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Abstract

This theory proves a theorem of Birkhoff that asserts that any finite
distributive lattice is isomorphic to the set of down-sets of that lattice’s
join-irreducible elements. The isomorphism preserves order, meets and
joins as well as complementation in the case the lattice is a Boolean
algebra. A consequence of this representation theorem is that every
finite Boolean algebra is isomorphic to a powerset algebra.
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theory Birkhoff-Finite-Distributive-Lattices
imports
HOL- Library. Finite- Lattice
HOL. Transcendental
begin

unbundle lattice-syntax

The proof of Birkhoff’s representation theorem for finite distributive lattices
[1] presented here follows Davey and Priestley [2].

1 Atoms, Join Primes and Join Irreducibles

Atomic elements are defined as follows.

definition (in bounded-lattice-bot) atomic :: 'a = bool where
atomicz=z# LAV yy<z—y=1LVy=uz)

Two related concepts are join-prime elements and join-irreducible elements.

definition (in bounded-lattice-bot) join-prime :: 'a = bool where
joinprimez =z # L ANV yz.z2<yUz—z<yVaze<z)

definition (in bounded-lattice-bot) join-irreducible :: 'a = bool where
join-irreducible x =z # L AN yz.y<z—z2<z—ylUz<2x)

lemma (in bounded-lattice-bot) join-irreducible-def":
join-irreducible = (z # LA NV yz. 2 =yUz— 2=y V z=2)
(proof)

Every join-prime is also join-irreducible.

lemma (in bounded-lattice-bot) join-prime-implies-join-irreducible:
assumes join-prime x
shows join-irreducible x
(proof)

In the special case when the underlying lattice is distributive, the join-prime
elements and join-irreducible elements coincide.

class bounded-distrib-lattice-bot = bounded-lattice-bot +
assumes sup-inf-distribl: z U (y M z) = (z U y) N (z U 2)
begin

subclass distrib-lattice
(proof)

end

context complete-distrib-lattice
begin



subclass bounded-distrib-lattice-bot
(proof )

end

lemma (in bounded-distrib-lattice-bot) join-irreducible-is-join-prime:
join-irreducible x = join-prime x
(proof)

Every atomic element is join-irreducible.

lemma (in bounded-lattice-bot) atomic-implies-join-prime:
assumes atomic T
shows join-irreducible

{proof)

In the case of Boolean algebras, atomic elements and join-prime elements
are one-in-the-same.
lemma (in boolean-algebra) join-prime-is-atomic:
atomic x = join-prime T
(proof)

All atomic elements are disjoint.

lemma (in bounded-lattice-bot) atomic-disjoint:
assumes atomic o
and atomic 3
shows (a = 8) «+— (N f # 1)
(proof )

definition (in bounded-lattice-bot) atomic-elements (<A>) where
A = {a . atomic a}

definition (in bounded-lattice-bot) join-irreducible-elements (1 J») where
J = {a . join-irreducible a}

2 Birkhoff’s Representation Theorem For Finite
Distributive Lattices

Birkhoff’s representation theorem for finite distributive lattices follows from
the fact that every non-_L element can be represented by the join-irreducible
elements beneath it.

In this section we merely demonstrate the representation aspect of Birkhoff’s
theorem. In §3 we show this representation is a lattice homomorphism.

The fist step to representing elements is to show that there exist join-
irreducible elements beneath them. This is done by showing if there is



no join-irreducible element, we can make a descending chain with more ele-
ments than the finite Boolean algebra under consideration.

fun (in order) descending-chain-list :: 'a list = bool where
descending-chain-list || = True
| descending-chain-list [z] = True
| descending-chain-list (z # =’ # xs)
= (z < 2’ A descending-chain-list (z' # xs))

lemma (in order) descending-chain-list-tail:
assumes descending-chain-list (s # S)
shows descending-chain-list S

{proof)

lemma (in order) descending-chain-list-drop-penultimate:
assumes descending-chain-list (s # s’ # S)
shows descending-chain-list (s # S)
(proof)

lemma (in order) descending-chain-list-less-than-others:
assumes descending-chain-list (s # S)
shows Vs’ € set S. s < s’

{proof)

lemma (in order) descending-chain-list-distinct:
assumes descending-chain-list S
shows distinct S

{proof)

lemma (in finite-distrib-lattice) join-irreducible-lower-bound-ezists:
assumes - (z < y)
shows3 ze€ J. z2< a2z A= (2<y)

(proof)

definition (in bounded-lattice-bot)
join-irreducibles-embedding :: 'a = 'a set (<{ - [}> [50]) where
{z}t={acJ a<z}

We can now show every element is exactly the suprema of the join-irreducible
elements beneath them in any distributive lattice.

theorem (in finite-distrib-lattice) sup-join-prime-embedding-ident:

e={zl
(proof)

Just as z = | | { = [}, the reverse is also true; A z. { z [} and A S. | | S are
inverses where S € OJ, the set of downsets in Pow J.

definition (in bounded-lattice-bot) down-irreducibles (\OJ>) where
Og={Se€Powg.Fz.S={z})}



lemma (in finite-distrib-lattice) join-irreducible-embedding-sup-ident:
assumes S € OJ
shows S={|] S|

(proof)

Given that X\ z. { = |} has a left and right inverse, we can show it is a
bijection.

The bijection below is recognizable as a form of Birkhoff’s Representation
Theorem for finite distributive lattices.

theorem (in finite-distrib-lattice) birkhoffs-theorem:
bij-betw (X z. { = [}) UNIV OF
{proof)

3 Finite Ditributive Lattice Isomorphism

The form of Birkhoff’s theorem presented in §2 simply gave a bijection be-
tween a finite distributive lattice and the downsets of its join-irreducible
elements. This relationship can be extended to a full-blown lattice homo-
morphism. In particular we have the following properties:

o | and T are preserved; specifically { L [ = {}and { T |} = J.
o Orderispreserved: z < y=({z [} C{yl).

e Az .{ x| is alower complete semi-lattice homomorphism, mapping

JUXb=UzeX.{z})

o In addition to preserving arbitrary joins, A z . { z |} is a lattice homo-
morphism, since it also preserves finitary meets with { z My [} = { =
I N4 y }. Arbitrary meets are also preserved, but relative to a top
element J, or in other words { [| X } =T N (N z€ X. { z |}).

e In the case of a Boolean algebra, complementation corresponds to
relative set complementation via { —z [} =7 — { z }}.

lemma (in finite-distrib-lattice) join-irreducibles-bot:

1Lh=10
(proof )

lemma (in finite-distrib-lattice) join-irreducibles-top:
{Th=0
(proof )

lemma (in finite-distrib-lattice) join-irreducibles-order-isomorphism:
c<y={zh<c{yl)
(proof )



lemma (in finite-distrib-lattice) join-irreducibles-join-homomorphism:
{zuylb={zbu{yl
(proof )

lemma (in finite-distrib-lattice) join-irreducibles-sup-homomorphism:
{UXt=U=zeX {2}
(proof )

lemma (in finite-distrib-lattice) join-irreducibles-meet-homomorphism:
{znylh={=zn{yl
(proof)

Arbitrary meets are also preserved, but relative to a top element 7.

lemma (in finite-distrib-lattice) join-irreducibles-inf-homomorphism:
{MNxi=9nNzeX{z}

(proof)

Finally, we show that complementation is preserved.

To begin, we define the class of finite Boolean algebras. This class is simply
an extension of boolean-algebra, extended with finite UNIV as per the axiom
class finite. We also also extend the language of the class with infima and
suprema (i.e. [ ] A and | | A respectively).
class finite-boolean-algebra = boolean-algebra + finite + Inf + Sup +

assumes Inf-def: [| A = Finite-Set.fold (M) T A

assumes Sup-def: | | A = Finite-Set.fold (U) L A
begin

Finite Boolean algebras are trivially a subclass of finite distributive lattices,
which are necessarily complete.

subclass finite-distrib-lattice-complete
(proof )

subclass bounded-distrib-lattice-bot

(proof)
end

lemma (in finite-boolean-algebra) join-irreducibles-complement-homomorphism:

{-2b=0-{=}
(proof)

4 Cardinality

Another consequence of Birkhoff’s theorem from §2 is that every finite
Boolean algebra has a cardinality which is a power of two. This gives a



bound on the number of atoms/join-prime/irreducible elements, which must
be logarithmic in the size of the finite Boolean algebra they belong to.

We first show that OF, the downsets of the join-irreducible elements 7, are
the same as the powerset of 7 in any finite Boolean algebra.
lemma (in finite-boolean-algebra) OF -is-Pow-T:
OFJ = Pow J
(proof)

lemma (in finite-boolean-algebra) UNIV-card:
card (UNIV::'a set) = card (Pow J)
{proof)

lemma finite- Pow-card:
assumes finite X
shows card (Pow X) = 2 powr (card X)

{proof)

lemma (in finite-boolean-algebra) UNIV-card-powr-2:
card (UNIV:'a set) = 2 powr (card J)
{proof )

lemma (in finite-boolean-algebra) join-irreducibles-card-log-2:
card J = log 2 (card (UNIV :: 'a set))
(proof)

end
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