
The Budan–Fourier Theorem and Counting Real
Roots with Multiplicity

Wenda Li

September 13, 2023

Abstract

This entry is mainly about counting and approximating real roots
(of a polynomial) with multiplicity. We have first formalised the Budan–
Fourier theorem: given a polynomial with real coefficients, we can cal-
culate sign variations on Fourier sequences to over-approximate the
number of real roots (counting multiplicity) within an interval. When
all roots are known to be real, the over-approximation becomes tight:
we can utilise this theorem to count real roots exactly. It is also worth
noting that Descartes’ rule of sign is a direct consequence of the Budan–
Fourier theorem, and has been included in this entry. In addition,
we have extended previous formalised Sturm’s theorem to count real
roots with multiplicity, while the original Sturm’s theorem only counts
distinct real roots. Compared to the Budan–Fourier theorem, our ex-
tended Sturm’s theorem always counts roots exactly but may suffer
from greater computational cost.

Many problems in real algebraic geometry is about counting or approxi-
mating roots of a polynomial. Previous formalised results are mainly about
counting distinct real roots (i.e. Sturm’s theorem in Isabelle/HOL [5, 2],
HOL Light [4], PVS [9] and Coq [8]) and limited support for multiple real
roots (i.e. Descartes’ rule of signs in Isabelle/HOL [3], HOL Light and Proof-
Power1). In comparison, this entry provides more comprehensive support
for reasoning about multiple real roots.

The main motivation of this entry is to cope with the roots-on-the-border
issue when counting complex roots [7, 6], but the results here should be
beneficial to other developments.

Our proof of the Budan–Fourier theorem mainly follows Theorem 2.35
in the book by Basu et al. [1] and that of the extended Sturm’s theorem is
inspired by Theorem 10.5.6 in Rahman and Schmeisser’s book [10].

1According to Freek Wiedijk’s "Formalising 100 Theorems" (http://www.cs.ru.nl/
~freek/100/index.html)

1

http://www.cs.ru.nl/~freek/100/index.html
http://www.cs.ru.nl/~freek/100/index.html

1 Misc results for polynomials and sign variations
theory BF-Misc imports

HOL−Computational-Algebra.Polynomial-Factorial
HOL−Computational-Algebra.Fundamental-Theorem-Algebra
Sturm-Tarski.Sturm-Tarski

begin

1.1 Induction on polynomial roots
lemma poly-root-induct-alt [case-names 0 no-proots root]:

fixes p :: ′a :: idom poly
assumes Q 0
assumes

∧
p. (

∧
a. poly p a 6= 0) =⇒ Q p

assumes
∧

a p. Q p =⇒ Q ([:−a, 1 :] ∗ p)
shows Q p

proof (induction degree p arbitrary: p rule: less-induct)
case (less p)
have ?case when p=0 using ‹Q 0 › that by auto
moreover have ?case when @ a. poly p a = 0

using assms(2) that by blast
moreover have ?case when ∃ a. poly p a = 0 p 6=0
proof −

obtain a where poly p a =0 using ‹∃ a. poly p a = 0 › by auto
then obtain q where pq:p= [:−a,1 :] ∗ q by (meson dvdE poly-eq-0-iff-dvd)
then have q 6=0 using ‹p 6=0 › by auto
then have degree q<degree p unfolding pq by (subst degree-mult-eq,auto)
then have Q q using less by auto
then show ?case using assms(3) unfolding pq by auto

qed
ultimately show ?case by auto

qed

1.2 Misc
lemma lead-coeff-pderiv:

fixes p :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors,semiring-char-0} poly
shows lead-coeff (pderiv p) = of-nat (degree p) ∗ lead-coeff p
apply (auto simp:degree-pderiv coeff-pderiv)
apply (cases degree p)
by (auto simp add: coeff-eq-0)

lemma gcd-degree-le-min:
assumes p 6=0 q 6=0
shows degree (gcd p q) ≤ min (degree p) (degree q)
by (simp add: assms(1) assms(2) dvd-imp-degree-le)

lemma lead-coeff-normalize-field:
fixes p:: ′a::{field,semidom-divide-unit-factor} poly
assumes p 6=0

2

shows lead-coeff (normalize p) = 1
by (metis (no-types, lifting) assms coeff-normalize divide-self-if dvd-field-iff

is-unit-unit-factor leading-coeff-0-iff normalize-eq-0-iff normalize-idem)

lemma smult-normalize-field-eq:
fixes p:: ′a::{field,semidom-divide-unit-factor} poly
shows p = smult (lead-coeff p) (normalize p)

proof (rule poly-eqI)
fix n
have unit-factor (lead-coeff p) = lead-coeff p

by (metis dvd-field-iff is-unit-unit-factor unit-factor-0)
then show coeff p n = coeff (smult (lead-coeff p) (normalize p)) n

by simp
qed

lemma lead-coeff-gcd-field:
fixes p q:: ′a::field-gcd poly
assumes p 6=0 ∨ q 6=0
shows lead-coeff (gcd p q) = 1
using assms by (metis gcd.normalize-idem gcd-eq-0-iff lead-coeff-normalize-field)

lemma poly-gcd-0-iff :
poly (gcd p q) x = 0 ←→ poly p x=0 ∧ poly q x=0
by (simp add:poly-eq-0-iff-dvd)

lemma degree-eq-oneE :
fixes p :: ′a::zero poly
assumes degree p = 1
obtains a b where p = [:a,b:] b 6=0

proof −
obtain a b q where p:p=pCons a (pCons b q)

by (metis pCons-cases)
with assms have q=0 by (cases q = 0) simp-all
with p have p=[:a,b:] by auto
moreover then have b 6=0 using assms by auto
ultimately show ?thesis ..

qed

1.3 More results about sign variations (i.e. changes
lemma changes-0 [simp]:changes (0#xs) = changes xs

by (cases xs) auto

lemma changes-Cons:changes (x#xs) = (if filter (λx. x 6=0) xs = [] then
0

else if x∗ hd (filter (λx. x 6=0) xs) < 0 then
1 + changes xs

else changes xs)
apply (induct xs)

3

by auto

lemma changes-filter-eq:
changes (filter (λx. x 6=0) xs) = changes xs
apply (induct xs)
by (auto simp add:changes-Cons)

lemma changes-filter-empty:
assumes filter (λx. x 6=0) xs = []
shows changes xs = 0 changes (a#xs) = 0 using assms
apply (induct xs)
apply auto
by (metis changes-0 neq-Nil-conv)

lemma changes-append:
assumes xs 6= [] ∧ ys 6= [] −→ (last xs = hd ys ∧ last xs 6=0)
shows changes (xs@ys) = changes xs + changes ys
using assms

proof (induct xs)
case Nil
then show ?case by simp

next
case (Cons a xs)
have ?case when xs=[]

using that Cons
apply (cases ys)
by auto

moreover have ?case when ys=[]
using that Cons by auto

moreover have ?case when xs 6=[] ys 6=[]
proof −

have filter (λx. x 6= 0) xs 6=[]
using that Cons
apply auto

by (metis (mono-tags, lifting) filter .simps(1) filter .simps(2) filter-append
snoc-eq-iff-butlast)

then have changes (a # xs @ ys) = changes (a # xs) + changes ys
apply (subst (1 2) changes-Cons)
using that Cons by auto

then show ?thesis by auto
qed
ultimately show ?case by blast

qed

lemma changes-drop-dup:
assumes xs 6= [] ys 6= [] −→ last xs=hd ys
shows changes (xs@ys) = changes (xs@ tl ys)
using assms

proof (induct xs)

4

case Nil
then show ?case by simp

next
case (Cons a xs)
have ?case when ys=[]

using that by simp
moreover have ?case when ys 6=[] xs=[]

using that Cons
apply auto
by (metis changes.simps(3) list.exhaust-sel not-square-less-zero)

moreover have ?case when ys 6=[] xs 6=[]
proof −

define ts ts ′ where ts = filter (λx. x 6= 0) (xs @ ys)
and ts ′ = filter (λx. x 6= 0) (xs @ tl ys)

have (ts = [] ←→ ts ′ = []) ∧ hd ts = hd ts ′

proof (cases filter (λx. x 6= 0) xs = [])
case True
then have last xs = 0 using ‹xs 6=[]›

by (metis (mono-tags, lifting) append-butlast-last-id append-is-Nil-conv
filter .simps(2) filter-append list.simps(3))

then have hd ys=0 using Cons(3)[rule-format, OF ‹ys 6=[]›] ‹xs 6=[]› by auto
then have filter (λx. x 6= 0) ys = filter (λx. x 6= 0) (tl ys)

by (metis (mono-tags, lifting) filter .simps(2) list.exhaust-sel that(1))
then show ?thesis unfolding ts-def ts ′-def by auto

next
case False
then show ?thesis unfolding ts-def ts ′-def by auto

qed
moreover have changes (xs @ ys) = changes (xs @ tl ys)

apply (rule Cons(1))
using that Cons(3) by auto

moreover have changes (a # xs @ ys) = (if ts = [] then 0 else if a ∗ hd ts <
0

then 1 + changes (xs @ ys) else changes (xs @ ys))
using changes-Cons[of a xs @ ys,folded ts-def] .

moreover have changes (a # xs @ tl ys) = (if ts ′ = [] then 0 else if a ∗ hd ts ′

< 0
then 1 + changes (xs @ tl ys) else changes (xs @ tl ys))

using changes-Cons[of a xs @ tl ys,folded ts ′-def] .
ultimately show ?thesis by auto

qed
ultimately show ?case by blast

qed

lemma Im-poly-of-real:
Im (poly p (of-real x)) = poly (map-poly Im p) x
apply (induct p)

5

by (auto simp add:map-poly-pCons)

lemma Re-poly-of-real:
Re (poly p (of-real x)) = poly (map-poly Re p) x
apply (induct p)
by (auto simp add:map-poly-pCons)

1.4 More about map-poly and of-real
lemma of-real-poly-map-pCons[simp]:map-poly of-real (pCons a p) = pCons (of-real
a) (map-poly of-real p)

by (simp add: map-poly-pCons)

lemma of-real-poly-map-plus[simp]: map-poly of-real (p + q) = map-poly of-real p
+ map-poly of-real q

apply (rule poly-eqI)
by (auto simp add: coeff-map-poly)

lemma of-real-poly-map-smult[simp]:map-poly of-real (smult s p) = smult (of-real
s) (map-poly of-real p)

apply (rule poly-eqI)
by (auto simp add: coeff-map-poly)

lemma of-real-poly-map-mult[simp]:map-poly of-real (p∗q) = map-poly of-real p ∗
map-poly of-real q

by (induct p,intro poly-eqI ,auto)

lemma of-real-poly-map-poly:
of-real (poly p x) = poly (map-poly of-real p) (of-real x)
by (induct p,auto)

lemma of-real-poly-map-power :map-poly of-real (p^n) = (map-poly of-real p) ^ n
by (induct n,auto)

lemma of-real-poly-eq-iff [simp]: map-poly of-real p = map-poly of-real q ←→ p =
q

by (auto simp: poly-eq-iff coeff-map-poly)

lemma of-real-poly-eq-0-iff [simp]: map-poly of-real p = 0 ←→ p = 0
by (auto simp: poly-eq-iff coeff-map-poly)

1.5 More about order
lemma order-multiplicity-eq:

assumes p 6=0
shows order a p = multiplicity [:−a,1 :] p
by (metis assms multiplicity-eqI order-1 order-2)

6

lemma order-gcd:
assumes p 6=0 q 6=0
shows order x (gcd p q) = min (order x p) (order x q)

proof −
have prime [:− x, 1 :]
apply (auto simp add: prime-elem-linear-poly normalize-poly-def intro!:primeI)
by (simp add: pCons-one)

then show ?thesis
using assms
by (auto simp add:order-multiplicity-eq intro:multiplicity-gcd)

qed

lemma order-linear [simp]: order x [:−a,1 :] = (if x=a then 1 else 0)
by (auto simp add:order-power-n-n[where n=1 ,simplified] order-0I)

lemma map-poly-order-of-real:
assumes p 6=0
shows order (of-real t) (map-poly of-real p) = order t p using assms

proof (induct p rule:poly-root-induct-alt)
case 0
then show ?case by simp

next
case (no-proots p)
then have order t p = 0 using order-root by blast
moreover have poly (map-poly of-real p) (of-real x) 6=0 for x

apply (subst of-real-poly-map-poly[symmetric])
using no-proots order-root by simp

then have order (of-real t) (map-poly of-real p) = 0
using order-root by blast

ultimately show ?case by auto
next

case (root a p)
define a1 where a1=[:−a,1 :]
have [simp]:a1 6=0 p 6=0 unfolding a1-def using root(2) by auto
have order (of-real t) (map-poly of-real a1) = order t a1

unfolding a1-def by simp
then show ?case

apply (fold a1-def)
by (simp add:order-mult root)

qed

lemma order-pcompose:
assumes pcompose p q 6=0
shows order x (pcompose p q) = order x (q−[:poly q x:]) ∗ order (poly q x) p
using ‹pcompose p q 6=0 ›

proof (induct p rule:poly-root-induct-alt)
case 0
then show ?case by simp

next

7

case (no-proots p)
have order x (p ◦p q) = 0

apply (rule order-0I)
using no-proots by (auto simp:poly-pcompose)

moreover have order (poly q x) p = 0
apply (rule order-0I)
using no-proots by (auto simp:poly-pcompose)

ultimately show ?case by auto
next

case (root a p)
define a1 where a1=[:−a,1 :]
have [simp]: a1 6=0 p 6=0 a1 ◦p q 6=0 p ◦p q 6= 0

subgoal using root(2) unfolding a1-def by simp
subgoal using root(2) by auto
using root(2) by (fold a1-def ,auto simp:pcompose-mult)

have order x ((a1 ∗ p) ◦p q) = order x (a1 ◦p q) + order x (p ◦p q)
unfolding pcompose-mult by (auto simp: order-mult)

also have ... = order x (q−[:poly q x:]) ∗ (order (poly q x) a1 + order (poly q
x) p)

proof −
have order x (a1 ◦p q) = order x (q−[:poly q x:]) ∗ order (poly q x) a1

unfolding a1-def
apply (auto simp: pcompose-pCons algebra-simps diff-conv-add-uminus)
by (simp add: order-0I)

moreover have order x (p ◦p q) = order x (q − [:poly q x:]) ∗ order (poly q
x) p

apply (rule root.hyps)
by auto

ultimately show ?thesis by (auto simp:algebra-simps)
qed
also have ... = order x (q − [:poly q x:]) ∗ order (poly q x) (a1 ∗ p)

by (auto simp:order-mult)
finally show ?case unfolding a1-def .

qed

1.6 Polynomial roots / zeros
definition proots-within:: ′a::comm-semiring-0 poly ⇒ ′a set ⇒ ′a set where

proots-within p s = {x∈s. poly p x=0}

abbreviation proots:: ′a::comm-semiring-0 poly ⇒ ′a set where
proots p ≡ proots-within p UNIV

lemma proots-def : proots p = {x. poly p x=0}
unfolding proots-within-def by auto

lemma proots-within-empty[simp]:
proots-within p {} = {} unfolding proots-within-def by auto

8

lemma proots-within-0 [simp]:
proots-within 0 s = s unfolding proots-within-def by auto

lemma proots-withinI [intro,simp]:
poly p x=0 =⇒ x∈s =⇒ x∈proots-within p s
unfolding proots-within-def by auto

lemma proots-within-iff [simp]:
x∈proots-within p s ←→ poly p x=0 ∧ x∈s
unfolding proots-within-def by auto

lemma proots-within-union:
proots-within p A ∪ proots-within p B = proots-within p (A ∪ B)
unfolding proots-within-def by auto

lemma proots-within-times:
fixes s:: ′a::{semiring-no-zero-divisors,comm-semiring-0} set
shows proots-within (p∗q) s = proots-within p s ∪ proots-within q s
unfolding proots-within-def by auto

lemma proots-within-gcd:
fixes s:: ′a::{factorial-ring-gcd,semiring-gcd-mult-normalize} set
shows proots-within (gcd p q) s= proots-within p s ∩ proots-within q s
unfolding proots-within-def
by (auto simp add: poly-eq-0-iff-dvd)

lemma proots-within-inter :
NO-MATCH UNIV s =⇒ proots-within p s = proots p ∩ s
unfolding proots-within-def by auto

lemma proots-within-proots[simp]:
proots-within p s ⊆ proots p
unfolding proots-within-def by auto

lemma finite-proots[simp]:
fixes p :: ′a::idom poly
shows p 6=0 =⇒ finite (proots-within p s)
unfolding proots-within-def using poly-roots-finite by fast

lemma proots-within-pCons-1-iff :
fixes a:: ′a::idom
shows proots-within [:−a,1 :] s = (if a∈s then {a} else {})

proots-within [:a,−1 :] s = (if a∈s then {a} else {})
by (cases a∈s,auto)

lemma proots-within-uminus[simp]:
fixes p :: ′a::comm-ring poly
shows proots-within (− p) s = proots-within p s
by auto

9

lemma proots-within-smult:
fixes a:: ′a::{semiring-no-zero-divisors,comm-semiring-0}
assumes a 6=0
shows proots-within (smult a p) s = proots-within p s
unfolding proots-within-def using assms by auto

1.7 Polynomial roots counting multiplicities.
definition proots-count:: ′a::idom poly ⇒ ′a set ⇒ nat where

proots-count p s = (
∑

r∈proots-within p s. order r p)

lemma proots-count-emtpy[simp]:proots-count p {} = 0
unfolding proots-count-def by auto

lemma proots-count-times:
fixes s :: ′a::idom set
assumes p∗q 6=0
shows proots-count (p∗q) s = proots-count p s + proots-count q s

proof −
define pts where pts=proots-within p s
define qts where qts=proots-within q s
have [simp]: finite pts finite qts

using ‹p∗q 6=0 › unfolding pts-def qts-def by auto
have (

∑
r∈pts ∪ qts. order r p) = (

∑
r∈pts. order r p)

proof (rule comm-monoid-add-class.sum.mono-neutral-cong-right,simp-all)
show ∀ i∈pts ∪ qts − pts. order i p = 0

unfolding pts-def qts-def proots-within-def using order-root by fastforce
qed
moreover have (

∑
r∈pts ∪ qts. order r q) = (

∑
r∈qts. order r q)

proof (rule comm-monoid-add-class.sum.mono-neutral-cong-right,simp-all)
show ∀ i∈pts ∪ qts − qts. order i q = 0

unfolding pts-def qts-def proots-within-def using order-root by fastforce
qed
ultimately show ?thesis unfolding proots-count-def

apply (simp add:proots-within-times order-mult[OF ‹p∗q 6=0 ›] sum.distrib)
apply (fold pts-def qts-def)
by auto

qed

lemma proots-count-power-n-n:
shows proots-count ([:− a, 1 :]^n) s = (if a∈s ∧ n>0 then n else 0)

proof −
have proots-within ([:− a, 1 :] ^ n) s= (if a∈s ∧ n>0 then {a} else {})

unfolding proots-within-def by auto
thus ?thesis unfolding proots-count-def using order-power-n-n by auto

qed

lemma degree-proots-count:

10

fixes p::complex poly
shows degree p = proots-count p UNIV

proof (induct degree p arbitrary:p)
case 0
then obtain c where c-def :p=[:c:] using degree-eq-zeroE by auto
then show ?case unfolding proots-count-def

apply (cases c=0)
by (auto intro!:sum.infinite simp add:infinite-UNIV-char-0 order-0I)

next
case (Suc n)
then have degree p 6=0 and p 6=0 by auto
obtain z where poly p z = 0

using Fundamental-Theorem-Algebra.fundamental-theorem-of-algebra ‹degree
p 6=0 › constant-degree[of p]

by auto
define onez where onez=[:−z,1 :]
have [simp]: onez 6=0 degree onez = 1 unfolding onez-def by auto
obtain q where q-def :p= onez ∗ q

using poly-eq-0-iff-dvd ‹poly p z = 0 › dvdE unfolding onez-def by blast
hence q 6=0 using ‹p 6=0 › by auto
hence n=degree q using degree-mult-eq[of onez q] ‹Suc n = degree p›

apply (fold q-def)
by auto

hence degree q = proots-count q UNIV using Suc.hyps(1) by simp
moreover have Suc 0 = proots-count onez UNIV

unfolding onez-def using proots-count-power-n-n[of z 1 UNIV]
by auto

ultimately show ?case
unfolding q-def using degree-mult-eq[of onez q] proots-count-times[of onez q

UNIV] ‹q 6=0 ›
by auto

qed

lemma proots-count-smult:
fixes a:: ′a::{semiring-no-zero-divisors,idom}
assumes a 6=0
shows proots-count (smult a p) s= proots-count p s

proof (cases p=0)
case True
then show ?thesis by auto

next
case False
then show ?thesis

unfolding proots-count-def
using order-smult[OF assms] proots-within-smult[OF assms] by auto

qed

lemma proots-count-pCons-1-iff :

11

fixes a:: ′a::idom
shows proots-count [:−a,1 :] s = (if a∈s then 1 else 0)
unfolding proots-count-def
by (cases a∈s,auto simp add:proots-within-pCons-1-iff order-power-n-n[of - 1 ,simplified])

lemma proots-count-uminus[simp]:
proots-count (− p) s = proots-count p s
unfolding proots-count-def by simp

lemma card-proots-within-leq:
assumes p 6=0
shows proots-count p s ≥ card (proots-within p s) using assms

proof (induct rule:poly-root-induct[of - λx. x∈s])
case 0
then show ?case unfolding proots-within-def proots-count-def by auto

next
case (no-roots p)
then have proots-within p s = {} by auto
then show ?case unfolding proots-count-def by auto

next
case (root a p)
have card (proots-within ([:− a, 1 :] ∗ p) s)
≤ card (proots-within [:− a, 1 :] s)+card (proots-within p s)

unfolding proots-within-times by (auto simp add:card-Un-le)
also have ... ≤ 1+ proots-count p s
proof −

have card (proots-within [:− a, 1 :] s) ≤ 1
proof (cases a∈s)

case True
then have proots-within [:− a, 1 :] s = {a} by auto
then show ?thesis by auto

next
case False
then have proots-within [:− a, 1 :] s = {} by auto
then show ?thesis by auto

qed
moreover have card (proots-within p s) ≤ proots-count p s

apply (rule root.hyps)
using root by auto

ultimately show ?thesis by auto
qed
also have ... = proots-count ([:− a,1 :] ∗ p) s

apply (subst proots-count-times)
subgoal by (metis mult-eq-0-iff pCons-eq-0-iff root.prems zero-neq-one)
using root by (auto simp add:proots-count-pCons-1-iff)

finally have card (proots-within ([:− a, 1 :] ∗ p) s) ≤ proots-count ([:− a, 1 :] ∗
p) s .

then show ?case
by (metis (no-types, opaque-lifting) add.inverse-inverse add.inverse-neutral mi-

12

nus-pCons
mult-minus-left proots-count-uminus proots-within-uminus)

qed

lemma proots-count-0-imp-empty:
assumes proots-count p s=0 p 6=0
shows proots-within p s = {}

proof −
have card (proots-within p s) = 0

using card-proots-within-leq[OF ‹p 6=0 ›,of s] ‹proots-count p s=0 › by auto
moreover have finite (proots-within p s) using ‹p 6=0 › by auto
ultimately show ?thesis by auto

qed

lemma proots-count-leq-degree:
assumes p 6=0
shows proots-count p s≤ degree p using assms

proof (induct rule:poly-root-induct[of - λx. x∈s])
case 0
then show ?case by auto

next
case (no-roots p)
then have proots-within p s = {} by auto
then show ?case unfolding proots-count-def by auto

next
case (root a p)
have proots-count ([:a, − 1 :] ∗ p) s = proots-count [:a, − 1 :] s + proots-count p

s
apply (subst proots-count-times)
using root by auto

also have ... = 1 + proots-count p s
proof −

have proots-count [:a, − 1 :] s =1
by (metis (no-types, lifting) add.inverse-inverse add.inverse-neutral mi-

nus-pCons
proots-count-pCons-1-iff proots-count-uminus root.hyps(1))

then show ?thesis by auto
qed
also have ... ≤ degree ([:a,−1 :] ∗ p)

apply (subst degree-mult-eq)
subgoal by auto
subgoal using root by auto
subgoal using root by (simp add: ‹p 6= 0 ›)
done

finally show ?case .
qed

13

lemma proots-count-union-disjoint:
assumes A ∩ B = {} p 6=0
shows proots-count p (A ∪ B) = proots-count p A + proots-count p B
unfolding proots-count-def
apply (subst proots-within-union[symmetric])
apply (subst sum.union-disjoint)
using assms by auto

lemma proots-count-cong:
assumes order-eq:∀ x∈s. order x p = order x q and p 6=0 and q 6=0
shows proots-count p s = proots-count q s unfolding proots-count-def

proof (rule sum.cong)
have poly p x = 0 ←→ poly q x = 0 when x∈s for x

using order-eq that by (simp add: assms(2) assms(3) order-root)
then show proots-within p s = proots-within q s by auto
show

∧
x. x ∈ proots-within q s =⇒ order x p = order x q

using order-eq by auto
qed

lemma proots-count-of-real:
assumes p 6=0
shows proots-count (map-poly of-real p) ((of-real::-⇒ ′a::{real-algebra-1 ,idom}) ‘

s)
= proots-count p s

proof −
define k where k=(of-real::-⇒ ′a)
have proots-within (map-poly of-real p) (k ‘ s) =k ‘ (proots-within p s)
unfolding proots-within-def k-def by (auto simp add:of-real-poly-map-poly[symmetric])

then have proots-count (map-poly of-real p) (k ‘ s)
= (

∑
r∈k ‘ (proots-within p s). order r (map-poly of-real p))

unfolding proots-count-def by simp
also have ... = sum ((λr . order r (map-poly of-real p)) ◦ k) (proots-within p s)

apply (subst sum.reindex)
unfolding k-def by (auto simp add: inj-on-def)

also have ... = proots-count p s unfolding proots-count-def
apply (rule sum.cong)

unfolding k-def comp-def using ‹p 6=0 › by (auto simp add:map-poly-order-of-real)

finally show ?thesis unfolding k-def .
qed

lemma proots-pcompose:
fixes p q:: ′a::field poly
assumes p 6=0 degree q=1
shows proots-count (pcompose p q) s = proots-count p (poly q ‘ s)

proof −
obtain a b where ab:q=[:a,b:] b 6=0

using ‹degree q=1 › degree-eq-oneE by metis

14

define f where f=(λy. (y−a)/b)
have f-eq:f (poly q x) = x poly q (f x) = x for x

unfolding f-def using ab by auto
have proots-count (p ◦p q) s = (

∑
r∈ f ‘ proots-within p (poly q ‘ s). order r (p

◦p q))
unfolding proots-count-def
apply (rule arg-cong2 [where f =sum])
apply (auto simp:poly-pcompose proots-within-def f-eq)
by (metis (mono-tags, lifting) f-eq(1) image-eqI mem-Collect-eq)

also have ... = (
∑

x∈proots-within p (poly q ‘ s). order (f x) (p ◦p q))
apply (subst sum.reindex)
subgoal unfolding f-def inj-on-def using ‹b 6=0 › by auto
by simp

also have ... = (
∑

x∈proots-within p (poly q ‘ s). order x p)
proof −

have p ◦p q 6= 0 using assms(1) assms(2) pcompose-eq-0 by force
moreover have order (f x) (q − [:x:]) = 1 for x
proof −

have order (f x) (q − [:x:]) = order (f x) (smult b [:−((x − a) / b),1 :])
unfolding f-def using ab by auto

also have ... = 1
apply (subst order-smult)
using ‹b 6=0 › unfolding f-def by auto

finally show ?thesis .
qed
ultimately have order (f x) (p ◦p q) = order x p for x

apply (subst order-pcompose)
using f-eq by auto

then show ?thesis by auto
qed
also have ... = proots-count p (poly q ‘ s)

unfolding proots-count-def by auto
finally show ?thesis .

qed

1.8 Composition of a polynomial and a rational function
definition fcompose:: ′a ::field poly ⇒ ′a poly ⇒ ′a poly ⇒ ′a poly where

fcompose p q r = fst (fold-coeffs (λa (c,d). (d∗[:a:] + q ∗ c,r∗d)) p (0 ,1))

lemma fcompose-0 [simp]: fcompose 0 q r = 0
by (simp add: fcompose-def)

lemma fcompose-const[simp]:fcompose [:a:] q r = [:a:]
unfolding fcompose-def by (cases a=0) auto

lemma fcompose-pCons:
fcompose (pCons a p) q1 q2 = smult a (q2^(degree (pCons a p))) + q1 ∗ fcompose

p q1 q2

15

proof (cases p=0)
case False
define ff where ff=(λa (c, d). (d ∗ [:a:] + q1 ∗ c, q2 ∗ d))
define fc where fc=fold-coeffs ff p (0 , 1)
have snd-ff :snd fc = (if p=0 then 1 else q2^(degree p + 1)) unfolding fc-def

apply (induct p)
subgoal by simp
subgoal for a p

by (auto simp add:ff-def split:if-splits prod.splits)
done

have fcompose (pCons a p) q1 q2 = fst (fold-coeffs ff (pCons a p) (0 , 1))
unfolding fcompose-def ff-def by simp

also have ... = fst (ff a fc)
using False unfolding fc-def by auto

also have ... = snd fc ∗ [:a:] + q1 ∗ fst fc
unfolding ff-def by (auto split:prod.splits)

also have ... = smult a (q2^(degree (pCons a p))) + q1 ∗ fst fc
using snd-ff False by auto

also have ... = smult a (q2^(degree (pCons a p))) + q1 ∗ fcompose p q1 q2
unfolding fc-def ff-def fcompose-def by simp

finally show ?thesis .
qed simp

lemma fcompose-uminus:
fcompose (−p) q r = − fcompose p q r
by (induct p) (auto simp:fcompose-pCons)

lemma fcompose-add-less:
assumes degree p1 > degree p2
shows fcompose (p1+p2) q1 q2

= fcompose p1 q1 q2 + q2^(degree p1−degree p2) ∗ fcompose p2 q1 q2
using assms

proof (induction p1 p2 rule: poly-induct2)
case (pCons a1 p1 a2 p2)
have ?case when p2=0

using that by (simp add:fcompose-pCons smult-add-left)
moreover have ?case when p2 6=0 ¬ degree p2 < degree p1

using that pCons(2) by auto
moreover have ?case when p2 6=0 degree p2< degree p1
proof −

define d1 d2 where d1=degree (pCons a1 p1) and d2=degree (pCons a2 p2)
define fp1 fp2 where fp1= fcompose p1 q1 q2 and fp2=fcompose p2 q1 q2

have fcompose (pCons a1 p1 + pCons a2 p2) q1 q2
= fcompose (pCons (a1+a2) (p1+p2)) q1 q2

by simp
also have ... = smult (a1 + a2) (q2 ^ d1) + q1 ∗ fcompose (p1 + p2) q1 q2
proof −

16

have degree (pCons (a1 + a2) (p1 + p2)) = d1
unfolding d1-def using that degree-add-eq-left by fastforce

then show ?thesis unfolding fcompose-pCons by simp
qed
also have ... = smult (a1 + a2) (q2 ^ d1) + q1 ∗ (fp1 + q2 ^ (d1 − d2) ∗

fp2)
proof −

have degree p1 − degree p2 = d1 − d2
unfolding d1-def d2-def using that by simp

then show ?thesis
unfolding pCons(1)[OF that(2),folded fp1-def fp2-def] by simp

qed
also have ... = fcompose (pCons a1 p1) q1 q2 + q2 ^ (d1 − d2)

∗ fcompose (pCons a2 p2) q1 q2
proof −

have d1 > d2 unfolding d1-def d2-def using that by auto
then show ?thesis

unfolding fcompose-pCons
apply (fold d1-def d2-def fp1-def fp2-def)
by (simp add:algebra-simps smult-add-left power-add[symmetric])

qed
finally show ?thesis unfolding d1-def d2-def .

qed
ultimately show ?case by blast

qed simp

lemma fcompose-add-eq:
assumes degree p1 = degree p2
shows q2^(degree p1 − degree (p1+p2)) ∗ fcompose (p1+p2) q1 q2

= fcompose p1 q1 q2 + fcompose p2 q1 q2
using assms

proof (induction p1 p2 rule: poly-induct2)
case (pCons a1 p1 a2 p2)
have ?case when p1+p2=0
proof −

have p2=−p1 using that by algebra
then show ?thesis by (simp add:fcompose-pCons fcompose-uminus smult-add-left)

qed
moreover have ?case when p1=0
proof −

have p2=0
using pCons(2) that by (auto split:if-splits)

then show ?thesis using that by simp
qed
moreover have ?case when p1 6=0 p1+p2 6=0
proof −

define d1 d2 dp where d1=degree (pCons a1 p1) and d2=degree (pCons a2
p2)

and dp = degree p1 − degree (p1+p2)

17

define fp1 fp2 where fp1= fcompose p1 q1 q2 and fp2=fcompose p2 q1 q2

have q2 ^ (degree (pCons a1 p1) − degree (pCons a1 p1 + pCons a2 p2)) ∗
fcompose (pCons a1 p1 + pCons a2 p2) q1 q2

= q2 ^ dp ∗ fcompose (pCons (a1+a2) (p1 +p2)) q1 q2
unfolding dp-def using that by auto

also have ... = smult (a1 + a2) (q2 ^ d1) + q1 ∗ (q2 ^ dp ∗ fcompose (p1 +
p2) q1 q2)

proof −
have degree p1 ≥ degree (p1 + p2)
by (metis degree-add-le degree-pCons-eq-if not-less-eq-eq order-refl pCons.prems

zero-le)
then show ?thesis

unfolding fcompose-pCons dp-def d1-def using that
by (simp add:algebra-simps power-add[symmetric])

qed
also have ... = smult (a1 + a2) (q2 ^ d1) + q1 ∗ (fp1 + fp2)

apply (subst pCons(1)[folded dp-def fp1-def fp2-def])
subgoal by (metis degree-pCons-eq-if diff-Suc-Suc diff-zero not-less-eq-eq

pCons.prems zero-le)
subgoal by simp
done

also have ... = fcompose (pCons a1 p1) q1 q2 + fcompose (pCons a2 p2) q1
q2

proof −
have ∗:d1 = degree (pCons a2 p2)

unfolding d1-def using pCons(2) by simp
show ?thesis

unfolding fcompose-pCons
apply (fold d1-def fp1-def fp2-def ∗)
by (simp add:smult-add-left algebra-simps)

qed
finally show ?thesis .

qed
ultimately show ?case by blast

qed simp

lemma fcompose-add-const:
fcompose ([:a:] + p) q1 q2 = smult a (q2 ^ degree p) + fcompose p q1 q2
apply (cases p)
by (auto simp add:fcompose-pCons smult-add-left)

lemma fcompose-smult: fcompose (smult a p) q1 q2 = smult a (fcompose p q1 q2)
by (induct p) (simp-all add:fcompose-pCons smult-add-right)

lemma fcompose-mult: fcompose (p1∗p2) q1 q2 = fcompose p1 q1 q2 ∗ fcompose
p2 q1 q2
proof (induct p1)

case 0

18

then show ?case by simp
next

case (pCons a p1)
have ?case when p1=0 ∨ p2=0

using that by (auto simp add:fcompose-smult)
moreover have ?case when p1 6=0 p2 6=0 a=0

using that by (simp add:fcompose-pCons pCons)
moreover have ?case when p1 6=0 p2 6=0 a 6=0
proof −

have fcompose (pCons a p1 ∗ p2) q1 q2
= fcompose (pCons 0 (p1 ∗ p2) + smult a p2) q1 q2

by (simp add:algebra-simps)
also have ... = fcompose (pCons 0 (p1 ∗ p2)) q1 q2

+ q2 ^ (degree p1 +1) ∗ fcompose (smult a p2) q1 q2
proof −

have degree (pCons 0 (p1 ∗ p2)) > degree (smult a p2)
using that by (simp add: degree-mult-eq)

from fcompose-add-less[OF this,of q1 q2] that
show ?thesis by (simp add:degree-mult-eq)

qed
also have ... = fcompose (pCons a p1) q1 q2 ∗ fcompose p2 q1 q2
using that by (simp add:fcompose-pCons fcompose-smult pCons algebra-simps)
finally show ?thesis .

qed
ultimately show ?case by blast

qed

lemma fcompose-poly:
assumes poly q2 x 6=0
shows poly p (poly q1 x/poly q2 x) = poly (fcompose p q1 q2) x / poly (q2^(degree

p)) x
apply (induct p)
using assms by (simp-all add:fcompose-pCons field-simps)

lemma poly-fcompose:
assumes poly q2 x 6=0
shows poly (fcompose p q1 q2) x = poly p (poly q1 x/poly q2 x) ∗ (poly q2

x)^(degree p)
using fcompose-poly[OF assms] assms by (auto simp add:field-simps)

lemma poly-fcompose-0-denominator :
assumes poly q2 x=0
shows poly (fcompose p q1 q2) x = poly q1 x ^ degree p ∗ lead-coeff p
apply (induct p)
using assms by (auto simp add:fcompose-pCons)

lemma fcompose-0-denominator :fcompose p q1 0 = smult (lead-coeff p) (q1^degree
p)

apply (induct p)
by (auto simp:fcompose-pCons)

19

lemma fcompose-nzero:
fixes p:: ′a::field poly
assumes p 6=0 and q2 6=0 and nconst:∀ c. q1 6= smult c q2

and infi:infinite (UNIV :: ′a set)
shows fcompose p q1 q2 6= 0 using ‹p 6=0 ›

proof (induct p rule:poly-root-induct-alt)
case 0
then show ?case by simp

next
case (no-proots p)
have False when fcompose p q1 q2 = 0
proof −

obtain x where poly q2 x 6=0
proof −

have finite (proots q2) using ‹q2 6=0 › by auto
then have ∃ x. poly q2 x 6=0

by (meson UNIV-I ex-new-if-finite infi proots-withinI)
then show ?thesis using that by auto

qed
define y where y = poly q1 x / poly q2 x
have poly p y = 0
using ‹fcompose p q1 q2 = 0 › fcompose-poly[OF ‹poly q2 x 6=0 ›,of p q1 ,folded

y-def]
by simp

then show False using no-proots(1) by auto
qed
then show ?case by auto

next
case (root a p)
have fcompose [:− a, 1 :] q1 q2 6= 0

unfolding fcompose-def using nconst[rule-format,of a]
by simp

moreover have fcompose p q1 q2 6= 0
using root by fastforce

ultimately show ?case unfolding fcompose-mult by auto
qed

1.9 Bijection (bij-betw) and the number of polynomial roots
lemma proots-fcompose-bij-eq:

fixes p:: ′a::field poly
assumes bij:bij-betw (λx. poly q1 x/poly q2 x) A B and p 6=0

and nzero:∀ x∈A. poly q2 x 6=0
and max-deg: max (degree q1) (degree q2) ≤ 1
and nconst:∀ c. q1 6= smult c q2
and infi:infinite (UNIV :: ′a set)

shows proots-count p B = proots-count (fcompose p q1 q2) A
using ‹p 6=0 ›

20

proof (induct p rule:poly-root-induct-alt)
case 0
then show ?case by simp

next
case (no-proots p)
have proots-count p B = 0
proof −

have proots-within p B = {}
using no-proots by auto

then show ?thesis unfolding proots-count-def by auto
qed
moreover have proots-count (fcompose p q1 q2) A = 0
proof −

have proots-within (fcompose p q1 q2) A = {}
using no-proots unfolding proots-within-def
by (smt div-0 empty-Collect-eq fcompose-poly nzero)

then show ?thesis unfolding proots-count-def by auto
qed
ultimately show ?case by auto

next
case (root b p)
have proots-count ([:− b, 1 :] ∗ p) B = proots-count [:− b, 1 :] B + proots-count

p B
using proots-count-times[OF ‹[:− b, 1 :] ∗ p 6= 0 ›] by simp

also have ... = proots-count (fcompose [:− b, 1 :] q1 q2) A
+ proots-count (fcompose p q1 q2) A

proof −
define g where g=(λx. poly q1 x/poly q2 x)

have proots-count [:− b, 1 :] B = proots-count (fcompose [:− b, 1 :] q1 q2) A
proof (cases b∈B)

case True
then have proots-count [:− b, 1 :] B = 1

unfolding proots-count-pCons-1-iff by simp
moreover have proots-count (fcompose [:− b, 1 :] q1 q2) A = 1
proof −

obtain a where b=g a a∈A
using bij[folded g-def] True
by (metis bij-betwE bij-betw-the-inv-into f-the-inv-into-f-bij-betw)

define qq where qq=q1 − smult b q2
have qq-0 :poly qq a=0 and qq-deg: degree qq≤1 and ‹qq 6=0 ›

unfolding qq-def
subgoal using ‹b=g a› nzero[rule-format,OF ‹a∈A›] unfolding g-def by

auto
subgoal using max-deg by (simp add: degree-diff-le)
subgoal using nconst[rule-format,of b] by auto
done

have proots-within qq A = {a}
proof −

21

have a∈proots-within qq A
using qq-0 ‹a∈A› by auto

moreover have card (proots-within qq A) = 1
proof −

have finite (proots-within qq A) using ‹qq 6=0 › by simp
moreover have proots-within qq A 6= {}

using ‹a∈proots-within qq A› by auto
ultimately have card (proots-within qq A) 6=0 by auto
moreover have card (proots-within qq A) ≤ 1
by (meson ‹qq 6= 0 › card-proots-within-leq le-trans proots-count-leq-degree

qq-deg)
ultimately show ?thesis by auto

qed
ultimately show ?thesis by (metis card-1-singletonE singletonD)

qed
moreover have order a qq=1

by (metis One-nat-def ‹qq 6= 0 › le-antisym le-zero-eq not-less-eq-eq or-
der-degree

order-root qq-0 qq-deg)
ultimately show ?thesis unfolding fcompose-def proots-count-def qq-def

by auto
qed
ultimately show ?thesis by auto

next
case False
then have proots-count [:− b, 1 :] B = 0

unfolding proots-count-pCons-1-iff by simp
moreover have proots-count (fcompose [:− b, 1 :] q1 q2) A = 0
proof −

have proots-within (fcompose [:− b, 1 :] q1 q2) A = {}
proof (rule ccontr)

assume proots-within (fcompose [:− b, 1 :] q1 q2) A 6= {}
then obtain a where a∈A poly q1 a = b ∗ poly q2 a

unfolding fcompose-def proots-within-def by auto
then have b = g a

unfolding g-def using nzero[rule-format,OF ‹a∈A›] by auto
then have b∈B using ‹a∈A› bij[folded g-def] using bij-betwE by blast
then show False using False by auto

qed
then show ?thesis unfolding proots-count-def by auto

qed
ultimately show ?thesis by simp

qed
moreover have proots-count p B = proots-count (fcompose p q1 q2) A

apply (rule root.hyps)
using mult-eq-0-iff root.prems by blast

ultimately show ?thesis by auto
qed
also have ... = proots-count (fcompose ([:− b, 1 :] ∗ p) q1 q2) A

22

proof (cases A={})
case False
have fcompose [:− b, 1 :] q1 q2 6=0

using nconst[rule-format,of b] unfolding fcompose-def by auto
moreover have fcompose p q1 q2 6= 0

apply (rule fcompose-nzero[OF - - nconst infi])
subgoal using ‹[:− b, 1 :] ∗ p 6= 0 › by auto
subgoal using nzero False by auto
done

ultimately show ?thesis unfolding fcompose-mult
apply (subst proots-count-times)
by auto

qed auto
finally show ?case .

qed

lemma proots-card-fcompose-bij-eq:
fixes p:: ′a::field poly
assumes bij:bij-betw (λx. poly q1 x/poly q2 x) A B and p 6=0

and nzero:∀ x∈A. poly q2 x 6=0
and max-deg: max (degree q1) (degree q2) ≤ 1
and nconst:∀ c. q1 6= smult c q2
and infi:infinite (UNIV :: ′a set)

shows card (proots-within p B) = card (proots-within (fcompose p q1 q2) A)
using ‹p 6=0 ›

proof (induct p rule:poly-root-induct-alt)
case 0
then show ?case by simp

next
case (no-proots p)
have proots-within p B = {} using no-proots by auto
moreover have proots-within (fcompose p q1 q2) A = {}

using no-proots fcompose-poly
by (smt Collect-empty-eq divide-eq-0-iff nzero proots-within-def)

ultimately show ?case by auto
next

case (root b p)
then have [simp]:p 6=0 by auto

have ?case when b/∈B ∨ poly p b=0
proof −

have proots-within ([:− b, 1 :] ∗ p) B = proots-within p B
using that by auto

moreover have proots-within (fcompose ([:− b, 1 :] ∗ p) q1 q2) A
= proots-within (fcompose p q1 q2) A

using that nzero unfolding fcompose-mult proots-within-times
apply (auto simp add: poly-fcompose)
using bij bij-betwE by blast

ultimately show ?thesis using root by auto

23

qed
moreover have ?case when b∈B poly p b 6=0
proof −

define bb where bb=[:− b, 1 :]
have card (proots-within (bb ∗ p) B) = card {b} + card (proots-within p B)
proof −

have proots-within bb B = {b}
using that unfolding bb-def by auto

then show ?thesis unfolding proots-within-times
apply (subst card-Un-disjoint)
by (use that in auto)

qed
also have ... = 1 + card (proots-within (fcompose p q1 q2) A)

using root.hyps by simp
also have ... = card (proots-within (fcompose (bb ∗ p) q1 q2) A)

unfolding proots-within-times fcompose-mult
proof (subst card-Un-disjoint)

obtain a where b-poly:b=poly q1 a / poly q2 a and a∈A
by (metis (no-types, lifting) ‹b ∈ B› bij bij-betwE bij-betw-the-inv-into

f-the-inv-into-f-bij-betw)
define bbq pq where bbq=fcompose bb q1 q2 and pq=fcompose p q1 q2
have bbq-0 :poly bbq a=0 and bbq-deg: degree bbq≤1 and bbq 6=0

unfolding bbq-def bb-def
subgoal using ‹a ∈ A› b-poly nzero poly-fcompose by fastforce
subgoal by (metis (no-types, lifting) degree-add-le degree-pCons-eq-if de-

gree-smult-le
dual-order .trans fcompose-const fcompose-pCons max.boundedE max-deg

mult-cancel-left2
one-neq-zero one-poly-eq-simps(1) power .simps)
subgoal by (metis ‹a ∈ A› ‹poly (fcompose [:− b, 1 :] q1 q2) a = 0 ›

fcompose-nzero infi
nconst nzero one-neq-zero pCons-eq-0-iff)

done
show finite (proots-within bbq A) using ‹bbq 6=0 › by simp
show finite (proots-within pq A) unfolding pq-def

by (metis ‹a ∈ A› ‹p 6= 0 › fcompose-nzero finite-proots infi nconst nzero
poly-0 pq-def)

have bbq-a:proots-within bbq A = {a}
proof −

have a∈proots-within bbq A
by (simp add: ‹a ∈ A› bbq-0)

moreover have card (proots-within bbq A) = 1
proof −

have card (proots-within bbq A) 6=0
using ‹a∈proots-within bbq A› ‹finite (proots-within bbq A)›
by auto

moreover have card (proots-within bbq A) ≤ 1
by (meson ‹bbq 6= 0 › card-proots-within-leq le-trans proots-count-leq-degree

bbq-deg)

24

ultimately show ?thesis by auto
qed
ultimately show ?thesis by (metis card-1-singletonE singletonD)

qed
show proots-within (bbq) A ∩ proots-within (pq) A = {}

using b-poly bbq-a fcompose-poly nzero pq-def that(2) by fastforce
show 1 + card (proots-within pq A) = card (proots-within bbq A) + card

(proots-within pq A)
using bbq-a by simp

qed
finally show ?thesis unfolding bb-def .

qed
ultimately show ?case by auto

qed

lemma proots-pcompose-bij-eq:
fixes p:: ′a::idom poly
assumes bij:bij-betw (λx. poly q x) A B and p 6=0

and q-deg: degree q = 1
shows proots-count p B = proots-count (p ◦p q) A using ‹p 6=0 ›

proof (induct p rule:poly-root-induct-alt)
case 0
then show ?case by simp

next
case (no-proots p)
have proots-count p B = 0
proof −

have proots-within p B = {}
using no-proots by auto

then show ?thesis unfolding proots-count-def by auto
qed
moreover have proots-count (p ◦p q) A = 0
proof −

have proots-within (p ◦p q) A = {}
using no-proots unfolding proots-within-def
by (auto simp:poly-pcompose)

then show ?thesis unfolding proots-count-def by auto
qed
ultimately show ?case by auto

next
case (root b p)
have proots-count ([:− b, 1 :] ∗ p) B = proots-count [:− b, 1 :] B + proots-count

p B
using proots-count-times[OF ‹[:− b, 1 :] ∗ p 6= 0 ›] by simp

also have ... = proots-count ([:− b, 1 :] ◦p q) A + proots-count (p ◦p q) A
proof −

have proots-count [:− b, 1 :] B = proots-count ([:− b, 1 :] ◦p q) A
proof (cases b∈B)

case True

25

then have proots-count [:− b, 1 :] B = 1
unfolding proots-count-pCons-1-iff by simp

moreover have proots-count ([:− b, 1 :] ◦p q) A = 1
proof −

obtain a where b=poly q a a∈A
using True bij by (metis bij-betwE bij-betw-the-inv-into f-the-inv-into-f-bij-betw)
define qq where qq=[:− b:] + q
have qq-0 :poly qq a=0 and qq-deg: degree qq≤1 and ‹qq 6=0 ›

unfolding qq-def
subgoal using ‹b=poly q a› by auto
subgoal using q-deg by (simp add: degree-add-le)
subgoal using q-deg add.inverse-unique by force
done

have proots-within qq A = {a}
proof −

have a∈proots-within qq A
using qq-0 ‹a∈A› by auto

moreover have card (proots-within qq A) = 1
proof −

have finite (proots-within qq A) using ‹qq 6=0 › by simp
moreover have proots-within qq A 6= {}

using ‹a∈proots-within qq A› by auto
ultimately have card (proots-within qq A) 6=0 by auto
moreover have card (proots-within qq A) ≤ 1
by (meson ‹qq 6= 0 › card-proots-within-leq le-trans proots-count-leq-degree

qq-deg)
ultimately show ?thesis by auto

qed
ultimately show ?thesis by (metis card-1-singletonE singletonD)

qed
moreover have order a qq=1

by (metis One-nat-def ‹qq 6= 0 › le-antisym le-zero-eq not-less-eq-eq or-
der-degree

order-root qq-0 qq-deg)
ultimately show ?thesis unfolding pcompose-def proots-count-def qq-def

by auto
qed
ultimately show ?thesis by auto

next
case False
then have proots-count [:− b, 1 :] B = 0

unfolding proots-count-pCons-1-iff by simp
moreover have proots-count ([:− b, 1 :] ◦p q) A = 0
proof −

have proots-within ([:− b, 1 :] ◦p q) A = {}
unfolding pcompose-def
apply auto
using False bij bij-betwE by blast

then show ?thesis unfolding proots-count-def by auto

26

qed
ultimately show ?thesis by simp

qed
moreover have proots-count p B = proots-count (p ◦p q) A

apply (rule root.hyps)
using ‹[:− b, 1 :] ∗ p 6= 0 › by auto

ultimately show ?thesis by auto
qed
also have ... = proots-count (([:− b, 1 :] ∗ p) ◦p q) A

unfolding pcompose-mult
apply (subst proots-count-times)
subgoal by (metis (no-types, lifting) One-nat-def add.right-neutral degree-0

degree-mult-eq
degree-pCons-eq-if degree-pcompose mult-eq-0-iff one-neq-zero one-pCons pcom-

pose-mult
q-deg root.prems)

by simp
finally show ?case .

qed

lemma proots-card-pcompose-bij-eq:
fixes p:: ′a::idom poly
assumes bij:bij-betw (λx. poly q x) A B and p 6=0

and q-deg: degree q = 1
shows card (proots-within p B) = card (proots-within (p ◦p q) A) using ‹p 6=0 ›

proof (induct p rule:poly-root-induct-alt)
case 0
then show ?case by auto

next
case (no-proots p)
have proots-within p B = {} using no-proots by auto
moreover have proots-within (p ◦p q) A = {} using no-proots

by (simp add: poly-pcompose proots-within-def)
ultimately show ?case by auto

next
case (root b p)
then have [simp]:p 6=0 by auto
have ?case when b/∈B ∨ poly p b=0
proof −

have proots-within ([:− b, 1 :] ∗ p) B = proots-within p B
using that by auto

moreover have proots-within (([:− b, 1 :] ∗ p) ◦p q) A = proots-within (p ◦p
q) A

using that unfolding pcompose-mult proots-within-times
apply (auto simp add: poly-pcompose)
using bij bij-betwE by blast

ultimately show ?thesis using root.hyps[OF ‹p 6=0 ›] by auto
qed
moreover have ?case when b∈B poly p b 6=0

27

proof −
define bb where bb=[:− b, 1 :]
have card (proots-within (bb ∗ p) B) = card {b} + card (proots-within p B)
proof −

have proots-within bb B = {b}
using that unfolding bb-def by auto

then show ?thesis unfolding proots-within-times
apply (subst card-Un-disjoint)
by (use that in auto)

qed
also have ... = 1 + card (proots-within (p ◦p q) A)

using root.hyps by simp
also have ... = card (proots-within ((bb ∗ p) ◦p q) A)

unfolding proots-within-times pcompose-mult
proof (subst card-Un-disjoint)

obtain a where b=poly q a a∈A
by (metis ‹b ∈ B› bij bij-betwE bij-betw-the-inv-into f-the-inv-into-f-bij-betw)

define bbq pq where bbq=bb ◦p q and pq=p ◦p q
have bbq-0 :poly bbq a=0 and bbq-deg: degree bbq≤1 and bbq 6=0

unfolding bbq-def bb-def poly-pcompose
subgoal using ‹b=poly q a› by auto
subgoal using q-deg by (simp add: degree-add-le degree-pcompose)
subgoal using pcompose-eq-0 q-deg by fastforce
done

show finite (proots-within bbq A) using ‹bbq 6=0 › by simp
show finite (proots-within pq A) unfolding pq-def

by (metis ‹p 6= 0 › finite-proots pcompose-eq-0 q-deg zero-less-one)
have bbq-a:proots-within bbq A = {a}
proof −

have a∈proots-within bbq A
unfolding bb-def proots-within-def poly-pcompose bbq-def
using ‹b=poly q a› ‹a∈A› by simp

moreover have card (proots-within bbq A) = 1
proof −

have card (proots-within bbq A) 6=0
using ‹a∈proots-within bbq A› ‹finite (proots-within bbq A)›
by auto

moreover have card (proots-within bbq A) ≤ 1
by (meson ‹bbq 6= 0 › card-proots-within-leq le-trans proots-count-leq-degree

bbq-deg)
ultimately show ?thesis by auto

qed
ultimately show ?thesis by (metis card-1-singletonE singletonD)

qed
show proots-within (bbq) A ∩ proots-within (pq) A = {}
using bbq-a ‹b = poly q a› that(2) unfolding pq-def by (simp add:poly-pcompose)

show 1 + card (proots-within pq A) = card (proots-within bbq A) + card
(proots-within pq A)

using bbq-a by simp

28

qed
finally show ?thesis unfolding bb-def .

qed
ultimately show ?case by auto

qed

end

2 Budan–Fourier theorem
theory Budan-Fourier imports

BF-Misc
begin

The Budan–Fourier theorem is a classic result in real algebraic geometry
to over-approximate real roots of a polynomial (counting multiplicity) within
an interval. When all roots of the the polynomial are known to be real, the
over-approximation becomes tight – the number of roots are counted exactly.
Also note that Descartes’ rule of sign is a direct consequence of the Budan–
Fourier theorem.

The proof mainly follows Theorem 2.35 in Basu, S., Pollack, R., Roy,
M.-F.: Algorithms in Real Algebraic Geometry. Springer Berlin Heidelberg,
Berlin, Heidelberg (2006).

2.1 More results related to sign-r-pos
lemma sign-r-pos-nzero-right:

assumes nzero:∀ x. c<x ∧ x≤d −→ poly p x 6=0 and c<d
shows if sign-r-pos p c then poly p d>0 else poly p d<0

proof (cases sign-r-pos p c)
case True
then obtain d ′ where d ′>c and d ′-pos:∀ y>c. y < d ′ −→ 0 < poly p y

unfolding sign-r-pos-def eventually-at-right by auto
have False when ¬ poly p d>0
proof −

have ∃ x>(c + min d d ′) / 2 . x < d ∧ poly p x = 0
apply (rule poly-IVT-neg)
using ‹d ′>c› ‹c<d› that nzero[rule-format,of d,simplified]
by (auto intro:d ′-pos[rule-format])

then show False using nzero ‹c < d ′› by auto
qed
then show ?thesis using True by auto

next
case False
then have sign-r-pos (−p) c

using sign-r-pos-minus[of p c] nzero[rule-format,of d,simplified] ‹c<d›
by fastforce

then obtain d ′ where d ′>c and d ′-neg:∀ y>c. y < d ′ −→ 0 > poly p y

29

unfolding sign-r-pos-def eventually-at-right by auto
have False when ¬ poly p d<0
proof −

have ∃ x>(c + min d d ′) / 2 . x < d ∧ poly p x = 0
apply (rule poly-IVT-pos)
using ‹d ′>c› ‹c<d› that nzero[rule-format,of d,simplified]
by (auto intro:d ′-neg[rule-format])

then show False using nzero ‹c < d ′› by auto
qed
then show ?thesis using False by auto

qed

lemma sign-r-pos-at-left:
assumes p 6=0
shows if even (order c p) ←→sign-r-pos p c then eventually (λx. poly p x>0)

(at-left c)
else eventually (λx. poly p x<0) (at-left c)

using assms
proof (induct p rule:poly-root-induct-alt)

case 0
then show ?case by simp

next
case (no-proots p)
then have [simp]:order c p = 0 using order-root by blast
have ?case when poly p c >0
proof −

have ∀ F x in at c. 0 < poly p x
using that
by (metis (no-types, lifting) less-linear no-proots.hyps not-eventuallyD

poly-IVT-neg poly-IVT-pos)
then have ∀ F x in at-left c. 0 < poly p x

using eventually-at-split by blast
moreover have sign-r-pos p c using sign-r-pos-rec[OF ‹p 6=0 ›] that by auto
ultimately show ?thesis by simp

qed
moreover have ?case when poly p c <0
proof −

have ∀ F x in at c. poly p x < 0
using that
by (metis (no-types, lifting) less-linear no-proots.hyps not-eventuallyD

poly-IVT-neg poly-IVT-pos)
then have ∀ F x in at-left c. poly p x < 0

using eventually-at-split by blast
moreover have ¬ sign-r-pos p c using sign-r-pos-rec[OF ‹p 6=0 ›] that by auto
ultimately show ?thesis by simp

qed
ultimately show ?case using no-proots(1)[of c] by argo

next
case (root a p)

30

define aa where aa=[:−a,1 :]
have [simp]:aa 6=0 p 6=0 using ‹[:− a, 1 :] ∗ p 6= 0 › unfolding aa-def by auto
have ?case when c>a
proof −

have ?thesis = (if even (order c p) = sign-r-pos p c
then ∀ F x in at-left c. 0 < poly (aa ∗ p) x
else ∀ F x in at-left c. poly (aa ∗ p) x < 0)

proof −
have order c aa=0 unfolding aa-def using order-0I that by force
then have even (order c (aa ∗ p)) = even (order c p)

by (subst order-mult) auto
moreover have sign-r-pos aa c

unfolding aa-def using that
by (auto simp: sign-r-pos-rec)

then have sign-r-pos (aa ∗ p) c = sign-r-pos p c
by (subst sign-r-pos-mult) auto

ultimately show ?thesis
by (fold aa-def) auto

qed
also have ... = (if even (order c p) = sign-r-pos p c

then ∀ F x in at-left c. 0 < poly p x
else ∀ F x in at-left c. poly p x < 0)

proof −
have ∀ F x in at-left c. 0 < poly aa x

apply (simp add:aa-def)
using that eventually-at-left-field by blast

then have (∀ F x in at-left c. 0 < poly (aa ∗ p) x) ←→ (∀ F x in at-left c. 0
< poly p x)

(∀ F x in at-left c. 0 > poly (aa ∗ p) x) ←→ (∀ F x in at-left c. 0 > poly p x)
apply auto
by (erule (1) eventually-elim2 ,simp add: zero-less-mult-iff mult-less-0-iff)+

then show ?thesis by simp
qed
also have ... using root.hyps by simp
finally show ?thesis .

qed
moreover have ?case when c<a
proof −

have ?thesis = (if even (order c p) = sign-r-pos p c
then ∀ F x in at-left c. poly (aa ∗ p) x < 0
else ∀ F x in at-left c. 0 < poly (aa ∗ p) x)

proof −
have order c aa=0 unfolding aa-def using order-0I that by force
then have even (order c (aa ∗ p)) = even (order c p)

by (subst order-mult) auto
moreover have ¬ sign-r-pos aa c

unfolding aa-def using that
by (auto simp: sign-r-pos-rec)

then have sign-r-pos (aa ∗ p) c = (¬ sign-r-pos p c)

31

by (subst sign-r-pos-mult) auto
ultimately show ?thesis

by (fold aa-def) auto
qed
also have ... = (if even (order c p) = sign-r-pos p c

then ∀ F x in at-left c. 0 < poly p x
else ∀ F x in at-left c. poly p x < 0)

proof −
have ∀ F x in at-left c. poly aa x < 0

apply (simp add:aa-def)
using that eventually-at-filter by fastforce

then have (∀ F x in at-left c. 0 < poly (aa ∗ p) x) ←→ (∀ F x in at-left c.
poly p x < 0)

(∀ F x in at-left c. 0 > poly (aa ∗ p) x) ←→ (∀ F x in at-left c. 0 < poly p x)
apply auto
by (erule (1) eventually-elim2 ,simp add: zero-less-mult-iff mult-less-0-iff)+

then show ?thesis by simp
qed
also have ... using root.hyps by simp
finally show ?thesis .

qed
moreover have ?case when c=a
proof −

have ?thesis = (if even (order c p) = sign-r-pos p c
then ∀ F x in at-left c. 0 > poly (aa ∗ p) x
else ∀ F x in at-left c. poly (aa ∗ p) x > 0)

proof −
have order c aa=1 unfolding aa-def using that

by (metis order-power-n-n power-one-right)
then have even (order c (aa ∗ p)) = odd (order c p)

by (subst order-mult) auto
moreover have sign-r-pos aa c

unfolding aa-def using that
by (auto simp: sign-r-pos-rec pderiv-pCons)

then have sign-r-pos (aa ∗ p) c = sign-r-pos p c
by (subst sign-r-pos-mult) auto

ultimately show ?thesis
by (fold aa-def) auto

qed
also have ... = (if even (order c p) = sign-r-pos p c

then ∀ F x in at-left c. 0 < poly p x
else ∀ F x in at-left c. poly p x < 0)

proof −
have ∀ F x in at-left c. 0 > poly aa x

apply (simp add:aa-def)
using that by (simp add: eventually-at-filter)

then have (∀ F x in at-left c. 0 < poly (aa ∗ p) x) ←→ (∀ F x in at-left c. 0
> poly p x)

(∀ F x in at-left c. 0 > poly (aa ∗ p) x) ←→ (∀ F x in at-left c. 0 < poly p x)

32

apply auto
by (erule (1) eventually-elim2 ,simp add: zero-less-mult-iff mult-less-0-iff)+

then show ?thesis by simp
qed
also have ... using root.hyps by simp
finally show ?thesis .

qed
ultimately show ?case by argo

qed

lemma sign-r-pos-nzero-left:
assumes nzero:∀ x. d≤x ∧ x<c −→ poly p x 6=0 and d<c
shows if even (order c p) ←→sign-r-pos p c then poly p d>0 else poly p d<0

proof (cases even (order c p) ←→sign-r-pos p c)
case True
then have eventually (λx. poly p x>0) (at-left c)

using nzero[rule-format,of d,simplified] ‹d<c› sign-r-pos-at-left
by (simp add: order-root)

then obtain d ′ where d ′<c and d ′-pos:∀ y>d ′. y < c −→ 0 < poly p y
unfolding eventually-at-left by auto

have False when ¬ poly p d>0
proof −

have ∃ x>d. x < (c + max d d ′) / 2 ∧ poly p x = 0
apply (rule poly-IVT-pos)
using ‹d ′<c› ‹c>d› that nzero[rule-format,of d,simplified]
by (auto intro:d ′-pos[rule-format])

then show False using nzero ‹c > d ′› by auto
qed
then show ?thesis using True by auto

next
case False
then have eventually (λx. poly p x<0) (at-left c)

using nzero[rule-format,of d,simplified] ‹d<c› sign-r-pos-at-left
by (simp add: order-root)

then obtain d ′ where d ′<c and d ′-neg:∀ y>d ′. y < c −→ 0 > poly p y
unfolding eventually-at-left by auto

have False when ¬ poly p d<0
proof −

have ∃ x>d. x < (c + max d d ′) / 2 ∧ poly p x = 0
apply (rule poly-IVT-neg)
using ‹d ′<c› ‹c>d› that nzero[rule-format,of d,simplified]
by (auto intro:d ′-neg[rule-format])

then show False using nzero ‹c > d ′› by auto
qed
then show ?thesis using False by auto

qed

33

2.2 Fourier sequences
function pders::real poly ⇒ real poly list where

pders p = (if p =0 then [] else Cons p (pders (pderiv p)))
by auto

termination
apply (relation measure (λp. if p=0 then 0 else degree p + 1))
by (auto simp:degree-pderiv pderiv-eq-0-iff)

declare pders.simps[simp del]

lemma set-pders-nzero:
assumes p 6=0 q∈set (pders p)
shows q 6=0
using assms

proof (induct p rule:pders.induct)
case (1 p)
then have q ∈ set (p # pders (pderiv p))

by (simp add: pders.simps)
then have q=p ∨ q∈set (pders (pderiv p)) by auto
moreover have ?case when q=p

using that ‹p 6=0 › by auto
moreover have ?case when q∈set (pders (pderiv p))

using 1 pders.simps by fastforce
ultimately show ?case by auto

qed

2.3 Sign variations for Fourier sequences
definition changes-itv-der :: real ⇒ real ⇒real poly ⇒ int where

changes-itv-der a b p= (let ps= pders p in changes-poly-at ps a − changes-poly-at
ps b)

definition changes-gt-der :: real ⇒real poly ⇒ int where
changes-gt-der a p= changes-poly-at (pders p) a

definition changes-le-der :: real ⇒real poly ⇒ int where
changes-le-der b p= (degree p − changes-poly-at (pders p) b)

lemma changes-poly-pos-inf-pders[simp]:changes-poly-pos-inf (pders p) = 0
proof (induct degree p arbitrary:p)

case 0
then obtain a where p=[:a:] using degree-eq-zeroE by auto
then show ?case

apply (cases a=0)
by (auto simp:changes-poly-pos-inf-def pders.simps)

next
case (Suc x)
then have pderiv p 6=0 p 6=0 using pderiv-eq-0-iff by force+
define ps where ps=pders (pderiv (pderiv p))

34

have ps:pders p = p# pderiv p #ps pders (pderiv p) = pderiv p#ps
unfolding ps-def by (simp-all add: ‹p 6= 0 › ‹pderiv p 6= 0 › pders.simps)

have hyps:changes-poly-pos-inf (pders (pderiv p)) = 0
apply (rule Suc(1))
using ‹Suc x = degree p› by (metis degree-pderiv diff-Suc-1)

moreover have sgn-pos-inf p ∗ sgn-pos-inf (pderiv p) >0
unfolding sgn-pos-inf-def lead-coeff-pderiv
apply (simp add:algebra-simps sgn-mult)
using Suc.hyps(2) ‹p 6= 0 › by linarith

ultimately show ?case unfolding changes-poly-pos-inf-def ps by auto
qed

lemma changes-poly-neg-inf-pders[simp]: changes-poly-neg-inf (pders p) = degree
p
proof (induct degree p arbitrary:p)

case 0
then obtain a where p=[:a:] using degree-eq-zeroE by auto
then show ?case unfolding changes-poly-neg-inf-def by (auto simp: pders.simps)

next
case (Suc x)
then have pderiv p 6=0 p 6=0 using pderiv-eq-0-iff by force+
then have changes-poly-neg-inf (pders p)

= changes-poly-neg-inf (p # pderiv p#pders (pderiv (pderiv p)))
by (simp add:pders.simps)

also have ... = 1 + changes-poly-neg-inf (pderiv p#pders (pderiv (pderiv p)))
proof −

have sgn-neg-inf p ∗ sgn-neg-inf (pderiv p) < 0
unfolding sgn-neg-inf-def using ‹p 6=0 › ‹pderiv p 6=0 ›

by (auto simp add:lead-coeff-pderiv degree-pderiv coeff-pderiv sgn-mult pderiv-eq-0-iff)
then show ?thesis unfolding changes-poly-neg-inf-def by auto

qed
also have ... = 1 + changes-poly-neg-inf (pders (pderiv p))

using ‹pderiv p 6=0 › by (simp add:pders.simps)
also have ... = 1 + degree (pderiv p)

apply (subst Suc(1))
using Suc(2) by (auto simp add: degree-pderiv)

also have ... = degree p
by (metis Suc.hyps(2) degree-pderiv diff-Suc-1 plus-1-eq-Suc)

finally show ?case .
qed

lemma pders-coeffs-sgn-eq:map (λp. sgn(poly p 0)) (pders p) = map sgn (coeffs p)
proof (induct degree p arbitrary:p)

case 0
then obtain a where p=[:a:] using degree-eq-zeroE by auto
then show ?case by (auto simp: pders.simps)

next
case (Suc x)
then have pderiv p 6=0 p 6=0 using pderiv-eq-0-iff by force+

35

have map (λp. sgn (poly p 0)) (pders p)
= sgn (poly p 0)# map (λp. sgn (poly p 0)) (pders (pderiv p))

apply (subst pders.simps)
using ‹p 6=0 › by simp

also have ... = sgn (coeff p 0) # map sgn (coeffs (pderiv p))
proof −

have sgn (poly p 0) = sgn (coeff p 0) by (simp add: poly-0-coeff-0)
then show ?thesis

apply (subst Suc(1))
subgoal by (metis Suc.hyps(2) degree-pderiv diff-Suc-1)
subgoal by auto
done

qed
also have ... = map sgn (coeffs p)
proof (rule nth-equalityI)

show p-length:length (sgn (coeff p 0) # map sgn (coeffs (pderiv p)))
= length (map sgn (coeffs p))

by (metis Suc.hyps(2) ‹p 6= 0 › ‹pderiv p 6= 0 › degree-pderiv diff-Suc-1
length-Cons

length-coeffs-degree length-map)
show (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) ! i = map sgn (coeffs p)

! i
if i < length (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) for i

proof −
show (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) ! i = map sgn (coeffs p)

! i
proof (cases i)

case 0
then show ?thesis

by (simp add: ‹p 6= 0 › coeffs-nth)
next

case (Suc i ′)
then show ?thesis

using that p-length
apply simp
apply (subst (1 2) coeffs-nth)
by (auto simp add: ‹p 6= 0 › ‹pderiv p 6= 0 › length-coeffs-degree coeff-pderiv

sgn-mult)
qed

qed
qed
finally show ?case .

qed

lemma changes-poly-at-pders-0 :changes-poly-at (pders p) 0 = changes (coeffs p)
unfolding changes-poly-at-def
apply (subst (1 2) changes-map-sgn-eq)
by (auto simp add:pders-coeffs-sgn-eq comp-def)

36

2.4 Budan–Fourier theorem
lemma budan-fourier-aux-right:

assumes c<d2 and p 6=0
assumes ∀ x. c<x∧ x≤d2 −→ (∀ q∈set (pders p). poly q x 6=0)
shows changes-itv-der c d2 p=0
using assms(2−3)

proof (induct degree p arbitrary:p)
case 0
then obtain a where p=[:a:] a 6=0 by (metis degree-eq-zeroE pCons-0-0)
then show ?case

by (auto simp add:changes-itv-der-def pders.simps intro:order-0I)
next

case (Suc n)
then have [simp]:pderiv p 6=0 by (metis nat.distinct(1) pderiv-eq-0-iff)
note nzero=‹∀ x. c < x ∧ x ≤ d2 −→ (∀ q∈set (pders p). poly q x 6= 0)›

have hyps:changes-itv-der c d2 (pderiv p) = 0
apply (rule Suc(1))
subgoal by (metis Suc.hyps(2) degree-pderiv diff-Suc-1)
subgoal by (simp add: Suc.prems(1) Suc.prems(2) pders.simps)
subgoal by (simp add: Suc.prems(1) nzero pders.simps)
done

have pders-changes-c:changes-poly-at (r# pders q) c = (if sign-r-pos q c ←→
poly r c>0

then changes-poly-at (pders q) c else 1+changes-poly-at (pders q) c)
when poly r c 6=0 q 6=0 for q r
using ‹q 6=0 ›

proof (induct q rule:pders.induct)
case (1 q)
have ?case when pderiv q=0
proof −

have degree q=0 using that pderiv-eq-0-iff by blast
then obtain a where q=[:a:] a 6=0 using ‹q 6=0 › by (metis degree-eq-zeroE

pCons-0-0)
then show ?thesis using ‹poly r c 6=0 ›
by (auto simp add:sign-r-pos-rec changes-poly-at-def mult-less-0-iff pders.simps)

qed
moreover have ?case when pderiv q 6=0
proof −

obtain qs where qs:pders q=q#qs pders (pderiv q) = qs
using ‹q 6=0 › by (simp add:pders.simps)

have changes-poly-at (r # qs) c = (if sign-r-pos (pderiv q) c = (0 < poly r
c)

then changes-poly-at qs c else 1 + changes-poly-at qs c)
using 1 ‹pderiv q 6=0 › unfolding qs by simp

then show ?thesis unfolding qs
apply (cases poly q c=0)

subgoal unfolding changes-poly-at-def by (auto simp:sign-r-pos-rec[OF
‹q 6=0 ›,of c])

37

subgoal unfolding changes-poly-at-def using ‹poly r c 6=0 ›
by (auto simp:sign-r-pos-rec[OF ‹q 6=0 ›,of c] mult-less-0-iff)

done
qed
ultimately show ?case by blast

qed
have pders-changes-d2 :changes-poly-at (r# pders q) d2 = (if sign-r-pos q c ←→

poly r c>0
then changes-poly-at (pders q) d2 else 1+changes-poly-at (pders q) d2)

when poly r c 6=0 q 6=0 and qr-nzero:∀ x. c < x ∧ x ≤ d2 −→ poly r x 6= 0 ∧
poly q x 6=0

for q r
proof −

have r 6=0 using that(1) using poly-0 by blast
obtain qs where qs:pders q=q#qs pders (pderiv q) = qs

using ‹q 6=0 › by (simp add:pders.simps)
have if sign-r-pos r c then 0 < poly r d2 else poly r d2 < 0

if sign-r-pos q c then 0 < poly q d2 else poly q d2 < 0
subgoal by (rule sign-r-pos-nzero-right[of c d2 r]) (use qr-nzero ‹c<d2 › in

auto)
subgoal by (rule sign-r-pos-nzero-right[of c d2 q]) (use qr-nzero ‹c<d2 › in

auto)
done

then show ?thesis unfolding qs changes-poly-at-def
using ‹poly r c 6=0 › by (auto split:if-splits simp:mult-less-0-iff sign-r-pos-rec[OF

‹r 6=0 ›])
qed
have d2c-nzero:∀ x. c<x ∧ x≤d2 −→ poly p x 6=0 ∧ poly (pderiv p) x 6=0

and p-cons:pders p = p#pders(pderiv p)
subgoal by (simp add: nzero Suc.prems(1) pders.simps)
subgoal by (simp add: Suc.prems(1) pders.simps)
done

have ?case when poly p c=0
proof −

define ps where ps=pders (pderiv (pderiv p))
have ps-cons:p#pderiv p#ps = pders p pderiv p#ps=pders (pderiv p)

unfolding ps-def using ‹p 6=0 › by (auto simp:pders.simps)

have changes-poly-at (p # pderiv p # ps) c = changes-poly-at (pderiv p # ps)
c

unfolding changes-poly-at-def using that by auto
moreover have changes-poly-at (p # pderiv p # ps) d2 = changes-poly-at

(pderiv p # ps) d2
proof −

have if sign-r-pos p c then 0 < poly p d2 else poly p d2 < 0
apply (rule sign-r-pos-nzero-right[OF - ‹c<d2 ›])
using nzero[folded ps-cons] assms(1−2) by auto

moreover have if sign-r-pos (pderiv p) c then 0 < poly (pderiv p) d2

38

else poly (pderiv p) d2 < 0
apply (rule sign-r-pos-nzero-right[OF - ‹c<d2 ›])
using nzero[folded ps-cons] assms(1−2) by auto

ultimately have poly p d2 ∗ poly (pderiv p) d2 > 0
unfolding zero-less-mult-iff sign-r-pos-rec[OF ‹p 6=0 ›] using ‹poly p c=0 ›
by (auto split:if-splits)

then show ?thesis unfolding changes-poly-at-def by auto
qed
ultimately show ?thesis using hyps unfolding changes-itv-der-def

apply (fold ps-cons)
by (auto simp:Let-def)

qed
moreover have ?case when poly p c 6=0 sign-r-pos (pderiv p) c ←→ poly p c>0
proof −

have changes-poly-at (pders p) c = changes-poly-at (pders (pderiv p)) c
unfolding p-cons
apply (subst pders-changes-c[OF ‹poly p c 6=0 ›])
using that by auto

moreover have changes-poly-at (pders p) d2 = changes-poly-at (pders (pderiv
p)) d2

unfolding p-cons
apply (subst pders-changes-d2 [OF ‹poly p c 6=0 › - d2c-nzero])
using that by auto

ultimately show ?thesis using hyps unfolding changes-itv-der-def Let-def
by auto

qed
moreover have ?case when poly p c 6=0 ¬ sign-r-pos (pderiv p) c ←→ poly p

c>0
proof −

have changes-poly-at (pders p) c = changes-poly-at (pders (pderiv p)) c +1
unfolding p-cons
apply (subst pders-changes-c[OF ‹poly p c 6=0 ›])
using that by auto

moreover have changes-poly-at (pders p) d2 = changes-poly-at (pders (pderiv
p)) d2 + 1

unfolding p-cons
apply (subst pders-changes-d2 [OF ‹poly p c 6=0 › - d2c-nzero])
using that by auto

ultimately show ?thesis using hyps unfolding changes-itv-der-def Let-def
by auto

qed
ultimately show ?case by blast

qed

lemma budan-fourier-aux-left ′:
assumes d1<c and p 6=0
assumes ∀ x. d1≤x∧ x<c −→ (∀ q∈set (pders p). poly q x 6=0)
shows changes-itv-der d1 c p ≥ order c p ∧ even (changes-itv-der d1 c p − order

c p)

39

using assms(2−3)
proof (induct degree p arbitrary:p)

case 0
then obtain a where p=[:a:] a 6=0 by (metis degree-eq-zeroE pCons-0-0)
then show ?case

apply (auto simp add:changes-itv-der-def pders.simps intro:order-0I)
by (metis add.right-neutral dvd-0-right mult-zero-right order-root poly-pCons)

next
case (Suc n)
then have [simp]:pderiv p 6=0 by (metis nat.distinct(1) pderiv-eq-0-iff)
note nzero=‹∀ x. d1 ≤ x ∧ x < c −→ (∀ q∈set (pders p). poly q x 6= 0)›
define v where v=order c (pderiv p)

have hyps:v ≤ changes-itv-der d1 c (pderiv p) ∧ even (changes-itv-der d1 c (pderiv
p) − v)

unfolding v-def
apply (rule Suc(1))
subgoal by (metis Suc.hyps(2) degree-pderiv diff-Suc-1)
subgoal by (simp add: Suc.prems(1) Suc.prems(2) pders.simps)
subgoal by (simp add: Suc.prems(1) nzero pders.simps)
done

have pders-changes-c:changes-poly-at (r# pders q) c = (if sign-r-pos q c ←→
poly r c>0

then changes-poly-at (pders q) c else 1+changes-poly-at (pders q) c)
when poly r c 6=0 q 6=0 for q r
using ‹q 6=0 ›

proof (induct q rule:pders.induct)
case (1 q)
have ?case when pderiv q=0
proof −

have degree q=0 using that pderiv-eq-0-iff by blast
then obtain a where q=[:a:] a 6=0 using ‹q 6=0 › by (metis degree-eq-zeroE

pCons-0-0)
then show ?thesis using ‹poly r c 6=0 ›
by (auto simp add:sign-r-pos-rec changes-poly-at-def mult-less-0-iff pders.simps)

qed
moreover have ?case when pderiv q 6=0
proof −

obtain qs where qs:pders q=q#qs pders (pderiv q) = qs
using ‹q 6=0 › by (simp add:pders.simps)

have changes-poly-at (r # qs) c = (if sign-r-pos (pderiv q) c = (0 < poly r
c)

then changes-poly-at qs c else 1 + changes-poly-at qs c)
using 1 ‹pderiv q 6=0 › unfolding qs by simp

then show ?thesis unfolding qs
apply (cases poly q c=0)

subgoal unfolding changes-poly-at-def by (auto simp:sign-r-pos-rec[OF
‹q 6=0 ›,of c])

subgoal unfolding changes-poly-at-def using ‹poly r c 6=0 ›

40

by (auto simp:sign-r-pos-rec[OF ‹q 6=0 ›,of c] mult-less-0-iff)
done

qed
ultimately show ?case by blast

qed
have pders-changes-d1 :changes-poly-at (r# pders q) d1 = (if even (order c q)
←→ sign-r-pos q c ←→ poly r c>0

then changes-poly-at (pders q) d1 else 1+changes-poly-at (pders q) d1)
when poly r c 6=0 q 6=0 and qr-nzero:∀ x. d1 ≤ x ∧ x < c −→ poly r x 6= 0 ∧

poly q x 6=0
for q r

proof −
have r 6=0 using that(1) using poly-0 by blast
obtain qs where qs:pders q=q#qs pders (pderiv q) = qs

using ‹q 6=0 › by (simp add:pders.simps)
have if even (order c r) = sign-r-pos r c then 0 < poly r d1 else poly r d1 < 0

if even (order c q) = sign-r-pos q c then 0 < poly q d1 else poly q d1 < 0
subgoal by (rule sign-r-pos-nzero-left[of d1 c r]) (use qr-nzero ‹d1<c› in

auto)
subgoal by (rule sign-r-pos-nzero-left[of d1 c q]) (use qr-nzero ‹d1<c› in

auto)
done

moreover have order c r=0 by (simp add: order-0I that(1))
ultimately show ?thesis unfolding qs changes-poly-at-def
using ‹poly r c 6=0 › by (auto split:if-splits simp:mult-less-0-iff sign-r-pos-rec[OF

‹r 6=0 ›])
qed
have d1c-nzero:∀ x. d1 ≤ x ∧ x < c −→ poly p x 6= 0 ∧ poly (pderiv p) x 6= 0

and p-cons:pders p = p#pders(pderiv p)
by (simp-all add: nzero Suc.prems(1) pders.simps)

have ?case when poly p c=0
proof −

define ps where ps=pders (pderiv (pderiv p))
have ps-cons:p#pderiv p#ps = pders p pderiv p#ps=pders (pderiv p)

unfolding ps-def using ‹p 6=0 › by (auto simp:pders.simps)

have p-order :order c p = Suc v
apply (subst order-pderiv)
using Suc.prems(1) order-root that unfolding v-def by auto

moreover have changes-poly-at (p#pderiv p # ps) d1 = changes-poly-at (pderiv
p#ps) d1 +1

proof −
have if even (order c p) = sign-r-pos p c then 0 < poly p d1 else poly p d1 <

0
apply (rule sign-r-pos-nzero-left[OF - ‹d1<c›])
using nzero[folded ps-cons] assms(1−2) by auto

moreover have if even v = sign-r-pos (pderiv p) c
then 0 < poly (pderiv p) d1 else poly (pderiv p) d1 < 0

41

unfolding v-def
apply (rule sign-r-pos-nzero-left[OF - ‹d1<c›])
using nzero[folded ps-cons] assms(1−2) by auto

ultimately have poly p d1 ∗ poly (pderiv p) d1 < 0
unfolding mult-less-0-iff sign-r-pos-rec[OF ‹p 6=0 ›] using ‹poly p c=0 ›

p-order
by (auto split:if-splits)

then show ?thesis
unfolding changes-poly-at-def by auto

qed
moreover have changes-poly-at (p # pderiv p # ps) c = changes-poly-at

(pderiv p # ps) c
unfolding changes-poly-at-def using that by auto

ultimately show ?thesis using hyps unfolding changes-itv-der-def
apply (fold ps-cons)
by (auto simp:Let-def)

qed
moreover have ?case when poly p c 6=0 odd v sign-r-pos (pderiv p) c ←→ poly

p c>0
proof −

have order c p=0 by (simp add: order-0I that(1))
moreover have changes-poly-at (pders p) d1 = changes-poly-at (pders (pderiv

p)) d1 +1
unfolding p-cons
apply (subst pders-changes-d1 [OF ‹poly p c 6=0 › - d1c-nzero])
using that unfolding v-def by auto

moreover have changes-poly-at (pders p) c = changes-poly-at (pders (pderiv
p)) c

unfolding p-cons
apply (subst pders-changes-c[OF ‹poly p c 6=0 ›])
using that unfolding v-def by auto

ultimately show ?thesis using hyps ‹odd v› unfolding changes-itv-der-def
Let-def

by auto
qed
moreover have ?case when poly p c 6=0 odd v ¬ sign-r-pos (pderiv p) c ←→

poly p c>0
proof −

have v≥1 using ‹odd v› using not-less-eq-eq by auto
moreover have order c p=0 by (simp add: order-0I that(1))
moreover have changes-poly-at (pders p) d1 = changes-poly-at (pders (pderiv

p)) d1
unfolding p-cons
apply (subst pders-changes-d1 [OF ‹poly p c 6=0 › - d1c-nzero])
using that unfolding v-def by auto

moreover have changes-poly-at (pders p) c = changes-poly-at (pders (pderiv
p)) c + 1

unfolding p-cons
apply (subst pders-changes-c[OF ‹poly p c 6=0 ›])

42

using that unfolding v-def by auto
ultimately show ?thesis using hyps ‹odd v› unfolding changes-itv-der-def

Let-def
by auto

qed
moreover have ?case when poly p c 6=0 even v sign-r-pos (pderiv p) c ←→ poly

p c>0
proof −

have order c p=0 by (simp add: order-0I that(1))
moreover have changes-poly-at (pders p) d1 = changes-poly-at (pders (pderiv

p)) d1
unfolding p-cons
apply (subst pders-changes-d1 [OF ‹poly p c 6=0 › - d1c-nzero])
using that unfolding v-def by auto

moreover have changes-poly-at (pders p) c = changes-poly-at (pders (pderiv
p)) c

unfolding p-cons
apply (subst pders-changes-c[OF ‹poly p c 6=0 ›])
using that unfolding v-def by auto

ultimately show ?thesis using hyps ‹even v› unfolding changes-itv-der-def
Let-def

by auto
qed
moreover have ?case when poly p c 6=0 even v ¬ sign-r-pos (pderiv p) c ←→

poly p c>0
proof −

have order c p=0 by (simp add: order-0I that(1))
moreover have changes-poly-at (pders p) d1 = changes-poly-at (pders (pderiv

p)) d1 + 1
unfolding p-cons
apply (subst pders-changes-d1 [OF ‹poly p c 6=0 › - d1c-nzero])
using that unfolding v-def by auto

moreover have changes-poly-at (pders p) c = changes-poly-at (pders (pderiv
p)) c +1

unfolding p-cons
apply (subst pders-changes-c[OF ‹poly p c 6=0 ›])
using that unfolding v-def by auto

ultimately show ?thesis using hyps ‹even v› unfolding changes-itv-der-def
Let-def

by auto
qed
ultimately show ?case by blast

qed

lemma budan-fourier-aux-left:
assumes d1<c and p 6=0
assumes nzero:∀ x. d1<x∧ x<c −→ (∀ q∈set (pders p). poly q x 6=0)
shows changes-itv-der d1 c p ≥ order c p even (changes-itv-der d1 c p − order

c p)

43

proof −
define d where d=(d1+c)/2
have d1<d d<c unfolding d-def using ‹d1<c› by auto

have changes-itv-der d1 d p = 0
apply (rule budan-fourier-aux-right[OF ‹d1<d› ‹p 6=0 ›])
using nzero ‹d1<d› ‹d<c› by auto

moreover have order c p ≤ changes-itv-der d c p ∧ even (changes-itv-der d c p
− order c p)

apply (rule budan-fourier-aux-left ′[OF ‹d<c› ‹p 6=0 ›])
using nzero ‹d1<d› ‹d<c› by auto

ultimately show changes-itv-der d1 c p ≥ order c p even (changes-itv-der d1 c
p − order c p)

unfolding changes-itv-der-def Let-def by auto
qed

theorem budan-fourier-interval:
assumes a<b p 6=0
shows changes-itv-der a b p ≥ proots-count p {x. a< x ∧ x≤ b} ∧

even (changes-itv-der a b p − proots-count p {x. a< x ∧ x≤ b})
using ‹a<b›

proof (induct card {x. ∃ p∈set (pders p). poly p x=0 ∧ a<x ∧ x<b} arbitrary:b)
case 0
have nzero:∀ x. a<x ∧ x<b −→ (∀ q∈set (pders p). poly q x 6=0)
proof −

define S where S={x. ∃ p∈set (pders p). poly p x = 0 ∧ a < x ∧ x < b}
have finite S
proof −

have S ⊆ (
⋃

p∈set (pders p). proots p)
unfolding S-def by auto

moreover have finite (
⋃

p∈set (pders p). proots p)
apply (subst finite-UN)
using set-pders-nzero[OF ‹p 6=0 ›] by auto

ultimately show ?thesis by (simp add: finite-subset)
qed
moreover have card S = 0 unfolding S-def using 0 by auto
ultimately have S={} by auto
then show ?thesis unfolding S-def using ‹a<b› assms(2) pders.simps by

fastforce
qed
from budan-fourier-aux-left[OF ‹a<b› ‹p 6=0 › this]
have order b p ≤ changes-itv-der a b p even (changes-itv-der a b p − order b p)

by simp-all
moreover have proots-count p {x. a< x ∧ x≤ b} = order b p
proof −

have p-cons:pders p=p#pders (pderiv p) by (simp add: assms(2) pders.simps)
have proots-within p {x. a < x ∧ x ≤ b} = (if poly p b=0 then {b} else {})

using nzero ‹a< b› unfolding p-cons
apply auto

44

using not-le by fastforce
then show ?thesis unfolding proots-count-def using order-root by auto

qed
ultimately show ?case by auto

next
case (Suc n)
define P where P=(λx. ∃ p∈set (pders p). poly p x = 0)
define S where S=(λb. {x. P x ∧ a < x ∧ x < b})
define b ′ where b ′=Max (S b)
have f-S :finite (S x) for x
proof −

have S x ⊆ (
⋃

p∈set (pders p). proots p)
unfolding S-def P-def by auto

moreover have finite (
⋃

p∈set (pders p). proots p)
apply (subst finite-UN)
using set-pders-nzero[OF ‹p 6=0 ›] by auto

ultimately show ?thesis by (simp add: finite-subset)
qed
have b ′∈S b

unfolding b ′-def
apply (rule Max-in[OF f-S])
using Suc(2) unfolding S-def P-def by force

then have a<b ′ b ′<b unfolding S-def by auto
have b ′-nzero:∀ x. b ′<x ∧ x<b −→ (∀ q∈set (pders p). poly q x 6=0)
proof (rule ccontr)

assume ¬ (∀ x. b ′ < x ∧ x < b −→ (∀ q∈set (pders p). poly q x 6= 0))
then obtain bb where P bb b ′<bb bb<b unfolding P-def by auto
then have bb∈S b unfolding S-def using ‹a<b ′› ‹b ′<b› by auto
from Max-ge[OF f-S this, folded b ′-def] have bb ≤ b ′ .
then show False using ‹b ′<bb› by auto

qed

have hyps:proots-count p {x. a < x ∧ x ≤ b ′} ≤ changes-itv-der a b ′ p ∧
even (changes-itv-der a b ′ p − proots-count p {x. a < x ∧ x ≤ b ′})

proof (rule Suc(1)[OF - ‹a<b ′›])
have S b= {b ′} ∪ S b ′

proof −
have {x. P x ∧ b ′ < x ∧ x < b} = {}

using b ′-nzero unfolding P-def by auto
then have {x. P x∧ b ′ ≤ x ∧ x < b} = {b ′}

using ‹b ′∈S b› unfolding S-def by force
moreover have S b= S b ′ ∪ {x. P x ∧ b ′ ≤ x ∧ x < b}

unfolding S-def using ‹a<b ′› ‹b ′<b› by auto
ultimately show ?thesis by auto

qed
moreover have Suc n = card (S b) using Suc(2) unfolding S-def P-def by

simp
moreover have b ′/∈S b ′ unfolding S-def by auto
ultimately have n=card (S b ′) using f-S by auto

45

then show n = card {x. ∃ p∈set (pders p). poly p x = 0 ∧ a < x ∧ x < b ′}
unfolding S-def P-def by simp

qed
moreover have proots-count p {x. a < x ∧ x ≤ b}

= proots-count p {x. a < x ∧ x ≤ b ′} + order b p
proof −

have p-cons:pders p=p#pders (pderiv p) by (simp add: assms(2) pders.simps)
have proots-within p {x. b ′ < x ∧ x ≤ b} = (if poly p b=0 then {b} else {})

using b ′-nzero ‹b ′ < b› unfolding p-cons
apply auto
using not-le by fastforce

then have proots-count p {x. b ′ < x ∧ x ≤ b} = order b p
unfolding proots-count-def using order-root by auto

moreover have proots-count p {x. a < x ∧ x ≤ b} = proots-count p {x. a <
x ∧ x ≤ b ′} +

proots-count p {x. b ′ < x ∧ x ≤ b}
apply (subst proots-count-union-disjoint[symmetric])
using ‹a<b ′› ‹b ′<b› ‹p 6=0 › by (auto intro:arg-cong2 [where f=proots-count])

ultimately show ?thesis by auto
qed
moreover note budan-fourier-aux-left[OF ‹b ′<b› ‹p 6=0 › b ′-nzero]
ultimately show ?case unfolding changes-itv-der-def Let-def by auto

qed

theorem budan-fourier-gt:
assumes p 6=0
shows changes-gt-der a p ≥ proots-count p {x. a< x} ∧

even (changes-gt-der a p − proots-count p {x. a< x})
proof −

define ps where ps=pders p
obtain ub where ub-root:∀ p∈set ps. ∀ x. poly p x = 0 −→ x < ub

and ub-sgn:∀ x≥ub. ∀ p∈set ps. sgn (poly p x) = sgn-pos-inf p
and a < ub
using root-list-ub[of ps a] set-pders-nzero[OF ‹p 6=0 ›,folded ps-def] by blast

have proots-count p {x. a< x} = proots-count p {x. a< x ∧ x ≤ ub}
proof −

have p∈set ps unfolding ps-def by (simp add: assms pders.simps)
then have proots-within p {x. a< x} = proots-within p {x. a< x ∧ x≤ub}

using ub-root by fastforce
then show ?thesis unfolding proots-count-def by auto

qed
moreover have changes-gt-der a p = changes-itv-der a ub p
proof −

have map (sgn ◦ (λp. poly p ub)) ps = map sgn-pos-inf ps
using ub-sgn[THEN spec,of ub,simplified]
by (metis (mono-tags, lifting) comp-def list.map-cong0)

hence changes-poly-at ps ub=changes-poly-pos-inf ps
unfolding changes-poly-pos-inf-def changes-poly-at-def
by (subst changes-map-sgn-eq,metis map-map)

46

then have changes-poly-at ps ub=0 unfolding ps-def by simp
thus ?thesis unfolding changes-gt-der-def changes-itv-der-def ps-def

by (simp add:Let-def)
qed
moreover have proots-count p {x. a < x ∧ x ≤ ub} ≤ changes-itv-der a ub p ∧

even (changes-itv-der a ub p − proots-count p {x. a < x ∧ x ≤ ub})
using budan-fourier-interval[OF ‹a<ub› ‹p 6=0 ›] .

ultimately show ?thesis by auto
qed

Descartes’ rule of signs is a direct consequence of the Budan–Fourier
theorem
theorem descartes-sign:

fixes p::real poly
assumes p 6=0
shows changes (coeffs p) ≥ proots-count p {x. 0 < x} ∧

even (changes (coeffs p) − proots-count p {x. 0< x})
using budan-fourier-gt[OF ‹p 6=0 ›,of 0] unfolding changes-gt-der-def
by (simp add:changes-poly-at-pders-0)

theorem budan-fourier-le:
assumes p 6=0
shows changes-le-der b p ≥ proots-count p {x. x ≤b} ∧

even (changes-le-der b p − proots-count p {x. x ≤b})
proof −

define ps where ps=pders p
obtain lb where lb-root:∀ p∈set ps. ∀ x. poly p x = 0 −→ x > lb

and lb-sgn:∀ x≤lb. ∀ p∈set ps. sgn (poly p x) = sgn-neg-inf p
and lb < b
using root-list-lb[of ps b] set-pders-nzero[OF ‹p 6=0 ›,folded ps-def] by blast

have proots-count p {x. x ≤b} = proots-count p {x. lb< x ∧ x ≤ b}
proof −

have p∈set ps unfolding ps-def by (simp add: assms pders.simps)
then have proots-within p {x. x ≤b} = proots-within p {x. lb< x ∧ x≤b}

using lb-root by fastforce
then show ?thesis unfolding proots-count-def by auto

qed
moreover have changes-le-der b p = changes-itv-der lb b p
proof −

have map (sgn ◦ (λp. poly p lb)) ps = map sgn-neg-inf ps
using lb-sgn[THEN spec,of lb,simplified]
by (metis (mono-tags, lifting) comp-def list.map-cong0)

hence changes-poly-at ps lb=changes-poly-neg-inf ps
unfolding changes-poly-neg-inf-def changes-poly-at-def
by (subst changes-map-sgn-eq,metis map-map)

then have changes-poly-at ps lb=degree p unfolding ps-def by simp
thus ?thesis unfolding changes-le-der-def changes-itv-der-def ps-def

by (simp add:Let-def)
qed

47

moreover have proots-count p {x. lb < x ∧ x ≤ b} ≤ changes-itv-der lb b p ∧
even (changes-itv-der lb b p − proots-count p {x. lb < x ∧ x ≤ b})

using budan-fourier-interval[OF ‹lb<b› ‹p 6=0 ›] .
ultimately show ?thesis by auto

qed

2.5 Count exactly when all roots are real
definition all-roots-real:: real poly ⇒ bool where

all-roots-real p = (∀ r∈proots (map-poly of-real p). Im r=0)

lemma all-roots-real-mult[simp]:
all-roots-real (p∗q) ←→ all-roots-real p ∧ all-roots-real q
unfolding all-roots-real-def by auto

lemma all-roots-real-const-iff :
assumes all-real:all-roots-real p
shows degree p 6=0 ←→ (∃ x. poly p x=0)

proof
assume degree p 6= 0
moreover have degree p=0 when ∀ x. poly p x 6=0
proof −

define pp where pp=map-poly complex-of-real p
have ∀ x. poly pp x 6=0
proof (rule ccontr)

assume ¬ (∀ x. poly pp x 6= 0)
then obtain x where poly pp x=0 by auto
moreover have Im x=0
using all-real[unfolded all-roots-real-def , rule-format,of x,folded pp-def] ‹poly

pp x=0 ›
by auto

ultimately have poly pp (of-real (Re x)) = 0
by (simp add: complex-is-Real-iff)

then have poly p (Re x) = 0
unfolding pp-def
by (metis Re-complex-of-real of-real-poly-map-poly zero-complex.simps(1))

then show False using that by simp
qed
then obtain a where pp=[:of-real a:] a 6=0

by (metis ‹degree p 6= 0 › constant-degree degree-map-poly
fundamental-theorem-of-algebra of-real-eq-0-iff pp-def)

then have p=[:a:] unfolding pp-def
by (metis map-poly-0 map-poly-pCons of-real-0 of-real-poly-eq-iff)

then show ?thesis by auto
qed
ultimately show ∃ x. poly p x = 0 by auto

next
assume ∃ x. poly p x = 0
then show degree p 6= 0

48

by (metis UNIV-I all-roots-real-def assms degree-pCons-eq-if
imaginary-unit.sel(2) map-poly-0 nat.simps(3) order-root pCons-eq-0-iff
proots-within-iff synthetic-div-eq-0-iff synthetic-div-pCons zero-neq-one)

qed

lemma all-roots-real-degree:
assumes all-roots-real p
shows proots-count p UNIV =degree p using assms

proof (induct p rule:poly-root-induct-alt)
case 0
then have False using imaginary-unit.sel(2) unfolding all-roots-real-def by

auto
then show ?case by simp

next
case (no-proots p)
from all-roots-real-const-iff [OF this(2)] this(1)
have degree p=0 by auto
then obtain a where p=[:a:] a 6=0

by (metis degree-eq-zeroE no-proots.hyps poly-const-conv)
then have proots p={} by auto
then show ?case using ‹p=[:a:]› by (simp add:proots-count-def)

next
case (root a p)
define a1 where a1=[:− a, 1 :]
have p 6=0 using root.prems

apply auto
using imaginary-unit.sel(2) unfolding all-roots-real-def by auto

have a1 6=0 unfolding a1-def by auto

have proots-count (a1 ∗ p) UNIV = proots-count a1 UNIV + proots-count p
UNIV

using ‹p 6=0 › ‹a1 6=0 › by (subst proots-count-times,auto)
also have ... = 1 + degree p
proof −
have proots-count a1 UNIV = 1 unfolding a1-def by (simp add: proots-count-pCons-1-iff)
moreover have hyps:proots-count p UNIV = degree p

apply (rule root.hyps)
using root.prems[folded a1-def] unfolding all-roots-real-def by auto

ultimately show ?thesis by auto
qed
also have ... = degree (a1∗p)

apply (subst degree-mult-eq)
using ‹a1 6=0 › ‹p 6=0 › unfolding a1-def by auto

finally show ?case unfolding a1-def .
qed

lemma all-real-roots-mobius:
fixes a b::real
assumes all-roots-real p and a<b

49

shows all-roots-real (fcompose p [:a,b:] [:1 ,1 :]) using assms(1)
proof (induct p rule:poly-root-induct-alt)

case 0
then show ?case by simp

next
case (no-proots p)
from all-roots-real-const-iff [OF this(2)] this(1)
have degree p=0 by auto
then obtain a where p=[:a:] a 6=0

by (metis degree-eq-zeroE no-proots.hyps poly-const-conv)
then show ?case by (auto simp add:all-roots-real-def)

next
case (root x p)
define x1 where x1=[:− x, 1 :]
define fx where fx=fcompose x1 [:a, b:] [:1 , 1 :]

have all-roots-real fx
proof (cases x=b)

case True
then have fx = [:a−x:] a 6=x
subgoal unfolding fx-def by (simp add:fcompose-def smult-add-right x1-def)
subgoal using ‹a<b› True by auto
done

then have proots (map-poly complex-of-real fx) = {}
by auto

then show ?thesis unfolding all-roots-real-def by auto
next

case False
then have fx = [:a−x,b−x:]

unfolding fx-def by (simp add:fcompose-def smult-add-right x1-def)
then have proots (map-poly complex-of-real fx) = {of-real ((x−a)/(b−x))}

using False by (auto simp add:field-simps)
then show ?thesis unfolding all-roots-real-def by auto

qed
moreover have all-roots-real (fcompose p [:a, b:] [:1 , 1 :])

using root[folded x1-def] all-roots-real-mult by auto
ultimately show ?case

apply (fold x1-def)
by (auto simp add:fcompose-mult fx-def)

qed

If all roots are real, we can use the Budan–Fourier theorem to EXACTLY
count the number of real roots.
corollary budan-fourier-real:

assumes p 6=0
assumes all-roots-real p
shows proots-count p {x. x ≤a} = changes-le-der a p

a<b =⇒ proots-count p {x. a <x ∧ x ≤b} = changes-itv-der a b p
proots-count p {x. b <x} = changes-gt-der b p

50

proof −
have ∗:proots-count p {x. x ≤a} = changes-le-der a p

∧ proots-count p {x. a <x ∧ x ≤b} = changes-itv-der a b p
∧ proots-count p {x. b <x} = changes-gt-der b p

when a<b for a b
proof −

define c1 c2 c3 where
c1=changes-le-der a p − proots-count p {x. x ≤a} and
c2=changes-itv-der a b p − proots-count p {x. a <x ∧ x ≤b} and
c3=changes-gt-der b p − proots-count p {x. b <x}

have c1≥0 c2≥0 c3≥0
using budan-fourier-interval[OF ‹a<b› ‹p 6=0 ›] budan-fourier-gt[OF ‹p 6=0 ›,of

b]
budan-fourier-le[OF ‹p 6=0 ›,of a]

unfolding c1-def c2-def c3-def by auto
moreover have c1+c2+c3=0
proof −

have proots-deg:proots-count p UNIV =degree p
using all-roots-real-degree[OF ‹all-roots-real p›] .

have changes-le-der a p + changes-itv-der a b p + changes-gt-der b p = degree
p

unfolding changes-le-der-def changes-itv-der-def changes-gt-der-def
by (auto simp add:Let-def)

moreover have proots-count p {x. x ≤a} + proots-count p {x. a <x ∧ x ≤b}

+ proots-count p {x. b <x} = degree p
using ‹p 6=0 › ‹a<b›
apply (subst proots-count-union-disjoint[symmetric],auto)+
apply (subst proots-deg[symmetric])
by (auto intro!:arg-cong2 [where f=proots-count])

ultimately show ?thesis unfolding c1-def c2-def c3-def
by (auto simp add:algebra-simps)

qed
ultimately have c1 =0 ∧ c2=0 ∧ c3=0 by auto
then show ?thesis unfolding c1-def c2-def c3-def by auto

qed
show proots-count p {x. x ≤a} = changes-le-der a p using ∗[of a a+1] by auto
show proots-count p {x. a <x ∧ x ≤b} = changes-itv-der a b p when a<b

using ∗[OF that] by auto
show proots-count p {x. b <x} = changes-gt-der b p

using ∗[of b−1 b] by auto
qed

Similarly, Descartes’ rule of sign counts exactly when all roots are real.
corollary descartes-sign-real:

fixes p::real poly and a b::real
assumes p 6=0
assumes all-roots-real p

51

shows proots-count p {x. 0 < x} = changes (coeffs p)
using budan-fourier-real(3)[OF ‹p 6=0 › ‹all-roots-real p›]
unfolding changes-gt-der-def by (simp add:changes-poly-at-pders-0)

end

3 Extension of Sturm’s theorem for multiple roots
theory Sturm-Multiple-Roots

imports
BF-Misc

begin

The classic Sturm’s theorem is used to count real roots WITHOUT mul-
tiplicity of a polynomial within an interval. Surprisingly, we can also extend
Sturm’s theorem to count real roots WITH multiplicity by modifying the
signed remainder sequence, which seems to be overlooked by many text-
books.

Our formal proof is inspired by Theorem 10.5.6 in Rahman, Q.I., Schmeisser,
G.: Analytic Theory of Polynomials. Oxford University Press (2002).

3.1 More results for smods
lemma last-smods-gcd:

fixes p q ::real poly
defines pp ≡ last (smods p q)
assumes p 6=0
shows pp = smult (lead-coeff pp) (gcd p q)
using ‹p 6=0 › unfolding pp-def

proof (induct smods p q arbitrary:p q rule:length-induct)
case 1
have ?case when q=0

using that smult-normalize-field-eq ‹p 6=0 › by auto
moreover have ?case when q 6=0
proof −

define r where r= − (p mod q)
have smods-cons:smods p q = p # smods q r

unfolding r-def using ‹p 6=0 › by simp
have last (smods q r) = smult (lead-coeff (last (smods q r))) (gcd q r)

apply (rule 1 (1)[rule-format,of smods q r q r])
using smods-cons ‹q 6=0 › by auto

moreover have gcd p q = gcd q r
unfolding r-def by (simp add: gcd.commute that)

ultimately show ?thesis unfolding smods-cons using ‹q 6=0 ›
by simp

qed
ultimately show ?case by argo

qed

52

lemma last-smods-nzero:
assumes p 6=0
shows last (smods p q) 6=0
by (metis assms last-in-set no-0-in-smods smods-nil-eq)

3.2 Alternative signed remainder sequences
function smods-ext::real poly ⇒ real poly ⇒ real poly list where

smods-ext p q = (if p=0 then [] else
(if p mod q 6= 0

then Cons p (smods-ext q (−(p mod q)))
else Cons p (smods-ext q (pderiv q)))

)
by auto

termination
apply (relation measure (λ(p,q).if p=0 then 0 else if q=0 then 1 else 2+degree

q))
using degree-mod-less by (auto simp add:degree-pderiv pderiv-eq-0-iff)

lemma smods-ext-prefix:
fixes p q::real poly
defines pp ≡ last (smods p q)
assumes p 6=0 q 6=0
shows smods-ext p q = smods p q @ tl (smods-ext pp (pderiv pp))
unfolding pp-def using assms(2 ,3)

proof (induct smods-ext p q arbitrary:p q rule:length-induct)
case 1
have ?case when p mod q 6=0
proof −

define pp where pp=last (smods q (− (p mod q)))
have smods-cons:smods p q = p# smods q (− (p mod q))

using ‹p 6=0 › by auto
then have pp-last:pp=last (smods p q) unfolding pp-def

by (simp add: 1 .prems(2) pp-def)
have smods-ext-cons:smods-ext p q = p # smods-ext q (− (p mod q))

using that ‹p 6=0 › by auto
have smods-ext q (− (p mod q)) = smods q (− (p mod q)) @ tl (smods-ext pp

(pderiv pp))
apply (rule 1 (1)[rule-format,of smods-ext q (− (p mod q)) q − (p mod q),folded

pp-def])
using smods-ext-cons ‹q 6=0 › that by auto

then show ?thesis unfolding pp-last
apply (subst smods-cons)
apply (subst smods-ext-cons)
by auto

qed
moreover have ?case when p mod q =0 pderiv q = 0
proof −

53

have smods p q = [p,q]
using ‹p 6=0 › ‹q 6=0 › that by auto

moreover have smods-ext p q = [p,q]
using that ‹p 6=0 › by auto

ultimately show ?case using ‹p 6=0 › ‹q 6=0 › that(1) by auto
qed
moreover have ?case when p mod q =0 pderiv q 6= 0
proof −

have smods-cons:smods p q = [p,q]
using ‹p 6=0 › ‹q 6=0 › that by auto

have smods-ext-cons:smods-ext p q = p#smods-ext q (pderiv q)
using that ‹p 6=0 › by auto

show ?case unfolding smods-cons smods-ext-cons
apply (simp del:smods-ext.simps)
by (simp add: 1 .prems(2))

qed
ultimately show ?case by argo

qed

lemma no-0-in-smods-ext: 0 /∈set (smods-ext p q)
apply (induct smods-ext p q arbitrary:p q)
apply simp

by (metis list.distinct(1) list.inject set-ConsD smods-ext.simps)

3.3 Sign variations on the alternative signed remainder se-
quences

definition changes-itv-smods-ext:: real ⇒ real ⇒real poly ⇒ real poly ⇒ int
where

changes-itv-smods-ext a b p q= (let ps= smods-ext p q in changes-poly-at ps a
− changes-poly-at ps b)

definition changes-gt-smods-ext:: real ⇒real poly ⇒ real poly ⇒ int where
changes-gt-smods-ext a p q= (let ps= smods-ext p q in changes-poly-at ps a

− changes-poly-pos-inf ps)

definition changes-le-smods-ext:: real ⇒real poly ⇒ real poly ⇒ int where
changes-le-smods-ext b p q= (let ps= smods-ext p q in changes-poly-neg-inf ps

− changes-poly-at ps b)

definition changes-R-smods-ext:: real poly ⇒ real poly ⇒ int where
changes-R-smods-ext p q= (let ps= smods-ext p q in changes-poly-neg-inf ps

− changes-poly-pos-inf ps)

3.4 Extension of Sturm’s theorem for multiple roots
theorem sturm-ext-interval:

assumes a<b poly p a 6=0 poly p b 6=0
shows proots-count p {x. a<x ∧ x<b} = changes-itv-smods-ext a b p (pderiv p)

54

using assms(2 ,3)
proof (induct smods-ext p (pderiv p) arbitrary:p rule:length-induct)

case 1
have p 6=0 using ‹poly p a 6= 0 › by auto
have ?case when pderiv p=0
proof −

obtain c where p=[:c:] c 6=0
using ‹p 6=0 › ‹pderiv p = 0 › pderiv-iszero by force

then have proots-count p {x. a < x ∧ x < b} = 0
unfolding proots-count-def by auto

moreover have changes-itv-smods-ext a b p (pderiv p) = 0
unfolding changes-itv-smods-ext-def using ‹p=[:c:]› ‹c 6=0 › by auto

ultimately show ?thesis by auto
qed
moreover have ?case when pderiv p 6=0
proof −

define pp where pp = last (smods p (pderiv p))
define lp where lp = lead-coeff pp
define S where S={x. a < x ∧ x< b}

have prefix:smods-ext p (pderiv p) = smods p (pderiv p) @ tl (smods-ext pp
(pderiv pp))

using smods-ext-prefix[OF ‹p 6=0 › ‹pderiv p 6=0 ›,folded pp-def] .
have pp-gcd:pp = smult lp (gcd p (pderiv p))

using last-smods-gcd[OF ‹p 6=0 ›,of pderiv p,folded pp-def lp-def] .
have pp 6=0 lp 6=0 unfolding pp-def lp-def

subgoal by (rule last-smods-nzero[OF ‹p 6=0 ›])
subgoal using ‹last (smods p (pderiv p)) 6= 0 › by auto
done

have poly pp a 6=0 poly pp b 6= 0
unfolding pp-gcd using ‹poly p a 6=0 › ‹poly p b 6=0 › ‹lp 6=0 ›
by (simp-all add:poly-gcd-0-iff)

have proots-count pp S = changes-itv-smods-ext a b pp (pderiv pp) unfolding
S-def

proof (rule 1 (1)[rule-format,of smods-ext pp (pderiv pp) pp])
show length (smods-ext pp (pderiv pp)) < length (smods-ext p (pderiv p))

unfolding prefix by (simp add: ‹p 6= 0 › that)
qed (use ‹poly pp a 6=0 › ‹poly pp b 6=0 › in simp-all)
moreover have proots-count p S = card (proots-within p S) + proots-count pp

S
proof −

have (
∑

r∈proots-within p S . order r p) = (
∑

r∈ proots-within p S . order r
pp + 1)

proof (rule sum.cong)
fix x assume x ∈ proots-within p S
have order x pp = order x (gcd p (pderiv p))

unfolding pp-gcd using ‹lp 6=0 › by (simp add:order-smult)
also have ... = min (order x p) (order x (pderiv p))

55

apply (subst order-gcd)
using ‹p 6=0 › ‹pderiv p 6=0 › by simp-all

also have ... = order x (pderiv p)
apply (subst order-pderiv)
using ‹pderiv p 6=0 › ‹p 6= 0 › ‹x ∈ proots-within p S› order-root by auto

finally have order x pp = order x (pderiv p) .
moreover have order x p = order x (pderiv p) + 1

apply (subst order-pderiv)
using ‹pderiv p 6=0 › ‹p 6= 0 › ‹x ∈ proots-within p S› order-root by auto

ultimately show order x p = order x pp + 1 by auto
qed simp
also have ... = card (proots-within p S) + (

∑
r∈ proots-within p S . order r

pp)
apply (subst sum.distrib)
by auto

also have ... = card (proots-within p S) + (
∑

r∈ proots-within pp S . order r
pp)

proof −
have (

∑
r∈proots-within p S . order r pp) = (

∑
r∈proots-within pp S . order

r pp)
apply (rule sum.mono-neutral-right)
subgoal using ‹p 6=0 › by auto
subgoal unfolding pp-gcd using ‹lp 6=0 › by (auto simp:poly-gcd-0-iff)
subgoal unfolding pp-gcd using ‹lp 6=0 ›

apply (auto simp:poly-gcd-0-iff order-smult)
apply (subst order-gcd)
by (auto simp add: order-root)

done
then show ?thesis by simp

qed
finally show ?thesis unfolding proots-count-def .

qed
moreover have card (proots-within p S) = changes-itv-smods a b p (pderiv p)

using sturm-interval[OF ‹a<b› ‹poly p a 6=0 › ‹poly p b 6=0 ›,symmetric]
unfolding S-def proots-within-def
by (auto intro!:arg-cong[where f=card])

moreover have changes-itv-smods-ext a b p (pderiv p)
= changes-itv-smods a b p (pderiv p) + changes-itv-smods-ext a b pp

(pderiv pp)
proof −

define xs ys where xs=smods p (pderiv p) and ys=smods-ext pp (pderiv pp)
have xys: xs 6=[] ys 6=[] last xs=hd ys poly (last xs) a 6=0 poly (last xs) b 6=0

subgoal unfolding xs-def using ‹p 6=0 › by auto
subgoal unfolding ys-def using ‹pp 6=0 › by auto
subgoal using ‹pp 6=0 › unfolding xs-def ys-def

apply (fold pp-def)
by auto

subgoal using ‹poly pp a 6=0 › unfolding pp-def xs-def .
subgoal using ‹poly pp b 6=0 › unfolding pp-def xs-def .

56

done
have changes-poly-at (xs @ tl ys) a = changes-poly-at xs a + changes-poly-at

ys a
proof −

have changes-poly-at (xs @ tl ys) a = changes-poly-at (xs @ ys) a
unfolding changes-poly-at-def
apply (simp add:map-tl)
apply (subst changes-drop-dup[symmetric])
using that xys by (auto simp add: hd-map last-map)

also have ... = changes-poly-at xs a + changes-poly-at ys a
unfolding changes-poly-at-def
apply (subst changes-append[symmetric])
using xys by (auto simp add: hd-map last-map)

finally show ?thesis .
qed

moreover have changes-poly-at (xs @ tl ys) b = changes-poly-at xs b +
changes-poly-at ys b

proof −
have changes-poly-at (xs @ tl ys) b = changes-poly-at (xs @ ys) b

unfolding changes-poly-at-def
apply (simp add:map-tl)
apply (subst changes-drop-dup[symmetric])
using that xys by (auto simp add: hd-map last-map)

also have ... = changes-poly-at xs b + changes-poly-at ys b
unfolding changes-poly-at-def
apply (subst changes-append[symmetric])
using xys by (auto simp add: hd-map last-map)

finally show ?thesis .
qed

ultimately show ?thesis unfolding changes-itv-smods-ext-def changes-itv-smods-def
apply (fold xs-def ys-def ,unfold prefix[folded xs-def ys-def] Let-def)
by auto

qed
ultimately show proots-count p S = changes-itv-smods-ext a b p (pderiv p)

by auto
qed
ultimately show ?case by argo

qed

theorem sturm-ext-above:
assumes poly p a 6=0
shows proots-count p {x. a<x} = changes-gt-smods-ext a p (pderiv p)

proof −
define ps where ps≡smods-ext p (pderiv p)
have p 6=0 and p∈set ps using ‹poly p a 6=0 › ps-def by auto
obtain ub where ub:∀ p∈set ps. ∀ x. poly p x=0 −→ x<ub

and ub-sgn:∀ x≥ub. ∀ p∈set ps. sgn (poly p x) = sgn-pos-inf p
and ub>a
using root-list-ub[OF no-0-in-smods-ext,of p pderiv p,folded ps-def]

57

by auto
have proots-count p {x. a<x} = proots-count p {x. a<x ∧ x<ub}

unfolding proots-count-def
apply (rule sum.cong)
by (use ub ‹p∈set ps› in auto)

moreover have changes-gt-smods-ext a p (pderiv p) = changes-itv-smods-ext a
ub p (pderiv p)

proof −
have map (sgn ◦ (λp. poly p ub)) ps = map sgn-pos-inf ps

using ub-sgn[THEN spec,of ub,simplified]
by (metis (mono-tags, lifting) comp-def list.map-cong0)

hence changes-poly-at ps ub=changes-poly-pos-inf ps
unfolding changes-poly-pos-inf-def changes-poly-at-def
by (subst changes-map-sgn-eq,metis map-map)
thus ?thesis unfolding changes-gt-smods-ext-def changes-itv-smods-ext-def

ps-def
by metis

qed
moreover have poly p ub 6=0 using ub ‹p∈set ps› by auto
ultimately show ?thesis using sturm-ext-interval[OF ‹ub>a› assms] by auto

qed

theorem sturm-ext-below:
assumes poly p b 6=0
shows proots-count p {x. x<b} = changes-le-smods-ext b p (pderiv p)

proof −
define ps where ps≡smods-ext p (pderiv p)
have p 6=0 and p∈set ps using ‹poly p b 6=0 › ps-def by auto
obtain lb where lb:∀ p∈set ps. ∀ x. poly p x=0 −→ x>lb

and lb-sgn:∀ x≤lb. ∀ p∈set ps. sgn (poly p x) = sgn-neg-inf p
and lb<b
using root-list-lb[OF no-0-in-smods-ext,of p pderiv p,folded ps-def]
by auto

have proots-count p {x. x<b} = proots-count p {x. lb<x ∧ x<b}
unfolding proots-count-def by (rule sum.cong,insert lb ‹p∈set ps›,auto)

moreover have changes-le-smods-ext b p (pderiv p) = changes-itv-smods-ext lb
b p (pderiv p)

proof −
have map (sgn ◦ (λp. poly p lb)) ps = map sgn-neg-inf ps

using lb-sgn[THEN spec,of lb,simplified]
by (metis (mono-tags, lifting) comp-def list.map-cong0)

hence changes-poly-at ps lb=changes-poly-neg-inf ps
unfolding changes-poly-neg-inf-def changes-poly-at-def
by (subst changes-map-sgn-eq,metis map-map)

thus ?thesis unfolding changes-le-smods-ext-def changes-itv-smods-ext-def ps-def
by metis

qed
moreover have poly p lb 6=0 using lb ‹p∈set ps› by auto
ultimately show ?thesis using sturm-ext-interval[OF ‹lb<b› - assms] by auto

58

qed

theorem sturm-ext-R:
assumes p 6=0
shows proots-count p UNIV = changes-R-smods-ext p (pderiv p)

proof −
define ps where ps≡smods-ext p (pderiv p)
have p∈set ps using ps-def ‹p 6=0 › by auto
obtain lb where lb:∀ p∈set ps. ∀ x. poly p x=0 −→ x>lb

and lb-sgn:∀ x≤lb. ∀ p∈set ps. sgn (poly p x) = sgn-neg-inf p
and lb<0
using root-list-lb[OF no-0-in-smods-ext,of p pderiv p,folded ps-def]
by auto

obtain ub where ub:∀ p∈set ps. ∀ x. poly p x=0 −→ x<ub
and ub-sgn:∀ x≥ub. ∀ p∈set ps. sgn (poly p x) = sgn-pos-inf p
and ub>0
using root-list-ub[OF no-0-in-smods-ext,of p pderiv p,folded ps-def]
by auto

have proots-count p UNIV = proots-count p {x. lb<x ∧ x<ub}
unfolding proots-count-def by (rule sum.cong,insert lb ub ‹p∈set ps›,auto)

moreover have changes-R-smods-ext p (pderiv p) = changes-itv-smods-ext lb ub
p (pderiv p)

proof −
have map (sgn ◦ (λp. poly p lb)) ps = map sgn-neg-inf ps

and map (sgn ◦ (λp. poly p ub)) ps = map sgn-pos-inf ps
using lb-sgn[THEN spec,of lb,simplified] ub-sgn[THEN spec,of ub,simplified]
by (metis (mono-tags, lifting) comp-def list.map-cong0)+

hence changes-poly-at ps lb=changes-poly-neg-inf ps
∧ changes-poly-at ps ub=changes-poly-pos-inf ps

unfolding changes-poly-neg-inf-def changes-poly-at-def changes-poly-pos-inf-def
by (subst (1 3) changes-map-sgn-eq,metis map-map)

thus ?thesis unfolding changes-R-smods-ext-def changes-itv-smods-ext-def ps-def
by metis

qed
moreover have poly p lb 6=0 and poly p ub 6=0 using lb ub ‹p∈set ps› by auto
moreover have lb<ub using ‹lb<0 › ‹0<ub› by auto
ultimately show ?thesis using sturm-ext-interval by auto

qed

end

4 Descartes Roots Test
theory Descartes-Roots-Test imports Budan-Fourier
begin

The Descartes roots test is a consequence of Descartes’ rule of signs:
through counting sign variations on coefficients of a base-transformed (i.e.
Taylor shifted) polynomial, it can over-approximate the number of real roots

59

(counting multiplicity) within an interval. Its ability is similar to the Budan–
Fourier theorem, but is far more efficient in practice. Therefore, this test is
widely used in modern root isolation procedures.

More information can be found in the wiki page about Vincent’s theo-
rem: https://en.wikipedia.org/wiki/Vincent%27s_theorem and Collins and
Akritas’s classic paper of root isolation: Collins, G.E., Akritas, A.G.: Polyno-
mial real root isolation using Descarte’s rule of signs. SYMSACC. 272–275
(1976). A more modern treatment is available from a recent implementa-
tion of isolating real roots: Kobel, A., Rouillier, F., Sagraloff, M.: Computing
Real Roots of Real Polynomials ... and now For Real! Proceedings of ISSAC
’16, New York, New York, USA (2016).
lemma bij-betw-pos-interval:

fixes a b::real
assumes a<b
shows bij-betw (λx. (a+b ∗ x) / (1+x)) {x. x>0} {x. a<x ∧ x<b}

proof (rule bij-betw-imageI)
show inj-on (λx. (a + b ∗ x) / (1 + x)) {x. 0 < x}

unfolding inj-on-def
apply (auto simp add:field-simps)
using assms crossproduct-noteq by fastforce

have x ∈ (λx. (a + b ∗ x) / (1 + x)) ‘ {x. 0 < x} when a < x x < b for x
proof (rule rev-image-eqI [of (x−a)/(b−x)])

define bx where bx=b−x
have x:x=b−bx unfolding bx-def by auto
have bx 6=0 b>a unfolding bx-def using that by auto
then show x = (a + b ∗ ((x − a) / (b − x))) / (1 + (x − a) / (b − x))

apply (fold bx-def ,unfold x)
by (auto simp add:field-simps)

show (x − a) / (b − x) ∈ {x. 0 < x} using that by auto
qed
then show (λx. (a + b ∗ x) / (1 + x)) ‘ {x. 0 < x} = {x. a < x ∧ x < b}

using assms by (auto simp add:divide-simps algebra-simps)
qed

lemma proots-sphere-pos-interval:
fixes a b::real
defines q1≡[:a,b:] and q2≡[:1 ,1 :]
assumes p 6=0 a<b
shows proots-count p {x. a < x ∧ x < b} = proots-count (fcompose p q1 q2) {x.

0 < x}
apply (rule proots-fcompose-bij-eq[OF - ‹p 6=0 ›])
unfolding q1-def q2-def using bij-betw-pos-interval[OF ‹a<b›] ‹a<b›
by (auto simp add:algebra-simps infinite-UNIV-char-0)

definition descartes-roots-test::real ⇒ real ⇒ real poly ⇒ nat where
descartes-roots-test a b p = nat (changes (coeffs (fcompose p [:a,b:] [:1 ,1 :])))

theorem descartes-roots-test:

60

https://en.wikipedia.org/wiki/Vincent%27s_theorem

fixes p::real poly
assumes p 6=0 a<b
shows proots-count p {x. a < x ∧ x <b} ≤ descartes-roots-test a b p ∧

even (descartes-roots-test a b p − proots-count p {x. a < x ∧ x < b})
proof −

define q where q=fcompose p [:a,b:] [:1 ,1 :]
have q 6=0

unfolding q-def
apply (rule fcompose-nzero[OF ‹p 6=0 ›])
using ‹a<b› infinite-UNIV-char-0 by auto

have proots-count p {x. a < x ∧ x <b} = proots-count q {x. 0 < x}
using proots-sphere-pos-interval[OF ‹p 6=0 › ‹a<b›,folded q-def] .

moreover have int (proots-count q {x. 0 < x}) ≤ changes (coeffs q) ∧
even (changes (coeffs q) − int (proots-count q {x. 0 < x}))

by (rule descartes-sign[OF ‹q 6=0 ›])
then have proots-count q {x. 0 < x} ≤ nat (changes (coeffs q)) ∧

even (nat (changes (coeffs q)) − proots-count q {x. 0 < x})
using even-nat-iff by auto

ultimately show ?thesis
unfolding descartes-roots-test-def
apply (fold q-def)
by auto

qed

The roots test descartes-roots-test is exact if its result is 0 or 1.
corollary descartes-roots-test-zero:

fixes p::real poly
assumes p 6=0 a<b descartes-roots-test a b p = 0
shows ∀ x. a<x ∧ x<b −→ poly p x 6=0

proof −
have proots-count p {x. a < x ∧ x <b} = 0

using descartes-roots-test[OF assms(1 ,2)] assms(3) by auto
from proots-count-0-imp-empty[OF this ‹p 6=0 ›]
show ?thesis by auto

qed

corollary descartes-roots-test-one:
fixes p::real poly
assumes p 6=0 a<b descartes-roots-test a b p = 1
shows proots-count p {x. a < x ∧ x <b} = 1
using descartes-roots-test[OF ‹p 6=0 › ‹a<b›] ‹descartes-roots-test a b p = 1 ›
by (metis dvd-diffD even-zero le-neq-implies-less less-one odd-one)

Similar to the Budan–Fourier theorem, the Descartes roots test result is
exact when all roots are real.
corollary descartes-roots-test-real:

fixes p::real poly
assumes p 6=0 a<b
assumes all-roots-real p

61

shows proots-count p {x. a < x ∧ x <b} = descartes-roots-test a b p
proof −

define q where q=fcompose p [:a,b:] [:1 ,1 :]
have q 6=0

unfolding q-def
apply (rule fcompose-nzero[OF ‹p 6=0 ›])
using ‹a<b› infinite-UNIV-char-0 by auto

have proots-count p {x. a < x ∧ x <b} = proots-count q {x. 0 < x}
using proots-sphere-pos-interval[OF ‹p 6=0 › ‹a<b›,folded q-def] .

moreover have int (proots-count q {x. 0 < x}) = changes (coeffs q)
apply (rule descartes-sign-real[OF ‹q 6=0 ›])
unfolding q-def by (rule all-real-roots-mobius[OF ‹all-roots-real p› ‹a<b›])

then have proots-count q {x. 0 < x} = nat (changes (coeffs q))
by simp

ultimately show ?thesis unfolding descartes-roots-test-def
apply (fold q-def)
by auto

qed

end

5 Acknowledgements
The work was supported by the ERC Advanced Grant ALEXANDRIA
(Project 742178), funded by the European Research Council and led by
Professor Lawrence Paulson at the University of Cambridge, UK.

References
[1] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Ge-

ometry, volume 10 of Algorithms and Computation in Mathematics.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[2] M. Eberl. Sturm’s theorem. Archive of Formal Proofs, Jan. 2014.
http://isa-afp.org/entries/Sturm_Sequences.html, Formal proof devel-
opment.

[3] M. Eberl. Descartes’ rule of signs. Archive of Formal Proofs, Dec.
2015. http://isa-afp.org/entries/Descartes_Sign_Rule.html, Formal
proof development.

[4] J. Harrison. Verifying the accuracy of polynomial approximations in
HOL. In E. L. Gunter and A. Felty, editors, Theorem Proving in Higher
Order Logics: 10th International Conference, TPHOLs’97, volume 1275
of Lecture Notes in Computer Science, pages 137–152, Murray Hill, NJ,
1997. Springer-Verlag.

62

http://isa-afp.org/entries/Sturm_Sequences.html
http://isa-afp.org/entries/Descartes_Sign_Rule.html

[5] W. Li. The Sturm–Tarski Theorem. Archive of Formal Proofs, Sept.
2014.

[6] W. Li. Count the Number of Complex Roots. Archive of Formal Proofs,
Oct. 2017.

[7] W. Li and L. C. Paulson. Evaluating Winding Numbers and Count-
ing Complex Roots through Cauchy Indices in Isabelle/HOL. CoRR,
abs/1804.03922, 2018.

[8] A. Mahboubi and C. Cohen. Formal proofs in real algebraic geome-
try: from ordered fields to quantifier elimination. Logical Methods in
Computer Science, 8(1), 2012.

[9] A. Narkawicz, C. A. Muñoz, and A. Dutle. Formally-Verified De-
cision Procedures for Univariate Polynomial Computation Based on
Sturm’s and Tarski’s Theorems. Journal of Automated Reasoning,
54(4):285–326, 2015.

[10] Q. I. Rahman and G. Schmeisser. Analytic Theory of Polynomials.
Oxford University Press, 2002.

63

	Misc results for polynomials and sign variations
	Induction on polynomial roots
	Misc
	More results about sign variations (i.e. 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 changes
	More about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 map-poly and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 of-real
	More about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 order
	Polynomial roots / zeros
	Polynomial roots counting multiplicities.
	Composition of a polynomial and a rational function
	Bijection (42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 bij-betw) and the number of polynomial roots

	Budan–Fourier theorem
	More results related to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 sign-r-pos
	Fourier sequences
	Sign variations for Fourier sequences
	Budan–Fourier theorem
	Count exactly when all roots are real

	Extension of Sturm's theorem for multiple roots
	More results for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 smods
	Alternative signed remainder sequences
	Sign variations on the alternative signed remainder sequences
	Extension of Sturm's theorem for multiple roots

	Descartes Roots Test
	Acknowledgements

