BinarySearchTree

Larry Paulson

September 13, 2023

Contents

1	Isar-style Reasoning for Binary Tree Operations	1
2	Tree Definition	1
3	Tree Lookup 3.1 Tree membership as a special case of lookup	2 5
4	Insertion into a Tree	6
5	Removing an element from a tree	9
6	Mostly Isar-style Reasoning for Binary Tree Operations	17
7	Map implementation and an abstraction function	17
8	Auxiliary Properties of our Implementation 8.1 Lemmas mapset-none and mapset-some establish a relation	18
	between the set and map abstraction of the tree	18
9	Empty Map	20
10	Map Update Operation	20
11	Map Remove Operation	21
12	Tactic-Style Reasoning for Binary Tree Operations	22
13	Definition of a sorted binary tree	22
14	Tree Membership	23
15	Insertion operation	23
16	Remove operation	23

1 Isar-style Reasoning for Binary Tree Operations

theory BinaryTree imports Main begin

We prove correctness of operations on binary search tree implementing a set.

This document is LGPL.

Author: Viktor Kuncak, MIT CSAIL, November 2003

2 Tree Definition

```
datatype 'a Tree = Tip \mid T 'a Tree 'a 'a Tree
 setOf :: 'a Tree => 'a set
  — set abstraction of a tree
where
  setOf\ Tip = \{\}
| setOf(T t1 x t2) = (setOf t1) Un(setOf t2) Un \{x\}
type-synonym
  — we require index to have an irreflexive total order <
 — apart from that, we do not rely on index being int
 index = int
type-synonym — hash function type
  'a \ hash = 'a => index
definition eqs :: 'a \ hash => 'a => 'a \ set \ where
    equivalence class of elements with the same hash code
  eqs \ h \ x == \{y. \ h \ y = h \ x\}
  sortedTree :: 'a hash => 'a Tree => bool

    check if a tree is sorted

where
  sortedTree\ h\ Tip = True
| sortedTree\ h\ (T\ t1\ x\ t2) =
   (sortedTree h t1 &
    (\forall l \in setOf\ t1.\ h\ l < h\ x)\ \&
    (\forall r \in setOf\ t2.\ h\ x < h\ r)\ \&
    sortedTree h t2)
lemma sortLemmaL:
  sortedTree\ h\ (T\ t1\ x\ t2) ==> sortedTree\ h\ t1\ by\ simp
lemma sortLemmaR:
  sortedTree\ h\ (T\ t1\ x\ t2) ==> sortedTree\ h\ t2\ \mathbf{by}\ simp
```

3 Tree Lookup

```
primrec
    tlookup :: 'a hash => index => 'a Tree => 'a option
where
    tlookup \ h \ k \ Tip = None
| tlookup \ h \ k \ (T \ t1 \ x \ t2) =
      (if k < h x then the through h k the through h k the second secon
        else if h x < k then thookup h k t2
        else\ Some\ x)
lemma tlookup-none:
          sortedTree\ h\ t\ \&\ (tlookup\ h\ k\ t=None)\ -->\ (\forall\ x{\in}setOf\ t.\ h\ x\ ^{\sim}=\ k)
by (induct\ t,\ auto)
\mathbf{lemma}\ tlookup\text{-}some:
          sortedTree\ h\ t\ \&\ (tlookup\ h\ k\ t=Some\ x)\ -->x:setOf\ t\ \&\ h\ x=k
apply (induct\ t)
         - Just auto will do it, but very slowly
apply (simp)
apply (clarify, auto)
apply (simp-all split: if-split-asm)
definition sorted-distinct-pred :: 'a hash => 'a => 'a => 'a Tree => bool where
        - No two elements have the same hash code
    sorted-distinct-pred\ h\ a\ b\ t == sortedTree\ h\ t\ \&
            a:setOf\ t\ \&\ b:setOf\ t\ \&\ h\ a=h\ b\ -->
            a = b
declare sorted-distinct-pred-def [simp]
  — for case analysis on three cases
lemma cases3: ||C1 ==> G; C2 ==> G; C3 ==> G;
                                      C1 \mid C2 \mid C3 \mid = G
by auto
sorted-distinct-pred holds for out trees:
lemma sorted-distinct: sorted-distinct-pred h a b t (is ?P t)
proof (induct t)
   show ?P Tip by simp
   fix t1 :: 'a Tree assume h1: ?P t1
   fix t2 :: 'a Tree assume h2: ?P t2
   \mathbf{fix}\ x::\ 'a
    show ?P (T t1 x t2)
    proof (unfold sorted-distinct-pred-def, safe)
        assume s: sortedTree h (T t1 x t2)
        assume adef: a: setOf (T t1 x t2)
        assume bdef: b: setOf (T t1 x t2)
```

```
assume hahb: h a = h b
from s have s1: sortedTree h t1 by auto
from s have s2: sortedTree h t2 by auto
show a = b
— We consider 9 cases for the position of a and b are in the tree
proof -
  three cases for a
from adef have a : setOf t1 \mid a = x \mid a : setOf t2 by auto
moreover { assume adef1: a : setOf t1
 have ?thesis
 proof -
  — three cases for b
 from bdef have b : setOf \ t1 \mid b = x \mid b : setOf \ t2 by auto
 moreover { assume bdef1: b : setOf t1
   from s1 adef1 bdef1 hahb h1 have ?thesis by simp }
 moreover { assume bdef1: b = x
   from adef1 \ bdef1 \ s have h \ a < h \ b by auto
   from this hahb have ?thesis by simp }
 moreover { assume bdef1: b : setOf t2
   from adef1 s have o1: h \ a < h \ x by auto
   from bdef1 s have o2: h x < h b by auto
   from o1 o2 have h a < h b by simp
   from this hahb have ?thesis by simp } — case impossible
 ultimately show ?thesis by blast
 \mathbf{qed}
}
moreover { assume adef1: a = x
 have ?thesis
 proof -
   - three cases for b
 from bdef have b : setOf \ t1 \mid b = x \mid b : setOf \ t2 by auto
 moreover { assume bdef1: b : setOf t1
   from this s have h b < h x by auto
   from this adef1 have h \ b < h \ a by auto
   from hahb this have ?thesis by simp } — case impossible
 moreover { assume bdef1: b = x
   from adef1 bdef1 have ?thesis by simp }
 moreover { assume bdef1: b : setOf t2
   from this s have h x < h b by auto
   from this adef1 have h \ a < h \ b by simp
   from hahb this have ?thesis by simp } — case impossible
 ultimately show ?thesis by blast
 qed
moreover { assume adef1: a : setOf t2
 have ?thesis
 proof -
  - three cases for b
 from bdef have b : setOf \ t1 \mid b = x \mid b : setOf \ t2 by auto
```

```
moreover { assume bdef1: b : setOf t1
      from bdef1 \ s have o1: h \ b < h \ x by auto
      from adef1 s have o2: h x < h a by auto
      from o1 o2 have h b < h a by simp
      from this hahb have ?thesis by simp } — case impossible
     moreover { assume bdef1: b = x
      from adef1 \ bdef1 \ s have h \ b < h \ a by auto
      from this habb have ?thesis by simp } — case impossible
     moreover { assume bdef1: b: setOf t2
      from s2 adef1 bdef1 hahb h2 have ?thesis by simp }
     ultimately show ?thesis by blast
    qed
   }
   ultimately show ?thesis by blast
 qed
qed
lemma tlookup-finds: — if a node is in the tree, lookup finds it
sortedTree\ h\ t\ \&\ y:setOf\ t -->
tlookup \ h \ (h \ y) \ t = Some \ y
proof safe
 assume s: sortedTree\ h\ t
 assume yint: y : setOf t
 show thookup h(h y) t = Some y
 proof (cases thookup h(h y) t)
 case None note res = this
   from s res have sorted Tree h t & (tlookup h (h y) t = None) by simp
   from this have o1: \forall x \in setOf \ t. h \ x \cong h \ y \ by \ (simp \ add: tlookup-none)
   from o1 yint have h y \sim = h y by fastforce
   from this show ?thesis by simp
 \mathbf{next} \ \mathbf{case} \ (Some \ z) \ \mathbf{note} \ res = this
   have ls: sortedTree h t & (tlookup h (h y) t = Some z) -->
           z:setOf \ t \ \& \ h \ z = h \ y \ \mathbf{by} \ (simp \ add: \ tlookup-some)
   have sd: sorted-distinct-pred h y z t
   by (insert sorted-distinct [of h y z t], simp)
   from s res ls have o1: z:setOf t & h z = h y by simp
   from s yint of sd have y = z by auto
   from this res show thookup h(h y) t = Some y by simp
 qed
qed
3.1
       Tree membership as a special case of lookup
definition memb :: 'a \ hash => 'a => 'a \ Tree => bool \ where
 memb\ h\ x\ t ==
```

 $(case\ (tlookup\ h\ (h\ x)\ t)\ of$ None => False

```
| Some z => (x=z))
lemma assumes s: sortedTree\ h\ t
     shows memb-spec: memb h x t = (x : setOf t)
proof (cases thookup h(h|x)(t)
case None note tNone = this
 from tNone have res: memb h x t = False by (simp add: memb-def)
 from s tNone tlookup-none have o1: \forall y \in setOf t. h y \sim h x by fastforce
 have notIn: x \sim : setOf t
 proof
   assume h: x: setOf t
   from h o1 have h x \sim = h x by fastforce
   from this show False by simp
 qed
 from res notIn show ?thesis by simp
\mathbf{next} \ \mathbf{case} \ (Some \ z) \ \mathbf{note} \ tSome = this
 from s tSome tlookup-some have zin: z: setOf t by fastforce
 show ?thesis
 proof (cases x=z)
 case True note xez = this
   from tSome xez have res: memb h x t by (simp add: memb-def)
   from res zin xez show ?thesis by simp
 next case False note xnez = this
   from tSome\ xnez\ \mathbf{have}\ res: \ ^{\sim}\ memb\ h\ x\ t\ \mathbf{by}\ (simp\ add:\ memb-def)
   have x \sim : setOf t
   proof
     assume xin: x : setOf t
     from s tSome tlookup-some have hzhx: h x = h z by fastforce
     have o1: sorted-distinct-pred h x z t
     by (insert sorted-distinct [of h \times z t], simp)
     from s xin zin hzhx o1 have x = z by fastforce
     from this xnez show False by simp
   qed
   from this res show ?thesis by simp
 qed
qed
\mathbf{declare}\ sorted\text{-}distinct\text{-}pred\text{-}def\ [simp\ del]
```

4 Insertion into a Tree

```
primrec
binsert :: 'a hash => 'a => 'a Tree => 'a Tree
where
binsert h e Tip = (T Tip e Tip)
| binsert h e (T t1 x t2) = (if h e < h x then
(T (binsert h e t1) x t2)
else
(if h x < h e then
```

```
(T\ t1\ x\ (binsert\ h\ e\ t2)) else (T\ t1\ e\ t2))
```

A technique for proving disjointness of sets.

```
lemma disjCond: [| !! x. [| x:A; x:B |] ==> False |] ==> A Int B = {} by fastforce
```

The following is a proof that insertion correctly implements the set interface. Compared to *BinaryTree-TacticStyle*, the claim is more difficult, and this time we need to assume as a hypothesis that the tree is sorted.

```
lemma binsert-set: sortedTree h t -->
                 setOf\ (binsert\ h\ e\ t) = (setOf\ t) - (eqs\ h\ e)\ Un\ \{e\}
     (is ?P t)
proof (induct t)
    - base case
 show ?P Tip by (simp add: eqs-def)
  — inductition step
 fix t1 :: 'a Tree assume h1: ?P t1
 fix t2 :: 'a Tree assume h2: ?P t2
 \mathbf{fix} \ x :: 'a
 show ?P (T t1 x t2)
 proof
   assume s: sortedTree h (T t1 x t2)
   from s have s1: sortedTree h t1 by (rule sortLemmaL)
   from s1 and h1 have c1: setOf (binsert h e t1) = setOf t1 - eqs h e Un {e}
   from s have s2: sortedTree h t2 by (rule sortLemmaR)
   from s2 and h2 have c2: setOf (binsert h e t2) = setOf t2 - eqs h e Un \{e\}
\mathbf{by} \ simp
   show setOf (binsert h e (T t1 x t2)) =
        setOf(T t1 x t2) - eqs h e Un \{e\}
   proof (cases h \ e < h \ x)
     case True note eLess = this
      from eLess have res: binsert h e (T t1 x t2) = (T (binsert h e t1) x t2) by
simp
       show setOf (binsert h e (T t1 x t2)) =
            setOf(T\ t1\ x\ t2) - eqs\ h\ e\ Un\ \{e\}
       proof (simp add: res eLess c1)
        show insert x (insert e (setOf t1 - eqs h e Un setOf <math>t2)) =
              insert\ e\ (insert\ x\ (setOf\ t1\ Un\ setOf\ t2)\ -\ eqs\ h\ e)
        proof -
          have eqsLessX: \forall el \in eqs \ h \ e. \ h \ el < h \ x \ by (simp add: eqs-def eLess)
          from this have eqsDisjX: \forall el \in eqs \ h \ e. \ h \ el \sim = h \ x by fastforce
          from s have xLessT2: \forall r \in setOf\ t2. h\ x < h\ r by auto
          have eqsLessT2: \forall el \in eqs \ h \ e. \forall r \in setOf \ t2. h \ el < h \ r
          proof safe
            fix el assume hel: el: eqs h
            from hel \ eqs\text{-}def have o1: h \ el = h \ e by fastforce
            fix r assume hr: r: setOf t2
```

```
from xLessT2 hr o1 eLess show h el < h r by auto
           qed
           from eqsLessT2 have eqsDisjT2: \forall el \in eqs \ h \ e. \ \forall \ r \in setOf \ t2. \ h \ el \sim =
h r
           bv fastforce
           from eqsDisjX eqsDisjT2 show ?thesis by fastforce
         qed
       qed
     \mathbf{next} case \mathit{False} \mathbf{note} \mathit{eNotLess} = \mathit{this}
     show setOf (binsert\ h\ e\ (T\ t1\ x\ t2)) = setOf\ (T\ t1\ x\ t2) - eqs\ h\ e\ Un\ \{e\}
     proof (cases h x < h e)
       {f case}\ {\it True}\ {f note}\ {\it xLess}={\it this}
       from xLess have res: binsert h e (T t1 x t2) = (T t1 x (binsert h e t2)) by
simp
       show setOf (binsert h e (T t1 x t2)) =
             setOf(T t1 x t2) - eqs h e Un \{e\}
       proof (simp add: res xLess eNotLess c2)
         show insert x (insert e (setOf t1 Un (setOf t2 - eqs h e))) =
               insert\ e\ (insert\ x\ (setOf\ t1\ Un\ setOf\ t2)\ -\ eqs\ h\ e)
         proof -
           have XLessEqs: \forall el \in eqs \ h \ e. \ h \ x < h \ el \ \mathbf{by} \ (simp \ add: \ eqs-def \ xLess)
           from this have eqsDisjX: \forall el \in eqs \ h \ e. \ h \ el \sim = h \ x \ by \ auto
           from s have t1LessX: \forall l \in setOf\ t1. h\ l < h\ x by auto
           have T1lessEqs: \forall el \in eqs \ h \ e. \ \forall \ l \in setOf \ t1. \ h \ l < h \ el
           proof safe
             fix el assume hel: el: eqs h
             fix l assume hl: l: setOf t1
             from hel eqs-def have o1: h el = h e by fastforce
             from t1LessX\ hl\ o1\ xLess\ {\bf show}\ h\ l < h\ el\ {\bf by}\ auto
           qed
           from T1lessEqs have T1disjEqs: \forall el \in eqs \ h \ e. \ \forall \ l \in setOf \ t1. \ h \ el \sim =
h l
           by fastforce
           from eqsDisjX T1lessEqs show ?thesis by auto
         qed
       qed
     \mathbf{next} case \mathit{False} \mathbf{note} \mathit{xNotLess} = \mathit{this}
       from xNotLess eNotLess have xege: h x = h e by simp
       from xege have res: binsert h e (T t1 x t2) = (T t1 e t2) by simp
       show setOf (binsert h e (T t1 x t2)) =
             setOf(T\ t1\ x\ t2) - eqs\ h\ e\ Un\ \{e\}
       proof (simp add: res eNotLess xeqe)
         show insert e (setOf t1 Un setOf t2) =
               insert\ e\ (insert\ x\ (setOf\ t1\ Un\ setOf\ t2)\ -\ eqs\ h\ e)
         proof -
           have insert x (setOf t1 Un setOf t2) - eqs h e =
                 setOf t1 Un setOf t2
           proof -
             have x : eqs \ h \ e \ \mathbf{by} \ (simp \ add: eqs-def \ xeqe)
```

```
moreover have (setOf\ t1)\ Int\ (eqs\ h\ e) = \{\}
           proof (rule disjCond)
             \mathbf{fix} \ w
             assume whSet: w : setOf t1
             assume whEq: w: eqs \ h \ e
             from whSet s have o1: h w < h x by simp
             from whEq eqs-def have o2: h w = h e by fastforce
             from o2 xeqe have o3: ^{\sim} h w < h x by simp
             from o1 o3 show False by contradiction
           qed
           moreover have (setOf\ t2)\ Int\ (eqs\ h\ e) = \{\}
           proof (rule disjCond)
             \mathbf{fix} \ w
             assume whSet: w: setOf t2
             assume whEq: w: eqs \ h \ e
             from whSet s have o1: h x < h w by simp
             from whEq eqs-def have o2: h w = h e by fastforce
             from o2 xeqe have o3: ^{\sim} h \ x < h \ w by simp
             from o1 o3 show False by contradiction
           qed
           ultimately show ?thesis by auto
          qed
          from this show ?thesis by simp
        qed
      \mathbf{qed}
    qed
   qed
 ged
qed
Using the correctness of set implementation, preserving sortedness is still
simple.
lemma binsert-sorted: sortedTree h t --> sortedTree h (binsert h x t)
by (induct t) (auto simp add: binsert-set)
We summarize the specification of binsert as follows.
corollary binsert-spec: sortedTree h t -->
                 sortedTree\ h\ (binsert\ h\ x\ t)\ \&
                 setOf\ (binsert\ h\ e\ t) = (setOf\ t) - (eqs\ h\ e)\ Un\ \{e\}
by (simp add: binsert-set binsert-sorted)
```

5 Removing an element from a tree

These proofs are influenced by those in ${\it Binary Tree-Tactic}$

```
where
rm\ h\ (T\ t1\ x\ t2) =
 (if t2 = Tip then x else rm h t2)
primrec
 wrm: 'a hash => 'a Tree => 'a Tree
 — tree without the rightmost element
where
wrm \ h \ (T \ t1 \ x \ t2) =
 (if t2 = Tip then t1 else (T t1 x (wrm h t2)))
 wrmrm :: 'a \ hash => 'a \ Tree => 'a \ Tree * 'a
  — computing rightmost and removal in one pass
where
wrmrm \ h \ (T \ t1 \ x \ t2) =
 (if t2 = Tip then (t1,x)
  else (T t1 x (fst (wrmrm h t2)),
       snd (wrmrm \ h \ t2)))
primrec
  remove :: 'a \ hash => 'a => 'a \ Tree => 'a \ Tree
   — removal of an element from the tree
where
  remove \ h \ e \ Tip = Tip
\mid remove \ h \ e \ (T \ t1 \ x \ t2) =
   (if h \ e < h \ x \ then \ (T \ (remove \ h \ e \ t1) \ x \ t2)
    else if h x < h e then (T t1 x (remove h e t2))
    else (if t1 = Tip then t2
         else let (t1p,r) = wrmrm \ h \ t1
              in (T t1p r t2)))
theorem wrmrm-decomp: t \sim Tip --> wrmrm \ h \ t = (wrm \ h \ t, rm \ h \ t)
apply (induct\text{-}tac\ t)
apply simp-all
done
lemma rm-set: t \sim Tip \& sortedTree h t --> rm h t : setOf t
apply (induct-tac\ t)
apply simp-all
done
lemma wrm-set: t \sim Tip \& sortedTree \ h \ t -->
             setOf (wrm \ h \ t) = setOf \ t - \{rm \ h \ t\} \ (is \ ?P \ t)
proof (induct\ t)
 show ?P Tip by simp
 fix t1 :: 'a Tree assume h1: ?P t1
 fix t2 :: 'a Tree assume h2: ?P t2
 fix x :: 'a
```

```
show ?P (T t1 x t2)
 proof (rule impI, erule conjE)
   assume s: sortedTree\ h\ (T\ t1\ x\ t2)
   show setOf (wrm h (T t1 x t2)) =
        setOf(T\ t1\ x\ t2) - \{rm\ h\ (T\ t1\ x\ t2)\}
   proof (cases t2 = Tip)
   {\bf case}\ {\it True}\ {\bf note}\ t2tip=this
     from t2tip have rm-res: rm h (T t1 x t2) = x by simp
     from t2tip have wrm-res: wrm \ h \ (T \ t1 \ x \ t2) = t1 by simp
     from s have x \sim : setOf \ t1 by auto
     from this rm-res wrm-res t2tip show ?thesis by simp
   next case False note t2nTip = this
     from t2nTip have rm-res: rm h (T t1 x t2) = rm h t2 by simp
    from t2nTip have wrm-res: wrm \ h \ (T \ t1 \ x \ t2) = T \ t1 \ x \ (wrm \ h \ t2) by simp
     from s have s2: sortedTree h t2 by simp
     from h2 t2nTip s2
     have o1: setOf (wrm h t2) = setOf t2 - {rm h t2} by simp
     show ?thesis
     proof (simp add: rm-res wrm-res t2nTip h2 o1)
      show insert x (setOf t1 Un (setOf t2 - {rm h t2})) =
            insert \ x \ (setOf \ t1 \ Un \ setOf \ t2) - \{rm \ h \ t2\}
      proof -
        from s \ rm\text{-}set \ t2nTip \ \text{have} \ xOk: \ h \ x < h \ (rm \ h \ t2) \ \text{by} \ auto
        have t10k: \forall l \in setOf\ t1. h\ l < h\ (rm\ h\ t2)
        proof safe
          fix l :: 'a assume ldef: l : setOf t1
          from ldef s have lx: h l < h x by auto
          from lx \ xOk show h \ l < h \ (rm \ h \ t2) by auto
        from xOk t1Ok show ?thesis by auto
      qed
     qed
   qed
 qed
qed
lemma wrm-set1: t = Tip \& sortedTree h t --> setOf (wrm h t) <= setOf t
by (auto simp add: wrm-set)
lemma wrm-sort: t \cong Tip \& sortedTree \ h \ t \longrightarrow sortedTree \ h \ (wrm \ h \ t) (is ?P
t)
proof (induct t)
 show ?P Tip by simp
 fix t1 :: 'a Tree assume h1: ?P t1
 fix t2 :: 'a Tree assume h2: ?P t2
 \mathbf{fix} \ x :: \ 'a
 show ?P (T t1 x t2)
 proof safe
   assume s: sortedTree\ h\ (T\ t1\ x\ t2)
```

```
show sortedTree\ h\ (wrm\ h\ (T\ t1\ x\ t2))
   proof (cases t2 = Tip)
   {f case}\ {\it True}\ {f note}\ t2tip=this
     from t2tip have res: wrm \ h \ (T \ t1 \ x \ t2) = t1 by simp
     from res s show ?thesis by simp
   \mathbf{next} case \mathit{False} \mathbf{note} \mathit{t2nTip} = \mathit{this}
     from t2nTip have res: wrm \ h \ (T \ t1 \ x \ t2) = T \ t1 \ x \ (wrm \ h \ t2) by simp
     from s have s1: sortedTree h t1 by simp
     from s have s2: sortedTree h t2 by simp
     from s2 h2 t2nTip have o1: sortedTree h (wrm h t2) by simp
     from s2\ t2nTip\ wrm\text{-}set1 have o2:\ setOf\ (wrm\ h\ t2) <=\ setOf\ t2 by auto
     from s o2 have o3: \forall r \in setOf (wrm \ h \ t2). h \ x < h \ r \ by \ auto
     from s1 o1 o3 res s show sortedTree h (wrm h (T t1 x t2)) by simp
   qed
 qed
qed
lemma wrm-less-rm:
 t \sim = Tip \& sortedTree h t \longrightarrow
  (\forall l \in setOf (wrm \ h \ t). \ h \ l < h \ (rm \ h \ t)) \ (is ?P \ t)
proof (induct t)
 show ?P Tip by simp
 fix t1 :: 'a Tree assume h1: ?P t1
 fix t2 :: 'a Tree assume h2: ?P t2
 \mathbf{fix} \ x :: 'a
 show ?P (T t1 x t2)
  proof safe
   fix l :: 'a assume ldef: l : setOf (wrm h (T t1 x t2))
   assume s: sortedTree h (T t1 x t2)
   from s have s1: sortedTree h t1 by simp
   from s have s2: sortedTree h t2 by simp
   show h l < h (rm h (T t1 x t2))
   proof (cases t2 = Tip)
   case True note t2tip = this
     from t2tip have rm-res: rm h (T t1 x t2) = x by simp
     from t2tip have wrm-res: wrm \ h \ (T \ t1 \ x \ t2) = t1 by simp
     from ldef wrm-res have o1: l : setOf t1 by simp
     from rm-res o1 s show ?thesis by simp
   next case False note t2nTip = this
     from t2nTip have rm-res: rm \ h \ (T \ t1 \ x \ t2) = rm \ h \ t2 by simp
    from t2nTip have wrm-res: wrm \ h \ (T \ t1 \ x \ t2) = T \ t1 \ x \ (wrm \ h \ t2) by simp
     from ldef wrm-res
     have l-scope: l:\{x\} Un setOf t1 Un setOf (wrm h t2) by simp
     have hLess: h \ l < h \ (rm \ h \ t2)
     proof (cases \ l = x)
     case True note lx = this
       from s \ t2nTip \ rm\text{-set} \ s2 have o1: h \ x < h \ (rm \ h \ t2) by auto
       from lx o1 show ?thesis by simp
     next case False note lnx = this
```

```
show ?thesis
       proof (cases\ l: setOf\ t1)
       {\bf case}\ \mathit{True}\ {\bf note}\ \mathit{l-in-t1}\ =\ \mathit{this}
        from s \ t2nTip \ rm\text{-set} \ s2 have o1: h \ x < h \ (rm \ h \ t2) by auto
        from l-in-t1 s have o2: h l < h x by auto
        from o1 o2 show ?thesis by simp
       next case False note l-notin-t1 = this
        from l-scope lnx l-notin-t1
        have l-in-res: l: setOf (wrm \ h \ t2) by auto
        from l-in-res h2 t2nTip s2 show ?thesis by auto
       qed
     qed
     from rm-res hLess show ?thesis by simp
   qed
 qed
qed
lemma remove\text{-}set: sortedTree\ h\ t\ -->
  setOf\ (remove\ h\ e\ t) = setOf\ t - eqs\ h\ e\ (is\ ?P\ t)
proof (induct t)
 show ?P Tip by auto
 fix t1 :: 'a Tree assume h1: ?P t1
 fix t2 :: 'a Tree assume h2: ?P t2
 \mathbf{fix} \ x :: 'a
 show ?P (T t1 x t2)
 proof
   assume s: sortedTree h (T t1 x t2)
   show setOf (remove\ h\ e\ (T\ t1\ x\ t2)) = setOf\ (T\ t1\ x\ t2) - eqs\ h\ e
   proof (cases h \ e < h \ x)
   case True note elx = this
     from elx have res: remove h \ e \ (T \ t1 \ x \ t2) = T \ (remove \ h \ e \ t1) \ x \ t2
     from s have s1: sortedTree h t1 by simp
     from s1 h1 have o1: setOf (remove h e t1) = setOf t1 - eqs h e by simp
     show ?thesis
     proof (simp add: o1 elx)
       show insert x (setOf t1 - eqs h e Un setOf <math>t2) =
            insert \ x \ (setOf \ t1 \ Un \ setOf \ t2) - eqs \ h \ e
       proof -
        have xOk: x \sim: eqs h e
        proof
          assume h: x: eqs \ h \ e
          from h have o1: ^{\sim} (h e < h x) by (simp add: eqs-def)
          from elx o1 show False by contradiction
        have t2Ok: (setOf\ t2)\ Int\ (eqs\ h\ e) = \{\}
        proof (rule disjCond)
          \mathbf{fix} \ y :: 'a
          assume y-in-t2: y : setOf t2
```

```
assume y-in-eq: y: eqs h e
          from y-in-t2 s have xly: h x < h y by auto
          from y-in-eq have eey: h y = h e by (simp \ add: \ eqs-def)
          from xly eey have nelx: \sim (h e < h x) by simp
          from nelx elx show False by contradiction
        ged
        from xOk t2Ok show ?thesis by auto
       qed
     qed
   \mathbf{next} case \mathit{False} \mathbf{note} \mathit{nelx} = \mathit{this}
     show ?thesis
     proof (cases h x < h e)
     {f case}\ {\it True}\ {f note}\ {\it xle}={\it this}
       from xle have res: remove h \ e \ (T \ t1 \ x \ t2) = T \ t1 \ x \ (remove \ h \ e \ t2) by
simp
      from s have s2: sortedTree h t2 by simp
      from s2\ h2 have o1: setOf\ (remove\ h\ e\ t2) = setOf\ t2\ -\ eqs\ h\ e\ {\bf by}\ simp
      show ?thesis
      proof (simp add: o1 xle nelx)
        show insert x (setOf t1 Un (setOf t2 - eqs h e)) =
              insert \ x \ (setOf \ t1 \ Un \ setOf \ t2) - eqs \ h \ e
        proof -
          have xOk: x \sim: eqs h e
          proof
            assume h: x: eqs h e
            from h have o1: ^{\sim} (h x < h e) by (simp add: eqs-def)
            from xle o1 show False by contradiction
          have t10k: (setOf\ t1) Int (eqs\ h\ e) = \{\}
          proof (rule disjCond)
            fix y :: 'a
            assume y-in-t1: y: setOf t1
            assume y-in-eq: y: eqs h e
            from y-in-t1 s have ylx: h y < h x by auto
            from y-in-eq have eey: h y = h e by (simp \ add: \ eqs-def)
            from ylx eey have nxle: ^{\sim} (h x < h e) by simp
            from nxle xle show False by contradiction
          from xOk t1Ok show ?thesis by auto
        qed
      qed
     next case False note nxle = this
      from nelx nxle have ex: h e = h x by simp
      have t2Ok: (setOf\ t2) Int (eqs\ h\ e) = \{\}
      proof (rule disjCond)
        \mathbf{fix} \ y :: 'a
        assume y-in-t2: y: setOf t2
        assume y-in-eq: y: eqs h e
        from y-in-t2 s have xly: h x < h y by auto
```

```
from y-in-eq have eey: h \ y = h \ e by (simp add: eqs-def)
 from y-in-eq ex eey have nxly: ^{\sim} (h x < h y) by simp
 from nxly xly show False by contradiction
qed
show ?thesis
proof (cases t1 = Tip)
case True note t1tip = this
 from ex t1tip have res: remove h \ e \ (T \ t1 \ x \ t2) = t2 by simp
 show ?thesis
 proof (simp add: res t1tip ex)
   show setOf t2 = insert x (setOf t2) - eqs h e
   proof -
     from ex have x-in-eqs: x : eqs h e by (simp add: eqs-def)
     from x-in-eqs t2Ok show ?thesis by auto
  qed
 qed
next case False note t1nTip = this
 from nelx nxle ex t1nTip
 have res: remove h \ e \ (T \ t1 \ x \ t2) =
           T (wrm \ h \ t1) (rm \ h \ t1) \ t2
 by (simp add: Let-def wrmrm-decomp)
 from res show ?thesis
 proof simp
   from s have s1: sortedTree h t1 by simp
   show insert (rm \ h \ t1) (setOf \ (wrm \ h \ t1) \ Un \ setOf \ t2) =
        insert \ x \ (setOf \ t1 \ Un \ setOf \ t2) - eqs \ h \ e
   proof (simp add: t1nTip s1 rm-set wrm-set)
     show insert (rm \ h \ t1) (setOf \ t1 - \{rm \ h \ t1\} \ Un \ setOf \ t2) =
          insert \ x \ (setOf \ t1 \ Un \ setOf \ t2) - eqs \ h \ e
     proof -
      from t1nTip \ s1 \ rm\text{-}set
      have o1: insert (rm \ h \ t1) (setOf \ t1 - \{rm \ h \ t1\} \ Un \ setOf \ t2) =
               setOf t1 Un setOf t2 by auto
      have o2: insert x (setOf t1 Un setOf t2) - eqs h e =
               setOf t1 Un setOf t2
       proof -
       from ex have xOk: x: eqs h e by (simp \ add: \ eqs-def)
        have t1Ok: (setOf\ t1)\ Int\ (eqs\ h\ e) = \{\}
        proof (rule disjCond)
          \mathbf{fix} \ y :: 'a
          assume y-in-t1: y: setOf t1
          assume y-in-eq: y: eqs h e
          from y-in-t1 s ex have o1: h y < h e by auto
          from y-in-eq have o2: ^{\sim} (h y < h e) by (simp add: eqs-def)
          from o1 o2 show False by contradiction
        qed
        from xOk t1Ok t2Ok show ?thesis by auto
       qed
       from o1 o2 show ?thesis by simp
```

```
qed
          qed
        qed
       qed
     qed
   qed
 qed
qed
lemma remove-sort: sortedTree\ h\ t\ -->
                 sortedTree\ h\ (remove\ h\ e\ t)\ (is\ ?P\ t)
proof (induct t)
 show ?P Tip by auto
 fix t1 :: 'a Tree assume h1: ?P t1
 fix t2 :: 'a Tree assume h2: ?P t2
 fix x :: 'a
 show ?P (T t1 x t2)
 proof
   assume s: sortedTree h (T t1 x t2)
   from s have s1: sortedTree h t1 by simp
   from s have s2: sortedTree h t2 by simp
   from h1 s1 have sr1: sortedTree h (remove h e t1) by simp
   from h2 s2 have sr2: sortedTree h (remove h e t2) by simp
   show sortedTree\ h\ (remove\ h\ e\ (T\ t1\ x\ t2))
   proof (cases h \ e < h \ x)
   case True note elx = this
     from elx have res: remove h \ e \ (T \ t1 \ x \ t2) = T \ (remove \ h \ e \ t1) \ x \ t2
     \mathbf{bv} simp
     show ?thesis
     proof (simp add: s sr1 s2 elx res)
      let ?C1 = \forall l \in setOf (remove \ h \ e \ t1). \ h \ l < h \ x
      let ?C2 = \forall r \in setOf\ t2.\ h\ x < h\ r
      have o1: ?C1
      proof -
        from s1 have setOf (remove h \ e \ t1) = setOf \ t1 - eqs \ h \ e \ by (simp add:
remove-set)
        from s this show ?thesis by auto
       qed
       from 01 s show ?C1 & ?C2 by auto
     qed
   \mathbf{next} case \mathit{False} \mathbf{note} \mathit{nelx} = \mathit{this}
     show ?thesis
     proof (cases h x < h e)
     case True note xle = this
       from xle have res: remove h e (T \ t1 \ x \ t2) = T \ t1 \ x \ (remove \ h \ e \ t2) by
simp
       show ?thesis
       proof (simp add: s s1 sr2 xle nelx res)
        let ?C1 = \forall l \in setOf\ t1.\ h\ l < h\ x
```

```
let ?C2 = \forall r \in setOf (remove \ h \ e \ t2). \ h \ x < h \ r
        have 02: ?C2
        proof -
         from s2 have setOf (remove h \ e \ t2) = setOf \ t2 - eqs \ h \ e by (simp add:
remove-set)
          from s this show ?thesis by auto
        qed
        from 02 s show ?C1 & ?C2 by auto
      qed
     \mathbf{next} case \mathit{False} \mathbf{note} \mathit{nxle} = \mathit{this}
      from nelx nxle have ex: h e = h x by simp
      show ?thesis
      proof (cases t1 = Tip)
      case True note t1tip = this
        from ex t1tip have res: remove h \ e \ (T \ t1 \ x \ t2) = t2 by simp
        show ?thesis by (simp add: res t1tip ex s2)
      next case False note t1nTip = this
        from nelx nxle ex t1nTip
        have res: remove h \ e \ (T \ t1 \ x \ t2) =
                  T (wrm \ h \ t1) (rm \ h \ t1) \ t2
        by (simp add: Let-def wrmrm-decomp)
        from res show ?thesis
        proof simp
          let ?C1 = sortedTree\ h\ (wrm\ h\ t1)
          let ?C2 = \forall l \in setOf (wrm \ h \ t1). \ h \ l < h \ (rm \ h \ t1)
          let ?C3 = \forall r \in setOf\ t2.\ h\ (rm\ h\ t1) < h\ r
          let ?C4 = sortedTree \ h \ t2
          from s1 t1nTip have o1: ?C1 by (simp add: wrm-sort)
          from s1 t1nTip have o2: ?C2 by (simp add: wrm-less-rm)
          have 03: ?C3
          proof
           fix r :: 'a
           assume rt2: r: setOf t2
           from s rm-set s1 t1nTip have o1: h (rm h t1) < h x by auto
           from rt2 s have o2: h x < h r by auto
           from o1 o2 show h(rm \ h \ t1) < h \ r \ by \ simp
          qed
          from o1 o2 o3 s2 show ?C1 & ?C2 & ?C3 & ?C4 by simp
      qed
     qed
   qed
 qed
qed
We summarize the specification of remove as follows.
corollary remove-spec: sortedTree h t -->
    sortedTree h (remove h e t) &
    setOf (remove h e t) = setOf t - eqs h e
```

```
by (simp add: remove-sort remove-set)
definition test = tlookup id 4 (remove id 3 (binsert id 4 (binsert id 3 Tip)))
export-code test
  in SML module-name BinaryTree-Code file \( BinaryTree-Code.ML \)
end
```

6 Mostly Isar-style Reasoning for Binary Tree Operations

theory BinaryTree-Map imports BinaryTree begin

We prove correctness of map operations implemented using binary search trees from BinaryTree.

This document is LGPL.

Author: Viktor Kuncak, MIT CSAIL, November 2003

7 Map implementation and an abstraction function

```
type-synonym
'a tarray = (index * 'a) Tree

definition valid-tmap :: 'a tarray => bool where
valid-tmap t == sortedTree \ fst \ t

declare valid-tmap-def [simp]

definition mapOf :: 'a tarray => index => 'a option where
— the abstraction function from trees to maps
mapOf t \ i ==
(case (tlookup fst i \ t) of
None => None
| Some ia => Some \ (snd \ ia))
```

8 Auxiliary Properties of our Implementation

```
lemma mapOf-lookup1: tlookup fst i t = None ==> mapOf t i = None by (simp \ add: mapOf-lookup2: tlookup fst i t = Some (j,a) ==> mapOf t i = Some a by (simp \ add: mapOf-def)
lemma assumes h: mapOf t i = None
```

```
shows mapOf-lookup3: tlookup fst i t = None
proof (cases thookup fst i t)
case None from this show ?thesis by assumption
next case (Some ia) note tsome = this
 from this have o1: thookup fst i t = Some (fst ia, snd ia) by simp
 have mapOf\ t\ i = Some\ (snd\ ia)
 by (insert mapOf-lookup2 [of i t fst ia snd ia], simp add: o1)
 from this have map Of t i \sim = None by simp
 from this h show ?thesis by simp — contradiction
qed
lemma assumes v: valid-tmap t
    assumes h: mapOf \ t \ i = Some \ a
     shows mapOf-lookup4: tlookup fst i t = Some (i,a)
proof (cases tlookup fst i t)
case None
 from this mapOf-lookup1 have mapOf t i = None by auto
 from this h show ?thesis by simp — contradiction
\mathbf{next} \ \mathbf{case} \ (Some \ ia) \ \mathbf{note} \ tsome = this
 have thookup-some-inst: sorted Tree fst t & (thookup fst i t = Some \ ia) -->
       ia : setOf \ t \ \& \ fst \ ia = i \ \mathbf{by} \ (simp \ add: \ tlookup-some)
 from tlookup-some-inst tsome\ v have ia: setOf\ t by simp
 from tsome have map Of t i = Some (snd ia) by (simp add: map Of - def)
 from this h have o1: snd ia = a by simp
 from tlookup-some-inst tsome\ v have o2: fst\ ia = i by simp
 from o1 \ o2 have ia = (i,a) by auto
 from this tsome show the thought i t = Some(i, a) by simp(i, a)
qed
```

8.1 Lemmas mapset-none and mapset-some establish a relation between the set and map abstraction of the tree

```
lemma assumes v: valid-tmap t
     shows mapset-none: (mapOf\ t\ i = None) = (\forall\ a.\ (i,a) \notin setOf\ t)
proof
 assume mapNone: mapOf\ t\ i = None
 from v mapNone mapOf-lookup3 have lnone: tlookup fst i t = None by auto
 show \forall a. (i,a) \notin setOf t
 proof
   \mathbf{fix} \ a
   show (i,a) \sim : setOf t
   proof
     assume iain: (i,a) : setOf t
     have tlookup-none-inst:
     sortedTree\ fst\ t\ \&\ (tlookup\ fst\ i\ t=None)\ --> (\forall\ x\in setOf\ t.\ fst\ x\ ^{\sim}=i)
     by (insert tlookup-none [of fst t i], assumption)
     from v lnone thookup-none-inst have \forall x \in setOf t. fst x \sim i by simp
     from this iain have fst (i,a) \sim = i by fastforce
```

```
from this show False by simp
       qed
   qed
     -<==
   next assume h: \forall a. (i,a) \notin setOf t
   show mapOf t i = None
   proof (cases mapOf t i)
   case None then show ?thesis.
   next case (Some a) note mapsome = this
           from v mapsome have o1: the solution v is the solution of v in the solution v is the solution of v in the solution v in the solution v is the solution v in the solution v in the solution v is the solution v in the solution v in the solution v is the solution v in the solution v in the solution v in the solution v is the solution v in the solution v in the solution v is the solution v in the solution v is the solution v in the solution v in the solution v is the solution v in the solution v in the solution v in the solution v is the solution v in the solution v in the solution v in the solution v is the solution v in the solution v in the solution v in the solution v in the solution v is the solution v in the solution v in the solution v in the solution v is the solution v in v in the solution v in the so
map Of-lookup4)
       from tlookup-some have tlookup-some-inst:
       sortedTree\ fst\ t\ \&\ tlookup\ fst\ i\ t = Some\ (i,a)\ -->
        (i,a): setOf t & fst <math>(i,a) = i
       by (insert the theorem of the first ti (i,a)], assumption)
       from v o1 this have (i,a): setOf t by simp
       from this h show ?thesis by auto — contradiction
   qed
qed
lemma assumes v: valid-tmap t
          shows mapset-some: (mapOf\ t\ i = Some\ a) = ((i,a): setOf\ t)
proof
     -==>
   assume mapsome: mapOf \ t \ i = Some \ a
  from v mapsome have o1: thookup fst i t = Some(i,a) by (simp add: mapOf-lookup4)
   from tlookup-some have tlookup-some-inst:
   sortedTree\ fst\ t\ \&\ tlookup\ fst\ i\ t = Some\ (i,a)\ -->
    (i,a): setOf t & fst <math>(i,a) = i
   by (insert the theorem is [of\ fst\ t\ i\ (i,a)],\ assumption)
   from v of this show (i,a): setOf t by simp
    --<=
   next assume iain: (i,a): setOf t
   from v iain thookup-finds have thookup fst (fst (i,a)) t = Some(i,a) by fastforce
   from this have thookup fst i t = Some(i,a) by simp
   from this show mapOf \ t \ i = Some \ a \ by (simp \ add: mapOf-def)
qed
9
            Empty Map
\mathbf{lemma}\ mnew\text{-}spec\text{-}valid\text{:}\ valid\text{-}tmap\ Tip
by (simp add: mapOf-def)
lemma mtip-spec-empty: mapOf Tip k = None
by (simp add: mapOf-def)
```

10 Map Update Operation

```
definition mupdate :: index => 'a => 'a tarray => 'a tarray where
 mupdate \ i \ a \ t == binsert \ fst \ (i,a) \ t
lemma assumes v: valid-tmap t
    shows mupdate-map: map Of (mupdate i a t) = (map Of t)(i \mid -> a)
proof
 fix i2
 let ?tr = binsert fst (i,a) t
 have upres: mupdate i a t = ?tr by (simp add: mupdate-def)
 from v binsert-set
 have setSpec: setOf ?tr = setOf t - eqs fst (i,a) Un \{(i,a)\} by fastforce
 from v binsert-sorted have vr: valid-tmap ?tr by fastforce
 show map Of (mupdate i a t) i2 = ((map Of t)(i \mid -> a)) i2
 proof (cases i = i2)
 case True note i2ei = this
   from i2ei have rhs-res: ((mapOf t)(i \mid -> a)) i2 = Some a by simp
   have lhs-res: mapOf (mupdate i a t) i = Some \ a
   proof -
     have will-find: thookup fst i ?tr = Some(i,a)
     proof -
      from setSpec have kvin: (i,a) : setOf ?tr by simp
      have binsert-sorted-inst: sortedTree fst t \rightarrow -->
                           sortedTree fst ?tr
      by (insert binsert-sorted [of fst t (i,a)], assumption)
      from v binsert-sorted-inst have rs: sortedTree fst ?tr by simp
      have the lookup-finds-inst: sorted Tree fst ?tr & (i,a): set Of ?tr -->
                            tlookup fst i ?tr = Some (i,a)
      by (insert the thought finds [of fst ?tr(i,a)], simp)
      from rs kvin tlookup-finds-inst show ?thesis by simp
     qed
     from upres will-find show ?thesis by (simp add: mapOf-def)
   qed
   from lhs-res rhs-res i2ei show ?thesis by simp
 next case False note i2nei = this
   from i2nei have rhs-res: ((mapOf\ t)(i\ | -> a)) i2=mapOf\ t i2 by auto
   have lhs-res: mapOf (mupdate i a t) i2 = mapOf t i2
   proof (cases mapOf t i2)
   case None from this have mapNone: mapOf t i2 = None by simp
     from v mapNone mapset-none have i2nin: \forall a. (i2,a) \notin setOf \ t by fastforce
     have noneIn: \forall b. (i2,b) \notin setOf ?tr
     proof
      \mathbf{fix} \ b
      from v binsert-set
      have setOf ?tr = setOf t - eqs fst (i,a) Un \{(i,a)\}
      by fastforce
      from this i2nei i2nin show (i2,b) \sim: setOf ?tr by fastforce
     qed
```

```
have mapset-none-inst:
    valid-tmap ?tr --> (mapOf ?tr i2 = None) = (<math>\forall a. (i2, a) \notin setOf ?tr)
    by (insert mapset-none [of ?tr i2], simp)
    from vr noneIn mapset-none-inst have mapOf ?tr i2 = None by fastforce
    from this upres mapNone show ?thesis by simp
   next case (Some z) from this have mapSome: mapOf t i2 = Some z by simp
    \mathbf{from}\ v\ mapSome\ mapset\text{-}some\ \mathbf{have}\ (i2,z): setOf\ t\ \mathbf{by}\ fastforce
    from this setSpec i2nei have (i2,z): setOf ?tr by (simp add: eqs-def)
    from this vr mapset-some have map Of ?tr i2 = Some z by fastforce
    from this upres mapSome show ?thesis by simp
   qed
   from lhs-res rhs-res show ?thesis by simp
 qed
qed
lemma assumes v: valid-tmap t
    shows mupdate-valid: valid-tmap (mupdate i a t)
proof -
 let ?tr = binsert fst (i,a) t
 have upres: mupdate i a t = ?tr by (simp add: mupdate-def)
 from v binsert-sorted have vr: valid-tmap ?tr by fastforce
 from vr upres show ?thesis by simp
qed
11
       Map Remove Operation
definition mremove :: index => 'a tarray => 'a tarray where
 mremove i t == remove fst (i, undefined) t
lemma assumes v: valid-tmap t
    shows mremove-valid: valid-tmap (mremove i t)
proof (simp add: mremove-def)
 from v remove-sort
 show sortedTree fst (remove fst (i, undefined) t) by fastforce
qed
lemma assumes v: valid-tmap t
    shows mremove-map: mapOf (mremove i t) i = None
proof (simp add: mremove-def)
 let ?tr = remove fst (i, undefined) t
```

have remSet: setOf ?tr = setOf t - eqs fst (i, undefined)

from remSet **show** $(i,a) \sim$: setOf ?tr **by** (simp add: eqs-def)

show mapOf ?tr i = None

have $noneIn: \forall a. (i,a) \notin setOf ?tr$

from v remove-spec

proof -

 \mathbf{proof} $\mathbf{fix} \ a$

by fastforce

```
qed
from v remove-sort have vr: valid-tmap ?tr by fastforce
have mapset-none-inst: valid-tmap ?tr ==>
(mapOf\ ?tr\ i=None) = (\forall\ a.\ (i,a)\notin\ setOf\ ?tr)
by (insert\ mapset-none [of\ ?tr\ i],\ simp)
from vr this have (mapOf\ ?tr\ i=None) = (\forall\ a.\ (i,a)\notin\ setOf\ ?tr) by fastforce
from this noneIn\ show mapOf\ ?tr\ i=None\ by simp
qed
qed
```

12 Tactic-Style Reasoning for Binary Tree Operations

theory BinaryTree-TacticStyle imports Main begin

This example theory illustrates automated proofs of correctness for binary tree operations using tactic-style reasoning. The current proofs for remove operation are by Tobias Nipkow, some modifications and the remaining tree operations are by Viktor Kuncak.

13 Definition of a sorted binary tree

```
datatype tree = Tip \mid Nd \ tree \ nat \ tree

primrec set\text{-}of :: tree => nat \ set

— The set of nodes stored in a tree.

where

set\text{-}of \ Tip = \{\}
\mid set\text{-}of \ Nd \ l \ x \ r) = set\text{-}of \ l \ Un \ set\text{-}of \ r \ Un \ \{x\}

primrec sorted :: tree => bool

— Tree is sorted

where

sorted \ Tip = True
\mid sorted \ Nd \ l \ y \ r) =
(sorted \ l \ \& \ sorted \ r \ \& \ (\forall \ x \in set\text{-}of \ l \ x < y) \ \& \ (\forall \ z \in set\text{-}of \ r \ y < z))
```

14 Tree Membership

```
primrec
memb :: nat => tree => bool
where
memb \ e \ Tip = False
\mid memb \ e \ (Nd \ t1 \ x \ t2) =
(if \ e < x \ then \ memb \ e \ t1)
```

```
else if x < e then memb e t2
   else True)
lemma member-set: sorted t \longrightarrow memb \ e \ t = (e : set-of \ t)
by (induct t) auto
15
       Insertion operation
primrec binsert :: nat => tree => tree
— Insert a node into sorted tree.
where
  binsert \ x \ Tip = (Nd \ Tip \ x \ Tip)
| binsert x (Nd t1 y t2) = (if x < y then )
                            (Nd (binsert x t1) y t2)
                         else
                           (if y < x then
                            (Nd\ t1\ y\ (binsert\ x\ t2))
                            else (Nd t1 y t2)))
theorem set-of-binsert [simp]: set-of (binsert \ x \ t) = set-of \ t \ Un \ \{x\}
by (induct t) auto
theorem binsert-sorted: sorted t \longrightarrow sorted (binsert x t)
by (induct t) (auto simp add: set-of-binsert)
corollary binsert-spec:
sorted\ t ==>
  sorted (binsert x t) &
  set-of (binsert \ x \ t) = set-of t \ Un \ \{x\}
by (simp add: binsert-sorted)
16
       Remove operation
primrec
 rm :: tree => nat — find the rightmost element in the tree
 rm(Nd \ l \ x \ r) = (if \ r = Tip \ then \ x \ else \ rm \ r)
primrec
 rem :: tree => tree — find the tree without the rightmost element
 rem(Nd \ l \ x \ r) = (if \ r=Tip \ then \ l \ else \ Nd \ l \ x \ (rem \ r))
primrec
 remove:: nat => tree => tree - remove a node from sorted tree
where
  remove \ x \ Tip = Tip
```

 $\mid remove \ x \ (Nd \ l \ y \ r) =$

(if x < y then Nd (remove x l) y r else

```
if y < x then Nd l y (remove x r) else
    if l = Tip then r
    else Nd (rem l) (rm l) r)
lemma rm-in-set-of: t \sim Tip ==> rm t : set-of t
by (induct t) auto
lemma set-of-rem: t \sim Tip ==> set-of(t = set-of(rem t)) Un \{rm t\}
by (induct t) auto
lemma [simp]: [| t \sim = Tip; sorted\ t\ |] ==> sorted(rem\ t)
by (induct t) (auto simp add:set-of-rem)
lemma sorted-rem: [|t|^{\sim} = Tip; x \in set\text{-}of(rem\ t); sorted\ t\ |] ==> x < rm\ t
by (induct t) (auto simp add:set-of-rem split:if-splits)
theorem set-of-remove [simp]: sorted t ==> set-of(remove x t) = set-of t - \{x\}
apply(induct\ t)
apply simp
apply simp
apply(rule\ conjI)
apply fastforce
apply(rule\ impI)
apply(rule\ conjI)
{\bf apply} \ \textit{fastforce}
\mathbf{apply}(\textit{fastforce simp:set-of-rem})
done
theorem remove-sorted: sorted t ==> sorted(remove \ x \ t)
by (induct t) (auto intro: less-trans rm-in-set-of sorted-rem)
corollary remove-spec: — summary specification of remove
sorted\ t ==>
  sorted (remove x t) &
  set-of (remove\ x\ t) = set-of t - \{x\}
by (simp add: remove-sorted)
Finally, note that rem and rm can be computed using a single tree traversal
given by remrm.
primrec remrm :: tree => tree * nat
where
remrm(Nd \ l \ x \ r) = (if \ r=Tip \ then \ (l,x) \ else
                 let(r',y) = remrm \ r \ in \ (Nd \ l \ x \ r',y))
lemma t \sim Tip =  remrm t = (rem t, rm t)
by (induct t) (auto simp:Let-def)
We can test this implementation by generating code.
definition test = memb \ 4 \ (remove \ (3::nat) \ (binsert \ 4 \ (binsert \ 3 \ Tip)))
```

 $\mathbf{export\text{-}code}\ \mathit{test}$

 $\textbf{in } \textit{SML } \textbf{module-name} \textit{ Binary Tree-Tactic Style-Code} \textbf{file} \textit{ \lor Binary Tree-Tactic Style-Code}. \textit{ML} \textit{\lor} \\$

 \mathbf{end}