Contents

1 Isar-style Reasoning for Binary Tree Operations 2
2 Tree Definition 2
3 Tree Lookup 3
 3.1 Tree membership as a special case of lookup 5
4 Insertion into a Tree 6
5 Removing an element from a tree 9
6 Mostly Isar-style Reasoning for Binary Tree Operations 18
7 Map implementation and an abstraction function 18
8 Auxiliary Properties of our Implementation 18
 8.1 Lemmas mapset-none and mapset-some establish a relation
 between the set and map abstraction of the tree 19
9 Empty Map 20
10 Map Update Operation 21
11 Map Remove Operation 22
12 Tactic-Style Reasoning for Binary Tree Operations 23
13 Definition of a sorted binary tree 23
14 Tree Membership 23
15 Insertion operation 24
16 Remove operation 24
1 Isar-style Reasoning for Binary Tree Operations

theory BinaryTree imports Main begin

We prove correctness of operations on binary search tree implementing a set.
This document is LGPL.
Author: Viktor Kuncak, MIT CSAIL, November 2003

2 Tree Definition

datatype 'a Tree = Tip | T 'a Tree 'a 'a Tree

primrec
 setOf :: 'a Tree => 'a set
 — set abstraction of a tree
where
 setOf Tip = {}
 | setOf (T t1 x t2) = (setOf t1) Un (setOf t2) Un {x}

type-synonym — we require index to have an irreflexive total order i
— apart from that, we do not rely on index being int
 index = int

type-synonym — hash function type
 'a hash = 'a => index

definition eqs :: 'a hash => 'a => 'a set where
 — equivalence class of elements with the same hash code
 eqs h x == {y. h y = h x}

primrec
 sortedTree :: 'a hash => 'a Tree => bool
 — check if a tree is sorted
where
 sortedTree h Tip = True
 | sortedTree h (T t1 x t2) =
 (sortedTree h t1 &
 (\forall l \in setOf t1. h l < h x) &
 (\forall r \in setOf t2. h x < h r) &
 sortedTree h t2)

lemma sortLemmaL:
 sortedTree h (T t1 x t2) ===> sortedTree h t1 by simp
lemma sortLemmaR:
 sortedTree h (T t1 x t2) ===> sortedTree h t2 by simp

2
3 Tree Lookup

primrec
tlookup :: 'a hash => index => 'a Tree => 'a option
where
tlookup h k Tip = None
| tlookup h k (T t1 x t2) =
 (if k < h x then tlookup h k t1
 else if h x < k then tlookup h k t2
 else Some x)

lemma tlookup-none:
 sortedTree h t & (tlookup h k t = None) ---> (\forall x \in setOf t. h x = k)
by (induct t, auto)

lemma tlookup-some:
 sortedTree h t & (tlookup h k t = Some x) ---> x \in setOf t & h x = k
apply (induct t)
 -- Just auto will do it, but very slowly
apply (simp)
apply (clarify, auto)
apply (simp-all split: if-split-asm)
done

definition sorted-distinct-pred :: 'a hash => 'a => 'a => 'a Tree => bool where
 -- No two elements have the same hash code
 sorted-distinct-pred h a b t = sortedTree h t &
 a \in setOf t & b \in setOf t & h a = h b -->
 a = b

declare sorted-distinct-pred-def [simp]
 -- for case analysis on three cases
lemma cases3: \[| C1 ==> G; C2 ==> G; C3 ==> G; C1 | C2 | C3 \] ==> G
by auto

sorted-distinct-pred holds for out trees:

lemma sorted-distinct: sorted-distinct-pred h a b t (is ?P t)
proof (induct t)
 show ?P Tip by simp
 fix t1 :: 'a Tree assume h1: ?P t1
 fix t2 :: 'a Tree assume h2: ?P t2
 fix x :: 'a
 show ?P (T t1 x t2)
proof (unfold sorted-distinct-pred-def, safe)
 assume s: sortedTree h (T t1 x t2)
 assume adef: a : setOf (T t1 x t2)
 assume bdef: b : setOf (T t1 x t2)
assume \(h a b b : h \ a = h \ b \)
from \(s \) have \(s1 : \text{sortedTree} \ h \ t1 \) by auto
from \(s \) have \(s2 : \text{sortedTree} \ h \ t2 \) by auto

show \(a = b \)
— We consider 9 cases for the position of \(a \) and \(b \) are in the tree
proof —
— three cases for \(a \)
from \(a \text{def} \) have \(a : \text{setOf} \ t1 \ | \ a = x \ | \ a : \text{setOf} \ t2 \) by auto
moreover \{ assume \(a \text{def}1 : a : \text{setOf} \ t1 \n \n have \ ?\text{thesis} \n \n proof —
 — three cases for \(b \)
from \(b \text{def} \) have \(b : \text{setOf} \ t1 \ | \ b = x \ | \ b : \text{setOf} \ t2 \) by auto
moreover \{ assume \(b \text{def}1 : b : \text{setOf} \ t1 \n \n from \(s1 \) \(a \text{def}1 \) \(b \text{def} \ hahb h1 \) have \ ?\text{thesis} by simp \}
moreover \{ assume \(b \text{def}1 : b = x \n \n from \(a \text{def}1 \) \(b \text{def}1 \) \(s \) have \(h a < h b \) by auto
 from \(\text{this} \) \(hahb \) have \ ?\text{thesis} by simp \}
moreover \{ assume \(b \text{def}1 : b : \text{setOf} \ t2 \n \n from \(a \text{def}1 \) \(s \) have \(o1 : h a < h x \) by auto
 from \(b \text{def}1 \) \(s \) have \(o2 : h x < h b \) by auto
 from \(o1 \) \(o2 \) have \(h a < h b \) by simp
 from \(\text{this} \) \(hahb \) have \ ?\text{thesis} by simp \} — case impossible
ultimately show \ ?\text{thesis} by blast
qed

moreover \{ assume \(a \text{def}1 : a = x \n \n have \ ?\text{thesis} \n \n proof —
 — three cases for \(b \)
from \(b \text{def} \) have \(b : \text{setOf} \ t1 \ | \ b = x \ | \ b : \text{setOf} \ t2 \) by auto
moreover \{ assume \(b \text{def}1 : b : \text{setOf} \ t1 \n \n from \(\text{this} \) \(hahb \) have \ ?\text{thesis} by simp \}
moreover \{ assume \(b \text{def}1 : b = x \n \n from \(a \text{def}1 \) \(b \text{def}1 \) have \ ?\text{thesis} by simp \}
moreover \{ assume \(b \text{def}1 : b : \text{setOf} \ t2 \n \n from \(\text{this} \) \(hahb \) have \ ?\text{thesis} by simp \} — case impossible
ultimately show \ ?\text{thesis} by blast
qed

moreover \{ assume \(a \text{def}1 : a : \text{setOf} \ t2 \n \n have \ ?\text{thesis} \n \n proof —
 — three cases for \(b \)
from \(b \text{def} \) have \(b : \text{setOf} \ t1 \ | \ b = x \ | \ b : \text{setOf} \ t2 \) by auto

moreover \{ \text{assume } bdef1: \text{ } b : \text{setOf } t1 \}
from bdef1 \text{ s have } a1: \text{ } h \ b < h \ x \text{ by } \text{auto}
from adef1 \text{ s have } a2: \text{ } h \ x < h \ a \text{ by } \text{auto}
from a1 a2 \text{ have } h \ b < h \ a \text{ by } \text{simp}
from this \text{ habb have } \text{thesis by } \text{simp} \} — \text{case impossible}
moreover \{ \text{assume } bdef1: \text{ } b = x \}
from adef1 bdef1 \text{ s have } h \ b < h \ a \text{ by } \text{auto}
from this hahb \text{ have } \text{thesis by } \text{simp} \} — \text{case impossible}
morerover \{ \text{assume } bdef1: \text{ } b : \text{setOf } t2 \}
from s2 adef1 bdef1 hahb h2 \text{ have } \text{thesis by } \text{simp} \}
ultimately show \text{thesis by } \text{blast}
qed

ultimately show \text{thesis by } \text{blast}
qed

ultimately show \text{thesis by } \text{blast}
qed

\text{lemma } \text{tlookup-finds: } — \text{if a node is in the tree, lookup finds it}
\text{sortedTree } h \ t \ & \ y : \text{setOf } t \implies \text{ }
\text{tlookup } h \ (h \ y) \ t = \text{Some } y
\text{proof safe}
\text{assume } s: \text{sortedTree } h \ t
\text{assume } yint: \text{ } y : \text{setOf } t
\text{show } \text{tlookup } h \ (h \ y) \ t = \text{Some } y
\text{proof } (\text{cases } \text{tlookup } h \ (h \ y) \ t)
\text{case } \text{None } \text{note } \text{res } = \text{this}
\text{from s res have } \text{sortedTree } h \ t \ & \ (\text{tlookup } h \ (h \ y) \ t = \text{None}) \text{ by } \text{simp}
\text{from this have } a1: \forall x \in \text{setOf } t. \text{ } h \ x \sim h \ y \text{ by } (\text{simp add: tlookup-none})
\text{from a1 yint have } h \ y \sim h \ y \text{ by } \text{fastforce}
\text{from this show } \text{thesis by } \text{simp}
\text{next case } (\text{Some } z) \text{ note } \text{res } = \text{this}
\text{have ls: } \text{sortedTree } h \ t \ & \ (\text{tlookup } h \ (h \ y) \ t = \text{Some } z) \implies \text{ }
\text{z:setOf } t \ & \ h \ z = h \ y \text{ by } (\text{simp add: tlookup-some})
\text{have sd: } \text{sorted-distinct-pred } h \ y \ z \ t
\text{by } (\text{insert sorted-distinct } [of \ h \ y \ z \ t], \text{ simp})
\text{from s res ls have } a1: \text{ } z: \text{setOf } t \ & \ h \ z = h \ y \text{ by } \text{simp}
\text{from s yint a1 sd have } y = z \text{ by } \text{auto}
\text{from this res show } \text{tlookup } h \ (h \ y) \ t = \text{Some } y \text{ by } \text{simp}
\text{qed}
\text{qed}

3.1 Tree membership as a special case of lookup

\text{definition } \text{memb :: } \text{'}a \text{ hash } => \text{'}a => \text{'}a \text{ Tree } => \text{bool where}
\text{memb } h \ t \ ==
(\text{case } (\text{tlookup } h \ (h \ x) \ t) \ of
\text{None } => \text{False}

5
lemma assumes s: sortedTree h t
 shows memb-spec: memb h x t = (x : setOf t)
proof (cases tlookup h (h x) t)
case None note tNone = this
 from tNone have res: memb h x t = False by (simp add: memb-def)
 from s tNone lookup-none have o1: \forall y \in setOf t. h y \sim h x by fastforce
 have notIn: x \sim: setOf t
 proof
 assume h: x \in setOf t
 from h o1 have h x \sim h x by fastforce
 from this show False by simp
 qed
 from res notIn show ?thesis by simp
next case (Some z) note tSome = this
 from s tSome lookup-some have zin: z \in setOf t by fastforce
 show ?thesis
 proof (cases x=z)
 case True note xez = this
 from tSome xez have res: memb h x t by (simp add: memb-def)
 from res zin xez show ?thesis by simp
 next case False note xnez = this
 from tSome xnez have res: \sim memb h x t by (simp add: memb-def)
 have x \sim: setOf t
 proof
 assume xin: x \in setOf t
 from s tSome lookup-some have hzhx: h x = h z by fastforce
 have o1: sorted-distinct-pred h x z t
 by (insert sorted-distinct \[of h x z t \], simp)
 from s xin zin hzhx o1 have x = z by fastforce
 from this xnez show False by simp
 qed
 from this res show ?thesis by simp
 qed
 qed
 qed

declare sorted-distinct-pred-def [simp del]

4 Insertion into a Tree

primrec
 binsert :: 'a hash => 'a => 'a Tree => 'a Tree
where
 binsert h e Tip = (T Tip e Tip)
| binsert h e (T t1 x t2) = (if h e < h x then
 (T (binsert h e t1) x t2)
 else
 (if h x < h e then...
A technique for proving disjointness of sets.

lemma disjCond: \[\text{!! } x. \text{!! } x:A; x:B \implies \text{False} \implies A \cap B = \{\}\]
by fastforce

The following is a proof that insertion correctly implements the set interface. Compared to *BinaryTree-TacticStyle*, the claim is more difficult, and this time we need to assume as a hypothesis that the tree is sorted.

lemma binsert-set: \[\text{sortedTree } h t \implies \text{setOf } (\text{binsert } h e t) = (\text{setOf } t) - (\text{eqs } h e) \cup \{e\}\]

proof (induct t)
— base case

show ?P Tip by (simp add: eqs-def)
— induction step

fix t1 :: 'a tree assume h1: ?P t1
fix t2 :: 'a tree assume h2: ?P t2
fix x :: 'a
show ?P (T t1 x t2)
proof

assume s: sortedTree h (T t1 x t2)
from s have s1: sortedTree h t1 by (rule sortLemmaL)
from s1 and h1 have c1: \(\text{setOf } (\text{binsert } h e t1) = \text{setOf } t1 - (\text{eqs } h e) \cup \{e\}\)
by simp
from s have s2: sortedTree h t2 by (rule sortLemmaR)
from s2 and h2 have c2: \(\text{setOf } (\text{binsert } h e t2) = \text{setOf } t2 - (\text{eqs } h e) \cup \{e\}\)
by simp
show setOf (binsert h e (T t1 x t2)) = setOf (T t1 x t2) - (eqs h e) \cup \{e\}
proof (cases h e < h x)
case True note eLess = this
from eLess have res: binsert h e (T t1 x t2) = (T (binsert h e t1) x t2)
by simp
show setOf (binsert h e (T t1 x t2)) = setOf (T t1 x t2) - (eqs h e) \cup \{e\}
proof (simp add: res eLess c1)

show insert x (insert e (setOf t1 - (eqs h e) \cup \{e\})) = insert e (insert x (setOf t1 \cup \{e\} - (eqs h e))
proof

have eqsLessX: \(\forall e.l \in \text{eqs } h e. \ h \ e l < h x\) by (simp add: eqs-def eLess)
from this have eqsDisjX: \(\forall e.l \in \text{eqs } h e. \ h \ e l \sim h x\) by fastforce
from s have xLessT2: \(\forall r \in \text{setOf } t2. \ h \ x < h r\) by auto
have eqsLessT2: \(\forall e.l \in \text{eqs } h e. \ \forall r \in \text{setOf } t2. \ h \ e l < h r\)
proof safe

fix el assume hel: el : eqs h e
from hel eqs-def have a1: h el = h e by fastforce
fix r assume hr: r : setOf t2

7
from xLessT2 hr o1 eLess show h el < h r by auto
qed
from eqsLessT2 have eqsDisjT2: \(\forall \, e \in \text{eqs} \ h \ e \ \forall \, r \in \text{setOf} \ t2 \, \ h \ el \sim h \ r \)
by fastforce
from eqsDisjX eqsDisjT2 show ?thesis by fastforce
qed
qed
next case False note eNotLess = this
show setOf \((\text{binset} \ h \ e \ (T \ t1 \ x \ t2)) = \text{setOf} \ (T \ t1 \ x \ t2) - \text{eqs} \ h \ e \ \cup \ {e}\) proof (cases h x < h e)
case True note xLess = this
from xLess have res: \(\text{binset} \ h \ e \ (T \ t1 \ x \ t2) = (T \ t1 \ x \ (\text{binset} \ h \ e \ t2))\) by simp
show setOf \((\text{binset} \ h \ e \ (T \ t1 \ x \ t2)) = \text{setOf} \ (T \ t1 \ x \ t2) - \text{eqs} \ h \ e \ \cup \ {e}\)
proof (simp add: res xLess eNotLess c2)
show insert x (insert e (setOf t1 \ \cup \ \text{setOf} \ t2 - eqs h e)) = insert e (insert x (setOf t1 \ \cup \ \text{setOf} \ t2 - eqs h e))
proof
have XLessEqs: \(\forall \, e \in \text{eqs} \ h \ e \, \ h \ x < h \ el \) by (simp add: eqs-def xLess)
from this have eqsDisjX: \(\forall \, e \in \text{eqs} \ h \ e \, \ h \ el \sim h \ x \) by auto
from s have t1LessX: \(\forall \, l \in \text{setOf} \ t1 \, \ h \ l < h \ x \) by auto
have T1lessEqs: \(\forall \, e \in \text{eqs} \ h \ e \, \forall \, l \in \text{setOf} \ t1 \, \ h \ l < h \ el \)
proof safe
 fix el assume hel: el : eqs h e
 fix l assume hl: l : setOf t1
 from hel eqs-def have o1: h el = h e by fastforce
 from t1LessX hl o1 xLess show h l < h el by auto
qed
from T1lessEqs have T1disjEqs: \(\forall \, e \in \text{eqs} \ h \ e \, \forall \, l \in \text{setOf} \ t1 \, \ h \ el \sim h \ l \)
by fastforce
from eqsDisjX T1lessEqs show ?thesis by auto
qed
qed
next case False note xNotLess = this
from xNotLess eNotLess have xege: \(h \ x = h \ e \) by simp
from xege have res: \(\text{binset} \ h \ e \ (T \ t1 \ x \ t2) = (T \ t1 \ e \ t2)\) by simp
show setOf \((\text{binset} \ h \ e \ (T \ t1 \ x \ t2)) = \text{setOf} \ (T \ t1 \ x \ t2) - eqs h e \ \cup \ {e}\)
proof (simp add: res eNotLess xege)
show insert e (setOf t1 \ \cup \ \text{setOf} \ t2) = insert e (insert x (setOf t1 \ \cup \ \text{setOf} \ t2 - eqs h e))
proof
 have insert x (setOf t1 \ \cup \ \text{setOf} \ t2) - eqs h e = setOf t1 \ \cup \ \text{setOf} \ t2
 proof
 have x : eqs h e by (simp add: eqs-def xege)
moreover have \((setOf \ t1) \cap (eqs \ h \ e) = \{\}\)
proof (rule disjCond)
 fix \(w\)
 assume \(whSet: \ w \in (setOf \ t1)\)
 assume \(whEq: \ w \in (eqs \ h \ e)\)
 from \(whSet s \Rightarrow o1: h \ w < h \ x\) by simp
 from \(whEq eqs-def \Rightarrow o2: h \ w = h \ e\) by fastforce
 from \(o2 xeqe \Rightarrow o3: \sim h \ w < h \ x\) by simp
 from \(o1 o3 \Rightarrow show False\) by contradiction
qed
moreover have \((setOf \ t2) \cap (eqs \ h \ e) = \{\}\)
proof (rule disjCond)
 fix \(w\)
 assume \(whSet: \ w \in (setOf \ t2)\)
 assume \(whEq: \ w \in (eqs \ h \ e)\)
 from \(whSet s \Rightarrow o1: h \ x < h \ w\) by simp
 from \(whEq eqs-def \Rightarrow o2: h \ w = h \ e\) by fastforce
 from \(o2 xeqe \Rightarrow o3: \sim h \ x < h \ w\) by simp
 from \(o1 o3 \Rightarrow show False\) by contradiction
qed
ultimately show \(?thesis\) by auto
qed
from this show \(?thesis\) by simp
qed
qed
qed
qed

Using the correctness of set implementation, preserving sortedness is still simple.

lemma binsert-sorted: \(sortedTree \ h \ t \Rightarrow sortedTree \ h \ (binsert \ h \ x \ t)\)
by (induct \(t\)) (auto simp add: binsert-set)

We summarize the specification of binsert as follows.

corollary binsert-spec: \(sortedTree \ h \ t \Rightarrow\)
\(sortedTree \ h \ (binsert \ h \ x \ t) \&\)
\(setOf \ (binsert \ h \ e \ t) = (setOf \ t) - (eqs \ h \ e) \cup \{e\}\)
by (simp add: binsert-set)

5 Removing an element from a tree

These proofs are influenced by those in *BinaryTree-Tactic*

primrec
\(rm :: \ 'a \ hash \Rightarrow \ 'a \ Tree \Rightarrow \ 'a\)
--- rightmost element of a tree
where
\[\text{rm } h (T \ t1 \ t2) = \]
\[\quad (\text{if } t2 = \text{Tip} \text{ then } x \text{ else } \text{rm } h \ t2)\]

primrec
\[\text{wrm} :: \text{'a hash} => \text{'a Tree} => \text{'a Tree}\]
— tree without the rightmost element

where
\[\text{wrm } h (T \ t1 \ t2) = \]
\[\quad (\text{if } t2 = \text{Tip} \text{ then } t1 \text{ else } (T \ t1 \ x \ (\text{wrm } h \ t2)))\]

primrec
\[\text{wrmrm} :: \text{'a hash} => \text{'a Tree} => \text{'a Tree} * \text{'a}\]
— computing rightmost and removal in one pass

where
\[\text{wrmrm } h (T \ t1 \ t2) = \]
\[\quad (\text{if } t2 = \text{Tip} \text{ then } (t1, x) \text{ else } (T \ t1 \ x \ (\text{fst } \text{wrmrm } h \ t2)), \]
\[\quad \text{snd } (\text{wrmrm } h \ t2)))\]

primrec
\[\text{remove} :: \text{'a hash} => \text{'a =>} \text{'a Tree} => \text{'a Tree}\]
— removal of an element from the tree

where
\[\text{remove } h \ e \ \text{Tip} = \text{Tip}\]
\[\mid \text{remove } h \ e \ (T \ t1 \ x \ t2) = \]
\[\quad (\text{if } h \ e < h \ x \text{ then } (T \ (\text{remove } h \ e \ t1) \ x \ t2) \]
\[\quad \text{else if } h \ x < h \ e \text{ then } (T \ t1 \ x \ (\text{remove } h \ e \ t2)) \]
\[\quad \text{else } (\text{if } t1 = \text{Tip} \text{ then } t2 \]
\[\quad \text{else let } (t1p, r) = \text{wrmrm } h \ t1 \]
\[\quad \text{in } (T \ t1p \ r \ t2)))\]

theorem \[\text{wrmrm-decomp}: t \sim = \text{Tip} \longrightarrow \text{wrmrm } h \ t = (\text{wrm } h \ t, \ \text{rm } h \ t)\]
apply (induct-tac t)
apply simp-all
done

lemma \[\text{rm-set}: t \sim = \text{Tip} & \text{sortedTree } h \ t \longrightarrow \text{rm } h \ t : \text{setOf } t\]
apply (induct-tac t)
apply simp-all
done

lemma \[\text{wrm-set}: t \sim = \text{Tip} & \text{sortedTree } h \ t \longrightarrow \text{setOf } (\text{wrm } h \ t) = \text{setOf } t - \{\text{rm } h \ t\} \ \text{(is } ?P \ t)\]
proof (induct t)
show ?P Tip by simp
fix t1 :: 'a Tree assume h1: ?P t1
fix t2 :: 'a Tree assume h2: ?P t2
fix x :: 'a
show \(\forall \)P (T t1 x t2)

proof (rule impI, erule conjE)
 assume s: sortedTree h (T t1 x t2)
 show setOf (wrm h (T t1 x t2)) =
 setOf (T t1 x t2) - \{ rm h (T t1 x t2) \}
 proof (cases t2 = Tip)
 case True
 note t2tip = this
 from t2tip have rm-res: rm h (T t1 x t2) = x by simp
 from t2tip have wrm-res: wrm h (T t1 x t2) = t1 by simp
 from s have x ∼: setOf t1 by auto
 from this rm-res wrm-res t2tip show ?thesis by simp
 next case False
 note t2nTip = this
 from t2nTip have rm-res: rm h (T t1 x t2) = rm h t2 by simp
 from t2nTip have wrm-res: wrm h (T t1 x t2) = T t1 x (wrm h t2) by simp
 from s have s2: sortedTree h t2 by simp
 from h2 t2nTip s2 have o1: setOf (wrm h t2) = setOf t2 - \{ rm h t2 \} by simp
 show ?thesis
 proof (simp add: rm-set t2nTip h2 o1)
 show insert x (setOf t1 Un (setOf t2 - \{ rm h t2 \})) =
 insert x (setOf t1 Un setOf t2) - \{ rm h t2 \}
 proof -
 from s rm-set t2nTip have xOk: h x < h (rm h t2) by auto
 have t1Ok: \forall l ∈ setOf t1. h l < h (rm h t2)
 proof safe
 fix l :: 'a assume ldef: l : setOf t1
 from ldef s have lx: h l < h x by auto
 from lx xOk show h l < h (rm h t2) by auto
 qed
 from xOk t1Ok show ?thesis by auto
 qed
 qed
 qed
 qed

lemma wrm-set1: t ∼ = Tip & sortedTree h t ---> setOf (wrm h t) <= setOf t
 by (auto simp add: wrm-set)

lemma wrm-sort: t ∼ = Tip & sortedTree h t ---> sortedTree h (wrm h t) (is \(\forall \)P t)
 proof (induct t)
 show ?P Tip by simp
 fix t1 :: 'a Tree assume h1: ?P t1
 fix t2 :: 'a Tree assume h2: ?P t2
 fix x :: 'a
 show ?P (T t1 x t2)
 proof safe
 assume s: sortedTree h (T t1 x t2)
show \texttt{sortedTree\ h (\texttt{wrm\ h (T\ t1\ x\ t2))}}

proof (cases \texttt{t2 = Tip})

case \texttt{True} note \texttt{t2tip = this}
 from \texttt{t2tip} have \texttt{res: wrm\ h (T\ t1\ x\ t2) = t1 by simp}
 from \texttt{res\ s\ show \ ?thesis by simp}

next case \texttt{False} note \texttt{t2nTip = this}
 from \texttt{t2nTip} have \texttt{res: wrm\ h (T\ t1\ x\ t2) = T\ t1\ x\ (wrm\ h\ t2) by simp}
 from \texttt{s\ have s1: sortedTree\ h\ t1 by simp}
 from \texttt{s\ have s2: sortedTree\ h\ t2 by simp}
 from \texttt{s\ o2\ have o3: \forall\ r\ \in\ setOf\ (wrm\ h\ t2).\ h\ x < h\ r\ by\ auto}
 from \texttt{s\ o2\ have o3: setOf\ (wrm\ h\ t2) < setOf\ t2\ by\ auto}
 from \texttt{s\ o2\ have o3: \forall\ r\ \in\ setOf\ (wrm\ h\ t2).\ h\ x < h\ r\ by\ auto}
 from \texttt{s\ o2\ have o3: setOf\ (wrm\ h\ t2) < setOf\ t2\ by\ auto}

qed

qed

lemma \texttt{wrm-less-rm}:
 \texttt{t \sim Tip & sortedTree\ h\ t \longrightarrow}
 \((\forall\ l\ \in\ setOf\ (wrm\ h\ t).\ h\ x < h\ (rm\ h\ t))\) (is \texttt{?P\ t})

proof (induct \texttt{t})
 show \texttt{?P\ Tip by simp}
 fix \texttt{t1 :: 'a\ Tree\ assume h1: \?P\ t1}
 fix \texttt{t2 :: 'a\ Tree\ assume h2: \?P\ t2}
 fix \texttt{x :: 'a}
 show \texttt{?P\ (T\ t1\ x\ t2)}
 proof safe
 fix \texttt{l :: 'a\ assume ldef: l : setOf\ (wrm\ h\ (T\ t1\ x\ t2))}
 assume \texttt{s: sortedTree\ h\ (T\ t1\ x\ t2)}
 from \texttt{s\ have s1: sortedTree\ h\ t1 by simp}
 from \texttt{s\ have s2: sortedTree\ h\ t2 by simp}
 show \texttt{h\ l < h\ (rm\ h\ (T\ t1\ x\ t2))}
 proof (cases \texttt{t2 = Tip})
 case \texttt{True} note \texttt{t2tip = this}
 from \texttt{t2tip} have \texttt{rm-res: rm\ h\ (T\ t1\ x\ t2) = x by simp}
 from \texttt{t2tip} have \texttt{wrm-res: wrm\ h\ (T\ t1\ x\ t2) = t1 by simp}
 from \texttt{ldef\ wrm-res\ have o1: l : setOf\ t1 by simp}
 from \texttt{rm-res\ o1\ s\ show \ ?thesis by simp}
 next case \texttt{False} note \texttt{t2nTip = this}
 from \texttt{t2nTip} have \texttt{rm-res: rm\ h\ (T\ t1\ x\ t2) = rm\ h\ t2 by simp}
 from \texttt{t2nTip} have \texttt{wrm-res: wrm\ h\ (T\ t1\ x\ t2) = T\ t1\ x\ (wrm\ h\ t2) by simp}
 from \texttt{ldef\ wrm-res}
 have \texttt{l-scope: l : \{x\} Un\ setOf\ t1\ Un\ setOf\ (wrm\ h\ t2) by simp}
 have \texttt{hLess: h\ l < h\ (rm\ h\ t2)}
 proof (cases \texttt{l = x})
 case \texttt{True} note \texttt{lx = this}
 from \texttt{s\ t2nTip\ rm-set\ s2\ have o1: h\ x < h\ (rm\ h\ t2) by auto}
 from \texttt{lx\ o1\ show \ ?thesis by simp}
 next case \texttt{False} note \texttt{lx = this}
show \(?\text{thesis} \)

proof (cases \(l : \text{setOf} \ t1 \))

- case True
 note \(l\text{-in-t1} = \text{this} \)
 from \(s \ t2n\text{Tip} \) \(rm\text{-set} \ s2 \) have \(o1 : h \ x < h \ (rm \ h \ t2) \) by auto
 from \(l\text{-in-t1} s \) have \(o2 : h \ l < h \ x \) by auto
 from \(o1 o2 \) show \(?\text{thesis} \) by simp

- next case False
 note \(l\text{-notin-t1} = \text{this} \)
 from \(l\text{-scope} l x \) \(l\text{-notin-t1} \) have \(l\text{-in-res} : l : \text{setOf} \ (wrm \ h \ t2) \) by auto
 from \(l\text{-in-res} \) \(h2 \ t2n\text{Tip} \) \(s2 \) show \(?\text{thesis} \) by auto

qed

qed

lemma remove-set: \(\text{sortedTree} \ h \ t \quad \longrightarrow \quad \text{setOf} \ \text{remove} \ h \ e \ t = \text{setOf} \ t - \text{eqs} \ h \ e \) (is \(?P \ t \))

proof (induct \(t \))

- show \(?P \ \text{Tip} \) by auto
- fix \(t1 :: ’a \text{ Tree} \) assume \(h1 : ?P \ t1 \)
- fix \(t2 :: ’a \text{ Tree} \) assume \(h2 : ?P \ t2 \)
- fix \(x :: ’a \)

 show \(?P \ (T \ t1 \ x \ t2) \)

 proof
 assume \(s : \text{sortedTree} \ h \ (T \ t1 \ x \ t2) \)
 show \(\text{setOf} \ \text{remove} \ h \ e \ (T \ t1 \ x \ t2) = \text{setOf} \ (T \ t1 \ x \ t2) - \text{eqs} \ h \ e \)
 proof (cases \(h \ e < h \ x \))
 case True
 note \(elx = \text{this} \)
 from \(elx \) have \(\text{res: remove} \ h \ e \ (T \ t1 \ x \ t2) = T \ (\text{remove} \ h \ e \ t1) \ x \ t2 \)
 by simp
 from \(s \) have \(s1 : \text{sortedTree} \ h \ t1 \) by simp
 from \(s1 h1 \) have \(o1 : \text{setOf} \ \text{remove} \ h \ e \ t1 = \text{setOf} \ t1 - \text{eqs} \ h \ e \) by simp
 show \(?\text{thesis} \)
 proof (simp add: \(o1 \) \(elx \))
 show \(\text{insert} \ x \ \text{setOf} \ t1 - \text{eqs} \ h \ e \ \text{Un} \ \text{setOf} \ t2 = \)
 \(\text{insert} \ x \ (\text{setOf} \ t1 \ \text{Un} \ \text{setOf} \ t2) - \text{eqs} \ h \ e \)
 proof
 have \(xOk : x \sim: \text{eqs} \ h \ e \)
 proof
 assume \(h : x : \text{eqs} \ h \ e \)
 from \(h \) have \(o1 : \sim \ (h \ e < h \ x) \) by (simp add: \(\text{eqs-def} \))
 from \(elx o1 \) show \(False \) by contradiction
 qed
 have \(t2Ok : (\text{setOf} \ t2) \ \text{Int} \ (\text{eqs} \ h \ e) = \{\} \)
 proof (rule \(\text{disjCond} \))
 fix \(y :: ’a \)
 assume \(y\text{-in-t2} : y : \text{setOf} \ t2 \)
 qed
 qed
 qed
 qed
 qed

qed
assume \(y \in \text{eqs} \) : \(y = \text{h e} \)
from \(y \in \text{t2} \) s have \(\text{xly: } h x < h y \) by auto
from \(y \in \text{eqs} \) have \(\text{eey: } h y = h e \) by (simp add: eqs-def)
from \(\text{xly eey} \) have \(\text{nelx: } \sim (h e < h x) \) by simp
from \(\text{nelx xle show False by contradiction} \)
qed
from \(\text{xOk t2Ok show ?thesis by auto} \)
qed
next case False
note \(\text{nelx} = \text{this} \)
show ?thesis
proof (cases \(h x < h e \))
 case True
 note \(\text{xle} = \text{this} \)
 from \(\text{xle} \) have \(\text{res: } \text{remove h e } (T \text{ t1 x t2}) = T \text{ t1 x (remove h e t2)} \) by simp
from \(s \) have \(s2: \text{sortedTree h t2 by simp} \)
from \(s2 \) \(h2 \) have \(\text{o1: } \text{setOf } (\text{remove h e t2}) = \text{setOf t2} - \text{eqs h e by simp} \)
show ?thesis
proof (simp add: \(\text{o1 xle nelx} \))
 show \(\text{insert x } (\text{setOf t1 Un setOf t2}) - \text{eqs h e} \)
 proof
 have \(\text{t1Ok: } (\text{setOf t1}) \text{ Int (eqs h e}) = \{ \}
 proof (rule disjCond)
 fix \(y \) :: \('a\)
 assume \(\text{y-in-t1: } y : \text{setOf t1} \)
 assume \(\text{y-in-eq: } y : \text{eqs h e} \)
 from \(\text{y-in-t1 s have } \text{gylx: } h y < h x \) by auto
 from \(\text{y-in-eq have } \text{eey: } h y = h e \) by (simp add: eqs-def)
 from \(\text{gylx eey have } \text{nxle: } \sim (h x < h e) \) by simp
 from \(\text{nxle xle show False by contradiction} \)
 qed
 from \(\text{xOk t1Ok show ?thesis by auto} \)
 qed
 qed
next case False
note \(\text{nxle} = \text{this} \)
from \(\text{nelx nxle} \) have \(\text{ex: } h e = h x \) by simp
have \(\text{t2Ok: } (\text{setOf t2}) \text{ Int (eqs h e}) = \{ \}
proof (rule disjCond)
 fix \(y \) :: \('a\)
 assume \(\text{y-in-t2: } y : \text{setOf t2} \)
 assume \(\text{y-in-eq: } y : \text{eqs h e} \)
 from \(\text{y-in-t2 s have } \text{gylx: } h x < h y \) by auto
from y-in-eq have eey: h y = h e by (simp add: eqs-def)
from y-in-eq ex eey have nxly: ~ (h x < h y) by simp
from nxly xly show \textit{False} by contradiction
qed

show ?thesis
proof (cases t1 = \textit{Tip})
case True
note \textit{t1tip = this}
from ex \textit{t1tip} have \textit{res: remove h e (T t1 x t2) = t2 by simp}
show ?thesis
proof (simp add: \textit{t1tip ex})
 show \textit{setOf t2 = insert x (setOf t2) = eqs h e}
 proof
 from \textit{ex} have \textit{x-in-eqs: x : eqs h e by (simp add: eqs-def)}
 from \textit{x-in-eqs t2Ok} show ?thesis by auto
 qed
qed

case False
note \textit{t1nTip = this}
from \textit{nelx nxle ex \textit{t1nTip}} have \textit{res: remove h e (T t1 x t2) = T (wrm h t1) (rm h t1) t2}
by (simp add: \textit{Let-def wrmrm-decomp})
from \textit{res} show ?thesis
proof simp
 from \textit{s have s1: \textit{sortedTree h t1} by simp}
 show \textit{insert (rm h t1) (setOf (wrm h t1) Un setOf t2) = insert x (setOf t1 Un setOf t2) = eqs h e}
 proof (simp add: \textit{t1nTip s1 rm-set wrm-set})
 show \textit{insert (rm h t1) (setOf t1 - \{rm h t1\} Un setOf t2) = insert x (setOf t1 Un setOf t2) = eqs h e}
 proof
 from \textit{t1nTip s1 rm-set} have \textit{o1: insert (rm h t1) (setOf t1 - \{rm h t1\} Un setOf t2) = setOf t1 Un setOf t2}
 by auto
 have \textit{o2: insert x (setOf t1 Un setOf t2) = eqs h e = setOf t1 Un setOf t2}
 proof
 from \textit{ex} have \textit{xOk: x : eqs h e by (simp add: eqs-def)}
 have \textit{t1Ok: (setOf t1) Int (eqs h e) = \{\}}
 proof (rule \textit{disjCond})
 fix y :: 'a
 assume \textit{y-in-t1: y : setOf t1}
 assume \textit{y-in-eq: y : eqs h e}
 from \textit{y-in-t1 s ex} have \textit{o1: h y < h e by auto}
 from \textit{y-in-eq} have \textit{o2: \sim (h y < h e) by (simp add: eqs-def)}
 from \textit{o1 o2} show \textit{False} by contradiction
 qed
 from \textit{xOk t1Ok t2Ok} show ?thesis by auto
 qed
 from \textit{o1 o2} show ?thesis by simp
lemma remove-sort: sortedTree h t -->
 sortedTree h (remove h e t) (is \(\?P\) t)
proof (induct t)
 show \(\?P\) Tip by auto
 fix t1 :: 'a Tree assume h1: \?P t1
 fix t2 :: 'a Tree assume h2: \?P t2
 fix x :: 'a
 show \(\?P\) (T t1 x t2)
 proof
 assume s: sortedTree h (T t1 x t2)
 from s have s1: sortedTree h t1 by simp
 from s have s2: sortedTree h t2 by simp
 from h1 s1 have sr1: sortedTree h (remove h e t1) by simp
 from h2 s2 have sr2: sortedTree h (remove h e t2) by simp
 show sortedTree h (remove h e (T t1 x t2))
 proof (cases h e < h x)
 case True
 note elx = this
 from elx have res: remove h e (T t1 x t2) = T (remove h e t1) x t2
 by simp
 show \(\?thesis\)
 proof (simp add: s sr1 s2 elx res)
 let \(\?C1\) = \(\forall l \in setOf (remove h e t1). h l < h x\)
 let \(\?C2\) = \(\forall r \in setOf t2. h x < h r\)
 have o1: \(\?C1\)
 proof
 from s1 have setOf (remove h e t1) = setOf t1 - eqs h e by (simp add: remove-set)
 from s this show \(\?thesis\) by auto
 qed
 from o1 s show ?C1 & ?C2 by auto
 qed
 next case False
 note nelx = this
 show \(\?thesis\)
 proof (cases h x < h e)
 case True
 note xle = this
 from xle have res: remove h e (T t1 x t2) = T t1 x (remove h e t2) by simp
 show \(\?thesis\)
 proof (simp add: s s1 sr2 xle nelx res)
 let \(\?C1\) = \(\forall l \in setOf t1. h l < h x\)
 show \(\?thesis\)
 proof (cases h e < h l)
 case True
 note xle = this
 from xle have res: remove h e (T t1 x t2) = T t1 x (remove h e t2) by simp
 show \(\?thesis\)
 proof (simp add: s s1 sr2 xle nelx res)
 let \(\?C1\) = \(\forall l \in setOf t1. h l < h x\)
 show \(\?thesis\)
 proof (cases h e < h l)
 case True
 note xle = this
 from xle have res: remove h e (T t1 x t2) = T t1 x (remove h e t2) by simp
 show \(\?thesis\)
 proof (simp add: s s1 sr2 xle nelx res)
 let \(\?C1\) = \(\forall l \in setOf t1. h l < h x\)
 show \(\?thesis\)
 proof (cases h e < h l)
 case True
 note xle = this
 from xle have res: remove h e (T t1 x t2) = T t1 x (remove h e t2) by simp
 show \(\?thesis\)
 proof (simp add: s s1 sr2 xle nelx res)
 let \(\?C1\) = \(\forall l \in setOf t1. h l < h x\)
 show \(\?thesis\)
 proof (cases h e < h l)
 case True
 note xle = this
 from xle have res: remove h e (T t1 x t2) = T t1 x (remove h e t2) by simp
 show \(\?thesis\)
 proof (simp add: s s1 sr2 xle nelx res)
 let \(\?C1\) = \(\forall l \in setOf t1. h l < h x\)
 show \(\?thesis\)
 proof (cases h e < h l)
 case True
 note xle = this
 from xle have res: remove h e (T t1 x t2) = T t1 x (remove h e t2) by simp
 show \(\?thesis\)
 proof (simp add: s s1 sr2 xle nelx res)
 let \(\?C1\) = \(\forall l \in setOf t1. h l < h x\)
 show \(\?thesis\)
 proof (cases h e < h l)
 case True
 note xle = this
 from xle have res: remove h e (T t1 x t2) = T t1 x (remove h e t2) by simp
 show \(\?thesis\)
 proof (simp add: s s1 sr2 xle nelx res)
 let \(\?C1\) = \(\forall l \in setOf t1. h l < h x\)
let \(?C2 = \forall r \in \text{setOf} \ (\text{remove} \ h \ e \ t2) \cdot h < h r \)

have o2: \(?C2 \)

proof
 from s2 have setOf (remove h e t2) = setOf t2 - eqs h e by (simp add: remove-set)
 from s this show \(\text{thesis} \) by auto
qed

next case False note nxle = this
from nle nxle have ex: h e = h x by simp
show \(\text{thesis} \)
proof (cases t1 = T\(\text{ip}\))
 case True note t1tip = this
 from ex t1tip have res: remove h e (T t1 x t2) = t2 by simp
 show \(\text{thesis} \) by (simp add: res t1tip ex s2)
next case False note t1nTip = this
from nle nxle ex t1nTip
have res: remove h e (T t1 x t2) = T (wrm h t1) (rm h t1) t2
by (simp add: Let-def wrmrm-decomp)
from res show \(\text{thesis} \)
proof simp
 let \(?C1 = \text{sortedTree} \ h \ (\text{wrm} \ h \ t1) \)
 let \(?C2 = \forall l \in \text{setOf} \ (\text{wrm} \ h \ t1) \cdot h l < h (\text{rm} \ h \ t1) \)
 let \(?C3 = \forall r \in \text{setOf} \ t2 \cdot h (\text{rm} \ h \ t1) < h r \)
 let \(?C4 = \text{sortedTree} \ h \ t2 \)
 from s1 t1nTip have a1: \(?C1 \) by (simp add: wrm-sort)
 from s1 t1nTip have a2: \(?C2 \) by (simp add: wrm-less-rm)
 have o3: \(?C3 \)
proof
 fix r :: 'a
 assume rt2: \(r : \text{setOf} \ t2 \)
 from s rm-set s1 t1nTip have a1: \(h (\text{rm} \ h \ t1) < h x \) by auto
 from rt2 s have a2: \(h x < h r \) by auto
 from a1 a2 show \(h (\text{rm} \ h \ t1) < h r \) by simp
qed
from a1 a2 o3 s2 show \(\text{thesis} \) by simp
qed
qed
qed

We summarize the specification of remove as follows.

corollary remove-spec: \(\text{sortedTree} \ h \ t \longrightarrow \text{sortedTree} \ h \ (\text{remove} \ h \ e \ t) \) &
 \(\text{setOf} \ (\text{remove} \ h \ e \ t) = \text{setOf} \ t - \text{eqs} \ h \ e \)
by (simp add: remove-sort remove-set)

definition test = tlookup id 4 (remove id 3 (binsert id 4 (binsert id 3 Tip)))

export-code test
 in SML module-name BinaryTree-Code file (BinaryTree-Code.ML)
end

6 Mostly Isar-style Reasoning for Binary Tree Operations

theory BinaryTree-Map imports BinaryTree begin
We prove correctness of map operations implemented using binary search trees from BinaryTree.
This document is LGPL.
Author: Viktor Kuncak, MIT CSAIL, November 2003

7 Map implementation and an abstraction function

type-synonym 'a tarray = (index * 'a) Tree

definition valid-tmap :: 'a tarray => bool where
 valid-tmap t == sortedTree fst t

declare valid-tmap-def [simp]

definition mapOf :: 'a tarray => index => 'a option where
 — the abstraction function from trees to maps
 mapOf t i ==
 (case (tlookup fst i t) of
 None => None
 | Some ia => Some (snd ia))

8 Auxiliary Properties of our Implementation

lemma mapOf-lookup1: tlookup fst i t = None ==> mapOf t i = None
by (simp add: mapOf-def)

lemma mapOf-lookup2: tlookup fst i t = Some (j,a) ==> mapOf t i = Some a
by (simp add: mapOf-def)

lemma assumes h: mapOf t i = None
shows mapOf-lookup3: tlookup fst i t = None
proof (cases tlookup fst i t)
case None from this show ?thesis by assumption
next case (Some ia) note tsome = this
 from this have o1: tlookup fst i t = Some (fst ia, snd ia) by simp
 have mapOf t i = Some (snd ia)
 by (insert mapOf-lookup2 [of i t fst ia snd ia], simp add: o1)
 from this have mapOf t i ~= None by simp
 from this h show ?thesis by simp — contradiction
qed

lemma assumes v: valid-tmap t
 assumes h: mapOf t i = Some a
 shows mapOf-lookup4: tlookup fst i t = Some (i, a)
proof (cases tlookup fst i t)
case None from this mapOf-lookup1 have mapOf t i = None by auto
 from this h show ?thesis by simp — contradiction
next case (Some ia) note tsome = this
 have tlookup-some-inst: sortedTree fst t & (tlookup fst i t = Some ia) --> ia : setOf t & fst ia = i by (simp add: tlookup-some)
 from tlookup-some-inst tsome v have ia : setOf t by simp
 from tsome have mapOf t i = Some (snd ia) by (simp add: mapOf-def)
 from this h have o1: snd ia = a by simp
 from tlookup-some-inst tsome v have o2: fst ia = i by simp
 from o1 o2 have ia = (i, a) by auto
 from this tsome show tlookup fst i t = Some (i, a) by simp
qed

8.1 Lemmas mapset-none and mapset-some establish a relation
between the set and map abstraction of the tree

lemma assumes v: valid-tmap t
 shows mapset-none: (mapOf t i = None) = (∀ a. (i, a) ∉ setOf t)
proof
 ==⇒ i.
 assume mapNone: mapOf t i = None
 from v mapNone mapOf-lookup3 have lnone: tlookup fst i t = None by auto
 show ∀ a. (i, a) ∉ setOf t
 proof
 fix a
 show (i, a) ~: setOf t
 proof
 assume iain: (i, a) : setOf t
 have tlookup-none-inst:
 sortedTree fst t & (tlookup fst i t = None) --> (∀ x ∈ setOf t. fst x ~ = i)
 by (insert tlookup-none [of fst t i], assumption)
 from v lnone tlookup-none-inst have ∃ x ∈ setOf t. fst x ~ = i by simp
 from this iain have fst (i, a) ~ = i by fastforce
from this show False by simp
qed
qed

next assume h: \forall a, (i,a) \notin setOf t
show mapOf t i = None
proof (cases mapOf t i)
case None then show \?thesis .
next case (Some a) note mapsome = this
 from v mapsome have o1: tlookup fst i t = Some (i,a) by (simp add: mapOf-lookup4)
 from tlookup-some have tlookup-some-inst: sortedTree fst t & tlookup fst i t = Some (i,a) -->
 (i,a) : setOf t & fst (i,a) = i
 by (insert tlookup-some [of fst t i (i,a)], assumption)
 from v o1 this have (i,a) : setOf t by simp
 from this h show \?thesis by auto — contradiction
qed

lemma assumes v: valid-tmap t
 shows mapset-some: (mapOf t i = Some a) = ((i,a) : setOf t)
proof
 — ==¿
 assume mapsome: mapOf t i = Some a
 from v mapsome have o1: tlookup fst i t = Some (i,a) by (simp add: mapOf-lookup4)
 from tlookup-some have tlookup-some-inst: sortedTree fst t & tlookup fst i t = Some (i,a) -->
 (i,a) : setOf t & fst (i,a) = i
 by (insert tlookup-some [of fst t i (i,a)], assumption)
 from v o1 this have (i,a) : setOf t by simp
 — j==
 next assume iain: (i,a) : setOf t
 from v iain tlookup-finds have tlookup fst (fst (i,a)) t = Some (i,a) by fastforce
 from this have tlookup fst i t = Some (i,a) by simp
 from this show mapOf t i = Some a by (simp add: mapOf-def)
qed

9 Empty Map

lemma mnew-spec-valid: valid-tmap Tip
by (simp add: mapOf-def)

lemma mtip-spec-empty: mapOf Tip k = None
by (simp add: mapOf-def)
10 Map Update Operation

definition mupdate :: index => 'a => 'a tarray => 'a tarray where
mupdate i a t == binsert fst (i,a) t

lemma assumes v: valid-tmap t

shows mupdate-map: mapOf (mupdate i a t) = (mapOf t)(i |-> a)

proof
fix i2
let ?tr = binsert fst (i,a) t
have upres: mupdate i a t = ?tr by (simp add: mupdate-def)
from v binsert-set
have setSpec: setOf ?tr = setOf t - eqs fst (i,a) Un {(i,a)} by fastforce
from v binsert-sorted
have valid-tmap ?tr: valid-tmap ?tr by fastforce
show mapOf (mupdate i a t) i2 = ((mapOf t)(i |-> a)) i2 by (cases i = i2)

case True note i2ei = this
from i2ei have rhs-res: ((mapOf t)(i |-> a)) i2 = Some a by simp
have lhs-res: mapOf (mupdate i a t) i = Some a
proof -
have will-find: tlookup fst i ?tr = Some (i,a)
proof -
from setSpec have kvin: (i,a) : setOf ?tr by simp
have binsert-sorted-inst: sortedTree fst t --> sortedTree fst ?tr by (insert binsert-sorted [of fst t (i,a)], assumption)
from v binsert-sorted-inst
have rs: sortedTree fst ?tr by simp
have tlookup-finds-inst: sortedTree fst ?tr & (i,a) : setOf ?tr --> tlookup fst i ?tr = Some (i,a)
by (insert tlookup-finds [of fst ?tr (i,a)], simp)
from rs kvin tlookup-finds-inst
show ?thesis by simp
qed
from upres will-find show ?thesis by (simp add: mapOf-def)
qed
from lhs-res rhs-res i2ei
show ?thesis by simp
next case False note i2nei = this
from i2nei have rhs-res: ((mapOf t)(i |-> a)) i2 = mapOf t i2 by auto
have lhs-res: mapOf (mupdate i a t) i2 = mapOf t i2
proof (cases mapOf t i2)

case None from this have mapNone: mapOf t i2 = None by simp
from v mapNone mapset-none have i2nin: \(\forall \ a. \ (i2,a) \notin setOf \ t \) by fastforce
have noneIn: \(\forall \ b. \ (i2,b) \notin setOf \ ?tr \)
proof
fix b
from v binsert-set
have setOf ?tr = setOf t - eqs fst (i,a) Un {(i,a)}
by fastforce
from this i2nei i2nin show (i2,b) ~: setOf ?tr by fastforce
qed
have mapset-none-inst:
valid-tmap ?tr --> (mapOf ?tr i2 = None) = (∀ a. (i2, a) ∉ setOf ?tr)
by (insert mapset-none [of ?tr i2], simp)
from vr noneIn mapset-none-inst have mapOf ?tr i2 = None by fastforce
from this upres mapNone show ?thesis by simp

next case (Some z) from this have mapSome: mapOf t i2 = Some z by simp
from v mapSome mapset-some have (i2, z) : setOf t by fastforce
from this vr mapset-some have mapOf ?tr i2 = Some z by fastforce
from this apres mapSome show ?thesis by simp
qed
from lhs-res rhs-res show ?thesis by simp
qed

lemma assumes v: valid-tmap t
 shows mupdate-valid: valid-tmap (mupdate i a t)
proof --
 let ?tr = binsert fst (i, a) t
 have upres: mupdate i a t = ?tr by (simp add: mupdate-def)
 from v binsert-sorted have vr: valid-tmap ?tr by fastforce
 from vr upres show ?thesis by simp
qed

11 Map Remove Operation

definition mremove :: index => 'a tarray => 'a tarray where
 mremove i t == remove fst (i, undefined) t

lemma assumes v: valid-tmap t
 shows mremove-valid: valid-tmap (mremove i t)
proof (simp add: mremove-def)
 from v remove-sort show sortedTree fst (remove fst (i, undefined) t) by fastforce
qed

lemma assumes v: valid-tmap t
 shows mremove-map: mapOf (mremove i t) i = None
proof (simp add: mremove-def)
 let ?tr = remove fst (i, undefined) t
 show mapOf ?tr i = None
 proof --
 from v remove-spec have remSet: setOf ?tr = setOf t - eqs fst (i, undefined)
 by fastforce
 have noneIn: ∀ a. (i, a) ∉ setOf ?tr
 proof
 fix a
 from remSet show (i, a) ∉ setOf ?tr by (simp add: eqs-def)
 qed
 qed

qed
12 Tactic-Style Reasoning for Binary Tree Operations

theory BinaryTree-TacticStyle imports Main begin

This example theory illustrates automated proofs of correctness for binary tree operations using tactic-style reasoning. The current proofs for remove operation are by Tobias Nipkow, some modifications and the remaining tree operations are by Viktor Kuncak.

13 Definition of a sorted binary tree

datatype tree = Tip | Nd tree nat tree

primrec set-of :: tree => nat set
— The set of nodes stored in a tree.
where
 set-of Tip = {}
| set-of (Nd t x r) = set-of t Un set-of r Un {x}

primrec sorted :: tree => bool
— Tree is sorted
where
 sorted Tip = True
| sorted (Nd l y r) =
 (sorted l & sorted r & (\forall x \in set-of l. x < y) & (\forall z \in set-of r. y < z))

14 Tree Membership

primrec
 memb :: nat => tree => bool
where
 memb e Tip = False
| memb e (Nd t1 x t2) =
 (if e < x then memb e t1
else if x < e then memb e t2
else True)

lemma member-set: sorted t −→ memb e t = (e : set-of t)
by (induct t) auto

15 Insertion operation

primrec binset :: nat => tree => tree
— Insert a node into sorted tree.
where
 binset x Tip = (Nd Tip x Tip)
| binset x (Nd t1 y t2) = (if x < y then
 (Nd (binset x t1) y t2)
 else
 (if y < x then
 (Nd t1 y (binset x t2))
 else (Nd t1 y t2)))

theorem set-of-binset [simp]: set-of (binset x t) = set-of t Un {x}
by (induct t) auto

theorem binset-sorted: sorted t −→ sorted (binset x t)
by (induct t) (auto simp add: set-of-binset)

corollary binset-spec:
sorted t −→
 sorted (binset x t) &
 set-of (binset x t) = set-of t Un {x}
by (simp add: binset-sorted)

16 Remove operation

primrec rm :: tree => nat — find the rightmost element in the tree
where
 rm(Nd l x r) = (if r = Tip then x else rm r)
primrec rem :: tree => tree — find the tree without the rightmost element
where
 rem(Nd l x r) = (if r = Tip then l else Nd l x (rem r))
primrec remove:: nat => tree => tree — remove a node from sorted tree
where
 remove x Tip = Tip
| remove x (Nd l y r) =
 (if x < y then Nd (remove x l) y r else
if \(y < x \) then \(\text{Nd } l \ y \) (remove \(x \) \(r \)) else
if \(l = \text{Tip} \) then \(r \)
else \(\text{Nd } (\text{rem } l) \ (\text{rem } l) \ r \)

Lemma rm-in-set-of: \(t \sim \text{Tip} \implies \text{set-of } t \)
by (induct \(t \)) auto

Lemma set-of: \(t \sim \text{Tip} \implies \text{set-of } t = \text{set-of}(\text{rem } t) \cup \{\text{rm } t\} \)
by (induct \(t \)) auto

Lemma [simp]: \(\| t \sim \text{Tip} \| \implies \text{sorted}(\text{rem } t) \)
by (induct \(t \)) (auto simp add: set-of-rem)

Lemma sorted-rem: \(\| t \sim \text{Tip} \| \implies \text{sorted}(\text{rem } t) \in \{\text{rm } t\} \)
by (induct \(t \)) (auto simp add: set-of-rem split: if_splits)

Theorem set-of-remove [simp]: \(\text{sorted } t \implies \text{set-of}(\text{remove } x \ t) = \text{set-of } t - \{x\} \)
apply (induct \(t \))
apply simp
apply simp
apply (rule conjI)
apply fastforce
apply (rule impI)
apply (rule conjI)
apply fastforce
apply (fastforce simp: set-of-rem)
done

Theorem remove-sorted: \(\text{sorted } t \implies \text{sorted}(\text{remove } x \ t) \)
by (induct \(t \)) (auto intro: less-trans rm-in-set-of sorted-rem)

Corollary remove-spec: summary specification of remove
\(\text{sorted } t \implies \text{sorted}(\text{remove } x \ t) \)
by (simp add: remove-sorted)

Finally, note that rem and rm can be computed using a single tree traversal
given by \(\text{remrm} \).

Primrec \(\text{remrm} :: \text{tree } => \text{tree } * \text{nat} \)
where
\[
\text{remrm}(\text{Nd } l \ x \ r) = (\text{if } r = \text{Tip} \text{ then } (l, x) \text{ else } \text{let } (r', y) = \text{remrm } r \text{ in } (\text{Nd } l \ x \ r', y))
\]

Lemma \(t \sim \text{Tip} \implies \text{remrm } t = (\text{rem } t, \text{rm } t) \)
by (induct \(t \)) (auto simp: Let-def)

We can test this implementation by generating code.

Definition \(\text{test } = \text{memb 4 (\text{remove } (3::\text{nat}) \ (\text{binset } 4 \ (\text{binset } 3 \text{Tip})))} \)
export-code test
 in SML module-name BinaryTree-TacticStyle-Code file (BinaryTree-TacticStyle-Code.ML)
end