Bertrand's postulate

Julian Biendarra, Manuel Eberl

March 17, 2025

Abstract

Bertrand's postulate is an early result on the distribution of prime numbers: For every positive integer n, there exists a prime number that lies strictly between n and 2n.

The proof is ported from John Harrison's formalisation in HOL Light [1]. It proceeds by first showing that the property is true for all n greater than or equal to 600 and then showing that it also holds for all n below 600 by case distinction.

Contents

0.1	Auxiliary facts
0.2	Preliminary definitions
0.3	Properties of prime powers
0.4	Deriving a recurrence for the psi function
0.5	Bounding the psi function
0.6	Doubling psi and theta
0.7	Proof of the main result
0.8	Proof of Mertens' first theorem
impor Comp HOL HOL HOL HOL	Bertrand ts olex-Main - Number-Theory.Number-Theory - Library.Discrete-Functions - Decision-Procs.Approximation-Bounds - Library.Code-Target-Numeral - Certificate.Pratt-Certificate

0.1 Auxiliary facts

```
lemma ln-2-le: ln 2 \leq 355 / (512 :: real)

proof -

have ln 2 \leq real-of-float (ub-ln2 12) by (rule ub-ln2)

also have ub-ln2 12 = Float 5680 (- 13) by code-simp
```

```
finally show ?thesis by simp
qed
lemma ln-2-ge: ln 2 \ge (5677 / 8192 :: real)
proof -
 have ln 2 \ge real-of-float (lb-ln2 12) by (rule lb-ln2)
 also have lb-ln2 12 = Float 5677 (-13) by code-simp
 finally show ?thesis by simp
qed
lemma ln-2-ge': ln (2 :: real) \geq 2/3 and ln-2-le': ln (2 :: real) \leq 16/23
 using ln-2-le ln-2-ge by simp-all
lemma of-nat-ge-1-iff: (of-nat x :: 'a :: linordered-semidom) \geq 1 \longleftrightarrow x \geq 1
  using of-nat-le-iff [of 1 \ x] by (subst (asm) \ of-nat-1)
lemma floor-conv-div-nat:
  of-int (floor\ (real\ m\ /\ real\ n)) = real\ (m\ div\ n)
 by (subst floor-divide-of-nat-eq) simp
lemma frac-conv-mod-nat:
 frac (real m / real n) = real (m mod n) / real n
 by (cases n = \theta)
    (simp-all add: frac-def floor-conv-div-nat field-simps of-nat-mult
       [symmetric] of-nat-add [symmetric] del: of-nat-mult of-nat-add)
lemma of-nat-prod-mset: prod-mset (image-mset of-nat A) = of-nat (prod-mset A)
 by (induction A) simp-all
lemma prod-mset-pos: (\bigwedge x :: 'a :: linordered-semidom. \ x \in \# A \Longrightarrow x > 0) \Longrightarrow
prod\text{-}mset\ A>0
 by (induction A) simp-all
lemma ln-msetprod:
 assumes \bigwedge x. x \in \#I \Longrightarrow x > 0
 shows (\sum p::nat \in \#I. \ ln \ p) = ln \ (\prod p \in \#I. \ p)
 using assms by (induction I) (simp-all add: of-nat-prod-mset ln-mult-pos prod-mset-pos)
lemma ln-fact: ln (fact n) = (\sum d=1..n. \ln d)
 by (induction n) (simp-all add: ln-mult)
lemma overpower-lemma:
 fixes f g :: real \Rightarrow real
 assumes f a \leq g a
 assumes \bigwedge x. a \leq x \Longrightarrow ((\lambda x. \ g \ x - f \ x) \ has\text{-real-derivative} \ (d \ x)) \ (at \ x)
 assumes \bigwedge x. a \leq x \Longrightarrow d \ x \geq 0
 assumes a \leq x
 shows f x \leq g x
proof (cases \ a < x)
```

```
case True
 with assms have \exists z. \ z > a \land z < x \land g \ x - f \ x - (g \ a - f \ a) = (x - a) * d \ z
   by (intro MVT2) auto
  then obtain z where z: z > a z < x g x - f x - (g a - f a) = (x - a) * d z
by blast
 hence f x = g x + (f a - g a) + (a - x) * d z by (simp add: algebra-simps)
 also from assms have f \ a - g \ a \le \theta by (simp add: algebra-simps)
 also from assms z have (a - x) * d z \le 0 * d z
   by (intro mult-right-mono) simp-all
 finally show ?thesis by simp
qed (insert assms, auto)
0.2
        Preliminary definitions
definition primepow-even :: nat \Rightarrow bool where
  primepow-even q \longleftrightarrow (\exists p \ k. \ 1 \le k \land prime \ p \land q = p^{2}(2*k))
definition primepow-odd :: nat \Rightarrow bool where
 primepow-odd \ q \longleftrightarrow (\exists \ p \ k. \ 1 \le k \land prime \ p \land q = p (2*k+1))
abbreviation (input) is prime divisor :: nat \Rightarrow nat \Rightarrow bool where
  isprimedivisor\ q\ p \equiv prime\ p \land p\ dvd\ q
definition pre-mangeldt :: nat \Rightarrow nat where
  pre-mangoldt d = (if primepow d then a primedivisor d else 1)
definition mangoldt-even :: nat \Rightarrow real where
  mangoldt-even d = (if primepow-even d then ln (real (aprimedivisor d)) else \theta)
definition mangoldt\text{-}odd :: nat \Rightarrow real \text{ where}
  mangoldt-odd d = (if primepow-odd d then <math>ln (real (aprimedivisor d)) else 0)
definition mangoldt-1 :: nat \Rightarrow real where
  mangoldt-1 d = (if prime d then ln d else 0)
definition psi :: nat \Rightarrow real where
 psi \ n = (\sum d=1..n. \ mangoldt \ d)
definition psi-even :: nat \Rightarrow real where
  psi-even n = (\sum d=1..n. mangoldt-even d)
definition psi\text{-}odd :: nat \Rightarrow real \text{ where}
 psi-odd n = (\sum d=1..n. mangoldt-odd d)
abbreviation (input) psi-even-2 :: nat \Rightarrow real where
 psi-even-2 n \equiv (\sum d=2..n. mangoldt-even d)
abbreviation (input) psi\text{-}odd\text{-}2 :: nat \Rightarrow real where
  psi-odd-2 \ n \equiv (\sum d=2..n. \ mangoldt-odd \ d)
```

```
definition theta :: nat \Rightarrow real where theta n = (\sum p=1..n. if prime p then ln (real p) else 0)
```

0.3 Properties of prime powers

```
\mathbf{lemma} \ prime pow-even-imp-prime pow:
 assumes primepow-even n
 shows primepow n
proof -
 from assms obtain p k where 1 \le k prime p n = p \cap (2 * k)
   unfolding primepow-even-def by blast
 \mathbf{moreover} \ \mathbf{from} \ \langle 1 \leq k \rangle \ \mathbf{have} \ 2 * k > 0
 ultimately show ?thesis unfolding primepow-def by blast
qed
lemma primepow-odd-imp-primepow:
 assumes primepow-odd n
 shows primepow n
proof -
from assms obtain p k where 1 \le k prime p n = p \ (2 * k + 1)
  unfolding primepow-odd-def by blast
 moreover from \langle 1 \leq k \rangle have Suc (2 * k) > 0
 ultimately show ?thesis unfolding primepow-def
   by (auto simp del: power-Suc)
qed
lemma primepow-odd-altdef:
 primepow-odd \ n \longleftrightarrow
   primepow \ n \land odd \ (multiplicity \ (aprimedivisor \ n) \ n) \land multiplicity \ (aprimedivisor \ n)
n) \ n > 1
proof (intro\ iffI\ conjI; (elim\ conjE)?)
 assume primepow-odd n
 then obtain p k where n: k \ge 1 prime p n = p \cap (2 * k + 1)
   by (auto simp: primepow-odd-def)
 thus odd (multiplicity (aprimedivisor n) n) multiplicity (aprimedivisor n) n > 1
   by (simp-all add: aprimedivisor-primepow prime-elem-multiplicity-mult-distrib)
next
 assume A: primepow n and B: odd (multiplicity (aprimedivisor n) n)
    and C: multiplicity (aprimedivisor n) n > 1
 from A obtain p k where n: k \ge 1 prime p n = p \hat{k}
   by (auto simp: primepow-def Suc-le-eq)
 with B C have odd k k > 1
  by (simp-all add: aprimedivisor-primepow prime-elem-multiplicity-mult-distrib)
 then obtain j where j: k = 2 * j + 1 j > 0 by (auto elim!: oddE)
 with n show prime pow-odd n by (auto simp: prime pow-odd-def intro!: exI[of -
p, OF \ ext[of - j])
```

```
qed (auto dest: primepow-odd-imp-primepow)
lemma primepow-even-altdef:
 primepow-even n \longleftrightarrow primepow \ n \land even \ (multiplicity \ (aprimedivisor \ n) \ n)
proof (intro iffI conjI; (elim conjE)?)
 assume primepow-even n
 then obtain p k where n: k \ge 1 prime p n = p \cap (2 * k)
   by (auto simp: primepow-even-def)
 thus even (multiplicity (aprimedivisor n) n)
   by (simp-all add: aprimedivisor-primepow prime-elem-multiplicity-mult-distrib)
next
 assume A: primepow n and B: even (multiplicity (aprimedivisor n) n)
 from A obtain p k where n: k \ge 1 prime p n = p \hat{k}
   by (auto simp: primepow-def Suc-le-eq)
 with B have even k
  by (simp-all add: aprimedivisor-primepow prime-elem-multiplicity-mult-distrib)
 then obtain j where j: k = 2 * j by (auto elim!: evenE)
 from j n have j \neq 0 by (intro notI) simp-all
 with j n show primepow-even n
   by (auto simp: primepow-even-def intro!: exI[of - p, OF exI[of - j]])
qed (auto dest: primepow-even-imp-primepow)
lemma primepow-odd-mult:
 assumes d > Suc \ \theta
 shows primepow-odd (aprimedivisor d * d) \longleftrightarrow primepow-even d
   using assms
  by (auto simp: primepow-odd-altdef primepow-even-altdef primepow-mult-aprimedivisorI
               aprimedivisor-primepow prime-aprimedivisor' aprimedivisor-dvd'
               prime-elem-multiplicity-mult-distrib\ prime-elem-aprime divisor-nat
           dest!: primepow-multD)
lemma pre-mangoldt-primepow:
 assumes primepow\ n\ aprimedivisor\ n=p
 shows pre-mangoldt n = p
 using assms by (simp add: pre-mangoldt-def)
{f lemma}\ pre{-mangoldt-notprimepow}:
 assumes \neg primepow n
 shows pre-mangoldt n = 1
 using assms by (simp add: pre-mangoldt-def)
lemma primepow-cases:
 primepow \ d \longleftrightarrow
    ( primepow-even\ d \land \neg\ primepow-odd\ d \land \neg\ prime\ d) \lor
    (\neg primepow-even d \land primepow-odd d \land \neg prime d) \lor
    (\neg primepow-even \ d \land \neg primepow-odd \ d \land prime \ d)
 by (auto simp: primepow-even-altdef primepow-odd-altdef multiplicity-aprimedivisor-Suc-0-iff
         elim!: oddE intro!: Nat.gr0I)
```

0.4 Deriving a recurrence for the psi function

```
lemma ln-fact-bounds:
   assumes n > 0
   shows abs(ln (fact n) - n * ln n + n) \le 1 + ln n
   have \forall n \in \{0 < ...\}. \exists z > real \ n. \ z < real \ (n+1) \land real \ (n+1) * ln \ (real \ (n+1) + ln \ (real \ 
1)) -
                  real \ n * ln \ (real \ n) = (real \ (n + 1) - real \ n) * (ln \ z + 1)
       by (intro ballI MVT2) (auto intro!: derivative-eq-intros)
   hence \forall n \in \{0 < ...\}. \exists z > real \ n. \ z < real \ (n+1) \land real \ (n+1) * ln \ (real \ (n+1) \land real \ (n+1) \land real \ (n+1) 
                  real \ n * ln \ (real \ n) = (ln \ z + 1) by (simp \ add: \ algebra-simps)
   from bchoice[OF\ this] obtain k::nat \Rightarrow real
       where lb: real n < k n and ub: k n < real (n + 1) and
                  mvt: real (n+1) * ln (real (n+1)) - real n * ln (real n) = ln (k n) + 1
                  if n > 0 for n::nat by blast
   have *: (n + 1) * ln (n + 1) = (\sum_{i=1...n.} ln(k i) + 1) for n::nat
   proof (induction \ n)
       case (Suc \ n)
        have (\sum i = 1..n+1. \ln (k i) + 1) = (\sum i = 1..n. \ln (k i) + 1) + \ln (k i)
(n+1)) + 1
          by simp
        also from Suc.IH have (\sum i = 1..n. \ln (k i) + 1) = real (n+1) * \ln (real i)
         also from mvt[of n+1] have ... = real (n+2) * ln (real (n+2)) - ln (k
(n+1)) - 1
          by simp
       finally show ?case
          by simp
   qed simp
    have **: abs((\sum i=1..n+1.\ ln\ i)\ -\ ((n+1)\ *\ ln\ (n+1)\ -\ (n+1)))\ \le\ 1\ +
ln(n+1) for n::nat
    proof -
      have (\sum_{i=1..n+1.} in i) \le (\sum_{i=1..n.} in i) + in (n+1)
          by simp
       also have (\sum i=1..n. \ln i) \le (\sum i=1..n. \ln (k i))
          by (intro sum-mono, subst ln-le-cancel-iff) (auto simp: Suc-le-eq dest: lb ub)
       also have ... = (\sum i=1..n. ln (k i) + 1) - n
          by (simp add: sum.distrib)
       also from * have ... = (n+1) * ln(n+1) - n
          by simp
       finally have a-minus-b: (\sum i=1..n+1. ln i) - ((n+1) * ln (n+1) - (n+1))
\leq 1 + \ln (n+1)
          by simp
       from * have (n+1) * ln (n+1) - n = (\sum i=1..n. ln (k i) + 1) - n
       also have \dots = (\sum i=1..n. \ln (k i))
          by (simp add: sum.distrib)
```

```
also have \dots \leq (\sum i=1..n. \ln (i+1))
    by (intro sum-mono, subst ln-le-cancel-iff) (auto simp: Suc-le-eq dest: lb ub)
  also have ... = (\sum i=1..n+1. ln i)
    by (rule sum.mono-neutral-left) auto
   finally have b-minus-a: ((n+1) * ln (n+1) - (n+1)) - (\sum i=1..n+1. ln i)
    by simp
   have 0 \le ln(n+1)
    by simp
   with b-minus-a have ((n+1) * ln (n+1) - (n+1)) - (\sum i=1..n+1. ln i) \le
1 + ln (n+1)
    by linarith
   with a-minus-b show ?thesis
    by linarith
 \mathbf{qed}
 from \langle n > \theta \rangle have n \geq 1 by simp
 thus ?thesis
 proof (induction n rule: dec-induct)
   case base
   then show ?case by simp
 next
   case (step \ n)
   from ln-fact[of n+1] **[of n] show ?case by simp
 qed
qed
lemma ln-fact-diff-bounds:
 abs(ln (fact n) - 2 * ln (fact (n div 2)) - n * ln 2) \le 4 * ln (if n = 0 then 1)
else\ n) + 3
proof (cases n \ div \ 2 = 0)
 {f case}\ True
 hence n \leq 1 by simp
 with ln-le-minus-one[of 2::real] show ?thesis by (cases n) simp-all
next
 case False
 then have n > 1 by simp
 let ?a = real \ n * ln \ 2
 let ?b = 4 * ln (real n) + 3
 let ?l1 = ln (fact (n div 2))
 let ?a1 = real (n \ div \ 2) * ln (real (n \ div \ 2)) - real (n \ div \ 2)
 let ?b1 = 1 + ln (real (n div 2))
 let ?l2 = ln (fact n)
 let ?a2 = real \ n * ln \ (real \ n) - real \ n
 let ?b2 = 1 + ln (real n)
 have abs-a: abs(?a - (?a2 - 2 * ?a1)) \le ?b - 2 * ?b1 - ?b2
 proof (cases even n)
   case True
```

```
by simp
   then have n-div-2: real (n \text{ div } 2) = real n / 2
     by simp
   from \langle n > 1 \rangle have *: abs(?a - (?a2 - 2 * ?a1)) = 0
     by (simp add: n-div-2 ln-div algebra-simps)
   from \langle even \ n \rangle and \langle n > 1 \rangle have 0 \leq ln \ (real \ n) - ln \ (real \ (n \ div \ 2))
     by (auto\ elim:\ even E)
   also have 2 * \dots \le 3 * ln (real n) - 2 * ln (real (n div 2))
     using \langle n > 1 \rangle by (auto intro!: ln-ge-zero)
   also have \dots = ?b - 2 * ?b1 - ?b2 by simp
   finally show ?thesis using * by simp
 next
   {f case} False
   then have real (2 * (n \text{ div } 2)) = real (n - 1)
   with \langle n > 1 \rangle have n-div-2: real (n \text{ div } 2) = (real \ n - 1) / 2
     by simp
   from \langle odd \ n \rangle \langle n \ div \ 2 \neq 0 \rangle have n \geq 3
     by presburger
   have ?a - (?a2 - 2 * ?a1) = real n * ln 2 - real n * ln (real n) + real n +
            2 * real (n div 2) * ln (real (n div 2)) - 2 * real (n div 2)
     by (simp add: algebra-simps)
   also from n-div-2 have 2 * real (n div 2) = real n - 1
     by simp
   also have real n * ln 2 - real n * ln (real n) + real n +
                 (real\ n-1)*ln\ (real\ (n\ div\ 2))-(real\ n-1)
               = real \ n * (ln \ (real \ n-1) - ln \ (real \ n)) - ln \ (real \ (n \ div \ 2)) + 1
     using \langle n > 1 \rangle by (simp \ add: \ algebra-simps \ n-div-2 \ ln-div)
   finally have lhs: abs(?a - (?a2 - 2 * ?a1)) =
       abs(real\ n*(ln\ (real\ n-1)-ln\ (real\ n))-ln\ (real\ (n\ div\ 2))+1)
     \mathbf{by} \ simp
   from \langle n > 1 \rangle have real n * (ln (real \ n - 1) - ln (real \ n)) \leq 0
     by (simp add: algebra-simps mult-left-mono)
   moreover from \langle n > 1 \rangle have ln (real (n div 2)) \leq ln (real n) by simp
   moreover {
     have exp \ 1 \le (3::real) by (rule \ exp-le)
     also from \langle n \geq 3 \rangle have ... \leq exp (ln (real n)) by simp
     finally have ln (real \ n) \ge 1 by simp
   ultimately have ub: real n * (ln (real n - 1) - ln (real n)) - ln (real (n div
(2)) + 1 \leq
                        3 * ln (real n) - 2 * ln(real (n div 2)) by simp
   have mon: real n' * (ln (real n') - ln (real n' - 1)) \le
               real \ n * (ln \ (real \ n) - ln \ (real \ n - 1))
     if n \geq 3 n' \geq n for n n'::nat
```

then have real (2 * (n div 2)) = real n

```
proof (rule DERIV-nonpos-imp-nonincreasing] where f = \lambda x. x * (ln x - ln x)
(x - 1)))
     fix t assume t: real n \le t t \le real n'
     with that have 1 / (t - 1) \ge \ln (1 + 1/(t - 1))
       by (intro ln-add-one-self-le-self) simp-all
     also from t that have ln (1 + 1/(t - 1)) = ln t - ln (t - 1)
       by (simp add: ln-div field-simps)
     finally have ln\ t-ln\ (t-1)\leq 1\ /\ (t-1) .
     \mathbf{with} \ that \ t
    show \exists y. ((\lambda x. \ x * (\ln x - \ln (x - 1))) \ has-field-derivative y) (at t) \land y \leq 0
       by (intro exI[of - 1 / (1 - t) + ln \ t - ln \ (t - 1)])
         (force intro!: derivative-eq-intros simp: field-simps)+
   qed (use that in simp-all)
   from \langle n > 1 \rangle have \ln 2 = \ln (real \ n) - \ln (real \ n \ / \ 2)
     by (simp add: ln-div)
   also from \langle n > 1 \rangle have ... \leq ln \ (real \ n) - ln \ (real \ (n \ div \ 2))
     by simp
   finally have *: 3*ln 2 + ln(real (n div 2)) \le 3* ln(real n) - 2* ln(real (n div 2))
div 2)
     by simp
   \mathbf{have} - real \ n * (ln \ (real \ n - 1) - ln \ (real \ n)) + ln(real \ (n \ div \ 2)) - 1 =
          real \ n * (ln \ (real \ n) - ln \ (real \ n - 1)) - 1 + ln(real \ (n \ div \ 2))
     by (simp add: algebra-simps)
   also have real n * (ln (real n) - ln (real n - 1)) \le 3 * (ln 3 - ln (3 - 1))
     using mon[OF - \langle n \geq 3 \rangle] by simp
   also {
     have Some (Float 3 (-1)) = ub-ln 1 3 by code-simp
     from ub-ln(1)[OF this] have ln 3 \le (1.6 :: real) by simp
     also have 1.6 - 1 / 3 \le 2 * (2/3 :: real) by simp
     also have 2/3 \le ln \ (2 :: real) by (rule \ ln-2-ge')
     finally have ln 3 - 1 / 3 \le 2 * ln (2 :: real) by simp
   hence 3 * (ln \ 3 - ln \ (3 - 1)) - 1 \le 3 * ln \ (2 :: real) by simp
   also note *
   finally have - real \ n * (ln \ (real \ n - 1) - ln \ (real \ n)) + ln (real \ (n \ div \ 2)) -
                  3 * ln (real n) - 2 * ln (real (n div 2)) by simp
   hence lhs': abs(real\ n\ *\ (ln\ (real\ n-1)-ln\ (real\ n))-ln(real\ (n\ div\ 2))+
1) \leq
                 3 * ln (real n) - 2 * ln (real (n div 2))
     using ub by simp
   have rhs: ?b - 2 * ?b1 - ?b2 = 3 * ln (real n) - 2 * ln (real (n div 2))
   from \langle n > 1 \rangle have ln (real (n div 2)) \leq 3* ln (real n) - 2* ln (real (n div 2))
2))
     by simp
   with rhs lhs lhs' show ?thesis
```

```
by simp
 qed
  then have minus-a: -?a \le ?b - 2 * ?b1 - ?b2 - (?a2 - 2 * ?a1)
  from abs-a have a: ?a \le ?b - 2 * ?b1 - ?b2 + ?a2 - 2 * ?a1
   by (simp)
  from ln-fact-bounds[of n div 2] False have abs-l1: abs(?l1 - ?a1) \leq ?b1
   by (simp add: algebra-simps)
  then have minus-l1: ?a1 - ?l1 \le ?b1
   by linarith
  from abs-l1 have l1: ?l1 - ?a1 \le ?b1
   by linarith
 from ln-fact-bounds[of\ n] False have abs-l2: abs(?l2 - ?a2) \le ?b2
   by (simp add: algebra-simps)
  then have l2: ?l2 - ?a2 < ?b2
   by simp
 from abs-l2 have minus-l2: ?a2 - ?l2 < ?b2
   by simp
  from minus-a minus-l1 l2 have ?l2 - 2 * ?l1 - ?a \le ?b
  moreover from a l1 minus-l2 have -?l2 + 2*?l1 + ?a \le ?b
   by simp
  ultimately have abs((?l2 - 2*?l1) - ?a) \le ?b
   by simp
  then show ?thesis
   by simp
qed
\mathbf{lemma}\ \mathit{ln-prime} fact:
 assumes n \neq (\theta :: nat)
 shows ln \ n = (\sum d=1..n. \ if \ primepow \ d \land d \ dvd \ n \ then \ ln \ (aprimedivisor \ d)
        (is ?lhs = ?rhs)
proof -
 have ?rhs = (\sum d \in \{x \in \{1..n\}. \ primepow \ x \land x \ dvd \ n\}. \ ln \ (real \ (aprimedivisor
  unfolding primepow-factors-def by (subst sum.inter-filter [symmetric]) simp-all
  also have \{x \in \{1..n\}. primepow x \land x \ dvd \ n\} = primepow-factors n
     using assms by (auto simp: primepow-factors-def dest: dvd-imp-le prime-
pow-qt-Suc-\theta)
 finally have *: (\sum d \in primepow-factors \ n. \ ln \ (real \ (aprimedivisor \ d))) = ?rhs ...
  from in-prime-factors-imp-prime prime-gt-0-nat
   have pf-pos: \bigwedge p. p \in \#prime\text{-}factorization } n \Longrightarrow p > 0
   by blast
  from ln-msetprod[of\ prime-factorization\ n,\ OF\ pf-pos]\ assms
   have ln \ n = (\sum p \in \#prime\text{-}factorization \ n. \ ln \ p)
     by (simp add: of-nat-prod-mset)
  also from * sum-prime-factorization-conv-sum-primepow-factors[of n ln, OF
assms(1)
```

```
have \dots = ?rhs by simp
 finally show ?thesis.
qed
context
begin
private lemma divisors:
  fixes x d::nat
 assumes x \in \{1..n\}
 assumes d \ dvd \ x
 shows \exists k \in \{1..n \ div \ d\}. \ x = d * k
proof -
 from assms have x \leq n
   by simp
  then have ub: x div d \le n div d
   by (simp add: div-le-mono \langle x \leq n \rangle)
 from assms have 1 \le x \ div \ d by (auto elim!: dvdE)
  with ub have x \ div \ d \in \{1..n \ div \ d\}
   by simp
  with \langle d \ dvd \ x \rangle show ?thesis by (auto intro!: bexI[of - x div d])
qed
lemma ln-fact-conv-mangoldt: ln (fact n) = (\sum d=1..n. mangoldt d*floor (n)
d))
proof -
 have *: (\sum da=1..n. if primepow da \wedge da dvd d then ln (aprimedivisor da) else
             (\sum (da::nat)=1..d. if primepow da \wedge da \ dvd \ d then ln \ (aprimedivisor
da) else 0)
   if d: d \in \{1..n\} for d
   by (rule sum.mono-neutral-right, insert d) (auto dest: dvd-imp-le)
 have (\sum d=1..n. \sum da=1..d. if primepow da \land
     da \ dvd \ d \ then \ ln \ (aprimedivisor \ da) \ else \ \theta) =
     (\sum d=1..n. \sum da=1..n. if primepow da \wedge
     da dvd d then ln (aprimedivisor da) else 0)
   by (rule sum.cong) (insert *, simp-all)
 also have ... = (\sum da=1..n. \sum d=1..n. if primepow da \land
                   da dvd d then ln (aprimedivisor da) else 0)
   by (rule\ sum.swap)
 also have ... = sum (\lambda d. mangoldt d * floor (n/d)) \{1..n\}
  proof (rule sum.cong)
   fix d assume d: d \in \{1..n\}
   have (\sum da = 1..n. \ if \ prime pow \ d \land d \ dvd \ da \ then \ ln \ (real \ (aprime divisor \ d))
else 0) =
           (\sum da = 1..n. if d dvd da then mangoldt d else 0)
     by (intro sum.cong) (simp-all add: mangoldt-def)
   also have ... = mangoldt \ d * real \ (card \ \{x. \ x \in \{1..n\} \land d \ dvd \ x\})
     by (subst sum.inter-filter [symmetric]) (simp-all add: algebra-simps)
```

```
also {
     have \{x. \ x \in \{1..n\} \land d \ dvd \ x\} = \{x. \ \exists \ k \in \{1..n \ div \ d\}. \ x=k*d\}
     proof safe
       fix x assume x \in \{1..n\} d dvd x
       thus \exists k \in \{1..n \ div \ d\}. \ x = k * d \ using \ divisors[of x \ n \ d] by auto
     next
       fix x k assume k: k \in \{1..n \ div \ d\}
       from k have k * d \le n div d * d by (intro mult-right-mono) simp-all
       also have n \ div \ d * d \le n \ div \ d * d + n \ mod \ d by (rule le-add1)
       also have \dots = n by simp
       finally have k * d \le n.
       thus k * d \in \{1..n\} using d k by auto
     qed auto
     also have \dots = (\lambda k. \ k*d) \ `\{1..n \ div \ d\}
       by fast
     also have card \dots = card \{1 \dots n \ div \ d\}
       by (rule card-image) (simp add: inj-on-def)
     also have \dots = n \ div \ d
       by simp
     also have \dots = |n / d|
       by (simp add: floor-divide-of-nat-eq)
     finally have real (card \{x.\ x \in \{1..n\} \land d \ dvd \ x\}) = real-of-int |n / d|
       by force
  finally show (\sum da = 1..n. if primepow d \wedge d dvd da then ln (real (aprimedivisor
d)) else \theta) =
           mangoldt \ d * real-of-int \ | real \ n \ / \ real \ d |.
  \mathbf{qed}\ simp\mbox{-}all
  finally have (\sum d=1..n. \sum da=1..d. if primepow da \land
     da \ dvd \ d \ then \ ln \ (aprimedivisor \ da) \ else \ \theta) =
    sum (\lambda d. mangoldt d * floor (n/d)) \{1..n\}.
  with ln-prime fact have (\sum d=1..n. ln d) =
   (\sum d=1..n. \ mangoldt \ d*floor \ (n/d))
   by simp
  with ln-fact show ?thesis
   by simp
\mathbf{qed}
end
context
begin
private lemma div-2-mult-2-bds:
  fixes n d :: nat
 assumes d > 0
  shows 0 \le |n / d| - 2 * |(n \ div \ 2) / d| |n / d| - 2 * |(n \ div \ 2) / d| \le 1
proof -
 have \lfloor 2 :: real \rfloor * \lfloor (n \ div \ 2) \ / \ d \rfloor \le \lfloor 2 * ((n \ div \ 2) \ / \ d) \rfloor
```

```
by (rule le-mult-floor) simp-all
  also from assms have ... \leq \lfloor n / d \rfloor by (intro floor-mono) (simp-all add:
field-simps)
  finally show 0 \le \lfloor n / d \rfloor - 2 * \lfloor (n \ div \ 2) / d \rfloor by (simp add: algebra-simps)
  have real (n \ div \ d) \leq real (2 * ((n \ div \ 2) \ div \ d) + 1)
  by (subst div-mult2-eq [symmetric], simp only: mult.commute, subst div-mult2-eq)
  thus \lfloor n / d \rfloor - 2 * \lfloor (n \operatorname{div} 2) / d \rfloor \leq 1
    unfolding of-nat-add of-nat-mult floor-conv-div-nat [symmetric] by simp-all
private lemma n-div-d-eq-1: d \in \{n \text{ div } 2 + 1..n\} \Longrightarrow \lfloor real \text{ } n \text{ } / \text{ real } d \rfloor = 1
  by (cases n = d) (auto simp: field-simps intro: floor-eq)
lemma psi-bounds-ln-fact:
  shows ln (fact n) - 2 * ln (fact (n div 2)) \le psi n
       psi \ n - psi \ (n \ div \ 2) \le ln \ (fact \ n) - 2 * ln \ (fact \ (n \ div \ 2))
proof -
  \mathbf{fix} \ n :: nat
  let ?k = n \text{ div } 2 \text{ and } ?d = n \text{ mod } 2
  have *: |?k / d| = 0 if d > ?k for d
   from that div-less have \theta = ?k \ div \ d by simp
   also have \dots = \lfloor ?k / d \rfloor by (rule floor-divide-of-nat-eq [symmetric])
   finally show |?k / d| = 0 by simp
  have sum-eq: (\sum d=1..2*?k+?d. mangoldt d*\lfloor?k\ /\ d\rfloor)=(\sum d=1..?k. mangoldt d*\lfloor?k\ /\ d\rfloor)
goldt \ d * | ?k / d |)
   by (intro sum.mono-neutral-right) (auto simp: *)
  from ln-fact-conv-mangoldt have ln (fact n) = (\sum d=1..n. mangoldt d * \lfloor n \rfloor)
  also have ... = (\sum d=1..n. \ mangoldt \ d * \lfloor (2 * (n \ div \ 2) + n \ mod \ 2) \ / \ d \rfloor)
 also have ... \leq (\sum d=1..n. \ mangoldt \ d*(2*\lfloor ?k \ / \ d \rfloor + 1))
   using div-2-mult-2-bds(2)[of - n]
   by (intro sum-mono mult-left-mono, subst of-int-le-iff)
       (auto simp: algebra-simps mangoldt-nonneg)
  also have ... = 2 * (\sum d=1..n. mangoldt d * \lfloor (n div 2) / d \rfloor) + (\sum d=1..n. mangoldt d * l (n div 2) / d \rfloor)
   by (simp add: algebra-simps sum.distrib sum-distrib-left)
  also have ... = 2 * (\sum d=1..2*?k+?d. mangoldt d * \lfloor (n \ div \ 2) \ / \ d \rfloor) +
(\sum d=1..n. \ mangoldt \ d)
   by presburger
  also from sum-eq have ... = 2 * (\sum d=1..?k. \ mangoldt \ d * \lfloor (n \ div \ 2) \ / \ d \rfloor)
+ (\sum d=1..n. \ mangoldt \ d)
   by presburger
  also from ln-fact-conv-mangeldt psi-def have ... = 2 * ln (fact ?k) + psi n
   by presburger
```

```
finally show ln (fact n) - 2 * ln (fact (n div 2)) \le psi n
      by simp
\mathbf{next}
   \mathbf{fix} \ n :: nat
   let ?k = n \ div \ 2 and ?d = n \ mod \ 2
  from psi-def have psi n - psi ?k = (\sum d=1..2*?k+?d. mangoldt d) - (\sum d=1..?k.
mangoldt d
      by presburger
   also have ... = sum\ mangoldt\ (\{1..2*(n\ div\ 2)+n\ mod\ 2\}-\{1..n\ div\ 2\})
      by (subst\ sum-diff)\ simp-all
   also have ... = (\sum d \in (\{1...2 * (n \ div \ 2) + n \ mod \ 2\} - \{1..n \ div \ 2\}).
                                 (if d \leq ?k then 0 else mangoldt d))
      \mathbf{by}\ (intro\ sum.cong)\ simp-all
   also have ... = (\sum d=1..2*?k+?d. (if d \le ?k then 0 else mangoldt d))
      by (intro sum.mono-neutral-left) auto
   also have ... = (\sum d=1..n. (if d \leq ?k then 0 else mangoldt d))
      by presburger
   also have ... = (\sum d=1..n. (if d \leq ?k then mangoldt d * 0 else mangoldt d))
      by (intro sum.cong) simp-all
   also from div-2-mult-2-bds(1) have ... \leq (\sum d=1..n.) (if d \leq ?k then manged the sum of the sum
d * (\lfloor n/d \rfloor - 2 * \lfloor ?k/d \rfloor) else mangoldt d))
      by (intro sum-mono)
            (auto simp: algebra-simps mangoldt-nonneg intro!: mult-left-mono simp del:
of-int-mult)
    also from n-div-d-eq-1 have ... = (\sum d=1..n.) (if d \leq ?k then mangeldt d *
(\lfloor n/d \rfloor - 2 * \lfloor ?k/d \rfloor) else mangoldt d * \lfloor n/d \rfloor)
      by (intro sum.cong refl) auto
   also have ... = (\sum d=1..n. mangoldt d * real-of-int (|real n / real d|) -
                                 (if d \leq ?k then 2 * mangoldt d * real-of-int \lfloor \operatorname{real} ?k \ / \ \operatorname{real} \ d \rfloor else
\theta))
      by (intro sum.cong refl) (auto simp: algebra-simps)
   also have ... = (\sum d=1..n. \ mangoldt \ d * real-of-int (\lfloor real \ n \ / \ real \ d \rfloor)) -
                              (\sum d=1..n. (if d \leq ?k then 2 * mangoldt d * real-of-int \ | real ?k /
real \ d \mid else \ \theta)
      by (rule sum-subtractf)
   also have (\sum d=1..n. (if d \leq ?k then 2 * mangoldt d * real-of-int | real ?k /
real \ d \mid else \ \theta)) =
                            \sum d=1..?k. (if d\leq ?k then 2 * mangoldt d * real-of-int \lfloor real ?k /
real \ d \mid else \ \theta)
      by (intro sum.mono-neutral-right) auto
   also have ... = (\sum d=1..?k. \ 2 * mangoldt \ d * real-of-int \ [real \ ?k \ / real \ d])
      by (intro sum.cong) simp-all
   also have ... = 2 * (\sum d=1..?k. mangoldt d * real-of-int \lfloor real ?k / real d \rfloor)
      by (simp add: sum-distrib-left mult-ac)
   also have (\sum d = 1..n. \ mangoldt \ d * real-of-int \ [real \ n \ / \ real \ d]) - \ldots =
                        ln (fact n) - 2 * ln (fact (n div 2))
      by (simp add: ln-fact-conv-mangoldt)
   finally show psi \ n - psi \ (n \ div \ 2) \le ln \ (fact \ n) - 2 * ln \ (fact \ (n \ div \ 2)).
qed
```

end

```
lemma psi-bounds-induct:
 real \ n * ln \ 2 - (4 * ln \ (real \ (if \ n = 0 \ then \ 1 \ else \ n)) + 3) \le psi \ n
 psi \ n - psi \ (n \ div \ 2) \le real \ n * ln \ 2 + (4 * ln \ (real \ (if \ n = 0 \ then \ 1 \ else \ n)) + (1 + ln \ n) + (1 + ln \ n)
3)
proof -
  from le-imp-neg-le[OF ln-fact-diff-bounds]
   have n * ln 2 - (4 * ln (if n = 0 then 1 else n) + 3)
        \leq n * ln 2 - abs(ln (fact n) - 2 * ln (fact (n div 2)) - n * ln 2)
 also have ... \leq ln (fact n) - 2 * ln (fact (n div 2))
   by simp
 also from psi-bounds-ln-fact (1) have ... \leq psi \ n
 finally show real n * ln 2 - (4 * ln (real (if n = 0 then 1 else n)) + 3) \le psi
n .
next
  from psi-bounds-ln-fact (2) have psi \ n - psi \ (n \ div \ 2) \le ln \ (fact \ n) - 2 * ln
(fact (n div 2)).
 also have ... \leq n * ln 2 + abs(ln (fact n) - 2 * ln (fact (n div 2)) - n * ln 2)
   by simp
 also from ln-fact-diff-bounds [of n]
   have abs(ln (fact n) - 2 * ln (fact (n div 2)) - n * ln 2)
           \leq (4 * ln (real (if n = 0 then 1 else n)) + 3) by simp
 finally show psi \ n - psi \ (n \ div \ 2) \le real \ n * ln \ 2 + (4 * ln \ (real \ (if \ n = 0 \ then
1 \ else \ n)) + 3)
   by simp
qed
```

0.5 Bounding the psi function

In this section, we will first prove the relatively tight estimate $psi\ n \leq 3/2 + ln\ 2*real\ n$ for $n \leq (128::'a)$ and then use the recurrence we have just derived to extend it to $psi\ n \leq 551/256$ for $n \leq (1024::'a)$, at which point applying the recurrence can be used to prove the same bound for arbitrarily big numbers.

First of all, we will prove the bound for $n \leq (128::'a)$ using reflection and approximation.

```
context begin private lemma Ball-insertD: assumes \forall x \in insert \ y \ A. \ P \ x shows P \ y \ \forall x \in A. \ P \ x using assms by auto
```

```
private lemma meta-eq-TrueE: PROP A \equiv Trueprop True \Longrightarrow PROP A
 by simp
private lemma pre-mangoldt-pos: pre-mangoldt n > 0
 unfolding pre-mangoldt-def by (auto simp: primepow-gt-Suc-0)
private lemma psi-conv-pre-mangoldt: psi n = ln (real (prod pre-mangoldt \{1..n\}))
 by (auto simp: psi-def mangoldt-def pre-mangoldt-def ln-prod primepow-qt-Suc-0
intro!: sum.cong)
private lemma eval-psi-aux1: psi\ 0 = ln\ (real\ (numeral\ Num.One))
 by (simp add: psi-def)
private lemma eval-psi-aux2:
 assumes psi \ m = ln \ (real \ (numeral \ x)) \ pre-mangel dt \ n = y \ m + 1 = n \ numeral
x * y = z
 shows psi \ n = ln \ (real \ z)
proof -
 from assms(2) [symmetric] have [simp]: y > 0 by (simp add: pre-mangoldt-pos)
 have psi \ n = psi \ (Suc \ m) by (simp \ add: assms(3) \ [symmetric])
 also have ... = ln (real \ y * (\prod x = Suc \ \theta..m. \ real (pre-mangoldt \ x)))
  using assms(2,3) [symmetric] by (simp add: psi-conv-pre-mangoldt prod.nat-ivl-Suc'
mult-ac)
 also have ... = ln (real y) + psi m
  by (subst ln-mult) (simp-all add: pre-mangoldt-pos prod-pos psi-conv-pre-mangoldt)
 also have psi \ m = ln \ (real \ (numeral \ x)) by fact
 also have ln (real y) + ... = ln (real (numeral x * y)) by (simp add: ln-mult)
 finally show ?thesis by (simp add: assms(4) [symmetric])
qed
private lemma Ball-atLeast0AtMost-doubleton:
 assumes psi \ 0 \le 3 \ / \ 2 * ln \ 2 * real \ 0
 assumes psi \ 1 \le 3 \ / \ 2 * ln \ 2 * real \ 1
 shows (\forall x \in \{0..1\}. psi x \leq 3 / 2 * ln 2 * real x)
 using assms unfolding One-nat-def atLeast0-atMost-Suc ball-simps by auto
{\bf private\ lemma\ } \textit{Ball-atLeast0AtMost-insert}:
 assumes (\forall x \in \{0..m\}. psi \ x \le 3 / 2 * ln \ 2 * real \ x)
 assumes psi (numeral\ n) \le 3 / 2 * ln\ 2 * real\ (numeral\ n)\ m = pred-numeral
 shows (\forall x \in \{0..numeral\ n\}.\ psi\ x \leq 3\ /\ 2*ln\ 2*real\ x)
 using assms
 by (subst numeral-eq-Suc[of n], subst at Least 0-at Most-Suc,
     subst ball-simps, simp only: numeral-eq-Suc [symmetric])
private lemma eval-psi-ineq-aux:
 assumes psi \ n = x \ x \le 3 \ / \ 2 * ln \ 2 * n
 shows psi \ n \leq 3 / 2 * ln 2 * n
 using assms by simp-all
```

```
private lemma eval-psi-ineq-aux2:
 assumes numeral m \, \widehat{\ } 2 \leq (2::nat) \, \widehat{\ } (3*n)
 shows ln (real (numeral m)) \le 3 / 2 * ln 2 * real n
proof -
 have ln \ (real \ (numeral \ m)) \leq 3 \ / \ 2 * ln \ 2 * real \ n \longleftrightarrow
         2 * log 2 (real (numeral m)) \le 3 * real n
   by (simp add: field-simps log-def)
 also have 2 * log 2 (real (numeral m)) = log 2 (real (numeral m <math>^{\smallfrown} 2))
   by (subst of-nat-power, subst log-nat-power) simp-all
 also have ... \leq 3 * real \ n \longleftrightarrow real \ ((numeral \ m) \ \widehat{\ } 2) \leq 2 \ powr \ real \ (3 * n)
   by (subst Transcendental.log-le-iff) simp-all
 also have 2 powr (3 * n) = real (2 ^ (3 * n))
   by (simp add: powr-realpow [symmetric])
 also have real ((numeral m) \hat{} 2) \leq \ldots \longleftrightarrow numeral m \hat{} 2 \leq (2::nat) \hat{} (3 *
n)
   by (rule of-nat-le-iff)
 finally show ?thesis using assms by blast
private lemma eval-psi-ineq-aux-mono:
 assumes psi \ n = x \ psi \ m = x \ psi \ n \le 3 \ / \ 2 * ln \ 2 * n \ n \le m
 shows psi \ m \leq 3 / 2 * ln 2 * m
proof -
  from assms have psi m = psi n by simp
 also have ... \leq 3 / 2 * ln 2 * n by fact
 also from \langle n \leq m \rangle have ... \leq 3 / 2 * ln 2 * m by simp
 finally show ?thesis.
qed
lemma not-primepow-1-nat: \neg primepow (1 :: nat) by auto
ML-file \langle bertrand.ML \rangle
local-setup \langle fn | lthy =>
let
 fun \ tac \ ctxt =
   let
     val \ psi\text{-}cache = Bertrand.prove-psi \ ctxt \ 129
     fun\ prove-psi-ineqs\ ctxt=
       let
         fun \ tac \ goal\text{-}ctxt =
           HEADGOAL (resolve-tac goal-ctxt @{thms eval-psi-ineq-aux2} THEN'
             Simplifier.simp-tac goal-ctxt)
         fun\ prove-by-approx\ n\ thm =
             val\ thm = thm\ RS\ @\{thm\ eval\mbox{-}psi\mbox{-}ineg\mbox{-}aux\}
             val [prem] = Thm.prems-of thm
```

```
in
            prem\ RS\ thm
          end
        fun prove-by-mono last-thm last-thm' thm =
           val\ thm = @\{thm\ eval\ -psi\ -ineq\ -aux\ -mono\}\ OF\ [last\ -thm,\ thm,\ last\ -thm']
            val [prem] = Thm.prems-of thm
            val prem =
              Goal.prove ctxt [] [] prem (fn \{context = goal-ctxt, ...\} =>
                HEADGOAL (Simplifier.simp-tac goal-ctxt))
          in
            prem RS thm
          end
        fun\ go\ -\ acc\ [] = acc
          \mid go \ last \ acc \ ((n, x, thm) :: xs) =
                val thm' =
                 case last of
                   NONE = prove-by-approx n thm
                 | SOME (last-x, last-thm, last-thm') =>
                     if last-x = x then
                      prove-by-mono last-thm last-thm' thm
                     else
                      prove-by-approx n thm
              in
               go (SOME (x, thm, thm')) (thm' :: acc) xs
              end
       in
        rev\ o\ go\ NONE\ []
       end
     val\ psi\mbox{-}ineqs = prove\mbox{-}psi\mbox{-}ineqs\ ctxt\ psi\mbox{-}cache
     fun\ prove-ball\ ctxt\ (thm1::thm2::thm2::thms) =
          let
            val\ thm = @\{thm\ Ball-atLeast0AtMost-doubleton\}\ OF\ [thm1,\ thm2]
            fun \ solve-prem \ thm =
              let
                val thm' =
                 Goal.prove\ ctxt\ []\ []\ (Thm.cprem-of\ thm\ 1\ |>\ Thm.term-of)
                   (fn \{context = goal\text{-}ctxt, ...\} =>
                     HEADGOAL (Simplifier.simp-tac goal-ctxt))
              in
                thm' RS thm
              end
              fun go thm thm' = (@\{thm \ Ball-atLeast0AtMost-insert\}\ OF\ [thm',
thm]) |> solve-prem
          in
            fold go thms thm
```

 $val \ prem = Goal.prove \ ctxt \ [] \ [] \ prem \ (tac \ o \ \#context)$

```
| prove-ball - - = raise Match
     HEADGOAL (resolve-tac ctxt [prove-ball ctxt psi-ineqs])
 val thm = Goal.prove lthy [] [] @\{prop \forall n \in \{0...128\}. psi \ n \leq 3 \ / \ 2 * ln \ 2 * n\}
(tac\ o\ \#context)
 Local-Theory.note ((@\{binding\ psi-ubound-log-128\},\ []),\ [thm])\ lthy |> snd
end
end
context
begin
private lemma psi-ubound-aux:
 defines f \equiv \lambda x :: real. (4 * ln x + 3) / (ln 2 * x)
 assumes x \geq 2 x \leq y
 shows f x \ge f y
using assms(3)
proof (rule DERIV-nonpos-imp-nonincreasing, goal-cases)
 case (1 t)
 define f' where f' = (\lambda x. (1 - 4 * ln x) / x^2 / ln 2 :: real)
 from 1 assms(2) have (f has-real-derivative f' t) (at t) unfolding f-def f'-def
   by (auto intro!: derivative-eq-intros simp: field-simps power2-eq-square)
 moreover {
   from ln-2-ge have 1/4 \le ln \ (2::real) by simp
   also from assms(2) 1 have ... \leq ln \ t by simp
   finally have \ln t \ge 1/4.
 with 1 assms(2) have f' t \le 0 by (simp \ add: f'-def \ field-simps)
 ultimately show ?case by (intro exI[of - f't]) simp-all
qed
These next rules are used in combination with real ?n * ln 2 - (4 * ln (real))
(if ? n = 0 then 1 else ? n)) + 3) \leq psi ? n
psi\ ?n-psi\ (?n\ div\ 2) \le real\ ?n*ln\ 2+(4*ln\ (real\ (if\ ?n=0\ then\ 1)))
else (n)) + 3) and \forall n \in \{0...128\}. psi n \leq 3 / 2 * ln 2 * real n to extend
the upper bound for psi from values no greater than 128 to values no greater
than 1024. The constant factor of the upper bound changes every time, but
once we have reached 1024, the recurrence is self-sustaining in the sense that
we do not have to adjust the constant factor anymore in order to double the
range.
lemma psi-ubound-log-double-cases':
 assumes \bigwedge n. n \leq m \Longrightarrow psi \ n \leq c * ln \ 2 * real \ n \ n \leq m' \ m' = 2*m
```

```
c \le c' \ c \ge 0 \ m \ge 1 \ c' \ge 1 + c/2 + (4 * ln (m+1) + 3) / (ln \ 2 * (m+1))
 shows psi \ n \le c' * ln \ 2 * real \ n
proof (cases n > m)
  case False
 hence psi \ n \le c * ln \ 2 * real \ n \ by (intro assms) simp-all
 also have c \leq c' by fact
  finally show ?thesis by - (simp-all add: mult-right-mono)
\mathbf{next}
  case True
 hence n: n \ge m+1 by simp
 from psi-bounds-induct(2)[of n] True
   have psi \ n \leq real \ n * ln \ 2 + 4 * ln \ (real \ n) + 3 + psi \ (n \ div \ 2) by simp
 also from assms have psi\ (n\ div\ 2) \le c*ln\ 2*real\ (n\ div\ 2)
   by (intro assms) simp-all
 also have real (n \ div \ 2) \le real \ n \ / \ 2 \ by \ simp
 also have c * ln \ 2 * \dots = c / 2 * ln \ 2 * real \ n by simp
 also have real n * ln 2 + 4 * ln (real n) + 3 + \dots =
               (1 + c/2) * ln 2 * real n + (4 * ln (real n) + 3) by (simp add:
field-simps)
 also {
   have (4 * ln (real n) + 3) / (ln 2 * (real n)) \le (4 * ln (m+1) + 3) / (ln 2)
*(m+1)
     using n assms by (intro psi-ubound-aux) simp-all
   also from assms have (4 * ln (m+1) + 3) / (ln 2 * (m+1)) \le c' - 1 - c/2
     by (simp add: algebra-simps)
   finally have 4 * ln (real n) + 3 \le (c' - 1 - c/2) * ln 2 * real n
     using n by (simp add: field-simps)
 also have (1 + c / 2) * ln 2 * real n + (c' - 1 - c / 2) * ln 2 * real n = c'
* ln 2 * real n
   by (simp add: field-simps)
 finally show ?thesis using \langle c \geq 0 \rangle by (simp-all add: mult-left-mono)
qed
end
{f lemma} psi-ubound-log-double-cases:
 assumes \forall n \le m. psi \ n \le c * ln \ 2 * real \ n
        c' \ge 1 + c/2 + (4 * ln (m+1) + 3) / (ln 2 * (m+1))
        m' = 2*m \ c \le c' \ c \ge 0 \ m \ge 1
 shows \forall n \leq m'. psi \ n \leq c' * ln \ 2 * real \ n
  using assms(1) by (intro all impl assms psi-ubound-log-double-cases' of m c -
m'c' auto
lemma psi-ubound-log-1024:
 \forall n \leq 1024. \ psi \ n \leq 551 \ / \ 256 * ln \ 2 * real \ n
proof -
 from psi-ubound-log-128 have \forall n \le 128. psi n \le 3 / 2 * ln 2 * real n by simp
```

```
hence \forall n \leq 256. psi n \leq 1025 / 512 * ln 2 * real n
 proof (rule psi-ubound-log-double-cases, goal-cases)
   case 1
   have Some (Float 624 (-7)) = ub-ln 9 129 by code-simp
   from ub-ln(1)[OF this] and ln-2-ge show ?case by (simp add: field-simps)
  qed simp-all
  hence \forall n \leq 512. psi \ n \leq 549 \ / \ 256 * ln \ 2 * real \ n
  proof (rule psi-ubound-log-double-cases, goal-cases)
   case 1
   have Some (Float 180 (-5)) = ub-ln 7 257 by code-simp
   from ub-ln(1)[OF this] and ln-2-ge show ?case by (simp \ add: field-simps)
 qed simp-all
  thus \forall n \leq 1024. psi n \leq 551 / 256 * ln 2 * real n
 {f proof} (rule psi-ubound-log-double-cases, goal-cases)
   case 1
   have Some (Float 203 (-5)) = ub-ln 7 513 by code-simp
   from ub-ln(1)[OF this] and ln-2-ge show ?case by (simp add: field-simps)
 qed simp-all
qed
lemma psi-bounds-sustained-induct:
 assumes 4 * ln (1 + 2 \hat{j}) + 3 \le d * ln 2 * (1 + 2 \hat{j})
 assumes 4 / (1 + 2\hat{j}) \le d * \ln 2
 assumes 0 \le c
 assumes c / 2 + d + 1 \le c
 assumes j \leq k
 assumes \bigwedge n. n \leq 2 \hat{k} \Longrightarrow psi \ n \leq c * ln \ 2 * n
 assumes n \leq 2 (Suc \ k)
 shows psi \ n \le c * ln \ 2 * n
proof (cases n \leq 2 \hat{k})
 case True
  with assms(6) show ?thesis.
next
 {\bf case}\ \mathit{False}
 from psi-bounds-induct(2)
   have psi \ n - psi \ (n \ div \ 2) < real \ n * ln \ 2 + (4 * ln \ (real \ (if \ n = 0 \ then \ 1 \ else
n)) + 3).
 also from False have (if n = 0 then 1 else n) = n
 finally have psi \ n \leq real \ n * ln \ 2 + (4 * ln \ (real \ n) + 3) + psi \ (n \ div \ 2)
   by simp
 also from assms(6,7) have psi(n \ div \ 2) \le c * ln \ 2 * (n \ div \ 2)
   by simp
 also have real (n \ div \ 2) \le real \ n \ / \ 2
   by simp
 also have real n * ln 2 + (4 * ln (real n) + 3) + c * ln 2 * (n / 2) \le c * ln 2
* real n
   proof (rule overpower-lemma[of
          \lambda x. \ x * \ln 2 + (4 * \ln x + 3) + c * \ln 2 * (x / 2) \ 1 + 2\hat{j}
```

```
\lambda x. \ c * \ln 2 * x \ \lambda x. \ c * \ln 2 - \ln 2 - 4 \ / \ x - c \ / \ 2 * \ln 2
          real \ n])
     from assms(1) have 4 * ln (1 + 2\hat{j}) + 3 \le d * ln 2 * (1 + 2\hat{j}).
     also from assms(4) have d \le c - c/2 - 1
     also have (...) * ln 2 * (1 + 2 \hat{j}) = c * ln 2 * (1 + 2 \hat{j}) - c / 2 * ln 2
*(1 + 2^{j})
        -(1+2^{j})*ln 2
       by (simp add: left-diff-distrib)
     finally have 4 * ln (1 + 2\hat{j}) + 3 \le c * ln 2 * (1 + 2\hat{j}) - c / 2 * ln 2
*(1 + 2^{j})
        -(1+2\hat{j})*ln 2
       by (simp add: add-pos-pos)
     then show (1 + 2 \hat{j}) * ln 2 + (4 * ln (1 + 2 \hat{j}) + 3)
                 + c * ln 2 * ((1 + 2 \hat{j}) / 2) \le c * ln 2 * (1 + 2 \hat{j})
       by simp
   next
     \mathbf{fix} \ x :: real
     assume x: 1 + 2\hat{j} \leq x
     moreover have 1 + 2 \hat{j} > (0::real) by (simp \ add: \ add-pos-pos)
     ultimately have x-pos: x > 0 by linarith
     show ((\lambda x. \ c * \ln 2 * x - (x * \ln 2 + (4 * \ln x + 3) + c * \ln 2 * (x / 2)))
            has-real-derivative c * ln 2 - ln 2 - 4 / x - c / 2 * ln 2) (at x)
       by (rule derivative-eq-intros refl | simp add: \langle 0 < x \rangle)+
     from \langle 0 < x \rangle \langle 0 < 1 + 2\hat{j} \rangle have 0 < x * (1 + 2\hat{j})
       by (rule mult-pos-pos)
     have 4 / x \le 4 / (1 + 2^{\hat{j}})
       by (intro divide-left-mono mult-pos-pos add-pos-pos x x-pos) simp-all
     also from assms(2) have 4 / (1 + 2\hat{j}) \le d * ln 2.
     also from assms(4) have d \le c - c/2 - 1 by simp
       also have ... * ln 2 = c * ln 2 - c/2 * ln 2 - ln 2 by (simp add:
algebra-simps)
     finally show 0 \le c * \ln 2 - \ln 2 - 4 / x - c / 2 * \ln 2 by simp
     have 1 + 2\hat{j} = real (1 + 2\hat{j}) by simp
     also from assms(5) have ... < real (1 + 2^k) by simp
     also from False have 2\hat{k} \le n - 1 by simp
     finally show 1 + 2\hat{j} \le real \ n using False by simp
   qed
   finally show ?thesis using assms by - (simp-all add: mult-left-mono)
lemma psi-bounds-sustained:
 assumes \bigwedge n. n \leq 2 \hat{\ } k \Longrightarrow psi \ n \leq c * ln \ 2 * n
 assumes 4 * ln (1 + 2\hat{k}) + 3 \le (c/2 - 1) * ln 2 * (1 + 2\hat{k})
 assumes 4 / (1 + 2\hat{k}) \le (c/2 - 1) * ln 2
 assumes c > 0
 shows psi \ n \le c * ln \ 2 * n
proof -
```

```
have psi \ n \le c * ln \ 2 * n \ if \ n \le 2^j \ for \ j \ n
 using that
 proof (induction j arbitrary: n)
   case \theta
    with assms(4) 0 show ?case unfolding psi-def mangoldt-def by (cases n)
auto
 \mathbf{next}
   case (Suc\ j)
   show ?case
    proof (cases k \leq j)
      case True
      from assms(4) have c-div-2: c/2 + (c/2 - 1) + 1 \le c
        by simp
      from psi-bounds-sustained-induct[of k c/2 - 1 c j,
           OF assms(2) assms(3) assms(4) c-div-2 True Suc.IH Suc.prems
        show ?thesis by simp
     next
      case False
      then have j-lt-k: Suc j \leq k by simp
      from Suc.prems have n \leq 2 \ \widehat{} Suc j.
      also have (2::nat) \cap Suc j \leq 2 \cap k
        using power-increasing[of Suc j k 2::nat, OF j-lt-k]
        by simp
      finally show ?thesis using assms(1) by simp
     qed
   qed
   from less-exp this [of n n] show ?thesis by simp
lemma psi-ubound-log: psi \ n \le 551 \ / \ 256 * ln \ 2 * n
proof (rule psi-bounds-sustained)
 show 0 \le 551 / (256 :: real) by simp
\mathbf{next}
 fix n :: nat assume n \leq 2 \hat{\ } 10
 with psi-ubound-log-1024 show psi n \le 551 / 256 * ln 2 * real n by auto
 have 4 / (1 + 2 \hat{\ } 10) \le (551 / 256 / 2 - 1) * (2/3 :: real)
   by simp
 also have ... \leq (551 / 256 / 2 - 1) * ln 2
   by (intro mult-left-mono ln-2-ge') simp-all
 finally show 4 / (1 + 2 \hat{10}) \le (551 / 256 / 2 - 1) * ln (2 :: real).
 have Some (Float 16 (-1)) = ub-ln 3 1025 by code-simp
 from ub-ln(1)[OF this] and ln-2-ge
   have 2048 * ln \ 1025 + 1536 \le 39975 * (ln \ 2::real) by simp
 thus 4 * ln (1 + 2 ^10) + 3 \le (551 / 256 / 2 - 1) * ln 2 * (1 + 2 ^10) ::
   by simp
qed
```

```
lemma psi-ubound-3-2: psi n \leq 3/2 * n proof — have (551/256) * ln 2 \leq (551/256) * (16/23 :: real) by (intro\ mult-left-mono ln-2-le') auto also have ... \leq 3/2 by simp finally have 551/256 * ln 2 \leq 3/(2 :: real). with of-nat-0-le-iff mult-right-mono have 551/256 * ln 2 * n \leq 3/2 * n by blast with psi-ubound-log[of\ n] show ?thesis by linarith qed
```

0.6 Doubling psi and theta

```
lemma psi-residues-compare-2:
  psi-odd-2 \ n < psi-even-2 \ n
proof -
 have psi\text{-}odd\text{-}2\ n = (\sum d \in \{d.\ d \in \{2..n\} \land primepow\text{-}odd\ d\}.\ mangoldt\text{-}odd\ d)
   unfolding mangoldt-odd-def by (rule sum.mono-neutral-right) auto
 also have ... = (\sum d \in \{d.\ d \in \{2..n\} \land primepow-odd\ d\}. ln (real (aprimedivisor
d)))
   by (intro sum.cong refl) (simp add: mangoldt-odd-def)
 also have . . . \leq (\sum d \in \{d.\ d \in \{2..n\} \land primepow-even\ d\}.\ ln\ (real\ (aprimedivisor
  proof (rule sum-le-included [where i = \lambda y. y * aprimedivisor y]; clarify?)
   fix d :: nat assume d \in \{2..n\} primepow-odd d
   note d = this
   then obtain p \ k where d': k \ge 1 prime p \ d = p \ \widehat{\ } (2*k+1)
     by (auto simp: primepow-odd-def)
   from d' have p \cap (2 * k) \leq p \cap (2 * k + 1)
     by (subst power-increasing-iff) (auto simp: prime-gt-Suc-0-nat)
   also from d d' have \dots \leq n by simp
   finally have p \cap (2 * k) \leq n.
   moreover from d' have p \cap (2 * k) > 1
     \mathbf{by}\ (\mathit{intro\ one-less-power})\ (\mathit{simp-all\ add:\ prime-gt-Suc-0-nat})
   ultimately have p \cap (2 * k) \in \{2..n\} by simp
   moreover from d' have primepow-even (p \ \widehat{\ } (2 * k))
     by (auto simp: primepow-even-def)
    ultimately show \exists y \in \{d \in \{2..n\}. primepow-even d\}. y * aprimedivisor y =
d \wedge
                   ln (real (aprimedivisor d)) \leq ln (real (aprimedivisor y)) using d'
     by (intro\ bexI[of - p \ \widehat{\ } (2 * k)])
        (auto simp: aprimedivisor-prime-power aprimedivisor-primepow)
 qed (simp-all add: of-nat-ge-1-iff Suc-le-eq)
  also have ... = (\sum d \in \{d.\ d \in \{2..n\} \land primepow-even\ d\}. mangoldt-even d)
   by (intro sum.cong refl) (simp add: mangoldt-even-def)
  also have ... = psi-even-2 n
   unfolding mangoldt-even-def by (rule sum.mono-neutral-left) auto
```

```
finally show ?thesis.
qed
lemma psi-residues-compare:
 psi-odd n \leq psi-even n
proof -
 have \neg primepow-odd 1 by (simp add: primepow-odd-def)
 hence *: mangoldt - odd 1 = 0 by (simp add: mangoldt - odd - def)
 have ¬ primepow-even 1
   using primepow-gt-Suc-0[OF primepow-even-imp-primepow, of 1] by auto
 with mangoldt-even-def have **: mangoldt-even 1 = 0
 from psi-odd-def have psi-odd n = (\sum d=1..n. mangoldt-odd d)
   by simp
 also from * have ... = psi-odd-2 n
   by (cases n > 1) (simp-all add: eval-nat-numeral sum.atLeast-Suc-atMost)
 also from psi-residues-compare-2 have ... \leq psi-even-2 n.
 also from ** have ... = psi-even n
    by (cases n \geq 1) (simp-all add: eval-nat-numeral sum.atLeast-Suc-atMost
psi-even-def)
 finally show ?thesis.
\mathbf{qed}
lemma primepow-iff-even-sqr:
 primepow \ n \longleftrightarrow primepow-even \ (n^2)
 by (cases n = \theta)
  (auto simp: primepow-even-altdef aprimedivisor-primepow-power primepow-power-iff-nat
          prime-elem-multiplicity-power-distrib prime-aprimedivisor' prime-imp-prime-elem
              unit-factor-nat-def primepow-gt-0-nat dest: primepow-gt-Suc-0)
lemma psi-sqrt: psi (floor-sqrt n) = psi-even n
proof (induction n)
 case \theta
 with psi-def psi-even-def show ?case by simp
 case (Suc \ n)
 then show ?case
   proof cases
     assume asm: \exists m. Suc n = m^2
     with floor-sqrt-Suc have sqrt-seq: floor-sqrt(Suc n) = Suc(floor-sqrt n)
      by simp
     from asm obtain m where Suc n = m^2
      by blast
     with sqrt-seq have Suc(floor-sqrt n) = m
      by simp
     with \langle Suc\ n = m^2 \rangle have suc\text{-}sqrt\text{-}n\text{-}sqrt: (Suc(floor\text{-}sqrt\ n))^2 = Suc\ n
     from sqrt-seq have psi (floor-sqrt (Suc n)) = psi (Suc (floor-sqrt n))
      by simp
```

```
also from psi-def have ... = psi (floor-sqrt n) + mangoldt (Suc (floor-sqrt
n))
      by simp
     also from Suc.IH have psi (floor-sqrt n) = psi-even n.
     also have mangoldt (Suc (floor-sqrt n)) = mangoldt-even (Suc n)
     proof (cases primepow (Suc(floor-sqrt n)))
      \mathbf{case} \ \mathit{True}
        with primepow-iff-even-sqr have True2: primepow-even ((Suc(floor-sqrt
n))^2)
    from suc-sqrt-n-sqrt have mangelet-even (Suc n) = mangelet-even (Suc (floor-sqrt
n))^2)
        by simp
      also from mangoldt-even-def True2
        have ... = ln (aprimedivisor ((Suc (floor-sqrt n))^2))
     also from True have a prime divisor ((Suc\ (floor-sqrt\ n))^2) = a prime divisor
(Suc\ (floor-sqrt\ n))
        by (simp add: aprimedivisor-primepow-power)
      also from True have ln(...) = mangoldt(Suc(floor-sqrt n))
        by (simp add: mangoldt-def)
      finally show ?thesis ..
     next
      {f case} False
      with primepow-iff-even-sqr
        have False2: \neg primepow-even ((Suc(floor-sqrt n))^2)
    from suc-sqrt-n-sqrt have mangelet-even (Suc n) = mangelet-even (Suc floor-sqrt
n))^2)
        by simp
      also from mangoldt-even-def False2
        have \dots = \theta
        by simp
      also from False have \dots = mangoldt (Suc (floor-sqrt n))
        by (simp add: mangoldt-def)
      finally show ?thesis ..
     qed
    also from psi-even-def have psi-even n + mangoldt-even (Suc \ n) = psi-even
(Suc \ n)
      \mathbf{bv} simp
     finally show ?case.
     assume asm: \neg(\exists m. Suc \ n = m^2)
     with floor-sqrt-Suc have sqrt-eq: floor-sqrt (Suc n) = floor-sqrt n
      by simp
     then have lhs: psi\ (floor-sqrt\ (Suc\ n)) = psi\ (floor-sqrt\ n)
      by simp
     have \neg primepow-even (Suc n)
      proof
```

```
assume primepow-even (Suc n)
        with primepow-even-def obtain p k
          where 1 \leq k \wedge prime \ p \wedge Suc \ n = p \ \widehat{\ } (2 * k)
        with power-even-eq have Suc \ n = (p \ \hat{\ } k) \ \hat{\ } 2
          by simp
        with asm show False by blast
     with psi-even-def mangoldt-even-def
      have rhs: psi-even (Suc\ n) = psi-even n
      by simp
     from Suc.IH lhs rhs show ?case
      \mathbf{by} \ simp
   qed
qed
lemma manqoldt-split:
 mangoldt\ d = mangoldt-1\ d + mangoldt-even\ d + mangoldt-odd\ d
proof (cases primepow d)
 case False
 thus ?thesis
  by (auto simp: mangoldt-def mangoldt-1-def mangoldt-even-def mangoldt-odd-def
           dest: primepow-even-imp-primepow primepow-odd-imp-primepow)
next
  case True
 thus ?thesis
  by (auto simp: mangoldt-def mangoldt-1-def mangoldt-even-def mangoldt-odd-def
primepow-cases)
qed
lemma psi-split: psi\ n = theta\ n + psi-even\ n + psi-odd\ n
 by (induction \ n)
     (simp-all add: psi-def theta-def psi-even-def psi-odd-def mangoldt-1-def man-
goldt-split)
lemma psi-mono: m \le n \Longrightarrow psi \ m \le psi \ n unfolding psi-def
 by (intro sum-mono2 mangoldt-nonneg) auto
lemma psi-pos: 0 \le psi n
 by (auto simp: psi-def intro!: sum-nonneg mangoldt-nonneg)
lemma mangoldt\text{-}odd\text{-}pos:\ \theta \leq mangoldt\text{-}odd\ d
  using aprimedivisor-gt-Suc-\theta[of d]
 by (auto simp: mangoldt-odd-def of-nat-le-iff[of 1, unfolded of-nat-1] Suc-le-eq
         intro!: ln-ge-zero dest!: primepow-odd-imp-primepow primepow-gt-Suc-0)
lemma psi\text{-}odd\text{-}mono: m \leq n \Longrightarrow psi\text{-}odd \ m \leq psi\text{-}odd \ n
  using mangoldt-odd-pos sum-mono2[of \{1..n\} \{1..m\} mangoldt-odd]
 by (simp add: psi-odd-def)
```

```
lemma psi\text{-}odd\text{-}pos:\ \theta \leq psi\text{-}odd\ n
  by (auto simp: psi-odd-def intro!: sum-nonneg mangoldt-odd-pos)
lemma psi-theta:
  theta n + psi (floor-sqrt n) \leq psi n psi n \leq theta n + 2 * psi (floor-sqrt n)
  using psi-odd-pos[of n] psi-residues-compare[of n] psi-sqrt[of n] psi-split[of n]
  by simp-all
context
begin
private lemma sum-minus-one:
  (\sum x \in \{1..y\}. (-1 :: real) \cap (x+1)) = (if odd y then 1 else 0)
  by (induction \ y) \ simp-all
private lemma div-invert:
  fixes x y n :: nat
  assumes x > 0 y > 0 y \le n div x
  shows x \leq n \ div \ y
proof -
  from assms(1,3) have y * x \le (n \ div \ x) * x
   by simp
  also have \dots \leq n
   by (simp add: minus-mod-eq-div-mult[symmetric])
  finally have y * x \le n.
  with assms(2) show ?thesis
   using div-le-mono[of y*x n y] by simp
\mathbf{qed}
lemma sum-expand-lemma:
  (\sum d{=}1..n.~({-}1)~\widehat{\phantom{a}}(d~+~1)~*~psi~(n~div~d))=
    (\sum d = 1..n. (if odd (n div d) then 1 else 0) * mangoldt d)
 have **: x \le n if x \le n div y for x y
   using div-le-dividend order-trans that by blast
 have (\sum d=1..n. (-1)\hat{\ }(d+1)*psi (n \ div \ d)) = (\sum d=1..n. (-1)\hat{\ }(d+1)*(\sum e=1..n \ div \ d. \ mangoldt \ e))
   by (simp add: psi-def)
 also have ... = (\sum d = 1..n. \sum e = 1..n \ div \ d. \ (-1)^(d+1) * mangoldt \ e)
   \mathbf{by}\ (simp\ add\colon sum\text{-}distrib\text{-}left)
 also from ** have ... = (\sum d = 1..n. \sum e \in \{y \in \{1..n\}. y \le n \text{ div } d\}. (-1) (d+1)
* mangoldt e
   by (intro sum.cong) auto
 also have ... = (\sum y = 1..n. \sum x \mid x \in \{1..n\} \land y \leq n \ div \ x. \ (-1) \ \widehat{\ } (x+1)
* mangoldt y)
   by (rule sum.swap-restrict) simp-all
 also have ... = (\sum y = 1..n. \sum x \mid x \in \{1..n\} \land x \leq n \ div \ y. \ (-1) \cap (x+1)
* mangoldt y)
```

```
by (intro sum.cong) (auto intro: div-invert)
  also from ** have ... = (\sum y = 1..n. \sum x \in \{1..n \ div \ y\}. \ (-1) \ (x + 1) *
mangoldt y)
   by (intro sum.cong) auto
 also have ... = (\sum y = 1..n. (\sum x \in \{1..n \ div \ y\}. (-1) ^(x + 1)) * mangoldt)
    by (intro sum.cong) (simp-all add: sum-distrib-right)
  also have ... = (\sum y = 1..n. (if odd (n div y) then 1 else 0) * mangoldt y)
    by (intro sum.cong refl) (simp-all only: sum-minus-one)
  finally show ?thesis.
qed
{\bf private\ lemma\ \it floor-half-interval:}
  fixes n d :: nat
  assumes d \neq 0
  shows real (n \text{ div } d) - \text{real } (2 * ((n \text{ div } 2) \text{ div } d)) = (if \text{ odd } (n \text{ div } d) \text{ then } 1)
else 0)
proof
  have ((n \operatorname{div} 2) \operatorname{div} d) = (n \operatorname{div} (2 * d))
    by (rule div-mult2-eq[symmetric])
  also have \dots = ((n \ div \ d) \ div \ 2)
    by (simp add: mult-ac div-mult2-eq)
  also have real (n \ div \ d) - real \ (2 * ...) = (if \ odd \ (n \ div \ d) \ then \ 1 \ else \ 0)
    by (cases odd (n div d), cases n div d = 0, simp-all)
  finally show ?thesis by simp
qed
lemma fact-expand-psi:
 ln (fact \ n) - 2 * ln (fact \ (n \ div \ 2)) = (\sum d = 1..n. \ (-1) \cap (d+1) * psi \ (n \ div \ d))
proof -
  have ln (fact n) - 2 * ln (fact (n div 2)) =
    (\sum d=1..n.\ mangoldt\ d*\lfloor n\ /\ d\rfloor)\ -\ 2*(\sum d=1..n\ div\ 2.\ mangoldt\ d*\lfloor (n-l)\rfloor)
div \ 2) \ / \ d \rfloor)
    by (simp add: ln-fact-conv-mangoldt)
  also have (\sum d=1..n \ div \ 2. \ mangoldt \ d*[real (n \ div \ 2) \ / \ d]) =
               (\sum d=1..n. \ mangoldt \ d * \lfloor real \ (n \ div \ 2) \ / \ d \rfloor)
    by (rule sum.mono-neutral-left) (auto simp: floor-unique[of 0])
  also have 2 * \dots = (\sum d=1..n. \ mangoldt \ d * 2 * \lfloor real \ (n \ div \ 2) \ / \ d \rfloor) by (simp add: sum-distrib-left mult-ac)
 also have (\sum d=1..n. \ mangoldt \ d*\lfloor n\ /\ d\rfloor) - \ldots = (\sum d=1..n. \ (mangoldt \ d*\lfloor n\ /\ d\rfloor - mangoldt \ d*2*\lfloor real\ (n\ div\ 2)
/ d|))
    by (simp add: sum-subtractf)
 also have ... = (\sum d=1..n. \ mangoldt \ d*(\lfloor n/d \rfloor - 2* \lfloor real \ (n \ div \ 2)/d \rfloor))
    \mathbf{by}\ (simp\ add\colon algebra\text{-}simps)
  also have ... = (\sum d=1..n. mangoldt d* (if odd(n div d) then 1 else 0))
    by (intro sum.cong refl)
       (simp-all\ add:\ floor-conv-div-nat\ [symmetric]\ floor-half-interval\ [symmetric])
  also have ... = (\sum d=1..n. (if odd(n div d) then 1 else 0) * mangoldt d)
```

```
by (simp add: mult-ac)
  also from sum-expand-lemma[symmetric] have ... = (\sum d=1..n. (-1) \hat{\ } (d+1)
* psi (n div d).
  finally show ?thesis.
qed
end
lemma psi-expansion-cutoff:
  assumes m \leq p
 shows (\sum d = 1..2*m.(-1) (d+1)*psi(n div d)) \le (\sum d = 1..2*p.(-1) (d+1)
* psi (n div d))
              (\sum d=1...2*p+1. (-1)^{d+1} * psi (n \ div \ d)) \le (\sum d=1...2*m+1.)^{d+1}
(-1)^{n}(d+1) * psi (n div d))
using assms
proof (induction m rule: inc-induct)
  case (step k)
  have (\sum d = 1...2 * k. (-1) \hat{\ } (d+1) * psi (n \ div \ d)) \le (\sum d = 1...2 * Suc \ k. (-1) \hat{\ } (d+1) * psi (n \ div \ d))
    by (simp add: psi-mono div-le-mono2)
  with step.IH(1)
    show (\sum d = 1..2 * k. (-1) \hat{\ } (d+1) * psi (n div d))
 \leq (\sum d = 1..2 * p. (-1) \hat{\ } (d+1) * psi (n div d))
      by simp
  from step.IH(2)
    have (\sum d = 1...2 * p + 1. (-1)^{(d+1)} * psi (n div d))
  \leq (\sum d = 1..2 * Suc \ k + 1. \ (-1) \hat{\ } (d+1) * psi \ (n \ div \ d)). also have ... \leq (\sum d = 1..2 * k + 1. \ (-1) \hat{\ } (d+1) * psi \ (n \ div \ d))
    \mathbf{by}\ (\mathit{simp}\ \mathit{add}\colon \mathit{psi-mono}\ \mathit{div-le-mono2})
  finally show (\sum d = 1..2 * p + 1. (-1)^{(d+1)} * psi (n \ div \ d))
 \leq (\sum d = 1..2 * k + 1. (-1)^{(d+1)} * psi (n \ div \ d)).
qed simp-all
lemma fact-psi-bound-even:
  assumes even k
  shows (\sum d=1..k. (-1)^n (d+1) * psi (n div d)) \le ln (fact n) - 2 * ln (fact n)
(n \ div \ 2))
proof -
  have (\sum d=1..k. (-1) \hat{d}+1) * psi (n div d)) \le (\sum d=1..n. (-1) \hat{d}+1)
* psi (n div d)
  proof (cases k \leq n)
    case True
    with psi-expansion-cutoff(1)[of k div 2 n div 2 n]
      have (\sum d=1..2*(k\ div\ 2).\ (-1)^(d+1)*psi\ (n\ div\ d))
\leq (\sum d=1..2*(n\ div\ 2).\ (-1)^(d+1)*psi\ (n\ div\ d))
      by simp
    also from assms have 2*(k \ div \ 2) = k
      bv simp
    also have (\sum d = 1..2*(n \ div \ 2). \ (-1) \ \widehat{\ } (d+1) * psi \ (n \ div \ d))
```

```
\leq (\sum d = 1..n. (-1) (d + 1) * psi (n div d))
   proof (cases even n)
     \mathbf{case} \ \mathit{True}
     then show ?thesis
       by simp
   \mathbf{next}
     case False
     from psi\text{-}pos have (\sum d = 1..2*(n \ div \ 2). \ (-1) \ (d+1)*psi \ (n \ div \ d)) \leq (\sum d = 1..2*(n \ div \ 2) + 1. \ (-1) \ (d+1)*psi \ (n \ div \ d))
       by simp
     with False show ?thesis
       by simp
   qed
   finally show ?thesis.
  next
   case False
   hence *: n \ div \ 2 \le (k-1) \ div \ 2
     by simp
   have (\sum d=1..k. (-1) \hat{\ } (d+1) * psi (n div d)) \le
           (\sum d=1..2*((k-1)\ div\ 2) + 1.\ (-1)\hat{\ }(d+1)*psi\ (n\ div\ d))
   proof (cases k = \theta)
     case True
     with psi-pos show ?thesis by simp
   next
     case False
     with sum.cl-ivl-Suc[of \lambda d. (-1) \cap (d+1) * psi (n div d) 1 k-1]
     have (\sum d=1..k. (-1)^{n}(d+1) * psi (n div d)) = (\sum d=1..k-1. (-1)^{n}(d+1)
* psi (n div d))
         + (-1)^{(k+1)} * psi (n div k)
       by simp
     also from assms psi-pos have (-1) (k+1) * psi (n div k) \le 0
       by simp
     also from assms False have k-1 = 2*((k-1) \ div \ 2) + 1
       by presburger
     finally show ?thesis by simp
   qed
   also from * psi-expansion-cutoff(2)[of n div 2 (k-1) div 2 n]
   have ... \leq (\sum d=1..2*(n\ div\ 2) + 1.\ (-1)\widehat{\ (d+1)}*psi\ (n\ div\ d)) by blast also have ... \leq (\sum d=1..n.\ (-1)\widehat{\ (d+1)}*psi\ (n\ div\ d))
     by (cases even n) (simp-all add: psi-def)
   finally show ?thesis.
  also from fact-expand-psi have ... = ln (fact \ n) - 2 * ln (fact \ (n \ div \ 2)) ..
  finally show ?thesis.
qed
lemma fact-psi-bound-odd:
 assumes odd k
 shows ln (fact n) - 2 * ln (fact (n div 2)) \le (\sum d=1..k. (-1)^n (d+1) * psi (n div 2))
```

```
div d)
proof
 from fact-expand-psi
   have ln (fact \ n) - 2 * ln (fact (n \ div \ 2)) = (\sum d = 1..n. (-1) \cap (d+1) *
psi (n \ div \ d)).
 also have \dots \le (\sum d=1..k. (-1) \hat{\ } (d+1) * psi (n div d))
 proof (cases k \leq n)
   case True
   have (\sum d=1..n. (-1) \hat{\ } (d+1) * psi (n div d)) \leq (
            \sum d=1..2*(n \ div \ 2)+1. \ (-1)^{(d+1)}*psi(n \ div \ d))
     by (cases even n) (simp-all add: psi-pos)
   also from True assms psi-expansion-cutoff(2)[of k div 2 n div 2 n]
     have ... \leq (\sum d=1..k. (-1)^n (d+1) * psi (n div d))
       by simp
   finally show ?thesis.
  \mathbf{next}
   case False
   have (\sum d=1..n. (-1)^n (d+1) * psi (n div d)) \le (\sum d=1..2*((n+1) div 2).
(-1)^{n}(d+1) * psi (n div d)
     by (cases even n) (simp-all add: psi-def)
   also from False assms psi-expansion-cutoff(1)[of (n+1) div 2 k div 2 n]
   have (\sum d=1..2*((n+1)\ div\ 2).\ (-1)\widehat{\ }(d+1)*psi\ (n\ div\ d)) \le (\sum d=1..2*(k+1)\ div\ 2).
div \ 2). (-1) \hat{\ } (d+1) * psi \ (n \ div \ d))
       by simp
   also from assms have \dots \leq (\sum d=1..k. (-1) \hat{d}+1) * psi (n \ div \ d))
     by (auto elim: oddE simp: psi-pos)
   finally show ?thesis.
 ged
 finally show ?thesis.
qed
lemma fact-psi-bound-2-3:
 psi \ n - psi \ (n \ div \ 2) \le ln \ (fact \ n) - 2 * ln \ (fact \ (n \ div \ 2))
 ln (fact \ n) - 2 * ln (fact \ (n \ div \ 2)) \le psi \ n - psi \ (n \ div \ 2) + psi \ (n \ div \ 3)
proof -
 show psi \ n - psi \ (n \ div \ 2) \le ln \ (fact \ n) - 2 * ln \ (fact \ (n \ div \ 2))
   by (rule\ psi-bounds-ln-fact\ (2))
  from fact-psi-bound-odd[of 3 n] have ln (fact n) - 2 * ln (fact (n div 2))
  \leq (\sum d = 1..3. (-1) (d + 1) * psi (n div d))
   by simp
 also have ... = psi \ n - psi \ (n \ div \ 2) + psi \ (n \ div \ 3)
   by (simp add: sum.atLeast-Suc-atMost numeral-2-eq-2)
 finally show ln (fact n) - 2 * ln (fact (n div 2)) \le psi n - psi (n div 2) + psi
(n \ div \ 3).
qed
lemma ub-ln-1200: ln 1200 \le 57 / (8 :: real)
proof -
```

```
have Some (Float 57 (-3)) = ub-ln 8 1200 by code-simp
 from ub-ln(1)[OF this] show ?thesis by simp
qed
lemma psi-double-lemma:
 assumes n \geq 1200
 shows real n / 6 \le psi \ n - psi \ (n \ div \ 2)
proof -
 from ln-fact-diff-bounds
   have |ln (fact n) - 2 * ln (fact (n div 2)) - real n * ln 2|
       \leq 4 * ln (real (if n = 0 then 1 else n)) + 3.
 with assms have ln (fact n) - 2 * ln (fact (n div 2))
       \geq real \ n * ln \ 2 - 4 * ln \ (real \ n) - 3
   by simp
 moreover have real n * ln 2 - 4 * ln (real n) - 3 \ge 2 / 3 * n
 proof (rule overpower-lemma[of \lambda n. 2/3 * n 1200])
   show 2 / 3 * 1200 \le 1200 * ln 2 - 4 * ln 1200 - (3::real)
      using ub-ln-1200 ln-2-ge by linarith
 next
   \mathbf{fix} \ x :: real
   assume 1200 \le x
   then have \theta < x
     by simp
   show ((\lambda x. \ x * ln \ 2 - 4 * ln \ x - 3 - 2 / 3 * x)
       has-real-derivative \ln 2 - 4 / x - 2 / 3 (at x)
     by (rule derivative-eq-intros refl | simp add: \langle 0 < x \rangle)+
 next
   \mathbf{fix} \ x :: real
   assume 1200 \le x
   then have 12 / x \le 12 / 1200 by simp
   then have \theta \leq \theta.67 - 4 / x - 2 / 3 by simp
   also have 0.67 \le ln \ (2::real) using ln-2-ge by simp
   finally show 0 \le \ln 2 - 4 / x - 2 / 3 by simp
   from assms show 1200 \le real \ n
     by simp
 qed
 ultimately have 2 / 3 * real n \le ln (fact n) - 2 * ln (fact (n div 2))
 with psi-ubound-3-2[of n div 3]
   have n/6 + psi (n \ div \ 3) \le ln \ (fact \ n) - 2 * ln \ (fact \ (n \ div \ 2))
 with fact-psi-bound-2-3[of n] show ?thesis
   by simp
qed
lemma theta-double-lemma:
 assumes n \ge 1200
 shows theta (n \text{ div } 2) < \text{theta } n
```

```
proof -
 from psi-theta[of n div 2] psi-pos[of floor-sqrt (n div 2)]
   have theta-le-psi-n-2: theta (n \ div \ 2) \le psi \ (n \ div \ 2)
 have (floor\text{-}sqrt \ n * 18)^2 \le 324 * n
   by simp
 from mult-less-cancel2 [of 324 n n] assms have 324 * n < n^2
   by (simp add: power2-eq-square)
 with \langle (floor-sqrt \ n*18)^2 \leq 324*n \rangle have (floor-sqrt \ n*18)^2 < n^2
   by presburger
 with power2-less-imp-less assms have floor-sqrt n * 18 < n
   by blast
 with psi-ubound-3-2[of floor-sqrt n] have 2 * psi (floor-sqrt n) < n / 6
   by simp
 with psi-theta[of n] have psi-theta-n: psi n - n / 6 < theta n
   by simp
 from psi-double-lemma[OF assms(1)] have psi(n \ div \ 2) \le psi(n - n \ / \ 6)
   by simp
 with theta-le-psi-n-2 psi-lt-theta-n show ?thesis
   by simp
\mathbf{qed}
0.7
       Proof of the main result
lemma theta-mono: mono theta
 by (auto simp: theta-def [abs-def] intro!: monoI sum-mono2)
\mathbf{lemma}\ theta\text{-}lessE:
 assumes theta m < theta \ n \ m \ge 1
 obtains p where p \in \{m < ...n\} prime p
proof -
 from mono-invE[OF\ theta-mono\ assms(1)]\ \mathbf{have}\ m \leq n\ \mathbf{by}\ blast
 hence theta n = theta \ m + (\sum p \in \{m < ...n\}). if prime p then ln (real p) else 0)
   unfolding theta-def using assms(2)
   by (subst sum.union-disjoint [symmetric]) (auto simp: ivl-disj-un)
 also note assms(1)
 finally have (\sum p \in \{m < ...n\}. if prime p then ln (real p) else 0) \neq 0 by simp
 then obtain p where p \in \{m < ...n\} (if prime p then ln (real p) else 0) \neq 0
   by (rule sum.not-neutral-contains-not-neutral)
 thus ?thesis using that [of p] by (auto intro!: exI[of - p] split: if-splits)
qed
theorem bertrand:
 fixes n :: nat
 assumes n > 1
 shows \exists p \in \{n < ... < 2*n\}. prime p
proof cases
 assume n-less: n < 600
 define prime-constants
```

```
where prime-constants = \{2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631::nat\}
 from \langle n > 1 \rangle n-less have \exists p \in prime-constants. n 
    unfolding bex-simps greaterThanLessThan-iff prime-constants-def by pres-
 moreover have \forall p \in prime\text{-}constants. prime p
   unfolding prime-constants-def ball-simps HOL.simp-thms
   by (intro conjI; pratt (silent))
 ultimately show ?thesis
   unfolding greaterThanLessThan-def greaterThan-def lessThan-def by blast
next
 assume n: \neg (n < 600)
 from n have theta n < theta (2 * n) using theta-double-lemma of 2 * n by
simp
 with assms obtain p where p \in \{n < ...2*n\} prime p by (auto elim!: theta-lessE)
 moreover from assms have \neg prime (2*n) by (auto dest!: prime-product)
 with \langle prime \ p \rangle have p \neq 2 * n by auto
 ultimately show ?thesis
   by auto
qed
```

0.8 Proof of Mertens' first theorem

The following proof of Mertens' first theorem was ported from John Harrison's HOL Light proof by Larry Paulson:

```
lemma sum-integral-ubound-decreasing':
  fixes f :: real \Rightarrow real
 assumes m \leq n
      and der: \bigwedge x. x \in \{of\text{-nat } m - 1..of\text{-nat } n\} \Longrightarrow (g \text{ has-field-derivative } f x)
(at x)
     and le: \bigwedge x \ y. [real \ m-1 \le x; \ x \le y; \ y \le real \ n] \implies f \ y \le f \ x
    shows (\sum k = m..n. \ f \ (of\text{-nat}\ k)) \le g \ (of\text{-nat}\ n) - g \ (of\text{-nat}\ m-1)
proof -
  have (\sum k = m..n. \ f \ (of\text{-nat} \ k)) \le (\sum k = m..n. \ g \ (of\text{-nat}(Suc \ k) - 1) - g
(of-nat k-1)
  proof (rule sum-mono, clarsimp)
    \mathbf{fix} \ r
   assume r: m \le r r \le n
    hence \exists z > real \ r - 1. z < real \ r \land g \ (real \ r) - g \ (real \ r - 1) = (real \ r - 1)
(real\ r-1))*fz
     using assms by (intro MVT2) auto
    hence \exists z \in \{ of\text{-}nat \ r - 1..of\text{-}nat \ r \}. g(real \ r) - g(real \ r - 1) = f \ z \ by \ auto
    then obtain u::real where u: u \in \{of\text{-nat } r - 1..of\text{-nat } r\}
                        and eq: g r - g (of-nat r - 1) = f u by blast
    have real m \leq u + 1
      using r u by auto
    then have f(of-nat r) \leq f u
      using r(2) and u by (intro le) auto
    then show f(of\text{-}nat\ r) \leq g\ r - g(of\text{-}nat\ r - 1)
      by (simp \ add: eq)
```

```
qed
  also have ... \leq g \ (of\text{-}nat \ n) - g \ (of\text{-}nat \ m-1)
   using \langle m \leq n \rangle by (subst sum-Suc-diff) auto
  finally show ?thesis.
qed
lemma Mertens-lemma:
 assumes n \neq 0
   shows |(\sum d = 1..n. \ mangoldt \ d \ / \ real \ d) - ln \ n| \le 4
proof -
 have *: [abs(s' - nl + n) \le a; abs(s' - s) \le (k - 1) * n - a]
       \implies abs(s-nl) \le n * k \text{ for } s' s k nl a :: real
   by (auto simp: algebra-simps abs-if split: if-split-asm)
 have le: |(\sum d=1..n. mangoldt \ d*floor (n / d)) - n*ln \ n + n| \le 1 + ln \ n
   using ln-fact-bounds ln-fact-conv-mangoldt assms by simp
  have |real\ n*((\sum d=1..n.\ mangoldt\ d\ /\ real\ d)\ -\ ln\ n)|=
       |((\sum d = 1..n. real \ n * mangoldt \ d \ / real \ d) - n * ln \ n)||
   by (simp add: algebra-simps sum-distrib-left)
  also have \dots \leq real \ n * 4
 proof (rule * [OF le])
   have |(\sum d = 1..n. \ mangoldt \ d * \lfloor n \ / \ d \rfloor) - (\sum d = 1..n. \ n * mangoldt \ d \ / \ d )|
d)
       = |\sum d = 1..n. \ mangoldt \ d * (\lfloor n / d \rfloor - n / d)|
     by (simp add: sum-subtractf algebra-simps)
   also have \dots \leq psi \ n \ (is \ |?sm| \leq ?rhs)
   proof -
     have -?sm = (\sum d = 1..n. \ mangoldt \ d * (n/d - \lfloor n/d \rfloor))
       by (simp add: sum-subtractf algebra-simps)
     also have \dots \leq (\sum d = 1..n. \ mangoldt \ d * 1)
       by (intro sum-mono mult-left-mono mangoldt-nonneg) linarith+
     finally have -?sm \le ?rhs by (simp \ add: \ psi-def)
     moreover
     have ?sm \leq 0
       using mangoldt-nonneg by (simp add: mult-le-0-iff sum-nonpos)
     ultimately show ?thesis by (simp add: abs-if)
   qed
   also have ... \leq 3/2 * real n
     by (rule psi-ubound-3-2)
   also have \ldots \le (4 - 1) * real n - (1 + ln n)
     using ln-le-minus-one [of n] assms by (simp \ add: \ divide-simps)
   finally
   show |(\sum d = 1..n. \ mangoldt \ d * real-of-int \ [real \ n \ / \ real \ d]) -
         (\sum d = 1..n. real \ n * mangoldt \ d \ / real \ d)
         \leq (4-1) * real n - (1 + ln n).
  qed
 finally have |real\ n*((\sum d=1..n.\ mangoldt\ d\ /\ real\ d)-ln\ n)|\leq real\ n*4.
  then show ?thesis
   using assms mult-le-cancel-left-pos by (simp add: abs-mult)
qed
```

```
\mathbf{lemma}\ \mathit{Mertens-mangoldt-versus-ln}:
  assumes I \subseteq \{1..n\}
  shows |(\sum i \in I. \ mangoldt \ i \ / \ i) - (\sum p \ | \ prime \ p \land p \in I. \ ln \ p \ / \ p)| \le 3
         (is |?lhs| \leq 3)
proof (cases n = \theta)
  case True
  with assms show ?thesis by simp
next
  case False
    have finite I
      using assms finite-subset by blast
    have 0 \le (\sum i \in I. mangoldt i / i - (if prime i then ln i / i else 0))
      using mangoldt-nonneg by (intro sum-nonneg) simp-all
    moreover have ... \leq (\sum i = 1..n. \ mangoldt \ i \ / \ i - (if \ prime \ i \ then \ ln \ i \ / \ i
else \ 0))
      using assms by (intro sum-mono2) (auto simp: mangoldt-nonneg)
    ultimately have *: |\sum i \in I. mangoldt i / i - (if prime i then ln i / i else 0)|
                        \leq |\sum i = 1..n. \ mangoldt \ i \ / \ i - (if \ prime \ i \ then \ ln \ i \ / \ i \ else \ 0)|
      by linarith
    moreover have ?lhs = (\sum i \in I. mangoldt \ i \ / \ i - (if prime \ i \ then \ ln \ i \ / \ i \ else
\theta))
                    \begin{array}{l} (\sum i = 1..n. \ mangoldt \ i \ / \ i - (\textit{if prime } i \ then \ ln \ i \ / \ i \ else \ 0)) \\ = (\sum d = 1..n. \ mangoldt \ d \ / \ d) - (\sum p \mid prime \ p \ \land \ p \in \{1..n\}. \end{array}
ln p / p)
      using sum.inter-restrict [of - \lambda i. ln (real i) / i Collect prime, symmetric]
       by (force simp: sum-subtractf \langle finite \ I \rangle intro: sum.cong)+
    (\sum p \mid prime \ p \land p \in \{1..n\}. \ ln \ p \ / \ p)| \ \mathbf{by} \ linarith also have . . . \leq 3
    ultimately have |?lhs| \le |(\sum d = 1..n. \ mangoldt \ d \ / \ d)|
    proof -
      have eq-sm: (\sum i = 1..n. \ mangoldt \ i \ / \ i) =
                       (\sum i \in \{p \hat{k} \mid p \ k. \ prime \ p \land p \hat{k} \le n \land k \ge 1\}. \ mangoldt \ i \ / \ i)
      proof (intro sum.mono-neutral-right ballI, goal-cases)
        case (3 i)
        hence \neg primepow\ i by (auto simp: primepow-def Suc-le-eq)
        thus ?case by (simp add: mangoldt-def)
      qed (auto simp: Suc-le-eq prime-gt-0-nat)
      have (\sum i = 1..n. \ mangoldt \ i \ / \ i) - (\sum p \mid prime \ p \land p \in \{1..n\}. \ ln \ p \ / \ p)
      (\sum i \in \{p\widehat{k} \mid p \ k. \ prime \ p \land p\widehat{k} \leq n \land k \geq 2\}. \ mangoldt \ i \ / \ i) proof -
        have eq: \{p \ \hat{\ } k \ | p \ k. \ prime \ p \land p \ \hat{\ } k \le n \land 1 \le k\} = \{p \ \hat{\ } k \ | p \ k. \ prime \ p \land p \ \hat{\ } k \le n \land 2 \le k\} \cup \{p. \ prime \ p \land p \in k\} \}
\{1..n\}\}
           (is ?A = ?B \cup ?C)
        proof (intro equalityI subsetI; (elim UnE)?)
           fix x assume x \in ?A
           then obtain p k where x = p \ \hat{} k prime p p \ \hat{} k \leq n k \geq 1 by auto
```

```
thus x \in ?B \cup ?C
            by (cases k \geq 2) (auto simp: prime-power-iff Suc-le-eq)
        \mathbf{next}
          fix x assume x \in ?B
          then obtain p \ k where x = p \ \hat{} \ k prime p \ p \ \hat{} \ k \leq n \ k \geq 1 by auto
          thus x \in A by (auto simp: prime-power-iff Suc-le-eq)
        next
          fix x assume x \in ?C
          then obtain p where x = p \ \hat{} 1 \ 1 \ge (1::nat) prime p \ p \ \hat{} 1 \le n by auto
          thus x \in ?A by blast
        qed
        have eqln: (\sum p \mid prime \ p \land p \in \{1..n\}. \ ln \ p \ / \ p) = (\sum p \mid prime \ p \land p \in \{1..n\}. \ mangoldt \ p \ / \ p)
          by (rule sum.cong) auto
        have (\sum i \in \{p\hat{k} \mid p \ k. \ prime \ p \land p\hat{k} \le n \land k \ge 1\}. mangoldt i / i) =
                 (\sum i \in \{p \ \widehat{\ }k \mid p \ k. \ prime \ p \land p \ \widehat{\ }k \le n \land 2 \le k\} \ \cup
                 \{\overline{p}. \ prime \ p \land p \in \{1..n\}\}. \ mangoldt \ i \ / \ i) \ \mathbf{by} \ (subst \ eq) \ simp-all
        also have ... = (\sum i \in \{p \hat{k} \mid p k. prime p \land p \hat{k} \leq n \land k \geq 2\}. mangoldt
i / i
                        + (\sum p \mid prime \ p \land p \in \{1..n\}. \ mangoldt \ p \ / \ p)
       by (intro sum.union-disjoint) (auto simp: prime-power-iff finite-nat-set-iff-bounded-le)
        also have ... = (\sum i \in \{p \hat{k} \mid p k. prime p \land p \hat{k} \leq n \land k \geq 2\}. mangoldt
i / i
                         + (\sum p \mid prime \ p \land p \in \{1..n\}. \ ln \ p \ / \ p) by (simp \ only: \ eqln)
        finally show ?thesis
          using eq-sm by auto
      have (\sum p \mid prime \ p \land p \in \{1..n\}. \ ln \ p \ / \ p) \le (\sum p \mid prime \ p \land p \in \{1..n\}.
mangoldt p / p)
        using mangoldt-nonneg by (auto intro: sum-mono)
      also have ... \leq (\sum i = Suc \ \theta..n. \ mangoldt \ i \ / \ i)
        by (intro sum-mono2) (auto simp: mangoldt-nonneg)
       finally have 0 \le (\sum i = 1..n. \ mangoldt \ i \ / \ i) - (\sum p \ | \ prime \ p \ \land \ p \in
\{1..n\}.\ ln\ p\ /\ p)
        by simp
     moreover have (\sum i = 1..n. \ mangoldt \ i \ / \ i) - (\sum p \ | \ prime \ p \land p \in \{1..n\}.
ln \ p \ / \ p) \le 3
                      (is ?M - ?L < 3)
      proof -
        have *: \exists q. \exists j \in \{1..n\}. prime q \land 1 \leq q \land q \leq n \land (q ^j = p ^k \land mangoldt (p ^k) / real p ^k \leq ln (real q) / real q
\hat{j}
          if prime p p \hat{k} \leq n 1 \leq k for p k
        proof -
          have mangoldt (p \hat{k}) / real p \hat{k} \leq ln p / p \hat{k}
             using that by (simp add: divide-simps)
          moreover have p < n
             using that self-le-power[of p \ k] by (simp \ add: prime-ge-Suc-0-nat)
          moreover have k \leq n
```

```
proof -
          have k < 2\hat{k}
              using of-nat-less-two-power of-nat-less-numeral-power-cancel-iff by
blast
          also have \dots \leq p \hat{k}
           by (simp add: power-mono prime-ge-2-nat that)
          also have \dots \leq n
           by (simp add: that)
          finally show ?thesis by (simp add: that)
        ultimately show ?thesis
          using prime-ge-1-nat that by auto (use atLeastAtMost-iff in blast)
      have finite: finite \{p \ \hat{} k \mid p \ k. \ prime \ p \land p \ \hat{} k \leq n \land 1 \leq k\}
        by (rule\ finite-subset[of - \{..n\}]) auto
       real \ x \ \hat{\ } k)
        by (subst eq-sm, intro sum-le-included [where i = \lambda(p,k). p^{\hat{}}k])
           (insert * finite, auto)
      also have ... = (\sum p \mid prime \ p \land p \in \{1..n\}. \ (\sum k = 1..n. \ ln \ p \ / \ p\widehat{\ \ }k))
        by (subst sum.Sigma) auto
       also have ... = ?L + (\sum p \mid prime \ p \land p \in \{1..n\}. (\sum k = 2..n. \ln p / p)
p^{k})
       by (simp add: comm-monoid-add-class.sum.distrib sum.atLeast-Suc-atMost
numeral-2-eq-2)
       finally have ?M - ?L \le (\sum p \mid prime \ p \land p \in \{1..n\}. \ (\sum k = 2..n. \ ln \ p)
/ p^{k}
        by (simp add: algebra-simps)
       also have ... = (\sum p \mid prime \ p \land p \in \{1..n\}. \ ln \ p * (\sum k = 2..n. \ inverse
        by (simp add: field-simps sum-distrib-left)
      also have ... = (\sum p \mid prime \ p \land p \in \{1..n\}.
                    ln \ p * (((inverse \ p)^2 - inverse \ p \ \widehat{} Suc \ n) \ / \ (1 - inverse \ p)))
        by (intro sum.cong refl) (simp add: sum-gp)
       -1))))
        by (intro sum-mono mult-left-mono)
           (auto simp: divide-simps power2-eq-square of-nat-diff mult-less-0-iff)
      also have ... \leq (\sum p = 2..n. \ln p * inverse (real (p * (p - 1))))
        by (rule sum-mono2) (use prime-ge-2-nat in auto)
      also have ... \leq (\sum i = 2..n. \ln i / (i - 1)^2)
        unfolding divide-inverse power2-eq-square mult.assoc
        by (auto intro: sum-mono mult-left-mono mult-right-mono)
      also have \dots \leq 3
      proof (cases n \geq 3)
        case False then show ?thesis
        proof (cases n > 2)
          case False then show ?thesis by simp
        next
```

```
case True
           then have n = 2 using False by linarith
           with ln-le-minus-one [of 2] show ?thesis by simp
       next
         case True
         have (\sum i = 3..n. \ln (real i) / (real (i - Suc 0))^2)
               \leq (ln (of-nat n - 1)) - (ln (of-nat n)) - (ln (of-nat n) / (of-nat n))
(-1) + 2 * ln 2
         proof -
          have 1: ((\lambda z. \ln (z-1) - \ln z - \ln z / (z-1)) \text{ has-field-derivative } \ln z
x / (x - 1)^2) (at x)
            if x: x \in \{2..real \ n\} for x
            by (rule derivative-eq-intros | rule refl |
                 (use x in \langle force\ simp:\ power2\text{-}eq\text{-}square\ divide-<math>simps \rangle))+
           have 2: \ln y / (y - 1)^2 \le \ln x / (x - 1)^2 if xy: 2 \le x x \le y y \le real
n for x y
           proof (cases x = y)
             case False
             define f' :: real \Rightarrow real
             where f' = (\lambda u. ((u-1)^2 / u - \ln u * (2 * u - 2)) / (u-1) ^4)
             have f'-altdef: f'(u) = inverse((u-1)^2) - 2 * ln(u) / (u)
- 1) ^3
               if u: u \in \{x..y\} for u::real unfolding f'-def using u
           by (simp add: eval-nat-numeral divide-simps) (simp add: algebra-simps)?
            have deriv: ((\lambda z. \ln z / (z-1)^2) \text{ has-field-derivative } f' u) (at u)
              if u: u \in \{x..y\} for u::real unfolding f'-def
                   by (rule derivative-eq-intros refl | (use u xy in \langle force \ simp : \ di
vide-simps))+
            hence \exists z > x. z < y \land \ln y / (y - 1)^2 - \ln x / (x - 1)^2 = (y - x) *
f'z
              using xy and \langle x \neq y \rangle by (intro MVT2) auto
             then obtain \xi::real where x < \xi \xi < y
              and \xi: \ln y / (y-1)^2 - \ln x / (x-1)^2 = (y-x) * f' \xi by blast
             have f' \xi \leq \theta
            proof -
              have 2/3 \le ln \ (2::real) by (fact \ ln-2-ge')
               also have \ldots \leq \ln \xi
                 using \langle x < \xi \rangle xy by auto
               finally have 1 \le 2 * ln \xi  by simp
               then have *: \xi \leq \xi * (2 * ln \xi)
                using \langle x < \xi \rangle xy by auto
               hence \xi - 1 \le \ln \xi * 2 * \xi by (simp add: algebra-simps)
               hence 1 / (\xi * (\xi - 1)^2) \le \ln \xi * 2 / (\xi - 1) ^3
                using xy \langle x < \xi \rangle by (simp add: divide-simps power-eq-if)
             thus ?thesis using xy \langle x < \xi \rangle \langle \xi < y \rangle by (subst f'-altdef) (auto simp:
divide-simps)
            then have (\ln y / (y-1)^2 - \ln x / (x-1)^2) \le 0
```

```
using \langle x \leq y \rangle by (simp add: mult-le-0-iff \xi)
            then show ?thesis by simp
          qed simp-all
          show ?thesis
            using sum-integral-ubound-decreasing'
                [OF \ \langle 3 \leq n \rangle, \ of \ \lambda z. \ ln(z-1) - ln \ z - ln \ z \ / \ (z-1) \ \lambda z. \ ln \ z \ /
(z-1)^2
              12 \langle 3 \leq n \rangle
            by (auto simp: in-Reals-norm of-nat-diff)
        qed
        also have \dots \leq 2
        proof -
          have ln \ (real \ n-1) - ln \ n \le 0 \ 0 \le ln \ n \ / \ (real \ n-1)
            using \langle \beta \leq n \rangle by auto
          then have ln (real n - 1) - ln n - ln n / (real n - 1) \le 0
            by linarith
          with ln-2-less-1 show ?thesis by linarith
        also have \dots \leq 3 - \ln 2
          using ln-2-less-1 by (simp add: algebra-simps)
       finally show ?thesis
        using True by (simp add: algebra-simps sum.atLeast-Suc-atMost [of 2 n])
       finally show ?thesis.
     qed
     ultimately show ?thesis
       by linarith
   ged
 finally show ?thesis.
qed
proposition Mertens:
 assumes n \neq 0
 shows |(\sum p \mid prime \ p \land p \leq n. \ ln \ p \ / \ of\text{-nat} \ p) - ln \ n| \leq 7
 p)\ /\ real\ p)|
           \leq 7 - 4 using Mertens-manged dt-versus-ln [of \{1..n\} n] by simp-all
 also have \{p. \ prime \ p \land p \in \{1..n\}\} = \{p. \ prime \ p \land p \leq n\}
   using atLeastAtMost-iff prime-ge-1-nat by blast
 finally have |(\sum d = 1..n. \ mangoldt \ d \ / \ real \ d) - (\sum p \in .... \ ln \ (real \ p) \ / \ real \ d)|
|p| \leq 7 - 4.
 moreover from assms have |(\sum d = 1..n. mangoldt d / real d) - ln n| \le 4
   by (rule Mertens-lemma)
 ultimately show ?thesis by linarith
qed
end
```

References

 $[1] \ \ J. \ Harrison. \ HOL \ Light, \ Bertrand's \ postulate. \\ https://github.com/jrh13/hol-light/blob/master/100/bertrand.ml.$