
Büchi Complementation

Julian Brunner

March 17, 2025

Abstract

This entry provides a verified implementation of rank-based Büchi
Complementation [1]. The verification is done in three steps:

1. Definition of odd rankings and proof that an automaton rejects
a word iff there exists an odd ranking for it.

2. Definition of the complement automaton and proof that it accepts
exactly those words for which there is an odd ranking.

3. Verified implementation of the complement automaton using the
Isabelle Collections Framework.

Contents
1 Alternating Function Iteration 2

2 Run Graphs 3

3 Rankings 7
3.1 Rankings . 8
3.2 Ranking Implies Word not in Language 8
3.3 Word not in Language Implies Ranking 10

3.3.1 Removal of Endangered Nodes 10
3.3.2 Removal of Safe Nodes 10
3.3.3 Run Graph Interation 11

3.4 Node Ranks . 16
3.5 Correctness Theorem . 18

4 Complementation 18
4.1 Level Rankings and Complementation States 18
4.2 Word in Complement Language Implies Ranking 21
4.3 Ranking Implies Word in Complement Language 25
4.4 Correctness Theorem . 32

1

5 Complementation Implementation 32
5.1 Phase 1 . 32
5.2 Phase 2 . 37
5.3 Phase 3 . 39
5.4 Phase 4 . 41
5.5 Phase 5 . 47
5.6 Phase 6 . 49
5.7 Phase 7 . 50

6 Boolean Formulae 54

7 Final Instantiation of Algorithms Related to Complementa-
tion 55
7.1 Syntax . 55
7.2 Hashcodes on Complement States 55
7.3 Complementation . 56
7.4 Language Subset . 57
7.5 Language Equality . 58

8 Build and test exported program with MLton 59

1 Alternating Function Iteration
theory Alternate
imports Main
begin

primrec alternate :: (′a ⇒ ′a) ⇒ (′a ⇒ ′a) ⇒ nat ⇒ (′a ⇒ ′a) where
alternate f g 0 = id | alternate f g (Suc k) = alternate g f k ◦ f

lemma alternate-Suc[simp]: alternate f g (Suc k) = (if even k then f else g) ◦
alternate f g k

proof (induct k arbitrary: f g)
case (0)
show ?case by simp

next
case (Suc k)
have alternate f g (Suc (Suc k)) = alternate g f (Suc k) ◦ f by auto
also have . . . = (if even k then g else f) ◦ (alternate g f k ◦ f) unfolding Suc

by auto
also have . . . = (if even (Suc k) then f else g) ◦ alternate f g (Suc k) by auto
finally show ?case by this

qed

declare alternate.simps(2)[simp del]

lemma alternate-antimono:

2

assumes
∧

x. f x ≤ x
∧

x. g x ≤ x
shows antimono (alternate f g)

proof
fix k l :: nat
assume 1 : k ≤ l
obtain n where 2 : l = k + n using le-Suc-ex 1 by auto
have 3 : alternate f g (k + n) ≤ alternate f g k
proof (induct n)

case (0)
show ?case by simp

next
case (Suc n)
have alternate f g (k + Suc n) ≤ alternate f g (k + n) using assms by (auto

intro: le-funI)
also have . . . ≤ alternate f g k using Suc by this
finally show ?case by this

qed
show alternate f g l ≤ alternate f g k using 3 unfolding 2 by this

qed

end

2 Run Graphs
theory Graph
imports Transition-Systems-and-Automata.NBA
begin

type-synonym ′state node = nat × ′state

abbreviation ginitial A ≡ {0} × initial A
abbreviation gaccepting A ≡ accepting A ◦ snd

global-interpretation graph: transition-system-initial
const
λ u (k, p). w !! k ∈ alphabet A ∧ u ∈ {Suc k} × transition A (w !! k) p ∩ V
λ v. v ∈ ginitial A ∩ V
for A w V
defines

gpath = graph.path and grun = graph.run and
greachable = graph.reachable and gnodes = graph.nodes

by this

We disable rules that are degenerate due to execute = (λx -. x).
declare graph.reachable.execute[rule del]
declare graph.nodes.execute[rule del]

abbreviation gtarget ≡ graph.target
abbreviation gstates ≡ graph.states

3

abbreviation gtrace ≡ graph.trace

abbreviation gsuccessors :: (′label, ′state) nba ⇒ ′label stream ⇒
′state node set ⇒ ′state node ⇒ ′state node set where
gsuccessors A w V ≡ graph.successors TYPE(′label) w A V

abbreviation gusuccessors A w ≡ gsuccessors A w UNIV
abbreviation gupath A w ≡ gpath A w UNIV
abbreviation gurun A w ≡ grun A w UNIV
abbreviation gureachable A w ≡ greachable A w UNIV
abbreviation gunodes A w ≡ gnodes A w UNIV

lemma gtarget-alt-def : gtarget r v = last (v # r) using fold-const by this
lemma gstates-alt-def : gstates r v = r by simp
lemma gtrace-alt-def : gtrace r v = r by simp

lemma gpath-elim[elim?]:
assumes gpath A w V s v
obtains r k p
where s = [Suc k ..< Suc k + length r] || r v = (k, p)

proof −
obtain t r where 1 : s = t || r length t = length r

using zip-map-fst-snd[of s] by (metis length-map)
obtain k p where 2 : v = (k, p) by force
have 3 : t = [Suc k ..< Suc k + length r]
using assms 1 2
proof (induct arbitrary: t r k p)

case (nil v)
then show ?case by (metis add-0-right le-add1 length-0-conv length-zip

min.idem upt-conv-Nil)
next

case (cons u v s)
have 1 : t || r = (hd t, hd r) # (tl t || tl r)
by (metis cons.prems(1) hd-Cons-tl neq-Nil-conv zip.simps(1) zip-Cons-Cons

zip-Nil)
have 2 : s = tl t || tl r using cons 1 by simp

have t = hd t # tl t using cons(4) by (metis hd-Cons-tl list.simps(3) zip-Nil)
also have hd t = Suc k using 1 cons.hyps(1) cons.prems(1) cons.prems(3)

by auto
also have tl t = [Suc (Suc k) ..< Suc (Suc k) + length (tl r)]

using cons(3)[OF 2] using 1 ‹hd t = Suc k› cons.prems(1) cons.prems(2)
by auto

finally show ?case using cons.prems(2) upt-rec by auto
qed
show ?thesis using that 1 2 3 by simp

qed

lemma gpath-path[symmetric]: path A (stake (length r) (sdrop k w) || r) p ←→
gpath A w UNIV ([Suc k ..< Suc k + length r] || r) (k, p)

4

proof (induct r arbitrary: k p)
case (Nil)
show ?case by auto

next
case (Cons q r)
have 1 : path A (stake (length r) (sdrop (Suc k) w) || r) q ←→

gpath A w UNIV ([Suc (Suc k) ..< Suc k + length (q # r)] || r) (Suc k, q)
using Cons[of Suc k q] by simp

have stake (length (q # r)) (sdrop k w) || q # r =
(w !! k, q) # (stake (length r) (sdrop (Suc k) w) || r) by simp

also have path A . . . p ←→
gpath A w UNIV ((Suc k, q) # ([Suc (Suc k) ..< Suc k + length (q # r)] ||

r)) (k, p)
using 1 by auto

also have (Suc k, q) # ([Suc (Suc k) ..< Suc k + length (q # r)] || r) =
Suc k # [Suc (Suc k) ..< Suc k + length (q # r)] || q # r unfolding

zip-Cons-Cons by rule
also have Suc k # [Suc (Suc k) ..< Suc k + length (q # r)] = [Suc k ..< Suc

k + length (q # r)]
by (simp add: upt-rec)

finally show ?case by this
qed

lemma grun-elim[elim?]:
assumes grun A w V s v
obtains r k p
where s = fromN (Suc k) ||| r v = (k, p)

proof −
obtain t r where 1 : s = t ||| r using szip-smap by metis
obtain k p where 2 : v = (k, p) by force
have 3 : t = fromN (Suc k)

using assms unfolding 1 2
by (coinduction arbitrary: t r k p) (force iff : eq-scons elim: graph.run.cases)

show ?thesis using that 1 2 3 by simp
qed

lemma run-grun:
assumes run A (sdrop k w ||| r) p
shows gurun A w (fromN (Suc k) ||| r) (k, p)
using assms by (coinduction arbitrary: k p r) (auto elim: nba.run.cases)

lemma grun-run:
assumes grun A w V (fromN (Suc k) ||| r) (k, p)
shows run A (sdrop k w ||| r) p

proof −
have 2 : ∃ ka wa. sdrop k (stl w :: ′a stream) = sdrop ka wa ∧ P ka wa if P

(Suc k) w for P k w
using that by (metis sdrop.simps(2))

show ?thesis using assms by (coinduction arbitrary: k p w r) (auto intro!: 2

5

elim: graph.run.cases)
qed

lemma greachable-reachable:
fixes l q k p
defines u ≡ (l, q)
defines v ≡ (k, p)
assumes u ∈ greachable A w V v
shows q ∈ reachable A p

using assms(3 , 1 , 2)
proof (induct arbitrary: l q k p)

case reflexive
then show ?case by auto

next
case (execute u)
have 1 : q ∈ successors A (snd u) using execute by auto
have snd u ∈ reachable A p using execute by auto
also have q ∈ reachable A (snd u) using 1 by blast
finally show ?case by this

qed

lemma gnodes-nodes: gnodes A w V ⊆ UNIV × nodes A
proof

fix v
assume v ∈ gnodes A w V
then show v ∈ UNIV × nodes A by induct auto

qed

lemma gpath-subset:
assumes gpath A w V r v
assumes set (gstates r v) ⊆ U
shows gpath A w U r v
using assms by induct auto

lemma grun-subset:
assumes grun A w V r v
assumes sset (gtrace r v) ⊆ U
shows grun A w U r v

using assms
proof (coinduction arbitrary: r v)

case (run a s r v)
have 1 : grun A w V s a using run(1 , 2) by fastforce
have 2 : a ∈ gusuccessors A w v using run(1 , 2) by fastforce
show ?case using 1 2 run(1 , 3) by force

qed

lemma greachable-subset: greachable A w V v ⊆ insert v V
proof

fix u
assume u ∈ greachable A w V v

6

then show u ∈ insert v V by induct auto
qed

lemma gtrace-infinite:
assumes grun A w V r v
shows infinite (sset (gtrace r v))

using assms by (metis grun-elim gtrace-alt-def infinite-Ici sset-fromN sset-szip-finite)

lemma infinite-greachable-gtrace:
assumes grun A w V r v
assumes u ∈ sset (gtrace r v)
shows infinite (greachable A w V u)

proof −
obtain i where 1 : u = gtrace r v !! i using sset-range imageE assms(2) by

metis
have 2 : gtarget (stake (Suc i) r) v = u unfolding 1 sscan-snth by rule
have infinite (sset (sdrop (Suc i) (gtrace r v)))

using gtrace-infinite[OF assms(1)]
by (metis List.finite-set finite-Un sset-shift stake-sdrop)

also have sdrop (Suc i) (gtrace r v) = gtrace (sdrop (Suc i) r) (gtarget (stake
(Suc i) r) v)

by simp
also have sset . . . ⊆ greachable A w V u

using assms(1) 2 by (metis graph.reachable.reflexive graph.reachable-trace
graph.run-sdrop)

finally show ?thesis by this
qed

lemma finite-nodes-gsuccessors:
assumes finite (nodes A)
assumes v ∈ gunodes A w
shows finite (gusuccessors A w v)

proof −
have gusuccessors A w v ⊆ gureachable A w v by rule
also have . . . ⊆ gunodes A w using assms(2) by blast
also have . . . ⊆ UNIV × nodes A using gnodes-nodes by this
finally have 3 : gusuccessors A w v ⊆ UNIV × nodes A by this
have gusuccessors A w v ⊆ {Suc (fst v)} × nodes A using 3 by auto
also have finite . . . using assms(1) by simp
finally show ?thesis by this

qed

end

3 Rankings
theory Ranking
imports

Alternate

7

Graph
begin

3.1 Rankings
type-synonym ′state ranking = ′state node ⇒ nat

definition ranking :: (′label, ′state) nba ⇒ ′label stream ⇒ ′state ranking ⇒ bool
where

ranking A w f ≡
(∀ v ∈ gunodes A w. f v ≤ 2 ∗ card (nodes A)) ∧
(∀ v ∈ gunodes A w. ∀ u ∈ gusuccessors A w v. f u ≤ f v) ∧
(∀ v ∈ gunodes A w. gaccepting A v −→ even (f v)) ∧
(∀ v ∈ gunodes A w. ∀ r k. gurun A w r v −→ smap f (gtrace r v) = sconst

k −→ odd k)

3.2 Ranking Implies Word not in Language
lemma ranking-stuck:

assumes ranking A w f
assumes v ∈ gunodes A w gurun A w r v
obtains n k
where smap f (gtrace (sdrop n r) (gtarget (stake n r) v)) = sconst k

proof −
have 0 : f u ≤ f v if v ∈ gunodes A w u ∈ gusuccessors A w v for v u

using assms(1) that unfolding ranking-def by auto
have 1 : shd (v ## gtrace r v) ∈ gunodes A w using assms(2) by auto
have 2 : sdescending (smap f (v ## gtrace r v))
using 1 assms(3)
proof (coinduction arbitrary: r v rule: sdescending.coinduct)

case sdescending
obtain u s where 1 : r = u ## s using stream.exhaust by blast
have 2 : v ∈ gunodes A w using sdescending(1) by simp
have 3 : gurun A w (u ## s) v using sdescending(2) 1 by auto
have 4 : u ∈ gusuccessors A w v using 3 by auto
have 5 : u ∈ gureachable A w v using graph.reachable-successors 4 by blast
show ?case
unfolding 1
proof (intro exI conjI disjI1)

show f u ≤ f v using 0 2 4 by this
show shd (u ## gtrace s u) ∈ gunodes A w using 2 5 by auto
show gurun A w s u using 3 by auto

qed auto
qed
obtain s k where 3 : smap f (v ## gtrace r v) = s @− sconst k

using sdescending-stuck[OF 2] by metis
have gtrace (sdrop (Suc (length s)) r) (gtarget (stake (Suc (length s)) r) v) =

sdrop (Suc (length s)) (gtrace r v)
using sscan-sdrop by rule

also have smap f . . . = sdrop (length s) (smap f (v ## gtrace r v))

8

by (metis 3 id-apply sdrop-simps(2) sdrop-smap sdrop-stl shift-eq siter-
ate.simps(2) stream.sel(2))

also have . . . = sconst k unfolding 3 using shift-eq by metis
finally show ?thesis using that by blast

qed

lemma ranking-stuck-odd:
assumes ranking A w f
assumes v ∈ gunodes A w gurun A w r v
obtains n
where Ball (sset (smap f (gtrace (sdrop n r) (gtarget (stake n r) v)))) odd

proof −
obtain n k where 1 : smap f (gtrace (sdrop n r) (gtarget (stake n r) v)) =

sconst k
using ranking-stuck assms by this

have 2 : gtarget (stake n r) v ∈ gunodes A w
using assms(2 , 3) by (simp add: graph.nodes-target graph.run-stake)

have 3 : gurun A w (sdrop n r) (gtarget (stake n r) v)
using assms(2 , 3) by (simp add: graph.run-sdrop)

have 4 : odd k using 1 2 3 assms(1) unfolding ranking-def by meson
have 5 : Ball (sset (smap f (gtrace (sdrop n r) (gtarget (stake n r) v)))) odd

unfolding 1 using 4 by simp
show ?thesis using that 5 by this

qed

lemma ranking-language:
assumes ranking A w f
shows w /∈ language A

proof
assume 1 : w ∈ language A
obtain r p where 2 : run A (w ||| r) p p ∈ initial A infs (accepting A) (p ##

r) using 1 by rule
let ?r = fromN 1 ||| r
let ?v = (0 , p)
have 3 : ?v ∈ gunodes A w gurun A w ?r ?v using 2 (1 , 2) by (auto intro:

run-grun)

obtain n where 4 : Ball (sset (smap f (gtrace (sdrop n ?r) (gtarget (stake n
?r) ?v)))) odd

using ranking-stuck-odd assms 3 by this
let ?s = stake n ?r
let ?t = sdrop n ?r
let ?u = gtarget ?s ?v

have sset (gtrace ?t ?u) ⊆ gureachable A w ?v
proof (intro graph.reachable-trace graph.reachable-target graph.reachable.reflexive)

show gupath A w ?s ?v using graph.run-stake 3 (2) by this
show gurun A w ?t ?u using graph.run-sdrop 3 (2) by this

qed

9

also have . . . ⊆ gunodes A w using 3 (1) by blast
finally have 7 : sset (gtrace ?t ?u) ⊆ gunodes A w by this
have 8 :

∧
p. p ∈ gunodes A w =⇒ gaccepting A p =⇒ even (f p)

using assms unfolding ranking-def by auto
have 9 :

∧
p. p ∈ sset (gtrace ?t ?u) =⇒ gaccepting A p =⇒ even (f p) using

7 8 by auto

have 19 : infs (accepting A) (smap snd ?r) using 2 (3) by simp
have 18 : infs (gaccepting A) ?r using 19 by simp
have 17 : infs (gaccepting A) (gtrace ?r ?v) using 18 unfolding gtrace-alt-def

by this
have 16 : infs (gaccepting A) (gtrace (?s @− ?t) ?v) using 17 unfolding

stake-sdrop by this
have 15 : infs (gaccepting A) (gtrace ?t ?u) using 16 by simp
have 13 : infs (even ◦ f) (gtrace ?t ?u) using infs-mono[OF - 15] 9 by simp
have 12 : infs even (smap f (gtrace ?t ?u)) using 13 by (simp add: comp-def)
have 11 : Bex (sset (smap f (gtrace ?t ?u))) even using 12 infs-any by metis

show False using 4 11 by auto
qed

3.3 Word not in Language Implies Ranking
3.3.1 Removal of Endangered Nodes

definition clean :: (′label, ′state) nba ⇒ ′label stream ⇒ ′state node set ⇒ ′state
node set where

clean A w V ≡ {v ∈ V . infinite (greachable A w V v)}

lemma clean-decreasing: clean A w V ⊆ V unfolding clean-def by auto
lemma clean-successors:

assumes v ∈ V u ∈ gusuccessors A w v
shows u ∈ clean A w V =⇒ v ∈ clean A w V

proof −
assume 1 : u ∈ clean A w V
have 2 : u ∈ V infinite (greachable A w V u) using 1 unfolding clean-def by

auto
have 3 : u ∈ greachable A w V v using graph.reachable.execute assms(2) 2 (1)

by blast
have 4 : greachable A w V u ⊆ greachable A w V v using 3 by blast

have 5 : infinite (greachable A w V v) using 2 (2) 4 by (simp add: infinite-super)
show v ∈ clean A w V unfolding clean-def using assms(1) 5 by simp

qed

3.3.2 Removal of Safe Nodes
definition prune :: (′label, ′state) nba ⇒ ′label stream ⇒ ′state node set ⇒ ′state

node set where
prune A w V ≡ {v ∈ V . ∃ u ∈ greachable A w V v. gaccepting A u}

10

lemma prune-decreasing: prune A w V ⊆ V unfolding prune-def by auto
lemma prune-successors:

assumes v ∈ V u ∈ gusuccessors A w v
shows u ∈ prune A w V =⇒ v ∈ prune A w V

proof −
assume 1 : u ∈ prune A w V
have 2 : u ∈ V ∃ x ∈ greachable A w V u. gaccepting A x using 1 unfolding

prune-def by auto
have 3 : u ∈ greachable A w V v using graph.reachable.execute assms(2) 2 (1)

by blast
have 4 : greachable A w V u ⊆ greachable A w V v using 3 by blast
show v ∈ prune A w V unfolding prune-def using assms(1) 2 (2) 4 by auto

qed

3.3.3 Run Graph Interation
definition graph :: (′label, ′state) nba ⇒ ′label stream ⇒ nat ⇒ ′state node set

where
graph A w k ≡ alternate (clean A w) (prune A w) k (gunodes A w)

abbreviation level A w k l ≡ {v ∈ graph A w k. fst v = l}

lemma graph-0 [simp]: graph A w 0 = gunodes A w unfolding graph-def by
simp

lemma graph-Suc[simp]: graph A w (Suc k) = (if even k then clean A w else
prune A w) (graph A w k)

unfolding graph-def by simp

lemma graph-antimono: antimono (graph A w)
using alternate-antimono clean-decreasing prune-decreasing
unfolding monotone-def le-fun-def graph-def
by metis

lemma graph-nodes: graph A w k ⊆ gunodes A w using graph-0 graph-antimono
le0 antimonoD by metis

lemma graph-successors:
assumes v ∈ gunodes A w u ∈ gusuccessors A w v
shows u ∈ graph A w k =⇒ v ∈ graph A w k

using assms
proof (induct k arbitrary: u v)

case 0
show ?case using 0 (2) by simp

next
case (Suc k)
have 1 : v ∈ graph A w k using Suc using antimono-iff-le-Suc graph-antimono

rev-subsetD by blast
show ?case using Suc(2) clean-successors[OF 1 Suc(4)] prune-successors[OF

1 Suc(4)] by auto
qed

11

lemma graph-level-finite:
assumes finite (nodes A)
shows finite (level A w k l)

proof −
have level A w k l ⊆ {v ∈ gunodes A w. fst v = l} by (simp add: graph-nodes

subset-CollectI)
also have {v ∈ gunodes A w. fst v = l} ⊆ {l} × nodes A using gnodes-nodes

by force
also have finite ({l} × nodes A) using assms(1) by simp
finally show ?thesis by this

qed

lemma find-safe:
assumes w /∈ language A
assumes V 6= {} V ⊆ gunodes A w
assumes

∧
v. v ∈ V =⇒ gsuccessors A w V v 6= {}

obtains v
where v ∈ V ∀ u ∈ greachable A w V v. ¬ gaccepting A u

proof (rule ccontr)
assume 1 : ¬ thesis
have 2 :

∧
v. v ∈ V =⇒ ∃ u ∈ greachable A w V v. gaccepting A u using that

1 by auto
have 3 :

∧
r v. v ∈ initial A =⇒ run A (w ||| r) v =⇒ fins (accepting A) r

using assms(1) by auto
obtain v where 4 : v ∈ V using assms(2) by force
obtain x where 5 : x ∈ greachable A w V v gaccepting A x using 2 4 by blast
obtain y where 50 : gpath A w V y v x = gtarget y v using 5 (1) by rule
obtain r where 6 : grun A w V r x infs (λ x. x ∈ V ∧ gaccepting A x) r
proof (rule graph.recurring-condition)

show x ∈ V ∧ gaccepting A x using greachable-subset 4 5 by blast
next

fix v
assume 1 : v ∈ V ∧ gaccepting A v
obtain v ′ where 20 : v ′ ∈ gsuccessors A w V v using assms(4) 1 by (meson

IntE equals0I)
have 21 : v ′ ∈ V using 20 by auto
have 22 : ∃ u ∈ greachable A w V v ′. u ∈ V ∧ gaccepting A u

using greachable-subset 2 21 by blast
obtain r where 30 : gpath A w V r v ′ gtarget r v ′ ∈ V ∧ gaccepting A (gtarget

r v ′)
using 22 by blast

show ∃ r . r 6= [] ∧ gpath A w V r v ∧ gtarget r v ∈ V ∧ gaccepting A (gtarget
r v)

proof (intro exI conjI)
show v ′ # r 6= [] by simp
show gpath A w V (v ′ # r) v using 20 30 by auto
show gtarget (v ′ # r) v ∈ V using 30 by simp
show gaccepting A (gtarget (v ′ # r) v) using 30 by simp

qed

12

qed auto
obtain u where 100 : u ∈ ginitial A v ∈ gureachable A w u using 4 assms(3)

by blast
have 101 : gupath A w y v using gpath-subset 50 (1) subset-UNIV by this
have 102 : gurun A w r x using grun-subset 6 (1) subset-UNIV by this
obtain t where 103 : gupath A w t u v = gtarget t u using 100 (2) by rule
have 104 : gurun A w (t @− y @− r) u using 101 102 103 50 (2) by auto
obtain s q where 7 : t @− y @− r = fromN (Suc 0) ||| s u = (0 , q)

using grun-elim[OF 104] 100 (1) by blast
have 8 : run A (w ||| s) q using grun-run[OF 104 [unfolded 7]] by simp
have 9 : q ∈ initial A using 100 (1) 7 (2) by auto
have 91 : sset (trace (w ||| s) q) ⊆ reachable A q

using nba.reachable-trace nba.reachable.reflexive 8 by this
have 10 : fins (accepting A) s using 3 9 8 by this
have 12 : infs (gaccepting A) r using infs-mono[OF - 6 (2)] by simp
have s = smap snd (t @− y @− r) unfolding 7 (1) by simp
also have infs (accepting A) . . . using 12 by (simp add: comp-def)
finally have 13 : infs (accepting A) s by this
show False using 10 13 by simp

qed

lemma remove-run:
assumes finite (nodes A) w /∈ language A
assumes V ⊆ gunodes A w clean A w V 6= {}
obtains v r
where

grun A w V r v
sset (gtrace r v) ⊆ clean A w V
sset (gtrace r v) ⊆ − prune A w (clean A w V)

proof −
obtain u where 1 : u ∈ clean A w V ∀ x ∈ greachable A w (clean A w V) u.

¬ gaccepting A x
proof (rule find-safe)

show w /∈ language A using assms(2) by this
show clean A w V 6= {} using assms(4) by this

show clean A w V ⊆ gunodes A w using assms(3) by (meson clean-decreasing
subset-iff)

next
fix v
assume 1 : v ∈ clean A w V
have 2 : v ∈ V using 1 clean-decreasing by blast
have 3 : infinite (greachable A w V v) using 1 clean-def by auto
have gsuccessors A w V v ⊆ gusuccessors A w v by auto
also have finite . . . using 2 assms(1 , 3) finite-nodes-gsuccessors by blast
finally have 4 : finite (gsuccessors A w V v) by this
have 5 : infinite (insert v (

⋃
((greachable A w V) ‘ (gsuccessors A w V v))))

using graph.reachable-step 3 by metis
obtain u where 6 : u ∈ gsuccessors A w V v infinite (greachable A w V u)

using 4 5 by auto

13

have 7 : u ∈ clean A w V using 6 unfolding clean-def by auto
show gsuccessors A w (clean A w V) v 6= {} using 6 (1) 7 by auto

qed auto
have 2 : u ∈ V using 1 (1) unfolding clean-def by auto
have 3 : infinite (greachable A w V u) using 1 (1) unfolding clean-def by simp
have 4 : finite (gsuccessors A w V v) if v ∈ greachable A w V u for v
proof −

have 1 : v ∈ V using that greachable-subset 2 by blast
have gsuccessors A w V v ⊆ gusuccessors A w v by auto
also have finite . . . using 1 assms(1 , 3) finite-nodes-gsuccessors by blast
finally show ?thesis by this

qed
obtain r where 5 : grun A w V r u using graph.koenig[OF 3 4] by this
have 6 : greachable A w V u ⊆ V using 2 greachable-subset by blast
have 7 : sset (gtrace r u) ⊆ V

using graph.reachable-trace[OF graph.reachable.reflexive 5 (1)] 6 by blast
have 8 : sset (gtrace r u) ⊆ clean A w V

unfolding clean-def using 7 infinite-greachable-gtrace[OF 5 (1)] by auto
have 9 : sset (gtrace r u) ⊆ greachable A w (clean A w V) u
using 5 8 by (metis graph.reachable.reflexive graph.reachable-trace grun-subset)
show ?thesis
proof

show grun A w V r u using 5 (1) by this
show sset (gtrace r u) ⊆ clean A w V using 8 by this
show sset (gtrace r u) ⊆ − prune A w (clean A w V)
proof (intro subsetI ComplI)

fix p
assume 10 : p ∈ sset (gtrace r u) p ∈ prune A w (clean A w V)
have 20 : ∃ x ∈ greachable A w (clean A w V) p. gaccepting A x

using 10 (2) unfolding prune-def by auto
have 30 : greachable A w (clean A w V) p ⊆ greachable A w (clean A w V)

u
using 10 (1) 9 by blast

show False using 1 (2) 20 30 by force
qed

qed
qed

lemma level-bounded:
assumes finite (nodes A) w /∈ language A
obtains n
where

∧
l. l ≥ n =⇒ card (level A w (2 ∗ k) l) ≤ card (nodes A) − k

proof (induct k arbitrary: thesis)
case (0)
show ?case
proof (rule 0)

fix l :: nat
have finite ({l} × nodes A) using assms(1) by simp
also have level A w 0 l ⊆ {l} × nodes A using gnodes-nodes by force

14

also (card-mono) have card . . . = card (nodes A) using assms(1) by simp
finally show card (level A w (2 ∗ 0) l) ≤ card (nodes A) − 0 by simp

qed
next

case (Suc k)
show ?case
proof (cases graph A w (Suc (2 ∗ k)) = {})

case True
have 3 : graph A w (2 ∗ Suc k) = {} using True prune-decreasing by simp

blast
show ?thesis using Suc(2) 3 by simp

next
case False
obtain v r where 1 :

grun A w (graph A w (2 ∗ k)) r v
sset (gtrace r v) ⊆ graph A w (Suc (2 ∗ k))
sset (gtrace r v) ⊆ − graph A w (Suc (Suc (2 ∗ k)))

proof (rule remove-run)
show finite (nodes A) w /∈ language A using assms by this
show clean A w (graph A w (2 ∗ k)) 6= {} using False by simp
show graph A w (2 ∗ k) ⊆ gunodes A w using graph-nodes by this

qed auto
obtain l q where 2 : v = (l, q) by force
obtain n where 90 :

∧
l. n ≤ l =⇒ card (level A w (2 ∗ k) l) ≤ card (nodes

A) − k
using Suc(1) by blast

show ?thesis
proof (rule Suc(2))

fix j
assume 100 : n + Suc l ≤ j
have 6 : graph A w (Suc (Suc (2 ∗ k))) ⊆ graph A w (Suc (2 ∗ k))

using graph-antimono antimono-iff-le-Suc by blast
have 101 : gtrace r v !! (j − Suc l) ∈ graph A w (Suc (2 ∗ k)) using 1 (2)

snth-sset by auto
have 102 : gtrace r v !! (j − Suc l) /∈ graph A w (Suc (Suc (2 ∗ k))) using

1 (3) snth-sset by blast
have 103 : gtrace r v !! (j − Suc l) ∈ level A w (Suc (2 ∗ k)) j

using 1 (1) 100 101 2 by (auto elim: grun-elim)
have 104 : gtrace r v !! (j − Suc l) /∈ level A w (Suc (Suc (2 ∗ k))) j using

100 102 by simp
have level A w (2 ∗ Suc k) j = level A w (Suc (Suc (2 ∗ k))) j by simp
also have . . . ⊂ level A w (Suc (2 ∗ k)) j using 103 104 6 by blast
also have . . . ⊆ level A w (2 ∗ k) j by (simp add: Collect-mono clean-def)
finally have 105 : level A w (2 ∗ Suc k) j ⊂ level A w (2 ∗ k) j by this
have card (level A w (2 ∗ Suc k) j) < card (level A w (2 ∗ k) j)

using assms(1) 105 by (simp add: graph-level-finite psubset-card-mono)
also have . . . ≤ card (nodes A) − k using 90 100 by simp
finally show card (level A w (2 ∗ Suc k) j) ≤ card (nodes A) − Suc k by

simp

15

qed
qed

qed
lemma graph-empty:

assumes finite (nodes A) w /∈ language A
shows graph A w (Suc (2 ∗ card (nodes A))) = {}

proof −
obtain n where 1 :

∧
l. l ≥ n =⇒ card (level A w (2 ∗ card (nodes A)) l) = 0

using level-bounded[OF assms(1 , 2), of card (nodes A)] by auto
have graph A w (2 ∗ card (nodes A)) =
(
⋃

l ∈ {..< n}. level A w (2 ∗ card (nodes A)) l) ∪
(
⋃

l ∈ {n ..}. level A w (2 ∗ card (nodes A)) l)
by auto

also have (
⋃

l ∈ {n ..}. level A w (2 ∗ card (nodes A)) l) = {}
using graph-level-finite assms(1) 1 by fastforce

also have finite ((
⋃

l ∈ {..< n}. level A w (2 ∗ card (nodes A)) l) ∪ {})
using graph-level-finite assms(1) by auto

finally have 100 : finite (graph A w (2 ∗ card (nodes A))) by this
have 101 : finite (greachable A w (graph A w (2 ∗ card (nodes A))) v) for v

using 100 greachable-subset[of A w graph A w (2 ∗ card (nodes A)) v]
using finite-insert infinite-super by auto

show ?thesis using 101 by (simp add: clean-def)
qed
lemma graph-le:

assumes finite (nodes A) w /∈ language A
assumes v ∈ graph A w k
shows k ≤ 2 ∗ card (nodes A)
using graph-empty graph-antimono assms
by (metis Suc-leI empty-iff monotone-def not-le-imp-less rev-subsetD)

3.4 Node Ranks
definition rank :: (′label, ′state) nba ⇒ ′label stream ⇒ ′state node ⇒ nat where

rank A w v ≡ GREATEST k. v ∈ graph A w k

lemma rank-member :
assumes finite (nodes A) w /∈ language A v ∈ gunodes A w
shows v ∈ graph A w (rank A w v)

unfolding rank-def
proof (rule GreatestI-nat)

show v ∈ graph A w 0 using assms(3) by simp
show k ≤ 2 ∗ card (nodes A) if v ∈ graph A w k for k

using graph-le assms(1 , 2) that by blast
qed
lemma rank-removed:

assumes finite (nodes A) w /∈ language A
shows v /∈ graph A w (Suc (rank A w v))

proof
assume v ∈ graph A w (Suc (rank A w v))

16

then have 2 : Suc (rank A w v) ≤ rank A w v
unfolding rank-def using Greatest-le-nat graph-le assms by metis

then show False by auto
qed
lemma rank-le:

assumes finite (nodes A) w /∈ language A
assumes v ∈ gunodes A w u ∈ gusuccessors A w v
shows rank A w u ≤ rank A w v

unfolding rank-def
proof (rule Greatest-le-nat)

have 1 : u ∈ gureachable A w v using graph.reachable-successors assms(4) by
blast

have 2 : u ∈ gunodes A w using assms(3) 1 by auto
show v ∈ graph A w (GREATEST k. u ∈ graph A w k)
unfolding rank-def [symmetric]
proof (rule graph-successors)

show v ∈ gunodes A w using assms(3) by this
show u ∈ gusuccessors A w v using assms(4) by this
show u ∈ graph A w (rank A w u) using rank-member assms(1 , 2) 2 by this

qed
show k ≤ 2 ∗ card (nodes A) if v ∈ graph A w k for k

using graph-le assms(1 , 2) that by blast
qed

lemma language-ranking:
assumes finite (nodes A) w /∈ language A
shows ranking A w (rank A w)

unfolding ranking-def
proof (intro conjI ballI allI impI)

fix v
assume 1 : v ∈ gunodes A w
have 2 : v ∈ graph A w (rank A w v) using rank-member assms 1 by this
show rank A w v ≤ 2 ∗ card (nodes A) using graph-le assms 2 by this

next
fix v u
assume 1 : v ∈ gunodes A w u ∈ gusuccessors A w v
show rank A w u ≤ rank A w v using rank-le assms 1 by this

next
fix v
assume 1 : v ∈ gunodes A w gaccepting A v
have 2 : v ∈ graph A w (rank A w v) using rank-member assms 1 (1) by this
have 3 : v /∈ graph A w (Suc (rank A w v)) using rank-removed assms by this
have 4 : v ∈ prune A w (graph A w (rank A w v)) using 2 1 (2) unfolding

prune-def by auto
have 5 : graph A w (Suc (rank A w v)) 6= prune A w (graph A w (rank A w v))

using 3 4 by blast
show even (rank A w v) using 5 by auto

next
fix v r k

17

assume 1 : v ∈ gunodes A w gurun A w r v smap (rank A w) (gtrace r v) =
sconst k

have sset (gtrace r v) ⊆ gureachable A w v
using 1 (2) by (metis graph.reachable.reflexive graph.reachable-trace)

then have 6 : sset (gtrace r v) ⊆ gunodes A w using 1 (1) by blast
have 60 : rank A w ‘ sset (gtrace r v) ⊆ {k}

using 1 (3) by (metis equalityD1 sset-sconst stream.set-map)
have 50 : sset (gtrace r v) ⊆ graph A w k

using rank-member [OF assms] subsetD[OF 6] 60 unfolding image-subset-iff
by auto

have 70 : grun A w (graph A w k) r v using grun-subset 1 (2) 50 by this
have 7 : sset (gtrace r v) ⊆ clean A w (graph A w k)

unfolding clean-def using 50 infinite-greachable-gtrace[OF 70] by auto
have 8 : sset (gtrace r v) ∩ graph A w (Suc k) = {} using rank-removed[OF

assms] 60 by blast
have 9 : sset (gtrace r v) 6= {} using stream.set-sel(1) by auto
have 10 : graph A w (Suc k) 6= clean A w (graph A w k) using 7 8 9 by blast
show odd k using 10 unfolding graph-Suc by auto

qed

3.5 Correctness Theorem
theorem language-ranking-iff :

assumes finite (nodes A)
shows w /∈ language A ←→ (∃ f . ranking A w f)
using ranking-language language-ranking assms by blast

end

4 Complementation
theory Complementation
imports

Transition-Systems-and-Automata.Maps
Ranking

begin

4.1 Level Rankings and Complementation States
type-synonym ′state lr = ′state ⇀ nat

definition lr-succ :: (′label, ′state) nba ⇒ ′label ⇒ ′state lr ⇒ ′state lr set where
lr-succ A a f ≡ {g.

dom g =
⋃

(transition A a ‘ dom f) ∧
(∀ p ∈ dom f . ∀ q ∈ transition A a p. the (g q) ≤ the (f p)) ∧
(∀ q ∈ dom g. accepting A q −→ even (the (g q)))}

type-synonym ′state st = ′state set

18

definition st-succ :: (′label, ′state) nba ⇒ ′label ⇒ ′state lr ⇒ ′state st ⇒ ′state
st where

st-succ A a g P ≡ {q ∈ if P = {} then dom g else
⋃

(transition A a ‘ P). even
(the (g q))}

type-synonym ′state cs = ′state lr × ′state st

definition complement-succ :: (′label, ′state) nba ⇒ ′label ⇒ ′state cs ⇒ ′state
cs set where

complement-succ A a ≡ λ (f , P). {(g, st-succ A a g P) |g. g ∈ lr-succ A a f }

definition complement :: (′label, ′state) nba ⇒ (′label, ′state cs) nba where
complement A ≡ nba
(alphabet A)
({const (Some (2 ∗ card (nodes A))) |‘ initial A} × {{}})
(complement-succ A)
(λ (f , P). P = {})

lemma dom-nodes:
assumes fP ∈ nodes (complement A)
shows dom (fst fP) ⊆ nodes A
using assms unfolding complement-def complement-succ-def lr-succ-def by

(induct) (auto, blast)
lemma ran-nodes:

assumes fP ∈ nodes (complement A)
shows ran (fst fP) ⊆ {0 .. 2 ∗ card (nodes A)}

using assms
proof induct

case (initial fP)
show ?case
using initial unfolding complement-def by (auto) (metis eq-refl option.inject

ran-restrictD)
next

case (execute fP agQ)
obtain f P where 1 : fP = (f , P) by force
have 2 : ran f ⊆ {0 .. 2 ∗ card (nodes A)} using execute(2) unfolding 1 by

auto
obtain a g Q where 3 : agQ = (a, (g, Q)) using prod-cases3 by this
have 4 : p ∈ dom f =⇒ q ∈ transition A a p =⇒ the (g q) ≤ the (f p) for p q

using execute(3)
unfolding 1 3 complement-def nba.simps complement-succ-def lr-succ-def
by simp

have 8 : dom g =
⋃

((transition A a) ‘ (dom f))
using execute(3)
unfolding 1 3 complement-def nba.simps complement-succ-def lr-succ-def
by simp

show ?case
unfolding 1 3 ran-def
proof safe

19

fix q k
assume 5 : fst (snd (a, (g, Q))) q = Some k
have 6 : q ∈ dom g using 5 by auto
obtain p where 7 : p ∈ dom f q ∈ transition A a p using 6 unfolding 8 by

auto
have k = the (g q) using 5 by auto
also have . . . ≤ the (f p) using 4 7 by this
also have . . . ≤ 2 ∗ card (nodes A) using 2 7 (1) by (simp add: domD ranI

subset-eq)
finally show k ∈ {0 .. 2 ∗ card (nodes A)} by auto

qed
qed
lemma states-nodes:

assumes fP ∈ nodes (complement A)
shows snd fP ⊆ nodes A

using assms
proof induct

case (initial fP)
show ?case using initial unfolding complement-def by auto

next
case (execute fP agQ)
obtain f P where 1 : fP = (f , P) by force
have 2 : P ⊆ nodes A using execute(2) unfolding 1 by auto
obtain a g Q where 3 : agQ = (a, (g, Q)) using prod-cases3 by this
have 11 : a ∈ alphabet A using execute(3) unfolding 3 complement-def by

auto
have 10 : (g, Q) ∈ nodes (complement A) using execute(1 , 3) unfolding 1 3

by auto
have 4 : dom g ⊆ nodes A using dom-nodes[OF 10] by simp
have 5 :

⋃
(transition A a ‘ P) ⊆ nodes A using 2 11 by auto

have 6 : Q ⊆ nodes A
using execute(3)
unfolding 1 3 complement-def nba.simps complement-succ-def st-succ-def
using 4 5
by (auto split: if-splits)

show ?case using 6 unfolding 3 by auto
qed

theorem complement-finite:
assumes finite (nodes A)
shows finite (nodes (complement A))

proof −
let ?lrs = {f . dom f ⊆ nodes A ∧ ran f ⊆ {0 .. 2 ∗ card (nodes A)}}
have 1 : finite ?lrs using finite-set-of-finite-maps ′ assms by auto
let ?states = Pow (nodes A)
have 2 : finite ?states using assms by simp

have nodes (complement A) ⊆ ?lrs × ?states by (force dest: dom-nodes
ran-nodes states-nodes)

also have finite . . . using 1 2 by simp

20

finally show ?thesis by this
qed

lemma complement-trace-snth:
assumes run (complement A) (w ||| r) p
defines m ≡ p ## trace (w ||| r) p
obtains

fst (m !! Suc k) ∈ lr-succ A (w !! k) (fst (m !! k))
snd (m !! Suc k) = st-succ A (w !! k) (fst (m !! Suc k)) (snd (m !! k))

proof
have 1 : r !! k ∈ transition (complement A) (w !! k) (m !! k) using nba.run-snth

assms by force
show fst (m !! Suc k) ∈ lr-succ A (w !! k) (fst (m !! k))
using assms(2) 1 unfolding complement-def complement-succ-def nba.trace-alt-def

by auto
show snd (m !! Suc k) = st-succ A (w !! k) (fst (m !! Suc k)) (snd (m !! k))
using assms(2) 1 unfolding complement-def complement-succ-def nba.trace-alt-def

by auto
qed

4.2 Word in Complement Language Implies Ranking
lemma complement-ranking:

assumes w ∈ language (complement A)
obtains f
where ranking A w f

proof −
obtain r p where 1 :

run (complement A) (w ||| r) p
p ∈ initial (complement A)
infs (accepting (complement A)) (p ## r)
using assms by rule

let ?m = p ## r
obtain 100 :

fst (?m !! Suc k) ∈ lr-succ A (w !! k) (fst (?m !! k))
snd (?m !! Suc k) = st-succ A (w !! k) (fst (?m !! Suc k)) (snd (?m !! k))

for k using complement-trace-snth 1 (1) unfolding nba.trace-alt-def szip-smap-snd
by metis

define f where f ≡ λ (k, q). the (fst (?m !! k) q)
define P where P k ≡ snd (?m !! k) for k
have 2 : snd v ∈ dom (fst (?m !! fst v)) if v ∈ gunodes A w for v
using that
proof induct

case (initial v)
then show ?case using 1 (2) unfolding complement-def by auto

next
case (execute v u)
have snd u ∈

⋃
(transition A (w !! fst v) ‘ dom (fst (?m !! fst v)))

using execute(2 , 3) by auto

21

also have . . . = dom (fst (?m !! Suc (fst v)))
using 100 unfolding lr-succ-def by simp

also have Suc (fst v) = fst u using execute(3) by auto
finally show ?case by this

qed
have 3 : f u ≤ f v if 10 : v ∈ gunodes A w and 11 : u ∈ gusuccessors A w v for

u v
proof −

have 15 : snd u ∈ transition A (w !! fst v) (snd v) using 11 by auto
have 16 : snd v ∈ dom (fst (?m !! fst v)) using 2 10 by this
have f u = the (fst (?m !! fst u) (snd u)) unfolding f-def by (simp add:

case-prod-beta)
also have fst u = Suc (fst v) using 11 by auto
also have the (fst (?m !! . . .) (snd u)) ≤ the (fst (?m !! fst v) (snd v))

using 100 15 16 unfolding lr-succ-def by auto
also have . . . = f v unfolding f-def by (simp add: case-prod-beta)
finally show f u ≤ f v by this

qed
have 4 : ∃ l ≥ k. P l = {} for k
proof −

have 15 : infs (λ (k, P). P = {}) ?m using 1 (3) unfolding complement-def
by auto

obtain l where 17 : l ≥ k snd (?m !! l) = {} using 15 unfolding infs-snth
by force

have 19 : P l = {} unfolding P-def using 17 by auto
show ?thesis using 19 17 (1) by auto

qed
show ?thesis
proof (rule that, unfold ranking-def , intro conjI ballI impI allI)

fix v
assume v ∈ gunodes A w
then show f v ≤ 2 ∗ card (nodes A)
proof induct

case (initial v)
then show ?case using 1 (2) unfolding complement-def f-def by auto

next
case (execute v u)
have f u ≤ f v using 3 [OF execute(1)] execute(3) by simp
also have . . . ≤ 2 ∗ card (nodes A) using execute(2) by this
finally show ?case by this

qed
next

fix v u
assume 10 : v ∈ gunodes A w
assume 11 : u ∈ gusuccessors A w v
show f u ≤ f v using 3 10 11 by this

next
fix v
assume 10 : v ∈ gunodes A w

22

assume 11 : gaccepting A v
show even (f v)
using 10
proof cases

case (initial)
then show ?thesis using 1 (2) unfolding complement-def f-def by auto

next
case (execute u)
have 12 : snd v ∈ dom (fst (?m !! fst v)) using execute graph.nodes.execute

2 by blast
have 12 : snd v ∈ dom (fst (?m !! Suc (fst u))) using 12 execute(2) by auto
have 13 : accepting A (snd v) using 11 by auto
have f v = the (fst (?m !! fst v) (snd v)) unfolding f-def by (simp add:

case-prod-beta)
also have fst v = Suc (fst u) using execute(2) by auto
also have even (the (fst (?m !! Suc (fst u)) (snd v)))

using 100 12 13 unfolding lr-succ-def by simp
finally show ?thesis by this

qed
next

fix v s k
assume 10 : v ∈ gunodes A w
assume 11 : gurun A w s v
assume 12 : smap f (gtrace s v) = sconst k
show odd k
proof

assume 13 : even k
obtain t u where 14 : u ∈ ginitial A gupath A w t u v = gtarget t u using

10 by auto
obtain l where 15 : l ≥ length t P l = {} using 4 by auto
have 30 : gurun A w (t @− s) u using 11 14 by auto
have 21 : fst (gtarget (stake (Suc l) (t @− s)) u) = Suc l for l
unfolding sscan-snth[symmetric] using 30 14 (1) by (auto elim!: grun-elim)
have 17 : snd (gtarget (stake (Suc l + i) (t @− s)) u) ∈ P (Suc l + i) for i
proof (induct i)

case (0)
have 20 : gtarget (stake (Suc l) (t @− s)) u ∈ gunodes A w
using 14 11 by (force simp add: 15 (1) le-SucI graph.run-stake stake-shift)
have snd (gtarget (stake (Suc l) (t @− s)) u) ∈

dom (fst (?m !! fst (gtarget (stake (Suc l) (t @− s)) u)))
using 2 [OF 20] by this

also have fst (gtarget (stake (Suc l) (t @− s)) u) = Suc l using 21 by
this

finally have 22 : snd (gtarget (stake (Suc l) (t @− s)) u) ∈ dom (fst (?m
!! Suc l)) by this

have gtarget (stake (Suc l) (t @− s)) u = gtrace (t @− s) u !! l unfolding
sscan-snth by rule

also have . . . = gtrace s v !! (l − length t) using 15 (1) by simp
also have f . . . = smap f (gtrace s v) !! (l − length t) by simp

23

also have smap f (gtrace s v) = sconst k unfolding 12 by rule
also have sconst k !! (l − length t) = k by simp
finally have 23 : even (f (gtarget (stake (Suc l) (t @− s)) u)) using 13

by simp
have snd (gtarget (stake (Suc l) (t @− s)) u) ∈
{p ∈ dom (fst (?m !! Suc l)). even (f (Suc l, p))}

using 21 22 23 by (metis (mono-tags, lifting) mem-Collect-eq prod.collapse)
also have . . . = st-succ A (w !! l) (fst (?m !! Suc l)) (P l)

unfolding 15 (2) st-succ-def f-def by simp
also have . . . = P (Suc l) using 100 (2) unfolding P-def by rule
finally show ?case by auto

next
case (Suc i)
have 20 : P (Suc l + i) 6= {} using Suc by auto
have 21 : fst (gtarget (stake (Suc l + Suc i) (t @− s)) u) = Suc l + Suc i

using 21 by (simp add: stake-shift)
have gtarget (stake (Suc l + Suc i) (t @− s)) u = gtrace (t @− s) u !! (l

+ Suc i)
unfolding sscan-snth by simp

also have . . . ∈ gusuccessors A w (gtarget (stake (Suc (l + i)) (t @− s))
u)

using graph.run-snth[OF 30 , of l + Suc i] by simp
finally have 220 : snd (gtarget (stake (Suc (Suc l + i)) (t @− s)) u) ∈

transition A (w !! (Suc l + i)) (snd (gtarget (stake (Suc (l + i)) (t @−
s)) u))

using 21 by auto
have 22 : snd (gtarget (stake (Suc l + Suc i) (t @− s)) u) ∈⋃

(transition A (w !! (Suc l + i)) ‘ P (Suc l + i)) using 220 Suc by
auto

have gtarget (stake (Suc l + Suc i) (t @− s)) u = gtrace (t @− s) u !! (l
+ Suc i)

unfolding sscan-snth by simp
also have . . . = gtrace s v !! (l + Suc i − length t) using 15 (1)

by (metis add.commute shift-snth-ge sscan-const trans-le-add2)
also have f . . . = smap f (gtrace s v) !! (l + Suc i − length t) by simp
also have smap f (gtrace s v) = sconst k unfolding 12 by rule
also have sconst k !! (l + Suc i − length t) = k by simp
finally have 23 : even (f (gtarget (stake (Suc l + Suc i) (t @− s)) u))

using 13 by auto
have snd (gtarget (stake (Suc l + Suc i) (t @− s)) u) ∈
{p ∈

⋃
(transition A (w !! (Suc l + i)) ‘ P (Suc l + i)). even (f (Suc

(Suc l + i), p))}
using 21 22 23 by (metis (mono-tags) add-Suc-right mem-Collect-eq

prod.collapse)
also have . . . = st-succ A (w !! (Suc l + i)) (fst (?m !! Suc (Suc l + i)))

(P (Suc l + i))
unfolding st-succ-def f-def using 20 by simp

also have . . . = P (Suc (Suc l + i)) unfolding 100 (2)[folded P-def] by
rule

24

also have . . . = P (Suc l + Suc i) by simp
finally show ?case by this

qed
obtain l ′ where 16 : l ′ ≥ Suc l P l ′ = {} using 4 by auto
show False using 16 17 using nat-le-iff-add by auto

qed
qed

qed

4.3 Ranking Implies Word in Complement Language
definition reach where

reach A w i ≡ {target r p |r p. path A r p ∧ p ∈ initial A ∧ map fst r = stake
i w}

lemma reach-0 [simp]: reach A w 0 = initial A unfolding reach-def by auto
lemma reach-Suc-empty:

assumes w !! n /∈ alphabet A
shows reach A w (Suc n) = {}

proof safe
fix q
assume 1 : q ∈ reach A w (Suc n)
obtain r p where 2 : q = target r p path A r p p ∈ initial A map fst r = stake

(Suc n) w
using 1 unfolding reach-def by blast

have 3 : path A (take n r @ drop n r) p using 2 (2) by simp
have 4 : map fst r = stake n w @ [w !! n] using 2 (4) stake-Suc by auto
have 5 : map snd r = take n (map snd r) @ [q] using 2 (1 , 4) 4

by (metis One-nat-def Suc-inject Suc-neq-Zero Suc-pred append.right-neutral
append-eq-conv-conj drop-map id-take-nth-drop last-ConsR last-conv-nth

length-0-conv
length-map length-stake lessI nba.target-alt-def nba.states-alt-def zero-less-Suc)

have 6 : drop n r = [(w !! n, q)] using 4 5
by (metis append-eq-conv-conj append-is-Nil-conv append-take-drop-id drop-map

length-greater-0-conv length-stake stake-cycle-le stake-invert-Nil
take-map zip-Cons-Cons zip-map-fst-snd)

show q ∈ {} using assms 3 unfolding 6 by auto
qed
lemma reach-Suc-succ:

assumes w !! n ∈ alphabet A
shows reach A w (Suc n) =

⋃
(transition A (w !! n) ‘ reach A w n)

proof safe
fix q
assume 1 : q ∈ reach A w (Suc n)
obtain r p where 2 : q = target r p path A r p p ∈ initial A map fst r = stake

(Suc n) w
using 1 unfolding reach-def by blast

have 3 : path A (take n r @ drop n r) p using 2 (2) by simp
have 4 : map fst r = stake n w @ [w !! n] using 2 (4) stake-Suc by auto

25

have 5 : map snd r = take n (map snd r) @ [q] using 2 (1 , 4) 4
by (metis One-nat-def Suc-inject Suc-neq-Zero Suc-pred append.right-neutral

append-eq-conv-conj drop-map id-take-nth-drop last-ConsR last-conv-nth
length-0-conv

length-map length-stake lessI nba.target-alt-def nba.states-alt-def zero-less-Suc)
have 6 : drop n r = [(w !! n, q)] using 4 5
by (metis append-eq-conv-conj append-is-Nil-conv append-take-drop-id drop-map

length-greater-0-conv length-stake stake-cycle-le stake-invert-Nil
take-map zip-Cons-Cons zip-map-fst-snd)

show q ∈
⋃
((transition A (w !! n) ‘ (reach A w n)))

unfolding reach-def
proof (intro UN-I CollectI exI conjI)

show target (take n r) p = target (take n r) p by rule
show path A (take n r) p using 3 by blast
show p ∈ initial A using 2 (3) by this
show map fst (take n r) = stake n w using 2 by (metis length-stake lessI

nat.distinct(1)
stake-cycle-le stake-invert-Nil take-map take-stake)

show q ∈ transition A (w !! n) (target (take n r) p) using 3 unfolding 6
by auto

qed
next

fix p q
assume 1 : p ∈ reach A w n q ∈ transition A (w !! n) p
obtain r x where 2 : p = target r x path A r x x ∈ initial A map fst r = stake

n w
using 1 (1) unfolding reach-def by blast

show q ∈ reach A w (Suc n)
unfolding reach-def
proof (intro CollectI exI conjI)

show q = target (r @ [(w !! n, q)]) x using 1 2 by auto
show path A (r @ [(w !! n, q)]) x using assms 1 (2) 2 (1 , 2) by auto
show x ∈ initial A using 2 (3) by this
show map fst (r @ [(w !! n, q)]) = stake (Suc n) w using 1 2

by (metis eq-fst-iff list.simps(8) list.simps(9) map-append stake-Suc)
qed

qed
lemma reach-Suc[simp]: reach A w (Suc n) = (if w !! n ∈ alphabet A

then
⋃

(transition A (w !! n) ‘ reach A w n) else {})
using reach-Suc-empty reach-Suc-succ by metis

lemma reach-nodes: reach A w i ⊆ nodes A by (induct i) (auto)
lemma reach-gunodes: {i} × reach A w i ⊆ gunodes A w

by (induct i) (auto intro: graph.nodes.execute)

lemma ranking-complement:
assumes finite (nodes A) w ∈ streams (alphabet A) ranking A w f
shows w ∈ language (complement A)

proof −
define f ′ where f ′ ≡ λ (k, p). if k = 0 then 2 ∗ card (nodes A) else f (k, p)

26

have 0 : ranking A w f ′

unfolding ranking-def
proof (intro conjI ballI impI allI)

show
∧

v. v ∈ gunodes A w =⇒ f ′ v ≤ 2 ∗ card (nodes A)
using assms(3) unfolding ranking-def f ′-def by auto

show
∧

v u. v ∈ gunodes A w =⇒ u ∈ gusuccessors A w v =⇒ f ′ u ≤ f ′ v
using assms(3) unfolding ranking-def f ′-def by fastforce

show
∧

v. v ∈ gunodes A w =⇒ gaccepting A v =⇒ even (f ′ v)
using assms(3) unfolding ranking-def f ′-def by auto

next
have 1 : v ∈ gunodes A w =⇒ gurun A w r v =⇒ smap f (gtrace r v) = sconst

k =⇒ odd k
for v r k using assms(3) unfolding ranking-def by meson

fix v r k
assume 2 : v ∈ gunodes A w gurun A w r v smap f ′ (gtrace r v) = sconst k
have 20 : shd r ∈ gureachable A w v using 2
by (auto) (metis graph.reachable.reflexive graph.reachable-trace gtrace-alt-def

subsetD shd-sset)
obtain 3 :

shd r ∈ gunodes A w
gurun A w (stl r) (shd r)
smap f ′ (gtrace (stl r) (shd r)) = sconst k

using 2 20 by (metis (no-types, lifting) eq-id-iff graph.nodes-trans graph.run-scons-elim
siterate.simps(2) sscan.simps(2) stream.collapse stream.map-sel(2))

have 4 : k 6= 0 if (k, p) ∈ sset r for k p
proof −

obtain ra ka pa where 1 : r = fromN (Suc ka) ||| ra v = (ka, pa)
using grun-elim[OF 2 (2)] by this

have 2 : k ∈ sset (fromN (Suc ka)) using 1 (1) that
by (metis image-eqI prod.sel(1) szip-smap-fst stream.set-map)

show ?thesis using 2 by simp
qed
have 5 : smap f ′ (gtrace (stl r) (shd r)) = smap f (gtrace (stl r) (shd r))
proof (rule stream.map-cong)

show gtrace (stl r) (shd r) = gtrace (stl r) (shd r) by rule
next

fix z
assume 1 : z ∈ sset (gtrace (stl r) (shd r))
have 2 : fst z 6= 0 using 4 1 by (metis gtrace-alt-def prod.collapse stl-sset)
show f ′ z = f z using 2 unfolding f ′-def by (auto simp: case-prod-beta)

qed
show odd k using 1 3 5 by simp

qed

define g where g i p ≡ if p ∈ reach A w i then Some (f ′ (i, p)) else None for
i p

have g-dom[simp]: dom (g i) = reach A w i for i
unfolding g-def by (auto) (metis option.simps(3))

have g-0 [simp]: g 0 = const (Some (2 ∗ card (nodes A))) |‘ initial A

27

unfolding g-def f ′-def by auto
have g-Suc[simp]: g (Suc n) ∈ lr-succ A (w !! n) (g n) for n
unfolding lr-succ-def
proof (intro CollectI conjI ballI impI)
show dom (g (Suc n)) =

⋃
(transition A (w !! n) ‘ dom (g n)) using snth-in

assms(2) by auto
next

fix p q
assume 100 : p ∈ dom (g n) q ∈ transition A (w !! n) p
have 101 : q ∈ reach A w (Suc n) using snth-in assms(2) 100 by auto
have 102 : (n, p) ∈ gunodes A w using 100 (1) reach-gunodes g-dom by blast
have 103 : (Suc n, q) ∈ gusuccessors A w (n, p) using snth-in assms(2) 102

100 (2) by auto
have 104 : p ∈ reach A w n using 100 (1) by simp
have g (Suc n) q = Some (f ′ (Suc n, q)) using 101 unfolding g-def by

simp
also have the . . . = f ′ (Suc n, q) by simp
also have . . . ≤ f ′ (n, p) using 0 unfolding ranking-def using 102 103 by

simp
also have . . . = the (Some (f ′ (n, p))) by simp
also have Some (f ′ (n, p)) = g n p using 104 unfolding g-def by simp
finally show the (g (Suc n) q) ≤ the (g n p) by this

next
fix p
assume 100 : p ∈ dom (g (Suc n)) accepting A p
have 101 : p ∈ reach A w (Suc n) using 100 (1) by simp
have 102 : (Suc n, p) ∈ gunodes A w using 101 reach-gunodes by blast
have 103 : gaccepting A (Suc n, p) using 100 (2) by simp
have the (g (Suc n) p) = f ′ (Suc n, p) using 101 unfolding g-def by simp
also have even . . . using 0 unfolding ranking-def using 102 103 by auto
finally show even (the (g (Suc n) p)) by this

qed

define P where P ≡ rec-nat {} (λ n. st-succ A (w !! n) (g (Suc n)))
have P-0 [simp]: P 0 = {} unfolding P-def by simp
have P-Suc[simp]: P (Suc n) = st-succ A (w !! n) (g (Suc n)) (P n) for n

unfolding P-def by simp
have P-reach: P n ⊆ reach A w n for n

using snth-in assms(2) by (induct n) (auto simp add: st-succ-def)
have P n ⊆ reach A w n for n using P-reach by auto
also have . . . n ⊆ nodes A for n using reach-nodes by this
also have finite (nodes A) using assms(1) by this
finally have P-finite: finite (P n) for n by this

define s where s ≡ smap g nats ||| smap P nats

show ?thesis
proof

show run (complement A) (w ||| stl s) (shd s)

28

proof (intro nba.snth-run conjI , simp-all del: stake.simps stake-szip)
fix k
show w !! k ∈ alphabet (complement A) using snth-in assms(2) unfolding

complement-def by auto
have stl s !! k = s !! Suc k by simp
also have . . . ∈ complement-succ A (w !! k) (s !! k)

unfolding complement-succ-def s-def using P-Suc by simp
also have . . . = complement-succ A (w !! k) (target (stake k (w ||| stl s))

(shd s))
unfolding sscan-scons-snth[symmetric] nba.trace-alt-def by simp

also have . . . = transition (complement A) (w !! k) (target (stake k (w |||
stl s)) (shd s))

unfolding complement-def nba.sel by rule
finally show stl s !! k ∈

transition (complement A) (w !! k) (target (stake k (w ||| stl s)) (shd s))
by this

qed
show shd s ∈ initial (complement A) unfolding complement-def s-def using

P-0 by simp
show infs (accepting (complement A)) (shd s ## stl s)
proof −

have 10 : ∀ n. ∃ k ≥ n. P k = {}
proof (rule ccontr)

assume 20 : ¬ (∀ n. ∃ k ≥ n. P k = {})
obtain k where 22 : P (k + n) 6= {} for n using 20 using le-add1 by

blast
define m where m n S ≡ {p ∈

⋃
(transition A (w !! n) ‘ S). even (the

(g (Suc n) p))} for n S
define R where R i n S ≡ rec-nat S (λ i. m (n + i)) i for i n S
have R-0 [simp]: R 0 n = id for n unfolding R-def by auto
have R-Suc[simp]: R (Suc i) n = m (n + i) ◦ R i n for i n unfolding

R-def by auto
have R-Suc ′: R (Suc i) n = R i (Suc n) ◦ m n for i n unfolding R-Suc

by (induct i) (auto)
have R-reach: R i n S ⊆ reach A w (n + i) if S ⊆ reach A w n for i n S

using snth-in assms(2) that m-def by (induct i) (auto)
have P-R: P (k + i) = R i k (P k) for i
using 22 by (induct i) (auto simp add: case-prod-beta ′ m-def st-succ-def)

have 50 : R i n S = (
⋃

p ∈ S . R i n {p}) for i n S
by (induct i) (auto simp add: m-def prod.case-eq-if)

have 51 : R (i + j) n S = {} if R i n S = {} for i j n S
using that by (induct j) (auto simp add: m-def prod.case-eq-if)

have 52 : R j n S = {} if i ≤ j R i n S = {} for i j n S
using 51 by (metis le-add-diff-inverse that(1) that(2))

have 1 : ∃ p ∈ S . ∀ i. R i n {p} 6= {}
if assms: finite S

∧
i. R i n S 6= {} for n S

proof (rule ccontr)

29

assume 1 : ¬ (∃ p ∈ S . ∀ i. R i n {p} 6= {})
obtain f where 3 :

∧
p. p ∈ S =⇒ R (f p) n {p} = {} using 1 by metis

have 4 : R (Sup (f ‘ S)) n {p} = {} if p ∈ S for p
proof (rule 52)

show f p ≤ Sup (f ‘ S) using assms(1) that by (auto intro: le-cSup-finite)
show R (f p) n {p} = {} using 3 that by this

qed
have R (Sup (f ‘ S)) n S = (

⋃
p ∈ S . R (Sup (f ‘ S)) n {p}) using 50

by this
also have . . . = {} using 4 by simp
finally have 5 : R (Sup (f ‘ S)) n S = {} by this
show False using that(2) 5 by auto

qed
have 2 :

∧
i. R i (k + 0) (P k) 6= {} using 22 P-R by simp

obtain p where 3 : p ∈ P k
∧

i. R i k {p} 6= {} using 1 [OF P-finite 2]
by auto

define Q where Q n p ≡ (∀ i. R i (k + n) {p} 6= {}) ∧ p ∈ P (k + n)
for n p

have 5 : ∃ q ∈ transition A (w !! (k + n)) p. Q (Suc n) q if Q n p for n p
proof −
have 11 : p ∈ P (k + n)

∧
i. R i (k + n) {p} 6= {} using that unfolding

Q-def by auto
have 12 : R (Suc i) (k + n) {p} 6= {} for i using 11 (2) by this

have 13 : R i (k + Suc n) (m (k + n) {p}) 6= {} for i using 12 unfolding
R-Suc ′ by simp

have {p} ⊆ P (k + n) using 11 (1) by auto
also have . . . ⊆ reach A w (k + n) using P-reach by this
finally have R 1 (k + n) {p} ⊆ reach A w (k + n + 1) using R-reach

by blast
also have . . . ⊆ nodes A using reach-nodes by this
also have finite (nodes A) using assms(1) by this
finally have 14 : finite (m (k + n) {p}) by simp
obtain q where 14 : q ∈ m (k + n) {p}

∧
i. R i (k + Suc n) {q} 6= {}

using 1 [OF 14 13] by auto
show ?thesis
unfolding Q-def prod.case
proof (intro bexI conjI allI)

show
∧

i. R i (k + Suc n) {q} 6= {} using 14 (2) by this
show q ∈ P (k + Suc n)

using 14 (1) 11 (1) 22 unfolding m-def by (auto simp add: st-succ-def)
show q ∈ transition A (w !! (k + n)) p using 14 (1) unfolding m-def

by simp
qed

qed
obtain r where 23 :
run A r p

∧
i. Q i ((p ## trace r p) !! i)

∧
i. fst (r !! i) = w !! (k + i)

proof (rule nba.invariant-run-index[of Q 0 p A λ n p a. fst a = w !! (k +
n)])

30

show Q 0 p unfolding Q-def using 3 by auto
show ∃ a. (fst a ∈ alphabet A ∧ snd a ∈ transition A (fst a) p) ∧

Q (Suc n) (snd a) ∧ fst a = w !! (k + n) if Q n p for n p
using snth-in assms(2) 5 that by fastforce

qed auto
have 20 : smap fst r = sdrop k w using 23 (3) by (intro eqI-snth) (simp

add: case-prod-beta)
have 21 : (p ## smap snd r) !! i ∈ P (k + i) for i

using 23 (2) unfolding Q-def unfolding nba.trace-alt-def by simp
obtain r where 23 : run A (sdrop k w ||| stl r) (shd r)

∧
i. r !! i ∈ P (k

+ i)
using 20 21 23 (1) by (metis stream.sel(1) stream.sel(2) szip-smap)

let ?v = (k, shd r)
let ?r = fromN (Suc k) ||| stl r
have shd r = r !! 0 by simp
also have . . . ∈ P k using 23 (2)[of 0] by simp
also have . . . ⊆ reach A w k using P-reach by this
finally have 24 : ?v ∈ gunodes A w using reach-gunodes by blast
have 25 : gurun A w ?r ?v using run-grun 23 (1) by this

obtain l where 26 : Ball (sset (smap f ′ (gtrace (sdrop l ?r) (gtarget (stake
l ?r) ?v)))) odd

using ranking-stuck-odd 0 24 25 by this
have 27 : f ′ (Suc (k + l), r !! Suc l) =
shd (smap f ′ (gtrace (sdrop l ?r) (gtarget (stake l ?r) ?v))) by (simp add:

algebra-simps)
also have . . . ∈ sset (smap f ′ (gtrace (sdrop l ?r) (gtarget (stake l ?r)

?v)))
using shd-sset by this

finally have 28 : odd (f ′ (Suc (k + l), r !! Suc l)) using 26 by auto
have r !! Suc l ∈ P (Suc (k + l)) using 23 (2) by (metis add-Suc-right)
also have . . . = {p ∈

⋃
(transition A (w !! (k + l)) ‘ P (k + l)).

even (the (g (Suc (k + l)) p))} using 23 (2) by (auto simp: st-succ-def)
also have . . . ⊆ {p. even (the (g (Suc (k + l)) p))} by auto
finally have 29 : even (the (g (Suc (k + l)) (r !! Suc l))) by auto
have 30 : r !! Suc l ∈ reach A w (Suc (k + l))

using 23 (2) P-reach by (metis add-Suc-right subsetCE)
have 31 : even (f ′ (Suc (k + l), r !! Suc l)) using 29 30 unfolding g-def

by simp
show False using 28 31 by simp

qed
have 11 : infs (λ k. P k = {}) nats using 10 unfolding infs-snth by simp
have infs (λ S . S = {}) (smap snd (smap g nats ||| smap P nats))

using 11 by (simp add: comp-def)
then have infs (λ x. snd x = {}) (smap g nats ||| smap P nats)

by (simp add: comp-def del: szip-smap-snd)
then have infs (λ (f , P). P = {}) (smap g nats ||| smap P nats)

by (simp add: case-prod-beta ′)
then have infs (λ (f , P). P = {}) (stl (smap g nats ||| smap P nats)) by

blast

31

then have infs (λ (f , P). P = {}) (smap snd (w ||| stl (smap g nats |||
smap P nats))) by simp

then have infs (λ (f , P). P = {}) (stl s) unfolding s-def by simp
then show ?thesis unfolding complement-def by auto

qed
qed

qed

4.4 Correctness Theorem
theorem complement-language:

assumes finite (nodes A)
shows language (complement A) = streams (alphabet A) − language A

proof (safe del: notI)
have 1 : alphabet (complement A) = alphabet A unfolding complement-def

nba.sel by rule
show w ∈ streams (alphabet A) if w ∈ language (complement A) for w

using nba.language-alphabet that 1 by force
show w /∈ language A if w ∈ language (complement A) for w

using complement-ranking ranking-language that by metis
show w ∈ language (complement A) if w ∈ streams (alphabet A) w /∈ language

A for w
using language-ranking ranking-complement assms that by blast

qed

end

5 Complementation Implementation
theory Complementation-Implement
imports

Transition-Systems-and-Automata.NBA-Implement
Complementation

begin

unbundle lattice-syntax

type-synonym item = nat × bool
type-synonym ′state items = ′state ⇀ item

type-synonym state = (nat × item) list
abbreviation item-rel ≡ nat-rel ×r bool-rel
abbreviation state-rel ≡ 〈nat-rel, item-rel〉 list-map-rel

abbreviation pred A a q ≡ {p. q ∈ transition A a p}

5.1 Phase 1
definition cs-lr :: ′state items ⇒ ′state lr where

32

cs-lr f ≡ map-option fst ◦ f
definition cs-st :: ′state items ⇒ ′state st where

cs-st f ≡ f −‘ Some ‘ snd −‘ {True}
abbreviation cs-abs :: ′state items ⇒ ′state cs where

cs-abs f ≡ (cs-lr f , cs-st f)
definition cs-rep :: ′state cs ⇒ ′state items where

cs-rep ≡ λ (g, P) p. map-option (λ k. (k, p ∈ P)) (g p)

lemma cs-abs-rep[simp]: cs-rep (cs-abs f) = f
proof

show cs-rep (cs-abs f) x = f x for x
unfolding cs-lr-def cs-st-def cs-rep-def by (cases f x) (force+)

qed
lemma cs-rep-lr [simp]: cs-lr (cs-rep (g, P)) = g
proof

show cs-lr (cs-rep (g, P)) x = g x for x
unfolding cs-rep-def cs-lr-def by (cases g x) (auto)

qed
lemma cs-rep-st[simp]: cs-st (cs-rep (g, P)) = P ∩ dom g

unfolding cs-rep-def cs-st-def by force

lemma cs-lr-dom[simp]: dom (cs-lr f) = dom f unfolding cs-lr-def by simp
lemma cs-lr-apply[simp]:

assumes p ∈ dom f
shows the (cs-lr f p) = fst (the (f p))
using assms unfolding cs-lr-def by auto

lemma cs-rep-dom[simp]: dom (cs-rep (g, P)) = dom g unfolding cs-rep-def by
auto

lemma cs-rep-apply[simp]:
assumes p ∈ dom f
shows fst (the (cs-rep (f , P) p)) = the (f p)
using assms unfolding cs-rep-def by auto

abbreviation cs-rel :: (′state items × ′state cs) set where
cs-rel ≡ br cs-abs top

lemma cs-rel-inv-single-valued: single-valued (cs-rel−1)
by (auto intro!: inj-onI) (metis cs-abs-rep)

definition refresh-1 :: ′state items ⇒ ′state items where
refresh-1 f ≡ if True ∈ snd ‘ ran f then f else map-option (apsnd top) ◦ f

definition ranks-1 ::
(′label, ′state) nba ⇒ ′label ⇒ ′state items ⇒ ′state items set where
ranks-1 A a f ≡ {g.

dom g =
⋃

((transition A a) ‘ (dom f)) ∧
(∀ p ∈ dom f . ∀ q ∈ transition A a p. fst (the (g q)) ≤ fst (the (f p))) ∧
(∀ q ∈ dom g. accepting A q −→ even (fst (the (g q)))) ∧
cs-st g = {q ∈

⋃
((transition A a) ‘ (cs-st f)). even (fst (the (g q)))}}

33

definition complement-succ-1 ::
(′label, ′state) nba ⇒ ′label ⇒ ′state items ⇒ ′state items set where
complement-succ-1 A a = ranks-1 A a ◦ refresh-1

definition complement-1 :: (′label, ′state) nba ⇒ (′label, ′state items) nba where
complement-1 A ≡ nba
(alphabet A)
({const (Some (2 ∗ card (nodes A), False)) |‘ initial A})
(complement-succ-1 A)
(λ f . cs-st f = {})

lemma refresh-1-dom[simp]: dom (refresh-1 f) = dom f unfolding refresh-1-def
by simp

lemma refresh-1-apply[simp]: fst (the (refresh-1 f p)) = fst (the (f p))
unfolding refresh-1-def by (cases f p) (auto)

lemma refresh-1-cs-st[simp]: cs-st (refresh-1 f) = (if cs-st f = {} then dom f else
cs-st f)

unfolding refresh-1-def cs-st-def ran-def image-def vimage-def by auto

lemma complement-succ-1-abs:
assumes g ∈ complement-succ-1 A a f
shows cs-abs g ∈ complement-succ A a (cs-abs f)

unfolding complement-succ-def
proof (simp, rule)

have 1 :
dom g =

⋃
((transition A a) ‘ (dom f))

∀ p ∈ dom f . ∀ q ∈ transition A a p. fst (the (g q)) ≤ fst (the (f p))
∀ p ∈ dom g. accepting A p −→ even (fst (the (g p)))
using assms unfolding complement-succ-1-def ranks-1-def by simp-all

show cs-lr g ∈ lr-succ A a (cs-lr f)
unfolding lr-succ-def
proof (intro CollectI conjI ballI impI)

show dom (cs-lr g) =
⋃

(transition A a ‘ dom (cs-lr f)) using 1 by simp
next

fix p q
assume 2 : p ∈ dom (cs-lr f) q ∈ transition A a p
have 3 : q ∈ dom (cs-lr g) using 1 2 by auto
show the (cs-lr g q) ≤ the (cs-lr f p) using 1 2 3 by simp

next
fix p
assume 2 : p ∈ dom (cs-lr g) accepting A p
show even (the (cs-lr g p)) using 1 2 by auto

qed
have 2 : cs-st g = {q ∈

⋃
(transition A a ‘ cs-st (refresh-1 f)). even (fst (the

(g q)))}
using assms unfolding complement-succ-1-def ranks-1-def by simp

show cs-st g = st-succ A a (cs-lr g) (cs-st f)
proof (cases cs-st f = {})

case True
have 3 : the (cs-lr g q) = fst (the (g q)) if q ∈

⋃
((transition A a) ‘ (dom f))

34

for q
using that 1 (1) by simp

show ?thesis using 2 3 unfolding st-succ-def refresh-1-cs-st True cs-lr-dom
1 (1) by force

next
case False
have 3 : the (cs-lr g q) = fst (the (g q)) if q ∈

⋃
((transition A a) ‘ (cs-st f))

for q
using that 1 (1) by
(auto intro!: cs-lr-apply)
(metis IntE UN-iff cs-abs-rep cs-lr-dom cs-rep-st domD prod.collapse)

have cs-st g = {q ∈
⋃

(transition A a ‘ cs-st (refresh-1 f)). even (fst (the (g
q)))}

using 2 by this
also have cs-st (refresh-1 f) = cs-st f using False by simp
also have {q ∈

⋃
((transition A a) ‘ (cs-st f)). even (fst (the (g q)))} =

{q ∈
⋃

((transition A a) ‘ (cs-st f)). even (the (cs-lr g q))} using 3 by
metis

also have . . . = st-succ A a (cs-lr g) (cs-st f) unfolding st-succ-def using
False by simp

finally show ?thesis by this
qed

qed
lemma complement-succ-1-rep:

assumes P ⊆ dom f (g, Q) ∈ complement-succ A a (f , P)
shows cs-rep (g, Q) ∈ complement-succ-1 A a (cs-rep (f , P))

unfolding complement-succ-1-def ranks-1-def comp-apply
proof (intro CollectI conjI ballI impI)

have 1 :
dom g =

⋃
((transition A a) ‘ (dom f))

∀ p ∈ dom f . ∀ q ∈ transition A a p. the (g q) ≤ the (f p)
∀ p ∈ dom g. accepting A p −→ even (the (g p))
using assms(2) unfolding complement-succ-def lr-succ-def by simp-all

have 2 : Q = {q ∈ if P = {} then dom g else
⋃
((transition A a) ‘ P). even

(the (g q))}
using assms(2) unfolding complement-succ-def st-succ-def by simp

have 3 : Q ⊆ dom g unfolding 2 1 (1) using assms(1) by auto
show dom (cs-rep (g, Q)) =

⋃
(transition A a ‘ dom (refresh-1 (cs-rep (f ,

P)))) using 1 by simp
show

∧
p q. p ∈ dom (refresh-1 (cs-rep (f , P))) =⇒ q ∈ transition A a p =⇒

fst (the (cs-rep (g, Q) q)) ≤ fst (the (refresh-1 (cs-rep (f , P)) p))
using 1 (1 , 2) by (auto) (metis UN-I cs-rep-apply domI option.sel)

show
∧

p. p ∈ dom (cs-rep (g, Q)) =⇒ accepting A p =⇒ even (fst (the (cs-rep
(g, Q) p)))

using 1 (1 , 3) by auto
show cs-st (cs-rep (g, Q)) = {q ∈

⋃
(transition A a ‘ cs-st (refresh-1 (cs-rep

(f , P)))).
even (fst (the (cs-rep (g, Q) q)))}

proof (cases P = {})

35

case True
have cs-st (cs-rep (g, Q)) = Q using 3 by auto
also have . . . = {q ∈ dom g. even (the (g q))} unfolding 2 using True by

auto
also have . . . = {q ∈ dom g. even (fst (the (cs-rep (g, Q) q)))} using

cs-rep-apply by metis
also have dom g =

⋃
((transition A a) ‘ (dom f)) using 1 (1) by this

also have dom f = cs-st (refresh-1 (cs-rep (f , P))) using True by simp
finally show ?thesis by this

next
case False
have 4 : fst (the (cs-rep (g, Q) q)) = the (g q) if q ∈

⋃
((transition A a) ‘ P)

for q
using 1 (1) that assms(1) by (fast intro: cs-rep-apply)

have cs-st (cs-rep (g, Q)) = Q using 3 by auto
also have . . . = {q ∈

⋃
((transition A a) ‘ P). even (the (g q))} unfolding

2 using False by auto
also have . . . = {q ∈

⋃
((transition A a) ‘ P). even (fst (the (cs-rep (g, Q)

q)))} using 4 by force
also have P = (cs-st (refresh-1 (cs-rep (f , P)))) using assms(1) False by

auto
finally show ?thesis by simp

qed
qed

lemma complement-succ-1-refine: (complement-succ-1 , complement-succ) ∈
Id → Id → cs-rel → 〈cs-rel〉 set-rel

proof (clarsimp simp: br-set-rel-alt in-br-conv)
fix A :: (′a, ′b) nba
fix a f
show complement-succ A a (cs-abs f) = cs-abs ‘ complement-succ-1 A a f
proof safe

fix g Q
assume 1 : (g, Q) ∈ complement-succ A a (cs-abs f)
have 2 : Q ⊆ dom g

using 1 unfolding complement-succ-def lr-succ-def st-succ-def
by (auto) (metis IntE cs-abs-rep cs-lr-dom cs-rep-st)

have 3 : cs-st f ⊆ dom (cs-lr f) unfolding cs-st-def by auto
show (g, Q) ∈ cs-abs ‘ complement-succ-1 A a f
proof

show (g, Q) = cs-abs (cs-rep (g, Q)) using 2 by auto
have cs-rep (g, Q) ∈ complement-succ-1 A a (cs-rep (cs-abs f))

using complement-succ-1-rep 3 1 by this
also have cs-rep (cs-abs f) = f by simp
finally show cs-rep (g, Q) ∈ complement-succ-1 A a f by this

qed
next

fix g
assume 1 : g ∈ complement-succ-1 A a f

36

show cs-abs g ∈ complement-succ A a (cs-abs f) using complement-succ-1-abs
1 by this

qed
qed
lemma complement-1-refine: (complement-1 , complement) ∈ 〈Id, Id〉 nba-rel →
〈Id, cs-rel〉 nba-rel

unfolding complement-1-def complement-def
proof parametricity

fix A B :: (′a, ′b) nba
assume 1 : (A, B) ∈ 〈Id, Id〉 nba-rel
have 2 : (const (Some (2 ∗ card (nodes B), False)) |‘ initial B,

const (Some (2 ∗ card (nodes B))) |‘ initial B, {}) ∈ cs-rel
unfolding cs-lr-def cs-st-def in-br-conv by (force simp: restrict-map-def)

show (complement-succ-1 A, complement-succ B) ∈ Id → cs-rel → 〈cs-rel〉
set-rel

using complement-succ-1-refine 1 by parametricity auto
show ({const (Some (2 ∗ card (nodes A), False)) |‘ initial A},
{const (Some (2 ∗ card (nodes B))) |‘ initial B} × {{}}) ∈ 〈cs-rel〉 set-rel
using 1 2 by simp parametricity

show (λ f . cs-st f = {}, λ (f , P). P = {}) ∈ cs-rel → bool-rel by (auto simp:
in-br-conv)

qed

5.2 Phase 2
definition ranks-2 :: (′label, ′state) nba ⇒ ′label ⇒ ′state items ⇒ ′state items

set where
ranks-2 A a f ≡ {g.

dom g =
⋃

((transition A a) ‘ (dom f)) ∧
(∀ q l d. g q = Some (l, d) −→

l ≤
d

(fst ‘ Some −‘ f ‘ pred A a q) ∧
(d ←→

⊔
(snd ‘ Some −‘ f ‘ pred A a q) ∧ even l) ∧

(accepting A q −→ even l))}
definition complement-succ-2 ::
(′label, ′state) nba ⇒ ′label ⇒ ′state items ⇒ ′state items set where
complement-succ-2 A a ≡ ranks-2 A a ◦ refresh-1

definition complement-2 :: (′label, ′state) nba ⇒ (′label, ′state items) nba where
complement-2 A ≡ nba
(alphabet A)
({const (Some (2 ∗ card (nodes A), False)) |‘ initial A})
(complement-succ-2 A)
(λ f . True /∈ snd ‘ ran f)

lemma ranks-2-refine: ranks-2 = ranks-1
proof (intro ext)

fix A :: (′a, ′b) nba and a f
show ranks-2 A a f = ranks-1 A a f
proof safe

fix g

37

assume 1 : g ∈ ranks-2 A a f
have 2 : dom g =

⋃
((transition A a) ‘ (dom f)) using 1 unfolding ranks-2-def

by auto
have 3 : g q = Some (l, d) =⇒ l ≤

d
(fst ‘ Some −‘ f ‘ pred A a q) for q l d

using 1 unfolding ranks-2-def by auto
have 4 : g q = Some (l, d) =⇒ d ←→

⊔
(snd ‘ Some −‘ f ‘ pred A a q) ∧

even l for q l d
using 1 unfolding ranks-2-def by auto

have 5 : g q = Some (l, d) =⇒ accepting A q =⇒ even l for q l d
using 1 unfolding ranks-2-def by auto

show g ∈ ranks-1 A a f
unfolding ranks-1-def
proof (intro CollectI conjI ballI impI)

show dom g =
⋃
((transition A a) ‘ (dom f)) using 2 by this

next
fix p q
assume 10 : p ∈ dom f q ∈ transition A a p
obtain k c where 11 : f p = Some (k, c) using 10 (1) by auto
have 12 : q ∈ dom g using 10 2 by auto
obtain l d where 13 : g q = Some (l, d) using 12 by auto
have fst (the (g q)) = l unfolding 13 by simp
also have . . . ≤

d
(fst ‘ Some −‘ f ‘ pred A a q) using 3 13 by this

also have . . . ≤ k
proof (rule cInf-lower)

show k ∈ fst ‘ Some −‘ f ‘ pred A a q using 11 10 (2) by force
show bdd-below (fst ‘ Some −‘ f ‘ pred A a q) by simp

qed
also have . . . = fst (the (f p)) unfolding 11 by simp
finally show fst (the (g q)) ≤ fst (the (f p)) by this

next
fix q
assume 10 : q ∈ dom g accepting A q
show even (fst (the (g q))) using 10 5 by auto

next
show cs-st g = {q ∈

⋃
((transition A a) ‘ (cs-st f)). even (fst (the (g q)))}

proof
show cs-st g ⊆ {q ∈

⋃
((transition A a) ‘ (cs-st f)). even (fst (the (g q)))}

using 4 unfolding cs-st-def image-def vimage-def by auto metis+
show {q ∈

⋃
((transition A a) ‘ (cs-st f)). even (fst (the (g q)))} ⊆ cs-st g

proof safe
fix p q
assume 10 : even (fst (the (g q))) p ∈ cs-st f q ∈ transition A a p
have 12 : q ∈ dom g using 10 2 unfolding cs-st-def by auto
show q ∈ cs-st g using 10 4 12 unfolding cs-st-def image-def by force

qed
qed

qed
next

fix g

38

assume 1 : g ∈ ranks-1 A a f
have 2 : dom g =

⋃
((transition A a) ‘ (dom f)) using 1 unfolding ranks-1-def

by auto
have 3 :

∧
p q. p ∈ dom f =⇒ q ∈ transition A a p =⇒ fst (the (g q)) ≤ fst

(the (f p))
using 1 unfolding ranks-1-def by auto

have 4 :
∧

q. q ∈ dom g =⇒ accepting A q =⇒ even (fst (the (g q)))
using 1 unfolding ranks-1-def by auto

have 5 : cs-st g = {q ∈
⋃
((transition A a) ‘ (cs-st f)). even (fst (the (g q)))}

using 1 unfolding ranks-1-def by auto
show g ∈ ranks-2 A a f

unfolding ranks-2-def
proof (intro CollectI conjI allI impI)

show dom g =
⋃
((transition A a) ‘ (dom f)) using 2 by this

next
fix q l d
assume 10 : g q = Some (l, d)
have 11 : q ∈ dom g using 10 by auto
show l ≤

d
(fst ‘ Some −‘ f ‘ pred A a q)

proof (rule cInf-greatest)
show fst ‘ Some −‘ f ‘ pred A a q 6= {} using 11 unfolding 2 image-def

vimage-def by force
show

∧
x. x ∈ fst ‘ Some −‘ f ‘ pred A a q =⇒ l ≤ x

using 3 10 by (auto) (metis domI fst-conv option.sel)
qed
have d ←→ q ∈ cs-st g unfolding cs-st-def by (force simp: 10)
also have cs-st g = {q ∈

⋃
((transition A a) ‘ (cs-st f)). even (fst (the (g

q)))} using 5 by this
also have q ∈ . . . ←→ (∃ x ∈ cs-st f . q ∈ transition A a x) ∧ even l

unfolding mem-Collect-eq 10 by simp
also have . . . ←→

⊔
(snd ‘ Some −‘ f ‘ pred A a q) ∧ even l

unfolding cs-st-def image-def vimage-def by auto metis+
finally show d ←→

⊔
(snd ‘ Some −‘ f ‘ pred A a q) ∧ even l by this

show accepting A q =⇒ even l using 4 10 11 by force
qed

qed
qed

lemma complement-2-refine: (complement-2 , complement-1) ∈ 〈Id, Id〉 nba-rel
→ 〈Id, Id〉 nba-rel

unfolding complement-2-def complement-1-def complement-succ-2-def comple-
ment-succ-1-def

unfolding ranks-2-refine cs-st-def image-def vimage-def ran-def by auto

5.3 Phase 3
definition bounds-3 :: (′label, ′state) nba ⇒ ′label ⇒ ′state items ⇒ ′state items

where
bounds-3 A a f ≡ λ q. let S = Some −‘ f ‘ pred A a q in

39

if S = {} then None else Some (
d
(fst ‘ S),

⊔
(snd ‘ S))

definition items-3 :: (′label, ′state) nba ⇒ ′state ⇒ item ⇒ item set where
items-3 A p ≡ λ (k, c). {(l, c ∧ even l) |l. l ≤ k ∧ (accepting A p −→ even l)}

definition get-3 :: (′label, ′state) nba ⇒ ′state items ⇒ (′state ⇀ item set)
where

get-3 A f ≡ λ p. map-option (items-3 A p) (f p)
definition complement-succ-3 ::
(′label, ′state) nba ⇒ ′label ⇒ ′state items ⇒ ′state items set where
complement-succ-3 A a ≡ expand-map ◦ get-3 A ◦ bounds-3 A a ◦ refresh-1

definition complement-3 :: (′label, ′state) nba ⇒ (′label, ′state items) nba where
complement-3 A ≡ nba
(alphabet A)
({(Some ◦ (const (2 ∗ card (nodes A), False))) |‘ initial A})
(complement-succ-3 A)
(λ f . ∀ (p, k, c) ∈ map-to-set f . ¬ c)

lemma bounds-3-dom[simp]: dom (bounds-3 A a f) =
⋃
((transition A a) ‘ (dom

f))
unfolding bounds-3-def Let-def dom-def by (force split: if-splits)

lemma items-3-nonempty[intro!, simp]: items-3 A p s 6= {} unfolding items-3-def
by auto

lemma items-3-finite[intro!, simp]: finite (items-3 A p s)
unfolding items-3-def by (auto split: prod.splits)

lemma get-3-dom[simp]: dom (get-3 A f) = dom f unfolding get-3-def by (auto
split: bind-splits)

lemma get-3-finite[intro, simp]: S ∈ ran (get-3 A f) =⇒ finite S
unfolding get-3-def ran-def by auto

lemma get-3-update[simp]: get-3 A (f (p 7→ s)) = (get-3 A f) (p 7→ items-3 A p
s)

unfolding get-3-def by auto

lemma expand-map-get-bounds-3 : expand-map ◦ get-3 A ◦ bounds-3 A a =
ranks-2 A a

proof (intro ext set-eqI , unfold comp-apply)
fix f g
have 1 : (∀ x S y. get-3 A (bounds-3 A a f) x = Some S −→ g x = Some y −→

y ∈ S) ←→
(∀ q S l d. get-3 A (bounds-3 A a f) q = Some S −→ g q = Some (l, d) −→

(l, d) ∈ S)
by auto

have 2 : (∀ S . get-3 A (bounds-3 A a f) q = Some S −→ g q = Some (l, d)
−→ (l, d) ∈ S) ←→

(g q = Some (l, d) −→ l ≤
d
(fst ‘ (Some −‘ f ‘ pred A a q)) ∧

(d ←→
⊔
(snd ‘ (Some −‘ f ‘ pred A a q)) ∧ even l) ∧ (accepting A q −→

even l))
if 3 : dom g =

⋃
((transition A a) ‘ (dom f)) for q l d

proof −

40

have 4 : q /∈ dom g if Some −‘ f ‘ pred A a q = {} unfolding 3 using that
by force

show ?thesis unfolding get-3-def items-3-def bounds-3-def Let-def using 4
by auto

qed
show g ∈ expand-map (get-3 A (bounds-3 A a f)) ←→ g ∈ ranks-2 A a f

unfolding expand-map-alt-def ranks-2-def mem-Collect-eq
unfolding get-3-dom bounds-3-dom 1 using 2 by blast

qed

lemma complement-succ-3-refine: complement-succ-3 = complement-succ-2
unfolding complement-succ-3-def complement-succ-2-def expand-map-get-bounds-3

by rule
lemma complement-initial-3-refine: {const (Some (2 ∗ card (nodes A), False))
|‘ initial A} =
{(Some ◦ (const (2 ∗ card (nodes A), False))) |‘ initial A}
unfolding comp-apply by rule

lemma complement-accepting-3-refine: True /∈ snd ‘ ran f ←→ (∀ (p, k, c) ∈
map-to-set f . ¬ c)

unfolding map-to-set-def ran-def by auto

lemma complement-3-refine: (complement-3 , complement-2) ∈ 〈Id, Id〉 nba-rel
→ 〈Id, Id〉 nba-rel

unfolding complement-3-def complement-2-def
unfolding complement-succ-3-refine complement-initial-3-refine complement-accepting-3-refine
by auto

5.4 Phase 4
definition items-4 :: (′label, ′state) nba ⇒ ′state ⇒ item ⇒ item set where

items-4 A p ≡ λ (k, c). {(l, c ∧ even l) |l. k ≤ Suc l ∧ l ≤ k ∧ (accepting A p
−→ even l)}

definition get-4 :: (′label, ′state) nba ⇒ ′state items ⇒ (′state ⇀ item set)
where

get-4 A f ≡ λ p. map-option (items-4 A p) (f p)
definition complement-succ-4 ::
(′label, ′state) nba ⇒ ′label ⇒ ′state items ⇒ ′state items set where
complement-succ-4 A a ≡ expand-map ◦ get-4 A ◦ bounds-3 A a ◦ refresh-1

definition complement-4 :: (′label, ′state) nba ⇒ (′label, ′state items) nba where
complement-4 A ≡ nba
(alphabet A)
({(Some ◦ (const (2 ∗ card (nodes A), False))) |‘ initial A})
(complement-succ-4 A)
(λ f . ∀ (p, k, c) ∈ map-to-set f . ¬ c)

lemma get-4-dom[simp]: dom (get-4 A f) = dom f unfolding get-4-def by (auto
split: bind-splits)

definition R :: ′state items rel where

41

R ≡ {(f , g).
dom f = dom g ∧
(∀ p ∈ dom f . fst (the (f p)) ≤ fst (the (g p))) ∧
(∀ p ∈ dom f . snd (the (f p)) ←→ snd (the (g p)))}

lemma bounds-R:
assumes (f , g) ∈ R
assumes bounds-3 A a (refresh-1 f) p = Some (n, e)
assumes bounds-3 A a (refresh-1 g) p = Some (k, c)
shows n ≤ k e ←→ c

proof −
have 1 :

dom f = dom g
∀ p ∈ dom f . fst (the (f p)) ≤ fst (the (g p))
∀ p ∈ dom f . snd (the (f p)) ←→ snd (the (g p))
using assms(1) unfolding R-def by auto

have n =
d
(fst ‘ (Some −‘ refresh-1 f ‘ pred A a p))

using assms(2) unfolding bounds-3-def by (auto simp: Let-def split: if-splits)
also have fst ‘ Some −‘ refresh-1 f ‘ pred A a p = fst ‘ Some −‘ f ‘ pred A a p
proof

show fst ‘ Some −‘ refresh-1 f ‘ pred A a p ⊆ fst ‘ Some −‘ f ‘ pred A a p
unfolding refresh-1-def image-def
by (auto simp: map-option-case split: option.split) (force)

show fst ‘ Some −‘ f ‘ pred A a p ⊆ fst ‘ Some −‘ refresh-1 f ‘ pred A a p
unfolding refresh-1-def image-def

by (auto simp: map-option-case split: option.split) (metis fst-conv option.sel)
qed
also have . . . = fst ‘ Some −‘ f ‘ (pred A a p ∩ dom f)

unfolding dom-def image-def Int-def by auto metis
also have . . . = fst ‘ the ‘ f ‘ (pred A a p ∩ dom f)

unfolding dom-def by force
also have . . . = (fst ◦ the ◦ f) ‘ (pred A a p ∩ dom f) by force
also have

d
((fst ◦ the ◦ f) ‘ (pred A a p ∩ dom f)) ≤d

((fst ◦ the ◦ g) ‘ (pred A a p ∩ dom g))
proof (rule cINF-mono)

show pred A a p ∩ dom g 6= {}
using assms(2) 1 (1) unfolding bounds-3-def refresh-1-def
by (auto simp: Let-def split: if-splits) (force+)

show bdd-below ((fst ◦ the ◦ f) ‘ (pred A a p ∩ dom f)) by rule
show ∃ n ∈ pred A a p ∩ dom f . (fst ◦ the ◦ f) n ≤ (fst ◦ the ◦ g) m

if m ∈ pred A a p ∩ dom g for m using 1 that by auto
qed
also have (fst ◦ the ◦ g) ‘ (pred A a p ∩ dom g) = fst ‘ the ‘ g ‘ (pred A a p ∩

dom g) by force
also have . . . = fst ‘ Some −‘ g ‘ (pred A a p ∩ dom g)

unfolding dom-def by force
also have . . . = fst ‘ Some −‘ g ‘ pred A a p

unfolding dom-def image-def Int-def by auto metis
also have . . . = fst ‘ Some −‘ refresh-1 g ‘ pred A a p

42

proof
show fst ‘ Some −‘ g ‘ pred A a p ⊆ fst ‘ Some −‘ refresh-1 g ‘ pred A a p

unfolding refresh-1-def image-def
by (auto simp: map-option-case split: option.split) (metis fst-conv option.sel)

show fst ‘ Some −‘ refresh-1 g ‘ pred A a p ⊆ fst ‘ Some −‘ g ‘ pred A a p
unfolding refresh-1-def image-def
by (auto simp: map-option-case split: option.split) (force)

qed
also have

d
(fst ‘ (Some −‘ refresh-1 g ‘ pred A a p)) = k

using assms(3) unfolding bounds-3-def by (auto simp: Let-def split: if-splits)
finally show n ≤ k by this
have e ←→

⊔
(snd ‘ (Some −‘ refresh-1 f ‘ pred A a p))

using assms(2) unfolding bounds-3-def by (auto simp: Let-def split: if-splits)
also have snd ‘ Some −‘ refresh-1 f ‘ pred A a p = snd ‘ Some −‘ refresh-1 f ‘

(pred A a p ∩ dom (refresh-1 f))
unfolding dom-def image-def Int-def by auto metis

also have . . . = snd ‘ the ‘ refresh-1 f ‘ (pred A a p ∩ dom (refresh-1 f))
unfolding dom-def by force

also have . . . = (snd ◦ the ◦ refresh-1 f) ‘ (pred A a p ∩ dom (refresh-1 f))
by force

also have . . . = (snd ◦ the ◦ refresh-1 g) ‘ (pred A a p ∩ dom (refresh-1 g))
proof (rule image-cong)

show pred A a p ∩ dom (refresh-1 f) = pred A a p ∩ dom (refresh-1 g)
unfolding refresh-1-dom 1 (1) by rule

show (snd ◦ the ◦ refresh-1 f) q ←→ (snd ◦ the ◦ refresh-1 g) q
if 2 : q ∈ pred A a p ∩ dom (refresh-1 g) for q

proof
have 3 : ∀ x ∈ ran f . ¬ snd x =⇒ (n, True) ∈ ran g =⇒ g q = Some (k,

c) =⇒ c for n k c
using 1 (1 , 3) unfolding dom-def ran-def
by (auto dest!: Collect-inj) (metis option.sel snd-conv)

have 4 : g q = Some (n, True) =⇒ f q = Some (k, c) =⇒ c for n k c
using 1 (3) unfolding dom-def by force

have 5 : ∀ x ∈ ran g. ¬ snd x =⇒ (k, True) ∈ ran f =⇒ False for k
using 1 (1 , 3) unfolding dom-def ran-def
by (auto dest!: Collect-inj) (metis option.sel snd-conv)

show (snd ◦ the ◦ refresh-1 f) q =⇒ (snd ◦ the ◦ refresh-1 g) q
using 1 (1 , 3) 2 3 unfolding refresh-1-def by (force split: if-splits)

show (snd ◦ the ◦ refresh-1 g) q =⇒ (snd ◦ the ◦ refresh-1 f) q
using 1 (1 , 3) 2 4 5 unfolding refresh-1-def
by (auto simp: map-option-case split: option.splits if-splits) (force+)

qed
qed
also have . . . = snd ‘ the ‘ refresh-1 g ‘ (pred A a p ∩ dom (refresh-1 g)) by

force
also have . . . = snd ‘ Some −‘ refresh-1 g ‘ (pred A a p ∩ dom (refresh-1 g))

unfolding dom-def by force
also have . . . = snd ‘ Some −‘ refresh-1 g ‘ pred A a p

unfolding dom-def image-def Int-def by auto metis

43

also have
⊔
(snd ‘ (Some −‘ refresh-1 g ‘ pred A a p)) ←→ c

using assms(3) unfolding bounds-3-def by (auto simp: Let-def split: if-splits)
finally show e ←→ c by this

qed

lemma complement-4-language-1 : language (complement-3 A) ⊆ language (complement-4
A)

proof (rule simulation-language)
show alphabet (complement-3 A) ⊆ alphabet (complement-4 A)

unfolding complement-3-def complement-4-def by simp
show ∃ q ∈ initial (complement-4 A). (p, q) ∈ R if p ∈ initial (complement-3

A) for p
using that unfolding complement-3-def complement-4-def R-def by simp

show ∃ g ′ ∈ transition (complement-4 A) a g. (f ′, g ′) ∈ R
if f ′ ∈ transition (complement-3 A) a f (f , g) ∈ R
for a f f ′ g

proof −
have 1 : f ′ ∈ expand-map (get-3 A (bounds-3 A a (refresh-1 f)))

using that(1) unfolding complement-3-def complement-succ-3-def by auto
have 2 :

dom f = dom g
∀ p ∈ dom f . fst (the (f p)) ≤ fst (the (g p))
∀ p ∈ dom f . snd (the (f p)) ←→ snd (the (g p))
using that(2) unfolding R-def by auto
have dom f ′ = dom (get-3 A (bounds-3 A a (refresh-1 f))) using ex-

pand-map-dom 1 by this
also have . . . = dom (bounds-3 A a (refresh-1 f)) by simp
finally have 3 : dom f ′ = dom (bounds-3 A a (refresh-1 f)) by this
define g ′ where g ′ p ≡ do
{
(k, c) ← bounds-3 A a (refresh-1 g) p;
(l, d) ← f ′ p;
Some (if even k = even l then k else k − 1 , d)
} for p
have 4 : g ′ p = do
{

kc ← bounds-3 A a (refresh-1 g) p;
ld ← f ′ p;
Some (if even (fst kc) = even (fst ld) then fst kc else fst kc − 1 , snd ld)
} for p unfolding g ′-def case-prod-beta by rule

have dom g ′= dom (bounds-3 A a (refresh-1 g)) ∩ dom f ′ using 4 bind-eq-Some-conv
by fastforce

also have . . . = dom f ′ using 2 3 by simp
finally have 5 : dom g ′ = dom f ′ by this
have 6 : (l, d) ∈ items-3 A p (k, c)

if bounds-3 A a (refresh-1 f) p = Some (k, c) f ′ p = Some (l, d) for p k c l
d

using 1 that unfolding expand-map-alt-def get-3-def by blast
show ?thesis

44

unfolding complement-4-def nba.sel complement-succ-4-def comp-apply
proof

show (f ′, g ′) ∈ R
unfolding R-def mem-Collect-eq prod.case
proof (intro conjI ballI)

show dom f ′ = dom g ′ using 5 by rule
next

fix p
assume 10 : p ∈ dom f ′

have 11 : p ∈ dom (bounds-3 A a (refresh-1 g)) using 2 (1) 3 10 by simp
obtain k c where 12 : bounds-3 A a (refresh-1 g) p = Some (k, c) using

11 by fast
obtain l d where 13 : f ′ p = Some (l, d) using 10 by auto
obtain n e where 14 : bounds-3 A a (refresh-1 f) p = Some (n, e) using

10 3 by fast
have 15 : (l, d) ∈ items-3 A p (n, e) using 6 14 13 by this
have 16 : n ≤ k using bounds-R(1) that(2) 14 12 by this
have 17 : l ≤ k using 15 16 unfolding items-3-def by simp
have 18 : even k ←→ odd l =⇒ l ≤ k =⇒ l ≤ k − 1 by presburger
have 19 : e ←→ c using bounds-R(2) that(2) 14 12 by this
show fst (the (f ′ p)) ≤ fst (the (g ′ p)) using 17 18 unfolding 4 12 13

by simp
show snd (the (f ′ p)) ←→ snd (the (g ′ p)) using 19 unfolding 4 12 13

by simp
qed
show g ′ ∈ expand-map (get-4 A (bounds-3 A a (refresh-1 g)))
unfolding expand-map-alt-def mem-Collect-eq
proof (intro conjI allI impI)

show dom g ′ = dom (get-4 A (bounds-3 A a (refresh-1 g))) using 2 (1) 3
5 by simp

fix p S xy
assume 10 : get-4 A (bounds-3 A a (refresh-1 g)) p = Some S
assume 11 : g ′ p = Some xy
obtain k c where 12 : bounds-3 A a (refresh-1 g) p = Some (k, c) S =

items-4 A p (k, c)
using 10 unfolding get-4-def by auto

obtain l d where 13 : f ′ p = Some (l, d) xy = (if even k ←→ even l then
k else k − 1 , d)

using 11 12 unfolding g ′-def by (auto split: bind-splits)
obtain n e where 14 : bounds-3 A a (refresh-1 f) p = Some (n, e) using

13 (1) 3 by fast
have 15 : (l, d) ∈ items-3 A p (n, e) using 6 14 13 (1) by this
have 16 : n ≤ k using bounds-R(1) that(2) 14 12 (1) by this
have 17 : e ←→ c using bounds-R(2) that(2) 14 12 (1) by this

show xy ∈ S using 15 16 17 unfolding 12 (2) 13 (2) items-3-def items-4-def
by auto

qed
qed

qed

45

show
∧

p q. (p, q) ∈ R =⇒ accepting (complement-3 A) p =⇒ accepting
(complement-4 A) q

unfolding complement-3-def complement-4-def R-def map-to-set-def
by (auto) (metis domIff eq-snd-iff option.exhaust-sel option.sel)

qed
lemma complement-4-less: complement-4 A ≤ complement-3 A
unfolding less-eq-nba-def
unfolding complement-4-def complement-3-def nba.sel
unfolding complement-succ-4-def complement-succ-3-def
proof (safe intro!: le-funI , unfold comp-apply)

fix a f g
assume g ∈ expand-map (get-4 A (bounds-3 A a (refresh-1 f)))
then show g ∈ expand-map (get-3 A (bounds-3 A a (refresh-1 f)))

unfolding get-4-def get-3-def items-4-def items-3-def expand-map-alt-def by
blast

qed
lemma complement-4-language-2 : language (complement-4 A) ⊆ language (complement-3

A)
using language-mono complement-4-less by (auto dest: monoD)

lemma complement-4-language: language (complement-3 A) = language (complement-4
A)

using complement-4-language-1 complement-4-language-2 by blast

lemma complement-4-finite[simp]:
assumes finite (nodes A)
shows finite (nodes (complement-4 A))

proof −
have (nodes (complement-3 A), nodes (complement-2 A)) ∈ 〈Id〉 set-rel

using complement-3-refine by parametricity auto
also have (nodes (complement-2 A), nodes (complement-1 A)) ∈ 〈Id〉 set-rel

using complement-2-refine by parametricity auto
also have (nodes (complement-1 A), nodes (complement A)) ∈ 〈cs-rel〉 set-rel

using complement-1-refine by parametricity auto
finally have 1 : (nodes (complement-3 A), nodes (complement A)) ∈ 〈cs-rel〉

set-rel by simp
have 2 : finite (nodes (complement A)) using complement-finite assms(1) by

this
have 3 : finite (nodes (complement-3 A))

using finite-set-rel-transfer-back 1 cs-rel-inv-single-valued 2 by this
have 4 : nodes (complement-4 A) ⊆ nodes (complement-3 A)

using nodes-mono complement-4-less by (auto dest: monoD)
show finite (nodes (complement-4 A)) using finite-subset 4 3 by this

qed
lemma complement-4-correct:

assumes finite (nodes A)
shows language (complement-4 A) = streams (alphabet A) − language A

proof −
have language (complement-4 A) = language (complement-3 A)

using complement-4-language by rule

46

also have (language (complement-3 A), language (complement-2 A)) ∈ 〈〈Id〉
stream-rel〉 set-rel

using complement-3-refine by parametricity auto
also have (language (complement-2 A), language (complement-1 A)) ∈ 〈〈Id〉

stream-rel〉 set-rel
using complement-2-refine by parametricity auto
also have (language (complement-1 A), language (complement A)) ∈ 〈〈Id〉

stream-rel〉 set-rel
using complement-1-refine by parametricity auto

also have language (complement A) = streams (alphabet A) − language A
using complement-language assms(1) by this

finally show language (complement-4 A) = streams (alphabet A) − language
A by simp

qed

5.5 Phase 5
definition refresh-5 :: ′state items ⇒ ′state items nres where

refresh-5 f ≡ if ∃ (p, k, c) ∈ map-to-set f . c
then RETURN f
else do
{

ASSUME (finite (dom f));
FOREACH (map-to-set f) (λ (p, k, c) m. do
{

ASSERT (p /∈ dom m);
RETURN (m (p 7→ (k, True)))
}
) Map.empty
}

definition merge-5 :: item ⇒ item option ⇒ item where
merge-5 ≡ λ (k, c). λ None ⇒ (k, c) | Some (l, d) ⇒ (k u l, c t d)

definition bounds-5 :: (′label, ′state) nba ⇒ ′label ⇒ ′state items ⇒ ′state items
nres where

bounds-5 A a f ≡ do
{

ASSUME (finite (dom f));
ASSUME (∀ p. finite (transition A a p));
FOREACH (map-to-set f) (λ (p, s) m.

FOREACH (transition A a p) (λ q f .
RETURN (f (q 7→ merge-5 s (f q))))

m)
Map.empty
}

definition items-5 :: (′label, ′state) nba ⇒ ′state ⇒ item ⇒ item set where
items-5 A p ≡ λ (k, c). do
{

let values = if accepting A p then Set.filter even {k − 1 .. k} else {k − 1 ..
k};

47

let item = λ l. (l, c ∧ even l);
item ‘ values
}

definition get-5 :: (′label, ′state) nba ⇒ ′state items ⇒ (′state ⇀ item set)
where

get-5 A f ≡ λ p. map-option (items-5 A p) (f p)
definition expand-5 :: (′a ⇀ ′b set) ⇒ (′a ⇀ ′b) set nres where

expand-5 f ≡ FOREACH (map-to-set f) (λ (x, S) X . do {
ASSERT (∀ g ∈ X . x /∈ dom g);
ASSERT (∀ a ∈ S . ∀ b ∈ S . a 6= b −→ (λ y. (λ g. g (x 7→ y)) ‘ X) a ∩ (λ

y. (λ g. g (x 7→ y)) ‘ X) b = {});
RETURN (

⋃
y ∈ S . (λ g. g (x 7→ y)) ‘ X)

}) {Map.empty}
definition complement-succ-5 ::
(′label, ′state) nba ⇒ ′label ⇒ ′state items ⇒ ′state items set nres where
complement-succ-5 A a f ≡ do
{

f ← refresh-5 f ;
f ← bounds-5 A a f ;
ASSUME (finite (dom f));
expand-5 (get-5 A f)
}

lemma bounds-3-empty: bounds-3 A a Map.empty = Map.empty
unfolding bounds-3-def Let-def by auto

lemma bounds-3-update: bounds-3 A a (f (p 7→ s)) =
override-on (bounds-3 A a f) (Some ◦ merge-5 s ◦ bounds-3 A a (f (p :=

None))) (transition A a p)
proof

note fun-upd-image[simp]
fix q
show bounds-3 A a (f (p 7→ s)) q =

override-on (bounds-3 A a f) (Some ◦ merge-5 s ◦ bounds-3 A a (f (p :=
None))) (transition A a p) q

proof (cases q ∈ transition A a p)
case True
define S where S ≡ Some −‘ f ‘ (pred A a q − {p})
have 1 : Some −‘ f (p := Some s) ‘ pred A a q = insert s S using True

unfolding S-def by auto
have 2 : Some −‘ f (p := None) ‘ pred A a q = S unfolding S-def by auto
have bounds-3 A a (f (p 7→ s)) q = Some (

d
(fst ‘ (insert s S)),

⊔
(snd ‘

(insert s S)))
unfolding bounds-3-def 1 by simp

also have . . . = Some (merge-5 s (bounds-3 A a (f (p := None)) q))
unfolding 2 bounds-3-def merge-5-def by (cases s) (simp-all add: cInf-insert)
also have . . . = override-on (bounds-3 A a f) (Some ◦ merge-5 s ◦ bounds-3

A a (f (p := None)))
(transition A a p) q using True by simp

finally show ?thesis by this

48

next
case False
then have pred A a q ∩ {x. x 6= p} = pred A a q

by auto
with False show ?thesis by (simp add: bounds-3-def)

qed
qed

lemma refresh-5-refine: (refresh-5 , λ f . RETURN (refresh-1 f)) ∈ Id → 〈Id〉
nres-rel

proof safe
fix f :: ′a ⇒ item option
have 1 : (∃ (p, k, c) ∈ map-to-set f . c) ←→ True ∈ snd ‘ ran f

unfolding image-def map-to-set-def ran-def by force
show (refresh-5 f , RETURN (refresh-1 f)) ∈ 〈Id〉 nres-rel

unfolding refresh-5-def refresh-1-def 1
by (refine-vcg FOREACH-rule-map-eq[where X = λ m. map-option (apsnd

>) ◦ m]) (auto)
qed
lemma bounds-5-refine: (bounds-5 A a, λ f . RETURN (bounds-3 A a f)) ∈ Id
→ 〈Id〉 nres-rel

unfolding bounds-5-def by
(refine-vcg FOREACH-rule-map-eq[where X = bounds-3 A a] FOREACH-rule-insert-eq)
(auto simp: override-on-insert bounds-3-empty bounds-3-update)

lemma items-5-refine: items-5 = items-4
unfolding items-5-def items-4-def by (intro ext) (auto split: if-splits)

lemma get-5-refine: get-5 = get-4
unfolding get-5-def get-4-def items-5-refine by rule

lemma expand-5-refine: (expand-5 f , ASSERT (finite (dom f)) >> RETURN
(expand-map f)) ∈ 〈Id〉 nres-rel

unfolding expand-5-def
by (refine-vcg FOREACH-rule-map-eq[where X = expand-map]) (auto dest!:

expand-map-dom map-upd-eqD1)

lemma complement-succ-5-refine: (complement-succ-5 , RETURN ◦◦◦ comple-
ment-succ-4) ∈

Id → Id → Id → 〈Id〉 nres-rel
unfolding complement-succ-5-def complement-succ-4-def get-5-refine comp-apply
by (refine-vcg vcg1 [OF refresh-5-refine] vcg1 [OF bounds-5-refine] vcg0 [OF ex-

pand-5-refine]) (auto)

5.6 Phase 6
definition expand-map-get-6 :: (′label, ′state) nba ⇒ ′state items ⇒ ′state items

set nres where
expand-map-get-6 A f ≡ FOREACH (map-to-set f) (λ (k, v) X . do {

ASSERT (∀ g ∈ X . k /∈ dom g);
ASSERT (∀ a ∈ (items-5 A k v). ∀ b ∈ (items-5 A k v). a 6= b −→ (λ y. (λ

g. g (k 7→ y)) ‘ X) a ∩ (λ y. (λ g. g (k 7→ y)) ‘ X) b = {});

49

RETURN (
⋃

y ∈ items-5 A k v. (λ g. g (k 7→ y)) ‘ X)
}) {Map.empty}

lemma expand-map-get-6-refine: (expand-map-get-6 , expand-5 ◦◦ get-5) ∈ Id →
Id → 〈Id〉 nres-rel

unfolding expand-map-get-6-def expand-5-def get-5-def by (auto intro: FORE-
ACH-rule-map-map[param-fo])

definition complement-succ-6 ::
(′label, ′state) nba ⇒ ′label ⇒ ′state items ⇒ ′state items set nres where
complement-succ-6 A a f ≡ do
{

f ← refresh-5 f ;
f ← bounds-5 A a f ;
ASSUME (finite (dom f));
expand-map-get-6 A f
}

lemma complement-succ-6-refine:
(complement-succ-6 , complement-succ-5) ∈ Id → Id → Id → 〈Id〉 nres-rel
unfolding complement-succ-6-def complement-succ-5-def
by (refine-vcg vcg2 [OF expand-map-get-6-refine]) (auto intro: refine-IdI)

5.7 Phase 7
interpretation autoref-syn by this

context
fixes fi f
assumes fi[autoref-rules]: (fi, f) ∈ state-rel

begin

private lemma [simp]: finite (dom f)
using list-map-rel-finite fi unfolding finite-map-rel-def by force

schematic-goal refresh-7 : (?f :: ? ′a, refresh-5 f) ∈ ?R
unfolding refresh-5-def by (autoref-monadic (plain))

end

concrete-definition refresh-7 uses refresh-7

lemma refresh-7-refine: (λ f . RETURN (refresh-7 f), refresh-5) ∈ state-rel →
〈state-rel〉 nres-rel

using refresh-7 .refine by fast

context
fixes A :: (′label, nat) nba
fixes succi a fi f

50

assumes succi[autoref-rules]: (succi, transition A a) ∈ nat-rel → 〈nat-rel〉
list-set-rel

assumes fi[autoref-rules]: (fi, f) ∈ state-rel
begin

private lemma [simp]: finite (transition A a p)
using list-set-rel-finite succi[param-fo] unfolding finite-set-rel-def by blast

private lemma [simp]: finite (dom f) using fi by force

private lemma [autoref-op-pat]: transition A a ≡ OP (transition A a) by simp

private lemma [autoref-rules]: (min, min) ∈ nat-rel → nat-rel → nat-rel by
simp

schematic-goal bounds-7 :
notes ty-REL[where R = 〈nat-rel, item-rel〉 dflt-ahm-rel, autoref-tyrel]
shows (?f :: ? ′a, bounds-5 A a f) ∈ ?R

unfolding bounds-5-def merge-5-def sup-bool-def inf-nat-def by (autoref-monadic
(plain))

end

concrete-definition bounds-7 uses bounds-7

lemma bounds-7-refine: (si, transition A a) ∈ nat-rel → 〈nat-rel〉 list-set-rel =⇒
(λ p. RETURN (bounds-7 si p), bounds-5 A a) ∈
state-rel → 〈〈nat-rel, item-rel〉 dflt-ahm-rel〉 nres-rel
using bounds-7 .refine by auto

context
fixes A :: (′label, nat) nba
fixes acci
assumes [autoref-rules]: (acci, accepting A) ∈ nat-rel → bool-rel

begin

private lemma [autoref-op-pat]: accepting A ≡ OP (accepting A) by simp

private lemma [autoref-rules]: ((dvd), (dvd)) ∈ nat-rel → nat-rel → bool-rel
by simp

private lemma [autoref-rules]: (λ k l. upt k (Suc l), atLeastAtMost) ∈
nat-rel → nat-rel → 〈nat-rel〉 list-set-rel
by (auto simp: list-set-rel-def in-br-conv)

schematic-goal items-7 : (?f :: ? ′a, items-5 A) ∈ ?R
unfolding items-5-def Let-def Set.filter-def by autoref

end

concrete-definition items-7 uses items-7

51

context
fixes A :: (′label, nat) nba
fixes ai
fixes fi f
assumes ai: (ai, accepting A) ∈ nat-rel → bool-rel
assumes fi[autoref-rules]: (fi, f) ∈ 〈nat-rel, item-rel〉 dflt-ahm-rel

begin

private lemma [simp]: finite (dom f)
using dflt-ahm-rel-finite-nat fi unfolding finite-map-rel-def by force

private lemma [simp]:
assumes

∧
m. m ∈ S =⇒ x /∈ dom m

shows inj-on (λ m. m (x 7→ y)) S
using assms unfolding dom-def inj-on-def by (auto) (metis fun-upd-triv

fun-upd-upd)
private lemmas [simp] = op-map-update-def [abs-def]

private lemma [autoref-op-pat]: items-5 A ≡ OP (items-5 A) by simp

private lemmas [autoref-rules] = items-7 .refine[OF ai]

schematic-goal expand-map-get-7 : (?f , expand-map-get-6 A f) ∈
〈〈state-rel〉 list-set-rel〉 nres-rel
unfolding expand-map-get-6-def by (autoref-monadic (plain))

end

concrete-definition expand-map-get-7 uses expand-map-get-7

lemma expand-map-get-7-refine:
assumes (ai, accepting A) ∈ nat-rel → bool-rel
shows (λ fi. RETURN (expand-map-get-7 ai fi),
λ f . ASSUME (finite (dom f)) >> expand-map-get-6 A f) ∈
〈nat-rel, item-rel〉 dflt-ahm-rel → 〈〈state-rel〉 list-set-rel〉 nres-rel

using expand-map-get-7 .refine[OF assms] by auto

context
fixes A :: (′label, nat) nba
fixes a :: ′label
fixes p :: nat items
fixes Ai
fixes ai
fixes pi
assumes Ai: (Ai, A) ∈ 〈Id, Id〉 nbai-nba-rel
assumes ai: (ai, a) ∈ Id
assumes pi[autoref-rules]: (pi, p) ∈ state-rel

begin

52

private lemmas succi = nbai-nba-param(4)[THEN fun-relD, OF Ai, THEN
fun-relD, OF ai]

private lemmas acceptingi = nbai-nba-param(5)[THEN fun-relD, OF Ai]

private lemma [autoref-op-pat]: (λ g. ASSUME (finite (dom g)) >> ex-
pand-map-get-6 A g) ≡

OP (λ g. ASSUME (finite (dom g)) >> expand-map-get-6 A g) by simp
private lemma [autoref-op-pat]: bounds-5 A a ≡ OP (bounds-5 A a) by simp

private lemmas [autoref-rules] =
refresh-7-refine
bounds-7-refine[OF succi]
expand-map-get-7-refine[OF acceptingi]

schematic-goal complement-succ-7 : (?f :: ? ′a, complement-succ-6 A a p) ∈
?R

unfolding complement-succ-6-def by (autoref-monadic (plain))

end

concrete-definition complement-succ-7 uses complement-succ-7

lemma complement-succ-7-refine:
(RETURN ◦◦◦ complement-succ-7 , complement-succ-6) ∈
〈Id, Id〉 nbai-nba-rel → Id → state-rel →
〈〈state-rel〉 list-set-rel〉 nres-rel

using complement-succ-7 .refine unfolding comp-apply by parametricity

context
fixes A :: (′label, nat) nba
fixes Ai
fixes n ni :: nat
assumes Ai: (Ai, A) ∈ 〈Id, Id〉 nbai-nba-rel
assumes ni[autoref-rules]: (ni, n) ∈ Id

begin

private lemma [autoref-op-pat]: initial A ≡ OP (initial A) by simp

private lemmas [autoref-rules] = nbai-nba-param(3)[THEN fun-relD, OF Ai]

schematic-goal complement-initial-7 :
(?f , {(Some ◦ (const (2 ∗ n, False))) |‘ initial A}) ∈ 〈state-rel〉 list-set-rel
by autoref

end

concrete-definition complement-initial-7 uses complement-initial-7

53

schematic-goal complement-accepting-7 : (?f , λ f . ∀ (p, k, c) ∈ map-to-set f . ¬
c) ∈

state-rel → bool-rel
by autoref

concrete-definition complement-accepting-7 uses complement-accepting-7

definition complement-7 :: (′label, nat) nbai ⇒ nat ⇒ (′label, state) nbai where
complement-7 Ai ni ≡ nbai
(alphabeti Ai)
(complement-initial-7 Ai ni)
(complement-succ-7 Ai)
(complement-accepting-7)

lemma complement-7-refine[autoref-rules]:
assumes (Ai, A) ∈ 〈Id, Id〉 nbai-nba-rel
assumes (ni,
(OP card ::: 〈Id〉 ahs-rel bhc → nat-rel) $
((OP nodes ::: 〈Id, Id〉 nbai-nba-rel → 〈Id〉 ahs-rel bhc) $ A)) ∈ nat-rel

shows (complement-7 Ai ni, (OP complement-4 :::
〈Id, Id〉 nbai-nba-rel → 〈Id, state-rel〉 nbai-nba-rel) $ A) ∈ 〈Id, state-rel〉

nbai-nba-rel
proof −

note complement-succ-7-refine
also note complement-succ-6-refine
also note complement-succ-5-refine
finally have 1 : (complement-succ-7 , complement-succ-4) ∈
〈Id, Id〉 nbai-nba-rel → Id → state-rel → 〈state-rel〉 list-set-rel
unfolding nres-rel-comp unfolding nres-rel-def unfolding fun-rel-def by

auto
show ?thesis

unfolding complement-7-def complement-4-def
using 1 complement-initial-7 .refine complement-accepting-7 .refine assms
unfolding autoref-tag-defs
by parametricity

qed

end

6 Boolean Formulae
theory Formula
imports Main
begin

datatype ′a formula =
False |
True |
Variable ′a |

54

Negation ′a formula |
Conjunction ′a formula ′a formula |
Disjunction ′a formula ′a formula

primrec satisfies :: ′a set ⇒ ′a formula ⇒ bool where
satisfies A False ←→ HOL.False |
satisfies A True ←→ HOL.True |
satisfies A (Variable a) ←→ a ∈ A |
satisfies A (Negation x) ←→ ¬ satisfies A x |
satisfies A (Conjunction x y) ←→ satisfies A x ∧ satisfies A y |
satisfies A (Disjunction x y) ←→ satisfies A x ∨ satisfies A y

end

7 Final Instantiation of Algorithms Related to Com-
plementation

theory Complementation-Final
imports

Complementation-Implement
Formula
Transition-Systems-and-Automata.NBA-Translate
Transition-Systems-and-Automata.NGBA-Algorithms
HOL−Library.Multiset

begin

7.1 Syntax
no-syntax -do-let :: [pttrn, ′a]⇒ do-bind (‹(‹indent=2 notation=‹infix do let››let

- =/ -)› [1000 , 13] 13)
syntax -do-let :: [pttrn, ′a] ⇒ do-bind (‹(‹indent=2 notation=‹infix do let››let -

=/ -)› 13)

7.2 Hashcodes on Complement States
definition hci k ≡ uint32-of-nat k ∗ 1103515245 + 12345
definition hc ≡ λ (p, q, b). hci p + hci q ∗ 31 + (if b then 1 else 0)
definition list-hash xs ≡ fold (xor ◦ hc) xs 0

lemma list-hash-eq:
assumes distinct xs distinct ys set xs = set ys
shows list-hash xs = list-hash ys

proof −
have mset (remdups xs) = mset (remdups ys) using assms(3)

using set-eq-iff-mset-remdups-eq by blast
then have mset xs = mset ys using assms(1 , 2) by (simp add: distinct-remdups-id)
have fold (xor ◦ hc) xs = fold (xor ◦ hc) ys

apply (rule fold-multiset-equiv)
apply (simp-all add: fun-eq-iff ac-simps)

55

using ‹mset xs = mset ys› .
then show ?thesis unfolding list-hash-def by simp

qed

definition state-hash :: nat ⇒ Complementation-Implement.state ⇒ nat where
state-hash n p ≡ nat-of-hashcode (list-hash p) mod n

lemma state-hash-bounded-hashcode[autoref-ga-rules]: is-bounded-hashcode state-rel
(gen-equals (Gen-Map.gen-ball (foldli ◦ list-map-to-list)) (list-map-lookup (=))
(prod-eq (=) (←→))) state-hash

proof
show [param]: (gen-equals (Gen-Map.gen-ball (foldli ◦ list-map-to-list)) (list-map-lookup

(=))
(prod-eq (=) (←→)), (=)) ∈ state-rel → state-rel → bool-rel by autoref

show state-hash n xs = state-hash n ys if xs ∈ Domain state-rel ys ∈ Domain
state-rel

gen-equals (Gen-Map.gen-ball (foldli ◦ list-map-to-list))
(list-map-lookup (=)) (prod-eq (=) (=)) xs ys for xs ys n

proof −
have 1 : distinct (map fst xs) distinct (map fst ys)

using that(1 , 2) unfolding list-map-rel-def list-map-invar-def by (auto
simp: in-br-conv)

have 2 : distinct xs distinct ys using 1 by (auto intro: distinct-mapI)
have 3 : (xs, map-of xs) ∈ state-rel (ys, map-of ys) ∈ state-rel

using 1 unfolding list-map-rel-def list-map-invar-def by (auto simp:
in-br-conv)

have 4 : (gen-equals (Gen-Map.gen-ball (foldli ◦ list-map-to-list)) (list-map-lookup
(=))

(prod-eq (=) (←→)) xs ys, map-of xs = map-of ys) ∈ bool-rel using 3 by
parametricity

have 5 : map-to-set (map-of xs) = map-to-set (map-of ys) using that(3) 4
by simp

have 6 : set xs = set ys using map-to-set-map-of 1 5 by blast
show state-hash n xs = state-hash n ys unfolding state-hash-def using

list-hash-eq 2 6 by metis
qed
show state-hash n x < n if 1 < n for n x using that unfolding state-hash-def

by simp
qed

7.3 Complementation
schematic-goal complement-impl:

assumes [simp]: finite (NBA.nodes A)
assumes [autoref-rules]: (Ai, A) ∈ 〈Id, nat-rel〉 nbai-nba-rel
shows (?f :: ? ′c, op-translate (complement-4 A)) ∈ ?R
by (autoref-monadic (plain))

concrete-definition complement-impl uses complement-impl

56

theorem complement-impl-correct:
assumes finite (NBA.nodes A)
assumes (Ai, A) ∈ 〈Id, nat-rel〉 nbai-nba-rel
shows NBA.language (nbae-nba (nbaei-nbae (complement-impl Ai))) =

streams (nba.alphabet A) − NBA.language A
using op-translate-language[OF complement-impl.refine[OF assms]]
using complement-4-correct[OF assms(1)]
by simp

7.4 Language Subset
definition [simp]: op-language-subset A B ≡ NBA.language A ⊆ NBA.language

B

lemmas [autoref-op-pat] = op-language-subset-def [symmetric]

schematic-goal language-subset-impl:
assumes [simp]: finite (NBA.nodes B)
assumes [autoref-rules]: (Ai, A) ∈ 〈Id, nat-rel〉 nbai-nba-rel
assumes [autoref-rules]: (Bi, B) ∈ 〈Id, nat-rel〉 nbai-nba-rel
shows (?f :: ? ′c, do {

let AB ′ = intersect ′ A (complement-4 B);
ASSERT (finite (NGBA.nodes AB ′));
RETURN (NGBA.language AB ′ = {})
}) ∈ ?R

by (autoref-monadic (plain))
concrete-definition language-subset-impl uses language-subset-impl
lemma language-subset-impl-refine[autoref-rules]:

assumes SIDE-PRECOND (finite (NBA.nodes A))
assumes SIDE-PRECOND (finite (NBA.nodes B))
assumes SIDE-PRECOND (nba.alphabet A ⊆ nba.alphabet B)
assumes (Ai, A) ∈ 〈Id, nat-rel〉 nbai-nba-rel
assumes (Bi, B) ∈ 〈Id, nat-rel〉 nbai-nba-rel
shows (language-subset-impl Ai Bi, (OP op-language-subset :::
〈Id, nat-rel〉 nbai-nba-rel → 〈Id, nat-rel〉 nbai-nba-rel → bool-rel) $ A $ B) ∈

bool-rel
proof −

have (RETURN (language-subset-impl Ai Bi), do {
let AB ′ = intersect ′ A (complement-4 B);
ASSERT (finite (NGBA.nodes AB ′));
RETURN (NGBA.language AB ′ = {})
}) ∈ 〈bool-rel〉 nres-rel

using language-subset-impl.refine assms(2 , 4 , 5) unfolding autoref-tag-defs
by this

also have (do {
let AB ′ = intersect ′ A (complement-4 B);
ASSERT (finite (NGBA.nodes AB ′));
RETURN (NGBA.language AB ′ = {})
}, RETURN (NBA.language A ⊆ NBA.language B)) ∈ 〈bool-rel〉 nres-rel

57

proof refine-vcg
show finite (NGBA.nodes (intersect ′ A (complement-4 B))) using assms(1 ,

2) by auto
have 1 : NBA.language A ⊆ streams (nba.alphabet B)
using nba.language-alphabet streams-mono2 assms(3) unfolding autoref-tag-defs

by blast
have 2 : NBA.language (complement-4 B) = streams (nba.alphabet B) −

NBA.language B
using complement-4-correct assms(2) by auto

show (NGBA.language (intersect ′ A (complement-4 B)) = {},
NBA.language A ⊆ NBA.language B) ∈ bool-rel using 1 2 by auto

qed
finally show ?thesis using RETURN-nres-relD unfolding nres-rel-comp by

force
qed

7.5 Language Equality
definition [simp]: op-language-equal A B ≡ NBA.language A = NBA.language

B

lemmas [autoref-op-pat] = op-language-equal-def [symmetric]

schematic-goal language-equal-impl:
assumes [simp]: finite (NBA.nodes A)
assumes [simp]: finite (NBA.nodes B)
assumes [simp]: nba.alphabet A = nba.alphabet B
assumes [autoref-rules]: (Ai, A) ∈ 〈Id, nat-rel〉 nbai-nba-rel
assumes [autoref-rules]: (Bi, B) ∈ 〈Id, nat-rel〉 nbai-nba-rel
shows (?f :: ? ′c, NBA.language A ⊆ NBA.language B ∧ NBA.language B ⊆

NBA.language A) ∈ ?R
by autoref

concrete-definition language-equal-impl uses language-equal-impl
lemma language-equal-impl-refine[autoref-rules]:

assumes SIDE-PRECOND (finite (NBA.nodes A))
assumes SIDE-PRECOND (finite (NBA.nodes B))
assumes SIDE-PRECOND (nba.alphabet A = nba.alphabet B)
assumes (Ai, A) ∈ 〈Id, nat-rel〉 nbai-nba-rel
assumes (Bi, B) ∈ 〈Id, nat-rel〉 nbai-nba-rel
shows (language-equal-impl Ai Bi, (OP op-language-equal :::
〈Id, nat-rel〉 nbai-nba-rel → 〈Id, nat-rel〉 nbai-nba-rel → bool-rel) $ A $ B) ∈

bool-rel
using language-equal-impl.refine[OF assms[unfolded autoref-tag-defs]] by auto

schematic-goal product-impl:
assumes [simp]: finite (NBA.nodes B)
assumes [autoref-rules]: (Ai, A) ∈ 〈Id, nat-rel〉 nbai-nba-rel
assumes [autoref-rules]: (Bi, B) ∈ 〈Id, nat-rel〉 nbai-nba-rel
shows (?f :: ? ′c, do {

58

let AB ′ = intersect A (complement-4 B);
ASSERT (finite (NBA.nodes AB ′));
op-translate AB ′

}) ∈ ?R
by (autoref-monadic (plain))
concrete-definition product-impl uses product-impl

export-code
Set.empty Set.insert Set.member
Inf :: ′a set set ⇒ ′a set Sup :: ′a set set ⇒ ′a set image Pow set
nat-of-integer integer-of-nat
Variable Negation Conjunction Disjunction satisfies map-formula
nbaei alphabetei initialei transitionei acceptingei
nbae-nba-impl complement-impl language-equal-impl product-impl
in SML module-name Complementation file-prefix Complementation

end

8 Build and test exported program with MLton
theory Complementation-Build
imports Complementation-Final
begin

external-file ‹code/Autool.mlb›
external-file ‹code/Prelude.sml›
external-file ‹code/Autool.sml›

compile-generated-files
‹code/Complementation.ML› (in Complementation-Final)
external-files

‹code/Autool.mlb›
‹code/Prelude.sml›
‹code/Autool.sml›

export-files ‹code/Complementation.sml› and ‹code/Autool› (exe)
where ‹fn dir =>

let
val exec = Generated-Files.execute (dir + Path.basic code);
val - = exec ‹Prepare› mv Complementation.ML Complementation.sml;

val - = exec ‹Compilation› (verbatim ‹$ISABELLE-MLTON $ISABELLE-MLTON-OPTIONS
› ^

−profile time −default−type intinf Autool.mlb);
val - = exec ‹Test› ./Autool help;

in () end›

end

59

References
[1] O. Kupferman and M. Y. Vardi. Weak alternating automata are not

that weak. ACM Trans. Comput. Logic, 2(3):408–429, July 2001.

60

	Alternating Function Iteration
	Run Graphs
	Rankings
	Rankings
	Ranking Implies Word not in Language
	Word not in Language Implies Ranking
	Removal of Endangered Nodes
	Removal of Safe Nodes
	Run Graph Interation

	Node Ranks
	Correctness Theorem

	Complementation
	Level Rankings and Complementation States
	Word in Complement Language Implies Ranking
	Ranking Implies Word in Complement Language
	Correctness Theorem

	Complementation Implementation
	Phase 1
	Phase 2
	Phase 3
	Phase 4
	Phase 5
	Phase 6
	Phase 7

	Boolean Formulae
	Final Instantiation of Algorithms Related to Complementation
	Syntax
	Hashcodes on Complement States
	Complementation
	Language Subset
	Language Equality

	Build and test exported program with MLton

