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Abstract

This theory proves a theorem of Birkhoff that asserts that any finite
distributive lattice is isomorphic to the set of down-sets of that lattice’s
join-irreducible elements. The isomorphism preserves order, meets and
joins as well as complementation in the case the lattice is a Boolean
algebra. A consequence of this representation theorem is that every
finite Boolean algebra is isomorphic to a powerset algebra.
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theory Birkhoff-Finite-Distributive-Lattices
imports

HOL−Library.Finite-Lattice
HOL.Transcendental

begin

unbundle lattice-syntax

The proof of Birkhoff’s representation theorem for finite distributive lattices
[1] presented here follows Davey and Priestley [2].

1 Atoms, Join Primes and Join Irreducibles

Atomic elements are defined as follows.
definition (in bounded-lattice-bot) atomic :: ′a ⇒ bool where

atomic x ≡ x 6= ⊥ ∧ (∀ y. y ≤ x −→ y = ⊥ ∨ y = x)

Two related concepts are join-prime elements and join-irreducible elements.
definition (in bounded-lattice-bot) join-prime :: ′a ⇒ bool where

join-prime x ≡ x 6= ⊥ ∧ (∀ y z . x ≤ y t z −→ x ≤ y ∨ x ≤ z)

definition (in bounded-lattice-bot) join-irreducible :: ′a ⇒ bool where
join-irreducible x ≡ x 6= ⊥ ∧ (∀ y z . y < x −→ z < x −→ y t z < x)

lemma (in bounded-lattice-bot) join-irreducible-def ′:
join-irreducible x = (x 6= ⊥ ∧ (∀ y z . x = y t z −→ x = y ∨ x = z))
〈proof 〉

Every join-prime is also join-irreducible.
lemma (in bounded-lattice-bot) join-prime-implies-join-irreducible:

assumes join-prime x
shows join-irreducible x
〈proof 〉

In the special case when the underlying lattice is distributive, the join-prime
elements and join-irreducible elements coincide.
class bounded-distrib-lattice-bot = bounded-lattice-bot +

assumes sup-inf-distrib1 : x t (y u z) = (x t y) u (x t z)
begin

subclass distrib-lattice
〈proof 〉

end

context complete-distrib-lattice
begin
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subclass bounded-distrib-lattice-bot
〈proof 〉

end

lemma (in bounded-distrib-lattice-bot) join-irreducible-is-join-prime:
join-irreducible x = join-prime x
〈proof 〉

Every atomic element is join-irreducible.
lemma (in bounded-lattice-bot) atomic-implies-join-prime:

assumes atomic x
shows join-irreducible x
〈proof 〉

In the case of Boolean algebras, atomic elements and join-prime elements
are one-in-the-same.
lemma (in boolean-algebra) join-prime-is-atomic:

atomic x = join-prime x
〈proof 〉

All atomic elements are disjoint.
lemma (in bounded-lattice-bot) atomic-disjoint:

assumes atomic α
and atomic β

shows (α = β) ←→ (α u β 6= ⊥)
〈proof 〉

definition (in bounded-lattice-bot) atomic-elements (‹A›) where
A ≡ {a . atomic a}

definition (in bounded-lattice-bot) join-irreducible-elements (‹J ›) where
J ≡ {a . join-irreducible a}

2 Birkhoff’s Representation Theorem For Finite
Distributive Lattices

Birkhoff’s representation theorem for finite distributive lattices follows from
the fact that every non-⊥ element can be represented by the join-irreducible
elements beneath it.

In this section we merely demonstrate the representation aspect of Birkhoff’s
theorem. In §3 we show this representation is a lattice homomorphism.

The fist step to representing elements is to show that there exist join-
irreducible elements beneath them. This is done by showing if there is
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no join-irreducible element, we can make a descending chain with more ele-
ments than the finite Boolean algebra under consideration.
fun (in order) descending-chain-list :: ′a list ⇒ bool where

descending-chain-list [] = True
| descending-chain-list [x] = True
| descending-chain-list (x # x ′ # xs)

= (x < x ′ ∧ descending-chain-list (x ′ # xs))

lemma (in order) descending-chain-list-tail:
assumes descending-chain-list (s # S)
shows descending-chain-list S
〈proof 〉

lemma (in order) descending-chain-list-drop-penultimate:
assumes descending-chain-list (s # s ′ # S)
shows descending-chain-list (s # S)
〈proof 〉

lemma (in order) descending-chain-list-less-than-others:
assumes descending-chain-list (s # S)
shows ∀ s ′ ∈ set S . s < s ′

〈proof 〉

lemma (in order) descending-chain-list-distinct:
assumes descending-chain-list S
shows distinct S
〈proof 〉

lemma (in finite-distrib-lattice) join-irreducible-lower-bound-exists:
assumes ¬ (x ≤ y)
shows ∃ z ∈ J . z ≤ x ∧ ¬ (z ≤ y)
〈proof 〉

definition (in bounded-lattice-bot)
join-irreducibles-embedding :: ′a ⇒ ′a set (‹{| - |}› [50 ]) where
{| x |} ≡ {a ∈ J . a ≤ x}

We can now show every element is exactly the suprema of the join-irreducible
elements beneath them in any distributive lattice.
theorem (in finite-distrib-lattice) sup-join-prime-embedding-ident:

x =
⊔
{| x |}

〈proof 〉

Just as x =
⊔
{| x |}, the reverse is also true; λ x. {| x |} and λ S .

⊔
S are

inverses where S ∈ OJ , the set of downsets in Pow J .
definition (in bounded-lattice-bot) down-irreducibles (‹OJ ›) where
OJ ≡ { S ∈ Pow J . (∃ x . S = {| x |}) }
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lemma (in finite-distrib-lattice) join-irreducible-embedding-sup-ident:
assumes S ∈ OJ
shows S = {|

⊔
S |}

〈proof 〉

Given that λ x. {| x |} has a left and right inverse, we can show it is a
bijection.

The bijection below is recognizable as a form of Birkhoff’s Representation
Theorem for finite distributive lattices.
theorem (in finite-distrib-lattice) birkhoffs-theorem:

bij-betw (λ x. {| x |}) UNIV OJ
〈proof 〉

3 Finite Ditributive Lattice Isomorphism

The form of Birkhoff’s theorem presented in §2 simply gave a bijection be-
tween a finite distributive lattice and the downsets of its join-irreducible
elements. This relationship can be extended to a full-blown lattice homo-
morphism. In particular we have the following properties:

• ⊥ and > are preserved; specifically {| ⊥ |} = {} and {| > |} = J .

• Order is preserved: x ≤ y = ({| x |} ⊆ {| y |}).

• λ x . {| x |} is a lower complete semi-lattice homomorphism, mapping
{|
⊔

X |} = (
⋃

x ∈ X . {| x |}).

• In addition to preserving arbitrary joins, λ x . {| x |} is a lattice homo-
morphism, since it also preserves finitary meets with {| x u y |} = {| x
|} ∩ {| y |}. Arbitrary meets are also preserved, but relative to a top
element J , or in other words {|

d
X |} = J ∩ (

⋂
x ∈ X . {| x |}).

• In the case of a Boolean algebra, complementation corresponds to
relative set complementation via {| − x |} = J − {| x |}.

lemma (in finite-distrib-lattice) join-irreducibles-bot:
{| ⊥ |} = {}
〈proof 〉

lemma (in finite-distrib-lattice) join-irreducibles-top:
{| > |} = J
〈proof 〉

lemma (in finite-distrib-lattice) join-irreducibles-order-isomorphism:
x ≤ y = ({| x |} ⊆ {| y |})
〈proof 〉
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lemma (in finite-distrib-lattice) join-irreducibles-join-homomorphism:
{| x t y |} = {| x |} ∪ {| y |}
〈proof 〉

lemma (in finite-distrib-lattice) join-irreducibles-sup-homomorphism:
{|
⊔

X |} = (
⋃

x ∈ X . {| x |})
〈proof 〉

lemma (in finite-distrib-lattice) join-irreducibles-meet-homomorphism:
{| x u y |} = {| x |} ∩ {| y |}
〈proof 〉

Arbitrary meets are also preserved, but relative to a top element J .
lemma (in finite-distrib-lattice) join-irreducibles-inf-homomorphism:
{|

d
X |} = J ∩ (

⋂
x ∈ X . {| x |})

〈proof 〉

Finally, we show that complementation is preserved.

To begin, we define the class of finite Boolean algebras. This class is simply
an extension of boolean-algebra, extended with finite UNIV as per the axiom
class finite. We also also extend the language of the class with infima and
suprema (i.e.

d
A and

⊔
A respectively).

class finite-boolean-algebra = boolean-algebra + finite + Inf + Sup +
assumes Inf-def :

d
A = Finite-Set.fold (u) > A

assumes Sup-def :
⊔

A = Finite-Set.fold (t) ⊥ A
begin

Finite Boolean algebras are trivially a subclass of finite distributive lattices,
which are necessarily complete.
subclass finite-distrib-lattice-complete
〈proof 〉

subclass bounded-distrib-lattice-bot
〈proof 〉

end

lemma (in finite-boolean-algebra) join-irreducibles-complement-homomorphism:
{| − x |} = J − {| x |}
〈proof 〉

4 Cardinality

Another consequence of Birkhoff’s theorem from §2 is that every finite
Boolean algebra has a cardinality which is a power of two. This gives a
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bound on the number of atoms/join-prime/irreducible elements, which must
be logarithmic in the size of the finite Boolean algebra they belong to.

We first show that OJ , the downsets of the join-irreducible elements J , are
the same as the powerset of J in any finite Boolean algebra.
lemma (in finite-boolean-algebra) OJ -is-Pow-J :
OJ = Pow J
〈proof 〉

lemma (in finite-boolean-algebra) UNIV-card:
card (UNIV :: ′a set) = card (Pow J )
〈proof 〉

lemma finite-Pow-card:
assumes finite X
shows card (Pow X) = 2 powr (card X)
〈proof 〉

lemma (in finite-boolean-algebra) UNIV-card-powr-2 :
card (UNIV :: ′a set) = 2 powr (card J )
〈proof 〉

lemma (in finite-boolean-algebra) join-irreducibles-card-log-2 :
card J = log 2 (card (UNIV :: ′a set))
〈proof 〉

end
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