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Abstract. Priority queues are an important data structure and effi-
cient implementations of them are crucial. We implement a functional
variant of binomial queues in Isabelle/HOL and show its functional cor-
rectness. A verification against an abstract reference specification of pri-
ority queues has also been attempted, but could not be achieved to the
full extent.

1 Abstract priority queues

1.1 Generic Lemmas

lemma #l-set:
distinct ¢ = set (tl q) = set ¢ — {hd ¢}
by (cases q) simp-all

1.2 Type of abstract priority queues

typedef (overloaded) (‘a, 'b::linorder) pg =
{zs :: ("a x 'b) list. distinct (map fst xs) A sorted (map snd zs)}
morphisms alist-of Abs-pq
proof —
have [ € ?pq by simp
then show ?thesis by blast
qed

lemma alist-of-Abs-pq:
assumes distinct (map fst zs)
and sorted (map snd zs)
shows alist-of (Abs-pq zs) = xs
by (rule Abs-pg-inverse) (simp add: assms)

lemma [code abstype]:

Abs-pq (alist-of q) = q
by (fact alist-of-inverse)



lemma distinct-fst-alist-of [simp]:
distinct (map fst (alist-of q))
using alist-of [of ¢] by simp

lemma distinct-alist-of [simp]:
distinct (alist-of q)
using distinct-fst-alist-of [of q] by (simp add: distinct-map)

lemma sorted-snd-alist-of [simp):
sorted (map snd (alist-of q))
using alist-of [of q] by simp

lemma alist-of-eql:
alist-of p = alist-of ¢ = p = ¢
proof —
assume alist-of p = alist-of q
then have Abs-pq (alist-of p) = Abs-pq (alist-of q) by simp
thus p = ¢ by (simp add: alist-of-inverse)
qed

definition values :: (‘a, 'b::linorder) pg = 'a list (<|(-)]>) where
values ¢ = map fst (alist-of q)

definition priorities :: (‘a, 'b::linorder) pq = 'b list (<||(-)||>) where
priorities ¢ = map snd (alist-of q)

lemma values-set:
set | q| = fst ¢ set (alist-of q)
by (simp add: values-def)

lemma priorities-set:
set ||g|l = snd ¢ set (alist-of q)
by (simp add: priorities-def)

definition is-empty :: (‘a, 'b::linorder) pq = bool where
is-empty q +— alist-of ¢ = |]

definition priority :: (‘a, 'b::linorder) pg = 'a = 'b option where
priority ¢ = map-of (alist-of q)

definition min :: (‘a, 'b:linorder) pg = ’'a where
min q¢ = fst (hd (alist-of q))

definition empty :: (‘a, 'b::linorder) pq where
empty = Abs-pq |]



lemma is-empty-alist-of [dest]:
is-empty ¢ = alist-of ¢ = []
by (simp add: is-empty-def)

lemma not-is-empty-alist-of [dest]:
- is-empty ¢ = alist-of q # |]
by (simp add: is-empty-def)

lemma alist-of-empty [simp, code abstract]:
alist-of empty = []
by (simp add: empty-def Abs-pg-inverse)

lemma values-empty [simp]:

| empty| = ]
by (simp add: values-def)

lemma priorities-empty [simp]:

lempty|| = ]
by (simp add: priorities-def)

lemma values-empty-nothing [simp):
Vk. k¢ set|emptyl
by (simp add: values-def)

lemma is-empty-empty:

is-empty q <— q = empty
proof (rule iffI)

assume is-empty q

then have alist-of ¢ = [] by (simp add: is-empty-alist-of)

then have Abs-pq (alist-of q) = Abs-pq [| by simp

then show ¢ = empty by (simp add: empty-def alist-of-inverse)
qed (simp add: is-empty-def)

lemma is-empty-empty-simp [simp):
is-empty empty
by (simp add: is-empty-empty)

lemma map-snd-alist-of:
map (the o priority q) (values q) = map snd (alist-of q)
by (auto simp add: values-def priority-def)

lemma image-snd-alist-of:
the ‘ priority q  set (values q) = snd * set (alist-of q)
proof —



from map-snd-alist-of [of q]
have set (map (the o priority q) (values q)) = set (map snd (alist-of q))
by (simp only:)
then show %thesis by (simp add: image-comp)
qed

lemma Min-snd-alist-of:
assumes — is-empty q
shows Min (snd ‘ set (alist-of q)) = snd (hd (alist-of q))
proof —
from assms obtain ps p where ¢: map snd (alist-of q) = p # ps
by (cases map snd (alist-of q)) auto
then have hd (map snd (alist-of q)) = p by simp
with assms have p: snd (hd (alist-of q)) = p by (auto simp add: hd-map)
have sorted (map snd (alist-of q)) by simp
with ¢ have sorted (p # ps) by simp
then have V p'eset ps. p’ > p by (simp)
then have Min (set (p # ps)) = p by (auto intro: Min-eql)
with p ¢ have Min (set (map snd (alist-of q))) = snd (hd (alist-of q))
by simp
then show ?thesis by simp
qged

lemma priority-fst:
assumes zp € set (alist-of q)
shows priority q (fst zp) = Some (snd xp)
using assms by (simp add: priority-def)

lemma priority-Min:
assumes — is-empty q
shows priority q¢ (min q) = Some (Min (the ‘ priority q * set (values q)))
using assms
by (auto simp add: min-def image-snd-alist-of Min-snd-alist-of priority-fst)

lemma priority-Min-priorities:
assumes — is-empty q
shows priority q¢ (min q¢) = Some (Min (set ||q||))
using assms
by (simp add: priority-Min image-snd-alist-of priorities-def)

definition push :: ‘a = ’b::linorder = (‘a, 'b) pq = ('a, 'b) pg where
push k p q = Abs-pq (if k ¢ set (values q)
then insort-key snd (k, p) (alist-of q)
else alist-of q)



lemma Min-snd-hd:

q # [| = sorted (map snd q) = Min (snd ‘ set q) = snd (hd q)
proof (induct q)

case (Cons z zs) then show Zcase by (cases xs) (auto simp add: ord-class.min-def)
qed simp

lemma hd-construct:
assumes — is-empty q
shows hd (alist-of q) = (min g, the (priority g (min q)))
proof —
from assms have the (priority ¢ (min q)) = snd (hd (alist-of q))
using Min-snd-hd [of alist-of q]
by (auto simp add: priority-Min-priorities priorities-def)
then show %thesis by (simp add: min-def)
qed

lemma not-in-first-image:

x ¢ fst ‘s = (z,p) ¢s
by (auto simp add: image-def)

lemma alist-of-push [simp, code abstract]:
alist-of (push k p q) =
(if k ¢ set (values q) then insort-key snd (k, p) (alist-of q) else alist-of q)
using distinct-fst-alist-of [of q]
by (auto simp add: distinct-map set-insort-key distinct-insort not-in-first-image
push-def values-def sorted-insort-key intro: alist-of-Abs-pq)

lemma push-values [simp]:
set |push k p q| = set |q| U {k}
by (auto simp add: values-def set-insort-key)

lemma push-priorities [simp):
k ¢ set |q| = set |[push k p q|| = set ||q|| U {p}
k € set |q| = set |push k p q| = set ||q|
by (auto simp add: priorities-def set-insort-key)

lemma not-is-empty-push [simpl:
- is-empty (push k p q)
by (auto simp add: values-def is-empty-def)

lemma push-commute:
assumes ¢ # band v # w
shows push w b (push v a q) = push v a (push w b q)
using assms by (auto introl: alist-of-eql insort-key-left-comm,)



definition remove-min :: ('a, 'b::linorder) pg = ('a, 'b::linorder) pg where
remove-min q = (if is-empty q then empty else Abs-pq (tl (alist-of q)))

lemma alift-of-remove-min-if [code abstract]:
alist-of (remove-min q) = (if is-empty q then [| else tl (alist-of q))
by (auto simp add: remove-min-def map-tl sorted-tl distinct-tl alist-of-Abs-pq)

lemma remove-min-empty [simp]:
1s-empty ¢ == remove-min q = empty
by (simp add: remove-min-def)

lemma alist-of-remove-min [simp]:
- is-empty ¢ = alist-of (remove-min q) = tl (alist-of q)
by (simp add: alift-of-remove-min-if )

lemma values-remove-min [simp):
- is-empty ¢ = values (remove-min q) = tl (values q)
by (simp add: values-def map-tl)

lemma set-alist-of-remove-min:
- is-empty ¢ = set (alist-of (remove-min q)) =
set (alist-of q¢) — {(min g, the (priority ¢ (min q)))}
by (simp add: tl-set hd-construct)

definition pop :: (‘a, ‘b::linorder) pq = ('a x ('a, 'b) pq) option where
pop q = (if is-empty q then None else Some (min ¢, remove-min q))

lemma pop-simps [simp]:

is-empty ¢ = pop q = None

- is-empty ¢ => pop q = Some (min ¢, remove-min q)

by (simp-all add: pop-def)
hide-const (open) Abs-pq alist-of values priority empty is-empty push min pop
no-notation

PQ.values (<|(-)]»)
and PQ.priorities (<||(-)|]»)

2 Functional Binomial Queues

2.1 Type definition and projections
datatype (‘a, 'b) bintree = Node ‘a 'b ('a, 'b) bintree list

primrec priority :: ('a, 'b) bintree = 'a where



priority (Node a - -) = a

primrec val :: (‘a, 'b) bintree = 'b where

val (Node - v -) = v
primrec children :: (‘a, 'b) bintree = ('a, 'b) bintree list where
children (Node - - ts) = ts

type-synonym (‘a, 'b) binqueue = ('a, 'b) bintree option list

lemma binqueue-induct [case-names Empty None Some, induct type: binqueue]:
assumes P [|
and Azs. P s = P (None # xs)
and Az zs. P s = P (Some © # xs)
shows P xs
using assms
proof (induct xs)
case Nil
then show ?case by simp
next
case (Cons z xs)
then show ?case by (cases x) simp-all
qed

Terminology:

— values v, w or vl, v2

— priorities a, b or al, a2

— bintrees ¢, r or t1, t2

— bintree lists ts, rs or tsl, ts2

— binqueue element z, y or z1, z2

— binqueues = binqueue element lists zs, ys or xsl, xs2
— abstract priority queues ¢, p or ¢ql, ¢2

2.2 Binomial queue properties

Binomial tree property

inductive is-bintree-list :: nat = (‘a, 'b) bintree list = bool where
is-bintree-list-Nil [simp]: is-bintree-list 0 []
| is-bintree-list-Cons: is-bintree-list | ts = is-bintree-list | (children t)
= is-bintree-list (Suc 1) (t # ts)

abbreviation (input) is-bintree k t = is-bintree-list k (children t)



lemma is-bintree-list-triv [simp]:
is-bintree-list 0 ts «— ts =[]
is-bintree-list | [| «— 1 =0
by (auto intro: is-bintree-list.intros elim: is-bintree-list.cases)

lemma is-bintree-list-simp [simp):
is-bintree-list (Suc 1) (t # ts) +—
is-bintree-list | (children t) A is-bintree-list | ts
by (auto intro: is-bintree-list.intros elim: is-bintree-list.cases)

lemma is-bintree-list-length [simp]:
is-bintree-list | ts = length ts = |
by (erule is-bintree-list.induct) simp-all

lemma is-bintree-list-children-last:
assumes is-bintree-list | ts and ts # ||
shows children (last ts) = ||
using assms by induct auto

lemma is-bintree-children-length-desc:
assumes is-bintree-list | ts
shows map (length o children) ts = rev [0..<l]
using assms by (induct ts) simp-all

Heap property

inductive is-heap-list :: 'a::linorder = ('a, 'b) bintree list = bool where
is-heap-list-Nil: is-heap-list h ||
| is-heap-list-Cons: is-heap-list h ts = is-heap-list (priority t) (children t)
= (priority t) > h = is-heap-list h (t # ts)

abbreviation (input) is-heap t = is-heap-list (priority t) (children t)

lemma is-heap-list-simps [simp]:
is-heap-list h [ «+— True
is-heap-list h (t # ts) <—
is-heap-list h ts A is-heap-list (priority t) (children t) A priority t > h
by (auto intro: is-heap-list.intros elim: is-heap-list.cases)

lemma is-heap-list-append-dest [dest):
is-heap-list | (tsQrs) = is-heap-list | ts
is-heap-list | (tsQrs) = is-heap-list | rs
by (induct ts) (auto intro: is-heap-list.intros elim: is-heap-list.cases)

lemma is-heap-list-rev:



is-heap-list | ts = is-heap-list | (rev ts)
by (induct ts rule: rev-induct) auto

lemma is-heap-children-larger:
is-heap t =V x € set (children t). priority x > priority t
by (erule is-heap-list.induct) simp-all

lemma is-heap-Min-children-larger:
is-heap t = children t # [| =
priority t < Min (priority ¢ set (children t))
by (simp add: is-heap-children-larger)

Combination of both: binqueue property

inductive is-binqueuve :: nat = (‘a::linorder, 'b) binqueue = bool where
Empty: is-binqueue [ ||
| None: is-binqueue (Suc l) xs = is-binqueue | (None # xs)
| Some: is-binqueue (Suc 1) xs = is-bintree | ¢
= is-heap t = is-binqueue | (Some t # xs)

lemma is-binqueue-simp [simp]:
is-binqueuve [ [| +— True
is-binqueue | (Some t # 1s) «—
is-bintree 1 t A is-heap t A is-binqueue (Suc l) zs
is-binqueue | (None # xs) <— is-binqueue (Suc 1) xs
by (auto intro: is-binqueue.intros elim: is-binqueue.cases)

lemma is-binqueue-trans:
is-binqueuve | (z#txs) = is-binqueue (Suc l) zs
by (cases x) simp-all

lemma is-binqueue-head:
is-binqueuve | (x#xs) = is-binqueue | [z]
by (cases x) simp-all

lemma is-binqueue-append:
is-binqueue | xs = is-binqueue (length zs + 1) ys = is-binqueue [ (zs @Q ys)
by (induct xs arbitrary: 1) (auto intro: is-binqueue.intros elim: is-binqueue.cases)

lemma is-binqueue-append-dest [dest):
is-binqueue | (zs Q ys) = is-binqueue | xs
by (induct zs arbitrary: 1) (auto intro: is-binqueue.intros elim: is-binqueue.cases)

lemma is-binqueue-children:
assumes is-bintree-list | ts



and is-heap-list t ts
shows is-bingueue 0 (map Some (rev ts))
using assms by (induct ts) (auto simp add: is-binqueue-append)

lemma is-binqueue-select:
is-binqueue | s => Some t € set s => k. is-bintree k t N is-heap t
by (induct zs arbitrary: 1) (auto intro: is-binqueue.intros elim: is-binqueue.cases)

Normalized representation

inductive normalized :: (‘a, 'b) binqueue = bool where
normalized-Nil: normalized ||
| normalized-single: normalized [Some t
| normalized-append: xs # [| = normalized ts = normalized (ys Q xs)

lemma normalized-last-not-None:
— sometimes the inductive definition might work better

normalized xs +— xs = [| V last s # None
proof
assume normalized xs
then show zs = [| V last xs # None
by (rule normalized.induct) simp-all
next
assume *: zs = [| V last zs # None

show normalized zs proof (cases xs rule: rev-cases)
case Nil then show %thesis by (simp add: normalized.intros)
next
case (snoc ys ) with x obtain ¢ where last s = Some t by auto
with snoc have xs = ys Q [Some t] by simp
then show %thesis by (simp add: normalized.intros)
qed
qed

lemma normalized-simps [simp):
normalized [| «+— True
normalized (Some t # xs) <— normalized xs
normalized (None # xs) <— xs # [| A normalized s
by (simp-all add: normalized-last-not-None)

lemma normalized-map-Some [simp]:
normalized (map Some zs)

by (induct zs) simp-all

lemma normalized-Cons:
normalized (z#xs) = normalized xs
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by (auto simp add: normalized-last-not-None)

lemma normalized-append:
normalized xs = normalized ys = normalized (zsQys)
by (cases ys) (simp-all add: normalized-last-not-None)

lemma normalized-not-None:
normalized s = set xs # {None}
by (induct zs) (auto simp add: normalized-Cons [of - ts] dest: subset-singletonD)

primrec normalize’ :: (‘a, 'b) binqueue = ('a, 'b) binqueue where
normalize’ [| = |
| normalize’ (z # zs) =
(case x of None = normalize’ xs | Some t = (z # xs))

definition normalize :: ("a, 'b) binqueue = ('a, 'b) binqueue where
normalize s = rev (normalize’ (rev xs))

lemma normalized-normalize:
normalized (normalize xs)
proof (induct zs rule: rev-induct)
case (snoc y ys) then show ?case
by (cases y) (simp-all add: normalized-last-not-None normalize-def)
qed (simp add: normalize-def)

lemma is-binqueue-normalize:
is-binqueue | s = is-binqueue | (normalize s)
unfolding normalize-def
by (induct zs arbitrary: [ rule: rev-induct) (auto split: option.split)

2.3 Operations
Adding data

definition merge :: (‘a::linorder, 'b) bintree = ('a, 'b) bintree = ('a, 'b) bintree
where
merge t1 t2 = (if priority t1 < priority t2
then Node (priority t1) (val t1) (t2 # children t1)
else Node (priority t2) (val t2) (t1 # children t2))

lemma is-bintree-list-merge:
assumes is-bintree | t1 is-bintree | 2
shows is-bintree (Suc ) (merge t1 12)
using assms by (simp add: merge-def)
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lemma is-heap-merge:
assumes is-heap t1 is-heap t2
shows is-heap (merge t1 t2)
using assms by (auto simp add: merge-def)

fun
add :: ('a:linorder, 'b) bintree option = ('a, 'b) binqueue = ('a, 'b) binqueue
where
add None zs = xs
| add (Some t) [| = [Some t]
| add (Some t) (None # xs) = Some t # xs
| add (Some t) (Some r # xs) = None # add (Some (merge t 1)) xs

lemma add-Some-not-Nil [simp]:
add (Some t) zs # ||
by (induct Some t xs rule: add.induct) simp-all

lemma normalized-add:
assumes normalized xs
shows normalized (add x xs)
using assms by (induct xs rule: add.induct) simp-all

lemma is-binqueue-add-None:
assumes is-binqueue [ xs
shows is-binqueue [ (add None zs)
using assms by simp

lemma is-binqueue-add-Some:

assumes is-binqueue [ xs

and is-bintree 1 t

and is-heap t

shows is-binqueue I (add (Some t) xs)

using assms by (induct zs arbitrary: t) (simp-all add: is-bintree-list-merge
is-heap-merge)

function
meld :: ('a::linorder, 'b) binqueue = ('a, 'b) binqueue = ('a, 'b) binqueue
where
meld [ ys = ys
meld xs [| = xs
meld (None # xs) (y # ys) = y # meld zs ys
meld (x # xs) (None # ys) = x # meld zs ys
meld (Some t # xs) (Some r # ys) =
None # add (Some (merge t r)) (meld xs ys)
by pat-completeness auto termination by lexicographic-order
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lemma meld-singleton-add [simp]:
meld [Some t] s = add (Some t) xs
by (induct Some t xs rule: add.induct) simp-all

lemma nonempty-meld [simp]:
xs # [| = meld zs ys # ||
ys # [| = meld zs ys # |]
by (induct zs ys rule: meld.induct) auto

lemma nonempty-meld-commute:
meld zs ys # [| = meld zs ys # |]
by (induct zs ys rule: meld.induct) auto

lemma is-binqueue-meld:
assumes is-binqueue [ s
and is-binqueue [ ys
shows is-binqueue | (meld zs ys)
using assms
proof (induct xs ys arbitrary: | rule: meld.induct)
fix zs ys :: ('a, 'b) binqueue
fix y :: (Ya, 'b) bintree option
fix [ :: nat
assume A [. is-binqueue | s = is-binqueuve [ ys
= is-binqueue | (meld xs ys)
and is-binqueue | (None # xs)
and is-binqueue | (y # ys)
then show is-binqueue I (meld (None # xs) (y # ys)) by (cases y) simp-all
next
fix zs ys :: ('a, 'b) binqueue
fix z :: (‘a, 'b) bintree option
fix [ :: nat
assume A [. is-binqueue | xs = is-binqueue | ys
= is-binqueuve | (meld xs ys)
and is-binqueue | (z # xs)
and is-binqueue [ (None # ys)
then show is-binqueue [ (meld (z # xzs) (None # ys)) by (cases x) simp-all
qed (simp-all add: is-bintree-list-merge is-heap-merge is-binqueue-add-Some)

lemma normalized-meld:

assumes normalized xs

and normalized ys

shows normalized (meld xs ys)
using assms
proof (induct xs ys rule: meld.induct)
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fix zs ys :: ("a, 'b) binqueue
fix y :: (‘a, 'b) bintree option
assume normalized x¥s = normalized ys = normalized (meld s ys)
and normalized (None # xs)
and normalized (y # ys)
then show normalized (meld (None # xs) (y # ys)) by (cases y) simp-all
next
fix zs ys :: (“a, 'b) binqueue
fix z :: ('a, 'b) bintree option
assume normalized xs = normalized ys = normalized (meld xs ys)
and normalized (z # xs)
and normalized (None # ys)
then show normalized (meld (x # xzs) (None # ys)) by (cases ) simp-all
qed (simp-all add: normalized-add)

lemma normalized-meld-weak:
assumes normalized xs
and length ys < length zs
shows normalized (meld xs ys)
using assms
proof (induct zs ys rule: meld.induct)
fix zs ys :: ('a, 'b) binqueue
fix y :: (‘a, 'b) bintree option
assume normalized zs = length ys < length s =—> normalized (meld zs ys)
and normalized (None # xs)
and length (y # ys) < length (None # xs)
then show normalized (meld (None # xs) (y # ys)) by (cases y) simp-all
next
fix zs ys :: (“a, 'b) binqueue
fix z :: ('a, 'b) bintree option
assume normalized zs = length ys < length 1s = normalized (meld xs ys)
and normalized (z # xs)
and length (None # ys) < length (z # xs)
then show normalized (meld (x # xzs) (None # ys)) by (cases ) simp-all
qed (simp-all add: normalized-add)

definition least :: ‘a::linorder option = 'a option = 'a option where
least x y = (case x of
None =y
| Some z’ = (case y of
None =
| Some y' = if 2/ < y' then z else y))

lemma least-simps [simp, code]:
least None v = ©
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least x None = x
least (Some z') (Some y’) = (if ' < y' then Some ' else Some y')
unfolding least-def by (simp-all) (cases x, simp-all)

lemma least-split:

assumes least x y = Some z

shows z = Some z V y = Some z
using assms proof (cases x)

case (Some z') with assms show ?thesis by (cases y) (simp-all add: eg-commute)
qed simp

interpretation least: semilattice least proof
qed (auto simp add: least-def split: option.split)

definition min :: (‘a:linorder, 'b) binqueue = 'a option where
min xs = fold least (map (map-option priority) xs) None

lemma min-simps [simp):
min [] = None
min (None # xs) = min xs
min (Some t # xs) = least (Some (priority t)) (min zs)
by (simp-all add: min-def fold-commute-apply [symmetric]
fun-eq-iff least.left-commute del: least-simps)

lemma [code]:
min xs = fold (\ x. least (map-option priority x)) xs None
by (simp add: min-def fold-map o-def)

lemma min-single:
min [x] = Some a = priority (the ) = a
min [z] = None = z = None
by (auto simp add: min-def)

lemma min-Some-not-None:
min (Some t # xs) # None
by (cases min xs) simp-all

lemma min-None-trans:
assumes min (z#xs) = None
shows min zs = None
using assms proof (cases x)
case None with assms show ?thesis by simp
next
case (Some t) with assms show ?thesis by (simp only: min-Some-not-None)
qed
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lemma min-None-None:
min zs = None <— zs = [| V set xs = {None}
proof (rule iffT)
have splitQ: A\ zs. s C {None} = xs = {} V xs = {None} by auto

assume min zs = None
then have set zs C {None}
proof (induct xs)

case (None ys) thus ?case using min-None-trans|of - ys] by simp-all
next

case (Some t ys) thus ?case using min-Some-not-None[of t ys] by simp
qed simp

with splitQ show xs = [| V set s = {None} by auto

next
show zs = [| V set s = {None} = min s = None
by (induct zs) (auto dest: subset-singletonD)
qed

lemma normalized-min-not-None:
normalized xs = s # [| = min zs # None
by (simp add: min-None-None normalized-not-None)

lemma min-is-min:
assumes normalized xs
and zs # ||
and min zs = Some a
shows Vz € set zs. x = None V a < priority (the )
using assms proof (induct zs arbitrary: a rule: binqueue-induct)
case (Some t ys) thus Zcase
proof (cases ys = [])
case Fulse
with Some have N: normalized ys using normalized-Cons|of - ys] by simp
with <ys # [|> have min ys # None
by (simp add: normalized-min-not-None)
then obtain a’ where oa’: min ys = Some a’ by auto
with Some N False
have Vy € set ys. y = None V a’ < priority (the y) by simp

with Some oa’ show ?thesis
by (cases o’ < priority t) (auto simp add: least.commute)
qed simp
qed simp-all
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lemma min-exists:
assumes min s = Some a
shows Some a € map-option priority © set xs
proof (rule ccontr)
assume Some a ¢ map-option priority ‘ set xs
then have Vz € set zs. z = None V priority (the z) # a by (induct xs) auto
then have min xs # Some a
proof (induct xs arbitrary: a)
case (Some t ys)
hence priority t # a and min ys # Some a by simp-all
show ?Zcase
proof (rule ccontr, simp)
assume least (Some (priority t)) (min ys) = Some a
hence Some (priority t) = Some a V min ys = Some a by (rule least-split)
with <min ys # Some a> have priority t = a by simp
with <priority t # o> show Fualse by simp
qged
qed simp-all
with assms show False by simp
qed

primrec find :: 'a::linorder = (‘a, 'b) binqueue = ('a, 'b) bintree option where
find a [| = None
| find a (z#xs) = (case x of None = find a s
| Some t = if priority t = a then Some t else find a xs)

declare find.simps [simp del]

lemma find-simps [simp, code]:
find a [| = None
find a (None # zs) = find a xs
find a (Some t # xs) = (if priority t = a then Some t else find a xs)
by (simp-all add: find-def)

lemma find-works:
assumes Some a € set (map (map-option priority) xs)
shows Jt. find a s = Some t A priority t = a
using assms by (induct zs) auto

lemma find-works-not-None:
Some a € set (map (map-option priority) zs) = find a s # None
by (drule find-works) auto

lemma find-None:
find a zs = None = Some a ¢ set (map (map-option priority) xs)
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by (auto simp add: find-works-not-None)

lemma find-exist:
find a xs = Some t = Some t € set xs
by (induct xs) (simp-all add: eq-commute)

definition find-min :: (‘a::linorder, 'b) binqueue = ('a, 'b) bintree option where
find-min xs = (case min zs of None = None | Some a = find a zs)

lemma find-min-simps [simp]:
find-min || = None
find-min (None # zs) = find-min xs
by (auto simp add: find-min-def split: option.split)

lemma find-min-single:
find-min [z] = z
by (cases x) (auto simp add: find-min-def)

lemma min-eq-find-min-None:
min xs = None +— find-min s = None
proof (rule iffI)
show min xs = None = find-min xs = None
by (simp add: find-min-def)
next
assume x: find-min s = None
show min zs = None
proof (rule ccontr)
assume min s # None

then obtain a where min zs = Some a by auto
hence find-min s # None
by (simp add: find-min-def min-exists find-works-not-None)
with x show False by simp
qed
qed

lemma min-eq-find-min-Some:
min zs = Some a +— (3 t. find-min xs = Some t A priority t = a)
proof (rule iffI)
show D1: Aa. min xs = Some a
= (3 t. find-min zs = Some t A priority t = a)
by (simp add: find-min-def find-works min-exists)

assume *: 3 t. find-min s = Some t A priority t = a
show min xs = Some a
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proof (rule ccontr)
assume min zs # Some a thus False
proof (cases min xs)
case None
hence find-min xs = None by (simp only: min-eq-find-min-None)
with x show Fulse by simp
next
case (Some b)
with (min zs # Some a> have a # b by simp
with x Some show Fulse using D1 by auto
qged
qed
qed

lemma find-min-exist:
assumes find-min xs = Some t
shows Some t € set xs
proof —
from assms have min zs # None by (simp add: min-eg-find-min-None)
with assms show ?thesis by (auto simp add: find-min-def find-exist)
qed

lemma find-min-is-min:
assumes normalized s
and zs # ||
and find-min xs = Some t
shows Vz € set zs. x = None V (priority t) < priority (the x)
using assms by (simp add: min-eq-find-min-Some min-is-min)

lemma normalized-find-min-exists:
normalized xs = xs # [| = 3 t. find-min zs = Some t
by (drule normalized-min-not-None) (simp-all add: min-eg-find-min-None)

primrec

match :: 'a::linorder = (‘a, 'b) bintree option = ('a, 'b) bintree option
where

match a None = None
| match a (Some t) = (if priority t = a then None else Some t)

definition delete-min :: (‘a::linorder, 'b) binqueue = (‘a, 'b) binqueue where
delete-min xs = (case find-min xs
of Some (Node a v ts) =
normalize (meld (map Some (rev ts)) (map (match a) xs))
| None = [])
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lemma delete-min-empty [simp):
delete-min [| = []
by (simp add: delete-min-def)

lemma delete-min-nonempty [simp):
normalized xs = xs # [| = find-min xs = Some t
= delete-min xs = normalize
(meld (map Some (rev (children t))) (map (match (priority t)) xs))
unfolding delete-min-def by (cases t) simp

lemma is-binqueue-delete-min:
assumes is-binqueue 0 xs
shows is-binqueue 0 (delete-min xs)
proof (cases find-min xs)
case (Some t)
from assms have is-binqueue 0 (map (match (priority t)) xs)
by (induct zs) simp-all

moreover
from Some have Some t € set xs by (rule find-min-exist)
with assms have 3. is-bintree [ t and is-heap t
using is-binqueue-select[of 0 zs t] by auto
with assms have is-binqueue 0 (map Some (rev (children t)))
by (auto simp add: is-binqueue-children)

ultimately show ?thesis using Some
by (auto simp add: is-binqueue-meld delete-min-def is-binqueue-normalize
split: bintree.split)
qed (simp add: delete-min-def)

lemma normalized-delete-min:
normalized (delete-min xs)
by (cases find-min xs)
(auto simp add: delete-min-def normalized-normalize split: bintree.split)

Dedicated grand unified operation for generated program

definition
meld’ :: ('a, 'b) bintree option = (‘a::linorder, 'b) binqueue
= (‘a, 'b) binqueue = ('a, 'b) binqueue
where
meld’ z zs ys = add z (meld xs ys)

lemma [code]:
add z xs = meld’ z [] xs
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meld zs ys = meld’ None s ys
by (simp-all add: meld’-def)

lemma [code]:
meld’ z (Some t # xs) (Some r # ys) =
z # (meld’ (Some (merge t ) xs ys)
meld’ (Some t) (Some r # xs) (None # ys) =
None # (meld’ (Some (merge t 1)) xs ys)
meld’ (Some t) (None # xs) (Some r # ys) =
None # (meld’ (Some (merge t 1)) xs ys)
meld’ None (z # xzs) (None # ys) = x # (meld’ None zs ys)
meld’ None (None # xs) (y # ys) = y # (meld’ None zs ys)
meld’ z (None # xzs) (None # ys) = z # (meld’ None zs ys)
meld’ z zs || = meld’ z || zs
meld’ z || (y # ys) = meld’ None [z] (y # ys)
meld’ (Some t) [| ys = meld’ None [Some t] ys
meld’ None [| ys = ys
by (simp add: meld’-def | cases z)+

Interface operations

abbreviation (input) empty :: (‘a,’d) binqueue where
empty = |]

definition

insert :: 'a:linorder = 'b = (a, 'b) binqueue = ('a, 'b) binqueue
where

insert a v xs = add (Some (Node a v [])) xs

lemma insert-simps [simp):
insert a v [| = [Some (Node a v [])]
insert a v (None # xs) = Some (Node a v [|) # s
insert a v (Some t # xs) = None # add (Some (merge (Node a v []) t)) xs
by (simp-all add: insert-def)

lemma is-binqueue-insert:
is-binqueue 0 s = is-binqueue 0 (insert a v zs)
by (simp add: is-binqueue-add-Some insert-def)

lemma normalized-insert:
normalized xs = normalized (insert a v xs)

by (simp add: normalized-add insert-def)

definition
pop :: ('a:linorder, 'b) binqueue = (('b X 'a) option x (‘a, 'b) binqueue)
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where
pop xs = (case find-min zs of
None = (None, xs)
| Some t = (Some (val t, priority t), delete-min xs))

lemma pop-empty [simp]:
pop empty = (None, empty)
by (simp add: pop-def empty-def)

lemma pop-nonempty [simpl:
normalized xs = xs # [| = find-min xs = Some t
= pop xs = (Some (val t, priority t), normalize
(meld (map Some (rev (children t))) (map (match (priority t)) zs)))
by (simp add: pop-def)

lemma pop-code [code]:
pop xs = (case find-min zs of
None = (None, zs)
| Some t = (Some (val t, priority t), normalize
(meld (map Some (rev (children t))) (map (match (priority t)) ws))))
by (cases find-min xzs) (simp-all add: pop-def delete-min-def split: bintree.split)

3 Relating Functional Binomial Queues To The Abstract
Priority Queues

notation
PQ.values (<|(-)]»)
and PQ.priorities (<||(-)|]»)

Naming convention: prefix bt- for bintrees, bts- for bintree lists, no prefix for
binqueues.

primrec bt-dfs :: ((‘a::linorder, 'b) bintree = 'c) = (‘a, 'b) bintree = 'c list
and bts-dfs :: ((‘a::linorder, 'b) bintree = 'c) = ('a, 'b) bintree list = 'c list
where
bt-dfs f (Node a v ts) = f (Node a v ts) # bts-dfs f ts
| bts-dfs f [] = ]
| bts-dfs f (t # ts) = bt-dfs ft Q bts-dfs f ts

lemma bi-dfs-simp:
bt-dfs ft = ft # bts-dfs f (children t)
by (cases t) simp-all

lemma bts-dfs-append [simp]:
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bts-dfs f (ts @Q rs) = bts-dfs f ts @ bis-dfs f rs
by (induct ts) simp-all

lemma set-bts-dfs-rev:
set (bts-dfs f (rev ts)) = set (bts-dfs f ts)
by (induct ts) auto

lemma bts-dfs-rev-distinct:
distinct (bts-dfs f ts) = distinct (bts-dfs f (rev ts))
by (induct ts) (auto simp add: set-bts-dfs-rev)

lemma bt-dfs-comp:
bt-dfs (f o g) t = map f (bt-dfs g t)
bts-dfs (f o g) ts = map f (bts-dfs g ts)
by (induct t and ts rule: bi-dfs.induct bts-dfs.induct) simp-all

lemma bt-dfs-comp-distinct:
distinct (bt-dfs (f o g) t) = distinct (bt-dfs g t)
distinct (bts-dfs (f o g) ts) = distinct (bts-dfs g ts)
by (simp-all add: bt-dfs-comp distinct-map [of f])

lemma bt-dfs-distinct-children:
distinct (bt-dfs f x) = distinct (bts-dfs f (children x))
by (cases x) simp

fun dfs :: ((‘a::linorder, 'b) bintree = 'c¢) = (‘a, 'b) binqueue = 'c list where
dfs f ] = [

| dfs f (None # xzs) = dfs f s

| dfs f (Some t # zs) = bi-dfs ft Q dfs f zs

lemma dfs-append:

dfs f (w5 @ ys) = (dfs fas) @ (dfs f ys)
by (induct zs) simp-all

lemma set-dfs-rev:
set (dfs f (rev zs)) = set (dfs f xs)
by (induct xs) (auto simp add: dfs-append)

lemma set-dfs-Cons:
set (dfs f (z # xs)) = set (dfs fxs) U set (dfs f [z])
proof —
have set (dfs f (x # xs)) = set (dfs f (rev zs Q [z]))
using set-dfs-rev|of f rev zs Q [z]] by simp
thus ?thesis by (simp add: dfs-append set-dfs-rev)
qed
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lemma dfs-comp:

dfs (f o g) as = map f (dfs g xs)
by (induct xs) (simp-all add: bi-dfs-comp del: o-apply)

lemma dfs-comp-distinct:
distinct (dfs (f o g) xs) = distinct (dfs g xs)
by (simp add: dfs-comp distinct-map|of f])

lemma dfs-distinct-member:

distinct (dfs f xs) =

Some z € set 15 =

distinct (bt-dfs f )
proof (induct xs arbitrary: x)

case (Some r zs t) then show ?case by (cases t = r) simp-all
qed simp-all

lemma dfs-map-Some-idem:
dfs f (map Some xs) = bts-dfs f xs
by (induct zs) simp-all

primrec alist :: (‘a, 'b) bintree = ('b x 'a) where
alist (Node a v -) = (v, a)

lemma alist-split-pre:
val t = (fst o alist) t
priority t = (snd o alist) ¢
by (cases t, simp)+

lemma alist-split:
val = fst o alist
priority = snd o alist
by (auto introl: ext simp add: alist-split-pre)

lemma alist-split-set:
set (dfs val zs) = fst ‘ set (dfs alist xs)
set (dfs priority xs) = snd ‘ set (dfs alist xs)
by (auto simp add: dfs-comp alist-split)

lemma in-set-in-alist:

assumes Some t € set xs

shows (val ¢, priority t) € set (dfs alist s)
using assms
proof (induct zs)

case (Some r xs) then show ?case
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proof (cases Some t € set zs)
case Fulse with Some show ?thesis by (cases t) (auto simp add: bt-dfs-simp)
qed simp

qed simp-all

abbreviation vals where vals = dfs val
abbreviation prios where prios = dfs priority
abbreviation elements where elements = dfs alist

primrec

bt-augment :: (‘a::linorder, 'b) bintree = (b, 'a) PQ.pq = ('b, 'a) PQ.pq
and

bts-augment :: (‘a::linorder, 'b) bintree list = ('b, 'a) PQ.pq = ('b, 'a) PQ.pq
where

bt-augment (Node a v ts) ¢ = PQ.push v a (bts-augment ts q)
| bts-augment [] ¢ = ¢
| bts-augment (t # ts) g = bts-augment ts (bt-augment t q)

lemma bts-augment [simp]:
bts-augment = fold bt-augment
proof (rule ext)
fix ts :: ('a, 'b) bintree list
show bts-augment ts = fold bt-augment ts
by (induct ts) simp-all
qed

lemma bt-augment-Node [simp]:
bt-augment (Node a v ts) ¢ = PQ.push v a (fold bt-augment ts q)
by (simp add: bts-augment)

lemma bt-augment-simp:
bt-augment t ¢ = PQ.push (val t) (priority t) (fold bt-augment (children t) q)
by (cases t) (simp-all add: bts-augment)

declare bt-augment.simps [simp del] bts-augment.simps [simp del]

fun pqueuve :: (‘a::linorder, 'b) binqueue = (b, 'a) PQ.pq where
Empty: pqueuve [| = PQ.empty

| None: pqueue (None # xs) = pqueue xs

| Some: pqueue (Some t # xs) = bt-augment t (pqueue zs)

lemma bt-augment-v-subset:

set | q| C set |bt-augment t q|
set | q| C set |bts-augment ts q|
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by (induct t and ts arbitrary: ¢ and q rule: bt-augment.induct bts-augment.induct)
auto

lemma bt-augment-v-in:
v € set |q] = v € set |bt-augment t g
v € set |q] => v € set |bts-augment ts q|
using bt-augment-v-subset|of q] by auto

lemma bt-augment-v-union:
set | bt-augment t (bt-augment r q)| =
set | bt-augment t q| U set | bt-augment r q|
set | bts-augment ts (bt-augment r q)| =
set | bts-augment ts q| U set | bt-augment r g|
proof (induct t and ts arbitrary: ¢ r and q r rule: bt-augment.induct bts-augment.induct)
case Nil-bintree
from bt-augment-v-subset|of ¢q] show ?case by auto
qed auto

lemma bt-val-augment:
shows set (bt-dfs val t) U set |q| = set | bt-augment t |
and set (bts-dfs val ts) U set | q| = set |bts-augment ts q|
proof (induct t and ts rule: bt-augment.induct bts-augment.induct)
case (Cons-bintree r rs)
have set |bts-augment rs (bt-augment r q)| =
set | bts-augment s q| U set | bt-augment r g|
by (simp only: bt-augment-v-union)

with bt-augment-v-subset|of q|
have set |bts-augment rs (bt-augment r q)| =
set | bts-augment s q| U set | bt-augment r q| U set | ¢
by auto
with Cons-bintree show ?case by auto
qed auto

lemma vals-pqueue:
set (vals xs) = set | pqueue xs|
by (induct xs) (simp-all add: bt-val-augment)

lemma bt-augment-v-push:
set | bt-augment ¢t (PQ.push v a q)| = set |bt-augment ¢ q| U {v}
set | bts-augment ts (PQ.push v a q)| = set | bts-augment ts q| U {v}
using bt-val-augment[where ¢ = PQ.push v a ¢] by (simp-all add: bt-val-augment)

lemma bt-augment-v-push-commute:
set |bt-augment t (PQ.push v a q)| = set | PQ.push v a (bt-augment t q)|
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set | bts-augment ts (PQ.push v a q)| = set | PQ.push v a (bts-augment ts q)|
by (simp-all add: bt-augment-v-push del: bts-augment)

lemma bts-augment-v-union:
set | bt-augment t (bts-augment rs q)| =
set | bt-augment t q| U set | bts-augment rs q|
set | bts-augment ts (bts-augment rs q)| =
set | bts-augment ts q| U set | bts-augment rs q|
proof (induct t and ts arbitrary: q rs and q rs rule: bt-augment.induct bts-augment.induct)
case Nil-bintree
from bt-augment-v-subset|of q] show ?case by auto

next
case (Cons-bintree x xs)
let ?L = set |bts-augment zs (bt-augment x (bts-augment rs q))|

from bt-augment-v-union
have x: A\ q. set | bts-augment xzs (bt-augment x q)| =
set |bts-augment xs q| U set | bt-augment x q| by simp

with Cons-bintree
have ?L =
set |bts-augment xs q| U set | bts-augment rs q| U set |bt-augment z g|
by auto
with * show ?case by auto
qed simp

lemma bt-augment-v-commute:
set | bt-augment t (bt-augment r q)| = set | bt-augment r (bt-augment t q)|
set | bt-augment t (bts-augment rs q)| = set | bts-augment rs (bt-augment t q)|
set | bts-augment ts (bts-augment rs q)| =
set | bts-augment rs (bts-augment ts q)|
unfolding bts-augment-v-union bt-augment-v-union by auto

lemma bt-augment-v-merge:
set | bt-augment (merge t r) q| = set |bt-augment t (bt-augment r q)]
by (simp add: bt-augment-simp [symmetric] bt-augment-v-push
bt-augment-v-commute merge-def)

lemma vals-merge [simpl:
set (bt-dfs val (merge t r)) = set (bt-dfs val t) U set (bt-dfs val )
by (auto simp add: bt-dfs-simp merge-def)

lemma vals-merge-distinct:
distinct (bt-dfs val t) = distinct (bt-dfs val r) =
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set (bt-dfs val t) N set (bt-dfs val r) = {} =
distinct (bt-dfs val (merge t 1))
by (auto simp add: bt-dfs-simp merge-def)

lemma vals-add-Cons:
set (vals (add x xs)) = set (vals (z # xs))
proof (cases )
case (Some t) then show ?Zthesis
by (induct zs arbitrary: = t) auto
qed simp

lemma vals-add-distinct:
assumes distinct (vals zs)
and distinct (dfs val [z])
and set (vals xs) N set (dfs val [z]) = {}
shows distinct (vals (add x xs))
using assms
proof (cases )
case (Some t) with assms show ?thesis
proof (induct zs arbitrary: z t)
case (Some r xs)
then have set (bt-dfs val t) N set (bt-dfs val r) = {} by auto
with Some have distinct (bt-dfs val (merge t ) by (simp add: vals-merge-distinct)
moreover
with Some have set (vals zs) N set (bt-dfs val (merge t r)) = {} by auto

moreover note Some
ultimately show ?case by simp
qed auto
qed simp

lemma vals-insert [simp]:
set (vals (insert a v xs)) = set (vals xs) U {v}
by (simp add: insert-def vals-add-Cons)

lemma insert-v-push:
set (vals (insert a v xs)) = set | PQ.push v a (pqueue xs)|
by (simp add: vals-pqueue[symmetric])

lemma vals-meld:

set (dfs val (meld xs ys)) = set (dfs val xs) U set (dfs val ys)
proof (induct zs ys rule: meld.induct)

case (3 zs y ys) then show ?case

using set-dfs-Cons[of val y meld s ys] using set-dfs-Cons[of val y ys] by auto
next
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case (4 z zs ys) then show ?case

using set-dfs-Cons|of val x meld zs ys| using set-dfs-Cons[of val = zs] by auto
next

case (5 z zs y ys) then show ?Zcase by (auto simp add: vals-add-Cons)
qed simp-all

lemma vals-meld-distinct:
distinct (dfs val xs) = distinct (dfs val ys) =
set (dfs val zs) N set (dfs val ys) = {} =
distinct (dfs val (meld s ys))
proof (induct zs ys rule: meld.induct)
case (3 zs y ys) then show ?case
proof (cases y)
case None with 3 show ?thesis by simp
next
case (Some t)
from 3 have A: set (vals zs) N set (vals ys) = {}
using set-dfs-Cons[of val y ys] by auto

moreover
from Some 3 have set (bt-dfs val t) N set (vals zs) = {} by auto

moreover
from Some 3 have set (bt-dfs val t) N set (vals ys) = {} by simp

ultimately have set (bt-dfs val t) N set (vals (meld zs ys)) = {}
by (auto simp add: vals-meld)
with 3 Some show ?thesis by auto
qed
next
case (4 z zs ys) then show Zcase
proof (cases x)
case None with 4 show ?thesis by simp
next
case (Some t)
from 4 have set (vals zs) N set (vals ys) = {}
using set-dfs-Cons|of val z xs] by auto

moreover
from Some 4 have set (bt-dfs val t) N set (vals zs) = {} by simp

moreover
from Some 4 have set (bt-dfs val t) N set (vals ys) = {} by auto

ultimately have set (bi-dfs val t) N set (vals (meld zs ys)) = {}
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by (auto simp add: vals-meld)
with 4 Some show ?thesis by auto
qed
next
case (5 z zs y ys) then
have set (vals xs) N set (vals ys) = {} by (auto simp add: set-dfs-Cons)
with 5 have distinct (vals (meld zs ys)) by simp

moreover
from 5 have set (bt-dfs val x) N set (bt-dfs val y) = {} by auto
with 5 have distinct (bt-dfs val (merge x y))

by (simp add: vals-merge-distinct)

moreover
from 5 have set (vals (meld xs ys)) N set (bt-dfs val (merge z y)) = {}
by (auto simp add: vals-meld)

ultimately show ?case by (simp add: vals-add-distinct)
qed simp-all

lemma bt-augment-alist-subset:
set (PQ.alist-of q) C set (PQ.alist-of (bt-augment t q))
set (PQ.alist-of q) C set (PQ.alist-of (bts-augment ts q))
proof (induct t and ts arbitrary: ¢ and ¢ rule: bt-augment.induct bts-augment.induct)
case (Node a v Ts)
show ?case using Node|of q] by (auto simp add: bt-augment-simp set-insort-key)
qged auto

lemma bt-augment-alist-in:
(v,a) € set (PQ.alist-of q) = (v,a) € set (PQ.alist-of (bt-augment t q))
(v,a0) € set (PQ.alist-of q) = (v,a) € set (PQ.alist-of (bts-augment ts q))
using bt-augment-alist-subset|of q] by auto

lemma bt-augment-alist-union:
distinct (bts-dfs val (r # [t])) =
set (bts-dfs val (r # [t])) N set |q| = {} =
set (PQ.alist-of (bt-augment t (bt-augment r q))) =
set (PQ.alist-of (bt-augment t q)) U set (PQ.alist-of (bt-augment r q))

distinct (bts-dfs val (r # ts)) =
set (bts-dfs val (r # ts)) N set |q| = {} =
set (PQ.alist-of (bts-augment ts (bt-augment r q))) =
set (PQ.alist-of (bts-augment ts q)) U set (PQ.alist-of (bt-augment r q))
proof (induct t and ts arbitrary: ¢ r and q r rule: bt-augment.induct bts-augment.induct)
case Nil-bintree
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from bt-augment-alist-subset|of q] show ?Zcase by auto
next
case (Node a v rs) then
have
set (PQ.alist-of (bts-augment rs (bt-augment r q))) =
set (PQ.alist-of (bts-augment rs q)) U set (PQ.alist-of (bt-augment r q))
by simp

moreover

from Node.prems have x: v ¢ set |bts-augment rs q| U set |bt-augment r q|
unfolding bt-val-augment[symmetric] by simp

hence v ¢ set | bts-augment rs (bt-augment r q)| by (unfold bt-augment-v-union)

moreover
from x have v ¢ set | bts-augment rs q| by simp

ultimately show ?case by (simp add: set-insort-key)
next
case (Cons-bintree = xs) then
have — FIXME: ugly... and slow
distinct (bts-dfs val (z # xs)) and
distinct (bts-dfs val (r # xs)) and
distinct (bts-dfs val [r,z]) and
set (bts-dfs val (z # zs)) N set |bt-augment r q| = {} and
set (bts-dfs val (z # xs)) N set |q| = {} and
set (bts-dfs val [r, z]) N set |q| = {} and
set (bts-dfs val (r # xs)) N set |q| = {}
unfolding bt-val-augment[symmetric] by auto
with Cons-bintree.hyps show Zcase by auto
qed

lemma bt-alist-augment:
distinct (bt-dfs val t) =
set (bt-dfs val t) N set |q] = {} =
set (bt-dfs alist t) U set (PQ.alist-of q) = set (PQ.alist-of (bt-augment t q))

distinct (bts-dfs val ts) =
set (bts-dfs val ts) N set |q| = {} =
set (bts-dfs alist ts) U set (PQ.alist-of q) =
set (PQ.alist-of (bts-augment ts q))
proof (induct t and ts rule: bt-augment.induct bts-augment.induct)
case Nil-bintree then show ?case by simp
next
case (Node a v rs)
hence v ¢ set |bts-augment rs ¢
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unfolding bt-val-augment[symmetric] by simp
with Node show Zcase by (simp add: set-insort-key)
next
case (Cons-bintree r rs) then
have set (PQ.alist-of (bts-augment (r # rs) q)) =
set (PQ.alist-of (bts-augment rs q)) U set (PQ.alist-of (bt-augment r q))
using bt-augment-alist-union by simp
with Cons-bintree bt-augment-alist-subset show ?case by auto
qed

lemma alist-pqueue:
distinct (vals s) = set (dfs alist xs) = set (PQ.alist-of (pqueue xs))
by (induct xs) (simp-all add: vals-pqueuve bt-alist-augment)

lemma alist-pqueve-priority:
distinct (vals xs) = (v, a) € set (dfs alist xs)
= PQ.priority (pqueue xs) v = Some a
by (simp add: alist-pqueuve PQ.priority-def)

lemma prios-pqueue:
distinct (vals xs) = set (prios xs) = set || pqueue zs||
by (auto simp add: alist-pqueue priorities-set alist-split-set)

lemma alist-merge [simp]:
distinct (bt-dfs val t) = distinct (bt-dfs val r) =
set (bt-dfs val t) N set (bt-dfs val r) = {} =
set (bt-dfs alist (merge t ) = set (bt-dfs alist t) U set (bt-dfs alist r)
by (auto simp add: bt-dfs-simp merge-def alist-split)

lemma alist-add-Cons:
assumes distinct (vals (z#xs))
shows set (dfs alist (add = xs)) = set (dfs alist (z # xs))
using assms proof (induct zs arbitrary: )
case Fmpty then show ?case by (cases x) simp-all
next
case None then show ?case by (cases z) simp-all
next
case (Some y ys) then
show “case
proof (cases z)
case (Some t)
note prem = Some.prems Some

from prem have distinct (bt-dfs val (merge t y))
by (auto simp add: bt-dfs-simp merge-def)
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with prem have distinct (vals (Some (merge t y) # ys)) by auto
with prem Some.hyps
have set (dfs alist (add (Some (merge t y)) ys)) =
set (dfs alist (Some (merge t y) # ys)) by simp

moreover
from prem have set (bi-dfs val t) N set (bt-dfs val y) = {} by auto
with prem
have set (bt-dfs alist (merge t y)) =
set (bt-dfs alist t) U set (bt-dfs alist y)
by simp

moreover note prem and Un-assoc

ultimately
show ?thesis by simp
qed simp
qed

lemma alist-insert [simpl:
distinct (vals xs) =
v ¢ set (vals zs) =
set (dfs alist (insert a v xs)) = set (dfs alist zs) U {(v,a)}
by (simp add: insert-def alist-add-Cons)

lemma insert-push:
distinct (vals ©s) =
v ¢ set (vals zs) =
set (dfs alist (insert a v xs)) = set (PQ.alist-of (PQ.push v a (pqueuve xs)))
by (simp add: alist-pqueue vals-pqueue set-insort-key)

lemma insert-p-push:
assumes distinct (vals xs)
and v ¢ set (vals zs)
shows set (prios (insert a v xs)) = set || PQ.push v a (pqueue xs)l|
proof —
from assms
have set (dfs alist (insert a v xs)) =
set (PQ.alist-of (PQ.push v a (pqueuve xs)))
by (rule insert-push)
thus %thesis by (simp add: alist-split-set priorities-set)
qed

lemma empty-empty:
normalized xs = xs = empty «— PQ.is-empty (pqueue xs)
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proof (rule iffI)
assume zs = [| then show PQ.is-empty (pqueue zs) by simp
next
assume N: normalized s and E: PQ.is-empty (pqueue xs)
show zs = []
proof (rule ccontr)
assume zs # ||
with N have set (vals zs) # {}
by (induct zs) (simp-all add: bt-dfs-simp dfs-append)
hence set |pqueue xs| # {} by (simp add: vals-pqueuve)

moreover
from F have set |pqueue zs| = {} by (simp add: is-empty-empty)

ultimately show Fulse by simp
qed
qed

lemma bt-dfs-Min-priority:
assumes is-heap t
shows priority t = Min (set (bt-dfs priority t))
using assms
proof (induct priority t children t arbitrary: t)
case is-heap-list-Nil then show ?case by (simp add: bt-dfs-simp)
next
case (is-heap-list-Cons rs r t) note cons = this
let ?M = Min (set (bt-dfs priority t))

obtain t’ where t' = Node (priority t) (val t) rs by auto

hence ot: rs = children t’ priority t' = priority t by simp-all

with is-heap-list-Cons have priority t = Min (set (bt-dfs priority t'))
by simp

with ot
have priority t = Min (Set.insert (priority t) (set (bts-dfs priority rs)))
by (simp add: bt-dfs-simp)

moreover
from cons have priority r = Min (set (bt-dfs priority r)) by simp

moreover
from cons have children t = r # rs by simp
then have bts-dfs priority (children t) =

(bt-dfs priority r) Q (bts-dfs priority rs) by simp
hence bt-dfs priority t =

priority t # (bt-dfs priority r Q bts-dfs priority rs)
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by (simp add: bt-dfs-simp)

hence A: M = Min
(Set.insert (priority t) (set (bt-dfs priority r) U set (bts-dfs priority rs)))
by simp

have Set.insert (priority t) (set (bt-dfs priority r)
U set (bts-dfs priority rs))
Set.insert (priority t) (set
by auto

with A have ?M = Min
(Set.insert (priority t) (set (bts-dfs priority rs)) U set (bt-dfs priority r))
by simp

(bts-dfs priority rs)) U set (bt-dfs priority r)

with Min-Un
[of Set.insert (priority t) (set (bts-dfs priority rs)) set (bt-dfs priority r)]
have ?M =
ord-class.min (Min (Set.insert (priority t) (set (bts-dfs priority rs))))
(Min (set (bt-dfs priority r)))
by (auto simp add: bt-dfs-simp)

ultimately
have ?M = ord-class.min (priority t) (priority r) by simp

with <priority t < priority r» show Zcase by (auto simp add: ord-class.min-def)
qed

lemma is-binqueue-min-Min-prios:
assumes is-binqueue [ s
and normalized xs
and zs # []
shows min xs = Some (Min (set (prios zs)))
using assms
proof (induct zs)
case (Some | s z) then show ?Zcase
proof (cases xs # [])
case Fulse with Some show ?thesis
using bt-dfs-Min-priority[of z] by (simp add: min-single)
next
case True note T = this Some

from T have normalized xs by simp
with «zs # []> have prios xs # [| by (induct xs) (simp-all add: bt-dfs-simp)
with T show ?thesis

using Min-Unlof set (bt-dfs priority x) set (prios xs)]

using bt-dfs-Min-priority|of x
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by (auto simp add: bt-dfs-simp ord-class.min-def)
qed
qed simp-all

lemma min-p-min:

assumes is-binqueue | s

and zs # ||

and normalized xs

and distinct (vals xs)

and distinct (prios zs)

shows min xs = PQ.priority (pqueue xs) (PQ.min (pqueue xs))
proof —

from <zs # []» «<normalized xs» have = PQ.is-empty (pqueue zs)

by (simp add: empty-empty)

moreover
from assms have min zs = Some (Min (set (prios xs)))
by (simp add: is-binqueue-min-Min-prios)
with «distinct (vals xs)» have min xs = Some (Min (set || pqueue zs|| ))
by (simp add: prios-pqueue)

ultimately show ?thesis
by (simp add: priority-Min-priorities [where ¢ = pqueue xs| )
qed

lemma find-min-p-min:
assumes is-binqueue [ s
and zs # |]
and normalized xs
and distinct (vals xs)
and distinct (prios zs)
shows priority (the (find-min xs)) =
the (PQ.priority (pqueue xs) (PQ.min (pqueue xs)))
proof —
from assms have min xs # None by (simp add: normalized-min-not-None)
from assms have min xs = PQ.priority (pqueue zs) (PQ.min (pqueue xs))
by (simp add: min-p-min)
with «min zs # None> show ?thesis by (auto simp add: min-eq-find-min-Some)
qed

lemma find-min-v-min:
assumes is-binqueue [ s
and zs # ||
and normalized zs
and distinct (vals xs)
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and distinct (prios xs)
shows wval (the (find-min zs)) = PQ.min (pqueue zs)
proof —
from assms have min xs # None by (simp add: normalized-min-not-None)
then obtain a where oa: Some a = min zs by auto
then obtain ¢t where ot: find-min xs = Some t priority t = a
using min-eq-find-min-Some [of zs a] by auto

hence *: (val t, a) € set (dfs alist xs)
by (auto simp add: find-min-exist in-set-in-alist)

have PQ.min (pqueue zs) = val t

proof (rule ccontr)
assume A: PQ.min (pqueue xs) # val t
then obtain ¢’ where ot":PQ.min (pqueue xs) = t’ by simp
with A have NE: val t # t' by simp

from ot’ oa assms have (t', a) € set (dfs alist xs)
by (simp add: alist-pqueuwe PQ.priority-def min-p-min)

with x NE have — distinct (prios xs)
unfolding alist-split(2)
unfolding dfs-comp
by (induct (dfs alist xs)) (auto simp add: rev-image-eql)
with <distinct (prios zs)> show False by simp
qed
with ot show ?thesis by auto
qed

lemma alist-normalize-idem:
dfs alist (normalize xs) = dfs alist zs
unfolding normalize-def
proof (induct xs rule: rev-induct)
case (snoc ¢ xs) then show ?case by (cases z) (simp-all add: dfs-append)
qed simp

lemma dfs-match-not-in:
(V t. Some t € set s — priority t # a) =
set (dfs f (map (match a) xs)) = set (dfs f zs)
by (induct zs) simp-all

lemma dfs-match-subset:
set (dfs f (map (match a) zs)) C set (dfs f xs)
proof (induct xs rule: list.induct)
case (Cons z zs) then show ?case by (cases x) auto
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qed simp

lemma dfs-match-distinct:
distinct (dfs f xs) = distinct (dfs f (map (match a) xs))
proof (induct zs rule: list.induct)
case (Cons z zs) then show ?case
using dfs-match-subset|of f a xs]
by (cases x, auto)
qed simp

lemma dfs-match:
distinct (prios xs) =
distinct (dfs f zs) =
Some t € set xs =
priority t = a =
set (dfs f (map (match a) zs)) = set (dfs f xs) — set (bt-dfs f t)
proof (induct xs arbitrary: t)
case (Some r zs t) then show ?case
proof (cases t = r)
case True
from Some have priority r ¢ set (prios xs) by (auto simp add: bt-dfs-simp)
with Some True have a ¢ set (prios xs) by simp
hence V s. Some s € set xs — priority s # a
by (induct zs) (auto simp add: bt-dfs-simp)
hence set (dfs f (map (match a) xs)) = set (dfs f xs)
by (simp add: dfs-match-not-in)
with True Some show ?thesis by auto
next
case Fulse
with Some.prems have Some t € set zs by simp
with <priority t = a» have a € set (prios zs)
proof (induct xs)
case (Some z xs) then show ?case
by (cases t = z) (simp-all add: bt-dfs-simp)
qed simp-all
with Fualse Some have priority v # a by (auto simp add: bt-dfs-simp)

moreover

from Some False
have set (dfs f (map (match a) xs)) = set (dfs f xs) — set (bt-dfs f t)
by simp

moreover

from Some.prems False have set (bt-dfs ft) N set (bt-dfs fr) = {}
by (induct zs) auto
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hence set (bt-dfs fr) — set (bt-dfs f t) = set (bt-dfs fr) by auto

ultimately show ?thesis by auto
qed
qed simp-all

lemma alist-meld:
distinct (dfs val xs) = distinct (dfs val ys) =
set (dfs val zs) N set (dfs val ys) = {} =
set (dfs alist (meld xs ys)) = set (dfs alist xs) U set (dfs alist ys)
proof (induct zs ys rule: meld.induct)
case (3 zs y ys)
have set (dfs alist (y # meld zs ys)) =
set (dfs alist xs) U set (dfs alist (y # ys))
proof —
note assms = 3
from assms have set (vals zs) N set (vals ys) = {}
using set-dfs-Cons[of val y ys] by auto

moreover
from assms have distinct (vals ys) by (cases y) simp-all

moreover
from assms have distinct (vals zs) by simp

moreover note assms
ultimately have set (dfs alist (meld xs ys)) =
set (dfs alist xs) U set (dfs alist ys) by simp

hence set (dfs alist (y # meld zs ys)) =
set (dfs alist [y]) U set (dfs alist xs) U set (dfs alist ys)
using set-dfs-Cons|of alist y meld xs ys|] by auto

then show ?thesis using set-dfs-Cons|of alist y ys| by auto
qed
thus ?case by simp
next
case (4 z s ys)
have set (dfs alist (x # meld zs ys)) =
set (dfs alist (x # xs)) U set (dfs alist ys)
proof —
note assms = 4
from assms have set (vals zs) N set (vals ys) = {}
using set-dfs-Cons|of val x zs] by auto
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moreover
from assms have distinct (vals zs) by (cases x) simp-all

moreover
from assms have distinct (vals ys) by simp

moreover note assms
ultimately have set (dfs alist (meld zs ys)) =
set (dfs alist zs) U set (dfs alist ys) by simp

hence set (dfs alist (x # meld zs ys)) =
set (dfs alist [z]) U set (dfs alist xs) U set (dfs alist ys)
using set-dfs-Cons[of alist x meld zs ys] by auto

then show ?thesis using set-dfs-Cons|of alist x xs] by auto
qed
thus ?case by simp
next
case (5 T s y ys)
have set (dfs alist (add (Some (merge x y)) (meld zs ys))) =
set (bt-dfs alist ) U set (dfs alist xs)
U set (bt-dfs alist y) U set (dfs alist ys)
proof —
note assms = 5

from assms have distinct (bt-dfs val x) distinct (bt-dfs val y) by simp-all
moreover from assms have zyint:

set (bt-dfs val ) N set (bt-dfs val y) = {} by (auto simp add: set-dfs-Cons)
ultimately have x: set (dfs alist [Some (merge x y)]) =

set (bt-dfs alist ) U set (bt-dfs alist y) by auto

moreover
from assms
have xx: set (dfs alist (meld zs ys)) = set (dfs alist xs) U set (dfs alist ys)
by (auto simp add: set-dfs-Cons)

moreover
from assms have distinct (vals (Some (merge x y) # meld xs ys))
proof —
from assms zyint have distinct (bt-dfs val (merge z y))
by (simp add: vals-merge-distinct)

moreover

from assms have
distinct (vals xs)
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and distinct (vals ys)
and set (vals xs) N set (vals ys) = {}
by (auto simp add: set-dfs-Cons)
hence distinct (vals (meld zs ys)) by (rule vals-meld-distinct)

moreover
from assms
have set (bt-dfs val (merge x y)) N set (vals (meld zs ys)) = {}
by (auto simp add: vals-meld)

ultimately show ?thesis by simp
qed

ultimately show ?thesis by (auto simp add: alist-add-Cons)
qed
thus “case by auto
qed simp-all

lemma alist-delete-min:
assumes distinct (vals zs)
and distinct (prios zs)
and find-min zs = Some (Node a v ts)
shows set (dfs alist (delete-min xzs)) = set (dfs alist xs) — {(v, a)}
proof —
from <distinct (vals xs)> have d: distinct (dfs alist xs)
using dfs-comp-distinct|of fst alist xs]
by (simp only: alist-split)

from assms have IN: Some (Node a v ts) € set s
by (simp add: find-min-exist)

hence sub: set (bts-dfs alist ts) C set (dfs alist zs)
by (induct zs) (auto simp add: bt-dfs-simp)

from d IN have (v,a) ¢ set (bts-dfs alist ts)

using dfs-distinct-member|of alist xs Node a v ts| by simp
with sub have set (bts-dfs alist ts) C set (dfs alist xs) — {(v,a)} by blast
hence nu: set (bts-dfs alist ts) U (set (dfs alist zs) — {(v,a)}) =

set (dfs alist xs) — {(v,a)} by auto

from assms have distinct (vals (map (match a) xs))
by (simp add: dfs-match-distinct)

moreover

from IN assms have distinct (bts-dfs val ts)
using dfs-distinct-member|of val xs Node a v ts]
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by (simp add: bt-dfs-distinct-children)
hence distinct (vals (map Some (rev ts)))
by (simp add: bts-dfs-rev-distinct dfs-map-Some-idem)

moreover
from assms IN have set (dfs val (map (match a) zs)) =
set (dfs val zs) — set (bt-dfs val (Node a v ts))
by (simp add: dfs-match)
hence set (vals (map (match a) xs)) N set (vals (map Some (rev ts))) = {}
by (auto simp add: dfs-map-Some-idem set-bts-dfs-rev)

ultimately

have set (dfs alist (meld (map Some (rev ts)) (map (match a) xs))) =
set (dfs alist (map Some (rev ts))) U set (dfs alist (map (match a) xs))
using alist-meld by auto

with assms d IN nu show ?thesis
by (simp add: delete-min-def alist-normalize-idem set-bts-dfs-rev dfs-map-Some-idem
dfs-match Diff-insert2 [of set (dfs alist xs) (v,a) set (bts-dfs alist ts)])
qed

lemma alist-remove-min:
assumes is-binqueue [ xs
and distinct (vals xs)
and distinct (prios zs)
and normalized zs
and zs # ||
shows set (dfs alist (delete-min zs)) =
set (PQ.alist-of (PQ.remove-min (pgqueuve zs)))
proof —
from assms obtain t where ot: find-min xs = Some t
using normalized-find-min-exists by auto
with assms show ?thesis
proof (cases t)
case (Node a v ys)
from assms have = PQ.is-empty (pqueue zs) by (simp add: empty-empty)
hence set (PQ.alist-of (PQ.remove-min (pqueue xs))) =
set (PQ.alist-of (pqueue xs)) — {(PQ.min (pqueue zs),
the (PQ.priority (pqueue xs) (PQ.min (pqueue xs))))}
by (simp add: set-alist-of-remove-min[of pqueue xs| del: alist-of-remove-min)

moreover

from assms ot Node

have set (dfs alist (delete-min xs)) = set (dfs alist xs) — {(v, a)}
using alist-delete-min[of xs] by simp
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moreover

from Node ot have priority (the (find-min zs)) = a by simp

with assms have a = the (PQ.priority (pqueue zs) (PQ.min (pqueue xs)))
by (simp add: find-min-p-min)

moreover
from Node ot have val (the (find-min xs)) = v by simp
with assms have v = PQ.min (pgqueuve zs) by (simp add: find-min-v-min)

moreover note <distinct (vals xs)»
ultimately show ?thesis by (simp add: alist-pqueue)
qed
qed

no-notation

PQ.values (<|(-)]>)
and PQ.priorities (<||(-)]]»)
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