
Birkhoff’s Representation Theorem For Finite
Distributive Lattices

Matthew Doty

March 17, 2025

Abstract

This theory proves a theorem of Birkhoff that asserts that any finite
distributive lattice is isomorphic to the set of down-sets of that lattice’s
join-irreducible elements. The isomorphism preserves order, meets and
joins as well as complementation in the case the lattice is a Boolean
algebra. A consequence of this representation theorem is that every
finite Boolean algebra is isomorphic to a powerset algebra.

Contents
1 Atoms, Join Primes and Join Irreducibles 2

2 Birkhoff’s Representation Theorem For Finite Distributive
Lattices 6

3 Finite Ditributive Lattice Isomorphism 12

4 Cardinality 16

1

theory Birkhoff-Finite-Distributive-Lattices
imports

HOL−Library.Finite-Lattice
HOL.Transcendental

begin

unbundle lattice-syntax

The proof of Birkhoff’s representation theorem for finite distributive lattices
[1] presented here follows Davey and Priestley [2].

1 Atoms, Join Primes and Join Irreducibles

Atomic elements are defined as follows.
definition (in bounded-lattice-bot) atomic :: ′a ⇒ bool where

atomic x ≡ x 6= ⊥ ∧ (∀ y. y ≤ x −→ y = ⊥ ∨ y = x)

Two related concepts are join-prime elements and join-irreducible elements.
definition (in bounded-lattice-bot) join-prime :: ′a ⇒ bool where

join-prime x ≡ x 6= ⊥ ∧ (∀ y z . x ≤ y t z −→ x ≤ y ∨ x ≤ z)

definition (in bounded-lattice-bot) join-irreducible :: ′a ⇒ bool where
join-irreducible x ≡ x 6= ⊥ ∧ (∀ y z . y < x −→ z < x −→ y t z < x)

lemma (in bounded-lattice-bot) join-irreducible-def ′:
join-irreducible x = (x 6= ⊥ ∧ (∀ y z . x = y t z −→ x = y ∨ x = z))
unfolding join-irreducible-def
by (metis

nless-le
sup.bounded-iff
sup.cobounded1
sup-ge2)

Every join-prime is also join-irreducible.
lemma (in bounded-lattice-bot) join-prime-implies-join-irreducible:

assumes join-prime x
shows join-irreducible x
using assms
unfolding

join-irreducible-def ′

join-prime-def
by (simp add: dual-order .eq-iff)

In the special case when the underlying lattice is distributive, the join-prime
elements and join-irreducible elements coincide.
class bounded-distrib-lattice-bot = bounded-lattice-bot +

assumes sup-inf-distrib1 : x t (y u z) = (x t y) u (x t z)

2

begin

subclass distrib-lattice
by (unfold-locales, metis (full-types) sup-inf-distrib1)

end

context complete-distrib-lattice
begin

subclass bounded-distrib-lattice-bot
by (unfold-locales,

metis (full-types)
sup-inf-distrib1)

end

lemma (in bounded-distrib-lattice-bot) join-irreducible-is-join-prime:
join-irreducible x = join-prime x

proof
assume join-prime x
thus join-irreducible x

by (simp add: join-prime-implies-join-irreducible)
next

assume join-irreducible x
{

fix y z
assume x ≤ y t z
hence x = x u (y t z)

by (metis local.inf .orderE)
hence x = (x u y) t (x u z)

using inf-sup-distrib1 by auto
hence (x = x u y) ∨ (x = x u z)

using ‹join-irreducible x›
unfolding join-irreducible-def ′

by metis
hence (x ≤ y) ∨ (x ≤ z)

by (metis (full-types) local.inf .cobounded2)
}
thus join-prime x

by (metis
‹join-irreducible x›
join-irreducible-def ′

join-prime-def)
qed

Every atomic element is join-irreducible.
lemma (in bounded-lattice-bot) atomic-implies-join-prime:

assumes atomic x

3

shows join-irreducible x
using assms
unfolding

atomic-def
join-irreducible-def ′

by (metis (no-types, opaque-lifting)
sup.cobounded2
sup-bot.right-neutral)

In the case of Boolean algebras, atomic elements and join-prime elements
are one-in-the-same.
lemma (in boolean-algebra) join-prime-is-atomic:

atomic x = join-prime x
proof

assume atomic x
{

fix y z
assume x ≤ y t z
hence x = (x u y) t (x u z)

using inf .absorb1 inf-sup-distrib1 by fastforce
moreover
have x ≤ y ∨ (x u y) = ⊥

x ≤ z ∨ (x u z) = ⊥
using ‹atomic x› inf .cobounded1 inf .cobounded2
unfolding atomic-def
by fastforce+

ultimately have x ≤ y ∨ x ≤ z
using ‹atomic x› atomic-def by auto

}
thus join-prime x

using ‹atomic x› join-prime-def atomic-def
by auto

next
assume join-prime x
{

fix y
assume y ≤ x y 6= x
hence x = x t y

using sup.orderE by blast
also have . . . = (x t y) u (y t −y)

by simp
finally have x = (x u −y) t y

by (simp add: sup-inf-distrib2)
hence x ≤ −y

using
‹join-prime x›
‹y 6= x›
‹y ≤ x›
antisym-conv

4

inf-le2
sup-neg-inf

unfolding join-prime-def
by blast

hence y ≤ y u −y
by (metis

‹x = x t y›
inf .orderE
inf-compl-bot-right
inf-sup-absorb
order-refl
sup.commute)

hence y = ⊥
using sup-absorb2 by fastforce

}
thus atomic x

using ‹join-prime x›
unfolding

atomic-def
join-prime-def

by auto
qed

All atomic elements are disjoint.
lemma (in bounded-lattice-bot) atomic-disjoint:

assumes atomic α
and atomic β

shows (α = β) ←→ (α u β 6= ⊥)
proof

assume α = β
hence α u β = α

by simp
thus α u β 6= ⊥

using ‹atomic α›
unfolding atomic-def
by auto

next
assume α u β 6= ⊥
hence β ≤ α ∧ α ≤ β

by (metis
assms
atomic-def
inf-absorb2
inf-le1
inf-le2)

thus α = β by auto
qed

definition (in bounded-lattice-bot) atomic-elements (‹A›) where

5

A ≡ {a . atomic a}

definition (in bounded-lattice-bot) join-irreducible-elements (‹J ›) where
J ≡ {a . join-irreducible a}

2 Birkhoff’s Representation Theorem For Finite
Distributive Lattices

Birkhoff’s representation theorem for finite distributive lattices follows from
the fact that every non-⊥ element can be represented by the join-irreducible
elements beneath it.

In this section we merely demonstrate the representation aspect of Birkhoff’s
theorem. In §3 we show this representation is a lattice homomorphism.

The fist step to representing elements is to show that there exist join-
irreducible elements beneath them. This is done by showing if there is
no join-irreducible element, we can make a descending chain with more ele-
ments than the finite Boolean algebra under consideration.
fun (in order) descending-chain-list :: ′a list ⇒ bool where

descending-chain-list [] = True
| descending-chain-list [x] = True
| descending-chain-list (x # x ′ # xs)

= (x < x ′ ∧ descending-chain-list (x ′ # xs))

lemma (in order) descending-chain-list-tail:
assumes descending-chain-list (s # S)
shows descending-chain-list S
using assms
by (induct S , auto)

lemma (in order) descending-chain-list-drop-penultimate:
assumes descending-chain-list (s # s ′ # S)
shows descending-chain-list (s # S)
using assms
by (induct S , simp, auto)

lemma (in order) descending-chain-list-less-than-others:
assumes descending-chain-list (s # S)
shows ∀ s ′ ∈ set S . s < s ′

using assms
by (induct S ,

auto,
simp add: descending-chain-list-drop-penultimate)

lemma (in order) descending-chain-list-distinct:
assumes descending-chain-list S

6

shows distinct S
using assms
by (induct S ,

simp,
meson

descending-chain-list-less-than-others
descending-chain-list-tail
distinct.simps(2)
less-irrefl)

lemma (in finite-distrib-lattice) join-irreducible-lower-bound-exists:
assumes ¬ (x ≤ y)
shows ∃ z ∈ J . z ≤ x ∧ ¬ (z ≤ y)

proof (rule ccontr)
assume ?: ¬ (∃ z ∈ J . z ≤ x ∧ ¬ (z ≤ y))
{

fix z :: ′a
assume

z ≤ x
¬ (z ≤ y)

with ? obtain p q where
p < z
q < z
p t q = z

by (metis (full-types)
bot-least
dual-order .not-eq-order-implies-strict
join-irreducible-def ′

join-irreducible-elements-def
sup-ge1
sup-ge2
mem-Collect-eq)

hence ¬ (p ≤ y) ∨ ¬ (q ≤ y)
by (metis (full-types) ‹¬ z ≤ y› sup-least)

hence ∃ p < z. ¬ (p ≤ y)
by (metis ‹p < z› ‹q < z›)

}
note fresh = this
{

fix n :: nat
have ∃ S . descending-chain-list S

∧ length S = n
∧ (∀ s ∈ set S . s ≤ x ∧ ¬ (s ≤ y))

proof (induct n)
case 0
then show ?case by simp

next
case (Suc n)
then show ?case proof (cases n = 0)

7

case True
hence descending-chain-list [x]

∧ length [x] = Suc n
∧ (∀ s ∈ set [x]. s ≤ x ∧ ¬ (s ≤ y))

by (metis
Suc
assms
length-0-conv
length-Suc-conv
descending-chain-list.simps(2)
le-less set-ConsD)

then show ?thesis
by blast

next
case False
from this obtain s S where

descending-chain-list (s # S)
length (s # S) = n
∀ s ∈ set (s # S). s ≤ x ∧ ¬ (s ≤ y)

using
Suc.hyps
length-0-conv
descending-chain-list.elims(2)

by metis
note A = this
hence s ≤ x ¬ (s ≤ y) by auto
obtain s ′ :: ′a where

s ′ < s
¬ (s ′ ≤ y)
using

fresh [OF ‹s ≤ x› ‹¬ (s ≤ y)›]
by auto

note B = this
let ?S ′ = s ′ # s # S
from A and B have

descending-chain-list ?S ′

length ?S ′ = Suc n
∀ s ∈ set ?S ′. s ≤ x ∧ ¬ (s ≤ y)

by auto
then show ?thesis by blast

qed
qed

}
from this obtain S :: ′a list where

descending-chain-list S
length S = 1 + (card (UNIV :: ′a set))
by auto

hence card (set S) = 1 + (card (UNIV :: ′a set))
using descending-chain-list-distinct

8

distinct-card
by fastforce

hence ¬ card (set S) ≤ card (UNIV :: ′a set)
by presburger

thus False
using card-mono finite-UNIV by blast

qed

definition (in bounded-lattice-bot)
join-irreducibles-embedding :: ′a ⇒ ′a set (‹{| - |}› [50]) where
{| x |} ≡ {a ∈ J . a ≤ x}

We can now show every element is exactly the suprema of the join-irreducible
elements beneath them in any distributive lattice.
theorem (in finite-distrib-lattice) sup-join-prime-embedding-ident:

x =
⊔
{| x |}

proof −
have ∀ a ∈ {| x |}. a ≤ x

by (metis (no-types, lifting)
join-irreducibles-embedding-def
mem-Collect-eq)

hence
⊔
{| x |} ≤ x

by (simp add: Sup-least)
moreover
{

fix y :: ′a
assume

⊔
{| x |} ≤ y

have x ≤ y
proof (rule ccontr)

assume ¬ x ≤ y
from this obtain a where

a ∈ J
a ≤ x
¬ a ≤ y

using join-irreducible-lower-bound-exists [OF ‹¬ x ≤ y›]
by metis

hence a ∈ {| x |}
by (metis (no-types, lifting)

join-irreducibles-embedding-def
mem-Collect-eq)

hence a ≤ y
using ‹

⊔
{| x |} ≤ y›

Sup-upper
order .trans

by blast
thus False

by (metis (full-types) ‹¬ a ≤ y›)
qed

}

9

ultimately show ?thesis
using antisym-conv by blast

qed

Just as x =
⊔
{| x |}, the reverse is also true; λ x. {| x |} and λ S .

⊔
S are

inverses where S ∈ OJ , the set of downsets in Pow J .
definition (in bounded-lattice-bot) down-irreducibles (‹OJ ›) where
OJ ≡ { S ∈ Pow J . (∃ x . S = {| x |}) }

lemma (in finite-distrib-lattice) join-irreducible-embedding-sup-ident:
assumes S ∈ OJ
shows S = {|

⊔
S |}

proof −
obtain x where

S = {| x |}
using

‹S ∈ OJ ›
unfolding

down-irreducibles-def
by auto

with ‹S ∈ OJ › have ∀ s ∈ S . s ∈ J ∧ s ≤
⊔

S
unfolding

down-irreducibles-def
Pow-def

using Sup-upper
by fastforce

hence S ⊆ {|
⊔

S |}
unfolding join-irreducibles-embedding-def
by blast

moreover
{

fix y
assume

y ∈ J
y ≤

⊔
S

have finite S by auto
from ‹finite S› and ‹y ≤

⊔
S› have ∃ s ∈ S . y ≤ s

proof (induct S rule: finite-induct)
case empty
hence y ≤ ⊥

by (metis Sup-empty)
then show ?case

using
‹y ∈ J ›

unfolding
join-irreducible-elements-def
join-irreducible-def

by (metis (mono-tags, lifting)
le-bot

10

mem-Collect-eq)
next

case (insert s S)
hence y ≤ s ∨ y ≤

⊔
S

using
‹y ∈ J ›

unfolding
join-irreducible-elements-def
join-irreducible-is-join-prime
join-prime-def

by auto
then show ?case

by (metis (full-types)
insert.hyps(3)
insertCI)

qed
hence y ≤ x

by (metis (no-types, lifting)
‹S = {| x |}›
join-irreducibles-embedding-def
order-trans
mem-Collect-eq)

hence y ∈ S
by (metis (no-types, lifting)

‹S = {| x |}›
‹y ∈ J ›
join-irreducibles-embedding-def
mem-Collect-eq)

}
hence {|

⊔
S |} ⊆ S

unfolding
join-irreducibles-embedding-def

by blast
ultimately show ?thesis by auto

qed

Given that λ x. {| x |} has a left and right inverse, we can show it is a
bijection.

The bijection below is recognizable as a form of Birkhoff’s Representation
Theorem for finite distributive lattices.
theorem (in finite-distrib-lattice) birkhoffs-theorem:

bij-betw (λ x. {| x |}) UNIV OJ
unfolding bij-betw-def

proof
{

fix x y
assume {| x |} = {| y |}
hence

⊔
{| x |} =

⊔
{| y |}

11

by simp
hence x = y

using sup-join-prime-embedding-ident
by auto

}
thus inj (λ x. {| x |})

unfolding inj-def
by auto

next
show range (λ x. {| x |}) = OJ

unfolding
down-irreducibles-def
join-irreducibles-embedding-def

by auto
qed

3 Finite Ditributive Lattice Isomorphism

The form of Birkhoff’s theorem presented in §2 simply gave a bijection be-
tween a finite distributive lattice and the downsets of its join-irreducible
elements. This relationship can be extended to a full-blown lattice homo-
morphism. In particular we have the following properties:

• ⊥ and > are preserved; specifically {| ⊥ |} = {} and {| > |} = J .

• Order is preserved: x ≤ y = ({| x |} ⊆ {| y |}).

• λ x . {| x |} is a lower complete semi-lattice homomorphism, mapping
{|
⊔

X |} = (
⋃

x ∈ X . {| x |}).

• In addition to preserving arbitrary joins, λ x . {| x |} is a lattice homo-
morphism, since it also preserves finitary meets with {| x u y |} = {| x
|} ∩ {| y |}. Arbitrary meets are also preserved, but relative to a top
element J , or in other words {|

d
X |} = J ∩ (

⋂
x ∈ X . {| x |}).

• In the case of a Boolean algebra, complementation corresponds to
relative set complementation via {| − x |} = J − {| x |}.

lemma (in finite-distrib-lattice) join-irreducibles-bot:
{| ⊥ |} = {}
unfolding

join-irreducibles-embedding-def
join-irreducible-elements-def
join-irreducible-is-join-prime
join-prime-def

by (simp add: bot-unique)

12

lemma (in finite-distrib-lattice) join-irreducibles-top:
{| > |} = J
unfolding

join-irreducibles-embedding-def
join-irreducible-elements-def
join-irreducible-is-join-prime
join-prime-def

by auto

lemma (in finite-distrib-lattice) join-irreducibles-order-isomorphism:
x ≤ y = ({| x |} ⊆ {| y |})
by (rule iffI ,

metis (mono-tags, lifting)
join-irreducibles-embedding-def
order-trans
mem-Collect-eq
subsetI ,

metis (full-types)
Sup-subset-mono
sup-join-prime-embedding-ident)

lemma (in finite-distrib-lattice) join-irreducibles-join-homomorphism:
{| x t y |} = {| x |} ∪ {| y |}

proof
show {| x t y |} ⊆ {| x |} ∪ {| y |}

unfolding
join-irreducibles-embedding-def
join-irreducible-elements-def
join-irreducible-is-join-prime
join-prime-def

by blast
next

show {| x |} ∪ {| y |} ⊆ {| x t y |}
unfolding

join-irreducibles-embedding-def
join-irreducible-elements-def
join-irreducible-is-join-prime
join-prime-def

using
le-supI1
sup.absorb-iff1
sup.assoc

by force
qed

lemma (in finite-distrib-lattice) join-irreducibles-sup-homomorphism:
{|
⊔

X |} = (
⋃

x ∈ X . {| x |})
proof −

have finite X

13

by simp
thus ?thesis
proof (induct X rule: finite-induct)

case empty
then show ?case by (simp add: join-irreducibles-bot)

next
case (insert x X)
then show ?case by (simp add: join-irreducibles-join-homomorphism)

qed
qed

lemma (in finite-distrib-lattice) join-irreducibles-meet-homomorphism:
{| x u y |} = {| x |} ∩ {| y |}
unfolding

join-irreducibles-embedding-def
by auto

Arbitrary meets are also preserved, but relative to a top element J .
lemma (in finite-distrib-lattice) join-irreducibles-inf-homomorphism:
{|

d
X |} = J ∩ (

⋂
x ∈ X . {| x |})

proof −
have finite X

by simp
thus ?thesis
proof (induct X rule: finite-induct)

case empty
then show ?case by (simp add: join-irreducibles-top)

next
case (insert x X)
then show ?case by (simp add: join-irreducibles-meet-homomorphism, blast)

qed
qed

Finally, we show that complementation is preserved.

To begin, we define the class of finite Boolean algebras. This class is simply
an extension of boolean-algebra, extended with finite UNIV as per the axiom
class finite. We also also extend the language of the class with infima and
suprema (i.e.

d
A and

⊔
A respectively).

class finite-boolean-algebra = boolean-algebra + finite + Inf + Sup +
assumes Inf-def :

d
A = Finite-Set.fold (u) > A

assumes Sup-def :
⊔

A = Finite-Set.fold (t) ⊥ A
begin

Finite Boolean algebras are trivially a subclass of finite distributive lattices,
which are necessarily complete.
subclass finite-distrib-lattice-complete

14

using
Inf-fin.coboundedI
Sup-fin.coboundedI
finite-UNIV
le-bot
top-unique
Inf-def
Sup-def

by (unfold-locales, blast, fastforce+)

subclass bounded-distrib-lattice-bot
by (unfold-locales, metis sup-inf-distrib1)

end

lemma (in finite-boolean-algebra) join-irreducibles-complement-homomorphism:
{| − x |} = J − {| x |}

proof
show {| − x |} ⊆ J − {| x |}
proof

fix j
assume j ∈ {| − x |}
hence j /∈ {| x |}

unfolding
join-irreducibles-embedding-def
join-irreducible-elements-def
join-irreducible-is-join-prime
join-prime-def

by (metis
(mono-tags, lifting)
CollectD
bot-unique
inf .boundedI
inf-compl-bot)

thus j ∈ J − {| x |}
using ‹j ∈ {| − x |}›
unfolding

join-irreducibles-embedding-def
by blast

qed
next

show J − {| x |} ⊆ {| − x |}
proof

fix j
assume j ∈ J − {| x |}
hence j ∈ J and ¬ j ≤ x

unfolding join-irreducibles-embedding-def
by blast+

moreover have j ≤ x t −x
by auto

15

ultimately have j ≤ −x
unfolding

join-irreducible-elements-def
join-irreducible-is-join-prime
join-prime-def

by blast
thus j ∈ {| − x |}

unfolding join-irreducibles-embedding-def
using ‹j ∈ J ›
by auto

qed
qed

4 Cardinality

Another consequence of Birkhoff’s theorem from §2 is that every finite
Boolean algebra has a cardinality which is a power of two. This gives a
bound on the number of atoms/join-prime/irreducible elements, which must
be logarithmic in the size of the finite Boolean algebra they belong to.

We first show that OJ , the downsets of the join-irreducible elements J , are
the same as the powerset of J in any finite Boolean algebra.
lemma (in finite-boolean-algebra) OJ -is-Pow-J :
OJ = Pow J

proof
show OJ ⊆ Pow J

unfolding down-irreducibles-def
by auto

next
show Pow J ⊆ OJ
proof (rule ccontr)

assume ¬ Pow J ⊆ OJ
from this obtain S where

S ⊆ J
∀ x. S 6= {a ∈ J . a ≤ x}

unfolding
down-irreducibles-def
join-irreducibles-embedding-def

by auto
hence S 6= {a ∈ J . a ≤

⊔
S}

by auto
moreover
have ∀ s ∈ S . s ∈ J ∧ s ≤

⊔
S

by (metis (no-types, lifting)
‹S ⊆ J ›
Sup-upper subsetD)

hence S ⊆ {a ∈ J . a ≤
⊔

S}
by (metis (mono-tags, lifting) Ball-Collect)

16

ultimately have ∃ y ∈ J . y ≤
⊔

S ∧ y /∈ S
by (metis (mono-tags, lifting)

mem-Collect-eq
subsetI
subset-antisym)

moreover
{

fix y
assume

y ∈ J
y ≤

⊔
S

from
finite [of S]
‹y ≤

⊔
S›

‹S ⊆ J ›
have y ∈ S
proof (induct S rule: finite-induct)

case empty
hence y ≤ ⊥

by (metis (full-types) local.Sup-empty)
then show ?case

using ‹y ∈ J ›
unfolding

join-irreducible-elements-def
join-irreducible-def

by (metis (mono-tags, lifting)
le-bot
mem-Collect-eq)

next
case (insert s S)
hence y ≤ s ∨ y ≤

⊔
S

using ‹y ∈ J ›
unfolding

join-irreducible-elements-def
join-irreducible-is-join-prime
join-prime-def

by simp
moreover
{

assume y ≤ s
have atomic s

by (metis in-mono
insert.prems(2)
insertCI
join-irreducible-elements-def
join-irreducible-is-join-prime
join-prime-is-atomic
mem-Collect-eq)

hence y = s

17

by (metis (no-types, lifting)
‹y ∈ J ›
‹y ≤ s›
atomic-def
join-irreducible-def
join-irreducible-elements-def
mem-Collect-eq)

}
ultimately show ?case

by (metis
insert.prems(2)
insert-iff
insert-subset
insert(3))

qed
}
ultimately show False by auto

qed
qed

lemma (in finite-boolean-algebra) UNIV-card:
card (UNIV :: ′a set) = card (Pow J)
using

bij-betw-same-card [where f=λx. {| x |}]
birkhoffs-theorem

unfolding
OJ -is-Pow-J

by blast

lemma finite-Pow-card:
assumes finite X
shows card (Pow X) = 2 powr (card X)
using assms

proof (induct X rule: finite-induct)
case empty
then show ?case by fastforce

next
case (insert x X)
have 0 ≤ (2 :: real) by auto
hence two-powr-one: (2 :: real) = 2 powr 1 by fastforce
have bij-betw (λ x. fst x ∪ snd x) ({{},{x}} × Pow X) (Pow (insert x X))

unfolding bij-betw-def
proof

{
fix y z
assume

y ∈ {{}, {x}} × Pow X
z ∈ {{}, {x}} × Pow X

18

fst y ∪ snd y = fst z ∪ snd z
(is ?Uy = ?Uz)

hence
x /∈ snd y
x /∈ snd z
fst y = {x} ∨ fst y = {}
fst z = {x} ∨ fst z = {}

using insert.hyps(2) by auto
hence

x ∈ ?Uy ←→ fst y = {x}
x ∈ ?Uz ←→ fst z = {x}
x /∈ ?Uy ←→ fst y = {}
x /∈ ?Uz ←→ fst z = {}
snd y = ?Uy − {x}
snd z = ?Uz − {x}

by auto
hence

x ∈ ?Uy ←→ y = ({x}, ?Uy − {x})
x ∈ ?Uz ←→ z = ({x}, ?Uz − {x})
x /∈ ?Uy ←→ y = ({}, ?Uy − {x})
x /∈ ?Uz ←→ z = ({}, ?Uz − {x})

by (metis fst-conv prod.collapse)+
hence y = z

using ‹?Uy = ?Uz›
by metis

}
thus inj-on (λx. fst x ∪ snd x) ({{}, {x}} × Pow X)

unfolding inj-on-def
by auto

next
show (λx. fst x ∪ snd x) ‘ ({{}, {x}} × Pow X) = Pow (insert x X)
proof (intro equalityI subsetI)

fix y
assume y ∈ (λx. fst x ∪ snd x) ‘ ({{}, {x}} × Pow X)
from this obtain z where

z ∈ ({{}, {x}} × Pow X)
y = fst z ∪ snd z

by auto
hence

snd z ⊆ X
fst z ⊆ insert x X

using SigmaE by auto
thus y ∈ Pow (insert x X)

using ‹y = fst z ∪ snd z› by blast
next

fix y
assume y ∈ Pow (insert x X)
let ?z = (if x ∈ y then {x} else {}, y − {x})
have ?z ∈ ({{}, {x}} × Pow X)

19

using ‹y ∈ Pow (insert x X)› by auto
moreover have (λx. fst x ∪ snd x) ?z = y

by auto
ultimately show y ∈ (λx. fst x ∪ snd x) ‘ ({{}, {x}} × Pow X)

by blast
qed

qed
hence card (Pow (insert x X)) = card ({{},{x}} × Pow X)

using bij-betw-same-card by fastforce
also have . . . = 2 ∗ card (Pow X)

by (simp add: insert.hyps(1))
also have . . . = 2 ∗ (2 powr (card X))

by (simp add: insert.hyps(3))
also have . . . = (2 powr 1) ∗ 2 powr (card X)

using two-powr-one
by fastforce

also have . . . = 2 powr (1 + card X)
by (simp add: powr-add)

also have . . . = 2 powr (card (insert x X))
by (simp add: insert.hyps(1) insert.hyps(2))

finally show ?case .
qed

lemma (in finite-boolean-algebra) UNIV-card-powr-2 :
card (UNIV :: ′a set) = 2 powr (card J)
using

finite [of J]
finite-Pow-card [of J]
UNIV-card

by linarith

lemma (in finite-boolean-algebra) join-irreducibles-card-log-2 :
card J = log 2 (card (UNIV :: ′a set))

proof (cases card (UNIV :: ′a set) = 1)
case True
hence ∃ x :: ′a. UNIV = {x}

using card-1-singletonE by blast
hence ∀ x y :: ′a. x ∈ UNIV −→ y ∈ UNIV −→ x = y

by (metis (mono-tags) singletonD)
hence ∀ x y :: ′a. x = y

by blast
hence ∀ x. x = ⊥

by blast
hence J = {}

unfolding
join-irreducible-elements-def
join-irreducible-is-join-prime
join-prime-def

by blast

20

hence card J = (0 :: real)
by simp

moreover
have log 2 (card (UNIV :: ′a set)) = 0

by (simp add: True)
ultimately show ?thesis by auto

next
case False
hence 0 < 2 powr (card J) 2 powr (card J) 6= 1

using finite-UNIV-card-ge-0 finite UNIV-card-powr-2
by (simp, linarith)

hence log 2 (2 powr (card J)) = card J
by simp

then show ?thesis
using UNIV-card-powr-2
by simp

qed

end

References

[1] G. Birkhoff. Rings of sets. Duke Mathematical Journal, 3(3):443–454,
Sept. 1937.

[2] B. A. Davey and H. A. Priestley. Chapter 5. Representation: The finite
case. In Introduction to Lattices and Order, pages 112–124. Cambridge
University Press, Cambridge, UK ; New York, NY, 2nd ed edition, 2002.

21

	Atoms, Join Primes and Join Irreducibles
	Birkhoff's Representation Theorem For Finite Distributive Lattices
	Finite Ditributive Lattice Isomorphism
	Cardinality

