Verification of Functional Binomial Queues

René Neumann

Technische Universität München, Institut für Informatik http://www.in.tum.de/ neumannr/

Abstract. Priority queues are an important data structure and efficient implementations of them are crucial. We implement a functional variant of binomial queues in Isabelle/HOL and show its functional correctness. A verification against an abstract reference specification of priority queues has also been attempted, but could not be achieved to the full extent.

1 Abstract priority queues

lemma distinct-fst-alist-of [simp]: distinct (map fst (alist-of q))

 $\langle proof \rangle$

1.1 Generic Lemmas

lemma tl-set:

```
distinct q \Longrightarrow set\ (tl\ q) = set\ q - \{hd\ q\}
\langle proof \rangle

1.2 Type of abstract priority queues

typedef (overloaded) ('a, 'b::linorder) pq =
\{xs:: ('a \times 'b)\ list.\ distinct\ (map\ fst\ xs) \wedge sorted\ (map\ snd\ xs)\}
morphisms alist-of Abs-pq
\langle proof \rangle

lemma alist-of-Abs-pq:
assumes distinct (map fst xs)
and sorted (map snd xs)
shows alist-of (Abs-pq xs) = xs
\langle proof \rangle

lemma [code abstype]:
Abs-pq (alist-of q) = q
\langle proof \rangle
```

```
lemma distinct-alist-of [simp]:
  distinct (alist-of q)
  \langle proof \rangle
lemma sorted-snd-alist-of [simp]:
  sorted (map \ snd \ (alist-of \ q))
  \langle proof \rangle
lemma alist-of-eqI:
  alist-of p = alist-of q \Longrightarrow p = q
\langle proof \rangle
definition values :: ('a, 'b::linorder) pq \Rightarrow 'a \ list (\langle |(-)| \rangle) where
  values q = map fst (alist-of q)
definition priorities :: ('a, 'b::linorder) pq \Rightarrow 'b list (\langle \|(-)\| \rangle) where
  priorities \ q = map \ snd \ (alist-of \ q)
lemma values-set:
  set |q| = fst \cdot set (alist-of q)
  \langle proof \rangle
lemma priorities-set:
  set ||q|| = snd \cdot set (alist-of q)
  \langle proof \rangle
definition is-empty :: ('a, 'b:: linorder) pq \Rightarrow bool where
  is\text{-}empty\ q \longleftrightarrow alist\text{-}of\ q = []
definition priority :: ('a, 'b::linorder) pq \Rightarrow 'a \Rightarrow 'b option where
  priority \ q = map-of \ (alist-of \ q)
definition min :: ('a, 'b::linorder) pq \Rightarrow 'a where
  min \ q = fst \ (hd \ (alist-of \ q))
definition empty :: ('a, 'b::linorder) pq where
  empty = Abs-pq
lemma is-empty-alist-of [dest]:
  is\text{-}empty \ q \Longrightarrow alist\text{-}of \ q = []
  \langle proof \rangle
lemma not-is-empty-alist-of [dest]:
  \neg is\text{-}empty \ q \Longrightarrow alist\text{-}of \ q \neq []
```

```
\langle proof \rangle
lemma alist-of-empty [simp, code abstract]:
  alist-of\ empty = []
  \langle proof \rangle
lemma values-empty [simp]:
  |empty| = []
  \langle proof \rangle
lemma priorities-empty [simp]:
  ||empty|| = []
  \langle proof \rangle
lemma values-empty-nothing [simp]:
  \forall k. \ k \notin set \mid empty \mid
  \langle proof \rangle
\mathbf{lemma}\ \textit{is-empty-empty:}
  \textit{is-empty } q \longleftrightarrow q = \textit{empty}
\langle proof \rangle
lemma is-empty-empty-simp [simp]:
  is-empty empty
\langle proof \rangle
lemma map-snd-alist-of:
  map (the \circ priority q) (values q) = map snd (alist-of q)
  \langle proof \rangle
lemma image-snd-alist-of:
  the 'priority q 'set (values q) = snd 'set (alist-of q)
\langle proof \rangle
\mathbf{lemma}\ \mathit{Min\text{-}snd\text{-}alist\text{-}of}\colon
  assumes \neg is-empty q
  shows Min (snd 'set (alist-of q)) = snd (hd (alist-of q))
\langle proof \rangle
lemma priority-fst:
  assumes xp \in set \ (alist-of \ q)
  shows priority q (fst xp) = Some (snd xp)
  \langle proof \rangle
\mathbf{lemma}\ \mathit{priority}\text{-}\mathit{Min}\text{:}
```

```
assumes \neg is-empty q
  shows priority q (min q) = Some (Min (the 'priority q 'set (values q)))
  \langle proof \rangle
lemma priority-Min-priorities:
  assumes \neg is-empty q
  shows priority q (min q) = Some (Min (set ||q||))
  \langle proof \rangle
definition push :: 'a \Rightarrow 'b::linorder \Rightarrow ('a, 'b) pq \Rightarrow ('a, 'b) pq where
  push \ k \ p \ q = Abs-pq \ (if \ k \notin set \ (values \ q)
           then insort-key snd (k, p) (alist-of q)
           else alist-of q)
lemma Min-snd-hd:
  q \neq [] \implies sorted (map \ snd \ q) \implies Min (snd 'set \ q) = snd (hd \ q)
\langle proof \rangle
\mathbf{lemma}\ \mathit{hd}\text{-}\mathit{construct}:
  assumes \neg is-empty q
  shows hd (alist-of q) = (min q, the (priority q (min q)))
\langle proof \rangle
lemma not-in-first-image:
  x \notin fst \ `s \Longrightarrow (x, p) \notin s
  \langle proof \rangle
lemma alist-of-push [simp, code abstract]:
  alist-of (push k p q) =
    (if k \notin set (values q) then insort-key snd (k, p) (alist-of q) else alist-of q)
  \langle proof \rangle
lemma push-values [simp]:
  set |push k p q| = set |q| \cup \{k\}
  \langle proof \rangle
lemma push-priorities [simp]:
  k \notin set |q| \Longrightarrow set ||push k p q|| = set ||q|| \cup \{p\}
  k \in set |q| \Longrightarrow set ||push k p q|| = set ||q||
  \langle proof \rangle
lemma not-is-empty-push [simp]:
  \neg is-empty (push k p q)
  \langle proof \rangle
```

```
lemma push-commute:
  assumes a \neq b and v \neq w
  shows push w b (push v a q) = push v a (push w b q)
  \langle proof \rangle
definition remove-min :: ('a, 'b::linorder) pq \Rightarrow ('a, 'b::linorder) pq where
  remove-min q = (if is\text{-empty } q \text{ then } empty \text{ else } Abs\text{-}pq \text{ } (tl \text{ } (alist\text{-}of \text{ } q)))
lemma alift-of-remove-min-if [code abstract]:
  alist-of\ (remove-min\ q) = (if\ is-empty\ q\ then\ []\ else\ tl\ (alist-of\ q))
  \langle proof \rangle
lemma remove-min-empty [simp]:
  is\text{-}empty \ q \Longrightarrow remove\text{-}min \ q = empty
  \langle proof \rangle
lemma alist-of-remove-min [simp]:
  \neg is-empty q \Longrightarrow alist-of (remove-min q) = tl (alist-of q)
  \langle proof \rangle
lemma values-remove-min [simp]:
  \neg is-empty q \Longrightarrow values (remove-min q) = tl (values q)
  \langle proof \rangle
lemma set-alist-of-remove-min:
  \neg is-empty q \Longrightarrow set (alist-of (remove-min q)) =
    set (alist-of q) - \{(min q, the (priority q (min q)))\}
  \langle proof \rangle
definition pop :: ('a, 'b::linorder) pq \Rightarrow ('a \times ('a, 'b) pq) option where
  pop \ q = (if \ is-empty \ q \ then \ None \ else \ Some \ (min \ q, \ remove-min \ q))
lemma pop-simps [simp]:
  \textit{is-empty } q \Longrightarrow \textit{pop } q = \textit{None}
  \neg is-empty q \Longrightarrow pop \ q = Some \ (min \ q, remove-min \ q)
  \langle proof \rangle
hide-const (open) Abs-pq alist-of values priority empty is-empty push min pop
no-notation
  PQ.values(\langle |(-)| \rangle)
  and PQ.priorities(\langle ||(-)||\rangle)
```

2 Functional Binomial Queues

2.1 Type definition and projections

```
datatype ('a, 'b) bintree = Node 'a 'b ('a, 'b) bintree list
primrec priority :: ('a, 'b) bintree \Rightarrow 'a where
 priority (Node a - -) = a
primrec val :: ('a, 'b) \ bintree \Rightarrow 'b \ \mathbf{where}
  val\ (Node - v -) = v
primrec children :: ('a, 'b) bintree \Rightarrow ('a, 'b) bintree list where
  children\ (Node - - ts) = ts
type-synonym ('a, 'b) binqueue = ('a, 'b) bintree option list
lemma binqueue-induct [case-names Empty None Some, induct type: binqueue]:
 assumes P \ []
   and \bigwedge xs. \ P \ xs \Longrightarrow P \ (None \# xs)
   and \bigwedge x \ xs. \ P \ xs \Longrightarrow P \ (Some \ x \ \# \ xs)
 shows P xs
  \langle proof \rangle
Terminology:
 - values v, w or v1, v2
 - priorities a, b or a1, a2
 - bintrees t, r or t1, t2
 - bintree lists ts, rs or ts1, ts2
 - binqueue element x, y or x1, x2
 - binqueues = binqueue element lists xs, ys or xs1, xs2
 - abstract priority queues q, p or q1, q2
```

2.2 Binomial queue properties

Binomial tree property

```
inductive is-bintree-list :: nat \Rightarrow ('a, 'b) bintree list \Rightarrow bool where is-bintree-list-Nil [simp]: is-bintree-list 0 [] | is-bintree-list-Cons: is-bintree-list l ts \Longrightarrow is-bintree-list l (children t) \Longrightarrow is-bintree-list (Suc l) (t # ts) abbreviation (input) is-bintree k t \equiv is-bintree-list k (children t)
```

```
lemma is-bintree-list-triv [simp]:
  is-bintree-list 0 ts \longleftrightarrow ts = []
  is-bintree-list l \ [] \longleftrightarrow l = 0
  \langle proof \rangle
lemma is-bintree-list-simp [simp]:
  is-bintree-list (Suc l) (t \# ts) \longleftrightarrow
    is-bintree-list l (children t) \wedge is-bintree-list l ts
  \langle proof \rangle
lemma is-bintree-list-length [simp]:
  is-bintree-list l ts \Longrightarrow length ts = l
  \langle proof \rangle
\mathbf{lemma}\ is\text{-}bintree\text{-}list\text{-}children\text{-}last:
  assumes is-bintree-list l ts and ts \neq []
  shows children (last ts) = []
  \langle proof \rangle
lemma is-bintree-children-length-desc:
  assumes is-bintree-list l ts
  shows map (length \circ children) ts = rev [0..< l]
  \langle proof \rangle
Heap property
inductive is-heap-list :: 'a::linorder \Rightarrow ('a, 'b) bintree list \Rightarrow bool where
  is-heap-list-Nil: is-heap-list h []
| is-heap-list-Cons: is-heap-list \ h \ ts \implies is-heap-list \ (priority \ t) \ (children \ t)
    \implies (priority t) \geq h \implies is-heap-list h (t # ts)
abbreviation (input) is-heap t \equiv is-heap-list (priority t) (children t)
lemma is-heap-list-simps [simp]:
  is-heap-list h \ [] \longleftrightarrow True
  is-heap-list h (t \# ts) \longleftrightarrow
    is-heap-list h ts \land is-heap-list (priority t) (children t) \land priority t \ge h
  \langle proof \rangle
lemma is-heap-list-append-dest [dest]:
  is-heap-list l (ts@rs) \Longrightarrow is-heap-list l ts
  is-heap-list l (ts@rs) \Longrightarrow is-heap-list l rs
  \langle proof \rangle
lemma is-heap-list-rev:
```

```
is-heap-list l ts \Longrightarrow is-heap-list l (rev ts)
  \langle proof \rangle
\mathbf{lemma}\ is\ heap\ children\ larger:
  is-heap t \Longrightarrow \forall x \in set (children t). priority x \geq priority t
  \langle proof \rangle
\mathbf{lemma}\ \textit{is-heap-Min-children-larger}:
  is-heap t \Longrightarrow children \ t \ne [] \Longrightarrow
   priority \ t \leq Min \ (priority \ `set \ (children \ t))
  \langle proof \rangle
Combination of both: binqueue property
inductive is-binqueue :: nat \Rightarrow ('a::linorder, 'b) binqueue \Rightarrow bool where
  Empty: is-bingueue l \mid \mid
  None: is-binqueue (Suc 1) xs \implies is-binqueue l (None \# xs)
| Some: is-binqueue (Suc l) xs \Longrightarrow is-bintree l t
    \implies is-heap t \implies is-binqueue l (Some t \# xs)
lemma is-binqueue-simp [simp]:
  is-binqueue l \ [] \longleftrightarrow True
  is-binqueue l (Some t \# xs) \longleftrightarrow
    is-bintree l t \land is-heap t \land is-binqueue (Suc l) xs
  is-binqueue l (None \# xs) \longleftrightarrow is-binqueue (Suc l) xs
  \langle proof \rangle
lemma is-binqueue-trans:
  is-binqueue l(x\#xs) \Longrightarrow is-binqueue (Suc l) xs
  \langle proof \rangle
lemma is-binqueue-head:
  is-binqueue l(x\#xs) \Longrightarrow is-binqueue l[x]
  \langle proof \rangle
lemma is-binqueue-append:
  is-binqueue l xs \Longrightarrow is-binqueue (length xs + l) ys \Longrightarrow is-binqueue l (xs @ ys)
  \langle proof \rangle
lemma is-binqueue-append-dest [dest]:
  is-binqueue l (xs @ ys) \Longrightarrow is-binqueue l xs
  \langle proof \rangle
lemma is-binqueue-children:
```

assumes is-bintree-list l ts

```
and is-heap-list t ts
  shows is-binqueue 0 (map Some (rev ts))
  \langle proof \rangle
lemma is-binqueue-select:
  is-binqueue l xs \Longrightarrow Some t \in set xs \Longrightarrow \exists k. is-bintree k t \land is-heap t
  \langle proof \rangle
Normalized representation
inductive normalized :: ('a, 'b) binqueue \Rightarrow bool where
  normalized-Nil: normalized []
| normalized-single: normalized [Some t]
\mid normalized \text{-}append: xs \neq [] \Longrightarrow normalized xs \Longrightarrow normalized (ys @ xs)
lemma normalized-last-not-None:
   — sometimes the inductive definition might work better
  normalized \ xs \longleftrightarrow xs = [] \lor last \ xs \ne None
\langle proof \rangle
lemma normalized-simps [simp]:
  normalized [] \longleftrightarrow True
  normalized (Some \ t \ \# \ xs) \longleftrightarrow normalized \ xs
  normalized (None \# xs) \longleftrightarrow xs \neq [] \land normalized xs
  \langle proof \rangle
lemma normalized-map-Some [simp]:
  normalized (map Some xs)
  \langle proof \rangle
\mathbf{lemma}\ normalized\text{-}Cons:
  normalized (x\#xs) \Longrightarrow normalized xs
  \langle proof \rangle
lemma normalized-append:
  normalized \ xs \Longrightarrow normalized \ ys \Longrightarrow normalized \ (xs@ys)
  \langle proof \rangle
\mathbf{lemma}\ normalized\text{-}not\text{-}None:
  normalized \ xs \Longrightarrow set \ xs \neq \{None\}
  \langle proof \rangle
primrec normalize' :: ('a, 'b) \ binqueue \Rightarrow ('a, 'b) \ binqueue \ \mathbf{where}
  normalize' [] = []
```

 $\mid normalize'(x \# xs) =$

```
(case \ x \ of \ None \Rightarrow normalize' \ xs \mid Some \ t \Rightarrow (x \# xs))
definition normalize :: ('a, 'b) binqueue \Rightarrow ('a, 'b) binqueue where
  normalize \ xs = rev \ (normalize' \ (rev \ xs))
lemma normalized-normalize:
  normalized (normalize xs)
\langle proof \rangle
lemma is-binqueue-normalize:
  is-binqueue l xs \Longrightarrow is-binqueue l (normalize xs)
  \langle proof \rangle
2.3 Operations
Adding data
definition merge :: ('a::linorder, 'b) bintree \Rightarrow ('a, 'b) bintree \Rightarrow ('a, 'b) bintree
where
  merge t1 t2 = (if priority t1 < priority t2
    then Node (priority t1) (val t1) (t2 \# children t1)
    else Node (priority t2) (val t2) (t1 \# children t2))
{\bf lemma}\ is\mbox{-}bintree\mbox{-}list\mbox{-}merge:
  assumes is-bintree l t1 is-bintree l t2
  shows is-bintree (Suc l) (merge t1 t2)
  \langle proof \rangle
lemma is-heap-merge:
  assumes is-heap t1 is-heap t2
  shows is-heap (merge t1 t2)
  \langle proof \rangle
  add :: ('a::linorder, 'b) \ bintree \ option \Rightarrow ('a, 'b) \ binqueue \Rightarrow ('a, 'b) \ binqueue
where
  add\ None\ xs = xs
\mid add (Some t) \mid \mid = [Some t]
 add (Some t) (None \# xs) = Some t \# xs
\mid add \ (Some \ t) \ (Some \ r \ \# \ xs) = None \ \# \ add \ (Some \ (merge \ t \ r)) \ xs
lemma add-Some-not-Nil [simp]:
  add (Some t) xs \neq [
  \langle proof \rangle
```

lemma normalized-add:

```
{\bf assumes}\ normalized\ xs
  shows normalized (add x xs)
  \langle proof \rangle
lemma is-binqueue-add-None:
  assumes is-binqueue l xs
  shows is-binqueue l (add None xs)
  \langle proof \rangle
lemma is-binqueue-add-Some:
  {\bf assumes}\ is\text{-}binqueue\ l\ xs
             is\text{-}bintree\ l\ t
  and
  and
             is-heap t
  shows is-binqueue l (add (Some t) xs)
  \langle proof \rangle
function
  meld :: ('a::linorder, 'b) \ binqueue \Rightarrow ('a, 'b) \ binqueue \Rightarrow ('a, 'b) \ binqueue
where
  meld [] ys = ys
 meld \ xs \ [] = xs
 meld (None \# xs) (y \# ys) = y \# meld xs ys
 meld (x \# xs) (None \# ys) = x \# meld xs ys
 meld (Some t \# xs) (Some r \# ys) =
    None \# add (Some (merge t r)) (meld xs ys)
  \langle proof \rangle termination \langle proof \rangle
lemma meld-singleton-add [simp]:
  meld [Some t] xs = add (Some t) xs
  \langle proof \rangle
lemma nonempty-meld [simp]:
 xs \neq [] \Longrightarrow meld \ xs \ ys \neq []
ys \neq [] \Longrightarrow meld \ xs \ ys \neq []
\langle proof \rangle
\mathbf{lemma}\ nonempty\text{-}meld\text{-}commute:
  meld \ xs \ ys \neq [] \implies meld \ xs \ ys \neq []
  \langle proof \rangle
lemma is-binqueue-meld:
  assumes is-binqueue l xs
  and
            is-binqueue l ys
  shows is-binqueue l (meld xs ys)
\langle proof \rangle
```

```
lemma normalized-meld:
  assumes normalized xs
  and
           normalized ys
  shows normalized (meld xs ys)
\langle proof \rangle
\mathbf{lemma}\ normalized\text{-}meld\text{-}weak:
  assumes normalized xs
  and length ys \leq length xs
  shows normalized (meld xs ys)
\langle proof \rangle
definition least :: 'a::linorder option \Rightarrow 'a option \Rightarrow 'a option where
  least x y = (case x of
      None \Rightarrow y
    | Some x' \Rightarrow (case y of
          None \Rightarrow x
         | Some y' \Rightarrow if x' \leq y' then x else y))
lemma least-simps [simp, code]:
  least\ None\ x=x
  least\ x\ None = x
  least (Some x') (Some y') = (if x' \le y' then Some x' else Some y')
lemma least-split:
  assumes least \ x \ y = Some \ z
  shows x = Some \ z \lor y = Some \ z
\langle proof \rangle
interpretation least: semilattice least \langle proof \rangle
definition min :: ('a::linorder, 'b) \ binqueue \Rightarrow 'a \ option \ \mathbf{where}
  min \ xs = fold \ least \ (map \ (map - option \ priority) \ xs) \ None
lemma min-simps [simp]:
  min [] = None
  min (None \# xs) = min xs
  min (Some \ t \ \# \ xs) = least (Some \ (priority \ t)) \ (min \ xs)
  \langle proof \rangle
lemma [code]:
  min \ xs = fold \ (\lambda \ x. \ least \ (map-option \ priority \ x)) \ xs \ None
  \langle proof \rangle
```

```
lemma min-single:
  min [x] = Some \ a \Longrightarrow priority (the \ x) = a
  min[x] = None \Longrightarrow x = None
lemma min-Some-not-None:
  min (Some t \# xs) \neq None
  \langle proof \rangle
\mathbf{lemma}\ \mathit{min}\text{-}\mathit{None}\text{-}\mathit{trans}\text{:}
  assumes min(x\#xs) = None
  shows min xs = None
\langle proof \rangle
lemma min-None-None:
  min \ xs = None \longleftrightarrow xs = [] \lor set \ xs = \{None\}
\langle proof \rangle
\mathbf{lemma}\ normalized\text{-}min\text{-}not\text{-}None:
  normalized \ xs \implies xs \neq [] \implies min \ xs \neq None
  \langle proof \rangle
lemma min-is-min:
  assumes normalized xs
  and xs \neq []
  \mathbf{and}\ \mathit{min}\ \mathit{xs} = \mathit{Some}\ \mathit{a}
  shows \forall x \in set \ xs. \ x = None \lor a \le priority \ (the \ x)
\langle proof \rangle
lemma min-exists:
  assumes min xs = Some a
  shows Some a \in map-option priority 'set xs
\langle proof \rangle
primrec find :: 'a::linorder \Rightarrow ('a, 'b) binqueue \Rightarrow ('a, 'b) bintree option where
  find \ a \ [] = None
| find\ a\ (x\#xs) = (case\ x\ of\ None \Rightarrow find\ a\ xs
    | Some t \Rightarrow if priority t = a then Some t else find a xs)
declare find.simps [simp del]
lemma find-simps [simp, code]:
  find \ a \ [] = None
  find\ a\ (None\ \#\ xs) = find\ a\ xs
```

```
find a (Some t \# xs) = (if priority t = a then Some t else find a xs)
  \langle proof \rangle
lemma find-works:
  assumes Some a \in set (map (map-option priority) xs)
  shows \exists t. find a xs = Some \ t \land priority \ t = a
  \langle proof \rangle
lemma find-works-not-None:
  Some a \in set \ (map \ (map \ option \ priority) \ xs) \Longrightarrow find \ a \ xs \neq None
  \langle proof \rangle
lemma find-None:
  find a xs = None \Longrightarrow Some \ a \notin set \ (map \ (map-option \ priority) \ xs)
  \langle proof \rangle
lemma find-exist:
  find \ a \ xs = Some \ t \Longrightarrow Some \ t \in set \ xs
  \langle proof \rangle
definition find-min :: ('a::linorder, 'b) binqueue \Rightarrow ('a, 'b) bintree option where
  find\text{-}min\ xs = (case\ min\ xs\ of\ None \Rightarrow None \mid Some\ a \Rightarrow find\ a\ xs)
lemma find-min-simps [simp]:
  find-min [] = None
  find\text{-}min (None \# xs) = find\text{-}min xs
  \langle proof \rangle
lemma find-min-single:
  find\text{-}min[x] = x
  \langle proof \rangle
lemma min-eq-find-min-None:
  min \ xs = None \longleftrightarrow find-min \ xs = None
\langle proof \rangle
lemma min-eq-find-min-Some:
  min \ xs = Some \ a \longleftrightarrow (\exists \ t. \ find-min \ xs = Some \ t \land priority \ t = a)
\langle proof \rangle
lemma find-min-exist:
  assumes find-min xs = Some t
  shows Some t \in set xs
\langle proof \rangle
```

```
lemma find-min-is-min:
  assumes normalized xs
  and xs \neq []
  and find-min xs = Some t
  shows \forall x \in set \ xs. \ x = None \lor (priority \ t) \le priority (the \ x)
  \langle proof \rangle
\mathbf{lemma}\ normalized\textit{-}find\textit{-}min\textit{-}exists\text{:}
  normalized xs \Longrightarrow xs \neq [] \Longrightarrow \exists t. find-min \ xs = Some \ t
\langle proof \rangle
primrec
  match :: 'a:: linorder \Rightarrow ('a, 'b) \ bintree \ option \Rightarrow ('a, 'b) \ bintree \ option
where
  match\ a\ None = None
\mid match a (Some t) = (if priority t = a then None else Some t)
definition delete-min :: ('a::linorder, 'b) binqueue \Rightarrow ('a, 'b) binqueue where
  delete-min xs = (case find-min xs
    of Some (Node a v ts) \Rightarrow
         normalize (meld (map Some (rev ts)) (map (match a) xs))
     | None \Rightarrow [])
lemma delete-min-empty [simp]:
  delete-min [] = []
  \langle proof \rangle
lemma delete-min-nonempty [simp]:
  normalized \ xs \Longrightarrow xs \ne [] \Longrightarrow find-min \ xs = Some \ t
    \implies delete\text{-}min\ xs = normalize
      (meld\ (map\ Some\ (rev\ (children\ t)))\ (map\ (match\ (priority\ t))\ xs))
  \langle proof \rangle
lemma is-binqueue-delete-min:
  assumes is-binqueue 0 xs
  shows is-binqueue 0 (delete-min xs)
\langle proof \rangle
lemma normalized-delete-min:
  normalized (delete-min xs)
  \langle proof \rangle
```

Dedicated grand unified operation for generated program

definition

```
meld':: ('a, 'b) \ bintree \ option \Rightarrow ('a::linorder, 'b) \ binqueue
   \Rightarrow ('a, 'b) binqueue \Rightarrow ('a, 'b) binqueue
where
 meld' z xs ys = add z (meld xs ys)
lemma [code]:
 add z xs = meld' z [] xs
 meld \ xs \ ys = meld' \ None \ xs \ ys
 \langle proof \rangle
lemma [code]:
 meld'z (Some t \# xs) (Some r \# ys) =
   z \# (meld' (Some (merge \ t \ r)) \ xs \ ys)
 meld' (Some t) (Some r \# xs) (None \# ys) =
   None \# (meld' (Some (merge t r)) xs ys)
 meld' (Some t) (None # xs) (Some r # ys) =
   None \# (meld' (Some (merge t r)) xs ys)
 meld' None (x \# xs) (None \# ys) = x \# (meld' None xs ys)
 meld' None (None # xs) (y # ys) = y # (meld' None xs ys)
 meld'z (None # xs) (None # ys) = z # (meld' None xs ys)
 meld'z xs [] = meld'z [] xs
 meld'z \mid (y \# ys) = meld' None \mid z \mid (y \# ys)
 meld'(Some\ t)\ []\ ys = meld'\ None\ [Some\ t]\ ys
 meld' None [] ys = ys
  \langle proof \rangle
Interface operations
abbreviation (input) empty :: ('a,'b) binqueue where
  empty \equiv \lceil \rceil
definition
 insert :: 'a:: linorder \Rightarrow 'b \Rightarrow ('a, 'b) \ binqueue \Rightarrow ('a, 'b) \ binqueue
 insert \ a \ v \ xs = add \ (Some \ (Node \ a \ v \ [])) \ xs
lemma insert-simps [simp]:
  insert \ a \ v \ [] = [Some \ (Node \ a \ v \ [])]
 insert \ a \ v \ (None \# xs) = Some \ (Node \ a \ v \ []) \# xs
 insert a v (Some t \# xs) = None \# add (Some (merge (Node a v \parallel)) xs
  \langle proof \rangle
lemma is-binqueue-insert:
  is-binqueue 0 xs \Longrightarrow is-binqueue 0 (insert a v xs)
  \langle proof \rangle
```

```
lemma normalized-insert:
  normalized \ xs \Longrightarrow normalized \ (insert \ a \ v \ xs)
  \langle proof \rangle
definition
  pop :: ('a::linorder, 'b) \ binqueue \Rightarrow (('b \times 'a) \ option \times ('a, 'b) \ binqueue)
where
  pop \ xs = (case \ find-min \ xs \ of
      None \Rightarrow (None, xs)
    | Some t \Rightarrow (Some (val t, priority t), delete-min xs))
lemma pop-empty [simp]:
  pop \ empty = (None, \ empty)
  \langle proof \rangle
lemma pop-nonempty [simp]:
  normalized \ xs \Longrightarrow xs \ne [] \Longrightarrow find-min \ xs = Some \ t
    \implies pop xs = (Some (val t, priority t), normalize
      (meld\ (map\ Some\ (rev\ (children\ t)))\ (map\ (match\ (priority\ t))\ xs)))
  \langle proof \rangle
lemma pop-code [code]:
  pop \ xs = (case \ find-min \ xs \ of
      None \Rightarrow (None, xs)
    | Some t \Rightarrow (Some (val t, priority t), normalize
       (meld (map Some (rev (children t))) (map (match (priority t)) xs))))
  \langle proof \rangle
```

3 Relating Functional Binomial Queues To The Abstract Priority Queues

```
\begin{array}{c} \textbf{notation} \\ PQ.values \; (\langle |(\text{-})| \rangle) \\ \textbf{and} \; PQ.priorities \; (\langle \|(\text{-})\| \rangle) \end{array}
```

Naming convention: prefix bt- for bintrees, bts- for bintree lists, no prefix for binqueues.

```
primrec bt-dfs :: (('a::linorder, 'b) bintree \Rightarrow 'c) \Rightarrow ('a, 'b) bintree \Rightarrow 'c list and bts-dfs :: (('a::linorder, 'b) bintree \Rightarrow 'c) \Rightarrow ('a, 'b) bintree list \Rightarrow 'c list where bt-dfs f (Node a v ts) = f (Node a v ts) \# bts-dfs f ts
```

```
bt-dfs f (Node a v ts) = f (Node a v ts) # <math>bts-dfs f ts
| bts-dfs f [] = []
```

```
\mid bts-dfs \ f \ (t \ \# \ ts) = bt-dfs \ f \ t \ @ \ bts-dfs \ f \ ts
lemma bt-dfs-simp:
  bt-dfs f t = f t \# bts-dfs f (children t)
  \langle proof \rangle
lemma bts-dfs-append [simp]:
  bts-dfs f (ts @ rs) = bts-dfs f ts @ bts-dfs f rs
  \langle proof \rangle
\mathbf{lemma} set\text{-}bts\text{-}dfs\text{-}rev:
  set (bts-dfs f (rev ts)) = set (bts-dfs f ts)
  \langle proof \rangle
{f lemma}\ bts-dfs-rev-distinct:
  distinct (bts-dfs f ts) \Longrightarrow distinct (bts-dfs f (rev ts))
  \langle proof \rangle
lemma bt-dfs-comp:
  bt-dfs (f \circ g) t = map f (bt-dfs g t)
  bts-dfs (f \circ g) ts = map f (bts-dfs g ts)
  \langle proof \rangle
lemma bt-dfs-comp-distinct:
  distinct\ (bt\text{-}dfs\ (f\circ g)\ t) \Longrightarrow distinct\ (bt\text{-}dfs\ g\ t)
  distinct\ (bts\text{-}dfs\ (f\circ g)\ ts) \Longrightarrow distinct\ (bts\text{-}dfs\ g\ ts)
  \langle proof \rangle
lemma bt-dfs-distinct-children:
  distinct\ (bt\text{-}dfs\ f\ x) \Longrightarrow distinct\ (bt\text{s-}dfs\ f\ (children\ x))
  \langle proof \rangle
fun dfs :: (('a::linorder, 'b) \ bintree \Rightarrow 'c) \Rightarrow ('a, 'b) \ binqueue \Rightarrow 'c \ list \ \mathbf{where}
  dfs f [] = []
| dfs f (None \# xs) = dfs f xs
| dfs f (Some t \# xs) = bt - dfs f t @ dfs f xs
lemma dfs-append:
  dfs f (xs @ ys) = (dfs f xs) @ (dfs f ys)
  \langle proof \rangle
\mathbf{lemma} set-dfs-rev:
  set (dfs f (rev xs)) = set (dfs f xs)
  \langle proof \rangle
```

```
lemma set-dfs-Cons:
  set (dfs f (x \# xs)) = set (dfs f xs) \cup set (dfs f [x])
\langle proof \rangle
lemma dfs-comp:
  dfs (f \circ g) xs = map f (dfs g xs)
  \langle proof \rangle
lemma dfs-comp-distinct:
  distinct (dfs (f \circ g) xs) \Longrightarrow distinct (dfs g xs)
  \langle proof \rangle
lemma dfs-distinct-member:
  distinct (dfs f xs) \Longrightarrow
   Some \ x \in set \ xs \Longrightarrow
   distinct (bt-dfs f x)
\langle proof \rangle
lemma dfs-map-Some-idem:
  dfs f (map Some xs) = bts-dfs f xs
  \langle proof \rangle
primrec alist :: ('a, 'b) bintree \Rightarrow ('b \times 'a) where
  alist (Node a \ v -) = (v, a)
\mathbf{lemma}\ \mathit{alist-split-pre} \colon
  val \ t = (fst \circ alist) \ t
  priority \ t = (snd \circ alist) \ t
  \langle proof \rangle
\mathbf{lemma}\ \mathit{alist-split} \colon
  val = fst \circ alist
  priority = snd \circ alist
  \langle proof \rangle
\mathbf{lemma}\ \mathit{alist-split-set}\colon
  set (dfs \ val \ xs) = fst \ `set (dfs \ alist \ xs)
  set (dfs \ priority \ xs) = snd \ `set (dfs \ alist \ xs)
  \langle proof \rangle
lemma in-set-in-alist:
  assumes Some \ t \in set \ xs
  shows (val t, priority t) \in set (dfs alist xs)
\langle proof \rangle
```

```
abbreviation vals where vals \equiv dfs \ val
abbreviation prios where prios \equiv dfs priority
abbreviation elements where elements \equiv dfs alist
primrec
 bt-augment :: ('a::linorder, 'b) bintree \Rightarrow ('b, 'a) PQ.pq \Rightarrow ('b, 'a) PQ.pq
 bts-augment :: ('a::linorder, 'b) bintree list \Rightarrow ('b, 'a) PQ.pq \Rightarrow ('b, 'a) PQ.pq
where
  bt-augment (Node a v ts) q = PQ.push v a (bts-augment ts q)
 bts-augment [] q = q
\mid bts-augment (t \# ts) q = bts-augment ts (bt-augment t q)
lemma bts-augment [simp]:
  bts-augment = fold \ bt-augment
\langle proof \rangle
lemma bt-augment-Node [simp]:
 bt-augment (Node a v ts) q = PQ. push v a (fold bt-augment ts q)
 \langle proof \rangle
lemma bt-augment-simp:
 bt-augment t \neq PQ.push (val t) (priority t) (fold <math>bt-augment (children t) \neq 0
 \langle proof \rangle
declare bt-augment.simps [simp del] bts-augment.simps [simp del]
fun pqueue :: ('a::linorder, 'b) binqueue \Rightarrow ('b, 'a) PQ.pq where
  Empty: pqueue [] = PQ.empty
 None: pqueue (None \# xs) = pqueue xs
| Some: pqueue (Some t \# xs) = bt-augment t (pqueue xs)
lemma bt-augment-v-subset:
 set |q| \subseteq set |bt-augment t |q|
 set |q| \subseteq set |bts-augment ts |q|
 \langle proof \rangle
lemma bt-augment-v-in:
 v \in set |q| \Longrightarrow v \in set |bt-augment t |q|
 v \in set |q| \Longrightarrow v \in set |bts-augment ts |q|
 \langle proof \rangle
lemma bt-augment-v-union:
  set |bt-augment t (bt-augment r q)| =
   set \mid bt-augment t \mid q \mid bt-augment r \mid q \mid dt
```

```
set |bts-augment ts (bt-augment r q)| =
           set \mid bts-augment ts \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid bt-augment r \mid q \mid u \mid set \mid set \mid bt-augment r \mid q \mid u \mid set \mid 
 \langle proof \rangle
lemma bt-val-augment:
     shows set (bt\text{-}dfs\ val\ t) \cup set\ |q| = set\ |bt\text{-}augment\ t\ q|
     and set (bts-dfs val ts) \cup set |q| = set |bts-augment ts q|
 \langle proof \rangle
lemma vals-pqueue:
     set (vals \ xs) = set | pqueue \ xs |
     \langle proof \rangle
lemma bt-augment-v-push:
     set |bt-augment t (PQ.push \ v \ a \ q)| = set |bt-augment t \ q| \cup \{v\}
     set | bts-augment ts (PQ.push \ v \ a \ q)| = set | bts-augment ts \ q| \cup \{v\}
      \langle proof \rangle
{f lemma}\ bt-augment-v-push-commute:
     set |bt-augment t (PQ.push \ v \ a \ q)| = set |PQ.push \ v \ a \ (bt-augment t \ q)|
     set |bts-augment ts (PQ.push \ v \ a \ q)| = set |PQ.push \ v \ a \ (bts-augment ts \ q)|
     \langle proof \rangle
lemma bts-augment-v-union:
     set | bt-augment t (bts-augment rs q)| =
           set \mid bt-augment t \mid q \mid bt-augment rs \mid q \mid
     set |bts-augment ts (bts-augment rs q)| =
           set \mid bts-augment ts \mid q \mid bts-augment rs \mid q \mid
 \langle proof \rangle
{f lemma}\ bt	ext{-}augment	ext{-}v	ext{-}commute:
     set |bt-augment t (bt-augment r q)| = set |bt-augment r (bt-augment t q)|
     set |bt-augment t (bts-augment rs q)| = set |bts-augment rs (bt-augment t q)|
     set | bts-augment ts (bts-augment rs q)| =
           set \mid bts-augment rs \mid bts-augment ts \mid q \mid q
      \langle proof \rangle
lemma bt-augment-v-merge:
     set \mid bt-augment (merge t \mid r) q \mid set \mid bt-augment t \mid bt-augment r \mid q)
      \langle proof \rangle
lemma vals-merge [simp]:
     set\ (bt\text{-}dfs\ val\ (merge\ t\ r)) = set\ (bt\text{-}dfs\ val\ t) \cup set\ (bt\text{-}dfs\ val\ r)
      \langle proof \rangle
```

```
lemma vals-merge-distinct:
  distinct\ (bt\text{-}dfs\ val\ t) \Longrightarrow distinct\ (bt\text{-}dfs\ val\ r) \Longrightarrow
   set\ (bt\text{-}dfs\ val\ t)\cap set\ (bt\text{-}dfs\ val\ r)=\{\}\Longrightarrow
   distinct (bt-dfs \ val \ (merge \ t \ r))
  \langle proof \rangle
\mathbf{lemma}\ vals\text{-}add\text{-}Cons:
  set\ (vals\ (add\ x\ xs)) = set\ (vals\ (x\ \#\ xs))
\langle proof \rangle
{f lemma}\ vals-add-distinct:
  assumes distinct (vals xs)
  and distinct (dfs val [x])
  and set (vals\ xs) \cap set\ (dfs\ val\ [x]) = \{\}
  shows distinct (vals (add x xs))
\langle proof \rangle
lemma vals-insert [simp]:
  set\ (vals\ (insert\ a\ v\ xs)) = set\ (vals\ xs) \cup \{v\}
  \langle proof \rangle
lemma insert-v-push:
  set\ (vals\ (insert\ a\ v\ xs)) = set\ |PQ.push\ v\ a\ (pqueue\ xs)|
  \langle proof \rangle
lemma vals-meld:
  set (dfs \ val \ (meld \ xs \ ys)) = set (dfs \ val \ xs) \cup set (dfs \ val \ ys)
\langle proof \rangle
\mathbf{lemma}\ \mathit{vals-meld-distinct} \colon
  distinct (dfs \ val \ xs) \Longrightarrow distinct (dfs \ val \ ys) \Longrightarrow
   set (dfs \ val \ xs) \cap set (dfs \ val \ ys) = \{\} \Longrightarrow
   distinct (dfs val (meld xs ys))
\langle proof \rangle
lemma bt-augment-alist-subset:
  set\ (PQ.alist-of\ q)\subseteq set\ (PQ.alist-of\ (bt-augment\ t\ q))
  set\ (PQ.alist-of\ q)\subseteq set\ (PQ.alist-of\ (bts-augment\ ts\ q))
\langle proof \rangle
lemma bt-augment-alist-in:
  (v,a) \in set\ (PQ.alist-of\ q) \Longrightarrow (v,a) \in set\ (PQ.alist-of\ (bt-augment\ t\ q))
  (v,a) \in set \ (PQ.alist-of \ q) \Longrightarrow (v,a) \in set \ (PQ.alist-of \ (bts-augment \ ts \ q))
  \langle proof \rangle
```

```
lemma bt-augment-alist-union:
  distinct (bts-dfs \ val \ (r \# [t])) \Longrightarrow
   set\ (bts\text{-}dfs\ val\ (r\ \#\ [t]))\cap set\ |q|=\{\}\Longrightarrow
   set (PQ.alist-of (bt-augment t (bt-augment r q))) =
      set\ (PQ.alist-of\ (bt-augment\ t\ q)) \cup set\ (PQ.alist-of\ (bt-augment\ r\ q))
  distinct (bts-dfs \ val \ (r \# ts)) \Longrightarrow
   set\ (bts\text{-}dfs\ val\ (r\ \#\ ts))\ \cap\ set\ |q|=\{\}\Longrightarrow
   set (PQ.alist-of (bts-augment ts (bt-augment r q))) =
      set\ (PQ.alist-of\ (bts-augment\ ts\ q)) \cup set\ (PQ.alist-of\ (bt-augment\ r\ q))
\langle proof \rangle
lemma bt-alist-augment:
  distinct (bt-dfs \ val \ t) \Longrightarrow
   set (bt-dfs \ val \ t) \cap set \ |q| = \{\} \Longrightarrow
   set\ (bt\text{-}dfs\ alist\ t) \cup set\ (PQ.alist\text{-}of\ q) = set\ (PQ.alist\text{-}of\ (bt\text{-}augment\ t\ q))
  distinct (bts-dfs \ val \ ts) \Longrightarrow
   set (bts-dfs \ val \ ts) \cap set \ |q| = \{\} \Longrightarrow
   set\ (bts-dfs\ alist\ ts)\ \cup\ set\ (PQ.alist-of\ q) =
      set (PQ.alist-of (bts-augment ts q))
\langle proof \rangle
{\bf lemma}\ a list\text{-}pqueue:
  distinct\ (vals\ xs) \Longrightarrow set\ (dfs\ alist\ xs) = set\ (PQ.alist-of\ (pqueue\ xs))
  \langle proof \rangle
lemma alist-pqueue-priority:
  distinct\ (vals\ xs) \Longrightarrow (v,\ a) \in set\ (dfs\ alist\ xs)
    \implies PQ.priority (pqueue \ xs) \ v = Some \ a
  \langle proof \rangle
lemma prios-pqueue:
  distinct\ (vals\ xs) \Longrightarrow set\ (prios\ xs) = set\ \|pqueue\ xs\|
  \langle proof \rangle
lemma alist-merge [simp]:
  distinct\ (bt\text{-}dfs\ val\ t) \Longrightarrow distinct\ (bt\text{-}dfs\ val\ r) \Longrightarrow
   set\ (bt\text{-}dfs\ val\ t)\cap set\ (bt\text{-}dfs\ val\ r)=\{\}\Longrightarrow
   set\ (bt\text{-}dfs\ alist\ (merge\ t\ r)) = set\ (bt\text{-}dfs\ alist\ t) \cup set\ (bt\text{-}dfs\ alist\ r)
  \langle proof \rangle
lemma alist-add-Cons:
  assumes distinct (vals (x\#xs))
  shows set (dfs \ alist \ (add \ x \ xs)) = set \ (dfs \ alist \ (x \ \# \ xs))
```

```
\langle proof \rangle
lemma alist-insert [simp]:
  distinct (vals xs) \Longrightarrow
   v \notin set (vals \ xs) \Longrightarrow
   set (dfs \ alist \ (insert \ a \ v \ xs)) = set \ (dfs \ alist \ xs) \cup \{(v,a)\}
  \langle proof \rangle
lemma insert-push:
  distinct (vals xs) \Longrightarrow
   v \notin set (vals \ xs) \Longrightarrow
   set (dfs \ alist \ (insert \ a \ v \ xs)) = set \ (PQ.alist-of \ (PQ.push \ v \ a \ (pqueue \ xs)))
  \langle proof \rangle
lemma insert-p-push:
  assumes distinct (vals xs)
  and v \notin set (vals \ xs)
  shows set (prios\ (insert\ a\ v\ xs)) = set\ \|PQ.push\ v\ a\ (pqueue\ xs)\|
\langle proof \rangle
lemma empty-empty:
  normalized \ xs \Longrightarrow xs = empty \longleftrightarrow PQ.is-empty \ (pqueue \ xs)
\langle proof \rangle
lemma bt-dfs-Min-priority:
  assumes is-heap t
  shows priority t = Min (set (bt-dfs priority t))
\langle proof \rangle
\mathbf{lemma}\ \textit{is-binqueue-min-Min-prios}:
  assumes is-binqueue l xs
  and normalized xs
  and xs \neq []
  shows min \ xs = Some \ (Min \ (set \ (prios \ xs)))
\langle proof \rangle
lemma min-p-min:
  assumes is-binqueue l xs
  and xs \neq []
  and normalized xs
  and distinct (vals xs)
  and distinct (prios xs)
  shows min \ xs = PQ.priority (pqueue \ xs) (PQ.min (pqueue \ xs))
\langle proof \rangle
```

```
lemma find-min-p-min:
  assumes is-binqueue l xs
  and xs \neq []
  and normalized xs
  and distinct (vals xs)
  and distinct (prios xs)
  shows priority (the (find-min xs)) =
    the (PQ.priority (pqueue xs) (PQ.min (pqueue xs)))
\langle proof \rangle
lemma find-min-v-min:
  assumes is-binqueue l xs
  and xs \neq []
  and normalized xs
  and distinct (vals xs)
  and distinct (prios xs)
  shows val (the (find-min xs)) = PQ.min (pqueue xs)
\langle proof \rangle
lemma alist-normalize-idem:
  dfs \ alist \ (normalize \ xs) = dfs \ alist \ xs
\langle proof \rangle
lemma dfs-match-not-in:
  (\forall t. Some \ t \in set \ xs \longrightarrow priority \ t \neq a) \Longrightarrow
    set (dfs f (map (match a) xs)) = set (dfs f xs)
\langle proof \rangle
\mathbf{lemma}\ dfs-match-subset:
  set (dfs f (map (match a) xs)) \subseteq set (dfs f xs)
\langle proof \rangle
\mathbf{lemma} \mathit{dfs-match-distinct}:
  distinct (dfs f xs) \Longrightarrow distinct (dfs f (map (match a) xs))
\langle proof \rangle
lemma dfs-match:
  distinct (prios xs) \Longrightarrow
   distinct (dfs f xs) \Longrightarrow
   Some \ t \in set \ xs \Longrightarrow
   priority t = a \Longrightarrow
   set (dfs f (map (match a) xs)) = set (dfs f xs) - set (bt-dfs f t)
\langle proof \rangle
```

```
distinct (dfs \ val \ xs) \Longrightarrow distinct (dfs \ val \ ys) \Longrightarrow
   set (dfs \ val \ xs) \cap set (dfs \ val \ ys) = \{\} \Longrightarrow
   set (dfs \ alist \ (meld \ xs \ ys)) = set (dfs \ alist \ xs) \cup set (dfs \ alist \ ys)
\langle proof \rangle
lemma alist-delete-min:
 assumes distinct (vals xs)
 and distinct (prios xs)
 and find-min xs = Some (Node a v ts)
 shows set (ds \ alist \ (delete-min \ xs)) = set \ (ds \ alist \ xs) - \{(v, \ a)\}
\langle proof \rangle
lemma alist-remove-min:
 assumes is-binqueue l xs
 and distinct (vals xs)
 and distinct (prios xs)
 and normalized xs
 and xs \neq []
 shows set (dfs \ alist (delete-min \ xs)) =
  set (PQ.alist-of (PQ.remove-min (pqueue xs)))
\langle proof \rangle
no-notation
  PQ.values(\langle |(-)| \rangle)
 and PQ.priorities(\langle \|(-)\| \rangle)
```