BinarySearchTree

Larry Paulson

September 13, 2023

Contents

1 Isar-style Reasoning for Binary Tree Operations 1
2 Tree Definition 1
3 Tree Lookup 2
3.1 Tree membership as a special case of lookup 5
4 Insertion into a Tree 6
5 Removing an element from a tree 9
6 Mostly Isar-style Reasoning for Binary Tree Operations 17
7 Map implementation and an abstraction function 17
8 Auxiliary Properties of our Implementation 18
8.1 Lemmas mapset-none and mapset-some establish a relation between the set and map abstraction of the tree 18
9 Empty Map 20
10 Map Update Operation 20
11 Map Remove Operation 21
12 Tactic-Style Reasoning for Binary Tree Operations 22
13 Definition of a sorted binary tree 22
14 Tree Membership 23
15 Insertion operation 23
16 Remove operation 23

1 Isar-style Reasoning for Binary Tree Operations

theory BinaryTree imports Main begin

We prove correctness of operations on binary search tree implementing a set.

This document is LGPL.
Author: Viktor Kuncak, MIT CSAIL, November 2003

2 Tree Definition

datatype 'a Tree $=$ Tip $\mid T$ ' a Tree ' a 'a Tree
primrec
setOf :: 'a Tree => 'a set

- set abstraction of a tree
where
setOf Tip $=\{ \}$
$\mid \operatorname{setOf}(T \mathrm{t} 1 \mathrm{x}$ t2) $)=(\operatorname{setOf} \mathrm{t}) \mathrm{Un}(\operatorname{setOf} \mathrm{t} 2) U n\{x\}$

type-synonym

- we require index to have an irreflexive total order $<$
- apart from that, we do not rely on index being int
index $=$ int
type-synonym - hash function type
'a hash $=$ ' $a=>$ index
definition eqs $::$ ' a hash $=>{ }^{\prime} a=>$ ' a set where
- equivalence class of elements with the same hash code eqs $h x==\{y . h y=h x\}$
primrec
sortedTree :: 'a hash => 'a Tree => bool
- check if a tree is sorted
where
sortedTree h Tip = True
| sortedTree $h(T$ t1 x t2 $)=$ (sortedTree h t1 \& $(\forall l \in \operatorname{set}$ Of t1. $h l<h x) \&$ ($\forall r \in \operatorname{set}$ Of t2. $h x<h r) \&$ sortedTree h t2)
lemma sortLemmaL: sortedTree $h(T$ t1 x t2 $)==>$ sortedTree h t1 by simp
lemma sortLemmaR:
sortedTree $h(T$ t1 x t2) $)==>$ sortedTree h t2 by simp

3 Tree Lookup

primrec

tlookup :: 'a hash => index => 'a Tree => 'a option
where
tlookup h k Tip $=$ None
| tlookuphk(Tt1xt2)=
(if $k<h x$ then tlookup $h k t 1$
else if $h x<k$ then tlookup $h k$ t2
else Some x)
lemma tlookup-none:
sortedTree $h t \&($ tlookup $h k t=$ None $) ~-->\left(\forall x \in \operatorname{setOf} t . h x^{\sim}=k\right)$
by (induct t, auto)
lemma tlookup-some:
sortedTree $h t \&($ tlookup $h k t=$ Some $x)-->x$:setOf $t \& h x=k$
apply (induct t)

- Just auto will do it, but very slowly
apply ($\operatorname{simp\text {)}}$
apply (clarify, auto)
apply (simp-all split: if-split-asm)
done
definition sorted-distinct-pred $::$ ' a hash $=>$ ' $a=>$ ' $a=>$ ' a Tree => bool where
- No two elements have the same hash code
sorted-distinct-pred h a bt==sortedTree $h t \&$
a :setOf $t \& b:$ setOf $t \& h a=h b-->$
$a=b$
declare sorted-distinct-pred-def [simp]
- for case analysis on three cases
lemma cases3: [| C1 ==> G; C2 $==>G ; C 3==>G$;

$$
C 1|C 2| C 3 \mid]==>G
$$

by auto
sorted-distinct-pred holds for out trees:
lemma sorted-distinct: sorted-distinct-pred habt (is ?P t)
proof (induct t)
show ?P Tip by simp
fix $t 1$:: 'a Tree assume h1: ?P t1
fix $t 2$:: ' a Tree assume h2: ?P t2
fix $x::$ ' a
show ? P (T t1 x t2)
proof (unfold sorted-distinct-pred-def, safe)
assume s: sortedTree h (T t1 xt2)
assume adef: $a: \operatorname{set} O f(T$ t1 x t2)
assume bdef: $b: \operatorname{set} O f(T t 1 x t 2)$

```
assume hahb: h a =hb
from s have s1: sortedTree h t1 by auto
from s have s2: sortedTree h t2 by auto
show }a=
- We consider 9 cases for the position of a and b are in the tree
proof -
- three cases for a
from adef have a:setOf t1 | a=x | a: setOf t2 by auto
moreover { assume adef1:a : setOf t1
    have ?thesis
    proof -
    - three cases for b
    from bdef have b: setOf t1 | b=x | b: setOf t2 by auto
    moreover { assume bdef1:b: setOf t1
        from s1 adef1 bdef1 hahb h1 have ?thesis by simp }
    moreover { assume bdef1: b=x
    from adef1 bdef1s have ha<hb by auto
    from this hahb have ?thesis by simp }
    moreover { assume bdef1:b : setOf t2
        from adef1 s have o1: ha<hx by auto
        from bdef1 s have o2: }hx<hb\mathrm{ by auto
        from o1 o2 have ha<hb by simp
        from this hahb have ?thesis by simp } - case impossible
    ultimately show ?thesis by blast
    qed
}
moreover { assume adef1: a=x
    have ?thesis
    proof -
    - three cases for b
    from bdef have b: setOf t1 | b=x | b: setOf t2 by auto
    moreover { assume bdef1: b : setOf t1
        from this s have hb<hx by auto
        from this adef1 have hb<ha by auto
        from hahb this have ?thesis by simp } - case impossible
    moreover { assume bdef1: b=x
    from adef1 bdef1 have ?thesis by simp }
    moreover { assume bdef1:b : setOf t2
    from this s have hx<hb by auto
    from this adef1 have ha<hb by simp
    from hahb this have ?thesis by simp } - case impossible
    ultimately show ?thesis by blast
    qed
}
moreover { assume adef1: a : setOf t2
    have ?thesis
    proof -
    - three cases for b
    from bdef have b: setOf t1 | b=x| b: setOf t2 by auto
```

```
        moreover { assume bdef1:b: setOf t1
            from bdef1 s have o1: hb<hx by auto
            from adef1 s have o2: hx<ha}\mathrm{ by auto
            from o1 o2 have hb<ha by simp
            from this hahb have ?thesis by simp } - case impossible
        moreover { assume bdef1: b=x
            from adef1 bdef1 s have hb<ha by auto
            from this hahb have ?thesis by simp } - case impossible
        moreover { assume bdef1:b : setOf t2
            from s2 adef1 bdef1 hahb h2 have ?thesis by simp }
        ultimately show ?thesis by blast
        qed
    }
    ultimately show ?thesis by blast
    qed
    qed
qed
lemma tlookup-finds: - if a node is in the tree, lookup finds it
sortedTree ht & y:setOf t -->
    tlookup h (hy)t=Some y
proof safe
    assume s: sortedTree ht
    assume yint: y: setOf t
    show tlookup h (hy)t=Some y
    proof (cases tlookup h (hy)t)
    case None note res = this
        from s res have sortedTree ht & (tlookup h (hy)t=None) by simp
        from this have o1: }\forallx\insetOf t. hx ~=h y by (simp add: tlookup-none
        from o1 yint have hy ~}=hy\mathrm{ by fastforce
    from this show ?thesis by simp
next case (Some z) note res = this
    have ls: sortedTree h t & (tlookup h (h y) t=Some z) -->
                z:setOf t & hz =h y by (simp add: tlookup-some)
    have sd: sorted-distinct-pred h y zt
    by (insert sorted-distinct [of hyzt], simp)
    from s res ls have o1:z:setOf t & hz=hy by simp
    from s yint o1 sd have }y=z\mathrm{ by auto
    from this res show tlookup h (hy)t=Some y by simp
qed
qed
```


3.1 Tree membership as a special case of lookup

definition memb $::$ ' a hash $=>$ ' $a=>$ 'a Tree $=>$ bool where

$$
\begin{aligned}
& \text { memb } h x t== \\
& (\text { case }(\text { tlookup } h(h x) t) \text { of } \\
& \quad \text { None }=>\text { False }
\end{aligned}
$$

$$
\text { Some } z=>(x=z))
$$

lemma assumes s : sortedTree $h t$
shows memb-spec: memb $h x t=(x: \operatorname{setOf} t)$
proof (cases tlookup $h(h x) t$)
case None note t None $=$ this
from t None have res: memb $h x t=$ False by (simp add: memb-def)
from s tNone tlookup-none have o1: $\forall y \in \operatorname{set}$ Of $t . h y^{\sim}=h x$ by fastforce
have notIn: x^{\sim} : setOf t
proof
assume $h: x:$ setOf t
from h o1 have $h x^{\sim}=h x$ by fastforce
from this show False by simp
qed
from res notIn show ?thesis by simp
next case (Some z) note t Some $=$ this
from s tSome tlookup-some have zin: $z: \operatorname{set}$ Of t by fastforce
show ?thesis
proof (cases $x=z$)
case True note $x e z=$ this
from t Some xez have res: memb $h x t$ by (simp add: memb-def)
from res zin xez show? ?thesis by simp
next case False note xnez $=$ this
from t Some xnez have res: ${ }^{\sim}$ memb $h x t$ by (simp add: memb-def)
have x^{\sim} : setOf t
proof
assume xin: x : setOf t
from s tSome tlookup-some have $h z h x: h x=h z$ by fastforce
have o1: sorted-distinct-pred $h x z t$
by (insert sorted-distinct [of $h x z t]$, simp)
from s xin zin hzhx o1 have $x=z$ by fastforce
from this xnez show False by simp
qed
from this res show ?thesis by simp
qed
qed
declare sorted-distinct-pred-def [simp del]

4 Insertion into a Tree

primrec

binsert :: 'a hash => ' $a=>$ ' a Tree $=>$ ' a Tree
where
binsert he Tip $=($ T Tip e Tip $)$
| binsert $h e(T$ t1 x t2 $)=($ if $h e<h x$ then
(T (binsert het1) xt2)
else
(if $h x<h e$ then

$$
(T \text { t1 } x \text { (binsert het2)) }
$$

$$
\text { else }(T \text { t1 e t2 })))
$$

A technique for proving disjointness of sets.

```
lemma disjCond: \([\mid!!x .[|x: A ; x: B|]==>\) False \(\mid]==>A\) Int \(B=\{ \}\)
by fastforce
```

The following is a proof that insertion correctly implements the set interface. Compared to BinaryTree-TacticStyle, the claim is more difficult, and this time we need to assume as a hypothesis that the tree is sorted.
lemma binsert-set: sortedTree $h t->$

$$
\text { setOf }(\text { binsert } h e t)=(\text { setOf } t)-(\text { eqs } h e) U n\{e\}
$$

(is ?P t)
proof (induct t)

- base case
show ?P Tip by (simp add: eqs-def)
- inductition step
fix $t 1$:: ' a Tree assume $h 1$: ? P t1
fix $t 2$:: 'a Tree assume h2: ?P t2
fix $x::$ ' a
show? ? $(T$ t1 x t2 $)$
proof
assume s: sortedTree h (T t1 x t2)
from s have s1: sortedTree h t1 by (rule sortLemmaL)
from $s 1$ and $h 1$ have $c 1$: setOf (binserthet1) $=\operatorname{setOft1}-$ eqs h e Un $\{e\}$
by simp
from s have s2: sortedTree h t2 by (rule sortLemmaR)
from $s 2$ and h2 have $c 2: \operatorname{setOf}($ binsert h e t2) $=\operatorname{setOf} t 2-e q s h e U n\{e\}$
by simp
show setOf (binsert he(Tt1xt2))=
set Of $(T t 1 x t 2)-e q s h e U n\{e\}$
proof (cases he<hx)
case True note eLess $=$ this
from eLess have res: binsert he(Tt1xt2)=(T(binserthet1)xt2)by
simp
show setOf (binsert he(Tt1xt2))=
setOf (T t1 x t2) - eqsheUn $\{e\}$
proof (simp add: res eLess c1)
show insert $x($ insert $e($ setOf t1 - eqs he Un setOf t2) $)=$ insert $e($ insert $x(\operatorname{setOf} t 1$ Un setOf t2) - eqs $h e)$
proof -
have eqsLess $X: \forall e l \in$ eqs h e. h el $<h x$ by (simp add: eqs-def eLess)
from this have eqsDisjX: \forall el \in eqs h e. h el ${ }^{\sim}=h x$ by fastforce
from s have xLessT2: $\forall r \in \operatorname{setOf}$ t2. $h x<h r$ by auto
have eqsLessT2: $\forall e l \in$ eqs $h e . \forall r \in \operatorname{setOf} t 2 . h$ el $<h r$
proof safe
fix el assume hel: el : eqs h e
from hel eqs-def have o1: h el $=h e$ by fastforce
fix r assume $h r: r: \operatorname{set}$ Of t2
from x LessT2 $h r$ o1 eLess show h el $<h r$ by auto
qed
from eqsLessT2 have eqsDisjT2: \forall el \in eqs $h e . \forall r \in \operatorname{set}$ Of t2. $h e l{ }^{\sim}=$
by fastforce
from eqsDisjX eqsDisjT2 show ?thesis by fastforce
qed
qed
next case False note eNotLess $=$ this
show setOf (binsert he(Tt1xt2)) $=\operatorname{setOf}(T t 1 x t 2)-e q s h e U n\{e\}$
proof (cases $h x<h e$)
case True note xLess $=$ this
from xLess have res: binsert $h e(T$ t1 x t2 $)=(T t 1 x($ binsert $h e t 2))$ by simp
show setOf (binsert $h e(T$ t1 x t2 $))=$ setOf (T t1 x t2) - eqs he Un $\{e\}$
proof (simp add: res xLess eNotLess c2)
show insert x (insert e (setOf t1 Un (setOf t2 - eqs he))) = insert e (insert x (setOf t1 Un setOf t2) - eqs he)
proof -
have XLessEqs: $\forall e l \in$ eqs h e. $h x<h$ el by (simp add: eqs-def xLess)
from this have eqsDisjX: $\forall e l \in$ eqs h e. h el ${ }^{\sim}=h x$ by auto
from s have t1Less $X: \forall l \in \operatorname{setOf}$ t1. $h l<h x$ by auto
have T1lessEqs: $\forall e l \in$ eqs $h e . \forall l \in \operatorname{set}$ Of $t 1 . h l<h$ el
proof safe
fix el assume hel: el : eqs h e
fix l assume $h l: l:$ setOf $t 1$
from hel eqs-def have o1: hel=he by fastforce
from t1Less X hl o1 xLess show $h l<h$ el by auto
qed
from T1lessEqs have T1disjEqs: $\forall e l \in$ eqs $h e . \forall l \in \operatorname{set} O f t 1 . h e l \sim=$
by fastforce
from eqsDisjX T1lessEqs show ?thesis by auto
qed
qed
next case False note x NotLess $=$ this
from x NotLess eNotLess have xeqe: $h x=h$ e by simp
from xeqe have res: binsert $h e(T t 1 x$ t2 $)=(T$ t1 e t2) by simp
show setOf (binsert $h e(T$ t1 x t2 $)$) $=$
$\operatorname{setOf}(T$ t1 x t2) - eqshe Un $\{e\}$
proof (simp add: res eNotLess xeqe)
show insert e (setOf t1 Un setOf t2) $=$
insert $e($ insert $x(\operatorname{setOf} t 1 U n \operatorname{setOf}$ t2) - eqs $h e)$
proof -
have insert $x(\operatorname{set}$ Of t1 Un setOf t2) - eqs $h e=$ setOf t1 Un setOf t2
proof -
have x : eqs h e by (simp add: eqs-def xeqe)

```
                    moreover have (setOf t1) Int (eqs h e) = {}
                    proof (rule disjCond)
                        fix w
                        assume whSet: w: setOf t1
                        assume whEq:w : eqs he
                            from whSet s have o1:hw<hx by simp
                            from whEq eqs-def have o2: hw=h e by fastforce
                    from o2 xeqe have o3: ~ hw<hx by simp
                    from o1 o3 show False by contradiction
                    qed
                    moreover have (setOf t2) Int (eqs h e) = {}
                    proof (rule disjCond)
                    fix }
                        assume whSet: w: setOf t2
                        assume whEq:w: eqs h e
                            from whSet s have o1: hx<hw by simp
                            from whEq eqs-def have o2: hw=he by fastforce
                    from o2 xeqe have o3: ~ h x<hw by simp
                    from o1 o3 show False by contradiction
                    qed
                    ultimately show ?thesis by auto
                    qed
                    from this show ?thesis by simp
                    qed
                qed
        qed
    qed
    qed
qed
```

Using the correctness of set implementation, preserving sortedness is still simple.
lemma binsert-sorted: sortedTree $h t-->$ sortedTree h (binsert $h x t$) by (induct t) (auto simp add: binsert-set)

We summarize the specification of binsert as follows.

```
corollary binsert-spec: sortedTree ht-->
sortedTree h (binsert h x t) &
setOf (binsert het)=(setOft)-(eqshe)Un {e}
by (simp add: binsert-set binsert-sorted)
```


5 Removing an element from a tree

These proofs are influenced by those in BinaryTree-Tactic

primrec

$r m$:: 'a hash => ' a Tree => 'a
— rightmost element of a tree

where

$r m h(T t 1 x t 2)=$
(if $\mathrm{t} 2=$ Tip then x else rm h t2)

primrec

wrm :: 'a hash => 'a Tree => 'a Tree

- tree without the rightmost element

where

wrm $h(T$ t1 xt2 $)=$

$$
(\text { if } t 2=\text { Tip then } t 1 \text { else }(T \text { t1 } x(\text { wrm } h \text { t2 })))
$$

primrec

```
wrmrm :: 'a hash => 'a Tree => 'a Tree * 'a
```

- computing rightmost and removal in one pass
where

```
wrmrm \(h(T\) t1 x t2) \(=\)
    (if \(\mathrm{t2}=\) Tip then \((t 1, x)\)
    else (T t1 x (fst (wrmrm h t2)),
        snd (wrmrm h t2)))
```


primrec

```
    remove :: 'a hash => ' \(a=>\) ' \(a\) Tree \(=>~ ' a\) Tree
```

 - removal of an element from the tree
 where
remove h e Tip $=$ Tip
\mid remove $h e(T$ t1 x t2 $)=$
(if $h e<h x$ then (T (remove het1) x t2)
else if $h x<h$ e then $(T$ t1 x (remove h e t2))
else (if $\mathrm{t} 1=$ Tip then t 2
else let $(t 1 p, r)=w r m r m h t 1$
in (T t1p rt2)))
theorem wrmrm-decomp: $t^{\sim}=$ Tip $-->$ wrmrm $h t=($ wrm $h t, r m h t)$
apply (induct-tac t)
apply simp-all
done
lemma rm-set: $t^{\sim}=$ Tip \& sortedTree $h t-->r m h t: \operatorname{setOf} t$
apply (induct-tac t)
apply simp-all
done
lemma wrm-set: $t^{\sim}=$ Tip \& sortedTree $h t-->$
$\operatorname{set} O f($ wrm $h t)=\operatorname{set} O f t-\{r m h t\}(\mathbf{i s} ? P t)$
proof (induct t)
show ?P Tip by simp
fix $t 1$:: 'a Tree assume $h 1$: ? P t1
fix $t 2$:: ' a Tree assume h2: ?P t2
fix $x::{ }^{\prime} a$

```
show ?P (T t1 x t2)
proof (rule impI, erule conjE)
    assume s: sortedTree h (T t1 x t2)
    show setOf (wrm h (T t1 x t2)) =
        setOf (T t1 x t2) - {rmh(T t1 x t2) }
    proof (cases t2 = Tip)
    case True note t2tip = this
        from t2tip have rm-res: rm h (T t1 x t2) =x by simp
        from t2tip have wrm-res: wrm h(T t1 x t2) = t1 by simp
        from }s\mathrm{ have }\mp@subsup{x}{}{~}\mathrm{ : setOf t1 by auto
        from this rm-res wrm-res t2tip show ?thesis by simp
    next case False note t2nTip = this
        from t2nTip have rm-res: rm h (T t1 x t2) = rm h t2 by simp
        from t2nTip have wrm-res: wrmh(T t1 x t2) = T t1 x (wrmh t2) by simp
        from s have s2: sortedTree h t2 by simp
        from h2 t2nTip s2
        have o1: setOf (wrm h t2) = setOf t2 - {rmht2} by simp
        show ?thesis
        proof (simp add: rm-res wrm-res t2nTip h2 o1)
            show insert x (setOf t1 Un (setOf t2 - {rmh t2})) =
                insert x (setOf t1 Un setOf t2) - {rmh t2}
            proof -
                from s rm-set t2nTip have xOk: hx<h(rm h t2) by auto
            have t1Ok:}\foralll\in\operatorname{setOf t1. hl<h(rmh t2)
            proof safe
                    fix l:: 'a assume ldef:l: setOf t1
                    from ldef s have lx: hl<hx by auto
                    from lx xOk show hl<h(rm h t2) by auto
                    qed
                from xOk t1Ok show ?thesis by auto
            qed
        qed
    qed
    qed
qed
lemma wrm-set1: t ~ = Tip & sortedTree h t--> setOf (wrmht)<=setOf t
by (auto simp add: wrm-set)
lemma wrm-sort: t }\mp@subsup{}{}{~}=\mathrm{ Tip & sortedTree h t --> sortedTree h (wrm ht) (is ?P
t)
proof (induct t)
    show ?P Tip by simp
    fix t1 :: 'a Tree assume h1: ?P t1
    fix t2 :: 'a Tree assume h2: ?P t2
    fix }x:: ' '
    show ?P (T t1 x t2)
    proof safe
    assume s: sortedTree h (T t1 x t2)
```

```
    show sortedTree h (wrm h (T t1 x t2))
    proof (cases t2 = Tip)
    case True note t2tip = this
        from t2tip have res: wrm h(T t1 x t2) = t1 by simp
        from res s show ?thesis by simp
    next case False note t2nTip = this
        from t2nTip have res: wrmh(T t1 x t2) = T t1 x (wrm h t2) by simp
        from s have s1: sortedTree h t1 by simp
        from s have s2: sortedTree h t2 by simp
        from s2 h2 t2nTip have o1: sortedTree h (wrm h t2) by simp
        from s2 t2nTip wrm-set1 have o2: setOf (wrm h t2) <= setOf t2 by auto
        from s o2 have o3: }\forallr\in\operatorname{setOf (wrm h t2). hx<hr by auto
        from s1 o1 o3 res s show sortedTree h (wrmh(T t1 x t2)) by simp
    qed
    qed
qed
lemma wrm-less-rm:
    t ~}=\mathrm{ Tip & sortedTree ht-->
```



```
proof (induct t)
    show ?P Tip by simp
    fix t1 :: 'a Tree assume h1: ?P t1
    fix t2 :: 'a Tree assume h2: ?P t2
    fix }x:: '
    show ?P (T t1 x t2)
    proof safe
    fix l::' 'a assume ldef:l: setOf (wrm h(T t1 x t2))
    assume s: sortedTree h(T t1 x t2)
    from s have s1: sortedTree h t1 by simp
    from s have s2: sortedTree h t2 by simp
    show hl<h(rmh(Tt1 x t2))
    proof (cases t2 = Tip)
    case True note t2tip = this
            from t2tip have rm-res: rm h(T t1 x t2) =x by simp
            from t2tip have wrm-res: wrm h(T t1 x t2) = t1 by simp
            from ldef wrm-res have o1:l: setOf t1 by simp
            from rm-res o1 s show ?thesis by simp
    next case False note t2nTip = this
            from t2nTip have rm-res: rm h (T t1 x t2) =rmh t2 by simp
            from t2nTip have wrm-res: wrm h(T t1 x t2) = T t1 x (wrmh t2) by simp
            from ldef wrm-res
            have l-scope: l:{x} Un setOf t1 Un setOf (wrm h t2) by simp
            have hLess: hl<h(rm h t2)
            proof (cases l=x)
            case True note lx = this
                    from s t2nTip rm-set s2 have o1: hx<h(rmht2) by auto
            from lx o1 show ?thesis by simp
            next case False note lnx = this
```

```
            show ?thesis
            proof (cases l: setOf t1)
            case True note l-in-t1 = this
                    from s t2nTip rm-set s2 have o1: hx<h(rmht2) by auto
                    from l-in-t1 s have o2: hl<hx}\mathrm{ by auto
                    from o1 o2 show ?thesis by simp
            next case False note l-notin-t1 = this
                    from l-scope lnx l-notin-t1
                    have l-in-res:l: setOf (wrm h t2) by auto
                    from l-in-res h2 t2nTip s2 show ?thesis by auto
            qed
        qed
        from rm-res hLess show ?thesis by simp
        qed
    qed
qed
lemma remove-set: sortedTree ht -->
    setOf (remove h e t)= setOft - eqs he (is ?P t)
proof (induct t)
    show ?P Tip by auto
    fix t1 :: 'a Tree assume h1: ?P t1
    fix t2 ::'a Tree assume h2: ?P t2
    fix }x:: '
    show ?P (T t1 x t2)
    proof
        assume s: sortedTree h (T t1 x t2)
        show setOf (remove he (T t1 x t2)) = setOf (T t1 x t2) - eqs he
        proof (cases h e<hx)
        case True note elx = this
            from elx have res: remove he(Tt1 x t2) = T(remove h e t1) x t2
            by simp
            from s have s1: sortedTree h t1 by simp
            from s1 h1 have o1: setOf (remove h e t1) = setOf t1 - eqs h e by simp
            show ?thesis
            proof (simp add: o1 elx)
                show insert x (setOf t1 - eqs h e Un setOf t2) =
                    insert x (setOf t1 Un setOf t2) - eqs h e
            proof -
                    have xOk: x ~
                    proof
                    assume h: x : eqs h e
                    from h have o1: ~ (h e<hx) by (simp add: eqs-def)
                    from elx o1 show False by contradiction
                    qed
                    have t2Ok: (setOf t2) Int (eqs h e) = {}
                    proof (rule disjCond)
                    fix y :: 'a
                    assume y-in-t2: y : setOf t2
```

```
            assume y-in-eq: y : eqs h e
            from y-in-t2 s have xly: hx<hy by auto
            from y-in-eq have eey: hy=h e by (simp add: eqs-def)
            from tly eey have nelx: ~ (h e<hx) by simp
            from nelx elx show False by contradiction
            qed
            from xOk t2Ok show ?thesis by auto
        qed
        qed
    next case False note nelx = this
    show ?thesis
    proof (cases h x < he)
    case True note xle = this
        from xle have res: remove he(T t1 x t2) = T t1 x (remove h e t2) by
simp
            from s have s2: sortedTree h t2 by simp
            from s2 h2 have o1: setOf (remove he t2) = setOf t2 - eqs he by simp
    show ?thesis
    proof (simp add: o1 xle nelx)
            show insert x (setOf t1 Un (setOf t2 - eqs he)) =
                insert x (setOf t1 Un setOf t2) - eqs he
            proof -
            have xOk: x ~
            proof
                    assume h: x : eqs h e
                    from h have o1: ~ (hx<he) by (simp add: eqs-def)
                    from xle o1 show False by contradiction
            qed
            have t1Ok:(setOf t1) Int (eqs h e)={}
            proof (rule disjCond)
                    fix }y::'
                    assume y-in-t1:y: setOf t1
                    assume y-in-eq: y : eqs h e
                    from y-in-t1 s have ylx: hy<hx by auto
                    from y-in-eq have eey: }hy=he\mathrm{ by (simp add: eqs-def)
                    from ylx eey have nxle: ~ (hx<he) by simp
                    from nxle xle show False by contradiction
            qed
            from xOk t1Ok show ?thesis by auto
        qed
    qed
    next case False note nxle = this
    from nelx nxle have ex: he=hx by simp
    have t2Ok: (setOf t2) Int (eqs h e)={}
    proof (rule disjCond)
        fix y :: 'a
        assume y-in-t2: y : setOf t2
        assume y-in-eq: y : eqs h e
        from y-in-t2 s have xly:hx<hy by auto
```

```
from \(y\)-in-eq have eey: \(h y=h e\) by (simp add: eqs-def)
from \(y\)-in-eq ex eey have nxly: \(\sim(h x<h y)\) by simp
from nxly xly show False by contradiction
qed
show ?thesis
proof (cases t1 = Tip)
case True note t1tip = this
    from ex t1tip have res: remove \(h e(T\) t1 x t2 \()=t 2\) by simp
    show ?thesis
    proof (simp add: res t1tip ex)
        show setOf t2 \(=\) insert \(x(\operatorname{setOf} t 2)-e q s h e\)
        proof -
            from ex have \(x\)-in-eqs: \(x\) : eqs \(h\) e by (simp add: eqs-def)
            from \(x\)-in-eqs t2Ok show? ?thesis by auto
    qed
    qed
next case False note \(11 n\) Tip \(=\) this
    from nelx nxle ex t1nTip
    have res: remove \(h e(T t 1 x t 2)=\)
            \(T(w r m h t 1)(r m h t 1) t 2\)
    by (simp add: Let-def wrmrm-decomp)
    from res show ?thesis
    proof simp
    from \(s\) have \(s 1\) : sortedTree \(h\) t1 by simp
    show insert (rmht1) ( setOf (wrmht1) Un setOf t2) \(=\)
                insert \(x\) (setOf t1 Un setOf t2) - eqs he
    proof (simp add: t1nTip s1 rm-set wrm-set)
        show insert (rmht1) (setOf t1-\{rmht1\}Un setOf t2) \(=\)
                insert \(x\) (setOf t1 Un setOf t2) - eqs he
        proof -
            from \(11 n\) Tip s1 rm-set
            have o1: insert (rmht1) (setOf t1-\{rmht1\} Un setOf t2) \(=\)
                        setOf t1 Un setOf t2 by auto
            have o2: insert \(x\) (setOf t1 Un setOf t2) - eqs he=
                    setOf t1 Un setOf t2
            proof -
            from ex have \(x O k\) : \(x\) : eqs \(h\) e by (simp add: eqs-def)
                have t1Ok: (setOf t1) Int (eqs he)=\{\}
            proof (rule disjCond)
                fix \(y::^{\prime} a\)
                    assume \(y\)-in-t1: y: setOf t1
                    assume \(y\)-in-eq: \(y\) : eqs \(h e\)
                    from \(y\)-in-t1 sex have o1: \(h y<h e\) by auto
                    from \(y\)-in-eq have o2: \(\sim(h y<h e)\) by (simp add: eqs-def)
                    from o1 o2 show False by contradiction
            qed
            from \(x O k\) t1Ok t2Ok show ?thesis by auto
            qed
            from o1 o2 show ?thesis by simp
```

```
                    qed
                    qed
                qed
                qed
            qed
        qed
    qed
qed
lemma remove-sort: sortedTree ht-->
                sortedTree h (remove h e t) (is ?P t)
proof (induct t)
    show ?P Tip by auto
    fix t1 ::'a Tree assume h1: ?P t1
    fix t2 :: 'a Tree assume h2: ?P t2
    fix }x:: '
    show ?P (T t1 x t2)
    proof
        assume s: sortedTree h (T t1 x t2)
    from s have s1: sortedTree h t1 by simp
    from s have s2: sortedTree h t2 by simp
    from h1 s1 have sr1: sortedTree h (remove h e t1) by simp
    from h2 s2 have sr2: sortedTree h (remove h e t2) by simp
    show sortedTree h (remove h e (T t1 x t2))
    proof (cases he<hx)
    case True note elx = this
        from elx have res: remove he(Tt1 x t2) =T (remove h e t1) x t2
        by simp
        show ?thesis
        proof (simp add: s sr1 s2 elx res)
            let ?C1 = \foralll\in setOf (remove het1). hl<hx
            let ?C2 = \forallr setOf t2. hx<hr
            have o1:?C1
            proof -
                from s1 have setOf (remove h e t1) = setOf t1 - eqs h e by (simp add:
remove-set)
                from s this show ?thesis by auto
            qed
            from o1 s show ?C1 & ?C2 by auto
        qed
    next case False note nelx = this
            show ?thesis
            proof (cases h x < he)
            case True note xle = this
                    from xle have res: remove he(T t1 x t2) = T t1 x (remove h e t2) by
simp
            show ?thesis
            proof (simp add: s s1 sr2 xle nelx res)
                let ?C1 = \foralll f setOf t1.h l<hx
```

let ? $C 2=\forall r \in \operatorname{setOf}$ (remove h e t2). $h x<h r$
have 02 : ? $C 2$
proof -
from $s 2$ have setOf (remove het2) $=\operatorname{set}$ Of t2 - eqs heby (simp add: remove-set)
from s this show ?thesis by auto
qed
from $o 2 s$ show ?C1 \& ?C2 by auto qed
next case False note nxle $=$ this
from nelx nxle have ex: $h e=h x$ by simp
show ?thesis
proof (cases t1 $=$ Tip)
case True note t1tip $=$ this
from ex t1tip have res: remove $h e(T$ t1 x t2 $)=$ t2 by simp
show ?thesis by (simp add: res t1tip ex s2)
next case False note t1nTip = this
from nelx nxle ex t1nTip
have res: remove $h e(T t 1 x t 2)=$
$T(w r m h t 1)(r m h t 1) t 2$
by (simp add: Let-def wrmrm-decomp)
from res show ?thesis
proof simp
let ?C1 $=$ sortedTree $h($ wrm $h t 1)$
let ? C2 $=\forall l \in \operatorname{setOf}(w r m h t 1) . h l<h(r m h t 1)$
let ? $C 3=\forall r \in \operatorname{setOft2.} h(r m h t 1)<h r$
let ?C4 $=$ sortedTree h t2
from s1 t1nTip have o1: ?C1 by (simp add: wrm-sort)
from s1 t1nTip have o2: ?C2 by (simp add: wrm-less-rm)
have o3: ?C3
proof
fix $r::{ }^{\prime} a$
assume rt2: r : setOf t2
from s rm-set s1 t1nTip have o1: $h(r m h t 1)<h x$ by auto
from rt2 s have $o 2: h x<h r$ by auto
from o1 o2 show $h(r m h t 1)<h r$ by simp
qed
from o1 o2 o3 s2 show ?C1 \& ?C2 \& ?C3 \&?C4 by simp
qed
qed
qed
qed
qed
qed
We summarize the specification of remove as follows.
corollary remove-spec: sortedTree $h t-->$
sortedTree h (remove h e t) \&
setOf $($ remove h e $t)=\operatorname{setOf} t-$ eqs $h e$
by (simp add: remove-sort remove-set)
definition test $=$ tlookup id $4($ remove id 3 (binsert id 4 (binsert id 3 Tip)))
export-code test
in SML module-name BinaryTree-Code file 〈BinaryTree-Code.ML〉
end

6 Mostly Isar-style Reasoning for Binary Tree Operations

theory BinaryTree-Map imports BinaryTree begin
We prove correctness of map operations implemented using binary search trees from BinaryTree.
This document is LGPL.
Author: Viktor Kuncak, MIT CSAIL, November 2003

7 Map implementation and an abstraction function

type-synonym
'a tarray $=($ index $*$ 'a) Tree
definition valid-tmap :: 'a tarray => bool where
valid-tmap $t==$ sortedTree fst t
declare valid-tmap-def [simp]
definition mapOf $::$ ' a tarray $=>$ index $=>$ 'a option where

- the abstraction function from trees to maps
mapOf $t i==$
(case (tlookup fst $i t$) of None $=>$ None
\mid Some ia $=>$ Some (snd ia))

8 Auxiliary Properties of our Implementation

lemma mapOf-lookup1: tlookup fst $i t=$ None $==>$ mapOf $t i=$ None
by (simp add: mapOf-def)
lemma mapOf-lookup2: tlookup fst $i t=$ Some $(j, a)==>$ mapOf $t i=$ Some a by (simp add: mapOf-def)
lemma assumes h : mapOf $t i=$ None

```
    shows mapOf-lookup3: tlookup fst i t = None
proof (cases tlookup fst it)
case None from this show ?thesis by assumption
next case (Some ia) note tsome = this
    from this have o1: tlookup fst it=Some (fst ia, snd ia) by simp
    have mapOf t i = Some (snd ia)
    by (insert mapOf-lookup2 [of it fst ia snd ia], simp add: o1)
    from this have mapOft i ~
    from this h show ?thesis by simp - contradiction
qed
lemma assumes v: valid-tmap t
    assumes h: mapOf t i = Some a
    shows mapOf-lookup4: tlookup fst it = Some (i,a)
proof (cases tlookup fst it)
case None
    from this mapOf-lookup1 have mapOf ti=None by auto
    from this h show ?thesis by simp - contradiction
next case (Some ia) note tsome = this
    have tlookup-some-inst: sortedTree fst t & (tlookup fst i t = Some ia) -->
        ia : setOf t & fst ia = i by (simp add: tlookup-some)
    from tlookup-some-inst tsome v have ia : setOf t by simp
    from tsome have mapOf ti=Some (snd ia) by (simp add: mapOf-def)
    from this h have o1: snd ia=a by simp
    from tlookup-some-inst tsome v have o2: fst ia =i by simp
    from o1 o2 have ia = (i,a) by auto
    from this tsome show tlookup fst it=Some (i,a) by simp
qed
```


8.1 Lemmas mapset-none and mapset-some establish a relation between the set and map abstraction of the tree

lemma assumes v : valid-tmap t
shows mapset-none: $($ mapOf $t i=$ None $)=(\forall a .(i, a) \notin \operatorname{setOf} t)$
proof

- ==>
assume mapNone: mapOf $t i=$ None
from v mapNone mapOf-lookup3 have lnone: tlookup fst $i t=$ None by auto
show $\forall a .(i, a) \notin \operatorname{set}$ Of t
proof
fix a
show $(i, a){ }^{\sim}$: setOf t
proof
assume iain: (i, a) : setOf t
have tlookup-none-inst:
sortedTree fst $t \&($ tlookup fst $i t=$ None $)-->\left(\forall x \in \operatorname{setOf} t\right.$. fst $\left.x^{\sim}=i\right)$
by (insert tlookup-none [of fst $t i$], assumption)
from v lnone tlookup-none-inst have $\forall x \in$ setOf t. fst $x^{\sim}=i$ by simp
from this iain have fst $(i, a)^{\sim}=i$ by fastforce

```
            from this show False by simp
        qed
    qed
    -<==
    next assume h: }\foralla.(i,a)\not\in\operatorname{setOf}
    show mapOf ti=None
    proof (cases mapOf t i)
    case None then show ?thesis .
    next case (Some a) note mapsome = this
        from v mapsome have o1: tlookup fst i t = Some (i,a) by (simp add:
mapOf-lookup4)
```

 from tlookup-some have tlookup-some-inst:
 sortedTree fst \(t\) \& tlookup fst it=Some (i,a) -->
 \((i, a): \operatorname{setOf} t \& f s t(i, a)=i\)
 by (insert tlookup-some [of fst \(t i(i, a)]\), assumption)
 from \(v\) o1 this have \((i, a): \operatorname{set} O f t\) by simp
 from this \(h\) show ?thesis by auto - contradiction
 qed
 qed
lemma assumes v: valid-tmap t
shows mapset-some: (mapOf $t i=$ Some $a)=((i, a)$: setOf $t)$
proof
- ==>
assume mapsome: mapOf $t i=$ Some a
from v mapsome have o1: tlookup fst $i t=\operatorname{Some}(i, a)$ by (simp add: mapOf-lookup4)
from tlookup-some have tlookup-some-inst:
sortedTree fst t \& tlookup fst $i t=\operatorname{Some}(i, a)-\gg$
$(i, a): \operatorname{set}$ Of $t \& f s t(i, a)=i$
by (insert tlookup-some [of fst $t i(i, a)]$, assumption)
from v o1 this show $(i, a): \operatorname{set} O f t$ by simp
$-<==$
next assume iain: (i, a) : setOf t
from v iain tlookup-finds have tlookup fst $(f s t(i, a)) t=S o m e(i, a)$ by fastforce
from this have tlookup fst $i t=S o m e(i, a)$ by simp
from this show mapOf $t i=$ Some a by (simp add: mapOf-def)
qed

9 Empty Map

lemma mnew-spec-valid: valid-tmap Tip
by (simp add: mapOf-def)
lemma mtip-spec-empty: mapOf Tip $k=$ None by (simp add: mapOf-def)

10 Map Update Operation

definition mupdate $::$ index $=>$ ' $a=>$ 'a tarray $=>$ 'a tarray where mupdate i a $t==$ binsert fst $(i, a) t$
lemma assumes v : valid-tmap t
shows mupdate-map: mapOf (mupdate ia $t)=($ mapOf $t)(i \mid->a)$
proof
fix ${ }^{2}$
let ? $t r=$ binsert fst $(i, a) t$
have upres: mupdate i a $t=$? tr by (simp add: mupdate-def)
from v binsert-set
have setSpec: setOf ?tr = setOf t - eqs fst (i,a) Un $\{(i, a)\}$ by fastforce
from v binsert-sorted have vr: valid-tmap?tr by fastforce
show mapOf (mupdate i a $t)$ i2 $=(($ mapOf $t)(i \mid->a)) i 2$
proof (cases $i=i 2$)
case True note $i 2 e i=$ this
from i2ei have rhs-res: $((\operatorname{map} O f t)(i \mid->a)) i 2=$ Some a by simp
have lhs-res: mapOf (mupdate i a t) $i=$ Some a
proof -
have will-find: tlookup fst i ?tr $=$ Some (i, a)
proof -
from setSpec have kvin: (i, a) : setOf ?tr by simp
have binsert-sorted-inst: sortedTree fst $t-->$ sortedTree fst ?tr
by (insert binsert-sorted [of fst $t(i, a)]$, assumption)
from v binsert-sorted-inst have rs: sortedTree fst ?tr by simp
have tlookup-finds-inst: sortedTree fst ? tr \& (i, a) : setOf ?tr $-\gg$
tlookup fst i ? tr $=$ Some (i, a)
by (insert tlookup-finds [of fst ? tr (i,a)], simp)
from rs kvin tlookup-finds-inst show ?thesis by simp
qed
from upres will-find show ?thesis by (simp add: mapOf-def)
qed
from lhs-res rhs-res i2ei show ?thesis by simp
next case False note $i 2 n e i=$ this
from $i 2 n e i$ have rhs-res: $((\operatorname{map} O f t)(i \mid->a)) i 2=\operatorname{mapOf} t i 2$ by auto
have lhs-res: mapOf (mupdate i a t) i2 $=$ mapOf t i2
proof (cases mapOf t i2)
case None from this have mapNone: mapOf ti2 = None by simp
from v mapNone mapset-none have i2nin: $\forall a .(i 2, a) \notin$ setOf t by fastforce
have noneIn: $\forall b$. $(i 2, b) \notin \operatorname{set} O f$? ?
proof
fix b
from v binsert-set
have setOf?tr $=\operatorname{setOf} t-$ eqs fst $(i, a) U n\{(i, a)\}$
by fastforce
from this i2nei i2nin show $(i 2, b)^{\sim}$: setOf ?tr by fastforce
qed

```
        have mapset-none-inst:
            valid-tmap ?tr --> (mapOf ?tr i2 = None )}=(\foralla.(i2, a)\not\in setOf ?tr )
            by (insert mapset-none [of ?tr i2], simp)
            from vr noneIn mapset-none-inst have mapOf ?tr i2 = None by fastforce
            from this upres mapNone show ?thesis by simp
    next case (Some z) from this have mapSome: mapOf ti2 = Some z by simp
    from v mapSome mapset-some have (i2,z) : setOf t by fastforce
    from this setSpec i2nei have (i2,z) : setOf ?tr by (simp add: eqs-def)
    from this vr mapset-some have mapOf ?tr i2 = Some z by fastforce
    from this upres mapSome show ?thesis by simp
    qed
    from lhs-res rhs-res show ?thesis by simp
    qed
qed
lemma assumes v: valid-tmap t
    shows mupdate-valid: valid-tmap (mupdate i a t)
proof -
    let ?tr = binsert fst (i,a)t
    have upres: mupdate i a t=?tr by (simp add: mupdate-def)
    from v binsert-sorted have vr: valid-tmap ?tr by fastforce
    from vr upres show ?thesis by simp
qed
```


11 Map Remove Operation

definition mremove :: index $=>$ 'a tarray $=>$ 'a tarray where mremove $i t==$ remove fst (i, undefined) t
lemma assumes v : valid-tmap t
shows mremove-valid: valid-tmap (mremove $i t$)
proof (simp add: mremove-def)
from v remove-sort
show sortedTree fst (remove fst (i, undefined) t) by fastforce
qed
lemma assumes v : valid-tmap t
shows mremove-map: mapOf (mremove $i t$) $i=$ None
proof (simp add: mremove-def)
let $? t r=$ remove fst $(i$, undefined $) t$
show mapOf ?tr $i=$ None
proof -
from v remove-spec
have remSet: setOf ? tr $=$ setOf $t-$ eqs fst (i, undefined)
by fastforce
have noneIn: $\forall a .(i, a) \notin \operatorname{set} O f$? tr
proof
fix a
from remSet show $(i, a)^{\sim}$: setOf ? tr by (simp add: eqs-def)

```
    qed
    from v remove-sort have vr: valid-tmap ?tr by fastforce
    have mapset-none-inst: valid-tmap ?tr ==>
    (mapOf ?tr i = None ) = (\foralla. (i,a)\not\in setOf ?tr )
    by (insert mapset-none [of ?tr i], simp)
    from vr this have (mapOf ?tr i=None) =(\foralla. (i,a) & setOf ?tr) by fastforce
    from this noneIn show mapOf ?tr i=None by simp
    qed
qed
end
```


12 Tactic-Style Reasoning for Binary Tree Operations

theory BinaryTree-TacticStyle imports Main begin
This example theory illustrates automated proofs of correctness for binary tree operations using tactic-style reasoning. The current proofs for remove operation are by Tobias Nipkow, some modifications and the remaining tree operations are by Viktor Kuncak.

13 Definition of a sorted binary tree

datatype tree $=$ Tip \mid Nd tree nat tree
primrec set-of $::$ tree $=>$ nat set

- The set of nodes stored in a tree.
where
set-of Tip $=\{ \}$
$\mid \operatorname{set}-\mathrm{of}($ Nd l x r $)=$ set-of l Un set-of $r \operatorname{Un}\{x\}$
primrec sorted :: tree $=>$ bool
— Tree is sorted
where
sorted Tip $=$ True
$\mid \operatorname{sorted}(N d l y r)=$
(sorted $l \&$ sorted $r \&(\forall x \in$ set-of $l . x<y) \&(\forall z \in$ set-of $r . y<z))$

14 Tree Membership

primrec
memb :: nat => tree $=>$ bool
where
memb e Tip = False
\mid memb e $(N d$ t1 x t2) $)=$
(if $e<x$ then memb et1
else if $x<e$ then memb e t2
else True)
lemma member-set: sorted $t-->$ memb e $t=(e:$ set-of $t)$
by (induct t) auto

15 Insertion operation

primrec binsert $::$ nat $=>$ tree $=>$ tree

- Insert a node into sorted tree.

where

binsert x Tip $=($ Nd Tip x Tip $)$
| binsert $x(N d$ t1 y t2) $)=($ if $x<y$ then
($N d$ (binsert x t1) y t2)
else
(if $y<x$ then
(Nd t1 y (binsert x t2))
else (Nd t1 y t2)))
theorem set-of-binsert [simp]: set-of (binsert $x t)=$ set-of $t U n\{x\}$ by (induct t) auto
theorem binsert-sorted: sorted $t-->$ sorted (binsert $x t$)
by (induct t) (auto simp add: set-of-binsert)
corollary binsert-spec:
sorted $t==>$
sorted (binsert $x t$) \&
set-of (binsert $x t)=$ set-of $t U n\{x\}$
by (simp add: binsert-sorted)

16 Remove operation

primrec

$r m::$ tree $=>$ nat - find the rightmost element in the tree where
$r m(N d l x r)=($ if $r=$ Tip then x else $r m r)$
primrec
rem $::$ tree $=>$ tree - find the tree without the rightmost element where

$$
\operatorname{rem}(N d l x r)=(\text { if } r=\text { Tip then } l \text { else } N d l x(\text { rem } r))
$$

primrec
remove:: nat $=>$ tree $=>$ tree - remove a node from sorted tree where
remove x Tip $=$ Tip
| remove $x(N d$ l y r) $=$
(if $x<y$ then $N d$ (remove $x l$) y r else

```
    if y<x then Nd ly (remove x r) else
    if l= Tip then r
    else Nd (rem l)(rml)r)
lemma rm-in-set-of: t }\mp@subsup{}{}{~}=\mathrm{ Tip ==> rm t : set-of t
by (induct t) auto
lemma set-of-rem: t ~= Tip ==> set-of t=set-of(rem t)Un{rm t}
by (induct t) auto
lemma [simp]:[| t ~}=\mathrm{ Tip; sorted t |] ==> sorted (rem t)
by (induct t) (auto simp add:set-of-rem)
lemma sorted-rem: [| t ~}=\mathrm{ Tip; x 新-of(rem t); sorted t |] ==> x<rm t
by (induct t) (auto simp add:set-of-rem split:if-splits)
theorem set-of-remove [simp]: sorted t==> set-of(remove x t)= set-of t-{x}
apply(induct t)
    apply simp
apply simp
apply(rule conjI)
    apply fastforce
apply(rule impI)
apply(rule conjI)
    apply fastforce
apply(fastforce simp:set-of-rem)
done
```

theorem remove-sorted: sorted $t==>$ sorted(remove $x t$)
by (induct t) (auto intro: less-trans rm-in-set-of sorted-rem)
corollary remove-spec: - summary specification of remove
sorted $t==>$
sorted (remove $x t$) \&
set-of $($ remove $x t)=$ set-of $t-\{x\}$
by (simp add: remove-sorted)

Finally, note that rem and rm can be computed using a single tree traversal given by remrm.
primrec remrm :: tree $=>$ tree $*$ nat
where
remrm $(N d l x r)=($ if $r=$ Tip then (l, x) else

$$
\text { let } \left.\left(r^{\prime}, y\right)=\text { remrm rin }\left(N d l x r^{\prime}, y\right)\right)
$$

lemma $t^{\sim}=$ Tip $==>$ remrm $t=($ rem $t, r m t)$
by (induct t) (auto simp:Let-def)
We can test this implementation by generating code.
definition test $=$ memb $4($ remove $(3::$ nat $)($ binsert $4($ binsert 3 Tip $)))$
export-code test
in SML module-name BinaryTree-TacticStyle-Code file 〈BinaryTree-TacticStyle-Code.ML〉 end

