
Boolos’s Curious Inference in Isabelle/HOL

Jeffrey Ketland
Faculty of Philosophy, University of Warsaw

jeffreyketland@gmail.com

March 17, 2025

Abstract

In 1987, George Boolos gave an interesting and vivid concrete ex-
ample of the considerable speed-up afforded by higher-order logic over
first-order logic. (A phenomenon first noted by Kurt Gödel in 1936.)
Boolos’s example concerned an inference I with five premises, and a
conclusion, such that the shortest derivation of the conclusion from
the premises in a standard system for first-order logic is astronomi-
cally huge; while there exists a second-order derivation whose length
is of the order of a page or two. Boolos gave a short sketch of that
second-order derivation, which relies on the comprehension principle
of second-order logic. Here, Boolos’s inference is formalized into four-
teen lemmas, each quickly verified by the automated-theorem-proving
assistant Isabelle/HOL.

Contents
1 Introduction 2

2 Isabelle Formalization I (Based on Boolos’s Proof Given in
§1) 5

3 Standard Mathematical Proof 8
3.1 Main Idea . 8
3.2 Proof . 10

4 Isabelle Formalization II (Based on Proof Given in §3) 13
4.1 Formalization . 13
4.2 Correspondence . 15

5 Isabelle Formalization I 16

6 Isabelle Formalization II 17

1

7 Acknowledgements 19

1 Introduction
In 1987, George Boolos ([3]) presented the following “curious inference”, I:

Inference I
(1) ∀n fn1 = s1
(2) ∀x f1sx = ssf1x
(3) ∀n∀x fsnsx = fnfsn, x
(4) D1
(5) ∀x (Dx → Dsx)
∴
(6) Dfssss1ssss1

Why is I “curious”? There are three points about I which Boolos notes:

(i) I is valid in first-order logic.
(ii) In a standard deductive system for first-order logic (the system

Boolos focuses on is from [5] and the details are given in the
appendix of his paper [3]), the shortest derivation of I’s conclusion
(6), from its premises (1)–(5), has symbol size at least

22
2.

..
.2

}
height = 65,536 2’s

So, the shortest first-order derivation for I is gigantic.
(iii) However, there is a reasonably short derivation of I’s conclusion

from its premises in a deductive system for second-order logic.

This is then a rather concrete example of speed-up, particularly the
speed-up of higher-order logical systems over their first-order level—an idea
first noticed by Kurt Gödel in 1936 ([4]). Boolos comments:

But it is well beyond the bounds of physical possibility that any actual or
conceivable creature or device should ever write down all the symbols of a
complete derivation in a standard system of first-order logic of (6) from (1)–(5):
there are far too many symbols in any such derivation for this to be possible.
([3]: 1)

Though the inference I is formalized, one may think of “s” as standing for
the successor operation, and “f” as standing for an Ackermann-like function
which grows very rapidly.1 As Boolos puts it,

f denotes an Ackermann-style function n, x 7→ f(n, x) defined on the positive
integers: f(1, x) = 2x; f(n, 1) = 2; and f(n+ 1, x+ 1) = f(n, f(n+ 1, x)).

1The original ideas in [1] and [6]. The so-called “Péter-Ackerman function” is defined

2

Then the premises (4) and (5) say that the set denoted by the unary
predicate symbol “D” contains 1 and is closed under s: in a sense, this set
is, thus, inductive. We wish to prove that the number fssss1ssss1 is in the
set D. Roughly speaking, a first-order derivation would need to prove this
by proving a “reduction formula”, of the form,

(R) fssss1ssss1 =

k iterations︷ ︸︸ ︷
ss . . . s 1 (1)

Let t be this term
k iterations︷ ︸︸ ︷
ss . . . s 1, which is clearly a “canonical numeral”.

Here, again roughly, k is the value of the term “fssss1ssss1”. Since we have
D1 and ∀x(Dx → Dsx), the result of applying Modus Ponens k times will
yield Dt. Then, using the reduction formula (R), we obtain Dfssss1fsss1,
the required conclusion.

How big is k? Well, k is gigantic, and thus the size of the required deriva-
tion in then gigantic too. Boolos gives a careful proof-theoretic argument,

For definiteness, we shall concentrate our attention on the system M of Mates’
book Elementary Logic. . . . What we shall show is that the number of symbols
in any derivation of (6) from (l)-(5) in M is at least the value of an exponential

stack 22
2.

..
.2

containing 64 K, or 65 536, 2s in all. Do not confuse this number,
which we shall call f(4, 4), with the number 264K .” ([3]: 3).

which provides the estimate for the lower bound:

k ≥ f(4, 4) = 22
2.
..
.2

(2)

as noted above.
Despite the extra-ordinary length of any first-order derivation, Boolos

pointed out that there is a reasonably short second-order logic derivation,
which would fit in a few pages if fully formalized. Boolos himself provides
such a derivation in the Appendix of his paper:

by:

A(0, n) = n+ 1

A(m, 0) = A(m− 1, 1)

A(m,n) = A(m− 1,A(m,n− 1))

Such functions are indeed recursive, though they don’t fit the mould of primitive recursion.
They grow extremely rapidly—outpacing any primitive recursive function.

3

Boolos’s Second-Order Derivation (sketch)

By the comprehension principle of second-order logic, ∃N∀z(Nz ⇐⇒
∀X[X1 & ∀y(Xy → Xsy) → Xz]), and then for some N , ∃E∀z(Ez ⇐⇒
Nz & Dz).
LEMMA 1: N1, ∀y(Ny → Nsy); Nssss1; E1, ∀y(Ey → Esy); Es1.
LEMMA 2: ∀n(Nn → ∀x(Nx → Efnx)).
Proof. By comprehension, ∃M∀n(Mn ⇐⇒ ∀x(Nx → Efnx)). We
want ∀n(Nn → Mn). Enough to show M1 and ∀n(Mn → Msn), for
then if Nn, Mn.
M1: Want ∀x(Nx → Ef1x). By comprehension ∃Q∀x(Qx ⇐⇒
Ef1x). Want ∀x(Nx → Qx). Enough to show Q1 and ∀x(Qx → Qsx).
Q1: Want Ef11. But f11 = s1 by (1) and Es1 by Lemma 1.
∀x(Qx → Qsx): Suppose Qx, i.e. Ef1x. By (2) f1sx = ssf1x; by
Lemma 1 twice, Ef1sx. Thus Qsx and M1.
∀n(Mn → Msn): Suppose Mn, i.e. ∀x(Nx → Efnx). Want Msn, i.e.
∀x(Nx → Efsnx). By comprehension, ∃P∀x(Px ⇐⇒ Efsnx). Want
∀x(Nx → Px). Enough to show P1 and ∀x(Px → Psx).
P1: Want Efsn1. But fsn1 = s1 by (1) and Es1 by Lemma 1.
∀x(Px → Psx): Suppose Px, i.e. Efsnx; thus Nfsnx. Want Efsnsx.
Since Nfsnx and Mn, Efnfsnx. But by (3) fnfsnx = fsnsx; thus
Efsnsx. By Lemma 1, Nssss1. By Lemma 2, Efssss1ssss1. Thus
Dfssss1ssss1, as desired.

Obviously, this is highly condensed!2 This is not quite fully formalized,
but clearly the missing logical inference steps, in each small sublemma, will
not add a large overhead.

An idea worth examining is then to see if this second-order inference can
be formalized and verified in an automated reasoning system. There are
quite a few of these to work with, and an important one is Isabelle/HOL,
originally designed by Lawrence Paulson at Cambridge.3

Below, in §2, we construct a formalization in Isabelle following Boolos’s
proof fairly closely.4 With some definitions (slightly different from Boolos’s)
and some coaxing, Isabelle finds the required derivations. We use a “locale”
to define the primitive symbols and five premises, and along with a defini-
tion of “inductive” and four definitions for Boolos’s predicates “N”, “E”,
“M” and “Q”. Boolos’s two main Lemmas then turn into some eighteen
formalization lemmas. Isabelle quickly verifies each of these, using its own
proof search algorithms.5

2I believe that Boolos’s phrase “for some N” in the second line is unintentional.
3The theorem prover Isabelle was designed by Lawrence Paulson in the late 1980s in

Cambridge. See [7] for the current Isabelle user’s manual.
4The Boolos curious inference has also been put into MIZAR and OMEGA in 2007 in

[2].
5The Isabelle formalization §2 does not use Boolos’s predicate “P”, which is defined

using a parameter (i.e. “n”). In my initial attempt at formalization, I found this generated
a difficulty in properly expressing the formalization. A similar difficulty is encountered in

4

Because the main ideas behind the second-order proof are, I believe,
independently interesting, in §3, I give a rigorous, but semi-formal, and
more “mathematical-looking” proof of the conclusion (6) from the premises
(1)–(5). This is structured into fourteen lemmas. We then construct a
separate Isabelle/HOL formalization of that in §4. This now has fourteen
formalized lemmas, but the definitions adopted match those using in the
semi-formal proof (and are again slightly different from Boolos’s). These
fourteen lemmas are organized into five groups for clarity.

In each case, I do not provide the machine proofs in Isabelle’s Isar lan-
guage of these lemmas, since they aren’t very instructive. The informal
proofs in in §3 are more instructive, and could, with coaxing, be parlayed
into machine proofs.

Boolos uses a notation for function terms and atomic predicates which
avoids brackets. We shall prefer to write the inference I slightly differently
from Boolos’s presentation. The premises (axioms) are:

A1 : F (x, e) = s(e)

A2 : F (e, s(y)) = s(s(F (e, y)))

A3 : F (s(x), s(y)) = F (x, F (s(x), y))

A4 : D(e)

A5 : D(x) → D(s(x))

The result we wish to prove is:

D(F (s(s(s(s(e)))), s(s(s(s(e))))))

2 Isabelle Formalization I (Based on Boolos’s Proof
Given in §1)

the semi-formal proof at Lemma 11. The subproof for Lemma 11 defines a set A, which
implicitly depends on a parameter.

5

theory Boo1 imports Main
begin

text "Boolos’s inference”

locale boolax_1 =
fixes F :: " ’a × ’a ⇒ ’a "
fixes s :: " ’a ⇒ ’a "
fixes D :: " ’a ⇒ bool "
fixes e :: " ’a "
assumes A1: "F(x, e) = s(e)"
and A2: "F(e, s(y)) = s(s(F(e, y)))"
and A3: "F(s(x), s(y)) = F(x, F(s(x), y))"
and A4: "D(e)"
and A5: "D(x) −→ D(s(x))"

context boolax_1
begin

text "Definitions"

definition (in boolax_1) induct :: "’a set ⇒ bool"
where

"induct X ≡ e ∈ X ∧ (∀ x. (x ∈ X −→ s(x) ∈ X))"
definition (in boolax_1) N :: "’a ⇒ bool"

where
"N x ≡ (∀ X. (induct X → x ∈ X))"

definition (in boolax_1) E :: "’a ⇒ bool"
where
"E x ≡ (N x ∧ D x)"

definition (in boolax_1) M :: "’a ⇒ bool"
where
"M x ≡ (∀ y. (N y −→ E(F(x, y))))"

definition (in boolax_1) Q :: "’a ⇒ bool"
where
"Q x ≡ E(F(e, x))"

6

text "Lemmas"
lemma lem1: "N e"

by (simp add: N_def induct_def)
lemma lem2: "N x −→ N(s(x))"

by (simp add: N_def induct_def)
lemma lem3: "N(s(s(s(s(e)))))"

by (simp add: lem1 lem2)
lemma lem4: "E e"

using A4 E_def lem1 by auto
lemma lem5: "E x −→ E(s(x))"

by (simp add: A5 E_def lem2)
lemma lem6: "E(s(e))"

by (simp add: lem4 lem5)
lemma lem7: "Q e"

by (simp add: A1 Q_def lem6)
lemma lem8: "Q x −→ Q(s(x))"

by (simp add: A2 Q_def lem5)
lemma lem9: "N x −→ Q x"

by (metis N_def induct_def lem7 lem8 mem_Collect_eq)
lemma lem10: "M e"

by (meson Q_def bool_ax.M_def bool_ax_axioms lem9)
lemma lem11: "E (F(s(n), e))"

by (simp add: A1 lem6)
lemma lem12: "M x ∧ E (F(s(x), y)) −→ E (F(s(x), s(y)))"

by (simp add: A3 E_def M_def)
lemma lem13: "M x −→ induct {y. E (F(s(x), y))}"

using A1 induct_def lem12 lem6 by auto
lemma lem14: "M x −→ M(s(x))"

by (metis CollectD M_def N_def lem13)
lemma lem15: "N x −→ M x"

by (metis N_def induct_def lem10 lem14 mem_Collect_eq)
lemma lem16: "N x ∧ N y −→ E(F(x,y))"

using M_def lem15 by blast
lemma lem17: "E(F(s(s(s(s(e)))), s(s(s(s(e))))))"

by (simp add: lem16 lem3)
lemma lem18: "D(F(s(s(s(s(e)))), s(s(s(s(e))))))"

using E_def lem17 by auto
end
end

7

3 Standard Mathematical Proof

3.1 Main Idea

The main idea behind the short, second-order proof is to define the notion
of an “inductive set” and define a specific “closure” or “container set” N to
be “the smallest inductive set”. These definitions, which are second-order,
are:

Df(ind) : X is inductive := (e ∈ X ∧ ∀x(x ∈ X → s(x) ∈ X)) (3)
Df(N) : N := {x | ∀Y (Y is inductive → x ∈ Y))} (4)

So, a set is inductive just if it contains e and is closed under applying s.
And the set N is defined to be the smallest inductive set. Thus,

N = {e, s(e), s(s(e)), s(s(s(e))), . . . } (5)

Notice that we don’t require the usual “Peano properties”, of non-surjectivity
and injectivity, for e and s.6

It is straightforward to prove (these are Lemma 1 and Lemma 2 below):

N is inductive (6)
X is inductive → N ⊆ X (7)

One can easily prove (this is Lemma 4 below),

s(s(s(s(e)))) ∈ N (8)

Now A4 and A5 say that (this is Lemma 3 below),

{x | D(x)} is inductive, (9)

So, we easily obtain:

N ⊆ {x | D(x)}. (10)

Given these definitions, and the premises A1–A5, the key target is to
prove the following claim (this is Lemma 13 below):

6I.e., we don’t require axioms stating non-surjectivity, ∀x(s(x) 6= e), or injectivity,
∀x∀y(s(x) = s(y) → x = y).

8

(Closure) (∀x ∈ N)(∀y ∈ N) F (x, y) ∈ N (11)

This claim, (Closure), states that the “container” N is closed under the
binary operation F .

It will then follow from (Closure) that:

F (s(s(s(s(e)))), s(s(s(s(e))))) ∈ N. (12)

So, we obtain:

D(F (s(s(s(s(e)))), s(s(s(s(e)))))), (13)

This is the required conclusion (this is Lemma 14 below).
However, how are we to prove (Closure)? Intuitively, we shall prove this

by a double induction: an “outer induction” on x, and an “inner induction”
on y (where x is a parameter). Note first that (Closure) is logically equivalent
to,

∀x(x ∈ N → (∀y(y ∈ N → F (x, y) ∈ N)) (14)

But (14) is clearly logically equivalent to,

∀x(x ∈ N → N ⊆ {y | F (x, y) ∈ N}) (15)

So, if we define

P1(x, y) := F (x, y) ∈ N (16)
P2(x) := N ⊆ {y | P1(x, y)} (17)

Then (Closure) is logically equivalent (using definitions) to,

∀x(x ∈ N → P2(x)) (18)

In turn, (18), and therefore (Closure), is equivalent (using the definition
of ⊆) to,

N ⊆ {x | P2(x)} (19)

9

And (19), given the definitions of “inductive” and of N, and therefore
(Closure), will follow from a proof of:

{x | P2(x)} is inductive (20)

And (20), in turn, by the definition of “inductive”, will follow from proofs
of:

P2(e) (21)
P2(x) → P2(s(x)) (22)

In summary, we need to establish P2(e) and P2(x) → P2(s(x)). These
are Lemmas 9 and 11 below. To prove these, we shall need Lemmas 5, 6, 7
below, and these rely on the premises A1–A3, along with the four definitions,
and Lemma 2.

These imply that {x | P2(x)} is inductive (Lemma 12 below). Given the
meaning of “inductive”, this tells us that N ⊆ {x | P2(x)} (this uses Lemma
1 below). From this, we conclude ∀x(x ∈ N → P2(x)), and, deabbreviating,
∀x(x ∈ N → N ⊆ {y | F (x, y) ∈ N}). This fairly quickly implies, ∀x∀y(x ∈
N ∧ y ∈ N → F (x, y) ∈ N), which is (Closure), and is Lemma 13 below.

The rest of the proof, which leads to Lemma 14 below, follows from
(Closure) and earlier lemmas,

{x | D(x)} is inductive (23)
s(s(s(s(e)))) ∈ N (24)

which are Lemmas 3 and 4, as explained above.

3.2 Proof

Here, we give rigorous but semi-formal proofs of the fourteen lemmas referred
to above. The four definitions we shall use are the following:

Df(ind) X is inductive := (e ∈ X ∧ ∀x(x ∈ X → s(x) ∈ X))

Df(N) N := {x | ∀X(X is inductive → x ∈ X))}
Df(P1) P1(x, y) := F (x, y) ∈ N
Df(P2) P2(x) := N ⊆ {y | P1(x, y)}

Lemma 1. If X is inductive, then N ⊆ X.

Proof. Using Df(N).
Suppose (a) X is inductive and (b) x ∈ N. From Df(N), we conclude that
∀Y (Y is inductive → x ∈ Y). And therefore, X is inductive → x ∈ X. But,
by (a), X is inductive. So, x ∈ X. So, discharging (b), x ∈ N → x ∈ X.
Since x is arbitrary, therefore N ⊆ X, as claimed.

10

Lemma 2. N is inductive.

Proof. Using Df(ind) and Df(N).
For a contradiction, suppose N is not inductive. From Df(ind), we have: X
is inductive if and only if e ∈ X and, for all x, if x ∈ X, then s(x) ∈ X. So,
either (a) e /∈ N or ∃x(x ∈ N ∧ s(x) /∈ N).

Now, assume (a) holds. from Df(N), e ∈ N iff ∀Y (Y is inductive →
e ∈ Y). Since e /∈ N, there is an inductive set Y such that e /∈ Y .
But since Y is inductive, e ∈ Y . This is a contradiction. Therefore, (b)
holds. The statement (b) is existential. Let a witness for (b) be a: so
a ∈ N and s(a) /∈ N. Using Df(N) and some simplification, it follows that
∀Y (Y is inductive → a ∈ Y), and ∃Y (Y is inductive ∧ s(a) /∈ Y). The sec-
ond claim is an existential one, and let a witness for this inductive set be
A. So, we have: A is inductive, a ∈ A and s(a) /∈ A. From the fact that A
is inductive and Df(ind), it follows that ∀x(x ∈ A → s(x) ∈ A), and thus
a ∈ A → s(a) ∈ A. Hence, s(a) ∈ A, contradicting the above.

Thus, N is inductive.

Lemma 3. {x | D(x)} is inductive.

Proof. Using A4, A5 and Df(ind).
From Df(ind), {x | D(x)} is inductive if and only if e ∈ {x | D(x)}, and
∀y(y ∈ {x | D(x)} → s(y) ∈ {x | D(x)}). So, to establish that {x | D(x)} is
inductive, we need to establish that D(e) and ∀y(D(y) → D(s(y)). Clearly
these follow immediately from premises A4 and A5.

Lemma 4. s(s(s(s(e)))) ∈ N.

Proof. Using Df(ind) and Lemma 2.
By Lemma 2, N is inductive. Using Df(ind), it follows that e ∈ N and
∀x(x ∈ N → s(x) ∈ N). Thus, e ∈ N. And likewise, s(e) ∈ N; and
s(s(e)) ∈ N; and s(s(s(e))) ∈ N; and s(s(s(s(e)))) ∈ N.

Lemma 5. P1(e, e).

Proof. Using A1, Df(P1), Df(ind) and Lemma 2.
We wish to prove that P1(e, e). Using Df(P1), we need to prove F (e, e) ∈ N.

From A1, we have: F (x, e) = s(e). Hence, F (e, e) = s(e). But we
already have shown that s(e) ∈ N, in the proof of Lemma 4, which relied on
Df(ind) and Lemma 2. So, F (e, e) ∈ N.

Lemma 6. P1(e, x) → P1(e, s(x)).

Proof. Using A2, Df(P1), Df(ind) and Lemma 2.
Let us suppose P1(e, x) holds. By the definition Df(P1), we have: P1(z, x) ⇐⇒
F (z, x) ∈ N, and therefore, F (e, x) ∈ N. Since N is inductive (Lemma 2), us-
ing Df(ind), it follows that s(s(F (e, x))) ∈ N. From A2, we have F (e, s(y)) =

11

s(s(F (e, y))). So, relabelling variables, F (e, s(x)) = s(s(F (e, x))). But
s(s(F (e, x))) ∈ N. And, therefore, F (e, s(x)) ∈ N, as claimed.

Lemma 7. {x | P1(e, x)} is inductive.

Proof. Using Df(ind), Lemmas 5, and Lemma 6.
By Df(ind), we need P1(e, e) and P1(e, x) → P1(e, s(x)). But these are
Lemmas 5, 6.

Lemma 8. P1(s(x), e).

Proof. Using A1, Df(P1), Df(ind) and Lemma 2.
Using Df(P1), we claim F (s(x), e) ∈ N.

From the proof of Lemma 4 (which depends on Df(ind) and Lemma 2) we
have s(e) ∈ N. From A1, we have F (x, e) = s(e) and thus F (s(x), e) = s(e).
So, F (s(x), e) ∈ N, as claimed.

Lemma 9. P2(e).

Proof. Using Df(P2), Lemma 1 and Lemma 7.
By Df(P2), P2(x) holds iff N ⊆ {y | P1(x, y)}. So, P2(e) holds iff N ⊆ {y |
P1(e, y)}. By Lemma 7, {x | P1(e, x)} is inductive. And by Lemma 1, it
follows that N ⊆ {y | P1(e, y)}, and thus P2(e) , as claimed.

Lemma 10. P2(x) → ∀y(P1(s(x), y) → P1(s(x), s(y))).

Proof. Using A3, Df(P1) and Df(P2).
Let us suppose P2(x). From Df(P2), this implies: N ⊆ {y : P1(x, y)}. We
claim: ∀y(P1(s(x), y) → P1(s(x), s(y))).

Suppose P1(s(x), y). Thus, using Df(P1) , F (s(x), y) ∈ N. We claim:
P1(s(x), s(y))).

Since N ⊆ {y : P1(x, y)}, we have ∀y(y ∈ N → P1(x, y)). And thus,
∀z(z ∈ N → F (x, z) ∈ N). It follows that F (s(x), y) ∈ N → F (x, F (s(x), y)) ∈
N). Since F (s(x), y) ∈ N, we have: F (x, F (s(x), y)) ∈ N. By A3, we have:
F (s(x), s(y)) = F (x, F (s(x), y)). And therefore, F (s(x), s(y)) ∈ N. Hence,
P1(s(x), s(y))), as claimed.

Lemma 11. P2(x) → P2(s(x)).

Proof. Using Df(P2), Df(ind), Lemma 1, Lemma 8, and Lemma 10.
Suppose P2(x). By Df(P2), we have: N ⊆ {y : P1(x, y)}. We claim P2(s(x)),
i.e. N ⊆ {y : P1(s(x), y)}.

By Lemma 8, we have: P1(s(x), e). By Lemma 10, we have: P2(x) →
∀y(P1(s(x), y) → P1(s(x), s(y))). Thus, we have: ∀y(P1(s(x), y) → P1(s(x), s(y))).

Let A = {y | P1(s(x), y)}. Thus, by Df(ind), we conclude that A is
inductive. By Lemma 1, we conclude that N ⊆ A, and therefore, N ⊆ {y :
P1(s(x), y)}, as claimed.

12

Lemma 12. {x | P2(x)} is inductive.

Proof. Using Df(ind), Lemma 9 and Lemma 11.
Using Df(ind), we claim P2(e) and ∀x(P2(x) → P2(s(x))). These are Lemma
9 and Lemma 11, respectively.

Lemma 13. x ∈ N ∧ y ∈ N → F (x, y) ∈ N.

Proof. Using Df(P1), Df(P2), Lemma 1, and Lemma 12.
From Lemma 12, we have: {x | P2(x)} is inductive. And thus, by Lemma 1,
N ⊆ {x | P2(x)}. Let us suppose x ∈ N and y ∈ N. We claim: F (x, y) ∈ N.

Since x ∈ N, we conclude, P2(x). And therefore, using Df(P2), we con-
clude N ⊆ {z | P1(x, z)}. But also y ∈ N. So, P1(x, y). And therefore,
F (x, y) ∈ N, as claimed.

Lemma 14. D(F (s(s(s(s(e)))), s(s(s(s(e)))))).

Proof. Using Lemma 1, Lemma 3, Lemma 4, and Lemma 13.
By Lemma 4, s(s(s(s(e)))) ∈ N. So, by Lemma 13, F (s(s(s(s(e)))), s(s(s(s(e))))) ∈
N. By Lemma 3, {x | D(x)}. Hence, by Lemma 1, N ⊆ {x | D(x)}.
Thus, F (s(s(s(s(e)))), s(s(s(s(e))))) ∈ {x | D(x)}. So, D(F (s(s(s(s(e)))), s(s(s(s(e)))))),
as claimed.

We now convert this semi-formal proof into an Isabelle formalization in
the next section. We merely ask Isabelle to verify these lemmas using its
own automated proof algorithms, and we don’t give the detailed subproofs
of each lemma (in Isabelle’s Isar language).

4 Isabelle Formalization II (Based on Proof Given
in §3)

4.1 Formalization

theory Boo2 imports Main
begin

text "Boolos’s inference”

locale boolax_2 =
fixes F :: " ’a × ’a ⇒ ’a "
fixes s :: " ’a ⇒ ’a "
fixes D :: " ’a ⇒ bool "
fixes e :: " ’a "
assumes A1: "F(x, e) = s(e)"
and A2: "F(e, s(y)) = s(s(F(e, y)))"
and A3: "F(s(x), s(y)) = F(x, F(s(x), y))"
and A4: "D(e)"
and A5: "D(x) −→ D(s(x))"

13

context boolax_2
begin

text "Definitions"

definition (in boolax_2) induct :: "’a set ⇒ bool"
where

"induct X ≡ e ∈ X ∧ (∀ x. (x ∈ X −→ s(x) ∈ X))"

definition (in boolax_2) N :: "’a set"
where

"N = {x. (∀ Y. (induct Y −→ x ∈ Y))}"

definition (in boolax_2) P1 :: "’a ⇒ ’a ⇒ bool"
where
"P1 x y ≡ F(x,y) ∈ N"

definition (in boolax_2) P2 :: "’a ⇒ bool"
where
P2 x ≡ N ⊆ {y. P1 x y}"

text "Lemmas"

text "I. Basic Lemmas"

lemma Induction_wrt_N: "induct X −→ N ⊆ X"
using N_def by auto

lemma N_is_inductive: "induct N"
by (simp add: N_def induct_def)

lemma D_is_inductive: "induct {x. D(x)}"
using A4 A5 induct_def by auto

lemma Four_in_N: "s(s(s(s(e)))) ∈ N"
using induct_def N_is_inductive by auto

text "II. Proof that {x. P1 e x} is inductive"

lemma P1ex_basis: "P1 e e"
using A1 P1_def induct_def N_is_inductive by auto

lemma P1ex_closed: "P1 e x −→ P1 e (s(x))"
using A2 P1_def induct_def N_is_inductive by auto

lemma P1ex_inductive: "induct {x. P1 e x}"
using induct_def P1ex_basis P1ex_closed by auto

14

text "III. Proof that {x. P2 x} is inductive"

lemma P1sx_basis: P1 (s(x)) e"
using A1 P1_def induct_def N_is_inductive by auto

lemma P2_basis: "P2 e"
by (simp add: P2_def Induction_wrt_N P1ex_inductive)

lemma P2_closeda: "P2 x −→ (∀ y. (P1 (s(x)) y −→ P1 (s(x)) (s(y))))"
using A3 P1_def P2_def by auto

lemma P2_closedb: "P2 x −→ P2 (s(x))"
using P2_def induct_def Induction_wrt_N P1sx_basis P2_closeda by auto

lemma P2_inductive: "induct {x. P2 x}"
using induct_def P2_basis P2_closedb by auto

text "IV. Proof that N is closed under F"

lemma N_closed_F: "x ∈ N ∧ y ∈ N −→ F(x,y) ∈ N"
using Induction_wrt_N P1_def P2_def P2_inductive by auto

text "V. Conclusion"

lemma F_Four_in_D: "D(F(s(s(s(s(e)))), s(s(s(s(e))))))"
using D_is_inductive Four_in_N N_closed_F Induction_wrt_N by auto

end
end

4.2 Correspondence

The correspondence between the Lemmas of the semi-formal mathematical
proof in §3 and the Lemmas of the Isabelle formalization in §4.1 is given in
the table below.

Semi-formal lemma Isabelle lemma
Lemma 1 lemma Induction_wrt_N: "induct X −→ N ⊆ X"
Lemma 2 lemma N_is_inductive: "induct N"
Lemma 3 lemma D_is_inductive: "induct {x. D(x)}"
Lemma 4 lemma Four_in_N: "s(s(s(s(e)))) ∈ N"
Lemma 5 lemma P1ex_basis: "P1 e e"
Lemma 6 lemma P1ex_closed: "P1 e x −→ P1 e (s(x))"
Lemma 7 lemma P1ex_inductive: "induct {x. P1 e x}"
Lemma 8 lemma P1sx_basis: P1 (s(x)) e"
Lemma 9 lemma P2_basis: "P2 e"
Lemma 10 lemma P2_closeda: "P2 x −→ (∀ y. (P1 (s(x)) y −→ P1 (s(x)) (s(y))))"
Lemma 11 lemma P2_closedb: "P2 x −→ P2 (s(x))"
Lemma 12 lemma P2_inductive: "induct {x. P2 x}"
Lemma 13 lemma N_closed_F: "x ∈ N ∧ y ∈ N −→ F(x,y) ∈ N"
Lemma 14 lemma F_Four_in_D: "D(F(s(s(s(s(e)))), s(s(s(s(e))))))"

15

5 Isabelle Formalization I
theory Boo1 imports Main
begin

Boolos’s inference
locale boolax-1 =

fixes F :: ′a × ′a ⇒ ′a
fixes s :: ′a ⇒ ′a
fixes D :: ′a ⇒ bool
fixes e :: ′a
assumes A1 : F(x, e) = s(e)
and A2 : F(e, s(y)) = s(s(F(e, y)))
and A3 : F(s(x), s(y)) = F(x, F(s(x), y))
and A4 : D(e)
and A5 : D(x) −→ D(s(x))

context boolax-1
begin

Definitions
definition (in boolax-1) induct :: ′a set => bool

where induct X ≡ e ∈ X ∧ (∀ x. (x ∈ X −→ s(x) ∈ X))

definition (in boolax-1) N :: ′a ⇒ bool
where N x ≡ (∀X . (induct X −→ x ∈ X))

definition (in boolax-1) E :: ′a ⇒ bool
where E x ≡ (N x ∧ D x)

definition (in boolax-1) M :: ′a ⇒ bool
where M x ≡ (∀ y. (N y −→ E(F(x, y))))

definition (in boolax-1) Q :: ′a ⇒ bool
where Q x ≡ E(F(e, x))

Lemmas
lemma lem1 : N e by (simp add: N-def induct-def)

lemma lem2 : N x −→ N (s(x)) by (simp add: N-def induct-def)

lemma lem3 : N (s(s(s(s(e))))) by (simp add: lem1 lem2)

lemma lem4 : E e using A4 E-def lem1 by auto

lemma lem5 : E x −→ E(s(x)) by (simp add: A5 E-def lem2)

lemma lem6 : E(s(e)) by (simp add: lem4 lem5)

16

lemma lem7 : Q e by (simp add: A1 Q-def lem6)

lemma lem8 : Q x −→ Q(s(x)) by (simp add: A2 Q-def lem5)

lemma lem9 : N x −→ Q x by (metis N-def induct-def lem7 lem8 mem-Collect-eq)

lemma lem10 : M e by (meson Q-def M-def lem9)

lemma lem11 : E (F(s(n), e)) by (simp add: A1 lem6)

lemma lem12 : M x ∧ E (F(s(x), y)) −→ E (F(s(x), s(y))) by (simp add: A3
E-def M-def)

lemma lem13 : M x −→ induct {y. E (F(s(x), y))} using A1 induct-def lem12
lem6 by auto

lemma lem14 : M x −→ M (s(x)) by (metis CollectD M-def N-def lem13)

lemma lem15 : N x −→ M x by (metis N-def induct-def lem10 lem14 mem-Collect-eq)

lemma lem16 : N x ∧ N y −→ E(F(x,y)) using M-def lem15 by blast

lemma lem17 : E(F(s(s(s(s(e)))), s(s(s(s(e)))))) by (simp add: lem16 lem3)

lemma lem18 : D(F(s(s(s(s(e)))), s(s(s(s(e)))))) using E-def lem17 by auto

end

end

6 Isabelle Formalization II
theory Boo2 imports Main
begin

Boolos’s inference
locale boolax-2 =
fixes F :: ′a × ′a ⇒ ′a
fixes s :: ′a ⇒ ′a
fixes D :: ′a ⇒ bool
fixes e :: ′a
assumes A1 : F(x, e) = s(e)
and A2 : F(e, s(y)) = s(s(F(e, y)))
and A3 : F(s(x), s(y)) = F(x, F(s(x), y))
and A4 : D(e)
and A5 : D(x) −→ D(s(x))

context boolax-2
begin

17

Definitions
definition (in boolax-2) induct :: ′a set ⇒ bool
where induct X ≡ (e ∈ X ∧ (∀ x. (x ∈ X −→ s(x) ∈ X)))

definition (in boolax-2) N :: ′a set
where N = {x. (∀Y . (induct Y −→ x ∈ Y))}

definition (in boolax-2) P1 :: ′a ⇒ ′a ⇒ bool
where P1 x y ≡ F(x,y) ∈ N

definition (in boolax-2) P2 :: ′a ⇒ bool
where P2 x ≡ N ⊆ {y. P1 x y}

Lemmas

I. Basic Lemmas
lemma Induction-wrt-N : induct X −→ N ⊆ X using N-def by auto

lemma N-is-inductive: induct N by (simp add: N-def induct-def)

lemma D-is-inductive: induct {x. D(x)} using A4 A5 induct-def by auto

lemma Four-in-N : s(s(s(s(e)))) ∈ N using induct-def N-is-inductive by auto

II. Proof that x.P1ex is inductive
lemma P1ex-basis: P1 e e using A1 P1-def induct-def N-is-inductive by auto

lemma P1ex-closed: P1 e x −→ P1 e (s(x)) using A2 P1-def induct-def N-is-inductive
by auto

lemma P1ex-inductive: induct {x. P1 e x} using induct-def P1ex-basis P1ex-closed
by auto

III. Proof that x.P2x is inductive
lemma P1sx-basis: P1 (s(x)) e using A1 P1-def induct-def N-is-inductive by auto

lemma P2-basis: P2 e by (simp add: P2-def Induction-wrt-N P1ex-inductive)

lemma P2-closeda: P2 x −→ (∀ y. (P1 (s(x)) y −→ P1 (s(x)) (s(y)))) using A3
P1-def P2-def by auto

lemma P2-closedb: P2 x −→ P2 (s(x)) using P2-def induct-def Induction-wrt-N
P1sx-basis P2-closeda by auto

lemma P2-inductive: induct {x. P2 x} using induct-def P2-basis P2-closedb by
auto

IV. Proof that N is closed under F

18

lemma N-closed-F : x ∈ N ∧ y ∈ N −→ F(x,y) ∈ N using Induction-wrt-N
P1-def P2-def P2-inductive by auto

V. Conclusion
lemma F-Four-in-D: D(F(s(s(s(s(e)))), s(s(s(s(e)))))) using D-is-inductive Four-in-N
N-closed-F Induction-wrt-N by auto

end
end

7 Acknowledgements
The author acknowledges support of the Polish National Science Center
(Narodowe Centrum Nauki w Krakowie (NCN), Kraków, Poland), project
number 2020/39/B/HS1/02020.

References
[1] W. Ackermann. Zum Hilbertschen Aufbau der reellen Zahlen. Mathe-

matische Annalen, 99:118–133, 1928.

[2] C. Benzmüller and C. Brown. The curious inference of Boolos in MIZAR
and OMEGA. In R. Matuszewski and A. Zalewska, editors, From Insight
to Proof — Festschrift in Honour of Andrzej Trybulec, pages 299–388.
The University of Białystok, Białystok, Poland, 2007. Online: http:
//mizar.org/trybulec65/20.pdf.

[3] G. Boolos. A curious inference. Journal of Philosophical Logic, 16:1–12,
1987.

[4] K. Gödel. Über die Länge von Beweisen. Ergebinisse Eines Mathema-
tischen Kolloquiums, 7:23–24, 1936. Reprinted with English translation,
Vol 1 of Gödel’s collected works.

[5] B. Mates. Elementary Logic. Oxford University Press, New York, 1972.

[6] R. Péter. Konstruktion nichtrekursiver Funktionen. Mathematische An-
nalen, 111:42–60, 1935.

[7] M. Wenzel et al. The Isabelle/Isar reference manual, 2020. The manual
is available online.
https://isabelle.in.tum.de/dist/Isabelle/doc/isar-ref.pdf.

19

http://mizar.org/trybulec65/20.pdf
http://mizar.org/trybulec65/20.pdf
https://isabelle.in.tum.de/dist/Isabelle/doc/isar-ref.pdf

	Introduction
	Isabelle Formalization I (Based on Boolos's Proof Given in §1)
	Standard Mathematical Proof
	Main Idea
	Proof

	Isabelle Formalization II (Based on Proof Given in §3)
	Formalization
	Correspondence

	Isabelle Formalization I
	Isabelle Formalization II
	Acknowledgements

