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Abstract. Priority queues are an important data structure and effi-
cient implementations of them are crucial. We implement a functional
variant of binomial queues in Isabelle/HOL and show its functional cor-
rectness. A verification against an abstract reference specification of pri-
ority queues has also been attempted, but could not be achieved to the
full extent.

1 Abstract priority queues

1.1 Generic Lemmas

lemma tl-set:
distinct q =⇒ set (tl q) = set q − {hd q}
〈proof 〉

1.2 Type of abstract priority queues

typedef (overloaded) ( ′a, ′b::linorder) pq =
{xs :: ( ′a × ′b) list. distinct (map fst xs) ∧ sorted (map snd xs)}
morphisms alist-of Abs-pq
〈proof 〉

lemma alist-of-Abs-pq:
assumes distinct (map fst xs)

and sorted (map snd xs)
shows alist-of (Abs-pq xs) = xs
〈proof 〉

lemma [code abstype]:
Abs-pq (alist-of q) = q
〈proof 〉

lemma distinct-fst-alist-of [simp]:
distinct (map fst (alist-of q))
〈proof 〉



lemma distinct-alist-of [simp]:
distinct (alist-of q)
〈proof 〉

lemma sorted-snd-alist-of [simp]:
sorted (map snd (alist-of q))
〈proof 〉

lemma alist-of-eqI :
alist-of p = alist-of q =⇒ p = q
〈proof 〉

definition values :: ( ′a, ′b::linorder) pq ⇒ ′a list (‹|(-)|›) where
values q = map fst (alist-of q)

definition priorities :: ( ′a, ′b::linorder) pq ⇒ ′b list (‹‖(-)‖›) where
priorities q = map snd (alist-of q)

lemma values-set:
set |q| = fst ‘ set (alist-of q)
〈proof 〉

lemma priorities-set:
set ‖q‖ = snd ‘ set (alist-of q)
〈proof 〉

definition is-empty :: ( ′a, ′b::linorder) pq ⇒ bool where
is-empty q ←→ alist-of q = []

definition priority :: ( ′a, ′b::linorder) pq ⇒ ′a ⇒ ′b option where
priority q = map-of (alist-of q)

definition min :: ( ′a, ′b::linorder) pq ⇒ ′a where
min q = fst (hd (alist-of q))

definition empty :: ( ′a, ′b::linorder) pq where
empty = Abs-pq []

lemma is-empty-alist-of [dest]:
is-empty q =⇒ alist-of q = []
〈proof 〉

lemma not-is-empty-alist-of [dest]:
¬ is-empty q =⇒ alist-of q 6= []
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〈proof 〉

lemma alist-of-empty [simp, code abstract]:
alist-of empty = []
〈proof 〉

lemma values-empty [simp]:
|empty| = []
〈proof 〉

lemma priorities-empty [simp]:
‖empty‖ = []
〈proof 〉

lemma values-empty-nothing [simp]:
∀ k. k /∈ set |empty|
〈proof 〉

lemma is-empty-empty:
is-empty q ←→ q = empty
〈proof 〉

lemma is-empty-empty-simp [simp]:
is-empty empty
〈proof 〉

lemma map-snd-alist-of :
map (the ◦ priority q) (values q) = map snd (alist-of q)
〈proof 〉

lemma image-snd-alist-of :
the ‘ priority q ‘ set (values q) = snd ‘ set (alist-of q)
〈proof 〉

lemma Min-snd-alist-of :
assumes ¬ is-empty q
shows Min (snd ‘ set (alist-of q)) = snd (hd (alist-of q))
〈proof 〉

lemma priority-fst:
assumes xp ∈ set (alist-of q)
shows priority q (fst xp) = Some (snd xp)
〈proof 〉

lemma priority-Min:
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assumes ¬ is-empty q
shows priority q (min q) = Some (Min (the ‘ priority q ‘ set (values q)))
〈proof 〉

lemma priority-Min-priorities:
assumes ¬ is-empty q
shows priority q (min q) = Some (Min (set ‖q‖))
〈proof 〉

definition push :: ′a ⇒ ′b::linorder ⇒ ( ′a, ′b) pq ⇒ ( ′a, ′b) pq where
push k p q = Abs-pq (if k /∈ set (values q)

then insort-key snd (k, p) (alist-of q)
else alist-of q)

lemma Min-snd-hd:
q 6= [] =⇒ sorted (map snd q) =⇒ Min (snd ‘ set q) = snd (hd q)
〈proof 〉

lemma hd-construct:
assumes ¬ is-empty q
shows hd (alist-of q) = (min q, the (priority q (min q)))
〈proof 〉

lemma not-in-first-image:
x /∈ fst ‘ s =⇒ (x, p) /∈ s
〈proof 〉

lemma alist-of-push [simp, code abstract]:
alist-of (push k p q) =
(if k /∈ set (values q) then insort-key snd (k, p) (alist-of q) else alist-of q)
〈proof 〉

lemma push-values [simp]:
set |push k p q| = set |q| ∪ {k}
〈proof 〉

lemma push-priorities [simp]:
k /∈ set |q| =⇒ set ‖push k p q‖ = set ‖q‖ ∪ {p}
k ∈ set |q| =⇒ set ‖push k p q‖ = set ‖q‖
〈proof 〉

lemma not-is-empty-push [simp]:
¬ is-empty (push k p q)
〈proof 〉
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lemma push-commute:
assumes a 6= b and v 6= w
shows push w b (push v a q) = push v a (push w b q)
〈proof 〉

definition remove-min :: ( ′a, ′b::linorder) pq ⇒ ( ′a, ′b::linorder) pq where
remove-min q = (if is-empty q then empty else Abs-pq (tl (alist-of q)))

lemma alift-of-remove-min-if [code abstract]:
alist-of (remove-min q) = (if is-empty q then [] else tl (alist-of q))
〈proof 〉

lemma remove-min-empty [simp]:
is-empty q =⇒ remove-min q = empty
〈proof 〉

lemma alist-of-remove-min [simp]:
¬ is-empty q =⇒ alist-of (remove-min q) = tl (alist-of q)
〈proof 〉

lemma values-remove-min [simp]:
¬ is-empty q =⇒ values (remove-min q) = tl (values q)
〈proof 〉

lemma set-alist-of-remove-min:
¬ is-empty q =⇒ set (alist-of (remove-min q)) =

set (alist-of q) − {(min q, the (priority q (min q)))}
〈proof 〉

definition pop :: ( ′a, ′b::linorder) pq ⇒ ( ′a × ( ′a, ′b) pq) option where
pop q = (if is-empty q then None else Some (min q, remove-min q))

lemma pop-simps [simp]:
is-empty q =⇒ pop q = None
¬ is-empty q =⇒ pop q = Some (min q, remove-min q)
〈proof 〉

hide-const (open) Abs-pq alist-of values priority empty is-empty push min pop

no-notation
PQ.values (‹|(-)|›)
and PQ.priorities (‹‖(-)‖›)
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2 Functional Binomial Queues

2.1 Type definition and projections

datatype ( ′a, ′b) bintree = Node ′a ′b ( ′a, ′b) bintree list

primrec priority :: ( ′a, ′b) bintree ⇒ ′a where
priority (Node a - -) = a

primrec val :: ( ′a, ′b) bintree ⇒ ′b where
val (Node - v -) = v

primrec children :: ( ′a, ′b) bintree ⇒ ( ′a, ′b) bintree list where
children (Node - - ts) = ts

type-synonym ( ′a, ′b) binqueue = ( ′a, ′b) bintree option list

lemma binqueue-induct [case-names Empty None Some, induct type: binqueue]:
assumes P []

and
∧

xs. P xs =⇒ P (None # xs)
and

∧
x xs. P xs =⇒ P (Some x # xs)

shows P xs
〈proof 〉

Terminology:

– values v, w or v1, v2
– priorities a, b or a1, a2
– bintrees t, r or t1, t2
– bintree lists ts, rs or ts1, ts2
– binqueue element x, y or x1, x2
– binqueues = binqueue element lists xs, ys or xs1, xs2
– abstract priority queues q, p or q1, q2

2.2 Binomial queue properties

Binomial tree property

inductive is-bintree-list :: nat ⇒ ( ′a, ′b) bintree list ⇒ bool where
is-bintree-list-Nil [simp]: is-bintree-list 0 []
| is-bintree-list-Cons: is-bintree-list l ts =⇒ is-bintree-list l (children t)

=⇒ is-bintree-list (Suc l) (t # ts)

abbreviation (input) is-bintree k t ≡ is-bintree-list k (children t)
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lemma is-bintree-list-triv [simp]:
is-bintree-list 0 ts ←→ ts = []
is-bintree-list l [] ←→ l = 0
〈proof 〉

lemma is-bintree-list-simp [simp]:
is-bintree-list (Suc l) (t # ts) ←→

is-bintree-list l (children t) ∧ is-bintree-list l ts
〈proof 〉

lemma is-bintree-list-length [simp]:
is-bintree-list l ts =⇒ length ts = l
〈proof 〉

lemma is-bintree-list-children-last:
assumes is-bintree-list l ts and ts 6= []
shows children (last ts) = []
〈proof 〉

lemma is-bintree-children-length-desc:
assumes is-bintree-list l ts
shows map (length ◦ children) ts = rev [0..<l]
〈proof 〉

Heap property

inductive is-heap-list :: ′a::linorder ⇒ ( ′a, ′b) bintree list ⇒ bool where
is-heap-list-Nil: is-heap-list h []
| is-heap-list-Cons: is-heap-list h ts =⇒ is-heap-list (priority t) (children t)

=⇒ (priority t) ≥ h =⇒ is-heap-list h (t # ts)

abbreviation (input) is-heap t ≡ is-heap-list (priority t) (children t)

lemma is-heap-list-simps [simp]:
is-heap-list h [] ←→ True
is-heap-list h (t # ts) ←→

is-heap-list h ts ∧ is-heap-list (priority t) (children t) ∧ priority t ≥ h
〈proof 〉

lemma is-heap-list-append-dest [dest]:
is-heap-list l (ts@rs) =⇒ is-heap-list l ts
is-heap-list l (ts@rs) =⇒ is-heap-list l rs
〈proof 〉

lemma is-heap-list-rev:
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is-heap-list l ts =⇒ is-heap-list l (rev ts)
〈proof 〉

lemma is-heap-children-larger :
is-heap t =⇒ ∀ x ∈ set (children t). priority x ≥ priority t
〈proof 〉

lemma is-heap-Min-children-larger :
is-heap t =⇒ children t 6= [] =⇒
priority t ≤ Min (priority ‘ set (children t))
〈proof 〉

Combination of both: binqueue property

inductive is-binqueue :: nat ⇒ ( ′a::linorder , ′b) binqueue ⇒ bool where
Empty: is-binqueue l []
| None: is-binqueue (Suc l) xs =⇒ is-binqueue l (None # xs)
| Some: is-binqueue (Suc l) xs =⇒ is-bintree l t

=⇒ is-heap t =⇒ is-binqueue l (Some t # xs)

lemma is-binqueue-simp [simp]:
is-binqueue l [] ←→ True
is-binqueue l (Some t # xs) ←→

is-bintree l t ∧ is-heap t ∧ is-binqueue (Suc l) xs
is-binqueue l (None # xs) ←→ is-binqueue (Suc l) xs
〈proof 〉

lemma is-binqueue-trans:
is-binqueue l (x#xs) =⇒ is-binqueue (Suc l) xs
〈proof 〉

lemma is-binqueue-head:
is-binqueue l (x#xs) =⇒ is-binqueue l [x]
〈proof 〉

lemma is-binqueue-append:
is-binqueue l xs =⇒ is-binqueue (length xs + l) ys =⇒ is-binqueue l (xs @ ys)
〈proof 〉

lemma is-binqueue-append-dest [dest]:
is-binqueue l (xs @ ys) =⇒ is-binqueue l xs
〈proof 〉

lemma is-binqueue-children:
assumes is-bintree-list l ts
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and is-heap-list t ts
shows is-binqueue 0 (map Some (rev ts))
〈proof 〉

lemma is-binqueue-select:
is-binqueue l xs =⇒ Some t ∈ set xs =⇒ ∃ k. is-bintree k t ∧ is-heap t
〈proof 〉

Normalized representation

inductive normalized :: ( ′a, ′b) binqueue ⇒ bool where
normalized-Nil: normalized []
| normalized-single: normalized [Some t]
| normalized-append: xs 6= [] =⇒ normalized xs =⇒ normalized (ys @ xs)

lemma normalized-last-not-None:
— sometimes the inductive definition might work better
normalized xs ←→ xs = [] ∨ last xs 6= None
〈proof 〉

lemma normalized-simps [simp]:
normalized [] ←→ True
normalized (Some t # xs) ←→ normalized xs
normalized (None # xs) ←→ xs 6= [] ∧ normalized xs
〈proof 〉

lemma normalized-map-Some [simp]:
normalized (map Some xs)
〈proof 〉

lemma normalized-Cons:
normalized (x#xs) =⇒ normalized xs
〈proof 〉

lemma normalized-append:
normalized xs =⇒ normalized ys =⇒ normalized (xs@ys)
〈proof 〉

lemma normalized-not-None:
normalized xs =⇒ set xs 6= {None}
〈proof 〉

primrec normalize ′ :: ( ′a, ′b) binqueue ⇒ ( ′a, ′b) binqueue where
normalize ′ [] = []
| normalize ′ (x # xs) =
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(case x of None ⇒ normalize ′ xs | Some t ⇒ (x # xs))

definition normalize :: ( ′a, ′b) binqueue ⇒ ( ′a, ′b) binqueue where
normalize xs = rev (normalize ′ (rev xs))

lemma normalized-normalize:
normalized (normalize xs)
〈proof 〉

lemma is-binqueue-normalize:
is-binqueue l xs =⇒ is-binqueue l (normalize xs)
〈proof 〉

2.3 Operations

Adding data

definition merge :: ( ′a::linorder , ′b) bintree ⇒ ( ′a, ′b) bintree ⇒ ( ′a, ′b) bintree
where

merge t1 t2 = (if priority t1 < priority t2
then Node (priority t1) (val t1) (t2 # children t1)
else Node (priority t2) (val t2) (t1 # children t2))

lemma is-bintree-list-merge:
assumes is-bintree l t1 is-bintree l t2
shows is-bintree (Suc l) (merge t1 t2)
〈proof 〉

lemma is-heap-merge:
assumes is-heap t1 is-heap t2
shows is-heap (merge t1 t2)
〈proof 〉

fun
add :: ( ′a::linorder , ′b) bintree option ⇒ ( ′a, ′b) binqueue ⇒ ( ′a, ′b) binqueue

where
add None xs = xs
| add (Some t) [] = [Some t]
| add (Some t) (None # xs) = Some t # xs
| add (Some t) (Some r # xs) = None # add (Some (merge t r)) xs

lemma add-Some-not-Nil [simp]:
add (Some t) xs 6= []
〈proof 〉

lemma normalized-add:
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assumes normalized xs
shows normalized (add x xs)
〈proof 〉

lemma is-binqueue-add-None:
assumes is-binqueue l xs
shows is-binqueue l (add None xs)
〈proof 〉

lemma is-binqueue-add-Some:
assumes is-binqueue l xs
and is-bintree l t
and is-heap t
shows is-binqueue l (add (Some t) xs)
〈proof 〉

function
meld :: ( ′a::linorder , ′b) binqueue ⇒ ( ′a, ′b) binqueue ⇒ ( ′a, ′b) binqueue

where
meld [] ys = ys
| meld xs [] = xs
| meld (None # xs) (y # ys) = y # meld xs ys
| meld (x # xs) (None # ys) = x # meld xs ys
| meld (Some t # xs) (Some r # ys) =

None # add (Some (merge t r)) (meld xs ys)
〈proof 〉 termination 〈proof 〉

lemma meld-singleton-add [simp]:
meld [Some t] xs = add (Some t) xs
〈proof 〉

lemma nonempty-meld [simp]:
xs 6= [] =⇒ meld xs ys 6= []
ys 6= [] =⇒ meld xs ys 6= []
〈proof 〉

lemma nonempty-meld-commute:
meld xs ys 6= [] =⇒ meld xs ys 6= []
〈proof 〉

lemma is-binqueue-meld:
assumes is-binqueue l xs
and is-binqueue l ys
shows is-binqueue l (meld xs ys)
〈proof 〉
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lemma normalized-meld:
assumes normalized xs
and normalized ys
shows normalized (meld xs ys)
〈proof 〉

lemma normalized-meld-weak:
assumes normalized xs
and length ys ≤ length xs
shows normalized (meld xs ys)
〈proof 〉

definition least :: ′a::linorder option ⇒ ′a option ⇒ ′a option where
least x y = (case x of

None ⇒ y
| Some x ′⇒ (case y of

None ⇒ x
| Some y ′⇒ if x ′ ≤ y ′ then x else y))

lemma least-simps [simp, code]:
least None x = x
least x None = x
least (Some x ′) (Some y ′) = (if x ′ ≤ y ′ then Some x ′ else Some y ′)
〈proof 〉

lemma least-split:
assumes least x y = Some z
shows x = Some z ∨ y = Some z
〈proof 〉

interpretation least: semilattice least 〈proof 〉

definition min :: ( ′a::linorder , ′b) binqueue ⇒ ′a option where
min xs = fold least (map (map-option priority) xs) None

lemma min-simps [simp]:
min [] = None
min (None # xs) = min xs
min (Some t # xs) = least (Some (priority t)) (min xs)
〈proof 〉

lemma [code]:
min xs = fold (λ x. least (map-option priority x)) xs None
〈proof 〉
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lemma min-single:
min [x] = Some a =⇒ priority (the x) = a
min [x] = None =⇒ x = None
〈proof 〉

lemma min-Some-not-None:
min (Some t # xs) 6= None
〈proof 〉

lemma min-None-trans:
assumes min (x#xs) = None
shows min xs = None
〈proof 〉

lemma min-None-None:
min xs = None ←→ xs = [] ∨ set xs = {None}
〈proof 〉

lemma normalized-min-not-None:
normalized xs =⇒ xs 6= [] =⇒ min xs 6= None
〈proof 〉

lemma min-is-min:
assumes normalized xs
and xs 6= []
and min xs = Some a
shows ∀ x ∈ set xs. x = None ∨ a ≤ priority (the x)
〈proof 〉

lemma min-exists:
assumes min xs = Some a
shows Some a ∈ map-option priority ‘ set xs
〈proof 〉

primrec find :: ′a::linorder ⇒ ( ′a, ′b) binqueue ⇒ ( ′a, ′b) bintree option where
find a [] = None
| find a (x#xs) = (case x of None ⇒ find a xs
| Some t ⇒ if priority t = a then Some t else find a xs)

declare find.simps [simp del]

lemma find-simps [simp, code]:
find a [] = None
find a (None # xs) = find a xs
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find a (Some t # xs) = (if priority t = a then Some t else find a xs)
〈proof 〉

lemma find-works:
assumes Some a ∈ set (map (map-option priority) xs)
shows ∃ t. find a xs = Some t ∧ priority t = a
〈proof 〉

lemma find-works-not-None:
Some a ∈ set (map (map-option priority) xs) =⇒ find a xs 6= None
〈proof 〉

lemma find-None:
find a xs = None =⇒ Some a /∈ set (map (map-option priority) xs)
〈proof 〉

lemma find-exist:
find a xs = Some t =⇒ Some t ∈ set xs
〈proof 〉

definition find-min :: ( ′a::linorder , ′b) binqueue⇒ ( ′a, ′b) bintree option where
find-min xs = (case min xs of None ⇒ None | Some a ⇒ find a xs)

lemma find-min-simps [simp]:
find-min [] = None
find-min (None # xs) = find-min xs
〈proof 〉

lemma find-min-single:
find-min [x] = x
〈proof 〉

lemma min-eq-find-min-None:
min xs = None ←→ find-min xs = None
〈proof 〉

lemma min-eq-find-min-Some:
min xs = Some a ←→ (∃ t. find-min xs = Some t ∧ priority t = a)
〈proof 〉

lemma find-min-exist:
assumes find-min xs = Some t
shows Some t ∈ set xs
〈proof 〉
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lemma find-min-is-min:
assumes normalized xs
and xs 6= []
and find-min xs = Some t
shows ∀ x ∈ set xs. x = None ∨ (priority t) ≤ priority (the x)
〈proof 〉

lemma normalized-find-min-exists:
normalized xs =⇒ xs 6= [] =⇒ ∃ t. find-min xs = Some t
〈proof 〉

primrec
match :: ′a::linorder ⇒ ( ′a, ′b) bintree option ⇒ ( ′a, ′b) bintree option

where
match a None = None
| match a (Some t) = (if priority t = a then None else Some t)

definition delete-min :: ( ′a::linorder , ′b) binqueue ⇒ ( ′a, ′b) binqueue where
delete-min xs = (case find-min xs

of Some (Node a v ts) ⇒
normalize (meld (map Some (rev ts)) (map (match a) xs))

| None ⇒ [])

lemma delete-min-empty [simp]:
delete-min [] = []
〈proof 〉

lemma delete-min-nonempty [simp]:
normalized xs =⇒ xs 6= [] =⇒ find-min xs = Some t
=⇒ delete-min xs = normalize
(meld (map Some (rev (children t))) (map (match (priority t)) xs))

〈proof 〉

lemma is-binqueue-delete-min:
assumes is-binqueue 0 xs
shows is-binqueue 0 (delete-min xs)
〈proof 〉

lemma normalized-delete-min:
normalized (delete-min xs)
〈proof 〉

Dedicated grand unified operation for generated program

definition
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meld ′ :: ( ′a, ′b) bintree option ⇒ ( ′a::linorder , ′b) binqueue
⇒ ( ′a, ′b) binqueue ⇒ ( ′a, ′b) binqueue

where
meld ′ z xs ys = add z (meld xs ys)

lemma [code]:
add z xs = meld ′ z [] xs
meld xs ys = meld ′ None xs ys
〈proof 〉

lemma [code]:
meld ′ z (Some t # xs) (Some r # ys) =

z # (meld ′ (Some (merge t r)) xs ys)
meld ′ (Some t) (Some r # xs) (None # ys) =

None # (meld ′ (Some (merge t r)) xs ys)
meld ′ (Some t) (None # xs) (Some r # ys) =

None # (meld ′ (Some (merge t r)) xs ys)
meld ′ None (x # xs) (None # ys) = x # (meld ′ None xs ys)
meld ′ None (None # xs) (y # ys) = y # (meld ′ None xs ys)
meld ′ z (None # xs) (None # ys) = z # (meld ′ None xs ys)
meld ′ z xs [] = meld ′ z [] xs
meld ′ z [] (y # ys) = meld ′ None [z] (y # ys)
meld ′ (Some t) [] ys = meld ′ None [Some t] ys
meld ′ None [] ys = ys
〈proof 〉

Interface operations

abbreviation (input) empty :: ( ′a, ′b) binqueue where
empty ≡ []

definition
insert :: ′a::linorder ⇒ ′b ⇒ ( ′a, ′b) binqueue ⇒ ( ′a, ′b) binqueue

where
insert a v xs = add (Some (Node a v [])) xs

lemma insert-simps [simp]:
insert a v [] = [Some (Node a v [])]
insert a v (None # xs) = Some (Node a v []) # xs
insert a v (Some t # xs) = None # add (Some (merge (Node a v []) t)) xs
〈proof 〉

lemma is-binqueue-insert:
is-binqueue 0 xs =⇒ is-binqueue 0 (insert a v xs)
〈proof 〉
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lemma normalized-insert:
normalized xs =⇒ normalized (insert a v xs)
〈proof 〉

definition
pop :: ( ′a::linorder , ′b) binqueue ⇒ (( ′b × ′a) option × ( ′a, ′b) binqueue)

where
pop xs = (case find-min xs of

None ⇒ (None, xs)
| Some t ⇒ (Some (val t, priority t), delete-min xs))

lemma pop-empty [simp]:
pop empty = (None, empty)
〈proof 〉

lemma pop-nonempty [simp]:
normalized xs =⇒ xs 6= [] =⇒ find-min xs = Some t
=⇒ pop xs = (Some (val t, priority t), normalize
(meld (map Some (rev (children t))) (map (match (priority t)) xs)))

〈proof 〉

lemma pop-code [code]:
pop xs = (case find-min xs of

None ⇒ (None, xs)
| Some t ⇒ (Some (val t, priority t), normalize

(meld (map Some (rev (children t))) (map (match (priority t)) xs))))
〈proof 〉

3 Relating Functional Binomial Queues To The Abstract
Priority Queues

notation
PQ.values (‹|(-)|›)
and PQ.priorities (‹‖(-)‖›)

Naming convention: prefix bt- for bintrees, bts- for bintree lists, no prefix for
binqueues.

primrec bt-dfs :: (( ′a::linorder , ′b) bintree ⇒ ′c) ⇒ ( ′a, ′b) bintree ⇒ ′c list
and bts-dfs :: (( ′a::linorder , ′b) bintree ⇒ ′c) ⇒ ( ′a, ′b) bintree list ⇒ ′c list

where
bt-dfs f (Node a v ts) = f (Node a v ts) # bts-dfs f ts
| bts-dfs f [] = []
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| bts-dfs f (t # ts) = bt-dfs f t @ bts-dfs f ts

lemma bt-dfs-simp:
bt-dfs f t = f t # bts-dfs f (children t)
〈proof 〉

lemma bts-dfs-append [simp]:
bts-dfs f (ts @ rs) = bts-dfs f ts @ bts-dfs f rs
〈proof 〉

lemma set-bts-dfs-rev:
set (bts-dfs f (rev ts)) = set (bts-dfs f ts)
〈proof 〉

lemma bts-dfs-rev-distinct:
distinct (bts-dfs f ts) =⇒ distinct (bts-dfs f (rev ts))
〈proof 〉

lemma bt-dfs-comp:
bt-dfs (f ◦ g) t = map f (bt-dfs g t)
bts-dfs (f ◦ g) ts = map f (bts-dfs g ts)
〈proof 〉

lemma bt-dfs-comp-distinct:
distinct (bt-dfs (f ◦ g) t) =⇒ distinct (bt-dfs g t)
distinct (bts-dfs (f ◦ g) ts) =⇒ distinct (bts-dfs g ts)
〈proof 〉

lemma bt-dfs-distinct-children:
distinct (bt-dfs f x) =⇒ distinct (bts-dfs f (children x))
〈proof 〉

fun dfs :: (( ′a::linorder , ′b) bintree ⇒ ′c) ⇒ ( ′a, ′b) binqueue ⇒ ′c list where
dfs f [] = []
| dfs f (None # xs) = dfs f xs
| dfs f (Some t # xs) = bt-dfs f t @ dfs f xs

lemma dfs-append:
dfs f (xs @ ys) = (dfs f xs) @ (dfs f ys)
〈proof 〉

lemma set-dfs-rev:
set (dfs f (rev xs)) = set (dfs f xs)
〈proof 〉
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lemma set-dfs-Cons:
set (dfs f (x # xs)) = set (dfs f xs) ∪ set (dfs f [x])
〈proof 〉

lemma dfs-comp:
dfs (f ◦ g) xs = map f (dfs g xs)
〈proof 〉

lemma dfs-comp-distinct:
distinct (dfs (f ◦ g) xs) =⇒ distinct (dfs g xs)
〈proof 〉

lemma dfs-distinct-member :
distinct (dfs f xs) =⇒
Some x ∈ set xs =⇒
distinct (bt-dfs f x)

〈proof 〉

lemma dfs-map-Some-idem:
dfs f (map Some xs) = bts-dfs f xs
〈proof 〉

primrec alist :: ( ′a, ′b) bintree ⇒ ( ′b × ′a) where
alist (Node a v -) = (v, a)

lemma alist-split-pre:
val t = (fst ◦ alist) t
priority t = (snd ◦ alist) t
〈proof 〉

lemma alist-split:
val = fst ◦ alist
priority = snd ◦ alist
〈proof 〉

lemma alist-split-set:
set (dfs val xs) = fst ‘ set (dfs alist xs)
set (dfs priority xs) = snd ‘ set (dfs alist xs)
〈proof 〉

lemma in-set-in-alist:
assumes Some t ∈ set xs
shows (val t, priority t) ∈ set (dfs alist xs)
〈proof 〉

19



abbreviation vals where vals ≡ dfs val
abbreviation prios where prios ≡ dfs priority
abbreviation elements where elements ≡ dfs alist

primrec
bt-augment :: ( ′a::linorder , ′b) bintree ⇒ ( ′b, ′a) PQ.pq ⇒ ( ′b, ′a) PQ.pq

and
bts-augment :: ( ′a::linorder , ′b) bintree list ⇒ ( ′b, ′a) PQ.pq ⇒ ( ′b, ′a) PQ.pq

where
bt-augment (Node a v ts) q = PQ.push v a (bts-augment ts q)
| bts-augment [] q = q
| bts-augment (t # ts) q = bts-augment ts (bt-augment t q)

lemma bts-augment [simp]:
bts-augment = fold bt-augment
〈proof 〉

lemma bt-augment-Node [simp]:
bt-augment (Node a v ts) q = PQ.push v a (fold bt-augment ts q)
〈proof 〉

lemma bt-augment-simp:
bt-augment t q = PQ.push (val t) (priority t) (fold bt-augment (children t) q)
〈proof 〉

declare bt-augment.simps [simp del] bts-augment.simps [simp del]

fun pqueue :: ( ′a::linorder , ′b) binqueue ⇒ ( ′b, ′a) PQ.pq where
Empty: pqueue [] = PQ.empty
| None: pqueue (None # xs) = pqueue xs
| Some: pqueue (Some t # xs) = bt-augment t (pqueue xs)

lemma bt-augment-v-subset:
set |q| ⊆ set |bt-augment t q|
set |q| ⊆ set |bts-augment ts q|
〈proof 〉

lemma bt-augment-v-in:
v ∈ set |q| =⇒ v ∈ set |bt-augment t q|
v ∈ set |q| =⇒ v ∈ set |bts-augment ts q|
〈proof 〉

lemma bt-augment-v-union:
set |bt-augment t (bt-augment r q)| =

set |bt-augment t q| ∪ set |bt-augment r q|
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set |bts-augment ts (bt-augment r q)| =
set |bts-augment ts q| ∪ set |bt-augment r q|

〈proof 〉

lemma bt-val-augment:
shows set (bt-dfs val t) ∪ set |q| = set |bt-augment t q|
and set (bts-dfs val ts) ∪ set |q| = set |bts-augment ts q|
〈proof 〉

lemma vals-pqueue:
set (vals xs) = set |pqueue xs|
〈proof 〉

lemma bt-augment-v-push:
set |bt-augment t (PQ.push v a q)| = set |bt-augment t q| ∪ {v}
set |bts-augment ts (PQ.push v a q)| = set |bts-augment ts q| ∪ {v}
〈proof 〉

lemma bt-augment-v-push-commute:
set |bt-augment t (PQ.push v a q)| = set |PQ.push v a (bt-augment t q)|
set |bts-augment ts (PQ.push v a q)| = set |PQ.push v a (bts-augment ts q)|
〈proof 〉

lemma bts-augment-v-union:
set |bt-augment t (bts-augment rs q)| =

set |bt-augment t q| ∪ set |bts-augment rs q|
set |bts-augment ts (bts-augment rs q)| =

set |bts-augment ts q| ∪ set |bts-augment rs q|
〈proof 〉

lemma bt-augment-v-commute:
set |bt-augment t (bt-augment r q)| = set |bt-augment r (bt-augment t q)|
set |bt-augment t (bts-augment rs q)| = set |bts-augment rs (bt-augment t q)|
set |bts-augment ts (bts-augment rs q)| =

set |bts-augment rs (bts-augment ts q)|
〈proof 〉

lemma bt-augment-v-merge:
set |bt-augment (merge t r) q| = set |bt-augment t (bt-augment r q)|
〈proof 〉

lemma vals-merge [simp]:
set (bt-dfs val (merge t r)) = set (bt-dfs val t) ∪ set (bt-dfs val r)
〈proof 〉
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lemma vals-merge-distinct:
distinct (bt-dfs val t) =⇒ distinct (bt-dfs val r) =⇒
set (bt-dfs val t) ∩ set (bt-dfs val r) = {} =⇒
distinct (bt-dfs val (merge t r))
〈proof 〉

lemma vals-add-Cons:
set (vals (add x xs)) = set (vals (x # xs))
〈proof 〉

lemma vals-add-distinct:
assumes distinct (vals xs)
and distinct (dfs val [x])
and set (vals xs) ∩ set (dfs val [x]) = {}
shows distinct (vals (add x xs))
〈proof 〉

lemma vals-insert [simp]:
set (vals (insert a v xs)) = set (vals xs) ∪ {v}
〈proof 〉

lemma insert-v-push:
set (vals (insert a v xs)) = set |PQ.push v a (pqueue xs)|
〈proof 〉

lemma vals-meld:
set (dfs val (meld xs ys)) = set (dfs val xs) ∪ set (dfs val ys)
〈proof 〉

lemma vals-meld-distinct:
distinct (dfs val xs) =⇒ distinct (dfs val ys) =⇒
set (dfs val xs) ∩ set (dfs val ys) = {} =⇒
distinct (dfs val (meld xs ys))

〈proof 〉

lemma bt-augment-alist-subset:
set (PQ.alist-of q) ⊆ set (PQ.alist-of (bt-augment t q))
set (PQ.alist-of q) ⊆ set (PQ.alist-of (bts-augment ts q))
〈proof 〉

lemma bt-augment-alist-in:
(v,a) ∈ set (PQ.alist-of q) =⇒ (v,a) ∈ set (PQ.alist-of (bt-augment t q))
(v,a) ∈ set (PQ.alist-of q) =⇒ (v,a) ∈ set (PQ.alist-of (bts-augment ts q))
〈proof 〉
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lemma bt-augment-alist-union:
distinct (bts-dfs val (r # [t])) =⇒
set (bts-dfs val (r # [t])) ∩ set |q| = {} =⇒
set (PQ.alist-of (bt-augment t (bt-augment r q))) =

set (PQ.alist-of (bt-augment t q)) ∪ set (PQ.alist-of (bt-augment r q))

distinct (bts-dfs val (r # ts)) =⇒
set (bts-dfs val (r # ts)) ∩ set |q| = {} =⇒
set (PQ.alist-of (bts-augment ts (bt-augment r q))) =

set (PQ.alist-of (bts-augment ts q)) ∪ set (PQ.alist-of (bt-augment r q))
〈proof 〉

lemma bt-alist-augment:
distinct (bt-dfs val t) =⇒
set (bt-dfs val t) ∩ set |q| = {} =⇒
set (bt-dfs alist t) ∪ set (PQ.alist-of q) = set (PQ.alist-of (bt-augment t q))

distinct (bts-dfs val ts) =⇒
set (bts-dfs val ts) ∩ set |q| = {} =⇒
set (bts-dfs alist ts) ∪ set (PQ.alist-of q) =

set (PQ.alist-of (bts-augment ts q))
〈proof 〉

lemma alist-pqueue:
distinct (vals xs) =⇒ set (dfs alist xs) = set (PQ.alist-of (pqueue xs))
〈proof 〉

lemma alist-pqueue-priority:
distinct (vals xs) =⇒ (v, a) ∈ set (dfs alist xs)
=⇒ PQ.priority (pqueue xs) v = Some a
〈proof 〉

lemma prios-pqueue:
distinct (vals xs) =⇒ set (prios xs) = set ‖pqueue xs‖
〈proof 〉

lemma alist-merge [simp]:
distinct (bt-dfs val t) =⇒ distinct (bt-dfs val r) =⇒
set (bt-dfs val t) ∩ set (bt-dfs val r) = {} =⇒
set (bt-dfs alist (merge t r)) = set (bt-dfs alist t) ∪ set (bt-dfs alist r)
〈proof 〉

lemma alist-add-Cons:
assumes distinct (vals (x#xs))
shows set (dfs alist (add x xs)) = set (dfs alist (x # xs))
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〈proof 〉

lemma alist-insert [simp]:
distinct (vals xs) =⇒
v /∈ set (vals xs) =⇒
set (dfs alist (insert a v xs)) = set (dfs alist xs) ∪ {(v,a)}
〈proof 〉

lemma insert-push:
distinct (vals xs) =⇒
v /∈ set (vals xs) =⇒
set (dfs alist (insert a v xs)) = set (PQ.alist-of (PQ.push v a (pqueue xs)))
〈proof 〉

lemma insert-p-push:
assumes distinct (vals xs)
and v /∈ set (vals xs)
shows set (prios (insert a v xs)) = set ‖PQ.push v a (pqueue xs)‖
〈proof 〉

lemma empty-empty:
normalized xs =⇒ xs = empty ←→ PQ.is-empty (pqueue xs)
〈proof 〉

lemma bt-dfs-Min-priority:
assumes is-heap t
shows priority t = Min (set (bt-dfs priority t))
〈proof 〉

lemma is-binqueue-min-Min-prios:
assumes is-binqueue l xs
and normalized xs
and xs 6= []
shows min xs = Some (Min (set (prios xs)))
〈proof 〉

lemma min-p-min:
assumes is-binqueue l xs
and xs 6= []
and normalized xs
and distinct (vals xs)
and distinct (prios xs)
shows min xs = PQ.priority (pqueue xs) (PQ.min (pqueue xs))
〈proof 〉
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lemma find-min-p-min:
assumes is-binqueue l xs
and xs 6= []
and normalized xs
and distinct (vals xs)
and distinct (prios xs)
shows priority (the (find-min xs)) =

the (PQ.priority (pqueue xs) (PQ.min (pqueue xs)))
〈proof 〉

lemma find-min-v-min:
assumes is-binqueue l xs
and xs 6= []
and normalized xs
and distinct (vals xs)
and distinct (prios xs)
shows val (the (find-min xs)) = PQ.min (pqueue xs)
〈proof 〉

lemma alist-normalize-idem:
dfs alist (normalize xs) = dfs alist xs
〈proof 〉

lemma dfs-match-not-in:
(∀ t. Some t ∈ set xs −→ priority t 6= a) =⇒

set (dfs f (map (match a) xs)) = set (dfs f xs)
〈proof 〉

lemma dfs-match-subset:
set (dfs f (map (match a) xs)) ⊆ set (dfs f xs)
〈proof 〉

lemma dfs-match-distinct:
distinct (dfs f xs) =⇒ distinct (dfs f (map (match a) xs))
〈proof 〉

lemma dfs-match:
distinct (prios xs) =⇒
distinct (dfs f xs) =⇒
Some t ∈ set xs =⇒
priority t = a =⇒
set (dfs f (map (match a) xs)) = set (dfs f xs) − set (bt-dfs f t)

〈proof 〉

lemma alist-meld:
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distinct (dfs val xs) =⇒ distinct (dfs val ys) =⇒
set (dfs val xs) ∩ set (dfs val ys) = {} =⇒
set (dfs alist (meld xs ys)) = set (dfs alist xs) ∪ set (dfs alist ys)

〈proof 〉

lemma alist-delete-min:
assumes distinct (vals xs)
and distinct (prios xs)
and find-min xs = Some (Node a v ts)
shows set (dfs alist (delete-min xs)) = set (dfs alist xs) − {(v, a)}
〈proof 〉

lemma alist-remove-min:
assumes is-binqueue l xs
and distinct (vals xs)
and distinct (prios xs)
and normalized xs
and xs 6= []
shows set (dfs alist (delete-min xs)) =
set (PQ.alist-of (PQ.remove-min (pqueue xs)))
〈proof 〉

no-notation
PQ.values (‹|(-)|›)
and PQ.priorities (‹‖(-)‖›)
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