Birkhoff's Representation Theorem For Finite Distributive Lattices

Matthew Doty

March 17, 2025

Abstract

This theory proves a theorem of Birkhoff that asserts that any finite distributive lattice is isomorphic to the set of *down-sets* of that lattice's join-irreducible elements. The isomorphism preserves order, meets and joins as well as complementation in the case the lattice is a Boolean algebra. A consequence of this representation theorem is that every finite Boolean algebra is isomorphic to a powerset algebra.

Contents

1	Atoms, Join Primes and Join Irreducibles	2
2	Birkhoff's Representation Theorem For Finite Distributive Lattices	3
3	Finite Ditributive Lattice Isomorphism	5
4	Cardinality	6

theory Birkhoff-Finite-Distributive-Lattices imports HOL-Library.Finite-Lattice HOL.Transcendental begin

unbundle *lattice-syntax*

The proof of Birkhoff's representation theorem for finite distributive lattices [1] presented here follows Davey and Priestley [2].

1 Atoms, Join Primes and Join Irreducibles

Atomic elements are defined as follows.

definition (in *bounded-lattice-bot*) *atomic* :: 'a \Rightarrow *bool* where *atomic* $x \equiv x \neq \bot \land (\forall y. y \le x \longrightarrow y = \bot \lor y = x)$

Two related concepts are *join-prime* elements and *join-irreducible* elements.

definition (in *bounded-lattice-bot*) *join-prime* :: 'a \Rightarrow *bool* where *join-prime* $x \equiv x \neq \bot \land (\forall y \ z \ . \ x \leq y \sqcup z \longrightarrow x \leq y \lor x \leq z)$

definition (in *bounded-lattice-bot*) *join-irreducible* :: 'a \Rightarrow *bool* where *join-irreducible* $x \equiv x \neq \bot \land (\forall y z . y < x \longrightarrow z < x \longrightarrow y \sqcup z < x)$

lemma (in bounded-lattice-bot) join-irreducible-def': join-irreducible $x = (x \neq \bot \land (\forall y \ z \ . \ x = y \sqcup z \longrightarrow x = y \lor x = z))$ $\langle proof \rangle$

Every join-prime is also join-irreducible.

```
lemma (in bounded-lattice-bot) join-prime-implies-join-irreducible:
assumes join-prime x
shows join-irreducible x
\langle proof \rangle
```

In the special case when the underlying lattice is distributive, the join-prime elements and join-irreducible elements coincide.

class bounded-distrib-lattice-bot = bounded-lattice-bot + assumes sup-inf-distrib1: $x \sqcup (y \sqcap z) = (x \sqcup y) \sqcap (x \sqcup z)$ begin

subclass distrib-lattice $\langle proof \rangle$

end

context complete-distrib-lattice **begin**

subclass bounded-distrib-lattice-bot $\langle proof \rangle$

end

lemma (in bounded-distrib-lattice-bot) join-irreducible-is-join-prime: join-irreducible x = join-prime $x \langle proof \rangle$

Every atomic element is join-irreducible.

lemma (in bounded-lattice-bot) atomic-implies-join-prime: assumes atomic xshows join-irreducible x $\langle proof \rangle$

In the case of Boolean algebras, atomic elements and join-prime elements are one-in-the-same.

```
lemma (in boolean-algebra) join-prime-is-atomic:
atomic x = join-prime x \langle proof \rangle
```

All atomic elements are disjoint.

lemma (in bounded-lattice-bot) atomic-disjoint: assumes atomic α and atomic β shows ($\alpha = \beta$) \longleftrightarrow ($\alpha \sqcap \beta \neq \bot$) $\langle proof \rangle$

definition (in *bounded-lattice-bot*) *atomic-elements* $(\langle A \rangle)$ where $A \equiv \{a : atomic \ a\}$

definition (in *bounded-lattice-bot*) *join-irreducible-elements* $(\langle \mathcal{J} \rangle)$ where $\mathcal{J} \equiv \{a : join-irreducible a\}$

2 Birkhoff's Representation Theorem For Finite Distributive Lattices

Birkhoff's representation theorem for finite distributive lattices follows from the fact that every non- \perp element can be represented by the join-irreducible elements beneath it.

In this section we merely demonstrate the representation aspect of Birkhoff's theorem. In §3 we show this representation is a lattice homomorphism.

The fist step to representing elements is to show that there *exist* joinirreducible elements beneath them. This is done by showing if there is no join-irreducible element, we can make a descending chain with more elements than the finite Boolean algebra under consideration.

fun (in order) descending-chain-list :: 'a list \Rightarrow bool where descending-chain-list [] = Truedescending-chain-list [x] = Truedescending-chain-list (x # x' # xs) $= (x < x' \land descending-chain-list (x' \# xs))$ **lemma** (in order) descending-chain-list-tail: **assumes** descending-chain-list (s # S) **shows** descending-chain-list S $\langle proof \rangle$ **lemma** (in order) descending-chain-list-drop-penultimate: **assumes** descending-chain-list (s # s' # S)**shows** descending-chain-list (s # S) $\langle proof \rangle$ **lemma** (in order) descending-chain-list-less-than-others: assumes descending-chain-list (s # S) shows $\forall s' \in set S. s < s'$ $\langle proof \rangle$ **lemma** (in order) descending-chain-list-distinct: **assumes** descending-chain-list Sshows distinct S $\langle proof \rangle$ lemma (in finite-distrib-lattice) join-irreducible-lower-bound-exists: assumes $\neg (x \le y)$ shows $\exists z \in \mathcal{J}. z \leq x \land \neg (z \leq y)$ $\langle proof \rangle$

```
definition (in bounded-lattice-bot)
join-irreducibles-embedding :: 'a \Rightarrow 'a set (\langle \{ \ - \ \} \rangle [50]) where
\{ \ x \ \} \equiv \{a \in \mathcal{J}. \ a \leq x\}
```

We can now show every element is exactly the suprema of the join-irreducible elements beneath them in any distributive lattice.

theorem (in finite-distrib-lattice) sup-join-prime-embedding-ident: $x = \bigsqcup_{\substack{x \in Y \\ proof}} \{ x \}$

Just as $x = \bigsqcup \{ x \}$, the reverse is also true; λx . $\{ x \}$ and λS . $\bigsqcup S$ are inverses where $S \in \mathcal{OJ}$, the set of downsets in *Pow J*.

definition (in *bounded-lattice-bot*) *down-irreducibles* ($\langle \mathcal{OJ} \rangle$) where $\mathcal{OJ} \equiv \{ S \in Pow \ \mathcal{J} \ (\exists x \ S = \{ x \}) \}$

Given that λx . { x } has a left and right inverse, we can show it is a *bijection*.

The bijection below is recognizable as a form of *Birkhoff's Representation Theorem* for finite distributive lattices.

theorem (in finite-distrib-lattice) birkhoffs-theorem: bij-betw (λx . { x }) UNIV OJ $\langle proof \rangle$

3 Finite Ditributive Lattice Isomorphism

The form of Birkhoff's theorem presented in §2 simply gave a bijection between a finite distributive lattice and the downsets of its join-irreducible elements. This relationship can be extended to a full-blown *lattice homomorphism*. In particular we have the following properties:

- \perp and \top are preserved; specifically $\{\!\mid \perp \mid \!\} = \{\!\}$ and $\{\!\mid \top \mid \!\} = \mathcal{J}$.
- Order is preserved: $x \leq y = (\{ x \} \subseteq \{ y \}).$
- $\lambda x \cdot \{\!\!\{ x \\!\!\} \text{ is a lower complete semi-lattice homomorphism, mapping } \\ \{\!\!\{ \bigsqcup X \\!\!\} = (\bigcup x \in X \cdot \{\!\!\{ x \\!\!\} \}).$
- In addition to preserving arbitrary joins, λ x . { x } is a lattice homomorphism, since it also preserves finitary meets with { x □ y } = { x } ∩ { y }. Arbitrary meets are also preserved, but relative to a top element J, or in other words { □ X } = J ∩ (∩ x ∈ X. { x }).
- In the case of a Boolean algebra, complementation corresponds to relative set complementation via $\{ -x \} = \mathcal{J} \{ x \}$.

lemma (in finite-distrib-lattice) join-irreducibles-bot: $\{ \perp \} = \{ \}$ $\langle proof \rangle$

lemma (in *finite-distrib-lattice*) *join-irreducibles-top*: $\{\!\!\{ \top \}\!\!\} = \mathcal{J} \ \langle proof \rangle$

lemma (in *finite-distrib-lattice*) *join-irreducibles-order-isomorphism*: $x \leq y = (\{ x \} \subseteq \{ y \})$ $\langle proof \rangle$ **lemma** (in finite-distrib-lattice) join-irreducibles-join-homomorphism: { $x \sqcup y$ } = { $x \lor \cup y$ } $\langle proof \rangle$

lemma (in finite-distrib-lattice) join-irreducibles-sup-homomorphism: $\{\bigcup X\} = (\bigcup x \in X . \{ x \})$ $\langle proof \rangle$

lemma (in finite-distrib-lattice) join-irreducibles-meet-homomorphism: $\{ x \sqcap y \} = \{ x \} \cap \{ y \}$ $\langle proof \rangle$

Arbitrary meets are also preserved, but relative to a top element \mathcal{J} .

lemma (in finite-distrib-lattice) join-irreducibles-inf-homomorphism: $\{\!\!\{ \prod X \}\!\!\} = \mathcal{J} \cap (\bigcap x \in X. \{\!\!\{ x \}\!\!\})$ $\langle proof \rangle$

Finally, we show that complementation is preserved.

To begin, we define the class of finite Boolean algebras. This class is simply an extension of *boolean-algebra*, extended with *finite UNIV* as per the axiom class *finite*. We also also extend the language of the class with *infima* and *suprema* (i.e. $\square A$ and $\bigsqcup A$ respectively).

```
class finite-boolean-algebra = boolean-algebra + finite + Inf + Sup +

assumes Inf-def: \square A = Finite-Set.fold (\square) \top A

assumes Sup-def: \bigsqcup A = Finite-Set.fold (\sqcup) \bot A

begin
```

Finite Boolean algebras are trivially a subclass of finite distributive lattices, which are necessarily *complete*.

subclass finite-distrib-lattice-complete $\langle proof \rangle$

subclass bounded-distrib-lattice-bot $\langle proof \rangle$ end

lemma (in finite-boolean-algebra) join-irreducibles-complement-homomorphism: $\{ -x \} = \mathcal{J} - \{ x \}$

$\langle proof \rangle$

4 Cardinality

Another consequence of Birkhoff's theorem from §2 is that every finite Boolean algebra has a cardinality which is a power of two. This gives a bound on the number of atoms/join-prime/irreducible elements, which must be logarithmic in the size of the finite Boolean algebra they belong to.

We first show that \mathcal{OJ} , the downsets of the join-irreducible elements \mathcal{J} , are the same as the powerset of \mathcal{J} in any finite Boolean algebra.

```
lemma (in finite-boolean-algebra) \mathcal{OJ}-is-Pow-\mathcal{J}:
\mathcal{OJ} = Pow \mathcal{J}
\langle proof \rangle
```

```
lemma (in finite-boolean-algebra) UNIV-card:
card (UNIV::'a set) = card (Pow \mathcal{J})
\langle proof \rangle
```

```
lemma finite-Pow-card:

assumes finite X

shows card (Pow X) = 2 powr (card X)

\langle proof \rangle
```

```
lemma (in finite-boolean-algebra) UNIV-card-powr-2:
card (UNIV::'a set) = 2 powr (card \mathcal{J})
\langle proof \rangle
```

```
lemma (in finite-boolean-algebra) join-irreducibles-card-log-2:
card \mathcal{J} = \log 2 (card (UNIV :: 'a set))
\langle proof \rangle
```

 \mathbf{end}

References

- G. Birkhoff. Rings of sets. Duke Mathematical Journal, 3(3):443–454, Sept. 1937.
- [2] B. A. Davey and H. A. Priestley. Chapter 5. Representation: The finite case. In *Introduction to Lattices and Order*, pages 112–124. Cambridge University Press, Cambridge, UK; New York, NY, 2nd ed edition, 2002.