Büchi Complementation

Julian Brunner

March 17, 2025

Abstract

This entry provides a verified implementation of rank-based Büchi Complementation [1]. The verification is done in three steps:

- 1. Definition of odd rankings and proof that an automaton rejects a word iff there exists an odd ranking for it.
- 2. Definition of the complement automaton and proof that it accepts exactly those words for which there is an odd ranking.
- 3. Verified implementation of the complement automaton using the Isabelle Collections Framework.

Contents

1	Alt	ernating Function Iteration	2
2	Ru	n Graphs	3
3	Rar	nkings	7
	3.1	Rankings	8
	3.2	Ranking Implies Word not in Language	8
	3.3	Word not in Language Implies Ranking	10
		3.3.1 Removal of Endangered Nodes	10
		3.3.2 Removal of Safe Nodes	10
		3.3.3 Run Graph Interation	11
	3.4	Node Ranks	16
	3.5	Correctness Theorem	18
4	Cor	nplementation	18
	4.1	Level Rankings and Complementation States	18
	4.2	Word in Complement Language Implies Ranking	21
	4.3	Ranking Implies Word in Complement Language	25
	4.4	Correctness Theorem	32

5	Complementation Implementation	32		
	5.1 Phase 1	32		
	5.2 Phase 2	37		
	5.3 Phase 3	39		
	5.4 Phase 4	41		
	5.5 Phase 5	47		
	5.6 Phase 6	49		
	5.7 Phase 7	50		
6	Boolean Formulae	54		
7	Final Instantiation of Algorithms Related to Complementa-			
	tion	55		
	7.1 Syntax	55		
	7.2 Hashcodes on Complement States	55		
	7.3 Complementation	56		
	7.4 Language Subset	57		
	7.5 Language Equality	58		
8	Build and test exported program with MLton	59		
1 Alternating Function Iteration				
theory Alternate imports Main begin				
primrec alternate :: $('a \Rightarrow 'a) \Rightarrow ('a \Rightarrow 'a) \Rightarrow nat \Rightarrow ('a \Rightarrow 'a)$ where alternate $f g \ 0 = id$ alternate $f g (Suc \ k) = alternate \ g f \ k \circ f$				
l alt I by	eemma alternate-Suc[simp]: alternate $f g$ (Suc k) = (if even k then f else ternate $f g k$ proof (induct k arbitrary: $f g$) case (0) show ?case by simp next case (Suc k) have alternate $f g$ (Suc (Suc k)) = alternate $g f$ (Suc k) $\circ f$ by auto also have = (if even k then g else f) \circ (alternate $g f k \circ f$) unfolding r auto also have = (if even (Suc k) then f else g) \circ alternate $f g$ (Suc k) by finally show ?case by this ged	g) \circ Suc auto		
declare $alternate.simps(2)[simp del]$				

lemma alternate-antimono:

```
assumes \bigwedge x. f x \leq x \bigwedge x. g x \leq x
   shows antimono (alternate f g)
 proof
   fix k \ l :: nat
   assume 1: k < l
   obtain n where 2: l = k + n using le-Suc-ex 1 by auto
   have 3: alternate f g (k + n) \leq alternate f g k
   proof (induct n)
     case (\theta)
     show ?case by simp
   \mathbf{next}
     case (Suc n)
    have alternate f g (k + Suc n) \leq alternate f g (k + n) using assms by (auto
intro: le-funI)
     also have \ldots \leq alternate f g k using Suc by this
     finally show ?case by this
   qed
   show alternate f g l \leq alternate f g k using 3 unfolding 2 by this
 qed
```

 \mathbf{end}

2 Run Graphs

```
theory Graph
imports Transition-Systems-and-Automata.NBA
begin
```

type-synonym 'state node = $nat \times$ 'state

abbreviation ginitial $A \equiv \{0\} \times$ initial A**abbreviation** gaccepting $A \equiv$ accepting $A \circ$ snd

```
global-interpretation graph: transition-system-initial
const
\lambda \ u \ (k, \ p). \ w \parallel k \in alphabet \ A \land u \in \{Suc \ k\} \times transition \ A \ (w \parallel k) \ p \cap V
\lambda \ v. \ v \in ginitial \ A \cap V
for A \ w \ V
defines
gpath = graph.path and grun = graph.run and
greachable = graph.reachable and gnodes = graph.nodes
by this
```

We disable rules that are degenerate due to $execute = (\lambda x - x)$.

```
declare graph.reachable.execute[rule del]
declare graph.nodes.execute[rule del]
```

abbreviation $gtarget \equiv graph.target$ **abbreviation** $gstates \equiv graph.states$ **abbreviation** $gtrace \equiv graph.trace$

```
abbreviation gsuccessors :: ('label, 'state) nba \Rightarrow 'label stream \Rightarrow
   'state node set \Rightarrow 'state node \Rightarrow 'state node set where
   gsuccessors A w V \equiv graph.successors TYPE('label) w A V
 abbreviation gusuccessors A \ w \equiv gsuccessors A \ w \ UNIV
 abbreviation gupath A \ w \equiv gpath \ A \ w \ UNIV
 abbreviation gurun A w \equiv grun A w UNIV
 abbreviation gureachable A \ w \equiv greachable A \ w \ UNIV
 abbreviation gunodes A \ w \equiv gnodes \ A \ w \ UNIV
 lemma gtarget-alt-def: gtarget r v = last (v \# r) using fold-const by this
 lemma gstates-alt-def: gstates r v = r by simp
 lemma qtrace-alt-def: qtrace r v = r by simp
 lemma qpath-elim[elim?]:
   assumes gpath A w V s v
   obtains r k p
   where s = [Suc \ k \ .. < Suc \ k + length \ r] \parallel r \ v = (k, p)
 proof -
   obtain t r where 1: s = t || r length t = length r
     using zip-map-fst-snd[of s] by (metis length-map)
   obtain k p where 2: v = (k, p) by force
   have 3: t = [Suc \ k \dots < Suc \ k + length \ r]
   using assms 1 2
   proof (induct arbitrary: t \ r \ k \ p)
     case (nil v)
       then show ?case by (metis add-0-right le-add1 length-0-conv length-zip
min.idem upt-conv-Nil)
   \mathbf{next}
     case (cons \ u \ v \ s)
     have 1: t || r = (hd t, hd r) \# (tl t || tl r)
     by (metis cons.prems(1) hd-Cons-tl neq-Nil-conv zip.simps(1) zip-Cons-Cons
zip-Nil)
     have 2: s = tl t \parallel tl r using cons 1 by simp
    have t = hd t \# tl t using cons(4) by (metis hd-Cons-tl list.simps(3) zip-Nil)
     also have hd \ t = Suc \ k \ using \ 1 \ cons.hyps(1) \ cons.prems(1) \ cons.prems(3)
by auto
     also have tl \ t = [Suc \ (Suc \ k) \ .. < Suc \ (Suc \ k) + length \ (tl \ r)]
      using cons(3)[OF 2] using 1 (hd t = Suc k) cons.prems(1) cons.prems(2)
by auto
     finally show ?case using cons.prems(2) upt-rec by auto
   qed
   show ?thesis using that 1 2 3 by simp
  qed
 lemma gpath-path[symmetric]: path A (stake (length r) (sdrop k w) || r) p \leftrightarrow p
   gpath A w UNIV ([Suc k \dots < Suc k + length r] \parallel r) (k, p)
```

proof (*induct* r *arbitrary*: k p) case (Nil)show ?case by auto \mathbf{next} case (Cons q r) **have** 1: path A (stake (length r) (sdrop (Suc k) w) $|| r) q \leftrightarrow$ gpath A w UNIV ([Suc (Suc k) ..< Suc $k + length (q \# r)] \parallel r$) (Suc k, q) using $Cons[of Suc \ k \ q]$ by simphave stake (length (q # r)) (sdrop k w) || q # r = $(w \parallel k, q) \# (stake (length r) (sdrop (Suc k) w) \parallel r)$ by simp also have path $A \ldots p \longleftrightarrow$ gpath A w UNIV ((Suc k, q) # ([Suc (Suc k) ..< Suc k + length (q # r)] || r)) (k, p)using 1 by auto also have $(Suc \ k, \ q) \ \# ([Suc \ (Suc \ k) \ .. < Suc \ k + length \ (q \ \# \ r)] \ || \ r) =$ Suc $k \notin [Suc (Suc k) ... < Suc k + length (q \notin r)] || q \# r$ unfolding *zip-Cons-Cons* by *rule* also have Suc k # [Suc (Suc k) ... < Suc k + length (q # r)] = [Suc k ... < Suck + length (q # r)] by (simp add: upt-rec) finally show ?case by this \mathbf{qed} **lemma** grun-elim[elim?]: assumes grun A w V s vobtains r k pwhere s = fromN (Suc k) ||| r v = (k, p)proof – obtain t r where 1: $s = t \parallel r$ using szip-smap by metis obtain k p where 2: v = (k, p) by force have 3: t = fromN (Suc k) using assms unfolding 1 2 by (coinduction arbitrary: t r k p) (force iff: eq-scons elim: graph.run.cases) show ?thesis using that 1 2 3 by simp qed lemma run-grun: assumes run A (sdrop k w ||| r) p shows gurun A w (from N (Suc k) ||| r) (k, p)using assms by (coinduction arbitrary: k p r) (auto elim: nba.run.cases) lemma grun-run: assumes grun A w V (from N (Suc k) ||| r) (k, p) shows run A (sdrop $k w \parallel \parallel r) p$ proof – have $2: \exists ka wa. sdrop k (stl w :: 'a stream) = sdrop ka wa \land P ka wa if P$ $(Suc \ k) \ w \ for \ P \ k \ w$ using that by $(metis \ sdrop.simps(2))$ show ?thesis using assms by (coinduction arbitrary: k p w r) (auto introl: 2

```
elim: graph.run.cases)
 qed
 lemma greachable-reachable:
   fixes l q k p
   defines u \equiv (l, q)
   defines v \equiv (k, p)
   assumes u \in greachable A \ w \ V \ v
   shows q \in reachable \land p
 using assms(3, 1, 2)
 proof (induct arbitrary: l q k p)
   case reflexive
   then show ?case by auto
 \mathbf{next}
   case (execute u)
   have 1: q \in successors A (snd u) using execute by auto
   have snd u \in reachable A p using execute by auto
   also have q \in reachable A (snd u) using 1 by blast
   finally show ?case by this
 qed
 lemma gnodes-nodes: gnodes A \ w \ V \subseteq UNIV \times nodes \ A
 proof
   fix v
   assume v \in gnodes \ A \ w \ V
   then show v \in UNIV \times nodes A by induct auto
 qed
 lemma gpath-subset:
   assumes gpath A w V r v
   assumes set (getates r v \subseteq U
   shows gpath A w U r v
   using assms by induct auto
 lemma grun-subset:
   assumes grun A w V r v
   assumes sset (gtrace r v) \subseteq U
   shows grun A w U r v
 using assms
 proof (coinduction arbitrary: r v)
   case (run \ a \ s \ r \ v)
   have 1: grun A w V s a using run(1, 2) by fastforce
   have 2: a \in gusuccessors A \ w \ v \ using \ run(1, 2) by fastforce
   show ?case using 1 \ 2 \ run(1, 3) by force
 qed
 lemma greachable-subset: greachable A w V v \subseteq insert v V
 proof
   fix u
   assume u \in greachable A w V v
```

```
then show u \in insert \ v \ V by induct auto
  qed
 lemma gtrace-infinite:
   assumes qrun A w V r v
   shows infinite (sset (gtrace r v))
  using assms by (metis grun-elim gtrace-alt-def infinite-Ici sset-fromN sset-szip-finite)
  lemma infinite-greachable-gtrace:
   assumes grun \ A \ w \ V \ r \ v
   assumes u \in sset (gtrace \ r \ v)
   shows infinite (greachable A \ w \ V \ u)
  proof –
   obtain i where 1: u = gtrace \ r \ v \parallel i \ using \ sset-range \ image E \ assms(2) \ by
metis
   have 2: gtarget (stake (Suc i) r) v = u unfolding 1 sscan-snth by rule
   have infinite (sset (sdrop (Suc i) (gtrace r v)))
     using gtrace-infinite[OF assms(1)]
     by (metis List.finite-set finite-Un sset-shift stake-sdrop)
   also have sdrop (Suc i) (gtrace r v) = gtrace (sdrop (Suc i) r) (gtarget (stake
(Suc i) r) v
     by simp
   also have sset \ldots \subseteq greachable A w V u
      using assms(1) 2 by (metis graph.reachable.reflexive graph.reachable-trace
graph.run-sdrop)
   finally show ?thesis by this
  qed
 lemma finite-nodes-gsuccessors:
   assumes finite (nodes A)
   assumes v \in gunodes A w
   shows finite (guarcessors A w v)
 proof –
   have gusuccessors A \ w \ v \subseteq gureachable A \ w \ v by rule
   also have \ldots \subseteq gunodes \ A \ w \ using \ assms(2) by blast
   also have \ldots \subseteq UNIV \times nodes A using gnodes-nodes by this
   finally have 3: gusuccessors A w v \subseteq UNIV \times nodes A by this
   have guardeessors A w v \subseteq \{Suc (fst v)\} \times nodes A using 3 by auto
   also have finite ... using assms(1) by simp
   finally show ?thesis by this
  qed
```

 \mathbf{end}

3 Rankings

theory Ranking imports Alternate Graph begin

3.1 Rankings

type-synonym 'state ranking = 'state node \Rightarrow nat

definition ranking :: ('label, 'state) $nba \Rightarrow$ 'label stream \Rightarrow 'state ranking \Rightarrow bool where

 $\begin{array}{l} \operatorname{ranking} A \ w \ f \equiv \\ (\forall \ v \in gunodes \ A \ w. \ f \ v \leq 2 \ \ast \ card \ (nodes \ A)) \land \\ (\forall \ v \in gunodes \ A \ w. \ \forall \ u \in gusuccessors \ A \ w \ v. \ f \ u \leq f \ v) \land \\ (\forall \ v \in gunodes \ A \ w. \ gaccepting \ A \ v \longrightarrow even \ (f \ v)) \land \\ (\forall \ v \in gunodes \ A \ w. \ \forall \ r \ k. \ gurun \ A \ w \ r \ v \longrightarrow smap \ f \ (gtrace \ r \ v) = sconst \\ k \longrightarrow odd \ k) \end{array}$

3.2 Ranking Implies Word not in Language

lemma *ranking-stuck*: **assumes** ranking A w f**assumes** $v \in gunodes A \ w \ gurun \ A \ w \ r \ v$ obtains n kwhere smap f (gtrace (sdrop n r) (gtarget (stake n r) v)) = sconst k proof – have $0: f u \leq f v$ if $v \in gunodes A w u \in gusuccessors A w v$ for v uusing assms(1) that unfolding ranking-def by auto have 1: shd $(v \#\# gtrace \ r \ v) \in gunodes \ A \ w using assms(2)$ by auto have 2: sdescending (smap f(v ## gtrace r v)) using 1 assms(3)**proof** (coinduction arbitrary: r v rule: sdescending.coinduct) **case** sdescending obtain $u \ s$ where $1: r = u \ \#\# \ s$ using stream.exhaust by blast have 2: $v \in gunodes A \ w \text{ using } sdescending(1)$ by simp have 3: gurun A w (u ## s) v using sdescending(2) 1 by auto have $4: u \in gusuccessors A \ w \ v \ using \ 3 \ by \ auto$ have 5: $u \in gureachable A \ w \ v \ using \ graph.reachable-successors \ 4 \ by \ blast$ show ?case unfolding 1 **proof** (*intro* exI conjI disjI1) show $f u \leq f v$ using 0 2 4 by this show shd $(u \#\# gtrace \ s \ u) \in gunodes \ A \ w using \ 2 \ 5 \ by \ auto$ show gurun A w s u using 3 by auto qed auto qed **obtain** s k where 3: smap f(v ## gtrace r v) = s @- sconst kusing sdescending-stuck[OF 2] by metis have gtrace (sdrop (Suc (length s)) r) (gtarget (stake (Suc (length s)) r) v) = sdrop (Suc (length s)) (gtrace r v) using sscan-sdrop by rule **also have** smap $f \ldots = sdrop \ (length \ s) \ (smap \ f \ (v \ \#\# \ gtrace \ r \ v))$

```
by (metis 3 id-apply sdrop-simps(2) sdrop-smap \ sdrop-stl \ shift-eq \ siter-
ate.simps(2) stream.sel(2))
   also have \ldots = sconst \ k unfolding 3 using shift-eq by metis
   finally show ?thesis using that by blast
 ged
 lemma ranking-stuck-odd:
   assumes ranking A w f
   assumes v \in gunodes A \ w \ gurun A \ w \ r \ v
   obtains n
   where Ball (sset (smap f (gtrace (sdrop n r) (gtarget (stake n r) v)))) odd
 proof -
   obtain n \ k where 1: smap f (gtrace (sdrop n \ r) (gtarget (stake n \ r) v)) =
sconst \ k
     using ranking-stuck assms by this
   have 2: gtarget (stake n r) v \in gunodes A w
     using assms(2, 3) by (simp add: graph.nodes-target graph.run-stake)
   have 3: gurun A w (sdrop n r) (gtarget (stake n r) v)
     using assms(2, 3) by (simp \ add: \ graph.run-sdrop)
   have 4: odd k using 1 \ 2 \ 3 \ assms(1) unfolding ranking-def by meson
   have 5: Ball (sset (smap f (gtrace (sdrop n r) (gtarget (stake n r) v)))) odd
     unfolding 1 using 4 by simp
   show ?thesis using that 5 by this
 qed
 lemma ranking-language:
   assumes ranking A w f
   shows w \notin language A
 proof
   assume 1: w \in language A
   obtain r p where 2: run A (w \parallel r) p p \in initial A infs (accepting A) (p \# \#
r) using 1 by rule
   let ?r = fromN \ 1 \parallel r
   let ?v = (0, p)
   have 3: v \in gunodes A w gurun A w ?r ?v using <math>2(1, 2) by (auto intro:
run-grun)
   obtain n where 4: Ball (sset (smap f (gtrace (sdrop n ?r)) (gtarget (stake n
(r) (v) (v) odd
     using ranking-stuck-odd assms 3 by this
   let ?s = stake \ n \ ?r
   let ?t = sdrop \ n \ ?r
```

let ?u = gtarget ?s ?v

have set $(gtrace ?t ?u) \subseteq gureachable A w ?v$

```
proof (intro graph.reachable-trace graph.reachable-target graph.reachable.reflexive)
show gupath A w ?s ?v using graph.run-stake 3(2) by this
show gurun A w ?t ?u using graph.run-sdrop 3(2) by this
```

qed

also have $\ldots \subseteq gunodes \ A \ w \ using \ \mathcal{I}(1)$ by blast

finally have 7: sset (gtrace ?t ?u) \subseteq gunodes A w by this

have $\delta: \bigwedge p. p \in gunodes A \ w \Longrightarrow gaccepting A \ p \Longrightarrow even \ (f \ p)$

using assms unfolding ranking-def by auto

have $9: \bigwedge p. p \in sset (gtrace ?t ?u) \Longrightarrow gaccepting A p \Longrightarrow even (f p) using 7 8 by auto$

have 19: infs (accepting A) (smap snd ?r) using 2(3) by simp

have 18: infs (gaccepting A) ?r using 19 by simp

have 17: infs (gaccepting A) (gtrace ?r ?v) using 18 unfolding gtrace-alt-def by this

have 16: infs (gaccepting A) (gtrace (?s @- ?t) ?v) using 17 unfolding stake-sdrop by this

have 15: infs (gaccepting A) (gtrace ?t ?u) using 16 by simp

have 13: infs (even \circ f) (gtrace ?t ?u) using infs-mono[OF - 15] 9 by simp have 12: infs even (smap f (gtrace ?t ?u)) using 13 by (simp add: comp-def) have 11: Bex (sset (smap f (gtrace ?t ?u))) even using 12 infs-any by metis

show False using 4 11 by auto qed

3.3 Word not in Language Implies Ranking

3.3.1 Removal of Endangered Nodes

definition clean :: ('label, 'state) $nba \Rightarrow$ 'label stream \Rightarrow 'state node set \Rightarrow 'state node set where

clean A w V $\equiv \{v \in V. infinite (greachable A w V v)\}$

lemma clean-decreasing: clean $A \le V \subseteq V$ unfolding clean-def by auto **lemma** clean-successors: **assumes** $v \in V \le u \in gusuccessors A \le v$ **shows** $u \in clean A \le V \implies v \in clean A \le V$ **proof** – **assume** 1: $u \in clean A \le V$ **have** 2: $u \in V$ infinite (greachable A $\le V \le v$) using 1 unfolding clean-def by auto **have** 3: $u \in greachable A \le V \lor u$ using graph.reachable.execute assms(2) 2(1) by blast **have** 4: greachable A $\le V \le u \subseteq greachable A \le V \lor v$ using 3 by blast

have 5: infinite (greachable $A \le V \lor$) using $2(2) \not 4$ by (simp add: infinite-super) show $v \in clean A \le V$ unfolding clean-def using $assms(1) \not 5$ by simp ged

3.3.2 Removal of Safe Nodes

definition prune :: ('label, 'state) $nba \Rightarrow$ 'label stream \Rightarrow 'state node set \Rightarrow 'state node set where

prune $A \ w \ V \equiv \{v \in V. \exists u \in greachable A \ w \ V v. gaccepting A u\}$

lemma prune-decreasing: prune $A \le V \subseteq V$ unfolding prune-def by auto **lemma** prune-successors: **assumes** $v \in V \le g$ usuccessors $A \le v$ **shows** $u \in prune A \le V \Longrightarrow v \in prune A \le V$ **proof** – **assume** 1: $u \in prune A \le V$ **have** 2: $u \in V \exists x \in greachable A \le V u$. gaccepting $A \ge using 1$ unfolding prune-def by auto **have** 3: $u \in greachable A \le V v$ using graph.reachable.execute assms(2) 2(1) by blast **have** 4: greachable A $\le V u \subseteq greachable A \le V v$ using 3 by blast **show** $v \in prune A \le V$ unfolding prune-def using assms(1) 2(2) 4 by auto **qed**

3.3.3 Run Graph Interation

definition graph :: ('label, 'state) $nba \Rightarrow$ 'label stream \Rightarrow $nat \Rightarrow$ 'state node set where

graph $A \ w \ k \equiv alternate \ (clean \ A \ w) \ (prune \ A \ w) \ k \ (gunodes \ A \ w)$

abbreviation *level* $A \ w \ k \ l \equiv \{v \in graph \ A \ w \ k. \ fst \ v = l\}$

lemma graph-0[simp]: graph $A \le 0$ = gunodes $A \le unfolding$ graph-def by simp

lemma graph-Suc[simp]: graph A w (Suc k) = (if even k then clean A w else prune A w) (graph A w k)

unfolding graph-def by simp

```
lemma graph-antimono: antimono (graph A w)
   using alternate-antimono clean-decreasing prune-decreasing
   unfolding monotone-def le-fun-def graph-def
   by metis
 lemma graph-nodes: graph A w k \subseteq gunodes A w using graph-0 graph-antimono
le0 antimonoD by metis
 lemma graph-successors:
   assumes v \in gunodes A \ w \ u \in gusuccessors A \ w \ v
   shows u \in graph A \ w \ k \Longrightarrow v \in graph A \ w \ k
 using assms
 proof (induct k arbitrary: u v)
   case \theta
   show ?case using \theta(2) by simp
 \mathbf{next}
   \mathbf{case}~(Suc~k)
  have 1: v \in graph \ A \ w \ k \ using \ Suc \ using \ antimono-iff-le-Suc \ graph-antimono
rev-subsetD by blast
   show ?case using Suc(2) clean-successors[OF 1 Suc(4)] prune-successors[OF
1 Suc(4)] by auto
 qed
```

lemma graph-level-finite: assumes finite (nodes A) shows finite (level $A \ w \ k \ l$) proof – have level A w k $l \subseteq \{v \in gunodes A w. fst v = l\}$ by (simp add: graph-nodes subset-CollectI) also have $\{v \in gunodes A \ w. \ fst \ v = l\} \subseteq \{l\} \times nodes A \ using gnodes-nodes$ by force also have finite ($\{l\} \times nodes A$) using assms(1) by simpfinally show ?thesis by this qed lemma find-safe: assumes $w \notin language A$ **assumes** $V \neq \{\}$ $V \subseteq$ gunodes A wassumes $\land v. v \in V \Longrightarrow gsuccessors A \ w \ V \neq \{\}$ obtains vwhere $v \in V \forall u \in greachable A w V v. \neg gaccepting A u$ **proof** (rule ccontr) assume $1: \neg$ thesis have $2: \bigwedge v. v \in V \Longrightarrow \exists u \in greachable A w V v. gaccepting A u using that$ 1 by auto have $3: \bigwedge r \ v. \ v \in initial A \Longrightarrow run A (w \parallel r) \ v \Longrightarrow fins (accepting A) \ r$ using assms(1) by autoobtain v where $4: v \in V$ using assms(2) by force **obtain** x where 5: $x \in greachable A \ w \ V \ v \ gaccepting A \ x \ using 2 \ 4 \ by \ blast$ obtain y where 50: gpath A w V y v x = gtarget y v using 5(1) by rule **obtain** r where θ : grun A w V r x infs ($\lambda x. x \in V \land gaccepting A x$) r **proof** (*rule graph.recurring-condition*) show $x \in V \land$ gaccepting A x using greachable-subset 4.5 by blast \mathbf{next} fix v**assume** 1: $v \in V \land$ gaccepting A vobtain v' where $20: v' \in gsuccessors A \ w \ V \ v \ using \ assms(4) \ 1 \ by \ (meson$ IntE equals0I) have $21: v' \in V$ using 20 by auto have 22: $\exists u \in greachable A \ w \ V \ v'. \ u \in V \land gaccepting A \ u$ using greachable-subset 2 21 by blast **obtain** r where 30: gpath A w V r v' gtarget r $v' \in V \land$ gaccepting A (gtarget r v'using 22 by blast **show** $\exists r. r \neq [] \land gpath A w V r v \land gtarget r v \in V \land gaccepting A (gtarget$ r v**proof** (*intro* exI conjI) show $v' \# r \neq []$ by simp show gpath A w V (v' # r) v using 20 30 by auto show gtarget $(v' \# r) v \in V$ using 30 by simp show gaccepting A (gtarget (v' # r) v) using 30 by simp qed

qed auto

obtain u where 100: $u \in ginitial A \ v \in gureachable A \ w \ u \ using 4 \ assms(3)$ by blast have 101: gupath A w y v using gpath-subset 50(1) subset-UNIV by this have 102: gurun A w r x using grun-subset 6(1) subset-UNIV by this obtain t where 103: gupath A w t u v = gtarget t u using 100(2) by rule have 104: gurun A w (t @- y @- r) u using 101 102 103 50(2) by auto obtain s q where 7: t $@-y @-r = fromN (Suc 0) \parallel s u = (0, q)$ using grun-elim $[OF \ 104]$ 100(1) by blast have 8: run A (w ||| s) q using grun-run[OF 104 [unfolded 7]] by simp have 9: $q \in initial A$ using 100(1) 7(2) by auto have 91: sset (trace $(w \mid \mid s) q) \subseteq$ reachable A q using nba.reachable-trace nba.reachable.reflexive 8 by this have 10: fins (accepting A) s using 398 by this have 12: infs (gaccepting A) r using infs-mono[OF - 6(2)] by simp have $s = smap \ snd \ (t \ @-y \ @-r)$ unfolding 7(1) by simpalso have infs (accepting A) ... using 12 by (simp add: comp-def) finally have 13: infs (accepting A) s by this show False using 10 13 by simp qed lemma remove-run: assumes finite (nodes A) $w \notin language A$ **assumes** $V \subseteq$ gunodes A w clean $A w V \neq \{\}$ obtains v rwhere grun A w V r vsset (gtrace r v) \subseteq clean A w Vsset (gtrace r v) $\subseteq - prune A w$ (clean A w V) proof **obtain** u where $1: u \in clean A w V \forall x \in greachable A w (clean A w V) u.$ \neg gaccepting A x **proof** (*rule find-safe*) show $w \notin language A$ using assms(2) by this show clean A w $V \neq \{\}$ using assms(4) by this **show** clean A w V \subseteq qunodes A w using assms(3) by (meson clean-decreasing subset-iff) next fix v**assume** $1: v \in clean \ A \ w \ V$ have $2: v \in V$ using 1 clean-decreasing by blast have 3: infinite (greachable $A \le V \le v$) using 1 clean-def by auto have gaucessors $A \ w \ V \ v \subseteq$ guarcessors $A \ w \ v$ by auto also have finite ... using 2 assms(1, 3) finite-nodes-gsuccessors by blast finally have 4: finite (gaucessors A w V v) by this have 5: infinite (insert $v (\bigcup ((greachable A \ w \ V) \ (gsuccessors A \ w \ V \ v))))$ using graph.reachable-step 3 by metis **obtain** u where $6: u \in gsuccessors A \ w \ V \ v$ infinite (greachable A $w \ V \ u$)

have 7: $u \in clean \ A \ w \ V$ using 6 unfolding clean-def by auto show gsuccessors A w (clean A w V) $v \neq \{\}$ using 6(1) 7 by auto qed auto have $2: u \in V$ using 1(1) unfolding *clean-def* by *auto* have 3: infinite (greachable $A \le V u$) using 1(1) unfolding clean-def by simp have 4: finite (gaucessors $A \ w \ V \ v$) if $v \in greachable \ A \ w \ V \ u$ for vproof have 1: $v \in V$ using that greachable-subset 2 by blast have gsuccessors $A \ w \ V \ v \subseteq$ gusuccessors $A \ w \ v$ by auto also have finite ... using 1 assms(1, 3) finite-nodes-gsuccessors by blast finally show ?thesis by this qed obtain r where 5: grun A w V r u using graph.koenig[OF 3 4] by this have 6: greachable A w V $u \subseteq V$ using 2 greachable-subset by blast have 7: sset (qtrace r u) $\subset V$ using graph.reachable-trace [OF graph.reachable.reflexive 5(1)] 6 by blast have 8: sset (gtrace r u) \subseteq clean A w Vunfolding clean-def using 7 infinite-greachable-gtrace [OF 5(1)] by auto have 9: sset (gtrace r u) \subseteq greachable A w (clean A w V) u using 5.8 by (metis graph.reachable.reflexive graph.reachable-trace grun-subset) show ?thesis proof show grun A w V r u using 5(1) by this **show** sset $(gtrace \ r \ u) \subseteq clean \ A \ w \ V$ using 8 by this **show** sset (gtrace r u) $\subseteq - prune A w$ (clean A w V) **proof** (*intro subsetI ComplI*) fix p**assume** 10: $p \in sset$ (gtrace r u) $p \in prune A w$ (clean A w V) have 20: $\exists x \in greachable A w (clean A w V) p. gaccepting A x$ using 10(2) unfolding prune-def by auto have 30: greachable A w (clean A w V) $p \subseteq$ greachable A w (clean A w V) using 10(1) 9 by blast show False using 1(2) 20 30 by force qed qed qed **lemma** *level-bounded*: assumes finite (nodes A) $w \notin language A$ obtains nwhere $\bigwedge l$. $l \ge n \Longrightarrow card$ (level $A \ w \ (2 \ast k) \ l$) $\le card$ (nodes A) -k**proof** (*induct k arbitrary: thesis*) case (θ) $\mathbf{show}~? case$ **proof** (rule θ) fix l :: nathave finite $(\{l\} \times nodes A)$ using assms(1) by simpalso have level A w 0 $l \subseteq \{l\} \times nodes A$ using gnodes-nodes by force

u

also (card-mono) have card $\ldots = card$ (nodes A) using assms(1) by simp finally show card (level A w (2 * 0) l) \leq card (nodes A) - 0 by simp qed \mathbf{next} case (Suc k) show ?case **proof** (cases graph A w (Suc $(2 * k)) = \{\}$) case True have 3: graph A w $(2 * Suc k) = \{\}$ using True prune-decreasing by simp blastshow ?thesis using Suc(2) 3 by simp \mathbf{next} case False obtain v r where 1: grun A w (graph A w (2 * k)) r vsset (gtrace r v) \subseteq graph A w (Suc (2 * k)) sset (gtrace r v) \subseteq - graph A w (Suc (Suc (2 * k))) **proof** (*rule remove-run*) show finite (nodes A) $w \notin language A$ using assms by this show clean A w (graph A w $(2 * k)) \neq \{\}$ using False by simp **show** graph $A \ w \ (2 \ * \ k) \subseteq$ gunodes $A \ w$ using graph-nodes by this qed auto obtain l q where 2: v = (l, q) by force **obtain** *n* where 90: $\bigwedge l$. $n \leq l \Longrightarrow card$ (level A w (2 * k) l) $\leq card$ (nodes A) - kusing Suc(1) by blast show ?thesis **proof** (rule Suc(2))fix jassume 100: $n + Suc \ l \leq j$ have 6: graph A w (Suc (Suc (2 * k))) \subseteq graph A w (Suc (2 * k)) using graph-antimono antimono-iff-le-Suc by blast have 101: gtrace $r v \parallel (j - Suc \ l) \in graph \ A \ w \ (Suc \ (2 * k))$ using 1(2)snth-sset by auto have 102: gtrace $r v \parallel (j - Suc \ l) \notin graph \ A \ w (Suc \ (Suc \ (2 * k)))$ using 1(3) snth-sset by blast have 103: gtrace $r v \parallel (j - Suc \ l) \in level \ A \ w \ (Suc \ (2 * k)) \ j$ using 1(1) 100 101 2 by (auto elim: grun-elim) have 104: gtrace $r v \parallel (j - Suc \ l) \notin level A \ w (Suc \ (Suc \ (2 * k))) \ j \text{ using}$ 100 102 by simp have level A w (2 * Suc k) j = level A w (Suc (Suc <math>(2 * k))) j by simp also have $\ldots \subset level A \ w \ (Suc \ (2 * k)) \ j \ using \ 103 \ 104 \ 6 \ by \ blast$ also have $\ldots \subseteq level \land w (2 * k) j$ by (simp add: Collect-mono clean-def) finally have 105: level A w $(2 * Suc k) j \subset level A w (2 * k) j$ by this have card (level A w (2 * Suc k) j) < card (level A w <math>(2 * k) j)using assms(1) 105 by (simp add: graph-level-finite psubset-card-mono) also have $\ldots \leq card (nodes A) - k$ using 90 100 by simp finally show card (level A w $(2 * Suc k) j) \leq card (nodes A) - Suc k$ by simp

qed qed qed **lemma** graph-empty: **assumes** finite (nodes A) $w \notin language A$ shows graph A w (Suc $(2 * card (nodes A))) = \{\}$ proof – **obtain** *n* where $1: \bigwedge l. l \ge n \Longrightarrow card (level A w (2 * card (nodes A)) l) = 0$ using level-bounded [OF assms(1, 2), of card (nodes A)] by auto have graph A w (2 * card (nodes A)) = $(\bigcup l \in \{..< n\}. level A w (2 * card (nodes A)) l) \cup$ $(\bigcup l \in \{n ..\}. level A w (2 * card (nodes A)) l)$ by *auto* also have $(\lfloor J \ l \in \{n \ ..\}, level A \ w \ (2 \ast card (nodes A)) \ l) = \{\}$ using graph-level-finite assms(1) 1 by fastforce also have finite (([] $l \in \{..< n\}$. level A w (2 * card (nodes A)) l) \cup {}) using graph-level-finite assms(1) by auto finally have 100: finite (graph $A \ w \ (2 \ * \ card \ (nodes \ A)))$ by this have 101: finite (greachable A w (graph A w (2 * card (nodes A))) v) for v **using** 100 greachable-subset [of A w graph A w (2 * card (nodes A)) v] using finite-insert infinite-super by auto show ?thesis using 101 by (simp add: clean-def) qed lemma graph-le: **assumes** finite (nodes A) $w \notin language A$ assumes $v \in graph \ A \ w \ k$ shows $k \leq 2 * card$ (nodes A) using graph-empty graph-antimono assms by (metis Suc-leI empty-iff monotone-def not-le-imp-less rev-subsetD)

3.4 Node Ranks

definition rank :: ('label, 'state) $nba \Rightarrow$ 'label stream \Rightarrow 'state node \Rightarrow nat where rank $A \ w \ v \equiv GREATEST \ k. \ v \in graph \ A \ w \ k$

```
lemma rank-member:

assumes finite (nodes A) w \notin language A v \in gunodes A w

shows v \in graph A w (rank A w v)

unfolding rank-def

proof (rule GreatestI-nat)

show v \in graph A w 0 using assms(3) by simp

show k \leq 2 * card (nodes A) if v \in graph A w k for k

using graph-le \ assms(1, 2) that by blast

qed

lemma rank-removed:

assumes finite (nodes A) w \notin language A

shows v \notin graph A w (Suc (rank A w v))

proof

assume v \in graph A w (Suc (rank A w v))
```

```
then have 2: Suc (rank A w v) < rank A w v
    unfolding rank-def using Greatest-le-nat graph-le assms by metis
   then show False by auto
 qed
 lemma rank-le:
   assumes finite (nodes A) w \notin language A
   assumes v \in gunodes A \ w \ u \in gusuccessors A \ w \ v
   shows rank A w u \leq rank A w v
 unfolding rank-def
 proof (rule Greatest-le-nat)
   have 1: u \in gureachable A \ w \ v \ using \ graph.reachable-successors \ assms(4) \ by
blast
   have 2: u \in gunodes A \ w \ using \ assms(3) \ 1 by auto
   show v \in graph A w (GREATEST k. u \in graph A w k)
   unfolding rank-def[symmetric]
   proof (rule graph-successors)
    show v \in gunodes A \ w \text{ using } assms(3) by this
    show u \in gusuccessors A \ w \ v \ using \ assms(4) by this
    show u \in graph A w (rank A w u) using rank-member assms(1, 2) 2 by this
   qed
   show k \leq 2 * card (nodes A) if v \in graph A w k for k
    using graph-le assms(1, 2) that by blast
 qed
 lemma language-ranking:
   assumes finite (nodes A) w \notin language A
   shows ranking A w (rank A w)
 unfolding ranking-def
 proof (intro conjI ballI allI impI)
   fix v
   assume 1: v \in gunodes A w
   have 2: v \in graph A w (rank A w v) using rank-member assms 1 by this
   show rank A w v \leq 2 * card (nodes A) using graph-le assms 2 by this
 next
   fix v u
   assume 1: v \in gunodes A \ w \ u \in gusuccessors A \ w \ v
   show rank A w u \leq rank A w v using rank-le assms 1 by this
 \mathbf{next}
   fix v
   assume 1: v \in gunodes A w gaccepting A v
   have 2: v \in graph A w (rank A w v) using rank-member asses 1(1) by this
   have 3: v \notin graph A w (Suc (rank A w v)) using rank-removed assess by this
   have 4: v \in prune A w (graph A w (rank A w v)) using 2 1(2) unfolding
prune-def by auto
   have 5: graph A w (Suc (rank A w v)) \neq prune A w (graph A w (rank A w v))
using 3 4 by blast
   show even (rank A w v) using 5 by auto
 next
   fix v r k
```

assume 1: $v \in gunodes A w gurun A w r v smap (rank A w) (gtrace r v) = sconst k$

have sset (gtrace r v) \subseteq gureachable A w v

using 1(2) by (metis graph.reachable.reflexive graph.reachable-trace)

then have 6: sset (gtrace r v) \subseteq gunodes A w using 1(1) by blast

have 60: rank A w 'sset (gtrace r v) $\subseteq \{k\}$

using 1(3) by (metis equalityD1 sset-sconst stream.set-map)

have 50: sset (gtrace r v) \subseteq graph A w k

using rank-member[OF assms] subsetD[OF 6] 60 unfolding image-subset-iff by auto

have 70: grun A w (graph A w k) r v using grun-subset 1(2) 50 by this have 7: sset (gtrace r v) \subseteq clean A w (graph A w k)

unfolding clean-def using 50 infinite-greachable-gtrace[OF 70] by auto

have 8: sset (gtrace r v) \cap graph A w (Suc k) = {} using rank-removed[OF assms] 60 by blast

have 9: sset (gtrace r v) \neq {} using stream.set-sel(1) by auto

have 10: graph A w (Suc k) \neq clean A w (graph A w k) using 7 8 9 by blast show odd k using 10 unfolding graph-Suc by auto

qed

3.5 Correctness Theorem

theorem language-ranking-iff: **assumes** finite (nodes A) **shows** $w \notin$ language $A \iff (\exists f. ranking A w f)$ **using** ranking-language language-ranking assms **by** blast

 \mathbf{end}

4 Complementation

```
theory Complementation
imports
Transition-Systems-and-Automata.Maps
Ranking
begin
```

4.1 Level Rankings and Complementation States

type-synonym 'state $lr = 'state \rightarrow nat$

 $\begin{array}{l} \textbf{definition } lr\text{-succ :: }('label, 'state) \ nba \Rightarrow 'label \Rightarrow 'state \ lr \Rightarrow 'state \ lr set \ \textbf{where} \\ lr\text{-succ } A \ a \ f \equiv \{g. \\ dom \ g = \bigcup \ (transition \ A \ a \ `dom \ f) \ \land \\ (\forall \ p \in dom \ f. \ \forall \ q \in transition \ A \ a \ p. \ the \ (g \ q) \leq the \ (f \ p)) \ \land \\ (\forall \ q \in dom \ g. \ accepting \ A \ q \longrightarrow even \ (the \ (g \ q))) \} \end{array}$

type-synonym 'state st = 'state set

definition st-succ :: ('label, 'state) $nba \Rightarrow$ 'label \Rightarrow 'state $lr \Rightarrow$ 'state $st \Rightarrow$ 'state st where

st-suce A a g $P \equiv \{q \in if P = \{\}\ then \ dom \ g \ else \bigcup \ (transition \ A \ a \ `P). \ even \ (the \ (g \ q))\}$

type-synonym 'state cs = 'state $lr \times$ 'state st

```
definition complement-succ :: ('label, 'state) nba \Rightarrow 'label \Rightarrow 'state cs \Rightarrow 'state
cs set where
   complement-suce A \ a \equiv \lambda \ (f, P). {(g, st-suce A \ a \ g \ P) \ |g, g \in lr-suce A \ a \ f}
 definition complement :: ('label, 'state) nba \Rightarrow ('label, 'state cs) nba where
   complement A \equiv nba
     (alphabet A)
     (\{const (Some (2 * card (nodes A))) | `initial A\} \times \{\{\}\})
     (complement-succ A)
     (\lambda (f, P). P = \{\})
 lemma dom-nodes:
   assumes fP \in nodes (complement A)
   shows dom (fst fP) \subseteq nodes A
    using assms unfolding complement-def complement-succ-def lr-succ-def by
(induct) (auto, blast)
  lemma ran-nodes:
   assumes fP \in nodes (complement A)
   shows ran (fst fP) \subseteq \{0 ... 2 * card (nodes A)\}
  using assms
 proof induct
   case (initial fP)
   show ?case
    using initial unfolding complement-def by (auto) (metis eq-refl option.inject
ran-restrictD)
 \mathbf{next}
   case (execute fP agQ)
   obtain f P where 1: fP = (f, P) by force
   have 2: ran f \subseteq \{0 ... 2 * card (nodes A)\} using execute(2) unfolding 1 by
auto
   obtain a g Q where 3: agQ = (a, (g, Q)) using prod-cases3 by this
   have 4: p \in dom f \Longrightarrow q \in transition A \ a \ p \Longrightarrow the (q \ q) \leq the (f \ p) for p \ q
     using execute(3)
     unfolding 1 3 complement-def nba.simps complement-succ-def lr-succ-def
     by simp
   have 8: dom g = \bigcup ((transition \ A \ a) \ (dom \ f))
     using execute(3)
     unfolding 1 3 complement-def nba.simps complement-succ-def lr-succ-def
     by simp
   show ?case
   unfolding 1 3 ran-def
   proof safe
```

fix q k**assume** 5: fst (snd (a, (g, Q))) q = Some khave $6: q \in dom \ g$ using 5 by auto obtain p where 7: $p \in dom f q \in transition A a p$ using 6 unfolding 8 by autohave k = the (g q) using 5 by *auto* also have $\ldots \leq the (f p)$ using 4 7 by this also have $\ldots \leq 2 * card (nodes A)$ using 2 7(1) by (simp add: domD ranI subset-eq) finally show $k \in \{0 ... 2 * card (nodes A)\}$ by auto qed qed lemma states-nodes: assumes $fP \in nodes \ (complement \ A)$ **shows** snd $fP \subset nodes A$ using assms **proof** induct case (*initial* fP) show ?case using initial unfolding complement-def by auto next **case** (execute fP a g Q) **obtain** f P where 1: fP = (f, P) by force have 2: $P \subseteq nodes A$ using execute(2) unfolding 1 by auto obtain a g Q where 3: agQ = (a, (g, Q)) using prod-cases3 by this have 11: $a \in alphabet A$ using execute(3) unfolding 3 complement-def by autohave $10: (q, Q) \in nodes$ (complement A) using execute(1, 3) unfolding 1.3 by auto have 4: dom $g \subseteq$ nodes A using dom-nodes[OF 10] by simp have 5: \bigcup (transition A a 'P) \subseteq nodes A using 2 11 by auto have $6: Q \subseteq nodes A$ using execute(3)unfolding 1 3 complement-def nba.simps complement-succ-def st-succ-def using 45**by** (*auto split: if-splits*) show ?case using 6 unfolding 3 by auto \mathbf{qed} **theorem** complement-finite: **assumes** finite (nodes A) **shows** finite (nodes (complement A)) proof – let $?lrs = \{f. dom f \subseteq nodes A \land ran f \subseteq \{0 ... 2 * card (nodes A)\}\}$ have 1: finite ?lrs using finite-set-of-finite-maps' assms by auto let ?states = Pow (nodes A)have 2: finite ?states using assms by simp have nodes (complement A) \subseteq ?lrs \times ?states by (force dest: dom-nodes ran-nodes states-nodes) also have *finite* ... using 1 2 by *simp*

qed **lemma** complement-trace-snth: assumes run (complement A) ($w \parallel r$) p defines $m \equiv p \# \# trace (w \parallel r) p$ obtains $fst (m \parallel Suc k) \in lr$ -succ $A (w \parallel k) (fst (m \parallel k))$ $snd (m \parallel Suc k) = st$ -succ $A (w \parallel k) (fst (m \parallel Suc k)) (snd (m \parallel k))$ proof have 1: $r \parallel k \in transition (complement A) (w \parallel k) (m \parallel k)$ using nba.run-snth assms by force show fst $(m \parallel Suc \ k) \in lr$ -succ A $(w \parallel k)$ (fst $(m \parallel k))$ using assms(2) 1 unfolding complement-def complement-succ-def nba.trace-alt-def by *auto* **show** snd $(m \parallel Suc k) = st$ -suce $A(w \parallel k)$ (fst $(m \parallel Suc k)$) (snd $(m \parallel k)$) using assms(2) 1 unfolding complement-def complement-succ-def nba.trace-alt-defby auto qed

4.2 Word in Complement Language Implies Ranking

finally show ?thesis by this

```
lemma complement-ranking:
   assumes w \in language (complement A)
   obtains f
   where ranking A w f
 proof -
   obtain r p where 1:
     run (complement A) (w \parallel r) p
     p \in initial (complement A)
     infs (accepting (complement A)) (p \# \# r)
     using assms by rule
   let ?m = p \# \# r
   obtain 100:
     fst (?m \parallel Suc k) \in lr\text{-succ } A (w \parallel k) (fst (?m \parallel k))
     snd (?m \parallel Suc k) = st-succ A (w \parallel k) (fst (?m \parallel Suc k)) (snd (?m \parallel k))
   for k using complement-trace-snth 1(1) unfolding nba.trace-alt-def szip-smap-snd
by metis
   define f where f \equiv \lambda (k, q). the (fst (?m !! k) q)
   define P where P \ k \equiv snd (?m !! k) for k
   have 2: snd v \in dom (fst (?m !! fst v)) if v \in gunodes A w for v
   using that
   proof induct
     case (initial v)
     then show ?case using 1(2) unfolding complement-def by auto
   \mathbf{next}
     case (execute v u)
     have snd u \in \bigcup (transition A (w !! fst v) ' dom (fst (?m !! fst v)))
       using execute(2, 3) by auto
```

```
also have \ldots = dom (fst (?m !! Suc (fst v)))
      using 100 unfolding lr-succ-def by simp
     also have Suc (fst v) = fst u using execute(3) by auto
     finally show ?case by this
   ged
   have 3: f u \leq f v if 10: v \in gunodes A w and 11: u \in gusuccessors A w v for
u v
   proof -
     have 15: snd u \in transition A (w !! fst v) (snd v) using 11 by auto
     have 16: snd v \in dom (fst (?m !! fst v)) using 2 10 by this
     have f u = the (fst (?m !! fst u) (snd u)) unfolding f-def by (simp add:
case-prod-beta)
    also have fst \ u = Suc \ (fst \ v) using 11 by auto
     also have the (fst (?m !! ...) (snd u)) \leq the (fst (?m !! fst v) (snd v))
      using 100 15 16 unfolding lr-succ-def by auto
    also have \ldots = f v unfolding f-def by (simp add: case-prod-beta)
     finally show f u \leq f v by this
   qed
   have 4: \exists l \geq k. P l = \{\} for k
   proof –
    have 15: infs (\lambda (k, P). P = \{\}) ?m using 1(3) unfolding complement-def
by auto
     obtain l where 17: l \ge k snd (?m !! l) = \{\} using 15 unfolding infs-snth
by force
     have 19: P \ l = \{\} unfolding P-def using 17 by auto
     show ?thesis using 19 17(1) by auto
   qed
   show ?thesis
   proof (rule that, unfold ranking-def, intro conjI ballI impI allI)
    fix v
     assume v \in gunodes A w
     then show f v \leq 2 * card (nodes A)
     proof induct
      case (initial v)
      then show ?case using 1(2) unfolding complement-def f-def by auto
     \mathbf{next}
      case (execute v u)
      have f u \leq f v using \Im[OF execute(1)] execute(3) by simp
      also have \ldots \leq 2 * card (nodes A) using execute(2) by this
      finally show ?case by this
     qed
   \mathbf{next}
    fix v u
    assume 10: v \in gunodes A w
    assume 11: u \in gusuccessors A \ w \ v
    show f u \leq f v using 3 10 11 by this
   \mathbf{next}
     fix v
    assume 10: v \in gunodes A w
```

```
assume 11: gaccepting A v
     show even (f v)
     using 10
     proof cases
      case (initial)
      then show ?thesis using 1(2) unfolding complement-def f-def by auto
     next
      case (execute u)
      have 12: snd v \in dom (fst (?m !! fst v)) using execute graph.nodes.execute
2 by blast
     have 12: snd v \in dom (fst (?m !! Suc (fst u))) using 12 execute(2) by auto
      have 13: accepting A (snd v) using 11 by auto
       have f v = the (fst (?m !! fst v) (snd v)) unfolding f-def by (simp add:
case-prod-beta)
      also have fst v = Suc (fst u) using execute(2) by auto
      also have even (the (fst (?m \parallel Suc (fst u)) (snd v)))
        using 100 12 13 unfolding lr-succ-def by simp
      finally show ?thesis by this
     qed
   \mathbf{next}
     fix v \ s \ k
    assume 10: v \in gunodes A w
     assume 11: gurun A w s v
     assume 12: smap f (gtrace s v) = sconst k
     show odd k
     proof
      assume 13: even k
      obtain t u where 14: u \in ginitial A gupath A w t u v = gtarget t u using
10 by auto
      obtain l where 15: l \ge length \ t \ P \ l = \{\} using 4 by auto
      have 30: gurun A w (t @-s) u using 11 14 by auto
      have 21: fst (gtarget (stake (Suc l) (t @-s)) u) = Suc l for l
      unfolding sscan-snth[symmetric] using 30 14(1) by (auto elim!: grun-elim)
      have 17: snd (gtarget (stake (Suc l + i) (t @- s)) u) \in P (Suc l + i) for i
      proof (induct i)
        case (\theta)
        have 20: gtarget (stake (Suc l) (t @-s)) u \in gunodes A w
        using 14 11 by (force simp add: 15(1) le-SucI graph.run-stake stake-shift)
        have snd (gtarget (stake (Suc l) (t @- s)) u) \in
          dom (fst (?m !! fst (gtarget (stake (Suc l) (t @ - s)) u)))
          using 2[OF \ 20] by this
        also have fst (gtarget (stake (Suc l) (t @-s)) u) = Suc l using 21 by
this
       finally have 22: snd (gtarget (stake (Suc l) (t @-s)) u) \in dom (fst (?m
!! Suc l)) by this
       have gtarget (stake (Suc l) (t @-s)) u = gtrace (t @-s) u \parallel l unfolding
sscan-snth by rule
        also have \ldots = q trace \ s \ v \parallel (l - length \ t) using 15(1) by simp
        also have f \ldots = smap f (gtrace s v) !! (l - length t) by simp
```

also have smap f (gtrace s v) = sconst k unfolding 12 by rule **also have** sconst $k \parallel (l - length t) = k$ by simp finally have 23: even (f (gtarget (stake (Suc l) (t @-s)) u)) using 13 by simp have snd (gtarget (stake (Suc l) (t @- s)) u) \in $\{p \in dom \ (fst \ (?m \parallel Suc \ l)). even \ (f \ (Suc \ l, \ p))\}$ using 21 22 23 by (metis (mono-tags, lifting) mem-Collect-eq prod.collapse) also have $\ldots = st$ -suce $A(w \parallel l)$ (fst (?m \parallel Suc l)) (P l) unfolding 15(2) st-succ-def f-def by simp also have $\ldots = P$ (Suc l) using 100(2) unfolding P-def by rule finally show ?case by auto \mathbf{next} case (Suc i) have 20: $P(Suc \ l + i) \neq \{\}$ using Suc by auto have 21: fst (gtarget (stake (Suc l + Suc i) (t @-s)) u) = Suc l + Suc iusing 21 by (simp add: stake-shift) have garget (stake (Suc l + Suc i) (t @ - s)) u = qtrace (t @ - s) u !! (l)+ Suc i) **unfolding** sscan-snth **by** simp also have $\ldots \in gusuccessors A \ w \ (gtarget \ (stake \ (Suc \ (l + i)) \ (t \ @-s)))$ u)using graph.run-snth[OF 30, of l + Suc i] by simp finally have 220: snd (gtarget (stake (Suc (Suc l + i)) (t @- s)) u) \in transition A (w !! (Suc l + i)) (snd (gtarget (stake (Suc (l + i))) (t @s)) u))using 21 by auto have 22: snd (gtarget (stake (Suc l + Suc i) (t @ - s)) u) \in [] (transition A (w !! (Suc l + i)) 'P (Suc l + i)) using 220 Suc by autohave gtarget (stake (Suc l + Suc i) (t @-s)) u = gtrace (t @-s) u !! (l+ Suc i) **unfolding** sscan-snth **by** simp also have $\ldots = gtrace \ s \ v \parallel (l + Suc \ i - length \ t)$ using 15(1)by (metis add.commute shift-snth-ge sscan-const trans-le-add2) also have $f \ldots = smap f$ (gtrace s v) !! (l + Suc i - length t) by simp also have smap f (gtrace s v) = sconst k unfolding 12 by rule also have sconst $k \parallel (l + Suc \ i - length \ t) = k$ by simp finally have 23: even (f (gtarget (stake (Suc l + Suc i) (t @-s)) u)) using 13 by auto have snd (gtarget (stake (Suc l + Suc i) (t @ - s)) u) \in $\{p \in \bigcup (transition \ A \ (w \parallel (Suc \ l + i)) \ 'P \ (Suc \ l + i)). \ even \ (f \ (Suc \ l + i)).$ $(Suc \ l + i), \ p))\}$ using 21 22 23 by (metis (mono-tags) add-Suc-right mem-Collect-eq prod.collapse) also have $\ldots = st$ -suce $A(w \parallel (Suc \ l + i))$ (fst $(?m \parallel Suc \ (Suc \ l + i)))$ $(P (Suc \ l + i))$ unfolding st-succ-def f-def using 20 by simp also have $\ldots = P$ (Suc (Suc l + i)) unfolding 100(2)[folded P-def] by rule

```
also have \ldots = P (Suc l + Suc i) by simp
finally show ?case by this
qed
obtain l' where 16: l' \ge Suc \ l \ P \ l' = \{\} using 4 by auto
show False using 16 17 using nat-le-iff-add by auto
qed
qed
```

4.3 Ranking Implies Word in Complement Language

definition reach where

reach $A \ w \ i \equiv \{ target \ r \ p \ | r \ p. \ path \ A \ r \ p \land p \in initial \ A \land map \ fst \ r = stake \ i \ w \}$ lemma reach-0[simp]: reach $A \ w \ 0 = initial \ A \ unfolding \ reach-def \ by \ auto \ lemma \ reach-Suc-empty:$

assumes $w \parallel n \notin alphabet A$ shows reach $A \ w \ (Suc \ n) = \{\}$ **proof** safe fix qassume 1: $q \in reach A w$ (Suc n) **obtain** r p where 2: q = target r p path $A r p p \in initial A$ map for r = stake $(Suc \ n) \ w$ using 1 unfolding reach-def by blast have 3: path A (take n r @ drop n r) p using 2(2) by simp have 4: map fst $r = stake \ n \ w \ (0 \ || \ n)$ using 2(4) stake-Suc by auto have 5: map snd $r = take \ n \ (map \ snd \ r) \ @ [q] using 2(1, 4) 4$ by (metis One-nat-def Suc-inject Suc-neq-Zero Suc-pred append.right-neutral append-eq-conv-conj drop-map id-take-nth-drop last-ConsR last-conv-nth length-0-conv length-map length-stake lessI nba.target-alt-def nba.states-alt-def zero-less-Suc) have 6: drop $n r = [(w \parallel n, q)]$ using 45by (metis append-eq-conv-conj append-is-Nil-conv append-take-drop-id drop-map $length-greater-0-conv\ length-stake\ stake-cycle-le\ stake-invert-Nil$ take-map zip-Cons-Cons zip-map-fst-snd) show $q \in \{\}$ using assms 3 unfolding 6 by auto ged lemma reach-Suc-succ: assumes $w \parallel n \in alphabet A$ **shows** reach $A \ w \ (Suc \ n) = \bigcup (transition \ A \ (w \parallel n) \ (reach \ A \ w \ n))$ **proof** safe fix qassume 1: $q \in reach \land w$ (Suc n) **obtain** r p where 2: q = target r p path $A r p p \in initial A$ map for r = stake(Suc n) wusing 1 unfolding reach-def by blast have 3: path A (take n r @ drop n r) p using 2(2) by simp

have 4: map fst $r = stake \ n \ w \ @ [w !! n]$ using 2(4) stake-Suc by auto

have 5: map snd $r = take \ n \ (map \ snd \ r) \ @ [q] using \ 2(1, 4) \ 4$ by (metis One-nat-def Suc-inject Suc-neq-Zero Suc-pred append.right-neutral append-eq-conv-conj drop-map id-take-nth-drop last-ConsR last-conv-nth length-0-conv length-map length-stake lessI nba.target-alt-def nba.states-alt-def zero-less-Suc) have 6: drop $n r = [(w \parallel n, q)]$ using 45by (metis append-eq-conv-conj append-is-Nil-conv append-take-drop-id drop-map length-greater-0-conv length-stake stake-cycle-le stake-invert-Nil take-map zip-Cons-Cons zip-map-fst-snd) **show** $q \in \bigcup ((transition A (w !! n) ' (reach A w n)))$ unfolding reach-def **proof** (*intro UN-I CollectI exI conjI*) show target (take n r) p = target (take n r) p by rule show path A (take n r) p using 3 by blast show $p \in initial A$ using 2(3) by this show map fst (take n r) = stake n w using 2 by (metis length-stake lessI nat.distinct(1)stake-cycle-le stake-invert-Nil take-map take-stake) show $q \in transition A (w \parallel n) (target (take n r) p)$ using 3 unfolding 6 by auto qed \mathbf{next} fix p q**assume** 1: $p \in reach A w n q \in transition A (w !! n) p$ **obtain** r x where 2: $p = target r x path A r x x \in initial A map fst r = stake$ n wusing 1(1) unfolding reach-def by blast **show** $q \in reach A w (Suc n)$ unfolding reach-def **proof** (*intro* CollectI exI conjI) show q = target (r @ [(w !! n, q)]) x using 1 2 by auto show path A (r @ $[(w \parallel n, q)]$) x using assms 1(2) 2(1, 2) by auto show $x \in initial A$ using 2(3) by this show map fst (r @ [(w !! n, q)]) = stake (Suc n) w using 1 2 by (metis eq-fst-iff list.simps(8) list.simps(9) map-append stake-Suc) qed qed **lemma** reach-Suc[simp]: reach A w (Suc n) = (if w !! $n \in alphabet A$ then [] (transition A ($w \parallel n$) 'reach A w n) else $\{\}$) using reach-Suc-empty reach-Suc-succ by metis **lemma** reach-nodes: reach $A \ w \ i \subseteq nodes \ A \ by (induct \ i) (auto)$ **lemma** reach-gunodes: $\{i\} \times reach \land w i \subseteq gunodes \land w$ **by** (*induct i*) (*auto intro: graph.nodes.execute*) **lemma** ranking-complement: **assumes** finite (nodes A) $w \in$ streams (alphabet A) ranking A w f shows $w \in language$ (complement A) proof – **define** f' where $f' \equiv \lambda$ (k, p). if k = 0 then 2 * card (nodes A) else f(k, p)

have 0: ranking A w f' unfolding ranking-def **proof** (*intro conjI ballI impI allI*) **show** $\land v. v \in gunodes A w \Longrightarrow f' v \leq 2 * card (nodes A)$ using assms(3) unfolding ranking-def f'-def by auto show $\bigwedge v \ u. \ v \in gunodes \ A \ w \Longrightarrow u \in gusuccessors \ A \ w \ v \Longrightarrow f' \ u \leq f' \ v$ using assms(3) unfolding ranking-def f'-def by fastforce **show** $\bigwedge v. v \in gunodes A w \Longrightarrow gaccepting A v \Longrightarrow even (f' v)$ using assms(3) unfolding ranking-def f'-def by auto next have 1: $v \in gunodes A \ w \Longrightarrow gurun A \ w \ r \ v \Longrightarrow smap \ f \ (gtrace \ r \ v) = sconst$ $k \Longrightarrow odd k$ for $v \ r \ k \ using \ assms(3)$ unfolding ranking-def by mesonfix v r k**assume** 2: $v \in gunodes A w gurun A w r v smap f'(gtrace r v) = sconst k$ have 20: shd $r \in$ qureachable A w v using 2 by (auto) (metis graph.reachable.reflexive graph.reachable-trace gtrace-alt-def subsetD shd-sset) obtain 3: shd $r \in gunodes A w$ gurun A w (stl r) (shd r)smap f'(gtrace (stl r) (shd r)) = sconst kusing 2 20 by (metis (no-types, lifting) eq-id-iff graph.nodes-trans graph.run-scons-elim siterate.simps(2) sscan.simps(2) stream.collapse stream.map-sel(2)) have $4: k \neq 0$ if $(k, p) \in sset r$ for k pproof **obtain** ra ka pa where 1: r = fromN (Suc ka) ||| ra v = (ka, pa)using grun-elim $[OF \ 2(2)]$ by this have 2: $k \in sset$ (from N (Suc ka)) using 1(1) that **by** (*metis image-eqI prod.sel*(1) *szip-smap-fst stream.set-map*) show ?thesis using 2 by simp qed have 5: smap f'(gtrace(stl r)(shd r)) = smap f(gtrace(stl r)(shd r))**proof** (*rule stream.map-cong*) show gtrace (stl r) (shd r) = gtrace (stl r) (shd r) by rule \mathbf{next} fix zassume 1: $z \in sset (qtrace (stl r) (shd r))$ have 2: fst $z \neq 0$ using 4 1 by (metis gtrace-alt-def prod.collapse stl-sset) show f' z = f z using 2 unfolding f'-def by (auto simp: case-prod-beta) qed show odd k using 1 3 5 by simp qed **define** g where g i $p \equiv if p \in reach A w i$ then Some (f'(i, p)) else None for i phave g-dom[simp]: dom (g i) = reach A w i for i**unfolding** g-def by (auto) (metis option.simps(3))

have g-0[simp]: $g \ 0 = const \ (Some \ (2 * card \ (nodes \ A))) \ |$ 'initial A

unfolding g-def f'-def by auto have g-Suc[simp]: g (Suc n) \in lr-succ A (w !! n) (g n) for n unfolding *lr-succ-def* **proof** (*intro* CollectI conjI ballI impI) show dom $(q (Suc n)) = \bigcup (transition A (w !! n) ' dom (q n))$ using snth-in assms(2) by auto \mathbf{next} fix p q**assume** 100: $p \in dom (g n) q \in transition A (w !! n) p$ have 101: $q \in reach \ A \ w \ (Suc \ n)$ using $snth-in \ assms(2) \ 100$ by autohave $102: (n, p) \in gunodes A \ w using 100(1) reach-gunodes g-dom by blast$ have 103: (Suc n, q) \in guardeessors A w (n, p) using snth-in assms(2) 102 100(2) by *auto* have $104: p \in reach A w n$ using 100(1) by simp have g (Suc n) q = Some (f' (Suc n, q)) using 101 unfolding g-def by simp also have the $\ldots = f'(Suc \ n, \ q)$ by simp also have $\ldots \leq f'(n, p)$ using θ unfolding ranking-def using 102 103 by simp also have $\ldots = the (Some (f'(n, p)))$ by simp also have Some (f'(n, p)) = g n p using 104 unfolding g-def by simp finally show the $(g (Suc n) q) \leq the (g n p)$ by this \mathbf{next} fix p**assume** 100: $p \in dom (g (Suc n))$ accepting A p have 101: $p \in reach A w$ (Suc n) using 100(1) by simp have 102: (Suc n, p) \in gunodes A w using 101 reach-gunodes by blast have 103: gaccepting A (Suc n, p) using 100(2) by simp have the (g (Suc n) p) = f' (Suc n, p) using 101 unfolding g-def by simp also have even ... using 0 unfolding ranking-def using 102 103 by auto finally show even (the (g (Suc n) p)) by this qed define P where $P \equiv rec\text{-}nat \{\} (\lambda \ n. \ st\text{-}succ \ A \ (w \parallel n) \ (g \ (Suc \ n)))$ have $P \cdot \theta[simp]$: $P \ \theta = \{\}$ unfolding $P \cdot def$ by simp have P-Suc[simp]: P (Suc n) = st-succ A ($w \parallel n$) (q (Suc n)) (P n) for nunfolding *P*-def by simp have P-reach: $P \ n \subseteq reach \ A \ w \ n$ for nusing snth-in assms(2) by (induct n) (auto simp add: st-succ-def) have $P \ n \subseteq reach \ A \ w \ n$ for $n \ using \ P$ -reach by auto also have \ldots $n \subseteq$ nodes A for n using reach-nodes by this also have finite (nodes A) using assms(1) by this finally have *P*-finite: finite (P n) for n by this **define** s where $s \equiv smap \ g \ nats \parallel smap \ P \ nats$ show ?thesis proof **show** run (complement A) $(w \parallel stl s)$ (shd s)

28

proof (*intro nba.snth-run conjI*, *simp-all del: stake.simps stake-szip*) fix kshow $w \parallel k \in alphabet$ (complement A) using snth-in assms(2) unfolding complement-def by auto have stl s !! k = s !! Suc k by simp also have $\ldots \in complement$ -suce $A(w \parallel k)(s \parallel k)$ unfolding complement-succ-def s-def using P-Suc by simp also have $\ldots = complement-succ \ A \ (w \parallel k) \ (target \ (stake \ k \ (w \parallel stl \ s)))$ $(shd \ s))$ unfolding sscan-scons-snth[symmetric] nba.trace-alt-def by simp also have $\ldots = transition (complement A) (w !! k) (target (stake k (w ||)))$ stl s) (shd s)) unfolding complement-def nba.sel by rule finally show stl s $!! k \in$ transition (complement A) $(w \parallel k)$ (target (stake k $(w \parallel stl s))$ (shd s)) by this qed show shd $s \in initial$ (complement A) unfolding complement-def s-def using $P-\theta$ by simp **show** infs (accepting (complement A)) (shd s ## stl s) proof have $10: \forall n. \exists k \ge n. P k = \{\}$ **proof** (rule ccontr) assume $20: \neg (\forall n. \exists k \ge n. P k = \{\})$ obtain k where 22: $P(k + n) \neq \{\}$ for n using 20 using le-add1 by blastdefine m where m $n S \equiv \{p \in \bigcup (transition A (w !! n) `S). even (the$ (q (Suc n) p)) for n Sdefine R where R i n S \equiv rec-nat S (λ i. m (n + i)) i for i n S have $R-\theta[simp]$: $R \ \theta \ n = id$ for n unfolding R-def by auto have R-Suc[simp]: R (Suc i) n = m (n + i) $\circ R$ i n for i n unfolding *R*-def by auto have R-Suc': R (Suc i) n = R i (Suc n) $\circ m$ n for i n unfolding R-Suc **by** (*induct i*) (*auto*) have *R*-reach: *R* i $n S \subseteq$ reach *A* w (n + i) if $S \subseteq$ reach *A* w n for i n Susing snth-in assms(2) that m-def by (induct i) (auto) have P-R: P(k + i) = R i k (P k) for iusing 22 by (induct i) (auto simp add: case-prod-beta' m-def st-succ-def) have 50: $R \ i \ n \ S = (\bigcup \ p \in S. \ R \ i \ n \ \{p\})$ for $i \ n \ S$ **by** (*induct i*) (*auto simp add: m-def prod.case-eq-if*) have 51: $R(i + j) n S = \{\}$ if $R i n S = \{\}$ for i j n Susing that by (induct j) (auto simp add: m-def prod.case-eq-if) have 52: $R j n S = \{\}$ if $i \le j R i n S = \{\}$ for i j n Susing 51 by (metis le-add-diff-inverse that (1) that (2)) have $1: \exists p \in S. \forall i. R i n \{p\} \neq \{\}$ if assms: finite $S \land i$. $R i n S \neq \{\}$ for n S

proof (*rule ccontr*)

assume $1: \neg (\exists p \in S. \forall i. R i n \{p\} \neq \{\})$ **obtain** f where $3: \bigwedge p. p \in S \Longrightarrow R$ (f p) $n \{p\} = \{\}$ using 1 by metis have 4: R (Sup $(f \cdot S)$) $n \{p\} = \{\}$ if $p \in S$ for p**proof** (rule 52) show $f p \leq Sup (f \cdot S)$ using assms(1) that by (auto intro: le-cSup-finite) show $R(f p) n \{p\} = \{\}$ using 3 that by this ged have R (Sup (f 'S)) $n S = (\bigcup p \in S. R (Sup (f 'S)) n \{p\})$ using 50 by this also have $\ldots = \{\}$ using 4 by simp finally have 5: R (Sup $(f \, S)$) $n S = \{\}$ by this show False using that(2) 5 by auto qed have $2: \bigwedge i. R i (k + 0) (P k) \neq \{\}$ using 22 P-R by simp obtain p where 3: $p \in P k \land i$. R i k $\{p\} \neq \{\}$ using 1[OF P-finite 2] by auto define Q where Q $n p \equiv (\forall i. R i (k + n) \{p\} \neq \{\}) \land p \in P (k + n)$ for n phave 5: $\exists q \in transition A (w \parallel (k + n)) p. Q (Suc n) q$ if Q n p for n pproof have 11: $p \in P(k+n) \land i$. R i $(k+n) \{p\} \neq \{\}$ using that unfolding Q-def by auto have 12: R (Suc i) (k + n) {p} \neq {} for i using 11(2) by this have 13: $R i (k + Suc n) (m (k + n) \{p\}) \neq \{\}$ for i using 12 unfolding R-Suc' by simp have $\{p\} \subseteq P$ (k + n) using 11(1) by *auto* also have $\ldots \subseteq reach A w (k + n)$ using *P*-reach by this finally have $R \ 1 \ (k+n) \ \{p\} \subseteq reach \ A \ w \ (k+n+1)$ using *R*-reach by blast also have $\ldots \subseteq$ nodes A using reach-nodes by this also have finite (nodes A) using assms(1) by this finally have 14: finite $(m (k + n) \{p\})$ by simp obtain q where 14: $q \in m$ (k + n) $\{p\} \land i. R i (k + Suc n) \{q\} \neq \{\}$ using 1[OF 14 13] by auto show ?thesis **unfolding** *Q*-def prod.case **proof** (*intro bexI conjI allI*) show $\bigwedge i$. R i $(k + Suc n) \{q\} \neq \{\}$ using 14(2) by this show $q \in P$ (k + Suc n)using 14(1) 11(1) 22 unfolding *m*-def by (auto simp add: st-succ-def) show $q \in transition A (w !! (k + n)) p$ using 14(1) unfolding m-def by simp \mathbf{qed} qed obtain r where 23: $run \land r p \land i. Q i ((p \# \# trace r p) !! i) \land i. fst (r !! i) = w !! (k + i)$ **proof** (rule nba.invariant-run-index of Q 0 p A λ n p a. fst $a = w \parallel (k + 1)^{-1}$

n)])

show $Q \ \theta \ p$ unfolding Q-def using 3 by auto **show** \exists a. (fst $a \in alphabet A \land snd a \in transition A (fst a) p) \land$ Q (Suc n) (snd a) \wedge fst $a = w \parallel (k + n)$ if Q n p for n pusing snth-in assms(2) 5 that by fastforce ged auto have 20: smap fst $r = sdrop \ k \ w$ using 23(3) by (intro eqI-snth) (simp add: case-prod-beta) have 21: $(p \#\# smap \ snd \ r) \parallel i \in P \ (k+i)$ for i using 23(2) unfolding *Q*-def unfolding *nba*.trace-alt-def by simp **obtain** r where 23: run A (sdrop k w ||| stl r) (shd r) \land i. r !! $i \in P$ (k +iusing 20 21 23(1) by (metis stream.sel(1) stream.sel(2) szip-smap) let ?v = (k, shd r)let ?r = fromN (Suc k) ||| stl r have shd $r = r \parallel 0$ by simp also have $\ldots \in P k$ using $23(2)[of \ 0]$ by simp also have $\ldots \subseteq reach \ A \ w \ k using \ P$ -reach by this finally have 24: $v \in gunodes A \ w using reach-gunodes by blast$ have 25: gurun A w ?r ?v using run-grun 23(1) by this **obtain** l where 26: Ball (seet (smap f' (gtrace (sdrop l?r) (gtarget (stake l ?r) ?v))) oddusing ranking-stuck-odd 0 24 25 by this have 27: f'(Suc (k + l), r !! Suc l) =shd (smap $f'(gtrace (sdrop \ l \ ?r) (gtarget (stake \ l \ ?r) \ ?v)))$ by (simp add: algebra-simps) also have $\ldots \in sset \ (smap \ f' \ (gtrace \ (sdrop \ l \ ?r) \ (gtarget \ (stake \ l \ ?r)$?v))) using shd-sset by this finally have 28: odd $(f'(Suc(k+l), r \parallel Sucl))$ using 26 by auto have $r \parallel Suc \ l \in P$ (Suc (k + l)) using 23(2) by (metis add-Suc-right) also have $\ldots = \{p \in \bigcup (transition \ A \ (w \parallel (k+l)) \ ' P \ (k+l))\}$ even (the (g (Suc (k + l)) p))} using 23(2) by (auto simp: st-succ-def) also have $\ldots \subseteq \{p. even (the (g (Suc (k + l)) p))\}$ by auto finally have 29: even (the (g (Suc (k + l)) (r !! Suc l))) by auto have $30: r \parallel Suc \ l \in reach \ A \ w \ (Suc \ (k+l))$ using 23(2) P-reach by (metis add-Suc-right subsetCE) have 31: even $(f'(Suc(k+l), r \parallel Sucl))$ using 29 30 unfolding q-def by simp show False using 28 31 by simp \mathbf{qed} have 11: infs (λ k. P k = {}) nats using 10 unfolding infs-snth by simp have infs (λ S. S = {}) (smap snd (smap g nats ||| smap P nats)) using 11 by (simp add: comp-def) then have infs (λx . snd $x = \{\}$) (smap g nats ||| smap P nats) **by** (*simp add: comp-def del: szip-smap-snd*) then have infs (λ (f, P). P = {}) (smap g nats ||| smap P nats) **by** (*simp add: case-prod-beta'*) then have infs (λ (f, P). P = {}) (stl (smap g nats ||| smap P nats)) by blast

then have infs (λ (f, P). P = {}) (smap snd (w ||| stl (smap g nats ||| smap P nats))) by simp then have infs (λ (f, P). P = {}) (stl s) unfolding s-def by simp then show ?thesis unfolding complement-def by auto qed qed qed

4.4 Correctness Theorem

theorem complement-language: assumes finite (nodes A) shows language (complement A) = streams (alphabet A) - language A proof (safe del: notI) have 1: alphabet (complement A) = alphabet A unfolding complement-def nba.sel by rule show $w \in$ streams (alphabet A) if $w \in$ language (complement A) for w using nba.language-alphabet that 1 by force show $w \notin$ language A if $w \in$ language (complement A) for w using complement-ranking ranking-language that by metis show $w \in$ language (complement A) if $w \in$ streams (alphabet A) $w \notin$ language A for w using language-ranking ranking-complement assms that by blast qed

 \mathbf{end}

5 Complementation Implementation

```
theory Complementation-Implement
imports
Transition-Systems-and-Automata.NBA-Implement
Complementation
begin
```

unbundle *lattice-syntax*

type-synonym $item = nat \times bool$ **type-synonym** 'state $items = 'state \rightarrow item$

type-synonym $state = (nat \times item)$ list **abbreviation** $item\text{-}rel \equiv nat\text{-}rel \times_r$ bool-rel **abbreviation** $state\text{-}rel \equiv \langle nat\text{-}rel, item\text{-}rel \rangle$ list-map-rel

abbreviation pred A a $q \equiv \{p. q \in transition A a p\}$

5.1 Phase 1

definition cs-lr :: 'state items \Rightarrow 'state lr where

cs-lr $f \equiv$ map-option fst \circ f definition cs-st :: 'state items \Rightarrow 'state st where cs- $st f \equiv f - 'Some 'snd - ' {True}$ **abbreviation** *cs-abs* :: *'state items* \Rightarrow *'state cs* **where** $cs\text{-}abs f \equiv (cs\text{-}lr f, cs\text{-}st f)$ definition cs-rep :: 'state $cs \Rightarrow$ 'state items where cs-rep $\equiv \lambda$ (g, P) p. map-option (λ k. (k, p \in P)) (g p) **lemma** cs-abs-rep[simp]: cs-rep (cs-abs f) = fproof show cs-rep (cs-abs f) x = f x for x **unfolding** cs-lr-def cs-st-def cs-rep-def by (cases f x) (force+) qed **lemma** cs-rep-lr[simp]: cs-lr (cs-rep (g, P)) = g proof show cs-lr (cs-rep (g, P)) x = g x for x **unfolding** cs-rep-def cs-lr-def by (cases g(x)) (auto) qed **lemma** cs-rep-st[simp]: cs-st (cs-rep (g, P)) = $P \cap dom g$ unfolding cs-rep-def cs-st-def by force **lemma** cs-lr-dom[simp]: dom (cs-lr f) = dom f **unfolding** cs-lr-def by simp**lemma** cs-lr-apply[simp]: assumes $p \in dom f$ **shows** the (cs-lr f p) = fst (the (f p))using assms unfolding cs-lr-def by auto **lemma** cs-rep-dom[simp]: dom (cs-rep (q, P)) = dom q unfolding cs-rep-def by auto**lemma** cs-rep-apply[simp]: assumes $p \in dom f$ shows fst (the (cs-rep (f, P) p)) = the (f p)using assms unfolding cs-rep-def by auto **abbreviation** cs-rel :: ('state items \times 'state cs) set where cs-rel $\equiv br cs$ -abs top lemma cs-rel-inv-single-valued: single-valued (cs-rel⁻¹) **by** (*auto intro*!: *inj-onI*) (*metis cs-abs-rep*) **definition** refresh-1 :: 'state items \Rightarrow 'state items where refresh-1 $f \equiv if True \in snd$ ' ran f then f else map-option (apsnd top) $\circ f$ definition ranks-1 :: ('label, 'state) $nba \Rightarrow$ 'label \Rightarrow 'state items \Rightarrow 'state items set where ranks-1 A a $f \equiv \{g.$ dom $g = \bigcup ((transition \ A \ a) \ (dom \ f)) \land$ $(\forall p \in dom f. \forall q \in transition A a p. fst (the (g q)) \leq fst (the (f p))) \land$ $(\forall q \in dom g. accepting A q \longrightarrow even (fst (the (g q)))) \land$ cs-st $g = \{q \in \bigcup ((transition A a) `(cs$ -st $f)). even (fst (the <math>(g q)))\}\}$

definition complement-succ-1 :: ('label, 'state) nba ⇒ 'label ⇒ 'state items ⇒ 'state items set where complement-succ-1 A a = ranks-1 A a ∘ refresh-1 definition complement-1 :: ('label, 'state) nba ⇒ ('label, 'state items) nba where complement-1 A ≡ nba (alphabet A) ({ const (Some (2 * card (nodes A), False)) | ' initial A}) (complement-succ-1 A) (λ f. cs-st f = {}) lemma refresh-1-dom[simp]: dom (refresh-1 f) = dom f unfolding refresh-1-def by simp lemma refresh 1 apply[simp]: fat (the (refresh 1 f p)) = fat (the (f p))

lemma refresh-1-apply[simp]: fst (the (refresh-1 f p)) = fst (the (f p)) unfolding refresh-1-def by (cases f p) (auto)

lemma refresh-1-cs-st[simp]: cs-st (refresh-1 f) = (if cs-st f = {} then dom f else cs-st f)

unfolding refresh-1-def cs-st-def ran-def image-def vimage-def by auto

lemma complement-succ-1-abs: assumes $g \in complement$ -succ-1 A a f shows cs-abs $g \in complement$ -suce A a (cs-abs f) unfolding complement-succ-def **proof** (*simp*, *rule*) have 1: dom $g = \bigcup ((transition \ A \ a) \ (dom \ f))$ $\forall p \in dom f. \forall q \in transition A a p. fst (the (g q)) \leq fst (the (f p))$ $\forall p \in dom \ g. \ accepting \ A \ p \longrightarrow even \ (fst \ (the \ (g \ p)))$ using assms unfolding complement-succ-1-def ranks-1-def by simp-all show cs-lr $g \in lr$ -succ A a (cs-lr f) unfolding *lr-succ-def* **proof** (*intro* CollectI conjI ballI impI) show dom $(cs-lr g) = \bigcup (transition A a ' dom (cs-lr f))$ using 1 by simp \mathbf{next} fix p q**assume** 2: $p \in dom (cs-lr f) q \in transition A a p$ have $3: q \in dom (cs-lr q)$ using 1 2 by auto show the $(cs-lr \ g \ q) \leq the \ (cs-lr \ f \ p)$ using 1 2 3 by simp \mathbf{next} fix passume 2: $p \in dom (cs-lr g)$ accepting A p show even (the (cs-lr g p)) using 1 2 by auto qed have 2: cs-st $g = \{q \in \bigcup (transition A a `cs-st (refresh-1 f)). even (fst (the$ $(g \ q)))\}$ using assms unfolding complement-succ-1-def ranks-1-def by simp **show** cs-st g = st-succ A a (cs-lr g) (cs-st f) **proof** (cases cs-st $f = \{\}$) case True have 3: the (cs-lr g q) = fst (the (g q)) if $q \in \bigcup ((transition A a) (dom f))$

for qusing that 1(1) by simp show ?thesis using 2 3 unfolding st-succ-def refresh-1-cs-st True cs-lr-dom 1(1) by force \mathbf{next} case False have 3: the (cs-lr g q) = fst (the (g q)) if $q \in \bigcup ((transition A a) (cs-st f))$ for qusing that 1(1) by (auto intro!: cs-lr-apply) (metis IntE UN-iff cs-abs-rep cs-lr-dom cs-rep-st domD prod.collapse) have cs-st $g = \{q \in \bigcup (transition A \ a \ cs-st \ (refresh-1 \ f)). even (fst \ (the \ (g$ $q)))\}$ using 2 by this also have cs-st (refresh-1 f) = cs-st f using False by simp also have $\{q \in [] ((transition A a) (cs-st f)). even (fst (the (q q)))\} =$ $\{q \in \bigcup ((transition A a) (cs-st f)). even (the (cs-lr g q))\}$ using 3 by metis also have $\ldots = st$ -succ A a (cs-lr g) (cs-st f) unfolding st-succ-def using False by simp finally show ?thesis by this qed qed **lemma** *complement-succ-1-rep*: assumes $P \subseteq dom f (g, Q) \in complement-succ A a (f, P)$ shows cs-rep $(g, Q) \in complement$ -succ-1 A a (cs-rep (f, P)) **unfolding** complement-succ-1-def ranks-1-def comp-apply **proof** (*intro* CollectI conjI ballI impI) have 1: dom $g = \bigcup ((transition \ A \ a) \ (dom \ f))$ $\forall p \in dom f. \forall q \in transition A a p. the (g q) \leq the (f p)$ $\forall p \in dom \ g. \ accepting \ A \ p \longrightarrow even \ (the \ (g \ p))$ using assms(2) unfolding complement-succ-def lr-succ-def by simp-all have 2: $Q = \{q \in if P = \}$ then dom g else $\bigcup ((transition A a) ' P)$. even (the (g q))using assms(2) unfolding complement-succ-def st-succ-def by simp have 3: $Q \subseteq dom \ g$ unfolding 2 1(1) using assms(1) by auto **show** dom (cs-rep (g, Q)) = \bigcup (transition A a ' dom (refresh-1 (cs-rep (f, G))) (P)))) using 1 by simp **show** $\land p q. p \in dom (refresh-1 (cs-rep (f, P))) \Longrightarrow q \in transition A a p \Longrightarrow$ fst (the (cs-rep (g, Q) q)) \leq fst (the (refresh-1 (cs-rep (f, P)) p)) using 1(1, 2) by (auto) (metis UN-I cs-rep-apply domI option.sel) **show** $\bigwedge p. p \in dom (cs\text{-rep} (g, Q)) \Longrightarrow accepting A p \Longrightarrow even (fst (the (cs-rep$ (g, Q) p)))using 1(1, 3) by *auto* **show** cs-st (cs-rep (g, Q)) = { $q \in \bigcup$ (transition A a 'cs-st (refresh-1 (cs-rep (f, P)))).even (fst (the (cs-rep (g, Q) q))) **proof** (cases $P = \{\}$)

35

case True

have cs-st (cs-rep (g, Q)) = Q using 3 by auto also have $\ldots = \{q \in dom \ g. \ even \ (the \ (g \ q))\}$ unfolding 2 using True by autoalso have $\ldots = \{q \in dom \ g. \ even \ (fst \ (the \ (cs-rep \ (g, \ Q) \ q)))\}$ using cs-rep-apply by metis also have dom $g = \bigcup ((transition \ A \ a) \ (dom \ f))$ using 1(1) by this also have dom f = cs-st (refresh-1 (cs-rep (f, P))) using True by simp finally show ?thesis by this \mathbf{next} case False have 4: fst (the (cs-rep (q, Q) q)) = the (q, q) if $q \in \bigcup ((transition A a) P)$ for qusing 1(1) that assms(1) by (fast intro: cs-rep-apply) have cs-st (cs-rep (q, Q)) = Q using 3 by auto also have $\ldots = \{q \in \bigcup ((transition A a) ` P). even (the (g q))\}$ unfolding 2 using False by auto also have $\ldots = \{q \in \bigcup ((transition A a) ` P). even (fst (the (cs-rep (g, Q)))\}$ (q))) using 4 by force also have $P = (cs\text{-}st \ (refresh\text{-}1 \ (cs\text{-}rep \ (f, P))))$ using assms(1) False by autofinally show ?thesis by simp qed qed **lemma** complement-succ-1-refine: (complement-succ-1, complement-succ) \in $Id \rightarrow Id \rightarrow cs\text{-}rel \rightarrow \langle cs\text{-}rel \rangle \ set\text{-}rel$ **proof** (*clarsimp simp*: *br-set-rel-alt in-br-conv*) fix A :: ('a, 'b) nbafix a fshow complement-succ A a (cs-abs f) = cs-abs ' complement-succ-1 A a f **proof** safe fix g Qassume $1: (g, Q) \in complement-succ A \ a \ (cs-abs \ f)$ have $2: Q \subseteq dom g$ using 1 unfolding complement-succ-def lr-succ-def st-succ-def **by** (*auto*) (*metis IntE cs-abs-rep cs-lr-dom cs-rep-st*) have 3: cs-st $f \subseteq dom (cs-lr f)$ unfolding cs-st-def by auto **show** $(g, Q) \in cs\text{-}abs$ ' complement-succ-1 A a f proof show (g, Q) = cs-abs (cs-rep (g, Q)) using 2 by auto have cs-rep $(g, Q) \in complement$ -succ-1 A a (cs-rep (cs-abs f))using complement-succ-1-rep 3 1 by this also have cs-rep (cs-abs f) = f by simpfinally show cs-rep $(g, Q) \in complement$ -succ-1 A a f by this qed \mathbf{next} fix qassume 1: $g \in complement$ -succ-1 A a f

show cs-abs $g \in complement$ -succ A a (cs-abs f) using complement-succ-1-abs 1 by this qed qed **lemma** complement-1-refine: (complement-1, complement) $\in \langle Id, Id \rangle$ nba-rel \rightarrow $\langle Id, cs-rel \rangle$ nba-rel **unfolding** *complement-1-def complement-def* **proof** parametricity fix A B :: ('a, 'b) nbaassume $1: (A, B) \in \langle Id, Id \rangle$ nba-rel have 2: (const (Some (2 * card (nodes B), False))) | 'initial B, const (Some (2 * card (nodes B))) | 'initial $B, \{\}) \in cs$ -rel **unfolding** cs-lr-def cs-st-def in-br-conv by (force simp: restrict-map-def) **show** (complement-succ-1 A, complement-succ B) \in Id \rightarrow cs-rel \rightarrow (cs-rel) set-rel using complement-succ-1-refine 1 by parametricity auto **show** ({const (Some (2 * card (nodes A), False)) | ' initial A}, {const (Some (2 * card (nodes B))) | ' initial B} × {{}} \in cs-rel set-rel using 1 2 by simp parametricity **show** $(\lambda f. cs\text{-st } f = \{\}, \lambda (f, P). P = \{\}) \in cs\text{-rel} \rightarrow bool\text{-rel by} (auto simp:$ *in-br-conv*)

 \mathbf{qed}

5.2 Phase 2

definition ranks-2 :: ('label, 'state) $nba \Rightarrow$ 'label \Rightarrow 'state items \Rightarrow 'state items set where

ranks-2 A a $f \equiv \{g.$ dom $g = \bigcup ((transition \ A \ a) \ (dom \ f)) \land$ $(\forall q \ l \ d. \ g \ q = Some \ (l, \ d) \longrightarrow$ $l \leq \prod (fst `Some - `f `pred A a q) \land$ $(d \longleftrightarrow \bigsqcup (snd `Some - `f `pred A a q) \land even l) \land$ $(accepting A \ q \longrightarrow even \ l))\}$ definition complement-succ-2 :: ('label, 'state) $nba \Rightarrow$ 'label \Rightarrow 'state items \Rightarrow 'state items set where complement-succ-2 A $a \equiv ranks-2$ A $a \circ refresh-1$ definition complement-2 ::: ('label, 'state) $nba \Rightarrow$ ('label, 'state items) nba where complement-2 $A \equiv nba$ (alphabet A) $(\{const (Some (2 * card (nodes A), False)) | `initial A\})$ (complement-succ-2 A) $(\lambda f. True \notin snd 'ran f)$ **lemma** ranks-2-refine: ranks-2 = ranks-1 **proof** (*intro* ext) fix A :: ('a, 'b) nba and a f show ranks-2 A a f = ranks-1 A a f **proof** safe fix q

assume 1: $q \in ranks-2$ A a f have 2: dom $g = \bigcup ((transition A a) (dom f))$ using 1 unfolding ranks-2-def by auto have $3: q = Some(l, d) \Longrightarrow l \le \prod (fst `Some - `f `pred A a q)$ for q l dusing 1 unfolding ranks-2-def by auto have 4: $g \ q = Some \ (l, \ d) \Longrightarrow d \longleftrightarrow \sqcup (snd \ `Some - `f \ `pred \ A \ a \ q) \land$ even l for q l dusing 1 unfolding ranks-2-def by auto have 5: $q = Some (l, d) \Longrightarrow accepting A q \Longrightarrow even l$ for q l dusing 1 unfolding ranks-2-def by auto **show** $g \in ranks-1 A \ a f$ unfolding ranks-1-def proof (intro CollectI conjI ballI impI) show dom $g = \bigcup ((transition \ A \ a) \ (dom \ f))$ using 2 by this \mathbf{next} fix p q**assume** 10: $p \in dom f q \in transition A a p$ obtain k c where 11: f p = Some(k, c) using 10(1) by auto have 12: $q \in dom \ g$ using 10 2 by auto obtain l d where 13: q q = Some (l, d) using 12 by auto have fst (the (g q)) = l unfolding 13 by simp also have $\ldots \leq \prod (fst `Some - `f `pred A a q)$ using 3 13 by this also have $\ldots \leq k$ **proof** (*rule cInf-lower*) show $k \in fst$ 'Some - 'f ' pred A a q using 11 10(2) by force **show** bdd-below (fst 'Some -'f 'pred A a q) by simp qed also have $\ldots = fst$ (the (f p)) unfolding 11 by simp finally show fst (the (g q)) \leq fst (the (f p)) by this \mathbf{next} fix q**assume** 10: $q \in dom \ g \ accepting \ A \ q$ show even (fst (the (g q))) using 10 5 by auto next **show** cs-st $g = \{q \in \bigcup ((transition \ A \ a) \ (cs-st \ f)). even (fst (the (g \ q)))\}$ proof **show** cs-st $g \subseteq \{q \in \bigcup ((transition \ A \ a) \ (cs-st \ f)). even (fst (the (g \ q)))\}$ using 4 unfolding cs-st-def image-def vimage-def by auto metis+ **show** $\{q \in \bigcup ((transition \ A \ a) \ (cs-st \ f)). even (fst \ (the \ (g \ q)))\} \subseteq cs-st \ g$ **proof** safe fix p q**assume** 10: even (fst (the (g q))) $p \in cs$ -st $f q \in transition A a p$ have 12: $q \in dom \ q$ using 10 2 unfolding cs-st-def by auto show $q \in cs$ -st g using 10 4 12 unfolding cs-st-def image-def by force qed qed ged \mathbf{next} fix g

assume 1: $g \in ranks-1 A a f$ have 2: dom $g = \bigcup ((transition A a) (dom f))$ using 1 unfolding ranks-1-def by auto have $3: \land p \ q. \ p \in dom \ f \Longrightarrow q \in transition \ A \ a \ p \Longrightarrow fst \ (the \ (q \ q)) \leq fst$ (the (f p))using 1 unfolding ranks-1-def by auto have $4: \bigwedge q. q \in dom g \Longrightarrow accepting A q \Longrightarrow even (fst (the (g q)))$ using 1 unfolding ranks-1-def by auto have 5: cs-st $g = \{q \in \bigcup ((transition \ A \ a) \ (cs-st \ f)). even (fst \ (the \ (g \ q)))\}$ using 1 unfolding ranks-1-def by auto **show** $g \in ranks-2 A a f$ unfolding ranks-2-def proof (intro CollectI conjI allI impI) show dom $g = \bigcup ((transition \ A \ a) \ (dom \ f))$ using 2 by this \mathbf{next} fix q l dassume 10: g q = Some (l, d)have 11: $q \in dom \ g$ using 10 by auto show $l \leq \prod$ (fst 'Some - 'f ' pred A a q) **proof** (*rule cInf-greatest*) show fst 'Some - 'f 'pred A a $q \neq \{\}$ using 11 unfolding 2 image-def vimage-def by force **show** $\bigwedge x. x \in fst$ 'Some -'f' pred A a $q \Longrightarrow l \leq x$ using 3 10 by (auto) (metis domI fst-conv option.sel) qed have $d \leftrightarrow q \in cs$ -st g unfolding cs-st-def by (force simp: 10) also have cs-st $g = \{q \in \bigcup ((transition A a) `(cs-st f)). even (fst (the (g$ (q))) using 5 by this also have $q \in \ldots \iff (\exists x \in cs\text{-st } f. q \in transition A a x) \land even l$ unfolding mem-Collect-eq 10 by simp also have $\ldots \longleftrightarrow \bigsqcup (snd `Some - `f `pred A a q) \land even l$ **unfolding** cs-st-def image-def vimage-def by auto metis+ finally show $d \longleftrightarrow \bigsqcup (snd `Some - `f `pred A a q) \land even l by this$ show accepting $A \ q \Longrightarrow even \ l \ using \ 4 \ 10 \ 11 \ by force$ qed qed \mathbf{qed}

lemma complement-2-refine: (complement-2, complement-1) $\in \langle Id, Id \rangle$ nba-rel $\rightarrow \langle Id, Id \rangle$ nba-rel

 ${\bf unfolding} \ complement-2-def \ complement-1-def \ complement-succ-2-def \ complement-succ-2-def \ complement-succ-2-def$

unfolding ranks-2-refine cs-st-def image-def vimage-def ran-def by auto

5.3 Phase 3

definition bounds-3 :: ('label, 'state) $nba \Rightarrow$ 'label \Rightarrow 'state items \Rightarrow 'state items where

bounds-3 A a $f \equiv \lambda$ q. let S = Some - f' pred A a q in

if $S = \{\}$ then None else Some $(\prod (fst `S), \prod (snd `S))$

definition *items-3* :: ('label, 'state) $nba \Rightarrow$ 'state \Rightarrow *item* \Rightarrow *item* set **where** *items-3* A $p \equiv \lambda$ (k, c). {(l, c \land even l) | l. l \leq k \land (accepting A $p \longrightarrow even l$)} **definition** get-3 :: ('label, 'state) $nba \Rightarrow$ 'state items \Rightarrow ('state \rightarrow item set) **where**

get-3 $A f \equiv \lambda p.$ map-option (items-3 A p) (f p) definition complement-succ-3 :: ('label, 'state) $nba \Rightarrow 'label \Rightarrow 'state items \Rightarrow 'state items set where$ $complement-succ-3 <math>A a \equiv expand-map \circ get-3 A \circ bounds-3 A a \circ refresh-1$ definition complement-3 :: ('label, 'state) $nba \Rightarrow$ ('label, 'state items) nba where complement-3 $A \equiv nba$ (alphabet A) ({(Some \circ (const (2 * card (nodes A), False))) |' initial A}) (complement-succ-3 A) ($\lambda f. \forall (p, k, c) \in map-to-set f. \neg c$)

lemma bounds-3-dom[simp]: dom (bounds-3 A a f) = $\bigcup ((transition A a) \cdot (dom f))$

unfolding bounds-3-def Let-def dom-def by (force split: if-splits)

lemma *items-3-nonempty*[*intro*!, *simp*]: *items-3* $A \ p \ s \neq \{\}$ unfolding *items-3-def* by *auto*

lemma *items-3-finite*[*intro*!, *simp*]: *finite* (*items-3 A p s*) **unfolding** *items-3-def* **by** (*auto split: prod.splits*)

lemma get-3-dom[simp]: dom (get-3 A f) = dom f **unfolding** get-3-def by (auto split: bind-splits)

lemma get-3-finite[intro, simp]: $S \in ran (get-3 \ A \ f) \Longrightarrow finite S$ unfolding get-3-def ran-def by auto

lemma get-3-update[simp]: get-3 A (f $(p \mapsto s)$) = (get-3 A f) $(p \mapsto items-3 A p s)$

unfolding get-3-def by auto

lemma expand-map-get-bounds-3: expand-map \circ get-3 $A \circ$ bounds-3 A a = ranks-2 A a

proof (*intro* ext set-eqI, unfold comp-apply)

 $\mathbf{fix}\;f\;g$

have 1: $(\forall x S y. get-3 A (bounds-3 A a f) x = Some S \longrightarrow g x = Some y \longrightarrow y \in S) \longleftrightarrow$

 $(\forall q \ S \ l \ d. \ get{-}3 \ A \ (bounds{-}3 \ A \ a \ f) \ q = Some \ S \longrightarrow g \ q = Some \ (l, \ d) \longrightarrow (l, \ d) \in S)$

by auto

have 2: $(\forall S. get-3 A (bounds-3 A a f) q = Some S \longrightarrow g q = Some (l, d) \longrightarrow (l, d) \in S) \longleftrightarrow$

 $(g \ q = Some \ (l, \ d) \longrightarrow l \leq \prod (fst \ (Some - f \ pred \ A \ a \ q)) \land$

 $(d\longleftrightarrow \bigsqcup (\mathit{snd}\ `(\mathit{Some}\ -`f\ `pred\ A\ a\ q))\ \land\ even\ l)\ \land\ (accepting\ A\ q\longrightarrow even\ l))$

if 3: dom $g = \bigcup ((transition \ A \ a) \ (dom \ f))$ for $q \ l \ d$

proof –

have $4: q \notin dom g$ if $Some - f' pred A a q = \{\}$ unfolding 3 using that by force

show ?thesis **unfolding** get-3-def items-3-def bounds-3-def Let-def using 4 by auto

qed

show $g \in expand-map (get-3 \ A (bounds-3 \ A \ a \ f)) \leftrightarrow g \in ranks-2 \ A \ a \ f$ **unfolding** expand-map-alt-def ranks-2-def mem-Collect-eq **unfolding** get-3-dom bounds-3-dom 1 **using** 2 by blast **qed**

lemma complement-succ-3-refine: complement-succ-3 = complement-succ-2 **unfolding** complement-succ-3-def complement-succ-2-def expand-map-get-bounds-3

by rule

lemma complement-initial-3-refine: {const (Some (2 * card (nodes A), False)) | 'initial A} =

 $\{(Some \circ (const \ (2 * card \ (nodes \ A), \ False))) \mid `initial \ A\}$

unfolding comp-apply by rule

lemma complement-accepting-3-refine: True \notin snd ' ran $f \leftrightarrow (\forall (p, k, c) \in map$ -to-set $f \cdot \neg c)$

unfolding map-to-set-def ran-def by auto

lemma complement-3-refine: (complement-3, complement-2) $\in \langle Id, Id \rangle$ nba-rel $\rightarrow \langle Id, Id \rangle$ nba-rel

unfolding complement-3-def complement-2-def unfolding complement-succ-3-refine complement-initial-3-refine complement-accepting-3-refine

by *auto*

5.4 Phase 4

definition items-4 :: ('label, 'state) $nba \Rightarrow$ 'state \Rightarrow item \Rightarrow item set where items-4 $A \ p \equiv \lambda \ (k, \ c)$. {(l, $c \land even \ l$) |l. $k \leq Suc \ l \land l \leq k \land (accepting \ A \ p \rightarrow even \ l)$ } definition get-4 :: ('label, 'state) $nba \Rightarrow$ 'state items \Rightarrow ('state \rightarrow item set) where get-4 $A \ f \equiv \lambda \ p.$ map-option (items-4 $A \ p$) (f p) definition complement-succ-4 :: ('label, 'state) $nba \Rightarrow$ 'label \Rightarrow 'state items \Rightarrow 'state items set where complement-succ-4 $A \ a \equiv expand-map \circ get-4 \ A \circ bounds-3 \ A \ a \circ refresh-1$ definition complement-4 :: ('label, 'state) $nba \Rightarrow$ ('label, 'state items) nba where complement-4 $A \equiv nba$ (alphabet A) ({(Some $\circ (const \ (2 * card \ (nodes \ A), \ False)))$ |' initial A}) (complement-succ-4 A) ($\lambda \ f. \forall \ (p, \ k, \ c) \in map-to-set \ f. \neg c$)

lemma get-4-dom[simp]: dom (get-4 A f) = dom f **unfolding** get-4-def **by** (auto split: bind-splits)

definition R :: 'state items rel where

 $R \equiv \{(f, g).$ $dom \ f = \ dom \ g \ \land$ $(\forall p \in dom f. fst (the (f p)) \leq fst (the (g p))) \land$ $(\forall p \in dom f. snd (the (f p)) \longleftrightarrow snd (the (g p)))\}$ **lemma** *bounds-R*: assumes $(f, g) \in R$ **assumes** bounds-3 A a (refresh-1 f) p = Some(n, e)**assumes** bounds-3 A a (refresh-1 g) p = Some(k, c)shows $n \leq k \ e \longleftrightarrow c$ proof **have** 1: dom f = dom g $\forall p \in dom f. fst (the (f p)) \leq fst (the (g p))$ $\forall \ p \in dom \ f. \ snd \ (the \ (f \ p)) \longleftrightarrow snd \ (the \ (g \ p))$ using assms(1) unfolding *R*-def by auto have $n = \prod (fst \ (Some - 'refresh-1 \ f \ 'pred \ A \ a \ p))$ using assms(2) unfolding bounds-3-def by (auto simp: Let-def split: if-splits) also have fst 'Some - 'refresh-1 f' pred A a p = fst 'Some - 'f' pred A a p proof **show** fst 'Some - 'refresh-1 f ' pred A a $p \subseteq fst$ 'Some - 'f ' pred A a p unfolding refresh-1-def image-def by (auto simp: map-option-case split: option.split) (force) **show** fst 'Some - 'f ' pred A a $p \subseteq$ fst 'Some - ' refresh-1 f ' pred A a p **unfolding** refresh-1-def image-def by (auto simp: map-option-case split: option.split) (metis fst-conv option.sel) ged also have $\ldots = fst$ 'Some -' f' (pred A a $p \cap dom f$) unfolding dom-def image-def Int-def by auto metis also have $\ldots = fst$ 'the 'f' (pred A a $p \cap dom f$) unfolding *dom-def* by *force* also have $\ldots = (fst \circ the \circ f)$ ' (pred A a $p \cap dom f$) by force also have $\prod ((fst \circ the \circ f) \circ (pred \ A \ a \ p \cap dom \ f)) \leq$ $\prod ((fst \circ the \circ g) ` (pred A a p \cap dom g))$ **proof** (*rule cINF-mono*) **show** pred A a $p \cap dom q \neq \{\}$ using assms(2) 1(1) unfolding bounds-3-def refresh-1-def **by** (*auto simp: Let-def split: if-splits*) (*force+*) **show** bdd-below ((fst \circ the \circ f) '(pred A a $p \cap$ dom f)) by rule **show** $\exists n \in pred A \ a \ p \cap dom \ f. \ (fst \circ the \circ f) \ n \leq (fst \circ the \circ g) \ m$ if $m \in pred A \ a \ p \cap dom \ g$ for m using 1 that by auto qed **also have** $(fst \circ the \circ g)$ ' $(pred A \ a \ p \cap dom \ g) = fst$ 'the 'g' $(pred A \ a \ p \cap dom \ g)$ dom q) by force also have $\ldots = fst$ 'Some -' g '(pred A a $p \cap dom g$) unfolding dom-def by force also have $\ldots = fst$ 'Some -' g 'pred A a p unfolding dom-def image-def Int-def by auto metis also have $\ldots = fst$ 'Some -' refresh-1 g ' pred A a p

proof

show fst 'Some - 'g 'pred A a $p \subseteq$ fst 'Some - 'refresh-1 g 'pred A a p unfolding refresh-1-def image-def by (auto simp: map-option-case split: option.split) (metis fst-conv option.sel) **show** fst 'Some - 'refresh-1 g 'pred A a $p \subseteq$ fst 'Some - 'g 'pred A a p **unfolding** refresh-1-def image-def by (auto simp: map-option-case split: option.split) (force) qed **also have** $\prod (fst `(Some - `refresh-1 g `pred A a p)) = k$ using assms(3) unfolding bounds-3-def by (auto simp: Let-def split: if-splits) finally show $n \leq k$ by this have $e \leftrightarrow | | (snd (Some - refresh-1 f pred A a p))$ using assms(2) unfolding bounds-3-def by (auto simp: Let-def split: if-splits) **also have** snd 'Some - 'refresh-1 f' pred A a p = snd 'Some - 'refresh-1 f' $(pred A \ a \ p \cap dom \ (refresh-1 \ f))$ unfolding dom-def image-def Int-def by auto metis also have $\ldots = snd$ 'the 'refresh-1 f' (pred A a $p \cap dom$ (refresh-1 f)) unfolding *dom-def* by *force* also have $\ldots = (snd \circ the \circ refresh-1 f)$ ' (pred A a $p \cap dom$ (refresh-1 f)) by force also have $\ldots = (snd \circ the \circ refresh-1 g)$ ' (pred A a $p \cap dom$ (refresh-1 g)) **proof** (*rule image-cong*) **show** pred A a $p \cap dom$ (refresh-1 f) = pred A a $p \cap dom$ (refresh-1 g) unfolding refresh-1-dom 1(1) by rule **show** (snd \circ the \circ refresh-1 f) $q \leftrightarrow (snd \circ the \circ refresh-1 q) q$ if 2: $q \in pred A \ a \ p \cap dom \ (refresh-1 \ g)$ for q proof have $3: \forall x \in ran f$. $\neg snd x \Longrightarrow (n, True) \in ran g \Longrightarrow g g = Some (k, f)$ $c) \Longrightarrow c \text{ for } n \ k \ c$ using 1(1, 3) unfolding dom-def ran-def **by** (*auto dest*!: *Collect-inj*) (*metis option.sel snd-conv*) have $4: g q = Some (n, True) \Longrightarrow f q = Some (k, c) \Longrightarrow c$ for n k cusing 1(3) unfolding dom-def by force have $5: \forall x \in ran \ g. \neg snd \ x \Longrightarrow (k, True) \in ran \ f \Longrightarrow False$ for k using 1(1, 3) unfolding dom-def ran-def **by** (*auto dest*!: *Collect-inj*) (*metis option.sel snd-conv*) **show** (snd \circ the \circ refresh-1 f) $q \Longrightarrow$ (snd \circ the \circ refresh-1 g) q using $1(1, 3) \ge 3$ unfolding refresh-1-def by (force split: if-splits) **show** (snd \circ the \circ refresh-1 g) $q \implies$ (snd \circ the \circ refresh-1 f) q using 1(1, 3) 2 4 5 unfolding refresh-1-def by (auto simp: map-option-case split: option.splits if-splits) (force+) qed qed also have $\ldots = snd$ 'the 'refresh-1 g '(pred A a $p \cap dom$ (refresh-1 g)) by force also have $\ldots = snd$ 'Some - 'refresh-1 g '(pred A a $p \cap dom$ (refresh-1 g)) unfolding *dom-def* by *force* also have $\ldots = snd$ 'Some - 'refresh-1 g ' pred A a p unfolding dom-def image-def Int-def by auto metis

```
also have \bigsqcup (snd \ (Some - \ refresh-1 \ g \ pred \ A \ a \ p)) \longleftrightarrow c
using assms(3) unfolding bounds-3-def by (auto simp: Let-def split: if-splits)
finally show e \longleftrightarrow c by this
qed
```

lemma complement-4-language-1: language (complement-3 A) \subseteq language (complement-4 A)

proof (rule simulation-language) **show** alphabet (complement-3 A) \subseteq alphabet (complement-4 A) unfolding complement-3-def complement-4-def by simp **show** $\exists q \in initial (complement-4 A). (p, q) \in R$ if $p \in initial (complement-3)$ A) for pusing that unfolding complement-3-def complement-4-def R-def by simp **show** $\exists g' \in transition (complement-4 A) a g. <math>(f', g') \in R$ if $f' \in transition \ (complement-3 \ A) \ a \ f \ (f, \ g) \in R$ for a f f' gproof have 1: $f' \in expand-map (get-3 \land (bounds-3 \land a (refresh-1 f)))$ using that(1) unfolding complement-3-def complement-succ-3-def by auto have 2: dom f = dom g $\forall p \in dom f. fst (the (f p)) \leq fst (the (g p))$ $\forall p \in dom f. snd (the (f p)) \longleftrightarrow snd (the (g p))$ using that(2) unfolding *R*-def by auto have dom $f' = dom (get-3 \ A (bounds-3 \ A \ a (refresh-1 \ f)))$ using expand-map-dom 1 by this also have $\ldots = dom (bounds - 3 A a (refresh - 1 f))$ by simp finally have 3: dom f' = dom (bounds-3 A a (refresh-1 f)) by this define q' where $q' p \equiv do$ $(k, c) \leftarrow bounds-3 \ A \ a \ (refresh-1 \ g) \ p;$ $(l, d) \leftarrow f' p;$ Some (if even k = even l then k = lse k - 1, d) } **for** *p* have 4: g' p = do{ $kc \leftarrow bounds-3 \ A \ a \ (refresh-1 \ g) \ p;$ $ld \leftarrow f' p;$ Some (if even (fst kc) = even (fst ld) then fst kc else fst kc - 1, snd ld) } for *p* unfolding *q'*-def case-prod-beta by rule have dom $g' = dom (bounds - 3 A a (refresh - 1 g)) \cap dom f' using 4 bind-eq-Some-conv$ **by** *fastforce* also have $\ldots = dom f'$ using 2.3 by simp finally have 5: dom g' = dom f' by this have $6: (l, d) \in items{-}3 \land p(k, c)$ if bounds-3 A a (refresh-1 f) p = Some(k, c) f' p = Some(l, d) for p k c ldusing 1 that unfolding expand-map-alt-def get-3-def by blast show ?thesis

unfolding complement-4-def nba.sel complement-succ-4-def comp-apply proof show $(f', g') \in R$ **unfolding** *R*-def mem-Collect-eq prod.case **proof** (*intro* conjI ballI) show dom f' = dom q' using 5 by rule \mathbf{next} fix p assume 10: $p \in dom f'$ have 11: $p \in dom (bounds-3 A \ a (refresh-1 \ g))$ using $2(1) \ 3 \ 10$ by simp obtain k c where 12: bounds-3 A a (refresh-1 g) p = Some(k, c) using 11 by fast obtain l d where 13: f' p = Some (l, d) using 10 by auto obtain $n \in \text{where } 14$: bounds-3 A a (refresh-1 f) p = Some (n, e) using 10 3 by fast have 15: $(l, d) \in items - 3 A p (n, e)$ using 6 14 13 by this have 16: $n \leq k$ using bounds-R(1) that (2) 14 12 by this have 17: $l \leq k$ using 15 16 unfolding items-3-def by simp have 18: even $k \longleftrightarrow odd \ l \Longrightarrow l \le k \Longrightarrow l \le k - 1$ by presburger have 19: $e \leftrightarrow c$ using bounds-R(2) that (2) 14 12 by this show fst (the (f' p)) \leq fst (the (g' p)) using 17 18 unfolding 4 12 13 by simp show snd (the (f' p)) \longleftrightarrow snd (the (g' p)) using 19 unfolding 4 12 13 by simp qed **show** $g' \in expand-map$ (get-4 A (bounds-3 A a (refresh-1 g))) **unfolding** expand-map-alt-def mem-Collect-eq **proof** (*intro conjI allI impI*) show dom $g' = dom (get-4 \ A (bounds-3 \ A \ a (refresh-1 \ g)))$ using $2(1) \ 3$ 5 by simpfix p S xy**assume** 10: get-4 A (bounds-3 A a (refresh-1 g)) p = Some Sassume 11: g' p = Some xyobtain k c where 12: bounds-3 A a (refresh-1 g) p = Some(k, c) S =*items-4* A p(k, c)using 10 unfolding get-4-def by auto **obtain** l d where 13: $f' p = Some (l, d) xy = (if even k \leftrightarrow even l then$ k else k - 1, dusing 11 12 unfolding q'-def by (auto split: bind-splits) obtain n e where 14: bounds-3 A a (refresh-1 f) p = Some(n, e) using $13(1) \ 3 \ by \ fast$ have 15: $(l, d) \in items$ -3 A p(n, e) using 6 14 13(1) by this have 16: $n \leq k$ using bounds-R(1) that (2) 14 12(1) by this have 17: $e \leftrightarrow c$ using bounds-R(2) that (2) 14 12(1) by this show $xy \in S$ using 15 16 17 unfolding 12(2) 13(2) items-3-def items-4-def by auto qed qed qed

show $\land p q. (p, q) \in R \implies accepting (complement-3 A) p \implies accepting$ (complement-4 A) qunfolding complement-3-def complement-4-def R-def map-to-set-def **by** (*auto*) (*metis domIff eq-snd-iff option.exhaust-sel option.sel*) ged **lemma** complement-4-less: complement-4 $A \leq$ complement-3 A**unfolding** *less-eq-nba-def* unfolding complement-4-def complement-3-def nba.sel **unfolding** complement-succ-4-def complement-succ-3-def **proof** (*safe intro*!: *le-funI*, *unfold comp-apply*) fix a f gassume $g \in expand-map$ (get-4 A (bounds-3 A a (refresh-1 f))) then show $g \in expand-map$ (get-3 A (bounds-3 A a (refresh-1 f))) unfolding get-4-def get-3-def items-4-def items-3-def expand-map-alt-def by blast qed **lemma** complement-4-language-2: language (complement-4 A) \subseteq language (complement-3) A)using language-mono complement-4-less by (auto dest: monoD) **lemma** complement-4-language: language (complement-3 A) = language (complement-4) A)using complement-4-language-1 complement-4-language-2 by blast **lemma** complement-4-finite[simp]: assumes finite (nodes A) shows finite (nodes (complement-4 A)) proof have (nodes (complement-3 A), nodes (complement-2 A)) $\in \langle Id \rangle$ set-rel using complement-3-refine by parametricity auto also have (nodes (complement-2 A), nodes (complement-1 A)) $\in \langle Id \rangle$ set-rel using complement-2-refine by parametricity auto also have (nodes (complement-1 A), nodes (complement A)) $\in \langle cs\text{-rel} \rangle$ set-rel using complement-1-refine by parametricity auto finally have 1: (nodes (complement-3 A), nodes (complement A)) $\in \langle cs\text{-rel} \rangle$ set-rel by simp have 2: finite (nodes (complement A)) using complement-finite assms(1) by this have 3: finite (nodes (complement-3 A)) using finite-set-rel-transfer-back 1 cs-rel-inv-single-valued 2 by this have 4: nodes (complement-4 A) \subseteq nodes (complement-3 A) using nodes-mono complement-4-less by (auto dest: monoD) show finite (nodes (complement-4 A)) using finite-subset 4 3 by this qed **lemma** complement-4-correct: assumes finite (nodes A) shows language (complement-4 A) = streams (alphabet A) - language Aproof – have language (complement-4 A) = language (complement-3 A) using complement-4-language by rule

```
also have (language (complement-3 A), language (complement-2 A)) \in \langle \langle Id \rangle
stream-rel\rangle set-rel
using complement-3-refine by parametricity auto
also have (language (complement-2 A), language (complement-1 A)) \in \langle \langle Id \rangle
stream-rel\rangle set-rel
using complement-2-refine by parametricity auto
also have (language (complement-1 A), language (complement A)) \in \langle \langle Id \rangle
stream-rel\rangle set-rel
using complement-1-refine by parametricity auto
also have language (complement A) = streams (alphabet A) - language A
using complement-language assms(1) by this
finally show language (complement-4 A) = streams (alphabet A) - language
A by simp
qed
```

5.5 Phase 5

definition refresh-5 :: 'state items \Rightarrow 'state items nres where refresh-5 $f \equiv if \exists (p, k, c) \in map$ -to-set f. cthen RETURN f $else \ do$ { ASSUME (finite (dom f)); FOREACH (map-to-set f) (λ (p, k, c) m. do { ASSERT $(p \notin dom \ m);$ RETURN $(m \ (p \mapsto (k, \ True)))$ Map.empty } definition merge-5 :: item \Rightarrow item option \Rightarrow item where merge-5 $\equiv \lambda$ (k, c). λ None \Rightarrow (k, c) | Some (l, d) \Rightarrow (k \sqcap l, c \sqcup d) **definition** bounds-5 :: ('label, 'state) $nba \Rightarrow$ 'label \Rightarrow 'state items \Rightarrow 'state items nres where bounds-5 A a $f \equiv do$ ł ASSUME (finite (dom f)); ASSUME $(\forall p. finite (transition A a p));$ FOREACH (map-to-set f) (λ (p, s) m. FOREACH (transition A a p) $(\lambda q f.$ RETURN (f ($q \mapsto merge-5 \ s \ (f \ q))$)) m) Map.empty } definition items-5 ::: ('label, 'state) $nba \Rightarrow 'state \Rightarrow item \Rightarrow item set$ where items-5 A $p \equiv \lambda$ (k, c). do { let values = if accepting A p then Set.filter even $\{k - 1 \dots k\}$ else $\{k - 1 \dots$ k;

let item = λ l. (l, c \wedge even l); item ' values**definition** get-5 :: ('label, 'state) $nba \Rightarrow$ 'state items \Rightarrow ('state \rightarrow item set) where get-5 A $f \equiv \lambda$ p. map-option (items-5 A p) (f p) definition expand-5 :: $('a \rightarrow 'b \ set) \Rightarrow ('a \rightarrow 'b) \ set \ nres$ where expand-5 $f \equiv FOREACH$ (map-to-set f) (λ (x, S) X. do { ASSERT $(\forall g \in X. x \notin dom g);$ ASSERT $(\forall a \in S. \forall b \in S. a \neq b \longrightarrow (\lambda y. (\lambda g. g (x \mapsto y)) `X) a \cap (\lambda y. y))$ y. $(\lambda g. g (x \mapsto y))$ 'X) $b = \{\});$ RETURN ($\bigcup y \in S. (\lambda g. g (x \mapsto y))$ 'X) $) \{Map.empty\}$ definition complement-succ-5 ::: ('label, 'state) $nba \Rightarrow$ 'label \Rightarrow 'state items \Rightarrow 'state items set nres where complement-succ-5 A a $f \equiv do$ $f \leftarrow refresh-5 f;$ $f \leftarrow bounds-5 \ A \ a \ f;$ ASSUME (finite (dom f)); expand-5 $(get-5 \ A \ f)$ } **lemma** bounds-3-empty: bounds-3 A a Map.empty = Map.empty unfolding bounds-3-def Let-def by auto **lemma** bounds-3-update: bounds-3 A a $(f (p \mapsto s)) =$ override-on (bounds-3 A a f) (Some \circ merge-5 s \circ bounds-3 A a (f (p := None))) (transition A a p)proof **note** fun-upd-image[simp] fix q**show** bounds-3 A a $(f (p \mapsto s)) q =$ override-on (bounds-3 A a f) (Some \circ merge-5 s \circ bounds-3 A a (f (p := None))) (transition $A \ a \ p) \ q$ **proof** (cases $q \in transition A \ a \ p$) case True define S where $S \equiv Some - f (pred A \ a \ q - \{p\})$ have 1: Some - 'f (p := Some s) ' pred A a q = insert s S using True unfolding S-def by auto have 2: Some - f(p := None) for f(p := None) for A = g = S unfolding S-def by auto have bounds-3 A a $(f \ (p \mapsto s)) \ q = Some \ (\prod (fst \ (insert \ s \ S)), \prod (snd \ (snd \ s)))$ $(insert \ s \ S)))$ unfolding bounds-3-def 1 by simp also have $\ldots = Some (merge-5 \ s \ (bounds-3 \ A \ a \ (f \ (p := None)) \ q))$ unfolding 2 bounds-3-def merge-5-def by (cases s) (simp-all add: cInf-insert) also have $\ldots = override \circ on (bounds - 3 \ A \ a \ f) (Some \circ merge - 5 \ s \circ bounds - 3)$ $A \ a \ (f \ (p := None)))$ $(transition \ A \ a \ p) \ q \ using \ True \ by \ simp$ finally show ?thesis by this

next case False then have pred A a $q \cap \{x. \ x \neq p\} = pred A a q$ by auto with False show ?thesis by (simp add: bounds-3-def) qed qed lemma refresh-5-refine: (refresh-5, λ f. RETURN (refresh-1 f)) $\in Id \rightarrow \langle Id \rangle$

nres-rel proof safe

fix $f :: 'a \Rightarrow item option$ have 1: $(\exists (p, k, c) \in map\text{-to-set } f. c) \leftrightarrow True \in snd$ 'ran f unfolding image-def map-to-set-def ran-def by force **show** (refresh-5 f, RETURN (refresh-1 f)) $\in \langle Id \rangle$ nres-rel unfolding refresh-5-def refresh-1-def 1 by (refine-vcg FOREACH-rule-map-eq[where $X = \lambda$ m. map-option (apsnd \top) \circ m]) (auto) qed **lemma** bounds-5-refine: (bounds-5 A a, λ f. RETURN (bounds-3 A a f)) \in Id $\rightarrow \langle Id \rangle$ nres-rel unfolding *bounds-5-def* by (refine-vcg FOREACH-rule-map-eq[where X = bounds-3 A a] FOREACH-rule-insert-eq)(auto simp: override-on-insert bounds-3-empty bounds-3-update) **lemma** *items-5-refine*: *items-5* = *items-4* unfolding items-5-def items-4-def by (intro ext) (auto split: if-splits) **lemma** get-5-refine: get-5 = get-4 **unfolding** get-5-def get-4-def items-5-refine by rule **lemma** expand-5-refine: (expand-5 f, ASSERT (finite (dom f)) \gg RETURN $(expand-map f)) \in \langle Id \rangle$ nres-rel unfolding expand-5-def

by (refine-vcg FOREACH-rule-map-eq[where X = expand-map]) (auto dest!: expand-map-dom map-upd-eqD1)

lemma complement-succ-5-refine: (complement-succ-5, RETURN $\circ\circ\circ\circ$ complement-succ-4) \in

 $Id \rightarrow Id \rightarrow Id \rightarrow \langle Id \rangle \ nres-rel$

unfolding complement-succ-5-def complement-succ-4-def get-5-refine comp-apply **by** (refine-vcg vcg1[OF refresh-5-refine] vcg1[OF bounds-5-refine] vcg0[OF expand-5-refine]) (auto)

5.6 Phase 6

definition expand-map-get-6 :: ('label, 'state) $nba \Rightarrow$ 'state items \Rightarrow 'state items set nres where

expand-map-get-6 A $f \equiv FOREACH$ (map-to-set f) (λ (k, v) X. do { ASSERT ($\forall g \in X. k \notin dom g$);

ASSERT $(\forall a \in (items-5 \ A \ k \ v). \forall b \in (items-5 \ A \ k \ v). a \neq b \longrightarrow (\lambda \ y. (\lambda \ g. \ g \ (k \mapsto y)) `X) \ a \cap (\lambda \ y. (\lambda \ g. \ g \ (k \mapsto y)) `X) \ b = \{\});$

RETURN ($\bigcup y \in items-5 \ A \ k \ v. \ (\lambda \ g. \ g \ (k \mapsto y))$ 'X) }) {Map.empty}

lemma expand-map-get-6-refine: (expand-map-get-6, expand-5 $\circ \circ$ get-5) $\in Id \rightarrow Id \rightarrow \langle Id \rangle$ nres-rel

unfolding *expand-map-get-6-def expand-5-def get-5-def* **by** (*auto intro: FORE-ACH-rule-map-map*[*param-fo*])

definition complement-succ-6 ::

 $\begin{array}{l} ('label, \ 'state) \ nba \Rightarrow \ 'label \Rightarrow \ 'state \ items \Rightarrow \ 'state \ items \ set \ nres \ \textbf{where} \\ complement-succ-6 \ A \ a \ f \equiv \ do \\ \{ \\ f \leftarrow \ refresh-5 \ f; \\ f \leftarrow \ bounds-5 \ A \ a \ f; \\ ASSUME \ (finite \ (dom \ f)); \\ expand-map-get-6 \ A \ f \\ \} \end{array}$

lemma complement-succ-6-refine:

(complement-succ-6, complement-succ-5) \in Id \rightarrow Id \rightarrow Id \rightarrow (Id) nres-rel unfolding complement-succ-6-def complement-succ-5-def by (refine-vcg vcg2[OF expand-map-get-6-refine]) (auto intro: refine-IdI)

5.7 Phase 7

interpretation autoref-syn by this

context fixes fi fassumes fi[autoref-rules]: $(fi, f) \in state-rel$ begin

private lemma [simp]: finite (dom f)using list-map-rel-finite fi unfolding finite-map-rel-def by force

schematic-goal refresh-7: $(?f :: ?'a, refresh-5 f) \in ?R$ unfolding refresh-5-def by (autoref-monadic (plain))

\mathbf{end}

concrete-definition refresh-7 uses refresh-7

lemma refresh-7-refine: $(\lambda \ f. \ RETURN \ (refresh-7 \ f), \ refresh-5) \in state-rel \rightarrow \langle state-rel \rangle \ nres-rel using \ refresh-7.refine \ by \ fast$

$\mathbf{context}$

fixes A :: ('label, nat) nba fixes succi a fi f **assumes** succi[autoref-rules]: (succi, transition A a) \in nat-rel \rightarrow (nat-rel) list-set-rel

assumes fi[autoref-rules]: $(fi, f) \in state-rel$ begin

private lemma [*simp*]: *finite* (*transition A a p*) **using** *list-set-rel-finite succi*[*param-fo*] **unfolding** *finite-set-rel-def* **by** *blast* **private lemma** [*simp*]: *finite* (*dom f*) **using** *fi* **by** *force*

private lemma [autoref-op-pat]: transition $A \ a \equiv OP$ (transition $A \ a$) by simp

private lemma [autoref-rules]: (min, min) \in nat-rel \rightarrow nat-rel by simp

schematic-goal bounds-7: notes ty-REL[where $R = \langle nat\text{-rel}, item\text{-rel} \rangle$ dflt-ahm-rel, autoref-tyrel] shows (?f :: ?'a, bounds-5 A a f) \in ?R unfolding bounds-5-def merge-5-def sup-bool-def inf-nat-def by (autoref-monadic (plain))

end

concrete-definition bounds-7 uses bounds-7

lemma bounds-7-refine: (si, transition $A \ a$) \in nat-rel \rightarrow (nat-rel) list-set-rel \implies ($\lambda \ p. \ RETURN \ (bounds-7 \ si \ p), \ bounds-5 \ A \ a$) \in state-rel \rightarrow ((nat-rel, item-rel) dflt-ahm-rel) nres-rel using bounds-7.refine by auto

$\operatorname{context}$

fixes A :: ('label, nat) nba fixes acci assumes [autoref-rules]: (acci, accepting A) \in nat-rel \rightarrow bool-rel begin

private lemma [autoref-op-pat]: accepting $A \equiv OP$ (accepting A) by simp

private lemma [autoref-rules]: $((dvd), (dvd)) \in nat-rel \rightarrow nat-rel \rightarrow bool-rel$ by simp private lemma [autoref-rules]: $(\lambda \ k \ l. \ upt \ k \ (Suc \ l), \ atLeastAtMost) \in$

 $at-rel \rightarrow nat-rel \rightarrow \langle nat-rel \rangle$ list-set-rel by (auto simp: list-set-rel-def in-br-conv)

schematic-goal *items-7*: $(?f :: ?'a, items-5 A) \in ?R$ unfolding *items-5-def Let-def Set.filter-def* by *autoref*

 \mathbf{end}

concrete-definition items-7 uses items-7

```
context

fixes A :: ('label, nat) nba

fixes ai

fixes fi f

assumes ai: (ai, accepting A) \in nat-rel \rightarrow bool-rel

assumes fi[autoref-rules]: (fi, f) \in \langle nat-rel, item-rel \rangle dflt-ahm-rel

begin
```

```
private lemma [simp]: finite (dom f)

using dflt-ahm-rel-finite-nat fi unfolding finite-map-rel-def by force

private lemma [simp]:

assumes \bigwedge m. m \in S \implies x \notin dom m

shows inj-on (\lambda m. m (x \mapsto y)) S

using assms unfolding dom-def inj-on-def by (auto) (metis fun-upd-triv

fun-upd-upd)

private lemmas [simp] = op-map-update-def[abs-def]
```

private lemma [autoref-op-pat]: items-5 $A \equiv OP$ (items-5 A) by simp

private lemmas [autoref-rules] = items-7.refine[OF ai]

schematic-goal expand-map-get-7: (?f, expand-map-get-6 A f) $\in \langle \langle state-rel \rangle \ list-set-rel \rangle \ nres-rel$ unfolding expand-map-get-6-def by (autoref-monadic (plain))

end

concrete-definition expand-map-get-7 uses expand-map-get-7

lemma expand-map-get-7-refine: **assumes** (ai, accepting A) \in nat-rel \rightarrow bool-rel **shows** (λ fi. RETURN (expand-map-get-7 ai fi), λ f. ASSUME (finite (dom f)) \gg expand-map-get-6 A f) \in (nat-rel, item-rel) dflt-ahm-rel \rightarrow ((state-rel) list-set-rel) nres-rel **using** expand-map-get-7.refine[OF assms] by auto

$\operatorname{context}$

fixes A :: ('label, nat) nba fixes a :: 'labelfixes p :: nat items fixes Aifixes aifixes piassumes $Ai: (Ai, A) \in \langle Id, Id \rangle$ nbai-nba-rel assumes $ai: (ai, a) \in Id$ assumes $pi[autoref-rules]: (pi, p) \in state-rel$ begin **private lemmas** succi = nbai-nba-param(4)[THEN fun-relD, OF Ai, THEN fun-relD, OF ai]

private lemmas acceptingi = nbai-nba-param(5)[THEN fun-relD, OF Ai]

private lemma [autoref-op-pat]: (λ g. ASSUME (finite (dom g)) \gg expand-map-get-6 A g) \equiv

OP (λ g. ASSUME (finite (dom g)) \gg expand-map-get-6 A g) by simp private lemma [autoref-op-pat]: bounds-5 A $a \equiv OP$ (bounds-5 A a) by simp

private lemmas [autoref-rules] =
 refresh-7-refine
 bounds-7-refine[OF succi]
 expand-map-get-7-refine[OF acceptingi]

schematic-goal complement-succ-7: (?f :: ?'a, complement-succ-6 A a p) \in ?R

unfolding complement-succ-6-def **by** (autoref-monadic (plain))

end

concrete-definition complement-succ-7 uses complement-succ-7

lemma complement-succ-7-refine:

 $(RETURN \circ \circ \circ complement-succ-7, complement-succ-6) \in \langle Id, Id \rangle$ nbai-nba-rel $\rightarrow Id \rightarrow state-rel \rightarrow \langle \langle state-rel \rangle$ list-set-rel \rangle nres-rel using complement-succ-7.refine unfolding comp-apply by parametricity

$\operatorname{context}$

fixes A :: ('label, nat) nba fixes Aifixes n ni :: nat assumes $Ai: (Ai, A) \in \langle Id, Id \rangle$ nbai-nba-rel assumes $ni[autoref-rules]: (ni, n) \in Id$ begin

private lemma [autoref-op-pat]: initial $A \equiv OP$ (initial A) by simp

private lemmas [autoref-rules] = nbai-nba-param(3)[THEN fun-relD, OF Ai]

schematic-goal complement-initial-7: $(?f, \{(Some \circ (const (2 * n, False))) | `initial A\}) \in \langle state-rel \rangle \ list-set-rel$ by autoref

end

concrete-definition complement-initial-7 uses complement-initial-7

schematic-goal complement-accepting-7: (?f, λf . $\forall (p, k, c) \in map$ -to-set f. $\neg c$) $\in state-rel \rightarrow bool-rel$

by *autoref*

concrete-definition complement-accepting-7 uses complement-accepting-7

```
definition complement-7 :: ('label, nat) nbai \Rightarrow nat \Rightarrow ('label, state) nbai where
    complement-7 Ai ni \equiv nbai
     (alphabeti Ai)
     (complement-initial-7 Ai ni)
      (complement-succ-7 Ai)
     (complement-accepting-7)
  lemma complement-7-refine[autoref-rules]:
   assumes (Ai, A) \in \langle Id, Id \rangle nbai-nba-rel
   assumes (ni.
     (OP \ card \ ::: \langle Id \rangle \ ahs\text{-}rel \ bhc \rightarrow nat\text{-}rel) \
     ((OP nodes ::: \langle Id, Id \rangle nbai-nba-rel \rightarrow \langle Id \rangle ahs-rel bhc)  A)) \in nat-rel
   shows (complement-7 Ai ni, (OP complement-4 :::
       \langle Id, Id \rangle nbai-nba-rel \rightarrow \langle Id, state-rel \rangle nbai-nba-rel) A \in \langle Id, state-rel \rangle
nbai-nba-rel
  proof –
   note complement-succ-7-refine
   also note complement-succ-6-refine
   also note complement-succ-5-refine
   finally have 1: (complement-succ-7, complement-succ-4) \in
      \langle Id, Id \rangle nbai-nba-rel \rightarrow Id \rightarrow state-rel \rightarrow \langle state-rel \rangle list-set-rel
       unfolding nres-rel-comp unfolding nres-rel-def unfolding fun-rel-def by
auto
   show ?thesis
     unfolding complement-7-def complement-4-def
     using 1 complement-initial-7.refine complement-accepting-7.refine assms
     unfolding autoref-tag-defs
     by parametricity
 qed
```

 \mathbf{end}

6 Boolean Formulae

```
theory Formula
imports Main
begin
datatype 'a formula =
```

```
False |
True |
Variable 'a |
```

Negation 'a formula | Conjunction 'a formula 'a formula | Disjunction 'a formula 'a formula

primec satisfies :: 'a set \Rightarrow 'a formula \Rightarrow bool where satisfies A False \longleftrightarrow HOL.False | satisfies A True \longleftrightarrow HOL.True | satisfies A (Variable a) $\longleftrightarrow a \in A$ | satisfies A (Negation x) $\longleftrightarrow \neg$ satisfies A x | satisfies A (Conjunction x y) \longleftrightarrow satisfies A x \land satisfies A y | satisfies A (Disjunction x y) \longleftrightarrow satisfies A x \lor satisfies A y

 \mathbf{end}

7 Final Instantiation of Algorithms Related to Complementation

theory Complementation-Final imports Complementation-Implement Formula Transition-Systems-and-Automata.NBA-Translate Transition-Systems-and-Automata.NGBA-Algorithms

HOL-Library. Multiset

 \mathbf{begin}

7.1 Syntax

no-syntax -do-let :: [pttrn, 'a] \Rightarrow do-bind (<(<indent=2 notation=<infix do let>) let - =/ -)> [1000, 13] 13) **syntax** -do-let :: [pttrn, 'a] \Rightarrow do-bind (<(<indent=2 notation=<infix do let>) let - =/ -)> 13)

7.2 Hashcodes on Complement States

definition $hci \ k \equiv uint32$ -of-nat k * 1103515245 + 12345definition $hc \equiv \lambda \ (p, q, b)$. $hci \ p + hci \ q * 31 + (if \ b \ then \ 1 \ else \ 0)$ definition list-hash $xs \equiv fold \ (xor \circ hc) \ xs \ 0$

lemma list-hash-eq: assumes distinct xs distinct ys set xs = set ysshows list-hash xs = list-hash ysproof – have mset (remdups xs) = mset (remdups ys) using assms(3)using set-eq-iff-mset-remdups-eq by blast then have mset xs = mset ys using assms(1, 2) by (simp add: distinct-remdups-id) have fold ($xor \circ hc$) xs = fold ($xor \circ hc$) ysapply (rule fold-multiset-equiv) apply (simp-all add: fun-eq-iff ac-simps)

```
using \langle mset \ xs = mset \ ys \rangle.
```

- then show ?thesis unfolding list-hash-def by simp qed
- **definition** state-hash :: $nat \Rightarrow Complementation-Implement.state \Rightarrow nat where state-hash <math>n \ p \equiv nat$ -of-hashcode (list-hash p) mod n

proof

show [param]: $(gen-equals (Gen-Map.gen-ball (foldli \circ list-map-to-list)) (list-map-lookup (=))$

 $(prod-eq \ (=) \ (\longleftrightarrow)), \ (=)) \in state-rel \rightarrow state-rel \rightarrow bool-rel \ by \ autoref$

show state-hash n xs = state-hash n ys if $xs \in Domain state-rel ys \in Domain state-rel$

 $gen-equals (Gen-Map.gen-ball (foldli \circ list-map-to-list))$

(list-map-lookup (=)) (prod-eq (=) (=)) xs ys for xs ys n

proof –

have 1: distinct (map fst xs) distinct (map fst ys)

using that(1, 2) unfolding list-map-rel-def list-map-invar-def by (auto simp: in-br-conv)

have 2: distinct xs distinct ys using 1 by (auto intro: distinct-mapI)

have $3: (xs, map-of xs) \in state-rel (ys, map-of ys) \in state-rel$

using 1 **unfolding** *list-map-rel-def list-map-invar-def* **by** (*auto simp*: *in-br-conv*)

have 4: (gen-equals (Gen-Map.gen-ball (foldli \circ list-map-to-list)) (list-map-lookup (=))

 $(prod-eq \ (=) \ (\longleftrightarrow))$ xs ys, map-of xs = map-of ys) \in bool-rel using 3 by parametricity

have 5: map-to-set (map-of xs) = map-to-set (map-of ys) using that(3) 4 by simp

have 6: set xs = set ys using map-to-set-map-of 1 5 by blast

show state-hash n xs = state-hash n ys unfolding state-hash-def using list-hash-eq 2 6 by metis

qed

show state-hash $n \ x < n$ if 1 < n for $n \ x$ using that unfolding state-hash-def by simp

qed

7.3 Complementation

schematic-goal complement-impl: assumes [simp]: finite (NBA.nodes A) assumes [autoref-rules]: (Ai, A) $\in \langle Id, nat\text{-rel} \rangle$ nbai-nba-rel shows (?f :: ?'c, op-translate (complement-4 A)) $\in ?R$ by (autoref-monadic (plain)) concrete-definition complement-impl uses complement-impl theorem complement-impl-correct: assumes finite (NBA.nodes A) assumes (Ai, A) $\in \langle Id, nat\text{-rel} \rangle$ nbai-nba-rel shows NBA.language (nbae-nba (nbaei-nbae (complement-impl Ai))) = streams (nba.alphabet A) - NBA.language A using op-translate-language[OF complement-impl.refine[OF assms]] using complement-4-correct[OF assms(1)] by simp

7.4 Language Subset

definition [simp]: op-language-subset $A B \equiv NBA$.language $A \subseteq NBA$.language B

lemmas [autoref-op-pat] = op-language-subset-def[symmetric]

schematic-goal *language-subset-impl*: assumes [simp]: finite (NBA.nodes B) assumes [autoref-rules]: $(Ai, A) \in \langle Id, nat-rel \rangle$ nbai-nba-rel assumes [autoref-rules]: $(Bi, B) \in \langle Id, nat\text{-}rel \rangle$ nbai-nba-rel **shows** (?f :: ?'c, do { let AB' = intersect' A (complement-4 B); ASSERT (finite (NGBA.nodes AB')); RETURN (NGBA.language $AB' = \{\}$) $\}) \in ?R$ **by** (*autoref-monadic* (*plain*)) concrete-definition language-subset-impl uses language-subset-impl **lemma** *language-subset-impl-refine*[*autoref-rules*]: assumes SIDE-PRECOND (finite (NBA.nodes A)) assumes SIDE-PRECOND (finite (NBA.nodes B)) assumes SIDE-PRECOND (nba.alphabet $A \subseteq$ nba.alphabet B) assumes $(Ai, A) \in \langle Id, nat\text{-}rel \rangle$ nbai-nba-rel assumes $(Bi, B) \in \langle Id, nat-rel \rangle$ nbai-nba-rel shows (language-subset-impl Ai Bi, (OP op-language-subset ::: (Id, nat-rel) $nbai-nba-rel \rightarrow (Id, nat-rel)$ $nbai-nba-rel \rightarrow bool-rel)$ Abool-rel proof have (RETURN (language-subset-impl Ai Bi), do { let AB' = intersect' A (complement-4 B); ASSERT (finite (NGBA.nodes AB')); RETURN (NGBA.language $AB' = \{\}$) $\}) \in \langle bool\text{-}rel \rangle \text{ nres-}rel$ using language-subset-impl.refine assms(2, 4, 5) unfolding autoref-tag-defs by this also have (do { let AB' = intersect' A (complement-4 B); ASSERT (finite (NGBA.nodes AB')); RETURN (NGBA.language $AB' = \{\}$) }, RETURN (NBA.language $A \subseteq NBA.language B$)) $\in \langle bool-rel \rangle$ nres-rel

proof refine-vcg

show finite (NGBA.nodes (intersect' A (complement-4 B))) using assms(1,
2) by auto

have 1: NBA.language $A \subseteq$ streams (nba.alphabet B)

using *nba.language-alphabet streams-mono2* assms(3) unfolding *autoref-tag-defs* by *blast*

have 2: NBA.language (complement-4 B) = streams (nba.alphabet B) – NBA.language B

using complement-4-correct assms(2) by auto

show $(NGBA.language (intersect' A (complement-4 B)) = \{\},\$

NBA.language $A \subseteq NBA.language B) \in bool-rel using 1 2 by auto aed$

finally show ?thesis using RETURN-nres-relD unfolding nres-rel-comp by force

qed

7.5 Language Equality

definition [simp]: op-language-equal $A B \equiv NBA$.language A = NBA.language B

lemmas [autoref-op-pat] = op-language-equal-def[symmetric]

schematic-goal language-equal-impl: assumes [simp]: finite (NBA.nodes A) assumes [simp]: finite (NBA.nodes B) **assumes** [simp]: nba.alphabet A = nba.alphabet Bassumes [autoref-rules]: $(Ai, A) \in \langle Id, nat-rel \rangle$ nbai-nba-rel assumes [autoref-rules]: $(Bi, B) \in \langle Id, nat-rel \rangle$ nbai-nba-rel **shows** (?f :: ?'c, NBA.language $A \subseteq NBA.language B \land NBA.language B \subseteq$ $NBA.language A) \in ?R$ by *autoref* concrete-definition language-equal-impl uses language-equal-impl **lemma** *language-equal-impl-refine*[*autoref-rules*]: assumes SIDE-PRECOND (finite (NBA.nodes A)) assumes SIDE-PRECOND (finite (NBA.nodes B)) **assumes** SIDE-PRECOND (nba.alphabet A = nba.alphabet B) assumes $(Ai, A) \in \langle Id, nat\text{-}rel \rangle$ nbai-nba-rel assumes $(Bi, B) \in \langle Id, nat\text{-}rel \rangle$ nbai-nba-rel shows (language-equal-impl Ai Bi, (OP op-language-equal ::: (Id, nat-rel) nbai-nba-rel $\rightarrow (Id, nat-rel)$ nbai-nba-rel \rightarrow bool-rel) $(A \otimes B) \in$ bool-rel using language-equal-impl.refine[OF assms[unfolded autoref-tag-defs]] by auto schematic-goal product-impl: assumes [simp]: finite (NBA.nodes B)

assumes [stimp]: future ((1D)) notation D) assumes [autoref-rules]: $(Ai, A) \in \langle Id, nat-rel \rangle$ nbai-nba-rel assumes [autoref-rules]: $(Bi, B) \in \langle Id, nat-rel \rangle$ nbai-nba-rel shows (?f :: ?'c, do { let AB' = intersect A (complement-4 B); ASSERT (finite (NBA.nodes AB')); op-translate AB' }) ∈ ?R by (autoref-monadic (plain)) concrete-definition product-impl uses product-impl

export-code

```
Set.empty Set.insert Set.member

Inf :: 'a set set \Rightarrow 'a set Sup :: 'a set set \Rightarrow 'a set image Pow set

nat-of-integer integer-of-nat

Variable Negation Conjunction Disjunction satisfies map-formula

nbaei alphabetei initialei transitionei acceptingei

nbae-nba-impl complement-impl language-equal-impl product-impl

in SML module-name Complementation file-prefix Complementation
```

 \mathbf{end}

8 Build and test exported program with MLton

theory Complementation-Build imports Complementation-Final begin

external-file <code/Autool.mlb> external-file <code/Prelude.sml> external-file <code/Autool.sml>

end

References

[1] O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak. *ACM Trans. Comput. Logic*, 2(3):408–429, July 2001.