The Budan-Fourier Theorem and Counting Real Roots with Multiplicity

Wenda Li

September 13, 2023

Abstract

This entry is mainly about counting and approximating real roots (of a polynomial) with multiplicity. We have first formalised the BudanFourier theorem: given a polynomial with real coefficients, we can calculate sign variations on Fourier sequences to over-approximate the number of real roots (counting multiplicity) within an interval. When all roots are known to be real, the over-approximation becomes tight: we can utilise this theorem to count real roots exactly. It is also worth noting that Descartes' rule of sign is a direct consequence of the BudanFourier theorem, and has been included in this entry. In addition, we have extended previous formalised Sturm's theorem to count real roots with multiplicity, while the original Sturm's theorem only counts distinct real roots. Compared to the Budan-Fourier theorem, our extended Sturm's theorem always counts roots exactly but may suffer from greater computational cost.

Many problems in real algebraic geometry is about counting or approximating roots of a polynomial. Previous formalised results are mainly about counting distinct real roots (i.e. Sturm's theorem in Isabelle/HOL [5, 2], HOL Light [4], PVS [9] and Coq [8]) and limited support for multiple real roots (i.e. Descartes' rule of signs in Isabelle/HOL [3], HOL Light and ProofPower ${ }^{1}$). In comparison, this entry provides more comprehensive support for reasoning about multiple real roots.

The main motivation of this entry is to cope with the roots-on-the-border issue when counting complex roots [7,6], but the results here should be beneficial to other developments.

Our proof of the Budan-Fourier theorem mainly follows Theorem 2.35 in the book by Basu et al. [1] and that of the extended Sturm's theorem is inspired by Theorem 10.5.6 in Rahman and Schmeisser's book [10].

[^0]
1 Misc results for polynomials and sign variations

theory BF-Misc imports
HOL-Computational-Algebra.Polynomial-Factorial
HOL-Computational-Algebra.Fundamental-Theorem-Algebra
Sturm-Tarski.Sturm-Tarski
begin

1.1 Induction on polynomial roots

```
lemma poly-root-induct-alt [case-names 0 no-proots root]:
    fixes \(p::\) ' \(a\) :: idom poly
    assumes \(Q 0\)
    assumes \(\bigwedge p .(\bigwedge a\). poly \(p a \neq 0) \Longrightarrow Q p\)
    assumes \(\bigwedge a p . Q p \Longrightarrow Q([:-a, 1:] * p)\)
    shows \(\quad Q p\)
proof (induction degree \(p\) arbitrary: \(p\) rule: less-induct)
    case (less p)
    have ? case when \(p=0\) using \(\langle Q 0\rangle\) that by auto
    moreover have ? case when \(\nexists a\). poly p \(a=0\)
        using assms(2) that by blast
    moreover have ? case when \(\exists\) a. poly \(p a=0 p \neq 0\)
    proof -
        obtain \(a\) where poly \(p a=0\) using \(\langle\exists a\). poly \(p a=0\rangle\) by auto
        then obtain \(q\) where \(p q: p=[:-a, 1:] * q\) by (meson dvdE poly-eq-0-iff-dvd)
        then have \(q \neq 0\) using \(\langle p \neq 0\rangle\) by auto
        then have degree \(q<\) degree \(p\) unfolding \(p q\) by (subst degree-mult-eq,auto)
        then have \(Q q\) using less by auto
        then show ?case using assms(3) unfolding \(p q\) by auto
    qed
    ultimately show ?case by auto
qed
```


1.2 Misc

```
lemma lead-coeff-pderiv:
    fixes p :: 'a::{ comm-semiring-1,semiring-no-zero-divisors,semiring-char-0} poly
    shows lead-coeff (pderiv p) = of-nat (degree p) * lead-coeff p
    apply (auto simp:degree-pderiv coeff-pderiv)
    apply (cases degree p)
    by (auto simp add: coeff-eq-0)
lemma gcd-degree-le-min:
    assumes p\not=0 q\not=0
    shows degree (gcd p q) \leqmin (degree p) (degree q)
    by (simp add: assms(1) assms(2) dvd-imp-degree-le)
lemma lead-coeff-normalize-field:
    fixes p::'a::{field,semidom-divide-unit-factor} poly
    assumes p\not=0
```

$$
\text { shows lead-coeff (normalize } p)=1
$$

by (metis (no-types, lifting) assms coeff-normalize divide-self-if dvd-field-iff is-unit-unit-factor leading-coeff-0-iff normalize-eq-0-iff normalize-idem)
lemma smult-normalize-field-eq:
fixes $p::{ }^{\prime} a::\{$ field,semidom-divide-unit-factor $\}$ poly
shows $p=$ smult (lead-coeff p) (normalize p)
proof (rule poly-eqI)
fix n
have unit-factor (lead-coeff p) $=$ lead-coeff p
by (metis dvd-field-iff is-unit-unit-factor unit-factor-0)
then show coeff $p n=$ coeff $($ smult (lead-coeff $p)($ normalize $p)) n$
by simp
qed
lemma lead-coeff-gcd-field:
fixes $p q::{ }^{\prime} a:: f i e l d-g c d$ poly
assumes $p \neq 0 \vee q \neq 0$
shows lead-coeff $(g c d p q)=1$
using assms by (metis gcd.normalize-idem gcd-eq-0-iff lead-coeff-normalize-field)
lemma poly-gcd-0-iff:
poly $(g c d p q) x=0 \longleftrightarrow$ poly $p x=0 \wedge$ poly $q x=0$
by (simp add:poly-eq-0-iff-dvd)
lemma degree-eq-oneE:
fixes $p::$ 'a::zero poly
assumes degree $p=1$
obtains $a b$ where $p=[: a, b:] b \neq 0$
proof -
obtain $a b q$ where $p: p=p$ Cons $a(p$ Cons $b q$)
by (metis p Cons-cases)
with assms have $q=0$ by (cases $q=0$) simp-all
with p have $p=[: a, b:]$ by auto
moreover then have $b \neq 0$ using assms by auto
ultimately show ?thesis ..
qed

1.3 More results about sign variations (i.e. changes

lemma changes- $0[$ simp $]$:changes $(0 \# x s)=$ changes $x s$
by (cases xs) auto
lemma changes-Cons:changes $(x \# x s)=($ if filter $(\lambda x . x \neq 0) x s=[]$ then
0
else if $x * h d($ filter $(\lambda x, x \neq 0) x s)<0$ then
$1+$ changes $x s$
else changes $x s$)
apply (induct $x s$)

```
    by auto
lemma changes-filter-eq:
    changes (filter ( }\lambdax.x\not=0)xs)=\mathrm{ changes xs
    apply (induct xs)
    by (auto simp add:changes-Cons)
lemma changes-filter-empty:
    assumes filter ( }\lambdax.x\not=0)xs=[
    shows changes xs =0 changes (a#xs) = 0 using assms
    apply (induct xs)
    apply auto
    by (metis changes-0 neq-Nil-conv)
lemma changes-append:
    assumes xs\not= [] ^ ys\not= [] \longrightarrow(last xs = hd ys ^ last xs\not=0)
    shows changes (xs@ys)= changes xs + changes ys
    using assms
proof (induct xs)
    case Nil
    then show ?case by simp
next
    case (Cons a xs)
    have ?case when xs=[]
        using that Cons
        apply (cases ys)
        by auto
    moreover have ?case when ys=[]
    using that Cons by auto
    moreover have ?case when xs\not=[] ys\not=[]
    proof -
    have filter ( }\lambdax.x\not=0)xs\not=[
        using that Cons
        apply auto
                by (metis (mono-tags, lifting) filter.simps(1) filter.simps(2) filter-append
snoc-eq-iff-butlast)
    then have changes (a # xs @ ys) = changes (a # xs) + changes ys
                apply (subst (1 2) changes-Cons)
                using that Cons by auto
            then show ?thesis by auto
    qed
    ultimately show ?case by blast
qed
lemma changes-drop-dup:
    assumes }xs\not=[] ys\not=[]\longrightarrow last xs=hd y
    shows changes (xs@ys)= changes (xs@ tl ys)
    using assms
proof (induct xs)
```

```
    case Nil
    then show ?case by simp
next
    case (Cons a xs)
    have ?case when ys=[]
    using that by simp
    moreover have ?case when ys }\not=[] xs=[
    using that Cons
    apply auto
    by (metis changes.simps(3) list.exhaust-sel not-square-less-zero)
    moreover have ?case when ys\not=[] xs \not=[]
    proof -
        define ts ts' where ts=filter ( }\lambdax.x\not=0)(xs@ys
            and ts'}=\mathrm{ filter }(\lambdax.x\not=0)(xs@ tl ys
    have }(ts=[]\longleftrightarrowt\mp@subsup{s}{}{\prime}=[])\wedgehdts=hdt\mp@subsup{s}{}{\prime
    proof (cases filter (\lambdax.x\not=0) xs=[])
            case True
            then have last xs=0 using <xs\not=[]>
                    by (metis (mono-tags, lifting) append-butlast-last-id append-is-Nil-conv
                    filter.simps(2) filter-append list.simps(3))
            then have hd ys=0 using Cons(3)[rule-format, OF <ys\not=[]>]\langlexs\not=[]> by auto
            then have filter ( }\lambdax.x\not=0) ys=filter (\lambdax.x\not=0) (tl ys
                by (metis (mono-tags, lifting) filter.simps(2) list.exhaust-sel that(1))
            then show ?thesis unfolding ts-def ts''-def by auto
    next
            case False
            then show ?thesis unfolding ts-def ts'-def by auto
    qed
    moreover have changes (xs @ ys) = changes (xs @ tl ys)
        apply (rule Cons(1))
        using that Cons(3) by auto
    moreover have changes (a# xs @ ys)=(if ts=[] then 0 else if a*hd ts <
0
                    then 1 + changes (xs @ ys) else changes (xs @ ys))
        using changes-Cons[of a xs @ ys,folded ts-def].
    moreover have changes ( a#xs@ @l ys) = (if ts' = [] then 0 else if a*hdts'
< 0
            then 1 + changes(xs@ tl ys) else changes (xs @ tl ys))
            using changes-Cons[of a xs @ tl ys,folded ts''def].
    ultimately show ?thesis by auto
    qed
    ultimately show ?case by blast
qed
```

lemma Im-poly-of-real:
$\operatorname{Im}($ poly $p(o f-r e a l x))=$ poly $($ map-poly $\operatorname{Im} p) x$
apply (induct p)
by (auto simp add:map-poly-pCons)
lemma Re-poly-of-real:
$\operatorname{Re}($ poly $p(o f-r e a l x))=$ poly $($ map-poly Re $p) x$
apply (induct p)
by (auto simp add:map-poly-pCons)

1.4 More about map-poly and of-real

lemma of-real-poly-map-pCons[simp]:map-poly of-real (pCons a p) $=$ pCons $(o f$-real
a) (map-poly of-real p)
by (simp add: map-poly-pCons)
lemma of-real-poly-map-plus[simp]: map-poly of-real $(p+q)=$ map-poly of-real p + map-poly of-real q apply (rule poly-eqI)
by (auto simp add: coeff-map-poly)
lemma of-real-poly-map-smult $[$ simp $]$:map-poly of-real (smult s p) $=$ smult (of-real
s) (map-poly of-real p)
apply (rule poly-eqI)
by (auto simp add: coeff-map-poly)
lemma of-real-poly-map-mult $[$ simp $]$:map-poly of-real $(p * q)=$ map-poly of-real $p *$ map-poly of-real q
by (induct p, intro poly-eqI,auto)
lemma of-real-poly-map-poly:
of-real $($ poly $p x)=$ poly $($ map-poly of-real $p)(o f-$ real $x)$
by (induct p,auto)
lemma of-real-poly-map-power:map-poly of-real $(p \widehat{n})=($ map-poly of-real $p){ }^{\wedge} n$ by (induct n,auto)
lemma of-real-poly-eq-iff [simp]: map-poly of-real $p=$ map-poly of-real $q \longleftrightarrow p=$ q
by (auto simp: poly-eq-iff coeff-map-poly)
lemma of-real-poly-eq-0-iff [simp]: map-poly of-real $p=0 \longleftrightarrow p=0$
by (auto simp: poly-eq-iff coeff-map-poly)

1.5 More about order

lemma order-multiplicity-eq:
assumes $p \neq 0$
shows order a $p=$ multiplicity $[:-a, 1:] p$
by (metis assms multiplicity-eqI order-1 order-2)

```
lemma order-gcd:
    assumes p\not=0 q\not=0
    shows order x (gcd pq) = min (order x p)(order x q)
proof -
    have prime [:- x, 1:]
        apply (auto simp add: prime-elem-linear-poly normalize-poly-def intro!:primeI)
        by (simp add: pCons-one)
    then show ?thesis
        using assms
        by (auto simp add:order-multiplicity-eq intro:multiplicity-gcd)
qed
lemma order-linear[simp]: order x [:-a,1:]=(if x=a then 1 else 0)
    by (auto simp add:order-power-n-n[where n=1,simplified] order-0I)
lemma map-poly-order-of-real:
    assumes p\not=0
    shows order (of-real t) (map-poly of-real p) = order t p using assms
proof (induct p rule:poly-root-induct-alt)
    case 0
    then show ?case by simp
next
    case (no-proots p)
    then have order t p=0 using order-root by blast
    moreover have poly (map-poly of-real p) (of-real x) }\not=0\mathrm{ for }
        apply (subst of-real-poly-map-poly[symmetric])
        using no-proots order-root by simp
    then have order (of-real t) (map-poly of-real p)=0
        using order-root by blast
    ultimately show ?case by auto
next
    case (root a p)
    define a1 where a1=[:-a,1:]
    have [simp]:a1\not=0 p\not=0 unfolding a1-def using root(2) by auto
    have order (of-real t) (map-poly of-real a1) = order t a1
        unfolding a1-def by simp
    then show ?case
        apply (fold a1-def)
        by (simp add:order-mult root)
qed
lemma order-pcompose:
    assumes pcompose p q\not=0
    shows order x (pcompose p q) = order x (q-[:poly q x:]) * order (poly q x) p
    using <pcompose p q\not=0`
proof (induct p rule:poly-root-induct-alt)
    case 0
    then show ?case by simp
next
```

```
    case (no-proots p)
    have order x (p\circopq)=0
    apply (rule order-OI)
    using no-proots by (auto simp:poly-pcompose)
    moreover have order (poly q x) p=0
    apply (rule order-0I)
    using no-proots by (auto simp:poly-pcompose)
    ultimately show ?case by auto
next
    case (root a p)
    define a1 where a1=[:-a,1:]
    have [simp]: a1\not=0 p\not=0 a1 o op}q\not=0po\mp@subsup{\circ}{p}{}q\not=
        subgoal using root(2) unfolding a1-def by simp
        subgoal using root(2) by auto
        using root(2) by (fold a1-def,auto simp:pcompose-mult)
    have order x ((a1*p) op q) = order x (a1 of q) + order x (por q)
    unfolding pcompose-mult by (auto simp: order-mult)
    also have ... = order x (q-[:poly q x:]) * (order (poly q x) a1 + order (poly q
x) p)
    proof -
    have order x (a1 opq) = order x (q-[:poly q x:]) * order (poly q x) a1
        unfolding a1-def
        apply (auto simp: pcompose-pCons algebra-simps diff-conv-add-uminus )
        by (simp add: order-0I)
    moreover have order x (p op q) = order x (q- [:poly q x:]) * order (poly q
x) p
        apply (rule root.hyps)
        by auto
    ultimately show ?thesis by (auto simp:algebra-simps)
    qed
    also have ... = order x (q- [:poly q x:]) * order (poly q x) (a1 * p)
    by (auto simp:order-mult)
    finally show ?case unfolding a1-def .
qed
```


1.6 Polynomial roots / zeros

definition proots-within::'a::comm-semiring-0 poly \Rightarrow 'a set \Rightarrow ' a set where proots-within $p s=\{x \in s$. poly $p x=0\}$
abbreviation proots::' $a::$ comm-semiring-0 poly \Rightarrow ' a set where proots $p \equiv$ proots-within p UNIV
lemma proots-def: proots $p=\{x$. poly $p x=0\}$ unfolding proots-within-def by auto
lemma proots-within-empty[simp]:
proots-within $p\}=\{ \}$ unfolding proots-within-def by auto

```
lemma proots-within-0[simp]:
    proots-within 0 s=s unfolding proots-within-def by auto
lemma proots-withinI[intro,simp]:
    poly p x=0 \Longrightarrowx\ins \Longrightarrowx\inproots-within p s
    unfolding proots-within-def by auto
lemma proots-within-iff[simp]:
    x\inproots-within ps w poly p x=0 ^ x\ins
    unfolding proots-within-def by auto
lemma proots-within-union:
    proots-within p A\cup proots-within p B = proots-within p (A\cupB)
    unfolding proots-within-def by auto
lemma proots-within-times:
    fixes s::'a::{semiring-no-zero-divisors,comm-semiring-0} set
    shows proots-within ( }p*q)s=\mathrm{ proots-within p s U proots-within q s
    unfolding proots-within-def by auto
lemma proots-within-gcd:
    fixes s::'a::{factorial-ring-gcd,semiring-gcd-mult-normalize} set
    shows proots-within (gcd p q) s= proots-within p s\cap proots-within q s
    unfolding proots-within-def
    by (auto simp add: poly-eq-0-iff-dvd)
lemma proots-within-inter:
    NO-MATCH UNIV s\Longrightarrow proots-within p s= proots p \caps
    unfolding proots-within-def by auto
lemma proots-within-proots[simp]:
    proots-within p s\subseteq proots p
    unfolding proots-within-def by auto
lemma finite-proots[simp]:
    fixes p :: 'a::idom poly
    shows p\not=0\Longrightarrow finite (proots-within p s)
    unfolding proots-within-def using poly-roots-finite by fast
lemma proots-within-pCons-1-iff:
    fixes a::'a::idom
    shows proots-within [:-a,1:] s=( if a\ins then {a} else {})
        proots-within [:a,-1:] s=(if a\ins then {a} else {})
    by (cases a\ins,auto)
lemma proots-within-uminus[simp]:
    fixes p :: 'a::comm-ring poly
    shows proots-within (-p)s=proots-within p s
    by auto
```

```
lemma proots-within-smult:
    fixes a::'a::{semiring-no-zero-divisors,comm-semiring-0}
    assumes }a\not=
    shows proots-within (smult a p) s= proots-within p s
    unfolding proots-within-def using assms by auto
```


1.7 Polynomial roots counting multiplicities.

definition proots-count::'a::idom poly \Rightarrow 'a set \Rightarrow nat where proots-count pse(\sum reproots-within p s. order r $\left.p\right)$
lemma proots-count-emtpy[simp]:proots-count $p\}=0$
unfolding proots-count-def by auto
lemma proots-count-times:
fixes $s::{ }^{\prime} a:: i d o m$ set
assumes $p * q \neq 0$
shows proots-count $(p * q) s=$ proots-count $p s+$ proots-count $q s$
proof -
define pts where pts=proots-within p s
define $q t s$ where $q t s=$ proots-within $q s$
have $[$ simp $]$: finite pts finite qts
using $\langle p * q \neq 0\rangle$ unfolding $p t s$-def $q t s-d e f$ by auto
have $\left(\sum r \in p t s \cup\right.$ qts. order $\left.r p\right)=\left(\sum r \in p t s\right.$. order $\left.r p\right)$
proof (rule comm-monoid-add-class.sum.mono-neutral-cong-right,simp-all) show $\forall i \in p t s \cup q t s-p t s$. order i $p=0$
unfolding pts-def qts-def proots-within-def using order-root by fastforce
qed
moreover have $\left(\sum r \in p t s \cup q t s\right.$. order $\left.r q\right)=\left(\sum r \in q t s\right.$. order $\left.r q\right)$
proof (rule comm-monoid-add-class.sum.mono-neutral-cong-right,simp-all) show $\forall i \in p t s \cup q t s-q t s$. order i $q=0$
unfolding pts-def qts-def proots-within-def using order-root by fastforce
qed
ultimately show ?thesis unfolding proots-count-def
apply (simp add:proots-within-times order-mult $[O F\langle p * q \neq 0\rangle]$ sum.distrib) apply (fold pts-def qts-def) by auto
qed
lemma proots-count-power-n-n:
shows proots-count ([:-a,1:] $n) s=($ if $a \in s \wedge n>0$ then n else 0$)$
proof -
have proots-within $([:-a, 1:] \sim n) s=($ if $a \in s \wedge n>0$ then $\{a\}$ else $\{ \})$ unfolding proots-within-def by auto
thus ?thesis unfolding proots-count-def using order-power-n-n by auto qed
lemma degree-proots-count:

```
    fixes p::complex poly
    shows degree p = proots-count p UNIV
proof (induct degree p arbitrary:p )
    case 0
    then obtain c where c-def:p=[:c:] using degree-eq-zeroE by auto
    then show ?case unfolding proots-count-def
    apply (cases c=0)
    by (auto intro!:sum.infinite simp add:infinite-UNIV-char-0 order-OI)
next
    case (Suc n)
    then have degree p\not=0 and p\not=0 by auto
    obtain z}\mathrm{ where poly pz=0
        using Fundamental-Theorem-Algebra.fundamental-theorem-of-algebra}<degree
p\not=0> constant-degree[of p]
    by auto
    define onez where onez=[:-z,1:]
    have [simp]: onez\not=0 degree onez = 1 unfolding onez-def by auto
    obtain q}\mathrm{ where q-def:p=onez * q
        using poly-eq-0-iff-dvd <poly pz=0`dvdE unfolding onez-def by blast
    hence q\not=0 using < p\not=0\rangle by auto
    hence n=degree q using degree-mult-eq[of onez q] <Suc n= degree p>
        apply (fold q-def)
        by auto
    hence degree q = proots-count q UNIV using Suc.hyps(1) by simp
    moreover have Suc 0 = proots-count onez UNIV
        unfolding onez-def using proots-count-power-n-n[of z 1 UNIV]
        by auto
    ultimately show ?case
        unfolding q-def using degree-mult-eq[of onez q] proots-count-times[of onez q
UNIV] \langleq\not=0`
    by auto
qed
lemma proots-count-smult:
    fixes a::'a::{semiring-no-zero-divisors,idom}
    assumes }a\not=
    shows proots-count (smult a p) s= proots-count p s
proof (cases p=0)
    case True
    then show ?thesis by auto
next
    case False
    then show ?thesis
        unfolding proots-count-def
        using order-smult[OF assms] proots-within-smult[OF assms] by auto
qed
lemma proots-count-pCons-1-iff:
```

```
    fixes a::'a::idom
    shows proots-count [:-a,1:] s=(if a\ins then 1 else 0)
    unfolding proots-count-def
    by (cases a\ins,auto simp add:proots-within-pCons-1-iff order-power-n-n[of-1,simplified])
lemma proots-count-uminus[simp]:
    proots-count (- p)s= proots-count p s
    unfolding proots-count-def by simp
lemma card-proots-within-leq:
    assumes p\not=0
    shows proots-count p s \geq card (proots-within p s) using assms
proof (induct rule:poly-root-induct[of - \lambdax. x\ins])
    case 0
    then show ?case unfolding proots-within-def proots-count-def by auto
next
    case (no-roots p)
    then have proots-within p s={} by auto
    then show ?case unfolding proots-count-def by auto
next
    case (root a p)
    have card (proots-within ([:- a, 1:] * p) s)
        \leqcard (proots-within [:-a,1:] s)+card (proots-within p s)
        unfolding proots-within-times by (auto simp add:card-Un-le)
    also have ... \leq1+ proots-count ps
    proof -
    have card (proots-within [:- a, 1:] s) \leq 1
    proof (cases a\ins)
            case True
            then have proots-within [:- a, 1:] s={a} by auto
            then show ?thesis by auto
    next
            case False
            then have proots-within [:- a, 1:] s={} by auto
            then show ?thesis by auto
        qed
        moreover have card (proots-within p s) \leq proots-count p s
            apply (rule root.hyps)
            using root by auto
        ultimately show ?thesis by auto
qed
also have ... = proots-count ([:-a,1:] * p)s
    apply (subst proots-count-times)
    subgoal by (metis mult-eq-0-iff pCons-eq-0-iff root.prems zero-neq-one)
    using root by (auto simp add:proots-count-pCons-1-iff)
    finally have card (proots-within ([:- a, 1:] * p) s) \leq proots-count ([:-a, 1:] *
p) s.
    then show ?case
    by (metis (no-types, opaque-lifting) add.inverse-inverse add.inverse-neutral mi-
```

```
nus-pCons
    mult-minus-left proots-count-uminus proots-within-uminus)
qed
lemma proots-count-0-imp-empty:
    assumes proots-count p s=0 p\not=0
    shows proots-within p s={}
proof -
    have card (proots-within p s)=0
        using card-proots-within-leq[OF <p\not=0\rangle,of s] <proots-count p s=0\rangle by auto
    moreover have finite (proots-within p s) using < p\not=0\rangle by auto
    ultimately show ?thesis by auto
qed
lemma proots-count-leq-degree:
    assumes p\not=0
    shows proots-count p s\leq degree p using assms
proof (induct rule:poly-root-induct[of - \lambdax. x\ins])
    case 0
    then show ?case by auto
next
    case (no-roots p)
    then have proots-within p s={} by auto
    then show ?case unfolding proots-count-def by auto
next
    case (root a p)
    have proots-count ([:a, - 1:] * p) s= proots-count [:a, - 1:] s+ proots-count p
S
    apply (subst proots-count-times)
    using root by auto
    also have ... = 1 + proots-count p s
    proof -
    have proots-count [:a,- 1:] s =1
                by (metis (no-types, lifting) add.inverse-inverse add.inverse-neutral mi-
nus-pCons
                    proots-count-pCons-1-iff proots-count-uminus root.hyps(1))
    then show ?thesis by auto
    qed
    also have ... \leq degree ([:a,-1:]*p)
    apply (subst degree-mult-eq)
    subgoal by auto
    subgoal using root by auto
    subgoal using root by (simp add: <p\not=0\rangle)
    done
    finally show ?case .
qed
```

```
lemma proots-count-union-disjoint:
    assumes }A\capB={}p\not=
    shows proots-count p (A\cupB)= proots-count pA+ proots-count p B
    unfolding proots-count-def
    apply (subst proots-within-union[symmetric])
    apply (subst sum.union-disjoint)
    using assms by auto
lemma proots-count-cong:
    assumes order-eq:\forallx\ins. order x p =order x q and p\not=0 and q\not=0
    shows proots-count p s= proots-count q s unfolding proots-count-def
proof (rule sum.cong)
    have poly p x=0 \longleftrightarrow poly q x = 0 when }x\ins\mathrm{ for }
    using order-eq that by (simp add:assms(2) assms(3) order-root)
    then show proots-within p s= proots-within q s by auto
    show }\bigwedgex.x\in\mathrm{ proots-within q s < order x p=order x q
        using order-eq by auto
qed
lemma proots-count-of-real:
    assumes p\not=0
```



```
s)
    = proots-count p s
proof -
    define }k\mathrm{ where }k=(of-real::- >>'a
    have proots-within (map-poly of-real p) (k's) =k'(proots-within p s)
    unfolding proots-within-def k-def by (auto simp add:of-real-poly-map-poly[symmetric])
    then have proots-count (map-poly of-real p) (k's)
                        =(\sumr\ink'(proots-within p s). order r (map-poly of-real p))
        unfolding proots-count-def by simp
    also have ... = sum ((\lambdar. order r (map-poly of-real p)) ○ k)(proots-within p s)
        apply (subst sum.reindex)
        unfolding k-def by (auto simp add: inj-on-def)
    also have ... = proots-count p s unfolding proots-count-def
        apply (rule sum.cong)
        unfolding }k\mathrm{ -def comp-def using }\langlep\not=0\rangle\mathrm{ by (auto simp add:map-poly-order-of-real)
    finally show ?thesis unfolding k-def .
qed
lemma proots-pcompose:
    fixes p q::'a::field poly
    assumes p\not=0 degree q=1
    shows proots-count (pcompose p q) s= proots-count p (poly q's)
proof -
    obtain a b where ab:q=[:a,b:] b\not=0
        using <degree q=1` degree-eq-oneE by metis
```

define f where $f=(\lambda y .(y-a) / b)$
have f-eq: $f($ poly $q x)=x$ poly $q(f x)=x$ for x
unfolding f-def using ab by auto
have proots-count $\left(p \circ_{p} q\right) s=\left(\sum r \in f^{\prime}\right.$ proots-within $p($ poly q ' $s)$. order $r(p$ $\left.\circ_{p} q\right)$)
unfolding proots-count-def
apply (rule arg-cong2[where $f=$ sum])
apply (auto simp:poly-pcompose proots-within-def f-eq)
by (metis (mono-tags, lifting) f-eq(1) image-eqI mem-Collect-eq)
also have $\ldots=\left(\sum x \in\right.$ proots-within $p\left(\right.$ poly q 's). order $\left.(f x)\left(p \circ_{p} q\right)\right)$
apply (subst sum.reindex)
subgoal unfolding f-def inj-on-def using $\langle b \neq 0\rangle$ by auto
by simp
also have $\ldots=\left(\sum x \in\right.$ proots-within $p($ poly q 's). order $x p)$
proof -
have $p \circ_{p} q \neq 0$ using assms(1) assms(2) pcompose-eq-0 by force
moreover have $\operatorname{order}(f x)(q-[: x:])=1$ for x
proof -
have $\operatorname{order}(f x)(q-[: x:])=\operatorname{order}(f x)($ smult $b[:-((x-a) / b), 1:])$
unfolding f-def using $a b$ by auto
also have ... = 1
apply (subst order-smult)
using $\langle b \neq 0\rangle$ unfolding f-def by auto
finally show ?thesis .
qed
ultimately have order $(f x)\left(p \circ_{p} q\right)=$ order $x p$ for x
apply (subst order-pcompose)
using f-eq by auto
then show ?thesis by auto
qed
also have $\ldots=$ proots-count p (poly q's)
unfolding proots-count-def by auto
finally show? ?hesis .
qed

1.8 Composition of a polynomial and a rational function

definition fcompose::'a ::field poly $\Rightarrow{ }^{\prime}$ a poly \Rightarrow 'a poly \Rightarrow 'a poly where
fcompose p $q r=f s t(f o l d-c o e f f s ~(\lambda a(c, d) .(d *[: a:]+q * c, r * d)) p(0,1))$
lemma fcompose-0 [simp]: fcompose 0 q $r=0$
by (simp add: fcompose-def)
lemma fcompose-const[simp]:fcompose [:a:] q $r=[: a:]$
unfolding fcompose-def by (cases $a=0$) auto
lemma fcompose-pCons:
fcompose $\left(p\right.$ Cons a p) q1 $q 2=$ smult $a\left(q \mathcal{Q}^{\wedge}(\right.$ degree $(p$ Cons a $\left.p))\right)+q 1 *$ fcompose p q1 q2

```
proof (cases \(p=0\) )
    case False
    define \(f f\) where \(f f=(\lambda a(c, d) .(d *[: a:]+q 1 * c, q 2 * d))\)
    define \(f c\) where \(f c=\) fold-coeffs ff \(p(0,1)\)
    have snd-ff:snd \(f c=(\) if \(p=0\) then 1 else \(q 2 \wedge(\) degree \(p+1))\) unfolding \(f c\)-def
        apply (induct p)
        subgoal by simp
        subgoal for \(a p\)
        by (auto simp add:ff-def split:if-splits prod.splits)
        done
    have fcompose ( \(p\) Cons a p) q1 q2 \(=\) fst (fold-coeffs ff ( \(p\) Cons a \(p)(0,1)\) )
        unfolding fcompose-def ff-def by simp
    also have \(\ldots=f s t(f f a f c)\)
        using False unfolding \(f c\)-def by auto
    also have \(\ldots=\) snd \(f c *[: a:]+q 1 * f s t f c\)
        unfolding ff-def by (auto split:prod.splits)
    also have \(\ldots=\) smult a \(\left(q^{\mathcal{Q}}(\right.\) degree \((p\) Cons a \(\left.p))\right)+q 1 * f s t f c\)
        using snd-ff False by auto
    also have \(\ldots=\) smult \(a\left(q^{2} \mathcal{}(\right.\) degree \((p\) Cons a \(\left.p))\right)+q 1 *\) fcompose \(p\) \(q 1 q 2\)
        unfolding \(f c\)-def ff-def fcompose-def by simp
    finally show? ?thesis .
qed \(\operatorname{simp}\)
lemma fcompose-uminus:
    fcompose \((-p) q r=-f\) compose \(p q r\)
    by (induct \(p\) ) (auto simp:fcompose-pCons)
lemma fcompose-add-less:
    assumes degree \(p 1>\) degree \(p 2\)
    shows fcompose \((p 1+p 2) q 1 q 2\)
    \(=\) fcompose p1 q1 q2 \(+q^{2} \uparrow(\) degree \(p 1-\) degree \(p 2) *\) fcompose \(p 2 q 1 q 2\)
    using assms
proof (induction p1 p2 rule: poly-induct2)
    case ( \(p\) Cons a1 p1 a2 p2)
    have ? case when \(p 2=0\)
        using that by (simp add:fcompose-pCons smult-add-left)
    moreover have ?case when \(p 2 \neq 0 \neg\) degree \(p 2<\) degree \(p 1\)
        using that \(p \operatorname{Cons}(2)\) by auto
    moreover have ? case when \(p 2 \neq 0\) degree \(p 2<\) degree \(p 1\)
    proof -
        define \(d 1\) d2 where \(d 1=\) degree ( \(p\) Cons a1 p1) and \(d 2=\) degree ( \(p\) Cons a2 p2)
        define fp1 fp2 where fp1=fcompose p1 q1 q2 and fp2=fcompose p2 q1 q2
    have fcompose ( \(p\) Cons a1 p1 + pCons a2 p2) q1 q2
                \(=\) fcompose \((p\) Cons \((a 1+a 2)(p 1+p 2)) q 1 q 2\)
            by \(\operatorname{simp}\)
        also have \(\ldots=\) smult \((a 1+a 2)\left(q 2{ }^{\wedge} d 1\right)+q 1 *\) fcompose \((p 1+p 2) q 1 q 2\)
        proof -
```

```
        have degree \((p \operatorname{Cons}(a 1+a 2)(p 1+p 2))=d 1\)
            unfolding d1-def using that degree-add-eq-left by fastforce
            then show ?thesis unfolding fcompose-pCons by simp
    qed
    also have \(\ldots=\) smult \((a 1+a 2)(q 2\) ^d1 \()+q 1 *(f p 1+q 2\) ^ \((d 1-d 2) *\)
fp2)
    proof -
    have degree \(p 1-\) degree \(p 2=d 1-d 2\)
            unfolding \(d 1\)-def \(d 2\)-def using that by simp
            then show? ?thesis
                unfolding \(p \operatorname{Cons}(1)[\) OF that(2),folded fp1-def fp2-def] by simp
    qed
    also have \(\ldots=\) fcompose \((p\) Cons a1 p1) \(q 1\) 1 \(2+q 2 \wedge(d 1-d 2)\)
                        * fcompose (pCons a2 p2) q1 q2
    proof -
    have \(d 1>d 2\) unfolding \(d 1\)-def \(d 2\)-def using that by auto
    then show ?thesis
            unfolding fcompose-pCons
            apply (fold d1-def d2-def fp1-def fp2-def)
            by (simp add:algebra-simps smult-add-left power-add[symmetric])
    qed
    finally show ?thesis unfolding d1-def d2-def .
    qed
    ultimately show? ?ase by blast
qed simp
lemma fcompose-add-eq:
    assumes degree \(p 1=\) degree \(p 2\)
    shows \(q 2\) 〔 (degree \(p 1-\) degree \((p 1+p 2)) *\) fcompose \((p 1+p 2) q 1 q 2\)
        \(=\) fcompose p1 q1 q2 + fcompose p2 q1 q2
    using assms
proof (induction p1 p2 rule: poly-induct2)
    case ( \(p\) Cons a1 p1 a2 p2)
    have ? case when \(p 1+p 2=0\)
    proof -
        have \(p 2=-p 1\) using that by algebra
    then show ?thesis by (simp add:fcompose-pCons fcompose-uminus smult-add-left)
    qed
    moreover have ?case when \(p 1=0\)
    proof -
        have \(p 2=0\)
            using \(p\) Cons(2) that by (auto split:if-splits)
            then show ?thesis using that by simp
    qed
    moreover have ? case when \(p 1 \neq 0\) p1+p \(2 \neq 0\)
    proof -
        define \(d 1 d 2 d p\) where \(d 1=\operatorname{degree}(p\) Cons a1 \(p 1)\) and \(d 2=\operatorname{degree}(p\) Cons a2
p2)
                        and \(d p=\) degree \(p 1-\) degree \((p 1+p 2)\)
```

define fp1 fp2 where fp1=fcompose p1 q1 q2 and fp2=fcompose p2 q1 q2
have $q 2{ }^{\wedge}($ degree (p Cons a1 p1) - degree (p Cons a1 p1 + pCons a2 p2)) * fompose (p Cons a1 p1 + pCons a2 p2) q1 q2 $=q 2{ }^{\wedge} d p *$ fcompose $(p$ Cons $(a 1+a 2)(p 1+p 2)) q 1 q 2$
unfolding $d p$-def using that by auto
also have $\ldots=\operatorname{smult}(a 1+a 2)\left(q 2^{\wedge} d 1\right)+q 1 *(q 2 \wedge d p *$ fcompose $(p 1+$ p2) $q 1 q 2$)
proof -
have degree $p 1 \geq$ degree $(p 1+p 2)$
by (metis degree-add-le degree-pCons-eq-if not-less-eq-eq order-refl pCons.prems zero-le)
then show ?thesis
unfolding fcompose-pCons dp-def d1-def using that
by (simp add:algebra-simps power-add[symmetric])
qed
also have $\ldots=\operatorname{smult}(a 1+a 2)\left(q^{2}\right.$ へ d1 $)+q 1 *(f p 1+f p 2)$
apply (subst $p \operatorname{Cons}(1)[$ folded dp-def fp1-def fp2-def] $]$)
subgoal by (metis degree-pCons-eq-if diff-Suc-Suc diff-zero not-less-eq-eq pCons.prems zero-le)
subgoal by simp
done
also have $\ldots=$ fcompose $(p$ Cons a1 p1) q1 $q 2+$ fcompose (p Cons a2 p2) q1 q2
proof -
have $*: d 1=$ degree (p Cons a2 p2)
unfolding d1-def using $p \operatorname{Cons}(2)$ by simp
show ?thesis
unfolding fcompose-pCons
apply (fold d1-def fp1-def fp2-def *)
by (simp add:smult-add-left algebra-simps)
qed
finally show? ?thesis .
qed
ultimately show ?case by blast
qed simp
lemma fcompose-add-const:
fcompose $([: a:]+p) q 1 q 2=$ smult $a\left(q_{2}\right.$ へ degree $\left.p\right)+$ fcompose $p q 1 q 2$
apply (cases p)
by (auto simp add:fcompose-pCons smult-add-left)
lemma fcompose-smult: fcompose (smult a p) q1 q2 $=$ smult a (fcompose p q1 q2)
by (induct p) (simp-all add:fcompose-pCons smult-add-right)
lemma fcompose-mult: fcompose $(p 1 * p 2) q 1 q 2=$ fcompose $p 1 q 1 q 2 *$ fcompose p2 q1 q2
proof (induct p1)
case 0

```
    then show ?case by simp
next
    case (pCons a p1)
    have ?case when p1=0 \vee p2=0
        using that by (auto simp add:fcompose-smult)
    moreover have ?case when p1\not=0 p2\not=0 a=0
    using that by (simp add:fcompose-pCons pCons)
    moreover have ?case when p1\not=0 p2\not=0 a\not=0
    proof -
    have fcompose (pCons a p1 * p2) q1 q2
                fcompose (pCons 0 (p1*p2) + smult a p2) q1 q2
            by (simp add:algebra-simps)
    also have ... = fcompose (pCons 0 (p1*p2)) q1 q2
                                    + q2 ^(degree p1 +1) * fcompose (smult a p2) q1 q2
    proof -
            have degree (pCons 0 (p1* p2)) > degree (smult a p2)
            using that by (simp add: degree-mult-eq)
            from fcompose-add-less[OF this,of q1 q2] that
            show ?thesis by (simp add:degree-mult-eq)
    qed
    also have ... = fcompose (pCons a p1) q1 q2 * fcompose p2 q1 q2
    using that by (simp add:fcompose-pCons fcompose-smult pCons algebra-simps)
    finally show ?thesis .
    qed
    ultimately show ?case by blast
qed
lemma fcompose-poly:
    assumes poly q2 }x\not=
    shows poly p (poly q1 x/poly q2 x) = poly (fcompose p q1 q2) x / poly (q2^(degree
p)) x
    apply (induct p)
    using assms by (simp-all add:fcompose-pCons field-simps)
lemma poly-fcompose:
    assumes poly q2 x}=
    shows poly (fcompose p q1 q2) x = poly p (poly q1 x/poly q2 x) * (poly q2
x)`(degree p)
    using fcompose-poly[OF assms] assms by (auto simp add:field-simps)
lemma poly-fcompose-0-denominator:
    assumes poly q2 x=0
    shows poly (fcompose p q1 q2) x = poly q1 x^degree p * lead-coeff p
    apply (induct p)
    using assms by (auto simp add:fcompose-pCons)
lemma fcompose-0-denominator:fcompose p q1 0 = smult (lead-coeff p) (q1^degree
p)
    apply (induct p)
    by (auto simp:fcompose-pCons)
```

```
lemma fcompose-nzero:
    fixes p::'a::field poly
    assumes p\not=0 and q2 =0 and nconst:\forall c. q1 # smult c q2
        and inf::infinite (UNIV::'a set)
    shows fcompose p q1 q2 #= 0 using <p\not=0>
proof (induct p rule:poly-root-induct-alt)
    case 0
    then show ?case by simp
next
    case (no-proots p)
    have False when fcompose p q1 q2 = 0
    proof -
        obtain }x\mathrm{ where poly q2 }x\not=
        proof -
            have finite (proots q2) using <q2 }\not=0>\mathrm{ by auto
            then have }\existsx\mathrm{ . poly q2 x}\not=
                by (meson UNIV-I ex-new-if-finite infi proots-withinI)
                then show ?thesis using that by auto
    qed
    define }y\mathrm{ where }y=\mathrm{ poly q1 x / poly q2 x
    have poly p y = 0
                using <fcompose p q1 q2 = 0 fcompose-poly[OF〈poly q2 x\not=0〉,of p q1,folded
y-def]
                by simp
            then show False using no-proots(1) by auto
    qed
    then show ?case by auto
next
    case (root a p)
    have fcompose [:-a, 1:] q1 q2 }=
        unfolding fcompose-def using nconst[rule-format,of a]
        by simp
    moreover have fcompose p q1 q2 #=0
        using root by fastforce
    ultimately show ?case unfolding fcompose-mult by auto
qed
```


1．9 Bijection（bij－betw）and the number of polynomial roots

lemma proots－fcompose－bij－eq：
fixes $p::{ }^{\prime} a:: f i e l d ~ p o l y ~$
assumes bij：bij－betw（ λx ．poly $q 1 x /$ poly $q 2 x$ ）$A B$ and $p \neq 0$
and nzero：$\forall x \in A$ ．poly q2 $x \neq 0$
and max－deg： $\max ($ degree $q 1)($ degree $q 2) \leq 1$
and nconst：\forall c．q1 \neq smult c q2
and inf：：infinite（UNIV：：＇a set）
shows proots－count p $B=$ proots－count（fcompose p q1 q2）A
using $\langle p \neq 0$ 〉

```
proof (induct p rule:poly-root-induct-alt)
    case 0
    then show ?case by simp
next
    case (no-proots p)
    have proots-count p B =0
    proof -
        have proots-within p B={}
            using no-proots by auto
        then show ?thesis unfolding proots-count-def by auto
    qed
    moreover have proots-count (fcompose p q1 q2) }A=
    proof -
        have proots-within (fcompose p q1 q2) A= {}
            using no-proots unfolding proots-within-def
            by (smt div-0 empty-Collect-eq fcompose-poly nzero)
        then show ?thesis unfolding proots-count-def by auto
    qed
    ultimately show ?case by auto
next
    case (root b p)
    have proots-count ([:- b, 1:] * p) B = proots-count [:- b, 1:] B + proots-count
p B
    using proots-count-times[OF <[:- b, 1:] *p\not=0\rangle] by simp
    also have ... = proots-count (fcompose [:-b, 1:] q1 q2) A
                + proots-count (fcompose p q1 q2) A
    proof -
        define g}\mathrm{ where }g=(\lambdax\mathrm{ . poly q1 x/poly q2 x)
        have proots-count [:- b, 1:] B = proots-count (fcompose [:- b, 1:] q1 q2) A
        proof (cases b\inB)
            case True
            then have proots-count [:- b, 1:] B=1
                unfolding proots-count-pCons-1-iff by simp
            moreover have proots-count (fcompose [:- b, 1:] q1 q2) A=1
            proof -
                obtain a where b=g a a\inA
                    using bij[folded g-def] True
                by (metis bij-betwE bij-betw-the-inv-into f-the-inv-into-f-bij-betw)
                    define qq where qq=q1 - smult b q2
                have qq-0:poly qq a=0 and qq-deg: degree qq\leq1 and <qq\not=0>
                unfolding qq-def
                subgoal using < }b=g a` nzero[rule-format,OF <a\inA〉] unfolding g-def by
auto
                subgoal using max-deg by (simp add: degree-diff-le)
                subgoal using nconst[rule-format,of b] by auto
                done
            have proots-within qq A ={a}
            proof -
```

```
            have a\inproots-within qq A
                using qq-0 <a\inA〉 by auto
            moreover have card (proots-within qq A)=1
            proof -
                have finite (proots-within qq A) using <qq\not=0> by simp
                moreover have proots-within qq A = {}
                    using <a\inproots-within qq A> by auto
            ultimately have card (proots-within qq A) }\not=0\mathrm{ by auto
            moreover have card (proots-within qq A) \leq1
            by (meson <qq\not=0` card-proots-within-leq le-trans proots-count-leq-degree
qq-deg)
            ultimately show ?thesis by auto
            qed
            ultimately show ?thesis by (metis card-1-singletonE singletonD)
            qed
            moreover have order a qq=1
                by (metis One-nat-def }\langleqq\not=0\rangle\mathrm{ le-antisym le-zero-eq not-less-eq-eq or-
der-degree
                    order-root qq-0 qq-deg)
            ultimately show ?thesis unfolding fcompose-def proots-count-def qq-def
            by auto
    qed
    ultimately show ?thesis by auto
    next
    case False
    then have proots-count [:- b, 1:] B=0
        unfolding proots-count-pCons-1-iff by simp
    moreover have proots-count (fcompose [:- b, 1:] q1 q2) A=0
    proof -
        have proots-within (fcompose [:- b, 1:] q1 q2) A={}
        proof (rule ccontr)
            assume proots-within (fcompose [:- b, 1:] q1 q2) A\not={}
            then obtain a where a\inA poly q1 a = b * poly q2 a
                    unfolding fcompose-def proots-within-def by auto
                    then have b=ga
                    unfolding g-def using nzero[rule-format,OF <a\inA〉] by auto
                    then have b\inB using {a\inA\rangle bij[folded g-def] using bij-betwE by blast
                    then show False using False by auto
        qed
        then show ?thesis unfolding proots-count-def by auto
    qed
        ultimately show ?thesis by simp
    qed
    moreover have proots-count p B = proots-count (fcompose p q1 q2) A
        apply (rule root.hyps)
            using mult-eq-0-iff root.prems by blast
    ultimately show ?thesis by auto
qed
also have ... = proots-count (fcompose ([:- b, 1:] * p) q1 q2) A
```

```
    proof (cases A={})
    case False
    have fcompose [:- b, 1:] q1 q2 }\not=
        using nconst[rule-format,of b] unfolding fcompose-def by auto
    moreover have fcompose p q1 q2 }=
        apply (rule fcompose-nzero[OF - - nconst infi])
        subgoal using <[:-b, 1:]*p\not=0> by auto
        subgoal using nzero False by auto
        done
    ultimately show ?thesis unfolding fcompose-mult
        apply (subst proots-count-times)
        by auto
    qed auto
    finally show ?case .
qed
lemma proots-card-fcompose-bij-eq:
    fixes p::'a::field poly
    assumes bij:bij-betw ( }\lambdax\mathrm{ . poly q1 x/poly q2 x) A B and p}=
        and nzero: }\forallx\inA\mathrm{ . poly q2 }x\not=
        and max-deg: max (degree q1) (degree q2) \leq 1
        and nconst:\forall c. q1 = smult c q2
        and infi:infinite (UNIV::'a set)
    shows card (proots-within p B) = card (proots-within (fcompose p q1 q2) A)
    using < }p\not=0\mathrm{ \
proof (induct p rule:poly-root-induct-alt)
    case 0
    then show ?case by simp
next
    case (no-proots p)
    have proots-within p B ={} using no-proots by auto
    moreover have proots-within (fcompose p q1 q2) A={}
        using no-proots fcompose-poly
        by (smt Collect-empty-eq divide-eq-0-iff nzero proots-within-def)
    ultimately show ?case by auto
next
    case (root b p)
    then have [simp]:p\not=0 by auto
    have ?case when b\not\inB\vee poly p b=0
    proof -
    have proots-within ([:- b, 1:] * p) B= proots-within p B
        using that by auto
    moreover have proots-within (fcompose ([:- b, 1:] * p) q1 q2) A
            = proots-within (fcompose p q1 q2) A
        using that nzero unfolding fcompose-mult proots-within-times
        apply (auto simp add: poly-fcompose)
        using bij bij-betwE by blast
    ultimately show ?thesis using root by auto
```

```
    qed
    moreover have ?case when b\inB poly p b\not=0
    proof -
    define }bb\mathrm{ where }bb=[:-b,1:
    have card (proots-within (bb*p)B)=card {b} + card (proots-within p B)
    proof -
        have proots-within bb B={b}
            using that unfolding bb-def by auto
        then show ?thesis unfolding proots-within-times
            apply (subst card-Un-disjoint)
            by (use that in auto)
    qed
    also have ... = 1 + card (proots-within (fcompose p q1 q2) A)
        using root.hyps by simp
    also have ... = card (proots-within (fcompose (bb*p) q1 q2) A)
        unfolding proots-within-times fcompose-mult
    proof (subst card-Un-disjoint)
        obtain a where b-poly:b=poly q1 a / poly q2 a and a\inA
            by (metis (no-types,lifting) <b B B> bij bij-betwE bij-betw-the-inv-into
                f-the-inv-into-f-bij-betw)
    define bbq pq where bbq=fcompose bb q1 q2 and pq=fcompose p q1 q2
    have bbq-0:poly bbq a=0 and bbq-deg: degree bbq\leq1 and bbq\not=0
            unfolding bbq-def bb-def
            subgoal using <a \inA> b-poly nzero poly-fcompose by fastforce
            subgoal by (metis (no-types, lifting) degree-add-le degree-pCons-eq-if de-
gree-smult-le
                dual-order.trans fcompose-const fcompose-pCons max.boundedE max-deg
mult-cancel-left2
            one-neq-zero one-poly-eq-simps(1) power.simps)
            subgoal by (metis }\langlea\inA\rangle\langlepoly (fcompose [:- b, 1:] q1 q2) a=0
fcompose-nzero infi
                nconst nzero one-neq-zero pCons-eq-0-iff)
            done
        show finite (proots-within bbq A) using <bbq\not=0> by simp
        show finite (proots-within pq A) unfolding pq-def
            by (metis }\langlea\inA\rangle\langlep\not=0\rangle fcompose-nzero finite-proots infi nconst nzer
poly-0 pq-def)
    have bbq-a:proots-within bbq A = {a}
    proof -
            have a\inproots-within bbq A
            by (simp add: <a \in A>bbq-0)
            moreover have card (proots-within bbq A)=1
            proof -
            have card (proots-within bbq A) \not=0
                using <a\inproots-within bbq A〉<finite (proots-within bbq A)>
                    by auto
            moreover have card (proots-within bbq A) \leq 1
            by (meson <bbq \not=0〉 card-proots-within-leq le-trans proots-count-leq-degree
bbq-deg)
```

```
            ultimately show ?thesis by auto
            qed
            ultimately show ?thesis by (metis card-1-singletonE singletonD)
    qed
    show proots-within (bbq) A\cap proots-within (pq) A = {}
    using b-poly bbq-a fcompose-poly nzero pq-def that(2) by fastforce
    show 1 + card (proots-within pq A) = card (proots-within bbq A) + card
(proots-within pq A)
            using bbq-a by simp
        qed
        finally show ?thesis unfolding bb-def .
    qed
    ultimately show ?case by auto
qed
lemma proots-pcompose-bij-eq:
    fixes p::'a::idom poly
    assumes bij:bij-betw ( }\lambdax\mathrm{ . poly q x) A B and p}p=
        and q-deg: degree q=1
    shows proots-count p B = proots-count ( }p\mp@subsup{\circ}{p}{}q)A\mathrm{ using < p}\not=0
proof (induct p rule:poly-root-induct-alt)
    case 0
    then show ?case by simp
next
    case (no-proots p)
    have proots-count p B =0
    proof -
        have proots-within p B={}
            using no-proots by auto
    then show ?thesis unfolding proots-count-def by auto
    qed
    moreover have proots-count (p oopq)A=0
    proof -
    have proots-within ( }p\mp@subsup{\circ}{p}{}q)A={
            using no-proots unfolding proots-within-def
            by (auto simp:poly-pcompose)
        then show ?thesis unfolding proots-count-def by auto
    qed
    ultimately show ?case by auto
next
    case (root b p)
    have proots-count ([:- b, 1:] * p) B = proots-count [:- b, 1:] B + proots-count
p B
            using proots-count-times[OF <[:- b, 1:] * p\not=0>] by simp
    also have ... = proots-count ([:- b, 1:] }\mp@subsup{\circ}{p}{}q)A+\operatorname{proots-count ( }p\mp@subsup{\circ}{p}{}q)
    proof -
        have proots-count [:- b, 1:] B = proots-count ([:-b,1:] 的q) A
        proof (cases b\inB)
            case True
```

```
    then have proots-count [:- b, 1:] }B=
    unfolding proots-count-pCons-1-iff by simp
    moreover have proots-count ([:-b,1:] 的q) A=1
    proof -
    obtain a where b=poly q a a\inA
    using True bij by (metis bij-betwE bij-betw-the-inv-into f-the-inv-into-f-bij-betw)
    define qq where qq=[:-b:] + q
    have qq-0:poly qq a=0 and qq-deg: degree qq\leq1 and }\langleqq\not=0
        unfolding qq-def
        subgoal using <b=poly q a` by auto
        subgoal using q-deg by (simp add: degree-add-le)
        subgoal using q-deg add.inverse-unique by force
        done
    have proots-within qq A={a}
    proof -
        have a\inproots-within qq A
            using qq-0 <a\inA〉 by auto
        moreover have card (proots-within qq A)=1
        proof -
            have finite (proots-within qq A) using <qq\not=0` by simp
            moreover have proots-within qq A = {}
                using <a\inproots-within qq A> by auto
            ultimately have card (proots-within qq A) \not=0 by auto
            moreover have card (proots-within qq A) \leq1
            by (meson <qq \not=0` card-proots-within-leq le-trans proots-count-leq-degree
qq-deg)
            ultimately show ?thesis by auto
            qed
            ultimately show ?thesis by (metis card-1-singletonE singletonD)
            qed
            moreover have order a qq=1
                by (metis One-nat-def }\langleqq\not=0\rangle\mathrm{ le-antisym le-zero-eq not-less-eq-eq or-
der-degree
                order-root qq-0 qq-deg)
    ultimately show ?thesis unfolding pcompose-def proots-count-def qq-def
        by auto
    qed
    ultimately show ?thesis by auto
next
    case False
    then have proots-count [:- b, 1:] B=0
        unfolding proots-count-pCons-1-iff by simp
    moreover have proots-count ([:- b, 1:] 趹q) A=0
    proof -
        have proots-within ([:-b, 1:] 㿟q) A={}
            unfolding pcompose-def
            apply auto
            using False bij bij-betwE by blast
            then show ?thesis unfolding proots-count-def by auto
```

```
        qed
        ultimately show ?thesis by simp
    qed
    moreover have proots-count p B = proots-count ( }p\mp@subsup{\circ}{p}{}q)
        apply (rule root.hyps)
        using <[:- b, 1:]*p\not=0> by auto
    ultimately show ?thesis by auto
    qed
    also have ... = proots-count (([:- b, 1:]*p) }\mp@subsup{\circ}{p}{}q)
    unfolding pcompose-mult
    apply (subst proots-count-times)
        subgoal by (metis (no-types, lifting) One-nat-def add.right-neutral degree-0
degree-mult-eq
        degree-pCons-eq-if degree-pcompose mult-eq-0-iff one-neq-zero one-pCons pcom-
pose-mult
        q-deg root.prems)
    by simp
    finally show ?case .
qed
lemma proots-card-pcompose-bij-eq:
    fixes p::'a::idom poly
    assumes bij:bij-betw ( }\lambdax\mathrm{ . poly q x) A B and p}p=
        and q-deg: degree q=1
    shows card (proots-within p B) = card (proots-within ( }p\mp@subsup{\circ}{p}{}q\mathrm{ q) A) using <p}=
proof (induct p rule:poly-root-induct-alt)
    case 0
    then show ?case by auto
next
    case (no-proots p)
    have proots-within p B ={} using no-proots by auto
    moreover have proots-within ( }p\mp@subsup{\circ}{p}{}q)A={}\mathrm{ using no-proots
        by (simp add: poly-pcompose proots-within-def)
    ultimately show ?case by auto
next
    case (root b p)
    then have [simp]:p\not=0 by auto
    have ?case when b\not\inB\vee poly p b=0
    proof -
        have proots-within ([:- b, 1:] * p) B= proots-within p B
            using that by auto
        moreover have proots-within (([:- b, 1:] * p) }\mp@subsup{\circ}{p}{}q)A=\mathrm{ proots-within ( }p\mp@subsup{\circ}{p}{
q) }
            using that unfolding pcompose-mult proots-within-times
            apply (auto simp add: poly-pcompose)
            using bij bij-betwE by blast
            ultimately show ?thesis using root.hyps[OF <p\not=0\rangle] by auto
    qed
    moreover have ?case when b\inB poly p b}\not=
```

```
proof -
    define \(b b\) where \(b b=[:-b, 1:]\)
    have card (proots-within \((b b * p) B)=\operatorname{card}\{b\}+\operatorname{card}\) (proots-within \(p B\) )
    proof -
        have proots-within \(b b B=\{b\}\)
            using that unfolding bb-def by auto
        then show ?thesis unfolding proots-within-times
            apply (subst card-Un-disjoint)
            by (use that in auto)
    qed
    also have \(\ldots=1+\operatorname{card}\left(\right.\) proots-within \(\left.\left(p \circ_{p} q\right) A\right)\)
        using root.hyps by simp
    also have \(\ldots=\operatorname{card}\left(\right.\) proots-within \(\left.\left((b b * p) \circ_{p} q\right) A\right)\)
        unfolding proots-within-times pcompose-mult
    proof (subst card-Un-disjoint)
        obtain \(a\) where \(b=\) poly \(q\) a \(a \in A\)
        by (metis \(\langle b \in B\rangle\) bij bij-betwE bij-betw-the-inv-into f-the-inv-into-f-bij-betw)
        define \(b b q p q\) where \(b b q=b b \circ_{p} q\) and \(p q=p \circ_{p} q\)
        have \(b b q-0: p o l y\) b \(b q a=0\) and \(b b q\)-deg: degree \(b b q \leq 1\) and \(b b q \neq 0\)
            unfolding \(b b q\)-def bb-def poly-pcompose
            subgoal using \(\langle b=p o l y ~ q a\rangle\) by auto
            subgoal using \(q\)-deg by (simp add: degree-add-le degree-pcompose)
            subgoal using pcompose-eq-0 \(q\)-deg by fastforce
            done
    show finite (proots-within \(b b q A\) ) using \(\langle b b q \neq 0\rangle\) by simp
    show finite (proots-within pq A) unfolding pq-def
            by (metis \(\langle p \neq 0\rangle\) finite-proots pcompose-eq-0 \(q\)-deg zero-less-one)
    have bbq-a:proots-within bbq \(A=\{a\}\)
    proof -
            have \(a \in\) proots-within \(b b q A\)
            unfolding bb-def proots-within-def poly-pcompose bbq-def
            using \(\langle b=\) poly \(q\) a〉 \(\langle a \in A\rangle\) by simp
            moreover have card (proots-within \(b b q A\) ) \(=1\)
            proof -
            have card (proots-within bbq \(A\) ) \(\neq 0\)
                    using \(\langle a \in\) proots-within \(b b q A\rangle\langle\) finite (proots-within \(b b q A\) ) 〉
                    by auto
                    moreover have card (proots-within bbq \(A\) ) \(\leq 1\)
            by (meson \(\langle b b q \neq 0\rangle\) card-proots-within-leq le-trans proots-count-leq-degree
\(b b q-d e g)\)
            ultimately show ?thesis by auto
            qed
            ultimately show ?thesis by (metis card-1-singletonE singletonD)
        qed
        show proots-within (bbq) \(A \cap\) proots-within (pq) \(A=\{ \}\)
        using \(b b q-a\langle b=\) poly \(q\) a〉 that(2) unfolding \(p q\)-def by (simp add:poly-pcompose)
        show \(1+\) card \((\) proots-within \(p q A)=\) card \((\) proots-within \(b b q A)+c a r d\)
(proots-within pq A)
        using \(b b q-a\) by \(\operatorname{simp}\)
```

```
    qed
    finally show ?thesis unfolding bb-def .
    qed
    ultimately show ?case by auto
qed
end
```


2 Budan-Fourier theorem

theory Budan-Fourier imports

BF-Misc
begin
The Budan-Fourier theorem is a classic result in real algebraic geometry to over-approximate real roots of a polynomial (counting multiplicity) within an interval. When all roots of the the polynomial are known to be real, the over-approximation becomes tight - the number of roots are counted exactly. Also note that Descartes' rule of sign is a direct consequence of the BudanFourier theorem.

The proof mainly follows Theorem 2.35 in Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer Berlin Heidelberg, Berlin, Heidelberg (2006).

2.1 More results related to sign-r-pos

```
lemma sign-r-pos-nzero-right:
    assumes nzero:\forallx. c<x ^x\leqd \longrightarrow poly p x =0 and c<d
    shows if sign-r-pos p c then poly pd>0 else poly p d<0
proof (cases sign-r-pos p c)
    case True
    then obtain d' where d}\mp@subsup{d}{}{\prime}>c\mathrm{ and }\mp@subsup{d}{}{\prime}-pos:\forally>c.y<\mp@subsup{d}{}{\prime}\longrightarrow0<poly p y
        unfolding sign-r-pos-def eventually-at-right by auto
    have False when \neg poly pd>0
    proof -
        have }\existsx>(c+\operatorname{min}d\mp@subsup{d}{}{\prime})/2.x<d\wedge poly px=
            apply (rule poly-IVT-neg)
            using \langled'>c\rangle\langlec<d\rangle that nzero[rule-format,of d,simplified]
            by (auto intro:d'-pos[rule-format])
        then show False using nzero <c < d'> by auto
    qed
    then show ?thesis using True by auto
next
    case False
    then have sign-r-pos (-p)c
        using sign-r-pos-minus[of p c] nzero[rule-format,of d,simplified] <c<d\rangle
        by fastforce
    then obtain d' where d'>c and d'-neg:\forally>c. y<d'l}\mp@subsup{d}{}{\prime}\longrightarrow0>poly p y
```

unfolding sign-r-pos-def eventually-at-right by auto
have False when \neg poly $p d<0$
proof -
have $\exists x>\left(c+\min d d^{\prime}\right) / 2 . x<d \wedge$ poly $p x=0$
apply (rule poly-IVT-pos)
using $\left.\left\langle d^{\prime}\right\rangle c\right\rangle\langle c<d\rangle$ that nzero[rule-format,of d,simplified]
by (auto intro: d^{\prime}-neg[rule-format $]$)
then show False using nzero $\left\langle c<d^{\prime}\right\rangle$ by auto
qed
then show ?thesis using False by auto
qed
lemma sign-r-pos-at-left:
assumes $p \neq 0$
shows if even (order $c \quad p) \longleftrightarrow$ sign-r-pos p c then eventually $(\lambda x$. poly $p x>0$)
(at-left c)
else eventually $(\lambda x$. poly $p x<0)($ at-left $c)$
using assms
proof (induct p rule:poly-root-induct-alt)
case 0
then show? case by simp
next
case (no-proots p)
then have [simp]:order c $p=0$ using order-root by blast
have ?case when poly $p c>0$
proof -
have $\forall_{F} x$ in at $c .0<$ poly $p x$
using that
by (metis (no-types, lifting) less-linear no-proots.hyps not-eventuallyD poly-IVT-neg poly-IVT-pos)
then have $\forall_{F} x$ in at-left $c .0<$ poly $p x$
using eventually-at-split by blast
moreover have sign-r-pos p using sign-r-pos-rec $[O F\langle p \neq 0\rangle]$ that by auto
ultimately show? ?thesis by simp

qed

moreover have ?case when poly $p c<0$
proof -
have $\forall_{F} x$ in at c. poly $p x<0$
using that
by (metis (no-types, lifting) less-linear no-proots.hyps not-eventuallyD poly-IVT-neg poly-IVT-pos)
then have $\forall_{F} x$ in at-left c. poly $p x<0$
using eventually-at-split by blast
moreover have \neg sign-r-pos p cusing sign-r-pos-rec $[O F\langle p \neq 0\rangle]$ that by auto
ultimately show? thesis by simp
qed
ultimately show ?case using no-proots (1)[of c] by argo
next
case (root a p)
define $a a$ where $a a=[:-a, 1:]$
have $[$ simp $]: a a \neq 0 p \neq 0$ using $\langle[:-a, 1:] * p \neq 0\rangle$ unfolding aa-def by auto
have ? case when $c>a$
proof -
have ?thesis $=($ if even (order c $p)=$ sign-r-pos p c
then $\forall_{F} x$ in at-left c. $0<\operatorname{poly}(a a * p) x$
else $\forall_{F} x$ in at-left c. poly $\left.(a a * p) x<0\right)$
proof -
have order c aa=0 unfolding aa-def using order-0I that by force
then have even (order c $(a a * p))=$ even (order c p) by (subst order-mult) auto
moreover have sign-r-pos aa c unfolding aa-def using that by (auto simp: sign-r-pos-rec)
then have sign-r-pos $(a a * p) c=$ sign-r-pos $p c$ by (subst sign-r-pos-mult) auto
ultimately show ?thesis
by (fold aa-def) auto
qed
also have $\ldots=($ if even (order c p) $=$ sign-r-pos p c
then $\forall_{F} x$ in at-left c. $0<$ poly $p x$
else $\forall_{F} x$ in at-left c. poly $p x<0$)
proof -
have $\forall_{F} x$ in at-left c. $0<$ poly aa x
apply (simp add:aa-def)
using that eventually-at-left-field by blast
then have $\left(\forall_{F} x\right.$ in at-left c. $\left.0<\operatorname{poly}(a a * p) x\right) \longleftrightarrow\left(\forall_{F} x\right.$ in at-left c. 0 $<$ poly $p x$)
$\left(\forall_{F} x\right.$ in at-left c. $0>$ poly $\left.(a a * p) x\right) \longleftrightarrow\left(\forall_{F} x\right.$ in at-left c. $0>$ poly $\left.p x\right)$ apply auto
by (erule (1) eventually-elim2, simp add: zero-less-mult-iff mult-less-0-iff)+ then show ?thesis by simp
qed
also have ... using root.hyps by simp
finally show? thesis .
qed
moreover have ?case when $c<a$
proof -
have ?thesis $=($ if even (order c p) $=$ sign-r-pos p c
then $\forall_{F} x$ in at-left c. poly $(a a * p) x<0$
else $\forall_{F} x$ in at-left c. $\left.0<\operatorname{poly}(a a * p) x\right)$
proof -
have order c $a a=0$ unfolding aa-def using order-OI that by force
then have even (order c $(a a * p))=$ even (order c p) by (subst order-mult) auto
moreover have \neg sign-r-pos aa c unfolding aa-def using that
by (auto simp: sign-r-pos-rec)
then have sign-r-pos $(a a * p) c=(\neg$ sign-r-pos $p c)$

```
        by (subst sign-r-pos-mult) auto
    ultimately show ?thesis
        by (fold aa-def) auto
    qed
    also have ... = (if even (order c p)= sign-r-pos p c
        then }\mp@subsup{\forall}{F}{}x\mathrm{ in at-left c. 0< poly p x
        else }\mp@subsup{\forall}{F}{}x\mathrm{ in at-left c. poly px<0)
    proof -
    have }\mp@subsup{\forall}{F}{}x\mathrm{ in at-left c. poly aa x<0
        apply (simp add:aa-def)
        using that eventually-at-filter by fastforce
    then have }(\mp@subsup{\forall}{F}{}x\mathrm{ in at-left c. 0 < poly }(aa*p)x)\longleftrightarrow(\mp@subsup{\forall}{F}{}x\mathrm{ in at-left c.
poly p x<0)
    (\forall}\mp@subsup{F}{F}{}x\mathrm{ in at-left c. 0>poly }(aa*p)x)\longleftrightarrow(\mp@subsup{\forall}{F}{}x\mathrm{ in at-left c. 0 < poly p x)
    apply auto
    by (erule (1) eventually-elim2,simp add: zero-less-mult-iff mult-less-0-iff)+
    then show ?thesis by simp
    qed
    also have ... using root.hyps by simp
    finally show ?thesis .
qed
moreover have ?case when c=a
proof -
    have ?thesis = (if even (order c p)= sign-r-pos p c
                then }\mp@subsup{\forall}{F}{}x\mathrm{ in at-left c. 0 > poly (aa*p)x
                else }\mp@subsup{\forall}{F}{}x\mathrm{ in at-left c. poly (aa*p)x>0)
    proof -
    have order c aa=1 unfolding aa-def using that
        by (metis order-power-n-n power-one-right)
    then have even (order c (aa*p))=odd (order c p)
        by (subst order-mult) auto
    moreover have sign-r-pos aa c
        unfolding aa-def using that
        by (auto simp: sign-r-pos-rec pderiv-pCons)
    then have sign-r-pos (aa*p)c=sign-r-pos p c
        by (subst sign-r-pos-mult) auto
    ultimately show ?thesis
        by (fold aa-def) auto
    qed
    also have ... = (if even (order c p)=sign-r-pos p c
                then }\mp@subsup{\forall}{F}{}x\mathrm{ in at-left c. 0 < poly px
                else }\mp@subsup{\forall}{F}{}x\mathrm{ in at-left c. poly px<0)
    proof -
    have }\mp@subsup{\forall}{F}{}x\mathrm{ in at-left c. 0 > poly aa x
            apply (simp add:aa-def)
            using that by (simp add: eventually-at-filter)
    then have }(\mp@subsup{\forall}{F}{}x\mathrm{ in at-left c. 0 < poly (aa*p)x) «<( }\mp@subsup{\forall}{F}{}x\mathrm{ in at-left c.0
> poly p x)
```



```
            apply auto
            by (erule (1) eventually-elim2,simp add: zero-less-mult-iff mult-less-0-iff)+
            then show?thesis by simp
        qed
        also have ... using root.hyps by simp
        finally show ?thesis .
    qed
    ultimately show ?case by argo
qed
lemma sign-r-pos-nzero-left:
    assumes nzero: }\forallx.d\leqx\wedgex<c\longrightarrow\mathrm{ poly p x =人0 and d<c
    shows if even (order c p) \longleftrightarrowsign-r-pos p c then poly pd>0 else poly p d<0
proof (cases even (order c p)\longleftrightarrowsign-r-pos p c)
    case True
    then have eventually ( }\lambdax\mathrm{ . poly p x>0) (at-left c)
        using nzero[rule-format,of d,simplified] }\langled<c\rangle sign-r-pos-at-left
        by (simp add: order-root)
    then obtain d' where d'<c and d'-pos:\forally>d'. y<c\longrightarrow0<poly p y
    unfolding eventually-at-left by auto
    have False when \neg poly pd>0
    proof -
        have \existsx>d. x< (c+max d d')/2 ^ poly p x=0
        apply (rule poly-IVT-pos)
        using \langled'<c\rangle\langlec\rangled\rangle that nzero[rule-format,of d,simplified]
        by (auto intro:d'-pos[rule-format])
    then show False using nzero \langlec> > d'` by auto
    qed
    then show ?thesis using True by auto
next
    case False
    then have eventually ( }\lambdax\mathrm{ . poly p x<0) (at-left c)
        using nzero[rule-format,of d,simplified] <d<c\rangle sign-r-pos-at-left
        by (simp add: order-root)
```



```
        unfolding eventually-at-left by auto
    have False when \neg poly p d<0
    proof -
        have \existsx>d. x< (c+max d d')/2 ^ poly px=0
            apply (rule poly-IVT-neg)
            using \langled'<c\rangle\langlec\rangled\rangle that nzero[rule-format,of d,simplified]
            by (auto intro:d'-neg[rule-format])
    then show False using nzero \langlec> > d'〉 by auto
    qed
    then show ?thesis using False by auto
qed
```


2.2 Fourier sequences

```
function pders::real poly }=>\mathrm{ real poly list where
    pders p=(if p=0 then [] else Cons p (pders (pderiv p)))
    by auto
termination
    apply (relation measure ( }\lambdap\mathrm{ . if p=0 then 0 else degree p+1))
    by (auto simp:degree-pderiv pderiv-eq-0-iff)
declare pders.simps[simp del]
lemma set-pders-nzero:
    assumes p\not=0 q\inset (pders p)
    shows q\not=0
    using assms
proof (induct p rule:pders.induct)
    case (1 p)
    then have q\in set (p# pders (pderiv p))
        by (simp add: pders.simps)
    then have q=p\veeq\inset (pders (pderiv p)) by auto
    moreover have ?case when q=p
        using that \langlep\not=0\rangle by auto
    moreover have ?case when q\inset (pders (pderiv p))
    using 1 pders.simps by fastforce
    ultimately show ?case by auto
qed
```


2.3 Sign variations for Fourier sequences

definition changes-itv-der:: real \Rightarrow real \Rightarrow real poly \Rightarrow int where changes-itv-der a b $p=$ (let ps=pders p in changes-poly-at ps a changes-poly-at ps b)
definition changes-gt-der:: real \Rightarrow real poly \Rightarrow int where
changes-gt-der a $p=$ changes-poly-at (pders p) a
definition changes-le-der:: real \Rightarrow real poly \Rightarrow int where
changes-le-der b p $=($ degree $p-$ changes-poly-at (pders $p) b)$
lemma changes-poly-pos-inf-pders[simp]:changes-poly-pos-inf $($ pders $p)=0$
proof (induct degree p arbitrary: p)
case 0
then obtain a where $p=[: a:]$ using degree-eq-zeroE by auto
then show ?case
apply (cases $a=0$)
by (auto simp:changes-poly-pos-inf-def pders.simps)
next
case (Suc x)
then have pderiv $p \neq 0 \quad p \neq 0$ using pderiv-eq-0-iff by force + define $p s$ where $p s=p d e r s$ (p deriv (pderiv p))

```
    have ps:pders p=p# pderiv p #ps pders (pderiv p) = pderiv p#ps
    unfolding ps-def by (simp-all add: }\langlep\not=0\rangle\langlepderiv p\not=0\rangle pders.simps
    have hyps:changes-poly-pos-inf (pders (pderiv p)) = 0
        apply (rule Suc(1))
        using <Suc x = degree p> by (metis degree-pderiv diff-Suc-1)
    moreover have sgn-pos-inf p * sgn-pos-inf (pderiv p)>0
    unfolding sgn-pos-inf-def lead-coeff-pderiv
    apply (simp add:algebra-simps sgn-mult)
    using Suc.hyps(2) <p\not=0` by linarith
    ultimately show ?case unfolding changes-poly-pos-inf-def ps by auto
qed
lemma changes-poly-neg-inf-pders[simp]: changes-poly-neg-inf (pders p)=degree
p
proof (induct degree p arbitrary:p)
    case 0
    then obtain a where p=[:a:] using degree-eq-zeroE by auto
    then show?case unfolding changes-poly-neg-inf-def by (auto simp: pders.simps)
next
    case (Suc x)
    then have pderiv p\not=0 p\not=0 using pderiv-eq-0-iff by force+
    then have changes-poly-neg-inf (pders p)
                        = changes-poly-neg-inf (p# pderiv p#pders (pderiv (pderiv p)))
    by (simp add:pders.simps)
    also have ... = 1 + changes-poly-neg-inf (pderiv p#pders (pderiv (pderiv p)))
    proof -
    have sgn-neg-inf p * sgn-neg-inf (pderiv p)<0
        unfolding sgn-neg-inf-def using <p\not=0\rangle\langlepderiv p\not=0\rangle
    by (auto simp add:lead-coeff-pderiv degree-pderiv coeff-pderiv sgn-mult pderiv-eq-0-iff)
    then show ?thesis unfolding changes-poly-neg-inf-def by auto
    qed
    also have ... = 1 + changes-poly-neg-inf (pders (pderiv p))
    using <pderiv p\not=0〉 by (simp add:pders.simps)
    also have ... = 1 + degree (pderiv p)
        apply (subst Suc(1))
        using Suc(2) by (auto simp add: degree-pderiv)
    also have ... = degree p
        by (metis Suc.hyps(2) degree-pderiv diff-Suc-1 plus-1-eq-Suc)
    finally show ?case .
qed
lemma pders-coeffs-sgn-eq:map ( }\lambda\mathrm{ p. sgn(poly p 0)) (pders p) = map sgn (coeffs p)
proof (induct degree p arbitrary:p)
    case 0
    then obtain }a\mathrm{ where }p=[:a:] using degree-eq-zeroE by aut
    then show?case by (auto simp: pders.simps)
next
    case (Suc x)
    then have pderiv p\not=0 p\not=0 using pderiv-eq-0-iff by force+
```

```
    have map ( }\lambda\mathrm{ p. sgn (poly p 0)) (pders p)
            = sgn (poly p 0)# map (\lambdap. sgn (poly p 0)) (pders (pderiv p))
    apply (subst pders.simps)
    using <p\not=0> by simp
    also have ... = sgn (coeff p 0) # map sgn (coeffs (pderiv p))
    proof -
    have sgn (poly p 0) = sgn (coeff p 0) by (simp add: poly-0-coeff-0)
    then show ?thesis
        apply (subst Suc(1))
        subgoal by (metis Suc.hyps(2) degree-pderiv diff-Suc-1)
        subgoal by auto
        done
    qed
    also have ... = map sgn (coeffs p)
    proof (rule nth-equalityI)
    show p-length:length (sgn (coeff p 0) # map sgn (coeffs (pderiv p)))
                                    = length (map sgn (coeffs p))
        by (metis Suc.hyps(2) <p\not= 0\rangle\langlepderiv p\not=0\rangle degree-pderiv diff-Suc-1
length-Cons
            length-coeffs-degree length-map)
    show (sgn (coeff p 0) # map sgn (coeffs (pderiv p)))! i = map sgn (coeffs p)
!i
    if i< length (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) for i
    proof -
        show (sgn (coeff p 0) # map sgn (coeffs (pderiv p)))! i = map sgn (coeffs p)
!i
            proof (cases i)
            case 0
            then show ?thesis
                by (simp add: }\langlep\not=0\rangle\mathrm{ coeffs-nth)
            next
            case (Suc i')
            then show ?thesis
                    using that p-length
                apply simp
                apply (subst (1 2) coeffs-nth)
            by (auto simp add: <p\not=0\rangle\langlepderiv p}\not=0\\mathrm{ length-coeffs-degree coeff-pderiv
sgn-mult)
            qed
        qed
    qed
    finally show ?case.
qed
lemma changes-poly-at-pders-0:changes-poly-at (pders p) 0 = changes (coeffs p)
    unfolding changes-poly-at-def
    apply (subst (1 2) changes-map-sgn-eq)
    by (auto simp add:pders-coeffs-sgn-eq comp-def)
```


2.4 Budan-Fourier theorem

```
lemma budan-fourier-aux-right:
    assumes c<d2 and p\not=0
    assumes }\forallx.c<x\wedgex\leqd2\longrightarrow(\forallq\inset (pders p). poly q x\not=0
    shows changes-itv-der c d2 p=0
    using assms(2-3)
proof (induct degree p arbitrary:p)
    case 0
    then obtain }a\mathrm{ where }p=[:a:]a\not=0 by (metis degree-eq-zeroE pCons-0-0
    then show ?case
        by (auto simp add:changes-itv-der-def pders.simps intro:order-0I)
next
    case (Suc n)
    then have [simp]:pderiv p\not=0 by (metis nat.distinct(1) pderiv-eq-0-iff)
    note nzero =\langle\forallx.c<x\wedgex\leqd2 \longrightarrow( }\forall\textrm{q}\in\textrm{set}(\mathrm{ pders p). poly q x = 0)>
    have hyps:changes-itv-der c d2 (pderiv p) = 0
        apply (rule Suc(1))
        subgoal by (metis Suc.hyps(2) degree-pderiv diff-Suc-1)
        subgoal by (simp add: Suc.prems(1) Suc.prems(2) pders.simps)
        subgoal by (simp add: Suc.prems(1) nzero pders.simps)
        done
    have pders-changes-c:changes-poly-at (r# pders q) c=(if sign-r-pos q c \longleftrightarrow
poly r c>0
            then changes-poly-at (pders q) c else 1+changes-poly-at (pders q) c)
    when poly r c\not=0 q\not=0 for q r
    using < q\not=0`
    proof (induct q rule:pders.induct)
        case (1 q)
    have ?case when pderiv q=0
    proof -
        have degree q=0 using that pderiv-eq-0-iff by blast
            then obtain }a\mathrm{ where q=[:a:] a#0 using <q#0〉 by (metis degree-eq-zeroE
pCons-0-0)
            then show ?thesis using <poly r c\not=0>
            by (auto simp add:sign-r-pos-rec changes-poly-at-def mult-less-0-iff pders.simps)
    qed
    moreover have ?case when pderiv q\not=0
    proof -
            obtain qs where qs:pders q=q#qs pders (pderiv q) =qs
            using <q\not=0\rangle by (simp add:pders.simps)
            have changes-poly-at (r# qs) c=(if sign-r-pos (pderiv q) c = (0<poly r
c)
                    then changes-poly-at qs c else 1 + changes-poly-at qs c)
            using 1<pderiv q\not=0` unfolding qs by simp
            then show ?thesis unfolding qs
                apply (cases poly q c=0)
                    subgoal unfolding changes-poly-at-def by (auto simp:sign-r-pos-rec[OF
<q\not=0>,of c])
```

```
        subgoal unfolding changes-poly-at-def using <poly r c\not=0>
            by (auto simp:sign-r-pos-rec[OF }\langleq\not=0\rangle,of c] mult-less-0-iff
        done
    qed
    ultimately show ?case by blast
qed
have pders-changes-d2:changes-poly-at (r# pders q) d2 = (if sign-r-pos q c \longleftrightarrow
poly r c>0
            then changes-poly-at (pders q) d2 else 1+changes-poly-at (pders q) d2)
            when poly r c\not=0 q\not=0 and qr-nzero:\forallx. c<x\wedge x\leqd2 \longrightarrow poly r x\not=0\wedge
poly q x\not=0
    for qr
    proof -
    have r\not=0 using that(1) using poly-0 by blast
    obtain qs where qs:pders q=q#qs pders (pderiv q) = qs
        using <q\not=0` by (simp add:pders.simps)
    have if sign-r-pos r c then 0 < poly r d2 else poly r d2 < 0
        if sign-r-pos q c then 0 < poly q d2 else poly q d2 < 0
        subgoal by (rule sign-r-pos-nzero-right[of c d2 r]) (use qr-nzero <c<d2> in
auto)
            subgoal by (rule sign-r-pos-nzero-right[of c d2 q]) (use qr-nzero <c<d2> in
auto)
            done
            then show ?thesis unfolding qs changes-poly-at-def
            using <poly r c\not=0` by (auto split:if-splits simp:mult-less-0-iff sign-r-pos-rec[OF
<r\not=0>])
    qed
    have d2c-nzero:\forallx.c<x ^ x\leqd2 \longrightarrow poly p x\not=0 ^ poly (pderiv p) }x\not=
        and p-cons:pders p=p#pders(pderiv p)
        subgoal by (simp add: nzero Suc.prems(1) pders.simps)
        subgoal by (simp add: Suc.prems(1) pders.simps)
        done
    have ?case when poly p c=0
    proof -
    define ps where ps=pders (pderiv (pderiv p))
    have ps-cons:p#pderiv p#ps = pders p pderiv p#ps=pders (pderiv p)
        unfolding ps-def using < p\not=0` by (auto simp:pders.simps)
    have changes-poly-at ( }p#\mathrm{ pderiv }p#ps)c= changes-poly-at (pderiv p# #s
c
            unfolding changes-poly-at-def using that by auto
            moreover have changes-poly-at ( 
(pderiv p # ps) d2
    proof -
            have if sign-r-pos p c then 0 < poly p d2 else poly p d2 < 0
            apply (rule sign-r-pos-nzero-right[OF - <c<d2\rangle])
            using nzero[folded ps-cons] assms(1-2) by auto
            moreover have if sign-r-pos (pderiv p) c then 0 < poly (pderiv p)d2
```

apply（rule sign－r－pos－nzero－right $[O F-\langle c<d 2\rangle]$ ）
using nzero［folded ps－cons］assms（1－2）by auto
ultimately have poly $p d 2$＊poly（pderiv p ）d2 >0
unfolding zero－less－mult－iff sign－r－pos－rec $[O F\langle p \neq 0\rangle]$ using 〈poly p $c=0$ 〉
by（auto split：if－splits）
then show ？thesis unfolding changes－poly－at－def by auto
qed
ultimately show ？thesis using hyps unfolding changes－itv－der－def
apply（fold ps－cons）
by（auto simp：Let－def）
qed
moreover have ？case when poly $p c \neq 0$ sign－r－pos（pderiv p ）$c \longleftrightarrow$ poly $p c>0$
proof－
have changes－poly－at（pders p ）$c=$ changes－poly－at（pders（pderiv $p)$ ）c
unfolding p－cons
apply（subst pders－changes－$c[O F\langle$ poly $p \quad c \neq 0\rangle]$ ）
using that by auto
moreover have changes－poly－at（pders p ）d2 $=$ changes－poly－at（pders（pderiv p））$d 2$
unfolding p－cons
apply（subst pders－changes－d2 $[O F\langle p o l y p c \neq 0\rangle-d 2 c$－nzero $]$ ）
using that by auto
ultimately show ？thesis using hyps unfolding changes－itv－der－def Let－def by auto
qed
moreover have ？case when poly $p c \neq 0 \neg$ sign－r－pos（pderiv p ）$c \longleftrightarrow$ poly p $c>0$
proof－
have changes－poly－at（pders $p) c=$ changes－poly－at $(p d e r s(p d e r i v ~ p)) c+1$
unfolding p－cons
apply（subst pders－changes－$c[O F\langle p o l y p c \neq 0\rangle])$
using that by auto
moreover have changes－poly－at（pders p ）d2 $=$ changes－poly－at（pders（pderiv
p））$d 2+1$
unfolding p－cons
apply（subst pders－changes－d2［OF〈poly p $c \neq 0\rangle-d 2 c$－nzero $]$ ）
using that by auto
ultimately show ？thesis using hyps unfolding changes－itv－der－def Let－def by auto
qed
ultimately show ？case by blast
qed
lemma budan－fourier－aux－left＇：
assumes $d 1<c$ and $p \neq 0$
assumes $\forall x . d 1 \leq x \wedge x<c \longrightarrow(\forall q \in$ set（pders $p)$ ．poly $q x \neq 0)$
shows changes－itv－der d1 c $p \geq$ order c $p \wedge$ even（changes－itv－der d1 c p－order c p）

```
    using assms(2-3)
proof (induct degree p arbitrary:p)
    case 0
    then obtain }a\mathrm{ where }p=[:a:] a\not=0 by (metis degree-eq-zeroE pCons-0-0
    then show ?case
        apply (auto simp add:changes-itv-der-def pders.simps intro:order-0I)
        by (metis add.right-neutral dvd-0-right mult-zero-right order-root poly-pCons)
next
    case (Suc n)
    then have [simp]:pderiv p\not=0 by (metis nat.distinct(1) pderiv-eq-0-iff)
    note nzero =\langle\forallx.d1\leqx^x<c\longrightarrow(\forallq\inset (pders p). poly q x = 0)>
    define v}\mathrm{ where v=order c (pderiv p)
    have hyps:v \leq changes-itv-der d1 c (pderiv p) ^ even (changes-itv-der d1 c (pderiv
p) - v)
    unfolding v-def
    apply (rule Suc(1))
    subgoal by (metis Suc.hyps(2) degree-pderiv diff-Suc-1)
    subgoal by (simp add: Suc.prems(1) Suc.prems(2) pders.simps)
    subgoal by (simp add: Suc.prems(1) nzero pders.simps)
    done
    have pders-changes-c:changes-poly-at (r# pders q) c=(if sign-r-pos q c \longleftrightarrow
poly r c>0
            then changes-poly-at (pders q) c else 1+changes-poly-at (pders q) c)
    when poly r c\not=0 q\not=0 for q r
    using < q}\not=0
    proof (induct q rule:pders.induct)
    case (1 q)
    have ?case when pderiv q=0
    proof -
        have degree q=0 using that pderiv-eq-0-iff by blast
        then obtain a where q=[:a:] a\not=0 using <q\not=0\rangle by (metis degree-eq-zeroE
pCons-0-0)
            then show ?thesis using <poly r c\not=0〉
            by (auto simp add:sign-r-pos-rec changes-poly-at-def mult-less-0-iff pders.simps)
    qed
    moreover have ?case when pderiv q\not=0
    proof -
            obtain qs where qs:pders q=q#qs pders (pderiv q) = qs
            using <q\not=0\rangle by (simp add:pders.simps)
        have changes-poly-at (r#qs) c= (if sign-r-pos (pderiv q) c = (0<poly r
c)
                    then changes-poly-at qs c else 1 + changes-poly-at qs c)
            using 1 <pderiv q\not=0〉 unfolding qs by simp
    then show ?thesis unfolding qs
            apply (cases poly q c=0)
            subgoal unfolding changes-poly-at-def by (auto simp:sign-r-pos-rec[OF
\langleq\not=0\rangle,of c])
            subgoal unfolding changes-poly-at-def using <poly r c\not=0`
```

```
                by (auto simp:sign-r-pos-rec[OF <q\not=0>,of c] mult-less-0-iff)
            done
    qed
    ultimately show ?case by blast
    qed
    have pders-changes-d1:changes-poly-at (r# pders q) d1 = (if even (order c q)
sign-r-pos q c \longleftrightarrow poly r c>0
            then changes-poly-at (pders q) d1 else 1+changes-poly-at (pders q) d1)
    when poly r c\not=0 q\not=0 and qr-nzero:\forallx.d1 \leqx ^x<c\longrightarrow poly r x\not=0^
poly q }x\not=
    for qr
    proof -
    have r\not=0 using that(1) using poly-0 by blast
    obtain qs where qs:pders q=q#qs pders (pderiv q) =qs
        using <q\not=0\rangle by (simp add:pders.simps)
    have if even (order c r) = sign-r-pos r c then 0 < poly r d1 else poly r d1<0
        if even (order c q) = sign-r-pos q c then 0 < poly q d1 else poly q d1 < 0
            subgoal by (rule sign-r-pos-nzero-left[of d1 c r]) (use qr-nzero 〈d1<c> in
auto)
        subgoal by (rule sign-r-pos-nzero-left[of d1 c q]) (use qr-nzero «d1<c> in
auto)
            done
    moreover have order c r=0 by (simp add: order-0I that(1))
    ultimately show ?thesis unfolding qs changes-poly-at-def
    using <poly r c\not=0` by (auto split:if-splits simp:mult-less-0-iff sign-r-pos-rec[OF
<r\not=0>])
    qed
    have d1c-nzero:\forallx.d1\leqx^x<c\longrightarrow poly p x\not=0^ poly (pderiv p) x\not=0
        and p-cons:pders p=p#pders(pderiv p)
        by (simp-all add: nzero Suc.prems(1) pders.simps)
    have ?case when poly p c=0
    proof -
    define ps where ps=pders (pderiv (pderiv p))
    have ps-cons:p#pderiv p#ps= pders p pderiv p#ps=pders (pderiv p)
            unfolding ps-def using < p\not=0\rangle by (auto simp:pders.simps)
    have p-order:order c p=Suc v
        apply (subst order-pderiv)
        using Suc.prems(1) order-root that unfolding v-def by auto
    moreover have changes-poly-at ( }p#\mathrm{ pderiv p # ps)d1 = changes-poly-at (pderiv
p#ps)d1 +1
    proof -
            have if even (order c p) = sign-r-pos p c then 0 < poly p d1 else poly p d1 <
0
            apply (rule sign-r-pos-nzero-left[OF - <d1<c>])
            using nzero[folded ps-cons] assms(1-2) by auto
        moreover have if even v=sign-r-pos (pderiv p)c
                    then 0 < poly (pderiv p) d1 else poly (pderiv p)d1<0
```

```
        unfolding v-def
        apply (rule sign-r-pos-nzero-left[OF - <d1<c>])
        using nzero[folded ps-cons] assms(1-2) by auto
    ultimately have poly p d1 * poly (pderiv p) d1<0
        unfolding mult-less-0-iff sign-r-pos-rec[OF <p\not=0\rangle] using <poly p c=0>
p-order
            by (auto split:if-splits)
            then show ?thesis
            unfolding changes-poly-at-def by auto
    qed
    moreover have changes-poly-at ( }p#\mathrm{ pderiv p # ps) c = changes-poly-at
(pderiv p # ps) c
            unfolding changes-poly-at-def using that by auto
    ultimately show ?thesis using hyps unfolding changes-itv-der-def
        apply (fold ps-cons)
        by (auto simp:Let-def)
    qed
    moreover have ?case when poly p c\not=0 odd v sign-r-pos (pderiv p)c\longleftrightarrow poly
p c>0
    proof -
        have order c p=0 by (simp add: order-0I that(1))
    moreover have changes-poly-at (pders p) d1 = changes-poly-at (pders (pderiv
p))}d1+
            unfolding p-cons
            apply (subst pders-changes-d1[OF〈poly p c\not=0〉-d1c-nzero])
            using that unfolding v-def by auto
    moreover have changes-poly-at (pders p) c = changes-poly-at (pders (pderiv
p)) c
            unfolding p-cons
            apply (subst pders-changes-c[OF <poly p c\not=0>])
            using that unfolding v-def by auto
            ultimately show ?thesis using hyps <odd v` unfolding changes-itv-der-def
Let-def
            by auto
    qed
    moreover have ?case when poly p c\not=0 odd v ᄀ sign-r-pos (pderiv p)c\longleftrightarrow
poly p c>0
    proof -
    have v\geq1 using <odd v> using not-less-eq-eq by auto
    moreover have order c p=0 by (simp add: order-0I that(1))
    moreover have changes-poly-at (pders p)d1 = changes-poly-at (pders (pderiv
p)) d1
            unfolding p-cons
            apply (subst pders-changes-d1[OF<poly p c\not=0〉-d1c-nzero])
            using that unfolding v-def by auto
            moreover have changes-poly-at (pders p) c = changes-poly-at (pders (pderiv
p))}c+
            unfolding p-cons
            apply (subst pders-changes-c[OF<poly p c\not=0〉])
```

using that unfolding v－def by auto
ultimately show ？thesis using hyps 〈odd v〉unfolding changes－itv－der－def Let－def
by auto
qed
moreover have ？case when poly $p c \neq 0$ even v sign－r－pos（pderiv p ）$c \longleftrightarrow$ poly p $c>0$
proof－
have order c $p=0$ by（simp add：order－0I that（1））
moreover have changes－poly－at（pders p ）d1＝changes－poly－at（pders（pderiv
p））$d 1$
unfolding p－cons
apply（subst pders－changes－d1［OF〈poly p $c \neq 0\rangle-d 1 c$－nzero $]$ ）
using that unfolding v－def by auto
moreover have changes－poly－at（pders p ）$c=$ changes－poly－at（pders（pderiv p））c
unfolding p－cons
apply（subst pders－changes－c［OF \langle poly $p \quad c \neq 0\rangle]$ ）
using that unfolding v－def by auto
ultimately show ？thesis using hyps 〈even $v\rangle$ unfolding changes－itv－der－def Let－def
by auto
qed
moreover have ？case when poly $p c \neq 0$ even $v \neg$ sign－r－pos $(p$ deriv $p) c \longleftrightarrow$
poly $p c>0$
proof－
have order c $p=0$ by（simp add：order－0I that（1））
moreover have changes－poly－at（pders p ）d1＝changes－poly－at（pders（pderiv
p））$d 1+1$
unfolding p－cons
apply（subst pders－changes－d1［OF〈poly p $c \neq 0\rangle-d 1 c$－nzero $]$ ）
using that unfolding v－def by auto
moreover have changes－poly－at（pders p）c changes－poly－at（pders（pderiv p））$c+1$
unfolding p－cons
apply（subst pders－changes－c［OF \langle poly $p \quad c \neq 0\rangle]$ ）
using that unfolding v－def by auto
ultimately show ？thesis using hyps 〈even v〉 unfolding changes－itv－der－def Let－def
by auto
qed
ultimately show ？case by blast
qed
lemma budan－fourier－aux－left：
assumes $d 1<c$ and $p \neq 0$
assumes nzero：$\forall x . d 1<x \wedge x<c \longrightarrow(\forall q \in$ set（pders p ）．poly $q x \neq 0)$
shows changes－itv－der d1 с $p \geq$ order c p even（changes－itv－der d1 $с$ p－order c p）

```
proof -
    define }d\mathrm{ where }d=(d1+c)/
    have d1<d d<c unfolding d-def using <d1<c> by auto
    have changes-itv-der d1 d p=0
        apply (rule budan-fourier-aux-right[OF <d1<d><p\not=0>])
        using nzero }\langled1<d\rangle\langled<c\rangle\mathrm{ by auto
    moreover have order c p\leq changes-itv-der d c p ^ even(changes-itv-der d c p
- order c p)
    apply (rule budan-fourier-aux-left'[OF <d<c><p\not=0>])
    using nzero }\langled1<d\rangle\langled<c>> by aut
    ultimately show changes-itv-der d1 c p \geq order c p even (changes-itv-der d1 c
p-order c p)
    unfolding changes-itv-der-def Let-def by auto
qed
theorem budan-fourier-interval:
    assumes a<b p\not=0
    shows changes-itv-der a b p\geq proots-count p {x.a<x}\x\leqb}
        even (changes-itv-der a b p-proots-count p {x.a<x\wedge x\leqb})
    using <a<b>
proof (induct card {x.\existsp\inset (pders p). poly p x=0 ^a<x ^x<b} arbitrary:b)
    case 0
    have nzero:}\forallx.a<x\wedgex<b\longrightarrow(\forallq\inset (pders p). poly q x\not=0
    proof -
    define S where S={x.\existsp\inset (pders p). poly p x = 0 ^ a<x^x<b}
    have finite S
    proof -
        have}S\subseteq(\bigcupp\inset (pders p). proots p
            unfolding S-def by auto
        moreover have finite ( }\bigcupp\in\mathrm{ set (pders p). proots p)
                apply (subst finite-UN)
                using set-pders-nzero[OF <p\not=0`] by auto
        ultimately show ?thesis by (simp add: finite-subset)
    qed
    moreover have card S=0 unfolding S-def using 0 by auto
    ultimately have S={} by auto
    then show ?thesis unfolding S-def using <a<b\rangle assms(2) pders.simps by
fastforce
    qed
    from budan-fourier-aux-left[OF <a<b\rangle\langlep\not=0\rangle this]
    have order b p schanges-itv-der a b p even (changes-itv-der a b p-order b p)
by simp-all
    moreover have proots-count p {x. a<x^x\leqb}=order b p
    proof -
    have p-cons:pders p=p#pders (pderiv p) by (simp add: assms(2) pders.simps)
    have proots-within p {x.a<x\wedgex\leqb}=(if poly pb=0 then {b} else {})
        using nzero }\langlea<b\rangle\mathrm{ unfolding p-cons
        apply auto
```

using not-le by fastforce
then show ?thesis unfolding proots-count-def using order-root by auto qed
ultimately show ?case by auto
next
case (Suc n)
define P where $P=(\lambda x . \exists p \in$ set (pders p). poly $p x=0)$
define S where $S=(\lambda b$. $\{x . P x \wedge a<x \wedge x<b\})$
define b^{\prime} where $b^{\prime}=\operatorname{Max}(S b)$
have f - S :finite $(S x)$ for x
proof -
have $S x \subseteq(\bigcup p \in$ set (pders p). proots p)
unfolding S-def P-def by auto
moreover have finite $(\bigcup p \in$ set (p ders p). proots p)
apply (subst finite-UN)
using set-pders-nzero $[O F\langle p \neq 0\rangle]$ by auto
ultimately show ?thesis by (simp add: finite-subset)
qed
have $b^{\prime} \in S b$
unfolding $b^{\prime}-d e f$
apply (rule Max-in[OF f-S])
using Suc(2) unfolding S-def P-def by force
then have $a<b^{\prime} b^{\prime}<b$ unfolding S-def by auto
have b^{\prime}-nzero: $\forall x . b^{\prime}<x \wedge x<b \longrightarrow(\forall q \in$ set (pders p). poly $q x \neq 0)$
proof (rule ccontr)
assume $\neg\left(\forall x . b^{\prime}<x \wedge x<b \longrightarrow(\forall q \in \operatorname{set}(p d e r s p)\right.$. poly $\left.q x \neq 0)\right)$
then obtain $b b$ where $P b b b^{\prime}<b b b b<b$ unfolding P-def by auto
then have $b b \in S$ unfolding S-def using $\left\langle a<b^{\prime}\right\rangle\left\langle b^{\prime}<b\right\rangle$ by auto
from Max-ge $\left[O F f-S\right.$ this, folded b^{\prime}-def $]$ have $b b \leq b^{\prime}$.
then show False using $\left\langle b^{\prime}<b b\right\rangle$ by auto
qed
have hyps:proots-count $p\left\{x . a<x \wedge x \leq b^{\prime}\right\} \leq$ changes-itv-der a $b^{\prime} p \wedge$
even (changes-itv-der a $b^{\prime} p$ - proots-count $\left.p\left\{x . a<x \wedge x \leq b^{\prime}\right\}\right)$
proof (rule Suc (1) [OF - $\left.\left\langle a<b^{\prime}\right\rangle\right]$)
have $S b=\left\{b^{\prime}\right\} \cup S b^{\prime}$
proof -
have $\left\{x . P x \wedge b^{\prime}<x \wedge x<b\right\}=\{ \}$
using b^{\prime}-nzero unfolding P-def by auto
then have $\left\{x . P x \wedge b^{\prime} \leq x \wedge x<b\right\}=\left\{b^{\prime}\right\}$
using $\left\langle b^{\prime} \in S\right.$ b unfolding S-def by force
moreover have $S b=S b^{\prime} \cup\left\{x . P x \wedge b^{\prime} \leq x \wedge x<b\right\}$
unfolding S-def using $\left\langle a<b^{\prime}\right\rangle\left\langle b^{\prime}<b\right\rangle$ by auto
ultimately show ?thesis by auto
qed
moreover have Suc $n=\operatorname{card}(S b)$ using $S u c(2)$ unfolding S-def P-def by simp
moreover have $b^{\prime} \notin S b^{\prime}$ unfolding S-def by auto
ultimately have $n=\operatorname{card}\left(S b^{\prime}\right)$ using $f-S$ by auto
then show $n=\operatorname{card}\left\{x . \exists p \in \operatorname{set}(p d e r s p)\right.$. poly $\left.p x=0 \wedge a<x \wedge x<b^{\prime}\right\}$
unfolding S-def P-def by simp
qed
moreover have proots-count $p\{x . a<x \wedge x \leq b\}$

$$
=\text { proots-count } p\left\{x . a<x \wedge x \leq b^{\prime}\right\}+\text { order } b p
$$

proof -
have p-cons:pders $p=p \# p d e r s(p d e r i v p)$ by (simp add: assms(2) pders.simps)
have proots-within $p\left\{x . b^{\prime}<x \wedge x \leq b\right\}=$ (if poly $p b=0$ then $\{b\}$ else $\}$) using b^{\prime}-nzero $\left\langle b^{\prime}<b\right\rangle$ unfolding p-cons apply auto using not-le by fastforce
then have proots-count $p\left\{x . b^{\prime}<x \wedge x \leq b\right\}=$ order $b p$ unfolding proots-count-def using order-root by auto
moreover have proots-count $p\{x . a<x \wedge x \leq b\}=$ proots-count $p\{x . a<$ $\left.x \wedge x \leq b^{\prime}\right\}+$
proots-count $p\left\{x . b^{\prime}<x \wedge x \leq b\right\}$
apply (subst proots-count-union-disjoint[symmetric])
using $\left\langle a<b^{\prime}\right\rangle\left\langle b^{\prime}<b\right\rangle\langle p \neq 0\rangle$ by (auto intro:arg-cong2[where $f=$ proots-count])
ultimately show ?thesis by auto
qed
moreover note budan-fourier-aux-left $\left[O F\left\langle b^{\prime}<b\right\rangle\langle p \neq 0\rangle b^{\prime}\right.$-nzero $]$
ultimately show ?case unfolding changes-itv-der-def Let-def by auto qed
theorem budan-fourier-gt:
assumes $p \neq 0$
shows changes-gt-der a $p \geq$ proots-count $p\{x . a<x\} \wedge$
even (changes-gt-der a p - proots-count $p\{x . a<x\}$)
proof -
define $p s$ where $p s=p$ ders p
obtain $u b$ where $u b$-root: $\forall p \in$ set $p s . \forall x$. poly $p x=0 \longrightarrow x<u b$
and $u b-s g n: \forall x \geq u b$. $\forall p \in$ set ps. sgn (poly $p x)=$ sgn-pos-inf p
and $a<u b$
using root-list-ub[of ps a] set-pders-nzero[OF $\langle p \neq 0\rangle$,folded ps-def] by blast
have proots-count $p\{x . a<x\}=$ proots-count $p\{x . a<x \wedge x \leq u b\}$
proof -
have $p \in$ set $p s$ unfolding $p s$-def by (simp add: assms pders.simps)
then have proots-within $p\{x . a<x\}=$ proots-within $p\{x . a<x \wedge x \leq u b\}$
using ub-root by fastforce
then show ?thesis unfolding proots-count-def by auto
qed
moreover have changes-gt-der a $p=$ changes-itv-der a ub p
proof -
have map $(s g n \circ(\lambda p . p o l y p u b)) p s=$ map sgn-pos-inf $p s$ using $u b-s g n[T H E N$ spec, of $u b$,simplified]
by (metis (mono-tags, lifting) comp-def list.map-cong0)
hence changes-poly-at ps $u b=$ changes-poly-pos-inf ps
unfolding changes-poly-pos-inf-def changes-poly-at-def
by (subst changes-map-sgn-eq,metis map-map)

```
    then have changes-poly-at ps ub=0 unfolding ps-def by simp
    thus ?thesis unfolding changes-gt-der-def changes-itv-der-def ps-def
    by (simp add:Let-def)
qed
moreover have proots-count p {x. a<x^x\lequb}\leqchanges-itv-der a ub p^
    even (changes-itv-der a ub p-proots-count p {x. a<x^x\lequb})
    using budan-fourier-interval[OF <a<ub><p\not=0>].
    ultimately show ?thesis by auto
qed
```

Descartes' rule of signs is a direct consequence of the Budan-Fourier theorem

```
theorem descartes-sign:
    fixes \(p\) ::real poly
    assumes \(p \neq 0\)
    shows changes (coeffs \(p) \geq\) proots-count \(p\{x .0<x\} \wedge\)
        even (changes (coeffs \(p\) ) - proots-count \(p\{x .0<x\}\) )
    using budan-fourier-gt \([O F\langle p \neq 0\rangle, o f 0]\) unfolding changes-gt-der-def
    by (simp add:changes-poly-at-pders-0)
theorem budan-fourier-le:
    assumes \(p \neq 0\)
    shows changes-le-der \(b\) p proots-count \(p\{x . x \leq b\} \wedge\)
        even (changes-le-der b \(p\) - proots-count \(p\{x . x \leq b\}\) )
proof -
    define \(p s\) where \(p s=p d e r s p\)
    obtain \(l b\) where \(l b\)-root \(: \forall p \in s e t\) ps. \(\forall x\). poly \(p x=0 \longrightarrow x>l b\)
        and \(l b-s g n: \forall x \leq l b . \forall p \in\) set ps. sgn \((\) poly \(p x)=\operatorname{sgn}\)-neg-inf \(p\)
        and \(l b<b\)
        using root-list-lb[of ps b] set-pders-nzero[OF \(\langle p \neq 0\rangle\),folded ps-def] by blast
    have proots-count \(p\{x . x \leq b\}=\) proots-count \(p\{x . l b<x \wedge x \leq b\}\)
    proof -
        have \(p \in s e t\) ps unfolding \(p s\)-def by (simp add: assms pders.simps)
        then have proots-within \(p\{x . x \leq b\}=\) proots-within \(p\{x . l b<x \wedge x \leq b\}\)
            using \(l b\)-root by fastforce
    then show ?thesis unfolding proots-count-def by auto
    qed
    moreover have changes-le-der b \(p=\) changes-itv-der lb b \(p\)
    proof -
        have map \((\) sgn \(\circ(\lambda\). poly \(p l b))\) ps \(=\) map sgn-neg-inf \(p s\)
            using \(l b-s g n[T H E N\) spec, of \(l b\), simplified]
            by (metis (mono-tags, lifting) comp-def list.map-cong0)
    hence changes-poly-at ps \(l b=\) changes-poly-neg-inf ps
                unfolding changes-poly-neg-inf-def changes-poly-at-def
                by (subst changes-map-sgn-eq,metis map-map)
    then have changes-poly-at ps \(l b=\) degree \(p\) unfolding \(p s\)-def by simp
    thus ?thesis unfolding changes-le-der-def changes-itv-der-def ps-def
        by (simp add:Let-def)
    qed
```

```
    moreover have proots-count p{x.lb<x\wedgex\leqb}\leqchanges-itv-der lb b p ^
    even (changes-itv-der lb b p - proots-count p {x.lb<x\wedgex\leqb})
    using budan-fourier-interval[OF <lb<b\rangle\langlep\not=0>].
    ultimately show ?thesis by auto
qed
```


2.5 Count exactly when all roots are real

```
definition all-roots-real:: real poly \(\Rightarrow\) bool where
\[
\text { all-roots-real } p=(\forall r \in \text { proots (map-poly of-real } p) . \text { Im } r=0)
\]
lemma all-roots-real-mult \([\) simp \(]\) :
    all-roots-real ( }p*q)\longleftrightarrow\mathrm{ all-roots-real p ^ all-roots-real q
    unfolding all-roots-real-def by auto
lemma all-roots-real-const-iff:
    assumes all-real:all-roots-real p
    shows degree }p\not=0\longleftrightarrow(\existsx.\mathrm{ poly p x=0)
proof
    assume degree p\not=0
    moreover have degree p=0 when }\forallx\mathrm{ . poly p }x\not=
    proof -
        define }pp\mathrm{ where }pp=map-poly complex-of-real 
        have }\forallx\mathrm{ . poly pp }x\not=
        proof (rule ccontr)
            assume }\neg(\forallx. poly pp x\not=0
            then obtain }x\mathrm{ where poly pp x=0 by auto
            moreover have Im x=0
            using all-real[unfolded all-roots-real-def,rule-format,of x,folded pp-def]<poly
pp x=0>
            by auto
            ultimately have poly pp (of-real (Re x)) = 0
            by (simp add: complex-is-Real-iff)
        then have poly p(Re x)=0
            unfolding pp-def
            by (metis Re-complex-of-real of-real-poly-map-poly zero-complex.simps(1))
        then show False using that by simp
    qed
    then obtain }a\mathrm{ where pp=[:of-real a:] }a\not=
        by (metis «degree p}\not=0\mathrm{ 〉 constant-degree degree-map-poly
            fundamental-theorem-of-algebra of-real-eq-0-iff pp-def)
    then have p=[:a:] unfolding pp-def
        by (metis map-poly-0 map-poly-pCons of-real-0 of-real-poly-eq-iff)
    then show ?thesis by auto
    qed
    ultimately show }\existsx\mathrm{ . poly p x = 0 by auto
next
    assume }\exists\mathrm{ x. poly p x=0
    then show degree p\not=0
```

```
    by (metis UNIV-I all-roots-real-def assms degree-pCons-eq-if
    imaginary-unit.sel(2) map-poly-0 nat.simps(3) order-root pCons-eq-0-iff
    proots-within-iff synthetic-div-eq-O-iff synthetic-div-pCons zero-neq-one)
qed
lemma all-roots-real-degree:
    assumes all-roots-real p
    shows proots-count p UNIV = degree p using assms
proof (induct p rule:poly-root-induct-alt)
    case 0
    then have False using imaginary-unit.sel(2) unfolding all-roots-real-def by
auto
    then show ?case by simp
next
    case (no-proots p)
    from all-roots-real-const-iff[OF this(2)] this(1)
    have degree p=0 by auto
    then obtain }a\mathrm{ where p=[:a:] a>0
        by (metis degree-eq-zeroE no-proots.hyps poly-const-conv)
    then have proots p={} by auto
    then show ?case using <p=[:a:]> by (simp add:proots-count-def)
next
    case (root a p)
    define a1 where a1=[:- a, 1:]
    have }p\not=0\mathrm{ using root.prems
        apply auto
        using imaginary-unit.sel(2) unfolding all-roots-real-def by auto
    have a1\not=0 unfolding a1-def by auto
    have proots-count (a1*p) UNIV = proots-count a1 UNIV + proots-count p
UNIV
    using \langlep\not=0\rangle\langlea1\not=0\rangle by (subst proots-count-times,auto)
    also have ... = 1 + degree p
    proof -
        have proots-count a1 UNIV = 1 unfolding a1-def by (simp add: proots-count-pCons-1-iff)
        moreover have hyps:proots-count p UNIV = degree p
                apply (rule root.hyps)
                using root.prems[folded a1-def] unfolding all-roots-real-def by auto
        ultimately show ?thesis by auto
    qed
    also have ... = degree ( }a1*p\mathrm{ )
        apply (subst degree-mult-eq)
        using {a1\not=0\rangle\langlep\not=0\rangle unfolding a1-def by auto
    finally show ?case unfolding a1-def .
qed
lemma all-real-roots-mobius:
    fixes a b::real
    assumes all-roots-real p and a<b
```

```
    shows all-roots-real (fcompose p [:a,b:] [:1,1:]) using assms(1)
proof (induct p rule:poly-root-induct-alt)
    case 0
    then show ?case by simp
next
    case (no-proots p)
    from all-roots-real-const-iff[OF this(2)] this(1)
    have degree p=0 by auto
    then obtain }a\mathrm{ where p=[:a:] }a\not=
        by (metis degree-eq-zeroE no-proots.hyps poly-const-conv)
    then show ?case by (auto simp add:all-roots-real-def)
next
    case (root x p)
    define x1 where x1=[:- x, 1:]
    define fx where fx=fcompose x1 [:a,b:] [:1, 1:]
    have all-roots-real fx
    proof (cases x=b)
        case True
        then have fx=[:a-x:] a\not=x
            subgoal unfolding fx-def by (simp add:fcompose-def smult-add-right x1-def)
            subgoal using <a<b〉 True by auto
            done
    then have proots (map-poly complex-of-real fx)={}
                by auto
        then show ?thesis unfolding all-roots-real-def by auto
    next
        case False
        then have fx=[:a-x,b-x:]
            unfolding fx-def by (simp add:fcompose-def smult-add-right x1-def)
    then have proots (map-poly complex-of-real fx) ={of-real ((x-a)/(b-x))}
                using False by (auto simp add:field-simps)
    then show ?thesis unfolding all-roots-real-def by auto
    qed
    moreover have all-roots-real (fcompose p [:a, b:] [:1, 1:])
    using root[folded x1-def] all-roots-real-mult by auto
    ultimately show ?case
    apply (fold x1-def)
    by (auto simp add:fcompose-mult fx-def)
qed
```

If all roots are real, we can use the Budan-Fourier theorem to EXACTLY count the number of real roots.
corollary budan-fourier-real:
assumes $p \neq 0$
assumes all-roots-real p
shows proots-count $p\{x . x \leq a\}=$ changes-le-der a p $a<b \Longrightarrow$ proots-count $p\{x . a<x \wedge x \leq b\}=$ changes-itv-der a b p proots-count $p\{x . b<x\}=$ changes-gt-der $b p$

```
proof -
    have \(*:\) proots-count \(p\{x . x \leq a\}=\) changes-le-der a \(p\)
                    \(\wedge\) proots-count \(p\{x . a<x \wedge x \leq b\}=\) changes-itv-der a b \(p\)
            \(\wedge\) proots-count \(p\{x . b<x\}=\) changes-gt-der \(b p\)
        when \(a<b\) for \(a b\)
    proof -
    define \(c 1 c 2 c 3\) where
        c1 = changes-le-der a \(p\) - proots-count \(p\{x . x \leq a\}\) and
        c \(2=\) changes-itv-der a \(b\) p-proots-count \(p\{x . a<x \wedge x \leq b\}\) and
        c3=changes-gt-der \(b\) p proots-count \(p\{x . b<x\}\)
    have \(c 1 \geq 0 \quad c 2 \geq 0 \quad c 3 \geq 0\)
        using budan-fourier-interval[ \(O F\langle a<b\rangle\langle p \neq 0\rangle]\) budan-fourier-gt \([O F\langle p \neq 0\rangle\),of
b]
            budan-fourier-le[OF \(\langle p \neq 0\rangle\),of \(a]\)
        unfolding c1-def c2-def c3-def by auto
    moreover have \(c 1+c 2+c 3=0\)
    proof -
        have proots-deg:proots-count \(p\) UNIV \(=\) degree \(p\)
            using all-roots-real-degree[OF <all-roots-real p〉].
        have changes-le-der a \(p+\) changes-itv-der a \(b p+\) changes-gt-der \(b\) p degree
p
            unfolding changes-le-der-def changes-itv-der-def changes-gt-der-def
            by (auto simp add:Let-def)
        moreover have proots-count \(p\{x . x \leq a\}+\) proots-count \(p\{x . a<x \wedge x \leq b\}\)
                    + proots-count \(p\{x . b<x\}=\) degree \(p\)
            using \(\langle p \neq 0\rangle\langle a<b\rangle\)
            apply (subst proots-count-union-disjoint[symmetric],auto)+
            apply (subst proots-deg[symmetric])
            by (auto intro!:arg-cong2[where \(f=\) proots-count \(]\) )
            ultimately show ?thesis unfolding c1-def c2-def c3-def
            by (auto simp add:algebra-simps)
        qed
        ultimately have \(c 1=0 \wedge c \mathcal{Z}=0 \wedge c 3=0\) by auto
        then show ?thesis unfolding c1-def c2-def c3-def by auto
        qed
    show proots-count \(p\{x . x \leq a\}=\) changes-le-der a \(p\) using \(*[o f\) a \(a+1]\) by auto
    show proots-count \(p\{x . a<x \wedge x \leq b\}=\) changes-itv-der \(a b p\) when \(a<b\)
    using \(*[\) OF that \(]\) by auto
    show proots-count \(p\{x . b<x\}=\) changes-gt-der \(b p\)
    using \(*\left[\begin{array}{lll}o f \\ b-1 & b\end{array}\right]\) by auto
qed
```

Similarly, Descartes' rule of sign counts exactly when all roots are real.
corollary descartes-sign-real:
fixes $p:$:real poly and $a b::$ real
assumes $p \neq 0$
assumes all-roots-real p

```
    shows proots-count p {x.0<x} = changes (coeffs p)
    using budan-fourier-real(3)[OF \langlep\not=0\rangle\langleall-roots-real p\rangle]
    unfolding changes-gt-der-def by (simp add:changes-poly-at-pders-0)
end
```


3 Extension of Sturm's theorem for multiple roots

theory Sturm-Multiple-Roots
imports
BF-Misc
begin
The classic Sturm's theorem is used to count real roots WITHOUT multiplicity of a polynomial within an interval. Surprisingly, we can also extend Sturm's theorem to count real roots WITH multiplicity by modifying the signed remainder sequence, which seems to be overlooked by many textbooks.

Our formal proof is inspired by Theorem 10.5.6 in Rahman, Q.I., Schmeisser, G.: Analytic Theory of Polynomials. Oxford University Press (2002).

3.1 More results for smods

lemma last-smods-gcd:
fixes p q ::real poly
defines $p p \equiv$ last (smods $p q$)
assumes $p \neq 0$
shows $p p=$ smult (lead-coeff $p p)(g c d p q)$
using $\langle p \neq 0\rangle$ unfolding $p p$-def
proof (induct smods p q arbitrary:p q rule:length-induct)
case 1
have ?case when $q=0$
using that smult-normalize-field-eq $\langle p \neq 0\rangle$ by auto
moreover have ?case when $q \neq 0$
proof -
define r where $r=-(p \bmod q)$
have smods-cons:smods $p q=p \#$ smods $q r$
unfolding r-def using $\langle p \neq 0\rangle$ by simp
have last (smods q r) $=$ smult (lead-coeff (last (smods qr))) (gcd qr) apply (rule 1(1)[rule-format,of smods q r q r]) using smods-cons $\langle q \neq 0\rangle$ by auto
moreover have $g c d p q=g c d q r$ unfolding r-def by (simp add: gcd.commute that)
ultimately show ?thesis unfolding smods-cons using $\langle q \neq 0$ 〉 by simp
qed
ultimately show ?case by argo qed

```
lemma last-smods-nzero:
    assumes p\not=0
    shows last (smods p q)}\not=
    by (metis assms last-in-set no-0-in-smods smods-nil-eq)
```


3.2 Alternative signed remainder sequences

```
function smods-ext::real poly \(\Rightarrow\) real poly \(\Rightarrow\) real poly list where
    smods-ext \(p q=(\) if \(p=0\) then [] else
        (if \(p \bmod q \neq 0\)
        then Cons \(p(\) smods-ext \(q(-(p \bmod q)))\)
        else Cons \(p\) (smods-ext \(q(\) pderiv \(q)))\)
    )
    by auto
termination
    apply (relation measure \((\lambda(p, q)\).if \(p=0\) then 0 else if \(q=0\) then 1 else \(2+\) degree
q))
    using degree-mod-less by (auto simp add:degree-pderiv pderiv-eq-0-iff)
lemma smods-ext-prefix:
    fixes \(p q:\) :real poly
    defines \(p p \equiv\) last \((\operatorname{smod} s p)\)
    assumes \(p \neq 0 \quad q \neq 0\)
    shows smods-ext p \(q\) smods \(p q\) @ \(t l\) (smods-ext pp (pderiv pp))
    unfolding \(p p\)-def using assms(2,3)
proof (induct smods-ext p q arbitrary:p q rule:length-induct)
    case 1
    have ? case when \(p \bmod q \neq 0\)
    proof -
    define \(p p\) where \(p p=\) last \((\operatorname{smod} s q(-(p \bmod q)))\)
    have smods-cons:smods \(p q=p \#\) smods \(q(-(p \bmod q))\)
        using \(\langle p \neq 0\) 〉 by auto
    then have pp-last:pp=last (smods \(p q\) ) unfolding \(p p\)-def
        by (simp add: 1.prems(2) pp-def)
    have smods-ext-cons:smods-ext p \(q=p \#\) smods-ext \(q(-(p \bmod q))\)
        using that \(\langle p \neq 0\rangle\) by auto
    have smods-ext \(q(-(p \bmod q))=\) smods \(q(-(p \bmod q)) @ t l(s m o d s-e x t ~ p p\)
(pderiv pp))
    apply (rule \(1(1)[\) rule-format, of smods-ext \(q(-(p \bmod q)) q-(p \bmod q)\),folded
\(p p-d e f])\)
            using smods-ext-cons \(\langle q \neq 0\) 〉 that by auto
    then show ?thesis unfolding pp-last
        apply (subst smods-cons)
        apply (subst smods-ext-cons)
        by auto
    qed
    moreover have ? case when \(p \bmod q=0\) pderiv \(q=0\)
    proof -
```

```
    have smods p q= [p,q]
        using <p\not=0\rangle\langleq\not=0\rangle that by auto
    moreover have smods-ext pq=[p,q]
        using that \langlep\not=0\rangle by auto
    ultimately show ?case using }\langlep\not=0\rangle\langleq\not=0\rangle\mathrm{ that(1) by auto
qed
moreover have ?case when p mod q=0 pderiv q}\not=
proof -
    have smods-cons:smods p q= [p,q]
        using \p\not=0>\langleq\not=0\rangle that by auto
    have smods-ext-cons:smods-ext p q=p#smods-ext q (pderiv q)
        using that \langlep\not=0\rangle by auto
    show ?case unfolding smods-cons smods-ext-cons
        apply (simp del:smods-ext.simps)
        by (simp add: 1.prems(2))
    qed
    ultimately show ?case by argo
qed
lemma no-0-in-smods-ext: 0 & set (smods-ext p q)
    apply (induct smods-ext p q arbitrary:p q)
    apply simp
by (metis list.distinct(1) list.inject set-ConsD smods-ext.simps)
```


3．3 Sign variations on the alternative signed remainder se－ quences

definition changes－itv－smods－ext：：real \Rightarrow real \Rightarrow real poly \Rightarrow real poly \Rightarrow int where
changes－itv－smods－ext abpq＝（let ps＝smods－ext $p q$ in changes－poly－at ps a －changes－poly－at ps b）
definition changes－gt－smods－ext：：real \Rightarrow real poly \Rightarrow real poly \Rightarrow int where changes－gt－smods－ext a p $q=($ let $p s=$ smods－ext $p q$ in changes－poly－at ps a －changes－poly－pos－inf ps）
definition changes－le－smods－ext：：real \Rightarrow real poly \Rightarrow real poly \Rightarrow int where changes－le－smods－ext b p $q=$（let ps＝smods－ext $p q$ in changes－poly－neg－inf ps －changes－poly－at ps b）
definition changes－R－smods－ext：：real poly \Rightarrow real poly \Rightarrow int where changes－R－smods－ext $p q=$（let $p s=$ smods－ext $p q$ in changes－poly－neg－inf $p s$ －changes－poly－pos－inf ps）

3．4 Extension of Sturm＇s theorem for multiple roots

theorem sturm－ext－interval：
assumes $a<b$ poly p a⿻三人 poly $p b \neq 0$
shows proots－count $p\{x . a<x \wedge x<b\}=$ changes－itv－smods－ext abs（pderiv p ）
using assms（2，3）
proof（induct smods－ext p（pderiv p）arbitrary：p rule：length－induct）
case 1
have $p \neq 0$ using＜poly $p a \neq 0$ 〉 by auto
have ？case when pderiv $p=0$
proof－
obtain c where $p=[: c:] c \neq 0$
using $\langle p \neq 0\rangle\langle p$ deriv $p=0\rangle$ pderiv－iszero by force
then have proots－count $p\{x . a<x \wedge x<b\}=0$
unfolding proots－count－def by auto
moreover have changes－itv－smods－ext abp（pderiv p）$=0$
unfolding changes－itv－smods－ext－def using $\langle p=[: c:]\rangle\langle c \neq 0\rangle$ by auto
ultimately show ？thesis by auto
qed
moreover have ？case when pderiv $p \neq 0$
proof－
define $p p$ where $p p=$ last（smods $p($ pderiv $p)$ ）
define $l p$ where $l p=$ lead－coeff $p p$
define S where $S=\{x . a<x \wedge x<b\}$
have prefix：smods－ext p（pderiv $p)=$ smods $p($ pderiv $p) @ t l(s m o d s-e x t ~ p p$
（pderiv pp））
using smods－ext－prefix $[O F\langle p \neq 0\rangle\langle p d e r i v ~ p \neq 0\rangle$ ，folded $p p$－def］．
have $p p-g c d: p p=s m u l t ~ l p(g c d p(p d e r i v p))$
using last－smods－gcd［OF $\langle p \neq 0\rangle$ ，of pderiv p ，folded pp－def lp－def］．
have $p p \neq 0 \quad l p \neq 0$ unfolding $p p$－def $l p$－def subgoal by（rule last－smods－nzero $[O F\langle p \neq 0\rangle]$ ）
subgoal using 〈last（smods $p($ pderiv $p)) \neq 0$ 〉 by auto done
have poly pp $a \neq 0$ poly pp $b \neq 0$
unfolding $p p$－gcd using＜poly p $a \neq 0\rangle\langle p o l y p b \neq 0\rangle\langle l p \neq 0\rangle$
by（simp－all add：poly－gcd－0－iff）
have proots－count pp $S=$ changes－itv－smods－ext a b pp（pderiv pp）unfolding S－def
proof（rule 1（1）［rule－format，of smods－ext pp（pderiv pp）pp］）
show length（smods－ext pp（pderiv pp））＜length（smods－ext p（pderiv $p)$ ）
unfolding prefix by（simp add：$\langle p \neq 0\rangle$ that）
qed（use 〈poly pp $a \neq 0$ 〉 〈poly pp $b \neq 0$ 〉in simp－all）
moreover have proots－count p $S=\operatorname{card}($ proots－within $p S)+$ proots－count pp S
proof－
have $\left(\sum r \in\right.$ proots－within $p S$ ．order $\left.r p\right)=\left(\sum r \in\right.$ proots－within $p S$ ．order r $p p+1)$
proof（rule sum．cong）
fix x assume $x \in$ proots－within $p S$
have order $x p p=\operatorname{order} x(\operatorname{gcd} p(p d e r i v p))$
unfolding $p p-g c d$ using $\langle l p \neq 0\rangle$ by（simp add：order－smult）
also have $\ldots=\min ($ order $x p)($ order $x($ pderiv $p))$

```
            apply (subst order-gcd)
            using \langlep\not=0\rangle\langlepderiv p\not=0\rangle by simp-all
            also have ... = order x (pderiv p)
            apply (subst order-pderiv)
            using <pderiv p\not=0\rangle\langlep\not=0\rangle\langlex\in proots-within p S\rangle order-root by auto
            finally have order x pp = order x (pderiv p).
            moreover have order x p = order x (pderiv p)+1
            apply (subst order-pderiv)
            using〈pderiv p\not=0\rangle\langlep\not=0\rangle\langlex\in proots-within p S\rangle order-root by auto
            ultimately show order x p = order x pp +1 by auto
    qed simp
                            also have ... = card (proots-within p S) + (\sumr\in proots-within p S. order r
pp)
            apply (subst sum.distrib)
            by auto
                            also have ... = card (proots-within p S) + (\sumr\in proots-within pp S. order r
pp)
    proof -
    have (\sumr\inproots-within p S. order r pp) = (\sumr\inproots-within pp S. order
r pp)
            apply (rule sum.mono-neutral-right)
            subgoal using < }p\not=0\rangle\mathrm{ by auto
            subgoal unfolding pp-gcd using <lp\not=0> by (auto simp:poly-gcd-0-iff)
            subgoal unfolding pp-gcd using <lp\not=0>
                    apply (auto simp:poly-gcd-0-iff order-smult)
                    apply (subst order-gcd)
                    by (auto simp add: order-root)
            done
            then show ?thesis by simp
            qed
            finally show ?thesis unfolding proots-count-def .
    qed
    moreover have card (proots-within p S)= changes-itv-smods a b p (pderiv p)
            using sturm-interval[OF <a<b〉<poly p a\not=0〉<poly p b\not=0〉,symmetric]
            unfolding S-def proots-within-def
            by (auto intro!:arg-cong[where f=card])
    moreover have changes-itv-smods-ext a b p (pderiv p)
                = changes-itv-smods a b p (pderiv p) + changes-itv-smods-ext a b pp
(pderiv pp)
    proof -
            define xs ys where xs=smods p (pderiv p) and ys=smods-ext pp (pderiv pp)
            have xys: xs\not=[] ys\not=[] last xs=hd ys poly (last xs) a\not=0 poly (last xs) b\not=0
            subgoal unfolding xs-def using < p=0\rangle by auto
            subgoal unfolding ys-def using < pp\not=0\rangle by auto
            subgoal using < pp\not=0> unfolding xs-def ys-def
                    apply (fold pp-def)
                    by auto
            subgoal using <poly pp a\not=0> unfolding pp-def xs-def .
            subgoal using <poly pp b\not=0〉 unfolding pp-def xs-def .
```

done
have changes-poly-at (xs @ tl ys) $a=$ changes-poly-at xs $a+$ changes-poly-at ys a
proof -
have changes-poly-at (xs @ tl ys) $a=$ changes-poly-at (xs @ ys) a
unfolding changes-poly-at-def
apply (simp add:map-tl)
apply (subst changes-drop-dup[symmetric])
using that xys by (auto simp add: hd-map last-map)
also have $\ldots=$ changes-poly-at xs $a+$ changes-poly-at ys a
unfolding changes-poly-at-def
apply (subst changes-append [symmetric])
using xys by (auto simp add: hd-map last-map)
finally show ?thesis .
qed
moreover have changes-poly-at (xs @ tl ys) b=changes-poly-at xs b + changes-poly-at ys b
proof -
have changes-poly-at (xs @tlys)b=changes-poly-at (xs@ys)b
unfolding changes-poly-at-def
apply (simp add:map-tl)
apply (subst changes-drop-dup[symmetric])
using that xys by (auto simp add: hd-map last-map)
also have $\ldots=$ changes-poly-at xs $b+$ changes-poly-at ys b
unfolding changes-poly-at-def
apply (subst changes-append[symmetric])
using xys by (auto simp add: hd-map last-map)
finally show ?thesis .
qed
ultimately show ?thesis unfolding changes-itv-smods-ext-def changes-itv-smods-def
apply (fold xs-def ys-def,unfold prefix[folded xs-def ys-def] Let-def)
by auto
qed
ultimately show proots-count p $S=$ changes-itv-smods-ext abp(pderiv p)
by auto
qed
ultimately show ?case by argo
qed
theorem sturm-ext-above:
assumes poly paf0
shows proots-count $p\{x . a<x\}=$ changes-gt-smods-ext a p (pderiv p)
proof -
define $p s$ where $p s \equiv s m o d s$-ext $p(p d e r i v p)$
have $p \neq 0$ and $p \in$ set $p s$ using 〈poly $p a \neq 0$ 〉ps-def by auto
obtain $u b$ where $u b: \forall p \in$ set ps. $\forall x$. poly $p x=0 \longrightarrow x<u b$
and $u b$-sgn: $\forall x \geq u b . \forall p \in$ set ps. sgn $($ poly $p x)=\operatorname{sgn}$-pos-inf p
and $u b>a$
using root-list-ub[OF no-0-in-smods-ext,of p pderiv p,folded $p s$-def]

```
    by auto
    have proots-count p {x.a<x} = proots-count p {x.a<x\wedge x<ub}
    unfolding proots-count-def
    apply (rule sum.cong)
    by (use ub <p\inset ps> in auto)
    moreover have changes-gt-smods-ext a p (pderiv p) = changes-itv-smods-ext a
ub p(pderiv p)
    proof -
    have map (sgn\circ(\lambdap. poly pub)) ps=map sgn-pos-inf ps
        using ub-sgn[THEN spec,of ub,simplified]
        by (metis (mono-tags, lifting) comp-def list.map-cong0)
    hence changes-poly-at ps ub=changes-poly-pos-inf ps
            unfolding changes-poly-pos-inf-def changes-poly-at-def
            by (subst changes-map-sgn-eq,metis map-map)
            thus ?thesis unfolding changes-gt-smods-ext-def changes-itv-smods-ext-def
ps-def
            by metis
    qed
    moreover have poly p ub\not=0 using ub <p\inset ps\rangle by auto
    ultimately show ?thesis using sturm-ext-interval[OF <ub>a\rangle assms] by auto
qed
theorem sturm-ext-below:
    assumes poly p b\not=0
    shows proots-count p {x.x<b} = changes-le-smods-ext b p (pderiv p)
proof -
    define ps where ps\equivsmods-ext p (pderiv p)
    have }p\not=0\mathrm{ and peset ps using <poly p b}=0\mathrm{ 〉 ps-def by auto
    obtain lb where lb:\forallp\inset ps. }\forallx\mathrm{ . poly p x=0 }\longrightarrowx>l
        and lb-sgn:\forallx\leqlb.}\forallp\in\mathrm{ set ps. sgn (poly p x)=sgn-neg-inf p
        and lb<b
        using root-list-lb[OF no-0-in-smods-ext,of p pderiv p,folded ps-def]
        by auto
    have proots-count p {x.x<b}= proots-count p {x.lb<x\wedge x<b}
    unfolding proots-count-def by (rule sum.cong,insert lb <p\inset ps`,auto)
    moreover have changes-le-smods-ext b p (pderiv p) = changes-itv-smods-ext lb
b p(pderiv p)
    proof -
    have map (sgn \circ ( }\lambda\mathrm{ p. poly plb)) ps = map sgn-neg-inf ps
        using lb-sgn[THEN spec,of lb,simplified]
        by (metis (mono-tags, lifting) comp-def list.map-cong0)
    hence changes-poly-at ps lb=changes-poly-neg-inf ps
        unfolding changes-poly-neg-inf-def changes-poly-at-def
        by (subst changes-map-sgn-eq,metis map-map)
    thus ?thesis unfolding changes-le-smods-ext-def changes-itv-smods-ext-def ps-def
        by metis
    qed
    moreover have poly plb\not=0 using lb <p\inset ps> by auto
    ultimately show ?thesis using sturm-ext-interval[OF<lb<b\rangle-assms] by auto
```


qed

```
theorem sturm-ext-R
    assumes p\not=0
    shows proots-count p UNIV = changes-R-smods-ext p (pderiv p)
proof -
    define ps where ps\equivsmods-ext p (pderiv p)
    have }p\inset ps using ps-def \langlep\not=0\rangle by aut
    obtain lb where lb:\forallp\inset ps. }\forallx\mathrm{ . poly p x=0 }\longrightarrowx>l
        and lb-sgn:\forallx\leqlb.}\forallp\in\mathrm{ set ps. sgn (poly p x) = sgn-neg-inf p
        and}lb<
        using root-list-lb[OF no-0-in-smods-ext,of p pderiv p,folded ps-def]
        by auto
    obtain ub where ub:\forallp\inset ps. }\forallx\mathrm{ . poly p x=0 }\longrightarrowx<u
        and ub-sgn:\forallx\gequb.\forallp\inset ps. sgn (poly p x) = sgn-pos-inf p
        and ub>0
        using root-list-ub[OF no-0-in-smods-ext,of p pderiv p,folded ps-def]
        by auto
    have proots-count p UNIV = proots-count p {x.lb<x\wedge x<ub}
    unfolding proots-count-def by (rule sum.cong,insert lb ub<p\inset ps`,auto)
    moreover have changes-R-smods-ext p (pderiv p) = changes-itv-smods-ext lb ub
p(pderiv p)
    proof -
    have map (sgn ○ ( }\lambda\mathrm{ p. poly plb)) ps= map sgn-neg-inf ps
            and map (sgn ○ ( }\lambda\mathrm{ p. poly pub)) ps= map sgn-pos-inf ps
            using lb-sgn[THEN spec,of lb,simplified] ub-sgn[THEN spec,of ub,simplified]
            by (metis (mono-tags, lifting) comp-def list.map-cong0)+
    hence changes-poly-at ps lb=changes-poly-neg-inf ps
                    ^changes-poly-at ps ub=changes-poly-pos-inf ps
            unfolding changes-poly-neg-inf-def changes-poly-at-def changes-poly-pos-inf-def
                by (subst (1 3) changes-map-sgn-eq,metis map-map)
    thus ?thesis unfolding changes-R-smods-ext-def changes-itv-smods-ext-def ps-def
                by metis
    qed
    moreover have poly plb\not=0 and poly p ub\not=0 using lb ub <p\inset ps> by auto
    moreover have lb<ub using <lb<0\rangle\langle0<ub\rangle by auto
    ultimately show ?thesis using sturm-ext-interval by auto
qed
end
```


4 Descartes Roots Test

theory Descartes-Roots-Test imports Budan-Fourier
begin
The Descartes roots test is a consequence of Descartes' rule of signs: through counting sign variations on coefficients of a base-transformed (i.e. Taylor shifted) polynomial, it can over-approximate the number of real roots
(counting multiplicity) within an interval. Its ability is similar to the BudanFourier theorem, but is far more efficient in practice. Therefore, this test is widely used in modern root isolation procedures.

More information can be found in the wiki page about Vincent's theorem: https://en.wikipedia.org/wiki/Vincent\'s_theorem and Collins and Akritas's classic paper of root isolation: Collins, G.E., Akritas, A.G.: Polynomial real root isolation using Descarte's rule of signs. SYMSACC. 272-275 (1976). A more modern treatment is available from a recent implementation of isolating real roots: Kobel, A., Rouillier, F., Sagraloff, M.: Computing Real Roots of Real Polynomials ... and now For Real! Proceedings of ISSAC '16, New York, New York, USA (2016).
lemma bij-betw-pos-interval:
fixes $a b::$ real
assumes $a<b$
shows bij-betw $(\lambda x .(a+b * x) /(1+x))\{x . x>0\}\{x . a<x \wedge x<b\}$
proof (rule bij-betw-imageI)
show inj-on $(\lambda x .(a+b * x) /(1+x))\{x .0<x\}$
unfolding inj-on-def
apply (auto simp add:field-simps)
using assms crossproduct-noteq by fastforce
have $x \in(\lambda x .(a+b * x) /(1+x))$ ' $\{x .0<x\}$ when $a<x x<b$ for x
proof (rule rev-image-eqI[of $(x-a) /(b-x)])$
define $b x$ where $b x=b-x$
have $x: x=b-b x$ unfolding $b x$-def by auto
have $b x \neq 0 \quad b>a$ unfolding $b x$-def using that by auto
then show $x=(a+b *((x-a) /(b-x))) /(1+(x-a) /(b-x))$
apply (fold bx-def,unfold x)
by (auto simp add:field-simps)
show $(x-a) /(b-x) \in\{x .0<x\}$ using that by auto
qed
then show $(\lambda x .(a+b * x) /(1+x))$ ' $\{x .0<x\}=\{x . a<x \wedge x<b\}$
using assms by (auto simp add:divide-simps algebra-simps)
qed
lemma proots-sphere-pos-interval:
fixes a b: :real
defines $q 1 \equiv[: a, b:]$ and $q 2 \equiv[: 1,1:]$
assumes $p \neq 0 \quad a<b$
shows proots-count $p\{x . a<x \wedge x<b\}=$ proots-count (fcompose pq1q2) $\{x$.
$0<x\}$
apply (rule proots-fcompose-bij-eq[OF - $\langle p \neq 0\rangle]$)
unfolding q1-def q2-def using bij-betw-pos-interval $[O F\langle a<b\rangle]\langle a<b\rangle$
by (auto simp add:algebra-simps infinite-UNIV-char-0)
definition descartes-roots-test::real \Rightarrow real \Rightarrow real poly \Rightarrow nat where
descartes-roots-test a b $p=$ nat (changes (coeffs (fcompose $p[: a, b:][: 1,1:]))$)
theorem descartes-roots-test:

```
    fixes p::real poly
    assumes p\not=0 a<b
    shows proots-count p {x. a<x\wedge x<b}\leq descartes-roots-test a b p ^
        even (descartes-roots-test a b p - proots-count p {x.a<x\wedgex<b})
proof -
    define q}\mathrm{ where q=fcompose p [:a,b:] [:1,1:]
    have q\not=0
    unfolding q-def
    apply (rule fcompose-nzero[OF}\langlep\not=0>]
    using <a<b> infinite-UNIV-char-0 by auto
    have proots-count p {x.a<x\wedge x<b} = proots-count q {x.0<x}
    using proots-sphere-pos-interval[OF <p\not=0\rangle\langlea<b>,folded q-def].
    moreover have int (proots-count q {x.0<x})\leq changes (coeffs q) ^
        even (changes (coeffs q) - int (proots-count q {x.0<x}))
    by (rule descartes-sign[OF}\langleq\not=0`]
    then have proots-count q {x.0<x}\leqnat (changes (coeffs q)) ^
                even (nat (changes (coeffs q)) - proots-count q {x.0<x})
    using even-nat-iff by auto
    ultimately show ?thesis
    unfolding descartes-roots-test-def
    apply (fold q-def)
    by auto
qed
```

 The roots test descartes-roots-test is exact if its result is 0 or 1 .
 corollary descartes-roots-test-zero:
fixes p ::real poly
assumes $p \neq 0 a<b$ descartes-roots-test a b $p=0$
shows $\forall x . a<x \wedge x<b \longrightarrow$ poly $p x \neq 0$
proof -
have proots-count $p\{x . a<x \wedge x<b\}=0$
using descartes-roots-test[OF assms(1,2)] assms(3) by auto
from proots-count-0-imp-empty[OF this $\langle p \neq 0\rangle$]
show ?thesis by auto
qed
corollary descartes-roots-test-one:
fixes p ::real poly
assumes $p \neq 0 a<b$ descartes-roots-test a b $p=1$
shows proots-count $p\{x . a<x \wedge x<b\}=1$
using descartes-roots-test $[O F\langle p \neq 0\rangle\langle a<b\rangle]\langle$ descartes-roots-test a b p $=1\rangle$
by (metis dvd-diffD even-zero le-neq-implies-less less-one odd-one)

Similar to the Budan-Fourier theorem, the Descartes roots test result is exact when all roots are real.
corollary descartes-roots-test-real:
fixes p ::real poly
assumes $p \neq 0 \quad a<b$
assumes all-roots-real p

```
    shows proots-count p {x.a<x\wedge x <b} = descartes-roots-test a b p
proof -
    define q}\mathrm{ where q=fcompose p [:a,b:] [:1,1:]
    have q\not=0
        unfolding q-def
        apply (rule fcompose-nzero[OF}\langlep\not=0>]
        using \langlea<b\rangle infinite-UNIV-char-0 by auto
    have proots-count p{x.a<x\wedgex<b}= proots-count q {x. 0< < }
    using proots-sphere-pos-interval[OF \langlep\not=0\rangle\langlea<b\rangle,folded q-def].
    moreover have int (proots-count q {x.0<x})= changes (coeffs q)
    apply (rule descartes-sign-real[OF}\langleq\not=0\rangle]
    unfolding q-def by (rule all-real-roots-mobius[OF <all-roots-real p><a<b\rangle])
    then have proots-count q {x. 0<x}= nat (changes (coeffs q))
    by simp
    ultimately show ?thesis unfolding descartes-roots-test-def
    apply (fold q-def)
    by auto
qed
end
```


5 Acknowledgements

The work was supported by the ERC Advanced Grant ALEXANDRIA (Project 742178), funded by the European Research Council and led by Professor Lawrence Paulson at the University of Cambridge, UK.

References

[1] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry, volume 10 of Algorithms and Computation in Mathematics. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.
[2] M. Eberl. Sturm's theorem. Archive of Formal Proofs, Jan. 2014. http://isa-afp.org/entries/Sturm_Sequences.html, Formal proof development.
[3] M. Eberl. Descartes' rule of signs. Archive of Formal Proofs, Dec. 2015. http://isa-afp.org/entries/Descartes_Sign_Rule.html, Formal proof development.
[4] J. Harrison. Verifying the accuracy of polynomial approximations in HOL. In E. L. Gunter and A. Felty, editors, Theorem Proving in Higher Order Logics: 10th International Conference, TPHOLs'97, volume 1275 of Lecture Notes in Computer Science, pages 137-152, Murray Hill, NJ, 1997. Springer-Verlag.
[5] W. Li. The Sturm-Tarski Theorem. Archive of Formal Proofs, Sept. 2014.
[6] W. Li. Count the Number of Complex Roots. Archive of Formal Proofs, Oct. 2017.
[7] W. Li and L. C. Paulson. Evaluating Winding Numbers and Counting Complex Roots through Cauchy Indices in Isabelle/HOL. CoRR, abs/1804.03922, 2018.
[8] A. Mahboubi and C. Cohen. Formal proofs in real algebraic geometry: from ordered fields to quantifier elimination. Logical Methods in Computer Science, 8(1), 2012.
[9] A. Narkawicz, C. A. Muñoz, and A. Dutle. Formally-Verified Decision Procedures for Univariate Polynomial Computation Based on Sturm's and Tarski's Theorems. Journal of Automated Reasoning, 54(4):285-326, 2015.
[10] Q. I. Rahman and G. Schmeisser. Analytic Theory of Polynomials. Oxford University Press, 2002.

[^0]: ${ }^{1}$ According to Freek Wiedijk's "Formalising 100 Theorems" (http://www.cs.ru.nl/ \sim freek/100/index.html)

