Birkhoff’s Representation Theorem For Finite
Distributive Lattices

Matthew Doty

March 17, 2025

Abstract

This theory proves a theorem of Birkhoff that asserts that any finite
distributive lattice is isomorphic to the set of down-sets of that lattice’s
join-irreducible elements. The isomorphism preserves order, meets and
joins as well as complementation in the case the lattice is a Boolean
algebra. A consequence of this representation theorem is that every
finite Boolean algebra is isomorphic to a powerset algebra.

Contents
1 Atoms, Join Primes and Join Irreducibles 2

2 Birkhoff’s Representation Theorem For Finite Distributive

Lattices 6
3 Finite Ditributive Lattice Isomorphism 12
4 Cardinality 16

theory Birkhoff-Finite-Distributive-Lattices
imports
HOL- Library. Finite- Lattice
HOL. Transcendental
begin

unbundle lattice-syntax

The proof of Birkhoff’s representation theorem for finite distributive lattices
[1] presented here follows Davey and Priestley [2].

1 Atoms, Join Primes and Join Irreducibles

Atomic elements are defined as follows.

definition (in bounded-lattice-bot) atomic :: 'a = bool where
atomicz=z# LAV yy<z—y=1LVy=uz)

Two related concepts are join-prime elements and join-irreducible elements.

definition (in bounded-lattice-bot) join-prime :: 'a = bool where
joinprimez =z # L ANV yz.z2<yUz—z<yVaze<z)

definition (in bounded-lattice-bot) join-irreducible :: 'a = bool where
join-irreducible x =z # L AN yz.y<z—z2<z—ylUz<2x)

lemma (in bounded-lattice-bot) join-irreducible-def":

join-irreducible = (z # LA NV yz. 2 =yUz— 2=y V z=2)
unfolding join-irreducible-def
by (metis

nless-le

sup.bounded-iff

sup.cobounded1

sup-ge2)

Every join-prime is also join-irreducible.

lemma (in bounded-lattice-bot) join-prime-implies-join-irreducible:
assumes join-prime x
shows join-irreducible x
using assms
unfolding
join-irreducible-def’
join-prime-def
by (simp add: dual-order.eq-iff)

In the special case when the underlying lattice is distributive, the join-prime
elements and join-irreducible elements coincide.

class bounded-distrib-lattice-bot = bounded-lattice-bot +
assumes sup-inf-distribl: z U (y M z) = (z U y) N (z U 2)

begin

subclass distrib-lattice
by (unfold-locales, metis (full-types) sup-inf-distribl)

end

context complete-distrib-lattice
begin

subclass bounded-distrib-lattice-bot
by (unfold-locales,
metis (full-types)
sup-inf-distrib1)

end

lemma (in bounded-distrib-lattice-bot) join-irreducible-is-join-prime:
join-irreducible x = join-prime x
proof
assume join-prime x
thus join-irreducible x
by (simp add: join-prime-implies-join-irreducible)
next
assume join-irreducible x
{
fix y 2
assume z < y L 2
hence z =z M (y U 2)
by (metis local.inf.orderE)
hence z = (x M y) U (z M 2)
using inf-sup-distribl by auto
hence (z=2MNy)V (z=20MN2)
using <join-irreducible x»
unfolding join-irreducible-def’
by metis
hence (z < y) V (z < 2)
by (metis (full-types) local.inf.cobounded?)
}

thus join-prime x
by (metis
<join-irreducible x>
join-irreducible-def’
join-prime-def)
qed

Every atomic element is join-irreducible.

lemma (in bounded-lattice-bot) atomic-implies-join-prime:
assumes atomic x

shows join-irreducible
using assms
unfolding
atomic-def
join-irreducible-def’
by (metis (no-types, opaque-lifting)
sup.cobounded?
sup-bot.right-neutral)

In the case of Boolean algebras, atomic elements and join-prime elements
are one-in-the-same.

lemma (in boolean-algebra) join-prime-is-atomic:
atomic x = join-prime T
proof
assume atomic
{
fix y 2z
assume z < y U 2
hence z = (z M y) U (z M 2)
using inf.absorbl inf-sup-distribl by fastforce
moreover
have z < yV (zMy) =L
z<zV(zxMNz =1
using <atomic x> inf.coboundedl inf.cobounded?2
unfolding atomic-def
by fastforce+
ultimately have t < y vV z < 2
using <atomic x> atomic-def by auto
}

thus join-prime x
using <atomic x> join-prime-def atomic-def
by auto
next
assume join-prime T
{
fix y
assume y < z Yy F T
hencez =z U y
using sup.orderE by blast
alsohave ... = (z U y) N (y U —y)
by simp
finally have 2 = (z M —y) U y
by (simp add: sup-inf-distrib2)
hence z < —y
using
(join-prime x»
Yy #
y < o
antisym-conv

inf-le2
sup-neg-inf
unfolding join-prime-def
by blast
hence y <y M —y
by (metis
=z Uy
inf.orderE
inf-compl-bot-right
inf-sup-absorb
order-refl
sup.commute)
hence y = L
using sup-absorb2 by fastforce
}

thus atomic z
using <join-prime x»
unfolding
atomic-def
join-prime-def
by auto
qged

All atomic elements are disjoint.

lemma (in bounded-lattice-bot) atomic-disjoint:
assumes atomic o
and atomic (3
shows (a =) «— (e g # 1)
proof
assume o = f3
hence a M 8 = «
by simp
thus a Mg # L
using <atomic o
unfolding atomic-def
by auto
next
assume o M 3 # L
hence f<aANa<f
by (metis
assms
atomic-def
inf-absorb2
inf-lel
inf-le2)
thus a = 8 by auto
qed

definition (in bounded-lattice-bot) atomic-elements (<A») where

A = {a . atomic a}

definition (in bounded-lattice-bot) join-irreducible-elements (1 J») where
J = {a . join-irreducible a}

2 Birkhoff’s Representation Theorem For Finite
Distributive Lattices

Birkhoft’s representation theorem for finite distributive lattices follows from
the fact that every non-_L element can be represented by the join-irreducible
elements beneath it.

In this section we merely demonstrate the representation aspect of Birkhoff’s
theorem. In §3 we show this representation is a lattice homomorphism.

The fist step to representing elements is to show that there exist join-
irreducible elements beneath them. This is done by showing if there is
no join-irreducible element, we can make a descending chain with more ele-
ments than the finite Boolean algebra under consideration.

fun (in order) descending-chain-list :: 'a list = bool where
descending-chain-list [| = True
| descending-chain-list [z] = True
| descending-chain-list (z # x' # xs)
= (z < ' A descending-chain-list (x' # xs))

lemma (in order) descending-chain-list-tail:
assumes descending-chain-list (s # S)
shows descending-chain-list S
using assms
by (induct S, auto)

lemma (in order) descending-chain-list-drop-penultimate:
assumes descending-chain-list (s # s’ # S)
shows descending-chain-list (s #)
using assms
by (induct S, simp, auto)

lemma (in order) descending-chain-list-less-than-others:
assumes descending-chain-list (s # S)
shows Vs’ € setS. s<s’
using assms
by (induct S,
auto,
simp add: descending-chain-list-drop-penultimate)

lemma (in order) descending-chain-list-distinct:
assumes descending-chain-list S

shows distinct S
using assms
by (induct S,
stmp,
meson
descending-chain-list-less-than-others
descending-chain-list-tail
distinct.simps(2)
less-irrefl)

lemma (in finite-distrib-lattice) join-irreducible-lower-bound-ezists:
assumes — (z < y)
shows3 ze€ J. z2<z A~ (2<y)
proof (rule ccontr)
assume x: 7 (3 ze€ J. z2< A~ (2 <y))
{
fix z:: 'a
assume
z2 <z
~(2<y)
with x obtain p ¢ where
p<z
q <z
pUqg==z
by (metis (full-types)
bot-least
dual-order.not-eq-order-implies-strict
join-irreducible-def’
join-irreducible-elements-def
sup-gel
sup-ge2
mem-Collect-eq)
hence - (p < y) V- (¢ < y)
by (metis (full-types) <— z < y» sup-least)
hence 3 p < z. = (p < y)
by (metis <p < 2> (¢ < 2)

note fresh = this
{
fix n :: nat
have 3 S . descending-chain-list S
A length S = n
ANWVsesetS s<zA-(s<y)
proof (induct n)
case (
then show ?Zcase by simp
next
case (Suc n)
then show Zcase proof (cases n = 0)

case True
hence descending-chain-list [z]
A length [z] = Suc n
ANVsesetlz]l.s<azA-(s<y))
by (metis
Suc
assms
length-0-conv
length-Suc-conv
descending-chain-list.simps(2)
le-less set-ConsD)
then show ?thesis
by blast
next
case Fulse
from this obtain s S where
descending-chain-list (s # S)
length (s # 5) =n
Vseset(s#S5).s<zA-(s<y)
using
Suc.hyps
length-0-conv
descending-chain-list.elims(2)
by metis
note A = this
hence s < z = (s < y) by auto
obtain s’ :: ‘a where
s'<s
- (s'<y)
using
fresh [OF s <z <= (s < y)]
by auto
note B = this
let 28" = s'# s# S
from A and B have
descending-chain-list 25’
length 28’ = Suc n
Vseset 258 s<xA-(s<y)
by auto
then show ?thesis by blast
qed
qed
}
from this obtain S :: ‘a list where
descending-chain-list S
length S = 1 + (card (UNIV::'a set))
by auto
hence card (set S) = 1 + (card (UNIV::a set))
using descending-chain-list-distinct

distinct-card
by fastforce
hence — card (set S) < card (UNIV::'a set)
by presburger
thus False
using card-mono finite-UNIV by blast
qed

definition (in bounded-lattice-bot)
join-irreducibles-embedding :: 'a = 'a set (<{ - [}> [50]) where
{z={eec T a<z}

We can now show every element is exactly the suprema of the join-irreducible
elements beneath them in any distributive lattice.

theorem (in finite-distrib-lattice) sup-join-prime-embedding-ident:
= {z}
proof —
haveVac{z]}. a<z
by (metis (no-types, lifting)
join-irreducibles-embedding-def
mem-Collect-eq)
hence || {z | <=z
by (simp add: Sup-least)
moreover
{
fix y:: 'a
assume | | {z } <y
have z < y
proof (rule ccontr)
assume -z < y
from this obtain a where
aeJ
a<czx
~a<y
using join-irreducible-lower-bound-ezists [OF (= x < o]
by metis
hence a € { z |}
by (metis (no-types, lifting)
join-irreducibles-embedding-def
mem-Collect-eq)
hence a < y
using ((J{ z |} <
Sup-upper
order.trans
by blast
thus Fulse
by (metis (full-types) <— a < y»)
qed

}

ultimately show ?thesis
using antisym-conv by blast
qed

Just as z = | | { z [}, the reverse is also true; A z. { f and A S. || S are
inverses where S € OJ, the set of downsets in Pow J.

definition (in bounded-lattice-bot) down-irreducibles («OJ») where

OJ={SePwg.Fz.5={z})}

lemma (in finite-distrib-lattice) join-irreducible-embedding-sup-ident:
assumes S € OF
shows S={|] S|
proof —
obtain z where
S={z]
using
S e 0J»
unfolding
down-irreducibles-def
by auto
with «S € OJ> haveV s€ S.se T As<|]| S
unfolding
down-irreducibles-def
Pow-def
using Sup-upper
by fastforce
hence SC{] S|
unfolding join-irreducibles-embedding-def
by blast
moreover
{
fix y
assume
yeJ
y<US§s
have finite S by auto
from «finite S» and <y < || S> have 3 s € S. y < s
proof (induct S rule: finite-induct)
case empty
hence y < L
by (metis Sup-empty)
then show ?case
using
y e I
unfolding
join-irreducible-elements-def
join-irreducible-def
by (metis (mono-tags, lifting)
le-bot

10

mem-Collect-eq)
next
case (insert s S)
hence y < sV y<|]| S
using
y e I
unfolding
join-irreducible-elements-def
join-irreducible-is-join-prime
join-prime-def
by auto
then show ?case
by (metis (full-types)
insert.hyps(3)
insertCI)
qed
hence y < z
by (metis (no-types, lifting)
S={zp
join-irreducibles-embedding-def
order-trans
mem-Collect-eq)
hence y € S
by (metis (no-types, lifting)
S={zp
ye I
join-irreducibles-embedding-def
mem-Collect-eq)
}
hence { || S} C S
unfolding
join-irreducibles-embedding-def
by blast
ultimately show ?thesis by auto
qed

Given that A z. { = |} has a left and right inverse, we can show it is a
bijection.

The bijection below is recognizable as a form of Birkhoff’s Representation
Theorem for finite distributive lattices.

theorem (in finite-distrib-lattice) birkhoffs-theorem:
bij-betw (X z. { z |}) UNIV OF
unfolding bij-betw-def
proof
{
fix z y
assume { z } = { y |}

hence || {1} =L {v}

11

by simp

hence z = y
using sup-join-prime-embedding-ident
by auto

thus inj A z. { =z [})
unfolding inj-def
by auto
next
show range (A z. { =z [}) = OF
unfolding
down-irreducibles-def
join-irreducibles-embedding-def
by auto
qed

3 Finite Ditributive Lattice Isomorphism

The form of Birkhoff’s theorem presented in §2 simply gave a bijection be-
tween a finite distributive lattice and the downsets of its join-irreducible
elements. This relationship can be extended to a full-blown lattice homo-
morphism. In particular we have the following properties:

o | and T are preserved; specifically { L [={}and { T |} = J.
o Orderispreserved: z < y= {2z} C{yl).

e Az . { x| is alower complete semi-lattice homomorphism, mapping

{UX=UzeX. {z])

o In addition to preserving arbitrary joins, A z . { z |} is a lattice homo-
morphism, since it also preserves finitary meets with { z My } = { =
I N { vy }. Arbitrary meets are also preserved, but relative to a top
element 7, or in other words { [X } =7 N (N z€ X. { z |}).

e In the case of a Boolean algebra, complementation corresponds to
relative set complementation via { —z } =7 — { = |

lemma (in finite-distrib-lattice) join-irreducibles-bot:

1Lh=40

unfolding
join-irreducibles-embedding-def
join-irreducible-elements-def
join-irreducible-is-join-prime
join-prime-def

by (simp add: bot-unique)

12

lemma (in finite-distrib-lattice) join-irreducibles-top:

{Thr=0

unfolding
join-irreducibles-embedding-def
join-irreducible-elements-def
join-irreducible-is-join-prime
join-prime-def

by auto

lemma (in finite-distrib-lattice) join-irreducibles-order-isomorphism:
c<y={zh<c{yl)
by (rule iffI,
metis (mono-tags, lifting)
join-irreducibles-embedding-def
order-trans
mem-Collect-eq
subsetl ,
metis (full-types)
Sup-subset-mono
sup-join-prime-embedding-ident)

lemma (in finite-distrib-lattice) join-irreducibles-join-homomorphism:
fauyb={abuiyl
proof
show {zUy}C{afu{yl
unfolding
join-irreducibles-embedding-def
join-irreducible-elements-def
join-irreducible-is-join-prime
join-prime-def
by blast
next
show {zfU{yfc{zuyl
unfolding
join-irreducibles-embedding-def
join-irreducible-elements-def
join-irreducible-is-join-prime
join-prime-def
using
le-supl1
sup.absorb-iff1
sup.assoc
by force
qed

lemma (in finite-distrib-lattice) join-irreducibles-sup-homomorphism:

{UXt=UzeX. {2}
proof —
have finite X

13

by simp
thus ?thesis
proof (induct X rule: finite-induct)
case empty
then show ?case by (simp add: join-irreducibles-bot)
next
case (insert z X)
then show ?case by (simp add: join-irreducibles-join-homomorphism)
qed
qed

lemma (in finite-distrib-lattice) join-irreducibles-meet-homomorphism:
{znyl={ztn{yl
unfolding
join-irreducibles-embedding-def
by auto

Arbitrary meets are also preserved, but relative to a top element 7.

lemma (in finite-distrib-lattice) join-irreducibles-inf-homomorphism:
{MNxt=nNzeX{z}
proof —
have finite X
by simp
thus ?thesis
proof (induct X rule: finite-induct)
case empty
then show Zcase by (simp add: join-irreducibles-top)
next
case (insert z X)
then show ?case by (simp add: join-irreducibles-meet-homomorphism, blast)
qed
qed

Finally, we show that complementation is preserved.

To begin, we define the class of finite Boolean algebras. This class is simply
an extension of boolean-algebra, extended with finite UNIV as per the axiom
class finite. We also also extend the language of the class with infima and
suprema (i.e. [| A and | | A respectively).

class finite-boolean-algebra = boolean-algebra + finite + Inf + Sup +
assumes Inf-def: [| A = Finite-Set.fold (M) T A
assumes Sup-def: | | A = Finite-Set.fold (U) L A

begin

Finite Boolean algebras are trivially a subclass of finite distributive lattices,
which are necessarily complete.

subclass finite-distrib-lattice-complete

14

using
Inf-fin.coboundedl
Sup-fin.coboundedl
finite-UNIV
le-bot
top-unique
Inf-def
Sup-def
by (unfold-locales, blast, fastforce+)

subclass bounded-distrib-lattice-bot
by (unfold-locales, metis sup-inf-distrib1)
end

lemma (in finite-boolean-algebra) join-irreducibles-complement-homomorphism:
{-zt=T-A=}
proof
show { -z} CJ —{z|
proof
fix j
assume j € { — z |
hence j ¢ { z |
unfolding
join-irreducibles-embedding-def
join-irreducible-elements-def
join-irreducible-is-join-prime
join-prime-def
by (metis
(mono-tags, lifting)
CollectD
bot-unique
inf.boundedl
inf-compl-bot)
thusjeJ —{z}
using Gje{ -z p
unfolding
join-irreducibles-embedding-def
by blast
qed
next
show 7 —{z}C{—z|
proof
fix j
assume j € J — { z |}
hence j € Jand - j <z
unfolding join-irreducibles-embedding-def
by blast+
moreover have j < z Ll —z
by auto

15

ultimately have j < —z
unfolding
join-irreducible-elements-def
join-irreductble-is-join-prime
join-prime-def
by blast
thusje { -z}
unfolding join-irreducibles-embedding-def
using <j € J»
by auto
qed
qed

4 Cardinality

Another consequence of Birkhoft’s theorem from §2 is that every finite
Boolean algebra has a cardinality which is a power of two. This gives a
bound on the number of atoms/join-prime/irreducible elements, which must
be logarithmic in the size of the finite Boolean algebra they belong to.

We first show that OF, the downsets of the join-irreducible elements 7, are
the same as the powerset of 7 in any finite Boolean algebra.

lemma (in finite-boolean-algebra) OF -is-Pow-T:
OJ = Pow J
proof
show OJ C Pow J
unfolding down-irreducibles-def
by auto
next
show Pow J C OF
proof (rule ccontr)
assume -~ Pow J C OJ
from this obtain S where
sCJ
Ve S#{aeJ o<z}
unfolding
down-irreducibles-def
join-irreducibles-embedding-def
by auto
hence S # {a € J. a <|] S}
by auto
moreover
haveV s€ S.se JAs<|] S
by (metis (no-types, lifting)
S C I
Sup-upper subsetD)
hence S C{a e J.a <|]| S}
by (metis (mono-tags, lifting) Ball-Collect)

16

ultimately have 3 y€¢ J .y < || SAy ¢ S
by (metis (mono-tags, lifting)
mem-Collect-eq
subset]
subset-antisym)
moreover
{
fix y
assume
yeJ
y<Ul S
from
finite [of S]
@<l
S C I
have y € §
proof (induct S rule: finite-induct)
case empty
hence y < |
by (metis (full-types) local.Sup-empty)
then show ?case
using <y € J»
unfolding
join-irreducible-elements-def
join-irreducible-def
by (metis (mono-tags, lifting)
le-bot
mem-Collect-eq)
next
case (insert s S)
hence y < sVvVy<|]| S
using <y € J»
unfolding
join-irreducible-elements-def
join-irreducible-is-join-prime
join-prime-def
by simp
moreover
{
assume y < s
have atomic s
by (metis in-mono
insert.prems(2)
insertCI
join-irreducible-elements-def
join-irreducible-is-join-prime
join-prime-is-atomic
mem-Collect-eq)
hence y = s

17

by (metis (no-types, lifting)
y eI
y < 8
atomic-def
join-irreducible-def
join-irreducible-elements-def
mem-Collect-eq)

}

ultimately show Zcase

by (metis
insert.prems(2)
insert-iff
insert-subset
insert(3))
qed

}

ultimately show Fulse by auto
qed
qed

lemma (in finite-boolean-algebra) UNIV-card:

card (UNIV::'a set) = card (Pow J)

using
bij-betw-same-card [where f=Az. { z }]
birkhoffs-theorem

unfolding
OJ -is-Pow-J

by blast

lemma finite- Pow-card:
assumes finite X
shows card (Pow X) = 2 powr (card X)
using assms
proof (induct X rule: finite-induct)
case empty
then show ?case by fastforce
next
case (insert z X)
have 0 < (2 :: real) by auto
hence two-powr-one: (2 :: real) = 2 powr 1 by fastforce
have bij-betw (A z. fst © U snd z) ({{},{z}} x Pow X) (Pow (insert z X))
unfolding bij-betw-def
proof
{
fix y z
assume
y € {{}; {=}} x Pow X
z € {{}, {z}} x Pow X

18

fstyUsndy = fst zU snd z
(is ?Uy = ?Uz)
hence
z & sndy
z ¢ snd z
fsty=A{z} Vv fsty ={}
fst z={z} V fst z = {}
using insert.hyps(2) by auto
hence
z € Uy +— fsty = {z}
x € Uz «— fst z = {x}
z ¢ Uy < fsty={}
z ¢ Uz «— fst z = {}
sndy = ?Uy — {z}
snd z = ?Uz — {z}
by auto
hence
z € Uy «— y = ({z}, ?Uy — {a})
€ Uz +— z = ({a}, Uz — {z})
z ¢ Uy «—y=({}, ?Uy — {a})
z ¢ Uz +— z=({}, 2Uz — {z})
by (metis fst-conv prod.collapse)+
hence y = 2
using «?Uy = ?Uz
by metis
}
thus inj-on (Az. fst U snd z) ({{}, {z}} x Pow X)
unfolding inj-on-def
by auto
next
show (Az. fst z U snd z) * ({{}, {z}} x Pow X) = Pow (insert z X)
proof (intro equalityl subsetl)
fix y
assume y € (Az. fst x U snd z) “ ({{}, {z}} x Pow X)
from this obtain z where
z € ({{} {z}} x Pow X)
y = fst zU snd z
by auto
hence
snd z C X
fst z C insert x X
using SigmaFE by auto
thus y € Pow (insert z X)
using <y = fst z U snd 2> by blast
next
fix y
assume y € Pow (insert z X)
let 2z = (if © € y then {z} else {}, y — {z})
have ?z € ({{}, {z}} x Pow X)

19

using <y € Pow (insert z X)» by auto
moreover have (Az. fst z U snd z) 2z =y
by auto
ultimately show y € (Az. fst z U snd z) “ ({{}, {z}} x Pow X)
by blast
qed
qed
hence card (Pow (insert x X)) = card ({{},{z}} x Pow X)
using bij-betw-same-card by fastforce
also have ... = 2 x card (Pow X)
by (simp add: insert.hyps(1))
also have ... = 2 x (2 powr (card X))
by (simp add: insert.hyps(3))
also have ... = (2 powr 1) x 2 powr (card X)
using two-powr-one
by fastforce

also have ... = 2 powr (1 + card X)
by (simp add: powr-add)
also have ... = 2 powr (card (insert x X)

)
by (simp add: insert.hyps(1) insert.hyps(2))
finally show ?case .
qged

lemma (in finite-boolean-algebra) UNIV-card-powr-2:
card (UNIV::'a set) = 2 powr (card J)
using
finite [of J]
finite-Pow-card [of J]
UNIV-card
by linarith

lemma (in finite-boolean-algebra) join-irreducibles-card-log-2:
card J = log 2 (card (UNIV :: 'a set))
proof (cases card (UNIV :: 'a set) = 1)
case True
hence 3 z :: ‘a. UNIV = {x}
using card-1-singletonE by blast
henceV zy:: ‘a. 2 € UNIV — y € UNIV — z =y
by (metis (mono-tags) singletonD)
henceV zy:: 'a. 2=y
by blast
henceV z. 2 = L
by blast
hence J = {}
unfolding
join-irreducible-elements-def
join-irreducible-is-join-prime
join-prime-def
by blast

20

hence card J = (0 :: real)
by simp
moreover
have log 2 (card (UNIV :: 'a set)) = 0
by (simp add: True)
ultimately show ?thesis by auto
next
case Fulse
hence 0 < 2 powr (card J) 2 powr (card J) # 1
using finite-UNIV-card-ge-0 finite UNIV-card-powr-2
by (simp, linarith)
hence log 2 (2 powr (card J)) = card J
by simp
then show ?thesis
using UNIV-card-powr-2
by simp
qed

end

References

[1] G. Birkhoff. Rings of sets. Duke Mathematical Journal, 3(3):443-454,
Sept. 1937.

[2] B. A. Davey and H. A. Priestley. Chapter 5. Representation: The finite
case. In Introduction to Lattices and Order, pages 112-124. Cambridge
University Press, Cambridge, UK ; New York, NY, 2nd ed edition, 2002.

21

	Atoms, Join Primes and Join Irreducibles
	Birkhoff's Representation Theorem For Finite Distributive Lattices
	Finite Ditributive Lattice Isomorphism
	Cardinality

