphism.iso-comp[of B B
by  blast
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qed
with S show %thesis by auto
qed

end

end
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