
BinarySearchTree

Larry Paulson

September 13, 2023

Contents
1 Isar-style Reasoning for Binary Tree Operations 1

2 Tree Definition 1

3 Tree Lookup 2
3.1 Tree membership as a special case of lookup 5

4 Insertion into a Tree 6

5 Removing an element from a tree 9

6 Mostly Isar-style Reasoning for Binary Tree Operations 17

7 Map implementation and an abstraction function 17

8 Auxiliary Properties of our Implementation 18
8.1 Lemmas mapset-none and mapset-some establish a relation

between the set and map abstraction of the tree 18

9 Empty Map 20

10 Map Update Operation 20

11 Map Remove Operation 21

12 Tactic-Style Reasoning for Binary Tree Operations 22

13 Definition of a sorted binary tree 22

14 Tree Membership 23

15 Insertion operation 23

16 Remove operation 23

1

1 Isar-style Reasoning for Binary Tree Operations
theory BinaryTree imports Main begin

We prove correctness of operations on binary search tree implementing a
set.
This document is LGPL.
Author: Viktor Kuncak, MIT CSAIL, November 2003

2 Tree Definition
datatype ′a Tree = Tip | T ′a Tree ′a ′a Tree

primrec
setOf :: ′a Tree => ′a set
— set abstraction of a tree

where
setOf Tip = {}

| setOf (T t1 x t2) = (setOf t1) Un (setOf t2) Un {x}

type-synonym
— we require index to have an irreflexive total order <
— apart from that, we do not rely on index being int
index = int

type-synonym — hash function type
′a hash = ′a => index

definition eqs :: ′a hash => ′a => ′a set where
— equivalence class of elements with the same hash code
eqs h x == {y. h y = h x}

primrec
sortedTree :: ′a hash => ′a Tree => bool
— check if a tree is sorted

where
sortedTree h Tip = True

| sortedTree h (T t1 x t2) =
(sortedTree h t1 &
(∀ l ∈ setOf t1 . h l < h x) &
(∀ r ∈ setOf t2 . h x < h r) &
sortedTree h t2)

lemma sortLemmaL:
sortedTree h (T t1 x t2) ==> sortedTree h t1 by simp

lemma sortLemmaR:
sortedTree h (T t1 x t2) ==> sortedTree h t2 by simp

2

3 Tree Lookup
primrec

tlookup :: ′a hash => index => ′a Tree => ′a option
where

tlookup h k Tip = None
| tlookup h k (T t1 x t2) =

(if k < h x then tlookup h k t1
else if h x < k then tlookup h k t2
else Some x)

lemma tlookup-none:
sortedTree h t & (tlookup h k t = None) −−> (∀ x∈setOf t. h x ∼= k)

by (induct t, auto)

lemma tlookup-some:
sortedTree h t & (tlookup h k t = Some x) −−> x:setOf t & h x = k

apply (induct t)
— Just auto will do it, but very slowly

apply (simp)
apply (clarify, auto)
apply (simp-all split: if-split-asm)
done

definition sorted-distinct-pred :: ′a hash => ′a => ′a => ′a Tree => bool where
— No two elements have the same hash code
sorted-distinct-pred h a b t == sortedTree h t &

a:setOf t & b:setOf t & h a = h b −−>
a = b

declare sorted-distinct-pred-def [simp]

— for case analysis on three cases
lemma cases3 : [| C1 ==> G; C2 ==> G; C3 ==> G;

C1 | C2 | C3 |] ==> G
by auto

sorted-distinct-pred holds for out trees:
lemma sorted-distinct: sorted-distinct-pred h a b t (is ?P t)
proof (induct t)

show ?P Tip by simp
fix t1 :: ′a Tree assume h1 : ?P t1
fix t2 :: ′a Tree assume h2 : ?P t2
fix x :: ′a
show ?P (T t1 x t2)
proof (unfold sorted-distinct-pred-def , safe)

assume s: sortedTree h (T t1 x t2)
assume adef : a : setOf (T t1 x t2)
assume bdef : b : setOf (T t1 x t2)

3

assume hahb: h a = h b
from s have s1 : sortedTree h t1 by auto
from s have s2 : sortedTree h t2 by auto
show a = b
— We consider 9 cases for the position of a and b are in the tree
proof −
— three cases for a
from adef have a : setOf t1 | a = x | a : setOf t2 by auto
moreover { assume adef1 : a : setOf t1

have ?thesis
proof −
— three cases for b
from bdef have b : setOf t1 | b = x | b : setOf t2 by auto
moreover { assume bdef1 : b : setOf t1

from s1 adef1 bdef1 hahb h1 have ?thesis by simp }
moreover { assume bdef1 : b = x

from adef1 bdef1 s have h a < h b by auto
from this hahb have ?thesis by simp }

moreover { assume bdef1 : b : setOf t2
from adef1 s have o1 : h a < h x by auto
from bdef1 s have o2 : h x < h b by auto
from o1 o2 have h a < h b by simp
from this hahb have ?thesis by simp } — case impossible

ultimately show ?thesis by blast
qed

}
moreover { assume adef1 : a = x

have ?thesis
proof −
— three cases for b
from bdef have b : setOf t1 | b = x | b : setOf t2 by auto
moreover { assume bdef1 : b : setOf t1

from this s have h b < h x by auto
from this adef1 have h b < h a by auto
from hahb this have ?thesis by simp } — case impossible

moreover { assume bdef1 : b = x
from adef1 bdef1 have ?thesis by simp }

moreover { assume bdef1 : b : setOf t2
from this s have h x < h b by auto
from this adef1 have h a < h b by simp
from hahb this have ?thesis by simp } — case impossible

ultimately show ?thesis by blast
qed

}
moreover { assume adef1 : a : setOf t2

have ?thesis
proof −
— three cases for b
from bdef have b : setOf t1 | b = x | b : setOf t2 by auto

4

moreover { assume bdef1 : b : setOf t1
from bdef1 s have o1 : h b < h x by auto
from adef1 s have o2 : h x < h a by auto
from o1 o2 have h b < h a by simp
from this hahb have ?thesis by simp } — case impossible

moreover { assume bdef1 : b = x
from adef1 bdef1 s have h b < h a by auto
from this hahb have ?thesis by simp } — case impossible

moreover { assume bdef1 : b : setOf t2
from s2 adef1 bdef1 hahb h2 have ?thesis by simp }

ultimately show ?thesis by blast
qed

}
ultimately show ?thesis by blast
qed

qed
qed

lemma tlookup-finds: — if a node is in the tree, lookup finds it
sortedTree h t & y:setOf t −−>
tlookup h (h y) t = Some y

proof safe
assume s: sortedTree h t
assume yint: y : setOf t
show tlookup h (h y) t = Some y
proof (cases tlookup h (h y) t)
case None note res = this

from s res have sortedTree h t & (tlookup h (h y) t = None) by simp
from this have o1 : ∀ x∈setOf t. h x ∼= h y by (simp add: tlookup-none)
from o1 yint have h y ∼= h y by fastforce
from this show ?thesis by simp

next case (Some z) note res = this
have ls: sortedTree h t & (tlookup h (h y) t = Some z) −−>

z:setOf t & h z = h y by (simp add: tlookup-some)
have sd: sorted-distinct-pred h y z t
by (insert sorted-distinct [of h y z t], simp)

from s res ls have o1 : z:setOf t & h z = h y by simp
from s yint o1 sd have y = z by auto
from this res show tlookup h (h y) t = Some y by simp

qed
qed

3.1 Tree membership as a special case of lookup
definition memb :: ′a hash => ′a => ′a Tree => bool where

memb h x t ==
(case (tlookup h (h x) t) of

None => False

5

| Some z => (x=z))

lemma assumes s: sortedTree h t
shows memb-spec: memb h x t = (x : setOf t)

proof (cases tlookup h (h x) t)
case None note tNone = this

from tNone have res: memb h x t = False by (simp add: memb-def)
from s tNone tlookup-none have o1 : ∀ y∈setOf t. h y ∼= h x by fastforce
have notIn: x ∼: setOf t
proof

assume h: x : setOf t
from h o1 have h x ∼= h x by fastforce
from this show False by simp

qed
from res notIn show ?thesis by simp

next case (Some z) note tSome = this
from s tSome tlookup-some have zin: z : setOf t by fastforce
show ?thesis
proof (cases x=z)
case True note xez = this

from tSome xez have res: memb h x t by (simp add: memb-def)
from res zin xez show ?thesis by simp

next case False note xnez = this
from tSome xnez have res: ∼ memb h x t by (simp add: memb-def)
have x ∼: setOf t
proof

assume xin: x : setOf t
from s tSome tlookup-some have hzhx: h x = h z by fastforce
have o1 : sorted-distinct-pred h x z t
by (insert sorted-distinct [of h x z t], simp)
from s xin zin hzhx o1 have x = z by fastforce
from this xnez show False by simp

qed
from this res show ?thesis by simp

qed
qed

declare sorted-distinct-pred-def [simp del]

4 Insertion into a Tree
primrec

binsert :: ′a hash => ′a => ′a Tree => ′a Tree
where

binsert h e Tip = (T Tip e Tip)
| binsert h e (T t1 x t2) = (if h e < h x then

(T (binsert h e t1) x t2)
else
(if h x < h e then

6

(T t1 x (binsert h e t2))
else (T t1 e t2)))

A technique for proving disjointness of sets.
lemma disjCond: [| !! x. [| x:A; x:B |] ==> False |] ==> A Int B = {}
by fastforce

The following is a proof that insertion correctly implements the set interface.
Compared to BinaryTree-TacticStyle, the claim is more difficult, and this
time we need to assume as a hypothesis that the tree is sorted.
lemma binsert-set: sortedTree h t −−>

setOf (binsert h e t) = (setOf t) − (eqs h e) Un {e}
(is ?P t)

proof (induct t)
— base case
show ?P Tip by (simp add: eqs-def)
— inductition step
fix t1 :: ′a Tree assume h1 : ?P t1
fix t2 :: ′a Tree assume h2 : ?P t2
fix x :: ′a
show ?P (T t1 x t2)
proof

assume s: sortedTree h (T t1 x t2)
from s have s1 : sortedTree h t1 by (rule sortLemmaL)
from s1 and h1 have c1 : setOf (binsert h e t1) = setOf t1 − eqs h e Un {e}

by simp
from s have s2 : sortedTree h t2 by (rule sortLemmaR)
from s2 and h2 have c2 : setOf (binsert h e t2) = setOf t2 − eqs h e Un {e}

by simp
show setOf (binsert h e (T t1 x t2)) =

setOf (T t1 x t2) − eqs h e Un {e}
proof (cases h e < h x)

case True note eLess = this
from eLess have res: binsert h e (T t1 x t2) = (T (binsert h e t1) x t2) by

simp
show setOf (binsert h e (T t1 x t2)) =

setOf (T t1 x t2) − eqs h e Un {e}
proof (simp add: res eLess c1)

show insert x (insert e (setOf t1 − eqs h e Un setOf t2)) =
insert e (insert x (setOf t1 Un setOf t2) − eqs h e)

proof −
have eqsLessX : ∀ el ∈ eqs h e. h el < h x by (simp add: eqs-def eLess)
from this have eqsDisjX : ∀ el ∈ eqs h e. h el ∼= h x by fastforce
from s have xLessT2 : ∀ r ∈ setOf t2 . h x < h r by auto
have eqsLessT2 : ∀ el ∈ eqs h e. ∀ r ∈ setOf t2 . h el < h r
proof safe

fix el assume hel: el : eqs h e
from hel eqs-def have o1 : h el = h e by fastforce
fix r assume hr : r : setOf t2

7

from xLessT2 hr o1 eLess show h el < h r by auto
qed
from eqsLessT2 have eqsDisjT2 : ∀ el ∈ eqs h e. ∀ r ∈ setOf t2 . h el ∼=

h r
by fastforce
from eqsDisjX eqsDisjT2 show ?thesis by fastforce

qed
qed

next case False note eNotLess = this
show setOf (binsert h e (T t1 x t2)) = setOf (T t1 x t2) − eqs h e Un {e}
proof (cases h x < h e)

case True note xLess = this
from xLess have res: binsert h e (T t1 x t2) = (T t1 x (binsert h e t2)) by

simp
show setOf (binsert h e (T t1 x t2)) =

setOf (T t1 x t2) − eqs h e Un {e}
proof (simp add: res xLess eNotLess c2)

show insert x (insert e (setOf t1 Un (setOf t2 − eqs h e))) =
insert e (insert x (setOf t1 Un setOf t2) − eqs h e)

proof −
have XLessEqs: ∀ el ∈ eqs h e. h x < h el by (simp add: eqs-def xLess)
from this have eqsDisjX : ∀ el ∈ eqs h e. h el ∼= h x by auto
from s have t1LessX : ∀ l ∈ setOf t1 . h l < h x by auto
have T1lessEqs: ∀ el ∈ eqs h e. ∀ l ∈ setOf t1 . h l < h el
proof safe

fix el assume hel: el : eqs h e
fix l assume hl: l : setOf t1
from hel eqs-def have o1 : h el = h e by fastforce
from t1LessX hl o1 xLess show h l < h el by auto

qed
from T1lessEqs have T1disjEqs: ∀ el ∈ eqs h e. ∀ l ∈ setOf t1 . h el ∼=

h l
by fastforce
from eqsDisjX T1lessEqs show ?thesis by auto

qed
qed

next case False note xNotLess = this
from xNotLess eNotLess have xeqe: h x = h e by simp
from xeqe have res: binsert h e (T t1 x t2) = (T t1 e t2) by simp
show setOf (binsert h e (T t1 x t2)) =

setOf (T t1 x t2) − eqs h e Un {e}
proof (simp add: res eNotLess xeqe)

show insert e (setOf t1 Un setOf t2) =
insert e (insert x (setOf t1 Un setOf t2) − eqs h e)

proof −
have insert x (setOf t1 Un setOf t2) − eqs h e =

setOf t1 Un setOf t2
proof −

have x : eqs h e by (simp add: eqs-def xeqe)

8

moreover have (setOf t1) Int (eqs h e) = {}
proof (rule disjCond)

fix w
assume whSet: w : setOf t1
assume whEq: w : eqs h e
from whSet s have o1 : h w < h x by simp
from whEq eqs-def have o2 : h w = h e by fastforce
from o2 xeqe have o3 : ∼ h w < h x by simp
from o1 o3 show False by contradiction

qed
moreover have (setOf t2) Int (eqs h e) = {}
proof (rule disjCond)

fix w
assume whSet: w : setOf t2
assume whEq: w : eqs h e
from whSet s have o1 : h x < h w by simp
from whEq eqs-def have o2 : h w = h e by fastforce
from o2 xeqe have o3 : ∼ h x < h w by simp
from o1 o3 show False by contradiction

qed
ultimately show ?thesis by auto

qed
from this show ?thesis by simp

qed
qed

qed
qed

qed
qed

Using the correctness of set implementation, preserving sortedness is still
simple.
lemma binsert-sorted: sortedTree h t −−> sortedTree h (binsert h x t)
by (induct t) (auto simp add: binsert-set)

We summarize the specification of binsert as follows.
corollary binsert-spec: sortedTree h t −−>

sortedTree h (binsert h x t) &
setOf (binsert h e t) = (setOf t) − (eqs h e) Un {e}

by (simp add: binsert-set binsert-sorted)

5 Removing an element from a tree

These proofs are influenced by those in BinaryTree-Tactic
primrec

rm :: ′a hash => ′a Tree => ′a
— rightmost element of a tree

9

where
rm h (T t1 x t2) =
(if t2=Tip then x else rm h t2)

primrec
wrm :: ′a hash => ′a Tree => ′a Tree
— tree without the rightmost element

where
wrm h (T t1 x t2) =
(if t2=Tip then t1 else (T t1 x (wrm h t2)))

primrec
wrmrm :: ′a hash => ′a Tree => ′a Tree ∗ ′a
— computing rightmost and removal in one pass

where
wrmrm h (T t1 x t2) =
(if t2=Tip then (t1 ,x)
else (T t1 x (fst (wrmrm h t2)),

snd (wrmrm h t2)))

primrec
remove :: ′a hash => ′a => ′a Tree => ′a Tree
— removal of an element from the tree

where
remove h e Tip = Tip

| remove h e (T t1 x t2) =
(if h e < h x then (T (remove h e t1) x t2)
else if h x < h e then (T t1 x (remove h e t2))
else (if t1=Tip then t2

else let (t1p,r) = wrmrm h t1
in (T t1p r t2)))

theorem wrmrm-decomp: t ∼= Tip −−> wrmrm h t = (wrm h t, rm h t)
apply (induct-tac t)
apply simp-all
done

lemma rm-set: t ∼= Tip & sortedTree h t −−> rm h t : setOf t
apply (induct-tac t)
apply simp-all
done

lemma wrm-set: t ∼= Tip & sortedTree h t −−>
setOf (wrm h t) = setOf t − {rm h t} (is ?P t)

proof (induct t)
show ?P Tip by simp
fix t1 :: ′a Tree assume h1 : ?P t1
fix t2 :: ′a Tree assume h2 : ?P t2
fix x :: ′a

10

show ?P (T t1 x t2)
proof (rule impI , erule conjE)

assume s: sortedTree h (T t1 x t2)
show setOf (wrm h (T t1 x t2)) =

setOf (T t1 x t2) − {rm h (T t1 x t2)}
proof (cases t2 = Tip)
case True note t2tip = this

from t2tip have rm-res: rm h (T t1 x t2) = x by simp
from t2tip have wrm-res: wrm h (T t1 x t2) = t1 by simp
from s have x ∼: setOf t1 by auto
from this rm-res wrm-res t2tip show ?thesis by simp

next case False note t2nTip = this
from t2nTip have rm-res: rm h (T t1 x t2) = rm h t2 by simp
from t2nTip have wrm-res: wrm h (T t1 x t2) = T t1 x (wrm h t2) by simp
from s have s2 : sortedTree h t2 by simp
from h2 t2nTip s2
have o1 : setOf (wrm h t2) = setOf t2 − {rm h t2} by simp
show ?thesis
proof (simp add: rm-res wrm-res t2nTip h2 o1)

show insert x (setOf t1 Un (setOf t2 − {rm h t2})) =
insert x (setOf t1 Un setOf t2) − {rm h t2}

proof −
from s rm-set t2nTip have xOk: h x < h (rm h t2) by auto
have t1Ok: ∀ l ∈ setOf t1 . h l < h (rm h t2)
proof safe

fix l :: ′a assume ldef : l : setOf t1
from ldef s have lx: h l < h x by auto
from lx xOk show h l < h (rm h t2) by auto

qed
from xOk t1Ok show ?thesis by auto

qed
qed

qed
qed

qed

lemma wrm-set1 : t ∼= Tip & sortedTree h t −−> setOf (wrm h t) <= setOf t
by (auto simp add: wrm-set)

lemma wrm-sort: t ∼= Tip & sortedTree h t −−> sortedTree h (wrm h t) (is ?P
t)
proof (induct t)

show ?P Tip by simp
fix t1 :: ′a Tree assume h1 : ?P t1
fix t2 :: ′a Tree assume h2 : ?P t2
fix x :: ′a
show ?P (T t1 x t2)
proof safe

assume s: sortedTree h (T t1 x t2)

11

show sortedTree h (wrm h (T t1 x t2))
proof (cases t2 = Tip)
case True note t2tip = this

from t2tip have res: wrm h (T t1 x t2) = t1 by simp
from res s show ?thesis by simp

next case False note t2nTip = this
from t2nTip have res: wrm h (T t1 x t2) = T t1 x (wrm h t2) by simp
from s have s1 : sortedTree h t1 by simp
from s have s2 : sortedTree h t2 by simp
from s2 h2 t2nTip have o1 : sortedTree h (wrm h t2) by simp
from s2 t2nTip wrm-set1 have o2 : setOf (wrm h t2) <= setOf t2 by auto
from s o2 have o3 : ∀ r ∈ setOf (wrm h t2). h x < h r by auto
from s1 o1 o3 res s show sortedTree h (wrm h (T t1 x t2)) by simp

qed
qed

qed

lemma wrm-less-rm:
t ∼= Tip & sortedTree h t −−>
(∀ l ∈ setOf (wrm h t). h l < h (rm h t)) (is ?P t)

proof (induct t)
show ?P Tip by simp
fix t1 :: ′a Tree assume h1 : ?P t1
fix t2 :: ′a Tree assume h2 : ?P t2
fix x :: ′a
show ?P (T t1 x t2)
proof safe

fix l :: ′a assume ldef : l : setOf (wrm h (T t1 x t2))
assume s: sortedTree h (T t1 x t2)
from s have s1 : sortedTree h t1 by simp
from s have s2 : sortedTree h t2 by simp
show h l < h (rm h (T t1 x t2))
proof (cases t2 = Tip)
case True note t2tip = this

from t2tip have rm-res: rm h (T t1 x t2) = x by simp
from t2tip have wrm-res: wrm h (T t1 x t2) = t1 by simp
from ldef wrm-res have o1 : l : setOf t1 by simp
from rm-res o1 s show ?thesis by simp

next case False note t2nTip = this
from t2nTip have rm-res: rm h (T t1 x t2) = rm h t2 by simp
from t2nTip have wrm-res: wrm h (T t1 x t2) = T t1 x (wrm h t2) by simp
from ldef wrm-res
have l-scope: l : {x} Un setOf t1 Un setOf (wrm h t2) by simp
have hLess: h l < h (rm h t2)
proof (cases l = x)
case True note lx = this

from s t2nTip rm-set s2 have o1 : h x < h (rm h t2) by auto
from lx o1 show ?thesis by simp

next case False note lnx = this

12

show ?thesis
proof (cases l : setOf t1)
case True note l-in-t1 = this

from s t2nTip rm-set s2 have o1 : h x < h (rm h t2) by auto
from l-in-t1 s have o2 : h l < h x by auto
from o1 o2 show ?thesis by simp

next case False note l-notin-t1 = this
from l-scope lnx l-notin-t1
have l-in-res: l : setOf (wrm h t2) by auto
from l-in-res h2 t2nTip s2 show ?thesis by auto

qed
qed
from rm-res hLess show ?thesis by simp

qed
qed

qed

lemma remove-set: sortedTree h t −−>
setOf (remove h e t) = setOf t − eqs h e (is ?P t)

proof (induct t)
show ?P Tip by auto
fix t1 :: ′a Tree assume h1 : ?P t1
fix t2 :: ′a Tree assume h2 : ?P t2
fix x :: ′a
show ?P (T t1 x t2)
proof

assume s: sortedTree h (T t1 x t2)
show setOf (remove h e (T t1 x t2)) = setOf (T t1 x t2) − eqs h e
proof (cases h e < h x)
case True note elx = this

from elx have res: remove h e (T t1 x t2) = T (remove h e t1) x t2
by simp
from s have s1 : sortedTree h t1 by simp
from s1 h1 have o1 : setOf (remove h e t1) = setOf t1 − eqs h e by simp
show ?thesis
proof (simp add: o1 elx)

show insert x (setOf t1 − eqs h e Un setOf t2) =
insert x (setOf t1 Un setOf t2) − eqs h e

proof −
have xOk: x ∼: eqs h e
proof

assume h: x : eqs h e
from h have o1 : ∼ (h e < h x) by (simp add: eqs-def)
from elx o1 show False by contradiction

qed
have t2Ok: (setOf t2) Int (eqs h e) = {}
proof (rule disjCond)

fix y :: ′a
assume y-in-t2 : y : setOf t2

13

assume y-in-eq: y : eqs h e
from y-in-t2 s have xly: h x < h y by auto
from y-in-eq have eey: h y = h e by (simp add: eqs-def)
from xly eey have nelx: ∼ (h e < h x) by simp
from nelx elx show False by contradiction

qed
from xOk t2Ok show ?thesis by auto

qed
qed

next case False note nelx = this
show ?thesis
proof (cases h x < h e)
case True note xle = this

from xle have res: remove h e (T t1 x t2) = T t1 x (remove h e t2) by
simp

from s have s2 : sortedTree h t2 by simp
from s2 h2 have o1 : setOf (remove h e t2) = setOf t2 − eqs h e by simp
show ?thesis
proof (simp add: o1 xle nelx)

show insert x (setOf t1 Un (setOf t2 − eqs h e)) =
insert x (setOf t1 Un setOf t2) − eqs h e

proof −
have xOk: x ∼: eqs h e
proof

assume h: x : eqs h e
from h have o1 : ∼ (h x < h e) by (simp add: eqs-def)
from xle o1 show False by contradiction

qed
have t1Ok: (setOf t1) Int (eqs h e) = {}
proof (rule disjCond)

fix y :: ′a
assume y-in-t1 : y : setOf t1
assume y-in-eq: y : eqs h e
from y-in-t1 s have ylx: h y < h x by auto
from y-in-eq have eey: h y = h e by (simp add: eqs-def)
from ylx eey have nxle: ∼ (h x < h e) by simp
from nxle xle show False by contradiction

qed
from xOk t1Ok show ?thesis by auto

qed
qed

next case False note nxle = this
from nelx nxle have ex: h e = h x by simp
have t2Ok: (setOf t2) Int (eqs h e) = {}
proof (rule disjCond)

fix y :: ′a
assume y-in-t2 : y : setOf t2
assume y-in-eq: y : eqs h e
from y-in-t2 s have xly: h x < h y by auto

14

from y-in-eq have eey: h y = h e by (simp add: eqs-def)
from y-in-eq ex eey have nxly: ∼ (h x < h y) by simp
from nxly xly show False by contradiction

qed
show ?thesis
proof (cases t1 = Tip)
case True note t1tip = this

from ex t1tip have res: remove h e (T t1 x t2) = t2 by simp
show ?thesis
proof (simp add: res t1tip ex)

show setOf t2 = insert x (setOf t2) − eqs h e
proof −

from ex have x-in-eqs: x : eqs h e by (simp add: eqs-def)
from x-in-eqs t2Ok show ?thesis by auto

qed
qed

next case False note t1nTip = this
from nelx nxle ex t1nTip
have res: remove h e (T t1 x t2) =

T (wrm h t1) (rm h t1) t2
by (simp add: Let-def wrmrm-decomp)
from res show ?thesis
proof simp

from s have s1 : sortedTree h t1 by simp
show insert (rm h t1) (setOf (wrm h t1) Un setOf t2) =

insert x (setOf t1 Un setOf t2) − eqs h e
proof (simp add: t1nTip s1 rm-set wrm-set)

show insert (rm h t1) (setOf t1 − {rm h t1} Un setOf t2) =
insert x (setOf t1 Un setOf t2) − eqs h e

proof −
from t1nTip s1 rm-set
have o1 : insert (rm h t1) (setOf t1 − {rm h t1} Un setOf t2) =

setOf t1 Un setOf t2 by auto
have o2 : insert x (setOf t1 Un setOf t2) − eqs h e =

setOf t1 Un setOf t2
proof −
from ex have xOk: x : eqs h e by (simp add: eqs-def)
have t1Ok: (setOf t1) Int (eqs h e) = {}
proof (rule disjCond)

fix y :: ′a
assume y-in-t1 : y : setOf t1
assume y-in-eq: y : eqs h e
from y-in-t1 s ex have o1 : h y < h e by auto
from y-in-eq have o2 : ∼ (h y < h e) by (simp add: eqs-def)
from o1 o2 show False by contradiction

qed
from xOk t1Ok t2Ok show ?thesis by auto

qed
from o1 o2 show ?thesis by simp

15

qed
qed

qed
qed

qed
qed

qed
qed

lemma remove-sort: sortedTree h t −−>
sortedTree h (remove h e t) (is ?P t)

proof (induct t)
show ?P Tip by auto
fix t1 :: ′a Tree assume h1 : ?P t1
fix t2 :: ′a Tree assume h2 : ?P t2
fix x :: ′a
show ?P (T t1 x t2)
proof

assume s: sortedTree h (T t1 x t2)
from s have s1 : sortedTree h t1 by simp
from s have s2 : sortedTree h t2 by simp
from h1 s1 have sr1 : sortedTree h (remove h e t1) by simp
from h2 s2 have sr2 : sortedTree h (remove h e t2) by simp
show sortedTree h (remove h e (T t1 x t2))
proof (cases h e < h x)
case True note elx = this

from elx have res: remove h e (T t1 x t2) = T (remove h e t1) x t2
by simp
show ?thesis
proof (simp add: s sr1 s2 elx res)

let ?C1 = ∀ l ∈ setOf (remove h e t1). h l < h x
let ?C2 = ∀ r ∈ setOf t2 . h x < h r
have o1 : ?C1
proof −

from s1 have setOf (remove h e t1) = setOf t1 − eqs h e by (simp add:
remove-set)

from s this show ?thesis by auto
qed
from o1 s show ?C1 & ?C2 by auto

qed
next case False note nelx = this

show ?thesis
proof (cases h x < h e)
case True note xle = this

from xle have res: remove h e (T t1 x t2) = T t1 x (remove h e t2) by
simp

show ?thesis
proof (simp add: s s1 sr2 xle nelx res)

let ?C1 = ∀ l ∈ setOf t1 . h l < h x

16

let ?C2 = ∀ r ∈ setOf (remove h e t2). h x < h r
have o2 : ?C2
proof −
from s2 have setOf (remove h e t2) = setOf t2 − eqs h e by (simp add:

remove-set)
from s this show ?thesis by auto

qed
from o2 s show ?C1 & ?C2 by auto

qed
next case False note nxle = this

from nelx nxle have ex: h e = h x by simp
show ?thesis
proof (cases t1 = Tip)
case True note t1tip = this

from ex t1tip have res: remove h e (T t1 x t2) = t2 by simp
show ?thesis by (simp add: res t1tip ex s2)

next case False note t1nTip = this
from nelx nxle ex t1nTip
have res: remove h e (T t1 x t2) =

T (wrm h t1) (rm h t1) t2
by (simp add: Let-def wrmrm-decomp)
from res show ?thesis
proof simp

let ?C1 = sortedTree h (wrm h t1)
let ?C2 = ∀ l ∈ setOf (wrm h t1). h l < h (rm h t1)
let ?C3 = ∀ r ∈ setOf t2 . h (rm h t1) < h r
let ?C4 = sortedTree h t2
from s1 t1nTip have o1 : ?C1 by (simp add: wrm-sort)
from s1 t1nTip have o2 : ?C2 by (simp add: wrm-less-rm)
have o3 : ?C3
proof

fix r :: ′a
assume rt2 : r : setOf t2
from s rm-set s1 t1nTip have o1 : h (rm h t1) < h x by auto
from rt2 s have o2 : h x < h r by auto
from o1 o2 show h (rm h t1) < h r by simp

qed
from o1 o2 o3 s2 show ?C1 & ?C2 & ?C3 & ?C4 by simp

qed
qed

qed
qed

qed
qed

We summarize the specification of remove as follows.
corollary remove-spec: sortedTree h t −−>

sortedTree h (remove h e t) &
setOf (remove h e t) = setOf t − eqs h e

17

by (simp add: remove-sort remove-set)

definition test = tlookup id 4 (remove id 3 (binsert id 4 (binsert id 3 Tip)))

export-code test
in SML module-name BinaryTree-Code file ‹BinaryTree-Code.ML›

end

6 Mostly Isar-style Reasoning for Binary Tree Op-
erations

theory BinaryTree-Map imports BinaryTree begin

We prove correctness of map operations implemented using binary search
trees from BinaryTree.
This document is LGPL.
Author: Viktor Kuncak, MIT CSAIL, November 2003

7 Map implementation and an abstraction func-
tion

type-synonym
′a tarray = (index ∗ ′a) Tree

definition valid-tmap :: ′a tarray => bool where
valid-tmap t == sortedTree fst t

declare valid-tmap-def [simp]

definition mapOf :: ′a tarray => index => ′a option where
— the abstraction function from trees to maps
mapOf t i ==
(case (tlookup fst i t) of

None => None
| Some ia => Some (snd ia))

8 Auxiliary Properties of our Implementation
lemma mapOf-lookup1 : tlookup fst i t = None ==> mapOf t i = None
by (simp add: mapOf-def)

lemma mapOf-lookup2 : tlookup fst i t = Some (j,a) ==> mapOf t i = Some a
by (simp add: mapOf-def)

lemma assumes h: mapOf t i = None

18

shows mapOf-lookup3 : tlookup fst i t = None
proof (cases tlookup fst i t)
case None from this show ?thesis by assumption
next case (Some ia) note tsome = this

from this have o1 : tlookup fst i t = Some (fst ia, snd ia) by simp
have mapOf t i = Some (snd ia)
by (insert mapOf-lookup2 [of i t fst ia snd ia], simp add: o1)
from this have mapOf t i ∼= None by simp
from this h show ?thesis by simp — contradiction

qed

lemma assumes v: valid-tmap t
assumes h: mapOf t i = Some a
shows mapOf-lookup4 : tlookup fst i t = Some (i,a)

proof (cases tlookup fst i t)
case None

from this mapOf-lookup1 have mapOf t i = None by auto
from this h show ?thesis by simp — contradiction

next case (Some ia) note tsome = this
have tlookup-some-inst: sortedTree fst t & (tlookup fst i t = Some ia) −−>

ia : setOf t & fst ia = i by (simp add: tlookup-some)
from tlookup-some-inst tsome v have ia : setOf t by simp
from tsome have mapOf t i = Some (snd ia) by (simp add: mapOf-def)
from this h have o1 : snd ia = a by simp
from tlookup-some-inst tsome v have o2 : fst ia = i by simp
from o1 o2 have ia = (i,a) by auto
from this tsome show tlookup fst i t = Some (i, a) by simp

qed

8.1 Lemmas mapset-none and mapset-some establish a relation
between the set and map abstraction of the tree

lemma assumes v: valid-tmap t
shows mapset-none: (mapOf t i = None) = (∀ a. (i,a) /∈ setOf t)

proof
— ==>
assume mapNone: mapOf t i = None
from v mapNone mapOf-lookup3 have lnone: tlookup fst i t = None by auto
show ∀ a. (i,a) /∈ setOf t
proof

fix a
show (i,a) ∼: setOf t
proof

assume iain: (i,a) : setOf t
have tlookup-none-inst:
sortedTree fst t & (tlookup fst i t = None) −−> (∀ x ∈ setOf t. fst x ∼= i)
by (insert tlookup-none [of fst t i], assumption)
from v lnone tlookup-none-inst have ∀ x ∈ setOf t. fst x ∼= i by simp
from this iain have fst (i,a) ∼= i by fastforce

19

from this show False by simp
qed

qed
— <==
next assume h: ∀ a. (i,a) /∈ setOf t
show mapOf t i = None
proof (cases mapOf t i)
case None then show ?thesis .
next case (Some a) note mapsome = this

from v mapsome have o1 : tlookup fst i t = Some (i,a) by (simp add:
mapOf-lookup4)

from tlookup-some have tlookup-some-inst:
sortedTree fst t & tlookup fst i t = Some (i,a) −−>
(i,a) : setOf t & fst (i,a) = i

by (insert tlookup-some [of fst t i (i,a)], assumption)
from v o1 this have (i,a) : setOf t by simp
from this h show ?thesis by auto — contradiction

qed
qed

lemma assumes v: valid-tmap t
shows mapset-some: (mapOf t i = Some a) = ((i,a) : setOf t)

proof
— ==>
assume mapsome: mapOf t i = Some a
from v mapsome have o1 : tlookup fst i t = Some (i,a) by (simp add: mapOf-lookup4)
from tlookup-some have tlookup-some-inst:
sortedTree fst t & tlookup fst i t = Some (i,a) −−>
(i,a) : setOf t & fst (i,a) = i

by (insert tlookup-some [of fst t i (i,a)], assumption)
from v o1 this show (i,a) : setOf t by simp
— <==
next assume iain: (i,a) : setOf t
from v iain tlookup-finds have tlookup fst (fst (i,a)) t = Some (i,a) by fastforce
from this have tlookup fst i t = Some (i,a) by simp
from this show mapOf t i = Some a by (simp add: mapOf-def)

qed

9 Empty Map
lemma mnew-spec-valid: valid-tmap Tip
by (simp add: mapOf-def)

lemma mtip-spec-empty: mapOf Tip k = None
by (simp add: mapOf-def)

20

10 Map Update Operation
definition mupdate :: index => ′a => ′a tarray => ′a tarray where

mupdate i a t == binsert fst (i,a) t

lemma assumes v: valid-tmap t
shows mupdate-map: mapOf (mupdate i a t) = (mapOf t)(i |−> a)

proof
fix i2
let ?tr = binsert fst (i,a) t
have upres: mupdate i a t = ?tr by (simp add: mupdate-def)
from v binsert-set
have setSpec: setOf ?tr = setOf t − eqs fst (i,a) Un {(i,a)} by fastforce
from v binsert-sorted have vr : valid-tmap ?tr by fastforce
show mapOf (mupdate i a t) i2 = ((mapOf t)(i |−> a)) i2
proof (cases i = i2)
case True note i2ei = this

from i2ei have rhs-res: ((mapOf t)(i |−> a)) i2 = Some a by simp
have lhs-res: mapOf (mupdate i a t) i = Some a
proof −

have will-find: tlookup fst i ?tr = Some (i,a)
proof −

from setSpec have kvin: (i,a) : setOf ?tr by simp
have binsert-sorted-inst: sortedTree fst t −−>

sortedTree fst ?tr
by (insert binsert-sorted [of fst t (i,a)], assumption)
from v binsert-sorted-inst have rs: sortedTree fst ?tr by simp
have tlookup-finds-inst: sortedTree fst ?tr & (i,a) : setOf ?tr −−>

tlookup fst i ?tr = Some (i,a)
by (insert tlookup-finds [of fst ?tr (i,a)], simp)
from rs kvin tlookup-finds-inst show ?thesis by simp

qed
from upres will-find show ?thesis by (simp add: mapOf-def)

qed
from lhs-res rhs-res i2ei show ?thesis by simp

next case False note i2nei = this
from i2nei have rhs-res: ((mapOf t)(i |−> a)) i2 = mapOf t i2 by auto
have lhs-res: mapOf (mupdate i a t) i2 = mapOf t i2
proof (cases mapOf t i2)
case None from this have mapNone: mapOf t i2 = None by simp

from v mapNone mapset-none have i2nin: ∀ a. (i2 ,a) /∈ setOf t by fastforce
have noneIn: ∀ b. (i2 ,b) /∈ setOf ?tr
proof

fix b
from v binsert-set
have setOf ?tr = setOf t − eqs fst (i,a) Un {(i,a)}
by fastforce
from this i2nei i2nin show (i2 ,b) ∼: setOf ?tr by fastforce

qed

21

have mapset-none-inst:
valid-tmap ?tr −−> (mapOf ?tr i2 = None) = (∀ a. (i2 , a) /∈ setOf ?tr)
by (insert mapset-none [of ?tr i2], simp)
from vr noneIn mapset-none-inst have mapOf ?tr i2 = None by fastforce
from this upres mapNone show ?thesis by simp

next case (Some z) from this have mapSome: mapOf t i2 = Some z by simp
from v mapSome mapset-some have (i2 ,z) : setOf t by fastforce
from this setSpec i2nei have (i2 ,z) : setOf ?tr by (simp add: eqs-def)
from this vr mapset-some have mapOf ?tr i2 = Some z by fastforce
from this upres mapSome show ?thesis by simp

qed
from lhs-res rhs-res show ?thesis by simp

qed
qed

lemma assumes v: valid-tmap t
shows mupdate-valid: valid-tmap (mupdate i a t)

proof −
let ?tr = binsert fst (i,a) t
have upres: mupdate i a t = ?tr by (simp add: mupdate-def)
from v binsert-sorted have vr : valid-tmap ?tr by fastforce
from vr upres show ?thesis by simp

qed

11 Map Remove Operation
definition mremove :: index => ′a tarray => ′a tarray where

mremove i t == remove fst (i, undefined) t

lemma assumes v: valid-tmap t
shows mremove-valid: valid-tmap (mremove i t)

proof (simp add: mremove-def)
from v remove-sort
show sortedTree fst (remove fst (i, undefined) t) by fastforce

qed

lemma assumes v: valid-tmap t
shows mremove-map: mapOf (mremove i t) i = None

proof (simp add: mremove-def)
let ?tr = remove fst (i, undefined) t
show mapOf ?tr i = None
proof −

from v remove-spec
have remSet: setOf ?tr = setOf t − eqs fst (i, undefined)
by fastforce
have noneIn: ∀ a. (i,a) /∈ setOf ?tr
proof

fix a
from remSet show (i,a) ∼: setOf ?tr by (simp add: eqs-def)

22

qed
from v remove-sort have vr : valid-tmap ?tr by fastforce
have mapset-none-inst: valid-tmap ?tr ==>
(mapOf ?tr i = None) = (∀ a. (i,a) /∈ setOf ?tr)
by (insert mapset-none [of ?tr i], simp)
from vr this have (mapOf ?tr i = None) = (∀ a. (i,a) /∈ setOf ?tr) by fastforce
from this noneIn show mapOf ?tr i = None by simp

qed
qed

end

12 Tactic-Style Reasoning for Binary Tree Oper-
ations

theory BinaryTree-TacticStyle imports Main begin

This example theory illustrates automated proofs of correctness for binary
tree operations using tactic-style reasoning. The current proofs for remove
operation are by Tobias Nipkow, some modifications and the remaining tree
operations are by Viktor Kuncak.

13 Definition of a sorted binary tree
datatype tree = Tip | Nd tree nat tree

primrec set-of :: tree => nat set
— The set of nodes stored in a tree.
where

set-of Tip = {}
| set-of (Nd l x r) = set-of l Un set-of r Un {x}

primrec sorted :: tree => bool
— Tree is sorted
where

sorted Tip = True
| sorted(Nd l y r) =

(sorted l & sorted r & (∀ x ∈ set-of l. x < y) & (∀ z ∈ set-of r . y < z))

14 Tree Membership
primrec

memb :: nat => tree => bool
where

memb e Tip = False
| memb e (Nd t1 x t2) =

(if e < x then memb e t1

23

else if x < e then memb e t2
else True)

lemma member-set: sorted t −−> memb e t = (e : set-of t)
by (induct t) auto

15 Insertion operation
primrec binsert :: nat => tree => tree
— Insert a node into sorted tree.
where

binsert x Tip = (Nd Tip x Tip)
| binsert x (Nd t1 y t2) = (if x < y then

(Nd (binsert x t1) y t2)
else
(if y < x then
(Nd t1 y (binsert x t2))

else (Nd t1 y t2)))

theorem set-of-binsert [simp]: set-of (binsert x t) = set-of t Un {x}
by (induct t) auto

theorem binsert-sorted: sorted t −−> sorted (binsert x t)
by (induct t) (auto simp add: set-of-binsert)

corollary binsert-spec:
sorted t ==>

sorted (binsert x t) &
set-of (binsert x t) = set-of t Un {x}

by (simp add: binsert-sorted)

16 Remove operation
primrec

rm :: tree => nat — find the rightmost element in the tree
where

rm(Nd l x r) = (if r = Tip then x else rm r)
primrec

rem :: tree => tree — find the tree without the rightmost element
where

rem(Nd l x r) = (if r=Tip then l else Nd l x (rem r))

primrec
remove:: nat => tree => tree — remove a node from sorted tree

where
remove x Tip = Tip

| remove x (Nd l y r) =
(if x < y then Nd (remove x l) y r else

24

if y < x then Nd l y (remove x r) else
if l = Tip then r
else Nd (rem l) (rm l) r)

lemma rm-in-set-of : t ∼= Tip ==> rm t : set-of t
by (induct t) auto

lemma set-of-rem: t ∼= Tip ==> set-of t = set-of (rem t) Un {rm t}
by (induct t) auto

lemma [simp]: [| t ∼= Tip; sorted t |] ==> sorted(rem t)
by (induct t) (auto simp add:set-of-rem)

lemma sorted-rem: [| t ∼= Tip; x ∈ set-of (rem t); sorted t |] ==> x < rm t
by (induct t) (auto simp add:set-of-rem split:if-splits)

theorem set-of-remove [simp]: sorted t ==> set-of (remove x t) = set-of t − {x}
apply(induct t)
apply simp

apply simp
apply(rule conjI)
apply fastforce

apply(rule impI)
apply(rule conjI)
apply fastforce

apply(fastforce simp:set-of-rem)
done

theorem remove-sorted: sorted t ==> sorted(remove x t)
by (induct t) (auto intro: less-trans rm-in-set-of sorted-rem)

corollary remove-spec: — summary specification of remove
sorted t ==>

sorted (remove x t) &
set-of (remove x t) = set-of t − {x}

by (simp add: remove-sorted)

Finally, note that rem and rm can be computed using a single tree traversal
given by remrm.
primrec remrm :: tree => tree ∗ nat
where
remrm(Nd l x r) = (if r=Tip then (l,x) else

let (r ′,y) = remrm r in (Nd l x r ′,y))

lemma t ∼= Tip ==> remrm t = (rem t, rm t)
by (induct t) (auto simp:Let-def)

We can test this implementation by generating code.
definition test = memb 4 (remove (3 ::nat) (binsert 4 (binsert 3 Tip)))

25

export-code test
in SML module-name BinaryTree-TacticStyle-Code file ‹BinaryTree-TacticStyle-Code.ML›

end

26

	Isar-style Reasoning for Binary Tree Operations
	Tree Definition
	Tree Lookup
	Tree membership as a special case of lookup

	Insertion into a Tree
	Removing an element from a tree
	Mostly Isar-style Reasoning for Binary Tree Operations
	Map implementation and an abstraction function
	Auxiliary Properties of our Implementation
	Lemmas 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 mapset-none and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 mapset-some establish a relation between the set and map abstraction of the tree

	Empty Map
	Map Update Operation
	Map Remove Operation
	Tactic-Style Reasoning for Binary Tree Operations
	Definition of a sorted binary tree
	Tree Membership
	Insertion operation
	Remove operation

