
Solution to the xkcd Blue Eyes puzzle

Maya Kdzioka

March 17, 2025

Abstract
In a puzzle published by Randall Munroe [2], perfect logicians forbidden from communi-

cating are stranded on an island, and may only leave once they have figured out their own
eye color. We present a method of modeling the behavior of perfect logicians and formalize
a solution of the puzzle.

Contents
1 Introduction 1

2 Modeling the world 2

3 Eye colors other than blue 3

4 The blue-eyed logicians 4

5 Future work 8

1 Introduction

The original problem statement [2] explains the puzzle well:

A group of people with assorted eye colors live on an island. They are all perfect
logicians – if a conclusion can be logically deduced, they will do it instantly. No one
knows the color of their eyes. Every night at midnight, a ferry stops at the island.
Any islanders who have figured out the color of their own eyes then leave the island,
and the rest stay. Everyone can see everyone else at all times and keeps a count of
the number of people they see with each eye color (excluding themselves), but they
cannot otherwise communicate. Everyone on the island knows all the rules in this
paragraph.

On this island there are 100 blue-eyed people, 100 brown-eyed people, and the
Guru (she happens to have green eyes). So any given blue-eyed person can see 100
people with brown eyes and 99 people with blue eyes (and one with green), but that
does not tell him his own eye color; as far as he knows the totals could be 101 brown
and 99 blue. Or 100 brown, 99 blue, and he could have red eyes.

The Guru is allowed to speak once (let’s say at noon), on one day in all their
endless years on the island. Standing before the islanders, she says the following:

“I can see someone who has blue eyes.”
Who leaves the island, and on what night?

It might seem weird that the Guru’s declaration gives anyone any new information. For an
informal discussion, see [1, Section 1.1].

1

2 Modeling the world

We begin by fixing two type variables: ′color and ′person. The puzzle doesn’t specify how many
eye colors are possible, but four are mentioned. Crucially, we must assume they are distinct.
We specify the existence of colors other than blue and brown, even though we don’t mention
them later, because when blue and brown are the only possible colors, the puzzle has a different
solution — the brown-eyed logicians may leave one day after the blue-eyed ones.
We refrain from specifying the exact population of the island, choosing to only assume it is finite
and denote a specific person as the Guru.
We could also model the Guru as an outside entity instead of a participant. This doesn’t change
the answer and results in a slightly simpler proof, but is less faithful to the problem statement.
context

fixes blue brown green red :: ′color
assumes colors-distinct: distinct [blue, brown, green, red]

fixes guru :: ′person
assumes finite (UNIV :: ′person set)

begin

It’s slightly tricky to formalize the behavior of perfect logicians. The representation we use is
centered around the type of a world, which describes the entire state of the environment. In our
case, it’s a function ′person ⇒ ′color that assigns an eye color to everyone.1

The only condition known to everyone and not dependent on the observer is Guru’s declaration:
definition valid :: (′person ⇒ ′color) ⇒ bool where

valid w ←→ (∃ p. p 6= guru ∧ w p = blue)

We then define the function possible n p w w ′, which returns True if on day n the potential
world w ′ is plausible from the perspective of person p, based on the observations they made in
the actual world w.
Then, leaves n p w is True if p is able to unambiguously deduce the color of their own eyes, i.e.
if it is the same in all possible worlds. Note that if p actually left many moons ago, this function
still returns True.
fun leaves :: nat ⇒ ′person ⇒ (′person ⇒ ′color) ⇒ bool

and possible :: nat ⇒ ′person ⇒ (′person ⇒ ′color) ⇒ (′person ⇒ ′color) ⇒ bool
where

leaves n p w = (∀w ′. possible n p w w ′ −→ w ′ p = w p) |
possible n p w w ′←→ valid w ∧ valid w ′

∧ (∀ p ′ 6= p. w p ′ = w ′ p ′)
∧ (∀n ′ < n. ∀ p ′. leaves n ′ p ′ w = leaves n ′ p ′ w ′)

Naturally, the act of someone leaving can be observed by others, thus the two definitions are
mutually recursive. As such, we need to instruct the simplifier to not unfold these definitions
endlessly.
declare possible.simps[simp del] leaves.simps[simp del]

A world is possible if

1. The Guru’s declaration holds.

2. The eye color of everyone but the observer matches.

3. The same people left on each of the previous days.
1We would introduce a type synonym, but at the time of writing Isabelle doesn’t support including type

variables fixed by a locale in a type synonym.

2

Moreover, we require that the actual world w is valid, so that the relation is symmetric:
lemma possible-sym: possible n p w w ′ = possible n p w ′ w

by (auto simp: possible.simps)

In fact, possible n p is an equivalence relation:
lemma possible-refl: valid w =⇒ possible n p w w

by (auto simp: possible.simps)

lemma possible-trans: possible n p w1 w2 =⇒ possible n p w2 w3 =⇒ possible n p w1 w3
by (auto simp: possible.simps)

3 Eye colors other than blue

Since there is no way to distinguish between the colors other than blue, only the blue-eyed people
will ever leave. To formalize this notion, we define a function that takes a world and replaces
the eye color of a specified person. The original color is specified too, so that the transformation
composes nicely with the recursive hypothetical worlds of local.possible.
definition try-swap :: ′person ⇒ ′color ⇒ ′color ⇒ (′person ⇒ ′color) ⇒ (′person ⇒ ′color) where

try-swap p c1 c2 w x = (if c1 = blue ∨ c2 = blue ∨ x 6= p then w x else transpose c1 c2 (w x))

lemma try-swap-valid[simp]: valid (try-swap p c1 c2 w) = valid w
by (cases ‹c1 = blue›; cases ‹c2 = blue›)
(auto simp add: try-swap-def valid-def transpose-eq-iff)

lemma try-swap-eq[simp]: try-swap p c1 c2 w x = try-swap p c1 c2 w ′ x ←→ w x = w ′ x
by (auto simp add: try-swap-def transpose-eq-iff)

lemma try-swap-inv[simp]: try-swap p c1 c2 (try-swap p c1 c2 w) = w
by (rule ext) (auto simp add: try-swap-def swap-id-eq)

lemma leaves-try-swap[simp]:
assumes valid w
shows leaves n p (try-swap p ′ c1 c2 w) = leaves n p w
using assms

proof (induction n arbitrary: p w rule: less-induct)
case (less n)
have leaves n p w if leaves n p (try-swap p ′ c1 c2 w) for w
proof (unfold leaves.simps; rule+)

fix w ′

assume possible n p w w ′

then have possible n p (try-swap p ′ c1 c2 w) (try-swap p ′ c1 c2 w ′)
by (fastforce simp: possible.simps less.IH)

with ‹leaves n p (try-swap p ′ c1 c2 w)› have try-swap p ′ c1 c2 w ′ p = try-swap p ′ c1 c2 w p
unfolding leaves.simps
by simp

thus w ′ p = w p by simp
qed

with try-swap-inv show ?case by auto
qed

This lets us prove that only blue-eyed people will ever leave the island.
proposition only-blue-eyes-leave:

assumes leaves n p w and valid w
shows w p = blue

proof (rule ccontr)

3

assume w p 6= blue
then obtain c where c: w p 6= c c 6= blue

using colors-distinct
by (metis distinct-length-2-or-more)

let ?w ′ = try-swap p (w p) c w
have possible n p w ?w ′

using ‹valid w› apply (simp add: possible.simps)
by (auto simp: try-swap-def)

moreover have ?w ′ p 6= w p
using c ‹w p 6= blue› by (auto simp: try-swap-def)

ultimately have ¬ leaves n p w
by (auto simp: leaves.simps)

with assms show False by simp
qed

4 The blue-eyed logicians

We will now consider the behavior of the logicians with blue eyes. First, some simple lemmas.
Reasoning about set cardinalities often requires considering infinite sets separately. Usefully, all
sets of people are finite by assumption.
lemma people-finite[simp]: finite (S :: ′person set)
proof (rule finite-subset)

show S ⊆ UNIV by auto
show finite (UNIV :: ′person set) by fact

qed

Secondly, we prove a destruction rule for local.possible. It is strictly weaker than the definition,
but thanks to the simpler form, it’s easier to guide the automation with it.
lemma possibleD-colors:

assumes possible n p w w ′ and p ′ 6= p
shows w ′ p ′ = w p ′

using assms unfolding possible.simps by simp

A central concept in the reasoning is the set of blue-eyed people someone can see.
definition blues-seen :: (′person ⇒ ′color) ⇒ ′person ⇒ ′person set where

blues-seen w p = {p ′. w p ′ = blue} − {p}

lemma blues-seen-others:
assumes w p ′ = blue and p 6= p ′

shows w p = blue =⇒ card (blues-seen w p) = card (blues-seen w p ′)
and w p 6= blue =⇒ card (blues-seen w p) = Suc (card (blues-seen w p ′))

proof −
assume w p = blue
then have blues-seen w p ′ = blues-seen w p ∪ {p} − {p ′}

by (auto simp add: blues-seen-def)
moreover have p /∈ blues-seen w p

unfolding blues-seen-def by auto
moreover have p ′ ∈ blues-seen w p ∪ {p}

unfolding blues-seen-def using ‹p 6= p ′› ‹w p ′ = blue› by auto
ultimately show card (blues-seen w p) = card (blues-seen w p ′)

by simp
next

assume w p 6= blue
then have blues-seen w p ′ = blues-seen w p − {p ′}

by (auto simp add: blues-seen-def)

4

moreover have p ′ ∈ blues-seen w p
unfolding blues-seen-def using ‹p 6= p ′› ‹w p ′ = blue› by auto

ultimately show card (blues-seen w p) = Suc (card (blues-seen w p ′))
by (simp only: card-Suc-Diff1 people-finite)

qed

lemma blues-seen-same[simp]:
assumes possible n p w w ′

shows blues-seen w ′ p = blues-seen w p
using assms
by (auto simp: blues-seen-def possible.simps)

lemma possible-blues-seen:
assumes possible n p w w ′

assumes w p ′ = blue and p 6= p ′

shows w ′ p = blue =⇒ card (blues-seen w p) = card (blues-seen w ′ p ′)
and w ′ p 6= blue =⇒ card (blues-seen w p) = Suc (card (blues-seen w ′ p ′))

using possibleD-colors[OF ‹possible n p w w ′›] and blues-seen-others assms
by (auto simp flip: blues-seen-same)

Finally, the crux of the solution. We proceed by strong induction.
lemma blue-leaves:

assumes w p = blue and valid w
and guru: w guru 6= blue

shows leaves n p w ←→ n ≥ card (blues-seen w p)
using assms

proof (induction n arbitrary: p w rule: less-induct)
case (less n)
show ?case
proof

— First, we show that day n is sufficient to deduce that the eyes are blue.
assume n ≥ card (blues-seen w p)
have w ′ p = blue if possible n p w w ′ for w ′

proof (cases card (blues-seen w ′ p))
case 0
moreover from ‹possible n p w w ′› have valid w ′

by (simp add: possible.simps)
ultimately show w ′ p = blue

unfolding valid-def blues-seen-def by auto
next

case (Suc k)
— We consider the behavior of somebody else, who also has blue eyes.
then have blues-seen w ′ p 6= {}

by auto
then obtain p ′ where w ′ p ′ = blue and p 6= p ′

unfolding blues-seen-def by auto
then have w p ′ = blue

using possibleD-colors[OF ‹possible n p w w ′›] by simp

have p 6= guru
using ‹w p = blue› and ‹w guru 6= blue› by auto

hence w ′ guru 6= blue
using ‹w guru 6= blue› and possibleD-colors[OF ‹possible n p w w ′›] by simp

have valid w ′

using ‹possible n p w w ′› unfolding possible.simps by simp

show w ′ p = blue

5

proof (rule ccontr)
assume w ′ p 6= blue
— If our eyes weren’t blue, then p ′ would see one blue-eyed person less than us.
with possible-blues-seen[OF ‹possible n p w w ′› ‹w p ′ = blue› ‹p 6= p ′›]
have ∗: card (blues-seen w p) = Suc (card (blues-seen w ′ p ′))

by simp
— By induction, they would’ve left on day k = blues-seen w ′ p ′.
let ?k = card (blues-seen w ′ p ′)
have ?k < n

using ‹n ≥ card (blues-seen w p)› and ∗ by simp
hence leaves ?k p ′ w ′

using ‹valid w ′› ‹w ′ p ′ = blue› ‹w ′ guru 6= blue›
by (intro less.IH [THEN iffD2]; auto)

— However, we know that actually, p ′ didn’t leave that day yet.
moreover have ¬ leaves ?k p ′ w
proof

assume leaves ?k p ′ w
then have ?k ≥ card (blues-seen w p ′)

using ‹?k < n› ‹w p ′ = blue› ‹valid w› ‹w guru 6= blue›
by (intro less.IH [THEN iffD1]; auto)

have card (blues-seen w p) = card (blues-seen w p ′)
by (intro blues-seen-others; fact)

with ∗ have ?k < card (blues-seen w p ′)
by simp

with ‹?k ≥ card (blues-seen w p ′)› show False by simp
qed
moreover have leaves ?k p ′ w ′ = leaves ?k p ′ w

using ‹possible n p w w ′› ‹?k < n›
unfolding possible.simps by simp

ultimately show False by simp
qed

qed
thus leaves n p w

unfolding leaves.simps using ‹w p = blue› by simp
next

— Then, we show that it’s not possible to deduce the eye color any earlier.
{

assume n < card (blues-seen w p)
— Consider a hypothetical world where p has brown eyes instead. We will prove that this world is

possible.
let ?w ′ = w(p := brown)
have ?w ′ guru 6= blue

using ‹w guru 6= blue› ‹w p = blue›
by auto

have valid ?w ′

proof −
from ‹n < card (blues-seen w p)› have card (blues-seen w p) 6= 0 by auto
hence blues-seen w p 6= {}

by auto
then obtain p ′ where p ′ ∈ blues-seen w p

by auto
hence p 6= p ′ and w p ′ = blue

by (auto simp: blues-seen-def)
hence ?w ′ p ′ = blue by auto
with ‹?w ′ guru 6= blue› show valid ?w ′

unfolding valid-def by auto
qed

6

moreover have leaves n ′ p ′ w = leaves n ′ p ′ ?w ′ if n ′ < n for n ′ p ′

proof −
have not-leavesI : ¬leaves n ′ p ′ w ′

if valid w ′ w ′ guru 6= blue and P: w ′ p ′ = blue =⇒ n ′ < card (blues-seen w ′ p ′) for w ′

proof (cases w ′ p ′ = blue)
case True
then have leaves n ′ p ′ w ′←→ n ′ ≥ card (blues-seen w ′ p ′)

using less.IH ‹n ′ < n› ‹valid w ′› ‹w ′ guru 6= blue›
by simp

with P[OF ‹w ′ p ′ = blue›] show ¬leaves n ′ p ′ w ′ by simp
next

case False
then show ¬ leaves n ′ p ′ w ′

using only-blue-eyes-leave ‹valid w ′› by auto
qed

have ¬leaves n ′ p ′ w
proof (intro not-leavesI)

assume w p ′ = blue
with ‹w p = blue› have card (blues-seen w p) = card (blues-seen w p ′)

apply (cases p = p ′, simp)
by (intro blues-seen-others; auto)

with ‹n ′ < n› and ‹n < card (blues-seen w p)› show n ′ < card (blues-seen w p ′)
by simp

qed fact+

moreover have ¬ leaves n ′ p ′ ?w ′

proof (intro not-leavesI)
assume ?w ′ p ′ = blue
with colors-distinct have p 6= p ′ and ?w ′ p 6= blue by auto
hence card (blues-seen ?w ′ p) = Suc (card (blues-seen ?w ′ p ′))

using ‹?w ′ p ′ = blue›
by (intro blues-seen-others; auto)

moreover have blues-seen w p = blues-seen ?w ′ p
unfolding blues-seen-def by auto

ultimately show n ′ < card (blues-seen ?w ′ p ′)
using ‹n ′ < n› and ‹n < card (blues-seen w p)›
by auto

qed fact+

ultimately show leaves n ′ p ′ w = leaves n ′ p ′ ?w ′ by simp
qed
ultimately have possible n p w ?w ′

using ‹valid w›
by (auto simp: possible.simps)

moreover have ?w ′ p 6= blue
using colors-distinct by auto

ultimately have ¬ leaves n p w
unfolding leaves.simps
using ‹w p = blue› by blast

}
then show leaves n p w =⇒ n ≥ card (blues-seen w p)

by fastforce
qed

qed

This can be combined into a theorem that describes the behavior of the logicians based on the
objective count of blue-eyed people, and not the count by a specific person. The xkcd puzzle is

7

the instance where n = 99.
theorem blue-eyes:

assumes card {p. w p = blue} = Suc n and valid w and w guru 6= blue
shows leaves k p w ←→ w p = blue ∧ k ≥ n

proof (cases w p = blue)
case True
with assms have card (blues-seen w p) = n

unfolding blues-seen-def by simp
then show ?thesis

using ‹w p = blue› ‹valid w› ‹w guru 6= blue› blue-leaves
by simp

next
case False
then show ?thesis

using only-blue-eyes-leave ‹valid w› by auto
qed

end

5 Future work

After completing this formalization, I have been made aware of epistemic logic. The possible
worlds model in section 2 turns out to be quite similar to the usual semantics of this logic. It
might be interesting to solve this puzzle within the axiom system of epistemic logic, without
explicit reasoning about possible worlds.

References

[1] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning About Knowledge. MIT Press,
1995.

[2] Randall Munroe. Blue eyes — a logic puzzle. URL: https://xkcd.com/blue_eyes.html.

8

https://xkcd.com/blue_eyes.html

	Introduction
	Modeling the world
	Eye colors other than blue
	The blue-eyed logicians
	Future work

