Bicategories

Eugene W. Stark

Department of Computer Science
Stony Brook University
Stony Brook, New York 11794 USA

March 17, 2025

Abstract

Taking as a starting point the author’s previous work ([12] [13]) on developing
aspects of category theory in Isabelle/HOL, this article gives a compatible formal-
ization of the notion of “bicategory” and develops a framework within which formal
proofs of facts about bicategories can be given. The framework includes a number
of basic results, including the Coherence Theorem, the Strictness Theorem, pseudo-
functors and biequivalence, and facts about internal equivalences and adjunctions in
a bicategory. As a driving application and demonstration of the utility of the frame-
work, it is used to give a formal proof of a theorem, due to Carboni, Kasangian,
and Street [4], that characterizes up to biequivalence the bicategories of spans in a
category with pullbacks. The formalization effort necessitated the filling-in of many
details that were not evident from the brief presentation in the original paper, as
well as identifying a few minor corrections along the way.

Revisions made subsequent to the first version of this article added additional ma-
terial on pseudofunctors, pseudonatural transformations, modifications, and equiva-
lence of bicategories; the main thrust being to give a proof that a pseudofunctor is
a biequivalence if and only if it can be extended to an equivalence of bicategories.
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Introduction

Bicategories, introduced by Bénabou [2], are a generalization of categories in which the
sets of arrows between pairs of objects (i.e. the “hom-sets”) themselves have the struc-
ture of categories. In a typical formulation, the definition of bicategories involves three
separate kinds of entities: objects (or 0-cells), arrows (or 1-cells), and morphisms be-
tween arrows (or 2-cells). There are two kinds of composition: wertical composition,
which composes 2-cells within a single hom-category, and horizontal composition, which
composes 2-cells in “adjacent” hom-categories hom(A, B) and hom(B,C). Horizontal
composition is required to be functorial with respect to vertical composition; the iden-
tification of a 1-cell with the corresponding identity 2-cell then leads to the ability to
horizontally compose 1-cells with 2-cells (i.e. “whiskering”) and to horizontally compose
1-cells with each other. Each hom-category hom(A, A) is further equipped with an iden-
tity 1-cell id 4, which serves as a unit for horizontal composition. In a strict bicategory,
also known as a 2-category, the usual unit and associativity laws for horizontal composi-
tion are required to hold exactly, or (as it is said) “on the nose”. In a general bicategory,
these laws are only required to hold “weakly”; that is, up to a collection of (vertical)
isomorphisms that satisfy certain coherence conditions. A bicategory, all of whose hom-
categories are discrete, is essentially an ordinary category. A bicategory with just one
object amounts to a monoidal category whose tensor is given by horizontal composition.
Alternatively, we may think of bicategories as a generalization of monoidal categories in
which the tensor is permitted to be a partial operation, in analogy to the way in which
ordinary categories can be considered as a generalization of monoids.

A standard example of a bicategory is Cat, the bicategory whose 0-cells are cate-
gories, whose 1-cells are functors, and whose 2-cells are natural transformations. This
is in fact a 2-category; however, as two categories that are related by an equivalence of
categories have the same “categorical” properties, it is often more sensible to consider
constructions on categories as given up to equivalence, rather than up to isomorphism,
and this leads to considering Cat as a bicategory and using bicategorical constructions
rather than as a 2-category and using 2-categorical ones. This is one reason for the
importance of bicategories: as Street [14] remarks, “In recent years it has become even
more obvious that, although the fundamental constructions of set theory are categorical,
the fundamental constructions of category theory are bicategorical.”

An alternative reason for studying bicategories, which is more aligned with my own
personal interests and forms a major reason why I chose to pursue the present project, is
that they provide an elegant framework for theories of generalized relations, as has been



shown by Carboni, Walters, Street, and others [4] [6] [5] [3]. Indeed, the category of sets
and relations becomes a bicategory by taking the inclusions between relations as 2-cells
and thereby becomes an exemplar of the notion bicategory of relations which itself is a
specialization of the notion of cartesian bicategory [6] [5]. In the study of the semantics
of programming languages containing nondeterministic or concurrent constructs, it is
natural to consider the meaning of a program in such a language as some kind of relation
between inputs and outputs. Ordinary relations can be used for this purpose in simple
situations, but they fail to be adequate for the study of higher-order nondeterministic
programs or for concurrent programs that engage in interaction with their environment,
so some sort of notion of generalized relation is needed. One is therefore led to try
to identify some kind of bicategories of generalized relations as framework suitable for
defining the semantics of such programs. One expects these to be instances of cartesian
bicategories.

I attempted for a long time to try to develop a semantic framework for a certain class
of interactive concurrent programs along the lines outlined above, but ultimately failed
to obtain the kind of comprehensive understanding that I was seeking. The basic idea
was to try to regard a program as denoting a kind of generalized machine, expressed
as some sort of bimodule or two-sided fibration (cf. [15] [14]), to be represented as a
certain kind of span in an underlying category of “maps”, which would correspond to the
meanings of deterministic programs. A difficulty with trying to formulate any kind of
theory like this is that there quickly gets to be a lot of data and a lot of properties to keep
track of, and it was certainly more than I could handle. For example, bicategories have
objects, 1-cells, and 2-cells, as well as domains, codomains, composition and identities for
both the horizontal and vertical structure. In addition, there are unit and associativity
isomorphisms for the weak horizontal composition, as well as their associated coherence
conditions. Cartesian bicategories are symmetric monoidal bicategories, which means
that there is an additional tensor product, which comes with another set of canonical
isomorphisms and coherence conditions. Still more canonical morphisms and coherence
conditions are associated with the cartesian structure. Even worse, in order to give
a proper account of the computational ideas I was hoping to capture, the underlying
category of maps would at least have to be regarded as an ordered category, if not a
more general 2-category or bicategory, so the situation starts to become truly daunting.

With so much data and so many properties, it is unusual in the literature to find
proofs written out in anything approaching complete detail. To the extent that proofs
are given, they often involve additional assumptions made purely for convenience and
presentational clarity, such as assuming that the bicategories under consideration are
strict when actually they are not, and then discharging these assumptions by appeals
to informal arguments such as “the result holds in the general case because we can
always replace a non-strict bicategory by an equivalent strict one.” This is perhaps fine
if you happen to have finely honed insight, but in my case I am always left wondering if
something important hasn’t been missed or glossed over, and I don’t trust very much my
own ability to avoid gross errors if I were to work at the same level of detail as the proofs
that I see in the literature. So my real motivation for the present project was to try to
see whether a proof assistant would actually be useful in carrying out fully formalized,



machine-checkable proofs of some kind of interesting facts about bicategories. I also
hoped in the process to develop a better understanding of some concepts that I knew
that I hadn’t understood very well.

The project described in the present article is divided into two main parts. The
first part, which comprises Chapter 1, seeks to develop a formalization of the notion of
bicategory using Isabelle/HOL and to prove various facts about bicategories that are
required for a subsequent application. Additional goals here are: (1) to be able to make
as much use as possible of the formalizations previously created for categories [12] and
monoidal categories [13]; (2) to create a plausibly useful framework for future extension;
and (3) to better understand some subtleties involved in the definition of bicategory.
In this chapter, we give an HOL formalization of bicategories that makes use of and
extends the formalization of categories given in [12]. In that previous work, categories
were formalized in an “object-free” style in terms of a suitably defined associative partial
binary operation of composition on a single type. Elements of the type that behave as
units for the composition were called “identities” and the “arrows” were identified as
the elements of the type that are composable both on the left and on the right with
identities. The identities composable in this way with an arrow were then shown to be
uniquely determined, which permitted domain and codomain functions to be defined.
This formalization of categories is economical in terms of basic data (only a single par-
tial binary operation is required), but perhaps more importantly, functors and natural
transformations need not be defined as structured objects, but instead can be taken to
be ordinary functions between types that suitably preserve arrows and composition.

In order to carry forward unchanged the framework developed for categories, for the
formalization of bicategories we take as a jumping-off point the somewhat offbeat view
of a bicategory as a single global category under vertical composition (the arrows are the
2-cells), which is then equipped with an additional partial binary operation of horizontal
composition. This point of view corresponds to thinking of bicategories as generalizations
of monoidal categories in which the tensor is allowed to be a partial operation. In a direct
generalization of the approach taken for categories, we then show that certain weak
units with respect to the horizontal composition play the role of 0-cells (the identities
with respect to vertical composition play the role of 1-cells) and that we can define the
sources and targets of an arrow as the sets of weak units horizontally composable on
the right and on the left with it. We then define a notion of weak associativity for the
horizontal composition and arrive at the definition of a prebicategory, which consists of a
(vertical) category equipped with an associative weak (horizontal) composition, subject
to the additional assumption that every vertical arrow has a nonempty set of sources
and targets with respect to the horizontal composition. We then show that, to obtain
from a prebicategory a structure that satisfies a more traditional-looking definition of a
bicategory, all that is necessary is to choose arbitrarily a particular representative source
and target for each arrow. Moreover, every bicategory determines a prebicategory by
simply forgetting the chosen sources and targets. This development clarifies that an a
priori assignment of source and target objects for each 2-cell is merely a convenience,
rather than an element essential to the notion of bicategory.

Additional highlights of Chapter 1 are as follows:



e As a result of having formalized bicategories essentially as “monoidal categories
with partial tensor”, we are able to generalize to bicategories, in a mostly straight-
forward way, the proof of the Coherence Theorem we previously gave for monoidal
categories in [13]. We then develop some machinery that enables us to apply the
Coherence Theorem to shortcut certain kinds of reasoning involving canonical iso-
morphisms.

o Using the syntactic setup developed for the proof of the Coherence Theorem, we
also give a proof of the Strictness Theorem, which states that every bicategory is
biequivalent to a 2-category, its so-called “strictification”.

¢ We define the notions of internal equivalence and internal adjunction in a bicategory
and prove a number of basic facts about these notions, including composition of
equivalences and adjunctions, and that every equivalence can be refined to an
adjoint equivalence.

o We formalize the notion of a pseudofunctor between bicategories, generalizing the
notion of a monoidal functor between monoidal categories and we show that pseud-
ofunctors preserve internal equivalences and adjunctions.

e We define a sub-class of pseudofunctors which we call equivalence pseudofunctors.
Equivalence pseudofunctors are intended to coincide with those pseudofunctors that
can be extended to an equivalence of bicategories, but we do not attempt to give
an independent definition equivalence of bicategories in the present development.
Instead, we establish various properties of equivalence pseudofunctors to provide
some confidence that the notion has been formalized correctly. Besides establishing
various preservation results, we prove that, given an equivalence pseudofunctor, we
may obtain one in the converse direction. For the rest of this article we use the
property of two bicategories being connected by an equivalence pseudofunctor as a
surrogate for the property of biequivalence, leaving for future work a more proper
formulation of equivalence of bicategories and a full verification of the relationship
of this notion with equivalence pseudofunctors.

The second part of the project, presented in Chapter 2, is to demonstrate the utility
of the framework by giving a formalized proof of a nontrivial theorem about bicategories.
For this part, I chose to tackle a theorem of Carboni, Kasangian, and Street ([4], “CKS”
for short) which gives axioms that characterize up to equivalence those bicategories whose
1-cells are spans of arrows in an underlying category with pullbacks and whose 2-cells
are arrows of spans. The original paper is very short (nine pages in total) and the
result I planned to formalize (Theorem 4) was given on the sixth page. I thought I had
basically understood this result and that the formalization would not take very long to
accomplish, but I definitely underestimated both my prior understanding of the result
and the amount of auxiliary material that it would be necessary to formalize before I
could complete the main proof. Eventually I did complete the formalization, and in the
process filled in what seemed to me to be significant omissions in Carboni, Kasangian,
and Street’s presentation, as well as correcting some errors of a minor nature.



Highlights of Chapter 2 are the following:

o A formalization of the notion of a category with chosen pullbacks, a proof that
this formalization is in agreement with the general definition of limits we gave
previously in [12], and the development of some basic properties of a category with
pullbacks.

e A construction, given a category C' with chosen pullbacks, of the “span bicategory”
Span(C'), whose objects are those of the given category, whose 1-cells are spans of
arrows of C, and whose 2-cells are arrows of spans. We characterize the maps (the
i.e. left adjoints) in Span(C') as exactly those spans whose “input leg” is invertible.

e A formalization of the notion of tabulation of a 1-cell in a bicategory and a de-
velopment of some of its properties. Tabulations are a kind of bicategorical limit
introduced by CKS, which can be used to define a kind of biuniversal way of fac-
toring a 1-cell up to isomorphism as the horizontal composition of a map and the
adjoint of a map.

o A formalization of bicategories of spans, which are bicategories that satisfy three
axioms introduced in CKS. We give a formal proof of CKS Theorem 4, which
characterizes the bicategories of spans as those bicategories that are biequivalent
to a bicategory Span(C') for some category C with pullbacks. One direction of
the proof shows that if C' is a category with pullbacks, then Span(C') satisfies the
axioms for a bicategory of spans. Moreover, we show that the notion “bicategory of
spans” is preserved under equivalence of bicategories, so that in fact any bicategory
biequivalent to one of the form Span(C) is a bicategory of spans. Conversely, we
show that if B is a bicategory of spans, then B is biequivalent to Span(Maps(B)),
where Maps(B) is the so-called classifying category of the maps in B, which has as
objects those of B and as arrows the isomorphism classes of maps in B.

In order to formalize the proof of this result, it was necessary to develop a number of
details not mentioned by CKS, including ways of composing tabulations vertically
and horizontally, and spelling out a way to choose pullbacks in Maps(B) so that
the tupling of arrows of Maps(B) obtained using the chosen pullbacks agrees with
that obtained through horizontal composition of tabulations. These details were
required in order to give the definition of the compositor for an equivalence pseud-
ofunctor SPN from B to Span(Maps(B)) and establish the necessary coherence
conditions.

In the end, I think it can be concluded that Isabelle/HOL can be used with benefit
to formalize proofs about bicategories. It is certainly very helpful for keeping track of
the data involved and the proof obligations required. For example, in the formalization
given here, a total of 99 separate subgoals are involved in proving that a given set of
data constitutes a bicategory (only 7 subgoals are required for an ordinary category)
and another 29 subgoals must be proved in order to establish a pseudofunctor between
two bicategories (only 5 additional subgoals are required for an ordinary functor), but



the proof assistant assumes the burden of keeping track of these proof obligations and
presenting them to the human user in a structured, understandable fashion. On the other
hand, some of the results proved here still required some lengthy equational “diagram
chases” for which the proof assistant (at least so far) didn’t provide that much help (aside
from checking their correctness). An exception to this was in the case of equational
reasoning about expressions constructed purely of canonical isomorphisms, which our
formulation of the Coherence Theorem permitted to be carried out automatically by the
simplifier. It seems likely, though, that there is still room for more general procedures
to be developed in order to allow other currently lengthy chains of equational reasoning
to be carried out automatically.

Revision Notes

The original version of this article dates from January, 2020. The current version
of this article incorporates revisions made throughout 2020. A number of the changes
made in early to mid-2020 consisted of minor improvements and speedups. A more major
change made in this period was that the theory “category with pullbacks” was moved to
[12], where it more logically belongs.

In late 2020 additional material was added relating to pseudofunctors, pseudonatural
transformations, and equivalence of bicategories. The main result shown was that a
pseudofunctor is a biequivalence if and only if it can be extended to an equivalence of
bicategories. This important result was sidestepped in the original version of this article,
but the author felt that it was a glaring omission that should be corrected. Unfortunately,
to formalize these results required some rather lengthy calculations in order to establish
coherence conditions. These calculations added significantly to the line count of this
article, as well as the time and memory required to validate the proofs.

In July, 2021, a “concrete bicategory” construction analogous to the “concrete cate-
gory” construction in [12] was added. This construction was used to give a construction
of the bicategory of categories, functors, and natural transformations, which was then
shown to be strict.
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Preliminaries

0.1 Isomorphism Classes

The following is a small theory that facilitates working with isomorphism classes of
objects in a category.

theory IsomorphismClass
imports Category3.EpiMonolso Category3. NaturalTransformation
begin

context category
begin

notation isomorphic (infix <= 50)

definition iso-class (<[-]»)
where iso-class f = {f'. f = f'}

definition is-iso-class
where is-iso-class FF = 3f. f € F N F = iso-class f

definition iso-class-rep
where iso-class-rep F = SOME f. f € F

lemmas isomorphic-transitive [trans
lemmas naturally-isomorphic-transitive [trans]

lemma inv-in-homlI [intro]:
assumes iso f and «f : a — b»
shows «inv f : b — a»

(proof)

lemma iso-class-is-nonempty:
assumes is-iso-class F
shows F # {}

(proof)

lemma iso-class-memb-is-ide:
assumes is-iso-class F and f € F

11



shows ide f
(proof)

lemma ide-in-iso-class:
assumes ide f
shows [ € [f]

(proof)

lemma rep-in-iso-class:
assumes is-iso-class F
shows iso-class-rep F € F

(proof)

lemma is-iso-classI:
assumes ide f
shows is-iso-class [f]

(proof)

lemma rep-iso-class:

assumes ide f

shows iso-class-rep [f] = f
(proof)

lemma iso-class-elems-isomorphic:
assumes is-iso-class F and f € F and f' € F
shows f = f/

(proof)

lemma iso-class-eql [intro]:
assumes [ = g

shows [f] = [g]

(proof)

lemma iso-class-eq:
assumes is-iso-class F and is-iso-class G and F N G # {}
shows F = G

(proof)

lemma iso-class-rep [simp]:
assumes is-iso-class F
shows [iso-class-rep F]| = F

(proof )

end

end

12



Chapter 1

Bicategories

The objective of this section is to construct a formalization of bicategories that is com-
patible with our previous formulation of categories [12] and that permits us to carry
over unchanged as much of the work done on categories as possible. For these reasons,
we conceive of a bicategory in what might be regarded as a somewhat unusual fashion.
Rather than a traditional development, which would typically define a bicategory to be
essentially “a ‘category’ whose homs themselves have the structure of categories,” here
we regard a bicategory as “a (vertical) category that has been equipped with a suitable
(horizontal) weak composition.” Stated another way, we think of a bicategory as a gen-
eralization of a monoidal category in which the tensor product is a partial operation,
rather than a total one. Our definition of bicategory can thus be summarized as follows:
a bicategory is a (vertical) category that has been equipped with idempotent endofunc-
tors src and trg that assign to each arrow its “source” and “target” subject to certain
commutativity constraints, a partial binary operation * of horizontal composition that
is suitably functorial on the “hom-categories” determined by the assignment of sources
and targets, “associativity” isomorphisms «alf, g, h] : (f x g) x h = f * (g * h)» for
each horizontally composable triple of vertical identities f, g, h, subject to the usual nat-
urality and coherence conditions, and for each “object” a (defined to be an arrow that
is its own source and target) a “unit isomorphism” «i[a] : a x a = a». As is the case for
monoidal categories, the unit isomorphisms and associator isomorphisms together enable
a canonical definition of left and right “unit” isomorphisms «l[f] : a x f = f» and «r[f]
: f % a= f» when f is a vertical identity horizontally composable on the left or right by
a, and it can be shown that these are the components of natural transformations.

The definition of bicategory just sketched shares with a more traditional version the
requirement that assignments of source and target are given as basic data, and these
assignments determine horizontal composability in the sense that arrows p and v are
composable if the chosen source of p coincides with the chosen target of v. Thus it
appears, at least on its face, that composability of arrows depends on an assignment of
sources and targets. We are interested in establishing whether this is essential or whether
bicategories can be formalized in a completely “object-free” fashion.

It turns out that we can obtain such an object-free formalization through a rather

13



direct generalization of the approach we used in the formalization of categories. Specifi-
cally, we define a weak composition to be a partial binary operation = on the arrow type
of a “vertical” category V, such that the domain of definition of this operation is itself a
category (of “horizontally composable pairs of arrows”), the operation is functorial, and
it is subject to certain matching conditions which include those satisfied by a category.
From the axioms for a weak composition we can prove the existence of “hom-categories”,
which are subcategories of V consisting of arrows horizontally composable on the left
or right by a specified vertical identity. A weak unit is defined to be a vertical identity
a such that a x a = a and is such that the mappings a * - and - * a are fully faithful
endofunctors of the subcategories of V consisting of the arrows for which they are de-
fined. We define the sources of an arrow p to be the weak units that are horizontally
composable with p on the right, and the targets of u to be the weak units that are
horizontally composable with © on the left. An associative weak composition is defined
to be a weak composition that is equipped with “associator” isomorphisms «alf, g, h] :
(f x g) x h = f % (g * h)» for horizontally composable vertical identities f, g, h, subject
to the usual naturality and coherence conditions. A prebicategory is defined to be an
associative weak composition for which every arrow has a source and a target. We show
that the sets of sources and targets of each arrow in a prebicategory is an isomorphism
class of weak units, and that horizontal composability of arrows i and v is characterized
by the set of sources of u being equal to the set of targets of v.

We show that prebicategories are essentially “bicategories without objects”. Given a
prebicategory, we may choose an arbitrary representative of each isomorphism class of
weak units and declare these to be “objects” (this is analogous to choosing a particular
unit object in a monoidal category). For each object we may choose a particular unit
isomorphism «ila] : a * a = a». This choice, together with the associator isomorphisms,
enables a canonical definition of left and right unit isomorphisms «1[f] : a x f = f» and
«r[f] : f x a = f» when f is a vertical identity horizontally composable on the left or
right by a, and it can be shown that these are the components of natural isomorphisms.
We may then define “the source” of an arrow to be the chosen representative of the set
of its sources and “the target” to be the chosen representative of the set of its targets.
We show that the resulting structure is a bicategory, in which horizontal composability
as given by the weak composition coincides with the “syntactic” version determined by
the chosen sources and targets. Conversely, a bicategory determines a prebicategory,
essentially by forgetting the sources, targets and unit isomorphisms. These results make
it clear that the assignment of sources and targets to arrows in a bicategory is basically a
convenience and that horizontal composability of arrows is not dependent on a particular
choice.

theory Prebicategory
imports Category3.Equivalence OfCategories Category3.Subcategory IsomorphismClass
begin
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1.1 Weak Composition

In this section we define a locale weak-composition, which formalizes a functorial op-
eration of “horizontal” composition defined on an underlying “vertical” category. The
definition is expressed without the presumption of the existence of any sort of “objects”
that determine horizontal composability. Rather, just as we did in showing that the
partial-magma locale supported the definition of “identity arrow” as a kind of unit for
vertical composition which ultimately served as a basis for the definition of “domain”
and “codomain” of an arrow, here we show that the weak-composition locale supports
a definition of weak unit for horizontal composition which can ultimately be used to
define the sources and targets of an arrow with respect to horizontal composition. In
particular, the definition of weak composition involves axioms that relate horizontal and
vertical composability. As a consequence of these axioms, for any fixed arrow p, the sets
of arrows horizontally composable on the left and on the right with p form subcategories
with respect to vertical composition. We define the sources of p to be the weak units
that are composable with p on the right, and the targets of u to be the weak units that
are composable with u on the left. Weak units are then characterized as arrows that are
members of the set of their own sources (or, equivalently, of their own targets).

1.1.1 Definition

locale weak-composition =

category V +

VzV: product-category V'V +

VoV subcategory Ve V.comp <Auv. fst uv x snd pv # nully +

functor VoV.comp V «A\uv. fst uv * snd pv»
for V :: 'a comp (infixr <> 55)
and H :: 'a comp (infixr 0 53) +
assumes left-connected: seq v v/ = v x u # null +— v’ % p # null
and right-connected: seq p p' => v * u # null +— v * p’ # null
and match-1: [ v x p # null; (v * p) * 7 # null | = p * 7 # null
and match-2: [ v x (ux7) # null; p* 7 # null | = v x p # null
and match-3: [+ 7 # null; v * p # null | = (v * p) * 7 # null
and match-4: [ p*7 # null; v * pu # null | = v x (u * 7) # null
begin

We think of the arrows of the vertical category as “2-cells” and the vertical identities
as “l-cells”. In the formal development, the predicate arr (“arrow”) will have its normal
meaning with respect to the vertical composition, hence arr p will mean, essentially, “u is
a 2-cell”. This is somewhat unfortunate, as it is traditional when discussing bicategories
to use the term “arrow” to refer to the 1-cells. However, we are trying to carry over all
the formalism that we have already developed for categories and apply it to bicategories
with as little change and redundancy as possible. It becomes too confusing to try to
repurpose the name arr to mean ide and to introduce a replacement for the name arr, so
we will simply tolerate the situation. In informal text, we will prefer the terms “2-cell”
and “1-cell” over (vertical) “arrow” and “identity” when there is a chance for confusion.
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We do, however, make the following adjustments in notation for in-hom so that it
is distinguished from the notion in-hhom (“in horizontal hom”) to be introduced subse-
quently.

no-notation in-hom (<=1 == -»)
notation in-hom (<= == -m)

lemma is-partial-magma:
shows partial-magma H

{proof)

interpretation H: partial-magma H

(proof)
interpretation H: partial-composition H

(proof)

lemma is-partial-composition:
shows partial-composition H

(proof)

Either match-1 or match-2 seems essential for the next result, which states that the
nulls for the horizontal and vertical compositions coincide.

lemma null-agreement [simp):
shows H.null = null

(proof)

lemma composable-implies-arr:
assumes v * p # null
shows arr p and arr v

(proof)

lemma hcomp-null [simp]:
shows null x p = null and p * null = null

{proof)

lemma hcomp-simpsw ¢ [simp):
assumes v * p #* null
shows arr (v x p) and dom (v x p) = dom v x dom p and cod (v * 1) = cod v * cod

{proof)

lemma ide-hcompw ¢:
assumes ide [ and ide g and g * f # null
shows ide (g * f)

(proof)

lemma hcomp-in-homw ¢ [introl:
assumes v * p # null
shows «v x p : dom v x dom p = cod v x cod p»

{proof)
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Horizontal composability of arrows is determined by horizontal composability of their
domains and codomains (defined with respect to vertical composition).

lemma hom-connected:

shows v x p # null +— dom v * p # null
and v x p # null +— v x dom p # null
and v x u # null +— cod v * p # null
and v x p # null <— v x cod p # null

(proof )

lemma isomorphic-implies-equicomposable:
assumes [ = g

shows 7 x f # null +— 7 x g # null
and f * 0 # null <— g x 0 # null

(proof)

lemma interchange:
assumes seq v p and seq T o
shows (v - u) x (1-0)=Ww*x7) - (u*o0)

(proof)

lemma paste-1:
shows v x = (cod v * u) - (v * dom p)

{proof)

lemma paste-2:
shows v x = (v x cod p) - (dom v * )

{proof)

lemma whisker-left:
assumes seq v 4 and ide f

shows f « (v - p) = (f % v) - (f * 1)
(proof)

lemma whisker-right:
assumes seq v 4 and ide f

shows (v - p) x f = (v * f) - (u[)
(proof )

1.1.2 Hom-Subcategories
definition left
where left 7 = A\p. 7 *x p # null

definition right
where right o = A\ po x o # null

lemma right-iff-left:

shows right o 7 +— left 7 o

(proof)
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lemma left-respects-isomorphic:
assumes [ = g
shows left f = left g

(proof )

lemma right-respects-isomorphic:
assumes [ = g
shows right f = right g

(proof )

lemma left-iff-left-inv:
assuimes 50 [
shows left T p «— left 7 (inv p)

(proof)

lemma right-iff-right-inv:
assumes 50 [
shows right o y <— right o (inv p)

{proof)

lemma left-hom-is-subcategory:
assumes arr p
shows subcategory V (left )

{proof)

lemma right-hom-is-subcategory:
assumes arr p
shows subcategory V (right p)

{proof)

abbreviation Left
where Left a = subcategory.comp V (left a)

abbreviation Right
where Right a = subcategory.comp V (right a)

We define operations of composition on the left or right with a fixed 1-cell, and show
that such operations are functorial in case that 1-cell is horizontally self-composable.

definition Hj,

where Hy, g = Ay g % p

definition Hpg

where Hr f = A o * f

Note that match-3 and match-4 are required for the next results.

lemma endofunctor-Hp,:
assumes ide g and g x g # null
shows endofunctor (Left g) (Hy, g)
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{proof)

lemma endofunctor-Hg:

assumes ide f and f x f # null
shows endofunctor (Right f) (Hg f)
(proof)

end

locale left-hom =

weak-composition V H +

S: subcategory V <left w»
for V :: 'a comp (infixr <> 55)
and H :: 'a comp (infixr < 53)
and w :: 'a +
assumes arr-w: arr w

begin
no-notation in-hom (<=1 == -»)
notation in-hom (<= == -m)
notation S.comp (infixr <g) 59)
notation S.in-hom (-1 - =g -m)

lemma right-hcomp-closed:
assumes «u : ¢ =g y» and «v : ¢ = d» and p x v # null
shows «uxv:zxc =g y* d»

(proof)

lemma interchange:
assumes S.seq v pp and S.seq 7 0 and p x 0 # null
shows (v g p) x (T1-s0) =W *7) -5 (u*0)

(proof)

lemma inv-char:

assumes S.arr ¢ and iso ¢
shows S.inverse-arrows ¢ (inv @)
and S.inv ¢ = inv @

{proof)

lemma iso-char:
assumes S.arr @
shows S.iso ¢ +— iso ¢

(proof)

end
locale right-hom =

weak-composition V H +
S: subcategory V <right w»
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for V :: 'a comp (infixr <> 55)
and H :: 'a comp (infixr < 53)
and w :: ‘a +

assumes arr-w: arr w

begin
no-notation in-hom (k¢-: - = -m)
notation in-hom (<¢-: - = -m)
notation S.comp (infixr <g> 55)
notation S.in-hom (4= - =g -m)

lemma left-hcomp-closed:
assumes «u : =g y» and «v : ¢ = d» and v * p # null
shows «v x pu:cxxz =g dx* y»

(proof)

lemma interchange:
assumes S.seq v p and S.seq T 0 and p x o # null
shows (v s u) x (1 s o) = (v *7) g (u*0)

{proof)

lemma inv-char:

assumes S.arr ¢ and iso ¢
shows S.inverse-arrows ¢ (inv @)
and S.inv ¢ = inv @

(proof )

lemma iso-char:
assumes S.arr @
shows S.iso ¢ <— iso ¢

(proof)

end

1.1.3 Weak Units
We now define a weak unit to be an arrow a such that:

1. a x a is isomorphic to a (and hence a is a horizontally self-composable 1-cell).

2. Horizontal composition on the left with a is a fully faithful endofunctor of the
subcategory of arrows that are composable on the left with a.

3. Horizontal composition on the right with a is fully faithful endofunctor of the
subcategory of arrows that are composable on the right with a.

context weak-composition
begin

definition weak-unit :: 'a = bool
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where weak-unit a = a x a = a N
fully-faithful-functor (Left a) (Left a) (Hy a) A
fully-faithful-functor (Right a) (Right a) (Hg a)

lemma weak-unit-self-composable:
assumes weak-unit a
shows ide a and ide (a x a) and a * a # null

{proof)

lemma weak-unit-self-right:
assumes weak-unit a
shows right a a

(proof)

lemma weak-unit-self-left:
assumes weak-unit a
shows left a a

(proof)

lemma weak-unit-in-vhom:
assumes weak-unit a
shows «a : a = a»

(proof)

If a is a weak unit, then there exists a “unit isomorphism” «¢ :

not be unique, but we may choose one arbitrarily.

definition some-unit
where some-unit a = SOME 1. is0 1t N\ €L : a % a = a»

lemma iso-some-unit:
assumes weak-unit a

shows iso (some-unit a)

and «some-unit a : a * a = a»

{proof)

ax a = a» It need

The sources of an arbitrary arrow u are the weak units that are composable with
on the right. Similarly, the targets of u are the weak units that are composable with

on the left.

definition sources
where sources p = {a. weak-unit a A p * a # null}

lemma sourcesI [intro):
assumes weak-unit a and p x a # null
shows a € sources p

(proof)

lemma sourcesD [dest]:
assumes a € sources (i
shows ide a and weak-unit a and p x a # null
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(proof)

definition targets
where targets p = {b. weak-unit b A b x p # null}

lemma targetsl [introl:
assumes weak-unit b and b x p # null
shows b € targets p

{proof)

lemma targetsD [dest]:
assumes b € targets p
shows ide b and weak-unit b and b * p # null

{proof)

lemma sources-dom [simp]:
assumes arr p
shows sources (dom p) = sources p

(proof)

lemma sources-cod [simp]:
assumes arr fi
shows sources (cod p) = sources L

(proof)

lemma targets-dom [simp]:
assumes arr p
shows targets (dom p) = targets p

(proof)

lemma targets-cod [simp):
assumes arr p
shows targets (cod p) = targets p

(proof)

lemma weak-unit-iff-self-source:
shows weak-unit a +— a € sources a

(proof)

lemma weak-unit-iff-self-target:
shows weak-unit b «— b € targets b

(proof)

abbreviation (input) in-hhomwyc («-: - 2w -»)
where in-hhomw o p fg = arr p A\ f € sources u N\ g € targets p

lemma sources-hcomp:

assumes v * p # null
shows sources (v * ) = sources u
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(proof)

lemma targets-hcomp:
assumes v x [ # null
shows targets (v x p) = targets v

(proof)

lemma H g-preserved-along-iso:
assumes weak-unit a and a = o’
shows endofunctor (Right a) (Hg a’)

{proof)

lemma H j-preserved-along-iso:
assumes weak-unit a and a = o’
shows endofunctor (Left a) (Hr a’)

(proof )

end

1.1.4 Regularity

We call a weak composition reqular if f * a = f whenever a is a source of 1-cell f, and
b x f = f whenever b is a target of £ A consequence of regularity is that horizontal
composability of 2-cells is fully determined by their sets of sources and targets.

locale regular-weak-composition =

weak-composition +
assumes comp-ide-source: [ a € sources f;ide f | = fxa = f
and comp-target-ide: [ b € targets f; ide f | = bx f = f
begin

lemma sources-determine-composability:
assumes a € sources T
shows 7 x p # null +— a * p # null

(proof)

lemma targets-determine-composability:
assumes b € targets p
shows 7 x pu # null +— 7 % b # null

{proof)

lemma composable-if-connected:
assumes sources v N targets p # {}
shows v x p # null

{proof)

lemma connected-if-composable:
assumes v * p #* null
shows sources v = targets p

{proof)
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lemma iso-hcomprw ¢:

assumes iso u and iso v and sources v N targets p # {}
shows iso (v x 1)

and inverse-arrows (v x ) (inv v * inv p)

{proof)

lemma inv-hcomprw ¢:
assumes iso p and iso v and sources v N targets p # {}
shows inv (v x ) = inv v % inv u

(proof )

end

1.1.5 Associativity

An associative weak composition consists of a weak composition that has been equipped
with an associator isomorphism: «a[f, g, h] : (f * g) * h = f x g x h» for each composable
triple (f, g, h) of 1-cells, subject to naturality and coherence conditions.

locale associative-weak-composition =
weak-composition +
fixesa:'a='a="a="a (] - )
assumes assoc-in-vhomaw c:
[ ide f; ide g; ide h; f % g # null; g x h # null | =
«alf, g, h] : (f xg) x h = f x g * h»
and assoc-naturalitysw o
[7%p+#nully pxv#null] =
a[cod T, cod p, cod V] - ((T x p) x v) = (7 x p x v) - a[dom T, dom p, dom V]
and iso-assocaw c: [ ide f; ide g; ide h; f % g # null; g x b # null | = iso alf, g, h]
and pentagonaw c:
[ ide f; ide g; ide h; ide k; sources f N targets g # {};
sources g N targets h # {}; sources h N targets k # {} | =
(f*a[gv h, k]) ’ a[f7 g * h, k} ’ (a[fa 9, h] *k) = a[f7 g, hox k} ’ a[f*97 h, k}
begin

lemma assoc-in-homaw ¢:

assumes ide f and ide g and ide h

and f x g # null and g x h # null

shows sources alf, g, h] = sources h and targets a[f, g, h] = targets f
and «alf, g, h] : (f x g) x h = f x g x h»

{proof)

lemma assoc-simpsawc [simp]:
assumes ide f and ide g and ide h
and f x g # null and g x h # null
shows arr alf, g, h]

and dom alf, g, b = (f x g) x h
and cod a[f, g, h] = fxg* h

{proof)
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lemma assoc’-in-homaw c:

assumes ide f and ide g and ide h

and f x g # null and g x h # null

shows sources (inv a[f, g, h]) = sources h and targets (inv alf, g, h]) = targets f
and «inv alf, g, h] : fxgxh = (fxg) x h»

(proof)

lemma assoc’-simpsaw ¢ [simpl:
assumes ide f and ide g and ide h
and f x g # null and g * h # null
shows arr (inv a[f, g, h|)

and dom (inv al[f, g, h]) = f * g x h
and cod (inv al[f, g, h]) = (f x g) x h
(proof )

lemma assoc’-naturality sw c:
assumes 7T * p # null and p x v # null
shows inv alcod 7, cod p, cod V] - (T * p*v) = ((T * p) x v) - inv aldom 7, dom u, dom v|

{proof)

end

1.1.6 Unitors

For an associative weak composition with a chosen unit isomorphism ¢ : a * ¢ = a,
where @ is a weak unit, horizontal composition on the right by « is a fully faithful
endofunctor R of the subcategory of arrows composable on the right with a, and is
consequently an endo-equivalence of that subcategory. This equivalence, together with
the associator isomorphisms and unit isomorphism ¢, canonically associate, with each
identity arrow f composable on the right with a, a right unit isomorphism «r[f] : f * a
= f». These isomorphisms are the components of a natural isomorphism from R to the
identity functor.
locale right-hom-with-unit =

associative-weak-composition V H a +
right-hom V H a

for V :: 'a comp (infixr ¢ 55)
and H :: ‘a comp (infixr x> 53)
anda: ‘a='a='a="a («al-, -, -])
and ¢ :: a

and a :: 'a +

assumes weak-unit-a: weak-unit a
and c-in-hom: «i : a x a = a»
and iso-i: is0 L

begin

abbreviation R
where R = Hg a
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interpretation R: endofunctor S.comp R
(proof)

interpretation R: fully-faithful-functor S.comp S.comp R
(proof )

lemma fully-faithful-functor-R:
shows fully-faithful-functor S.comp S.comp R
(proof )

definition runit («[-]»)
where runit f = THE p. «u: R f =s f» NRu=(f 1) -5 alf, a, d

lemma iso-unit:
shows S.iso t and « : a x a =g a»

(proof )

lemma characteristic-iso:

assumes S.ide f

shows «a[f, a, a] : (f x a) x a =g f x a * a»
and «f x¢t:f*xa*a=gf*a»

and «(f x¢) ‘s al|f, a,a]l: R (Rf) =5 R f»
and S.iso ((f x ¢) s alf, a, a])

(proof)

lemma runit-char:

assumes S.ide f

shows «r[f] : R f =5 f» and R r[f] = (f x¢) -5 alf, a, d]
and 3lp. «pu: Rf=s M ANRu=(f*t) s alf, a, a
(proof)

lemma iso-runit:
assumes S.ide f
shows S.iso r[f]

(proof)

lemma runit-eql:
assumes «f : a =g b» and «u : R f =g f»
and R w= ((f* L) S a[fa a, a])
shows p = rlf]
(proof)

lemma runit-naturality:

assumes S.arr @

shows r[S.cod p] - R = p -g r[S.dom p)
{proof)

abbreviation t
where v u = if S.arr p then p -g r[S.dom | else null
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interpretation t: natural-transformation S.comp S.comp R S.map t

{proof)

lemma natural-transformation-t:
shows natural-transformation S.comp S.comp R S.map v (proof)

interpretation t: natural-isomorphism S.comp S.comp R S.map t

{proof)

lemma natural-isomorphism-t:
shows natural-isomorphism S.comp S.comp R S.map v {proof)

interpretation R: equivalence-functor S.comp S.comp R

(proof)

lemma equivalence-functor-R:
shows equivalence-functor S.comp S.comp R

(proof)

lemma runit-commutes-with-R:
assumes S.ide f
shows r[R f] = R r[f]

(proof)

end

Symmetric results hold for the subcategory of all arrows composable on the left with
a specified weak unit b. This yields the left unitors.

locale left-hom-with-unit =
associative-weak-composition V H a +
left-hom V H b

for V :: 'a comp (infixr <> 55)
and H :: 'a comp (infixr < 53)
anda:‘a="a="a="a («al-, -, )
and ¢ :: a

and b :: ‘a +

assumes weak-unit-b: weak-unit b
and c-in-hom: «v : bx b = by
and iso-i: iso L

begin

abbreviation L
where L = H; b

interpretation L: endofunctor S.comp L

(proof)
interpretation L: fully-faithful-functor S.comp S.comp L

(proof)
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lemma fully-faithful-functor-L:
shows fully-faithful-functor S.comp S.comp L
(proof )

definition lunit (<1[-])
where lunit f = THE p. «p: L f =g f» ANLu=(*f) s (invalb, b, f])

lemma iso-unit:
shows S.iso t and «t : b *x b =g b»

{proof)

lemma characteristic-iso:

assumes S.ide f

shows «inv alb, b, f]: bxbxf =g (b*b) % f»
and «tx f: (bxbd) xf =g b*f»

and «(¢ * f) g inv alb, b, f] : L (L f) =g L f»
and S.iso ((v * f) -5 inv a[b, b, f])

(proof)

lemma lunit-char:

assumes S.ide f

shows «l[f] : L f =g f» and L1[f] = (¢ * f) -5 inv a[b, b, f]
and Flp. «p: Lf=5f» ANLp=(xf) s invalb b, f]
(proof )

lemma iso-lunit:
assumes S.ide f
shows S.iso l[f]

{proof)

lemma lunit-eql:
assumes «f : a =g b» and «u : L f =g f»
and L p = ((¢ x f) -5 inv alb, b, f])
shows p = 1[f]
{proof)

lemma [unit-naturality:

assumes S.arr @

shows 1[S.cod pu] s L p = p -5 1[S.dom p]
(proof)

abbreviation [
where [ © = if S.arr p then p -s 1[S.dom p] else null

interpretation [: natural-transformation S.comp S.comp L S.map |

(proof)

lemma natural-transformation-I:
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shows natural-transformation S.comp S.comp L S.map | (proof)

interpretation [: natural-isomorphism S.comp S.comp L S.map |

{proof)

lemma natural-isomorphism-l:
shows natural-isomorphism S.comp S.comp L S.map | (proof)

interpretation L: equivalence-functor S.comp S.comp L

(proof)

lemma equivalence-functor-L:
shows equivalence-functor S.comp S.comp L

{proof)

lemma lunit-commutes-with-L:
assumes S.ide f
shows I[L f] = L l[f]

(proof )

end

1.1.7 Prebicategories

A prebicategory is an associative weak composition satisfying the additional assumption
that every arrow has a source and a target.

locale prebicategory =
associative-weak-composition +

assumes arr-has-source: arr p = sources jr # {}

and arr-has-target: arr p = targets p # {}

begin

lemma arr-iff-has-src:
shows arr p +— sources pu # {}

(proof)

lemma arr-iff-has-trg:
shows arr p <— targets u # {}
{proof )

end

The horizontal composition of a prebicategory is regular.

sublocale prebicategory C regular-weak-composition V H

(proof)

The regularity allows us to show that, in a prebicategory, all sources of a given arrow
are isomorphic, and similarly for targets.

context prebicategory
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begin

lemma sources-are-isomorphic:
assumes a € sources u and a’ € sources
shows a = o'

{proof)

lemma targets-are-isomorphic:
assumes b € targets p and b’ € targets p
shows b = b’

{proof)

In fact, we now show that the sets of sources and targets of a 2-cell are isomorphism-
closed, and hence are isomorphism classes. We first show that the notion “weak unit” is
preserved under isomorphism.

interpretation H: partial-composition H

(proof)

lemma isomorphism-respects-weak-units:
assumes weak-unit a and a = o’
shows weak-unit a’

{proof)

lemma sources-iso-closed:
assumes a € sources u and a
shows a’ € sources p

(proof)

lemma targets-iso-closed:
assumes a € targets p and o = a’
shows a’ € targets p

(proof)

lemma sources-eql:
assumes sources p N sources v # {}
shows sources |1 = sources v

(proof)

lemma targets-eql:
assumes targets p N targets v # {}
shows targets p = targets v

(proof )
The sets of sources and targets of a weak unit are isomorphism classes.

lemma sources-char:
assumes weak-unit a
shows sources a = {z. ¢ = a}

(proof)
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lemma targets-char:
assumes weak-unit a
shows targets a = {z. * = a}

{proof)

end

1.2 Horizontal Homs

Here we define a locale that axiomatizes a (vertical) category V that has been punctuated
into “horizontal homs” by the choice of idempotent endofunctors src and trg that assign
a specific “source” and “target” 1-cell to each of its arrows. The functors src and trg are
also subject to further conditions that constrain how they commute with each other.

locale horizontal-homs =

category V +

sre: endofunctor V src +

trg: endofunctor V trg
for V :: 'a comp (infixr <> 55)
and src :: 'a = a
and trg :: 'a = 'a +
assumes ide-src [simp]: arr p = ide (src p)
and ide-trg [simp]: arr p = ide (trg p)
and src-src [simpl: arr p = src (src p) = sre f
and trg-trg [simp]: arr p = trg (trg p) = trg p
and trg-sre [simp]: arr p = trg (src p) = src p
and sre-trg [simp: arr p = src (trg p) = trg p

begin
no-notation in-hom (<=2 - = -»)
notation in-hom (<=1 - = -m)

We define an object to be an arrow that is its own source (or equivalently, its own
target).

definition obj
where obja = arra A srca = a

lemma obj-def":
shows obj a «— arra A trg a = a
(proof )

lemma objl-src:
assumes arr o and src a = a
shows 0bj a

(proof )
lemma objl-trg:

assumes arr ¢ and trg a = a
shows 0bj a
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(proof)

lemma objE [elim):
assumes obj a and [ ide a; srca = a;trga=a] = T
shows T

(proof)

lemma obj-simps :
assumes 0bj a
shows arr a and src a = a and trg a = a and dom a = a and cod a = a

(proof)

lemma obj-src [intro, simp]:
assumes arr fi
shows obj (src p)

(proof)

lemma obj-trg [intro, simp]:
assumes arr
shows obj (trg p)

(proof)

definition in-hhom (<«-: - — -»)
where in-hhom pab=arr p AN srcu=a ANtrg u==>=

abbreviation hhom
where hhom a b = {u. «pu: a — by}

abbreviation (input) hseqpy g
where hsequpg = A\ppv. arr A arr v A\ src p = trg v

lemma in-hhoml [intro, simp]:
assumes arr p and src yp = a and trg p = b
shows «u : a — b»

{proof)

lemma in-hhomE [elim]:

assumes «u : a — b»

and [ arr p; obj a; obj by srce p=a;trgu=0] = T
shows T

(proof)

lemma ide-in-hom [intro:
assumes ide f
shows «f : src f — trg f» and «f : f = f»

(proof)

32



lemma sre-dom [simp]:
shows src (dom p) = sre p

(proof)

lemma sre-cod [simp]:
shows src (cod p) = src p

(proof)

lemma trg-dom [simp]:
shows trg (dom p) = trg u
{proof )

lemma trg-cod [simp]:
shows trg (cod p) = trg p
(proof)

lemma dom-src [simp]:
shows dom (src p) = src p

{proof)

lemma cod-sre [simpl:
shows cod (src p) = src p

(proof)

lemma dom-trg [simp]:
shows dom (trg p) = trg p
(proof)

lemma cod-trg [simp]:
shows cod (trg p) = trg p
(proof)

lemma vcomp-in-hhom [intro, simp]:
assumes seq v p and src v = a and trg v = b
shows «v - p:a — b»

(proof)

lemma src-vcomp [simp]:
assumes seq v 4
shows src (v - p) = src v

(proof)

lemma trg-vcomp [simp):

assumes seq v i

shows trg (v - u) = trg v
(proof )

lemma vseg-implies-hpar:
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assumes seq vV [
shows src v = src pand trg v = trg p

(proof)

lemma vconn-implies-hpar:
assumes «u : f = g»
shows src p = src f and trg p = trg f and src g = src f and trg g = trg f

{proof)

lemma src-inv [simp]:
assumes %50 [
shows src (inv p) = sre p

(proof)

lemma trg-inv [simp:
assumes 50 [
shows trg (inv p) = trg p

(proof)

lemma inv-in-hhom [intro, simpl:
assumes iso y and src 4 = a and trg p = b
shows «inv p: a — b»

(proof)

lemma hhom-is-subcategory:
shows subcategory V. (M. «u: a — b»)

(proof)

lemma isomorphic-objects-are-equal:
assumes obj a and obj b and a = b
shows a = b

(proof)

Having the functors src and trg allows us to form categories VV and VVV of formally
horizontally composable pairs and triples of arrows.

sublocale VzV: product-category V'V (proof)
sublocale VV: subcategory VzV.comp <Auv. hsequp (fst pv) (snd pv)»

(proof)

lemma subcategory-VV:
shows subcategory Ve V.comp (Auv. hsequu (fst pv) (snd pv))

(proof)

sublocale VzVzV: product-category V VaV.comp (proof)
sublocale VVV: subcategory VeVzV.comp
Arpv. arr (fst Tpv) A VV.arr (snd Tpv) A
sre (fst Tuv) = trg (fst (snd Tuv))»
(proof )
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lemma subcategory-VVV:
shows subcategory VzVzV.comp
(Atpv. arr (fst Tpv) A VV.arr (snd Tpv) A
sre (fst Tuv) = trg (fst (snd Tuv)))
(proof )

end

1.2.1 Prebicategories with Homs

A weak composition with homs consists of a weak composition that is equipped with
horizontal homs in such a way that the chosen source and target of each 2-cell u in fact
lie in the set of sources and targets, respectively, of u, such that horizontal composition
respects the chosen sources and targets, and such that if 2-cells p and v are horizontally
composable, then the chosen target of p coincides with the chosen source of v.

locale weak-composition-with-homs =
weak-composition +
horizontal-homs +
assumes Src-in-sources: arr jp = Src [t € SOUTCes
and trg-in-targets: arr p = trg p € targets p
and src-hcomp”: v * p # null = src (v x p) = sre p
and trg-hcomp”: v x p # null = trg (v x p) = trg v
and seq-if-composable: v x pu # null = src v = trg p

locale prebicategory-with-homs =
prebicategory +
weak-composition-with-homs
begin

lemma composable-charppy:
shows v x p # null <— arr u A\ arr v A srcv = trg u

(proof)

lemma hcomp-in-homp gr:
assumes «y : a —>we by and «v b =weo oy
shows «v x p: a =2we c»
and «v x 2 dom v x dom p = cod v * cod pu»

{proof)

In a prebicategory with homs, if a is an object (i.e. src a = a and trg a = a), then
a is a weak unit. The converse need not hold: there can be weak units that the src and
trg mappings send to other 1-cells in the same isomorphism class.

lemma obj-is-weak-unit:

assumes obj a

shows weak-unit a

(proof )

end
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1.2.2 Choosing Homs

Every prebicategory extends to a prebicategory with homs, by choosing an arbitrary
representative of each isomorphism class of weak units to serve as an object. “The
source” of a 2-cell is defined to be the chosen representative of the set of all its sources
(which is an isomorphism class), and similarly for “the target”.

context prebicategory
begin

definition rep

where rep f = SOME f'. f'e {f. f2f'}

definition some-src
where some-src p = if arr p then rep (SOME a. a € sources ) else null

definition some-trg
where some-trg p = if arr p then rep (SOME b. b € targets p) else null

lemma isomorphic-ide-rep:
assumes ide f

shows f = rep f

(proof )

lemma rep-rep:
assumes ide f
shows rep (rep f) = rep f

{proof)

lemma some-src-in-sources:
assumes arr (i
shows some-src 1 € sources p

{proof)

lemma some-trg-in-targets:
assumes arr [
shows some-trg p € targets p

{proof)

lemma some-src-dom:
assumes arr
shows some-src (dom p) = some-sre p

(proof)

lemma some-src-cod:
assumes arr p
shows some-src (cod p) = some-src p

(proof)

lemma some-trg-dom:
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assumes arr p
shows some-trg (dom p) = some-trg p

(proof)

lemma some-trg-cod:
assumes arr
shows some-trg (cod p) = some-trg u

{proof)

lemma ide-some-sre:
assumes arr p
shows ide (some-src )

(proof)

lemma ide-some-trg:
assumes arr (i
shows ide (some-trg p)

(proof)

lemma some-src-composable:
assumes arr T
shows 7 x p # null <— some-src T x p # null

(proof)

lemma some-trg-composable:
assumes arr o
shows p x 0 # null «+— p * some-trg o # null

(proof)

lemma sources-some-src:
assumes arr fi
shows sources (some-src j1) = sources p

(proof)

lemma targets-some-trg:
assumes arr [
shows targets (some-trg p) = targets p

(proof)

lemma src-some-src:
assumes arr f
shows some-sre (some-src ) = some-src p

(proof)

lemma trg-some-trg:
assumes arr (i
shows some-trg (some-trg u) = some-trg p

(proof)
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lemma sources-char’:
assumes arr [
shows a € sources p +— some-src u = a

{proof)

lemma targets-char'”:
assumes arr (i
shows a € targets j <— some-trg p = a

{proof)

An arbitrary choice of sources and targets in a prebicategory results in a notion
of formal composability that coincides with the actual horizontal composability of the
prebicategory.

lemma composable-charpp:
shows 7 x 0 # null <— arr ¢ A\ arr T A some-src T = some-trg o

(proof)
A 1-cell is its own source if and only if it is its own target.

lemma self-src-iff-self-trg:
assumes ide a
shows a = some-src a +— a = some-trg a

{proof)

lemma some-trg-some-sre:
assumes arr
shows some-trg (some-src p) = some-src p

(proof)

lemma src-some-trg:
assumes arr
shows some-src (some-trg p) = some-trg u

(proof)

lemma some-src-eql:
assumes a € sources y and some-src a = a
shows some-src 1 = a

(proof)

lemma some-trg-eql:
assumes b € targets p and some-trg b = b
shows some-trg p = b

{proof)
lemma some-src-comp:

assumes 7T x 0 # null
shows some-sre (7 x o) = some-src o

{proof)

lemma some-trg-comp:
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assumes T x 0 # null
shows some-trg (1 * o) = some-trg T

(proof)

The mappings that take an arrow to its chosen source or target are endofunctors
of the vertical category, which commute with each other in the manner required for
horizontal homs.

interpretation S: endofunctor V some-src

{proof)

interpretation T: endofunctor V some-trg

(proof)

interpretation weak-composition-with-homs V H some-src some-trg

{proof)

proposition ezrtends-to-weak-composition-with-homs:
shows weak-composition-with-homs V H some-src some-trg

(proof)

proposition extends-to-prebicategory-with-homs:
shows prebicategory-with-homs V H a some-src some-trg

(proof)

end

1.2.3 Choosing Units

A prebicategory with units is a prebicategory equipped with a choice, for each weak unit
a, of a “unit isomorphism” «i[a] : a * a = a».
locale prebicategory-with-units =

prebicategory V H a +
weak-composition V H

for V :: 'a comp (infixr <> 55)
and H :: 'a comp (infixr < 53)
anda:’a="a="a="a (xa[- - )
andi: ‘a="a (d[-p) +

assumes unit-in-vhomp py: weak-unit a = «ila] : a x a = a»
and iso-unitppy: weak-unit a = iso i[a]
begin

lemma unit-in-homppgy:
assumes weak-unit a
shows «i[a] : @ »wc a» and «i[a] : a x a = a»

(proof )

lemma unit-simps [simp]:
assumes weak-unit a
shows arr i[a] and dom i[a] = a x a and cod i[a] = a

39



(proof)

end

Every prebicategory extends to a prebicategory with units, simply by choosing the
unit isomorphisms arbitrarily.

context prebicategory
begin

proposition extends-to-prebicategory-with-units:
shows prebicategory-with-units V H a some-unit

(proof)

end

1.2.4 Horizontal Composition

The following locale axiomatizes a (vertical) category V with horizontal homs, which
in addition has been equipped with a functorial operation H of horizontal composition
from V'V to V, assumed to preserve source and target.

locale horizontal-composition =

horizontal-homs V src trg +

H: functor VV.comp V <\uv. H (fst uv) (snd pv)»
for V :: 'a comp (infixr <> 55)
and H :: 'a = 'a = 'a (infixr x> 53)
and src :: 'a = a
and trg :: 'a = 'a +
assumes src-hcomp: arr (p x v) = src (u * v) = src v
and trg-hcomp: arr (u * v) = trg (u *x v) = trg p
begin

no-notation in-hom (¢g=: - = -»)
H is a partial composition, which shares its null with V.

lemma is-partial-composition:
shows partial-composition H and partial-magma.null H = null

{proof)

Note: The following is “almost” H.seq, but for that we would need H.arr = V.arr.
This would be unreasonable to expect, in general, as the definition of H.arr is based on
“strict” units rather than weak units. Later we will show that we do have H.arr = V.arr
if the vertical category is discrete.

abbreviation hseq

where hseq v p = arr (v * )

lemma hseg-char:
shows hseq v p <— arr u A arr v A srcv = trg p

{proof)
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lemma hseq-char':
shows hseq v p <— v *x u # null

{proof)

lemma hseql’ [intro, simp):
assumes arr p and arr v and src v = trg p
shows hseq v p

{proof)

lemma hseql:
assumes «u : a — b» and «v : b — c»
shows hseq v p

{proof)

lemma hsegE [elim]:

assumes hseq v p

and arr p = arrv = srcv =trgp = T
shows T

{proof)

lemma hcomp-simps [simp]:

assumes hseq v

shows src (v % u) = src p and trg (v x p) = trg v

and dom (v * p) = dom v x dom p and cod (v * ) = cod v x cod p

(proof)

lemma ide-hcomp [intro, simpl:
assumes ide v and ide p and src v = trg u
shows ide (v * p)

(proof)

lemma hcomp-in-hhom [introl:
assumes «u : a — b» and «v : b — c»
shows «v x u: a — c»

{proof)

lemma hcomp-in-hhom' :
assumes arr p and arr v and src p = a and trg v = c and src v = trg p
shows «v x pu:a — c»

{proof)

lemma hcomp-in-hhomE [elim]:

assumes v *x p: a — c»

and [ arr p; arr v; srcv =trg p; src p=a; trgv =c | = T
shows T

(proof)

lemma hcomp-in-vhom [intro:
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assumes «u : f = ¢g» and «v : h = k» and src h = trg f
shows «v x u:h*xf=kxg»

(proof)

lemma hcomp-in-vhom' :

assumes hseq v p

and dom p = f and dom v = h and cod p = g and cod v = k
assumes «p : f = g» and «v : h = k» and src h = trg f
shows «v x pu: h*xf = kx g»

(proof)

lemma hcomp-in-vhomFE [elim]:

assumes «v x p: f = g»

and [ arr p; arr v; src v = trg u; src p = sre f; src p = sre g;
trgv=trgf;trgv=trgg] = T

shows T

(proof)

A horizontal composition yields a weak composition by simply forgetting the src and
trg functors.

lemma match-1:
assumes v x p # null and (v * p) * 7 # null
shows p x 7 # null

(proof)

lemma match-2:
assumes v x (u x 7) # null and p * 7 # null
shows v x u # null

(proof)

lemma match-3:
assumes p * 7 # null and v *x u # null
shows (v * pu) * 7 # null

(proof)

lemma match-4:
assumes p * 7 # null and v *x u # null
shows v x (u * 7) # null

(proof)

lemma [eft-connected:
assumes seq v v’
shows v x u # null <— v’ x p # null

(proof)

lemma right-connected:
assumes seq p p'
shows H v p # null «— H v p' # null

(proof)
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proposition is-weak-composition:
shows weak-composition V H

{proof)

interpretation weak-composition V H
(proof)

It can be shown that arr (v - p) x (1 -0)) = (v -p) *(1-0)=Ww*71) - (U *
o). However, we do not have arr (v x7) - (ux0)) = (v-pu) x(1-0)=Ww*7) - (1
* 0), because it does not follow from arr ((v x 7) - (u x o)) that dom v = cod p and
dom T = cod o, only that dom v x dom 7 = cod p * cod o. So we don’t get interchange
unconditionally.

lemma interchange:
assumes seq v p and seq T o
shows (v - u) x (1-0)=Ww*7) - (u*o0)

(proof)

lemma whisker-right:

assumes ide f and seq v

shows (v - ) x f = (v % f) - (ji % f)
(proof )

lemma whisker-left:

assumes ide f and seq v

shows [ (v - p) = (fxv) - (f * p)
(proof )

lemma inverse-arrows-hcomp:
assumes iso pu and iso v and src v = trg p
shows inverse-arrows (v = p) (inv v * inv )

(proof )

lemma iso-hcomp [intro, simp]:
assumes iso yu and iso v and src v = trg p
shows iso (v % p)

{proof)

lemma hcomp-iso-in-hom [introl:
assumes iso-in-hom p f g and iso-in-hom v h k and src v = trg p
shows iso-in-hom (v x p) (h % f) (k x g)

(proof )

lemma isomorphic-implies-ide:
assumes f = g
shows ide f and ide g

(proof)
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lemma hcomp-ide-isomorphic:

assumes ide f and ¢ = h and src f = trg g
shows fx g = fx h

(proof )

lemma hcomp-isomorphic-ide:

assumes f = g and ide h and src f = trg h
shows f x h = gx h

(proof )

lemma isomorphic-implies-hpar:

assumes [ = f/

shows ide f and ide f' and src f = src f' and trg f = trg f'
(proof)

lemma inv-hcomp [simp):
assumes iso v and iso u and src v = trg p
shows inv (v * p) = inv v * inv p

(proof)
The following define the two ways of using horizontal composition to compose three
arrows.

definition HoHV
where HoHV p = if VVV.arr u then (fst p * fst (snd p)) = snd (snd p) else null

definition HoVH
where HoVH p = if VVV.arr p then fst u x fst (snd p) % snd (snd p) else null

lemma functor-HoHV:
shows functor VVV.comp V HoHV

(proof)

sublocale HoHV: functor VVV.comp V HoHV
(proof)

lemma functor-HoVH:
shows functor VVV.comp V HoVH

(proof )
sublocale HoVH: functor VVV.comp V HoVH
(proof)

The following define horizontal composition of an arrow on the left by its target and
on the right by its source.

abbreviation L
where L = Au. if arr p then trg pu * p else null

abbreviation R
where R = Ap. if arr p then pu x src p else null
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sublocale L: endofunctor V L
(proof )

lemma endofunctor-L:
shows endofunctor V' L

(proof)

sublocale R: endofunctor V R
(proof )

lemma endofunctor-R:
shows endofunctor V R

{proof)

end

end

theory Bicategory

imports Prebicategory Category3.Subcategory Category3.Discrete Category
MonoidalCategory. Monoidal Category

begin

1.3 Bicategories

A bicategory is a (vertical) category that has been equipped with a horizontal compo-
sition, an associativity natural isomorphism, and for each object a “unit isomorphism”,
such that horizontal composition on the left by target and on the right by source are
fully faithful endofunctors of the vertical category, and such that the usual pentagon
coherence condition holds for the associativity.

locale bicategory =
horizontal-composition V H src trg +
a: natural-isomorphism VVV.comp V HoHV HoVH
Auvt. a (fst pvr) (fst (snd pvt)) (snd (snd pvr))r +
L: fully-faithful-functor V.V L +
R: fully-faithful-functor V.V R

for V :: 'a comp (infixr <> 55)
and H :: '"a = 'a = "a (infixr <% 53)
anda:’a="a="'a="'a («al, - -])
andi:’a="a (d[-]))

and src :: 'a = 'a

and trg :: 'a = 'a +

assumes unit-in-vhom: obj a = «ifa] : a * ¢ = a»

and iso-unit: obj a = iso i[a]

and pentagon: [ ide f; ide g; ide h; ide k; src f = trg g; src g = trg h; s;c h =trg k| =
(f*a[g7 h, k]) ’ a[f, g * h, k] ’ (a[f7 9 h} *k) :a[fv 9, h*k] ’ a[f*g7 h, k]
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begin

definition «
where a pvt = a (fst pvr) (fst (snd pvt)) (snd (snd pvr))

lemma assoc-in-hom':

assumes arr g and arr v and arr 7 and src p = trg v and src v = trg T
shows in-hhom alu, v, 7] (src 7) (trg p)

and «alu, v, 7] : (dom p x dom v) x dom T = cod p * cod v x cod T»

{proof)

lemma assoc-naturalityl:
assumes arr 4 and arr v and arr 7 and src p = trg v and src v = trg T
shows alu, v, 7] = (u *x v = 7) - a[dom p, dom v, dom T

(proof)

lemma assoc-naturality?2:
assumes arr g and arr v and arr 7 and src p = trg v and src v = trg T
shows a[u, v, 7] = a[cod p, cod v, cod 7] - ((u * V) * T)

(proof)

lemma assoc-naturality:
assumes arr g and arr v and arr 7 and src p = trg v and src v = trg T
shows a[cod p, cod v, cod 7] - ((p % v) x 7) = (u x v x 7) - a[dom p, dom v, dom ]

(proof)

lemma assoc-in-hom [intro]:

assumes ide f and ide g and ide h and src f = trg g and src g = trg h
shows in-hhom alf, g, h] (src h) (trg f)

and «alf, g, h] : (dom f x dom g) x dom h = cod f x cod g * cod h»

(proof)

lemma assoc-simps [simp]:

assumes ide f and ide g and ide h and src f = trg g and src g = trg h
shows arr alf, g, h]

and src alf, g, h] = src h and trg alf, g, h] = trg f

and dom a[f, g, h] = (dom f = dom g) = dom h

and cod a[f, g, h] = cod f x cod g x cod h

(proof)
lemma iso-assoc [intro, simp]:

assumes ide f and ide g and ide h and src f = trg g and src g = trg h
shows iso a[f, g, h

(proof)

end
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1.3.1 Categories Induce Bicategories

In this section we show that a category becomes a bicategory if we take the vertical
composition to be discrete, we take the composition of the category as the horizontal
composition, and we take the vertical domain and codomain as src and trg.

locale category-as-bicategory = category
begin

interpretation V: discrete-category < Collect arry null

(proof)

abbreviation V
where V = V.comp

interpretation src: functor V'V dom

(proof)

interpretation trg: functor V'V cod

(proof)

interpretation H: horizontal-homs V dom cod

(proof)

interpretation H: functor H.VV.comp V <Apv. fst pv - snd pv)
(proof )

interpretation H: horizontal-composition V C dom cod

(proof)

abbreviation a
wherea fgh=f-g-h

interpretation a: natural-isomorphism H.VVV.comp V H.HoHV H.HoVH
Apvt. a (fst prt) (fst (snd pvr)) (snd (snd pvr))

(proof)

interpretation fully-faithful-functor V.V H.R

(proof)
interpretation fully-faithful-functor V.V H.L

(proof)

abbreviation i
wherei = \z. z

proposition induces-bicategory:

shows bicategory V C a i dom cod

(proof )

end
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1.3.2 Monoidal Categories induce Bicategories

In this section we show that our definition of bicategory directly generalizes our definition
of monoidal category: a monoidal category becomes a bicategory when equipped with the
constant-Z functors as src and trg and ¢ as the unit isomorphism from 7 ® 7 to Z. There
is a slight mismatch because the bicategory locale assumes that the associator is given
in curried form, whereas for monoidal categories it is given in tupled form. Ultimately,
the monoidal category locale should be revised to also use curried form, which ends up
being more convenient in most situations.

context monoidal-category
begin

interpretation I: constant-functor C C T

(proof)

interpretation horizontal-homs C I.map I.map

{proof)

lemma CC-eq-VV:
shows CC.comp = VV.comp

{proof)

lemma CCC-eq-VVV:
shows CCC.comp = VVV.comp

{proof)

interpretation H: functor VV.comp C Apv. fst pv @ snd uv»
(proof )

interpretation H: horizontal-composition C tensor I.map I.map

(proof)

lemma HoHV-eq-ToTC:
shows H.HoHV = T.ToTC

(proof)

lemma HoVH-eq-ToCT:
shows H.HoVH = T.ToCT

(proof)

interpretation a: natural-isomorphism VVV.comp C H.HoHV H.HoVH «
(proof )

lemma R’-eq-R:
shows H.R = R
(proof )

lemma L'-eq-L:

shows H.L = L
(proof)
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interpretation R": fully-faithful-functor C C H.R

(proof)
interpretation L' fully-faithful-functor C C H.L

(proof)

lemma obj-char:
shows obj a «— a =1

{proof)

proposition induces-bicategory:
shows bicategory C tensor (Ap v 7. o (u, v, 7)) (A-. ¢) I.map I.map
{proof )

end

1.3.3 Prebicategories Extend to Bicategories

In this section, we show that a prebicategory with homs and units extends to a bicategory.
The main work is to show that the endofunctors L and R are fully faithful. We take
the left and right unitor isomorphisms, which were obtained via local constructions in
the left and right hom-subcategories defined by a specified weak unit, and show that
in the presence of the chosen sources and targets they are the components of a global
natural isomorphisms [ and t from the endofunctors L and R to the identity functor. A
consequence is that functors L and R are endo-equivalences, hence fully faithful.

context prebicategory-with-homs

begin

Once it is equipped with a particular choice of source and target for each arrow, a

prebicategory determines a horizontal composition.

lemma induces-horizontal-composition:
shows horizontal-composition V H src trg

{proof)

end

sublocale prebicategory-with-homs C horizontal-composition V H src trg

{proof)

locale prebicategory-with-homs-and-units =
prebicategory-with-units +
prebicategory-with-homs

begin

no-notation in-hom (<= == -m)

The next definitions extend the left and right unitors that were defined locally with
respect to a particular weak unit, to globally defined versions using the chosen source
and target for each arrow.
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definition lunit (<[-]»)
where lunit f = left-hom-with-unit.lunit V H a i[trg f] (trg f) f

definition runit («r[-]»)
where runit f = right-hom-with-unit.runit V H a i[src f] (src f) f

lemma lunit-in-hom:

assumes ide f

shows «l[f] : sre f =we trg f» and «l[f] : trg f x f = f»
(proof )

lemma runit-in-hom:
assumes ide f
shows «r[f] : src f —=we trg f» and «r[f] : f x sre f = f»

(proof)

The characterization of the locally defined unitors yields a corresponding character-
ization of the globally defined versions, by plugging in the chosen source or target for
each arrow for the unspecified weak unit in the the local versions.

lemma lunit-char:

assumes ide f

shows «l[f] : src f =we trg f» and «[f] : trg f x f = f»

and trg f * 1[f] = (i[trg f] * f) - inv atrg f, trg f, f]

and Flp. «p:trgf xf = fr Ntrgf ~ p= (itrg f] * f) - inv a[trg f, trg f, f]
(proof )

lemma runit-char:

assumes ide f

shows «r[f] : src f —we trg f» and «r[f] : f x sre f = f»

and r[f] x sre f = (f % i[src f]) - alf, src f, src f]

and Flp. «p: fxsref = f» Apxsref=(f*i[src f]) - alf, src f, src f]
(proof)

lemma lunit-eql:
assumes ide f and «u : trg f x f = f»
and trg f * p = (i[trg f] = f) - (inv altrg f, trg f, f])
shows p = 1[f]
{proof )

lemma runit-eql:
assumes ide f and «u : f x src f = f»

and p * src f = (f x i[sre f]) - a[f, src f, src f]
shows p = r[f]

(proof)

lemma iso-lunit:
assumes ide f
shows iso 1[f]

{proof)
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lemma iso-runit:
assumes ide f
shows iso r[f]

(proof )

lemma lunit-naturality:

assumes arr p

shows p - 1[dom p] = 1[cod p] - (trg p * 1)
(proof)

lemma runit-naturality:
assumes arr p
shows p - r[dom p] = r[cod p) - (pu % sre p)

(proof )

interpretation L: endofunctor V L
(proof)

interpretation [: transformation-by-components V'V L map lunit
(proof)

interpretation [: natural-isomorphism V 'V L map l.map

(proof)

lemma natural-isomorphism-l:
shows natural-isomorphism V'V L map l.map

(proof)

interpretation L: equivalence-functor V'V L
(proof)

lemma equivalence-functor-L:
shows equivalence-functor V.V L

(proof)

lemma [lunit-commutes-with-L:
assumes ide f
shows 1[L f] = L 1[f]

(proof )

interpretation R: endofunctor V R
(proof)

interpretation t: transformation-by-components V'V R map runit
(proof )

interpretation t: natural-isomorphism V V. R map t.map

(proof)

lemma natural-isomorphism-t:
shows natural-isomorphism V 'V R map t.map

(proof)
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interpretation R: equivalence-functor V.V R

(proof)

lemma equivalence-functor-R:
shows equivalence-functor V.V R

(proof)

lemma runit-commutes-with-R:
assumes ide f
shows r[R f] = R r[f]

{proof)

definition «
where a p v 7 = if VVV.arr (u, v, 7) then
(b x v *7)-aldom p, dom v, dom 7]
else null

lemma «a-ide-simp [simp]:
assumes ide f and ide g and ide h and src f = trg g and src g = trg h
shows « f g h = alf, g, h]

{proof)

no-notation in-hom (<=1 - = -»)

lemma natural-isomorphism-a:

shows natural-isomorphism VVV.comp V HoHV HoVH
(Auvt. a (fst pvt) (fst (snd pv)) (snd (snd pvt)))

(proof)

proposition induces-bicategory:
shows bicategory V H « i src trg

{proof)

end

The following is the main result of this development: Every prebicategory extends
to a bicategory, by making an arbitrary choice of representatives of each isomorphism
class of weak units and using that to define the source and target mappings, and then
choosing an arbitrary isomorphism in hom (a * a) a for each weak unit a.

context prebicategory
begin

interpretation prebicategory-with-homs V H a some-src some-trg

(proof)

interpretation prebicategory-with-units V H a some-unit

{proof)
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interpretation prebicategory-with-homs-and-units V H a some-unit some-src some-trg (proof)

theorem extends-to-bicategory:
shows bicategory V H « some-unit some-src some-trg

(proof)

end

1.4 Bicategories as Prebicategories

1.4.1 Bicategories are Prebicategories

In this section we show that a bicategory determines a prebicategory with homs, whose
weak units are exactly those arrows that are isomorphic to their chosen source, or equiva-
lently, to their chosen target. Moreover, the notion of horizontal composability, which in
a bicategory is determined by the coincidence of chosen sources and targets, agrees with
the version defined for the induced weak composition in terms of nonempty intersections
of source and target sets, which is not dependent on any arbitrary choices.

context bicategory
begin

no-notation in-hom (¢g= - = -m)

interpretation o’ inverse-transformation VVV.comp V HoHV HoVH
Apvt. a (fst prr) (fst (snd pvt)) (snd (snd pvr))> (proof)

abbreviation o’
where o’ = a’.map

definition a’ («a™![-, -, )
where a~ [y, v, 7] = o’ map (u, v, 7)

lemma assoc’-in-hom':

assumes arr 4 and arr v and arr 7 and src p = trg v and src v = trg T
shows in-hhom a=[u, v, 7| (src 7) (trg p)

and «a” Yy, v, 7] : dom pu x dom v x dom T = (cod pu % cod v) * cod T»

{proof)

lemma assoc’-naturalityl:
assumes arr p and arr v and arr 7 and src u = trg v and src v = trg T
shows a=Yu, v, 7] = ((p *x v) x 7) - a~t[dom p, dom v, dom 7]

(proof)

lemma assoc’-naturality2:
assumes arr 4 and arr v and arr 7 and src p = trg v and src v = trg T
shows a=Yu, v, 7] = a=[cod i, cod v, cod 7] - (ux v * T)
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(proof)

lemma assoc’-naturality:
assumes arr 4 and arr v and arr 7 and src p = trg v and src v = trg T
shows a=Y[cod p, cod v, cod 7] - (ux v x7) = (0 x v) *x 7) - a~[dom p, dom v, dom 7]

(proof)

lemma assoc’-in-hom [intro):

assumes ide f and ide g and ide h and src f = trg g and src g = trg h

shows in-hhom a='[f, g, h] (src h) (trg f)

and «a~t[f, g, h] : dom f x dom g x dom h = (cod f * cod g) x cod h»
(proof)

lemma assoc’-simps [simp]:

assumes ide f and ide g and ide h and src f = trg g and src g = trg h
shows arr a=![f, g, h]

and src a~1[f, g, h| = src h and trg a=[f, g, h] = trg f

and dom a=t[f, g, h] = dom f x dom g * dom h

and cod a='[f, g, h] = (cod f % cod g) * cod h

{proof)

lemma assoc’-eq-inv-assoc [simp]:
assumes ide f and ide ¢ and ide h and src f = trg g and src g = trg h
shows a~![f, g, h] = inv a[f, g, h)

(proof )

lemma inverse-assoc-assoc’ [introl:
assumes ide f and ide g and ide h and src f = trg g and src g = trg h
shows inverse-arrows alf, g, h] a=t[f, g, h]

{proof)

lemma iso-assoc’ [intro, simp):
assumes ide f and ide g and ide h
and src f = trg g and src g = trg h
shows iso a=1[f, g, A

{proof)

lemma comp-assoc-assoc’ [simp):

assumes ide f and ide g and ide h

and src f = trg g and src g = trg h

shows alf, g, h] - a=Y[f, g, h| = f x g h

and a~'[f, g, h] - a[f, g, h] = (f * g)  h
(proof)

lemma unit-in-hom [intro, simpl:
assumes obj a
shows «i[a] : @ — a» and «i[a] : a x a = a»

(proof )
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interpretation weak-composition V H
(proof)

lemma seq-if-composable:
assumes v x i # null
shows src v = trg p

(proof)

lemma obj-self-composable:
assumes 0bj a

shows a x a # null

and isomorphic (a * a) a

(proof)

lemma obj-is-weak-unit:
assumes o0bj a
shows weak-unit a

{proof)

lemma src-in-sources:
assumes arr [
shows src i € sources p

(proof)

lemma trg-in-targets:
assumes arr (i
shows trg u € targets p

(proof)

lemma weak-unit-cancel-left:

assumes weak-unit a and ide f and ide g
andaxf=ax*xg

shows f 2 ¢

{proof)

lemma weak-unit-cancel-right:

assumes weak-unit o and ide f and ide g
and fxa = gx*a

shows f & ¢

{proof)

All sources of an arrow (i.e. weak units composable on the right with that arrow) are
isomorphic to the chosen source, and similarly for targets. That these statements hold
was somewhat surprising to me.

lemma source-iso-src:
assumes arr i and a € sources [
shows a = src p

{proof)
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lemma target-iso-trg:
assumes arr p and b € targets p
shows b = trg

{proof)

lemma is-weak-composition-with-homs:
shows weak-composition-with-homs V H src trg

{proof)

interpretation weak-composition-with-homs V H src trg

(proof)

In a bicategory, the notion of composability defined in terms of the chosen sources
and targets coincides with the version defined for a weak composition, which does not
involve particular choices.

lemma connected-iff-seq:
assumes arr p and arr v
shows sources v N targets u # {} «— srcv = trg u

{proof)

lemma is-associative-weak-composition:
shows associative-weak-composition V H a

{proof)

interpretation associative-weak-composition V H a

(proof)

theorem is-prebicategory:
shows prebicategory V H a

{proof)

interpretation prebicategory V H a

(proof)

corollary is-prebicategory-with-homs:
shows prebicategory-with-homs V H a src trg

(proof )
interpretation prebicategory-with-homs V H a src trg
(proof)

In a bicategory, an arrow is a weak unit if and only if it is isomorphic to its chosen
source (or to its chosen target).

lemma weak-unit-char:
shows weak-unit a <— a = src a
and weak-unit a <— a = trg a

{proof)

interpretation H: partial-composition H
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(proof)

Every arrow with respect to horizontal composition is also an arrow with respect to
vertical composition. The converse is not necessarily true.

lemma harr-is-varr:
assumes H.arr
shows arr p

(proof)
An identity for horizontal composition is also an identity for vertical composition.

lemma horizontal-identity-is-ide:
assumes H.ide p
shows ide u

(proof)
Every identity for horizontal composition is a weak unit.

lemma horizontal-identity-is-weak-unit:
assumes H.ide p
shows weak-unit p

(proof)

end

1.4.2 Vertically Discrete Bicategories are Categories

In this section we show that if a bicategory is discrete with respect to vertical composition,
then it is a category with respect to horizontal composition. To obtain this result, we
need to establish that the set of arrows for the horizontal composition coincides with
the set of arrows for the vertical composition. This is not true for a general bicategory,
and even with the assumption that the vertical category is discrete it is not immediately
obvious from the definitions. The issue is that the notion “arrow” for the horizontal
composition is defined in terms of the existence of “domains” and “codomains” with
respect to that composition, whereas the axioms for a bicategory only relate the notion
“arrow” for the vertical category to the existence of sources and targets with respect
to the horizontal composition. So we have to establish that, under the assumption of
vertical discreteness, sources coincide with domains and targets coincide with codomains.
We also need the fact that horizontal identities are weak units, which previously required
some effort to show.

locale wvertically-discrete-bicategory =
bicategory +

assumes vertically-discrete: ide = arr

begin

interpretation prebicategory-with-homs V H a src trg
(proof)

interpretation H: partial-composition H
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(proof)

lemma weak-unit-is-horizontal-identity:
assumes weak-unit a
shows H.ide a

{proof)

lemma sources-eq-domains:
shows sources p = H.domains

(proof)

lemma targets-eq-codomains:
shows targets @ = H.codomains p

{proof)

lemma arr-agreement:
shows arr = H.arr

(proof)

interpretation H: category H

(proof )

proposition is-category:
shows category H

{proof)

end

1.4.3 Obtaining the Unitors

We now want to exploit the construction of unitors in a prebicategory with units, to
obtain left and right unitors in a bicategory. However, a bicategory is not a priori a
prebicategory with units, because a bicategory only assigns unit isomorphisms to each
object, not to each weak unit. In order to apply the results about prebicategories with
units to a bicategory, we first need to extend the bicategory to a prebicategory with
units, by extending the mapping ¢, which provides a unit isomorphism for each object,
to a mapping that assigns a unit isomorphism to all weak units. This extension can be
made in an arbitrary way, as the values chosen for non-objects ultimately do not affect
the components of the unitors at objects.

context bicategory
begin

interpretation prebicategory V H a
(proof )

definition i’
where i’ a = SOME ¢. iso ¢ A ¢ € hom (a * a) a A (obj a — ¢ = i[a])
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lemma i’-extends-i:
assumes weak-unit a
shows iso (i’ a) and «i’ a : a x a = a» and obj a = i’ a = i[a]

{proof)

proposition extends-to-prebicategory-with-units:
shows prebicategory-with-units V H a i’
(proof)

interpretation PB: prebicategory-with-units V H a i’

(proof)
interpretation PB: prebicategory-with-homs V H a src trg

(proof)
interpretation PB: prebicategory-with-homs-and-units V H a i’ src trg (proof)

proposition extends-to-prebicategory-with-homs-and-units:
shows prebicategory-with-homs-and-units V H a i’ src trg

(proof)

definition lunit (4[-]»)
where 1[a] = PB.lunit a

definition runit («r[-]»)
where r[a] = PB.runit a

abbreviation lunit’ ()
where 17 ![a] = inv 1[q]

abbreviation runit’ (a=1[]))
where 1~ ![a] = inv 1[a)

The characterizations of the left and right unitors that we obtain from locale prebi-
category-with-homs-and-units mention the arbitarily chosen extension i’, rather than the
given i. We want “native versions” for the present context.

lemma lunit-char:

assumes ide f

shows «l[f] : L f = f» and L 1[f] = (i[trg f] * f) - a=L[trg f, trg f, f]
and 3. «p: L f= f» ANLu=(iftrg f] x f) - a=t[trg f, trg f, f]
(proof)

lemma [unit-in-hom [intro]:
assumes ide f
shows «l[f] : src f — trg f» and «1[f] : trg f x f = f»

{proof)

lemma lunit-in-vhom [simp]:
assumes ide f and trg f = b
shows «l[f] : b x f = f»

(proof)
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lemma lunit-simps [simp):

assumes ide f

shows arr 1f] and src 1[f] = src f and trg 1[f] = trg f
and dom l[f] = trg f x f and cod 1[f] = f

(proof)

lemma runit-char:

assumes ide f

shows «r[f] : R f = f» and R r[f] = (f * i[src f]) - alf, src f, src f]
and Flp. «p: Rf= f» AR p=(f i[src f]) - a[f, src f, src f]
(proof)

lemma runit-in-hom [intro):
assumes ide f
shows «r[f] : sre f — trg f» and «r[f] : f *x src f = f»

{proof)

lemma runit-in-vhom [simp]:
assumes ide f and src f = a
shows «r[f] : f x a = f»

(proof)

lemma runit-simps [simpl:

assumes ide f

shows arr r[f] and src r[f] = src f and trg r[f] = trg f
and dom r[f] = f x src f and cod r[f] = f

(proof)

lemma lunit-eql:
assumes ide f and «u : trg f x f = f»
and trg f x p = (iltrg f] < f) - a”'[trg f, trg f, f]
shows p = 1[f]
{proof )

lemma runit-eql:
assumes ide f and «u : f *x src f = f»
and p * src f = (f x i[src f]) - a[f, src f, src f]
shows p = r[f]
(proof)

lemma [unit-naturality:

assumes arr p

shows p - 1[dom u] = l[cod p] - (trg p * p)
(proof)

lemma runit-naturality:

assumes arr p
shows p - r[dom pu] = rlecod p] - (@ * sre p)
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(proof)

lemma iso-lunit [simpl:
assumes ide f
shows iso 1[f]

(proof)

lemma iso-runit [simp]:
assumes ide f
shows iso r[f]

(proof)

lemma iso-lunit’ [simpl:
assumes ide f
shows iso 171[f]

(proof)

lemma iso-runit’ [simp]:
assumes ide f
shows iso 17 1[f]

(proof)

lemma lunit’-in-hom [intro]:

assumes ide f

shows «171[f] : src f — trg f» and «171[f] : f = trg f x f»
(proof)

lemma lunit’-in-vhom [simp]:

assumes ide f and trg f = b

shows «171[f] : f = b * f»
{proof)

lemma lunit’-simps [simpl:
assumes ide f
shows arr 171[f] and src 171[f] = src f and trg 171[f] = trg f
and dom 17Y[f] = f and cod 17'[f] = trg f * f
(proof )

lemma runit’-in-hom [intro]:
assumes ide f
shows «r~1[f] : src f — trg f» and «r~[f] : f = f x src f»

(proof )

lemma runit’-in-vhom [simp]:
assumes ide f and src f = a
shows «71[f] : f = f x a»

(proof)

lemma runit’-simps [simp]:

61



assumes ide f
shows arr 1~ ![f] and src r=1[f] = src f and trg r~'[f] = trg f
and dom r7![f] = f and cod r~[f] = f x src f

(proof )

interpretation L: endofunctor V L (proof)
interpretation [: transformation-by-components V.V L map lunit

(proof)
interpretation [: natural-isomorphism V 'V L map l.map

(proof)

lemma natural-isomorphism-l:
shows natural-isomorphism V' V' L map [.map

{proof)

abbreviation [
where [ = [.map

lemma [-ide-simp:

assumes ide f

shows [ f = 1[f]
(proof)

interpretation L: equivalence-functor V'V L

{proof)

lemma equivalence-functor-L:
shows equivalence-functor V.V L

(proof)

lemma [lunit-commutes-with-L:
assumes ide f
shows 1[L f] = L l[f]

(proof)

interpretation R: endofunctor V R (proof)
interpretation t: transformation-by-components V'V R map runit

(proof)

interpretation t: natural-isomorphism V 'V R map t.map
(proof)

lemma natural-isomorphism-t:
shows natural-isomorphism V V. R map t.map

(proof)

abbreviation t
where t = t.map

lemma t-ide-simp:
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assumes ide f
shows t f = r[f]
(proof)

interpretation R: equivalence-functor V'V R

(proof)

lemma equivalence-functor-R:
shows equivalence-functor V.V R

(proof)

lemma runit-commutes-with-R:
assumes ide f
shows r[R f] = R r[f]

(proof )

lemma lunit’-naturality:

assumes arr p

shows (trg pu % p) - 17 [dom p] = 17[cod ] - p
{proof)

lemma runit’-naturality:

assumes arr (i

shows (u % src p) - v~ dom p] = v~ [cod p] - p
(proof)

lemma isomorphic-unit-right:
assumes ide f
shows f x src f = f

{proof)

lemma isomorphic-unit-left:
assumes ide f
shows trg f x f = f

(proof)

end

1.4.4 Further Properties of Bicategories

Here we derive further properties of bicategories, now that we have the unitors at our
disposal. This section generalizes the corresponding development in theory MonoidalCat-
egory.MonoidalCategory, which has some diagrams to illustrate the longer calculations.
The present section also includes some additional facts that are now nontrivial due to
the partiality of horizontal composition.

context bicategory
begin
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lemma unit-simps [simp]:

assumes obj a

shows arr i[a] and src i[a] = a and trg i[a] = a
and dom i[a] = a x a and cod i[a] = a

(proof)

lemma triangle:

assumes ide f and ide g and src g = trg f
shows (g x 1[f]) - alg, src g, f] = rlg] » f
(proof )

lemma [unit-hcomp-gen:

assumes ide f and ide g and ide h

and src f = trg g and src g = trg h

shows (f x l[g x h]) - (f * a[trg g, g, B]) = [ * 1[g] x A
(proof )

lemma lunit-hcomp:

assumes ide f and ide g and src f = trg g
shows I[f x g] - aftrg f, f, gl = 1[f] x g
and a~'[trg f, f, g] - 1M [fx g] =17 [f] x g
and 1[f x g] = (I[f] x g) - a~'[trg f, f, g]
and 1"'[f « g] = altrg f, f, g] - (I7'[f] * g)
(proof)

lemma runit-hcomp-gen:

assumes ide f and ide g and ide h

and src f = trg g and src g = trg h

shows 1f + g + h = ((f = 1lg]) * h) - (alf, g, sre g] * h)
(proof)

lemma runit-hcomp:

assumes ide f and ide g and src f = trg g
shows r[f x g] = (f = r[g]) - alf, g, src g]

and v '[f x g] = a~'[f, g, src g] - (f x v [g])
and t[f x g] - a~'[f, g, src g] = f *x 1[g]

and a[f, g, src g] - 17 [f % g] = [ x 17 '[g]
(proof)

lemma unitor-coincidence:
assumes obj a
shows 1[a] = i[a] and r[a] = i[d]

{proof)

lemma unit-triangle:

assumes obj a

shows i[a] x a = (a x i[a]) - a[a, a, a]
and (i[a] * a) - a=1[a, a, a] = a * i[a]

{proof)
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lemma hcomp-assoc-isomorphic:
assumes ide f and ide g and ide h and src f = trg g and src g = trg h
shows (fxg) xh = fxg*h

(proof )

lemma hcomp-arr-obj:

assumes arr p and obj a and src p = a
shows p x a = v~ 1[cod p] - pu - r[dom p]

and r[cod p] - (i x a) - v=[dom p] = p

{proof)

lemma hcomp-obj-arr:

assumes arr p and obj b and b = trg p
shows b x p = 17Y[cod ] - p - 1[dom u]
and 1[cod p] - (b p) - 17 Ydom p] = p
(proof)

lemma hcomp-reassoc:

assumes arr 7 and arr p and arr v

and src 7 = trg p and src p = trg v

shows (7 x ) x v = a~Y[cod 7, cod i, cod v] - (T p * v) - aldom 7, dom p, dom v]
and 7 x u x v = alcod T, cod p, cod v] - (T % p) x v) - a~[dom 7, dom u, dom v]

{proof)

lemma triangle”:

assumes ide f and ide g and src f = trg g

shows (f x 1[g]) = (x[f] * g) - a~'[f, src f, g]
(proof )

lemma pentagon’”:

assumes ide f and ide g and ide h and ide k

and src f = trg g and src g = trg h and src h = trg k

shows ((ail[fa 9, h] * k) ! ail[fa g h, kD ’ (f * 371[97 h, k])
=a"![fxg, h K -a'[f, g, hx k]

(proof)

end

The following convenience locale extends bicategory by pre-interpreting the various
functors and natural transformations.

locale extended-bicategory =

bicategory +

L: equivalence-functor V.V L +

R: equivalence-functor V.V R +

a: natural-isomorphism VVV.comp V HoHV HoVH
Auvt. a (fst pvt) (fst (snd pvt)) (snd (snd pvr))r +

o’ inverse-transformation VVV.comp V HoHV HoVH
Apvt. a (fst prr) (fst (snd pvt)) (snd (snd pvt))sy +
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I: natural-isomorphism V'V L map [ +
l”: inverse-transformation V'V L map | +
v natural-isomorphism V'V R map v +
t': inverse-transformation V'V R map t

sublocale bicategory C extended-bicategory V H a i src trg
(proof)

end

1.5 Concrete Bicategories

The locale concrete-bicategory defined in this section provides a uniform way to construct
a bicategory from extrinsically specified data comprising: a set of Obj of “objects”, a
“hom-category” Hom A B for each pair of objects A and B, an “identity arrow” Id A
€ Hom A A for each object A, “horizontal composition” functors Comp C' B A : Hom
B C x Hom A B — Hom A C indexed by triples of objects, together with unit and
associativity isomorphisms; the latter subject to naturality and coherence conditions.
We show that the bicategory produced by the construction relates to the given data
in the expected fashion: the objects of the bicategory are in bijective correspondence
with the given set Obj, the hom-categories of the bicategory are isomorphic to the given
categories Hom A B, the horizontal composition of the bicategory agrees with the given
compositions Comp C' B A, and the unit and associativity 2-cells of the bicategory are
directly defined in terms of the given unit and associativity isomorphisms.

theory ConcreteBicategory
imports Bicategory. Bicategory
begin

locale concrete-bicategory =
fixes Obj :: o set
and Hom :: 'o = ‘o = 'a comp
and Id :: 'o = 'a
and Comp :: 'o= o= o= "a= "a="a
and Unit :: ‘o = a
and Assoc:: "o = o= o= "o="a= "a= "a="a
assumes category-Hom: [ A € Obj; B € Obj | = category (Hom A B)
and binary-functor-Comp:
[ A € Obj; B e Obj; C € 0bj ]
= binary-functor (Hom B C) (Hom A B) (Hom A C) (\(f, g). Comp C B A fg)
and ide-Id: A € Obj = partial-composition.ide (Hom A A) (Id A)
and Unit-in-hom:
A€ 0hj =
partial-composition.in-hom (Hom A A) (Unit A) (Comp A A A (Id A) (Id A)) (Id A)
and iso-Unit: A € Obj = category.iso (Hom A A) (Unit A)
and natural-isomorphism-Assoc:
[ A € Obj; B € Obj; C € Obj; D € Obj ]

= natural-isomorphism

66



(product-category.comp
(Hom C D) (product-category.comp (Hom B C) (Hom A B))) (Hom A D)
(A(f, g, h). Comp D B A (Comp D C B fg) h)
(A(f, g, h). Comp D C A f (Comp C B A gh))
(A(f, g, h). Assoc D C B A f g h)
and left-unit-1d:
NA B. [ A € Obj; B e Obj |
= fully-faithful-functor (Hom A B) (Hom A B)
(M. if partial-composition.arr (Hom A B) f
then Comp B B A (Id B) f
else partial-magma.null (Hom A B))
and right-unit-1d:
NA B. [ A € Obj; B e 0bj |
= fully-faithful-functor (Hom A B) (Hom A B)
(M. if partial-composition.arr (Hom A B) f
then Comp B A A f (Id A)
else partial-magma.null (Hom A B))
and pentagon:
ANABCDEfqghk
[ A € Obj; B € Obj; C € Obj; D € Obj; E € Oby;
partial-composition.ide (Hom D E) f; partial-composition.ide (Hom C D) g;
partial-composition.ide (Hom B C) h; partial-composition.ide (Hom A B) k| =
Hom A E (Comp ED A f (Assoc D C B A g hk))
(Hom A E (Assoc ED B A f (Comp D C B gh)k)
(Comp EB A (Assoc ED CBfgh)k)) =
Hom A E (Assoc ED C A fg (Comp CB A hE))
(Assoc E C B A (Comp ED C fg) hk)
begin

We first construct the vertical category. Arrows are terms of the form MkCell A B
i, where A € Obj, B € Obj, and where p is an arrow of Hom A B. Composition requires
agreement of the “source” A and “target” B components, and is then defined in terms
of composition within Hom A B.
datatype (‘oo, ‘aa) cell =
Null
| MkCell 'o0 o0 'aa

abbreviation MkObj :: ‘o = (o, 'a) cell
where MkObj A = MECell A A (Id A)

fun Src :: (Yo, 'a) cell = ‘o

where Src (MEkCell A - -) = A
| Src - = undefined

fun Trg

where Trg (MkCell - B -) = B
| Trg - = undefined

fun Map
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where Map (MkCell - - F) = F
| Map - = undefined

abbreviation Cell
where Cell = p # Null A Src p € Obj N Trg p € Obj N
partial-composition.arr (Hom (Src p) (Trg w)) (Map w)

definition vcomp
where vcomp pv =if Cell uw AN Cell v N Src u = Srcv AN Trg u = Trg v A
partial-composition.seq (Hom (Src p) (Trg 1)) (Map p) (Map v)
then MkCell (Src ) (Trg p) (Hom (Src p) (Trg pu) (Map p) (Map v))
else Null

interpretation partial-composition vcomp

(proof)

lemma null-char:
shows null = Null

(proof)

lemma MkCell-Map:
assumes p # null
shows p = MkCell (Src p) (Trg p) (Map )

(proof)

lemma ide-char’”
shows ide p «— Cell p A partial-composition.ide (Hom (Src p) (Trg p)) (Map p)
(proof)

lemma MkCell-in-domains:

assumes Cell u

shows MkCell (Src p) (Trg p) (partial-composition.dom (Hom (Src ) (Trg p)) (Map p))
€ domains

{proof)

lemma MkCell-in-codomains:

assumes Cell

shows MkCell (Src p) (Trg p) (partial-composition.cod (Hom (Src p) (Trg p)) (Map p))
€ codomains [t

{proof)

lemma has-domain-char:
shows domains p # {} +— Cell u

{proof)

lemma has-codomain-char:
shows codomains pn # {} «— Cell p

{proof)
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lemma arr-char:
shows arr pu «— Cell p

{proof)

lemma ide-char’"":
shows ide 1 <— arr p A partial-composition.ide (Hom (Src p) (Trg 1)) (Map 1)

{proof)

lemma seq-char:
shows seq v <— Cell u N Cellv AN Src u = Srcv A Trg p= Trg v A
partial-composition.seq (Hom (Src p) (Trg p)) (Map ) (Map v)

(proof)

lemma vcomp-char:
shows vecomp p v = (if seq p v then
MkECell (Src p) (Trg p) (Hom (Src ) (Trg p) (Map ) (Map v))
else null)

(proof)

interpretation category vcomp

{proof)

lemma arr-eql:
assumes arr f and arr f’
and Src f = Src f'and Trg f = Trg f' and Map f = Map f'
shows [ = f'
(proof)

lemma dom-char:
shows dom pu = (if arr p then
MECell (Sre p) (Trg p) (partial-composition.dom (Hom (Src p) (Trg 1)) (Map
1)

(proof)

else Null)

lemma cod-char:
shows cod p = (if arr p then
MECell (Sre p) (Trg p) (partial-composition.cod (Hom (Src p) (Trg 1)) (Map
1)

(proof)

else Null)

lemma Src-vcomp [simp]:
assumes seq fi v
shows Src (vcomp p v) = Src p

(proof)

lemma Trg-vcomp [simp]:
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assumes seq [ UV
shows Trg (vcomp pv) = Trg p
(proof )

lemma Map-vcomp [simpl:
assumes seq [ v
shows Map (vcomp p v) = Hom (Src p) (Trg p) (Map p) (Map v)

{proof)

lemma arr-MkCell [simp]:
assumes A € Obj and B € Obj and partial-composition.arr (Hom A B) f
shows arr (MkCell A B f)

(proof)

lemma dom-MkCell [simp]:
assumes arr (MkCell A B f)
shows dom (MkCell A B f) = MkCell A B (partial-composition.dom (Hom A B) f)

(proof)

lemma cod-MkCell [simp]:
assumes arr (MkCell A B f)
shows cod (MkCell A B f) = MkCell A B (partial-composition.cod (Hom A B) f)

(proof)

lemma iso-char:
shows iso u <— arr u A category.iso (Hom (Src p) (Trg p)) (Map )
(proof )

Next, we equip each arrow with a source and a target, and show that these assign-
ments are functorial.

definition src
where src u = if arr p then MkObj (Src ) else null

definition trg
where trg p = if arr p then MkObj (Trg u) else null

lemma src-MkCell [simp]:
assumes arr (MkCell A B f)
shows src (MkCell A B f) = MkObj A

(proof)

lemma trg-MkCell [simp]:
assumes arr (MkCell A B f)
shows trg (MkCell A B f) = MkObj B

(proof)

lemma src-dom:
assumes arr g
shows src (dom p) = sre p
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(proof)

lemma src-cod:
assumes arr [
shows src (cod p) = src p

(proof)

lemma trg-dom:
assumes arr [
shows trg (dom p) = trg u

(proof)

lemma trg-cod:

assumes arr [

shows trg (cod p) = trg p
(proof )

lemma Sre-sre [simp]:
assumes arr
shows Sre (src ) = Sre u

(proof)

lemma Trg-src [simp]:
assumes arr [
shows Trg (src u) = Src p

(proof)

lemma Map-src [simp]:

assumes arr p

shows Map (src p) = Id (Src p)
(proof)

lemma Src-trg [simp]:

assumes arr p

shows Src (trg pu) = Trg p
{proof)

lemma Trg-trg [simp]:
assumes arr [
shows Trg (trg p) = Trg p

{proof)

lemma Map-trg [simp:
assumes arr p
shows Map (trg p) = Id (Trg p)

{proof)

lemma Src-dom [simp]:
assumes arr (i
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shows Src (dom p) = Src i
(proof)

lemma Sre-cod [simp]:
assumes arr
shows Src (cod p) = Sre p

(proof)

lemma Trg-dom [simp]:

assumes arr p

shows Trg (dom p) = Trg p
{proof )

lemma Trg-cod [simp):
assumes arr p
shows Trg (cod p) = Trg p

(proof)

lemma Map-dom [simp]:

assumes arr p

shows Map (dom u) = partial-composition.dom (Hom (Src p) (Trg ) (Map p)
(proof)

lemma Map-cod [simp]:

assumes arr [

shows Map (cod p) = partial-composition.cod (Hom (Src p) (Trg p)) (Map p)
(proof)

lemma ide-MkObj:
assumes A € Obj
shows ide (MkObj A)

(proof)

interpretation src: functor vcomp vcomp src

(proof)

interpretation trg: functor vcomp vcomp trg

(proof)

interpretation H: horizontal-homs vcomp src trg

{proof)

lemma 0bj-MkEOb;j:
assumes A € Obj
shows H.obj (MkObj A)

{proof)

lemma MkCell-in-hom [intro]:
assumes A € Obj and B € Obj and partial-composition.arr (Hom A B) f
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shows H.in-hhom (MkCell A B f) (MkObj A) (MkObj B)
and «MkCell A B f : MkCell A B (partial-composition.dom (Hom A B) f)
= MkCell A B (partial-composition.cod (Hom A B) f)»
{proof)

Horizontal composition of horizontally composable arrows is now defined by applying
the given function Comp to the “Map” components.

definition hcomp
where hcomp p v = if arr p A arr v A src y = trg v then
MkCell (Src v) (Trg p) (Comp (Trg ) (Trg v) (Src v) (Map p) (Map v))
else
null

lemma arr-hcomp:

assumes arr g and arr v and src p = trg v
shows arr (hcomp p v)

and dom (hcomp p v) = hecomp (dom ) (dom v)
and cod (hcomp p v) = hcomp (cod ) (cod v)
(proof)

lemma src-hcomp:
assumes arr 4 and arr v and src p = trg v
shows src (hcomp p v) = src v

(proof)

lemma trg-hcomp:
assumes arr 4 and arr v and src p = trg v
shows trg (hcomp p v) = trg u

(proof)

lemma Src-hcomp [simp:
assumes arr 4 and arr v and sre p = trg v
shows Src (hcomp p v) = Sre v

(proof)

lemma Trg-hcomp [simp]:
assumes arr 4 and arr v and src p = trg v
shows Trg (hcomp pv) = Trg p

(proof)

lemma Map-hcomp [simp]:
assumes arr p and arr v and sre = trg v
shows Map (hcomp p v) = Comp (Trg p) (Trg v) (Src v) (Map ) (Map v)

(proof)

lemma hcomp-vcomp:

assumes H.VV.seq g f

shows hcomp (fst (H.VV.comp g f)) (snd (H.VV.comp g f)) =
veomp (hecomp (fst g) (snd g)) (hcomp (fst f) (snd f))
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{proof)

interpretation H: functor H.VV.comp vcomp <Auv. hcomp (fst pv) (snd pv)»
(proof )

interpretation H: horizontal-composition vcomp hcomp src trg
(proof )

lemma Map-obj:

assumes H.obj a

shows Map a = Id (Src a) and Map a = Id (Trg a)
(proof)

lemma MEkCell-simps:

assumes A € Obj and B € Obj and partial-composition.arr (Hom A B) f
shows arr (MkCell A B f)

and src (MkCell A B f) = MkObj A and trg (MkCell A B f) = MkObj B

and dom (MkCell A B f) = MkCell A B (partial-composition.dom (Hom A B) f)
and cod (MkCell A B f) = MkCell A B (partial-composition.cod (Hom A B) f)

{proof)

Next, define the associativities and show that they are the components of a natural
isomorphism.

definition assoc
where assoc f g h =
if H.VVV.ide (f, g, h) then
MkCell (Sre h) (Trg f)
(Assoc (Trg f) (Trg g) (Trg h) (Src h) (Map f) (Map g) (Map h))
else null

lemma assoc-in-hom [intro]:
assumes ide f and ide g and ide h and src f = trg g and src g = trg h
shows «assoc f g h : hcomp (hcomp f g) h = hcomp f (hcomp g h)»

{proof)

lemma assoc-simps [simp]:

assumes ide f and ide g and ide h and src f = trg g and src g = trg h
shows arr (assoc f g h)

and dom (assoc f g h) = hcomp (hcomp f g) h

and cod (assoc f g h) = hcomp f (hcomp g h)

(proof)

lemma assoc-simps’ [simp]:

assumes ide f and ide g and ide h and src f = trg g and src g = trg h

shows src (assoc f g h) = src h

and trg (assoc f g h) = trg f

and Src (assoc f g h) = Src h

and Trg (assoc fgh) = Trg f

and Map (assoc f g h) = Assoc (Trg f) (Trg g) (Trg h) (Src h) (Map f) (Map g) (Map h)
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{proof)

lemma iso-assoc:
assumes ide f and ide g and ide h and src f = trg g and src g = trg h
shows iso (assoc f g h)

{proof)

lemma assoc-naturality:

assumes arr f and arr g and arr h and src f = trg g and src g = trg h

shows vcomp (H.HoVH (f, g, h)) (assoc (dom f) (dom g) (dom h)) =
veomp (assoc (cod f) (cod g) (cod h)) (H.HoHV (f, g, h))

{proof)

interpretation aq: transformation-by-components H.VVV .comp vcomp H.HoHV H.HoVH
A(f, g, h). assoc f g

(proof )

definition a (<a[-,-,-]»)
where a f g h == ag.map (f, g, h)

lemma a-simp-ide:
assumes ide f and ide g and ide h and src f = trg g and src g = trg h
shows alf, g, h] =
MkCell (Src h) (Trg f)
(Assoc (Tig ) (Trg g) (Trg h) (Src h) (Map f) (Map g) (Map b))

(proof)

interpretation a: natural-isomorphism H.VVV.comp vcomp H.HoHV H.HoVH
Afgh. a (fst fgh) (fst (snd fgh)) (snd (snd fgh))
(proof)

What remains is to show that horizontal composition with source or target defines
fully faithful functors.

interpretation endofunctor vcomp H.L

(proof)

interpretation endofunctor vcomp H.R
(proof )

interpretation R: fully-faithful-functor vcomp vcomp H.R
(proof)

interpretation L: fully-faithful-functor vcomp vcomp H.L
(proof )

The unit isomorphisms are defined in terms of the specified function Unit.

definition i (¢i[-]»)
where i[a] = MkCell (Src a) (Sre a) (Unit (Src a))

lemma i-simps [simp]:
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assumes H.obj a
shows Src i[a] = Src a and Trg i[a] = Trg o and Map i[a] = Unit (Src a)
(proof)

The main result: the construction produces a bicategory.

proposition induces-bicategory:
shows bicategory vcomp hcomp a i src trg

(proof )

sublocale bicategory vcomp hcomp a i src trg
(proof)

end

We now establish some correspondences between the constructed bicategory and the
originally given data, to provide some assurance that the construction really is doing
what we think it is.

context concrete-bicategory
begin

lemma Src-in-Obj:
assumes arr p
shows Src u € Obj

(proof)

lemma Trg-in-Obj:
assumes arr (i
shows Trg u € Obj

(proof)

lemma arr-Map:
assumes arr
shows partial-composition.arr (Hom (Src p) (Trg p)) (Map )

(proof)

lemma obj-MkEObj-Src:
assumes arr
shows obj (MkObj (Src p))

(proof)

lemma obj-MkEObj-Trg:
assumes arr

shows obj (MkObj (Trg p))
{proof)

lemma vcomp-MkECell [simp]:

assumes arr (MkCell A B f) and arr (MkCell A B g)

and partial-composition.seq (Hom A B) f g

shows vcomp (MkCell A B f) (MkCell A B g) = MkCell A B (Hom A B f g)
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(proof)

lemma hcomp-MkCell [simp]:
assumes arr (MkCell B C f) and arr (MkCell A B g)
shows hcomp (MkCell B C f) (MkCell A B g) = MkCell A C (Comp C B A fg)

(proof)

The objects of the constructed bicategory are in bijective correspondence with the
originally given set Obj, via the inverse mappings MkObj and Src.

proposition bij-betw-obj-Obj:

shows MkObj € Obj — Collect obj

and Src € Collect obj — Obj

and A € Obj = Src (MkObj A) = A

and a € Collect obj = MkObj (Src a) = a

and bij-betw MkObj Obj (Collect obj)

{proof)

lemma obj-char:
shows 0bj a «+— Src a € Obj A a = MkCell (Src a) (Src a) (Id (Src a))

(proof)

lemma Map-in-Hom:
assumes arr
shows partial-composition.in-hom (Hom (Src p) (Trg p)) (Map p) (Map (dom w)) (Map (cod

1))
(proof)

For each pair of objects a and b, the hom-category hhom a b of the constructed
bicategory is isomorphic to the originally given category Hom (Src a) (Src b).

proposition isomorphic-hhom-Hom:

assumes obj a and o0bj b

shows isomorphic-categories
(subcategory.comp vecomp (Af. f € hhom a b)) (Hom (Src a) (Src b))

(proof )

end

end

1.6 Coherence

theory Coherence
imports Bicategory
begin

In this section, we generalize to bicategories the proof of the Coherence
Theorem that we previously gave for monoidal categories (see MonoidalCate-
gory.evaluation-map.coherence in MonoidalCategory). As was the case for the previous
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proof, the current proof takes a syntactic approach. First we define a formal “bicate-
gorical language” of terms constructed using syntactic operators that correspond to the
various operations (vertical and horizontal composition, associators and unitors) found
in a bicategory. Terms of the language are classified as formal “arrows”, “identities”, or
“objects” according to the syntactic operators used in their formation. A class of terms
called “canonical” is also defined in this way. Functions that map “arrows” to their
“domain” and “codomain”, and to their “source” and “target” are defined by recursion
on the structure of terms. Next, we define a notion of “normal form” for terms in this
language and we give a recursive definition of a function that maps terms to their normal
forms. Normalization moves vertical composition inside of horizontal composition and
“flattens” horizontal composition by associating all horizontal compositions to the right.
In addition, normalization deletes from a term any horizontal composites involving an
arrow and its source or target, replacing such composites by just the arrow itself. We
then define a “reduction function” that maps each identity term ¢ to a “canonical” term
t} that connects ¢ with its normal form. The definition of reduction is also recursive,
but it is somewhat more complex than normalization in that it involves two mutually
recursive functions: one that applies to any identity term and another that applies only
to terms that are the horizontal composite of two identity terms.

The next step is to define an “evaluation function” that evaluates terms in a given
bicategory (which is left as an unspecified parameter). We show that evaluation respects
bicategorical structure: the domain, codomain, source, and target mappings on terms cor-
respond under evaluation to the actual domain, codomain, source and target mappings
on the given bicategory, the vertical and horizontal composition on terms correspond to
the actual vertical and horizontal composition of the bicategory, and unit and associa-
tivity terms evaluate to the actual unit and associativity isomorphisms of the bicategory.
In addition, “object terms” evaluate to objects (i.e. O-cells), “identity terms” evaluate
to identities (7.e. 1-cells), “arrow terms” evaluate to arrows (7.e. 2-cells), and “canonical
terms” evaluate to canonical isomorphisms. A term is defined to be “coherent” if, roughly
speaking, it is a formal arrow whose evaluation commutes with the evaluations of the
reductions to normal form of its domain and codomain. We then prove the Coherence
Theorem, expressed in the form: “every arrow is coherent.” This implies a more classical
version of the Coherence Theorem, which says that: “syntactically parallel arrows with
the same normal form have equal evaluations”.

1.6.1 Bicategorical Language

For the most part, the definition of the “bicategorical language” of terms is a straight-
forward generalization of the “monoidal language” that we used for monoidal categories.
Some modifications are required, however, due to the fact that horizontal composition in
a bicategory is a partial operation, whereas the the tensor product in a monoidal category
is well-defined for all pairs of arrows. One difference is that we have found it necessary
to introduce a new class of primitive terms whose elements represent “formal objects”, so
that there is some way to identify the source and target of what would otherwise be an
empty horizontal composite. This was not an issue for monoidal categories, because the
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totality of horizontal composition meant that there was no need for syntactically defined
sources and targets. Another difference is what we have chosen for the “generators” of
the language and how they are used to form primitive terms. For monoidal categories,
we supposed that we were given a category C' and the syntax contained a constructor
to form a primitive term corresponding to each arrow of C. We assumed a category as
the given data, rather than something less structured, such as a graph, because we were
primarily interested in the tensor product and the associators and unitors, and were rel-
atively uninterested in the strictly associative and unital composition of the underlying
category. For bicategories, we also take the vertical composition as given for the same
reasons; however, this is not yet sufficient due to the fact that horizontal composition
in a bicategory is a partial operation, in contrast to the tensor product in a monoidal
category, which is defined for all pairs of arrows. To deal with this issue, for bicategories
we assume that source and target mappings are also given, so that the given data forms
a category with “horizontal homs”. The given source and target mappings are extended
to all terms and used to define when two terms are “formally horizontally composable”.

locale bicategorical-language =
category V +
horizontal-homs V src trg
for V :: 'a comp (infixr <» 55)
and src :: 'a = ’a
and trg :: 'a = 'a
begin

Constructor Primg is used to construct “formal objects” and Prim is used to construct
primitive terms that are not formal objects.

datatype (discs-sels) 't term =

Primg 't («(-Yo?)
| Prim 't («{-})
| Hcomp 't term 't term (infixr k) 53)
| Veomp 't term 't term (infixr <> 55)
| Lunit 't term (A[-])
| Lunit’ 't term (A7)
| Runit 't term («r[-])
| Runit’ 't term (=)
| Assoc 't term 't term 't term (<a[-, -, -]»)
| Assoc’ 't term 't term 't term (a”=l[-, -, -])

We define formal domain, codomain, source, and target functions on terms.

primrec Src :: 'a term = ‘a term
where Src (u)o = (u)o

| Sre () = (sre Yo

| Sre (t* u) = Src u

| Sre (t- u) = Srct

| Srcl[t] = Sre t

| Sre 171[t] = Src t

| Srcrt] = Srct

| Srcr=1[f] = Src t
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| Sre at, u, v] = Src v
| Src a=[t, u, v] = Src v

primrec Trg :: ‘a term = 'a term
where Trg (u)o = (1)o

Trg (u) = (trg u)o

| Trg (t* u) = Trgt
| Trg (t-u) = Trgt
| Trg1[¢] = Trg t

| Trg 17 [f] = Trg t

| Trgr(t] = Trg t
|

|

Trgr= L[] = Trg t
Trg aft, u, v] = Trg t
Trga=[t, u, v] = Trg t

primrec Dom :: 'a term = 'a term
where Dom (u)o = {11)o
| Dom () = (dom p)
| Dom (t * u) = Dom t x Dom u
| Dom (t- u) = Dom u
| Dom 1[t] = Trg t * Dom t
| Dom 171[{] = Dom t
| Dom r[tf] = Dom t % Src t
| Dom r=1[t] = Dom t
| Dom a[t, u, v] = (Dom t * Dom u) * Dom v
| Dom a='[t, u, v] = Dom t x (Dom u % Dom v)

primrec Cod :: 'a term = 'a term
where Cod (u)o = (1)o
| Cod () = (cod )
| Cod (tx u) = Cod t x Cod u
| Cod (t-u) = Codt
| Cod 1[t] = Cod t
| Cod17{] = Trg t x Cod t
| Codr[t] = Cod t
| Codr=1[t] = Cod t x Src t
| Cod aft, u, v] = Cod t *x (Cod ux Cod v)
| Cod a=1[t, u, v] = (Cod t x Cod u) x Cod v

A term is a “formal arrow” if it is constructed from primitive arrows in such a way
that horizontal and vertical composition are applied only to formally composable pairs of
terms. The definitions of “formal identity” and “formal object” follow a similar pattern.

primrec Arr :: 'a term = bool
where Arr (u)o = obj p
| Arr {u) = arr p
| Arr (t % u) = (Arr t A Arruw A Src t = Trg u)
| Arr (¢t - uw) = (Arr ¢t A Arr w A Dom t = Cod u)
| Arr 1[t] = Arr t
| Arr 171[t] = Arr t
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| Arrreft] = Arr t

| Arr v~ 1[f] = Arr t

| Arr aft, u, o] = (Arr t A Arruw A Arr v A Src t = Trg u A Sre uw = Trg v)

| Arra=[t, u, v] = (Arr t A Arru A Arr v A Sre t = Trg u A Src uw = Trg v)

primrec Ide :: 'a term = bool
where Ide {(u)g = obj u

| Ide {u) = ide p

| Ide (t x u) = (Ide t A Ide u A Srct = Trg u)

| Ide (t - u) = False

| Ide 1[t] = Fulse

| Ide 171[#] = False

| Ide r[t] = False

| Ide r—1[t] = False

| Ide a[t, u, v] = False

| Ide a=[t, u, v] = False

primrec Obj :: 'a term = bool
where Obj (u)o = obj u

| Obj (u)y = False

| Obj (t * u) = False

| Obj (t- u) = False

| Objl[t] = False

| Obj171[{] = False

| Objr[t] = False

| Obj r=1[f] = False

| Obj a[t, u, v] = False

| Obj a=![t, u, v] = False

abbreviation HSeq :: ‘a term = ’a term = bool
where HSeqt u= Arrt A Arru A Src t = Trg u

abbreviation VSeq :: 'a term = 'a term = bool
where VSeqtu = Arrt AN Arr u A Dom t = Cod u

abbreviation HPar :: 'a term => 'a term = bool
where HPar t u= Arrt N Arru A Srct = Srcu AN Trgt = Trg u

abbreviation VPar :: ‘a term => 'a term = bool
where VPart u= Arrt N Arr u A Dom t = Dom u N\ Cod t = Cod u

abbreviation HHom :: 'a term = 'a term = 'a term set
where HHom a b= {t. Arrt ASrct=a AN Trgt =10}

abbreviation VHom :: 'a term = 'a term = 'a term set
where VHom fg={t. Arrt AN Domt=f A Codt =g}

lemma is-Prim0-Src:
shows is-Primg (Src t)
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(proof)

lemma is-Prim0-Trg:
shows is-Primg (Trg t)

(proof)

lemma Src-Sre [simp]:
shows Arrt = Src (Src t) = Src t

{proof)

lemma Trg-Trg [simp]:
shows Arrt = Trg (Trg t) = Trg t
(proof)

lemma Sre-Trg [simp):
shows Arrt = Src (Trg t) = Trg t

(proof)

lemma Trg-Src [simp):
shows Arrt = Trg (Srct) = Srct
(proof)

lemma Dom-Sre [simp):
shows Arrt = Dom (Src t) = Src t

{proof)

lemma Dom-Trg [simp]:
shows Arrt = Dom (Trg t) = Trg t
(proof)

lemma Cod-Sre [simp]:
shows Arrt = Cod (Src t) = Src t

(proof)

lemma Cod-Trg [simp):
shows Arrt = Cod (Trgt) = Trg t

(proof)

lemma Src-Dom-Cod:
shows Arrt = Src (Dom t) = Srct A Src (Cod t) = Src t

(proof)

lemma Src-Dom [simp):
shows Arr t = Src (Dom t) = Src t

(proof)

lemma Src-Cod [simp]:
shows Arrt = Src (Cod t) = Src t

(proof)
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lemma Trg-Dom-Cod:
shows Arrt = Trg (Dom t) = Trgt A Trg (Cod t) = Trg t

(proof)

lemma Trg-Dom [simp]:
shows Arrt = Trg (Dom t) = Trg t
{proof)

lemma Trg-Cod [simp]:
shows Arrt = Trg (Cod t) = Trg t
{proof )

lemma VSeqg-implies-HPar:
shows VSeq t u — HPartu

(proof)

lemma Dom-Dom [simp]:
shows Arr t = Dom (Dom t) = Dom t

{proof)

lemma Cod-Cod [simp]:
shows Arr t = Cod (Cod t) = Cod t

(proof)

lemma Dom-Cod [simp]:
shows Arrt = Dom (Cod t) = Cod t

(proof)

lemma Cod-Dom [simp]:
shows Arrt = Cod (Dom t) = Dom t

(proof)

lemma Obj-implies-Ide :
shows Obj t = Ide t
(proof )

lemma Ide-implies-Arr [simp]:
shows Ide t = Arrt
{proof )

lemma Dom-Ide:
shows Ide t = Dom t = ¢

(proof)

lemma Cod-Ide:
shows Idet = Cod t =t

(proof)
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lemma Obj-Src [simp]:
shows Arr t = Obj (Src t)
(proof)

lemma Obj-Trg [simp]:
shows Arr t = Obj (Trg t)
(proof)

lemma Ide-Dom [simp]:
shows Arr t = Ide (Dom t)

(proof)

lemma Ide-Cod [simp]:
shows Arr t = Ide (Cod t)

(proof)

lemma Arr-in-Hom:
assumes Arr ¢
shows t € HHom (Src t) (Trg t) and t € VHom (Dom t) (Cod t)

{proof)

lemma Ide-in-Hom:
assumes Ide ¢
shows t € HHom (Src t) (Trg t) and t € VHom t t

{proof)

lemma Obj-in-Hom:
assumes Obj ¢
shows t €« HHom ttand t € VHom t t

{proof)

A formal arrow is “canonical” if the only primitive arrows used in its construction
are objects and identities.

primrec Can :: 'a term = bool
where Can (p1)g = obj i
| Can () = ide p
| Can (t *x u) = (Can t A Can u A Srct = Trg u)
| Can (t-u) = (Can t A Can u A Dom t = Cod u)
| Can 1[t] = Can t
| Can17[f] = Can t
| Canr[t] = Can t
| Canr=1[t] = Can t
| Can aft, u, v] = (Can t A Can u A Can v A Srct = Trg u A Src u = Trg v)
| Can a=t[t, u, v] = (Can t A Can u A Can v A Src t = Trg u A Src u = Trg v)

lemma Ide-implies-Can:

shows Ide t = Can t
(proof)
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lemma Can-implies-Arr:
shows Can t = Arrt

(proof)
Canonical arrows can be formally inverted.

primrec Inv :: 'a term = 'a term
where Inv (u)o = (u)o
| Inv () = (inv p)
| Inv (t % u) = (Inv t x Inv u)
| Inv (¢t - u) = (Inv u - Inv t)
| Inv 1[{] = 17 [Inv {]
| Inv 171[t] = 1[Inv {]
| Inv r[t] = v~ [Inv {]
| Inv = [f] = r[Inv {]
| Inv a[t, u, v] = a=[Inv t, Inv u, Inv V]
| Inva=1[t, u, v] = a[lnv t, Inv u, Inv v

lemma Sre-Inv [simp]:
shows Can t = Src (Inv t) = Src t

(proof)

lemma Trg-Inv [simp):
shows Can t = Trg (Invt) = Trg t
(proof)

lemma Dom-Inv [simpl:
shows Can t = Dom (Inv t) = Cod t

{proof)

lemma Cod-Inv [simp]:
shows Can t = Cod (Inv t) = Dom t

(proof)

lemma Inv-preserves-Ide:
shows Ide t = Ide (Inv t)

(proof)

lemma Can-Inv [simp:
shows Can t = Can (Inv t)

(proof)

lemma Inv-in-Hom [intro]:

assumes Can t

shows Inv t € HHom (Src t) (Trg t) and Invt € VHom (Cod t) (Dom t)
(proof)

lemma Inv-Ide [simp]:
assumes Ide a
shows Inva = a
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(proof)

lemma Inv-Inv [simp]:
assumes Can t
shows Inv (Inv t) = ¢

(proof)

1.6.2 Normal Terms

We call a term “normal” if it is either a formal object or it is constructed from primitive
arrows using only horizontal composition associated to the right. Essentially, such terms
are (typed) composable sequences of arrows of (-), where the empty list is represented
by a formal object and  is used as the list constructor.

fun Nml :: 'a term = bool

where Nml (u)o = obj p
| Nml {u) = arr p
| Nml ({v) * u) = (arr v A Nml u A = is-Primg u A (src v)o = Trg u)
| Nml - = False

lemma Nml-HcompD:

assumes Nml (t x u)

shows (un-Prim ty = t and arr (un-Prim t) and Nml ¢ and Nml u
and - is-Primg u and (src (un-Prim t))o = Trg v and Src t = Trg u

(proof)

lemma Nml-implies-Arr:
shows Nmlt = Arrt

{proof)

lemma Nmi-Src [simp]:
shows Nml t = Nml (Src t)

(proof)

lemma Nmi-Trg [simp]:
shows Nml t = Nml (Trg t)
{proof )

lemma Nmil-Dom [simp]:
shows Nml t = Nml (Dom t)

(proof )

lemma Nmi-Cod [simp]:
shows Nml t = Nml (Cod t)

{proof)

lemma Nmi-Inv [simp]:
assumes Can t and Nml ¢
shows Nml (Inv t)

{proof)
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The following function defines a horizontal composition for normal terms. If such
terms are regarded as lists, this is just (typed) list concatenation.

fun HecompNml (infixr <[x|> 53)
where (V) |*x] u = u
|t L) (o =
() Lx) u= ()
| (E%u) [x] v=1t[x] (u]x] v)
| t |[x] u = undefined

lemma HcompNml-Prim [simp:

assumes — is-Primg t

shows (V) |*x| t = (V) x ¢
(proof )

lemma HcompNml-term-Primg [simp]:
assumes Src t = Trg {(u)o
shows t | x| (u)o =t

(proof)

lemma HcompNmi-Nmi:
assumes Nml (t x u)
shows t x| u =t u

{proof)

lemma Nmi-HcompNmi:

assumes Nml t and Nml u and Src t = Trg u
shows Nml (¢ |x] u)

and Dom (t |x] u) = Dom t |*| Dom u

and Cod (t |*| u) = Cod t | x| Cod u

and Sre (t |x] u) = Src u

and Trg (¢t |x] u) = Trg t

(proof)

lemma HcompNml-in-Hom [intro]:

assumes Nml t and Nml u and Src t = Trqg u

shows t |x| u € HHom (Src u) (Trg t)

and t |x| uw € VHom (Dom t | x| Dom u) (Cod t |x] Cod u)

(proof)

lemma Src-HcompNml:
assumes Nml t and Nml u and Src t = Trqg u
shows Sre (¢ |x] u) = Src u

(proof)

lemma Trg-HcompNml:
assumes Nml t and Nml u and Src t = Trqg u
shows Trg (¢t |x]| u) = Trg t

(proof)
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lemma Dom-HcompNmi:

assumes Nml t and Nml v and Src t = Trg u

shows Dom (t |x] u) = Dom t |x] Dom u
(proof)

lemma Cod-HcompNml:

assumes Nml t and Nml u and Src t = Trg u

shows Cod (t || u) = Cod t | x| Cod u
(proof )

lemma is-Hcomp-HcompNml:

assumes Nml t and Nml u and Src t = Trqg u
and — is-Primg t and — is-Primg u

shows is-Hcomp (t | %] u)

(proof)

The following function defines the “dimension” of a term, which is the number of
inputs (or outputs) when the term is regarded as an interconnection matrix. For normal
terms, this is just the length of the term when regarded as a list of arrows of C. This
function is used as a ranking of terms in the subsequent associativity proof.

primrec dim :: 'a term = nat
where dim (u)o = 0
| dim (u) = 1
| dim (t % u) = (dim t + dim u)
| dim (t- u) = dim t
| dim 1[{] = dim t
| dim 171[t] = dim t
| dim r[f] = dim ¢
| dim = 1[f] = dim t
| dim a[t, u, v] = dim ¢t + dim v + dim v
| dim a=1[t, u, v] = dim t + dim u + dim v

lemma HcompNml-assoc:

assumes Nml t and Nml v and Nml v and Src t = Trg v and Src v = Trg v
shows (t |x] u) [x] v="1 %] (u [x] v)

(proof)

lemma HcompNmi-Trg-Nml:
assumes Nml t

shows Trg t || t = ¢
(proof)

lemma HcompNml-Nml-Src:
assumes Nml t
shows t | x| Srct =t

(proof)

lemma HcompNml-Obj-Nml:
assumes Obj t and Nml v and Src t = Trg u
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shows ¢ |x]| v = u
(proof)

lemma HcompNml-Nml-Obj:
assumes Nml t and Obj u and Src t = Trg u
shows t |x| u =t

(proof)

lemma Ide-HcompNmi:
assumes Ide t and Ide uw and Nml t and Nml v and Src t = Trg u
shows Ide (t |x] u)

(proof)

lemma Can-HcompNml:

assumes Can t and Can v and Nml t and Nml v and Src t = Trg u
shows Can (¢ |*| u)

(proof)

lemma Inv-HcompNml:

assumes Can t and Can v and Nml t and Nml v and Src t = Trg u
shows Inv (t |x] u) = Inv ¢ | %] Inv u

(proof)

The following function defines vertical composition for compatible normal terms, by
“pushing the composition down” to arrows of V.

fun VeompNml :: 'a term = 'a term = 'a term (infixr <|-]> 55)
where (V)g || u=u

| vy L] () = (v - )

| (u*xv) [-] (wxz)=(u|]w*xv]]z)

[t ] (o=t

| t |-] - = undefined - undefined

Note that the last clause above is not relevant to normal terms. We have chosen a
provably non-normal value in order to validate associativity.

lemma Nmi-VcompNml:

assumes Nml t and Nml u and Dom t = Cod u
shows Nml (¢ |-]| )

and Dom (t |-] u) = Dom u

and Cod (t |-] u) = Cod t

(proof )

lemma VeompNmi-in-Hom [intro]:
assumes Nml t and Nml v and Dom t = Cod u
shows t |-| w € HHom (Src w) (Trg u) and ¢ |-] v € VHom (Dom u) (Cod t)

(proof )

lemma Src-VeompNml:
assumes Nml t and Nml v and Dom t = Cod u
shows Sre (¢t |+] u) = Srcu
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(proof)

lemma Trg-VeompNml:
assumes Nml t and Nml v and Dom t = Cod u
shows Trg (¢t |-] u) = Trg u

(proof)

lemma Dom-VcompNml:
assumes Nml t and Nml v and Dom t = Cod u
shows Dom (t |-| u) = Dom u

(proof )

lemma Cod-VcompNml:
assumes Nml t and Nml v and Dom t = Cod u
shows Cod (t |-| u) = Cod t

(proof )

lemma VeompNmi-Cod-Nml [simp]:
assumes Nml ¢
shows VeompNml (Cod t) t =t

(proof )

lemma VeompNmi-Nml-Dom [simp]:
assumes Nml ¢
shows t |-| (Dom t) =t

(proof )

lemma VeompNmi-Ide-Nml [simp]:
assumes Nml ¢t and Ide a and Dom a = Cod t
shows a |[-| t = ¢

(proof )

lemma VeompNmi-Nml-Ide [simp]:
assumes Nml t and Ide a and Dom t = Cod a
shows ¢ |-| a =1

(proof )

lemma VecompNml-assoc:
assumes Nml t and Nml v and Nml v
and Dom t = Cod w and Dom u = Cod v

shows (¢ -] w) [-] v=1]] (u ] v)

(proof )

lemma Ide-VcompNml:

assumes Ide t and Ide u and Nml t and Nml v and Dom t = Cod u
shows Ide (t -] u)

(proof )

lemma Can-VecompNml:
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assumes Can t and Can v and Nml ¢t and Nml v and Dom ¢t = Cod u
shows Can (¢ |-]| u)
(proof )

lemma Inv-VecompNml:

assumes Can t and Can v and Nml ¢t and Nml v and Dom t = Cod u
shows Inv (¢t |-] v) = Invu |-] Invt

(proof )

lemma Can-and-Nml-implies-Ide:
assumes Can t and Nml t
shows Ide t

{proof)

lemma VeompNmli-Can-Inv [simp):
assumes Can t and Nml ¢
shows t |-| Inv ¢t = Cod t

(proof)

lemma VeompNml-Inv-Can [simp]:
assumes Can t and Nml t
shows Inv t |-| t = Dom t

(proof)
The next fact is a syntactic version of the interchange law, for normal terms.

lemma VecompNml-HcompNml:

assumes Nml t and Nml u and Nml v and Nml w
and VSeq t v and VSeq u w and Src v = Trg w

shows (¢ [x] u) [-] (v [*] w) = (¢ [-] v) [x] (v -] w)

(proof)
The following function reduces a formal arrow to normal form.

fun Nmlize :: 'a term = 'a term  (<|-]»)

where [(u)o] = (1)o
| L] =
| Lt xu) = [t] [*] Lu]
| Lt- ] =[] L[] Lu
| L] = L]
| 0A) = Lt
| Le[d] = Lt
| e A] = L]
| Lalt, u, o] = ([t] [*] Lu]) [*] Lo]
| [a7H [t w, vl = [2) L] (Lu) %] Lo))

lemma Nml-Nmlize:

assumes Arr ¢

shows Nml |t| and Src [t] = Src t and Trg |t] = Trg t
and Dom |t| = [Dom t| and Cod |t| = | Cod t]

(proof )
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lemma Nmlize-in-Hom [intro]:
assumes Arr ¢
shows [t| € HHom (Src t) (Trg t) and |t| € VHom | Dom t| | Cod t]

(proof)

lemma Nmlize-Src:
assumes Arr t
shows | Src t| = Src |t] and |Src t| = Sre ¢

(proof )

lemma Nmlize-Trg:

assumes Arr ¢

shows |Trg t| = Trg |t| and |Trg t] = Trg ¢
(proof)

lemma Nmlize-Dom:

assumes Arr ¢

shows | Dom t| = Dom |t]
(proof )

lemma Nmlize-Cod:

assumes Arr ¢

shows | Cod t| = Cod |t]
(proof )

lemma Ide-Nmlize-Ide:
assumes Ide ¢
shows Ide [t]

{proof)

lemma Ide-Nmlize-Can:
assumes Can ¢
shows Ide [t]

{proof)

lemma Can-Nmlize-Can:
assumes Can t
shows Can |t]

(proof)

lemma Nmlize-Nml [simp]:
assumes Nml ¢

shows |t] =t

{proof)

lemma Nmlize-Nmlize [simpl:
assumes Arrt

shows | [t]] = [¢]
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(proof)

lemma Nmlize-Hcomp:

assumes Arr t and Arr u

shows [t x u] = |[t] * [v]]
(proof)

lemma Nmlize-Hcomp-Obj-Arr [simp]:
assumes Arr u
shows [(b)o *x u] = |u]

(proof )

lemma Nmlize-Hcomp-Arr-Obj [simp]:
assumes Arr t and Src t = {a)g
shows [t % (a)o]| = |{]

(proof )

lemma Nmlize-Hcomp-Prim-Arr [simp]:
assumes Arr u and — is-Primg | u]
shows [(u) * u] = () * L]

(proof )

lemma Nmlize-Hcomp-Hcomp:

assumes Arr t and Arr v and Arr v and Src t = Trg w and Src u

shows | (¢t x u) x v] = | [t] » (lu] * [v])]

(proof)

lemma Nmlize-Hcomp-Hcomp':

assumes Arr t and Arr v and Arr v and Src t = Trg w and Src u

shows [tx u* v| = [[t] * |u] * [v]]
(proof)

lemma Nmlize- Vcomp-Cod-Arr:
assumes Arr ¢

shows | Cod t - t| = |t]

(proof )

lemma Nmlize- Vcomp-Arr-Dom:
assumes Arr ¢

shows |t - Dom t| = ||

(proof )

lemma Nmlize-Inv:
assumes Can t

shows |Inv t| = Inv |{]
(proof)
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1.6.3 Reductions

Function red defined below takes a formal identity t to a canonical arrow f| € Hom f
|f|. The auxiliary function red2 takes a pair (f, g) of normalized formal identities and
produces a canonical arrow f{} g € Hom (f % g) |f* ¢].

fun red2 (infixr > 53)
where (b)o | v = 1[y]
(N 4 (a)o = r[{A]
D b= *u
| (% a) & (aho = r[t * o]
[ (tw) o= (¢4 Luko]) - (% (b v) - alt, u,
| tJ v = undefined

fun red (x-d» [56] 56)

where (fHod = (Ho
| (M=
| (tx u)d = (if Nml (t % u) then t x w else (| t] 4 [u]) - (& * wl))
| t} = undefined

lemma red-Nml [simp]:
assumes Nml a
shows al = a

(proof)

lemma red2-Nml:
assumes Nml (a x b)
shows a4 b=ax b

{proof)

lemma Can-red?2:

assumes Ide a and Nml a and Ide b and Nml b and Src a = Trg b
shows Can (a { b)

and a{ b€ VHom (a % b) |a* b]

{proof)

lemma red2-in-Hom [intro]:
assumes Ide v and Nml u and Ide v and Nml v and Src u = Trg v
shows u |} v € HHom (Src v) (Trg u) and v | v € VHom (u % v) |u % v]

{proof)

lemma red2-simps [simp):
assumes Ide v and Nml u and Ide v and Nml v and Src u = Trg v
shows Sre (v { v) = Src v and Trg (u { v) = Trg u
and Dom (v v) = u* vand Cod (u{ v) = |u* v]
(proof)

lemma Can-red:
assumes Ide u
shows Can (ul) and w] € VHom u |u]
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{proof)

lemma red-in-Hom [introl:
assumes Ide t
shows t| € HHom (Src t) (Trg t) and t} € VHom t |t]

{proof)

lemma red-simps [simp]:

assumes [de t

shows Sre (t}) = Src t and Trg (t) = Trg t
and Dom (t}) = t and Cod (t}) = |¢]

(proof)

lemma red-Sre:
assumes Ide ¢
shows Src t| = Src t

(proof)

lemma red-Trg:
assumes Ide t
shows Trg t| = Trg t

(proof)

lemma Nmlize-red [simp]:
assumes [de t
shows [t]| = [¢t]

(proof )

lemma Nmlize-red2 [simp]:
assumes Ide t and Ide v and Nml t and Nml v and Src t = Trg u
shows [t u| = [t * u]

(proof )

end

1.6.4 Evaluation

The following locale is concerned with the evaluation of terms of the bicategorical lan-
guage determined by C, srcc, and trgo in a bicategory (V, H, a, i, src, trg), given a
source and target-preserving functor from C to V.

locale evaluation-map =
C: horizontal-homs C srco trgc +
bicategorical-language C srco trgo +
bicategory V H a i src trg +
E: functor C V E
for C :: 'c comp (infixr <) 55)
and srco ‘e = ¢
and frgc :: 'c = 'c
and V :: b comp (infixr <> 55)
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and H :: 'b comp (infixr <0 53)

anda:z'b="b="b=" (xa[-, - )

andi: b= "b («i[-])

and src 1 'b = b

and trg :: 'b = b

and F :: 'c= b +

assumes preserves-src: E (srce x) = src (E x)

and preserves-trg: E (trgc ©) = trg (E z)
begin

notation Nmlize (<|-]>)

notation HcompNml (infixr ¢|x|> 53)
notation VecompNml (infixr <|-|> 55)
notation red (x-d» [56] 56)
notation red? (infixr <{}» 53)

primrec eval :: ‘¢ term = b ({-}»)
where {{(Ho} = Ef

N =EF

[t % uf = {t} % {ul

[t - u = {t} - {u}

| LA} = el

| U A} = UV.map {t}

[ {re[dh =« {t}

| {r [} = v".map {1}

I Ha[t, u, |} = a ({t}, {u

a~lt, u, v]} = a’map ({I’t

{ol)
b {ulbs o)

lemma preserves-obj:
assumes C.obj a
shows obj (E a)

{proof)

lemma eval-in-hom':
shows Arrt = «{t} : {Src t} — {Trg th» A «{t} : {Dom t} = {Cod t}»
(proof)

lemma eval-in-hom [introl:

assumes Arr ¢

shows «{t} : {Src t} — {Trg t}» and «{t} : {Dom t} = {Cod t]»
(proof)

lemma eval-simps:
assumes Arr f

shows arr {f[} and {Src f}} = src {f]} and {Trg f} = trg {f}
and {Dom f} = dom {f]} and {Cod f} = cod {f}

(proof)
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lemma eval-simps':
assumes Arr f

shows arr {f} and src {f} = {Src f} and trg {f} = {Trg f}
and dom {f} = {Dom f|} and cod {f[} = {Cod f}

(proof)

lemma obj-eval-Obj:
shows Obj t = obj {t}
(proof)

lemma ide-eval-Ide:
shows Ide t = ide {t}

{proof)

lemma arr-eval-Arr [simp):
assumes Arr ¢
shows arr {t}

(proof)

lemma eval-Lunit [simp):

assumes Arr ¢

shows {l[{]} = 1[{Cod t}] - (trg {t} * {¢})
(proof )

lemma eval-Lunit’ [simp]:

assumes Arr ¢

shows {I71[{]} = 17[{Cod t}] - {t}
{proof)

lemma eval-Runit [simp]:

assumes Arr ¢

shows {r[{]} = r[{Cod t}] - ({t} * src {t})
{proof)

lemma eval-Runit’ [simp]:

assumes Arr ¢

shows {r[{]} = r~'[{Cod t}] - {t}
{proof)

lemma eval-Assoc [simp]:
assumes Arr t and Arr v and Arr v and Srct = Trg uw and Src v = Trg v

shows {a[t, u, v|} = a (cod {t}, cod {ul}, cod {v}) - (({t}} = {ul}) x {v})
{proof)

lemma eval-Assoc’ [simp]:
assumes Arr t and Arr v and Arr v and Src t = Trg u and Src v = Trg v
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shows {a=![t, u, o]} = a=[cod {t}, cod {ul}, cod {v}] - ({t} » {ul} » {v})
(proof )

lemma eval-Lunit-Ide [simp]:
assumes Ide t
shows {1[{]} = 1[{t[}]

(proof)

lemma eval-Lunit’-Ide [simp]:

assumes Ide t

shows {I7'[{]} = 17 [{t}]
(proof)

lemma eval-Runit-Ide [simp]:
assumes [de t
shows {r[{]} = r[{¢]]

(proof)

lemma eval-Runit’-Ide [simp:

assumes Ide t

shows {r=![{]} = r=1[{t}]
{proof )

lemma eval-Assoc-Ide [simp]:
assumes [de t and Ide u and Ide v and Src t = Trg u and Src u = Trg v
shows {a[t, u, v} = o ({t}, {ul}, {v})

(proof)

lemma eval-Assoc’-Ide [simp]:
assumes Ide t and Ide v and Ide v and Src t = Trg v and Src v = Trg v
shows {a=![t, u, o]} = a=[{t}, {ul}, {v}]

(proof )

lemma iso-eval-Can:
shows Can t = iso {t|}

{proof)

lemma eval-Inv-Can:
shows Can t = {Inv t} = inv {t}

{proof)

lemma eval- VeompNmil:

assumes Nml t and Nml u and VSeq t u
shows {t |-] u} = {t} - Jul}

(proof)

lemma eval-red-Hcomp:
assumes Ide a and Ide b

shows {(a * 0)4} = {la] ¥ [b]} - ({ad} = {0L})

98



{proof)

lemma eval-red2-Nml-Primg:
assumes Ide t and Nml t and Src t = {a)o

shows {t { (a)o} = r[{t}]
{proof)

end

Most of the time when we interpret the evaluation-map locale, we are evaluating
terms formed from the arrows in a bicategory as arrows of the bicategory itself. The
following locale streamlines that use case.

locale self-evaluation-map =
bicategory
begin

sublocale bicategorical-language V src trg {proof)

sublocale evaluation-map V src trg V H a i src trg <\u. if arr u then u else null
(proof )

notation eval (<{-}»)
notation Nmlize (<[-])

end

1.6.5 Coherence

We define an individual term to be coherent if it commutes, up to evaluation, with the
reductions of its domain and codomain. We then formulate the coherence theorem as
the statement “every formal arrow is coherent”. Because reductions evaluate to isomor-
phisms, this implies the standard version of coherence, which says that “parallel canonical
terms have equal evaluations”.

context evaluation-map
begin

abbreviation coherent
where coherent t = {Cod t} - {t} = {|¢]} - {Dom tL}}

lemma Nmli-implies-coherent:
assumes Nml t
shows coherent t

{proof)

lemma canonical-factorization:

assumes Arr ¢
shows coherent t <— {t} = inv {Cod t}} - {|t]]} - {Dom t|}
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{proof)

lemma coherent-iff-coherent-Inv:
assumes Can t
shows coherent t «— coherent (Inv t)

{proof)

The next two facts are trivially proved by the simplifier, so formal named facts are
not really necessary, but we include them for logical completeness of the following devel-
opment, which proves coherence by structural induction.

lemma coherent-Primg:
assumes C.obj a
shows coherent {a)g

{proof)

lemma coherent-Prim:
assumes Arr (f)
shows coherent (f)

{proof)

lemma coherent-Lunit-Ide:
assumes Ide ¢
shows coherent 1[{]

{proof)

Unlike many of the other results, the next one was not quite so straightforward to
adapt from MonoidalCategory.

lemma coherent-Runit-Ide:
assumes Ide ¢
shows coherent r|[t]

{proof)

lemma coherent-Lunit’-Ide:
assumes Ide a
shows coherent 171[a]

(proof)

lemma coherent-Runit’-Ide:
assumes Ide a
shows coherent r~[a]

(proof)

lemma red2-Nmli-Src:

assumes Ide t and Nml t

shows {t { Src t} = r[{t]}]
(proof)

lemma red?2-Trg-Nmil:
assumes Ide t and Nml ¢
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shows {Trg ¢t | t} = 1[{t}]
{proof)

lemma coherence-key-fact:
assumes Ide a A Nml a and Ide b A Nml b and Ide ¢ A Nml ¢
and Src a = Trg b and Src b = Trg ¢
shows {(a [x] b) 4 c} - ({a 4 b} x {cf}) =

{a ¥ (b [x] O} - (alt x {64 c})) - al{al, {0}, {c}
(proof )

lemma coherent-Assoc-Ide:
assumes Ide a and Ide b and Ide ¢ and Src a = Trg b and Src b = Trg c
shows coherent afa, b, ]

{proof)

lemma coherent-Assoc’-Ide:
assumes Ide a¢ and Ide b and Ide ¢ and Src a = Trg b and Src b = Trg ¢
shows coherent a=1[a, b, (]

(proof)

lemma eval-red2-naturality:

assumes Nml t and Nml u and Src t = Trg u

shows {Cod t |} Cod u}} - ({t}} * {ul}) = {t %] u} - {Dom t § Dom ul}
(proof)

lemma coherent-Hcomp:
assumes Arr t and Arr v and Src t = Trg u and coherent t and coherent u
shows coherent (t x u)

{proof)

lemma coherent-Vcomp:

assumes Arr t and Arr v and Dom t = Cod u
and coherent t and coherent u

shows coherent (t - u)

(proof)
The main result: “Every formal arrow is coherent.”

theorem coherence:
assumes Arr t
shows coherent t

(proof)

corollary eval-eql:
assumes VPar t u and |t| = |u]
shows {t} = {ul}
(proof )
The following allows us to prove that two 1-cells in a bicategory are isomorphic simply
by expressing them as the evaluations of terms having the same normalization. The
benefits are: (1) we do not have to explicitly exhibit the isomorphism, which is canonical
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and is obtained by evaluating the reductions of the terms to their normalizations, and
(2) the normalizations can be computed automatically by the simplifier.

lemma canonically-isomorphicl:
assumes f = {t} and g = {u]} and Ide t and Ide v and [t] = |u]
shows f 2 ¢

(proof )
end

end

1.7 Canonical Isomorphisms

In this section we develop some technology for working with canonical isomorphisms in
a bicategory, which permits them to be specified simply by giving syntactic terms that
evaluate to the domain and codomain, rather than often-cumbersome formulas expressed
in terms of unitors and associators.

theory Canonicallsos
imports Coherence
begin

context bicategory
begin

interpretation bicategorical-language (proof)
interpretation E: self-evaluation-map V H a i src trg (proof)
notation E.eval («{-}»)

The next definition defines can u t, which denotes the unique canonical isomorphism
from {t¢} to {uf}. The ordering of the arguments of can has been chosen to be the
opposite of what was used for hom. Having the arguments to can this way makes it easier
to see at a glance when canonical isomorphisms are composable. It could probably be
argued that hom should have been defined this way as well, but that choice is somewhat
well-entrenched by now and the argument for can is stronger, as it denotes an arrow
and therefore appears in expressions composed with other arrows, rather than just as a
hypothesis or conclusion.

definition can
where can u t = {Inv (ul) - |}

1.7.1 Basic Properties

The following develop basic properties of can.

lemma can-in-hom [intro:
assumes Ide t and Ide u and [t] = |u]
shows «can u t : {tf} = {ul}»

{proof)
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lemma can-simps [simp]:
assumes Ide t and Ide v and [t] = |u]
shows arr (can u t) and dom (can u t) = {t} and cod (can u t) = {u}

(proof)

lemma inverse-arrows-can:
assumes Ide t and Ide u and [t] = |u]
shows iso (can u t) and inverse-arrows (can u t) (can t u)

(proof )

lemma inv-can [simp]:
assumes Ide t and Ide u and [t] = |u]
shows inv (can u t) = can t u

(proof)

lemma vcomp-can [simp]:
assumes Ide t and Ide v and Ide v and |t] = |u] and |u] = |v]
shows can v u - can vt = can vt

{proof)

lemma hcomp-can [simp]:

assumes Ide t and Ide u and Ide v and Ide w and |¢| = |u]| and |v| = |w]
and Src t = Trg v and Src u = Trg w

shows can u t x can wv = can (u * w) (¢ * v)

(proof )

1.7.2 Introduction Rules

To make the can notation useful, we need a way to introduce it. This is a bit tedious,
because in general there can multiple can notations for the same isomorphism, and we
have to use the right ones in the right contexts, otherwise we won’t be able to compose
them properly. Thankfully, we don’t need the inverse versions of the theorems below, as
they are easily provable from the non-inverse versions using inv-can.

lemma canl-unitor-0:
assumes ide f

shows [f] = can (f) ({trg fo * (f))
and r[f] = can {f) ({f) * (src fHo)
(proof)

lemma canl-unitor-1:

assumes o0bj a

shows l[a] = can (a)o ({a)o * {a)o)
and r[a] = can {(a)g ({a)o * (a)o)
{proof)

lemma canl-associator-0:
assumes ide f and ide ¢ and ide h and src f = trg g and src g = trg h
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shows alf, g, h] = can ({f) * () * (B)) (({f) * (9)) % ()
(proof)

lemma canl-associator-1:

assumes ide f and ide g and src f = trg g

shows altry /., f, g = can ((trg flo * () * (9)) (({trg o * () * (9))
and alf, src f, g = can ({f) * (sre flo * (g)) () * (s7e o) * (5))
and ;Ef, g, s1c g] = can ({f) * (g) * (sre g)o) (({H * (9)) * (sre gho)
Proo,

lemma canl-associator-2:

assumes ide f

shows altry f, trg f, f] = can ({trg fo * {119 fyo * () ({trg o * {trg fo) * ()
and aftrg f, f, src f] = can ({trg fyo * (/) * (src fHo) (({trg Ho * () * (src fHo)
?nd ;Ef, sre f, sre fl = can ({f) * {src fHo * {src Ho) (({f} * {(src flo) * (src fo)
proo

lemma canl-associator-3:

assumes obj a

shows ala, a, a] = can ({a)o * {a)o * {a)o) (({a)o * {a)o) *x {a)o)
(proof )

lemma canl-associator-hcomp:

assumes ide f and ide g and ide h and ide k

and src f = trg g and src g = trg h and src h = trg k

shows alf x g, h, k| = can (((f) * (g)) x (h) x (k) (({N) * {g)) * (M) * (k}))
and alf, .« b K = can (0 (0) » (1) % (1) ()« () % (1) ¥ C8)
an kg g, K = on (0 x (o 0 ) (0 () +

proo,

1.7.3 Rules for Eliminating ‘can’

The following rules are used for replacing can in an expression by terms expressed using
unit and associativity isomorphisms. They are not really expressed in the form of elim-
ination rules, so the names are perhaps a bit misleading. They are typically applied as
simplifications.

lemma canFE-unitor:

assumes Ide f

shows can f (f x Src f) = r[{f}]
and can f (Trg f* f) = 1[{f}]
and can (f* Src f) f =17 '[{f}]
and can (Trg f* f) f =1"[{f}]
(proof)

lemma canFE-associator:

assumes Ide f and Ide g and Ide h and Src f = Trg g and Src g = Trg h
shows can (f* g x h) ((f* g) x h) = a[{f[}, {9}, {h}]

and can ((fx g) x h) (f* g * h) = a= ' [{f}, {gl}, {A}]

(proof )
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lemma can-Ide-self:
assumes Ide t
shows can t t = {t}

(proof )

1.7.4 Rules for Whiskering

lemma whisker-can-right-0:
assumes Ide t and Ide v and |t] = |u| and ide f and Src t = (trg f)o
shows can u t x f = can (u* () (t *x ()

{proof)

lemma whisker-can-right-1:
assumes Ide t and Ide v and [t] = |u]| and obj a and Src t = (a)
shows can u t x a = can (u * {a)g) (t x {(a)o)

{proof)

lemma whisker-can-left-0:
assumes Ide t and Ide v and [t] = |u] and ide g and Trg t = (src g)o
shows g * can u t = can ({g) * u) ({g) * t)

{proof)

lemma whisker-can-left-1:
assumes Ide t and Ide v and |t] = |u]| and obj b and Trg t = (b)o
shows b x can u t = can ((b)o * u) ({b)g * )

(proof)
end

end

1.8 Sub-Bicategories

In this section we give a construction of a sub-bicategory in terms of a predicate on
the arrows of an ambient bicategory that has certain closure properties with respect
to that bicategory. While the construction given here is likely to be of general use, it
is not the most general sub-bicategory construction that one could imagine, because it
requires that the sub-bicategory actually contain the unit and associativity isomorphisms
of the ambient bicategory. Our main motivation for including this construction here is
to apply it to exploit the fact that the sub-bicategory of endo-arrows of a fixed object is
a monoidal category, which will enable us to transfer to bicategories a result about unit
isomorphisms in monoidal categories.

theory Subbicategory
imports Bicategory
begin
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1.8.1 Construction

locale subbicategory =
B: bicategory V H ap i srcg trgp +
subcategory V Arr

for V :: 'a comp (infixr «p) 55)
and H :: 'a comp (infixr <p> 55)
and ag :: ‘a = ‘a = ‘a='a (vagl -, )
andi: ‘a="a (d[-]))

and srcg :: 'a = 'a

and trgp :: 'a = a

and Arr :: 'a = bool +

assumes src-closed: Arr f = Arr (srep f)

and trg-closed: Arr f = Arr (trgp f)

and hcomp-closed: [ Arr f; Arr g; trgg f = sreg g ]| = Arr (g B f)

and assoc-closed: | Arr f A B.ide f; Arr g A B.ide g; Arr h A B.ide h;
sreg f = trgp g; sreg g = trgp h ]| = Arr (ap fg h)

and assoc’-closed: | Arr f A B.ide f; Arr g A B.ide g; Arr h A B.ide h;
sreg f = trgp g; srep g = trgg b | = Arr (B.inv (ag f g h))

and lunit-closed: | Arr f; B.ide f | = Arr (B.If)

and lunit’-closed: | Arr f; B.ide f | = Arr (B.inv (B.l f))

and runit-closed: | Arr f; B.ide f | = Arr (B.x f)

and runit’-closed: [ Arr f; B.ide f | = Arr (B.inv (B.t f))

begin

notation B.in-hom (4-:-=p -»)
notation comp (infixr <> 55)
definition hcomp (infixr < 53)

where g x f = (if arr f N arr g A\ trgp f = srep g then g xp f else null)

definition src
where src u = (if arr p then srcg p else null)

definition trg
where trg p = (if arr p then trgp u else null)

interpretation src: endofunctor <(-)» src
(proof)

interpretation trg: endofunctor «(-)» trg

(proof)

interpretation horizontal-homs «(-)» src trg

(proof)

interpretation functor VV.comp <(-)» <\uv. fst uv * snd pv»
(proof )
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interpretation horizontal-composition <(-)» «(x)» src trg
(proof)

abbreviation a
where a p v 7 = if VVV.arr (u, v, 7) then ap p v 7 else null

abbreviation (input) asp
where agp pvr = a (fst pvr) (fst (snd pvt)) (snd (snd pvr))

lemma assoc-closed’:
assumes VVV.arr pvr
shows Arr (asp pvr)

{proof)

lemma lunit-closed”:
assumes Arr f
shows Arr (B.[ f)

{proof)

lemma runit-closed”:
assumes Arr f
shows Arr (B.t f)

{proof)

interpretation natural-isomorphism VVV.comp «(-)» HoHV HoVH asp
(proof )

interpretation L: endofunctor «(-)» L

(proof)
interpretation R: endofunctor «(-)» R
(proof)
interpretation L: faithful-functor «(-)» «(-)» L
{proof)
interpretation L: full-functor <(-)» <(-)» L
{proof)
interpretation R: faithful-functor «(-)) <(-)» R
{proof)
interpretation R: full-functor <(-)> <(:)> R
{proof)

interpretation bicategory <«(-)» «(x)» a i src trg

{proof)

proposition is-bicategory:
shows bicategory () (x) a i src trg

(proof)
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lemma obj-char:
shows 0bj a <— arr a A B.obj a

{proof)

lemma hcomp-char:
shows hcomp = (Af g. if arr f A arr g A src f = trg g then f xp g else null)

(proof)

lemma assoc-simp:
assumes ide f and ide g and ide h and src f = trg g and src g = trg h
shows a fgh=ap fgh

(proof)

lemma assoc’-simp:

assumes ide f and ide g and ide h and src f = trg g and src g = trg h
shows a’ fgh=B.a'fgh

(proof)

lemma lunit-simp:
assumes ide f
shows lunit f = B.lunit f

{proof)

lemma lunit’-simp:
assumes ide f
shows lunit’ f = B.lunit’ f

(proof)

lemma runit-simp:
assumes ide f
shows runit f = B.runit f

(proof)

lemma runit’-simp:
assumes ide f
shows runit’ f = B.runit’ f

(proof)

lemma comp-eql [introl:
assumes seq fgand f = f'and g = g’
shows f - g=f"-p g’

(proof )

lemma comp-eql’ [introl:
assumes seq fgand f = f'and g = g’

shows f - g=f"- ¢’
(proof)

lemma hcomp-eql [intro]:
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assumes hseq fgand f = f'and g = g’
shows f x g = f'*xp g’
(proof)

lemma hcomp-eql’ [intro]:
assumes hseq f g and f = f'and g = ¢’
shows f xg g = f'x ¢’

{proof )

lemma arr-compl:
assumes seq f g
shows arr (f -5 g)

(proof)

lemma arr-hcompl:
assumes hseq f g
shows arr (f *g ¢)

(proof)

end

sublocale subbicategory C bicategory «(-)» «(*)» a i src trg

{proof)

1.8.2 The Sub-bicategory of Endo-arrows of an Object

We now consider the sub-bicategory consisting of all arrows having the same object
a both as their source and their target and we show that the resulting structure is a
monoidal category. We actually prove a slightly more general result, in which the unit
of the monoidal category is taken to be an arbitrary isomorphism «w : w xg w = w»
with w isomorphic to a, rather than the particular choice «i[a] : @ xg a = a» made by
the ambient bicategory.

locale subbicategory-at-object =

B: bicategory V H ap i srcp trgp +
subbicategory V H ap i srcp trgp <Au. B.arr w A\ sreg = a A trgp p = @

for V :: 'a comp (infixr <-p> 55)
and H :: 'a comp (infixr <p» 55)
and ag :: ‘a = ‘a = ‘a='a (agl- -, )
andi: ‘a="a («i[-])

and srcg :: 'a = 'a
and trgg :: 'a = 'a

and a :: ‘a

and w :: ‘a

and w :: 'a +

assumes obj-a: B.obj a

and isomorphic-a-w: B.isomorphic a w
and w-in-vhom: «w : w xg W = wW»
and w-is-iso: B.iso w
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begin
notation hcomp (infixr x> 53)

lemma arr-simps:
assumes arr (i
shows src p = a and trg p = a

{proof)

lemma w-simps [simp]:

shows arr w

and src w = a and trg w = a

and dom w = w g w and cod w = w

{proof)

lemma ide-w:
shows B.ide w

(proof)

lemma w-simps [simp]:

shows ide w and B.ide w

and src w = a and trg w = a and srcg w = a and trgg w = a
and dom w = w and cod w = w

{proof)

lemma VzV-arr-eq-VV-arr:
shows VaV.arr f «— VV.arr f

(proof)

lemma VaV-comp-eq-VV-comp:
shows VaV.comp = VV.comp
(proof)

lemma VaVaV-arr-eq-VVV-arr:
shows VaVzV.arr f «— VVV.arr f

{proof)

lemma VzVzV-comp-eq-VVV-comp:
shows VaVaV.comp = VVV.comp

{proof)

interpretation H: functor VaV.comp «(-)» <Apv. fst uv x snd pv»
(proof )

interpretation H: binary-endofunctor «(-)» <Auv. fst uv x snd uv> (proof)

lemma HoHV-eq-ToTC:
shows HoHV = H.ToTC

(proof)
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lemma HoVH-eq-ToCT:
shows HoVH = H.ToCT

{proof)

interpretation ToTC: functor VeVaV.comp «(-)» H.ToTC

(proof )
interpretation ToCT: functor VeVzV.comp «(-)» H.ToCT

{proof)

interpretation «: natural-isomorphism VaVzV.comp «(-)» H.ToTC H.ToCT «
{proof )

interpretation L: endofunctor «(-)» «Af. fst (w, f) x snd (w, f)»
(proof)

interpretation L” equivalence-functor <(-)» <«(-)» <Af. fst (w, f) = snd (w, f)

{proof)
interpretation L: equivalence-functor «(-)» <«(-)» <Af. fst (cod w, f) x snd (cod w, f)»

{proof)

interpretation R: endofunctor «(-)» <Af. fst (f, w) = snd (f, w)
{proof)

interpretation R’ equivalence-functor «(-)» <«(-)» <Af. fst (f, w) = snd (f, w)

(proof)
interpretation R: equivalence-functor «(-)> «(-)» <Af. fst (f, cod w) x snd (f, cod w)>

{proof)

interpretation M: monoidal-category «(-)> <Auv. fst pv x snd v a w

(proof)

proposition is-monoidal-category:
shows monoidal-category (-) (Auv. fst uv * snd pv) o w

(proof)

end

In a bicategory, the “objects” are essentially arbitrarily chosen representatives of their
isomorphism classes. Choosing any other representatives results in an equivalent struc-
ture. Each object a is additionally equipped with an arbitrarily chosen unit isomorphism
4t : a* a = a» For any (a, ) and (a’, /), where a and a’ are isomorphic to the same
object, there exists a unique isomorphism «: a = a’» that is compatible with the chosen
unit isomorphisms ¢ and .. We have already proved this property for monoidal cate-
gories, which are bicategories with just one “object”. Here we use that already-proven
property to establish its generalization to arbitary bicategories, by exploiting the fact
that if a is an object in a bicategory, then the sub-bicategory consisting of all u such
that src p = a = trg p, is a monoidal category.
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At some point it would potentially be nicer to transfer the proof for monoidal cate-

gories to obtain a direct, “native” proof of this fact for bicategories.

lemma (in bicategory) unit-unique-upto-unique-iso:

assumes obj a

and isomorphic a w

and «w : w* w = w»

and iso w

shows 3. «b 1 a = wy Adso Y A -ifa] = w - (Y x )

(proof)

end

1.9 Internal Equivalences

theory InternalEquivalence
imports Bicategory
begin

An internal equivalence in a bicategory consists of antiparallel 1-cells f and ¢ together
with invertible 2-cells «n : src f = g x f» and «e : f x g = src g». Objects in a bicategory
are said to be equivalent if they are connected by an internal equivalence. In this section
we formalize the definition of internal equivalence and the related notions “equivalence
map” and “equivalent objects”, and we establish some basic facts about these notions.

1.9.1 Definition of Equivalence

The following locale is defined to prove some basic facts about an equivalence (or an
adjunction) in a bicategory that are “syntactic” in the sense that they depend only on
the configuration (source, target, domain, codomain) of the arrows involved and not on
further properties such as the triangle identities (for adjunctions) or assumptions about
invertibility (for equivalences). Proofs about adjunctions and equivalences become more
automatic once we have introduction and simplification rules in place about this syntax.
locale adjunction-data-in-bicategory =
bicategory +

fixes f :: 'a
and g :: a
and 7 :: 'a
and € :: 'a

assumes ide-left [simp]: ide f

and ide-right [simp]: ide g

and unit-in-vhom: «n : src f = g x f»
and counit-in-vhom: «e : f * g = src g»
begin

lemma antipar :
shows trg g = src f and src g = trg f
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(proof)

lemma counit-in-hom [intro]:
shows «e : trg f — trg f» and «e : f x g = trg f»
{proof)

lemma unit-in-hom [intro]:
shows «n : src f — src fy and «n : src f = g * f»

{proof)

lemma unit-simps [simp):
shows arr n and dom n = src f and cod n = g * f
and src n = src f and trg n = src f

{proof)

lemma counit-simps [simp]:
shows arr ¢ and dom ¢ = f x g and cod € = trg f
and srce = trg f and trg e = trg f

(proof)

The expressions found in the triangle identities for an adjunction come up relatively
frequently, so it is useful to have established some basic facts about them, even if the
triangle identities themselves have not actually been introduced as assumptions in the
current context.

lemma triangle-in-hom:

shows «(e x f) - a=Yf, g, f] - (fxn) : f xsrc f = trg f x f»

and «(gx¢)-alg, f, 9] - (nxg):trggxg= g* srcg»

and «[f] - (e x f) a7 '[f, g, f] - (fxm) -2 f] : f = fr

and «x(g] - (g x¢) - alg, f. gl - (nxg) - 17'[g] : g = g»
(proof )

lemma triangle-equiv-form:
shows (¢« f) - a~'[f, g, f] - (f x n) = 17Mf] - x[f] +—
W] -xf)-a 'f, 9, f1-(Fxn) - fl=Ff
and (g x¢€) - alg, f, g] - (n x g) =17 '[g] - l[g] +—
tlg] - (gx¢)-alg, f,gl- mxg)-17'gl =9
(proof)

end

locale equivalence-in-bicategory =

adjunction-data-in-bicategory +
assumes unit-is-iso [simpl: iso 7
and counit-is-iso [simp|: iso €
begin

lemma dual-equivalence:
shows equivalence-in-bicategory V H a i src trg g f (inv €) (inv n)

{proof)
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end

abbreviation (in bicategory) internal-equivalence
where internal-equivalence f g p ¥ = equivalence-in-bicategory V H a i src trg f g ¢ ¢

1.9.2 Quasi-Inverses and Equivalence Maps

Antiparallel 1-cells f and ¢ are quasi-inverses if they can be extended to an internal
equivalence. We will use the term equivalence map to refer to a 1-cell that has a quasi-
inverse.

context bicategory
begin

definition quasi-inverses
where quasi-inverses f ¢ = 3 1. internal-equivalence f g ¢ ¥

lemma quasi-inversesl:

assumes ide f and ide g

and src f Zgx fand f x g X trg f
shows quasi-inverses f g

{proof)

lemma quasi-inverseskE:

assumes quasi-inverses f g

and [ide f;ide g; src f Z gr f; fxg 2 trgf] = T
shows T

{proof)

lemma quasi-inverse-unique:
assumes quasi-inverses f g and quasi-inverses f g’
shows isomorphic g g’

{proof)

lemma quasi-inverses-symmetric:
assumes quasi-inverses f g
shows quasi-inverses g f

{proof)

definition equivalence-map
where equivalence-map f = g n €. equivalence-in-bicategory V H a i src trg fgn e

lemma equivalence-mapl:
assumes quasi-inverses | g
shows equivalence-map f

(proof)

lemma equivalence-mapkE':
assumes equivalence-map f
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obtains g where quasi-inverses f g
{proof )

lemma equivalence-map-is-ide:
assumes equivalence-map f
shows ide f

(proof)

lemma obj-is-equivalence-map:
assumes 0bj a
shows equivalence-map a

(proof)

lemma equivalence-respects-iso:

assumes equivalence-in-bicategory V H a i srctrg fgne

and «p : f = f’» and iso p and «¢ : g = ¢'» and iso ¢

shows internal-equivalence f' g’ ((g' * ©) - (¥ * f) - m) (e - (inv @ x g) - (f' x inv P))
(proof)

lemma equivalence-map-preserved-by-iso:
assumes equivalence-map f and f = f'
shows equivalence-map f’

{proof)

lemma equivalence-preserved-by-iso-right:

assumes equivalence-in-bicategory V H ai srctrg fgne

and «p : g = ¢g'» and iso ¢

shows equivalence-in-bicategory V. -H a i srctrg f g’ ((p * f) - n) (e - (f x inv ¢))
(proof)

lemma equivalence-preserved-by-iso-left:

assumes equivalence-in-bicategory V H a i srctrg fgne

and «p : f = f’» and iso ¢

shows equivalence-in-bicategory V H a i src trg f' g ((g x ©) - n) (¢ - (inv ¢ x g))
(proof)

definition some-quasi-inverse
where some-quasi-inverse f = (SOME g. quasi-inverses f g)

notation some-quasi-inverse (<- » [1000] 1000)

lemma quasi-inverses-some-quasi-inverse:
assumes equivalence-map f

shows quasi-inverses f f~

and quasi-inverses f f

{proof)

lemma quasi-inverse-antipar:
assumes equivalence-map f
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shows src f = trg f and trg f = src f
(proof )

lemma quasi-inverse-in-hom [intro):
assumes equivalence-map f
shows «f " : trg f — src f»
and «f :f = f »
(proof)

lemma quasi-inverse-simps [simp]:

assumes equivalence-map f

shows equivalence-map f~ and ide f~

and src f = trg f and trg f = src f

and dom f~ = f and cod f~ = f~
(proof )

lemma quasi-inverse-quasi-inverse:
assumes equivalence-map f
shows (f ) = f

{proof)

lemma comp-quasi-inverse:

assumes cequivalence-map f

shows [~ «x f = srcfand f x f = trg f
(proof )

lemma quasi-inverse-transpose:

assumes ide f and ide g and ide hand f x g = h
shows equivalence-map g = f = h x g

and equivalence-map f => g = f x h

(proof)

end

1.9.3 Composing Equivalences

locale composite-equivalence-in-bicategory =
bicategory V H a i src trg +
fg: equivalence-in-bicategory V H ai srctrg fg ¢ £ +
hk: equivalence-in-bicategory V H a i srctrg h'k o T

for Vi:'a='a="a (infixr <> 55)
and H :: 'a = ‘a="a (infixr x> 53)
anda: ‘a= 'a= 'a="a ([ - )
andi:’a="a (d[-])

and src 1 'a = 'a
and trg :: 'a = 'a

and f :: ‘a
and g :: 'a
and ( :: 'a
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and € :: 'a
and i :: a
and £k :: 'a

~

and o :: ‘a
and 7 :: ‘a +

assumes composable: src h = trg f
begin

abbreviation 7
where n =a g, k, hx f] - (gxalk, b, f]) - (gxox[) - (g*17'[f]) - ¢

abbreviation ¢
where e = 7 - (hx1[k]) - (hx Ex k) - (hxa~L[f, g, k]) - a[h, f, g x K|

interpretation adjunction-data-in-bicategory V H a i src trg <h x f> <g x k> n ¢

(proof )

interpretation equivalence-in-bicategory V H a i src trg <h x f> <gx k> n ¢

{proof)

lemma is-equivalence:
shows equivalence-in-bicategory V. H a i srctrg (h x f) (9 x k) n e
(proof )

sublocale equivalence-in-bicategory V H a i src trg <h x [y <gx k> n e

(proof)

end

context bicategory
begin

lemma equivalence-maps-compose:
assumes equivalence-map f and equivalence-map f’' and src f' = trg f
shows equivalence-map (f' * f)

{proof)

lemma quasi-inverse-hcomp’:

assumes equivalence-map f and equivalence-map f' and equivalence-map (f * f')
and quasi-inverses f g and quasi-inverses f' g’

shows quasi-inverses (f * f') (¢’ * g)

(proof )

lemma quasi-inverse-hcomp:
assumes equivalence-map f and equivalence-map f' and equivalence-map (f * f”)
shows (f x f))" = f" x f~

(proof )

lemma quasi-inverse-respects-isomorphic:
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assumes equivalence-map f and equivalence-map f’ and f = f’
shows f = f~

{proof)

end

1.9.4 Equivalent Objects

context bicategory
begin

definition equivalent-objects
where equivalent-objects a b = 3f. «f : a — b» N equivalence-map f

lemma equivalent-objects-reflexive:
assumes obj a
shows equivalent-objects a a

(proof)

lemma equivalent-objects-symmetric:
assumes equivalent-objects a b
shows equivalent-objects b a

{proof)

lemma equivalent-objects-transitive [trans]:
assumes cquivalent-objects a b and equivalent-objects b ¢
shows equivalent-objects a ¢

{proof)

end

1.9.5 Transporting Arrows along Equivalences

We show in this section that transporting the arrows of one hom-category to another
along connecting equivalence maps yields an equivalence of categories. This is useful,
because it seems otherwise hard to establish that the transporting functor is full.

locale two-equivalences-in-bicategory =
bicategory V H a i src trg +
eo: equivalence-in-bicategory V H a i src trg eq dg no €9 +
e1: equivalence-in-bicategory V H a i src trg e; di m1 €1

for Vi'a='a="a (infixr <> 55)
and H :: '"a = 'a = "a (infixr x> 53)
and a :: 'a = 'a = 'a = 'a (xal-, -, )
andi: ‘a="a (<i[-]»)

and src 1 'a = 'a
and trg :: 'a = a
and ¢y :: ‘a
and dg :: ‘a

and 7 :: ‘a
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and ¢g :: ‘a
and e; :: ‘a
and d; :: 'a
and n; :: 'a
and 1 :: ‘a
begin

interpretation hom: subcategory V <Ap. «p : src eg — src ep»»

{proof)

no-notation in-hom (¢g-: - = -»)

interpretation hom’: subcategory V <\u. «p : trg eg — trg epm

(proof)
no-notation in-hom (<41 - = -m)

abbreviation (input) F'
where F' = A\u. e1 x p % dy

interpretation F: functor hom.comp hom'.comp F

{proof)

abbreviation (input) G
where G = \u'. dy * p/ % e

interpretation G: functor hom’.comp hom.comp G

{proof)

interpretation GF: composite-functor hom.comp hom'.comp hom.comp F G (proof)
interpretation F'G: composite-functor hom'.comp hom.comp hom'.comp G F (proof)

abbreviation (input) g
where oo f = (di * a~[er, f * do, eq]) - aldy, e1, (f * do) * eq] -
((dy x er) x a='[f, do, eol) - (m % f % m0) - 17 x src eq] - v 1f]

lemma pg-in-hom:

assumes «f : src eg — src e;» and ide f
shows «pqg f : src eg — src ep»

and «@o f: f = dy * (e1 x f x dg) * e»

(proof)
lemma iso-py:

assumes «f : src eg — src er» and ide f
shows iso (g f)

(proof)

interpretation ¢: transformation-by-components hom.comp hom.comp hom.map <G o F» g
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{proof)

lemma transformation-by-components-pg:
shows transformation-by-components hom.comp hom.comp hom.map (G o F) g

(proof)

interpretation ¢: natural-isomorphism hom.comp hom.comp hom.map <G o F» p.map

{proof)

lemma natural-isomorphism-p:
shows natural-isomorphism hom.comp hom.comp hom.map (G o F) ¢@.map

(proof)

definition ¢
where ¢ = p.map

lemma p-ide-simp:
assumes «f : src eg — src er» and ide f
shows ¢ f = ¢o f

(proof)

lemma p-components-are-iso:
assumes «f : src eg — src e;» and ide f
shows iso (¢ f)

{proof)

lemma ¢-eq:
shows ¢ = (Au. if «u : src eg — src ep» then g (cod p) - else null)
{proof )

lemma @-in-hom [intro]:

assumes ([ : Src eg —> STC 1%

shows «p p : src eg — src er»

and «p p: dom p = dy * (e1 * cod p * do) * eg»

{proof)

lemma @-simps [simp]:

assumes «f : STC €9 — SrC e1»

shows arr (¢ p)

and src (¢ p) = src eg and trg (p p) = src eg

and dom (p p) = dom p and cod (¢ p) = dy * (e1 x cod p x dg) * eg
(proof )

interpretation dy: equivalence-in-bicategory V H a i src trg dy ey <inv €g> <inv ng>
(proof)
interpretation di: equivalence-in-bicategory V H a i src trg di ey <inv £1> <inv 01>
(proof )
interpretation dgey: two-equivalences-in-bicategory V H a i src trg
dy eg <inv g9 <N Mo di €1 <INV £1) <INV M)
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(proof)

interpretation v: inverse-transformation hom’.comp hom'.comp hom’.map «F o G» dgeg.p

{proof)

definition v
where 1 = ¢.map

lemma -ide-simp:

assumes «f" trg eg — trg e1» and ide f’

shows ¢ [/ =r[f] - 1[f' x trg eg] - (g1 *x f' * £0) - ((e1 * dy1) * a[f’, eo, do]) -
a’l[el, dy, (f/* 60) * do] . (61 * a[dl, f/* €0, do])

(proof)

lemma v -components-are-iso:
assumes «f’: trg eg — trg ey» and ide f’
shows iso (¢ f)

(proof)

lemma -eq:
shows ¢ = (\u'. if «u': trg eg — trg ey» then
w' - r[dom p'] - l[dom p' x trg eg] - (e1 * dom p' * €9) -
((e1 * d1) x a[dom p', eo, do]) - a~'[e1, d1, (dom p' x eg) % do] -
(e1 * a[dy, dom p' x eg, do])
else null)

(proof )

lemma -in-hom [introl:

assumes «u’: trg eg — trg er»

shows « u’: trg eg — trg ep»

and «tp p':ep * (di x dom p' % eg) * dg = cod p'»

(proof)

lemma -simps [simp):

assumes «// 1 trg eg — trg e1»

shows arr (¢ p’)

and src (Y p') = trg ep and trg (¢ p’) = trg e

and dom (¢ p') = e; * (d1 * dom p’ % eg) x do and cod (¢ p') = cod p'
(proof )

interpretation equivalence-of-categories hom'.comp hom.comp F G ¢

(proof )

lemma induces-equivalence-of-hom-categories:
shows equivalence-of-categories hom'.comp hom.comp F G

{proof)

lemma equivalence-functor-F:
shows equivalence-functor hom.comp hom'.comp F
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{proof)

lemma equivalence-functor-G:
shows equivalence-functor hom’.comp hom.comp G

(proof)

end

context bicategory
begin

We now use the just-established equivalence of hom-categories to prove some cancel-
lation laws for equivalence maps. It is relatively straightforward to prove these results
directly, without using the just-established equivalence, but the proofs are somewhat
longer that way.

lemma equivalence-cancel-left:

assumes equivalence-map e

and par ' and srce = trg pand e x u = e *
shows = pu’

(proof)

lemma equivalence-cancel-right:

assumes equivalence-map e

and par p p' and src p = trgeand pxe=p' x e
shows = pu'

(proof)

lemma equivalence-isomorphic-cancel-left:

assumes equivalence-map e and ide f and ide f’

and src f = src f'and src e = trg f and e x f = e x f'
shows [ = f/

(proof)

lemma equivalence-isomorphic-cancel-right:

assumes equivalence-map e and ide f and ide f’

and trg f = trg f'and src f = trgeand f x e = f' ' x e
shows f = f/

(proof)

end

end

1.10 Pseudofunctors
theory Pseudofunctor

imports MonoidalCategory. MonoidalFunctor Bicategory Subbicategory InternalEquivalence Co-
herence
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begin

The traditional definition of a pseudofunctor F' : C — D between bicategories C' and
D is in terms of two maps: an “object map” F, that takes objects of C' to objects of D
and an “arrow map” F, that assigns to each pair of objects a and b of C a functor Fy a b
from the hom-category hom¢ a b to the hom-category homp (F, a) (F, b). In addition,
there is assigned to each object a of C' an invertible 2-cell «¥ a : F, a =p (F, a a) a»,
and to each pair (f, ¢g) of composable 1-cells of C there is assigned an invertible 2-cell
«® (f,g9): Fg*x Ff= F (g*f)» all subject to naturality and coherence conditions.

In keeping with the “object-free” style in which we have been working, we do not
wish to adopt a definition of pseudofunctor that distinguishes between objects and other
arrows. Instead, we would like to understand a pseudofunctor as an ordinary functor
between (vertical) categories that weakly preserves horizontal composition in a suitable
sense. So, we take as a starting point that a pseudofunctor F' : C — D is a functor
from C to D, when these are regarded as ordinary categories with respect to vertical
composition. Next, F should preserve source and target, but only “weakly” (up to
isomorphism, rather than “on the nose”). Weak preservation of horizontal composition
is expressed by specifying, for each horizontally composable pair of vertical identities (f,
g) of C; a “compositor” «® (f, g) : Fgx F f= F (g f)» in D, such that the ® (f, g) are
the components of a natural isomorphism. Associators must also be weakly preserved by
F; this is expressed by a coherence condition that relates an associator ac[f, g, h] in C,
its image F ac|[f, g, h], the associator ap[F f, F g, F h] in D and compositors involving
f, g, and h. As regards the weak preservation of unitors, just as for monoidal functors,
which are in fact pseudofunctors between one-object bicategories, it is only necessary to
assume that F ig[a] and ip[F a] are isomorphic in D for each object a of C, for there
is then a canonical way to obtain, for each a, an isomorphism «V¥ a : src (F' a) — F
a» that satisfies the usual coherence conditions relating the unitors and the associators.
Note that the map a — src (F a) amounts to the traditional “object map” F,, so that
this becomes a derived notion, rather than a primitive one.

1.10.1 Weak Arrows of Homs

We begin with a locale that defines a functor between “horizontal homs” that preserves
source and target up to isomorphism.

locale weak-arrow-of-homs =
C': horizontal-homs C srcc trgc +
D: horizontal-homs D srcp trgp +
functor C D F
for C :: 'c comp (infixr <> 55)
and srcg : 'c = e
and trgc 1 'c = 'c
and D :: 'd comp (infixr <p» 55)
and srcp : 'd = 'd
and trgp : 'd = 'd
and F :: 'c = 'd +
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assumes weakly-preserves-src: Ap. C.arr yp = D.isomorphic (F (srcc p)) (srep (F p))
and weakly-preserves-trg: Au. C.arr p = D.isomorphic (F (trgc p)) (trgp (F' p))
begin

lemma isomorphic-src:
assumes C.obj a
shows D.isomorphic (srcp (F a)) (F a)

{proof)

lemma isomorphic-trg:
assumes C.obj a
shows D.isomorphic (trgp (F a)) (F a)

(proof)

abbreviation (input) hseqc
where hseqc pv = C.arr u A C.arr v A sreg g = trge v

abbreviation (input) hseqp
where hseqp v = D.arr u A D.arr v A srcp p = trgp v

lemma preserves-hseq:
assumes hseqc [t vV
shows hseqp (F ) (F v)

(proof)

Though F' does not preserve objects “on the nose”, we can recover from it the usual
“object map”, which does. It is slightly confusing at first to get used to the idea that
applying the object map of a weak arrow of homs to an object does not give the same
thing as applying the underlying functor, but rather only something isomorphic to it.

The following defines the object map associated with F.

definition mapg
where mapy a = srep (F a)

lemma mapg-simps [simp]:

assumes C.obj a

shows D.obj (mapy a)

and srcp (mapg a) = mapy a and trgp (mapy a) = mapy a
and D.dom (mapy a) = mapy a and D.cod (mapy a) = mapy a

(proof)

lemma preserves-src [simp]:
assumes C.arr
shows srcp (F 1) = mapy (srco p)

(proof)

lemma preserves-trg [simp):

assumes C.arr u

shows trgp (F p1) = mapo (trgc )
(proof)
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lemma preserves-hhom [introl:
assumes C.arr u
shows D.in-hhom (F p) (mapg (srec p)) (mapg (trge w))

(proof)

We define here the lifting of F' to a functor FF: CC — DD. We need this to define
the domains and codomains of the compositors.

definition FF'
where FF = Auv. if C.VV.arr uv then (F (fst uv), F (snd pv)) else D.VV.null

sublocale FF': functor C.VV.comp D.VV.comp FF
(proof)

lemma functor-FF'
shows functor C.VV.comp D.VV.comp FF

(proof)

end

1.10.2 Definition of Pseudofunctors

I don’t much like the term "pseudofunctor", which is suggestive of something that is
“not really” a functor. In the development here we can see that a pseudofunctor is
really a bona fide functor with respect to vertical composition, which happens to have in
addition a weak preservation property with respect to horizontal composition. This weak
preservation of horizontal composition is captured by extra structure, the “compositors”,
which are the components of a natural transformation. So “pseudofunctor” is really a
misnomer; it’s an actual functor that has been equipped with additional structure relating
to horizontal composition. I would use the term “bifunctor” for such a thing, but it seems
to not be generally accepted and also tends to conflict with the usage of that term to
refer to an ordinary functor of two arguments; which I have called a “binary functor”.
Sadly, there seem to be no other plausible choices of terminology, other than simply
“functor” (recommended on n-Lab https://ncatlab.org/nlab/show/pseudofunctor), but
that is not workable here because we need a name that does not clash with that used for
an ordinary functor between categories.

locale pseudofunctor =
C: bicategory Vo He ac ic srco trge +
D: bicategory Vp Hp ap ip srcp trgp +
weak-arrow-of-homs V¢ srce trgc Vp srcp trgp F +
FoHc: composite-functor C.VV.comp Vo Vp Auv. Ho (fst pv) (snd pv)y F +
HpoFF: composite-functor C.VV .comp D.VV.comp Vp
FF Qupv. Hp (fst pv) (snd pv)y +
®: natural-isomorphism C.VV.comp Vp HpoFF.map FoHc.map ®

for Vo i 'c comp (infixr <> 55)
and H¢ 2 'c comp (infixr <x¢> 53)
and ac : ‘c='c="c='c (cac[- - )
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and ic : ‘e = 'c (<iel-])
and srcg : 'c = e
and trgc 1 'c = 'c

and Vp :: 'd comp (infixr <p» 55)
and Hp :: 'd comp (infixr <p> 53)
andap = 'd = 'd="d="d (<apl-, - -]»)
and ip = 'd = 'd (dp[-])

and srcp :: 'd = 'd
and trgp :: 'd = 'd
and F :: 'c = 'd
and ® :: ‘c x 'c = 'd +
assumes assoc-coherence:
[ C.ide f; C.ide g; C.ide h; srcc f = trgc g; srcc g = trgc h | =
FaC[f? g, h] p ® (f*C 9, h) *D ((I) (fu g) *D Fh) =
(0] (f, g *c h) ‘D (Ff *D P (g, h)) ‘D aD[Ff, Flg7 Fh]

begin
no-notation C.in-hom (4= - =c -m)
no-notation D.in-hom («-: - —=p -»)
notation C.in-hhom (-1 - = -m)
notation C.in-hom (4= - =0 -m)
notation D.in-hhom (<¢-: - —=p -»)
notation D.in-hom («-: - =p -m)
notation C.lunit (del-])
notation C.runit («xel-])
notation C.lunit’ (e )
notation C.runit’ (e P
notation C.a’ (cac™ - - )
notation D.lunit (dp[-]»)
notation D.runit (apl-])
notation D.lunit’ (Ip~ D)
notation D.runit’ («ccp™ D)
notation D.a’ (cap~'[- - )

lemma weakly-preserves-objects:
assumes C.obj a
shows D.isomorphic (mapg a) (F a)

(proof)

lemma cmp-in-hom [intro]:

assumes C.ide ¢ and C.ide b and srcc a = trgc b
shows «® (a, b) : mapg (srcc b) —p mapy (trgc a)»
and «® (a, b): Faxp Fb=p F (a *c b)»

(proof)

lemma cmp-simps [simp]:
assumes C.ide f and C.ide g and srce f = trgc g
shows D.arr (® (f, g))
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and srep (@ (f, g)) = srep (F g) and trgp (P (f, g)) = trgp (F f)
and D.dom (® (f, g)) = F f xp F gand D.cod (® (f, 9)) = F (f x¢ g)

(proof)

lemma cmp-in-hom”

assumes C.arr pand C.arr v and srce p = trge v

shows «® (u, v) : mapy (srcc v) —p mapy (trge p)»

and «® (p, v) : F (C.dom p) xp F (C.dom v) =p F (C.cod p ¢ C.cod v)»
{proof)

lemma cmp-simps’:

assumes C.arr pand C.arr v and srce p = trge v

shows D.arr (® (u, v))

and srcp (P (u, v)) = mapg (sree v) and trgp (P (u, v)) = mapy (trgc 1)
and D.dom (® (u, v)) = F (C.dom p) xp F (C.dom v)

and D.cod (® (pu, v)) = F (C.cod p *¢c C.cod v)

(proof)

lemma cmp-components-are-iso [simp):
assumes C.ide f and C.ide g and srce f = trgc g
shows D.iso (® (f, g))

(proof)

lemma weakly-preserves-hcomp:

assumes C.ide f and C.ide g and srce f = trgc g

shows D.isomorphic (F f xp F g) (F (f ¢ 9))
(proof)

end

context pseudofunctor
begin

The following defines the image of the unit isomorphism i¢[a] under F. We will use
(F a, i[a]) as an “alternate unit”, to substitute for (srep (F a), ip[srcp (F a)]).

abbreviation (input) i («[-]»)
where i[a] = F i¢la] -p D (a, a)

lemma i-in-hom [intro]:

assumes C.obj a

shows «F i¢[a] -p ® (a, a) : mapy a —p mapy a»
and «ifa] : Fa*p Fa=p F a»

{proof)

lemma i-simps [simp]:

assumes C.obj a

shows D.arr (i a)

and srcp i[a] = mapy a and trgp i[a] = mapy a
and D.dom i[a) = F a xp F a and D.cod i[a] = F a
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(proof)

lemma iso-i:
assumes C.obj a
shows D.iso i[a]

(proof)

If a is an object of C' and we have an isomorphism «® (a, a) : Fa*p Fa=p F (a
*c a)», then there is a canonical way to define a compatible isomorphism «W¥ a : mapg
a =p F a». Specifically, we take ¥ a to be the unique isomorphism «v : mapg a =p F

a» such that ¢ -p ip[mapo a] = i[a] -p (Y *p V).

definition unit
where unit a = THE ). « : mapy a =p F a» A D.iso ¢ A
¥ -p ip[mapy a] =ila] -p (¥ *p V)

lemma unit-char:

assumes C.obj a

shows «unit a : mapyg a =p F a» and D.iso (unit a)

and unit a -p ip[mapg a] = i[a] -p (unit a xp unit a)

and 3. «¥ : mapg a =p F a» A D.iso p A -p ip[mapg a] = ila] -p (¥ xp ¥)
(proof)

lemma unit-simps [simp):

assumes C.obj a

shows D.arr (unit a)

and srcp (unit a) = mapy a and trgp (unit a) = mapy a
and D.dom (unit a) = mapy a and D.cod (unit a) = F a

{proof)

lemma unit-in-hom [intro]:

assumes C.obj a

shows «unit a : mapy a —p mapgy a»
and «unit a : mapg a =p F a»

(proof)

lemma unit-eql:

assumes C.obj a and «u: mapy a =p F a» and D.iso p
and p -p ip[mapo a] =1 a-p (1 *p )

shows u = unit a

(proof)

The following defines the unique isomorphism satisfying the characteristic conditions
for the left unitor 1p[trgp (F f)], but using the “alternate unit” i[trgc f] instead of
ip[trgp (F f)], which is used to define 1p[trgp (F' f)].

definition [F
where [F f = THE p. «u : F (trgc f) xp Ff =p F f» A
F (trgc f) xp p =(i[trgc fl xp F f) -p ap~ '[F (trgc f), F (trgc f), F f]

lemma [F-char:
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assumes C.ide f
shows «IF f : F (trgc f) xp F f =p F f»
and F (trgc f) xp IF f = (i[trgc f] *p F f) -p ap™'[F (trgc f), F (trgc f), F f]
and Flu. «p: F (trgc f) xp F f =p Ff» A

F (trgc f) *p p = (iltrgc fl xp F f) -p ap™'[F (trgc f), F (trgc f), F f]
(proof)

lemma [F-simps [simp]:
assumes C.ide f
shows D.arr (IF f)

and srep (IF f) = mapg (sree f) and trgp (IF f) = mapo (trgc f)
and D.dom (IF f) = F (trgc f) xp F f and D.cod (IF f) = F f

(proof)

The next two lemmas generalize the eponymous results from MonoidalCate-
gory.MonoidalFunctor. See the proofs of those results for diagrams.

lemma [unit-coherencel :

assumes C.ide f

shows Ip[F f] -p D.inv (unit (trgc f) xp F f) =1F f
(proof)

lemma lunit-coherence2:

assumes C.ide f

shows IF f = F 1¢[f] -p @ (trge f, f)
(proof)

lemma [unit-coherence:

assumes C.ide f

shows ID[Ff] =F lc[ﬂ ‘D P (t?”gc f, f) ‘D (um’t (trgc f) *D Ff)
(proof)

We postpone proving the dual version of this result until after we have developed the
notion of the “op bicategory” in the next section.

end

1.10.3 Pseudofunctors and Opposite Bicategories

There are three duals to a bicategory:
1. “op”: sources and targets are exchanged;
2. “co”: domains and codomains are exchanged;
3. “co-op”: both sources and targets and domains and codomains are exchanged.

Here we consider the "op" case.

locale op-bicategory =
B: bicategory V Hp ap ip srcp trgp
for V :: 'a comp (infixr <> 55)
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and Hp :: 'a comp (infixr <p» 53)
and ag :: '/a = ‘a = 'a = 'a (cap[-, -, )
and ig :: ‘a = 'a (dg[])

and srcg :: 'a = 'a

and trgg :: 'a = a

begin

abbreviation H (infixr x> 53)
where Hfg=Hp g f

abbreviation i («[-]»)
where i = ip

abbreviation src
where src = trgp

abbreviation trg
where trg = srcp

interpretation horizontal-homs V src trg

(proof)

interpretation H: functor VV.comp V Auv. fst pv x snd uv»
(proof)

interpretation horizontal-composition V H src trg

(proof)

abbreviation UP
where UP pvt = if B.VVV.arr uvt then
(snd (snd pvt), fst (snd pvt), fst uvr)
else VVV.null

abbreviation DN
where DN pvt = if VVV.arr pvt then
(snd (snd pvt), fst (snd pvt), fst puvr)
else B.VVV . null

lemma VVV-arr-char:
shows VVV.arr pvr <— B.VVV.arr (DN pvt)

{proof)

lemma VVV-ide-char:
shows VVV.ide pvt <— B.VVV.ide (DN pvt)

{proof)

lemma VVV-dom-char:
shows VVV.dom pvt = UP (B.VVV.dom (DN pvr))

{proof)
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lemma VVV-cod-char:
shows VVV.cod pvt = UP (B.VVV.cod (DN pvr))

{proof)

lemma HoHV-char:
shows HoHV uvt = B.HoVH (DN pvr)

{proof)

lemma HoVH-char:
shows HoVH puvt = B.HoHV (DN puvr)

(proof)

definition a (<al-, -, -]»)
where alu, v, 7] = B.a’ (DN (p, v, 7))

interpretation natural-isomorphism VVV.comp «(-)> HoHV HoVH
Auvt. alfst pvr, fst (snd pvt), snd (snd pvr))
(proof)

sublocale bicategory V H a i src trg

{proof)

proposition is-bicategory:
shows bicategory V H a i src trg

(proof)

lemma assoc-ide-simp:

assumes B.ide f and B.ide g and B.ide h
and src f = trg g and src g = trg h
shows alf, g, h] = Ba'hgf

(proof)

lemma lunit-ide-simp:
assumes B.ide f
shows lunit f = B.runit f

(proof )
lemma runit-ide-simp:

assumes B.ide f
shows runit f = B.lunit f

(proof)

end

context pseudofunctor
begin

interpretation C': op-bicategory Vo He ac ic srco trgo (proof)
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interpretation D" op-bicategory Vp Hp ap ip srcp trgp {(proof)

notation C'.H (infixr (x¢°P» 53)
notation D' H (infixr <p°?) 53)

interpretation F': weak-arrow-of-homs Vo C'.src C'.trg Vp D’.src D'.trg F
(proof)
interpretation Hp'oFF: composite-functor C'.VV.comp D' VV.comp Vp F'.FF
Apv. fst py *xp°? snd pvy (proof)
interpretation FoHc'": composite-functor C'.VV.comp Vo Vp
Auv. fst uv *c°P snd pvy F
(proof)
interpretation @' natural-isomorphism C'.VV.comp Vp Hp'oFF.map FoHc'.map
Af. © (snd f, fst )
(proof )
interpretation F': pseudofunctor Vo C'.H C'aic C'.src C'.trg

Vp D' .H D’.aip D’.src D'.trg
F Of. @ (snd f, fst f)»
(proof )

lemma induces-pseudofunctor-between-opposites:
shows pseudofunctor (-¢) (x¢°P) C'aic C'.src C'.irg
(‘p) (*p°?) D'.aip D’.src D'.irg
F (M. @ (snd f, fst ))
(proof)
It is now easy to dualize the coherence condition for F' with respect to left unitors to
obtain the corresponding condition for right unitors.

lemma runit-coherence:
assumes C.ide f

shows rp[F f] = F rclf] ‘o ® (f, srec f) -p (F f xp unit (sree f))
{proof)

end

1.10.4 Preservation Properties

The objective of this section is to establish explicit formulas for the result of applying a
pseudofunctor to expressions of various forms.

context pseudofunctor
begin

lemma preserves-lunit:

assumes C.ide f

shows F 1¢[f] = Ip[F f] -p (D.inv (unit (trgc f)) xp F f) -p D.inv (® (trgc f, f))
and F lc7Yf] = @ (trgc f, f) -p (unit (trgc f) xp F f) -p Ip~[F f]

(proof)

lemma preserves-runit:
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assumes C.ide f

shows F rolf] = tp[F f] -p (F f xp D.inv (unit (srce f))) -p D.inv (@ (f, srec f))
?nd F>rc_1[f] =® (f, srcc f) -p (F f *p unit (srec f)) -p rp L[F f]

proof

lemma preserves-assoc:

assumes C.ide f and C.ide g and C.ide h

and srce f = trgc g and srce g = trge h

shows F aclf, g, h] =@ (f, g *c h) -p (Ffxp ® (9, h)) -p ap[F f, Fg, Fhl p
(D.inv (@ (f, 9)) *p F h) -p D.inv (® (f *¢ g, h))

and F aC_l[fa 9, h] = (f *C 9, h) ‘D ((I) (fa g) *D Fh) ‘D aD_l[Ffv Fga Fh] ‘D
(F f *p D.inv (® (g, h))) -p D.inv (P (f, g x¢ h))

(proof)

lemma preserves-hcomp:
assumes C.hseq p v
shows F (u x¢c v) =
® (C.cod p, C.cod v) -p (F p*p Fv)-p Dinv (® (C.dom p, C.dom v))
(proof)

lemma preserves-adjunction-data:
assumes adjunction-data-in-bicategory Vo He ac ic sreo trge fgn e
shows adjunction-data-in-bicategory Vp Hp ap ip srcp trgp
(Ff) (Fg) (D.inv (P (g, f)) 'p Fn-p unit (srcc [))
(D.inv (unit (trgc f)) -p Fe-p @ (f, g))
(proof )

lemma preserves-equivalence:
assumes equivalence-in-bicategory Vo Ho ac ic sreo trgc fgn e
shows equivalence-in-bicategory Vp Hp ap ip srcp trgp
(£ f) (F g) (D.inv (® (g, f)) -p F 1 -p unit (srcc [))
(D.inv (unit (trgc f)) -p Fe-p @ (f, 9))
(proof)

lemma preserves-equivalence-maps:
assumes C'.equivalence-map f
shows D.equivalence-map (F f)

{proof)

lemma preserves-equivalent-objects:
assumes C'.equivalent-objects a b
shows D.equivalent-objects (mapo a) (mapgy b)

(proof)

lemma preserves-isomorphic:
assumes C.isomorphic f g
shows D.isomorphic (F f) (F g)

(proof)
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lemma preserves-quasi-inverses:
assumes C.quasi-inverses f g
shows D.quasi-inverses (F f) (F g)

{proof)

lemma preserves-quasi-inverse:
assumes C'.equivalence-map f
shows D.isomorphic (F (C.some-quasi-inverse f)) (D.some-quasi-inverse (F f))

(proof )
end

1.10.5 Identity Pseudofunctors

locale identity-pseudofunctor =
B: bicategory Vg Hp ap ip srcp trgp

for Vg :: 'b comp (infixr <-p> 55)
and Hp :: 'b comp (infixr xp» 53)
and ag : b= "b="b="b (xap[-, - )
and ip :: 'b="b (dgl-]»)

and srcg 1 'b = b
and trgg :: 'b = b
begin
The underlying vertical functor is just the identity functor on the vertical category,
which is already available as B.map.
abbreviation map

where map = B.map

interpretation I: weak-arrow-of-homs Vg srcg trgg Vg srcg trgg map

(proof)

interpretation II: functor B.VV.comp B.VV.comp I.FF
(proof)

interpretation Hpgoll: composite-functor B.VV .comp B.VV.comp Vg I.FF
Auv. fst pv xg snd pv»
(proof )

interpretation loH g: composite-functor B.VV.comp Vg Vg Auv. fst uv xg snd pvy map

(proof)
The horizontal composition provides the compositor.

abbreviation cmp
where cmp = A\uv. fst uv xg snd uv

interpretation cmp: natural-transformation B.VV.comp Vg Hpoll.map IoH g.map cmp
(proof )

interpretation cmp: natural-isomorphism B.VV.comp Vg Hpoll.map IoH g.map cmp
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(proof)

sublocale pseudofunctor Vg Hp ap i srcg trgg Vg Hp ag ip srcg trgg map cmp

{proof)

lemma is-pseudofunctor:
shows pseudofunctor Vg Hp ap ip srcp trgp Vg Hp ap i srcg trgg map cmp
(proof )

lemma unit-char'”:
assumes B.obj a
shows unit a = a

(proof)
end

lemma (in identity-pseudofunctor) mapg-simp [simp]:
assumes B.obj a
shows mapg a = a

{proof)

1.10.6 Embedding Pseudofunctors

In this section, we construct the embedding pseudofunctor of a sub-bicategory into the
ambient bicategory.

locale embedding-pseudofunctor =
B: bicategory V H ap i srcp trgp +
S: subbicategory

begin
no-notation B.in-hom (<«-: - —p -»)
notation B.in-hhom (<«-: - —=p -»)

definition map
where map p = (if S.arr p then p else B.null)

lemma map-in-hom [intro]:

assumes S.arr @

shows «map p : srcp (map (S.src p)) —p sreg (map (S.trg p))»
and «map p : map (S.dom p) =p map (S.cod p)»

(proof)

lemma map-simps [simp]:

assumes S.arr 4

shows B.arr (map )

and srcg (map p) = sreg (map (S.sre p)) and trgg (map p) = sreg (map (S.trg w))
and B.dom (map p) = map (S.dom p) and B.cod (map 1) = map (S.cod )

(proof)
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interpretation functor S.comp V map
(proof)

interpretation weak-arrow-of-homs S.comp S.src S.trg V srcp trgg map

(proof)

interpretation HoFF: composite-functor S.VV.comp B.VV.comp V FF
Apv. fst pv xpg snd pv»
(proof )
interpretation FoH: composite-functor S.VV.comp S.comp V < uv. fst yv x snd uvy map

{proof)
no-notation B.in-hom (<«-: - —p -»)

definition cmp
where cmp pv = (if S.VV.arr pv then fst v xp snd pv else B.null)

lemma cmp-in-hom [introl:

assumes S.VV.arr pv

shows «emp pv : sreg (snd pv) —p trgp (fst pv)»

and «cmp pv : map (S.dom (fst pv)) xg map (S.dom (snd uv))
=p map (S.cod (fst uv) * S.cod (snd pv))»

(proof)

lemma cmp-simps [simp]:
assumes S.VV.arr pv
shows B.arr (¢cmp pv)
and srcg (emp pv) = S.sre (snd pv) and trgp (ecmp pv) = S.trg (fst pv)
and B.dom (c¢cmp pv) = map (S.dom (fst pv)) xg map (S.dom (snd uv))
and B.cod (emp pv) = map (S.cod (fst uv) x S.cod (snd uv))

(proof )

lemma iso-cmp:
assumes S.VV.ide pv
shows B.iso (cmp pv)

{proof)

interpretation ®g: natural-isomorphism S.VV.comp V HoFF.map FoH.map cmp
(proof )

sublocale pseudofunctor S.comp S.hcomp S.ai S.src S.trg V H ap i srcg trgg map cmp

(proof )

lemma is-pseudofunctor:
shows pseudofunctor S.comp S.hcomp S.a i S.src S.trg V H ag i srcg trgg map cmp

{proof)

lemma mapg-simp [simp):
assumes S.0bj a
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shows mapg a = a
(proof)

lemma unit-char'”:
assumes S.0bj a
shows unit a = a

{proof)

end

1.10.7 Composition of Pseudofunctors

In this section, we show how pseudofunctors may be composed. The main work is to
establish the coherence condition for associativity.

locale composite-pseudofunctor =
B: bicategory Vg Hp ap ip srcp trgp +
C': bicategory Vo He ac ic sree trge +
D: bicategory Vp Hp ap ip srcp trgp +
F: pseudofunctor Vg Hp ag i srcg trgg Vo He ac ic sree trgc F @p +
G: pseudofunctor Vo He ac ic sree trgqec Vp Hp ap ip srep trgp G ®a

for Vg = 'b comp (infixr <p> 55)
and Hp :: 'b comp (infixr <p> 53)
andag = b= "b="b="b («ag[- - )
and ip :: 'b="b (dg[-])

and srcg ‘b= "b
and trgg :: 'b = b

and V¢ i 'c comp (infixr ¢¢> 55)
and H¢ = 'c comp (infixr <xc> 53)
and ac = ‘c = ‘c = ‘c = 'c (cac[- - )
and ic :: ‘e = 'c (de[-])

and srco 1 'c = ¢
and trgc :: 'c = 'c

and Vp :: 'd comp (infixr <-p>» 55)
and Hp :: 'd comp (infixr <p> 53)
and ap = 'd = 'd="d="d (xap[-, - )
and ip = 'd = 'd (dp[-])

and srcp : 'd = 'd
and trgp :: 'd = 'd
and F':: b= 'c

and @7 :: b x b = 'c
and G :: 'c = 'd

and &g :: ‘c x 'c = 'd
begin

sublocale composite-functor Vg Ve Vp F G {(proof)

sublocale weak-arrow-of-homs Vg srcg trgg Vp srcp trgp <G o F»

{proof)
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interpretation HpoGF-GF: composite-functor B.VV.comp D.VV.comp Vp FF
Apv. fst pv *xp snd pv»

(proof )
interpretation GFoH g: composite-functor B.VV.comp Vg Vp (Auv. fst uv xg snd uv»
<G o F»
(proof)

definition cmp
where cmp puv = (if B.VV.arr pv then
G (F (Hp (fst pv) (snd pv))) -p G (Pp (B.VV.dom pv)) -p
O (F (B.dom (fst pv)), F (B.dom (snd uv)))
else D.null)

lemma cmp-in-hom [intro]:
assumes B.VV.arr pv
shows «emp pv : HpoGF-GF.map (B.VV.dom uv) =p GFoHp.map (B.VV.cod pv)»

{proof)

lemma cmp-simps [simp]:

assumes B.VV.arr pv

shows D.arr (cmp uv)

and D.dom (e¢mp pv) = HpoGF-GF.map (B.VV.dom uv)
and D.cod (¢cmp pv) = GFoHpg.map (B.VV.cod uv)

(proof)

interpretation ®: natural-transformation
B.VV.comp Vp HpoGF-GF.map GFoH g.map cmp

{proof)

interpretation ®: natural-isomorphism B.VV.comp Vp HpoGF-GF.map GFoH g.map cmp
(proof )

sublocale pseudofunctor Vg Hp ap ip srcg trgg Vp Hp ap ip srcp trgp <G o F» cmp

{proof)

lemma is-pseudofunctor:
shows pseudofunctor Vg Hp ap ip srcg trgg Vp Hp ap ip srep trgp (G o F) cmp
(proof)

lemma mapg-simp [simp]:
assumes B.obj a
shows mapy a = G.mapy (F.mapy a)

(proof)

lemma unit-char”:
assumes B.obj a
shows unit a = G (F.unit a) -p G.unit (F.mapy a)

(proof )
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end

1.10.8 Restriction of Pseudofunctors

In this section, we construct the restriction and corestriction of a pseudofunctor to a
subbicategory of its domain and codomain, respectively.

locale restricted-pseudofunctor =
C': bicategory Vo He ac ic sree trge +
D: bicategory Vp Hp ap ip srep trgp +
F: pseudofunctor Vo He ac ic sree trgc Vp Hp ap ip srep trgp F @ +
C'": subbicategory Vo He ac ic sreo trgo Arr

for Vg i 'c comp (infixr <> 55)
and H¢ 2 ‘¢ comp (infixr <xc> 53)
and ac :: ‘e = 'c= ‘e = ¢ (cac[- - )
and ic :: 'c = 'c (<))

and srcg ‘e = ¢
and trgc 1 'c = 'c

and Vp :: 'd comp (infixr <p» 55)
and Hp :: 'd comp (infixr <p> 53)
andap = 'd = 'd="d = 'd (<apl- - -]»)
and ip = 'd = 'd (dp[-])

and srcp :: 'd = 'd
and trgp :: 'd = 'd
and F :: 'c = 'd
and ® :: ‘c x 'c = 'd
and Arr :: 'c = bool
begin

abbreviation map
where map = Ap. if C'.arr p then F p else D.null

abbreviation cmp
where cmp = Auv. if C.VV.arr uv then ® pv else D.null

interpretation functor C'.comp Vp map

(proof)

interpretation weak-arrow-of-homs C’.comp C'.src C'.4rg Vp srcp trgp map

(proof)

interpretation Hp.oFF: composite-functor C'.VV.comp D.VV.comp Vp FF
Auv. fst pv xp snd uv»
(proof)
interpretation FoH o composite-functor C'.VV.comp C’.comp Vp
Apv. C'.hcomp (fst pv) (snd pv)> map
(proof )

interpretation ®: natural-transformation C'.VV.comp Vp Hp.oFF.map FoHc.map cmp
(proof)
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interpretation ®: natural-isomorphism C'.VV.comp Vp HpoFF.map FoHc.map cmp

(proof)

sublocale pseudofunctor C'.comp C'.hcomp C'.aic C'.src C'.itrg Vp Hp ap ip srcp trgp
map cmp
(proof)

lemma is-pseudofunctor:
shows pseudofunctor C'.comp C'.hcomp C'.aic C'.src C'.trg Vp Hp ap ip srcp trgp map
cmp

(proof)

lemma mapg-simp [simp):
assumes C’.0bj a
shows mapg a = F.mapg a

(proof)

lemma unit-char'”:
assumes C’.0bj a
shows F.unit a = unit a

(proof)

end

We define the corestriction construction only for the case of sub-bicategories deter-
mined by a set of objects of the ambient bicategory. There are undoubtedly more general
constructions, but this one is adequate for our present needs.

locale corestricted-pseudofunctor =
C': bicategory Vo He ac ic sree trge +
D: bicategory Vp Hp ap ip srep trgp +
F: pseudofunctor Vo He ac ic sree trge Vp Hp ap ip srep trgp F @ +
D': subbicategory Vp Hp ap ip srep trgp <Ap. D.arr u A Obj (srep p) A Obj (trgp p)»

for Vg i 'c comp (infixr <> 55)
and H¢ = 'c comp (infixr <xc> 53)
andac :: 'c=c=c='¢c (xac[- - )
and i¢c :: 'c = 'c (<iel-]))

and srcg e = ¢
and trgc 1 'c = 'c

and Vp :: 'd comp (infixr <-p» 55)
and Hp :: 'd comp (infixr <p> 53)
and ap = 'd = 'd="d="d (<ap[-, - )
and ip = 'd = 'd (dp[-])

and srcp :: 'd = 'd

and trgp :: 'd = 'd

and F :: ‘e = 'd

and @ :: ‘cx 'c = 'd

and Obj :: 'd = bool +

assumes preserves-arr: Ap. C.arr yp = D’.arr (F p)
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begin

abbreviation map
where map = F

abbreviation cmp
where cmp = @

interpretation functor Vg D'.comp F

(proof)

interpretation weak-arrow-of-homs V¢ srce trgc D’.comp D’.src D'.trg F

{proof)

interpretation Hp.oFF: composite-functor C.VV.comp D'.VV.comp D'.comp FF
Auv. D’ hecomp (fst uv) (snd pv)»

(proof)
interpretation FoH c: composite-functor C.VV.comp Vo D'.comp <\pv. fst pv xc snd pv»
F
(proof )

interpretation natural-transformation C.VV.comp D’.comp Hp oFF.map FoHc.map ®

{proof)

interpretation natural-isomorphism C.VV.comp D'.comp Hp.oFF.map FoHc.map ®

(proof)

sublocale pseudofunctor Vo He ac ic srce trgc D'.comp D'.hcomp D’.a ip D’.src D'.trg
Fo

{proof)

lemma is-pseudofunctor:
shows pseudofunctor Vo He ac ic srce trgc D'.comp D'.hcomp D’.a ip D'.src D'.trg F ®
(proof)

lemma mapg-simp [simp):

assumes C.obj a

shows mapg a = F.mapg a
(proof )

lemma unit-char'”:
assumes C.obj a
shows F.unit a = unit a

{proof)

end

141



1.10.9 Equivalence Pseudofunctors

In this section, we define “equivalence pseudofunctors”, which are pseudofunctors that are
locally fully faithful, locally essentially surjective, and biessentially surjective on objects.
In a later section, we will show that a pseudofunctor is an equivalence pseudofunctor if
and only if it can be extended to an equivalence of bicategories.

The definition below requires that an equivalence pseudofunctor be (globally) faithful
with respect to vertical composition. Traditional formulations do not consider a pseud-
ofunctor as a single global functor, so we have to consider whether this condition is too
strong. In fact, a pseudofunctor (as defined here) is locally faithful if and only if it is
globally faithful.

context pseudofunctor
begin

definition locally-faithful
where locally-faithful =

Vigpp «p:f=2cpAep  f=2cgp ANFu=Fu —p=u'

lemma locally-faithful-iff-faithful:
shows locally-faithful <— faithful-functor Vo Vp F
(proof)

end

In contrast, it is not true that a pseudofunctor that is locally full is also globally full,
because we can have «v : F'h =p F k» even if h and k are not in the same hom-category.
So it would be a mistake to require that an equivalence functor be globally full.

locale equivalence-pseudofunctor =
pseudofunctor +
faithful-functor Vo Vp F +
assumes biessentially-surjective-on-objects:
D.obj a’ = Ja. C.obj a N D.equivalent-objects (mapg a) a’
and locally-essentially-surjective:
[ C.obj a; C.obj b; «g : mapg a —p mapy by; D.ide g | =
If. «f :a —¢c by A Cuide f A D.isomorphic (F f) g
and locally-full:
[ C.ide f; C.ide f'; srec f = sree [/ trge f = trge [y «v: Ff=p Ff»] =
. «p:f=cfP"ANFu=v
begin

lemma refiects-ide:
assumes C.endo p and D.ide (F )
shows C.ide

{proof)

lemma refilects-iso:
assumes C.arr p and D.iso (F )
shows C.iso
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{proof)

lemma reflects-isomorphic:
assumes C.ide f and C.ide f' and srcc f = srce f' and trgc f = trgc f'
and D.isomorphic (F f) (F f')
shows C.isomorphic f f'
(proof )

lemma refiects-equivalence:

assumes C.ide f and C.ide g

and «n : sree f =¢c g x¢ f» and «e : f x¢ g =¢ srco g»

and equivalence-in-bicategory Vp Hp ap ip srcp trgp (F f) (F g)
(D.inv (® (g, ) -p F n -p unit (srec f))
(D.inv (unit (trgc f)) -p Fe-p @ (f, 9)

shows equivalence-in-bicategory Vo Heo ac ic srce trgc fgm e

(proof )

lemma reflects-equivalence-map:
assumes C.ide f and D.equivalence-map (F' f)
shows C'.equivalence-map f

(proof )

lemma reflects-equivalent-objects:
assumes C.obj a and C.obj b and D.equivalent-objects (mapg a) (mapy b)
shows C'.equivalent-objects a b

(proof )

end

For each pair of objects a, b of C, an equivalence pseudofunctor restricts to an equiv-
alence of categories between C.hhom a b and D.hhom (mapg a) (mapg b).

locale equivalence-pseudofunctor-at-hom =
equivalence-pseudofunctor +

fixes a :: ‘a and a’ :: 'a

assumes obj-a: C.obj a

and obj-a”: C.obj a’

begin

sublocale hhome: subcategory Vo Ap. «u: a —c a'»»

(proof)

sublocale hhomp: subcategory Vp <M. «u : mapg a —p mapg a’»>

(proof)

definition F';
where F; = (Ap. if hhomg.arr p then F p else D.null)

interpretation F'i: functor hhomg.comp hhomp.comp F4

{proof)
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interpretation F'i: fully-faithful-and-essentially-surjective-functor
hhomg.comp hhomp.comp Fq

{proof)

lemma equivalence-functor-F1:
shows fully-faithful-and-essentially-surjective-functor hhome.comp hhomp.comp F,
and equivalence-functor hhome.comp hhomp.comp F1q

{proof)

definition G,
where G; = (SOME G. Ine.
adjoint-equivalence hhome.comp hhomp.comp G Fy (fst ne) (snd ne))

lemma G;-props:
assumes C.obj a and C.obj a’
shows 31 e. adjoint-equivalence hhomg.comp hhomp.comp G1 F1 n ¢

{proof)

definition 7
where n = (SOME 1. Je. adjoint-equivalence hhomc.comp hhomp.comp Gy F1 n €)

definition ¢
where ¢ = (SOME ¢. adjoint-equivalence hhomc.comp hhomp.comp Gy F1 7€)

lemma ne-props:
shows adjoint-equivalence hhome.comp hhomp.comp G1 F1 n e

(proof)

sublocale ne: adjoint-equivalence hhome.comp hhomp.comp G1 F1 n e
(proof )

sublocale ne: meta-adjunction hhome.comp hhomp.comp G1 F1 ne.p nea

(proof)

end

context identity-pseudofunctor
begin

sublocale equivalence-pseudofunctor Vg Hg ap i srcg trgg Vg Hp ap ip srcg trgp
map cmp
(proof )
lemma is-equivalence-pseudofunctor:
shows equivalence-pseudofunctor Vg Hpg ap i srcg trgg Vg Hp ap ip srcg trgp

map cmp

(proof)

end
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locale composite-equivalence-pseudofunctor =
composite-pseudofunctor +
F': equivalence-pseudofunctor Vg Hp ap ig srcg trgg Vo He ac ic sreo trge F ®p +
G: equivalence-pseudofunctor Vo He ac ic srce trgc Vp Hp ap ip srep trgp G @g
begin

interpretation faithful-functor Vg Vp <G o F»
(proof )

interpretation equivalence-pseudofunctor Vg Hp ap i srcg trgg Vp Hp ap ip srep trgp
<G o Fy cmp
(proof)

sublocale equivalence-pseudofunctor Vg Hp apg ig srcg trgg Vp Hp ap ip srep trgp
<G o F» emp (proof)

lemma is-equivalence-pseudofunctor:
shows equivalence-pseudofunctor Vg Hg apg i srcg trgg Vp Hp ap ip srcp trgp
(GoF) emp
(proof )

end

end

1.11 Strictness

theory Strictness
imports Category3.ConcreteCategory Pseudofunctor Canonicallsos
begin

In this section we consider bicategories in which some or all of the canonical iso-
morphisms are assumed to be identities. A normal bicategory is one in which the unit
isomorphisms are identities, so that unit laws for horizontal composition are satisfied “on
the nose”. A strict bicategory (also known as a 2-category) is a bicategory in which both
the unit and associativity isomoprhisms are identities, so that horizontal composition is
strictly associative as well as strictly unital.

From any given bicategory B we may construct a related strict bicategory S, its
strictification, together with a pseudofunctor that embeds B in S. The Strictness Theorem
states that this pseudofunctor is an equivalence pseudofunctor, so that bicategory B is
biequivalent to its strictification. The Strictness Theorem is often used informally to
justify suppressing canonical isomorphisms; which amounts to proving a theorem about
2-categories and asserting that it holds for all bicategories. Here we are working formally,
so we can’t just wave our hands and mutter something about the Strictness Theorem
when we want to avoid dealing with units and associativities. However, in cases where we
can establish that the property we would like to prove is reflected by the embedding of
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a bicategory in its strictification, then we can formally apply the Strictness Theorem to
generalize to all bicategories a result proved for 2-categories. We will apply this approach
here to simplify the proof of some facts about internal equivalences in a bicategory.

1.11.1 Normal and Strict Bicategories

A normal bicategory is one in which the unit isomorphisms are identities, so that unit
laws for horizontal composition are satisfied “on the nose”.

locale normal-bicategory =

bicategory +
assumes strict-lunit: \f. ide f = 1[f] = f
and strict-runit: N\f. ide f = r[f] = f
begin

lemma strict-unit:
assumes o0bj a
shows ide i[d]

(proof)

lemma strict-lunit”:

assumes ide f

shows 17[f] = f
(proof )

lemma strict-runit”:

assumes ide f

shows r=![f] = f
(proof)

lemma hcomp-obj-arr:
assumes obj b and arr f and b = trg f
shows bx f = f

(proof)

lemma hcomp-arr-obj:
assumes arr [ and obj a and src f = a
shows f x a = f

(proof)

end

A strict bicategory is a normal bicategory in which the associativities are also iden-
tities, so that associativity of horizontal composition holds “on the nose”.

locale strict-bicategory =
normal-bicategory +
assumes strict-assoc: \f g h. [ide f; ide g; ide h; src f = trg g; src g = trg h] =
ide alf, g, h]
begin
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lemma strict-assoc”:
assumes ide f and ide g and ide h and src f = trg g and src g = trg h
shows ide a=[f, g, h]

(proof)

lemma hcomp-assoc:
shows (U x V) x T =pu*v*7

(proof)
In a strict bicategory, every canonical isomorphism is an identity.

interpretation bicategorical-language (proof)
interpretation E: self-evaluation-map V H a i src trg (proof)
notation E.eval («{-}»)

lemma ide-eval-Can:
assumes Can t
shows ide {t}

{proof)

lemma ide-can:
assumes Ide f and Ide g and |f] = |g]
shows ide (can g f)

(proof)
end

context bicategory
begin
The following result gives conditions for strictness of a bicategory that are typically
somewhat easier to verify than those used for the definition.
lemma is-strict-if:
assumes \f. ide f = fxsrcf=f
and \f. idef = trgfxf=1f
and Aa. obj a = ide i[d]
and Af g h. [ide f; ide g; ide h; src f = trg g; src g = trg h] = ide a[f, g, h]
shows strict-bicategory V H a i src trg

{proof)

end

1.11.2 Strictification

The Strictness Theorem asserts that every bicategory is biequivalent to a strict bicate-
gory. More specifically, it shows how to construct, given an arbitrary bicategory, a strict
bicategory (its strictification) that is biequivalent to it. Consequently, given a property
P of bicategories that is “bicategorical” (i.e. respects biequivalence), if we want to show
that P holds for a bicategory B then it suffices to show that P holds for the strictification
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of B, and if we want to show that P holds for all bicategories, it is sufficient to show that
it holds for all strict bicategories. This is very useful, because it becomes quite tedious,
even with the aid of a proof assistant, to do “diagram chases” with all the units and
associativities fully spelled out.

Given a bicategory B, the strictification S of B may be constructed as the bicategory
whose arrows are triples (A4, B, p), where X and Y are “normal identity terms” (essen-
tially, nonempty horizontally composable lists of 1-cells of B) having the same syntactic
source and target, and «u : {X[} = {Y[» in B. Vertical composition in S is given by
composition of the underlying arrows in B. Horizontal composition in S is given by (A4,
B, pu) = (A, B, ) = (AA’, BB’, v), where AA’ and BB’ denote concatenations of lists
and where v is defined as the composition can BB’ (B % B') - (u x p) - can (A % A’
AA’; where can (A x A"y AA" and can BB' (B * B’) are canonical isomorphisms in B.
The canonical isomorphism can (A x A’) AA’ corresponds to taking a pair of lists 4
A’ and “shifting the parentheses to the right” to obtain a single list AA’. The canonical
isomorphism can BB’ (B % B’) corresponds to the inverse rearrangement.

The bicategory B embeds into its strictification S via the functor UP that takes each
arrow p of B to ({(dom p), (cod u), ), where (dom p) and (cod p) denote one-element
lists. This mapping extends to a pseudofunctor. There is also a pseudofunctor DN, which
maps (A, B, p) in S to p in B; this is such that DN o UP is the identity on B and UP
o DN is equivalent to the identity on S, so we obtain a biequivalence between B and S.

It seems difficult to find references that explicitly describe a strictification construc-
tion in elementary terms like this (in retrospect, it ought to have been relatively easy to
rediscover such a construction, but my thinking got off on the wrong track). One refer-
ence that I did find useful was [1], which discusses strictification for monoidal categories.

locale strictified-bicategory =
B: bicategory Vg Hp ap ip srcg trgp

for Vg 2 'a comp (infixr <-p> 55)
and Hg :: 'a = 'a = 'a (infixr <xp» 53)
and ag = ‘a = ‘a = a="a («agl- - )
and ip :: 'a = 'a (dgl-]»)

and srcg 2 'a = 'a
and trgg :: 'a = a
begin

sublocale E: self-evaluation-map Vg Hp ap ip srcg trgp (proof)

notation B.in-hhom (<«-: - —p -»)
notation B.in-hom (<«-:-=p -»)

notation E.eval («{-}»)
notation E.Nmlize (<|-]>)

The following gives the construction of a bicategory whose arrows are triples (A, B,
w), where Nml A A Ide A, Nml B A Ide B, Src A = Src B, Trg A = Trg B, and p : {A}
= {BJ}. We use concrete-category to construct the vertical composition, so formally the
arrows of the bicategory will be of the form MkArr A B p.
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The 1-cells of the bicategory correspond to normal, identity terms A in the bicate-
gorical language associated with B.

abbreviation IDFE
where IDE = {A. E.ZNml A A E.Ide A}

If terms A and B determine 1-cells of the strictification and have a common source
and target, then the 2-cells between these 1-cells correspond to arrows p of the underlying
bicategory such that «u : {A} =p {B[}».

abbreviation HOM
where HOM A B = {pu. E.Src A= E.Src BA E.Tr¢ A= E.Trg B A «u : {A} =5 {B}»}

The map taking term A € OBJ to its evaluation {A} € HOM A A defines the
embedding of 1-cells as identity 2-cells.

abbreviation EVAL
where EVAL = FE.cval

sublocale concrete-category IDE HOM EVAL <\- - - pv. p - v»
(proof)

lemma is-concrete-category:
shows concrete-category IDE HOM EVAL (M- - - pv. u -g v)

(proof)

abbreviation vcomp  (infixr <> 55)
where vcomp = COMP

lemma arr-char:
shows arr F' +—
E.Nml (Dom F) A E.Ide (Dom F) A E.Nml (Cod F) A E.Ide (Cod F) A
E.Src (Dom F) = E.Src (Cod F) N E.Trg (Dom F) = E.Trg (Cod F) A
«Map F : {Dom F} =p {Cod F}» N F # Null
(proof)

lemma arrl :

assumes E.Nml (Dom F) and E.Ide (Dom F) and E.Nml (Cod F) and E.Ide (Cod F)
and E.Src (Dom F) = E.Src (Cod F) and E.Trg (Dom F) = E.Trg (Cod F)

and «Map F : {Dom F|} =p {Cod F|}» and F # Null

shows arr F'

(proof)

lemma arrE [elim]:
assumes arr I
shows ([ E.Nml (Dom F); E.Ide (Dom F); E.Nml (Cod F); E.Ide (Cod F);
E.Src (Dom F) = E.Src (Cod F); E.Trg (Dom F') = E.Trg (Cod F);
«Map F : {Dom F|} =5 {Cod Fl}»; F # Null] = T) = T
(proof )

lemma ide-char:
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shows ide F' <— endo F A B.ide (Map F)
{proof)

lemma idel [intro]:
assumes arr F' and Dom F = Cod F and B.ide (Map F)
shows ide F

(proof)

lemma ideE [elim):
assumes ide F
shows ([ arr F'; Dom F = Cod F; B.ide (Map F); Map F = {Dom FJ;
Map F ={Cod F} | = T) = T
(proof)

Source and target are defined by the corresponding syntactic operations on terms.

definition src
where src F = if arr F then Mklde (E.Src (Dom F)) else null

definition trg
where trg F = if arr F then Mklde (E.Trg (Dom F)) else null

lemma src-simps [simp):

assumes arr F

shows Dom (src F) = E.Src (Dom F) and Cod (src F) = E.Src (Dom F)
and Map (src F) = {E.Src (Dom F)}

(proof)

lemma trg-simps [simp]:

assumes arr F

shows Dom (trg F) = E.Trg (Dom F) and Cod (trg F) = E.Trg (Dom F)
and Map (trg F) = {E.Trg (Dom F)}

(proof)

interpretation src: endofunctor vcomp src
(proof )

interpretation trg: endofunctor vcomp trg
(proof)

interpretation horizontal-homs vcomp src trg
(proof)

notation in-hhom (<«-:-— -»)

definition hcomp  (infixr x> 53)
where u x v =if arr u A arr v A src p = trg v
then MkArr (Dom p |*| Dom v) (Cod p || Cod v)
(B.can (Cod p | *| Cod v) (Cod pu % Cod v) -p
(Map p xg Map v) -p
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B.can (Dom p x Dom v) (Dom u |*| Dom v))
else null

lemma arr-hcomp:
assumes arr 4 and arr v and src p = trg v
shows arr (p x v)

{proof)

lemma sre-hcomp [simp]:
assumes arr 4 and arr v and src p = trg v
shows src (u * v) = src v

(proof)

lemma trg-hcomp [simp]:
assumes arr u and arr v and src p = trg v
shows trg (hcomp p v) = trg p

(proof)

lemma hseg-char:
shows arr (pu x v) «— arr p A arr v A src p = trg v

(proof)

lemma Dom-hcomp [simp]:
assumes arr p and arr v and sre = trg v
shows Dom (u x v) = Dom p | x| Dom v

(proof)

lemma Cod-hcomp [simp]:
assumes arr p and arr v and sre = trg v
shows Cod (u * v) = Cod p |*| Cod v

(proof)

lemma Map-hcomp [simp]:
assumes arr g and arr v and src p = trg v
shows Map (1 *x v) = B.can (Cod u |x] Cod v) (Cod pn x Cod v) -p
(Map 1w xg Map v) -p
B.can (Dom p x Dom v) (Dom u |*| Dom v)
{proof )

interpretation functor VV.comp vcomp <Auv. hcomp (fst pv) (snd pv)»
(proof )

interpretation horizontal-composition vcomp hcomp src trg

(proof)

lemma hcomp-assoc:

assumes arr 4 and arr v and arr T
and src p = trg v and srcv = trg T
shows (ux V) xT=p*v*7
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{proof)

lemma obj-char:
shows obj a «— endo a A E.Obj (Dom a) A Map a = {Dom a}}

(proof )

lemma hcomp-obj-self:
assumes obj a
shows a x a = a

(proof )

lemma hcomp-ide-src:
assumes ide f
shows f x src f = f

(proof)

lemma hcomp-trg-ide:
assumes ide f
shows trg f x f = f
{proof)

interpretation L: full-functor vcomp vcomp L

{proof)

interpretation R: full-functor vcomp vcomp R

(proof )

interpretation L: faithful-functor vcomp vcomp L

{proof)

interpretation R: faithful-functor vcomp vcomp R
(proof )

definition a
where a 7y v = if VVV.arr (1, p, v) then hcomp 7 (hcomp p v) else null

interpretation natural-isomorphism VVV .comp vcomp HoHV HoVH
ATpv. a (fst Tuv) (fst (snd Tuv)) (snd (snd Tuv))»
(proof )

definition i
where i = \a. a

sublocale bicategory vcomp hcomp a i src trg
(proof)

lemma is-bicategory:

shows bicategory vcomp hcomp a i src trg

(proof)
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sublocale strict-bicategory vcomp hcomp a i src trg

{proof)

theorem is-strict-bicategory:
shows strict-bicategory vcomp hcomp a i src trg

(proof)

lemma iso-char:
shows iso p <— arr u A B.iso (Map )
and iso p = inv p = MkArr (Cod p) (Dom p) (B.inv (Map p))

{proof)

1.11.3 The Strictness Theorem

The Strictness Theorem asserts: “Every bicategory is biequivalent to a strict bicategory.”
This amounts to an equivalent (and perhaps more desirable) formulation of the Coherence
Theorem. In this section we prove the Strictness Theorem by constructing an equivalence
pseudofunctor from a bicategory to its strictification.

We define a map UP from the given bicategory B to its strictification, and show
that it is an equivalence pseudofunctor. The following auxiliary definition is not logically
necessary, but it provides some terms that can be the targets of simplification rules and
thereby enables some proofs to be done by simplification that otherwise could not be.
Trying to eliminate it breaks some short proofs below, so I have kept it.

definition UP,
where UP( a = if B.obj a then MklIde {a)¢ else null

lemma obj-UPy [simp]:

assumes B.obj a

shows obj (UPy a)
{proof )

lemma UPy-in-hom [intro]:
assumes B.obj a

shows «UPg a : UPg a — UPq a»
and «UPgy a: UPg a = UPgy a»

{proof)

lemma UPy-simps [simp]:

assumes B.obj a

shows ide (UPy a) arr (UPg a)

and src (UPg a) = UPg a and trg (UPy a) = UPy a

and dom (UPg a) = UPy a and cod (UPg a) = UPj a
(proof )

definition UP
where UP u = if B.arr u then MkArr (B.dom p) {(B.cod ) p else null
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lemma Dom-UP [simp]:
assumes B.arr p
shows Dom (UP p) = (B.dom )

{proof)

lemma Cod-UP [simp]:
assumes B.arr p
shows Cod (UP p) = (B.cod p)

{proof)

lemma Map-UP [simp]:
assumes B.arr p
shows Map (UP p) = p

{proof)

lemma arr-UP:
assumes B.arr p
shows arr (UP p)

(proof)

lemma UP-in-hom [intro]:

assumes B.arr

shows «UP p : UPg (srep p) — UPy (trgp p)»
and «UP p: UP (B.dom pu) = UP (B.cod p)»

{proof)

lemma UP-simps [simp]:

assumes B.arr p

shows arr (UP p)

and src (UP p) = UPy (srepg p) and trg (UP p) = UPy (trgp w)
and dom (UP p) = UP (B.dom p) and cod (UP p) = UP (B.cod p)

(proof)

interpretation UP: functor Vg vcomp UP
(proof)

interpretation UP: weak-arrow-of-homs Vg srcg trgg vcomp src trg UP

{proof)

interpretation HoUP-UP: composite-functor B.VV.comp VV.comp vcomp
UP.FF «Apv. hcomp (fst puv) (snd pv)» (proof)
interpretation UPoH: composite-functor B.VV .comp Vg vcomp
Auv. fst pv xg snd puvy UP (proof)

abbreviation ©,
where @, fg = MkArr ({fst fg) * (snd fg)) {fst fg xp snd fg) (fst fg xp snd fg)

interpretation ®: transformation-by-components
B.VV.comp vcomp HoUP-UP.map UPoH.map ®,

154



{proof)

abbreviation cmpy p
where cmpyp = ®.map

lemma cmpy p-in-hom [introl:
assumes B.arr (fst pv) and B.arr (snd pv) and srcg (fst uv) = trgp (snd pv)
shows «cmpyp pv : UPq (srep (snd pv)) — UPq (trgp (fst pv))»
and «cmpyp pv : UP (B.dom (fst pv)) * UP (B.dom (snd uv))
= UP (B.cod (fst yv) xg B.cod (snd pv))»
{proof)

lemma cmpy p-simps [simp]:
assumes B.arr (fst pv) and B.arr (snd pv) and srcg (fst uv) = trgp (snd pv)
shows arr (cmpyp pv)
and src (empyp pv) = UPq (srep (snd pv)) and trg (cmpyp pv) = UPq (trgs (fst pv))
and dom (cmpyp pv) = UP (B.dom (fst pv)) = UP (B.dom (snd pv))
and cod (cmpyp pv) = UP (B.cod (fst pv) *p B.cod (snd uv))
(proof)

lemma cmpy p-ide-simps [simpl:
assumes B.ide (fst fg) and B.ide (snd fg) and srcp (fst fg) = trgp (snd fg)
shows Dom (cmpyp fg) = (fst fg) * (snd fg)
and Cod (cmpup fg) = {fst fg *p snd fg)
and Map (cmpup fg) = fst fg xp snd fg
(proof )

interpretation ®: natural-isomorphism
B.VV.comp vcomp HoUP-UP.map UPoH.map cmpy p
(proof)

lemma cmpy p-ide-simp:
assumes B.ide f and B.ide g and srcg f = trgp ¢

shows cmpyp (f, 9) = MkArr ({f) *x (9)) {f B 9} (f *B 9)
(proof)

lemma cmpy p’-ide-simp:
assumes B.ide f and B.ide g and srcp f = trgp ¢

shows inv (cmpyp (f, 9)) = MEAr {f xg g) ({) x (9)) (f *B 9)
(proof )

interpretation UP: pseudofunctor
Ve Hp ap ip srcg trgp vcomp hcomp a i src trg UP cmpy p

{proof)

lemma UP-is-pseudofunctor:
shows pseudofunctor Vg Hp ap ip srcg trgp vcomp hecomp a i src trg UP empy p {proof)

lemma UP-mapg-obj [simp]:
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assumes B.obj a
shows UP.mapg a = UPqy a

(proof)

interpretation UP: full-functor Vg vcomp UP
(proof)

interpretation UP: faithful-functor Vg vcomp UP
(proof )

interpretation UP: fully-faithful-functor Vg vcomp UP (proof)

lemma UP-is-fully-faithful-functor:
shows fully-faithful-functor Vg vcomp UP
(proof )

no-notation B.in-hom (<«-: - —=p -»)

lemma Map-reflects-hhom:

assumes B.obj a and B.obj b and ide g
and «g : UP.mapg a — UP.mapg b»
shows «Map ¢g : a —p b»

{proof)

lemma eval-Dom-ide [simp]:
assumes ide g
shows {Dom g} = Map g

(proof)

lemma Cod-ide:
assumes ide f
shows Cod f = Dom f

(proof)

lemma Map-preserves-objects:
assumes obj a
shows B.obj (Map a)

{proof)

interpretation UP: equivalence-pseudofunctor
Ve Hp ap ip srcg trgg vcomp hcomp a i src trg UP cmpy p

(proof )

theorem UP-is-equivalence-pseudofunctor:
shows equivalence-pseudofunctor Vg Hp ap ig srcg trgg vcomp hcomp a i src trg
UP cmpy p

(proof)

Next, we work out the details of the equivalence pseudofunctor DN in the converse
direction.
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definition DN
where DN p = if arr p then Map p else B.null

lemma DN-in-hom [intro]:

assumes arr p

shows «DN pu : DN (src p) —p DN (trg p)»
and «DN p : DN (dom p) =p DN (cod p)»

{proof)

lemma DN-simps [simp]:

assumes arr p

shows B.arr (DN p)

and srcg (DN p) = DN (src p) and trgg (DN p) = DN (trg p)

and B.dom (DN p) = DN (dom p) and B.cod (DN p) = DN (cod p)
(proof )

interpretation functor vcomp Vg DN
(proof)

interpretation DN: weak-arrow-of-homs vcomp src trg Vg srcg trgg DN

(proof )

interpretation functor VV.comp B.VV.comp DN.FF
(proof)
interpretation HoDN-DN: composite-functor VV .comp B.VV.comp Vg
DN.FF Quv. Hg (fst pv) (snd pv)s {proof)
interpretation DNoH: composite-functor VV.comp vcomp Vp
Auv. fst pv x snd uvy DN (proof)

abbreviation ¥,
where U, fg = B.can (Dom (fst fg) |*| Dom (snd fg)) (Dom (fst fg) * Dom (snd fg))

abbreviation ¥,’
where U,’ fg = B.can (Dom (fst fg) x Dom (snd fg)) (Dom (fst fg) |*x] Dom (snd fg))

lemma Y, -in-hom:

assumes VV.ide fg

shows «U, fg : Map (fst fg) *p Map (snd fg) =5 {Dom (fst fg) [x] Dom (snd fo)b>
and «¥,’ fg : {Dom (fst fg) | x| Dom (snd fg)} =p Map (fst fg) xg Map (snd fg)»
and B.inverse-arrows (¥, fg) (¥,’ fg)

(proof )

interpretation V: transformation-by-components
VV.comp Vg HoDN-DN.map DNoH.map ¥,

{proof)

abbreviation cmppn
where cmppy = V.map
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interpretation V: natural-isomorphism VV.comp Vg HoDN-DN.map DNoH.map cmpp N
(proof)

no-notation B.in-hom (<«-: - —p -»)

lemma c¢mpp N -in-hom [intro):
assumes arr (fst uv) and arr (snd pv) and sre (fst pv) = trg (snd pv)
shows «ecmppy pv : DN (src (snd pv)) —p DN (trg (fst pv))»
and «cmppy pv : DN (dom (fst uv)) xg DN (dom (snd pv))
=p DN (cod (fst pv) * cod (snd pv))»
{proof)

lemma cmpp N -simps [simp]:

assumes arr (fst pv) and arr (snd pv) and sre (fst pv) = trg (snd pv)

shows B.arr (ecmppn pv)

and srcg (emppy pv) = DN (sre (snd pv)) and trgg (ecmppy pv) = DN (trg (fst pv))
and B.dom (cmppy pv) = DN (dom (fst uv)) xg DN (dom (snd pv))

and B.cod (cmppn pv) = DN (cod (fst uv) * cod (snd uv))

(proof)

interpretation DN: pseudofunctor vcomp hcomp a i src trg Vg Hp ap ip srcp trgp
DN cmpp N

{proof)

lemma DN-is-pseudofunctor:
shows pseudofunctor vcomp hcomp a i src trg Vg Hp ap i srcg trgg DN cmppn

(proof)

interpretation faithful-functor vcomp Vg DN
(proof )

no-notation B.in-hom (<«-: - —=p -»)

lemma DN-UP:
assumes B.arr p
shows DN (UP u) = p

(proof)

interpretation DN: equivalence-pseudofunctor
veomp hcomp a i srctrg Vg Hp ap ip srcg trgg DN cmppn

{proof)

theorem DN-is-equivalence-pseudofunctor:
shows equivalence-pseudofunctor vcomp hcomp a i src trg Vg Hp ap ip srcg trgp
DN cmppn

(proof )
The following gives an explicit formula for a component of the unit isomorphism of
the pseudofunctor UP from a bicategory to its strictification. It is not currently being
used — I originally proved it in order to establish something that I later proved in a more
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abstract setting — but it might be useful at some point.

interpretation UP: equivalence-pseudofunctor
Ve Hp ap ip srcg trgg vcomp hcomp a i src trg UP cmpy p

(proof)

lemma UP-unit-char:
assumes B.obj a
shows UP.unit a = MkArr (a)o {(a) a

(proof)

end

1.11.4 Pseudofunctors into a Strict Bicategory

In the special case of a pseudofunctor into a strict bicategory, we can obtain explicit
formulas for the images of the units and associativities under the pseudofunctor, which
only involve the structure maps of the pseudofunctor, since the units and associativities
in the target bicategory are all identities. This is useful in applying strictification.

locale pseudofunctor-into-strict-bicategory =
pseudofunctor +
D: strict-bicategory Vp Hp ap ip srcp trgp
begin

lemma image-of-unitor:

assumes C.ide g

shows F l¢[g] = (D.inv (unit (trgc g)) *p F g) -p D.inv (D (trgc g, g))
and F relg] = (F g xp D.inv (unit (srce g))) -p D.inv (P (g, sree g))
and F (C.lunit’ g) = ® (trgc g, g) -p (unit (trgc g9) *p F g)

and F (C.runit’ g) = ® (g, srcc g) -p (F g *xp unit (srce g))

(proof)

lemma image-of-associator:
assumes C.ide f and C.ide g and C.ide h and srcc f = trgc g and srco g = trge h
shows F aC[fv g, h] = (fa g *xc h) ‘D (Ff *D ¢ (g’ h)) *D
(D.inv (® (f, g)) *p F h) -p D.inv (P (f x¢ g, h))
and F (C.a’'fgh) =@ (f xc g, h) -p (® (f, 9) *p F h) -p
(F f *xp D.inv (® (g, h))) -p D.inv (P (f, g ¢ h))
(proof)

end

1.11.5 Internal Equivalences in a Strict Bicategory

In this section we prove a useful fact about internal equivalences in a strict bicategory:
namely, that if the “right” triangle identity holds for such an equivalence then the “left”
does, as well. Later we will dualize this property, and use strictification to extend it to
arbitrary bicategories.
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locale equivalence-in-strict-bicategory =
strict-bicategory +
equivalence-in-bicategory

begin

lemma triangle-right-implies-left:
shows (gx¢) - (nxg)=g=(*xf)-(frn)=f
(proof )

end

Now we use strictification to generalize the preceding result to arbitrary bicategories.
I originally attempted to generalize this proof directly from the strict case, by filling in
the necessary canonical isomorphisms, but it turned out to be too daunting. The proof
using strictification is still fairly tedious, but it is manageable.

context equivalence-in-bicategory
begin

interpretation S: strictified-bicategory V H a i src trg (proof)

notation S.vcomp (infixr <-g» 59)
notation S.hcomp (infixr xg> 53)
notation S.in-hom (<«-: - =g -»)
notation S.in-hhom (<«-: - —g -»)

interpretation UP: equivalence-pseudofunctor V H a i src trg
S.vcomp S.hcomp S.a S.i S.src S.trg S.UP S.cmpy p
(proof )
interpretation UP: pseudofunctor-into-strict-bicategory V H a i src trg
S.vcomp S.hcomp S.a Si S.src S.trg S.UP S.cmpy p
(proof)

interpretation E: equivalence-in-bicategory S.vcomp S.hcomp S.a S.i S.src S.trg
«S.UP fr» «<§.UP ¢
«S.inv (S.empyp (g, f)) s S.UP n -s UP.unit (src f)
«S.inv (UP.unit (trg f)) -s S.UP ¢ -s S.cmpup (f, g)»
(proof)

interpretation E: equivalence-in-strict-bicategory S.vcomp S.hcomp S.a S.i S.src S.trg
«S.UP f» «<S.UP ¢
«S.inv (S.empyp (g, f)) s S.UP n s UP.unit (src )
«S.inv (UP.unit (trg f)) - S.UP € -g S.cmpup (f, g)
(proof)

lemma UP-triangle:
shows S.UP ((g x €) - alg, f, 9] - (n x g)) =
S.empyp (g, src g) -s (S.UP g xs S.UP € -g S.cmpyp (f, 9)) ‘s
(S.inv (S.empup (g, f)) s S.UP n xs S.UP g) -s S.inv (S.cmpyp (trg g, g))
and S.UP (r—[g] - l[g]) =
(S.cmpup (g, src g) -g (S.UP g xg UP.unit (src g))) -s
(S.inv (UP.unit (trg g)) xs S.UP g) -s S.inv (S.cmpup (trg g, 9))
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and S.UP ((e » f) - a='[f, g, f] - (f * ) =
S.empyp (trg f, f) -s (S.UP € -g S.cmpup (f, g) x¢ S.UP f) -s
(S.UP f xg S.inv (S.cmpup (g, f)) s S-UP n) -g S.inv (S.cmpyp (f, src f))
and S.UP (17'[f] - 1[f]) =

(S.empup (trg f, f) -s (UP.unit (trg f) xs S.UP f)) -s
(S.UP f xg S.inv (UP.unit (src f))) s S.inv (S.cmpyp (f, src f))

and (g x ) - alg, f, g] - (n* g) = x7'[g] - 1[g] =
S.empyp (trg f, f) -5 (S.UP € -g S.cmpup (f, g) x¢ S.UP f) -s
(S.UP f xg S.inv (S.empyp (g, f)) s S.UP n) -5 S.inv (S.ecmpyp (f, src f)) =

(S.empup (trg f, f) -s (UP.unit (trg f) xs S.UP [)) -s
(S.UP f xg S.inv (UP.unit (src f))) -s S.inv (S.cmpyp (f, src f))

{proof)

lemma triangle-right-implies-left:

assumes (g x ¢) - alg, f, g - (nx g9) = 17" [g] - 1[g]

shows (< + f) - a~1[f, 9. f] - (f xm) = I1[f] - xf

(proof)

We really don’t want to go through the ordeal of proving a dual version of UP-triangle(5),
do we? So let’s be smart and dualize via the opposite bicategory.

lemma triangle-left-implies-right:

assumes (¢ x f) - a=[f, g, f] - (f *n) = 17[f] - r[f]
?howfs> (g*e)-alg, f, gl (nxg) =11 -1y
proo,

lemma triangle-left-iff-right:
shows (e x f) - a~'[f, g, f] - (f x ) = 17 '[f] - t[f] «—
(g*e)-alg, f, 9] (nxg)=1""[g - 1g]
(proof )

end

We might as well specialize the dual result back to the strict case while we are at it.

context equivalence-in-strict-bicategory
begin

lemma triangle-left-iff-right:

shows (e x f) - (fxn)=f«—=(gxe) - (n*xg) =y
(proof )

end

end

1.12 Bicategory of Categories

In this section we construct a bicategory whose objects correspond to categories having
arrows in a given type, whose 1-cells correspond to functors between such categories,
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and whose 2-cells correspond to natural transformations between such functors. We
show that the bicategory that results from the construction is strict.

theory CatBicat
imports Bicategory.Strictness ConcreteBicategory
begin

locale catbicat
begin

abbreviation ARR
where ARR A B = partial-composition.arr (functor-category.comp A B)

abbreviation MKARR
where MKARR = concrete-category. MkArr

abbreviation MAP
where MAP = concrete-category. Map

abbreviation DOM
where DOM = concrete-category. Dom

abbreviation COD
where COD = concrete-category. Cod

abbreviation NULL
where NULL = concrete-category. Null

abbreviation OBJ
where OBJ = Collect category

abbreviation HOM
where HOM = functor-category.comp

abbreviation COMP
where COMP C BA uv=if ARRBC uNARR A Bv
then MKARR (DOM o DOM v) (COD p o COD v) (MAP o MAP v)
else NULL

abbreviation ID
where ID A = MKARR (identity-functor.map A) (identity-functor.map A)
(identity-functor.map A)

abbreviation ASSOC
where ASSOCD CBAT pv =
if ARR CD7TANARRBC u N ARR A B v then
MKARR (DOM 7 0 DOM p o DOM v) (COD 7 0o COD 1 0o COD v)
(MAP 7 0 MAP pn 0o MAP v)
else NULL
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Although we are using the concrete-bicategory construction to take care of some of the
details, the proof is still awkward, because the locale assumptions we need to verify are all
conditioned on universally quantified entities being in the set OBJ, and we cannot create
interpretations to unpack these conditions until we are within a proof context where
these entities have been fixed and the conditions have been introduced as assumptions.
So, for example, to prove that COMP has the required functoriality property, we have to
fix A, B, and C and introduce assumptions A € OBJ, B € OBJ, and C € OBJ, and only
then can we use these assumptions to interpret A, B, and C as categories and HOM A B,
HOM B C, and HOM A C as functor categories. We have to go into a still deeper proof
context before we can fix particular arguments p and v to COMP C B A, introduce the
assumptions that they are arrows of their respective hom-categories, and finally use those
assumptions to interpret them as natural transformations. At that point, we are finally
in a position to apply the already-proved interchange law for natural transformations,
which is the essential core of the functoriality property we need to show.

sublocale concrete-bicategory OBJ HOM ID COMP ID ASSOC
(proof )

lemma is-concrete-bicategory:
shows concrete-bicategory OBJ HOM ID COMP ID ASSOC

(proof)

lemma unit-simp:
assumes 0bj a
showsia=a

(proof)

lemma assoc-simp:
assumes ide f and ide g and ide h and src f = trg g and src g = trg h
shows a f g h = hcomp f (hcomp g h)

{proof)

lemma is-strict-bicategory:
shows strict-bicategory vcomp hcomp a i src trg

(proof )

sublocale strict-bicategory vcomp hcomp a i src trg
(proof)

end

end

1.13 Adjunctions in a Bicategory
theory InternalAdjunction

imports Canonicallsos Strictness
begin
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An internal adjunction in a bicategory is a four-tuple (f, g, n, €), where f and g are
antiparallel 1-cells and «n : src f = g % f» and «& : f x g = src g» are 2-cells, such
that the familiar “triangle” (or “zig-zag”) identities are satisfied. We state the triangle
identities in two equivalent forms, each of which is convenient in certain situations.

locale adjunction-in-bicategory =

adjunction-data-in-bicategory +
assumes triangle-left: (¢ x f) - a=[f, g, f] - (f * n) = 171[f] - r[f]
and triangle-right: (g x €) - alg, f, g] - (n x g) = v~ [g] - 1g]
begin

lemma triangle-left”:
shows I[f] - (e x f) - a™'[f, g, f] - (fxm) - v M [f] = f
(proof )

lemma triangle-right’”:
shows r[g] - (g x ) - alg, f, g] - (n*g) - 17} [gl = ¢
(proof )

end

Internal adjunctions have a number of properties, which we now develop, that gen-
eralize those of ordinary adjunctions involving functors and natural transformations.

context bicategory
begin

lemma adjunction-unit-determines-counit:

assumes adjunction-in-bicategory () () aisrctrgfgne
and adjunction-in-bicategory (-) (x) ai srctrg fgne’
shows ¢ = ¢’

{proof)

end

1.13.1 Adjoint Transpose

context adjunction-in-bicategory
begin

interpretation E: self-evaluation-map V H a i src trg (proof)

notation E.eval («{-}»)

Just as for an ordinary adjunction between categories, an adjunction in a bicategory
determines bijections between hom-sets. There are two versions of this relationship:
depending on whether the transposition is occurring on the left (i.e. “output”) side or
the right (i.e. “input”) side.

definition trnl,

where trnl, v u = (g * p) - alg, f, v] - (n x v) - 171[v]
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definition trnl,
where trnl. w v = 1[u] - (¢ x u) - a=[f, g, u] - (f V)

lemma adjoint-transpose-left:

assumes ide v and ide v and src f = trg v and src g = trg u
shows trnl,, v € hom (f * v) u — hom v (g * u)

and trnl. uw € hom v (g * u) = hom (f x v) u

and «p: f*x v = u» = trnl. u (trnl, v p) = p

and «v : v = g x u» = trol, v (trnl. w V) = v

and bij-betw (trnl, v) (hom (f * v) u) (hom v (g * w))

and bij-betw (trnl. u) (hom v (g * u)) (hom (f x v) u)

(proof)

lemma trnl.-comp:

assumes ide v and seq 4 v and src f = trg u

shows trnle u (u - v) = trnle uw p - (f *x V)
(proof)

definition trnr,
where trnr, v p = (u* f)-a v, g, f] - (v*n) -7 1]

definition trnr.
where trnr. u v =rfu] - (u*¢€) - afu, f, g - (v x g)

lemma adjoint-transpose-right:

assumes ide v and ide v and src v = trg g and src u = trg f
shows trnr, v € hom (v x g) u — hom v (u * f)

and trnre u € hom v (u x f) = hom (v x g) u

and «p:vx g = u» = trnre u (trnr, v p) = p

and «v : v = u*x f» = trary, v (trnr; wv) = v

and bij-betw (trnr,, v) (hom (v * g) uw) (hom v (u * f))

and bij-betw (trnr. uw) (hom v (u x f)) (hom (v x g) u)
(proof)

lemma trnr,-comp:
assumes ide v and seq p v and src y = trg f
shows trnr, v (- v) = (u* f) - trnry v v

(proof)

end

It is useful to have at hand the simpler versions of the preceding results that hold in
a normal bicategory and in a strict bicategory.

locale adjunction-in-normal-bicategory =
normal-bicategory +
adjunction-in-bicategory

begin

lemma triangle-left:
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shows (¢ x f) - a='[f, g, f] - (f xn) = f
(proof)

lemma triangle-right:

shows (g x¢) - alg, f, 9] - (n*xg) =g
(proof )

lemma trnr,-eq:

assumes ide v and ide v

and src v = trg g and src u = trg f

and p € hom (v * g) u

shows trnr, v u = (u* f) -a o, g, f] - (v *n)
(proof)

lemma trnr.-eq:

assumes ide v and ide v

and src v = trg g and src u = trg f

and v € hom v (u * f)

shows trnr. uv = (ux¢€) - alu, f, g - (v * g)

{proof)

lemma trnl,-eq:

assumes ide u and ide v

and src f = trg v and src g = trg u

and g € hom (f x v) u

shows trnl, v = (g * 1) - alg, f, v - (n * v)
(proof)

lemma trnl.-eq:

assumes ide v and ide v

and src f = trg v and src g = trg u

and v € hom v (g * u)

shows trnl. u v = (e x u) - a=[f, g, u] - (f * V)
(proof)

end

locale adjunction-in-strict-bicategory =
strict-bicategory +
adjunction-in-normal-bicategory
begin

lemma triangle-left:
shows ( ) - (f 1) = f
(proof)

lemma triangle-right:

shows (g x¢) - (nxg) =g
(proof)
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lemma trnr,-eq:

assumes ide u and ide v

and src v = trg g and src u = trg f

and p € hom (v * g) u

shows trnr, v p = (u* f) - (v *17)
(proof)

lemma trnr.-eq:

assumes ide v and ide v

and src v = trg g and src u = trg f
and v € hom v (u * f)

shows trnr. uv = (ux¢e) - (v * g)

{proof)

lemma trnl,-eq:

assumes ide u and ide v

and src f = trg v and src g = trg u

and p € hom (f * v) u

shows trnl, v p = (g i) - (n * v)
(proof )

lemma trnl.-eq:

assumes ide u and ide v

and src f = trg v and src g = trg u

and v € hom v (g * u)

shows trnl. uwv = (e x u) - (f % V)
(proof)

end

1.13.2 Preservation Properties for Adjunctions

Here we show that adjunctions are preserved under isomorphisms of the left and right
adjoints.

context bicategory
begin

interpretation E: self-evaluation-map V H a i src trg (proof)
notation E.eval («{-}»)

definition adjoint-pair

where adjoint-pair f ¢ = 3n e. adjunction-in-bicategory V H aisrctrgfgne
abbreviation is-left-adjoint

where is-left-adjoint f = 3 g. adjoint-pair f g

abbreviation is-right-adjoint
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where is-right-adjoint ¢ = 3 f. adjoint-pair f g

lemma adjoint-pair-antipar:
assumes adjoint-pair f g
shows ide f and ide g and src f = trg g and src g = trg f

{proof)

lemma [eft-adjoint-is-ide:
assumes is-left-adjoint f
shows ide f

(proof)

lemma right-adjoint-is-ide:
assumes is-right-adjoint f
shows ide f

(proof)

lemma adjunction-preserved-by-iso-right:

assumes adjunction-in-bicategory V.H aisrctrg fgne

and «p : g = ¢g'» and iso ¢

shows adjunction-in-bicategory V. -H a i src trg f g’ (¢ = f) - n) (e - (f * inv @))
(proof)

lemma adjunction-preserved-by-iso-left:

assumes adjunction-in-bicategory V H a i srctrg fgn e

and «p : f = f'» and iso ¢

shows adjunction-in-bicategory V. .H a i src trg f' g ((g * p) - 1) (e - (inv ¢ * g))
(proof)

lemma adjoint-pair-preserved-by-iso:
assumes adjoint-pair f g

and «p : f = f'» and iso ¢

and «¢ : g = ¢'» and iso ¢

shows adjoint-pair f' g’

(proof)

lemma left-adjoint-preserved-by-iso:
assumes is-left-adjoint f

and «p : f = f'» and iso ¢
shows is-left-adjoint f'

(proof )

lemma right-adjoint-preserved-by-iso:
assumes is-right-adjoint g

and «p : g = ¢'» and iso ¢

shows is-right-adjoint g’

(proof)

lemma left-adjoint-preserved-by-iso”:
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assumes is-left-adjoint f and f = f’
shows is-left-adjoint f’
(proof)

lemma right-adjoint-preserved-by-iso’:
assumes is-right-adjoint g and g = ¢’
shows is-right-adjoint g’

(proof)

lemma obj-self-adjunction:
assumes o0bj a
shows adjunction-in-bicategory V H a i src trg a a 17 [a] 1]a]

{proof)

lemma obj-is-self-adjoint:

assumes o0bj a

shows adjoint-pair a a and is-left-adjoint a and is-right-adjoint a
(proof )

end

1.13.3 Pseudofunctors and Adjunctions

context pseudofunctor
begin

lemma preserves-adjunction:
assumes adjunction-in-bicategory Vo He ac ic srec trgo fgn e
shows adjunction-in-bicategory Vp Hp ap ip srep trgp (F f) (F g)
(D.inv (® (g, f)) ‘p F n -p unit (srcc f))
(D.inv (unit (trgc f)) -p Fe-p @ (f, 9))
(proof)

lemma preserves-adjoint-pair:

assumes C.adjoint-pair f g

shows D.adjoint-pair (F f) (F g)
(proof )

lemma preserves-left-adjoint:

assumes C'.is-left-adjoint f

shows D.is-left-adjoint (F f)
(proof)

lemma preserves-right-adjoint:

assumes C'.is-right-adjoint g

shows D.is-right-adjoint (F g)
(proof)

end
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context equivalence-pseudofunctor
begin

lemma refilects-adjunction:

assumes C.ide f and C.ide g

and «n : srce f =c g *x¢ f» and «e : f x¢ g =¢ srco g»

and adjunction-in-bicategory Vp Hp ap ip srcp trgp (F f) (F g)
(D.inv (® (g, f)) -p F n-p unit (sree f))
(D.inv (unit (trge f)) p Fe-p @ (f, g9))

shows adjunction-in-bicategory Vo He ac ic sree trge fgn e

{proof)

lemma refilects-adjoint-pair:

assumes C.ide f and C.ide g

and srce f = trge g and srce g = trge f
and D.adjoint-pair (F f) (F g)

shows C.adjoint-pair f g

(proof)

lemma refilects-left-adjoint:

assumes C.ide f and D.is-left-adjoint (F f)
shows C'.is-left-adjoint f

(proof)

lemma refilects-right-adjoint:

assumes C.ide g and D.is-right-adjoint (F g)
shows C'.is-right-adjoint g

(proof)

end

1.13.4 Composition of Adjunctions

We first consider the strict case, then extend to all bicategories using strictification.

locale composite-adjunction-in-strict-bicategory =
strict-bicategory V H a i src trg +
fg: adjunction-in-strict-bicategory V.H aisrctrg fg ¢ & +
hk: adjunction-in-strict-bicategory V. H a i src trg h k o T

for Vi:'a="a="a (infixr <> 55)
and H : 'a = 'a = 'a (infixr x> 53)
anda:'a= 'a='a="a ([ - )
andi:’a="a (d[-])

and src :: 'a = 'a
and trg :: 'a = a

and f :: 'a
and g :: a
and ¢ :: 'a
and £ :: 'a
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and h :: ‘a
and k :: a
and o :: 'a

and 7 :: ‘a +

assumes composable: src h = trg f

begin

abbreviation 7
where n = (gx o x f) - ¢

abbreviation ¢
where e =7 - (hx £ * k)

interpretation adjunction-data-in-bicateqgory V H a i src trg <h x f> <gx k> ne

(proof)

sublocale adjunction-in-strict-bicategory V H a i src trg <h x f» <gx k» n e

{proof)

lemma is-adjunction-in-strict-bicategory:
shows adjunction-in-strict-bicategory V .H a i srctrg (hx f) (g x k) ne
(proof)

end

context strict-bicategory
begin

lemma left-adjoints-compose:

assumes is-left-adjoint f and is-left-adjoint f' and src f' = trg f
shows is-left-adjoint (f' x f)

(proof )

lemma right-adjoints-compose:

assumes is-right-adjoint g and is-right-adjoint ¢’ and src g = trg g’
shows is-right-adjoint (g * g’)

(proof )

end

We now use strictification to extend the preceding results to an arbitrary bicategory.
We only prove that “left adjoints compose” and “right adjoints compose”; I did not work
out formulas for the unit and counit of the composite adjunction in the non-strict case.

context bicategory
begin

interpretation S: strictified-bicategory V H a i src trg (proof)

notation S.vcomp (infixr <g» 55)
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notation S.hcomp (infixr xg> 53)
notation S.in-hom (<«-: - =g -»)
notation S.in-hhom (<«-: - —g -»)

interpretation UP: fully-faithful-functor V S.vcomp S.UP
(proof)

interpretation UP: equivalence-pseudofunctor V H a i src trg
S.vcomp S.hcomp S.a S.i S.src S.trg S.UP S.cmpy p

{proof)

lemma left-adjoints-compose:

assumes is-left-adjoint f and is-left-adjoint f’ and src f = trg [’
shows is-left-adjoint (f * f7)

(proof)

lemma right-adjoints-compose:

assumes is-right-adjoint g and is-right-adjoint ¢’ and src g’ = irg g
shows is-right-adjoint (g’ x g)

(proof)

end

1.13.5 Choosing Right Adjoints

It will be useful in various situations to suppose that we have made a choice of right
adjoint for each left adjoint (i.e. each “map”) in a bicategory.

locale chosen-right-adjoints =
bicategory
begin

unbundle no rtrancl-syntax

definition some-right-adjoint (<-*» [1000] 1000)
where f* = SOME g. adjoint-pair f g

definition some-unit
where some-unit f = SOME 1. Je. adjunction-in-bicategory V H a i src trg ff* n e

definition some-counit
where some-counit f =
SOME ¢. adjunction-in-bicategory V H a i src trg f f* (some-unit f)

lemma left-adjoint-extends-to-adjunction:

assumes is-left-adjoint f

shows adjunction-in-bicategory V H a i src trg f f* (some-unit f) (some-counit f)
(proof )

lemma left-adjoint-extends-to-adjoint-pair:
assumes is-left-adjoint f
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shows adjoint-pair f f*
{proof )

lemma right-adjoint-in-hom [introl:
assumes is-left-adjoint f
shows «f* : trg f — src f»
and «f* : f* = f*»
(proof)

lemma right-adjoint-simps [simp]:

assumes is-left-adjoint f

shows ide f*

and src f* = trg f and trg f* = src f

and dom f* = f* and cod f* = f*
(proof )

end

locale map-in-bicategory =

bicategory + chosen-right-adjoints +
fixes f :: 'a
assumes is-map: is-left-adjoint f
begin

abbreviation 7
where n = some-unit f

abbreviation ¢
where ¢ = some-counit f

sublocale adjunction-in-bicategory V H a i src trg f <f*» ne

(proof)

end

1.13.6 Equivalences Refine to Adjoint Equivalences

In this section, we show that, just as an equivalence between categories can always be
refined to an adjoint equivalence, an internal equivalence in a bicategory can also always
be so refined. The proof, which follows that of Theorem 3.3 from [9], makes use of the
fact that if an internal equivalence satisfies one of the triangle identities, then it also
satisfies the other.
locale adjoint-equivalence-in-bicategory =
equivalence-in-bicategory +
adjunction-in-bicategory
begin

lemma dual-adjoint-equivalence:
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shows adjoint-equivalence-in-bicategory V H a i src trg g f (inv €) (inv n)

{proof)

end

context bicategory
begin

lemma adjoint-equivalence-preserved-by-iso-right:

assumes adjoint-equivalence-in-bicategory V. H a i src trg fgn €

and «p : g = ¢g'» and iso ¢

shows adjoint-equivalence-in-bicategory V. .H aisrctrg fg' (¢ x f) - n) (e - (f x inv @))
(proof)

lemma adjoint-equivalence-preserved-by-iso-left:

assumes adjoint-equivalence-in-bicategory V H a i srctrg fgn e

and «p : f = f'» and iso ¢

shows adjoint-equivalence-in-bicategory V H a i src trg f' g ((g *x ¢) - 1) (¢ - (inv ¢ * g))
(proof)

end

context strict-bicategory
begin

notation isomorphic (infix <2 50)

lemma equivalence-refines-to-adjoint-equivalence:

assumes equivalence-map f and «g : trg f — src f» and ide g
and «n : src f = g = f» and iso n

shows Fle. adjoint-equivalence-in-bicategory V H a i srctrg fgn e

(proof)

end

We now apply strictification to generalize the preceding result to an arbitrary bicat-
egory.
context bicategory
begin
interpretation S: strictified-bicategory V H a i src trg (proof)

notation S.vcomp (infixr «-g» 55)
notation S.hcomp (infixr xg> 53)
notation S.in-hom (<«-:- =g -»)
notation S.in-hhom (<«-: - —g -»)

interpretation UP: fully-faithful-functor V S.vcomp S.UP
(proof )
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interpretation UP: equivalence-pseudofunctor V H a i src trg
S.vcomp S.hcomp S.a S.i S.src S.trg S.UP S.cmpy p
(proof )
interpretation UP: pseudofunctor-into-strict-bicategory V H a i src trg
S.vcomp S.hcomp S.a Si S.src S.trg S.UP S.cmpy p

(proof)

lemma equivalence-refines-to-adjoint-equivalence:

assumes equivalence-map f and «g : trg f — src f» and ide g
and «n : src f = g % f» and iso

shows Jle. adjoint-equivalence-in-bicategory V H a i srctrg fgn e

{proof)

lemma equivalence-map-extends-to-adjoint-equivalence:
assumes equivalence-map f
shows 3 g 7 €. adjoint-equivalence-in-bicategory V H a i src trg fgn e

{proof)

end

1.13.7 Uniqueness of Adjoints

Left and right adjoints determine each other up to isomorphism.

context strict-bicategory
begin

lemma left-adjoint-determines-right-up-to-iso:
assumes adjoint-pair f g and adjoint-pair f g’
shows g = ¢’

(proof)

end
We now use strictification to extend to arbitrary bicategories.

context bicategory
begin

interpretation S: strictified-bicategory V H a i src trg (proof)

notation S.vcomp (infixr g 55)
notation S.hcomp (infixr xg> 53)
notation S.in-hom (<«-: - =g -»)
notation S.in-hhom (<«-: - —g -»)

interpretation UP: equivalence-pseudofunctor V H a i src trg
S.vcomp S.hcomp S.a S.i S.src S.trg S.UP S.cmpy p

(proof)

interpretation UP: pseudofunctor-into-strict-bicategory V H a i src trg
S.vcomp S.hcomp S.a S.i S.src S.trg S.UP S.cmpy p
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(proof)
interpretation UP: fully-faithful-functor V S.vcomp S.UP

(proof)

lemma left-adjoint-determines-right-up-to-iso:
assumes adjoint-pair f g and adjoint-pair f g’
shows g = ¢’

{proof)

lemma right-adjoint-determines-left-up-to-iso:
assumes adjoint-pair f g and adjoint-pair f' g
shows [ = f'

(proof)

end

context chosen-right-adjoints
begin

lemma isomorphic-to-left-adjoint-implies-isomorphic-right-adjoint:
assumes is-left-adjoint f and f = h
shows f* = b*

{proof)

end

context bicategory
begin

lemma equivalence-is-adjoint:

assumes equivalence-map f

shows equivalence-is-left-adjoint: is-left-adjoint f
and equivalence-is-right-adjoint: is-right-adjoint f

{proof)

lemma right-adjoint-to-equivalence-is-equivalence:
assumes equivalence-map f and adjoint-pair f g
shows equivalence-map g

{proof)

lemma left-adjoint-to-equivalence-is-equivalence:
assumes equivalence-map f and adjoint-pair g f
shows equivalence-map g

{proof)

lemma quasi-inverses-are-adjoint-pair:
assumes quasi-inverses | g
shows adjoint-pair f g

{proof)
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lemma quasi-inverses-isomorphic-right:
assumes quasi-inverses | g
shows quasi-inverses f g’ +— g = ¢’

(proof )

lemma quasi-inverses-isomorphic-left:
assumes quasi-inverses | g
shows quasi-inverses f' g +— f = f'

(proof )

end

end

1.14 Pseudonatural Transformations

theory PseudonaturalTransformation
imports InternalEquivalence InternalAdjunction Pseudofunctor
begin

1.14.1 Definition of Pseudonatural Transformation

Pseudonatural transformations are a generalization of natural transformations that is
appropriate for pseudofunctors. The “components” of a pseudonatural transformation 7
from a pseudofunctor F to a pseudofunctor G (both from bicategory C to D), are 1-cells
«Tg a: Fo a —p Gp a» associated with the objects of C. Instead of “naturality squares”
that commute on-the-nose, a pseudonatural transformation associates an invertible 2-cell
«t1 f: GfxpToga=pT7oa *p F f» with each 1-cell «f : a —¢ a’» of C. The 1-cells 7
a and 2-cells 71 f are subject to coherence conditions which express that they transform
naturally across 2-cells of C' and behave sensibly with respect to objects and horizontal
composition.

In formalizing ordinary natural transformations, we found it convenient to treat them
similarly to functors in that a natural transformation 7 : ¢ — D maps arrows of C to
arrows of D; the components 7 a at objects a being merely special cases. However, it is
not possible to take the same approach for pseudofunctors, because it is not possible to
treat the components 7( a at objects a as a special case of the components 71 f at 1-cells
f- So we have to regard a pseudonatural transformation 7 as consisting of two separate
mappings: a mapping 7 from objects of C to 1-cells of D and a mapping 71 from 1-cells
of C' to invertible 2-cells of D.

Pseudonatural transformations are themselves a special case of the more general no-
tion of “lax natural transformations” between pseudofunctors. For a lax natural trans-
formation 7, the 2-cells 71 f are not required to be invertible. This means that there is a
distinction between a lax natural transformation with «7q f : G f xp 79 a =p 709 @’ *p
F f» and an “op-lax” natural transformation with «71 f : 79 @’ *xp F f =p G f xp 7o
a». There is some variation in the literature on which direction is considered “lax” and
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which is “op-lax” and this variation extends as well to the special case of pseudofunctors,
though in that case it does not result in any essential difference in the notion, due to the
assumed invertibility. We have chosen the direction that agrees with Leinster [8], and
with the “nLab” article [11] on lax natural transformations, but note that the “nLab”
article [10] on pseudonatural transformations seems to make the opposite choice.

locale pseudonatural-transformation =
C': bicategory Vo He ac ic sree trge +
D: bicategory Vp Hp ap ip srep trgp +
F: pseudofunctor Vo He ac ic sree trgc Vp Hp ap ip srep trgp F ®p +
G: pseudofunctor Vo He ac ic sree trgc Vp Hp ap ip srep trgp G @

for Vg it 'c comp (infixr <> 55)
and H¢ = 'c comp (infixr x¢> 53)
and ac = ‘c='c="c='c (cac[- - )
and i¢c : ‘e = 'c (<iel-])

and srcg 1 'c = ¢
and trgc 1 'c = 'c

and Vp :: 'd comp (infixr ¢-p» 55)
and Hp :: 'd comp (infixr <p> 53)
andap = 'd = 'd="d='d (<apl- - -]»)
andip = 'd = 'd (dp[-]»)

and srcp :: 'd = 'd
and trgp :: 'd = 'd
and F :: 'c = 'd
and ®r :: ‘c x 'c = 'd
and G :: 'c = 'd
and &g s ‘cx 'c = 'd
and 79 :: 'c = 'd
and 71 : ‘c = 'd +
assumes mapg-in-hhom: C.obj a = «7¢ a : srcp (F a) —p srep (G a)»
and map;-in-vhom: C.ide f = «11 f : G f *p 7o (srcc f) =p 70 (trgc f) *p F f»
and ide-mapg-obj: C.obj a = D.ide (1¢ a)
and iso-map;-ide: C.ide f = D.iso (11 f)
and naturality: C.arr p =
71 (C.cod p) -p (G p*p 7o (srec p)) = (1o (trgc p) *xp F p) -p 71 (C.dom pu)
and respects-unit: C.obj a =
(1o a xp F.unit a) -p rp~ Y70 a] -p Ip[To a] = 71 a -p (G.unit a xp 1o a)
and respects-hcomp:
[ C.ide f; C.ide g; srcc g = trge [ ]| =
(to (trgc 9) *p ®F (9, f)) -p aplro (trgc g), F g, F f] -p (11 g*p F f) -p
D.inv ap[G g, 7o (srcc 9), F f] 'p (Gg*p 71 f) -p ap|G g, G f, 7o (srcc f)]
=71 (9*c f) ‘b (®c (9, f) *xp 70 (s7cC [))
begin

lemma mapg-in-hom [introl:
assumes C.obj a
shows «71g a : F.mapg a —>p G.mapg a»
and «7g a : Tg a =p To a»
(proof)
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lemma mapg-simps [simp]:

assumes C.obj a

shows D.ide (1 a)

and srcp (19 a) = F.mapy a and trgp (19 a) = G.mapg a

(proof)

lemma map; -in-hom [introl:

assumes C.ide f

shows «71 f : F.mapg (srce f) =p G.mapo (trge f)»
and «71 f: G f xp 70 (srce f) =p 70 (trgc ) xp F [»

(proof)

lemma map; -simps [simp):

assumes C.ide f

shows D.arr (11 f)

and srcp (11 f) = F.mapg (sree f)

and trgp (11 ) = G.mapo (trgo f)

and D.dom (11 f) = G f *p 70 (srcc f)

and D.cod (11 f) = 7o (trgc f) *p F f
(proof )

lemma inv-naturality:
assumes C.arr u
shows (G p xp 79 (srce p)) -p D.inv (11 (C.dom p)) =
D.inv (11 (C.cod 1)) -p (10 (trgc p) *p F 1)
(proof )

end

1.14.2 Identity Pseudonatural Transformation

locale identity-pseudonatural-transformation =
C': bicategory Vo He ac ic sree trge +
D: bicategory Vp Hp ap ip srep trgp +
F: pseudofunctor Vo He ac ic srce trgc Vp Hp ap ip srep trgp F Op

for Vg i 'c comp (infixr <> 55)
and H¢ = 'c comp (infixr <xc> 53)
and ac 1 ‘e = ‘c= ‘e = ¢ (xac[- - )
and i¢c : ‘e = ‘¢ (<iel]))

and srcg : 'c = ¢
and trgc :: 'c = ¢

and Vp :: 'd comp (infixr <-p» 59)
and Hp :: 'd comp (infixr <p> 53)
and ap = 'd = 'd="d="d (<ap[-, - )
and ip = 'd = 'd (<dpl-])

and srcp : 'd = 'd
and trgp : 'd = 'd
and F :: 'c = 'd
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and & :: 'cx ‘e = 'd
begin

abbreviation (input) mapg
where mapg a = F.mapg a

abbreviation (input) map;
where map, f =1p~'[F f] -p rp[F f]

sublocale pseudonatural-transformation
Vo He ac ic srco trgc Vp Hp ap ip srcp trgp F & F ®r mapy map;

{proof)

lemma is-pseudonatural-transformation:
shows pseudonatural-transformation
Ve He ac ic srce trgc Vp Hp ap ip srep trgp F & F & mapy map,

(proof)

end

1.14.3 Composite Pseudonatural Transformation

A pseudonatural transformation o from F to G and a pseudonatural transformation g
from G to H can be composed to obtain a pseudonatural transformation 7 from F to
H. The components at objects are composed via horizontal composition. Composing
the components at 1-cells is straightforward, but is formally complicated by the need
for associativities. The additional complexity leads to somewhat lengthy proofs of the
coherence conditions. This issue only gets worse as we consider additional constructions
on pseudonatural transformations.

locale composite-pseudonatural-transformation =

C': bicategory Vo He ac ic sree trge +
D: bicategory Vp Hp ap ip srep trgp +
F: pseudofunctor Vo He ac ic sree trgc Vp Hp ap ip srep trgp F @p +
G: pseudofunctor Vo He ac ic srce trgc Vp Hp ap ip srep trgp G ®¢ +
H: pseudofunctor Vo He ac ic srce trgc Vp Hp ap ip srep trgp H g +
o: pseudonatural-transformation

Ve He ac ic sree trge Vp Hp ap ip srep trgp F ®p G ®g 0g 01 +
o: pseudonatural-transformation

Vc Hc ac ic Srco trgc VD HD ap iD STCpD t?"gD G (I)G H ‘]?H 00 01

for Vo 'c comp (infixr ¢¢> 55)
and H¢ 2 ‘¢ comp (infixr <xc> 53)
and ac :: ‘e = 'c= e = 'c (xac[- - )
and ic :: 'c = 'c (<iel]))

and srcg ‘e = ¢
and trgc 1 'c = 'c

and Vp :: 'd comp (infixr <-p» 55)
and Hp :: 'd comp (infixr <p> 53)
andap = 'd = 'd="d = 'd (<apl- - -]»)
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andip : 'd = 'd (<ip[-]»)
and srcp :: 'd = 'd
and trgp :: 'd = 'd
and F 1 ‘e = 'd

and ®r :: ‘c x 'c = 'd
and G :: 'c = d

and &g :: ‘cx 'c = 'd
and H :: 'c = 'd

and g :: ‘e x 'c = 'd
and og :: 'c = 'd

and oy 1 'c = 'd

and gp :: 'c = d

and o1 :: 'c = 'd
begin

definition mapg
where mapg a = 0o a *p g a

definition map;
where map, f = ap~t[oo (trgc f), o0 (trgc f), F f] ‘b
(00 (trgc f) *p o1 f) D
apleo (trgc f), G f, oo (srcc f)] ‘b
(o1 f *p 00 (srcc f)) D
ap '[H f, oo (srce f), oo (srec f)]

sublocale pseudonatural-transformation
Ve He ac ic sree trgc Vp Hp ap ip srep trgp F & H & mapg mapy

{proof)

lemma is-pseudonatural-transformation:
shows pseudonatural-transformation
Ve He ac ic sree trgc Vp Hp ap ip srep trgp F & H & mapg map,

{proof)

end

1.14.4 Whiskering of Pseudonatural Transformations

Similarly to ordinary natural transformations, pseudonatural transformations can be
whiskered with pseudofunctors on the left and the right.

locale pseudonatural-transformation-whisker-right =
B: bicategory Vp Hp ap ip srcp trgp +
C: bicategory Vo He ac ic srco trge +
D: bicategory Vp Hp ap ip srcp trgp +
T.F: pseudofunctor Vo He ac ic srce trgc Vp Hp ap ip srcp trgp F ®p +
7.G: pseudofunctor Vo Heo ac ic srce trgc Vp Hp ap ip srep trgp G ®¢ +
H: pseudofunctor Vg Hp ap ip srcp trgg Vo He ac ic srce trgc H @y +
T: pseudonatural-transformation
VC Hc ac ic Srco t’f‘gc VD HD ap iD STCpD t?"gD F (I)F G (I)G To T1
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for Vg :: 'b comp (infixr < p> 55)

and Hp :: 'b comp (infixr <xp» 53)
andap i b= b= b= (asl - )
and ip :: 'b="b (dgl-]»)

and srcg ‘b= ")
and trgg :: 'b = 'b

and V¢ i 'e comp (infixr <-¢> 55)
and H¢ = 'c comp (infixr <xc> 53)
and ac :: ‘c=c= e = 'c (cac[- - )
and ic :: ‘e = 'c (de[-])

and srcg : 'c = ¢
and trgc :: 'c = ¢

and Vp :: 'd comp (infixr <-p» 55)
and Hp :: 'd comp (infixr <p> 53)
and ap = 'd = 'd="d="d (<ap[-, - )
and ip = 'd = 'd (dp[-])

and srcp : 'd = 'd
and trgp :: 'd = 'd
and F :: 'c = 'd

and ®r :: ‘c x 'c = 'd
and G :: 'c = 'd

and &g :: ‘c x 'c = 'd
and H :: 'b = 'c

and g :: 'bx b= ‘¢
and 79 : ‘c = 'd

and 71 : ‘c = 'd
begin

interpretation FoH: composite-pseudofunctor Vg Hp apg ip srcg trgp
Ve He ac ic srce trgc Vp Hp ap ip srep trgp H @y F
(proof )
interpretation GoH: composite-pseudofunctor Vg Hp ap ip srcg trgp
VC Hc ac ic srco t?”gc VD HD ap iD STCp tT’gD H (bH G @G
(proof)

definition mapg
where mapy a = 79 (H.mapy a)

definition map;
where map, f = 71 (H f)

sublocale pseudonatural-transformation Vg Hp ag ip srcg trgg Vp Hp ap ip srep trgp
«<F o Hy FoH.cmp <G o H» GoH.cmp mapy map,
(proof)

lemma is-pseudonatural-transformation:
shows pseudonatural-transformation Vg Hp ap ig srcg trgg Vp Hp ap ip srcp trgp
(FoH) FoH.cmp (G o H) GoH.cmp mapy map,
(proof )
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end

locale pseudonatural-transformation-whisker-left =

B: bicategory Vg Hp ap ip srcp trgp +

C': bicategory Vo He ac ic sree trge +

D: bicategory Vp Hp ap ip srcp trgp +

7.F: pseudofunctor Vg Hp ag ig srcg trgg Vo He ac ic srce trgc F $p +
7.G: pseudofunctor Vg Hp ap ig srcp trgg Vo He ac ic sree trge G ¢ +
H: pseudofunctor Vo He ac ic srco trgc Vp Hp ap ip srep trgp H &y +
T: pseudonatural-transformation

VB HB ap iB sSrcp tTgB VC Hc ac ic Srco t?”gc F (DF G (I)G To T1

for Vg :: 'b comp (infixr 5> 55)
and Hp :: 'b comp (infixr <p» 53)
andag = b= "b="b="b (cagl-, - )
andig = 'b="b (dg[-))

and srcg it 'b='b
and trgg :: 'b = b

and V¢ i 'c comp (infixr c> 55)
and H¢ :: 'c comp (infixr xc> 53)
and ag 1 'c = c = c = 'c (xac[- - )
and ic :: 'c = 'c (<ig[-])

and srcg e = ¢
and trgc 1 'c = 'c

and Vp :: 'd comp (infixr <-p» 55)
and Hp :: 'd comp (infixr <p> 53)
andap = 'd="d="d="d (<apl- - -]»)
and ip = 'd = 'd (dp[])

and srcp :: 'd = 'd
and trgp :: 'd = 'd
and F :: 'b = ¢

and ®r :: b x b= ¢
and G :: b= ¢

and &¢ - b x b = 'c
and H :: 'c = 'd

and g :: ‘e x 'c = 'd
and 79 : 'b = ¢
and 71 b= ¢
begin

interpretation HoF: composite-pseudofunctor Vg Hpg apg ig srcg trgp
Ve He ac ic srce trgc Vp Hp ap ip srcp trgp F & H &g
(proof )
interpretation HoG: composite-pseudofunctor Vg Hp ap ip srcg trgp
VC HC ac iC STCCo t?”gc VD HD ap iD STCD tTgD G CI)G H (I)H

{proof)

definition mapg
where mapy a = H (19 a)
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definition map;
where map, [ = D.inv (u (10 (trg f), F f)) o H (11 f) -0 ®u (G f, 70 (srcB [))

sublocale pseudonatural-transformation Vg Hp ap ip srcg trgg Vp Hp ap ip srep trgp
HoF.map HoF.cmp HoG.map HoG.cmp mapg map,

{proof)

lemma is-pseudonatural-transformation:
shows pseudonatural-transformation Vg Hp ap ig srcg trgg Vp Hp ap ip srcp trgp
HoF.map HoF.cmp HoG.map HoG.cmp mapg map,

(proof)

end

1.14.5 Pseudonatural Equivalences

A pseudonatural equivalence is a pseudonatural transformation whose components at
objects are equivalence maps. Pseudonatural equivalences between pseudofunctors gen-
eralize natural isomorphisms between ordinary functors.

locale pseudonatural-equivalence =
pseudonatural-transformation +
assumes components-are-equivalences: C.obj a => D.equivalence-map (1o a)

Identity Transformations are Pseudonatural Equivalences

sublocale identity-pseudonatural-transformation C
pseudonatural-equivalence Vo Heo ac ic srce trgc Vp Hp ap ip srep trgp
F &p F & mapg map,
(proof)

Composition of Pseudonatural Equivalences

locale composite-pseudonatural-equivalence =
composite-pseudonatural-transformation +
o: pseudonatural-equivalence Vo Heo ac ic srco trgqc Vp Hp ap ip srep trgp
Fop G &g og o1 +
o: pseudonatural-equivalence Vo He ac ic sree trgqc Vp Hp ap ip srep trgp
G ®c H @y 00 01
begin

sublocale pseudonatural-equivalence Vo He ac ic srco trgc Vp Hp ap ip srep trgp
F &p H &y mapy map,
(proof )

lemma is-pseudonatural-equivalence:
shows pseudonatural-equivalence Vo He ac ic srce trgec Vp Hp ap ip srcp trgp
F &p H &5 mapy mapy
(proof )
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end

locale pseudonatural-equivalence-whisker-right =
pseudonatural-transformation-whisker-right +
T: pseudonatural-equivalence
Vc Hc ac ic Srco trgc VD HD ap iD STCpD t?”gD F (I)F G (I)G To T1
begin

interpretation FoH: composite-pseudofunctor Vg Hp ap ip srcg trgp
Ve He ac ic srce trgc Vp Hp ap ip srcp trgp H @y F ®f
(proof)
interpretation GoH: composite-pseudofunctor Vg Hp ap ig srcg trgp
Ve He ac ic sree trgqe Vp Hp ap ip srep trgp H @y G $g

(proof)

sublocale pseudonatural-equivalence Vg Hp ap ip srcg trgg Vp Hp ap ip srcp trgp

«<F o H) FoH.cmp <G o H> GoH.cmp mapy map;
(proof)

lemma is-pseudonatural-equivalence:
shows pseudonatural-equivalence Vg Hp ap ip srcg trgg Vp Hp ap ip srcp trgp
(FoH) FoH.cmp (G o H) GoH.cmp mapy map,

(proof)
end

locale pseudonatural-equivalence-whisker-left =
pseudonatural-transformation-whisker-left +
7: pseudonatural-equivalence
Ve Hp ag ip srcg trgp Vo He ac ic srco trgc F @p G g 79 71
begin

interpretation HoF': composite-pseudofunctor Vg Hp ap ip srcg trgp
Ve He ac ic srce trgc Vp Hp ap ip srep trgp F & H &g
(proof )
interpretation HoG: composite-pseudofunctor Vg Hp ap ip srcg trgp
Ve He ac ic sree trge Vp Hp ap ip srep trgp G @ H @y
(proof)

sublocale pseudonatural-equivalence Vg Hp ap ip srcg trgg Vp Hp ap ip srcp trgp

<H o Fy HoF.cmp <H o Gy HoG.cmp mapg map;
(proof )

lemma is-pseudonatural-equivalence:
shows pseudonatural-equivalence Vg Hp ap ip srcg trgp Vp Hp ap ip srcp trgp
(H o F) HoF.cmp (H o G) HoG.cmp mapy map;
(proof )
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end

Converse of a Pseudonatural Equivalence

It is easy to see that natural isomorphism between ordinary functors is a symmetric
relation because a unique inverse to a natural isomorphism is obtained merely by inverting
the components. However the situation is more difficult for pseudonatural equivalences
because they do not have unique inverses. Instead, we have to choose a quasi-inverse
for each of the components. In order to satisfy the required coherence conditions, it
is necessary for these quasi-inverses to be part of chosen adjoint equivalences. Some
long calculations to establish the coherence conditions seem unavoidable. The purpose
of this section is to carry out the construction, given a pseudonatural equivalence, of a
“converse” pseudonatural equivalence in the opposite direction.

locale converse-pseudonatural-equivalence =
C': bicategory Vo He ac ic sree trge +
D: bicategory Vp Hp ap ip srcp trgp +
F: pseudofunctor Vo He ac ic sree trgqe Vp Hp ap ip srep trgp F ®p +
G: pseudofunctor Vo He ac ic srce trgc Vp Hp ap ip srep trgp G @g +
T: pseudonatural-equivalence

begin

abbreviation (input) Fg
where Fy = F.mapo

abbreviation (input) Gy
where Gy = G.mapg

definition mapg
where mapy a = (SOME g. 31 €. adjoint-equivalence-in-bicategory
Vp Hp ap ip srep trgp (10 a) g 1 €)

abbreviation (input) 7o’
where 7o' = mapy

definition unit
where unit a = (SOME 1. Je. adjoint-equivalence-in-bicategory
Vp Hp ap ip srep trgp (1o a) (7o' a) n €)

abbreviation (input) n
where 1 = unit

definition counit
where counit a = (SOME e. adjoint-equivalence-in-bicategory
Vp Hp ap ip srep trgp (10 a) (to’ a) (n a) €)

abbreviation (input)
where ¢ = counit
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lemma chosen-adjoint-equivalence:
assumes C.obj a
shows adjoint-equivalence-in-bicategory Vp Hp ap ip srep trgp (1o a) (10’ a) (n a) (€ a)

{proof)

lemma mapg-in-hhom [intro]:
assumes C.obj a
shows «7¢’ a: Gg a —p Fg a»

{proof)

lemma mapg-simps [simp):
assumes C.obj a
shows D.ide (79’ a) and srcp (79’ a) = Gy a and trgp (19" a) = Fo a

{proof)

lemma equivalence-map-mapg [simp):
assumes C.obj a
shows D.equivalence-map (1o’ a)

{proof)

lemma unit-in-hom [intro|:
assumes C.obj a

shows «n a: Fy a -p Fg a»

and «p a: Fo a =p 79’ a xp 7o a»

{proof)

lemma unit-simps [simp):

assumes C.obj a

shows D.iso (n a) and D.arr (n a)

and srcp (n a) = Fo a and trgp (n a) = Foy a

and D.dom (n a) = Fo a and D.cod (n a) = 179’ a xp 79 a

(proof)

lemma iso-unit:
assumes C.obj a
shows D.iso (1 a)
(proof )

lemma counit-in-hom [introl:
assumes C.obj a

shows «& a: Gy a —p Gy a»

and «c a: 79 axp o' a =p Gy a»

{proof)

lemma counit-simps [simp]:

assumes C.obj a

shows D.iso (¢ a) and D.arr (¢ a)

and srcp (e a) = Go a and trgp (¢ a) = Go a

and D.dom (¢ a) = 79 a xp 7o’ a and D.cod (¢ a) = Gy a
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{proof)

lemma iso-counit:
assumes C.obj a
shows D.iso (g a)

{proof)

lemma quasi-inverts-components:

assumes C.obj a

shows D.isomorphic (10" a xp 70 a) (Fo a)
and D.isomorphic (1o a xp 70’ a) (Go a)
and D.quasi-inverses (1o a) (7o’ a)

{proof)

definition map,

where map, f = (7o’ (trgc f) *p rp[G f]) ‘D
(to’ (trgc f) *p G f *p € (srce f)) ‘p
(To’ (trgc f) *p aplG f, To (srcc f), 7o' (srcc f)]) -
apl[ro’ (trgc f), G f xp 7o (srec f), 70’ (srec f)] ‘b
((to’ (trgc f) xp D.inv (71 f)) *p 70’ (srce f)) ‘b
(ap[ro’ (trgc f), 7o (trgc f), F fl *p T0’ (srec f)) b
((n (trgc f) *p F f) *xp 70 (srcc f)) '
(Ip7[F f] xp 70’ (srec f))

abbreviation (input) 71’
where 7' = map;

lemma map -in-hom [intro]:

assumes C.ide f

shows «71' f : Gy (srec f) —=p Fo (trge f)»

and «71' f: F f xp 10’ (srec f) =p 70’ (trgc f) *p G f»

(proof)

lemma map -simps [simp]:

assumes C.ide f

shows D.arr (11’ f)

and srcp (11 f) = Gy (sree f) and trgp (71" f) = Fo (trge f)

and D.dom (11" f) = F f xp 7o' (srce f) and D.cod (71’ f) = 1o’ (trgc f) *p G f
(proof )

lemma iso-map;-ide:

assumes C.ide f
shows D.iso (11’ f)

{proof)

interpretation EV: self-evaluation-map Vp Hp ap ip srep trgp (proof)
notation EV.eval («{-}}»)

sublocale pseudonatural-equivalence
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Vc HC ac ic srco tTgC VD HD ap iD STCp tTgD G @G F @F 7'0/7'1/

{proof)

lemma is-pseudonatural-equivalence:
shows pseudonatural-equivalence
Ve He ac ic sree trgc Vp Hp ap ip srep trgp G ®g F ®p 79’ 71/

(proof)

end

1.14.6 Pseudonaturally Equivalent Pseudofunctors

Pseudofunctors F' and G are pseudonaturally equivalent if there is a pseudonatural equiv-
alence between them.

definition pseudonaturally-equivalent
where pseudonaturally-equivalent
VB HB ap iB STCB tTgB Vc Hc ac ic srco t’l‘gc F (I)F G (PG =
d7¢ T1. pseudonatural-equivalence
Ve Hp ag ip srcg trgg Vo He ac ic srce trgc F @p G g 79 71

lemma pseudonaturally-equivalent-reflexive:
assumes pseudofunctor Vg Hp ap i srcg trgg Vo He ac ic sree trgo F @
shows pseudonaturally-equivalent

Ve Hp ap ip srcg trgg Vo He ac ic sree trgo F @p F

(proof)

lemma pseudonaturally-equivalent-symmetric:
assumes pseudonaturally-equivalent

Ve Hp ap ip srcg trgg Vo He ac ic srce trgc F & G Og
shows pseudonaturally-equivalent

Ve Hp ap ip srcg trgp Vo He ac ic srco trgc G @ F Op

(proof)

lemma pseudonaturally-equivalent-transitive:
assumes pseudonaturally-equivalent
Ve Hp ap ip srcg trgp Vo He ac ic srco trgc F Op G O
and pseudonaturally-equivalent
VB HB ap iB sSrcp tTgB VC HC ac ic Srco t?”gc G (