Verification of Functional Binomial Queues

René Neumann

Technische Universitdt Miinchen, Institut fiir Informatik
http://www.in.tum.de/ neumannr/

Abstract. Priority queues are an important data structure and effi-
cient implementations of them are crucial. We implement a functional
variant of binomial queues in Isabelle/HOL and show its functional cor-
rectness. A verification against an abstract reference specification of pri-
ority queues has also been attempted, but could not be achieved to the
full extent.

1 Abstract priority queues

1.1 Generic Lemmas

lemma tl-set:
distinct ¢ = set (tl q) = set ¢ — {hd ¢}
(proof)

1.2 Type of abstract priority queues

typedef (overloaded) (‘a, 'b::linorder) pg =
{zs :: ("a x 'b) list. distinct (map fst xs) A sorted (map snd zs)}
morphisms alist-of Abs-pq

(proof)

lemma alist-of-Abs-pq:
assumes distinct (map fst xs)
and sorted (map snd xs)
shows alist-of (Abs-pq zs) = s
(proof)

lemma [code abstype]:
Abs-pq (alist-of ¢) = q
(proof)

lemma distinct-fst-alist-of [simp]:
distinct (map fst (alist-of q))
(proof)

lemma distinct-alist-of [simp]:
distinct (alist-of q)
(proof)

lemma sorted-snd-alist-of [simp):
sorted (map snd (alist-of q))
(proof)

lemma alist-of-eql:
alist-of p = alist-of g = p = ¢
(proof)

definition values :: (‘a, 'b::linorder) pg = 'a list (<|(-)]») where
values ¢ = map fst (alist-of q)

definition priorities :: (‘a, 'b::linorder) pq = 'b list (<||(-)||>) where
priorities ¢ = map snd (alist-of q)

lemma values-set:
set | q| = fst ‘ set (alist-of q)
(proof)

lemma priorities-set:
set |q|| = snd * set (alist-of q)
{(proof)

definition is-empty :: (‘a, 'b::linorder) pq = bool where
is-empty q <+— alist-of ¢ = |

definition priority :: (‘a, 'b:linorder) pqg = 'a = 'b option where
priority ¢ = map-of (alist-of q)

definition min :: (‘a, 'b::linorder) pg = 'a where
min q = fst (hd (alist-of q))

definition empty :: (‘a, 'b::linorder) pg where
empty = Abs-pq ||

lemma is-empty-alist-of [dest]:
is-empty ¢ = alist-of ¢ = ||
(proof)

lemma not-is-empty-alist-of [dest]:
- is-empty ¢ = alist-of ¢ # |]

(proof)

lemma alist-of-empty [simp, code abstract]:
alist-of empty = [|
(proof)

lemma values-empty [simp]:
|empty| = []
(proof)

lemma priorities-empty [simp]:
[empty|| = []
(proof)

lemma values-empty-nothing [simp):
VEk. k¢ set |empty|
(proof)

lemma is-empty-empty:
is-empty q <— q = empty

(proof)

lemma is-empty-empty-simp [simp):
1s-empty empty
(proof)

lemma map-snd-alist-of:
map (the o priority q) (values q) = map snd (alist-of q)
(proof)

lemma image-snd-alist-of:
the ¢ priority q ‘ set (values q) = snd set (alist-of q)
(proof)

lemma Min-snd-alist-of:

assumes — is-empty g

shows Min (snd * set (alist-of q)) = snd (hd (alist-of q))
(proof)

lemma priority-fst:
assumes zp € set (alist-of q)
shows priority q (fst zp) = Some (snd xp)
{proof)

lemma priority-Min:

assumes — is-empty g
shows priority q (min q) = Some (Min (the ‘ priority q set (values q)))
(proof)

lemma priority-Min-priorities:
assumes — is-empty q
shows priority g (min q) = Some (Min (set ||q|))
(proof)

definition push :: ‘a = 'b::linorder = (‘a, 'b) pg = ('a, 'b) pg where
push k p q = Abs-pq (if k ¢ set (values q)
then insort-key snd (k, p) (alist-of q)
else alist-of q)

lemma Min-snd-hd:
q # [| = sorted (map snd q) = Min (snd ‘ set q) = snd (hd q)
(proof)

lemma hd-construct:

assumes — is-empty g

shows hd (alist-of q) = (min q, the (priority q (min q)))
(proof)

lemma not-in-first-image:
x ¢ fst‘s= (z,p) ¢s
(proof)

lemma alist-of-push [simp, code abstract]:
alist-of (push kp q) =
(if k ¢ set (values q) then insort-key snd (k, p) (alist-of q) else alist-of q)
(proof)

lemma push-values [simp]:
set |push k p q| = set |q| U {k}
(proof)

lemma push-priorities [simp):
k ¢ set |q| = set |[push k p q|| = set ||q]| U {p}
k € set |q| = set |push k p q| = set ||q|
(proof)

lemma not-is-empty-push [simpl:
- is-empty (push k p q)
(proof)

lemma push-commute:
assumes a # b and v # w
shows push w b (push v a q) = push v a (push w b q)

(proof)

definition remove-min :: ('a, 'b::linorder) pg = ('a, 'b::linorder) pqg where
remove-min q = (if is-empty q then empty else Abs-pq (tl (alist-of q)))

lemma alift-of-remove-min-if [code abstract]:
alist-of (remove-min q) = (if is-empty q then [| else tl (alist-of q))
(proof)

lemma remove-min-empty [simp]:
1s-empty ¢ == remove-min q = empty
(proof)

lemma alist-of-remove-min [simp]:
- is-empty ¢ = alist-of (remove-min q) = tl (alist-of q)
(proof)

lemma values-remove-min [simp):
- is-empty ¢ = values (remove-min q) = tl (values q)

(proof)

lemma set-alist-of-remove-min:
- is-empty ¢ = set (alist-of (remove-min q)) =
set (alist-of q¢) — {(min g, the (priority q¢ (min q)))}
(proof)

definition pop :: (‘a, ‘b::linorder) pq = ('a x ('a, 'b) pq) option where
pop q = (if is-empty q then None else Some (min q, remove-min q))

lemma pop-simps [simp]:
is-empty ¢ = pop q = None
- is-empty ¢ => pop q = Some (min q, remove-min q)
(proof)

hide-const (open) Abs-pq alist-of values priority empty is-empty push min pop
no-notation

PQ.values (<|(-)]>)
and PQ.priorities (<||(-)|]»)

2 Functional Binomial Queues

2.1 Type definition and projections

datatype (‘a, 'b) bintree = Node 'a 'b ('a, 'b) bintree list

primrec priority :: (‘a, 'b) bintree = 'a where
priority (Node a - -) = a

primrec val :: (‘a, 'b) bintree = 'b where
val (Node - v -) = v

primrec children :: ('a, 'b) bintree = ('a, 'b) bintree list where
children (Node - - ts) = ts

type-synonym (‘a, 'b) binqueue = ('a, 'b) bintree option list

lemma binqueue-induct [case-names Empty None Some, induct type: binqueue]:
assumes P [|
and Azs. P xs = P (None # xs)
and Az zs. P xs = P (Some © # xs)
shows P xs

(proof)

Terminology:

— values v, w or vl, v2

— priorities a, b or al, a2

— bintrees ¢, r or t1, t2

— bintree lists ts, rs or tsl, ts2

— binqueue element z, y or z1, z2

— binqueues = binqueue element lists zs, ys or xsl, xs2
— abstract priority queues ¢, p or ¢ql, ¢2

2.2 Binomial queue properties

Binomial tree property

inductive is-bintree-list :: nat = (‘a, 'b) bintree list = bool where
is-bintree-list-Nil [simp]: is-bintree-list 0 []
| is-bintree-list-Cons: is-bintree-list | ts = is-bintree-list | (children t)
= is-bintree-list (Suc 1) (t # ts)

abbreviation (input) is-bintree k t = is-bintree-list k (children t)

lemma is-bintree-list-triv [simp]:
is-bintree-list 0 ts «— ts =[]
is-bintree-list | [| «— 1 =0
(proof)

lemma is-bintree-list-simp [simp):
is-bintree-list (Suc 1) (t # ts) +—
is-bintree-list | (children t) A is-bintree-list | ts
(proof)

lemma is-bintree-list-length [simp]:
is-bintree-list | ts = length ts = |

(proof)

lemma is-bintree-list-children-last:
assumes is-bintree-list | ts and ts # ||
shows children (last ts) = ||

(proof)

lemma is-bintree-children-length-desc:
assumes is-bintree-list | ts
shows map (length o children) ts = rev [0..<l]

(proof)

Heap property

inductive is-heap-list :: 'a::linorder = ('a, 'b) bintree list = bool where
is-heap-list-Nil: is-heap-list h ||
| is-heap-list-Cons: is-heap-list h ts = is-heap-list (priority t) (children t)
= (priority t) > h = is-heap-list h (t # ts)

abbreviation (input) is-heap t = is-heap-list (priority t) (children t)

lemma is-heap-list-simps [simp]:
is-heap-list h [«+— True
is-heap-list h (t # ts) <—
is-heap-list h ts A is-heap-list (priority t) (children t) A priority t > h
(proof)

lemma is-heap-list-append-dest [dest):
is-heap-list | (tsQrs) = is-heap-list | ts
is-heap-list | (tsQrs) = is-heap-list | rs
(proof)

lemma is-heap-list-rev:

is-heap-list | ts = is-heap-list | (rev ts)

(proof)

lemma is-heap-children-larger:
is-heap t =V x € set (children t). priority x > priority t

(proof)

lemma is-heap-Min-children-larger:
is-heap t = children t # [| =
priority t < Min (priority ¢ set (children t))
(proof)

Combination of both: binqueue property

inductive is-binqueuve :: nat = (‘a::linorder, 'b) binqueue = bool where
Empty: is-binqueue [||
| None: is-binqueue (Suc l) xs = is-binqueue | (None # xs)
| Some: is-binqueue (Suc 1) xs = is-bintree | ¢
= is-heap t = is-binqueue | (Some t # xs)

lemma is-binqueue-simp [simp]:
is-binqueuve [[| +— True
is-binqueue | (Some t # 1s) «—
is-bintree 1 t A is-heap t A is-binqueue (Suc l) zs
is-binqueue | (None # xs) <— is-binqueue (Suc 1) xs
(proof)

lemma is-binqueue-trans:
is-binqueuve | (z#txs) = is-binqueue (Suc l) zs

(proof)

lemma is-binqueue-head:
is-binqueuve | (x#xs) = is-binqueue | [z]

(proof)

lemma is-binqueue-append:
is-binqueue | xs = is-binqueue (length zs + 1) ys = is-binqueue [(zs @Q ys)

(proof)

lemma is-binqueue-append-dest [dest):
is-binqueue | (zs Q ys) = is-binqueue | xs
(proof)

lemma is-binqueue-children:
assumes is-bintree-list | ts

and is-heap-list t ts
shows is-bingueue 0 (map Some (rev ts))
(proof)

lemma is-binqueue-select:
is-binqueue | s => Some t € set s => k. is-bintree k t N is-heap t
(proof)

Normalized representation

inductive normalized :: (‘a, 'b) binqueue = bool where
normalized-Nil: normalized ||
| normalized-single: normalized [Some t
| normalized-append: xs # [| = normalized ts = normalized (ys Q xs)

lemma normalized-last-not-None:
— sometimes the inductive definition might work better
normalized xs +— xs = [| V last s # None

(proof)

lemma normalized-simps [simp):
normalized [| +— True
normalized (Some t # xs) <— normalized xs
normalized (None # xs) «— xzs # [| A normalized xs

(proof)

lemma normalized-map-Some [simp]:
normalized (map Some xs)

(proof)

lemma normalized-Cons:
normalized (z#1s) = normalized xs
(proof)

lemma normalized-append:
normalized xs = normalized ys = normalized (zsQys)

(proof)

lemma normalized-not-None:
normalized xs = set xs # {None}

(proof)

primrec normalize’ :: (‘a, 'b) binqueue = ('a, 'b) binqueue where
normalize’ [| = []
| normalize’ (z # xs) =

(case x of None = normalize’ xs | Some t = (z # xs))

definition normalize :: (‘a, 'b) binqueue = ('a, 'b) binqueue where
normalize s = rev (normalize’ (rev xs))

lemma normalized-normalize:
normalized (normalize xs)

(proof)

lemma is-binqueue-normalize:
is-binqueue | s = is-binqueue | (normalize s)

(proof)

2.3 Operations
Adding data

definition merge :: (‘a::linorder, 'b) bintree = ('a, 'b) bintree = ('a, 'b) bintree
where
merge t1 t2 = (if priority t1 < priority t2
then Node (priority t1) (val t1) (t2 # children t1)
else Node (priority t2) (val t2) (t1 # children t2))

lemma is-bintree-list-merge:
assumes is-bintree | t1 is-bintree [2
shows is-bintree (Suc l) (merge t1 t2)

(proof)

lemma is-heap-merge:
assumes is-heap t1 is-heap t2
shows is-heap (merge t1 t2)

(proof)

fun
add :: (a::linorder, 'b) bintree option = ('a, 'b) binqueue = ('a, 'b) binqueue
where
add None zs = xs
| add (Some t) [] = [Some]
| add (Some t) (None # xs) = Some t # xs
| add (Some t) (Some r # xs) = None # add (Some (merge t r)) xs

lemma add-Some-not-Nil [simp]:

add (Some t) zs # ||
(proof)

lemma normalized-add:

10

assumes normalized xs
shows normalized (add x xs)

(proof)

lemma is-binqueue-add-None:
assumes is-binqueue | s
shows is-binqueue | (add None zs)

(proof)

lemma is-binqueue-add-Some:
assumes is-binqueue [s
and is-bintree [t
and is-heap t
shows is-binqueue [(add (Some t) xs)

(proof)

function
meld :: ('a::linorder, 'b) binqueue = ('a, 'b) binqueue = ('a, 'b) binqueue
where
meld || ys = ys
meld zs [| = xs
meld (None # xs) (y # ys) = y # meld s ys
meld (z # xs) (None # ys) = x # meld zs ys
meld (Some t # zs) (Some r # ys) =
None # add (Some (merge t r)) (meld xs ys)
(proof) termination (proof)

lemma meld-singleton-add [simp]:
meld [Some t] s = add (Some t) xs

(proof)

lemma nonempty-meld [simp]:
xs # || = meld zs ys # |]
ys # [| = meld zs ys # |]
(proof)

lemma nonempty-meld-commute:
meld zs ys # [| = meld zs ys # |]
(proof)

lemma is-binqueue-meld:
assumes is-binqueue [s
and is-binqueue [ys
shows is-binqueue | (meld zs ys)

(proof)

11

lemma normalized-meld:
assumes normalized s
and normalized ys
shows normalized (meld xs ys)

(proof)

lemma normalized-meld-weak:
assumes normalized xs
and length ys < length xs
shows normalized (meld s ys)

(proof)

definition least :: 'a::linorder option = 'a option = 'a option where
least x y = (case x of
None = vy
| Some x’ = (case y of
None = x
| Some y' = if 2/ < y’ then z else y))

lemma least-simps [simp, code]:
least None z = x
least x None = x
least (Some z') (Some y’) = (if ' < y' then Some z' else Some y')
(proof)

lemma least-split:
assumes least x y = Some z
shows z = Some z V y = Some z

(proof)
interpretation least: semilattice least (proof)

definition min :: (‘a::linorder, 'b) binqueue = 'a option where
min zs = fold least (map (map-option priority) zs) None

lemma min-simps [simp):
min [| = None
min (None # xs) = min xs
min (Some t # xs) = least (Some (priority t)) (min xs)
(proof)

lemma [code]:

min zs = fold (X z. least (map-option priority z)) zs None

(proof)

12

lemma min-single:
min [x] = Some a = priority (the z) = a
min [z] = None = z = None

(proof)

lemma min-Some-not-None:
min (Some t # xs) # None

(proof)

lemma min-None-trans:
assumes min (z#xs) = None
shows min zs = None

(proof)
lemma min-None-None:

min xs = None <— zs = [| V set xs = {None}
{proof)

lemma normalized-min-not-None:
normalized xs = s # [| = min zs # None

(proof)

lemma min-is-min:
assumes normalized xs
and zs # ||
and min zs = Some a
shows Vi € set zs. x = None V a < priority (the)

(proof)

lemma min-exists:
assumes min s = Some a
shows Some a € map-option priority ¢ set xs

(proof)

primrec find :: ‘a::linorder = (‘a, 'b) binqueue = ('a, 'b) bintree option where
find a [| = None
| find a (z#xs) = (case x of None = find a xs
| Some t = if priority t = a then Some t else find a s)

declare find.simps [simp del]
lemma find-simps [simp, code]:

find a [| = None
find a (None # zs) = find a xs

13

find a (Some t # xs) = (if priority t = a then Some t else find a xs)
(proof)

lemma find-works:
assumes Some a € set (map (map-option priority) xs)
shows Jt. find a s = Some t A priority t = a

(proof)

lemma find-works-not-None:
Some a € set (map (map-option priority) xs) = find a xs # None

(proof)

lemma find-None:
find a zs = None = Some a ¢ set (map (map-option priority) xs)
(proof)

lemma find-exist:
find a xs = Some t = Some t € set xs

(proof)

definition find-min :: (‘a::linorder, 'b) binqueue = ('a, 'b) bintree option where
find-min xs = (case min zs of None = None | Some a = find a zs)

lemma find-min-simps [simp]:

find-min [| = None
find-min (None # xs) = find-min xs
(proof)

lemma find-min-single:
find-min [z] = z
(proof)

lemma min-eq-find-min-None:
min xs = None <— find-min xs = None
(proof)

lemma min-eq-find-min-Some:
min zs = Some a +— (3 t. find-min xs = Some t A priority t = a)
(proof)

lemma find-min-exist:
assumes find-min xs = Some t
shows Some t € set xs

(proof)

14

lemma find-min-is-min:
assumes normalized xs
and zs # []
and find-min s = Some t
shows Vz € set zs. x = None V (priority t) < priority (the z)

(proof)

lemma normalized-find-min-exists:
normalized xs = xs # [| = 3 t. find-min zs = Some t

{proof)

primrec

match :: 'a::linorder = (‘a, 'b) bintree option = ('a, 'b) bintree option
where

match a None = None
| match a (Some t) = (if priority t = a then None else Some t)

definition delete-min :: (‘a::linorder, 'b) binqueue = (’a, 'b) binqueue where
delete-min xs = (case find-min xs
of Some (Node a v ts) =
normalize (meld (map Some (rev ts)) (map (match a) xs))
| None = [])

lemma delete-min-empty [simp]:
delete-min [| = |]
(proof)

lemma delete-min-nonempty [simp]:
normalized xs = xs # [| = find-min xs = Some t
= delete-min zs = normalize
(meld (map Some (rev (children t))) (map (match (priority t)) xs))

(proof)

lemma is-binqueue-delete-min:
assumes is-binqueue 0 zs
shows is-binqueue 0 (delete-min xs)

(proof)

lemma normalized-delete-min:
normalized (delete-min xs)

(proof)

Dedicated grand unified operation for generated program

definition

15

meld’ :: ('a, 'b) bintree option = ('a::linorder, 'b) binqueue
= ('a, 'b) binqueue = ('a, 'b) binqueue
where
meld’ z zs ys = add z (meld xs ys)

lemma [code]:
add z zs = meld’ z [] xs
meld zs ys = meld’ None xs ys

(proof)

lemma [code]:
meld’ z (Some t # xzs) (Some r # ys) =
z # (meld’ (Some (merge t) xs ys)
meld’ (Some t) (Some r # xs) (None # ys) =
None # (meld’ (Some (merge t r)) xs ys)
meld’ (Some t) (None # xs) (Some r # ys) =
None # (meld’ (Some (merge t r)) zs ys)
meld’ None (x # xs) (None # ys) = x # (meld’ None xs ys)
meld’ None (None # xs) (y # ys) = y # (meld’ None s ys)
meld’ z (None # xs) (None # ys) = z # (meld’ None s ys)
meld’ z zs [| = meld’ z || zs
meld’ z || (y # ys) = meld’ None [z] (y # ys)
meld’ (Some t) [| ys = meld’ None [Some t] ys
meld’ None [] ys = ys
(proof)

Interface operations

abbreviation (input) empty :: (‘a,’d) binqueue where
empty = ||

definition

insert :: 'a:linorder = 'b = (‘a, 'b) binqueue = (‘a, 'b) binqueue
where

insert a v zs = add (Some (Node a v [])) zs

lemma insert-simps [simpl:
insert a v [| = [Some (Node a v [])]
insert a v (None # xs) = Some (Node a v []) # xs
insert a v (Some t # xs) = None # add (Some (merge (Node a v []) t)) xs

(proof)

lemma is-binqueue-insert:
is-binqueue 0 s = is-binqueue 0 (insert a v xs)

(proof)

16

lemma normalized-insert:
normalized xs = normalized (insert a v xs)

(proof)

definition
pop :: ('a:linorder, 'b) binqueue = (('b X 'a) option x ('a, 'b) binqueue)
where
pop xs = (case find-min zs of
None = (None, zs)
| Some t = (Some (val t, priority t), delete-min xs))

lemma pop-empty [simp]:
pop empty = (None, empty)
(proof)

lemma pop-nonempty [simp]:
normalized xs = xs # [| = find-min xs = Some t
= pop xs = (Some (val t, priority t), normalize
(meld (map Some (rev (children t))) (map (match (priority t)) zs)))
(proof)

lemma pop-code [code]:
pop xs = (case find-min zs of
None = (None, xs)
| Some t = (Some (val t, priority t), normalize
(meld (map Some (rev (children t))) (map (match (priority t)) xs))))

(proof)

3 Relating Functional Binomial Queues To The Abstract
Priority Queues

notation
PQ.values (<|(-)]>)
and PQ.priorities (<||(-)]]»)

Naming convention: prefix bt- for bintrees, bts- for bintree lists, no prefix for
binqueues.

primrec bt-dfs :: ((‘a::linorder, 'b) bintree = 'c) = ('a, 'b) bintree = 'c list
and bts-dfs :: (('a::linorder, 'b) bintree = ‘c) = ('a, 'b) bintree list = 'c list
where
bt-dfs f (Node a v ts) = f (Node a v ts) # bts-dfs f ts
| bts-dfs f [] =]

17

| bts-dfs f (t # ts) = bt-dfs ft Q bts-dfs f ts

lemma bt-dfs-simp:
bt-dfs ft = ft # bts-dfs f (children t)
(proof)

lemma bts-dfs-append [simp]:
bts-dfs f (ts @Q rs) = bts-dfs f ts @ bis-dfs f rs
(proof)

lemma set-bts-dfs-rev:
set (bts-dfs [(rev ts)) = set (bts-dfs f ts)
(proof)

lemma bts-dfs-rev-distinct:
distinct (bts-dfs f ts) = distinct (bts-dfs f (rev ts))
(proof)

lemma bt-dfs-comp:

bt-dfs (f o g) t = map f (bt-dfs g t)
bts-dfs (f o g) ts = map f (bts-dfs g ts)

(proof)

lemma bt-dfs-comp-distinct:
distinct (bt-dfs (f o g) t) = distinct (bt-dfs g t)
distinct (bts-dfs (f o g) ts) = distinct (bts-dfs g ts)
(proof)

lemma bi-dfs-distinct-children:
distinct (bt-dfs f x) = distinct (bts-dfs f (children z))
(proof)

fun dfs :: ((‘a::linorder, 'b) bintree = 'c¢) = ('a, 'b) binqueue = 'c list where

dfs [[| =[]
| dfs f (None # xzs) = dfs f s
| dfs f (Some t # xzs) = bi-dfs ft Q dfs f xs

lemma dfs-append:
dfs f (zs @ ys) = (dfs fxs) @ (dfs f ys)
(proof)

lemma set-dfs-rev:

set (dfs f (rev xs)) = set (dfs f xs)
(proof)

18

lemma set-dfs-Cons:
set (dfs f (z # xs)) = set (dfs fxs) U set (dfs f [z])
{proof)

lemma dfs-comp:
dfs (f o g) s = map f (dfs g xs)
(proof)

lemma dfs-comp-distinct:
distinct (dfs (f o g) xs) = distinct (dfs g xs)
(proof)

lemma dfs-distinct-member:
distinct (dfs f xs) =
Some = € set 1s =
distinct (bt-dfs f x)
(proof)

lemma dfs-map-Some-idem:
dfs f (map Some xs) = bts-dfs f xs
(proof)

primrec alist :: (‘a, 'b) bintree = ('b x 'a) where
alist (Node a v -) = (v, a)

lemma alist-split-pre:
val t = (fst o alist) t
priority t = (snd o alist) t
(proof)

lemma alist-split:
val = fst o alist
priority = snd o alist

(proof)

lemma alist-split-set:
set (dfs val zs) = fst set (dfs alist xs)
set (dfs priority xs) = snd ‘ set (dfs alist xs)
(proof)

lemma in-set-in-alist:

assumes Some t € set xs

shows (val ¢, priority t) € set (dfs alist xs)
(proof)

19

abbreviation vals where vals = dfs val
abbreviation prios where prios = dfs priority
abbreviation elements where elements = dfs alist

primrec

bt-augment :: (‘a::linorder, 'b) bintree = ('b, 'a) PQ.pq = ('b, 'a) PQ.pq
and

bts-augment :: (‘a::linorder, 'b) bintree list = ('b, 'a) PQ.pq = ('b, 'a) PQ.pq
where

bt-augment (Node a v ts) ¢ = PQ.push v a (bts-augment ts q)
| bts-augment [] ¢ = ¢
| bts-augment (t # ts) q = bts-augment ts (bt-augment t q)

lemma bts-augment [simp]:
bts-augment = fold bt-augment

(proof)

lemma bt-augment-Node [simp):
bt-augment (Node a v ts) ¢ = PQ.push v a (fold bt-augment ts q)

(proof)

lemma bt-augment-simp:
bt-augment t ¢ = PQ.push (val t) (priority t) (fold bt-augment (children t) q)
(proof)

declare bt-augment.simps [simp del] bts-augment.simps [simp del]

fun pqueue :: ('a::linorder, 'b) binqueue = ('b, 'a) PQ.pqg where
Empty: pqueue [| = PQ.empty

| None: pqueue (None # xs) = pqueue xs

| Some: pqueue (Some t # xs) = bt-augment t (pqueue xs)

lemma bt-augment-v-subset:
set |q| C set | bt-augment t q|
set |q| C set | bts-augment ts ¢
(proof)

lemma bt-augment-v-in:
v € set |q] = v € set |bt-augment t q|
v € set |q] = v € set |bts-augment ts q|

(proof)
lemma bt-augment-v-union:

set | bt-augment t (bt-augment r q)| =
set | bt-augment t q| U set | bt-augment r q|

20

set | bts-augment ts (bt-augment r q)| =
set | bts-augment ts q| U set | bt-augment r q|

(proof)

lemma bt-val-augment:
shows set (bt-dfs val t) U set |gq| = set | bt-augment t ¢
and set (bts-dfs val ts) U set | q| = set |bts-augment ts q|

(proof)

lemma vals-pqueue:
set (vals xs) = set | pqueue xs|

(proof)

lemma bt-augment-v-push:
set | bt-augment t (PQ.push v a q)| = set |bt-augment t q| U {v}
set | bts-augment ts (PQ.push v a q)| = set | bts-augment ts q| U {v}
(proof)

lemma bt-augment-v-push-commute:
set | bt-augment ¢t (PQ.push v a q)| = set | PQ.push v a (bt-augment t q)|
set | bts-augment ts (PQ.push v a q)| = set | PQ.push v a (bts-augment ts q)|
(proof)

lemma bts-augment-v-union:
set | bt-augment t (bts-augment s q)| =
set | bt-augment t q| U set | bts-augment rs q|
set | bts-augment ts (bts-augment rs q)| =
set |bts-augment ts q| U set | bts-augment rs ¢

(proof)

lemma bt-augment-v-commute:
set | bt-augment t (bt-augment r q)| = set | bt-augment r (bt-augment t q)|
set | bt-augment t (bts-augment rs q)| = set | bts-augment rs (bt-augment t q)|
set | bts-augment ts (bts-augment rs q)| =
set | bts-augment rs (bts-augment ts q)

(proof)

lemma bt-augment-v-merge:
set |bt-augment (merge t r) q| = set | bt-augment t (bt-augment r q)]

(proof)
lemma vals-merge [simp]:

set (bt-dfs val (merge t r)) = set (bt-dfs val t) U set (bt-dfs val r)
(proof)

21

lemma vals-merge-distinct:
distinct (bt-dfs val t) = distinct (bt-dfs val r) =
set (bt-dfs val t) N set (bt-dfs val r) = {} =
distinct (bt-dfs val (merge t 1))
(proof)

lemma vals-add-Cons:
set (vals (add x xs)) = set (vals (z # xs))

(proof)

lemma vals-add-distinct:
assumes distinct (vals xs)
and distinct (dfs val [z])
and set (vals zs) N set (dfs val [z]) = {}
shows distinct (vals (add z xs))

(proof)

lemma wvals-insert [simp]:
set (vals (insert a v xs)) = set (vals xzs) U {v}

(proof)

lemma insert-v-push:
set (vals (insert a v xs)) = set | PQ.push v a (pqueue xs)|
(proof)

lemma vals-meld:
set (dfs val (meld xs ys)) = set (dfs val xs) U set (dfs val ys)
(proof)

lemma vals-meld-distinct:
distinct (dfs val zs) = distinct (dfs val ys) =
set (dfs val zs) N set (dfs val ys) = {} =
distinct (dfs val (meld xs ys))

(proof)

lemma bt-augment-alist-subset:
set (PQ.alist-of q) C set (PQ.alist-of (bt-augment t q))
set (PQ.alist-of q) C set (PQ.alist-of (bts-augment ts q))
(proof)

lemma bt-augment-alist-in:
(v,a) € set (PQ.alist-of q) = (v,a) € set (PQ.alist-of (bt-augment t q))
(v,a) € set (PQ.alist-of q) = (v,a) € set (PQ.alist-of (bts-augment ts q))
(proof)

22

lemma bt-augment-alist-union:
distinct (bts-dfs val (r # [t])) =
set (bts-dfs val (r # [t])) N set |q| = {} =
set (PQ.alist-of (bt-augment t (bt-augment r q))) =
set (PQ.alist-of (bt-augment t q)) U set (PQ.alist-of (bt-augment r q))

distinct (bts-dfs val (r # ts)) =
set (bts-dfs val (r # ts)) N set |q| = {} =
set (PQ.alist-of (bts-augment ts (bt-augment r q))) =
set (PQ.alist-of (bts-augment ts q)) U set (PQ.alist-of (bt-augment r q))

(proof)

lemma bi-alist-augment:
distinct (bt-dfs val t) =
set (bt-dfs val t) N set |q] = {} =
set (bt-dfs alist t) U set (PQ.alist-of q) = set (PQ.alist-of (bt-augment t q))

distinct (bts-dfs val ts) =
set (bts-dfs val ts) N set |q| = {} =
set (bts-dfs alist ts) U set (PQ.alist-of q) =
set (PQ.alist-of (bts-augment ts q))
(proof)

lemma alist-pqueue:
distinct (vals xs) == set (dfs alist xs) = set (PQ.alist-of (pqueue xs))

(proof)

lemma alist-pqueue-priority:
distinct (vals zs) = (v, a) € set (dfs alist zs)
= PQ.priority (pqueue xs) v = Some a
(proof)

lemma prios-pqueue:
distinct (vals zs) = set (prios zs) = set ||pqueue zs||

(proof)

lemma alist-merge [simp]:
distinct (bt-dfs val t) = distinct (bt-dfs val r) =
set (bt-dfs val t) N set (bt-dfs val r) = {} =
set (bt-dfs alist (merge t 1)) = set (bt-dfs alist t) U set (bi-dfs alist r)
(proof)
lemma alist-add-Cons:

assumes distinct (vals (z#ts))
shows set (dfs alist (add x xzs)) = set (dfs alist (x # xs))

23

(proof)

lemma alist-insert [simp]:
distinct (vals zs) =
v ¢ set (vals 1s) =
set (dfs alist (insert a v xs)) = set (dfs alist xs) U {(v,a)}
(proof)

lemma insert-push:
distinct (vals zs) =
v ¢ set (vals 1s) =
set (dfs alist (insert a v zs)) = set (PQ.alist-of (PQ.push v a (pqueuve xs)))
(proof)

lemma insert-p-push:
assumes distinct (vals xs)
and v ¢ set (vals xs)
shows set (prios (insert a v xs)) = set | PQ.push v a (pqueue xs)l|

(proof)

lemma empty-empty:
normalized xs = s = empty <— PQ.is-empty (pqueuve xs)

(proof)

lemma bt-dfs-Min-priority:

assumes is-heap t

shows priority t = Min (set (bt-dfs priority t))
(proof)

lemma is-binqueue-min-Min-prios:
assumes is-binqueue | xs
and normalized zs
and zs # |]

shows min xs = Some (Min (set (prios zs)))
(proof)

lemma min-p-min:

assumes is-binqueue [s

and zs # |]

and normalized xs

and distinct (vals xs)

and distinct (prios zs)

shows min xs = PQ.priority (pqueue xs) (PQ.min (pqueue xs))
(proof)

24

lemma find-min-p-min:

assumes is-binqueue [xs

and zs # []

and normalized zs

and distinct (vals zs)

and distinct (prios xs)

shows priority (the (find-min xs)) =

the (PQ.priority (pqueue zs) (PQ.min (pqueue xs)))

(proof)

lemma find-min-v-min:
assumes is-binqueue [s
and zs # []
and normalized xs
and distinct (vals s)
and distinct (prios xs)
shows wval (the (find-min zs)) = PQ.min (pqueue zs)

(proof)

lemma alist-normalize-idem:
dfs alist (normalize xs) = dfs alist xs

(proof)

lemma dfs-match-not-in:
(V t. Some t € set s — priority t # a) =
set (dfs f (map (match a) zs)) = set (dfs f xs)
(proof)

lemma dfs-match-subset:
set (dfs f (map (match a) xs)) C set (dfs f xs)
(proof)

lemma dfs-match-distinct:
distinct (dfs f xs) = distinct (dfs f (map (match a) xs))
(proof)

lemma dfs-match:

distinct (prios xs) =

distinct (dfs f zs) =

Some t € set xs =

priority t = a =

set (dfs f (map (match a) zs)) = set (dfs f xs) — set (bt-dfs f t)
(proof)

lemma alist-meld:

25

distinct (dfs val zs) = distinct (dfs val ys) =

set (dfs val zs) N set (dfs val ys) = {} =

set (dfs alist (meld zs ys)) = set (dfs alist xs) U set (dfs alist ys)
{proof)

lemma alist-delete-min:
assumes distinct (vals xs)
and distinct (prios xs)
and find-min xs = Some (Node a v ts)
shows set (dfs alist (delete-min xs)) = set (dfs alist zs) — {(v, a)}

(proof)

lemma alist-remove-min:
assumes is-binqueue [xs
and distinct (vals s)
and distinct (prios xs)
and normalized xs
and zs # []
shows set (dfs alist (delete-min zs)) =
set (PQ.alist-of (PQ.remove-min (pqueuve zs)))

(proof)

no-notation
PQ.values (<|(-)]»)
and PQ.priorities (<||(-)]]»)

26

