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Abstract

In the 18th century, Georges-Louis Leclerc, Comte de Buffon posed
and later solved the following problem [1, 2], which is often called
the first problem ever solved in geometric probability: Given a floor
divided into vertical strips of the same width, what is the probability
that a needle thrown onto the floor randomly will cross two strips?

This entry formally defines the problem in the case where the nee-
dle’s position is chosen uniformly at random in a single strip around
the origin (which is equivalent to larger arrangements due to symme-
try). It then provides proofs of the simple solution in the case where
the needle’s length is no greater than the width of the strips and the
more complicated solution in the opposite case.
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Figure 1: A sketch of the situation in Buffon’s needle experiment. There is
a needle of length l with its centre at a certain x coordinate, angled at an
angle ϕ off the horizontal axis. The two vertical lines are a distance of d
apart, each being d/2 away from the origin.

1 Buffon’s Needle Problem
theory Buffons-Needle

imports HOL−Probability.Probability
begin

1.1 Auxiliary material
lemma sin-le-zero ′: sin x ≤ 0 if x ≥ −pi x ≤ 0 for x

by (metis minus-le-iff neg-0-le-iff-le sin-ge-zero sin-minus that(1 ) that(2 ))

1.2 Problem definition

Consider a needle of length l whose centre has the x-coordinate x. The
following then defines the set of all x-coordinates that the needle covers (i.e.
the projection of the needle onto the x-axis.)
definition needle :: real ⇒ real ⇒ real ⇒ real set where

needle l x ϕ = closed-segment (x − l / 2 ∗ sin ϕ) (x + l / 2 ∗ sin ϕ)

Buffon’s Needle problem is then this: Assuming the needle’s x position is
chosen uniformly at random in a strip of width d centred at the origin,
what is the probability that the needle crosses at least one of the left/right
boundaries of that strip (located at x = ±1

2d)?
We will show that, if we let x := l/d, the probability of this is

Pl,d =

{
2/π · x if l ≤ d

2/π · (x−
√
x2 − 1 + arccos(1/x)) if l ≥ d

A plot of this function can be found in Figure 2.
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Figure 2: The probability P of the needle hitting one of the lines, as a
function of the quotient l/d (where l is the length of the needle and d the
horizontal distance between the lines).

locale Buffon =
fixes d l :: real
assumes d: d > 0 and l: l > 0

begin

definition Buffon :: (real × real) measure where
Buffon = uniform-measure lborel ({−d/2 ..d/2} × {−pi..pi})

lemma space-Buffon [simp]: space Buffon = UNIV
by (simp add: Buffon-def )

definition Buffon-set :: (real × real) set where
Buffon-set = {(x,ϕ) ∈ {−d/2 ..d/2} × {−pi..pi}. needle l x ϕ ∩ {−d/2 , d/2}
6= {}}

1.3 Derivation of the solution

The following form is a bit easier to handle.
lemma Buffon-set-altdef1 :

Buffon-set =
{(x,ϕ) ∈ {−d/2 ..d/2} × {−pi..pi}.

let a = x − l / 2 ∗ sin ϕ; b = x + l / 2 ∗ sin ϕ
in min a b + d/2 ≤ 0 ∧ max a b + d/2 ≥ 0 ∨ min a b − d/2 ≤ 0 ∧

max a b − d/2 ≥ 0}
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proof −
have (λ(x,ϕ). needle l x ϕ ∩ {−d/2 , d/2} 6= {}) =

(λ(x,ϕ). let a = x − l / 2 ∗ sin ϕ; b = x + l / 2 ∗ sin ϕ
in −d/2 ≥ min a b ∧ −d/2 ≤ max a b ∨ min a b ≤ d/2 ∧ max a b

≥ d/2 )
by (auto simp: needle-def Let-def closed-segment-eq-real-ivl min-def max-def )

also have . . . =
(λ(x,ϕ). let a = x − l / 2 ∗ sin ϕ; b = x + l / 2 ∗ sin ϕ

in min a b + d/2 ≤ 0 ∧ max a b + d/2 ≥ 0 ∨ min a b − d/2 ≤ 0 ∧
max a b − d/2 ≥ 0 )

by (auto simp add: algebra-simps Let-def )
finally show ?thesis unfolding Buffon-set-def case-prod-unfold

by (intro Collect-cong conj-cong refl) meson
qed

lemma Buffon-set-altdef2 :
Buffon-set = {(x,ϕ) ∈ {−d/2 ..d/2} × {−pi..pi}. abs x ≥ d / 2 − abs (sin ϕ)
∗ l / 2}

unfolding Buffon-set-altdef1
proof (intro Collect-cong prod.case-cong refl conj-cong)

fix x ϕ
assume ∗: (x, ϕ) ∈ {−d/2 ..d/2} × {−pi..pi}
let ?P = λx ϕ. let a = x − l / 2 ∗ sin ϕ; b = x + l / 2 ∗ sin ϕ

in min a b + d/2 ≤ 0 ∧ max a b + d/2 ≥ 0 ∨ min a b − d/2 ≤ 0
∧ max a b − d/2 ≥ 0

show ?P x ϕ ←→ (d / 2 − |sin ϕ| ∗ l / 2 ≤ |x|)
proof (cases ϕ ≥ 0 )

case True
have x − l / 2 ∗ sin ϕ ≤ x + l / 2 ∗ sin ϕ using l True ∗

by (auto simp: sin-ge-zero)
moreover from True and ∗ have sin ϕ ≥ 0 by (auto simp: sin-ge-zero)
ultimately show ?thesis using ∗ True

by (force simp: field-simps Let-def min-def max-def case-prod-unfold abs-if )
next

case False
with ∗ have x − l / 2 ∗ sin ϕ ≥ x + l / 2 ∗ sin ϕ using l

by (auto simp: sin-le-zero ′ mult-nonneg-nonpos)
moreover from False and ∗ have sin ϕ ≤ 0 by (auto simp: sin-le-zero ′)
ultimately show ?thesis using ∗ False l d

by (force simp: field-simps Let-def min-def max-def case-prod-unfold abs-if )
qed

qed

By using the symmetry inherent in the problem, we can reduce the problem
to the following set, which corresponds to one quadrant of the original set:
definition Buffon-set ′ :: (real × real) set where

Buffon-set ′ = {(x,ϕ) ∈ {0 ..d/2} × {0 ..pi}. x ≥ d / 2 − sin ϕ ∗ l / 2}
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lemma closed-buffon-set [simp, intro, measurable]: closed Buffon-set
proof −
have Buffon-set = ({−d/2 ..d/2} × {−pi..pi}) ∩

(λz. abs (fst z) + abs (sin (snd z)) ∗ l / 2 − d / 2 ) −‘ {0 ..}
(is - = ?A) unfolding Buffon-set-altdef2 by auto

also have closed . . .
by (intro closed-Int closed-vimage closed-Times) (auto intro!: continuous-intros)

finally show ?thesis by simp
qed

lemma closed-buffon-set ′ [simp, intro, measurable]: closed Buffon-set ′

proof −
have Buffon-set ′ = ({0 ..d/2} × {0 ..pi}) ∩

(λz. fst z + sin (snd z) ∗ l / 2 − d / 2 ) −‘ {0 ..}
(is - = ?A) unfolding Buffon-set ′-def by auto

also have closed . . .
by (intro closed-Int closed-vimage closed-Times) (auto intro!: continuous-intros)

finally show ?thesis by simp
qed

lemma measurable-buffon-set [measurable]: Buffon-set ∈ sets borel
by measurable

lemma measurable-buffon-set ′ [measurable]: Buffon-set ′ ∈ sets borel
by measurable

sublocale prob-space Buffon
unfolding Buffon-def

proof −
have emeasure lborel ({− d / 2 ..d / 2} × {− pi..pi}) = ennreal (2 ∗ d ∗ pi)

unfolding lborel-prod [symmetric] using d
by (subst lborel.emeasure-pair-measure-Times)

(auto simp: ennreal-mult mult-ac simp flip: ennreal-numeral)
also have . . . 6= 0 ∧ . . . 6= ∞

using d by auto
finally show prob-space (uniform-measure lborel ({− d / 2 ..d / 2} × {− pi..pi}))

by (intro prob-space-uniform-measure) auto
qed

lemma buffon-prob-aux:
emeasure Buffon {(x,ϕ). needle l x ϕ ∩ {−d/2 , d/2} 6= {}} =

emeasure lborel Buffon-set / ennreal (2 ∗ d ∗ pi)
proof −

have [measurable]: A × B ∈ sets borel if A ∈ sets borel B ∈ sets borel
for A B :: real set using that unfolding borel-prod [symmetric] by simp

have {(x, ϕ). needle l x ϕ ∩ {− d / 2 , d / 2} 6= {}} ∈ sets borel
by (intro pred-Collect-borel)
(simp add: borel-prod [symmetric] needle-def closed-segment-eq-real-ivl case-prod-unfold)
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hence emeasure Buffon {(x,ϕ). needle l x ϕ ∩ {−d/2 , d/2} 6= {}} =
emeasure lborel (({−d/2 ..d/2} × {− pi..pi}) ∩ {(x,ϕ). needle l x ϕ ∩

{−d/2 , d/2} 6= {}}) /
emeasure lborel ({−(d/2 )..d/2} × {−pi..pi})

unfolding Buffon-def Buffon-set-def by (subst emeasure-uniform-measure)
simp-all

also have ({−d/2 ..d/2} × {− pi..pi}) ∩ {(x, ϕ). needle l x ϕ ∩ {−d/2 , d/2}
6= {}} = Buffon-set

unfolding Buffon-set-def by auto
also have emeasure lborel ({−(d/2 )..d/2} × {−pi..pi}) = ennreal (2 ∗ d ∗ pi)
using d by (simp flip: lborel-prod ennreal-mult add: lborel.emeasure-pair-measure-Times)

finally show ?thesis .
qed

lemma emeasure-buffon-set-conv-buffon-set ′:
emeasure lborel Buffon-set = 4 ∗ emeasure lborel Buffon-set ′

proof −
have distr-lborel [simp]: distr M lborel f = distr M borel f for M and f :: real
⇒ real

by (rule distr-cong) simp-all

define A where A = Buffon-set ′

define B C D where B = (λx. (−fst x, snd x)) −‘ A and C = (λx. (fst x, −snd
x)) −‘ A and

D = (λx. (−fst x, −snd x)) −‘ A
have meas [measurable]:

(λx::real × real. (−fst x, snd x)) ∈ borel-measurable borel
(λx::real × real. (fst x, −snd x)) ∈ borel-measurable borel
(λx::real × real. (−fst x, −snd x)) ∈ borel-measurable borel

unfolding borel-prod [symmetric] by measurable
have meas ′ [measurable]: A ∈ sets borel B ∈ sets borel C ∈ sets borel D ∈ sets

borel
unfolding A-def B-def C-def D-def by (rule measurable-buffon-set ′ measur-

able-sets-borel meas)+

have ∗: Buffon-set = A ∪ B ∪ C ∪ D
proof (intro equalityI subsetI , goal-cases)

case (1 z)
show ?case
proof (cases fst z ≥ 0 ; cases snd z ≥ 0 )

assume fst z ≥ 0 snd z ≥ 0
with 1 have z ∈ A
by (auto split: prod.splits simp: Buffon-set-altdef2 Buffon-set ′-def sin-ge-zero

A-def B-def )
thus ?thesis by blast

next
assume ¬(fst z ≥ 0 ) snd z ≥ 0
with 1 have z ∈ B
by (auto split: prod.splits simp: Buffon-set-altdef2 Buffon-set ′-def sin-ge-zero
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A-def B-def )
thus ?thesis by blast

next
assume fst z ≥ 0 ¬(snd z ≥ 0 )
with 1 have z ∈ C
by (auto split: prod.splits simp: Buffon-set-altdef2 Buffon-set ′-def sin-le-zero ′

A-def B-def C-def )
thus ?thesis by blast

next
assume ¬(fst z ≥ 0 ) ¬(snd z ≥ 0 )
with 1 have z ∈ D
by (auto split: prod.splits simp: Buffon-set-altdef2 Buffon-set ′-def sin-le-zero ′

A-def B-def D-def )
thus ?thesis by blast

qed
next

case (2 z)
thus ?case using d l
by (auto simp: Buffon-set-altdef2 Buffon-set ′-def sin-ge-zero sin-le-zero ′ A-def

B-def C-def D-def )
qed

have A ∩ B = {0} × ({0 ..pi} ∩ {ϕ. sin ϕ ∗ l − d ≥ 0})
using d l by (auto simp: Buffon-set ′-def A-def B-def C-def D-def )

moreover have emeasure lborel . . . = 0
unfolding lborel-prod [symmetric] by (subst lborel.emeasure-pair-measure-Times)

simp-all
ultimately have AB: (A ∩ B) ∈ null-sets lborel

unfolding lborel-prod [symmetric] by (simp add: null-sets-def )

have C ∩ D = {0} × ({−pi..0} ∩ {ϕ. −sin ϕ ∗ l − d ≥ 0})
using d l by (auto simp: Buffon-set ′-def A-def B-def C-def D-def )

moreover have emeasure lborel . . . = 0
unfolding lborel-prod [symmetric] by (subst lborel.emeasure-pair-measure-Times)

simp-all
ultimately have CD: (C ∩ D) ∈ null-sets lborel

unfolding lborel-prod [symmetric] by (simp add: null-sets-def )

have A ∩ D = {} B ∩ C = {} using d l
by (auto simp: Buffon-set ′-def A-def D-def B-def C-def )

moreover have A ∩ C = {(d/2 , 0 )} B ∩ D = {(−d/2 , 0 )}
using d l by (auto simp: case-prod-unfold Buffon-set ′-def A-def B-def C-def

D-def )
ultimately have AD: A ∩ D ∈ null-sets lborel and BC : B ∩ C ∈ null-sets lborel

and
AC : A ∩ C ∈ null-sets lborel and BD: B ∩ D ∈ null-sets lborel by auto

note ∗
also have emeasure lborel (A ∪ B ∪ C ∪ D) = emeasure lborel (A ∪ B ∪ C ) +
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emeasure lborel D
using AB AC AD BC BD CD by (intro emeasure-Un ′) (auto simp: Int-Un-distrib2 )

also have emeasure lborel (A ∪ B ∪ C ) = emeasure lborel (A ∪ B) + emeasure
lborel C

using AB AC BC using AB AC AD BC BD CD by (intro emeasure-Un ′)
(auto simp: Int-Un-distrib2 )

also have emeasure lborel (A ∪ B) = emeasure lborel A + emeasure lborel B
using AB using AB AC AD BC BD CD by (intro emeasure-Un ′) (auto simp:

Int-Un-distrib2 )
also have emeasure lborel B = emeasure (distr lborel lborel (λ(x,y). (−x, y))) A
(is - = emeasure ?M -) unfolding B-def
by (subst emeasure-distr) (simp-all add: case-prod-unfold)

also have ?M = lborel unfolding lborel-prod [symmetric]
by (subst pair-measure-distr [symmetric]) (simp-all add: sigma-finite-lborel

lborel-distr-uminus)
also have emeasure lborel C = emeasure (distr lborel lborel (λ(x,y). (x, −y))) A
(is - = emeasure ?M -) unfolding C-def
by (subst emeasure-distr) (simp-all add: case-prod-unfold)

also have ?M = lborel unfolding lborel-prod [symmetric]
by (subst pair-measure-distr [symmetric]) (simp-all add: sigma-finite-lborel

lborel-distr-uminus)
also have emeasure lborel D = emeasure (distr lborel lborel (λ(x,y). (−x, −y)))

A
(is - = emeasure ?M -) unfolding D-def
by (subst emeasure-distr) (simp-all add: case-prod-unfold)

also have ?M = lborel unfolding lborel-prod [symmetric]
by (subst pair-measure-distr [symmetric]) (simp-all add: sigma-finite-lborel

lborel-distr-uminus)
finally have emeasure lborel Buffon-set =

of-nat (Suc (Suc (Suc (Suc 0 )))) ∗ emeasure lborel A
unfolding of-nat-Suc ring-distribs by simp

also have of-nat (Suc (Suc (Suc (Suc 0 )))) = (4 :: ennreal) by simp
finally show ?thesis unfolding A-def .

qed

It only remains now to compute the measure of Buffon-set ′. We first reduce
this problem to a relatively simple integral:
lemma emeasure-buffon-set ′:

emeasure lborel Buffon-set ′ =
ennreal (integral {0 ..pi} (λx. min (d / 2 ) (sin x ∗ l / 2 )))

(is emeasure lborel ?A = -)
proof −

have emeasure lborel ?A = nn-integral lborel (λx. indicator ?A x)
by (intro nn-integral-indicator [symmetric]) simp-all

also have (lborel :: (real × real) measure) = lborel
⊗

M lborel
by (simp only: lborel-prod)

also have nn-integral . . . (indicator ?A) = (
∫

+ϕ.
∫

+x. indicator ?A (x, ϕ)
∂lborel ∂lborel)

by (subst lborel-pair .nn-integral-snd [symmetric]) (simp-all add: lborel-prod
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borel-prod)
also have . . . = (

∫
+ϕ.

∫
+x. indicator {0 ..pi} ϕ ∗ indicator {max 0 (d/2 −

sin ϕ ∗ l / 2 ) .. d/2} x ∂lborel ∂lborel)
using d l by (intro nn-integral-cong) (auto simp: indicator-def field-simps Buf-

fon-set ′-def )
also have . . . =

∫
+ ϕ. indicator {0 ..pi} ϕ ∗ emeasure lborel {max 0 (d / 2 −

sin ϕ ∗ l / 2 )..d / 2} ∂lborel
by (subst nn-integral-cmult) simp-all

also have . . . =
∫

+ ϕ. ennreal (indicator {0 ..pi} ϕ ∗ min (d / 2 ) (sin ϕ ∗ l /
2 )) ∂lborel

(is - = ?I ) using d l by (intro nn-integral-cong) (auto simp: indicator-def
sin-ge-zero max-def min-def )

also have integrable lborel (λϕ. (d / 2 ) ∗ indicator {0 ..pi} ϕ) by simp
hence int: integrable lborel (λϕ. indicator {0 ..pi} ϕ ∗ min (d / 2 ) (sin ϕ ∗ l /

2 ))
by (rule Bochner-Integration.integrable-bound)

(insert l d, auto intro!: AE-I2 simp: indicator-def min-def sin-ge-zero)
hence ?I = set-lebesgue-integral lborel {0 ..pi} (λϕ. min (d / 2 ) (sin ϕ ∗ l / 2 ))

by (subst nn-integral-eq-integral, assumption)
(insert d l, auto intro!: AE-I2 simp: sin-ge-zero min-def indicator-def set-lebesgue-integral-def )

also have . . . = ennreal (integral {0 ..pi} (λx. min (d / 2 ) (sin x ∗ l / 2 )))
(is - = ennreal ?I ) using int by (subst set-borel-integral-eq-integral) (simp-all

add: set-integrable-def )
finally show ?thesis by (simp add: lborel-prod)

qed

We now have to distinguish two cases: The first and easier one is that where
the length of the needle, l, is less than or equal to the strip width, d:
context

assumes l-le-d: l ≤ d
begin

lemma emeasure-buffon-set ′-short: emeasure lborel Buffon-set ′ = ennreal l
proof −

have emeasure lborel Buffon-set ′ =
ennreal (integral {0 ..pi} (λx. min (d / 2 ) (sin x ∗ l / 2 ))) (is - = ennreal

?I )
by (rule emeasure-buffon-set ′)

also have ∗: sin ϕ ∗ l ≤ d if ϕ ≥ 0 ϕ ≤ pi for ϕ
using mult-mono[OF l-le-d sin-le-one - sin-ge-zero] that d by (simp add: alge-

bra-simps)
have ?I = integral {0 ..pi} (λx. (l / 2 ) ∗ sin x)

using l d l-le-d
by (intro integral-cong) (auto dest: ∗ simp: min-def sin-ge-zero)

also have . . . = l / 2 ∗ integral {0 ..pi} sin by simp
also have (sin has-integral (−cos pi − (− cos 0 ))) {0 ..pi}

by (intro fundamental-theorem-of-calculus)
(auto intro!: derivative-eq-intros simp: has-real-derivative-iff-has-vector-derivative

[symmetric])
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hence integral {0 ..pi} sin = −cos pi − (−cos 0 )
by (simp add: has-integral-iff )

finally show ?thesis by (simp add: lborel-prod)
qed

lemma emeasure-buffon-set-short: emeasure lborel Buffon-set = 4 ∗ ennreal l
by (simp add: emeasure-buffon-set-conv-buffon-set ′ emeasure-buffon-set ′-short

l-le-d)

lemma prob-short-aux:
Buffon {(x, ϕ). needle l x ϕ ∩ {− d / 2 , d / 2} 6= {}} = ennreal (2 ∗ l / (d ∗

pi))
unfolding buffon-prob-aux emeasure-buffon-set-short using d l
by (simp flip: ennreal-mult ennreal-numeral add: divide-ennreal)

lemma prob-short: P((x,ϕ) in Buffon. needle l x ϕ ∩ {−d/2 , d/2} 6= {}) = 2 ∗
l / (d ∗ pi)

using prob-short-aux unfolding emeasure-eq-measure
using l d by (subst (asm) ennreal-inj) auto

end

The other case where the needle is at least as long as the strip width is more
complicated:
context

assumes l-ge-d: l ≥ d
begin

lemma emeasure-buffon-set ′-long:
shows l ∗ (1 − sqrt (1 − (d / l)2)) + arccos (d / l) ∗ d ≥ 0
and emeasure lborel Buffon-set ′ =

ennreal (l ∗ (1 − sqrt (1 − (d / l)2)) + arccos (d / l) ∗ d)
proof −

define ϕ ′ where ϕ ′ = arcsin (d / l)
have ϕ ′-nonneg: ϕ ′ ≥ 0 unfolding ϕ ′-def using d l l-ge-d arcsin-le-mono[of 0

d/l]
by (simp add: ϕ ′-def )

have ϕ ′-le: ϕ ′ ≤ pi / 2 unfolding ϕ ′-def using arcsin-bounded[of d/l] d l l-ge-d
by (simp add: field-simps)

have ge-phi ′: sin ϕ ≥ d / l if ϕ ≥ ϕ ′ ϕ ≤ pi / 2 for ϕ
using arcsin-le-iff [of d / l ϕ] d l-ge-d that ϕ ′-nonneg by (auto simp: ϕ ′-def

field-simps)
have le-phi ′: sin ϕ ≤ d / l if ϕ ≤ ϕ ′ ϕ ≥ 0 for ϕ
using le-arcsin-iff [of d / l ϕ] d l-ge-d that ϕ ′-le by (auto simp: ϕ ′-def field-simps)

have cos ϕ ′ = sqrt (1 − (d / l)^2 )
unfolding ϕ ′-def by (rule cos-arcsin) (insert d l l-ge-d, auto simp: field-simps)

have l ∗ (1 − cos ϕ ′) + arccos (d / l) ∗ d ≥ 0
using l d l-ge-d
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by (intro add-nonneg-nonneg mult-nonneg-nonneg arccos-lbound) (auto simp:
field-simps)

thus l ∗ (1 − sqrt (1 − (d / l)2)) + arccos (d / l) ∗ d ≥ 0
by (simp add: ‹cos ϕ ′ = sqrt (1 − (d / l)^2 )›)

let ?f = (λx. min (d / 2 ) (sin x ∗ l / 2 ))
have emeasure lborel Buffon-set ′ = ennreal (integral {0 ..pi} ?f ) (is - = ennreal

?I )
by (rule emeasure-buffon-set ′)

also have ?I = integral {0 ..pi/2} ?f + integral {pi/2 ..pi} ?f
by (rule Henstock-Kurzweil-Integration.integral-combine [symmetric]) (auto in-

tro!: integrable-continuous-real continuous-intros)
also have integral {pi/2 ..pi} ?f = integral {−pi/2 ..0} (?f ◦ (λϕ. ϕ + pi))

by (subst integral-shift) (auto intro!: continuous-intros)
also have . . . = integral {−(pi/2 )..−0} (λx. min (d / 2 ) (sin (−x) ∗ l / 2 ))

by (simp add: o-def )
also have . . . = integral {0 ..pi/2} ?f (is - = ?I ) by (subst Henstock-Kurzweil-Integration.integral-reflect-real)

simp-all
also have . . . + . . . = 2 ∗ . . . by simp
also have ?I = integral {0 ..ϕ ′} ?f + integral {ϕ ′..pi/2} ?f

using l d l-ge-d ϕ ′-nonneg ϕ ′-le
by (intro Henstock-Kurzweil-Integration.integral-combine [symmetric]) (auto

intro!: integrable-continuous-real continuous-intros)
also have integral {0 ..ϕ ′} ?f = integral {0 ..ϕ ′} (λx. l / 2 ∗ sin x)

using l by (intro integral-cong) (auto simp: min-def field-simps dest: le-phi ′)
also have ((λx. l / 2 ∗ sin x) has-integral (− (l / 2 ∗ cos ϕ ′) − (− (l / 2 ∗ cos

0 )))) {0 ..ϕ ′}
using ϕ ′-nonneg
by (intro fundamental-theorem-of-calculus)

(auto simp: has-real-derivative-iff-has-vector-derivative [symmetric] intro!:
derivative-eq-intros)

hence integral {0 ..ϕ ′} (λx. l / 2 ∗ sin x) = (1 − cos ϕ ′) ∗ l / 2
by (simp add: has-integral-iff algebra-simps)

also have integral {ϕ ′..pi/2} ?f = integral {ϕ ′..pi/2} (λ-. d / 2 )
using l by (intro integral-cong) (auto simp: min-def field-simps dest: ge-phi ′)

also have . . . = arccos (d / l) ∗ d / 2 using ϕ ′-le d l l-ge-d
by (subst arccos-arcsin-eq) (auto simp: field-simps ϕ ′-def )

also note ‹cos ϕ ′ = sqrt (1 − (d / l)^2 )›
also have 2 ∗ ((1 − sqrt (1 − (d / l)2)) ∗ l / 2 + arccos (d / l) ∗ d / 2 ) =

l ∗ (1 − sqrt (1 − (d / l)2)) + arccos (d / l) ∗ d
using d l by (simp add: field-simps)

finally show emeasure lborel Buffon-set ′ =
ennreal (l ∗ (1 − sqrt (1 − (d / l)2)) + arccos (d / l) ∗ d) .

qed

lemma emeasure-set-long: emeasure lborel Buffon-set =
4 ∗ ennreal (l ∗ (1 − sqrt (1 − (d / l)2)) + arccos (d / l) ∗ d)

by (simp add: emeasure-buffon-set-conv-buffon-set ′ emeasure-buffon-set ′-long l-ge-d)
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lemma prob-long-aux:
shows 2 / pi ∗ ((l / d) − sqrt ((l / d)2 − 1 ) + arccos (d / l)) ≥ 0
and Buffon {(x, ϕ). needle l x ϕ ∩ {− d / 2 , d / 2} 6= {}} =

ennreal (2 / pi ∗ ((l / d) − sqrt ((l / d)2 − 1 ) + arccos (d / l)))
using emeasure-buffon-set ′-long(1 )

proof −
have ∗: l ∗ sqrt ((l2 − d2) / l2) + 0 ≤ l + d ∗ arccos (d / l)

using d l-ge-d by (intro add-mono mult-nonneg-nonneg arccos-lbound) (auto
simp: field-simps)

have l / d ≥ sqrt ((l / d)2 − 1 )
using l d l-ge-d by (intro real-le-lsqrt) (auto simp: field-simps)

thus 2 / pi ∗ ((l / d) − sqrt ((l / d)2 − 1 ) + arccos (d / l)) ≥ 0
using d l l-ge-d
by (intro mult-nonneg-nonneg add-nonneg-nonneg arccos-lbound) (auto simp:

field-simps)

have emeasure Buffon {(x,ϕ). needle l x ϕ ∩ {−d/2 , d/2} 6= {}} =
ennreal (4 ∗ (l − l ∗ sqrt (1 − (d / l)2) + arccos (d / l) ∗ d)) / ennreal

(2 ∗ d ∗ pi)
using d l l-ge-d ∗ unfolding buffon-prob-aux emeasure-set-long ennreal-numeral

[symmetric]
by (subst ennreal-mult [symmetric])

(auto intro!: add-nonneg-nonneg mult-nonneg-nonneg simp: field-simps)
also have . . . = ennreal ((4 ∗ (l − l ∗ sqrt (1 − (d / l)2) + arccos (d / l) ∗ d))

/ (2 ∗ d ∗ pi))
using d l ∗ by (subst divide-ennreal) (auto simp: field-simps)

also have (4 ∗ (l − l ∗ sqrt (1 − (d / l)2) + arccos (d / l) ∗ d)) / (2 ∗ d ∗ pi)
=

2 / pi ∗ (l / d − l / d ∗ sqrt ((d / l)^2 ∗ ((l / d)^2 − 1 )) + arccos
(d / l))

using d l by (simp add: field-simps)
also have l / d ∗ sqrt ((d / l)^2 ∗ ((l / d)^2 − 1 )) = sqrt ((l / d) ^ 2 − 1 )

using d l l-ge-d unfolding real-sqrt-mult real-sqrt-abs by simp
finally show emeasure Buffon {(x,ϕ). needle l x ϕ ∩ {−d/2 , d/2} 6= {}} =

ennreal (2 / pi ∗ ((l / d) − sqrt ((l / d)2 − 1 ) + arccos (d / l))) .
qed

lemma prob-long:
P((x,ϕ) in Buffon. needle l x ϕ ∩ {−d/2 , d/2} 6= {}) =

2 / pi ∗ ((l / d) − sqrt ((l / d)2 − 1 ) + arccos (d / l))
using prob-long-aux unfolding emeasure-eq-measure
by (subst (asm) ennreal-inj) simp-all

end

theorem prob-eq:
defines x ≡ l / d
shows P((x,ϕ) in Buffon. needle l x ϕ ∩ {−d/2 , d/2} 6= {}) =
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(if l ≤ d then
2 / pi ∗ x

else
2 / pi ∗ (x − sqrt (x2 − 1 ) + arccos (1 / x)))

using prob-short prob-long unfolding x-def by auto

end

end
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