BinarySearchTree
Larry Paulson
August 16, 2018

Contents

1 Isar-style Reasoning for Binary Tree Operations 2
2 Tree Definition 2
3 Tree Lookup 3
 3.1 Tree membership as a special case of lookup 5
4 Insertion into a Tree 6
5 Removing an element from a tree 9
6 Mostly Isar-style Reasoning for Binary Tree Operations 18
7 Map implementation and an abstraction function 18
8 Auxiliary Properties of our Implementation 18
 8.1 Lemmas mapset-none and mapset-some establish a relation
 between the set and map abstraction of the tree 19
9 Empty Map 20
10 Map Update Operation 21
11 Map Remove Operation 22
12 Tactic-Style Reasoning for Binary Tree Operations 23
13 Definition of a sorted binary tree 23
14 Tree Membership 23
15 Insertion operation 24
16 Remove operation 24
1 Isar-style Reasoning for Binary Tree Operations

theory BinaryTree imports Main begin

We prove correctness of operations on binary search tree implementing a set.
This document is LGPL.
Author: Viktor Kuncak, MIT CSAIL, November 2003

2 Tree Definition

datatype 'a Tree = Tip | T 'a Tree 'a 'a Tree

primrec
 setOf :: 'a Tree => 'a set
 — set abstraction of a tree
where
 setOf Tip = {}
 | setOf (T t1 x t2) = (setOf t1) Un (setOf t2) Un {x}

type-synonym
 — we require index to have an irreflexive total order \(i \)
 — apart from that, we do not rely on index being int
 index = int

type-synonym — hash function type
 'a hash = 'a => index

definition eqs :: 'a hash => 'a => 'a set
 — equivalence class of elements with the same hash code
 eqs h x == { y. h y = h x}

primrec
 sortedTree :: 'a hash => 'a Tree => bool
 — check if a tree is sorted
where
 sortedTree h Tip = True
 | sortedTree h (T t1 x t2) =
 (sortedTree h t1 &
 (\forall l \in setOf t1. h l < h x) &
 (\forall r \in setOf t2. h x < h r) &
 sortedTree h t2)

lemma sortLemmaL:
 sortedTree h (T t1 x t2) ==> sortedTree h t1 by simp
lemma sortLemmaR:
 sortedTree h (T t1 x t2) ==> sortedTree h t2 by simp
3 Tree Lookup

primrec
tlookup :: 'a hash => index => 'a Tree => 'a option

where
tlookup h k Tip = None
| tlookup h k (T t1 x t2) =
 (if k < h x then tlookup h k t1
 else if h x < k then tlookup h k t2
 else Some x)

lemma tlookup-none:
 sortedTree h t & (tlookup h k t = None) --> (∀ x∈setOf t. h x ~= k)
by (induct t, auto)

lemma tlookup-some:
 sortedTree h t & (tlookup h k t = Some x) --> x∈setOf t & h x = k
apply (induct t)
 — Just auto will do it, but very slowly
apply (simp)
apply (clarify, auto)
apply (simp-all split: if-split-asm)
done

definition sorted-distinct-pred :: 'a hash => 'a => 'a => 'a Tree => bool

where
 sorted-distinct-pred h a b t == sortedTree h t &:
 a∈setOf t & b∈setOf t & h a = h b -->
 a = b

declare sorted-distinct-pred-def [simp]

— for case analysis on three cases
lemma cases3: [| C1 ==> G; C2 ==> G; C3 ==> G; C1 | C2 | C3 |] ==> G
by auto

sorted-distinct-pred holds for out trees:

lemma sorted-distinct: sorted-distinct-pred h a b t (is ?P t)
proof (induct t)
 show ?P Tip by simp
 fix t1 :: 'a Tree assume h1: ?P t1
 fix t2 :: 'a Tree assume h2: ?P t2
 fix x :: 'a
 show ?P (T t1 x t2)
 proof (unfold sorted-distinct-pred-def, safe)
 assume s: sortedTree h (T t1 x t2)
 assume adef: a : setOf (T t1 x t2)
 assume bdef: b : setOf (T t1 x t2)
assume \(hab : h \ a = h \ b \)
from \(s \) have \(s1 : \text{sortedTree} \ h \ t1 \) by auto
from \(s \) have \(s2 : \text{sortedTree} \ h \ t2 \) by auto
show \(a = b \)
— We consider 9 cases for the position of \(a \) and \(b \) are in the tree
proof
— three cases for \(a \)
from \(adef \) have \(a : \text{setOf} \ t1 \ | \ a = x | \ a : \text{setOf} \ t2 \) by auto
moreover \{ assume \(adef1 : a : \text{setOf} \ t1 \)
 have \(?\text{thesis} \)
 proof
 — three cases for \(b \)
 from \(bdef \) have \(b : \text{setOf} \ t1 \ | \ b = x | \ b : \text{setOf} \ t2 \) by auto
 moreover \{ assume \(bdef1 : b : \text{setOf} \ t1 \)
 from \(s1 \) \(adef1 \) \(bdef1 \) \(hab \) \(h1 \) have \(?\text{thesis} \) by simp \}
 moreover \{ assume \(bdef1 : b = x \)
 from \(adef1 \) \(bdef1 \) \(s \) have \(h \ a < h \ b \) by auto
 from this \(hab \) have \(?\text{thesis} \) by simp \}
 moreover \{ assume \(bdef1 : b : \text{setOf} \ t2 \)
 from \(adef1 \) \(s \) have \(o1 : h \ a < h \ x \) by auto
 from \(bdef1 \) \(s \) have \(o2 : h \ x < h \ b \) by auto
 from \(o1 \) \(o2 \) have \(h \ a < h \ b \) by simp
 from this \(hab \) have \(?\text{thesis} \) by simp \} — case impossible
ultimately show \(?\text{thesis} \) by blast
qed

moreover \{ assume \(adef1 : a = x \)
 have \(?\text{thesis} \)
 proof
 — three cases for \(b \)
 from \(bdef \) have \(b : \text{setOf} \ t1 \ | \ b = x | \ b : \text{setOf} \ t2 \) by auto
 moreover \{ assume \(bdef1 : b : \text{setOf} \ t1 \)
 from this \(s \) have \(h \ b < h \ x \) by auto
 from \(this1 \) \(adef1 \) \(h a h b \) have \(?\text{thesis} \) by simp \}
 moreover \{ assume \(bdef1 : b = x \)
 from this \(hab \) this have \(?\text{thesis} \) by simp \}
 moreover \{ assume \(bdef1 : b : \text{setOf} \ t2 \)
 from \(adef1 \) \(s \) have \(h \ x < h \ b \) by auto
 from this \(h a h b \) this have \(?\text{thesis} \) by simp \}
 moreover \{ assume \(bdef1 : b = x \)
 from this \(s \) have \(h \ a < h \ b \) by auto
 from \(this \) \(adef1 \) \(h a h b \) have \(?\text{thesis} \) by simp \}
 ultimately show \(?\text{thesis} \) by blast
qed

moreover \{ assume \(adef1 : a : \text{setOf} \ t2 \)
 have \(?\text{thesis} \)
 proof
 — three cases for \(b \)
 from \(bdef \) have \(b : \text{setOf} \ t1 \ | \ b = x | \ b : \text{setOf} \ t2 \) by auto
moreover { assume bdef1: b : setOf t1
 from bdef1 s have o1: h b < h x by auto
 from o1 o2 have h b < h a by simp
 from this hab have ?thesis by simp } — case impossible
moreover { assume bdef1: b = x
 from adef1 bdef1 s have h b < h a by auto
 from this hahb have ?thesis by simp
 ultimately show ?thesis by blast
qed }
ultimately show ?thesis by blast
qed

lemma tlookup-finds: — if a node is in the tree, lookup finds it
sortedTree h t & y : setOf t -->
 tlookup h (h y) t = Some y
proof safe
 assume s: sortedTree h t
 assume yint: y : setOf t
 show tlookup h (h y) t = Some y
 proof (cases tlookup h (h y) t)
 case None note res = this
 from s res have sortedTree h t & (tlookup h (h y) t = None) by simp
 from this have o1: \x\in setOf t. h x \sim= h y by (simp add: tlookup-none)
 from o1 yint have h y \sim= h y by fastforce
 from this show ?thesis by simp
 next case (Some z) note res = this
 have is: sortedTree h t & (tlookup h (h y) t = Some z) -->
 z : setOf t & h z = h y by (simp add: tlookup-some)
 have sd: sorted-distinct-pred h y z t
 by (insert sorted-distinct [of h y z t], simp)
 from s res is have o1: z : setOf t & h z = h y by simp
 from s yint o1 sd have y = z by auto
 from this res show tlookup h (h y) t = Some y by simp
qed
qed

3.1 Tree membership as a special case of lookup
definition memb :: 'a hash => 'a => 'a Tree => bool where
 memb h x t ==
 (case (tlookup h (h x) t) of
 None => False
lemma assumes \(s \): sortedTree \(h \ t \)
shows memb-spec: \(\text{memb} \(h \ x \ t \) = (x : \text{setOf} \ t) \)
proof (cases tlookup \(h \ (h \ x) \))
case None note tNone = this
from tNone have res: \(\text{memb} \(h \ x \ t \) = \text{False} \) by (simp add: memb-def)
have notIn: \(x \sim : \text{setOf} \ t \)
proof
 assume h: \(x : \text{setOf} \ t \)
 from h have h x \(\sim = h \ x \) by fastforce
 from this show False by simp
qed
from res notIn show \(\text{thesis} \) by simp
next case (Some \(z \)) note tSome = this
from s tSome tlookup-some have zin: \(z : \text{setOf} \ t \) by fastforce
show \(\text{thesis} \)
proof (cases \(x = z \))
case True note xez = this
from tSome xez have res: \(\text{memb} \(h \ x \ t \) \)
from res zin xez show \(\text{thesis} \) by simp
next case False note xnez = this
from tSome xnez have res: \(\sim \text{memb} \(h \ x \ t \) \)
have x \(\sim : \text{setOf} \ t \)
proof
 assume xin: \(x : \text{setOf} \ t \)
 from s tSome tlookup-some have hhzx: \(h \ x = h \ z \) by fastforce
 have o1: \(\text{sorted-distinct-pred} \(h \ x \ z \ t \) \)
 by (insert sorted-distinct \([h \ x \ z \ t] \), simp)
 from s xin zin hhzx o1 have x = z by fastforce
 from this xnez show False by simp
qed
from this res show \(\text{thesis} \) by simp
qed
qed

declare sorted-distinct-pred-def \([\text{simp del}] \)

4 Insertion into a Tree

primrec
bin\(\text{insert} \) :: \('a \text{ hash} \Rightarrow 'a \Rightarrow 'a \text{ Tree} \Rightarrow 'a \text{ Tree} \)
where
\(\text{bin} \text{insert} \(h \ e \ T\text{ip} \) = (T \ T\text{ip} e \ T\text{ip}) \)
| \(\text{bin} \text{insert} \(h \ e \ (T \ t1 \ t2) \) = (\text{if} \ h \ e < h \ x \ \text{then} \ (T \ (\text{bin} \text{insert} \(h \ e \ t1 \)) \ t2) \) \)
else
(\text{if} h x < h e \ \text{then} \n
6
A technique for proving disjointness of sets.

lemma disjCond: [!! x. [!! x:A; x:B] ==> False] ==> A Int B = {}

by fastforce

The following is a proof that insertion correctly implements the set interface. Compared to *BinaryTree-TacticStyle*, the claim is more difficult, and this time we need to assume as a hypothesis that the tree is sorted.

lemma binsert-set: sortedTree h t --->
setOf (binsert h e t) = (setOf t) − (eqs h e) Un {e}

(is ?P t)

proof (induct t)
— base case
show ?P Tip by (simp add: eqs-def)
— induction step
fix t1 :: 'a Tree assume h1: ?P t1
fix t2 :: 'a Tree assume h2: ?P t2
fix x :: 'a
show ?P (T t1 x t2)
proof
assume s: sortedTree h (T t1 x t2)
from s have s1: sortedTree h t1 by (rule sortLemmaL)
from s1 and h1 have c1: setOf (binsert h e t1) = setOf t1 − (eqs h e) Un {e}
by simp
from s have s2: sortedTree h t2 by (rule sortLemmaR)
from s2 and h2 have c2: setOf (binsert h e t2) = setOf t2 − (eqs h e) Un {e}
by simp
show setOf (binsert h e (T t1 x t2)) =
setOf (T t1 x t2) − (eqs h e) Un {e}
proof (cases h e < h x)
case True note eLess = this
from eLess have res: binsert h e (T t1 x t2) = (T (binsert h e t1) x t2)
by simp
show setOf (binsert h e (T t1 x t2)) =
setOf (T t1 x t2) − (eqs h e) Un {e}
proof (simp add: res eLess c1)
show insert x (insert e (setOf t1 − (eqs h e Un setOf t2))) =
insert e (insert x (setOf t1 Un setOf t2) − (eqs h e))
proof —
have eqsLessX: ∀el ∈ eqs h e. h el < h x by (simp add: eqs-def eLess)
from this have eqsDisjX: ∀el ∈ eqs h e. h el ~= h x by fastforce
from s have xLessT2: ∀r ∈ setOf t2. h x < h r by auto
have eqsLessT2: ∀el ∈ eqs h e. ∀r ∈ setOf t2. h el < h r
proof safe
fix el assume hel: el : eqs h e
from hel eqs-def have a1: h el = h e by fastforce
fix r assume hr: r : setOf t2
from xLessT2 hr o1 eLess show h el < h r by auto
qed
from eqsLessT2 have eqsDisjT2: ∀ el ∈ eqs h e. ∀ r ∈ setOf t2. h el ∼ = h r
by fastforce
from eqsDisjX eqsDisjT2 show ?thesis by fastforce
qed
next case False note eNotLess = this
show setOf (binsert h e (T t1 x t2)) = setOf (T t1 x t2) − eqs h e Un {e}
proof (cases h x < h e)
 case True note xLess = this
 from xLess have res: binsert h e (T t1 x t2) = (T t1 x (binsert h e t2)) by simp
 show setOf (binsert h e (T t1 x t2)) = setOf (T t1 x t2) − eqs h e Un {e}
 proof (simp add: res xLess eNotLess c2)
 show insert x (insert e (setOf t1 Un (setOf t2 − eqs h e))) =
 insert e (insert x (setOf t1 Un setOf t2) − eqs h e)
 proof
 have XLessEqs: ∀ el ∈ eqs h e. h x < h el by (simp add: eqs-def xLess)
 from this have eqsDisjX: ∀ el ∈ eqs h e. h el ∼ = h x by auto
 from s have t1LessX: ∀ l ∈ setOf t1. h l < h x by auto
 have T1lessEqs: ∀ el ∈ eqs h e. ∀ l ∈ setOf t1. h l < h el
 proof safe
 fix el assume hel: el : eqs h e
 fix l assume hl: l : setOf t1
 from hel eqs-def have o1: h el = h e by fastforce
 from t1LessX hl o1 xLess show h l < h el by auto
 qed
 from T1lessEqs have T1disjEqs: ∀ el ∈ eqs h e. ∀ l ∈ setOf t1. h el ∼ = h l
 by fastforce
 from eqsDisjX T1lessEqs show ?thesis by auto
 qed
 qed
 qed
next case False note xNotLess = this
from xNotLess eNotLess have xege: h x = h e by simp
from xege have res: binsert h e (T t1 x t2) = (T t1 e t2) by simp
show setOf (binsert h e (T t1 x t2)) =
 setOf (T t1 x t2) − eqs h e Un {e}
proof (simp add: res eNotLess xege)
 show insert e (setOf t1 Un setOf t2) =
 insert e (insert x (setOf t1 Un setOf t2) − eqs h e)
 proof
 have insert x (setOf t1 Un setOf t2) =
 setOf t1 Un setOf t2
 proof
 have x : eqs h e by (simp add: eqs-def xege)
moreover have \((\text{setOf } t1) \cap \text{eqs } h \ e) = \emptyset\)
proof (rule disjCond)
fix \(w\)
assume \(whSet: w : \text{setOf } t1\)
assume \(whEq: w : \text{eqs } h \ e\)
from \(whSet\) have \(o1: h \ w < h \ x\) by simp
from \(whEq\) have \(o2: h \ w = h \ e\) by fastforce
from \(o2 \ xeqe\) have \(o3: \sim h \ w < h \ x\) by simp
from \(o1 \ o3\) show False by contradiction
qed
moreover have \((\text{setOf } t2) \cap \text{eqs } h \ e) = \emptyset\)
proof (rule disjCond)
fix \(w\)
assume \(whSet: w : \text{setOf } t2\)
assume \(whEq: w : \text{eqs } h \ e\)
from \(whSet\) have \(o1: h \ x < h \ w\) by simp
from \(whEq\) have \(o2: h \ w = h \ e\) by fastforce
from \(o2 \ xeqe\) have \(o3: \sim h \ x < h \ w\) by simp
from \(o1 \ o3\) show False by contradiction
qed
ultimately show \(?thesis\) by auto
qed
from this show \(?thesis\) by simp
qed
qed
qed
qed

Using the correctness of set implementation, preserving sortedness is still simple.

Lemma \(binsert\)-sorted: \(\text{sortedTree } h \ t \longrightarrow \text{sortedTree } h \ (binsert \ h \ x \ t)\)
by (induct \(t\)) (auto simp add: \(binsert\)-set)

We summarize the specification of \(binsert\) as follows.

Corollary \(binsert\)-spec: \(\text{sortedTree } h \ t \longrightarrow \)
\(\text{sortedTree } h \ (binsert \ h \ x \ t)\ & \)
\(\text{setOf } (binsert \ h \ e \ t) = (\text{setOf } t) - (\text{eqs } h \ e) \cup \{e\}\)
by (simp add: \(binsert\)-set \(binsert\)-sorted)

5 Removing an element from a tree

These proofs are influenced by those in *BinaryTree-Tactic*

primrec
\(rm :: \ ('a \ \text{hash} \Rightarrow 'a \ \text{Tree} \Rightarrow 'a)\)
— rightmost element of a tree
where
\[
\text{rm } h \ (T \ t1 \ x \ t2) = \\
(\text{if } t2 = \text{Tip} \ \text{then } x \ \text{else rm } h \ t2)
\]

primrec
\[
\text{wrm} :: 'a \ 	ext{hash} => 'a \ \text{hash} => 'a \ 	ext{Tree} \\
\text{— tree without the rightmost element}
\]
where
\[
\text{wrm } h \ (T \ t1 \ x \ t2) = \\
(\text{if } t2 = \text{Tip} \ \text{then } t1 \ \text{else (T } t1 \ x \ (\text{wrm } h \ t2)))
\]

primrec
\[
\text{wrmrm} :: 'a \ 	ext{hash} => 'a \ \text{hash} => 'a \ 	ext{Tree} \ 	ext{∗ 'a} \\
\text{— computing rightmost and removal in one pass}
\]
where
\[
\text{wrmrm } h \ (T \ t1 \ x \ t2) = \\
(\text{if } t2 = \text{Tip} \ \text{then (t1, x) else (T } t1 \ x \ (\text{fst (wrmrm } h \ t2)), \\
\text{snd (wrmrm } h \ t2)))
\]

primrec
\[
\text{remove} :: 'a \ 	ext{hash} => 'a => 'a \ 	ext{hash} => 'a \ 	ext{Tree} \\
\text{— removal of an element from the tree}
\]
where
\[
\text{remove } h \ e \ \text{Tip} = \text{Tip} \\
\mid \text{remove } h \ e \ (T \ t1 \ x \ t2) = \\
(\text{if } h < h \ e \ \text{then (T (remove } h \ e \ t1) \ x \ t2) \\
\text{else if } h \ e < h \ \text{then (T } t1 \ x \ (\text{remove } h \ e \ t2))) \\
\text{else (if } t1 = \text{Tip} \ \text{then t2 else let } (t1p, r) = \text{wrmrm } h \ t1 \\
\text{in (T } t1p \ r \ t2)))
\]

theorem \text{wrmrm-decomp: } t \sim \text{ Tip} \rightarrow \text{ wrmrm } h \ t = (\text{wrm } h \ t, \text{ rm } h \ t)
apply (induct-tac t)
apply simp-all
done

lemma \text{rm-set: } t \sim \text{ Tip & sortedTree } h \ t \rightarrow \text{ rm } h \ t : \text{setOf } t
apply (induct-tac t)
apply simp-all
done

lemma \text{wrm-set: } t \sim \text{ Tip & sortedTree } h \ t \rightarrow \\
\text{setOf (wrm } h \ t) = \text{setOf } t \setminus \{\text{rm } h \ t\} \ (\text{is } ?P \ t)
proof (induct t)
show ?P \ Tip by simp
fix t1 :: 'a \ 	ext{Tree} \ assume \ h1: ?P \ t1
fix t2 :: 'a \ 	ext{Tree} \ assume \ h2: ?P \ t2
fix x :: 'a
show \(?P\ (T \ t1 \ x \ t2)\)

proof (rule impI, erule conjE)
assume s: sortedTree h \((T \ t1 \ x \ t2)\)
show setOf \((\text{wrm} \ h \ (T \ t1 \ x \ t2))\) =
setOf \((T \ t1 \ x \ t2) - \{\text{rm} \ h \ (T \ t1 \ x \ t2)\}\)
proof (cases \(t2 = \text{Tip}\))
case True
note \(t2\text{-tip} = \text{this}\)
from t2-tip have \(\text{rm-res}: \text{rm} \ h \ (T \ t1 \ x \ t2) = x\) by simp
from s have \(x \sim \text{setOf} \ t1\) by auto
from this rm-res wrm-res t2-tip show \(\text{thesis}\) by simp
next case False
note \(t2\text{-nTip} = \text{this}\)
from t2n-tip have \(\text{rm-res}: \text{rm} \ h \ (T \ t1 \ x \ t2) = \text{rm} \ h \ t2\) by simp
from t2n-tip have \(\text{wrm-res}: \text{wrm} \ h \ (T \ t1 \ x \ t2) = T \ t1 \ x \ (\text{wrm} \ h \ t2)\) by simp
from s have \(s2: \text{sortedTree} \ h \ t2\) by simp
from \(h2 \ t2\text{-nTip} \ s2\) have \(o1: \text{setOf} \ (\text{wrm} \ h \ t2) = \text{setOf} \ t2 - \{\text{rm} \ h \ t2\}\) by simp
show \(\text{thesis}\) proof (simp add: rm-res wrm-res t2n-tip h2 o1)

show \(\text{thesis}\)

qed
qed
qed

lemma \(\text{wrm-set1}: t \sim = \text{Tip} \ & \ \text{sortedTree} \ h \ t \ -\rightarrow \ \text{setOf} \ (\text{wrm} \ h \ t) \ leq \ \text{setOf} \ t\)
by (auto simp add: wrm-set)

lemma \(\text{wrm-sort}: t \sim = \text{Tip} \ & \ \text{sortedTree} \ h \ t \ -\rightarrow \ \text{sortedTree} \ h \ (\text{wrm} \ h \ t) \ (\text{is} \ \ ?P \ t)\)
proof (induct t)
show \(?P\ \text{Tip}\) by simp
fix \(t1 :: \text{Tree} \) assume h1: \(?P\ t1\)
fix \(t2 :: \text{Tree} \) assume h2: \(?P\ t2\)
fix \(x :: \text{a}\)
show \(?P\ (T \ t1 \ x \ t2)\)
proof safe
assume s: sortedTree h \((T \ t1 \ x \ t2)\)

11
show sortedTree h (wrm h (T t1 x t2))
proof (cases t2 = Tip)
 case True note t2tip = this
 from t2tip have res: wrm h (T t1 x t2) = t1 by simp
 from res s show ?thesis by simp
next case False note t2nTip = this
 from t2nTip have res: wrm h (T t1 x t2) = T t1 x (wrm h t2) by simp
 from s have s1: sortedTree h t1 by simp
 from s have s2: sortedTree h t2 by simp
 from s2 h2 t2nTip have o1: sortedTree h (wrm h t2) by simp
 from s2 t2nTip wrm-set1 have o2: setOf (wrm h t2) <= setOf t2 by auto
 from s o2 have s1 o1 o3 res s show sortedTree h (wrm h (T t1 x t2)) by simp
qed

lemma wrm-less-rm:
t ~ =~ Tip & sortedTree h t --->
(\forall l \in setOf (wrm h t). h l < h (rm h t)) (is ?P t)
proof (induct t)
 show ?P Tip by simp
 fix t1 :: 'a Tree assume h1: ?P t1
 fix t2 :: 'a Tree assume h2: ?P t2
 fix x :: 'a
 show ?P (T t1 x t2)
 proof safe
 fix l :: 'a assume ldef: l : setOf (wrm h (T t1 x t2))
 assume s: sortedTree h (T t1 x t2)
 from s have s1: sortedTree h t1 by simp
 from s have s2: sortedTree h t2 by simp
 show h l < h (rm h (T t1 x t2))
 proof (cases t2 = Tip)
 case True note t2tip = this
 from t2tip have rm-res: rm h (T t1 x t2) = x by simp
 from t2tip have wrm-res: wrm h (T t1 x t2) = t1 by simp
 from ldef wrm-res have o1: l : setOf t1 by simp
 from rm-res o1 s show ?thesis by simp
 next case False note t2nTip = this
 from t2nTip have rm-res: rm h (T t1 x t2) = rm h t2 by simp
 from ldef wrm-res
 have l-scope: l : {x} Un setOf t1 Un setOf (wrm h t2) by simp
 have hLess: h l < h (rm h t2)
 proof (cases l = x)
 case True note lx = this
 from s t2nTip rm-set s2 have o1: h x < h (rm h t2) by auto
 from lx o1 show ?thesis by simp
 next case False note lx = this
 qed
 qed
show \(?thesis\)
proof (cases \(l\) : setOf \(t1\))
case True note \(l\)-in-
\(t1\) = this
 from \(s\) \texttt{2nTip rm-set \(s2\)} have \(o1\)\(: h\ x < h\ (rm\ h\ t2)\) by auto
 from \(l\)-in-
\(t1\) \texttt{s have} \(o2\)\(: h\ l < h\ x\) by auto
 from \(o1\) \(o2\) show \(?thesis\) by simp
next case False note \(l\)-notin-
\(t1\) = this
 from \texttt{l-scope} \(h\) \texttt{l-notin-
\(t1\)} have \(l\)-in-
\(\texttt{res}\) : \(l\) : setOf \((\texttt{wrm}\ h\ t2)\) by auto
 from \(l\)-in-
\(\texttt{res}\) \texttt{h2 \texttt{2nTip \(s2\)}} show \(?thesis\) by auto
qed
qed
from \texttt{rm-res} \(h\) \texttt{Less} show \(?thesis\) by simp
qed
qed

lemma remove-set : sortedTree \(h\ \(t\) \longrightarrow \)
setOf \((\texttt{remove}\ h\ \texttt{e}\ \(t\)) = \text{setOf}\ \(t\) \{-\text{eqs}\ h\ \texttt{e}\ \} \{(\text{is} \ ?P \ \(t\) \})
proof \(\text{induct} \(t\)\)
 show \(?P \ \texttt{Tip}\) by auto
 fix \(t1\) :: \(\texttt{Tree}\) assume \(h1\)\(: \ ?P \ \(t1\)\)
 fix \(t2\) :: \(\texttt{Tree}\) assume \(h2\)\(: \ ?P \ \(t2\)\)
 fix \(x\) :: \(\texttt{a}\)
 show \(?P\ \(\texttt{T} \ \(t1\) \ \(x\) \ \(t2\)\)
proof
 assume \(s\) : sortedTree \(h\ \(\texttt{T} \ \(t1\) \ \(x\) \ \(t2\)\)
 show setOf \((\texttt{remove}\ h\ \texttt{e}\ \(t\)) = \text{setOf}\ \(t\) \{-\text{eqs}\ h\ \texttt{e}\ \} \{(\text{is} \ ?P \ \(t\) \}) by simp
proof \(\text{cases} \(h\ \texttt{e} < h\ \texttt{x}\)\)
 case True note \(el\) = \texttt{this}
 from \(el\) have res : remove \(h\ \texttt{e}\ \(\texttt{T} \ \(t1\) \ \(x\) \ \(t2\)\) = \(T\) \{(remove\ \texttt{h} \ \texttt{e}\ \(\texttt{t1}\) \ \(x\) \ \(t2\)\) by simp
from \texttt{s have} \(s1\) : sortedTree \(h\ \texttt{t1}\) by simp
from \(s1\ \texttt{h1}\) have \(o1\) : setOf \((\texttt{remove}\ h\ \texttt{e}\ \(\texttt{t1}\)\) = setOf \(\texttt{t1}\) \{-\text{eqs}\ h\ \texttt{e}\ \} \{(\text{by simp}\}\)
show \(?thesis\)
proof \(\texttt{(simp add} : \(o1\) \(el\)\)
 show insert \(x\) \((\text{setOf}\ \texttt{t1} \ -\ \text{eqs}\ h\ \texttt{e}\ \text{Un}\ \text{setOf}\ \texttt{t2})\) =
 insert \(x\) \((\text{setOf}\ \texttt{t1} \ \text{Un}\ \text{setOf}\ \texttt{t2})\) \{-eqs\ h\ \texttt{e}\ \}
proof
 have \(x\)\(Ok\) : \(x\) \texttt{\texttt{\sim}: eqs\ h\ \texttt{e}\)
 proof
 assume \(h\) : \(x\) \texttt{\texttt{\sim}: eqs\ h\ \texttt{e}\)
 from \(h\) have \(o1\)\(: \sim\ (h\ \texttt{e} < h\ \texttt{x})\) by \(\texttt{(simp add} : \texttt{eqs-def}\}\)
 from \(el\) \(o1\) show \(False\) by contradiction
 qed
 have \(t\)\(2Ok\) : \((\text{setOf}\ \texttt{t2})\) \texttt{Int} \{(eqs\ h\ \texttt{e})\) = \{
 proof \(\texttt{(rule} \texttt{disjCond)}\)
 fix \(y\) :: \(\texttt{a}\)
 assume \(y\)-in-
\(t2\) : \(y\) : setOf \(t2\)
assume y-in-eq: y : eqs h e
from y-in-t2 s have xly: h x < h y by auto
from y-in-eq have eey: h y = h e by (simp add: eqs-def)
from xly eey have nelx: ~ (h e < h x) by simp
from nelx xle show False by contradiction
qed
from xOk t2Ok show ?thesis by auto
qed
qed
next case False note nelx = this
show ?thesis
proof (cases h x < h e)
case True
note xle = this
from xle have res: remove h e (T t1 x t2) = T t1 x (remove h e t2) by simp
from s have s2: sortedTree h t2 by simp
from s2 h2 have o1: setOf (remove h e t2) = setOf t2 - eqs h e by simp
show ?thesis
proof
have xOk: x ∼: eqs h e
proof
 assume h: x : eqs h e
 from h have o1: ~ (h x < h e) by (simp add: eqs-def)
 from xle o1 show False by contradiction
qed
have t1Ok: (setOf t1) Int (eqs h e) = {}
proof (rule disjCond)
 fix y :: 'a
 assume y-in-t1: y : setOf t1
 assume y-in-eq: y : eqs h e
 from y-in-t1 s have ylx: h y < h x by auto
 from y-in-eq have eey: h y = h e by (simp add: eqs-def)
 from ylx eey have nelx: ~ (h x < h e) by simp
 from nelx xle show False by contradiction
qed
from xOk t1Ok show ?thesis by auto
qed
qed
next case False note nxle = this
from nelx nxle have ex: h e = h x by simp
have t2Ok: (setOf t2) Int (eqs h e) = {}
proof (rule disjCond)
 fix y :: 'a
 assume y-in-t2: y : setOf t2
 assume y-in-eq: y : eqs h e
 from y-in-t2 s have xly: h x < h y by auto
from y-in-eq have eey: \(h \cdot y = h \cdot e \) by (simp add: eqs-def)
from y-in-eq ex eey have nxly: \(~ (h \cdot z < h \cdot y)\) by simp
from nxly xly show False by contradiction

qed

show ?thesis

proof (cases t1 = Tip)
case True note t1tip = this
from ex t1tip have res: remove h e (T t1 t2) = t2 by simp
show ?thesis

proof (simp add: res t1tip ex)
 show (setOf t2 = insert x (setOf t2) - eqs h e)
 proof
 from ex have x-in-eqs: x : eqs h e by (simp add: eqs-def)
 from x-in-eqs t2Ok show ?thesis by auto
 qed

 qed

next case False note t1nTip = this
from nxle ex t1nTip have res: remove h e (T t1 t2) = T (wrm h t1) (rm h t1) t2
by (simp add: Let-def wrmrm-decomp)
from res show ?thesis

proof simp
from s have s1: sortedTree h t1 by simp
 show (insert (rm h t1) (setOf (wrm h t1) \ Un \ setOf t2) =
 insert x (setOf t1 \ Un \ setOf t2) - eqs h e)
 proof (simp add: t1nTip s1 rm-set wrm-set)
 show (insert (rm h t1) (setOf t1 - {rm h t1} \ Un \ setOf t2) =
 insert x (setOf t1 \ Un \ setOf t2) - eqs h e)
 proof
 from t1nTip s1 rm-set
 have o1: insert (rm h t1) (setOf t1 - {rm h t1} \ Un \ setOf t2) =
 setOf t1 \ Un \ setOf t2 by auto
 have o2: insert x (setOf t1 \ Un \ setOf t2) - eqs h e =
 setOf t1 \ Un \ setOf t2
 proof
 from ex have xOk: x : eqs h e by (simp add: eqs-def)
 have t1Ok: (setOf t1) Int (eqs h e) = {}
 proof (rule disjCond)
 fix y :: 'a
 assume y-in-t1: y : setOf t1
 assume y-in-eq: y : eqs h e
 from y-in-t1 s ex have o1: h y < h e by auto
 from y-in-eq have o2: ~ (h y < h e) by (simp add: eqs-def)
 from o1 o2 show False by contradiction
 qed
 from xOk t1Ok t2Ok show ?thesis by auto
 qed
 from o1 o2 show ?thesis by simp
 qed
 qed
 qed

 qed
lemma remove-sort: sortedTree h t -->
 sortedTree h (remove h e t) (is \(?P \, t \))
proof (induct t)
 show \(?P \, \text{Tip} \) by auto
 fix t1 :: 'a Tree assume h1: \(?P \, t1 \)
 fix t2 :: 'a Tree assume h2: \(?P \, t2 \)
 fix x :: 'a
 show \(?P \, (T \, t1 \, x \, t2) \)
 proof
 assume \(s \, : \, \text{sortedTree} \, h \, (T \, t1 \, x \, t2) \)
 from \(s \) have \(s1 \, : \, \text{sortedTree} \, h \, t1 \) by simp
 from \(s \) have \(s2 \, : \, \text{sortedTree} \, h \, t2 \) by simp
 from \(h1 \, s1 \) have \(sr1 \, : \, \text{sortedTree} \, h \, (\text{remove} \, h \, e \, t1) \) by simp
 from \(h2 \, s2 \) have \(sr2 \, : \, \text{sortedTree} \, h \, (\text{remove} \, h \, e \, t2) \) by simp
 show \(\text{sortedTree} \, h \, (\text{remove} \, h \, e \, (T \, t1 \, x \, t2)) \)
 proof (cases h e < h x)
 case True note elx = this
 from elx have res: \(\text{remove} \, h \, e \, (T \, t1 \, x \, t2) = T \, (\text{remove} \, h \, e \, t1) \, x \, t2 \)
 by simp
 show \(\text{thesis} \)
 proof (simp add: \(s \, s1 \, sr1 \, s2 \, elx \, res \))
 let \(C1 \, = \forall l \, \in \, \text{setOf} \, (\text{remove} \, h \, e \, t1), \, h \, l < h \, x \)
 let \(C2 \, = \forall r \, \in \, \text{setOf} \, t2, \, h \, x < h \, r \)
 have o1: \(C1 \)
 proof
 from \(s1 \) have \(\text{setOf} \, (\text{remove} \, h \, e \, t1) = \text{setOf} \, t1 \, - \, \text{eqs} \, h \, e \) by (simp add: \(\text{remove-set} \))
 from \(s \, \text{this} \) show \(\text{thesis} \) by auto
 qed
 from \(o1 \) show \(C1 \, \& \, C2 \) by auto
 qed
 qed
 next case False note nelx = this
 show \(\text{thesis} \)
 proof (cases h x < h e)
 case True note xle = this
 from xle have res: \(\text{remove} \, h \, e \, (T \, t1 \, x \, t2) = T \, t1 \, x \, (\text{remove} \, h \, e \, t2) \) by simp
 show \(\text{thesis} \)
 proof (simp add: \(s \, s1 \, sr2 \, xle \, nelx \, res \))
 let \(C1 \, = \forall l \, \in \, \text{setOf} \, t1, \, h \, l < h \, x \)
 qed
 qed
 qed
 qed
 qed
 qed
qed
let $C2 = \forall r \in \text{setOf} \ (\text{remove} \ h \ e \ t2). \ h \ x < h \ r$

have $o2$: $C2$

proof -
 from $s2$ have $\text{setOf} \ (\text{remove} \ h \ e \ t2) = \text{setOf} \ t2 - \text{eqs} \ h \ e$ by (simp add: remove-set)
 from s this show ?thesis by auto
 qed

next case False note $nxle = \text{this}$
 from nelx \ nxle have $\text{ex: \ h} \ e = h \ x$ by simp
 show ?thesis
 proof (cases $t1 = T\text{ip}$)
 case True
 note $t1tip = \text{this}$
 from ex \ t1tip have $\text{res: \ remove} \ h \ e \ (T \ t1 \ x \ t2) = t2$ by simp
 show ?thesis by (simp add: res $t1tip$ $ex \ s2$)
 next case False
 note $t1nTip = \text{this}$
 from $\text{nelx \ nxle \ ex \ t1nTip}$ have $\text{res: \ remove} \ h \ e \ (T \ t1 \ x \ t2) = T \ (\text{wrm} \ h \ t1) \ (\text{rm} \ h \ t1) \ t2$
 by (simp add: Let-def wrmrm-decomp)
 from res show ?thesis
 proof simp
 let $C1 = \text{sortedTree} \ h \ (\text{wrm} \ h \ t1)$$C2 = \forall l \in \text{setOf} \ (\text{wrm} \ h \ t1). \ h \ l < h \ (\text{rm} \ h \ t1)$$C3 = \forall r \in \text{setOf} \ t2. \ h \ (\text{rm} \ h \ t1) < h \ r$$C4 = \text{sortedTree} \ h \ t2$
 from $s1 \ \text{t1nTip}$ have $o1$: $C1$ by (simp add: wrm-sort)
 from $s1 \ \text{t1nTip}$ have $o2$: $C2$ by (simp add: wrm-less-rm)
 have $o3$: $C3$
 proof
 fix $r :: 'a$
 assume $rt2$: $r : \text{setOf} \ t2$
 from $\text{sr} \ t1nTip$ have $o1$: $h \ (\text{rm} \ h \ t1) < h \ x$ by auto
 from $rt2 \ s$ have $o2$: $h \ x < h \ r$ by auto
 from $o1 \ o2$ show $h \ (\text{rm} \ h \ t1) < h \ r$ by simp
 qed
 from $o1 \ o2 \ o3 \ s2$ show $C1 \ & \ C2 \ & \ C3 \ & \ C4$ by simp
 qed
 qed
 qed
 qed
 qed
 qed

We summarize the specification of remove as follows.

corollary remove-spec: \text{sortedTree} \ h \ t --\rightarrow
\text{sortedTree} \ h \ (\text{remove} \ h \ e \ t) \ & $\text{setOf} \ (\text{remove} \ h \ e \ t) = \text{setOf} \ t - \text{eqs} \ h \ e$
by (simp add: remove-sort remove-set)

definition test = tlookup id 4 (remove id 3 (binsert id 4 (binsert id 3 Tip)))

export-code test
 in SML module-name BinaryTree-Code file BinaryTree-Code.ML
end

6 Mostly Isar-style Reasoning for Binary Tree Operations

theory BinaryTree-Map imports BinaryTree begin

We prove correctness of map operations implemented using binary search trees from BinaryTree.
This document is LGPL.
Author: Viktor Kuncak, MIT CSAIL, November 2003

7 Map implementation and an abstraction function

type-synonym 'a tarray = (index * 'a) Tree

definition valid-tmap :: 'a tarray => bool where
 valid-tmap t == sortedTree fst t

declare valid-tmap-def [simp]

definition mapOf :: 'a tarray => index => 'a option where
 — the abstraction function from trees to maps
 mapOf t i ==
 (case (tlookup fst i t) of
 None => None
 | Some ia => Some (snd ia))

8 Auxiliary Properties of our Implementation

lemma mapOf-lookup1: tlookup fst i t = None ==> mapOf t i = None
 by (simp add: mapOf-def)

lemma mapOf-lookup2: tlookup fst i t = Some (j,a) ==> mapOf t i = Some a
 by (simp add: mapOf-def)

lemma assumes h: mapOf t i = None
shows mapOf-lookup3: tlookup fst i t = None
proof (cases tlookup fst i t)
case None from this show ?thesis by assumption
next case (Some ia) note tsome = this
 from this have o1: tlookup fst i t = Some (fst ia, snd ia) by simp
 have mapOf t i = Some (snd ia)
 by (insert mapOf-lookup2 [of i t fst ia snd ia], simp add: o1)
 from this have mapOf t i = None by simp
 from this h show ?thesis by simp — contradiction
qed

lemma assumes v: valid-tmap t
 assumes h: mapOf t i = Some a
 shows mapOf-lookup4: tlookup fst i t = Some (i, a)
proof (cases tlookup fst i t)
case None from this mapOf-lookup1 have mapOf t i = None by auto
 from this h show ?thesis by simp — contradiction
next case (Some ia) note tsome = this
 have tlookup-some-inst: sortedTree fst t & (tlookup fst i t = Some ia) -->
 ia : setOf t & fst ia = i by (simp add: tlookup-some)
 from tlookup-some-inst tsome v have ia : setOf t by simp
 from tlookup-some-inst tsome v have mapOf t i = Some (snd ia) by (simp add: mapOf-def)
 from this h have o1: snd ia = a by simp
 from o1 o2 have ia = (i, a) by auto
 from this tsome show tlookup fst i t = Some (i, a) by simp
qed

8.1 Lemmas mapset-none and mapset-some establish a relation
between the set and map abstraction of the tree

lemma assumes v: valid-tmap t
 shows mapset-none: (mapOf t i = None) = (∀ a. (i, a) \notin setOf t)
proof
 -- ==¿
 assume mapNone: mapOf t i = None
 from v mapNone mapOf-lookup3 have lnone: tlookup fst i t = None by auto
 show ∀ a. (i, a) \notin setOf t
 proof
 fix a
 show (i, a) : setOf t
 proof
 assume iain: (i, a) : setOf t
 have tlookup-none-inst:
 sortedTree fst t & (tlookup fst i t = None) -->
 (∀ x \in setOf t. fst x = i)
 by (insert tlookup-none [of fst t i], assumption)
 from v lnone tlookup-none-inst have ∀ x \in setOf t. fst x = i by simp
 from this iain have fst (i, a) = i by fastforce
 qed
 qed
 qed
lemma assumes \(v :: \text{valid-tmap } t \)
shows \(\text{mapset-some: } (\text{mapOf } t \ i = \text{Some } (i,a)) = ((i,a) : \text{setOf } t) \)
proof
 — ==¿
 assume \(\text{mapsome: } \text{mapOf } t \ i = \text{Some } a \)
 from \(v \text{ mapsome have o1: } \text{lookup } \text{fst } i \ t = \text{Some } (i,a) \) by (simp add: \text{mapOf-lookup4})
 from \(t \text{lookup-some have tlookup-some-inst: } \text{sortedTree } \text{fst } t \ & \ \text{lookup } \text{fst } i \ t = \text{Some } (i,a) \longrightarrow \)
 \((i,a) : \text{setOf } t \ & \ \text{fst } (i,a) = i \)
 by (insert \(t \text{lookup-some [of } \text{fst } t \ i \ (i,a)] \), assumption)
 from \(v \ o1 \text{ this have } (i,a) : \text{setOf } t \) by simp
 from \(t \text{ this show } \text{thesis by auto} — \text{contradiction} \)
qed

9 Empty Map

lemma \text{mnew-spec-valid: } \text{valid-tmap Tip}
by (simp add: \text{mapOf-def})

lemma \text{mtip-spec-empty: } \text{mapOf Tip } k = \text{None}
by (simp add: \text{mapOf-def})
10 Map Update Operation

definition `mupdate :: index => 'a => 'a tarray => 'a tarray where` `mupdate i a t == binsert fst (i,a) t`

lemma assumes `v :: valid-tmap t`
shows `mupdate-map: mapOf (mupdate i a t) = (mapOf t)(i |-> a)`
proof
- `fix i2`
 - `let ?tr = binsert fst (i,a) t`
 - `have upres: mupdate i a t = ?tr`
 - `from v binsert-set have setSpec: setOf ?tr = setOf t - eqs fst (i,a) Un {(i,a)} by fastforce`
 - `from v binsert-sorted have vr: valid-tmap ?tr by simp`
 - `show mapOf (mupdate i a t) i2 = ((mapOf t)(i |-> a)) i2`
 - `proof (cases i = i2)`
 - `case True`
 - `note i2ei = this`
 - `from i2ei have rhs-res: ((mapOf t)(i |-> a)) i2 = Some a by simp`
 - `have lhs-res: mapOf (mupdate i a t) i = Some a`
 - `proof (cases mapOf t i2)`
 - `case None`
 - `from this have mapNone: mapOf t i2 = None by simp`
 - `from v mapNone mapset-none have i2nin: \forall a. (i2,a) \notin setOf t by fastforce`
 - `have noneIn: \forall b. (i2,b) \notin setOf t`
 - `from v binsert-set have setOf ?tr = setOf t - eqs fst (i,a) Un {(i,a)} by fastforce`
 - `from this i2ei i2nin show (i2,b) ~: setOf ?tr by fastforce`
 - `qed`
 - `next case False note i2nei = this`
 - `from i2nei have rhs-res: ((mapOf t)(i |-> a)) i2 = mapOf t i2 by auto`
 - `have lhs-res: mapOf (mupdate i a t) i2 = mapOf t i2`
 - `proof (cases mapOf t i2)`
 - `case None`
 - `from this have mapNone: mapOf t i2 = None by simp`
 - `from v mapNone mapset-none have i2nin: \forall a. (i2,a) \notin setOf t by fastforce`
 - `have noneIn: \forall b. (i2,b) \notin setOf ?tr`
 - `fix b`
 - `from v binsert-set have setOf ?tr = setOf t - eqs fst (i,a) Un {(i,a)} by fastforce`
 - `from this i2nei i2nin show (i2,b) ~: setOf ?tr by fastforce`
 - `qed`
have mapset-none-inst:
valid-tmap ?tr --> (mapOf ?tr i2 = None) = (forall a. (i2, a) \notin setOf ?tr)
by (insert mapset-none [of ?tr i2], simp)
from vr noneIn mapset-none-inst have mapOf ?tr i2 = None by fastforce
from this upres mapNone show ?thesis by simp

next case (Some z) from this have mapSome: mapOf t i2 = Some z by simp
from v mapSome mapset-some have (i2, z) : setOf t by fastforce
from this setSpec i2nei have (i2, z) : setOf ?tr by (simp add: eqs-def)
from this vr mapset-some show ?thesis by simp
qed
from lhs-res rhs-res show ?thesis by simp
qed

lemma assumes v: valid-tmap t
shows mupdate-valid: valid-tmap (mupdate i a t)
proof -
let ?tr = binsert fst (i, a) t
have upres: mupdate i a t = ?tr by (simp add: mupdate-def)
from v binsert-sorted have vr: valid-tmap ?tr by fastforce
from vr upres show ?thesis by simp
qed

11 Map Remove Operation

definition mremove :: index => 'a tarray => 'a tarray where
mremove i t == remove fst (i, undefined) t

lemma assumes v: valid-tmap t
shows mremove-valid: valid-tmap (mremove i t)
proof (simp add: mremove-def)
from v remove-sort show sortedTree fst (remove fst (i, undefined) t) by fastforce
qed

lemma assumes v: valid-tmap t
shows mremove-map: mapOf (mremove i t) i = None
proof (simp add: mremove-def)
let ?tr = remove fst (i, undefined) t
show mapOf ?tr i = None
proof -
from v remove-spec have remSet: setOf ?tr = setOf t - eqs fst (i, undefined)
by fastforce
have noneIn: forall a. (i,a) \notin setOf ?tr
proof
fix a
from remSet show (i,a) ~: setOf ?tr by (simp add: eqs-def)
from v remove-sort have vr: valid-tmap ?tr by fastforce
have mapset-none-inst: valid-tmap ?tr ==>
(mapOf ?tr i = None) = (∀a. (i,a) ∉ setOf ?tr)
by (insert mapset-none [of ?tr i], simp)
from vr this have (mapOf ?tr i = None) = (∀a. (i,a) ∉ setOf ?tr) by fastforce
from this noneIn show mapOf ?tr i = None by simp
qed
qed
end

12 Tactic-Style Reasoning for Binary Tree Operations

theory BinaryTree-TacticStyle imports Main begin
This example theory illustrates automated proofs of correctness for binary tree operations using tactic-style reasoning. The current proofs for remove operation are by Tobias Nipkow, some modifications and the remaining tree operations are by Viktor Kuncak.

13 Definition of a sorted binary tree

datatype tree = Tip | Nd tree nat tree
primrec set-of :: tree => nat set
— The set of nodes stored in a tree.
where
 set-of Tip = {}
| set-of(Nd l x r) = set-of l Un set-of r Un {x}
primrec sorted :: tree => bool
— Tree is sorted
where
 sorted Tip = True
| sorted(Nd l y r) =
 (sorted l & sorted r & (∀x ∈ set-of l. x < y) & (∀z ∈ set-of r. y < z))

14 Tree Membership

primrec
 memb :: nat => tree => bool
where
 memb e Tip = False
| memb e (Nd t1 x t2) =
 (if e < x then memb e t1
 else memb e t2)
else if \(x < e \) then \(\text{memb} \ e \ t2 \)
else \(\text{True} \)

\textbf{Lemma} \ member-set: \(\text{sorted} \ t \implies \text{memb} \ e \ t = (e : \text{set-of} \ t) \)
by (induct \(t \)) auto

\section{15 Insertion operation}

\textbf{primrec} \ \textbf{bininsert} :: \(\text{nat} \Rightarrow \text{tree} \Rightarrow \text{tree} \) — Insert a node into sorted tree.
\textbf{where}
\[\text{bininsert} \ x \ \text{Tip} = (\text{Nd} \ \text{Tip} \ x \ \text{Tip}) \]
| \(\text{bininsert} \ x \ (\text{Nd} \ t1 \ y \ t2) = (\text{if} \ x < y \ \text{then} \)
& \((\text{Nd} \ (\text{bininsert} \ x \ t1) \ y \ t2) \)
| \(\text{else} \)
& \((\text{if} \ y < x \ \text{then} \)
& \((\text{Nd} \ t1 \ y \ (\text{bininsert} \ x \ t2)) \)
| \(\text{else} \)
& \((\text{Nd} \ t1 \ y \ t2) \))

\textbf{Theorem} \ \text{set-of-bininsert} \ [\text{simp}]: \ \text{set-of} \ (\text{bininsert} \ x \ t) = \text{set-of} \ t \cup \{x\}
by (induct \(t \)) auto

\textbf{Theorem} \ \text{bininsert-sorted}: \ \text{sorted} \ t \implies \text{sorted} \ (\text{bininsert} \ x \ t)
by (induct \(t \)) (auto simp add: \text{set-of-bininsert})

\textbf{Corollary} \ \text{bininsert-spec}:
\text{sorted} \ t \implies \text{sorted} \ (\text{bininsert} \ x \ t) \&
\text{set-of} \ (\text{bininsert} \ x \ t) = \text{set-of} \ t \cup \{x\}
by (simp add: \text{bininsert-sorted})

\section{16 Remove operation}

\textbf{primrec} \ \textbf{rm} :: \(\text{tree} \Rightarrow \text{nat} \) — find the rightmost element in the tree
\textbf{where}
\[\text{rm} (\text{Nd} \ l \ x \ r) = (\text{if} \ r = \text{Tip} \ \text{then} \ x \ \text{else} \ \text{rm} \ r) \]

\textbf{primrec} \ \textbf{rem} :: \(\text{tree} \Rightarrow \text{tree} \) — find the tree without the rightmost element
\textbf{where}
\[\text{rem} (\text{Nd} \ l \ x \ r) = (\text{if} \ r = \text{Tip} \ \text{then} \ l \ \text{else} \ \text{Nd} \ l \ x \ (\text{rem} \ r)) \]

\textbf{primrec} \ \textbf{remove} :: \(\text{nat} \Rightarrow \text{tree} \Rightarrow \text{tree} \) — remove a node from sorted tree
\textbf{where}
\[\text{remove} \ x \ \text{Tip} = \text{Tip} \]
| \(\text{remove} \ x \ (\text{Nd} \ l \ y \ r) = \)
& \((\text{if} \ x < y \ \text{then} \ \text{Nd} \ (\text{remove} \ x \ l) \ y \ r \ \text{else} \)
if \(y < x \) then \(\text{Nd} \ l \ y \) \((\text{remove} \ x \ r)\) else
if \(l = \text{Tip} \) then \(r \)
else \(\text{Nd} \ (\text{rem} \ l) \ (\text{rm} \ l) \ r \)

Lemma rm-in-set-of: \(t \sim \text{Tip} \Longrightarrow \text{rm} \ : \text{set-of} \ t \)
by \((\text{induct} \ t)\) \text{auto}

Lemma set-of: \(t \sim \text{Tip} \Longrightarrow \text{set-of} \ t = \text{set-of} \ (\text{rem} \ t) \ \cup \ \{\text{rm} \ t\} \)
by \((\text{induct} \ t)\) \text{auto}

Lemma [simp]: \[t \sim \text{Tip} \Longrightarrow \text{sorted} \ t \]
by \((\text{induct} \ t)\) \text{auto simp add: set-of-rem}

Lemma sorted-rem: \[t \sim \text{Tip} \Longrightarrow \text{x} \in \text{set-of} \ (\text{rem} \ t); \text{sorted} \ t \Longrightarrow x < \text{rm} \ t \]
by \((\text{induct} \ t)\) \text{auto simp add: set-of-rem split: if-splits}

Theorem set-of-remove [simp]: \(\text{sorted} \ t \Longrightarrow \text{set-of} \ (\text{remove} \ x \ t) = \text{set-of} \ t - \{x\} \)
apply \((\text{induct} \ t)\)
apply simp
apply simp
apply (rule conjI)
apply fastforce
apply (rule impI)
apply (rule conjI)
apply fastforce
apply (fastforce simp: set-of-rem)
done

Theorem remove-sorted: \(\text{sorted} \ t \Longrightarrow \text{sorted} \ (\text{remove} \ x \ t) \)
by \((\text{induct} \ t)\) \text{auto intro: less-trans rm-in-set-of sorted-rem}

Corollary remove-spec: — summary specification of remove
\(\text{sorted} \ t \Longrightarrow \)
\[\text{sorted} \ (\text{remove} \ x \ t) \& \]
\[\text{set-of} \ (\text{remove} \ x \ t) = \text{set-of} \ t - \{x\} \]
by \((\text{simp add: remove-sorted})\)

Finally, note that rem and rm can be computed using a single tree traversal given by \(\text{rmrm} \).

primrec \(\text{rmrm} :: \text{tree} \Rightarrow \text{tree} \times \text{nat} \)
where
\[\text{rmrm} \ (\text{Nd} \ l \ x \ r) = (\text{if} \ r = \text{Tip} \ \text{then} \ (l, x) \ \text{else} \)
\[\text{let} \ (r', y) = \text{rmrm} \ r \ \text{in} \ (\text{Nd} \ l \ x \ r', y)) \]

**Lemma t \sim \text{Tip} \Longrightarrow \text{rmrm} \ t = (\text{rem} \ t, \text{rm} \ t) \)
by \((\text{induct} \ t)\) \text{auto simp: Let-def}

We can test this implementation by generating code.

Definition \(\text{test} = \text{memb} \\ 4 \ (\text{remove} \ (3::\text{nat}) \ (\text{binset} \\ 4 \ (\text{binset} \ 3 \text{Tip}))) \)

25
export-code test
 in SML module-name BinaryTree-TacticStyle-Code file BinaryTree-TacticStyle-Code.ML
end