The Factorization Algorithm of Berlekamp and
Zassenhaus *

Jose Divason Sebastiaan Joosten René Thiemann

Akihisa Yamada

March 19, 2025

Abstract

We formalize the Berlekamp-Zassenhaus algorithm for factoring
square-free integer polynomials in Isabelle/HOL. We further adapt an
existing formalization of Yun’s square-free factorization algorithm to
integer polynomials, and thus provide an efficient and certified factor-
ization algorithm for arbitrary univariate polynomials.

The algorithm first performs a factorization in the prime field GF(p)
and then performs computations in the integer ring modulo p*, where
both p and k are determined at runtime. Since a natural modeling of
these structures via dependent types is not possible in Isabelle/HOL,
we formalize the whole algorithm using Isabelle’s recent addition of
local type definitions.

Through experiments we verify that our algorithm factors polyno-
mials of degree 100 within seconds.

Contents
1 Introduction

2 Finite Rings and Fields
2.1 Finite Rings oo

2.2 Nontrivial Finite Rings
2.3 Finite Fields oo

3 Arithmetics via Records
3.1 Finite Fields
3.1.1 Transfer Relation
3.1.2 Transfer Rules
3.2 Matrix Operations in Fields
3.3 Interfacing UFD properties

*Supported by FWF (Austrian Science Fund) project Y757.

o o Ot

10

15

3.3.1 Original part, 72

3.3.2 Connecting to HOL/Divisibility 74
3.4 Preservation of Irreducibility 78

3.4.1 Back to divisibility 79
3.5 Results for GCDsetc. 84
Unique Factorization Domain for Polynomials 91
Polynomials in Rings and Fields 112
5.1 Polynomialsin Rings 112
5.2 Polynomials in a Finite Field 136
5.3 Transferring to class-based mod-ring 136
5.4 Karatsuba’s Multiplication Algorithm for Polynomials 149
5.5 Record Based Version 153

5.5.1 Definitions 0oL 153

5.5.2 Properties L Lo 158

5.5.3 Over a Finite Field 173
5.6 Chinese Remainder Theorem for Polynomials 180
The Berlekamp Algorithm 185
6.1 Auxiliary lemmas L oo 186
6.2 Previous Results 0oL, 194
6.3 Definitionso 203
6.4 Properties 204
Distinct Degree Factorization 254

A Combined Factorization Algorithm for Polynomials over

GF(p) 277
8.1 Type Based Version 277
8.2 Record Based Version 280
Hensel Lifting 293
9.1 Properties about Factors, 293
9.2 Hensel Lifting in a Type-Based Setting 333
9.3 Resultis Unique 349
10 Reconstructing Factors of Integer Polynomials 363
10.1 Square-Free Polynomials over Finite Fields and Integers . . . 363
10.2 Finding a Suitable Prime 367
10.3 Maximal Degree during Reconstruction 374
10.4 Mahler Measure Lo 380
10.5 The Mignotte Bound 399
10.6 Iteration of Subsets of Factors 407
10.7 Reconstruction of Integer Factorization. 420

11 The Polynomial Factorization Algorithm 440

11.1 Factoring Square-Free Integer Polynomials 440
11.2 A fast coprimality approximation 443
11.3 Factoring Arbitrary Integer Polynomials 461
11.4 Factoring Rational Polynomials 477
12 External Interface 479

1 Introduction

Modern algorithms to factor integer polynomials — following Berlekamp and
Zassenhaus — work via polynomial factorization over prime fields GF(p) and
quotient rings Z/p*Z [2, 3]. Algorithm 1 illustrates the basic structure of
such an algorithm.!

Algorithm 1: A modern factorization algorithm

Input: Square-free integer polynomial f.
Output: Irreducible factors fi,..., f, such that f = f1-...- fu.
4 Choose a suitable prime p depending on f.
5 Factor fin GF(p): f=g1-... gm (mod p).
6 Determine a suitable bound d on the degree, depending on
g1, ---,9m- Choose an exponent k such that every coefficient of a
factor of a given multiple of f in Z with degree at most d can be
uniquely represent by a number below p*.
7 From step 5 compute the unique factorization f = hy ... Ay
(mod p*) via the Hensel lifting.
8 Construct a factorization f = f; -...- f, over the integers where
each f; corresponds to the product of one or more h;.

In previous work on algebraic numbers [12], we implemented Algorithm 1
in Isabelle/HOL [11] as a function of type int poly = int poly list, where we
chose Berlekamp’s algorithm in step 5. However, the algorithm was available
only as an oracle, and thus a validity check on the result factorization had
to be performed.

In this work we fully formalize the correctness of our implementation.

1Our algorithm starts with step 4, so that section numbers and step-numbers coincide.

Theorem 1 (Berlekamp-Zassenhaus’ Algorithm)

assumes square__free (f :: int poly)

and degree f # 0

and berlekamp_ zassenhaus_factorization f = fs
shows f = prod_list fs

and Vf; € set fs. irreducible f;

To obtain Theorem 1 we perform the following tasks.

« We introduce two formulations of GF (p) and Z/p*Z. We first define a
type to represent these domains, employing ideas from HOL multivari-
ate analysis. This is essential for reusing many type-based algorithms
from the Isabelle distribution and the AFP (archive of formal proofs).
At some points in our developement, the type-based setting is still
too restrictive. Hence we also introduce a second formulation which is
locale-based.

e The prime p in step 4 must be chosen so that f remains square-free
in GF(p). For the termination of the algorithm, we prove that such a
prime always exists.

e We explain Berlekamp’s algorithm that factors polynomials over prime
fields, and formalize its correctness using the type-based representa-
tion. Since Isabelle’s code generation does not work for the type-
based representation of prime fields, we define an implementation of
Berlekamp’s algorithm which avoids type-based polynomial algorithms
and type-based prime fields. The soundness of this implementation
is proved via the transfer package [5]: we transform the type-based
soundness statement of Berlekamp’s algorithm into a statement which
speaks solely about integer polynomials. Here, we crucially rely upon
local type definitions [9] to eliminate the presence of the type for the
prime field GF(p).

e For step 6 we need to find a bound on the coefficients of the factors of
a polynomial. For this purpose, we formalize Mignotte’s factor bound.
During this formalization task we detected a bug in our previous oracle
implementation, which computed improper bounds on the degrees of
factors.

o We formalize the Hensel lifting. As for Berlekamp’s algorithm, we
first formalize basic operations in the type-based setting. Unfortu-
nately, however, this result cannot be extended to the full Hensel lift-
ing. Therefore, we model the Hensel lifting in a locale-based way so
that modulo operation is explicitly applied on polynomials.

e For the reconstruction in step 8 we closely follow the description of
Knuth [7, page 452]. Here, we use the same representation of polyno-
mials over Z/p*Z as for the Hensel lifting.

o We adapt an existing square-free factorization algorithm from Q to Z.
In combination with the previous results this leads to a factorization
algorithm for arbitrary integer and rational polynomials.

To our knowledge, this is the first formalization of the Berlekamp-Zassenhaus

algorithm. For instance, Barthe et al. report that there is no formalization
of an efficient factorization algorithm over GF(p) available in Coq [1, Section
6, note 3 on formalization).

Some key theorems leading to the algorithm have already been formalized
in Isabelle or other proof assistants. In ACL2, for instance, polynomials
over a field are shown to be a unique factorization domain (UFD) [4]. A
more general result, namely that polynomials over UFD are also UFD, was
already developed in Isabelle/HOL for implementing algebraic numbers [12]
and an independent development by Eberl is now available in the Isabelle
distribution.

An Isabelle formalization of Hensel’s lemma is provided by Kobayashi
et al. [8], who defined the valuations of polynomials via Cauchy sequences,
and used this setup to prove the lemma. Consequently, their result re-
quires a ‘valuation ring’ as precondition in their formalization. While this
extra precondition is theoretically met in our setting, we did not attempt
to reuse their results, because the type of polynomials in their formalization
(from HOL-Algebra) differs from the polynomials in our development (from
HOL/Library). Instead, we formalize a direct proof for Hensel’s lemma.
Our formalizations are incomparable: On the one hand, Kobayashi et al.
did not consider only integer polynomials as we do. On the other hand, we
additionally formalize the quadratic Hensel lifting [13], extend the lifting
from binary to n-ary factorizations, and prove a uniqueness result, which is
required for proving the soundness of Theorem 1.

A Coq formalization of Hensel’s lemma is also available, which is used
for certifying integral roots and ‘hardest-to-round computation’ [10]. If one
is interested in certifying a factorization, rather than a certified algorithm
that performs it, it suffices to test that all the found factors are irreducible.
Kirkels [6] formalized a sufficient criterion for this test in Coq: when a
polynomial is irreducible modulo some prime, it is also irreducible in Z.
Both formalizations are in Coq, and we did not attempt to reuse them.

2 Finite Rings and Fields

We start by establishing some preliminary results about finite rings and
finite fields

2.1 Finite Rings

theory Finite-Field
imports
HOL— Computational-Algebra. Primes
HOL— Number-Theory. Residues
HOL— Library. Cardinality
Subresultants. Binary-Exponentiation
Polynomial-Interpolation. Ring- Hom-Poly
begin

typedef (‘a:finite) mod-ring = {0..<int CARD('a)} by auto
setup-lifting type-definition-mod-ring

lemma CARD-mod-ring[simp]: CARD('a mod-ring) = CARD('a::finite)
proof —
have card {y. 3z€{0..<int CARD('a)}. (y::'a mod-ring) = Abs-mod-ring z} =
card {0..<int CARD('a)}
proof (rule bij-betw-same-card)
have inj-on Rep-mod-ring {y. 3z€{0..<int CARD('a)}. y = Abs-mod-ring x}
by (meson Rep-mod-ring-inject inj-onl)
moreover have Rep-mod-ring ‘ {y. 3z€{0..<int CARD('a)}. (y::'a mod-ring)
= Abs-mod-ring z} = {0..<int CARD('a)}
proof (auto simp add: image-def Rep-mod-ring-inject)
fix 2b show 0 < Rep-mod-ring (Abs-mod-ring xb)
using Rep-mod-ring atLeastLess Than-iff by blast
assume zb1: 0 < zb and zb2: zb < int CARD('a)
thus Rep-mod-ring (Abs-mod-ring xzb) < int CARD('a)
by (metis Abs-mod-ring-inverse Rep-mod-ring atLeastLess Than-iff le-less-trans
linear)
have zb: zb € {0..<int CARD('a)} using zb1 zb2 by simp
show Jza::'a mod-ring. (3z€{0..<int CARD('a)}. za = Abs-mod-ring x) A
zb = Rep-mod-ring za
by (rule exI[of - Abs-mod-ring zb], auto simp add: zb1 xb2, rule Abs-mod-ring-inverse[OF
xb, symmetric])
qed
ultimately show bij-betw Rep-mod-ring
{y. Jz€{0..<int CARD('a)}. (y::'a mod-ring) = Abs-mod-ring z}
{0..<int CARD('a)}
by (simp add: bij-betw-def)
qged
thus ?thesis
unfolding type-definition.univ| OF type-definition-mod-ring|
unfolding image-def by auto
qed

instance mod-ring :: (finite) finite
proof (intro-classes)
show finite (UNIV::'a mod-ring set)

unfolding type-definition.univ] OF type-definition-mod-ring|
using finite by simp
qed

instantiation mod-ring :: (finite) equal

begin

lift-definition equal-mod-ring :: 'a mod-ring = 'a mod-ring = bool is (=) .
instance by (intro-classes, transfer, auto)

end

instantiation mod-ring :: (finite) comm-ring
begin

lift-definition plus-mod-ring :: ‘a mod-ring = 'a mod-ring = 'a mod-ring is
Azy. (z+ y) mod int (CARD('a)) by simp

lift-definition uminus-mod-ring :: 'a mod-ring = 'a mod-ring is
A z. if x = 0 then 0 else int (CARD('a)) — z by simp

lift-definition minus-mod-ring :: 'a mod-ring = ’'a mod-ring = 'a mod-ring is
Azy. (x — y) mod int (CARD('a)) by simp

lift-definition times-mod-ring :: 'a mod-ring = 'a mod-ring = 'a mod-ring is
Az y. (xxy) mod int (CARD(’a)) by simp

lift-definition zero-mod-ring :: 'a mod-ring is 0 by simp
instance
by standard
(transfer; auto simp add: mod-simps algebra-simps intro: mod-diff-cong)+
end

lift-definition to-int-mod-ring :: 'a::finite mod-ring = int is \ z. z .

lift-definition of-int-mod-ring :: int = 'a::finite mod-ring is
A z. £ mod int (CARD('a)) by simp

interpretation to-int-mod-ring-hom: inj-zero-hom to-int-mod-ring
by (unfold-locales; transfer, auto)

lemma int-nat-card[simpl: int (nat CARD('a::finite)) = CARD(’a) by auto

interpretation of-int-mod-ring-hom: zero-hom of-int-mod-ring
by (unfold-locales, transfer, auto)

lemma of-int-mod-ring-to-int-mod-ring[simpl:
of-int-mod-ring (to-int-mod-ring) = z by (transfer, auto)

lemma to-int-mod-ring-of-int-mod-ring[simp]: 0 < z = z < int CARD('a :: fi-
nite) =

to-int-mod-ring (of-int-mod-ring z :: 'a mod-ring) = x

by (transfer, auto)

lemma range-to-int-mod-ring:
range (to-int-mod-ring :: ('a :: finite mod-ring = int)) = {0 ..< CARD('a)}
apply (intro equalityl subsetl)
apply (elim rangeE, transfer, force)
by (auto intro!: range-eql to-int-mod-ring-of-int-mod-ring[symmetric])

2.2 Nontrivial Finite Rings

class nontriv = assumes nontriv: CARD('a) > 1
subclass(in nontriv) finite by (intro-classes,insert nontriv,auto intro: card-ge-0-finite)

instantiation mod-ring :: (nontriv) comm-ring-1
begin

lift-definition one-mod-ring :: 'a mod-ring is 1 using nontriv[where ?’a='a| by
auto

instance by (intro-classes; transfer, simp)
end

interpretation to-int-mod-ring-hom: inj-one-hom to-int-mod-ring
by (unfold-locales, transfer, simp)

lemma of-nat-of-int-mod-ring [code-unfold):
of-nat = of-int-mod-ring o int
proof (rule ext, unfold o-def)
show of-nat n = of-int-mod-ring (int n) for n
proof (induct n)
case (Suc n)
show ?case
by (simp only: of-nat-Suc Suc, transfer) (simp add: mod-simps)
qged simp
qged

lemma of-nat-card-eq-0[simp]: (of-nat (CARD('a::nontriv)) :: 'a mod-ring) = 0
by (unfold of-nat-of-int-mod-ring, transfer, auto)

lemma of-int-of-int-mod-ring|code-unfold): of-int = of-int-mod-ring
proof (rule ext)

fix z :: int

obtain nI n2 where z: © = int nl — int n2 by (rule int-diff-cases)

show of-int © = of-int-mod-ring z
unfolding x of-int-diff of-int-of-nat-eq of-nat-of-int-mod-ring o-def
by (transfer, simp add: mod-diff-right-eq mod-diff-left-eq)
qed

unbundle lifting-syntaz

lemma per-mod-ring-to-int-mod-ring: per-mod-ring = (Az y. x = to-int-mod-ring

y)
unfolding mod-ring.pcr-cr-eq unfolding cr-mod-ring-def to-int-mod-ring.rep-eq

lemma [transfer-rulel:

((=) ===> per-mod-ring) (X z. int z mod int (CARD('a :: nontriv))) (of-nat :
nat = 'a mod-ring)

by (intro rel-funl, unfold pcr-mod-ring-to-int-mod-ring of-nat-of-int-mod-ring,
transfer, auto)

lemma [transfer-rulel:

((=) ===> per-mod-ring) (A z. x mod int (CARD('a :: nontriv))) (of-int :: int
= 'a mod-ring)

by (intro rel-funl, unfold pcr-mod-ring-to-int-mod-ring of-int-of-int-mod-ring,
transfer, auto)

lemma one-mod-card [simp]: 1 mod CARD('a::nontriv) = 1
using mod-less nontriv by blast

lemma Suc-0-mod-card [simp]: Suc 0 mod CARD('a::nontriv) = 1
using one-mod-card by simp

lemma one-mod-card-int [simp]: 1 mod int CARD('a::nontriv) = 1
proof —
from nontriv [where ?’a = 'a] have int (1 mod CARD('a::nontriv)) = 1
by simp
then show ?thesis
using of-nat-mod [of 1 CARD('a), where ?'a = int] by simp
qed

lemma pow-mod-ring-transfer[transfer-rule]:
(per-mod-ring ===> (=) ===> pcr-mod-ring)
(Aa::int. An. a"n mod CARD('a::nontriv)) ((7)::'a mod-ring = nat = 'a mod-ring)
unfolding pcr-mod-ring-to-int-mod-ring
proof (intro rel-funl simp)
fix z::'a mod-ring and n
show to-int-mod-ring x ~ n mod int CARD('a) = to-int-mod-ring (z ~ n)
proof (induct n)
case (
thus ?case by auto
next

case (Suc n)
have to-int-mod-ring (z = Suc n) = to-int-mod-ring (x * © ~ n) by auto

also have ... = to-int-mod-ring x x to-int-mod-ring (z = n) mod CARD(’a)
unfolding to-int-mod-ring-def using times-mod-ring.rep-eq by auto
also have ... = to-int-mod-ring z * (to-int-mod-ring x ~ n mod CARD('a)) mod
CARD('a)
using Suc.hyps by auto
also have ... = to-int-mod-ring x ~ Suc n mod int CARD('a)

by (simp add: mod-simps)
finally show ?case ..

qed

qed

lemma dvd-mod-ring-transfer(transfer-rule]:

((per-mod-ring :: int = 'a :: nontriv mod-ring = bool) ===>
(pcr-mod-ring :: int = 'a mod-ring = bool) ===> (=))

(Aij. 3k € {0..<int CARD('a)}. j = i * k mod int CARD('a)) (dvd)
proof (unfold pcr-mod-ring-to-int-mod-ring, intro rel-funl iffT)

fix z v :: 'a mod-ring and i j

assume i: ¢ = to-int-mod-ring x and j: j = to-int-mod-ring y

{ assume z dvd y
then obtain 2 where y = z * z by (elim dvdE, auto)
then have j = i x to-int-mod-ring z mod CARD('a) by (unfold i j, transfer)
with range-to-int-mod-ring
show 3k € {0..<int CARD('a)}. j = i x k mod CARD('a) by auto

assume 3k € {0..<int CARD('a)}. j = i * k mod CARD('a)

then obtain k where k: k € {0..<int CARD('a)} and dvd: j = i * k mod
CARD('a) by auto

from k have to-int-mod-ring (of-int k :: 'a mod-ring) = k by (transfer, auto)

also from duvd have j = i x ... mod CARD(’a) by auto

finally have y = z x (of-int k :: 'a mod-ring) unfolding i j using k by (transfer,
auto)

then show z dvd y by auto
qed
lemma Rep-mod-ring-mod[simp]: Rep-mod-ring (a :: 'a :: nontriv mod-ring) mod
CARD('a) = Rep-mod-ring a

using Rep-mod-ring[where ‘a = 'a] by auto

2.3 Finite Fields

When the domain is prime, the ring becomes a field

class prime-card = assumes prime-card: prime (CARD('a))
begin
lemma prime-card-int: prime (int (CARD('a))) using prime-card by auto

subclass nontriv using prime-card prime-gt-1-nat by (intro-classes,auto)
end

10

instance bool :: prime-card
by standard auto

instantiation mod-ring :: (prime-card) field
begin

definition inverse-mod-ring :: 'a mod-ring = 'a mod-ring where
inverse-mod-ring x = (if x = 0 then 0 else x ~ (nat (CARD('a) — 2)))

definition divide-mod-ring :: 'a mod-ring = 'a mod-ring = 'a mod-ring where
divide-mod-ring © y = x * ((Ac. if ¢ = 0 then 0 else ¢ ~ (nat (CARD('a) — 2)))
y)

instance
proof
fix a b c::'a mod-ring
show inverse 0 = (0::'a mod-ring) by (simp add: inverse-mod-ring-def)
show a div b = a * inverse b
unfolding inverse-mod-ring-def by (transfer’, simp add: divide-mod-ring-def)
show a # 0 = inverse a * a = 1
proof (unfold inverse-mod-ring-def, transfer)
let ?p=CARD('a)
fix z
assume z: ¢ € {0..<int CARD('a)} and 20: # 0
have p0’: 0<?p by auto
have — ?p dvd z
using z z0 zdvd-imp-le by fastforce
then have = CARD('a) dvd nat |z|

by simp
with 2 have = CARD('a) dvd nat

by simp
have rw: z " nat (int (9p — 2)) xx =z " nat (9p — 1)
proof —

have p2: 0 < int (?p—2) using z by simp
have card-rw: (CARD('a) — Suc 0) = nat (1 + int (CARD('a) — 2))
using nat-eq-iff © 0 by auto
have = " nat (?p — 2)xx = x ~ (Suc (nat (?p — 2))) by simp
also have ... = z " (nat (%p — 1))
using Suc-nat-eq-nat-zadd1[OF p2] card-rw by auto
finally show ?Zthesis .
qed
have [int (nat z = (CARD('a) — 1)) = int 1] (mod CARD('a))
using fermat-theorem [OF prime-card «<— CARD(’a) dvd nat z»]
by (simp only: cong-def cong-def of-nat-mod [symmetric])
then have *: [z ~ (CARD('a) — 1) = 1] (mod CARD('a))
using z by auto
have z = (CARD('a) — 2) mod CARD('a) * © mod CARD(’a)
= (z " nat (CARD('a) — 2) x) mod CARD('a) by (simp add: mod-simps)

11

also have ... = (z " nat (%p — 1) mod ?p) unfolding rw by simp
also have ... = (z " (nat ?p — 1) mod ?p) using p0’ by (simp add: nat-diff-distrib’)
also have ... = 1
using * by (simp add: cong-def)
finally show (if x = 0 then 0 else x " nat (int (CARD('a) — 2)) mod CARD('a))
x £ mod CARD('a) = 1
using z0 by auto
qed
qed
end

instantiation mod-ring :: (prime-card) {normalization-euclidean-semiring, euclidean-ring}
begin

definition modulo-mod-ring :: 'a mod-ring = ’a mod-ring = ’'a mod-ring where
modulo-mod-ring x y = (if y = 0 then x else 0)

definition normalize-mod-ring :: 'a mod-ring = 'a mod-ring where normalize-mod-ring
z = (if x = 0 then 0 else 1)

definition unit-factor-mod-ring :: 'a mod-ring = 'a mod-ring where unit-factor-mod-ring
T=z

definition euclidean-size-mod-ring :: 'a mod-ring = nat where euclidean-size-mod-ring

x = (if £ = 0 then 0 else 1)

instance
proof (intro-classes)
fix a :: 'a mod-ring show a # 0 = unit-factor a dvd 1
unfolding dvd-def unit-factor-mod-ring-def by (intro exl|of - inverse a], auto)
qed (auto simp: normalize-mod-ring-def unit-factor-mod-ring-def modulo-mod-ring-def
euclidean-size-mod-ring-def field-simps)
end

instantiation mod-ring :: (prime-card) euclidean-ring-ged
begin

definition gcd-mod-ring :: 'a mod-ring = ’'a mod-ring = 'a mod-ring where
ged-mod-ring = Euclidean-Algorithm.gcd

definition lcm-mod-ring :: 'a mod-ring = 'a mod-ring = 'a mod-ring where
lem-mod-ring = Euclidean-Algorithm.lem

definition Gcd-mod-ring :: 'a mod-ring set = 'a mod-ring where Ged-mod-ring
= FBuclidean-Algorithm.Ged

definition Lecm-mod-ring :: 'a mod-ring set = 'a mod-ring where Lcm-mod-ring
= Fuclidean-Algorithm.Lcm

instance by (intro-classes, auto simp: ged-mod-ring-def lem-mod-ring-def Ged-mod-ring-def
Lem-mod-ring-def)

end

instantiation mod-ring :: (prime-card) unique-euclidean-ring

begin

12

definition [simp]: division-segment-mod-ring (z :: 'a mod-ring) = (1 :: 'a mod-ring)
instance by intro-classes (auto simp: euclidean-size-mod-ring-def split: if-splits)
end

instance mod-ring :: (prime-card) field-ged
by intro-classes auto

lemma surj-of-nat-mod-ring: 3 i. i < CARD('a :: prime-card) A (z :: 'a mod-ring)
= of-nat i
by (rule exI|of - nat (to-int-mod-ring x)|, unfold of-nat-of-int-mod-ring o-def,
subst nat-0-le, transfer, simp, simp, transfer, auto)

lemma of-nat-0-mod-ring-dvd: assumes z: of-nat x = (0 :: 'a ::prime-card mod-ring)
shows CARD('a) dvd z
proof —
let 2z = of-nat :: int
from z have of-int-mod-ring %z = (0 :: 'a mod-ring) by (fold of-int-of-int-mod-ring,
stmp)
hence ?x mod CARD('a) = 0 by (transfer, auto)
hence © mod CARD('a) = 0 by presburger
thus ?thesis unfolding mod-eq-0-iff-dvd .
qged

lemma semiring-char-mod-ring [simpl:
CHAR('n :: nontriv mod-ring) = CARD('n)
proof (rule CHAR-eq-posl)
fix z assume z > 0 z < CARD('n)
thus of-nat z # (0 :: 'n mod-ring)
by transfer auto
qed auto

The following Material was contributed by Manuel Eberl

instance mod-ring :: (prime-card) finite-field
by standard simp-all

instantiation mod-ring :: (prime-card) enum-finite-field
begin

definition enum-finite-field-mod-ring :: nat = 'a mod-ring where
enum-finite-field-mod-ring n = of-int-mod-ring (int n)

instance proof
interpret type-definition Rep-mod-ring :: 'a mod-ring = int Abs-mod-ring {0..<CARD('a)}
by (rule type-definition-mod-ring)
have enum-finite-field ‘ {..< CARD('a mod-ring)} = of-int-mod-ring ‘int ‘{..< CARD('a

13

mod-ring)}
unfolding enum-finite-field-mod-ring-def by (simp add: image-image o-def)
also have int ‘ {..<CARD('a mod-ring)} = {0..<int CARD('a mod-ring)}
by (simp add: image-atLeastZeroLess Than-int)

also have of-int-mod-ring ‘... = (Abs-mod-ring ‘... :: 'a mod-ring set)
by (intro image-cong refl) (auto simp: of-int-mod-ring-def)
also have ... = (UNIV :: 'a mod-ring set)

using Abs-image by simp
finally show enum-finite-field ‘{..< CARD('a mod-ring)} = (UNIV :: 'a mod-ring
set) .
qged

end

typedef (overloaded) ‘a :: semiring-1 ring-char = if CHAR('a) = 0 then UNIV
else {0..<CHAR('a)}
by auto

lemma CARD-ring-char [simp]: CARD ('a :: semiring-1 ring-char) = CHAR('a)
proof —
let ?A = if CHAR('a) = 0 then UNIV else {0.<CHAR('a)}
interpret type-definition Rep-ring-char :: 'a ring-char = nat Abs-ring-char 7A
by (rule type-definition-ring-char)
from card show ?thesis
by auto
qged

instance ring-char :: (semiring-prime-char) nontriv
proof
show CARD(’a ring-char) > 1
using prime-nat-iff by auto
qed

instance ring-char :: (semiring-prime-char) prime-card
proof
from CARD-ring-char show prime CARD('a ring-char)
by auto
qged

lemma to-int-mod-ring-add:

to-int-mod-ring (z + y :: 'a :: finite mod-ring) = (to-int-mod-ring x + to-int-mod-ring
y) mod CARD('a)

by transfer auto

lemma to-int-mod-ring-mult:

to-int-mod-ring (z * y :: 'a :: finite mod-ring) = (to-int-mod-ring = * to-int-mod-ring
y) mod CARD('a)

by transfer auto

14

lemma of-nat-mod-CHAR [simp]: of-nat (z mod CHAR('a :: semiring-1)) = (of-nat
z::a)
by (metis (no-types, opaque-lifting) comm-monoid-add-class.add-0 div-mod-decomp
mult-zero-right of-nat-CHAR of-nat-add of-nat-mult)

lemma of-int-mod-CHAR [simp]: of-int (x mod int CHAR('a :: ring-1)) = (of-int
z::a)
by (simp add: of-int-eq-iff-cong-CHAR)

end

3 Arithmetics via Records

We create a locale for rings and fields based on a record that includes all
the necessary operations.

theory Arithmetic-Record-Based
imports
HOL— Library. More-List
HOL—- Computational-Algebra. Euclidean-Algorithm

begin

datatype ’a arith-ops-record = Arith-Ops-Record
(zero : 'a)
one : 'a)

(

(plus : 'a = 'a = 'a)
(times : 'a = 'a = 'a)
(minus : 'a = 'a = a)
(uminus : 'a = 'a)
(divide : 'a = 'a = 'a)
(inverse : 'a = 'a)

(ca='a="a)
(normalize : 'a = 'a)
(unit-factor : 'a = 'a)
(of-int : int = 'a)
(to-int : 'a = int)

(DP : 'a = bool)

hide-const (open)
zero
one
plus
times
minus
UMINUS
divide
inverse
modulo
normalize
unit-factor

15

of-int
to-int
DP

fun listprod-i :: i arith-ops-record = 'i list = i where
listprod-i ops (x # xs) = arith-ops-record.times ops z (listprod-i ops xs)
| listprod-i ops [| = arith-ops-record.one ops

locale arith-ops = fixes ops :: 'i arith-ops-record (structure)
begin

abbreviation (input) zero where zero = arith-ops-record.zero ops
abbreviation (input) one where one = arith-ops-record.one ops
abbreviation (input) plus where plus = arith-ops-record.plus ops
abbreviation (input) times where times = arith-ops-record.times ops
abbreviation (input) minus where minus = arith-ops-record.minus ops
abbreviation (input) uminus where uminus = arith-ops-record.uminus ops
abbreviation (input) divide where divide = arith-ops-record.divide ops
abbreviation (input) inverse where inverse = arith-ops-record.inverse ops
abbreviation (input) modulo where modulo = arith-ops-record.modulo ops
abbreviation (input) normalize where normalize = arith-ops-record.normalize
ops

abbreviation (input) unit-factor where unit-factor = arith-ops-record.unit-factor
ops

abbreviation (input) DP where DP = arith-ops-record. DP ops

partial-function (tailrec) ged-eucl-i :: 'i = i = 'i where
gced-eucl-i a b = (if b = zero
then normalize a else ged-eucl-i b (modulo a b))

partial-function (tailrec) euclid-ext-auz-i : 'i = i = i = i = i = i = (i
x ') x 'i where
euclid-ext-auz-i 8" s t' t r' r = (

if r = zero then let ¢ = divide one (unit-factor r’) in ((times s’ ¢, times t’ ¢),
normalize 1)

else let ¢ = divide v’ r

in euclid-ext-auz-i s (minus s’ (times q s)) t (minus t’ (times q t)) r

(modulo v’ T))

abbreviation (input) euclid-ext-i :: 'i = 'i = (i x "i) x i where
euclid-ext-i = euclid-ext-auz-i one zero zero one

end

declare arith-ops.ged-eucl-i.simps|code]
declare arith-ops.euclid-ext-aux-i.simps|code)

unbundle lifting-syntaz

16

locale ring-ops = arith-ops ops for ops :: 'i arith-ops-record +
fixes R :: i = 'a :: comm-ring-1 = bool
assumes bi-unique[transfer-rule]: bi-unique R
and right-total[transfer-rule]: right-total R
and zero[transfer-rule]: R zero 0
and one[transfer-rule]: R one 1

and plus[transfer-rule]: (R ===> R ===> R) plus (+)
and minus[transfer-rule]: (R ===> R ===> R) minus (—)
and uminus|[transfer-rule]: (R ===> R) uminus Groups.uminus
and times[transfer-rule]: (R ===> R ===> R) times ((x))
and eq[transfer-rule]: (R ===> R ===> (=)) (=) (=)
and DPR|[transfer-domain-rule]: Domainp R = DP

begin

lemma left-right-unique[transfer-rule]: left-unique R right-unique R
using bi-unique unfolding bi-unique-def left-unique-def right-unique-def by auto

lemma listprod-i[transfer-rule]: (list-all2 R ===> R) (listprod-i ops) prod-list
proof (intro rel-funl, goal-cases)
case (1 zs ys)
thus “case
proof (induct xs ys rule: list-all2-induct)
case (Cons zs y ys)
note [transfer-rule] = this
show ?case by simp transfer-prover
qged (simp add: one)
qged
end

locale idom-ops = ring-ops ops R for ops :: i arith-ops-record and
R: i = 'a:: idom = bool

locale idom-divide-ops = idom-ops ops R for ops :: 'i arith-ops-record and
R :: i = 'a :: idom-divide = bool +
assumes divide[transfer-rule]: (R ===> R ===> R) divide Rings.divide

locale euclidean-semiring-ops = idom-ops ops R for ops :: 'i arith-ops-record and
R :: i = 'a :: {idom,normalization-euclidean-semiring} = bool +

assumes modulo[transfer-rule]: (R ===> R ===> R) modulo (mod)
and normalize[transfer-rule]: (R ===> R) normalize Rings.normalize
and unit-factor[transfer-rule]: (R ===> R) unit-factor Rings.unit-factor
begin
lemma ged-eucl-i [transfer-rule]: (R ===> R ===> R) gcd-eucl-i Euclidean-Algorithm.gcd

proof (intro rel-funl, goal-cases)
case (1zXyY)
thus ?case
proof (induct X Y arbitrary: z y rule: Euclidean-Algorithm.ged.induct)
case (1 X Yzy)

17

note [transfer-rule] = 1(2—)
note simps = ged-eucl-i.simps|of x y| FEuclidean-Algorithm.ged.simps[of X Y]
have eq: (y = zero) = (Y = 0) by transfer-prover
show ?Zcase
proof (cases Y = 0)
case True
hence x: y = zero using eq by simp
have R (normalize) (Rings.normalize X) by transfer-prover
thus ?thesis unfolding simps unfolding True * by simp
next
case Fulse
with eq have yz: y # zero by simp
have R (gcd-eucl-i y (modulo x y)) (Fuclidean-Algorithm.ged Y (X mod Y))
by (rule 1(1)[OF False], transfer-prover+)
thus “thesis unfolding simps using Fulse yz by simp
qed
qed
qed
end

locale cuclidean-ring-ops = euclidean-semiring-ops ops R for ops :: 'i arith-ops-record
and
R :: i = 'a :: {idom,euclidean-ring-gcd} = bool +

assumes divide[transfer-rule]: (R ===> R ===> R) divide (div)
begin
lemma euclid-ext-auz-i[transfer-rule]:
(R ===> R ===> R ===> R ===> R ===> R ===> rel-prod (rel-prod

R R) R) euclid-ext-auz-i euclid-ext-auz
proof (intro rel-funl, goal-cases)
case (12ZaAbBcCxXyY)
thus ?case
proof (induct Z A B C X Y arbitrary: z a b ¢ z y rule: euclid-ext-auz.induct)
case (1 ZABCXYzabcuxy)
note [transfer-rule] = 1(2—)
note simps = euclid-ext-auz-i.simps[of z a b ¢ x y| euclid-ext-auz.simps[of Z A
BCXY]
have eq: (y = zero) = (Y = 0) by transfer-prover
show ?Zcase
proof (cases Y = 0)
case True
hence *: (y = zero) = True (Y = 0) = True using eq by auto
show ?thesis unfolding simps unfolding * if-True
by transfer-prover
next
case Fulse
hence *: (y = zero) = Fulse (Y = 0) = Fulse using eq by auto
have XY: R (modulo xz y) (X mod Y) by transfer-prover
have YA: R (minus z (times (divide z y) a)) (Z — X div Y x A) by
transfer-prover

18

have YC: R (minus b (times (divide z y) ¢)) (B — X div Y x C) by
transfer-prover
note [transfer-rule] = 1(1)[OF Fualse refl 1(8) YA 1(5) YC 1(7) XY]

show ?thesis unfolding simps * if-False Let-def by transfer-prover
qed
qed
qed

lemma euclid-ext-i [transfer-rule]:
(R ===> R ===> rel-prod (rel-prod R R) R) euclid-ext-i euclid-ext
by transfer-prover

end

locale field-ops = idom-divide-ops ops R + euclidean-semiring-ops ops R for ops
:: i arith-ops-record and

R :: i = 'a :: {field-ged} = bool +

assumes inverse[transfer-rule]: (R ===> R) inverse Fields.inverse

lemma nth-default-rel[transfer-rule]: (S ===> list-all2 S ===> (=) ===> 9)
nth-default nth-default
proof (intro rel-funl, clarify, goal-cases)
case (I zyzsys-n)
from 1(2) show ?case
proof (induct arbitrary: n)
case Nil
thus ?case using 1(1) by simp
next
case (Cons z y xs ys n)
thus ?case by (cases n, auto)
qed
qed

lemma strip-while-rel[transfer-rule]:
(A ===> (=)) ===> list-all2 A ===> list-all2 A) strip-while strip-while
unfolding strip-while-def[abs-def] by transfer-prover

lemma list-all2-last[simp]: list-all2 A (zs @ [z]) (ys Q [y]) <— list-all2 A zs ys A
Azy
proof (cases length xs = length ys)
case True
show ?thesis by (simp add: list-all2-append|[OF Truel)
next
case Fulse
note len = list-all2-lengthD]of A]
from len[of zs ys] len[of zs @Q [z] ys Q [y]] False
show ?thesis by auto

19

qed

end

3.1 Finite Fields

We provide four implementations for GF(p) — the field with p elements for
some prime p — one by int, one by integers, one by 32-bit numbers and one
64-bit implementation. Correctness of the implementations is proven by
transfer rules to the type-based version of GF'(p).

theory Finite-Field-Record-Based
imports

Finite-Field

Arithmetic- Record-Based

Native- Word. Uint32

Native- Word. Uint6/

HOL- Library.Code-Target-Numeral

Native- Word. Code- Target-Int-Bit
begin

definition mod-nonneg-pos :: integer = integer = integer where
z > 0 =y >0 = mod-nonneg-pos . y = (z mod y)

code-printing — FIXME illusion of partiality
constant mod-nonneg-pos —
(SML) IntInf.mod/ (-,/ -)
and (Ewval) IntInf.mod/ (-,/ -)
and (OCaml) Z.rem
and (Haskell) Prelude.mod/ (-)/ (-)
and (Scala) \((k: BigInt) => (I: Biglnt) =>/ (k "% 1))

definition mod-nonneg-pos-int :: int = int = int where
mod-nonneg-pos-int x y = int-of-integer (mod-nonneg-pos (integer-of-int x) (integer-of-int

Y))

lemma mod-nonneg-pos-int[simpl: x > 0 = y > 0 = mod-nonneg-pos-int = y
= (x mod y)
unfolding mod-nonneg-pos-int-def using mod-nonneg-pos-def by simp

context
fixes p :: int

begin

definition plus-p :: int = int = int where
plus-pzy =let z=x + yinif z > p then z — p else z

definition minus-p :: int = int = int where
minus-przy = if y < xthenx — yelsex+p—y

20

definition uminus-p :: int = int where
uminus-p ¢ = (if x = 0 then 0 else p — 1)

definition mult-p :: int = int = int where
mult-p x y = (mod-nonneg-pos-int (z x y) p)

fun power-p :: int = nat = int where
power-p x n = (if n = 0 then 1 else
let (d,r) = Euclidean-Rings.divmod-nat n 2;
rec = power-p (mult-p z x) d in
if T = 0 then rec else mult-p rec x)

In experiments with Berlekamp-factorization (where the prime p is usu-
ally small), it turned out that taking the below implementation of inverse
via exponentiation is faster than the one based on the extended Euclidean
algorithm.

definition inverse-p :: int = int where
inverse-p © = (if x = 0 then 0 else power-p x (nat (p — 2)))

definition divide-p :: int = int = int where
divide-p x y = mult-p x (inverse-p y)

definition finite-field-ops-int :: int arith-ops-record where
finite-field-ops-int = Arith-Ops-Record
0
1
plus-p
mult-p
Minus-p
UMINUS-p
divide-p
inverse-p
ANzy.ify=0then x else 0)

ANz . ifz = 0then 0 else 1)
ANz .x)
Nz . x)
ANz . x)
Az. 0 <z Ax<p)

end

context

fixes p :: uint32
begin

definition plus-p32 :: wint32 = wint32 = wint32 where
plus-p32 zy =let z=x + yinif z > p then z — p else z

definition minus-p32 :: uwint32 = uint32 = uint32 where

21

minus-p32 zy = if y < x thenz — y else (x + p) — y

definition uminus-p32 :: uint32 = wint32 where
uminus-p32 © = (if = 0 then 0 else p — x)

definition mult-p32 :: uint32 = uint32 = wint32 where
mult-p32 x y = (z * y mod p)

lemma int-of-uint32-shift: int-of-uint32 (drop-bit k n) = (int-of-uint32 n) div (2
~k)

apply transfer

apply transfer

apply (simp add: take-bit-drop-bit min-def)

apply (simp add: drop-bit-eq-div)

done

lemma int-of-uint32-0-iff: int-of-wint32n = 0 «— n = 0
by (transfer, rule wint-0-iff)

lemma int-of-uint32-0: int-of-uint32 0 = 0 unfolding int-of-uint32-0-iff by simp

lemma int-of-uint32-ge-0: int-of-uint32 n > 0
by (transfer, auto)

lemma two-32: 2 = LENGTH(32) = (4294967296 :: int) by simp

lemma int-of-uint32-plus: int-of-wint32 (x + y) = (int-of-uint32 x + int-of-uint32
y) mod 4294967296
by (transfer, unfold wint-word-ariths two-32, rule refl)

lemma int-of-uint32-minus: int-of-wint32 (x — y) = (int-of-uint32 x — int-of-uint32
y) mod 4294967296
by (transfer, unfold wint-word-ariths two-32, rule refl)

lemma int-of-uint32-mult: int-of-uint32 (z x y) = (int-of-uint32 x * int-of-uint32
y) mod 4294967296
by (transfer, unfold wint-word-ariths two-32, rule refl)

lemma int-of-uint32-mod: int-of-uint32 (x mod y) = (int-of-uint32 x mod int-of-wint32

y)
by (transfer, unfold uint-mod two-32, rule refl)

lemma int-of-uint32-inv: 0 < x => x < 4294967296 = int-of-uint32 (uint32-of-int
x) ==z
by transfer (simp add: take-bit-int-eq-self unsigned-of-int)

context

includes bit-operations-syntax
begin

22

function power-p32 :: wint32 = wint32 = wint32 where
power-p32 x n = (if n = 0 then 1 else
let rec = power-p32 (mult-p32 = x) (drop-bit 1 n) in
if n AND 1 = 0 then rec else mult-p32 rec x)
by pat-completeness auto

termination
proof —
{
fix n :: uint32

assume n # 0
with int-of-uint32-ge-0]of n] int-of-uint32-0-iff [of n] have int-of-uint32 n > 0
by auto
hence 0 < int-of-wint32 n int-of-uwint32 n div 2 < int-of-uint32 n by auto
} note x = this
show ?thesis
by (relation measure (A (x,n). nat (int-of-wint32 n)), auto simp: int-of-uint32-shift
*
)
qed

end

In experiments with Berlekamp-factorization (where the prime p is usu-
ally small), it turned out that taking the below implementation of inverse
via exponentiation is faster than the one based on the extended Euclidean
algorithm.

definition inverse-p32 :: uint32 = wuint32 where
inverse-p32 x = (if z = 0 then 0 else power-p32 x (p — 2))

definition divide-p32 :: uint32 = uwint32 = wuint32 where
divide-p32 x y = mult-p32 x (inverse-p32 y)

definition finite-field-ops32 :: wint32 arith-ops-record where
finite-field-ops32 = Arith-Ops-Record
0
1
plus-p32
mult-p32
minus-p32
uminus-p32
divide-p32
inverse-p32
ANz y.ify= 0then x else 0)
Az .ifx = 0then 0 else 1)
Az . x)
wint32-of-int
int-of-uint32
Az. 0 <z ANz<p)

23

end

lemma shiftr-uint32-code [code-unfold]: drop-bit 1 © = (uint32-shiftr x 1)
by (simp add: wint32.shiftr-def)

3.1.1 Transfer Relation

locale mod-ring-locale =
fixes p :: int and ty :: 'a :: nontriv itself
assumes p: p = int CARD('a)
begin
lemma nat-p: nat p = CARD('a) unfolding p by simp
lemma p2: p > 2 unfolding p using nontriv[where ‘a = 'a] by auto
lemma p2-ident: int (CARD(’'a) — 2) = p — 2 using p2 unfolding p by simp

definition mod-ring-rel :: int = 'a mod-ring = bool where
mod-ring-rel z x' = (z = to-int-mod-ring z’)

lemma Domainp-mod-ring-rel [transfer-domain-rule]:
Domainp (mod-ring-rel) = (A v. v € {0 ..< p})
proof —
{
fix v :: int
assume x: 0 < vv<p
have Domainp mod-ring-rel v
proof
show mod-ring-rel v (of-int-mod-ring v) unfolding mod-ring-rel-def using =
p by auto
qed
} note x = this
show ?thesis
by (intro ext iffI, insert range-to-int-mod-ring[where 'a = ’a] x, auto simp:
mod-ring-rel-def p)
qed

lemma bi-unique-mod-ring-rel [transfer-rule]:
bi-unique mod-ring-rel left-unique mod-ring-rel right-unique mod-ring-rel
unfolding mod-ring-rel-def bi-unique-def left-unique-def right-unique-def
by auto

lemma right-total-mod-ring-rel [transfer-rule]: right-total mod-ring-rel
unfolding mod-ring-rel-def right-total-def by simp

3.1.2 Transfer Rules

lemma mod-ring-0|transfer-rule]: mod-ring-rel 0 0 unfolding mod-ring-rel-def by
stmp

24

lemma mod-ring-1[transfer-rule]: mod-ring-rel 1 1 unfolding mod-ring-rel-def by
stmp

lemma plus-p-mod-def: assumes z: z € {0 .< p} and y: y € {0 ..< p}
shows plus-p p z y = ((z + y) mod p)
proof (cases p < z + y)
case Fulse
thus ?thesis using z y unfolding plus-p-def Let-def by auto
next
case True
from Truex y have x: p > 00 <z +y —pz + y — p < p by auto
from True have id: plus-p p z vy = z + y — p unfolding plus-p-def by auto
show ?thesis unfolding id using * using mod-pos-pos-trivial by fastforce
qed

lemma mod-ring-plus[transfer-rule]: (mod-ring-rel ===> mod-ring-rel ===> mod-ring-rel)
(plus-p p) (+)
proof —
{
fix z y :: 'a mod-ring
have plus-p p (to-int-mod-ring) (to-int-mod-ring y) = to-int-mod-ring (x +
y)
by (transfer, subst plus-p-mod-def, auto, auto simp: p)
} note x = this
show %thesis
by (intro rel-funl, auto simp: mod-ring-rel-def *)
qed

lemma minus-p-mod-def: assumes x: z € {0 ..< p} and y: y € {0 ..< p}
shows minus-p p z y = ((z — y) mod p)
proof (cases z — y < 0)
case Fulse
thus ?thesis using z y unfolding minus-p-def Let-def by auto
next
case True
from Truex y have x: p > 00 <z — y+ pz — y + p < p by auto
from True have id: minus-p p x y = ¢ — y + p unfolding minus-p-def by auto
show ?thesis unfolding id using * using mod-pos-pos-trivial by fastforce
qed

lemma mod-ring-minus[transfer-rule]: (mod-ring-rel ===> mod-ring-rel ===>
mod-ring-rel) (minus-p p) (—)
proof —
{
fix z y :: 'a mod-ring
have minus-p p (to-int-mod-ring x) (to-int-mod-ring y) = to-int-mod-ring (x —
y)

25

by (transfer, subst minus-p-mod-def, auto simp: p)
} note x = this
show ?thesis
by (intro rel-funl, auto simp: mod-ring-rel-def x)
qed

lemma mod-ring-uminus|transfer-rulel: (mod-ring-rel ===> mod-ring-rel) (uminus-p
P) uminus
proof —
{
fix z :: 'a mod-ring
have uminus-p p (to-int-mod-ring) = to-int-mod-ring (uminus x)
by (transfer, auto simp: uminus-p-def p)
} note x = this
show ?thesis
by (intro rel-funl, auto simp: mod-ring-rel-def *)

qed

lemma mod-ring-mult[transfer-rule]: (mod-ring-rel ===> mod-ring-rel ===>
mod-ring-rel) (mult-p p) ((x))

proof —

{
fix z y :: 'a mod-ring
have mult-p p (to-int-mod-ring x) (to-int-mod-ring y) = to-int-mod-ring (x *
Y)
by (transfer, auto simp: mult-p-def p)
} note x = this
show ?thesis
by (intro rel-funl, auto simp: mod-ring-rel-def x)
qed

lemma mod-ring-eq[transfer-rule]: (mod-ring-rel ===> mod-ring-rel ===> (=))
=) (=)

by (intro rel-funl, auto simp: mod-ring-rel-def)

lemma mod-ring-power(transfer-rule]: (mod-ring-rel ===> (=) ===> mod-ring-rel)
(power-p) ()
proof (intro rel-funl, clarify, unfold binary-power|[symmetric], goal-cases)
fixzyn
assume zy: mod-ring-rel x y
from zy show mod-ring-rel (power-p p x n) (binary-power y n)
proof (induct y n arbitrary: x rule: binary-power.induct)
case (1 z n y)
note 1(2)[transfer-rule]
show ?case

26

proof (cases n = 0)
case True
thus %thesis by (simp add: mod-ring-1)
next
case Fulse
obtain d r where id: Fuclidean-Rings.divmod-nat n 2 = (d,r) by force
let ?int = power-p p (mult-p p y y) d
let ?gfp = binary-power (z * x) d
from Fualse have id":. ?thesis = (mod-ring-rel
(if r = 0 then ?int else mult-p p ?int y)
(if r = 0 then ?2gfp else ?gfp * x))
unfolding power-p.simps|of - - n] binary-power.simps|of - n] Let-def id split
by simp
have [transfer-rule]: mod-ring-rel ?int ?qfp
by (rule 1(1)[OF False refl id[symmetric]], transfer-prover)
show ?thesis unfolding id’ by transfer-prover
qed
qed
qed

declare power-p.simps[simp del]

lemma ring-finite-field-ops-int: ring-ops (finite-field-ops-int p) mod-ring-rel
by (unfold-locales, auto simp:
finite-field-ops-int-def
bi-unique-mod-ring-rel
right-total-mod-ring-rel
mod-ring-plus
mod-ring-minus
mod-ring-uminus
mod-ring-mult
mod-ring-eq
mod-ring-0
mod-ring-1
Domainp-mod-ring-rel)

end

locale prime-field = mod-ring-locale p ty for p and ty :: 'a :: prime-card itself
begin

lemma prime: prime p unfolding p using prime-card[where 'a = 'a] by simp

lemma mod-ring-mod|[transfer-rule]:

(mod-ring-rel ===> mod-ring-rel ===> mod-ring-rel) (A z y. if y = 0 then
else 0)) (mod)

proof —

{

fix z y :: 'a mod-ring

27

have (if to-int-mod-ring y = 0 then to-int-mod-ring z else 0) = to-int-mod-ring
(z mod y)
unfolding modulo-mod-ring-def by auto
} note x = this
show ?thesis
by (intro rel-funl, auto simp: mod-ring-rel-def *[symmetric])

qed

lemma mod-ring-normalize[transfer-rulel: (mod-ring-rel ===> mod-ring-rel) ((A
x. if x = 0 then 0 else 1)) normalize

proof —

{
fix = :: 'a mod-ring
have (if to-int-mod-ring © = 0 then 0 else 1) = to-int-mod-ring (normalize x)

unfolding normalize-mod-ring-def by auto

} note x = this

show ?thesis
by (intro rel-funl, auto simp: mod-ring-rel-def x[symmetric])

qed

lemma mod-ring-unit-factor|transfer-rule]: (mod-ring-rel ===> mod-ring-rel) (A
z. x) unit-factor
proof —
{
fix z :: ‘a mod-ring
have to-int-mod-ring x = to-int-mod-ring (unit-factor x)
unfolding unit-factor-mod-ring-def by auto
} note x = this
show ?thesis
by (intro rel-funl, auto simp: mod-ring-rel-def x[symmetric])
qed

lemma mod-ring-inverse[transfer-rule]: (mod-ring-rel ===> mod-ring-rel) (inverse-p
p) inverse
proof (intro rel-funl)
fix x y
assume [transfer-rule]: mod-ring-rel z y
show mod-ring-rel (inverse-p p x) (inverse y)
unfolding inverse-p-def inverse-mod-ring-def
apply (transfer-prover-start)
apply (transfer-step)+
apply (unfold p2-ident)
apply (rule refl)
done
qed

28

lemma mod-ring-divide[transfer-rule]: (mod-ring-rel ===> mod-ring-rel ===>
mod-ring-rel)
(divide-p p) (/)
unfolding divide-p-def|abs-def] divide-mod-ring-def [abs-def] inverse-mod-ring-def [symmetric]
by transfer-prover

lemma mod-ring-rel-unsafe: assumes z < CARD('a)
shows mod-ring-rel (int z) (of-nat) 0 < x = of-nat x # (0 :: 'a mod-ring)
proof —
have id: of-nat z = (of-int (int z) :: 'a mod-ring) by simp
show mod-ring-rel (int z) (of-nat x) 0 < x = of-nat © # (0 :: 'a mod-ring)
unfolding id
unfolding mod-ring-rel-def
proof (auto simp add: assms of-int-of-int-mod-ring)
assume 0 < z with assms
have of-int-mod-ring (int) # (0 :: 'a mod-ring)
by (metis (no-types) less-imp-of-nat-less less-irrefl of-nat-0-le-iff of-nat-0-less-iff
to-int-mod-ring-hom.hom-zero to-int-mod-ring-of-int-mod-ring)
thus of-int-mod-ring (int x) = (0 :: 'a mod-ring) = False by blast
qged
qged

lemma finite-field-ops-int: field-ops (finite-field-ops-int p) mod-ring-rel
by (unfold-locales, auto simp:
finite-field-ops-int-def
bi-unique-mod-ring-rel
right-total-mod-ring-rel
mod-ring-divide
mod-ring-plus
mod-ring-minus
mod-ring-uminus
mod-ring-inverse
mod-ring-mod
mod-ring-unit-factor
mod-ring-normalize
mod-ring-mult
mod-ring-eq
mod-ring-0
mod-ring-1
Domainp-mod-ring-rel)

end

Once we have proven the soundness of the implementation, we do not
care any longer that ‘a mod-ring has been defined internally via lifting.
Disabling the transfer-rules will hide the internal definition in further appli-
cations of transfer.

lifting-forget mod-ring.lifting

29

For soundness of the 32-bit implementation, we mainly prove that this
implementation implements the int-based implementation of the mod-ring.

context mod-ring-locale
begin

context fixes pp :: wint32
assumes ppp: p = int-of-uint32 pp
and small: p < 65535

begin

lemmas uint32-simps =
int-of-uint32-0
int-of-uint32-plus
int-of-uint32-minus
int-of-uint32-mult

definition urel32 :: uint32 = int = bool where urel32 z y = (y = int-of-uint32
T Ay<p)

definition mod-ring-rel32 :: uint32 = 'a mod-ring = bool where
mod-ring-rel32 x y = (3 z. urel32 x z A mod-ring-rel z y)

lemma urel32-0: urel32 0 0 unfolding urel32-def using p2 by (simp, transfer,
stmp)

lemma urel32-1: urel32 1 1 unfolding urel32-def using p2 by (simp, transfer,
sitmp)

lemma le-int-of-uint32: (x < y) = (int-of-uint32 x < int-of-uint32 y)
by (transfer, simp add: word-le-def)

lemma urel32-plus: assumes urel32 x y urel32 z' vy’
shows urel32 (plus-p32 pp x ') (plus-p p y y’)
proof —
let ?z = int-of-uint32 z
let %z’ = int-of-uint32 x’
let ?p = int-of-uint32 pp
from assms int-of-uint32-ge-0 have id: y = ?ry' = %z
and rel: 0 < %z %z < p
0 < ?z' 2z’ < p unfolding urel32-def by auto
have le: (pp < z + z') = (%p < %2 4+ %2’) unfolding le-int-of-uint32
using rel small by (auto simp: uint32-simps)
show ?thesis
proof (cases ?p < %x + 2z)
case True
hence True: (?p < %z + ?z’) = True by simp
show ?thesis unfolding id
using small rel unfolding plus-p32-def plus-p-def Let-def urel32-def

/

30

unfolding ppp le True if-True
using True by (auto simp: uint32-simps)
next
case Fualse
hence Fulse: (?p < %z + %z') = False by simp
show ?thesis unfolding id
using small rel unfolding plus-p32-def plus-p-def Let-def urel32-def
unfolding ppp le False if-Fualse
using Fulse by (auto simp: uint32-simps)
qged
qged

lemma urel32-minus: assumes urel32 x y urel32 z' y’
shows urel32 (minus-p32 pp z z’) (minus-p p y y’)
proof —
let %z = int-of-uint32 x
let 2z’ = int-of-wint32 z’
from assms int-of-uint32-ge-0 have id: y = %z y' = %z
and rel: 0 < %z %7z < p
0 < %z’ 2z’ < p unfolding urel32-def by auto
have le: (z' < z) = (%2’ < %z) unfolding le-int-of-uint32
using rel small by (auto simp: wint32-simps)
show ?thesis
proof (cases %z’ < ?z)
case True
hence True: (72’ < ?x) = True by simp
show ?thesis unfolding id
using small rel unfolding minus-p32-def minus-p-def Let-def urel32-def
unfolding ppp le True if-True
using True by (auto simp: wint32-simps)
next
case Fulse
hence Fulse: (%2’ < %z) = Fualse by simp
show ?thesis unfolding id
using small rel unfolding minus-p32-def minus-p-def Let-def urel32-def
unfolding ppp le Fualse if-False
using Fulse by (auto simp: uint32-simps)
qed
qed

/

lemma urel32-uminus: assumes urel32 x y
shows urel32 (uminus-p32 pp =) (uminus-p p y)
proof —
let %z = int-of-uint32 x
from assms int-of-uint32-ge-0 have id: y = %z
and rel: 0 < %z %2z < p
unfolding urel32-def by auto
have le: (z = 0) = (% = 0) unfolding int-of-uint32-0-iff
using rel small by (auto simp: wint32-simps)

31

show ?thesis
proof (cases %z = 0)
case True
hence True: (?z = 0) = True by simp
show ?thesis unfolding id
using small rel unfolding uminus-p32-def uminus-p-def Let-def urel32-def
unfolding ppp le True if-True
using True by (auto simp: uint32-simps)
next
case Fulse
hence Fulse: (?z = 0) = False by simp
show ?thesis unfolding id
using small rel unfolding uminus-p32-def uminus-p-def Let-def urel32-def
unfolding ppp le Fualse if-Fualse
using Fualse by (auto simp: uint32-simps)
qged
qed

lemma urel32-mult: assumes urel32 x y urel32 z' y’
shows urel32 (mult-p32 pp = z') (mult-p p y y’)
proof —
let %z = int-of-uint32 x
let 2z’ = int-of-wint32 x’
from assms int-of-uint32-ge-0 have id: y = %z y' = %z
and rel: 0 < %z %z < p
0 < ?z' 2z’ < p unfolding urel32-def by auto
from rel have %z * %z’ < p * p by (metis mult-strict-mono’)
also have ... < 65536 * 65536
by (rule mult-mono, insert p2 small, auto)
finally have le: %z x 2z’ < /294967296 by simp
show ?thesis unfolding id
using small rel unfolding mult-p32-def mult-p-def Let-def urel32-def
unfolding ppp
by (auto simp: wint32-simps, unfold int-of-uint32-mod int-of-wint32-mult,
subst mod-pos-pos-trivial[of - 4294967296], insert le, auto)

/

qed

lemma urel32-eq: assumes urel32 z y urel32 z’ y’
shows (z = z') = (y = ¢
proof —
let %z = int-of-uint32 x
let 2z’ = int-of-wint32 z’
from assms int-of-uint32-ge-0 have id: y = %z y' = 2z’
unfolding urel32-def by auto
show ?thesis unfolding id by (transfer, transfer) rule
qed

lemma urel32-normalize:
assumes z: urel32 T y

32

shows urel32 (if x = 0 then 0 else 1) (if y = 0 then 0 else 1)
unfolding urel32-eq|OF z urel32-0] using urel32-0 urel32-1 by auto

lemma urel32-mod:

assumes z: urel32 r x’ and y: urel32 y y’

shows urel82 (if y = 0 then z else 0) (if y' = 0 then z’ else 0)
unfolding urel32-eq[OF y urel32-0] using urel32-0 x by auto

lemma urel32-power: urel32 © ' = urel32 y (int y’') = urel32 (power-p32 pp
z y) (power-p p 'y’
including bit-operations-syntaz proof (induct z’ y’ arbitrary: © y rule: power-p.induct|of
-)
case (1 z' y' z y)
note z = 1(2) note y = 1(3)
show ?case
proof (cases y' = 0)
case True
hence y: y = 0 using urel32-eq[OF y urel32-0] by auto
show ?thesis unfolding y True by (simp add: power-p.simps urel32-1)
next
case Fulse
hence id: (y = 0) = False (y' = 0) = False using urel32-eq[OF y urel32-0]
by auto
from y have <int y' = int-of-uint32 y» <int y' < p
by (simp-all add: urel32-def)
obtain d’ r’ where dr”. Fuclidean-Rings.divmod-nat y' 2 = (d’,r’) by force
from FEuclidean-Rings.divmod-nat-def[of y' 2, unfolded dr’]
have r”: v’ = y’ mod 2 and d”: d’' = y’ div 2 by auto
have urel32 (y AND 1) r'
using <int y’ < p» small
apply (simp add: urel32-def and-one-eq ')
apply (auto simp add: ppp and-one-eq)
apply (simp add: of-nat-mod int-of-uint32.rep-eq modulo-uint32.rep-eq uint-mod
<ant y' = int-of-uint32 y»)
done
from urel32-eq[OF this urel32-0]
have rem: (y AND 1 = 0) = (r' = 0) by simp
have div: urel32 (drop-bit 1 y) (int d') unfolding d’ using y unfolding
urel32-def using small
unfolding ppp
apply transfer
apply transfer
apply (auto simp add: drop-bit-Suc take-bit-int-eg-self)
done
note IH = 1(1)[OF False refl dr'[symmetric] urel32-mult|OF z z] div
show ?thesis unfolding power-p.simps|of - - y'] power-p32.simps|of - - y| dr
id if-False rem
using IH urel32-mult|OF IH z] by (auto simp: Let-def)
qed

/

33

qed

lemma urel32-inverse: assumes z: urel32 z z’
shows urel32 (inverse-p32 pp) (inverse-p p x')
proof —
have p: urel32 (pp — 2) (int (nat (p — 2))) using p2 small unfolding urel32-def
unfolding ppp
by (simp add: int-of-uint32.rep-eq minus-uint32.rep-eq uint-sub-if)
show ?thesis
unfolding inverse-p32-def inverse-p-def urel32-eq| OF x urel32-0] using urel32-0
urel32-power|OF x p
by auto
qed

lemma mod-ring-0-32: mod-ring-rel32 0 0
using urel32-0 mod-ring-0 unfolding mod-ring-rel32-def by blast

lemma mod-ring-1-32: mod-ring-rel32 1 1
using urel32-1 mod-ring-1 unfolding mod-ring-rel32-def by blast

lemma mod-ring-uminus32: (mod-ring-rel32 ===> mod-ring-rel32) (uminus-p32
Pp) uminus

using urel32-uminus mod-ring-uminus unfolding mod-ring-rel32-def rel-fun-def
by blast

lemma mod-ring-plus32: (mod-ring-rel32 ===> mod-ring-rel32 ===> mod-ring-rel32)
(plus-p32 pp) (+)

using wurel32-plus mod-ring-plus unfolding mod-ring-rel32-def rel-fun-def by
blast

lemma mod-ring-minus32: (mod-ring-rel32 ===> mod-ring-rel32 ===> mod-ring-rel32)
(minus-p32 pp) (—)

using urel32-minus mod-ring-minus unfolding mod-ring-rel32-def rel-fun-def by
blast

lemma mod-ring-mult32: (mod-ring-rel32 ===> mod-ring-rel32 ===> mod-ring-rel32)
(mult-p32 pp) ((*))
using wurel32-mult mod-ring-mult unfolding mod-ring-rel32-def rel-fun-def by

blast
lemma mod-ring-eq32: (mod-ring-rel32 ===> mod-ring-rel832 ===> (=)) (=)
=)

using urel32-eq mod-ring-eq unfolding mod-ring-rel32-def rel-fun-def by blast

lemma urel32-inj: urel32 vy = urel32 z z —= y = 2
using urel32-eq[of © y x z] by auto

lemma urel32-inj": urel32 z 2 = wrel32 y z = z =y

34

using urel32-eqlof © z y z] by auto

lemma bi-unique-mod-ring-rel32:
bi-unique mod-ring-rel32 left-unique mod-ring-rel32 right-unique mod-ring-rel32
using bi-unique-mod-ring-rel urel32-inj’
unfolding mod-ring-rel32-def bi-unique-def left-unique-def right-unique-def
by (auto simp: urel32-def)

lemma right-total-mod-ring-rel32: right-total mod-ring-rel32

unfolding mod-ring-rel32-def right-total-def
proof

fix y :: 'a mod-ring

from right-total-mod-ring-rellunfolded right-total-def, rule-format, of y|

obtain z where zy: mod-ring-rel z y by auto

hence zp: 0 < z z < p unfolding mod-ring-rel-def p using range-to-int-mod-ring[where
‘a = 'a] by auto

hence urel32 (uwint32-of-int z) z unfolding urel32-def using small unfolding
bpp

by (auto simp: int-of-uint32-inv)

with zy show 3 z 2. urel32 © z A mod-ring-rel z y by blast

qed

lemma Domainp-mod-ring-rel32: Domainp mod-ring-rel32 = (Az. 0 < z Az <
pp)
proof
fix z
show Domainp mod-ring-rel32 . = (0 < z A z < pp)
unfolding Domainp.simps
unfolding mod-ring-rel32-def
proof
let 20 = int-of-uint32
assume x: 0 <z Az < pp
hence 0 < %z A % xz < p using small unfolding ppp
by (transfer, auto simp: word-less-def)
hence % z € {0 ..< p} by auto
with Domainp-mod-ring-rel
have Domainp mod-ring-rel (%i z) by auto
from this[unfolded Domainp.simps]
obtain b where b: mod-ring-rel (%i) b by auto
show Ja b. z = a A (Fz. urel32 a z A mod-ring-rel z b)
proof (intro exl, rule conjl[OF refl], rule exl, rule conjI[OF - b])
show urel32 x (?i z) unfolding urel32-def using small x unfolding ppp
by (transfer, auto simp: word-less-def)
qed
next
assume Ja b. . = a A (Fz. urel32 a z A mod-ring-rel z b)
then obtain b z where zz: urel32 x z and zb: mod-ring-rel z b by auto
hence Domainp mod-ring-rel z by auto
with Domainp-mod-ring-rel have 0 < z z < p by auto

35

with zz show 0 < z A z < pp unfolding urel32-def using small unfolding
bpp
by (transfer, auto simp: word-less-def)
qed
qed

lemma ring-finite-field-ops32: ring-ops (finite-field-ops32 pp) mod-ring-rel32
by (unfold-locales, auto simp:
finite-field-ops32-def
bi-unique-mod-ring-rel32
right-total-mod-ring-rel32
mod-ring-plus32
mod-ring-minus32
mod-ring-uminus32
mod-ring-mult32
mod-ring-eq32
mod-ring-0-32
mod-ring-1-32
Domainp-mod-ring-rel32)

end

end

context prime-field
begin
context fixes pp :: uwint32
assumes *: p = int-of-uint32 pp p < 65535
begin

lemma mod-ring-normalize32: (mod-ring-rel32 ===> mod-ring-rel32) (Az. if ©
= 0 then 0 else 1) normalize

using urel32-normalize| OF] mod-ring-normalize unfolding mod-ring-rel32-def[OF
] rel-fun-def by blast

lemma mod-ring-mod32: (mod-ring-rel32 ===> mod-ring-rel32 ===> mod-ring-rel32)
Az y. if y = 0 then z else 0) (mod)

using urel32-mod[OF %] mod-ring-mod unfolding mod-ring-rel32-def[OF]
rel-fun-def by blast

lemma mod-ring-unit-factor32: (mod-ring-rel32 ===> mod-ring-rel32) (Az. z)
unit-factor

using mod-ring-unit-factor unfolding mod-ring-rel32-def[OF x| rel-fun-def by
blast

lemma mod-ring-inverse32: (mod-ring-rel32 ===> mod-ring-rel32) (inverse-p32
pp) inverse
using urel32-inverse[OF x| mod-ring-inverse unfolding mod-ring-rel32-def[OF

] rel-fun-def by blast

lemma mod-ring-divide32: (mod-ring-rel32 ===> mod-ring-rel32 ===> mod-ring-rel32)

36

(divide-p32 pp) (/)
using mod-ring-inverse32 mod-ring-mult32[OF]
unfolding divide-p32-def divide-mod-ring-def inverse-mod-ring-def [symmetric]
rel-fun-def by blast

lemma finite-field-ops32: field-ops (finite-field-ops32 pp) mod-ring-rel32
by (unfold-locales, insert ring-finite-field-ops32[OF x|, auto simp:
ring-ops-def
finite-field-ops32-def
mod-ring-divide32
mod-ring-inverse32
mod-ring-mod32
mod-ring-normalize32)

end
end

context
fixes p :: wint64

begin

definition plus-p6/ :: wint6) = wint6) = wuint6/ where
plus-pb4 zy =let z=x + yinif z > p then z — p else z

definition minus-p64 :: wint6j = uint64 = uint64 where
minus-p64 xy = if y < x then x — y else (z + p) — y

definition uminus-p64 :: wint64 = wint64 where
uminus-p64 x = (if © = 0 then 0 else p — x)

definition mult-p64 :: uint64 = uint6/ = wint6/ where
mult-p64 x y = (z * y mod p)

lemma int-of-uint64-shift: int-of-uint64 (drop-bit k n) = (int-of-uint64 n) div (2
~k)

apply transfer

apply transfer

apply (simp add: take-bit-drop-bit min-def)

apply (simp add: drop-bit-eq-div)

done

lemma int-of-wint64-0-iff: int-of-uint64 n = 0 +— n = 0
by (transfer, rule wint-0-iff)

lemma int-of-uint64-0: int-of-uint64 0 = 0 unfolding int-of-uint64-0-iff by simp

lemma int-of-uint64-ge-0: int-of-uint64 n > 0
by (transfer, auto)

37

lemma two-64: 2 ~ LENGTH(64) = (18446744073709551616 :: int) by simp

lemma int-of-uint6-plus: int-of-wint64 (x + y) = (int-of-uint64 x + int-of-uint64
y) mod 18446744073709551616
by (transfer, unfold wint-word-ariths two-64, rule refl)

lemma int-of-uint64-minus: int-of-uint6/ (x — y) = (int-of-uint6 x — int-of-uint6/
y) mod 18446744073709551616
by (transfer, unfold wint-word-ariths two-64, rule refl)

lemma int-of-wint64-mult: int-of-uint64 (z * y) = (int-of-uint64 z * int-of-uint64
y) mod 18446744073709551616
by (transfer, unfold wint-word-ariths two-64, rule refl)

lemma int-of-uint6/-mod: int-of-wint64 (x mod y) = (int-of-wint64 x mod int-of-uint6/

y)
by (transfer, unfold wint-mod two-64, rule refl)

lemma int-of-uint6-inv: 0 < x => x < 18446744073709551616 —> int-of-uint6/
(uint64-of-int) = x
by transfer (simp add: take-bit-int-eq-self unsigned-of-int)

context
includes bit-operations-syntaz
begin

function power-p64 :: wint6/ = wint6/ = wint6/ where
power-p64 x n = (if n = 0 then 1 else
let rec = power-p64 (mult-p64 = x) (drop-bit 1 n) in
if n AND 1 = 0 then rec else mult-p6/ rec x)
by pat-completeness auto

termination
proof —
{
fix n :: uint64

assume n #
with int-of-uint64-ge-0[of n] int-of-uint64-0-iff [of n] have int-of-uint64 n > 0
by auto
hence 0 < int-of-wint64 n int-of-uint6 n div 2 < int-of-uint64 n by auto
} note x = this
show ?thesis
by (relation measure (A (z,n). nat (int-of-uint64 n)), auto simp: int-of-wint64-shift
*
)
qed

end

In experiments with Berlekamp-factorization (where the prime p is usu-
ally small), it turned out that taking the below implementation of inverse

38

via exponentiation is faster than the one based on the extended Euclidean
algorithm.

definition inverse-p64 :: wint64 = wint6/ where
inverse-p64 x = (if © = 0 then 0 else power-p64 z (p — 2))

definition divide-p64 :: uint64 = wint64 = uint6/ where
divide-p64 x y = mult-p64 x (inverse-p64 y)

definition finite-field-ops64 :: wint6/ arith-ops-record where
finite-field-ops64 = Arith-Ops-Record

0
1
plus-p64
mult-p64
minus-pb4
uminus-pb4
divide-p64
tnverse-pb4
ANzy.ify=0then x else 0)
ANz . ifz = 0then 0 else 1)
ANz .x)
wint64-of-int
int-of-uint64
Az. 0 <z Ax<p)

end

lemma shiftr-uint64-code [code-unfold): drop-bit 1 x = (uint64-shiftr x 1)
by (simp add: wint6/.shiftr-def)

For soundness of the 64-bit implementation, we mainly prove that this
implementation implements the int-based implementation of GF(p).

context mod-ring-locale
begin

context fixes pp :: uint64
assumes ppp: p = int-of-uintb4 pp
and small: p < 4294967295
begin

lemmas uint64-simps =
int-of-uint64-0
int-of-uint64-plus
int-of-wint64-minus
int-of-uint64-mult

definition urel64 :: wint6/ = int = bool where urel6} z y = (y = int-of-uint64
z Ay <p)

39

definition mod-ring-rel64 :: uint64 = 'a mod-ring = bool where
mod-ring-rel64 x y = (3 z. urel64 x z N\ mod-ring-rel z y)

lemma urel64-0: urel64 0 0 unfolding urel6/-def using p2 by (simp, transfer,
simp)

lemma wurel64-1: urel6/ 1 1 unfolding urel64-def using p2 by (simp, transfer,
stmp)

lemma le-int-of-uint64: (z < y) = (int-of-uint64 x < int-of-uint64 y)
by (transfer, simp add: word-le-def)

lemma urel6/-plus: assumes urel6 z y urel6 'y’
shows urel6] (plus-p64 pp x ') (plus-p p y y’)
proof —
let %z = int-of-uint64 x
let 2z’ = int-of-uwint6] z’
let ?p = int-of-uint6] pp
from assms int-of-uint64-ge-0 have id: y = %z y' = %z
and rel: 0 < %z %2z < p
0 < ?z' 2z’ < p unfolding urel6/-def by auto
have le: (pp < z + z') = (?p < %2 4+ %2’) unfolding le-int-of-uint6/
using rel small by (auto simp: wint64-simps)
show ?thesis
proof (cases ?p < %x + 2z')
case True
hence True: (?p < %z + ?z’) = True by simp
show ?thesis unfolding id
using small rel unfolding plus-p64-def plus-p-def Let-def urel64-def
unfolding ppp le True if-True
using True by (auto simp: wint64-simps)
next
case Fulse
hence Fulse: (?p < %z + %z') = False by simp
show ?thesis unfolding id
using small rel unfolding plus-p6/4-def plus-p-def Let-def urel64-def
unfolding ppp le Fualse if-False
using False by (auto simp: uint64-simps)
qed
qed

/

lemma urel6/-minus: assumes urel6} x y urel64 x’ y’
shows urel6/ (minus-p64 pp x z') (minus-p p y y’)
proof —
let %z = int-of-uint6} z
let %z’ = int-of-uint6] x’
from assms int-of-uint64-ge-0 have id: y = ?ry' = %z
and rel: 0 < %z %z < p
0 < ?z' 2z’ < p unfolding urel6/-def by auto

/

40

have le: (z' < z) = (%2’ < %z) unfolding le-int-of-uint64
using rel small by (auto simp: wint64-simps)
show ?thesis
proof (cases %z’ < ?x)
case True
hence True: (?z' < ?z) = True by simp
show ?thesis unfolding id
using small rel unfolding minus-p64-def minus-p-def Let-def urel6-def
unfolding ppp le True if-True
using True by (auto simp: wint64-simps)
next
case Fulse
hence False: (7' < ?z) = False by simp
show ?thesis unfolding id
using small rel unfolding minus-p64-def minus-p-def Let-def urel64-def
unfolding ppp le Fulse if-False
using False by (auto simp: uint64-simps)
qed
qed

lemma urel6/-uminus: assumes urel64 © y
shows urel6/ (uminus-p64 pp z) (uminus-p p y)
proof —
let %z = int-of-uint6} z
from assms int-of-uint64-ge-0 have id: y = %x
and rel: 0 < %z %z < p
unfolding urel64-def by auto
have le: (z = 0) = (% = 0) unfolding int-of-uint64-0-iff
using rel small by (auto simp: wint64-simps)
show ?thesis
proof (cases %z = 0)
case True
hence True: (?z = 0) = True by simp
show ?thesis unfolding id
using small rel unfolding uminus-p6/4-def uminus-p-def Let-def urel64-def
unfolding ppp le True if-True
using True by (auto simp: wint64-simps)
next
case Fulse
hence False: (?z = 0) = Fulse by simp
show ?thesis unfolding id
using small rel unfolding uminus-p64-def uminus-p-def Let-def urel6/-def
unfolding ppp le Fualse if-False
using False by (auto simp: uint64-simps)
qed
qed

lemma urel6/-mult: assumes urel64 x y urel6 =’ y’
shows urel6/ (mult-p64 pp = z’) (mult-p p y y')

41

proof —
let %z = int-of-uint6} z
let %z’ = int-of-uint6/ x’
from assms int-of-uint64-ge-0 have id: y = ?ry' = %z
and rel: 0 < %z %z < p
0 < ?z' 2z’ < p unfolding urel6/-def by auto
from rel have %z x %z’ < p * p by (metis mult-strict-mono’)
also have ... < /294967296 x 4294967296
by (rule mult-mono, insert p2 small, auto)
finally have le: %z * 2z’ < 184467/4073709551616 by simp
show ?thesis unfolding id
using small rel unfolding mult-p64-def mult-p-def Let-def urel64-def
unfolding ppp
by (auto simp: wint64-simps, unfold int-of-uint64-mod int-of-wint64-mult,
subst mod-pos-pos-trivial[of - 18446744073709551616], insert le, auto)

/

qed

lemma urel6-eq: assumes urel6 © y urel64 z’ y’
shows (z = z') = (y = ¥)
proof —
let %x = int-of-uint64 x
let 2z’ = int-of-uwint6/ z’
from assms int-of-uint64-ge-0 have id: y = %z y' = %z
unfolding urel6-def by auto
show ?thesis unfolding id by (transfer, transfer) rule
qged

/

lemma urel6-normalize:

assumes z: urel64 z y

shows urel64 (if x = 0 then 0 else 1) (if y = 0 then 0 else 1)
unfolding urel6}-eq[OF x urel64-0] using urel64-0 urel64-1 by auto

lemma urel64-mod:

assumes z: urel64 z x’ and y: urel64 y y’

shows urel6/ (if y = 0 then x else 0) (if y' = 0 then z’ else 0)
unfolding urel64-eq(OF y urel64-0] using urel6/-0 z by auto

lemma urel6}-power: urel6) v x' = urel6 y (int y') = urel6} (power-p64 pp
z y) (power-p p z" y’)
including bit-operations-syntaz proof (induct z’ y’ arbitrary: z y rule: power-p.induct|of
-)
case (1 z' y' z y)
note x = 1(2) note y = 1(3)
show ?case
proof (cases y' = 0)
case True
hence y: y = 0 using urel64-eq[OF y urel64-0] by auto
show ?thesis unfolding y True by (simp add: power-p.simps urel64-1)
next

42

case Fulse
hence id: (y = 0) = False (y' = 0) = False using urel6}-eq[OF y urel6-0]
by auto
from y have (int y’' = int-of-uint64 y» <int y’ < p»
by (simp-all add: urel64-def)
obtain d’ r’ where dr” Euclidean-Rings.divmod-nat y' 2 = (d',r’) by force
from Fuclidean-Rings.divmod-nat-def[of y' 2, unfolded dr’)
have r”: ' = y' mod 2 and d”: d’' = y' div 2 by auto
have urel6/ (y AND 1) r’
using <int y’ < p» small
apply (simp add: urel64-def and-one-eq r')
apply (auto simp add: ppp and-one-eq)
apply (simp add: of-nat-mod int-of-uint6/ .rep-eq modulo-uint6/ .rep-eq uint-mod
ant y' = int-of-uint6] y»)
done
from urel6-eq[OF this urel64-0]
have rem: (y AND 1 = 0) = (r' = 0) by simp
have div: urel64 (drop-bit 1 y) (int d') unfolding d’ using y unfolding
urel64-def using small
unfolding ppp
apply transfer
apply transfer
apply (auto simp add: drop-bit-Suc take-bit-int-eq-self)
done
note IH = 1(1)[OF False refl dr'[symmetric] urel6/-mult[OF z z] div]
show ?thesis unfolding power-p.simps|of - - y'] power-p64 .simps[of - - y] dr’
id if-False rem
using IH urel6/-mult|OF IH z] by (auto simp: Let-def)
qed
qed

lemma urel6-inverse: assumes z: urel6} z z’
shows urel6/ (inverse-p6j pp) (inverse-p p x')
proof —
have p: urel64 (pp — 2) (int (nat (p — 2))) using p2 small unfolding urel64-def
unfolding ppp
by (simp add: int-of-uint64 .rep-eq minus-uint64 .rep-eq wint-sub-if)
show ?thesis
unfolding inverse-p64-def inverse-p-def urel64-eq| OF x urel64-0] using urel64-0
urel64-power|OF x p]
by auto
qed

lemma mod-ring-0-64: mod-ring-rel64 0 0
using urel64-0 mod-ring-0 unfolding mod-ring-rel64-def by blast

lemma mod-ring-1-64: mod-ring-rel64 1 1
using urel64-1 mod-ring-1 unfolding mod-ring-rel64-def by blast

43

lemma mod-ring-uminus64: (mod-ring-rel6 ===> mod-ring-rel64) (uminus-p64
Pp) uminus

using urel64-uminus mod-ring-uminus unfolding mod-ring-rel64-def rel-fun-def
by blast

lemma mod-ring-plus6: (mod-ring-rel64 ===> mod-ring-rel6j ===> mod-ring-rel6})
(plus-p64 pp) (+)

using urel64-plus mod-ring-plus unfolding mod-ring-rel64-def rel-fun-def by
blast

lemma mod-ring-minus64: (mod-ring-rel6, ===> mod-ring-rel64 ===> mod-ring-rel64)
(minus-p64 pp) (—)

using urel64-minus mod-ring-minus unfolding mod-ring-rel64-def rel-fun-def by
blast

lemma mod-ring-mult64: (mod-ring-rel64 ===> mod-ring-rel64 ===> mod-ring-rel64)
(mult-p64 pp) ((*))

using urel6/-mult mod-ring-mult unfolding mod-ring-rel64-def rel-fun-def by
blast

lemma mod-ring-eq64: (mod-ring-rel64 ===> mod-ring-rel6 ===> (=)) (=)
(=)

using urel64-eq mod-ring-eq unfolding mod-ring-rel6/-def rel-fun-def by blast

lemma urel6/-inj: urel6) ry = urelb} z z = y = 2
using urel64-eq[of z y x z] by auto

lemma urel64-inj’: urelb) vz = urel6) yz = z =y
using urel6/-eq[of z z y z] by auto

lemma bi-unique-mod-ring-rel64 :
bi-unique mod-ring-rel64 left-unique mod-ring-rel64 right-unique mod-ring-rel64
using bi-unique-mod-ring-rel urel64-inj’
unfolding mod-ring-rel64-def bi-unique-def left-unique-def right-unique-def
by (auto simp: urel6-def)

lemma right-total-mod-ring-rel6/: right-total mod-ring-rel6/

unfolding mod-ring-rel64-def right-total-def
proof

fix y :: 'a mod-ring

from right-total-mod-ring-rel[unfolded right-total-def, rule-format, of y]

obtain z where zy: mod-ring-rel z y by auto

hence zp: 0 < z z < p unfolding mod-ring-rel-def p using range-to-int-mod-ring[where
‘a = 'a] by auto

hence urel6 (uwint64-of-int z) z unfolding urel64-def using small unfolding
ppp

by (auto simp: int-of-uint64-inv)
with zy show 3 z z. urel6/ z z N\ mod-ring-rel z y by blast

44

qed

lemma Domainp-mod-ring-rel6: Domainp mod-ring-rel6 = (Az. 0 < z Az <
p)
proof
fix z
show Domainp mod-ring-rel64 © = (0 < z A z < pp)
unfolding Domainp.simps
unfolding mod-ring-rel64-def
proof
let % = int-of-uint64
assume x: 0 <z Az < pp
hence 0 < %ix A % x < p using small unfolding ppp
by (transfer, auto simp: word-less-def)
hence % z € {0 ..< p} by auto
with Domainp-mod-ring-rel
have Domainp mod-ring-rel (% z) by auto
from this[unfolded Domainp.simps]
obtain b where b: mod-ring-rel (%i) b by auto
show Ja b. z = a A (Fz. urel6} a z N mod-ring-rel z b)
proof (intro exl, rule conjl[OF refl], rule exI, rule conjI[OF - b])
show urel6 z (%i z) unfolding urel64-def using small * unfolding ppp
by (transfer, auto simp: word-less-def)
qed
next
assume Ja b. z = a A (Fz. urelb4 a z A mod-ring-rel z b)
then obtain b z where zz: urel64 = z and zb: mod-ring-rel z b by auto
hence Domainp mod-ring-rel z by auto
with Domainp-mod-ring-rel have 0 < z z < p by auto
with 2z show 0 < z A z < pp unfolding urel64-def using small unfolding
ppp
by (transfer, auto simp: word-less-def)
qed
qed

lemma ring-finite-field-ops64: ring-ops (finite-field-ops64 pp) mod-ring-rel6/
by (unfold-locales, auto simp:
finite-field-ops64-def
bi-unique-mod-ring-rel64
right-total-mod-ring-rel6/
mod-ring-plus6
mod-ring-minus64
mod-ring-uminus64
mod-ring-mult64
mod-ring-eqb4
mod-ring-0-64
mod-ring-1-64
Domainp-mod-ring-rel64)

end

45

end

context prime-field
begin
context fixes pp :: uint64
assumes x: p = int-of-uint6] pp p < 4294967295
begin

lemma mod-ring-normalize64: (mod-ring-rel64 ===> mod-ring-rel64) (Az. if ©
= 0 then 0 else 1) normalize

using urel64-normalize| OF] mod-ring-normalize unfolding mod-ring-rel64-def[OF
| rel-fun-def by blast

lemma mod-ring-mod64: (mod-ring-rel64 ===> mod-ring-rel6j ===> mod-ring-rel6})
Az y. if y = 0 then x else 0) (mod)

using wurel64-mod[OF %] mod-ring-mod unfolding mod-ring-rel6}-def[OF]
rel-fun-def by blast

lemma mod-ring-unit-factor64: (mod-ring-rel6 ===> mod-ring-rel6}) (\z. z)
unit-factor

using mod-ring-unit-factor unfolding mod-ring-rel64-def[OF x| rel-fun-def by
blast

lemma mod-ring-inverse64: (mod-ring-rel64 ===> mod-ring-rel6}) (inverse-p64
pp) inverse

using urel6-inverse[OF x| mod-ring-inverse unfolding mod-ring-rel64-def[OF
] rel-fun-def by blast

lemma mod-ring-divide64: (mod-ring-rel6, ===> mod-ring-rel6, ===> mod-ring-rel64)
(divide-p64 pp) (/)
using mod-ring-inverse64 mod-ring-mult64|OF x|
unfolding divide-p64-def divide-mod-ring-def inverse-mod-ring-def [symmetric]
rel-fun-def by blast

lemma finite-field-ops6/: field-ops (finite-field-ops64 pp) mod-ring-rel64
by (unfold-locales, insert ring-finite-field-ops64[OF %], auto simp:
ring-ops-def
finite-field-ops64-def
mod-ring-divide6/
mod-ring-inverseb4
mod-ring-mod64
mod-ring-normalize6)
end
end

context
fixes p :: integer
begin

46

definition plus-p-integer :: integer = integer = integer where
plus-p-integer x y = let z = x + y in if z > p then z — p else z

definition minus-p-integer :: integer = integer = integer where
minus-p-integer ©y = if y < x then x — y else (z + p) — y

definition uminus-p-integer :: integer = integer where
uminus-p-integer x = (if £ = 0 then 0 else p — x)

definition mult-p-integer :: integer = integer = integer where
mult-p-integer © y = (z * y mod p)

context
includes bit-operations-syntaz
begin

function power-p-integer :: integer = integer = integer where
power-p-integer x n = (if n < 0 then 1 else
let rec = power-p-integer (mult-p-integer x x) (drop-bit 1 n) in
if n AND 1 = 0 then rec else mult-p-integer rec x)
by pat-completeness auto

termination
proof —
include integer.lifting
have *: <nat-of-integer (n div 2) < nat-of-integer ny if <0 < n» for n
using that by transfer simp
show ?thesis
by (relation <measure (nat-of-integer o snd)»)
(simp-all add: not-le drop-bit-Suc *)
qed

end

In experiments with Berlekamp-factorization (where the prime p is usu-
ally small), it turned out that taking the below implementation of inverse
via exponentiation is faster than the one based on the extended Euclidean
algorithm.

definition inverse-p-integer :: integer = integer where
inverse-p-integer x = (if x = 0 then 0 else power-p-integer x (p — 2))

definition divide-p-integer :: integer = integer = integer where
divide-p-integer x y = mult-p-integer x (inverse-p-integer y)

definition finite-field-ops-integer :: integer arith-ops-record where
finite-field-ops-integer = Arith-Ops-Record
0
1

47

plus-p-integer
mult-p-integer
minus-p-integer
uminus-p-integer
divide-p-integer
inverse-p-integer
ANz vy .ify= 0 then x else 0)
Az .ifz = 0then 0 else 1)
ANz .x)
integer-of-int
int-of-integer
Az. 0 <z Az<p)

end

For soundness of the integer implementation, we mainly prove that this
implementation implements the int-based implementation of GF(p).

context mod-ring-locale
begin

context fixes pp :: integer
assumes ppp: p = int-of-integer pp
begin

lemma integer-simps:
<int-of-integer 0 = 0>
<int-of-integer (x + y) = int-of-integer x + int-of-integer y»
<int-of-integer (x — y) = int-of-integer x — int-of-integer y»
<int-of-integer (x x y) = int-of-integer x x int-of-integer y»
by simp-all

definition urel-integer :: integer = int = bool where urel-integer z y = (y =
int-of-integer x Ay > 0 A y < p)

definition mod-ring-rel-integer :: integer = 'a mod-ring = bool where
mod-ring-rel-integer x y = (3 z. urel-integer z A mod-ring-rel z y)

lemma urel-integer-0: urel-integer 0 0 unfolding urel-integer-def using p2 by
simp

lemma urel-integer-1: urel-integer 1 1 unfolding urel-integer-def using p2 by
stmp

lemma le-int-of-integer: (x < y) = (int-of-integer x < int-of-integer y)
by (rule less-eq-integer.rep-eq)

lemma urel-integer-plus: assumes urel-integer = y urel-integer x’ y’
shows urel-integer (plus-p-integer pp = z') (plus-p p y y”)

proof —
let ?z = int-of-integer x

48

let 2z’ = int-of-integer x’
let ?p = int-of-integer pp
from assms have id: y = %z y' = %z
and rel: 0 < %z %2z < p
0 < ?z' 2z’ < p unfolding urel-integer-def by auto
have le: (pp < z + z') = (?p < %2 + ?z’) unfolding le-int-of-integer
using rel by auto
show ?thesis
proof (cases ?p < % + 2z')
case True
hence True: (?p < %z + ?2’) = True by simp
show ?thesis unfolding id
using rel unfolding plus-p-integer-def plus-p-def Let-def urel-integer-def
unfolding ppp le True if-True
using True by auto
next
case Fulse
hence Fulse: (?p < %z + %z') = False by simp
show ?thesis unfolding id
using rel unfolding plus-p-integer-def plus-p-def Let-def urel-integer-def
unfolding ppp le Fualse if-False
using Fulse by auto
qed
qed

!’

lemma urel-integer-minus: assumes urel-integer x y urel-integer =’ y'
shows urel-integer (minus-p-integer pp x z') (minus-p p y y')
proof —
let 7z = int-of-integer x
let 2z’ = int-of-integer z’
from assms have id: y = %z y' = %z
and rel: 0 < %z %z < p
0 < ?z' 2z’ < p unfolding urel-integer-def by auto
have le: (z' < z) = (%2’ < ?z) unfolding le-int-of-integer
using rel by auto
show ?thesis
proof (cases %z’ < %r)
case True
hence True: (?z' < ?z) = True by simp
show ?thesis unfolding id
using rel unfolding minus-p-integer-def minus-p-def Let-def urel-integer-def
unfolding ppp le True if-True
using True by auto
next
case Fulse
hence Fualse: (?z' < ?z) = False by simp
show ?thesis unfolding id
using rel unfolding minus-p-integer-def minus-p-def Let-def urel-integer-def
unfolding ppp le Fualse if-False

!’

49

using Fualse by auto
qed
qed

lemma urel-integer-uminus: assumes urel-integer x y
shows urel-integer (uminus-p-integer pp z) (uminus-p p y)
proof —
include integer.lifting
let ?z = int-of-integer x
from assms have id: y = %z
and rel: 0 < %z %z < p
unfolding urel-integer-def by auto
have le: (z = 0) = (%2 = 0)
by transfer rule
show ?thesis
proof (cases %z = 0)
case True
hence True: (?z = 0) = True by simp
show ?thesis unfolding id
using rel unfolding uminus-p-integer-def uminus-p-def Let-def urel-integer-def

unfolding ppp le True if-True
using True by auto
next
case Fulse
hence Fualse: (2 = 0) = False by simp
show ?thesis unfolding id
using rel unfolding uminus-p-integer-def uminus-p-def Let-def urel-integer-def

unfolding ppp le Fualse if-Fualse
using Fualse by auto
qed
qed

lemma pp-pos: int-of-integer pp > 0
using ppp nontriv[where ‘a = ‘a] unfolding p
by (simp add: less-integer.rep-eq)

lemma urel-integer-mult: assumes urel-integer x y urel-integer z’ y’
shows urel-integer (mult-p-integer pp z z') (mult-p p y y’)
proof —
let ?z = int-of-integer x
let 2z’ = int-of-integer z’
from assms have id: y = %z vy’ = %z’
and rel: 0 < %z %x < p
0 < 2z’ 22’ < p unfolding urel-integer-def by auto
from rel(1,3) have zz: 0 < %z x 2?2’ by simp
show ?thesis unfolding id
using rel unfolding mult-p-integer-def mult-p-def Let-def urel-integer-def

50

unfolding ppp mod-nonneg-pos-int|OF zx pp-pos| using zz pp-pos by simp
qed

lemma urel-integer-eq: assumes urel-integer x y urel-integer =’ y'
shows (z =z') = (y = ¥
proof —
let 7z = int-of-integer x
let 2z’ = int-of-integer z’
from assms have id: y = %z y' = %z
unfolding urel-integer-def by auto
show ?thesis unfolding id integer-eq-iff ..
qed

/

lemma urel-integer-normalize:

assumes z: urel-integer T y

shows urel-integer (if x = 0 then 0 else 1) (if y = 0 then 0 else 1)

unfolding urel-integer-eq(OF z urel-integer-0] using urel-integer-0 urel-integer-1
by auto

lemma urel-integer-mod:

assumes x: urel-integer r x’' and y: urel-integer y y’

shows urel-integer (if y = 0 then z else 0) (if y' = 0 then z’ else 0)
unfolding urel-integer-eq| OF y urel-integer-0] using urel-integer-0 x by auto

lemma urel-integer-power: urel-integer x &' = urel-integer y (int y') = urel-integer
(power-p-integer pp x y) (power-p p z’ y’)
including bit-operations-syntaz proof (induct z’y’ arbitrary: x y rule: power-p.induct|of
-)
case (1 z' y' z y)
note z = 1(2) note y = 1(39)
show ?Zcase
proof (cases y' < 0)
case True
hence y: y = 0 y' = 0 using urel-integer-eq| OF y urel-integer-0] by auto
show ?thesis unfolding y True by (simp add: power-p.simps urel-integer-1)
next
case Fulse
hence id: (y < 0) = False (y' = 0) = False using False y
by (auto simp add: urel-integer-def not-le) (metis of-int-integer-of of-int-of-nat-eq
of-nat-0-less-iff)
obtain d’ r’ where dr”: Fuclidean-Rings.divmod-nat y' 2 = (d’,r’) by force
from FEuclidean-Rings.divmod-nat-def[of y' 2, unfolded dr’]
have r”: ' = y’ mod 2 and d”: d’' = y’ div 2 by auto
have auz: A\ y'. int (y’ mod 2) = int y' mod 2 by presburger
have urel-integer (y AND 1) r' unfolding r’ using y unfolding urel-integer-def

unfolding ppp
apply (auto simp add: and-one-eq)

o1

apply (simp add: of-nat-mod)
done
from urel-integer-eq[OF this urel-integer-0]
have rem: (y AND 1 = 0) = (r' = 0) by simp
have div: urel-integer (drop-bit 1 y) (int d')
unfolding d’ using y unfolding urel-integer-def
unfolding ppp by (auto simp add: of-nat-div drop-bit-Suc)
from id have y’ # 0 by auto
note IH = 1(1)[OF this refl dr'[symmetric] urel-integer-mult|OF z x| div]
show ?thesis unfolding power-p.simps|of - - y'| power-p-integer.simps[of - - y]
dr' id if-False rem
using IH urel-integer-mult|OF IH z| by (auto simp: Let-def)
qed
qed

lemma urel-integer-inverse: assumes x: urel-integer x z’
shows urel-integer (inverse-p-integer pp x) (inverse-p p z’)
proof —
have p: urel-integer (pp — 2) (int (nat (p — 2))) using p2 unfolding urel-integer-def
unfolding ppp
by auto
show ?thesis
unfolding inverse-p-integer-def inverse-p-def urel-integer-eq| OF x urel-integer-0)|
using urel-integer-0 urel-integer-power[OF z p]
by auto
qged

lemma mod-ring-0--integer: mod-ring-rel-integer 0 0
using urel-integer-0 mod-ring-0 unfolding mod-ring-rel-integer-def by blast

lemma mod-ring-1--integer: mod-ring-rel-integer 1 1
using urel-integer-1 mod-ring-1 unfolding mod-ring-rel-integer-def by blast

lemma mod-ring-uminus-integer: (mod-ring-rel-integer ===> mod-ring-rel-integer)
(uminus-p-integer pp) wminus

using urel-integer-uminus mod-ring-uminus unfolding mod-ring-rel-integer-def
rel-fun-def by blast

lemma mod-ring-plus-integer: (mod-ring-rel-integer ===> mod-ring-rel-integer
===> mod-ring-rel-integer) (plus-p-integer pp) (+)

using urel-integer-plus mod-ring-plus unfolding mod-ring-rel-integer-def rel-fun-def
by blast

lemma mod-ring-minus-integer: (mod-ring-rel-integer ===> mod-ring-rel-integer
===> mod-ring-rel-integer) (minus-p-integer pp) (—)

using urel-integer-minus mod-ring-minus unfolding mod-ring-rel-integer-def rel-fun-def
by blast

52

lemma mod-ring-mult-integer: (mod-ring-rel-integer ===> mod-ring-rel-integer
===> mod-ring-rel-integer) (mult-p-integer pp) ((x))

using urel-integer-mult mod-ring-mult unfolding mod-ring-rel-integer-def rel-fun-def
by blast

lemma mod-ring-eg-integer: (mod-ring-rel-integer ===> mod-ring-rel-integer ===>
(=) (=) (=)

using urel-integer-eq mod-ring-eq unfolding mod-ring-rel-integer-def rel-fun-def
by blast

lemma urel-integer-ingj: urel-integer x y = urel-integer © z — y = 2
using urel-integer-eq[of = y = 2] by auto

lemma urel-integer-inj’: urel-integer x z => urel-integer y z => z = y
using urel-integer-eq[of © z y z] by auto

lemma bi-unique-mod-ring-rel-integer:
bi-unique mod-ring-rel-integer left-unique mod-ring-rel-integer right-unique mod-ring-rel-integer
using bi-unique-mod-ring-rel urel-integer-inj’
unfolding mod-ring-rel-integer-def bi-unique-def left-unique-def right-unique-def
by (auto simp: urel-integer-def)

lemma right-total-mod-ring-rel-integer: right-total mod-ring-rel-integer

unfolding mod-ring-rel-integer-def right-total-def
proof

fix y :: 'a mod-ring

from right-total-mod-ring-rel[unfolded right-total-def, rule-format, of y]

obtain z where zy: mod-ring-rel z y by auto

hence zp: 0 < z z < p unfolding mod-ring-rel-def p using range-to-int-mod-ring[where
‘a = 'a] by auto

hence urel-integer (integer-of-int z) z unfolding urel-integer-def unfolding ppp

by auto
with zy show 3 x z. urel-integer © z A\ mod-ring-rel z y by blast
qed
lemma Domainp-mod-ring-rel-integer: Domainp mod-ring-rel-integer = (Az. 0 <
x Az < pp)
proof
fix z

show Domainp mod-ring-rel-integer x = (0 < z A x < pp)
unfolding Domainp.simps
unfolding mod-ring-rel-integer-def
proof
let 20 = int-of-integer
assume *x: 0 <z Az < pp
hence 0 < %iz A %i x < p unfolding ppp
by (simp add: le-int-of-integer less-integer.rep-eq)
hence % z € {0 ..< p} by auto

93

with Domainp-mod-ring-rel
have Domainp mod-ring-rel (i z) by auto
from this|unfolded Domainp.simps]
obtain b where b: mod-ring-rel (?{) b by auto
show Ja b. x = a A (Fz. urel-integer a z A mod-ring-rel z b)
proof (intro exl, rule conjI[OF refl], rule exl, rule conjI[OF - b))
show urel-integer = (%1 x) unfolding urel-integer-def using * unfolding ppp
by (simp add: le-int-of-integer less-integer.rep-eq)
qed
next
assume Ja b. x = a A (3 2. urel-integer a z A mod-ring-rel z b)
then obtain b z where zz: urel-integer x z and zb: mod-ring-rel z b by auto
hence Domainp mod-ring-rel z by auto
with Domainp-mod-ring-rel have 0 < z z < p by auto
with zz show 0 < z A z < pp unfolding urel-integer-def unfolding ppp
by (simp add: le-int-of-integer less-integer.rep-eq)
qed
qed

lemma ring-finite-field-ops-integer: ring-ops (finite-field-ops-integer pp) mod-ring-rel-integer
by (unfold-locales, auto simp:
finite-field-ops-integer-def
bi-unique-mod-ring-rel-integer
right-total-mod-ring-rel-integer
mod-ring-plus-integer
mod-ring-minus-integer
mod-ring-uminus-integer
mod-ring-mult-integer
mod-ring-eq-integer
mod-ring-0--integer
mod-ring-1--integer
Domainp-mod-ring-rel-integer)

end

end

context prime-field

begin

context fixes pp :: integer
assumes *: p = int-of-integer pp

begin

lemma mod-ring-normalize-integer: (mod-ring-rel-integer ===> mod-ring-rel-integer)
(Az. if x = 0 then 0 else 1) normalize
using urel-integer-normalize[OF *] mod-ring-normalize unfolding mod-ring-rel-integer-def OF

] rel-fun-def by blast
lemma mod-ring-mod-integer: (mod-ring-rel-integer ===> mod-ring-rel-integer

===> mod-ring-rel-integer) (A\z y. if y = 0 then x else 0) (mod)
using urel-integer-mod[OF x| mod-ring-mod unfolding mod-ring-rel-integer-def[OF

54

| rel-fun-def by blast

lemma mod-ring-unit-factor-integer: (mod-ring-rel-integer ===> mod-ring-rel-integer)
(Az. z) unit-factor

using mod-ring-unit-factor unfolding mod-ring-rel-integer-def[OF x| rel-fun-def
by blast

lemma mod-ring-inverse-integer: (mod-ring-rel-integer ===> mod-ring-rel-integer)
(inverse-p-integer pp) inverse

using urel-integer-inverse| OF x| mod-ring-inverse unfolding mod-ring-rel-integer-def[OF
] rel-fun-def by blast

lemma mod-ring-divide-integer: (mod-ring-rel-integer ===> mod-ring-rel-integer
===> mod-ring-rel-integer) (divide-p-integer pp) (/)
using mod-ring-inverse-integer mod-ring-mult-integer| OF |
unfolding divide-p-integer-def divide-mod-ring-def inverse-mod-ring-def[symmetric]
rel-fun-def by blast

lemma finite-field-ops-integer: field-ops (finite-field-ops-integer pp) mod-ring-rel-integer
by (unfold-locales, insert ring-finite-field-ops-integer[OF x|, auto simp:
ring-ops-def
finite-field-ops-integer-def
mod-ring-divide-integer
mod-ring-inverse-integer
mod-ring-mod-integer
mod-ring-normalize-integer)
end
end

context prime-field
begin

thm
finite-field-ops64
finite-field-ops32
finite-field-ops-integer
finite-field-ops-int
end

context mod-ring-locale
begin

thm
ring-finite-field-ops64
ring-finite-field-ops32
ring-finite-field-ops-integer
ring-finite-field-ops-int
end

95

end

3.2 Matrix Operations in Fields

We use our record based description of a field to perform matrix operations.

theory Matriz-Record-Based

imports
Jordan-Normal-Form. Gauss-Jordan-Elimination
Jordan-Normal-Form. Gauss-Jordan-IArray-Impl
Arithmetic- Record-Based

begin

definition mat-rel :: ('a = 'b = bool) = 'a mat = 'b mat = bool where
mat-rel R A B = dim-row A = dim-row B N dim-col A = dim-col B A
(V ij. i < dim-row B — j < dim-col B— R (A $$ (i.j)) (B $$ (i,5)))

lemma right-total-mat-rel: right-total R = right-total (mat-rel R)
unfolding right-total-def
proof
fix B
assumeV y. 3 z. Rz y
from choice[OF this| obtain f where f: A\ z. R (f z) = by auto
show 3 A. mat-rel R A B
by (rule exI[of - map-mat f B|, unfold mat-rel-def, auto simp: f)
qed

lemma left-unique-mat-rel: left-unique R = left-unique (mat-rel R)
unfolding left-unique-def mat-rel-def mat-eg-iff by (auto, blast)

lemma right-unique-mat-rel: right-unique R = right-unique (mat-rel R)
unfolding right-unique-def mat-rel-def mat-eq-iff by (auto, blast)

lemma bi-unique-mat-rel: bi-unique R = bi-unique (mat-rel R)
using left-unique-mat-rel[of R| right-unique-mat-rel[of R]
unfolding bi-unique-def left-unique-def right-unique-def by blast

lemma mat-rel-eq: (R ===> R ===> (=))) (=) (=) =
((mat-rel R ===> mat-rel R ===> (=))) (=) (=)
unfolding mat-rel-def rel-fun-def mat-eq-iff by (auto, blast+)

definition vec-rel :: (‘a = 'b = bool) = 'a vec = 'b vec = bool where
vec-rel R A B = dim-vec A = dim-vec B A (V 4. i < dim-vec B — R (A $ 1)
(B$19))

lemma right-total-vec-rel: right-total R = right-total (vec-rel R)
unfolding right-total-def

proof
fix B

o6

assumeV y. 3 z. Rz y
from choice[OF this| obtain f where f: A\ z. R (f z) = by auto
show 3 A. vec-rel R A B
by (rule exI[of - map-vec f B], unfold vec-rel-def, auto simp: f)
qed

lemma left-unique-vec-rel: left-unique R = left-unique (vec-rel R)
unfolding left-unique-def vec-rel-def vec-eq-iff by auto

lemma right-unique-vec-rel: right-unique R = right-unique (vec-rel R)
unfolding right-unique-def vec-rel-def vec-eq-iff by auto

lemma bi-unique-vec-rel: bi-unique R —> bi-unique (vec-rel R)
using left-unique-vec-rel[of R| right-unique-vec-rel[of R)]
unfolding bi-unique-def left-unique-def right-unique-def by blast

lemma vec-rel-eq: (R ===> R ===> (=))) (=) (=) =
((vec-rel R ===> vec-rel R ===> (=))) (=) (=)
unfolding vec-rel-def rel-fun-def vec-eq-iff by (auto, blast+)

lemma multrow-transfer|[transfer-rule]: (R ===> R ===> R) ===> (=) ===>
R
===> mat-rel R ===> mat-rel R) mat-multrow-gen mat-multrow-gen
unfolding mat-rel-def[abs-def] mat-multrow-gen-def|abs-def]
by (intro rel-funl conjl alll impl eg-matl, auto simp: rel-fun-def)

lemma swap-rows-transfer: mat-rel R A B = i < dim-row B = j < dim-row
B =

mat-rel R (mat-swaprows i j A) (mat-swaprows i j B)

unfolding mat-rel-def mat-swaprows-def

by (intro rel-funl congl olll impl eq-matl, auto)

lemma pivot-positions-gen-transfer: assumes [transfer-rule]: (R ===> R ===>
=) =) (=)

shows

(R ===> mat-rel R ===> (=)) pivot-positions-gen pivot-positions-gen

proof (intro rel-funl, goal-cases)
case (1 ze ze' A A)
note trans[transfer-rule] = 1
from 1 have dim: dim-row A = dim-row A’ dim-col A = dim-col A’ unfolding
mat-rel-def by auto
obtain ¢ j where id: i = 0j = 0 and #: i < dim-row A’ j < dim-col A’ by
auto
have pivot-positions-main-gen ze A (dim-row A) (dim-col A) i j =
pivot-positions-main-gen ze' A’ (dim-row A’) (dim-col A') i j
using ij
proof (induct i j rule: pivot-positions-main-gen.induct[of dim-row A" dim-col A’

A’ ze'])

o7

case (11j)
note simps[simp| = pivot-positions-main-gen.simps|of - - - - i j]
show ?case
proof (cases i < dim-row A’ A j < dim-col A"
case Fulse
with dim show ?thesis by auto
next
case True
hence ij: i < dim-row A’ j < dim-col A’ and j: Suc j < dim-col A’ by auto
note IH = 1(1—2)[OF ij - - j]
from ij True trans have [transfer-rule]:R (A $$ (i,5)) (A’ $$ (i,5))
unfolding mat-rel-def by auto
have eq: (A $% (i,j) = ze) = (A’ $$ (¢,j) = ze’) by transfer-prover
show ?thesis
proof (cases A’ $$ (i.j) = ze’)
case True
from ij have i < dim-row A’ by auto
note I/H = IH(1)[OF True this]
thus ?thesis using True 7j dim eq by simp
next
case Fulse
from ij have Suc i < dim-row A’ by auto
note [H = [H(2)[OF False this]
thus ?thesis using Fualse 7j dim eq by simp
qed
qged
qed
thus pivot-positions-gen ze A = pivot-positions-gen ze' A’
unfolding pivot-positions-gen-def id .
qed

lemma set-pivot-positions-main-gen:
set (pivot-positions-main-gen ze A nr nc i j) C {0 ..< nr} x {0 ..< nc}
proof (induct i j rule: pivot-positions-main-gen.induct[of nr nc A ze])
case (11 j)
note [simp] = pivot-positions-main-gen.simps[of - - - - i j]
from 1 show Zcase
by (cases i < nr A j < nc, auto)

qed
lemma find-base-vectors-transfer: assumes [transfer-rule]: (R ===> R ===>
(=) =) (=)

shows ((R ===> R) ===> R ===> R ===> mat-rel R

===> list-all2 (vec-rel R)) find-base-vectors-gen find-base-vectors-gen
proof (intro rel-funl, goal-cases)

case (1 um um’ ze ze' on on’ A A’)

note trans[transfer-rule] = 1 pivot-positions-gen-transfer|OF assms]

from 1(4) have dim: dim-row A = dim-row A’ dim-col A = dim-col A’ unfolding
mat-rel-def by auto

o8

have id: pivot-positions-gen ze A = pivot-positions-gen ze' A’ by transfer-prover
obtain zs where zs: map snd (pivot-positions-gen ze' A") = zs by auto
obtain ys where ys: [j«[0..<dim-col A'] . j & set zs] = ys by auto
show list-all2 (vec-rel R) (find-base-vectors-gen um ze on A)
(find-base-vectors-gen um’ ze' on’ A')
unfolding find-base-vectors-gen-def Let-def id xs list-all2-conv-all-nth length-map
ys dim
proof (intro conI[OF refl] alll impl)
fix i
assume i: 7 < length ys
define y where y = ys ! i
from 7 have y: y < dim-col A’ unfolding y-def ys[symmetric] using nth-mem
by fastforce
let ?map = map-of (map prod.swap (pivot-positions-gen ze' A'))

{

fix ¢
assume i: i < dim-col A’
and neq: i £ y

have R (case ?map i of None = ze | Some j = um (A $3 (4, y)))
(case ?map i of None = ze' | Some j = um' (A" $$ (4, v)))
proof (cases ?map)
case None
with trans(2) show ?thesis by auto
next
case (Some j)
from map-of-SomeD|[OF this] have (j,i) € set (pivot-positions-gen ze' A’
by auto
from subsetD|OF set-pivot-positions-main-gen this|unfolded pivot-positions-gen-def]]
have j: j < dim-row A’ by auto
with trans(4) y have [transfer-rule]: R (A $$ (j,y)) (A’ $$ (j,y)) unfolding
mat-rel-def by auto
show ?thesis unfolding Some by (simp, transfer-prover)
qed
} note main = this
show wvec-rel R (map (non-pivot-base-gen um ze on A (pivot-positions-gen ze'
A7) ys1)
(map (non-pivot-base-gen um’ ze' on’ A’ (pivot-positions-gen ze' A")) ys |
i)

unfolding y-def[symmetric] nth-map[OF 1]

unfolding non-pivot-base-gen-def Let-def dim vec-rel-def

by (intro congI alll impl, force, insert main, auto simp: trans(3))
qed

qed
lemma eliminate-entries-gen-transfer: assumes x[transfer-rule]: (R ===> R ===>
R) ad ad’

(R ===> R ===> R) mul mul’

and vs: A\ j. j < dim-row B’ = R (vs j) (vs’ j)

99

and i: ¢ < dim-row B’
and B: mat-rel R B B’
shows mat-rel R
(eliminate-entries-gen ad mul vs B i j)
(eliminate-entries-gen ad’ mul’ vs’ B’ i j)
proof —
note BB = Blunfolded mat-rel-def]
show ?thesis unfolding mat-rel-def dim-eliminate-entries-gen
proof (intro conjl impl alll)
fix i’ j’
assume ij": i’ < dim-row B’ j' < dim-col B’
with BB have ij: i< dim-row B j' < dim-col B by auto
have [transfer-rule]: R (B $$ (i/, j')) (B’ $$ (i’, j')) using BB ij' by auto
have [transfer-rule]: R (B $$ (4, 7)) (B’ $$ (4, j')) using BB ij’ i by auto
have [transfer-rule]: R (vs i) (vs’ i’) using ij’ vs[of i] by auto
show R (eliminate-entries-gen ad mul vs B i j $$ (i', j'))
(eliminate-entries-gen ad’ mul’ vs’ B’ i j $$ (i’, j'))
unfolding eliminate-entries-gen-def index-mat(1)[OF 4] indez-mat(1)[OF ij’]
split
by transfer-prover
qed (insert BB, auto)
qged

context

fixes ops :: 'i arith-ops-record (structure)
begin
private abbreviation (input) zero where zero = arith-ops-record.zero ops
private abbreviation (input) one where one = arith-ops-record.one ops
private abbreviation (input) plus where plus = arith-ops-record.plus ops
private abbreviation (input) times where times = arith-ops-record.times ops
private abbreviation (input) minus where minus = arith-ops-record.minus ops
private abbreviation (input) uminus where uminus = arith-ops-record.uminus
ops
private abbreviation (input) divide where divide = arith-ops-record.divide ops
private abbreviation (input) inverse where inverse = arith-ops-record.inverse
ops
private abbreviation (input) modulo where modulo = arith-ops-record.modulo
ops
private abbreviation (input) normalize where normalize = arith-ops-record.normalize
ops

definition eliminate-entries-gen-zero :: ('a = 'a = 'a) = (la = 'a = 'a) = 'a
= (integer = 'a) = 'a mat = nat = nat = 'a mat where
eliminate-entries-gen-zero minu time z v A I J = mat (dim-row A) (dim-col A)
(A (i, §).
if v (integer-of-nat i) # z A i # I then minu (A $$ (i,7)) (time (v (integer-of-nat
i) (A 85 (1) else A 88 (i.))

definition eliminate-entries-i where eliminate-entries-i = eliminate-entries-gen-zero

60

minus times zero
definition multrow-i where multrow-i = mat-multrow-gen times

lemma dim-eliminate-entries-gen-zero[simp):
dim-row (eliminate-entries-gen-zero mm tt z v B i as) = dim-row B
dim-col (eliminate-entries-gen-zero mm tt z v B i as) = dim-col B
unfolding eliminate-entries-gen-zero-def by auto

partial-function (tailrec) gauss-jordan-main-i :: nat = nat = 'i mat = nat =
nat = i mat where
[code]: gauss-jordan-main-i nr nc A i j = (
if i < nr Aj < ncthenlet aij = A $$ (4,§) in if aij = zero then
(case [i’ . i' <— [Suc i ..< nr], A$$ (i'j) # zero]
of | = gauss-jordan-main-i nr nc A i (Suc j)
| (¢ # -) = gauss-jordan-main-i nr nc (swaprows i i’ A) i j)
else if aij = one then let
v=(Ai. A 33 (nat-of-integer i,j)) in
gauss-jordan-main-i nr nc
(eliminate-entries-i v A i §) (Suc @) (Suc j)
else let iaij = inverse aij; A’ = multrow-i i iaij A;
v=(Xi. A’'$$ (nat-of-integer i.j))
in gauss-jordan-main-i nr nc (eliminate-entries-i v A’ i j) (Suc i) (Suc j)
else A)

definition gauss-jordan-single-i :: 'i mat = 'i mat where
gauss-jordan-single-i A = gauss-jordan-main-i (dim-row A) (dim-col A) A 00

definition find-base-vectors-i :: 'i mat = 'i vec list where
find-base-vectors-i A = find-base-vectors-gen uminus zero one A
end

context field-ops
begin

lemma right-total-poly-rel[transfer-rule]: right-total (mat-rel R)
using right-total-mat-relof R] right-total .

lemma bi-unique-poly-rel[transfer-rule]: bi-unique (mat-rel R)
using bi-unique-mat-rel[of R] bi-unique .

lemma eg-mat-rel[transfer-rule]: (mat-rel R ===> mat-rel R ===> (=)) (=)
(=)

by (rule mat-rel-eq[OF eq])
lemma multrow-i[transfer-rule]: ((=) ===> R ===> mat-rel R ===> mat-rel

R)

61

(multrow-i ops) multrow
using multrow-transfer|of R] times unfolding multrow-i-def rel-fun-def by blast

lemma eliminate-entries-gen-zero[simp):
assumes mat-rel R A A’ I < dim-row A’ shows
eliminate-entries-gen-zero minus times zero v A I J = eliminate-entries-gen minus
times (v o integer-of-nat) A I J
unfolding eliminate-entries-gen-def eliminate-entries-gen-zero-def
proof (standard,goal-cases)
case (1 i7)
have d1:DP (A $$ (I, j)) and d2:DP (A $$ (i, j)) using assms DPR 1
unfolding mat-rel-def dim-col-mat dim-row-mat
by (metis Domainp.Domainl)+
have el:\ z. (0::a) * z = 0 and e2:\ z. © — (0::'a) = z by auto
from el [untransferred, OF d1] e2[untransferred, OF d2] 1 show ?case by auto
qed auto

lemma eliminate-entries-i: assumes

vs: N\ j. j < dim-row B' = R (vs (integer-of-nat j)) (vs’ 7)

and i: ¢ < dim-row B’

and B: mat-rel R B B’

shows mat-rel R (eliminate-entries-i ops vs B i j)

(eliminate-entries vs' B’ i j)

unfolding eliminate-entries-i-def eliminate-entries-gen-zero|OF B i)

by (rule eliminate-entries-gen-transfer, insert assms, auto simp: plus times mi-
nus)

lemma gauss-jordan-main-i:
nr = dim-row A’ = nc = dim-col A’ = mat-rel R A A' = i < nr = j <
ne =
mat-rel R (gauss-jordan-main-i ops nr nc A i j) (fst (gauss-jordan-main A’ B’
i)
proof —
obtain P where P: P = (A’i,j) by auto
let ?Rel = measures [\ (A’ :: 'a mat,i,j). nc — j, A (A'i5). if A’ $$ (i) = 0
then 1 else 0]
have wf: wf ?Rel by simp
show nr = dim-row A’ = nc = dim-col A’ = mat-rel R A A' = i < nr —
i < nc=
mat-rel R (gauss-jordan-main-i ops nr nc A i j) (fst (gauss-jordan-main A’ B’
i 7))
using P
proof (induct P arbitrary: A’ B" A i j rule: wf-induct|OF wf])
case (1 P A’ B' A ij)
note prems = 1(2—06)

note P = 1(7)
note A[transfer-rule] = prems(3)
note IH = 1(1)[rule-format, OF - - - - - - refl]

62

note simps = gauss-jordan-main-code[of A" B’ i j, unfolded Let-def, folded
prems(1—2)]
gauss-jordan-main-i.simps|of ops nr nc A i j| Let-def if-True if-False
show ?Zcase
proof (cases i < nr A j < nc)
case Fulse
hence id: (i < nr A j < nc) = False by simp
show ?thesis unfolding simps id by simp transfer-prover
next
case True note 7j' = this
hence id: (i < nr A j < nc) = True \ z y 2. (if z = x then y else z) = y by
auto
from True prems have ij [transfer-rule]:R (A $$ (i,5)) (A’ $$ (4,5))
unfolding mat-rel-def by auto
from True prems have i: i < dim-row A’ j < dim-col A’ and i": i < nrj <
nc by auto
{
fix ¢
assume i < dim-row A’
with ¢ True prems have R[transfer-rule]:R (A $$ (4,5)) (A’ $$ (i.5))
unfolding mat-rel-def by auto
have (A $$ (i,j) = zero) = (A’ $$ (i,j) = 0) by transfer-prover
note this R
} note eq-gen = this
have eq: (A $$ (i,j) = zero) = (A’ $$ (i.j) = 0)
(A $$ (i,j) = one) = (A’ $$ (i,j) = 1)
by transfer-prover+
show ?thesis
proof (cases A’ $$ (i, j) = 0)
case True
hence eq: A $$ (i,j) = zero using eq by auto
let %is =[i'.i <— [Suci.<mnr], ASS (i'j) # zero]
let %is’' =1[i" .4 <— [Suci.<nr], A" $$ (i'j) # 0]
define zs where zs = [Suc i..<nr|
have zs: set s C {0 ..< dim-row A’} unfolding zs-def using prems by
auto
hence id": ?is = ?is’ unfolding zs-def[symmetric]
by (induct zs, insert eq-gen, auto)
show ?thesis
proof (cases ?is’)
case Nil
have ?thesis = (mat-rel R (gauss-jordan-main-i ops nr nc A i (Suc 7))
(fst (gauss-jordan-main A’ B' i (Suc j))))
unfolding True simps id eq unfolding Nil id'[unfolded Nil] by simp
also have ...
by (rule IH, insert i prems P, auto)
finally show ?thesis .
next
case (Cons i’ idz’)

63

from arg-cong[OF this, of set] i
have i": i’ < nr A’ $$ (i/, j) # 0 by auto
with ¢’ prems(1—2) have «: i’ < dim-row A’ i < dim-row A’ j < dim-col
A’ by auto
have rel: ((swaprows i i’ A’, i, j), P) € ?Rel
by (simp add: P True * i')
have %thesis = (mat-rel R (gauss-jordan-main-i ops nr nc (swaprows i i’
4) 1))
(fst (gauss-jordan-main (swaprows i i’ A’) (swaprows i i’ B') i 7)))
unfolding True simps id eq Cons id'[unfolded Cons] by simp
also have ...
by (rule IH[OF rel - - swap-rows-transfer], insert i i’ prems P True, auto)
finally show ?thesis .
qed
next
case Fulse
from Fulse eq have neq: (A $$ (4, j) = zero) = False (A’ 8% (i, j) = 0) =
False by auto
{
fix BB’ i
assume B[transfer-rule]: mat-rel R B B' and dim: dim-col B’ = nc and
i: 1 < dim-row B’
from dim i True have j < dim-col B’ by simp
with B ¢ have R (B $$ (4,5)) (B’ $$ (i.7))
by (simp add: mat-rel-def)
} note vec-rel = this
from prems have dim: dim-row A = dim-row A’ unfolding mat-rel-def by
auto
show ?thesis
proof (cases A’ $$ (i, j) = 1)
case True
from True eq have eq: (A 3 (i,j) = one) = True (A’ 8% (i,j) = 1) =
True by auto
note rel = vec-rel|OF A
show ?thesis unfolding simps id neq eq
by (rule IH[OF - - - eliminate-entries-i|, insert rel prems ij i P dim,
auto)
next
case Fulse
from Fualse eq have eq: (A $$ (i,j) = one) = False (A’ $$ (ij) = 1) =
False by auto
show ?thesis unfolding simps id neq eq
proof (rule IH, goal-cases)
case 4
have A" mat-rel R (multrow-i ops i (inverse (A $$ (4, 7))) A)
(multrow ¢ (inverse-class.inverse (A’ $$ (i, j))) A’) by transfer-prover
note rel = vec-rel|[OF A']
show ?Zcase
by (rule eliminate-entries-i|OF - - A'], insert rel prems i dim, auto)

64

qed (insert prems i P, auto)
qged
qed
qed
qged
qed

lemma gauss-jordan-i[transfer-rule:
(mat-rel R ===> mat-rel R) (gauss-jordan-single-i ops) gauss-jordan-single
proof (intro rel-funl)
fix A A’
assume A: mat-rel R A A’
show mat-rel R (gauss-jordan-single-i ops A) (gauss-jordan-single A"
unfolding gauss-jordan-single-def gauss-jordan-single-i-def gauss-jordan-def
by (rule gauss-jordan-main-i|OF - - A], insert A, auto simp: mat-rel-def)
qed

lemma find-base-vectors-i[transfer-rule]:
(mat-rel R ===> list-all2 (vec-rel R)) (find-base-vectors-i ops) find-base-vectors
unfolding find-base-vectors-i-def abs-def]
using find-base-vectors-transfer|OF eq] uminus zero one
unfolding rel-fun-def by blast

end

lemma list-of-vec-transfer[transfer-rule]: (vec-rel A ===> list-all2 A) list-of-vec
list-of-vec

unfolding rel-fun-def vec-rel-def vec-eq-iff list-all2-conv-all-nth

by auto

lemma IArray-sub’[simpl: i < IArray.length a = IArray.sub’ (a, integer-of-nat
i) = IArray.sub a i
by auto

lift-definition eliminate-entries-i2 ::
‘a = ('la = 'a="a) = ('la = "a="a) = (integer = 'a) = 'a mat-impl =
integer = 'a mat-impl is
A z mminus ttimes v (nr, nc, a) i'.
(nr,ne,let ai’ = IArray.sub’ (a, i) in (IArray.tabulate (integer-of-nat nr, A i. let
ai = IArray.sub’ (a, i) in
if i = i’ then ai else
let vi'j = v i
in if vi'j = z then ai
else
IArray.tabulate (integer-of-nat nc, A j. mminus (IArray.sub’ (ai, j))
(ttimes vi'j
(IArray.sub’ (ai’, §))))
)))

proof(goal-cases)

65

case (1 z mm tt vec prod nat2)
thus ?case by(cases prod;cases snd (snd prod);auto simp:Let-def)
qed

lemma eliminate-entries-gen-zero [simp):
assumes i<(dim-row A) j<(dim-col A) shows
eliminate-entries-gen-zero mminus ttimes z v A I .J $$ (i, j) =
(if v (integer-of-nat i) = z V i = I then A $$ (i,j) else mminus (A $$ (4,5))
(ttimes (v (integer-of-nat 7)) (A $$ (1,7))))
using assms unfolding eliminate-entries-gen-zero-def by auto

lemma eliminate-entries-gen [simp):
assumes <(dim-row A) j<(dim-col A) shows
eliminate-entries-gen mminus ttimes v A I .J $$ (4, j) =
(if i = I then A $$ (i,j) else mminus (A 3 (4,5)) (ttimes (v i) (A $$ (1,5))))

using assms unfolding eliminate-entries-gen-def by auto

lemma dim-mat-impl [simp):

dim-row (mat-impl x) = dim-row-impl ©

dim-col (mat-impl z) = dim-col-impl

by (cases Rep-mat-impl x;auto simp:mat-impl.rep-eq dim-row-def dim-col-def
dim-row-impl.rep-eq dim-col-impl.rep-eq)+

lemma dim-eliminate-entries-i2 [simp]:
dim-row-impl (eliminate-entries-i2 z mm tt v m i) = dim-row-impl m
dim-col-impl (eliminate-entries-i2 z mm tt v m i) = dim-col-impl m
by (transfer, auto)+

lemma tabulate-nth: ¢ < n = IArray.tabulate (integer-of-nat n, f) !l ¢ = f
(integer-of-nat)
using of-fun-nthlof i n] by auto

lemma eliminate-entries-i2|[codel: eliminate-entries-gen-zero mm tt z v (mat-impl
m) i j
= (if i < dim-row-impl m
then mat-impl (eliminate-entries-i2 z mm tt v m (integer-of-nat 7))
else (Code.abort (STR "index out of range in eliminate-entries’’)
(X -. eliminate-entries-gen-zero mm tt z v (mat-impl m) i j)))
proof (cases i < dim-row-impl m)
case True
hence id: (i < dim-row-impl m) = True by simp
show ?thesis unfolding id if-True
proof (standard;goal-cases)
case (1 1j)
have dims: i < dim-row (mat-impl m) j < dim-col (mat-impl m) using 1 by
(auto simp:eliminate-entries-i2.rep-eq)
then show ?case unfolding eliminate-entries-gen-zero[OF dims] using True
proof (transfer, goal-cases)

66

case (1 imjia vz mm tt)
obtain nr nc M where m: m = (nr,nc,M) by (cases m)
note I = 1[unfolded m, simplified]
have mk: A\ f. mk-mat nr ne f (i,5) = f (4,))
N\ f. mk-mat nr ne f (ia,j) = f (ia,j)
using 1 unfolding mk-mat-def mk-vec-def by auto
note of-fun = of-fun-nth[OF 1(2)] of-fun-nth[OF 1(8)] tabulate-nth[OF 1(2)]
tabulate-nth[OF 1(3)]
let ?c1 = v (integer-of-nat i) = 2z
show ?case
proof (cases ?c1 V i = ia)
case True
hence id: (if 7c1 V i = ia then x else y) = «
(if integer-of-nat i = integer-of-nat ia then z else if ?cl then z else y) = x
for z y
by auto
show ?thesis unfolding id m o-def Let-def split snd-conv mk of-fun by (auto
stmp: 1)
next
case Fulse
hence id: ?c1 = False (integer-of-nat i = integer-of-nat ia) = False (False
V i = ia) = False
by (auto simp add: integer-of-nat-eq-of-nat)
show ?thesis unfolding m o-def Let-def split snd-conv mk of-fun id if-False
by (auto simp: 1)
qed
qed
qed (auto simp:eliminate-entries-i2.rep-eq)
qed auto

end
theory More-Missing-Multiset
imports
HOL— Combinatorics. Permutations
Polynomial-Factorization. Missing-Multiset
begin

lemma rel-mset-free:

assumes rel: rel-mset rel X Y and xs: mset zs = X

shows Jys. mset ys = Y A list-all2 rel xs ys
proof—

from rel[unfolded rel-mset-def] obtain xs’ ys’

where zs”: mset s’ = X and ys”: mset ys' = Y and zsys”: list-all2 rel xs’ ys

by auto

from zs’ zs have mset zs = mset zs’ by auto

from mset-eg-permutation| OF this

obtain f where perm: f permutes {..<length zs'} and xs". permute-list f s’ =
xs.

then have [simp]: length zs’ = length zs by auto

/

67

from permute-list-nth[OF perm, unfolded zs'] have *x: \i. i < length xs = zs
i =zs"! fiby auto
note [simp] = list-all2-lengthD[OF zsys’,symmetric|
note [simp] = atLeastOLess Than[symmetric)
note bij = permutes-bij|OF perm]
define ys where ys = map (nth ys’' o f) [0..<length ys']
then have [simp]: length ys = length ys’' by auto
have mset ys = mset (map (nth ys") (map f [0..<length ys'))
unfolding ys-def by auto
also have ... = image-mset (nth ys) (image-mset f (mset [0..<length ys'))
by (simp add: multiset.map-comp)
also have (mset [0..<length ys']) = mset-set {0..<length ys'}
by (metis mset-sorted-list-of-multiset sorted-list-of-mset-set sorted-list-of-set-range)

also have image-mset f (...) = mset-set (f ‘ {..<length ys’})
using subset-inj-on|OF bij-is-inj[OF bij]] by (subst image-mset-mset-set, auto)

also have ... = mset [0..<length ys'] using perm by (simp add: permutes-image)
also have image-mset (nth ys') ... = mset ys’ by(fold mset-map, unfold map-nith,
auto)

finally have mset ys = Y using ys’ by auto
moreover have list-all2 rel xs ys
proof (rule list-all2-all-nthI)
fix ¢ assume i: i < length zs
with * have zs ! i = x5’ ! fi by auto
also from i permutes-in-image|OF perm)
have rel (zs’! f i) (ys'! f i) by (intro list-all2-nthD[OF zsys'], auto)
finally show rel (zs! i) (ys ! i) unfolding ys-def using i by simp
qed simp
ultimately show ¢thesis by auto
qed

lemma rel-mset-split:
assumes rel: rel-mset rel (X1+X2) Y
shows 3Y71 Y2. Y = Y1 + Y2 A rel-mset rel X1 Y1 N rel-mset rel X2 Y2
proof—
obtain zs! where zs1: mset sl = X1 using ez-mset by auto
obtain zs2 where zs2: mset zs2 = X2 using ezx-mset by auto
from zs! zs2 have mset (zs! Q zs2) = X1 + X2 by auto
from rel-mset-free[OF rel this] obtain ys
where ys: mset ys = Y list-all2 rel (zs1 Q zs2) ys by auto
then obtain ys1 ys2
where ys12: ys = ysl Q ys2
and zslysli: list-all2 rel xs1 ysl
and zs2ys2: list-all2 rel xs2 ys2
using list-all2-appendl by blast
from ys12 ys have Y = mset ys1 + mset ys2 by auto
moreover from xs! zs1ys! have rel-mset rel X1 (mset ys1) unfolding rel-mset-def
by auto
moreover from zs2 zs2ys2 have rel-mset rel X2 (mset ys2) unfolding rel-mset-def

68

by auto

ultimately show ?thesis by (subst exI[of - mset ys1], subst exl[of - mset
ys2],auto)
qed

lemma rel-mset-OO:
assumes AB: rel-mset R A B and BC': rel-mset S B C
shows rel-mset (R 00 S) A C
proof—
from AB obtain as bs where A-as: A = mset as and B-bs: B = mset bs and
as-bs: list-all2 R as bs
by (auto simp: rel-mset-def)
from rel-mset-free] OF BC] B-bs obtain cs where C-cs: C = mset cs and bs-cs:
list-all2 S bs cs
by auto
from list-all2-trans|OF - as-bs bs-cs, of R OO0 S] A-as C-cs
show ?thesis by (auto simp: rel-mset-def)
qed

lemma ex-mset-zip-right:
assumes length zs = length ys mset ys' = mset ys
shows Jzs’. length ys' = length xs’ N mset (zip xs’ ys') = mset (zip xs ys)
using assms
proof (induct zs ys arbitrary: ys' rule: list-induct2)
case Nil
thus ?case
by auto
next
case (Cons z zs y ys ys’)
obtain j where j-len: j < length ys’ and nth-j: ys'! j =y
by (metis Cons.prems in-set-conv-nth list.set-intros(1) mset-eq-setD)

define ysa where ysa = take j ys' @ drop (Suc j) ys’
have mset ys' = {#y#} + mset ysa
unfolding ysa-def using j-len nth-j
by (metis Cons-nth-drop-Suc union-mset-add-mset-right add-mset-remove-trivial
add-diff-cancel-left’
append-take-drop-id mset.simps(2) mset-append)
hence ms-y: mset ysa = mset ys
by (simp add: Cons.prems)
then obtain zsa where
len-a: length ysa = length zsa and ms-a: mset (zip xsa ysa) = mset (zip xs ys)
using Cons.hyps(2) by blast

define zs’ where zs’ = take j zsa @ x # drop j zsa
have ys': ys' = take j ysa Q y # drop j ysa
using ms-y j-len nth-j Cons.prems ysa-def
by (metis append-eg-append-conv append-take-drop-id diff-Suc-Suc Cons-nth-drop-Suc

69

length-Cons
length-drop size-mset)
have j-len’: j < length ysa
using j-len ys’ ysa-def
by (metis add-Suc-right append-take-drop-id length-Cons length-append less-eq-Suc-le
not-less)
have length ys' = length zs’
unfolding zs’-def using Cons.prems len-a ms-y
by (metis add-Suc-right append-take-drop-id length-Cons length-append mset-eq-length)
moreover have mset (zip zs' ys’) = mset (zip (z # xs) (y # ys))
unfolding ys’ xs’-def
apply (rule HOL.trans[OF mset-zip-take-Cons-drop-twice])
using j-len’ by (auto simp: len-a ms-a)
ultimately show ?case
by blast
qed

lemma list-all2-reorder-right-invariance:
assumes rel: list-all2 R xs ys and ms-y: mset ys’ = mset ys
shows Jxs’. list-all2 R xs’ ys’ A mset s’ = mset xs
proof —
have len: length xs = length ys
using rel list-all2-conv-all-nth by auto
obtain zs’ where
len”: length xs’ = length ys’ and ms-zy: mset (zip xs’ ys’) = mset (zip zs ys)
using len ms-y by (metis ex-mset-zip-right)
have list-all2 R zs’ ys'
using assms(1) len’ ms-zy unfolding list-all2-iff by (blast dest: mset-eg-setD)
moreover have mset xs’ = mset zs
using len len’ ms-zy map-fst-zip mset-map by metis
ultimately show “thesis
by blast
qed

lemma rel-mset-via-perm: rel-mset rel (mset xs) (mset ys) <— (I zs. mset zs =
mset zs A list-all2 rel zs ys)
proof (unfold rel-mset-def, intro iffI, goal-cases)
case I
then obtain zs ws where zs: mset zs = mset zs and ws: mset ws = mset ys
and zsws: list-all2 rel zs ws by auto
note list-all2-reorder-right-invariance[OF zsws ws[symmetric], unfolded zs]
then show ?Zcase by (auto dest: sym)
next
case 2
from this show ?case by force
qed

end
theory Unique-Fuactorization

70

imports

Polynomial-Interpolation. Ring-Hom-Poly
Polynomial-Factorization. Polynomial-Irreducibility
HOL— Combinatorics. Permutations
HOL— Computational-Algebra. Euclidean-Algorithm
Containers. Containers- Auziliary
More-Missing-Multiset
HOL—- Algebra. Divisibility

begin

hide-const(open)
Divisibility.prime
Diwisibility.irreducible

hide-fact(open)
Divisibility.irreducible-def
Divisibility.irreduciblel
Divisibility.irreducible D
Divisibility.irreducible B

hide-const (open) Rings.coprime

lemma irreducible-uminus [simp]:
fixes a::'a::idom
shows irreducible (—a) <— irreducible a
using irreducible-mult-unit-left[of —1::'a] by auto

context comm-monoid-mult begin

definition coprime :: 'a = 'a = bool
where coprime-def’: coprime p q =Vr. rdvd p — r dvd ¢ — 7 dvd 1

lemma coprimel:
assumes A\r. r dvd p = r dvd ¢ = r dvd 1
shows coprime p q using assms by (auto simp: coprime-def’)

lemma coprimek:
assumes coprime p q
and (Ar. r dvd p = r dvd ¢ = r dvd 1) = thesis
shows thesis using assms by (auto simp: coprime-def”)

lemma coprime-commute [ac-simps]:
coprime p q <— coprime q p
by (auto simp add: coprime-def’)

lemma not-coprime-iff-common-factor:

= coprime p g «— (Ir. rdvdp A rdvd ¢ AN - rdvd 1)
by (auto simp add: coprime-def’)

71

end

lemma (in algebraic-semidom) coprime-iff-coprime [simp, code]:
coprime = Rings.coprime
by (simp add: fun-eq-iff coprime-def coprime-def’)

lemma (in comm-semiring-1) coprime-0 [simp]:
coprime p 0 <— p dvd 1 coprime 0 p <— p dvd 1
by (auto intro: coprimel elim: coprimeFE dest: dvd-trans)

lemma dvd-rewrites: dvd.dvd ((x)) = (dvd) by (unfold dvd.dvd-def dvd-def, rule)

3.3 Interfacing UFD properties

hide-const (open) Divisibility.irreducible

context comm-monoid-mult-isom begin
lemma coprime-hom|[simp|: coprime (hom x) y' <— coprime z (Hilbert-Choice.inv
hom y)
proof—
show ?thesis by (unfold coprime-def’, fold ball-UNIV, subst surj[symmetric],
stmp)
qed
lemma coprime-inv-hom|[simp): coprime (Hilbert-Choice.inv hom z') y +— co-
prime x' (hom y)
proof—
interpret inv: comm-monoid-mult-isom Hilbert-Choice.inv hom..
show ?thesis by simp
qed
end

3.3.1 Original part

lemma dvd-dvd-imp-smult:
fixes p q :: 'a :: idom poly
assumes pq: p dvd ¢ and gp: q dvd p shows Jc. p = smult ¢ ¢
proof (cases p = 0)
case True then show ?thesis by auto
next
case Fulse
from ¢p obtain r where r: p = ¢ x r by (elim dvdE, auto)
with False qp have r0: r # 0 and ¢q0: ¢ # 0 by auto
with divides-degree| OF pq| divides-degree]OF gp| False
have degree p = degree q by auto
with r degree-mult-eq[OF q0 0] have degree r = 0 by auto
from degree-0-id[OF this] obtain ¢ where r = [:c:] by metis

72

from r[unfolded this| show ¢thesis by auto
qed

lemma dvd-const:
assumes pq: (p::'a::semidom poly) dvd q and ¢0: ¢ # 0 and degq: degree ¢ = 0
shows degree p = 0
proof—
from dvdE[OF pq] obtain r where x: ¢ = p * 7.
with g0 have p # 0 r # 0 by auto
from degree-mult-eq[OF this] degq * show degree p = 0 by auto
qged

context Rings.dvd begin
abbreviation ddvd (infix <ddvd> 40) where z ddvd y = = dvd y A y dvd z
lemma ddvd-sym[sym]: z ddvd y = y ddvd x by auto

end

context comm-monoid-mult begin

lemma ddvd-trans[trans]: x ddvd y = y ddvd z = = ddvd z using dvd-trans
by auto

lemma ddvd-transp: transp (ddvd) by (intro transpl, fact ddvd-trans)
end

context comm-semiring-1 begin

definition mset-factors where mset-factors F p =
F #{#} N (Vf. f €# F — drreducible f) A p = prod-mset F

lemma mset-factorsI[introl]:
assumes Af. f €# F = irreducible f and F # {#} and prod-mset F = p
shows mset-factors F p
unfolding mset-factors-def using assms by auto

lemma mset-factorsD:
assumes mset-factors F p
shows f €# F = irreducible f and F # {#} and prod-mset F = p
using assms[unfolded mset-factors-def] by auto

lemma mset-factorsE|elim]:
assumes mset-factors F p
and (Af. f €# F = idrreducible f) = F # {#} = prod-mset F = p —
thesis
shows thesis
using assms[unfolded mset-factors-def] by auto

lemma mset-factors-imp-not-is-unit:
assumes mset-factors F p
shows — p dvd 1

proof(cases F)

73

case empty with assms show %thesis by auto
next
case (add f F)
with assms have — fdvd 1 p = f * prod-mset F by (auto intro!: irreducible-not-unit)
then show ?thesis by auto
qed

definition primitive-poly where primitive-poly f =V d. (Vi. d dvd coeff f i) —
d dvd 1

end

lemma(in semidom) mset-factors-imp-nonzero:
assumes mset-factors F p
shows p # 0

proof
assume p = 0
moreover from assms have prod-mset F = p by auto
ultimately obtain f where f €# F' f = 0 by auto
with assms show Fualse by auto

qed

class ufd = idom +
assumes mset-factors-exist: Nz. © # 0 = — z dvd 1 = I F. mset-factors F z
and mset-factors-unique: Nz F G. mset-factors F x = mset-factors G x =

rel-mset (ddvd) F G

3.3.2 Connecting to HOL/Divisibility

context comm-semiring-1 begin

abbreviation mk-monoid = (carrier = UNIV — {0}, mult = (x), one = 1)
lemma carrier-0[simp|: © € carrier mk-monoid <— x # 0 by auto
lemmas mk-monoid-simps = carrier-0 monoid.simps
abbreviation irred where irred = Divisibility.irreducible mk-monoid
abbreviation factor where factor = Divisibility.factor mk-monoid
abbreviation factors where factors = Divisibility.factors mk-monoid
abbreviation properfactor where properfactor = Divisibility.properfactor mk-monoid
lemma factors: factors fs y «— prod-list fs = y N\ Ball (set fs) irred
proof —

have prod-list fs = foldr (%) fs 1 by (induct fs, auto)

thus ?thesis unfolding factors-def by auto
qged

lemma factor: factor x y «— (2. 2z # 0 A z x z = y) unfolding factor-def

74

by auto

lemma properfactor-nz:
shows (y :: 'a) # 0 = properfactor © y +— z dvd y A — y dvd
by (auto simp: properfactor-def factor-def dvd-def)

lemma mem-Units[simp: y € Units mk-monoid +— y dvd 1
unfolding dvd-def Units-def by (auto simp: ac-simps)

end

context idom begin

lemma irred-0[simp|: irred (0::'a) by (unfold Divisibility.irreducible-def, auto
stmp: factor properfactor-def)

lemma factor-idom[simp): factor (z::'a) y <+— (if y = 0 then © = 0 else z dvd

y)
by (cases y = 0; auto intro: exI[of - 1] elim: dvdE simp: factor)

lemma associated-connect[simpl: (~mk-monoid) = (ddvd) by (intro ext, unfold
associated-def, auto)

lemma essentially-equal-connect|simp]:
essentially-equal mk-monoid fs gs <+— rel-mset (ddvd) (mset fs) (mset gs)
by (auto simp: essentially-equal-def rel-mset-via-perm)

lemma irred-idom-nz:
assumes 20: (z::'a) # 0
shows irred © <— irreducible
using z0 by (auto simp: irreducible-altdef Divisibility.irreducible-def properfac-
tor-nz)

lemma dvd-dvd-imp-unit-mult:
assumes zy: = dvd y and yz: y dvd x
shows dz. zdvd 1 ANy =2 % 2
proof(cases x = 0)
case True with zy show ?thesis by (auto intro: exI[of - 1])
next
case z0: Fualse
from zy obtain z where z: y = z % z by (elim dvdE, auto)
from yz obtain w where w: x = y * w by (elim dvdE, auto)
from z w have z * (2 *x w) = x by (auto simp: ac-simps)
then have z x w = I using z0 by auto
with z show ?thesis by (auto intro: exlI|of - z])
qed

lemma irred-inner-nz:
assumes z0: z # 0

75

shows (Vb. bdvdz — -z dvdb — bdvd 1) «— Vab.z=a*xb— a
dvd 1V bdvd 1) (is 7l «— 7r)
proof (intro iffI alll impl)
assume [: 7]
fix a b
assume zab: ¢ = a * b
then have az: a dvd x and bzx: b dvd x by auto
{ assume al: - a dvd 1
with [az have za: x dvd a by auto
from dvd-dvd-imp-unit-mult[OF ax xa] obtain z where z1: z dvd 1 and zaz:
z = a * z by auto
from zab z0 have a # 0 by auto
with zab xaz have b = z by auto
with 21 have b dvd 1 by auto
}
then show a dvd 1 V b dvd 1 by auto
next
assume 7: 9r
fix b assume bz: b dvd x and zb: — z dvd b
then obtain ¢ where zab: z = a * b by (elim dvdE, auto simp: ac-simps)
with r consider a dvd 1 | b dvd 1 by auto
then show b dvd 1
proof (cases)
case 2 then show ?thesis by auto
next
case I
then obtain ¢ where acl: a x ¢ = 1 by (elim dvdE, auto)
from zab have z x ¢ = b * (a * ¢) by (auto simp: ac-simps)
with acl have z x ¢ = b by auto
then have z dvd b by auto
with zb show ?thesis by auto
qed
qed

lemma irred-idom[simp]: irred © <— z = 0 V irreducible x
by (cases x = 0; simp add: irred-idom-nz irred-inner-nz irreducible-def)

lemma assumes z # 0 and factors fs x and f € set fs shows f # 0
using assms by (auto simp: factors)

lemma factors-as-mset-factors:
assumes 20: ¢ # 0 and z1: z # 1
shows factors fs x «+— mset-factors (mset fs) x using assms
by (auto simp: factors prod-mset-prod-list)

end

context ufd begin

76

interpretation comm-monoid-cancel: comm-monoid-cancel mk-monoid::'a monoid
apply (unfold-locales)
apply simp-all
using mult-left-cancel
apply (auto simp: ac-simps)
done
lemma factors-ezist:
assumes a # 0
and — a dvd 1
shows T fs. set fs C UNIV — {0} A factors fs a
proof—
from mset-factors-exist|OF assms]
obtain F' where mset-factors F' a by auto
also from ez-mset obtain fs where F = mset fs by metis
finally have fs: mset-factors (mset fs) a.
then have factors fs a using assms by (subst factors-as-mset-factors, auto)
moreover have set fs C UNIV — {0} using fs by (auto elim!: mset-factorsE)
ultimately show ¢thesis by auto
qed

lemma factors-unique:
assumes fs: factors fs a
and gs: factors gs a
and a0: a # 0
and al: — a dvd 1
shows rel-mset (ddvd) (mset fs) (mset gs)
proof—
from al have a # 1 by auto
with a0 fs gs have mset-factors (mset fs) a mset-factors (mset gs) a by (unfold
factors-as-mset-factors)
from mset-factors-unique| OF this] show ?thesis.
qed

lemma factorial-monoid: factorial-monoid (mk-monoid :: 'a monoid)
by (unfold-locales; auto simp add: factors-exist factors-unique)

end

lemma (in idom) factorial-monoid-imp-ufd:
assumes factorial-monoid (mk-monoid :: 'a monoid)
shows class.ufd ((*) :: 'a = -) 1 (+) 0 (=) uminus
proof (unfold-locales)
interpret factorial-monoid mk-monoid :: 'a monoid by (fact assms)

{

fix z assume z: ¢ # 0 — = dvd 1

note * = factors-exist[simplified, OF this]

with z show 3 F. mset-factors F z by (subst(asm) factors-as-mset-factors,
auto)

}

77

fix z F G assume FG: mset-factors F © mset-factors G z
with mset-factors-imp-not-is-unit have z1: - = dvd 1 by auto
from F'G(1) have z0: x # 0 by (rule mset-factors-imp-nonzero)
obtain fs gs where fsgs: F = mset fs G = mset gs using ez-mset by metis
note FG = FGlunfolded this]
then have 0: 0 ¢ set fs 0 ¢ set gs by (auto elim!: mset-factorsE)
from z1 have z # 1 by auto
note FG[folded factors-as-mset-factors|OF z0 this]]
from factors-unique|OF this, simplified, OF xz0 1, folded fsgs] 0
show rel-mset (ddvd) F G by auto

qed

3.4 Preservation of Irreducibility

locale comm-semiring-1-hom = comm-monoid-mult-hom hom + zero-hom hom
for hom :: 'a :: comm-semiring-1 = 'b :: comm-semiring-1

locale irreducibility-hom = comm-semiring-1-hom +
assumes irreducible-imp-irreducible-hom: irreducible a = irreducible (hom a)
begin
lemma hom-mset-factors:
assumes F: mset-factors F p
shows mset-factors (image-mset hom F') (hom p)
proof (unfold mset-factors-def, intro congl alll impl)
from F show hom p = prod-mset (image-mset hom F) image-mset hom F #
{#} by (auto simp: hom-distribs)
fix f’ assume [’ €# image-mset hom F
then obtain f where f: f €# F and f'f: f' = hom f by auto
with F irreducible-imp-irreducible-hom show irreducible f’ unfolding f'f by
auto
qed
end

locale unit-preserving-hom = comm-semiring-1-hom +

assumes is-unit-hom-if: Az. hom z dvd 1 = z dvd 1
begin

lemma is-unit-hom-iff[simp]: hom z dvd 1 <— z dvd 1 using is-unit-hom-if
hom-dvd by force

lemma irreducible-hom-imp-irreducible:
assumes irr: irreducible (hom a) shows irreducible a
proof (intro irreduciblel)
from irr show a # 0 by auto
from érr show — a dvd 1 by (auto dest: irreducible-not-unit)
fix b c assume a = b * ¢
then have hom a = hom b *x hom ¢ by (simp add: hom-distribs)
with ¢rr have hom b dvd 1 V hom ¢ dvd 1 by (auto dest: irreducibleD)
then show b dvd 1 V ¢ dvd 1 by simp
qed

78

end

locale factor-preserving-hom = unit-preserving-hom + irreducibility-hom
begin
lemma irreducible-hom[simp)|: irreducible (hom a) +— irreducible a
using irreducible-hom-imp-irreducible irreducible-imp-irreducible-hom by metis
end

lemma factor-preserving-hom-comp:
assumes f: factor-preserving-hom f and g: factor-preserving-hom g
shows factor-preserving-hom (f o g)
proof—
interpret f: factor-preserving-hom f by (rule f)
interpret g: factor-preserving-hom g by (rule g)
show ?thesis by (unfold-locales, auto simp: hom-distribs)
qed

context comm-semiring-isom begin
sublocale unit-preserving-hom by (unfold-locales, auto)
sublocale factor-preserving-hom
proof (standard)
fix a:'a
assume irreducible a
note a = this[unfolded irreducible-def]
show irreducible (hom a)
proof (rule ccontr)
assume - irreducible (hom a)
from this[unfolded Factorial-Ring.irreducible-def simplified] a
obtain hb hc where eq: hom a = hb x hc and nu: = hb dvd 1 — hc dvd 1
by auto
from bij obtain b where hb: hb = hom b by (elim bij-pointE)
from bij obtain ¢ where hc: he = hom ¢ by (elim bij-pointE)
from eg[unfolded hb he, folded hom-mult] have a = b x ¢ by auto
with nu hb hc have a = b * ¢ = b dvd 1 — ¢ dvd 1 by auto
with a show Fulse by auto
qed
qged
end

3.4.1 Back to divisibility

lemmal(in comm-semiring-1) mset-factors-mult:
assumes F: mset-factors F a
and G: mset-factors G b
shows mset-factors (F4+G) (axb)
proof (intro mset-factorsI)
fix f assume f €# F + G
then consider f €# F | f €# G by auto
then show irreducible f by(cases, insert F' G, auto)

79

qed (insert F' G, auto)

lemma(in ufd) dvd-imp-subset-factors:
assumes ab: a dvd b
and F: mset-factors F a
and G: mset-factors G b

shows 3G’. G' C# G A rel-mset (ddvd) F G’
proof—

from F G have a0: a # 0 and b0: b # 0 by (simp-all add: mset-factors-imp-nonzero)
from ab obtain ¢ where c¢: b = a * ¢ by (elim dvdE, auto)
with 0 have c0: ¢ # 0 by auto
show ?thesis
proof(cases ¢ dvd 1)
case True
show ?thesis
proof(cases F)
case empty with F' show ?thesis by auto
next
case (add f F')
with F
have a: f * prod-mset F' = a
and F": \f. f €# F' = irreducible f
and irrf: irreducible f by auto

from irrf have f0: f # 0 and f1: —f dvd 1 by (auto dest: irre-
ducible-not-unit)

from a ¢ have (f % ¢) * prod-mset F’' = b by (auto simp: ac-simps)
moreover {

have irreducible (f * ¢) using True irrf by (subst irreducible-mult-unit-right)
with F' irrf have Nf'. f' €# F' + {#f * c#} = irreducible f' by

auto
}
ultimately have mset-factors (F' + {#f * c#}) b by (intro mset-factorsl,
auto)
from mset-factors-unique| OF this G|
have F'G: rel-mset (ddvd) (F' + {#f * c¢#}) G.
from True add have FF' rel-mset (ddvd) F (F' + {#f * c#})
by (auto simp add: multiset.rel-refl introl: rel-mset-Plus)
have rel-mset (ddvd) F G
apply (rule transpD[OF multiset.rel-transp| OF transpl] FF' F'G])
using ddvd-trans.
then show f%thesis by auto
qed
next

case Fulse

from mset-factors-exist|OF c0 this| obtain H where H: mset-factors H c
by auto

from ¢ mset-factors-mult[OF F H] have mset-factors (F + H) b by auto
note mset-factors-unique[OF this G]
from rel-mset-split[OF this] obtain G1 G2

80

where G = G1 + G2 rel-mset (ddvd) F G1 rel-mset (ddvd) H G2 by auto
then show ?2thesis by (intro exI[of - G1], auto)
qed
qed

lemma(in idom) irreducible-factor-singleton:
assumes a: irreducible a
shows mset-factors F a +— F = {#a#}
proof(cases F)
case empty with mset-factorsD show ?thesis by auto
next
case (add f F')
show ?thesis
proof
assume F: mset-factors F a
from add mset-factorsD|OF F| have x: a = f * prod-mset F' by auto
then have fa: f dvd a by auto
from x a have f0: f # 0 by auto
from add have f €# F by auto
with F have f: irreducible f by auto
from add have F’' C# F by auto
then have unitemp: prod-mset F' dvd 1 = F' = {#}
proof (induct F')
case empty then show ?case by auto
next
case (add f F')
from add have f €# F by (simp add: mset-subset-eg-insertD)
with F irreducible-not-unit have — f dvd 1 by auto
then have — (prod-mset F' = f) dvd 1 by simp
with add show ?case by auto
qed
show F = {#a#}
proof(cases a dvd f)
case True
then obtain r where f = a x r by (elim dvdE, auto)
with x have f = (r x prod-mset F') x f by (auto simp: ac-simps)
with f0 have r * prod-mset F' = 1 by auto
then have prod-mset F' dvd 1 by (metis dvd-triv-right)
with unitemp * add show ?thesis by auto
next
case Fulse with fa a f show ?thesis by (auto simp: irreducible-altdef)
qed
qed (insert a, auto)
qed

lemmal(in ufd) irreducible-dvd-imp-factor:
assumes ab: a dvd b
and a: irreducible a

81

and G: mset-factors G b

shows 3¢ €# G. a ddvd ¢

proof—
from o have mset-factors {#a#} a by auto
from dvd-imp-subset-factors|OF ab this G]
obtain G’ where G'G: G’ C# G and rel: rel-mset (ddvd) {#a#} G’ by auto
with rel-mset-size size-1-singleton-mset size-single
obtain g where ¢G": G' = {#g+#} by fastforce
from rel[unfolded this rel-mset-def]
have a ddvd g by auto
with ¢gG’' G'G show ?thesis by auto

qed

lemma(in idom) prod-mset-remove-units:

prod-mset F ddvd prod-mset {# f €# F. =f dvd 1 #}
proof (induct F)

case (add f F) then show ?case by (cases f = 0, auto)
qed auto

lemmal(in comm-semiring-1) mset-factors-imp-dvd:
assumes mset-factors F ¢ and f €# F shows f dvd x
using assms by (simp add: dvd-prod-mset mset-factors-def)

lemmal(in ufd) prime-elem-iff-irreducible[iff]:
prime-elem © <— irreducible
proof (intro iffI, fact prime-elem-imp-irreducible, rule prime-elemlI)
assume r: irreducible x
then show z0: z # 0 and z1: = = dvd 1 by (auto dest: irreducible-not-unit)
from drreducible-factor-singleton| OF r]
have *: mset-factors {#x#} z by auto
fix a b
assume z dvd a x b
then obtain ¢ where abzc: a x b = z x ¢ by (elim dvdE, auto)
show z dvd a V = dvd b
proof(cases c =0V a=0V b=0)
case True with abzc show ?thesis by auto
next
case Fulse
then have a0: a # 0 and b0: b # 0 and c0: ¢ # 0 by auto
from 20 c0 have zc0: xz * ¢ # 0 by auto
from z1 have zcl: = x % ¢ dvd 1 by auto
show ?thesis
proof (cases a dvd 1 V b dvd 1)
case Fulse
then have al: = a dvd 1 and b1: = b dvd 1 by auto
from mset-factors-exist|OF a0 al]
obtain F where Fu: mset-factors F a by auto
then have F0: F # {#} by auto
from mset-factors-exist|OF b0 b1]

82

obtain G where Gb: mset-factors G b by auto
then have G0: G # {#} by auto
from mset-factors-mult|OF Fa Gb)
have FGzc: mset-factors (F + G) (z * ¢) by (simp add: abzc)
show ?Zthesis
proof (cases ¢ dvd 1)
case True
from r érreducible-mult-unit-right| OF this] have irreducible (zxc) by simp
note irreducible-factor-singleton| OF this] FGxc
with F0 G0 have Fulse by (cases F; cases G; auto)
then show ?thesis by auto
next
case Fulse
from mset-factors-exist|OF c0 this] obtain H where mset-factors H ¢ by
auto
with x have xHzc: mset-factors (add-mset x H) (x % ¢) by force
note rel = mset-factors-unique| OF this FGxc]
obtain hs where mset hs = H using ex-mset by auto
then have mset (z#hs) = add-mset © H by auto
from rel-mset-free[OF rel this]
obtain jjs where jjsGH: mset jjs = F + G and rel: list-all2 (ddvd) (x #
hs) jjs by auto
then obtain j js where jjs: jjs = j # js by (cases jjs, auto)
with rel have xzj: = ddvd j by auto
from jjs jjsGH have j: j € set-mset (F' + G) by (intro union-single-eq-member,
auto)
from j consider j €# F | j €# G by auto
then show ?thesis
proof (cases)
case I
with Fa have j dvd a by (auto intro: mset-factors-imp-dvd)
with zj dvd-trans have z dvd a by auto
then show ¢thesis by auto
next
case 2
with Gb have j dvd b by (auto intro: mset-factors-imp-dvd)
with zj dvd-trans have z dvd b by auto
then show ?thesis by auto
qed
qed
next
case True
then consider a dvd 1 | b dvd 1 by auto
then show ?thesis
proof (cases)
case I
then obtain d where ad: a x d = 1 by (elim dvdE, auto)
from abzc have = x (¢ * d) = a * b *x d by (auto simp: ac-simps)
also have ... = a x d x b by (auto simp: ac-simps)

83

finally have z dvd b by (intro dvdl, auto simp: ad)
then show ?thesis by auto

next
case 2
then obtain d where bd: b x d = 1 by (elim dvdE, auto)
from abzc have = x (¢ * d) = a * b *x d by (auto simp: ac-simps)
also have ... = (b x d) * a by (auto simp: ac-simps)
finally have z dvd a by (intro dvdl, auto simp:bd)
then show ?thesis by auto

qed

qed
qed
qed

3.5 Results for GCDs etc.

lemma prod-list-removel: (z :: 'b :: comm-monoid-mult) € set xs = prod-list
(removel x xs) * x = prod-list xs
by (induct zs, auto simp: ac-simps)

class comm-monoid-gcd = ged + comm-semiring-1 +
assumes gcd-dvd1 [iff]: ged a b dvd a
and gcd-dvd2][iff]: ged a b dvd b
and gcd-greatest: ¢ dvd a = ¢ dvd b = ¢ dvd gcd a b
begin

lemma ged-0-0[simp]: ged 0 0 = 0
using ged-greatest| OF dvd-0-right dvd-0-right, of 0] by auto

lemma ged-zero-iff [simp]: ged a b= 0 +— a=0ANb=0

proof
assume gcd a b = 0
from gcd-dvdl1[of a b, unfolded this] ged-dvd2[of a b, unfolded this]
show a = 0 A b = 0 by auto

qged auto

lemma ged-zero-iff '[simp]: 0 = gedab+— a=0 ANb= 0
using gcd-zero-iff by metis

lemma dvd-gcd-0-iff [simp]:
shows z dvd gcd 0 a <— x dvd a (is ?g1)
and z dvd ged o 0 <— z dvd o (is ?¢2)
proof—
have a dvd ged a 0 a dvd ged 0 a by (auto intro: ged-greatest)
with dvd-refl show ?g1 292 by (auto dest: dvd-trans)
qed

lemma ged-dvd-1[simp]: ged a b dvd 1 +— coprime a b

84

using dvd-trans[OF ged-greatest|of - a b], of - 1]
by (cases a = 0 A b = 0) (auto introl: coprimel elim: coprimeFE)

lemma dvd-imp-gcd-dvd-ged: b dvd ¢ => ged a b dvd ged a ¢
by (meson ged-dvdl ged-dvd2 ged-greatest dvd-trans)

definition listged :: ‘a list = 'a where
listged xs = foldr ged xs 0

lemma listged-simps[simp): listged [| = 0 listged (x # xs) = ged x (listged xs)
by (auto simp: listged-def)

lemma listged: © € set vs = listged s dvd x
proof (induct xs)
case (Cons y ys)
show ?case
proof (cases T = y)
case Fulse
with Cons have dvd: listged ys dvd © by auto
thus “thesis unfolding listgcd-simps using dvd-trans by blast
next
case True
thus ?thesis unfolding listged-simps using dvd-trans by blast
qed
qed simp

lemma listged-greatest: (\ z. x € set s = y dvd) = y dvd listged xs
by (induct xzs arbitrary:y, auto intro: ged-greatest)

end

context Rings.dvd begin

definition is-gcd x a b=z dvd a ANz dod b A (Vy. y dvd a — y dvd b — gy
dvd)

definition some-gcd a b = SOME z. is-ged x a b

lemma is-gcdl [intro!]:
assumes z dvd a z dvd b N\y. y dvd a = y dvd b = y dvd z
shows is-gcd x a b by (insert assms, auto simp: is-gcd-def)

lemma is-gcdE[elim!]:
assumes is-gcd T a b
and z dvd a = = dvd b = (A\y. y dvd a = y dvd b = y dvd z) =
thesis
shows thesis by (insert assms, auto simp: is-gcd-def)

85

lemma is-gcd-some-gedl:
assumes Jz. is-ged x a b shows is-ged (some-ged a b) a b
by (unfold some-ged-def, rule somel-ex[OF assms])

end
context comm-semiring-1 begin

lemma some-gcd-0[introl]: is-ged (some-ged a 0) a 0 is-ged (some-ged 0 b) 0b
by (auto intro!: is-ged-some-gedl intro: exl|of - a] exI[of - b])

lemma some-gcd-0-dvd]introl]:
some-gcd a 0 dvd a some-ged 0 b dvd b using some-ged-0 by auto

lemma dvd-some-gcd-0[introl]:
a dvd some-ged a 0'b dvd some-ged 0 b using some-ged-0|[of a] some-ged-0]of
b] by auto

end
context idom begin

lemma is-gcd-connect:
assumes a # 0 b # 0 shows isged mk-monoid © a b <— is-gcd x a b
using assms by (force simp: isged-def)

lemma some-gcd-connect:
assumes a # 0 and b # 0 shows someged mk-monoid a b = some-gcd a b
using assms by (auto introl: arg-cong|of - - Eps| simp: is-gcd-connect some-ged-def
somegcd-def)
end

context comm-monoid-gcd
begin

lemma is-gcd-ged: is-ged (ged a b) a b using ged-greatest by auto

lemma is-ged-some-ged: is-ged (some-ged a b) a b by (insert is-ged-ged, auto
introl: is-gcd-some-gedl)

lemma gcd-dvd-some-ged: ged a b dvd some-ged a b using is-ged-some-ged by
auto

lemma some-gcd-dvd-ged: some-ged a b dvd ged a b using is-ged-some-ged by
(auto intro: gcd-greatest)

lemma some-gcd-ddvd-ged: some-ged a b ddvd ged a b by (auto intro: ged-dvd-some-ged
some-ged-dvd-ged)

lemma some-gcd-dvd: some-ged a b dvd d <— ged a b dvd d d dvd some-ged a b
< d dvd gcd a b

using some-gcd-ddvd-ged|of a b] by (auto dest:dvd-trans)

end

86

class idom-gcd = comm-monoid-ged + idom
begin

interpretation raw: comm-monoid-cancel mk-monoid :: 'a monoid
by (unfold-locales, auto intro: mult-commute mult-assoc)

interpretation raw: gcd-condition-monoid mk-monoid :: 'a monoid
by (unfold-locales, auto simp: is-gcd-connect intro: exI[of - ged - -] dest:
gcd-greatest)

lemma gcd-mult-ddvd:
d * ged a b ddvd ged (d % a) (d = b)
proof (cases d = 0)
case True then show ?thesis by auto
next
case d0: Fulse
show ?thesis
proof (cases a =0V b= 0)
case Fulse
note some-ged-ddvd-ged|of a b]
with d0 have d % gcd a b ddvd d * some-ged a b by auto
also have d * some-gcd a b ddvd some-ged (d x a) (d * b)
using False d0 raw.ged-mult by (simp add: some-ged-connect)
also note some-gcd-ddvd-gcd
finally show ?Zthesis.
next
case True
with d0 show ?thesis
apply (elim disjE)
apply (rule ddvd-trans[of - d = b]; force)
apply (rule ddvd-trans[of - d = a]; force)
done
qed
qed

lemma gcd-greatest-mult: assumes cad: ¢ dvd a x d and cbd: ¢ dvd b % d
shows ¢ dvd ged a b % d

proof—
from gcd-greatest[OF assms] have c: ¢ dvd ged (d % a) (d % b) by (auto simp:

ac-simps)

note ged-mult-ddvd[of d a b]
then have ged (d * a) (d * b) dvd ged a b * d by (auto simp: ac-simps)
from dvd-trans|OF c this| show ?thesis .

qed

lemma listgcd-greatest-mult: (N\ z = 'a. € set xs = y dvd © * z) = y dvd
listged xs * z
proof (induct xs)
case (Cons z zs)

87

from Cons have y dvd = * z y dvd listgcd zs * z by auto
thus ?case unfolding listgcd-simps by (rule gcd-greatest-mult)
qed (simp)

lemma dvd-factor-mult-gcd:

assumes dvd: k dvd p x gk dvd p x r
and ¢0: ¢ # 0 and 70: v # 0

shows k dvd p x ged q r

proof —
from dvd ged-greatest[of k p x ¢ p * 7]
have k dvd ged (p = q) (p x) by simp
also from gcd-mult-ddvd[of p q 7]
have ... dvd (p * ged q r) by auto
finally show ?thesis .

qed

lemma coprime-mult-cross-dvd:
assumes coprime: coprime p q and eq: p’ * p = q' * g
shows p dvd ¢’ (is ?g1) and ¢ dvd p’ (is ?¢2)
proof (atomize(full), cases p = 0 V q¢ = 0)
case True
then show %91 A 292
proof
assume p0: p = 0 with coprime have g dvd 1 by auto
with eq p0 show ?thesis by auto
next
assume q0: ¢ = 0 with coprime have p dvd 1 by auto
with eq q0 show ?thesis by auto
qed
next
case False
{
fixpgrp' ¢ :'a
assume cop: coprime p qand eq: p' x p = ¢’ * qand p: p # 0 and ¢: ¢ # 0
and r: v dvud p r dvd q
let ?gcd = ged q p
from eq have p’ x p dvd ¢’ * ¢ by auto
hence dI: p dvd ¢’ * q by (rule dvd-mult-right)
have d2: p dvd q' x p by auto
from dvd-factor-mult-ged[OF d1 d2 q p] have 1: p dvd q’ x ?ged .
from ¢ p have 2: ?gcd dvd q by auto
from ¢ p have 3: ?gcd dvd p by auto
from coplunfolded coprime-def’, rule-format, OF 3 2] have ?gcd dvd 1 .
from 1 dvd-mult-unit-iff[OF this] have p dvd ¢’ by auto
} note main = this
from main[OF coprime eq,of 1] False coprime coprime-commute main|OF -
eq[symmetric], of 1]
show 291 A 292 by auto
qed

88

end
subclass (in ring-gcd) idom-ged by (unfold-locales, auto)

lemma coprime-rewrites: comm-monoid-mult.coprime ((x)) 1 = coprime
apply (intro ext)
apply (subst comm-monoid-mult.coprime-def”)
apply (unfold-locales)
apply (unfold dvd-rewrites)
apply (fold coprime-def’) ..

PRy

locale gcd-condition =
fixes ty :: 'a :: idom itself
assumes gcd-exists: Na b :: 'a. Jx. is-ged T a b
begin
sublocale idom-ged (%) 1 :: 'a (+) 0 (=) wminus some-gcd
rewrites dvd.dvd ((x)) = (dvd)
and comm-monoid-mult.coprime ((x)) 1 = Unique-Factorization.coprime
proof—
have is-gcd (some-ged a b) a b for a b :: 'a by (intro is-gcd-some-gedI ged-exists)
from this[unfolded is-gcd-def)
show class.idom-ged (%) (1 :: 'a) (+) 0 (=) uminus some-ged by (unfold-locales,
auto simp: dvd-rewrites)
qed (simp-all add: dvd-rewrites coprime-rewrites)
end

instance semiring-gcd C comm-monoid-gcd by (intro-classes, auto)

lemma listgced-connect: listged = ged-list
proof (intro ext)

fix zs :: 'a list

show listgced xs = ged-list xs by (induct xs, auto)
qed

interpretation some-ged: ged-condition TYPE('a::ufd)
proof (unfold-locales, intro exl)
interpret factorial-monoid mk-monoid :: 'a monoid by (fact factorial-monoid)
note d = dvd.dvd-def some-gcd-def carrier-0
fixab:'a
show is-ged (some-ged a b) a b
proof (cases a =0V b= 0)
case True
thus ?thesis using some-gcd-0 by auto
next
case Fulse
with gcdof-exists[of a b]
show ?thesis by (auto intro!: is-gcd-some-gedI simp add: is-ged-connect some-ged-connect)

89

qed
qed

lemma some-gcd-listged-dvd-listged: some-gced.listged xs dvd listged xs
by (induct zs, auto simp:some-gcd-dvd intro:dvd-imp-ged-dvd-ged)

lemma listgced-dvd-some-ged-listged: listged xs dvd some-ged.listged xs
by (induct zs, auto simp:some-gcd-dvd intro:dvd-imp-ged-dvd-ged)

context factorial-ring-gcd begin

Do not declare the following as subclass, to avoid conflict in field C
ged-condition vs. factorial-ring-gcd C ged-condition.

sublocale as-ufd: ufd
proof (unfold-locales, goal-cases)
case (I x)
from prime-factorization-exists|OF <z # 03]
obtain F where f: \f. f €# F = prime-elem f
and Fz: normalize (prod-mset F') = normalize x by auto
from associatedE2[OF Fz] obtain u where u: is-unit w x = u * prod-mset F
by blast
from «— is-unit z» Fx have F # {#} by auto
then obtain g G where F: F = add-mset g G by (cases F, auto)
then have g €# F by auto
with f[OF this|prime-elem-iff-irreducible
irreducible-mult-unit-left| OF unit-factor-is-unit[OF «x # 0]
have g: irreducible (u * g) using u(1)
by (subst irreducible-mult-unit-left) simp-all
show ?case
proof (intro exI conjl mset-factorsl)
show prod-mset (add-mset (u x g) G) = x
using <z # 0> by (simp add: F ac-simps u)
fix f assume f €# add-mset (u x g) G
with flunfolded F] g prime-elem-iff-irreducible
show irreducible f by auto
qged auto
next
case (2 z F Q)
note transpD|OF multiset.rel-transp| OF ddvd-transp],trans]
obtain fs where F: F = mset fs by (metis ex-mset)
have list-all2 (ddvd) fs (map normalize fs) by (intro list-all2-all-nthl, auto)
then have FH: rel-mset (ddvd) F (image-mset normalize F') by (unfold rel-mset-def
F, force)
also
have FG: image-mset normalize F = image-mset normalize G
proof (intro prime-factorization-unique’’)
from 2 have zF: x = prod-mset F and zG: x = prod-mset G by auto
from zF have normalize © = normalize (prod-mset (image-mset normalize F))
by (simp add: normalize-prod-mset-normalize)

90

with 2G have nFG: ... = normalize (prod-mset (image-mset normalize G))
by (simp-all add: normalize-prod-mset-normalize)
then show normalize (] i€#image-mset normalize F. i) =
normalize ([| i€#image-mset normalize G. 7) by auto
next
from 2 prime-elem-iff-irreducible have f €# F — prime-elem f g €# G =
prime-elem g for f g
by (auto intro: prime-eleml)
then show Multiset. Ball (image-mset normalize F) prime
Multiset. Ball (image-mset normalize G) prime by auto
qed
also
obtain gs where G: G = mset gs by (metis ez-mset)
have list-all2 ((ddvd)~'~1) gs (map normalize gs) by (intro list-all2-all-nthl,
auto)
then have rel-mset (ddvd) (image-mset normalize G) G
by (subst multiset.rel-flip[symmetric], unfold rel-mset-def G, force)
finally show ?Zcase.
qed

end

instance int :: ufd by (intro ufd.intro-of-class as-ufd.ufd-axioms)
instance int :: idom-ged by (intro-classes, auto)

instance field C ufd by (intro-classes, auto simp: dvd-field-iff)

end

4 Unique Factorization Domain for Polynomials

In this theory we prove that the polynomials over a unique factorization
domain (UFD) form a UFD.

theory Unique-Fuactorization-Poly

imports
Unique-Factorization
Polynomial-Factorization. Missing- Polynomial-Factorial
Subresultants. More-Homomorphisms
HOL— Computational-Algebra. Field-as-Ring

begin

hide-const (open) module.smult
hide-const (open) Divisibility.irreducible

instantiation fract :: (idom) {normalization-euclidean-semiring, euclidean-ring}
begin

definition [simp]: normalize-fract = (normalize-field :: 'a fract = -)

91

definition [simp]: unit-factor-fract = (unit-factor-field :: 'a fract = -)
definition [simp]: euclidean-size-fract = (euclidean-size-field :: 'a fract = -)
definition [simp]: modulo-fract = (mod-field :: 'a fract = -)

instance by standard (simp-all add: dvd-field-iff divide-simps)
end

instantiation fract :: (idom) euclidean-ring-gcd
begin

definition gcd-fract :: 'a fract = 'a fract = ’'a fract where
gcd-fract = Euclidean-Algorithm. ged

definition lcm-fract :: 'a fract = 'a fract = 'a fract where
lem-fract = Fuclidean-Algorithm.lem

definition Gcd-fract :: 'a fract set = 'a fract where
Ged-fract = FEuclidean-Algorithm. Ged

definition Lem-fract :: 'a fract set = 'a fract where
Lem-fract = FEuclidean-Algorithm. Lem

instance
by (standard, simp-all add: gcd-fract-def lem-fract-def Ged-fract-def Lem-fract-def)

end

instantiation fract :: (idom) unique-euclidean-ring
begin

definition [simp]: division-segment-fract (z :: 'a fract) = (1 :: 'a fract)

instance by standard (auto split: if-splits)
end

instance fract :: (idom) field-ged by standard auto

definition divides-ff :: 'a::idom fract = 'a fract = bool
where divides-ffx y =3 r. y = x % to-fract r

lemma [ff-list-pairs:

3 zs. X = map (X (z,y). Fraction-Field.Fract © y) s N 0 ¢ snd * set xs
proof (induct X)

case (Cons a X)

from Cons(1) obtain zs where X: X = map (A (z,y). Fraction-Field.Fract x
y) xs and zs: 0 ¢ snd ‘ set zs

by auto

obtain z y where a: a = Fraction-Field.Fract x y and y: y # 0 by (cases a,

auto)

92

show ?case unfolding X a using zs y
by (intro exl|of - (z,y) # zs], auto)
qed auto

lemma divides-ff-to-fract[simp|: divides-ff (to-fract x) (to-fract y) +— z dvd y
unfolding divides-ff-def dvd-def
by (simp add: to-fract-def eq-fract(1) mult.commute)

lemma
shows divides-ff-mult-cancel-left|simp): divides-ff (z * z) (z * y) +— 2 =0V
divides-ff x y
and divides-ff-mult-cancel-right[simp|: divides-ff (z % z) (y * 2) «— 2z =0V
divides-ff x y
unfolding divides-ff-def by auto

definition gcd-ff-list :: 'a::ufd fract list = 'a fract = bool where
ged-ff-list X g = (
(V z € set X. divides-ff g) A
(V d. (V z € set X. divides-ff d x) — divides-ff d g))

lemma ged-ff-list-exists: 3 g. ged-ff-list (X :: 'a::ufd fract list) g
proof —
interpret some-gcd: idom-ged (x) 1 :: 'a (+) 0 (=) uminus some-ged
rewrites dvd.dvd ((x)) = (dvd) by (unfold-locales, auto simp: dvd-rewrites)
from ff-list-pairs[of X] obtain zs where X: X = map (X (z,y). Fraction-Field.Fract
zYy) xS
and zs: 0 ¢ snd ‘ set xs by auto
define r where r = prod-list (map snd xs)
have r: r # 0 unfolding r-def prod-list-zero-iff using xs by auto
define ys where ys = map (A (z,y). x * prod-list (removel y (map snd zs))) xs
{
fix ¢
assume i < length X
hence i: i < length s unfolding X by auto
obtain z y where zsi: zs ! i = (z,y) by force
with ¢ have (z,y) € set zs unfolding set-conv-nth by force
hence y-mem: y € set (map snd xzs) by force
with xs have y: y # 0 by force
from ¢ have idl: ys ! i = z * prod-list (removel y (map snd zs)) unfolding
ys-def using zsi by auto
from ¢ xzsi have id2: X ! ¢ = Fraction-Field.Fract x y unfolding X by auto
have Ip: prod-list (removel y (map snd xs)) * y = r unfolding r-def
by (rule prod-list-removel [OF y-mem])
have ys ! i € set ys using i unfolding ys-def by auto
moreover have to-fract (ys ! i) = to-fract r x (X ! 9)
unfolding id1 id2 to-fract-def mult-fract
by (subst eq-fract(1), force, force simp: y, simp add: Ip)
ultimately have ys | ¢ € set ys to-fract (ys ! i) = to-fract r * (X ! 7).
} note ys = this

93

define G where G = some-gcd.listged ys
define g where g = to-fract G x Fraction-Field.Fract 1 r
have len: length X = length ys unfolding X ys-def by auto
show ?thesis
proof (rule exI[of - g, unfold gcd-ff-list-def, intro balll conjl implI alll)
fix z
assume z € set X
then obtain ¢ where i: i < length X and z: £ = X ! ¢ unfolding set-conv-nth
by auto
from ys[OF] have id: to-fract (ys ! i) = to-fract r x «
and ysi: ys | ¢ € set ys unfolding z by auto
from some-ged.listged| OF ysi] have G dvd ys ! i unfolding G-def .
then obtain d where ysi: ys | i = G * d unfolding dvd-def by auto
have to-fract d * (to-fract G x Fraction-Field.Fract 1 r) = z * (to-fract r *
Fraction-Field.Fract 1 1)
using id[unfolded ysi]
by (simp add: ac-simps)
also have ... = z using r unfolding to-fract-def by (simp add: eq-fract
One-fract-def)
finally have to-fract d * (to-fract G * Fraction-Field.Fract 1 r) = x by simp
thus divides-ff g x unfolding divides-ff-def g-def
by (intro exI|of - d], auto)
next
fix d
assume YV € set X. divides-ff d «
hence Ball (A z. to-fract r x z) ‘ set X) (divides-ff (to-fract r x d)) by simp
also have (A z. to-fract r * x) ‘ set X = to-fract * set ys
unfolding set-conv-nth using ys len by force
finally have dvd: Ball (set ys) (X y. divides-ff (to-fract r * d) (to-fract y)) by
auto
obtain nd dd where d: d = Fraction-Field.Fract nd dd and dd: dd # 0 by
(cases d, auto)
{
fix y
assume y € set ys
hence divides-ff (to-fract r x d) (to-fract y) using dvd by auto
from this[unfolded divides-ff-def d to-fract-def mult-fract]
obtain ra where Fraction-Field.Fract y 1 = Fraction-Field.Fract (r x nd *
ra) dd by auto
hence y * dd = ra % (r * nd) by (simp add: eg-fract dd)
hence r * nd dvd y * dd by auto
}
hence r * nd dvd some-gcd.listged ys x dd by (rule some-gcd.listged-greatest-mult)
hence divides-ff (to-fract r x d) (to-fract G) unfolding to-fract-def d mult-fract
G-def divides-ff-def by (auto simp add: eq-fract dd dvd-def)
also have to-fract G = to-fract r * g unfolding g-def using r
by (auto simp: to-fract-def eq-fract)
finally show divides-ff d g using r by simp
qed

94

qed

definition some-gcd-ff-list :: 'a :: ufd fract list = 'a fract where
some-ged-ff-list xs = (SOME g. gcd-ff-list xs g)

lemma some-ged-ff-list: ged-ff-list xs (some-ged-ff-list xs)
unfolding some-ged-ff-list-def using ged-[f-list-exists|of xs]
by (rule somel-ex)

lemma some-ged-ff-list-divides: © € set xs => divides-ff (some-ged-[f-list xs) x
using some-gcd-ff-list[of zs] unfolding gcd-ff-list-def by auto

lemma some-gced-ff-list-greatest: (Vx € set zs. divides-ff d ©) — divides-ff d
(some-gced-ff-list xs)
using some-gcd-ff-list|of xs] unfolding gcd-ff-list-def by auto

lemma divides-ff-refl[simp|: divides-ff x ©
unfolding divides-ff-def
by (rule exI|of - 1], auto simp: to-fract-def One-fract-def)

lemma divides-ff-trans:
divides-ff x y = divides-ff y z = divides-ff x© z
unfolding divides-ff-def
by (auto simp del: to-fract-hom.hom-mult simp add: to-fract-hom.hom-mult[symmetric])

lemma divides-ff-mult-right: o # 0 = divides-ff (z * inverse a) y = divides-ff
z (a * y)

unfolding divides-ff-def divide-inverse[symmetric] by auto

definition eg-dff :: ‘a :: ufd fract = 'a fract = bool (infix <=dff» 50) where
x =dff y «— divides-ff v y N\ divides-ff y

lemma eq-dffI[intro): divides-ff x y = divides-ff y x = z =dff y
unfolding eq-dff-def by auto

lemma eg-dff-refl[simp): x =dff =
by (intro eq-dffI, auto)

lemma eg-dff-sym: v =dff y = y =dff * unfolding eq-dff-def by auto

lemma eq-dff-trans(trans]: = =dff y = y =dff z = z =dff 2
unfolding eq-dff-def using divides-ff-trans by auto

lemma eq-dff-cancel-right[simp]: © x y =dff x z +— = 0 V y =dff 2z
unfolding eq-dff-def by auto

lemma eg-dff-mult-right-trans(trans]: © =dff y x z = z =dff u = z =dff y * u
using eq-dff-trans by force

95

lemma some-gcd-ff-list-smult: a # 0 => some-gcd-ff-list (map ((x) a) zs) =dff a
x some-gcd-ff-list xs
proof
let ?g = some-ged-ff-list (map ((x) a) zs)
show divides-ff (a * some-ged-ff-list xs) g
by (rule some-ged-ff-list-greatest, insert some-ged-ff-list-divides|of - zs], auto
sitmp: divides-ff-def)
assume a: a # 0
show divides-ff ?g (a * some-ged-ff-list xs)
proof (rule divides-ff-mult-right[OF a some-gcd-ff-list-greatest], intro balll)
fix z
assume z: T € set zs
have divides-ff (?g * inverse a) v = divides-ff (inverse a x ?g) (inverse a * (a

using a by (simp add: field-simps)

also have ... using a = by (auto intro: some-gcd-ff-list-divides)
finally show divides-ff (?g * inverse a) x .
qed
qed

definition content-ff :: 'a::ufd fract poly = 'a fract where
content-ff p = some-ged-ff-list (coeffs p)

lemma content-ff-iff: divides-ff x (content-ff p) <— (¥ ¢ € set (coeffs p). divides-ff
zec) (is 721 = ?r)
proof

assume ?]

from divides-ff-trans[OF this, unfolded content-ff-def, OF some-gcd-ff-list-divides]
show ?7r ..
next

assume 7r

thus ¢ unfolding content-ff-def by (intro some-gcd-ff-list-greatest, auto)
qed

lemma content-ff-divides-ff: © € set (coeffs p) = divides-ff (content-ff p) x
unfolding content-ff-def by (rule some-ged-ff-list-divides)

lemma content-ff-0[simp]: content-ff 0 = 0
using content-ff-iff [of 0 0] by (auto simp: divides-ff-def)

lemma content-ff-0-iff [simp]: (content-ff p = 0) = (p = 0)
proof (cases p = 0)
case Fulse
define a where a = last (coeffs p)
define zs where zs = coeffs p
from False
have mem: a € set (coeffs p) and a: a # 0
unfolding a-def last-coeffs-eq-coeff-degree| OF False] coeffs-def by auto
from content-ff-divides-ff[OF mem] have divides-ff (content-ff p) a .

96

with a have content-ff p # 0 unfolding divides-ff-def by auto
with False show ?thesis by auto
qed auto

lemma content-ff-eq-dff-nonzero: content-ff p =dff t = = # 0 = p # 0
using divides-ff-def eq-dff-def by force

lemma content-ff-smult: content-ff (smult (a::'a::ufd fract) p) =dff a * content-ff
p
proof (cases a = 0)

case Fulse note a = this

have id: coeffs (smult a p) = map ((x) a) (coeffs p)

unfolding coeffs-smult using a by (simp add: Polynomial.coeffs-smult)

show ?thesis unfolding content-ff-def id using some-ged-ff-list-smult[OF a) .

qed simp

definition normalize-content-ff
where normalize-content-ff (p::'a::ufd fract poly) = smult (inverse (content-ff

p)p

lemma smult-normalize-content-ff: smult (content-ff p) (normalize-content-ff p) =
p

unfolding normalize-content-ff-def

by (cases p = 0, auto)

lemma content-ff-normalize-content-ff-1: assumes p0: p # 0

shows content-ff (normalize-content-ff p) =dff 1
proof —

have content-ff p = content-ff (smult (content-ff p) (normalize-content-ff p))
unfolding smult-normalize-content-ff ..

also have ... =dff content-ff p x content-ff (normalize-content-ff p) by (rule
content-ff-smult)

finally show ?thesis unfolding eq-dff-def divides-ff-def using p0 by auto
qed

lemma content-ff-to-fract: assumes set (coeffs p) C range to-fract
shows content-ff p € range to-fract
proof —
have divides-ff 1 (content-ff p) using assms
unfolding content-ff-iff unfolding divides-ff-def[abs-def] by auto
thus ?thesis unfolding divides-ff-def by auto
qged

lemma content-ff-map-poly-to-fract: content-ff (map-poly to-fract (p :: 'a = ufd
poly)) € range to-fract
by (rule content-ff-to-fract, subst coeffs-map-poly, auto)

lemma range-coeffs-to-fract: assumes set (coeffs p) C range to-fract
shows 3 m. coeff p i = to-fract m

97

proof —
from assms(1) to-fract-0 have coeff p i € range to-fract using range-coeff [of
Pl
by auto (metis contra-subsetD to-fract-hom.hom-zero insertE range-eql)
thus ?thesis by auto
qed

lemma divides-ff-coeff: assumes set (coeffs p) C range to-fract and divides-ff
(to-fract n) (coeff p i)

shows 3 m. coeff p i = to-fract n * to-fract m
proof —

from range-coeffs-to-fract| OF assms(1)] obtain k where pi: coeff p i = to-fract
k by auto

from assms(2)[unfolded this| have n dvd k by simp

then obtain j where k: £ = n * j unfolding Rings.dvd-def by auto

show ?thesis unfolding pi k by auto
qed

definition inv-embed :: 'a :: ufd fract = 'a where
inv-embed = the-inv to-fract

lemma inv-embed[simpl: inv-embed (to-fract x) = z
unfolding inv-embed-def
by (rule the-inv-f-f, auto simp: inj-on-def)

lemma inv-embed-0|simp]: inv-embed 0 = 0 unfolding to-fract-0[symmetric] inv-embed
by simp

lemma range-to-fract-embed-poly: assumes set (coeffs p) C range to-fract
shows p = map-poly to-fract (map-poly inv-embed p)
proof —
have p = map-poly (to-fract o inv-embed) p
by (rule sym, rule map-poly-idI, insert assms, auto)
also have ... = map-poly to-fract (map-poly inv-embed p)
by (subst map-poly-map-poly, auto)
finally show ?thesis .
qed

lemma content-ff-to-fract-coeffs-to-fract: assumes content-ff p € range to-fract
shows set (coeffs p) C range to-fract
proof
fix z
assume z € set (coeffs p)
from content-ff-divides-ff[OF this| assms[unfolded eq-dff-def] show z € range
to-fract
unfolding divides-ff-def by (auto simp del: to-fract-hom.hom-mult simp: to-fract-hom.hom-mult[symmetric]
qed

lemma content-ff-1-coeffs-to-fract: assumes content-ff p =dff 1

98

shows set (coeffs p) C range to-fract
proof
fix z
assume z € set (coeffs p)
from content-ff-divides-ff[OF this] assms[unfolded eq-dff-def] show x € range
to-fract
unfolding divides-ff-def by (auto simp del: to-fract-hom.hom-mult simp: to-fract-hom.hom-mult[symmetric|

qed

lemma gauss-lemma:
fixes p q :: 'a :: ufd fract poly
shows content-ff (p x q) =dff content-ff p * content-ff q
proof (casesp =0V ¢ = 0)
case Fulse
hence p: p # 0 and ¢q: ¢ # 0 by auto
let ?c = content-ff :: 'a fract poly = 'a fract
{
fix p q :: 'a fract poly
assume cpl: ?c p =dff 1 and cql: ?c q =dff 1
define ip where ip = map-poly inv-embed p
define iq where iq = map-poly inv-embed q
interpret map-poly-hom: map-poly-comm-ring-hom to-fract..
from content-ff-1-coeffs-to-fract[OF cp1] have cp: set (coeffs p) C range to-fract

from content-ff-1-coeffs-to-fract| OF cql] have cq: set (coeffs q) C range to-fract

have ip: p = map-poly to-fract ip unfolding ip-def
by (rule range-to-fract-embed-poly| OF cp))
have iq: ¢ = map-poly to-fract iqg unfolding ig-def
by (rule range-to-fract-embed-poly| OF cq])
have cpq0: ?c (p x q) # 0
unfolding content-ff-0-iff using cpl cql content-ff-eq-dff-nonzero[of - 1] by
auto
have cpq: set (coeffs (p * q)) C range to-fract unfolding ip iq
unfolding map-poly-hom.hom-mult[symmetric] to-fract-hom.coeffs-map-poly-hom
by auto
have ctnt: ?c (p * q) € range to-fract using content-ff-to-fract[OF cpq| .
then obtain cpq where id: ?c (p *x q) = to-fract cpq by auto
have dvd: divides-ff 1 (?c (p x ¢)) using ctnt unfolding divides-ff-def by auto
from cpq0|unfolded id] have cpq0: cpq # 0 unfolding to-fract-def Zero-fract-def
by auto
hence cpgM: cpq € carrier mk-monoid by auto
have ?c (p * q) =dff 1
proof (rule ccontr)
assume — ?c (p x q) =dff 1
with dvd have — divides-ff (?c (p * q)) 1
unfolding eq-dff-def by auto
from this[unfolded id divides-ff-def] have cpg: \ r. cpg * v # 1
by (auto simp: to-fract-def One-fract-def eq-fract)

99

then have cpql: — cpq dvd 1 by (auto elim:dvdE simp:ac-simps)
from mset-factors-exist|OF cpq0 cpql]
obtain F' where F: mset-factors F' cpq by auto
have F' # {#} using F by auto
then obtain f where f: f €# F by auto
with F have irrf: irreducible f and f0: f # 0 by (auto dest: mset-factorsD)
from dirrf have pf: prime-elem f by simp
note * = this[unfolded prime-elem-def]
from x have no-unit: = f dvd 1 by auto
from * f0 have prime: A\ a b. fdvd a x b = fdvd a V f dvd b unfolding
dvd-def by force
let ?2f = to-fract f
from F f
have fdvd: f dvd cpq by (auto intro:mset-factors-imp-dvd)
hence divides-ff ?f (to-fract cpq) by simp
from divides-ff-trans|OF this, folded id, OF content-ff-divides-ff]
have dvd: \ z. z € set (coeffs (p * q)) = divides-ff ?f z .
{
fix p :: 'a fract poly
assume cp: ?c p =dff 1
let 2P = X 4. = divides-ff ?f (coeff p 7)
{
assume V ¢ € set (coeffs p). divides-ff ?f ¢
hence n: divides-ff ?f (?c p) unfolding content-ff-iff by auto
from divides-ff-trans|OF this] cplunfolded eq-dff-def] have divides-ff ?f 1
by auto
also have 1 = to-fract 1 by simp
finally have f dvd 1 by (unfold divides-ff-to-fract)
hence Fulse using no-unit unfolding dvd-def by (auto simp: ac-simps)
}
then obtain c¢p where cp: cp € set (coeffs p) and ncp: — divides-ff 2f cp
by auto
hence cp € range (coeff p) unfolding range-coeff by auto
with ncp have 3 4. P i by auto
from Leastl-ex[OF this| not-less-Least|of - ?P)]
have 3 i. P i A (V j. j < i — divides-ff ?f (coeff p 7)) by blast
} note cont = this
from cont[OF cp1] obtain r where
r: = divides-ff ?f (coeff p r) and r”s A\ i. i < r = divides-ff ?f (coeff p ©)
by auto
haveV i. 3 k. i < r — coeff p i = ?f * to-fract k using divides-ff-coeff[OF
cp r'] by blast
from choice[OF this] obtain rr where r": \ i. i < r = coeff p i = ?f =
to-fract (rr i) by blast
let 2r = coeff p r
from cont[OF cql] obtain s where
s: — divides-ff ?f (coeff q s) and s": \ i. i < s = divides-ff ?f (coeff q 7)
by auto
have V 4. 3 k. i < s — coeff q i = ?f * to-fract k using divides-ff-coeff[OF

100

cq s'| by blast
from choice[OF this| obtain ss where s A i. i < s = coeff ¢ i = ?f *
to-fract (ss i) by blast
from range-coeffs-to-fract|OF cp] have V . 3 m. coeff p i = to-fract m ..
from choice[OF this] obtain pi where pi: \ i. coeff p i = to-fract (pi i) by
blast
from range-coeffs-to-fract[OF cq] have ¥V i. 3 m. coeff q i = to-fract m ..
from choice[OF this] obtain ¢i where g¢i: A i. coeff q i = to-fract (qi 7) by
blast
let ?2s = coeff q s
let 29 = X\ i. coeff p i x coeff q (r + s — 17)
define a where a = (> ie{.<r}. (rri* qi (r + s — 7))
define b where b = (3 i € {Sucr.r + s}. pii* (ss (r + s — 1))
have coeff (p * q) (r + s) = (. i<r + s. g i) unfolding coeff-mult ..
also have {..r+s} = {.< r} U {r .. r+s} by auto
also have (> ie{..<r} U {r.r + s}. %9 19)
= (ie{.<r}. %gi) + (>0 i€ {r.r + s}. ?g1)
by (rule sum.union-disjoint, auto)
also have (> ie{..<r}. 2g4) = (O ie{.<r}. 7f * (to-fract (rr i) x to-fract
(g0 (r + s — 1))
by (rule sum.cong[OF refl], insert v’ qi, auto)
also have ... = to-fract (f * a) by (simp add: a-def sum-distrib-left)
also have (3" i€ {r.r+ s}. %gi) = 2%9r + (> i € {Sucr.r + s}. %9 1)
by (subst sum.removelof - r], auto intro: sum.cong)
also have (> i € {Suc r.r + s}. 2g4) = (O i € {Suc r.r + s}. 2f =
(to-fract (pi i) * to-fract (ss (r + s — ©))))
by (rule sum.cong|OF refl], insert s’ pi, auto)
also have ... = to-fract (f = b) by (simp add: sum-distrib-left b-def)
finally have cpg: coeff (p * q) (r + s) = to-fract (f * (a + b)) + 9r x ?s by
(simp add: field-simps)
{
fix ¢
from duvd|of coeff (p * q) i] have divides-ff ?f (coeff (p * q) i) using
range-coeff[of p x q]
by (cases coeff (p * q) i = 0, auto simp: divides-ff-def)
}
from this[of r + s, unfolded cpq] have divides-ff ?f (to-fract (f * (a + b) +
piT ok qis))
unfolding pi ¢i by simp
from this[unfolded divides-ff-to-fract] have f dvd pi r * qi s
by (metis dvd-add-times-triv-left-iff mult.commute)
from prime[OF this] have f dvd pi r V f dvd ¢i s by auto
with r s show Fulse unfolding pi ¢i by auto
qed
} note main = this
define n where n = normalize-content-ff :: 'a fract poly = 'a fract poly
let 2s = X\ p. smult (content-ff p) (n p)
have ?c (p * q) = %¢ (%s p x ?s ¢q) unfolding smult-normalize-content-ff n-def
by simp

101

also have %s p x %s ¢ = smult (%c p x %c q) (n p x n q) by (simp add:
mult.commute)
also have ?%c (...) =dff (Ycp* %c q) x ?c (np * n q) by (rule content-ff-smult)
also have ?c (n p * n ¢) =dff 1 unfolding n-def
by (rule main, insert p q, auto simp: content-ff-normalize-content-ff-1)
finally show ?thesis by simp
qed auto

abbreviation (input) content-ff-ff p = content-ff (map-poly to-fract p)

lemma factorization-to-fract:
assumes ¢: ¢ # 0 and factor: map-poly to-fract (p :: 'a :: ufd poly) = q * r
shows 3 ¢’ 1’ ¢c. ¢ £ 0 A\ q¢ = smult ¢ (map-poly to-fract q') A
r = smult (inverse ¢) (map-poly to-fract r’) A
content-ff-ff ¢/ =dff 1 AN p=q' xr’
proof —
let ?c = content-ff
let ?p = map-poly to-fract p
interpret map-poly-inj-comm-ring-hom to-fract :: 'a = -..
define cq where cq = normalize-content-ff q
define cr where cr = smult (content-ff q) r
define ¢’ where ¢’ = map-poly inv-embed cq
define r’ where 7’ = map-poly inv-embed cr
from content-ff-map-poly-to-fract have cp-ff: ?c ?p € range to-fract by auto
from smult-normalize-content-ff[of q] have cgs: ¢ = smult (content-ff ¢) cq un-
folding cq-def ..
from content-ff-normalize-content-ff-1[OF q] have c-cq: content-ff cq =dff 1
unfolding cq-def .
from content-ff-1-coeffs-to-fract|OF this| have cqg-ff: set (coeffs cq) C range
to-fract .
have factor: ?p = cq * c¢r unfolding factor cr-def using cqs
by (metis mult-smult-left mult-smult-right)
from gauss-lemmalof cq cr] have cp: ¢ ?p =dff ?c cq x ?c cr unfolding factor

with c-cq have ?¢c ?p =dff ?c cr
by (metis eq-dff-mult-right-trans mult.commute mult.right-neutral)
with cp-ff have ?c cr € range to-fract
by (metis divides-ff-def to-fract-hom.hom-mult eq-dff-def image-iff range-eql)
from content-ff-to-fract-coeffs-to-fract[OF this] have cr-ff: set (coeffs cr) C range
to-fract by auto
have cq: c¢ = map-poly to-fract ¢’ unfolding q’-def
by (rule range-to-fract-embed-poly| OF cq-ff])
have cr: cr = map-poly to-fract r’ unfolding r’-def
by (rule range-to-fract-embed-poly| OF cr-ff])
from factor[unfolded cq cr]
have p: p = ¢’ * v’ by (simp add: injectivity)
from c-cq have ctnt: content-ff-ff ¢/ =dff 1 using cq q’-def by force
from cgs have idg: ¢ = smult (?c q) (map-poly to-fract q’) unfolding cq .
with ¢ have cq: ?c ¢ # 0 by auto

102

have r = smult (inverse (?c q)) cr unfolding cr-def using cq by auto
also have cr = map-poly to-fract v’ by (rule cr)
finally have idr: r = smult (inverse (?c q)) (map-poly to-fract r’) by auto
from cq p cint idg idr show ?thesis by blast

qed

lemma irreducible-PM-M-PFM:
assumes rr: irreducible p
shows degree p = 0 A irreducible (coeff p 0) V
degree p # 0 A irreducible (map-poly to-fract p) A content-ff-ff p =dff 1
proof—
interpret map-poly-inj-idom-hom to-fract..
from irrjunfolded irreducible-altdef]
have p0: p # 0 and irr: - pdvd 1 A\ b. b dvd p = - p dvd b = b dvd 1 by
auto
show ?thesis
proof (cases degree p = 0)
case True
from degree0-coeffs|OF True] obtain o« where p: p = [:a:] by auto
note irr = irr[unfolded p]
from p p0 have a0: a # 0 by auto
moreover have — a dvd 1 using irr(1) by simp
moreover {
fix b
assume b dvd a = a dvd b
hence [:b:] dvd [:a:] = [:a:] dvd [:b:] unfolding const-poly-dvd .
from irr(2)[OF this] have b dvd 1 unfolding const-poly-dvd-1 .

ultimately have irreducible a unfolding irreducible-altdef by auto
with True show ?thesis unfolding p by auto

next
case Fulse
let ?E = map-poly to-fract
let 2p = ?E'p

have dp: degree ?p # 0 using Fulse by simp
from p0 have p”: ?p # 0 by simp
moreover have = ?p dvd 1
proof
assume ?p dvd 1 then obtain ¢ where id: ?p * ¢ = 1 unfolding dvd-def
by auto
have deg: degree (?p * q) = degree ?p + degree q
by (rule degree-mult-eq, insert id, auto)
from arg-cong[OF id, of degree, unfolded deg] dp show False by auto
qed
moreover {
fix ¢
assume ¢ dvd ?p and ndvd: - ?p dvd g
then obtain r where fact: ?p = ¢ * r unfolding dvd-def by auto
with p’ have ¢0: ¢ # 0 by auto

103

from factorization-to-fract[OF this fact] obtain ¢’ r' ¢ where *: ¢ # 0 ¢ =
smult ¢ (?E q”)
r = smult (inverse c¢) (?E r') content-ff-ff ¢/ =dff 1
p = q' * v’ by auto
hence ¢’ dvd p unfolding dvd-def by auto
note irr = irr(2)[OF this]
have — p dvd ¢’
proof
assume p dvd g’
then obtain u where ¢": ¢’ = p * u unfolding dvd-def by auto
from arg-cong[OF this, of A z. smult ¢ (?E z), unfolded x(2)[symmetric]]
have ¢ = ?p * smult ¢ (?E u) by simp
hence ?p dvd q unfolding dvd-def by blast
with ndvd show Fulse ..
qed
from irr[OF this| have ¢’ dvd 1 .
from divides-degree| OF this] have degree ¢' = 0 by auto
from degree0-coeffs|OF this] obtain o’ where ¢’ = [:a"] by auto
from x(2)[unfolded this| obtain a where ¢: ¢ = [:a{]
by (simp add: to-fract-hom.map-poly-pCons-hom,)
with ¢0 have a: a # 0 by auto
have ¢ dvd 1 unfolding q const-poly-dvd-1 using a unfolding dvd-def
by (intro exI[of - inverse al, auto)
ultimately have irr-p”
let ?c = content-ff
have ?c ?p € range to-fract
by (rule content-ff-to-fract, unfold to-fract-hom.coeffs-map-poly-hom, auto)
then obtain ¢ where cp: ?c ?p = to-fract ¢ by auto
from p’ ¢p have c: ¢ # 0 by auto
have ?c¢c ?p =dff 1 unfolding cp
proof (rule ccontr)
define cp where cp = normalize-content-ff ?p
from smult-normalize-content-ff[of ?p] have cps: ?p = smult (to-fract c¢) cp
unfolding cp-def cp ..
from content-ff-normalize-content-ff-1[OF p’] have c-cp: content-ff cp =dff 1
unfolding cp-def .
from range-to-fract-embed-poly[OF content-ff-1-coeffs-to-fract[OF c-cp]] ob-
tain cp’ where cp = ?E cp’ by auto
from cps[unfolded this| have p = smult ¢ cp’ by (simp add: injectivity)
hence dvd: [: ¢ :] dvd p unfolding dvd-def by auto
have — p dvd [: ¢ :] using divides-degree[of p [: ¢ :]] ¢ False by auto
from irr(2)[OF dvd this| have ¢ dvd 1 by simp
assume — to-fract ¢ =dff 1
from this[unfolded eq-dff-def One-fract-def to-fract-def[symmetric] divides-ff-def
to-fract-mult]
have c1: A\ r. 1 # ¢ x r by (auto simp: ac-simps simp del: to-fract-hom.hom-mult
simp: to-fract-hom.hom-mult[symmetric))
with <c dvd 1> show Fualse unfolding dvd-def by blast

irreducible ?p unfolding irreducible-altdef by auto

104

qed
with False irr-p’ show ?thesis by auto
qed
qed

lemma irreducible-M-PM:
fixes p :: 'a :: ufd poly assumes 0: degree p = 0 and irr: irreducible (coeff p 0)
shows irreducible p
proof (cases p = 0)
case True
thus ?thesis using assms by auto
next
case Fulse
from degree0-coeffs|OF 0] obtain a where p: p = [:a:] by auto
with False have a0: a # 0 by auto
from p irr have irreducible a by auto
from this[unfolded irreducible-altdef]
have al: = a dvd 1 and drr: A\ b. b dvd a = — a dvd b = b dvd 1 by auto
{
fix b
assume *: b dvd [:a:] = [:a:] dvd b
from divides-degree| OF this(1)] a0 have degree b = 0 by auto
from degree0-coeffs|OF this] obtain bb where b: b = [: bb :] by auto
from x irr[of bb] have b dvd 1 unfolding b const-poly-dvd by auto

with a0 al show ?thesis by (auto simp: irreducible-altdef p)
qed

lemma primitive-irreducible-imp-degree:
primitive (p::'a::{semiring-ged,idom} poly) = irreducible p = degree p > 0
by (unfold irreducible-primitive-connect[symmetric], auto)

lemma irreducible-degree-field:
fixes p :: a :: field poly assumes irreducible p
shows degree p > 0
proof—
{
assume degree p = 0
from degree0-coeffs| OF this] assms obtain a where p: p = [:a:] and a: a # 0
by auto
hence I = p x [:inverse a:] by auto
hence p dvd 1 ..
hence p € Units mk-monoid by simp
with assms have Fualse unfolding irreducible-def by auto
} then show ?thesis by auto
qed

lemma irreducible-PFM-PM: assumes
irr: irreducible (map-poly to-fract p) and ct: content-ff-ff p =dff 1

105

shows irreducible p

proof —
let ?E = map-poly to-fract
let 9p = ?E p

from ct have p0: p # 0 by (auto simp: eq-dff-def divides-ff-def)
moreover
from irreducible-degree-field[OF irr] have deg: degree p # 0 by simp
from irr{unfolded irreducible-altdef]
have irr: A\ b. b dvd ?p = — ?p dvd b = b dvd 1 by auto
have — p dvd 1 using deg divides-degree[of p 1] by auto
moreover {
fix ¢q :: 'a poly
assume dvd: q dvd p and ndvd: — p dvd q
from dvd obtain r where pgr: p = ¢ * r ..
from arg-cong[OF this, of ?E]| have pqr”. ?p = ?E q x ?E r by simp
from p0 pgr have ¢: ¢ # 0 and r: r # 0 by auto
have dp: degree p = degree q + degree r unfolding pqr
by (subst degree-mult-eq, insert q r, auto)
from eq-dff-trans|OF eq-dff-sym[OF gauss-lemmalof ?E q ?E r, folded pqr']] ct]
have ct: content-ff (?F q) * content-ff (?E r) =dff 1 .
from content-ff-map-poly-to-fract obtain cq where cq: content-ff (?E q) =
to-fract cq by auto
from content-ff-map-poly-to-fract obtain cr where cr: content-ff (?E r) =
to-fract cr by auto
note ct[unfolded cq cr to-fract-mult eq-dff-def divides-ff-def]
from this|folded hom-distribs]
obtain ¢ where c¢: ¢q * ¢r x ¢ = 1 by (auto simp del: to-fract-hom.hom-mult
stmp: to-fract-hom.hom-mult[symmetric])
hence one: 1 = cq x (¢ * cr) 1 = cr = (¢ * ¢q) by (auto simp: ac-simps)
{
assume x: degree ¢ # 0 N degree r # 0
with dp have degree ¢ < degree p by auto
hence degree (?E q) < degree (?E p) by simp
hence ndvd: = ?p dvd ?E q using divides-degree|of ?p ?E q] q by auto
have ?F ¢ dvd ?p unfolding pgr’ by auto
from irr[OF this ndvd] have ?F q dvd 1 .
from divides-degree| OF this] *+ have Fulse by auto
}
hence degree ¢ = 0 V degree r = 0 by blast
then have ¢ dvd 1
proof
assume degree ¢ = 0
from degree0-coeffs| OF this] ¢ obtain a where ¢: ¢ = [:a:] and a: a # 0 by
auto
hence id: set (coeffs (?F q)) = {to-fract a} by auto
have divides-ff (to-fract a) (content-ff (?F q)) unfolding content-ff-iff id by
auto
from this[unfolded cq divides-ff-def, folded hom-distribs
obtain rr where c¢q: ¢¢ = a * rr by (auto simp del: to-fract-hom.hom-mult

106

stmp: to-fract-hom.hom-mult[symmetric])
with one(1) have 1 = a x (rr * ¢ * cr) by (auto simp: ac-simps)
hence a dvd 1 ..
thus ?thesis by (simp add: q)
next
assume degree 7 = ()
from degree0-coeffs| OF this| r obtain a where r: r = [:a:] and a: a # 0 by
auto
hence id: set (coeffs (?F r)) = {to-fract a} by auto
have divides-ff (to-fract a) (content-ff (?E r)) unfolding content-ff-iff id by
auto
note this[unfolded cr divides-ff-def to-fract-mult]
note this[folded hom-distribs]
then obtain rr where cr: ¢cr = a * rr by (auto simp del: to-fract-hom.hom-mult
simp: to-fract-hom.hom-mult[symmetric))
with one(2) have one: 1 = a x (rr * ¢ * ¢q) by (auto simp: ac-simps)
from arg-cong[OF pgr[unfolded r]|, of A p. p * [:rr * ¢ * cq]]
have p x [t * ¢ % ¢q:] = q * [ta * (rr % ¢ % cq):] by (simp add: ac-simps)
also have ... = ¢ unfolding one[symmetric] by auto
finally obtain r where ¢ = p * r by blast
hence p dvd q ..
with ndvd show ?thesis by auto
qed
}
ultimately show ?thesis by (auto simp:irreducible-altdef)
qged

lemma irreducible-cases: irreducible p <—
degree p = 0 N irreducible (coeff p 0) V
degree p # 0 A irreducible (map-poly to-fract p) A content-ff-ff p =dff 1
using irreducible-PM-M-PFM irreducible-M-PM irreducible-PFM-PM
by blast

lemma dvd-PM-iff: p dvd q «— divides-ff (content-ff-ff p) (content-ff-ff q) A
map-poly to-fract p dvd map-poly to-fract q
proof —
interpret map-poly-inj-idom-hom to-fract..
let ?E = map-poly to-fract
show ?thesis (is 21 = ?r)
proof
assume p dvd q
then obtain r where ¢pr: ¢ = p * r ..
from arg-cong[OF this, of ?E]
have dvd: ?E p dvd ?E q by auto
from content-ff-map-poly-to-fract obtain cq where cq: content-ff-ff ¢ = to-fract
cq by auto
from content-ff-map-poly-to-fract obtain cp where cp: content-ff-ff p = to-fract
cp by auto
from content-ff-map-poly-to-fract obtain cr where cr: content-ff-ff r = to-fract

107

cr by auto
from gauss-lemmalof ?E p ?E r, folded hom-distribs gpr, unfolded cq cp cr]
have divides-ff (content-ff-ff p) (content-ff-ff ¢) unfolding cq cp eq-dff-def
by (metis divides-ff-def divides-ff-trans)
with dvd show ?r by blast
next
assume ?r
show %]
proof (cases ¢ = 0)
case True
with <?r) show ?] by auto
next
case Fualse note ¢ = this
hence ¢ ?F q # 0 by auto
from «?ry obtain r where ¢pr: ?FE ¢ = ?E p x rr unfolding dvd-def by
auto
with ¢ have p: p # 0 and Ep: ?E p # 0 and rr: rr # 0 by auto
from gauss-lemmalof ?E p rr, folded gpr]
have ct: content-ff-ff ¢ =dff content-ff-ff p * content-ff rr
by auto
from content-ff-map-poly-to-fract[of p] obtain cp where cp: content-ff-ff p
= to-fract cp by auto
from content-ff-map-poly-to-fract[of q] obtain cq where cq: content-ff-ff ¢ =
to-fract cq by auto
from «?ry[unfolded cp cq] have divides-ff (to-fract cp) (to-fract cq) ..
with ctlunfolded cp cq eq-dff-def] have content-ff rr € range to-fract
by (metis (no-types, lifting) Ep content-ff-0-iff cp divides-ff-def
divides-ff-trans mult.commute mult-right-cancel range-eql)
from range-to-fract-embed-poly[OF content-ff-to-fract-coeffs-to-fract| OF this]]
obtain r
where rr: rr = ?FE r by auto
from qprunfolded rr, folded hom-distribs]
have ¢ = p * r by (rule injectivity)
thus p dvd q ..
qed
qed
qed

lemma factorial-monoid-poly: factorial-monoid (mk-monoid :: 'a :: ufd poly monoid)
proof (fold factorial-condition-one, intro conjI)
interpret M: factorial-monoid mk-monoid :: 'a monoid by (fact factorial-monoid)
interpret PFM: factorial-monoid mk-monoid :: 'a fract poly monoid
by (rule as-ufd.factorial-monoid)
interpret PM: comm-monoid-cancel mk-monoid :: 'a poly monoid by (unfold-locales,
auto)
let ?E = map-poly to-fract
show divisor-chain-condition-monoid (mk-monoid::’a poly monoid)
proof (unfold-locales, unfold mk-monoid-simps)
let ?rel’ = {(x::'a poly, y). © # 0 AN y # 0 N properfactor © y}

108

let ?rel” = {(z:'a, y). x #£ 0 A y # 0 A properfactor x y}
let ?relPM = {(z, y). 2 £ 0 ANy # 0 ANzdvdy A= ydvd (z:: 'apoly)}
let 2relM = {(z, y). 2 # 0Ny # 0 ANzdvdy A - ydod (z:'a)}
have id: ?rel’ = ?relPM using properfactor-nz by auto
have id" ?rel’”’ = ?relM using properfactor-nz by auto
have wf ?rel’”’ using M.division-wellfounded by auto
hence wfM: wf ?relM using id’ by auto
let ?c = X p. inv-embed (content-ff-ff p)
let ?f = X p. (degree p, ?c p)
note wf = wf-inv-image| OF wf-lex-prod[OF wf-less wfM], of ?f]
show wf ?rel’ unfolding id
proof (rule wf-subset[OF wf], clarify)
fix p q :: 'a poly
assume p: p # 0 and ¢: ¢ # 0 and dvd: p dvd ¢ and ndvd: - q dvd p
from dvd obtain r where gpr: ¢ = p * r ..
from degree-mult-eq[of p r, folded qpr] q qpr have r: r # 0
and deg: degree ¢ = degree p + degree r by auto
show (p,q) € inv-image ({(z, y). v < y} <slexx> ?relM) ?f
proof (cases degree p = degree q)
case Fulse
with deg have degree p < degree q by auto
thus ?thesis by auto

next
case True
with deg have degree r = 0 by simp
from degree0-coeffs|OF this| r obtain a where ra: r = [:a:] and a: a # 0
by auto

from arg-cong|OF qpr, of X\ p. 2E p x [:inverse (to-fract a):]] a
have ?E p = ?E q * [:inverse (to-fract a):]
by (auto simp: ac-simps ra)
hence ?F q dvd ?E p ..
with ndvd dvd-PM-iff have ndvd: — divides-ff (content-ff-ff q) (content-ff-ff
p) by auto
from content-ff-map-poly-to-fract obtain cq where cq: content-ff-ff ¢ =
to-fract cq by auto
from content-ff-map-poly-to-fract obtain cp where cp: content-ff-ff p =
to-fract cp by auto
from ndvd[unfolded cp cq] have ndvd: — cq dvd cp by simp
from iffD1[OF dvd-PM-iff ,OF dvd,unfolded cq cp)
have dvd: cp dvd cq by simp
have c-p: ?c p = cp unfolding cp by simp
have c-q: ?c ¢ = c¢q unfolding cq by simp
from ¢ cq have cq0: cq # 0 by auto
from p cp have cp0: cp # 0 by auto
from ndvd cq0 cp0 dvd have (?c p, ?c q) € ?relM unfolding c-p c-q by
auto
with True show ?thesis by auto
qed
qed

109

qed
show primeness-condition-monoid (mk-monoid::’a poly monoid)
proof (unfold-locales, unfold mk-monoid-simps)
fix p :: ‘a poly
assume p: p # 0 and irred p
then have irr: irreducible p by auto
from p have p”: ?E p # 0 by auto
from irreducible-PM-M-PFM[OF irr] have choice: degree p = 0 A irred (coeff
p0)
V degree p # 0 A irred (?E p) A content-ff-ff p =dff 1 by auto
show Divisibility.prime mk-monoid p
proof (rule Divisibility.primel, unfold mk-monoid-simps mem-Units)
show — p dvd 1
proof
assume p dvd 1
from divides-degree[OF this| have dp: degree p = 0 by auto
from degree0-coeffs|OF this| p obtain a where p: p = [:a:] and a: a # 0
by auto
with choice have irr: irreducible a by auto
from «<p dvd 1)[unfolded p] have a dvd 1 by auto
with irr show Fulse unfolding irreducible-def by auto
qed
fix g r :: 'a poly
assume ¢: ¢ # 0 and r: r # 0 and factor p (q * r)
from this[unfolded factor-idom] have p dvd g * r by auto
from iffD1[OF dvd-PM-iff this] have dvd-ct: divides-ff (content-ff-ff p)
(content-ff (?E (q * 1)))
and dvd-E: ?E p dvd ?E q * ?E r by auto
from gauss-lemmalof ?E q ?F r| divides-ff-trans[OF dvd-ct, of content-ff-ff q
x content-ff-ff r]
have dvd-ct: divides-ff (content-ff-ff p) (content-ff-ff ¢ * content-ff-ff r)
unfolding eq-dff-def by auto
from choice
have p dvd q V p dvd r
proof
assume degree p # 0 A irred (?E p) A content-ff-ff p =dff 1
hence deg: degree p # 0 and irr: irred (?E p) and ct: content-ff-ff p =dff
1 by auto
from PFM .irreducible-prime[OF irr] p have prime: Divisibility.prime
mk-monoid (?E p) by auto
from ¢ r have Eq: E q € carrier mk-monoid and Er: ?E r € carrier
mk-monoid
and ¢ ?Eq# 0and r: ?Er # 0 and qr’: ?E q x ?E r # 0 by auto
from PFM.prime-divides|OF Eq Er prime| q' v’ qr' dvd-E
have dvd-E: ?E p dvd ?FE q VvV ?E p dvd ?E r by simp
from ct have ct: divides-ff (content-ff-ff p) 1 unfolding eq-dff-def by auto
moreover have A ¢. divides-ff 1 (content-ff-ff q) using content-ff-map-poly-to-fract
unfolding divides-ff-def by auto
from divides-ff-trans|OF ct this| have ct: /\ q. divides-ff (content-ff-ff p)

110

(content-ff-ff q) .
with dvd-E show ?thesis using dvd-PM-iff by blast

next
assume degree p = 0 A irred (coeff p 0)
hence deg: degree p = 0 and irr: irred (coeff p 0) by auto
from degree0-coeffs|OF deg] p obtain a where p: p = [:a:] and a: a # 0
by auto
with irr have irr: irred a and aM: a € carrier mk-monoid by auto
from M irreducible-prime[OF irr aM] have prime: Divisibility.prime
mk-monoid a .
from content-ff-map-poly-to-fract obtain cq where cq: content-ff-ff ¢ =
to-fract cq by auto
from content-ff-map-poly-to-fract obtain cp where cp: content-ff-ff p =
to-fract cp by auto
from content-ff-map-poly-to-fract obtain cr where cr: content-ff-ff r =
to-fract cr by auto
have divides-ff (to-fract a) (content-ff-ff p) unfolding p content-ff-iff using
a by auto
from divides-ff-trans|OF this[unfolded cp] dvd-ct[unfolded cp cq cr]|
have divides-ff (to-fract a) (to-fract (cq * cr)) by simp
hence dvd: a dvd cq * cr by (auto simp add: divides-ff-def simp del:
to-fract-hom.hom-mult simp: to-fract-hom.hom-mult[symmetric])
from content-ff-divides-ff|of to-fract a ?E p| have divides-ff (to-fract cp)
(to-fract a)
using cp a p by auto
hence cpa: cp dvd a by simp
from a g 7 cq cr have aM: a € carrier mk-monoid and gM: cq € carrier
mk-monoid and rM: cr € carrier mk-monoid
and ¢ cqg # 0 and r": ¢cr # 0 and qr’: cq * cr # 0
by auto
from M.prime-divides|OF ¢M rM prime] ¢’ v’ qr’ dvd
have a dvd cq V a dvd cr by simp
with dvd-trans[OF cpa] have dvd: cp dvd cq V cp dvd cr by auto
have A ¢. ?E p x (smult (inverse (to-fract a)) q) = ¢ unfolding p using
a by (auto simp: one-poly-def)
hence Edvd: \ q. ?E p dvd q unfolding dvd-def by metis
from dvd Edvd show ?thesis apply (subst(1 2) dvd-PM-iff) unfolding cp
cq cr by auto
qed
thus factor p q V factor p r unfolding factor-idom using p ¢ r by auto
qed
qed
qed

instance poly :: (ufd) ufd
by (intro ufd.intro-of-class factorial-monoid-imp-ufd factorial-monoid-poly)

lemma primitive-iff-some-content-dvd-1:

111

fixes f :: 'a :: ufd poly
shows primitive f <— some-gcd.listged (coeffs f) dvd 1 (is - +— ?c dvd 1)
proof (intro iffI primitivel)
fix z
assume (Ay. y € set (coeffs f) = z dvd y)
from some-gcd.listged-greatest|of coeffs f, OF this]
have z dvd ?c by simp
also assume ?c dvd 1
finally show z dvd 1.
next
assume primitive f
from primitive D[OF this some-gcd.listgcd|of - coeffs f]]
show ?c¢ dvd 1 by auto
qed

end

5 Polynomials in Rings and Fields

5.1 Polynomials in Rings

We use a locale to work with polynomials in some integer-modulo ring.
theory Poly-Mod
imports
HOL—- Computational-Algebra. Primes
Polynomial-Factorization.Square-Free- Factorization
Unique-Factorization-Poly
begin

locale poly-mod = fixes m :: int
begin

definition M :: int = int where M z = 2 mod m

lemma M-0[simp]: M 0 = 0
by (auto simp add: M-def)

lemma M-M|simp]: M (M z) = M z
by (auto simp add: M-def)

lemma M-plus[simp]: M (Mz +y) =M (z+y) M (z+ My) =M (z + y)
by (auto simp add: M-def mod-simps)

lemma M-minus[simp]: M (Mz —y) =M (z — y) M (x — My) =M (z — y)
by (auto simp add: M-def mod-simps)

lemma M-times[simp]: M (M z *xy) =M (z xy) M (z x My) = M (z * y)
by (auto simp add: M-def mod-simps)

112

lemma M-sum: M (sum (A z. M (fz)) A) = M (sum f A)
proof (induct A rule: infinite-finite-induct)
case (insert z A)
from insert(1—2) have M (> z€insertx A. M (fz)) = M (fz + M (3] z€A.
M (fx)))) by simp
also have M ((3>_z€A. M (fz))) = M ((3_z€A. fz)) using insert by simp
finally show ?case using insert by simp
qed auto

definition inv-M :: int = int where
inv-M = (X z. if z + © < m then x else x — m)

lemma M-inv-M-id[simp]: M (inv-M z) = M z
unfolding inv-M-def M-def by simp

definition Mp :: int poly = int poly where Mp = map-poly M
lemma Mp-0[simp]: Mp 0 = 0 unfolding Mp-def by auto

lemma Mp-coeff: coeff (Mp f) i = M (coeff f i) unfolding Mp-def
by (simp add: M-def coeff-map-poly)

abbreviation eg-m :: int poly = int poly = bool (infixl «<=m) 50) where
f=mg=(Mpf=Mpy)

notation eg-m (infixl <=m) 50)

abbreviation degree-m :: int poly = nat where
degree-m f = degree (Mp f)

lemma mult-Mp[simp]: Mp (Mp f x g) = Mp (f * g) Mp (f x Mp g) = Mp (f *

9)
proof —

{
fix fg
have Mp (Mp f = g) = Mp (f = g)
unfolding poly-eq-iff Mp-coeff unfolding coeff-mult Mp-coeff
proof
fix n
show M (3" i<n. M (coeff f i) % coeff g (n —) = M (3. i<n. coeff fi
coeff g (n — 1))
by (subst M-sum[symmetric], rule sym, subst M-sum[symmetric], unfold
M-times, simp)
qed

from this[of f g] this[of g f] show Mp (Mp f g) = Mp (f * g) Mp (f » Mp g)

= Mp (f * g)
by (auto simp: ac-simps)

113

qed

lemma plus-Mp[simp]: Mp (Mp f + g) = Mp (f + g) Mp (f + Mp g) = Mp (f +
9)

unfolding poly-eq-iff Mp-coeff unfolding coeff-mult Mp-coeff by (auto simp
add: Mp-coeff)

lemma minus-Mp[simp]: Mp (Mp f — g) = Mp (f — g) Mp (f — Mp g) = Mp (f
—9)

unfolding poly-eq-iff Mp-coeff unfolding coeff-mult Mp-coeff by (auto simp
add: Mp-coeff)

lemma Mp-smult[simp]: Mp (smult (M a) f) = Mp (smult a f) Mp (smult a (Mp
1) = Mp (smult a f)

unfolding Mp-def smult-as-map-poly

by (rule poly-eql, auto simp: coeff-map-poly)+

lemma Mp-Mp[simp]: Mp (Mp f) = Mp f unfolding Mp-def
by (intro poly-eql, auto simp: coeff-map-poly)

lemma Mp-smult-m-0[simpl: Mp (smult m f) = 0
by (intro poly-eql, auto simp: Mp-coeff, auto simp: M-def)

definition dvdm :: int poly = int poly = bool (infix <dvdm) 50) where
fdvdm g= (3 h.g=mf *xh)
notation dvdm (infix «dvdm) 50)

lemma dvdmkFE:
assumes fg: f dvdm g
and main: Ah. g =m f x h = Mp h = h = thesis
shows thesis
proof—
from fg obtain h where g =m f *x h by (auto simp: dvdm-def)
then have g =m f * Mp h by auto
from main[OF this] show thesis by auto
qed

lemma Mp-dvdm[simp]: Mp f dvdm g «— [dvdm ¢
and dvdm-Mp[simp|: f dvdm Mp g +— f dvdm g by (auto simp: dvdm-def)

definition irreducible-m
where irreducible-m f = (=f =m 0 A = fdvdm 1 AN Vab. f =maxb — a
dvdm 1 V b dvdm 1))

definition irreducibleg-m :: int poly = bool where irreducibleg-m f =
degree-m f > 0 A
(V g h. degree-m g < degree-m f — degree-m h < degree-m f — = f =m g *
h)

114

definition prime-elem-m
where prime-elem-m f = -~ f=m 0 AN = fdvdm 1 N (Vg h. fdodm g x h — f
dvdm g Vv f dvdm h)

lemma degree-m-le-degree [intro!]: degree-m f < degree f
by (simp add: Mp-def degree-map-poly-le)

lemma irreducibleg-ml:
assumes f0: degree-m f > 0
and main: Agh. Mp g = g = Mp h = h = degree g > 0 = degree g <
degree-m [= degree h > 0 = degree h < degree-m f =—> f =m g x h = Fulse
shows irreducibleg-m f
proof (unfold irreducibleg-m-def, intro conjl alll impl f0 notl)
fix g h
assume deg: degree-m g < degree-m f degree-m h < degree-m f and f =m g x h
then have f: f =m Mp g * Mp h by simp
have degree-m f < degree-m g + degree-m h
unfolding f using degree-mult-le order.trans by blast
with main[of Mp g Mp h] deg f show False by auto
qed

lemma irreducibleg-mkE:
assumes irreducibleg-m f
and degree-m f > 0 = (\g h. degree-m g < degree-m f = degree-m h <
degree-m f = - f =m g * h) = thesis
shows thesis
using assms by (unfold irreducibleq-m-def, auto)

lemma irreducibles-mD:

assumes irreducibleg-m f

shows degree-m f > 0 and Ag h. degree-m g < degree-m f —> degree-m h <
degree-m [=> - f =m g x h

using assms by (auto elim: irreducibles-mE)

definition square-free-m :: int poly = bool where
square-free-m f = (= f =m 0 A (VY g. degree-m g # 0 — — (g * g dvdm f)))

definition coprime-m :: int poly = int poly = bool where
coprime-m f g = (V h. h dvdm f — h dvdm g — h dvdm 1)

lemma Mp-square-free-m[simp|: square-free-m (Mp f) = square-free-m f
unfolding square-free-m-def dvdm-def by simp

lemma square-free-m-cong: square-free-m f = Mp f = Mp g = square-free-m
g
unfolding square-free-m-def dvdm-def by simp

lemma Mp-prod-mset|[simp|: Mp (prod-mset (image-mset Mp b)) = Mp (prod-mset

115

b)
proof (induct b)

case (add z b)

have Mp (prod-mset (image-mset Mp ({#z#}+0))) = Mp (Mp z = prod-mset
(image-mset Mp b)) by simp

also have ... = Mp (Mp = x Mp (prod-mset (image-mset Mp b))) by simp
also have ... = Mp (Mp = x Mp (prod-mset b)) unfolding add by simp
finally show ?Zcase by simp

qed simp

lemma Mp-prod-list: Mp (prod-list (map Mp b)) = Mp (prod-list b)
proof (induct b)

case (Cons b zs)

have Mp (prod-list (map Mp (b # zs))) = Mp (Mp b x prod-list (map Mp xs))
by simp

also have ... = Mp (Mp b * Mp (prod-list (map Mp zs))) by simp
also have ... = Mp (Mp b * Mp (prod-list zs)) unfolding Cons by simp
finally show ?Zcase by simp

qed simp

Polynomial evaluation modulo

definition M-poly p x = M (poly p z)

lemma M-poly-Mp[simp]: M-poly (Mp p) = M-poly p
proof (intro ext, induct p)

case 0 show Zcase by auto
next

case [H: (pCons a p)

from IH (1) have M-poly (Mp (pCons a p)) x = M (a + M(x x M-poly (Mp p)
z))

by (simp add: M-poly-def Mp-def)

also note IH(2)[of z]

finally show ?case by (simp add: M-poly-def)
qed

lemma Mp-lift-modulus: assumes f =m g
shows poly-mod.eqg-m (m * k) (smult k f) (smult k g)
using assms unfolding poly-eq-iff poly-mod.Mp-coeff coeff-smult
unfolding poly-mod.M-def by simp

lemma Mp-ident-product: n > 0 = Mp [= f = poly-mod.Mp (m = n) f = f
unfolding poly-eq-iff poly-mod. Mp-coeff poly-mod.M-def
by (auto simp add: zmod-zmult2-eq) (metis mod-div-trivial mod-0)

lemma Mp-shrink-modulus: assumes poly-mod.eqg-m (m x k) f g k # 0
shows f =m g
proof —
from assms have a: A\ n. coeff f n mod (m x k) = coeff g n mod (m * k)
unfolding poly-eq-iff poly-mod. Mp-coeff unfolding poly-mod.M-def by auto

116

show ?thesis unfolding poly-eq-iff poly-mod. Mp-coeff unfolding poly-mod.M-def
proof
fix n
show coeff f n mod m = coeff g n mod m using afof n| <k # 0>
by (metis mod-mult-right-eq mult.commute mult-cancel-left mult-mod-right)
qed
qed

lemma degree-m-le: degree-m f < degree f unfolding Mp-def by (rule degree-map-poly-le)

lemma degree-m-eq: coeff f (degree f) mod m # 0 = m > 1 = degree-m [=
degree f

using degree-m-le[of f] unfolding Mp-def

by (auto intro: degree-map-poly simp: Mp-def poly-mod.M-def)

lemma degree-m-mult-le:
assumes eq: f =m g x h
shows degree-m f < degree-m g + degree-m h

proof —
have degree-m f = degree-m (Mp g * Mp h) using eq by simp
also have ... < degree (Mp g x Mp h) by (rule degree-m-le)
also have ... < degree-m g + degree-m h by (rule degree-mult-le)
finally show ?thesis by auto

qed

lemma degree-m-smult-le: degree-m (smult ¢ f) < degree-m f
by (metis Mp-0 coeff-0 degree-le degree-m-le degree-smult-eq poly-mod. Mp-smult(2)
smult-eq-0-iff)

lemma irreducible-m-Mp[simp]: irreducible-m (Mp f) +— irreducible-m f by (simp
add: irreducible-m-def)

lemma eg-m-irreducible-m: f =m g = irreducible-m f <— irreducible-m g
using irreducible-m-Mp by metis

definition mset-factors-m where mset-factors-m F p =
F £ {#} N (Vf. f €# F — irreducible-m f) A p =m prod-mset F

end

declare poly-mod.M-def[code]
declare poly-mod. Mp-def[code]
declare poly-mod.inv-M-def|code]

definition Irr-Mon :: 'a :: comm-semiring-1 poly set
where Irr-Mon = {z. irreducible © A monic =}

definition factorization :: 'a :: comm-semiring-1 poly set = 'a poly = ('a x a

117

poly multiset) = bool where

factorization Factors f cfs = (case cfs of (c,fs) = f = (smult ¢ (prod-mset fs)) A
(set-mset fs C Factors))
definition unique-factorization :: 'a :: comm-semiring-1 poly set = 'a poly = ('a
X 'a poly multiset) = bool where

unique-factorization Factors f cfs = (Collect (factorization Factors f) = {cfs})

lemma irreducible-multD:
assumes [: irreducible (axb)
shows a dvd 1 A idrreducible b vV b dvd 1 N irreducible a
proof—
from [have a dvd 1 V b dvd 1 by auto
then show ?thesis
proof(elim disjE)
assume a: a dvd 1
with [have irreducible b
unfolding irreducible-def
by (meson is-unit-mult-iff mult.left-commute mult-not-zero)
with a show ?thesis by auto
next
assume a: b dvd 1
with [have irreducible a
unfolding irreducible-def
by (meson is-unit-mult-iff mult-not-zero semiring-normalization-rules(16))
with a show ?thesis by auto
qed
qed

lemma irreducible-dvd-prod-mset:
fixes p :: ‘a :: field poly
assumes irr: irreducible p and dvd: p dvd prod-mset as
shows 3 a €# as. p dvd a
proof —
from érr{unfolded irreducible-def] have deg: degree p # 0 by auto
hence p1: = p dvd 1 unfolding dvd-def
by (metis degree-1 nonzero-mult-div-cancel-left div-poly-less linorder-neqE-nat
mult-not-zero not-less0 zero-neg-one)
from dvd show ?thesis
proof (induct as)
case (add a as)
hence prod-mset (add-mset a as) = a * prod-mset as by auto
from add(2)[unfolded this] add(1) irr
show ?case by auto
qed (insert p1, auto)
qed

lemma monic-factorization-unique-mset:
fixes P::'a::field poly multiset

118

assumes eq: prod-mset P = prod-mset)
and P: set-mset P C {q. irreducible ¢ N monic q}
and Q: set-mset Q C {q. irreducible ¢ N monic q}
shows P = @)
proof —
{
fix P Q :: 'a poly multiset
assume id: prod-mset P = prod-mset @
and P: set-mset P C {q. irreducible ¢ A monic q}
and Q: set-mset @ C {q. irreducible ¢ A monic q}
hence P C# @
proof (induct P arbitrary: Q)
case (add z P Q')
from add(8) have irr: irreducible x and mon: monic by auto
have 3 a €# Q' z dvd a
proof (rule irreducible-dvd-prod-mset| OF irr))
show z dvd prod-mset @' unfolding add(2)[symmetric] by simp
qed
then obtain y @ where Q" Q' = add-mset y Q and zy: z dvd y by (meson
mset-add)
from add(4) Q' have irr” irreducible y and mon’: monic y by auto
have z = y using irr irr’ zy mon mon’
by (metis irreducibleD’ irreducible-not-unit poly-dvd-antisym)
hence Q" Q' = Q + {#z#} using Q' by auto
from mon have z0: z # 0 by auto
from arg-cong[OF add(2)[unfolded Q], of A z. z div x]
have eq: prod-mset P = prod-mset @) using z0 by auto
from add(3—4)[unfolded Q']
have set-mset P C {q. irreducible ¢ A monic q} set-mset @ C {q. irreducible
q A monic q}
by auto
from add(1)[OF eq this] show ?Zcase unfolding @’ by auto
qed auto
}
from this[OF eq P Q)] this|OF eq[symmetric] Q P)
show ?thesis by auto
qed

lemma exactly-one-monic-factorization:
assumes mon: monic (f :: 'a :: field poly)
shows 3! fs. f = prod-mset fs N set-mset fs C {q. irreducible ¢ A monic q}
proof —
from monic-irreducible-factorization[OF mon]
obtain gs g where fin: finite gs and f: f = ([][a€gs. a ~ Suc (g a))
and gs: gs C {q. irreducible ¢ A monic q}
by blast
from fin
have 3 fs. set-mset fs C gs A prod-mset fs = (][a€gs. a ~ Suc (g a))

119

proof (induct gs)
case (insert a gs)
from insert(3) obtain fs where *: set-mset fs C gs prod-mset fs = ([a€gs.
a ~ Suc (g a)) by auto
let ?fs = fs + replicate-mset (Suc (g a)) a
show ?Zcase
proof (rule exI[of - fs + replicate-mset (Suc (g a)) al, intro conjl)
show set-mset ?fs C insert a gs using *(1) by auto
show prod-mset ?fs = (][] a€insert a gs. a ~ Suc (g a))
by (subst prod.insert|OF insert(1—2)], auto simp: x(2))
qed
qed simp
then obtain fs where set-mset fs C gs prod-mset fs = (][a€gs. a ~ Suc (g a))
by auto
with gs f have ex: Ifs. f = prod-mset fs A set-mset fs C {q. @rreducible ¢ A
monic q}
by (intro exI|of - fs], auto)
thus ?thesis using monic-factorization-unique-mset by blast
qed

lemma monic-prod-mset:
fixes as :: 'a :: idom poly multiset
assumes /\ a. a € sel-mset as => monic a
shows monic (prod-mset as) using assms
by (induct as, auto intro: monic-mult)

lemma exactly-one-factorization:
assumes f: f # (0 :: 'a = field poly)
shows 3! cfs. factorization Irr-Mon f cfs
proof —
let ?a = coeff f (degree f)
let ?b = inverse %a
let g = smult 2b f
define ¢ where g = g
from f have a: ?a # 0 ?b # 0 by (auto simp: field-simps)
hence monic g unfolding g-def by simp
note ex! = ezactly-one-monic-factorization|OF this, folded Irr-Mon-def]
then obtain fs where ¢: ¢ = prod-mset fs set-mset fs C Irr-Mon by auto
let cfs = (%a,fs)
have cfs: factorization Irr-Mon f ?cfs unfolding factorization-def split g(1)[symmetric]
using ¢(2) unfolding g-def by (simp add: a field-simps)
show ?thesis
proof (rule, rule cfs)
fix dgs
assume fact: factorization Irr-Mon f dgs
obtain d gs where dgs: dgs = (d,gs) by force
from fact[unfolded factorization-def dgs split]
have fd: f = smult d (prod-mset gs) and gs: set-mset gs C Irr-Mon by auto
have monic (prod-mset gs) by (rule monic-prod-mset, insert gs[unfolded Irr-Mon-def],

120

auto)
hence d: d = ?a unfolding fd by auto
from arg-cong[OF fd, of X z. smult ?b z, unfolded d g-def[symmetric]]
have g = prod-mset gs using a by (simp add: field-simps)
with ezl g gs have gs = fs by auto
thus dgs = ?cfs unfolding dgs d by auto

qed
qed

lemma mod-ident-iff:

(z :int) mod m =z +— x € {0 .< mp

if «<m > 0»
proof —

from that pos-mod-bound [of m x| pos-mod-sign [of m z] have (0 < x mod m)
<z mod m < m»

by simp-all

with that show ?thesis by auto

qed

declare prod-mset-prod-list[simp]
lemma mult-1-is-id[simp]: (x) (1 :: 'a :: ring-1) = id by auto

context poly-mod
begin

lemma degree-m-eg-monic: monic f = m > 1 = degree-m f = degree f
by (rule degree-m-eq) auto

lemma monic-degree-m-lift: assumes monic fk > 1 m > 1

shows monic (poly-mod.Mp (m * k) f)
proof —

have deg: degree (poly-mod.Mp (m x k) f) = degree f

by (rule poly-mod.degree-m-eq-moniclof f m x k|, insert assms, auto simp:

less-1-mult)

show ?thesis unfolding poly-mod.Mp-coeff deg assms poly-mod.M-def using
assms(2—)

by (simp add: less-1-mult)

qed

end
locale poly-mod-2 = poly-mod m for m +
assumes ml: m > 1
begin
lemma M-1[simp]: M 1 = 1 unfolding M-def using m1

by auto

121

lemma Mp-1[simp]: Mp 1 = 1 unfolding Mp-def by simp

lemma monic-degree-m[simp|: monic f = degree-m f = degree f
using degree-m-eq-monic|of f] using m1 by auto

lemma monic-Mp: monic f = monic (Mp f)
by (auto simp: Mp-coeff)

lemma Mp-0-smult-sdiv-poly: assumes Mp f = 0
shows smult m (sdiv-poly f m) = f
proof (intro poly-eql, unfold Mp-coeff coeff-smult sdiv-poly-def, subst coeff-map-poly,
force)
fix n
from assms have coeff (Mp f) n = 0 by simp
hence 0: coeff f n mod m = 0 unfolding Mp-coeff M-def .
thus m * (coeff f n div m) = coeff f n by auto
qed

lemma Mp-product-modulus: m’ = m x k = k > 0 = Mp (poly-mod.Mp m’ f)

=Mpf
by (intro poly-eql, unfold poly-mod. Mp-coeff poly-mod.M-def , auto simp: mod-mod-cancel)

lemma inv-M-rev: assumes bnd: 2 * abs ¢ < m

shows inv-M (M ¢) = ¢
proof (cases ¢ > 0)

case True

with bnd show ?thesis unfolding M-def inv-M-def by auto
next

case Fulse

have 2: \ v ::int. 2 x v = v + v by auto

from Fulse have c: ¢ < 0 by auto

from bnd c have ¢ + m > 0 ¢ + m < m by auto

with ¢ have cm: ¢ mod m = ¢ + m

by (metis le-less mod-add-self2 mod-pos-pos-trivial)

from ¢ bnd have 2 x (¢ mod m) > m unfolding cm by auto

with bnd ¢ show ?thesis unfolding M-def inv-M-def cm by auto
qed

end

lemma (in poly-mod) degree-m-eq-prime:
assumes f0: Mp f # 0
and deg: degree-m f = degree f
and eq: f =m g x h
and p: prime m
shows degree-m f = degree-m g + degree-m h
proof —

122

interpret poly-mod-2 m using prime-ge-2-int|OF p| unfolding poly-mod-2-def
by simp
from f0 eq have Mp (Mp g x Mp h) # 0 by auto
hence Mp g * Mp h # 0 using Mp-0 by (cases Mp g * Mp h, auto)
hence ¢0: Mp g # 0 and h0: Mp h # 0 by auto
have degree (Mp (g * h)) = degree-m (Mp g x Mp h) by simp
also have ... = degree (Mp g x Mp h)
proof (rule degree-m-eq[OF - m1], rule)
have id: A\ g. coeff (Mp g) (degree (Mp g)) mod m = coeff (Mp g) (degree (Mp

9))
unfolding M-def[symmetric] Mp-coeff by simp
from p have p”: prime m unfolding prime-int-nat-transfer unfolding prime-nat-iff
by auto
assume coeff (Mp g * Mp h) (degree (Mp g x Mp h)) mod m = 0
from this[unfolded coeff-degree-mult]
have coeff (Mp g) (degree (Mp g)) mod m = 0 V coeff (Mp h) (degree (Mp h))
mod m = 0
unfolding dvd-eq-mod-eq-0[symmetric] using m1 prime-dvd-mult-int|OF p’]
by auto
with g0 h0 show Fulse unfolding id by auto
qged
also have ... = degree (Mp g) + degree (Mp h)
by (rule degree-mult-eq[OF g0 h0])
finally show ?thesis using eq by simp
qed

lemma monic-smult-add-small: assumes f = 0 V degree f < degree g and mon:
monic g

shows monic (g + smult q f)
proof (cases f = 0)

case True

thus ?thesis using mon by auto
next

case Fulse

with assms have degree f < degree g by auto

hence degree (smult q f) < degree g by (meson degree-smult-le not-less or-
der-trans)

thus ?thesis using mon using coeff-eq-0 degree-add-eqg-left by fastforce
qed

context poly-mod
begin

definition factorization-m :: int poly = (int X int poly multiset) = bool where
factorization-m f cfs = (case cfs of (c,fs) = f =m (smult ¢ (prod-mset fs)) A
(V f € set-mset fs. irreducibleg-m f N monic (Mp f)))
definition Mf :: int x int poly multiset = int x int poly multiset where

Mf cfs = case cfs of (c,fs) = (M ¢, image-mset Mp fs)

123

lemma Mf-Mf[simp]: Mf (Mf z) = Mfz
proof (cases x, auto simp: Mf-def, goal-cases)
case (1 c fs)
show ?Zcase by (induct fs, auto)
qed

definition equivalent-fact-m :: int X int poly multiset = int X int poly multiset
= bool where
equivalent-fact-m cfs dgs = (Mf cfs = Mf dgs)

definition unique-factorization-m :: int poly = (int X int poly multiset) = bool
where
unique-factorization-m f cfs = (Mf ¢ Collect (factorization-m f) = {Mf cfs})

lemma Mp-irreducibleg-m[simpl: irreducibleq-m (Mp f) = drreducibleg-m f
unfolding irreducibles-m-def dvdm-def by simp

lemma Mj-factorization-m[simp|: factorization-m f (Mf cfs) = factorization-m f
cfs

unfolding factorization-m-def Mf-def
proof (cases cfs, simp, goal-cases)

case (1 c¢ fs)

have Mp (smult ¢ (prod-mset fs)) = Mp (smult (M ¢) (Mp (prod-mset fs))) by
stmp

also have ... = Mp (smult (M ¢) (Mp (prod-mset (image-mset Mp fs))))

unfolding Mp-prod-mset by simp

also have ... = Mp (smult (M ¢) (prod-mset (image-mset Mp fs))) unfolding
Mp-smult ..

finally show ?case by auto
qed

lemma unique-factorization-m-imp-factorization: assumes unique-factorization-m
fcfs

shows factorization-m f cfs
proof —

from assms|unfolded unique-factorization-m-def] obtain dfs where

fact: factorization-m f dfs and id: Mf cfs = Mf dfs by blast

from fact have factorization-m f (Mf dfs) by simp

from thisfolded id] show ?thesis by simp
qed

lemma unique-factorization-m-alt-def: unique-factorization-m f cfs = (factorization-m
fefs

A (V dgs. factorization-m [dgs — Mf dgs = Mf cfs))

using unique-factorization-m-imp-factorization|[of f cfs]

unfolding unique-factorization-m-def by auto

end

124

context poly-mod-2
begin

lemma factorization-m-lead-coeff: assumes factorization-m f (c,fs)

shows lead-coeff (Mp f) = M ¢
proof —

note * = assms[unfolded factorization-m-def split]

have monic (prod-mset (image-mset Mp fs)) by (rule monic-prod-mset, insert *,
auto)

hence monic (Mp (prod-mset (image-mset Mp fs))) by (rule monic-Mp)

from this[unfolded Mp-prod-mset] have monic: monic (Mp (prod-mset fs)) by
simp

from * have lead-coeff (Mp f) = lead-coeff (Mp (smult ¢ (prod-mset fs))) by
simp

also have Mp (smult ¢ (prod-mset fs)) = Mp (smult (M ¢) (Mp (prod-mset fs)))
by simp

finally show ?thesis

using monic <smult ¢ (prod-mset fs) =m smult (M ¢) (Mp (prod-mset fs))»
by (metis M-M M-def Mp-0 Mp-coeff lead-coeff-smult m1 mult-cancel-left2

poly-mod.degree-m-eq smult-eq-0-iff)
qged

lemma factorization-m-smult: assumes factorization-m f (c,fs)
shows factorization-m (smult d f) (¢ * d,fs)
proof —
note x = assms[unfolded factorization-m-def split)
from * have f: Mp f = Mp (smult ¢ (prod-mset fs)) by simp
have Mp (smult d f) = Mp (smult d (Mp f)) by simp
also have ... = Mp (smult (¢ * d) (prod-mset fs)) unfolding f by (simp add:
ac-simps)
finally show ?thesis using assms
unfolding factorization-m-def split by auto
qed

lemma factorization-m-prod: assumes factorization-m f (c,fs) factorization-m g
(d,gs)

shows factorization-m (f * g) (¢ x d, fs + gs)
proof —

note * = assms[unfolded factorization-m-def split]

have Mp (f = g) = Mp (Mp f = Mp g) by simp

also have Mp f = Mp (smult ¢ (prod-mset fs)) using * by simp

also have Mp g = Mp (smult d (prod-mset gs)) using * by simp

finally have Mp (f x g) = Mp (smult (¢ * d) (prod-mset (fs + gs))) unfolding
mult-Mp

by (simp add: ac-simps)

with * show ?thesis unfolding factorization-m-def split by auto

qed

125

lemma Mp-factorization-m[simp]: factorization-m (Mp f) cfs = factorization-m f

cfs

unfolding factorization-m-def by simp

lemma Mp-unique-factorization-m[simp:
unique-factorization-m (Mp f) cfs = unique-factorization-m f cfs
unfolding unique-factorization-m-alt-def by simp

lemma unique-factorization-m-cong: unique-factorization-m f cfs = Mp f = Mp
g

= unique-factorization-m g cfs

unfolding Mp-unique-factorization-mlof f, symmetric] by simp

lemma unique-factorization-ml: assumes factorization-m f (c,fs)
and A d gs. factorization-m f (d,gs) = Mf (d,gs) = Mf (c,fs)
shows unique-factorization-m f (c,fs)
unfolding unique-factorization-m-alt-def
by (intro conjI[OF assms(1)] alll impl, insert assms(2), auto)

lemma unique-factorization-m-smult: assumes uf: unique-factorization-m f (c,fs)
and d: M (di = d) = 1
shows unique-factorization-m (smult d f) (¢ * d,fs)
proof (rule unique-factorization-mI[OF factorization-m-smult])
show factorization-m f (¢, fs) using uf[unfolded unique-factorization-m-alt-def]
by auto
fix e gs
assume fact: factorization-m (smult d f) (e,gs)
from factorization-m-smult[OF this, of di]
have factorization-m (Mp (smult di (smult d f))) (e * di, gs) by simp
also have Mp (smult di (smult d f)) = Mp (smult (M (di x d)) f) by simp
also have ... = Mp f unfolding d by simp
finally have fact: factorization-m f (e % di, gs) by simp
with uf[unfolded unique-factorization-m-alt-def] have eq: Mf (e *x di, gs) = Mf
(¢, fs) by blast
from equnfolded Mf-def] have M (e * di
from arg-cong|OF this, of A z. M (z x d)
have M (e« M (di x d)) = M (c d) y (simp add: ac-simps)
from this[unfolded d] have e: M e = M (c * d) by simp
with eq
show Mf (e,gs) = Mf (c = d, fs) unfolding Mf-def split by simp
qed

) = M ¢ by simp
]

lemma unique-factorization-m-smultD: assumes uf: unique-factorization-m (smult
af) (.fs)

and d: M (di x d) =

shows unique-factorization-m f (c x di,fs)
proof —

from d have d": M (d = di) = 1 by (simp add: ac-simps)

show ?thesis

126

proof (rule unique-factorization-m-cong| OF unique-factorization-m-smult| OF uf
a7,
rule poly-eql, unfold Mp-coeff coeff-smult)
fix n
have M (di x (d * coeff fn)) = M (M (di = d) % coeff f n) by (auto simp:
ac-simps)
from this[unfolded d] show M (di x (d * coeff fn)) = M (coeff f n) by simp
qed
qed

lemma degree-m-eq-lead-coeff: degree-m f = degree f = lead-coeff (Mp f) = M

(lead-coeff f)
by (simp add: Mp-coeff)

lemma unique-factorization-m-zero: assumes unique-factorization-m f (c,fs)
shows M ¢ # 0
proof
assume c: M ¢ = 0
from unique-factorization-m-imp-factorization| OF assms]
have Mp f = Mp (smult (M ¢) (prod-mset fs)) unfolding factorization-m-def
split
by simp
from this[unfolded c] have f: Mp f = 0 by simp
have factorization-m f (0.{#})
unfolding factorization-m-def split f by auto
moreover have Mf (0,{#}) = (0,{#}) unfolding Mf-def by auto
ultimately have factl: (0, {#}) € Mf ¢ Collect (factorization-m f) by force
define ¢ :: int poly where g = [:0,1:]
have mpg: Mp g = [:0,1:] unfolding Mp-def
by (auto simp: g-def)
{
fix g h
assume x: degree (Mp g) = 0 degree (Mp h) = 0 [:0, 1:] = Mp (g * h)
from arg-cong[OF *(3), of degree] have 1 = degree-m (Mp g * Mp h) by simp
also have ... < degree (Mp g * Mp h) by (rule degree-m-le)
also have ... < degree (Mp g) + degree (Mp h) by (rule degree-mult-le)
also have ... < 0 using * by simp
finally have Fulse by simp
} note irr = this
have factorization-m f (0 {# g #})
unfolding factorization-m-def split using irr
by (auto simp: irreducibleq-m-def f mpg)
moreover have Mf (0,{# g #}) = (0{# ¢ #}) unfolding Mf-def by (auto
stmp: mpg, simp add: g-def)
ultimately have fact2: (0, {#g#}) € Mf ¢ Collect (factorization-m f) by force
note [simp] = assms[unfolded unique-factorization-m-def]
from fact![simplified, folded fact2[simplified]] show False by auto
qed

127

end

context poly-mod
begin

lemma dvdm-smult: assumes f dvdm g
shows f dvdm smult ¢ g
proof —
from assms|unfolded dvdm-def] obtain h where ¢g: ¢ =m f % h by auto
show ?thesis unfolding dvdm-def
proof (intro exI[of - smult ¢ h])
have Mp (smult ¢ g) = Mp (smult ¢ (Mp g)) by simp
also have Mp g = Mp (f * h) using g by simp
finally show Mp (smult ¢ g) = Mp (f * smult ¢ h) by simp
qged
qed

lemma dvdm-factor: assumes f dvdm g
shows f dvdm g * h
proof —
from assms[unfolded dvdm-def] obtain k where g: ¢ =m f * k by auto
show ?thesis unfolding dvdm-def
proof (intro exlI[of - h * k])
have Mp (g x h) = Mp (Mp g * h) by simp
also have Mp g = Mp (f * k) using g by simp
finally show Mp (g * h) = Mp (f * (h % k)) by (simp add: ac-simps)
qed
qed

lemma square-free-m-smultD: assumes square-free-m (smult ¢ f)
shows square-free-m f
unfolding square-free-m-def
proof (intro congl alll impl)
fix g
assume degree-m g # 0
with assms[unfolded square-free-m-def] have — g * g dvdm smult ¢ f by auto
thus = g * g dvdm f using dvdm-smult[of g * g f ¢] by blast
next
from assms|unfolded square-free-m-def] have — smult ¢ f =m 0 by simp
thus - f =m 0
by (metis Mp-smult(2) smult-0-right)
qed

lemma square-free-m-smultl: assumes sf: square-free-m f
and inv: M (ci * ¢) = 1
shows square-free-m (smult ¢ f)

proof —
have square-free-m (smult ci (smult ¢ f))

128

proof (rule square-free-m-cong[OF sf], rule poly-eql, unfold Mp-coeff coeff-smult)
fix n
have M (ci * (¢ * coeff fn)) = M (M (ci * ¢) * coeff f n) by (simp add:
ac-simps)
from this[unfolded inv] show M (coeff fn) = M (ci x (¢ * coeff fn)) by simp
qed
from square-free-m-smultD[OF this] show ?thesis .
qed

lemma square-free-m-factor: assumes square-free-m (f * g)
shows square-free-m f square-free-m g
proof —
{
fix fg
assume sf: square-free-m (f * g)
have square-free-m f
unfolding square-free-m-def
proof (intro conjl alll impl)
fix h
assume degree-m h # 0
with sf[unfolded square-free-m-def] have — h * h dvdm f * g by auto
thus — A x h dvdm f using dvdm-factor[of h = h f g] by blast
next
from sf[unfolded square-free-m-def] have — f x g =m 0 by simp
thus - f =m 0
by (metis mult.commute mult-zero-right poly-mod.mult-Mp(2))
qed
}
from this[of f g] this[of g f] assms
show square-free-m f square-free-m g by (auto simp: ac-simps)
qed

end

context poly-mod-2
begin

lemma Mp-ident-iff: Mp f = f «— (V n. coeff fn € {0 ..< m})
proof —

have m0: m > 0 using m1 by simp

show ?thesis unfolding poly-eq-iff Mp-coeff M-def mod-ident-iff [OF m0] by simp
qed

lemma Mp-ident-iff = Mp [= f +— (set (coeffs f) C {0 ..< m})

proof —
have 0: 0 € {0 ..< m} using m! by auto
have ran: (Vn. coeff f n € {0..<m}) <— range (coeff f) C {0 ..< m} by blast
show ?thesis unfolding Mp-ident-iff ran using range-coeff[of f] 0 by auto

129

qed
end

lemma Mp-Mp-pow-is-Mp: n # 0 = p > 1 = poly-mod.Mp p (poly-mod.Mp
(p7n) f)

= poly-mod.Mp p f

using poly-mod-2. Mp-product-modulus poly-mod-2-def by (subst power-eq-if , auto)

lemma M-M-pow-is-M: n # 0 = p > 1 = poly-mod.M p (poly-mod.M (p~n)
f)

= poly-mod.M p f using Mp-Mp-pow-is-Mplof n p [:f:]]

by (metis coeff-pCons-0 poly-mod. Mp-coeff)

definition inverse-mod :: int = int = int where
inverse-mod x m = fst (bezout-coefficients x m)

lemma inverse-mod:
(inverse-mod x m x x) mod m = 1
if coprime t m m > 1
proof —
from bezout-coefficients [of x m inverse-mod & m snd (bezout-coefficients x m)]
have inverse-mod x m * = + snd (bezout-coefficients x m) * m = ged T m
by (simp add: inverse-mod-def)
with that have inverse-mod © m * x + snd (bezout-coefficients m) * m = 1
by simp
then have (inverse-mod x m * x + snd (bezout-coefficients x m) x m) mod m =
1 mod m
by simp
with «<m > 1) show ?thesis
by simp
qed

lemma inverse-mod-pow:
(inverse-mod x (p " n) *) mod (p " n) = 1
if coprimexpp > 1n# 0
using that by (auto intro: inverse-mod)

lemma (in poly-mod) inverse-mod-coprime:
assumes p: prime m
and cop: coprime x m shows M (inverse-mod x m x x) = 1
unfolding M-def using inverse-mod-pow[OF cop, of 1] p
by (auto simp: prime-int-iff)

lemma (in poly-mod) inverse-mod-coprime-exp:
assumes m: m = p n and p: prime p
and n: n # 0 and cop: coprime T p
shows M (inverse-mod x m * z) = 1
unfolding M-def unfolding m using inverse-mod-pow[OF cop - n] p
by (auto simp: prime-int-iff)

130

locale poly-mod-prime = poly-mod p for p :: int +
assumes prime: prime p
begin

sublocale poly-mod-2 p using prime unfolding poly-mod-2-def
using prime-gt-1-int by force

lemma square-free-m-prod-imp-coprime-m: assumes sf: square-free-m (A * B)
shows coprime-m A B
unfolding coprime-m-def
proof (intro alll impl)
fix h
assume dvd: h dvdm A h dvdm B
then obtain ha hb where x: Mp A = Mp (h x ha) Mp B = Mp (h * hb)
unfolding dvdm-def by auto
have AB: Mp (A x B) = Mp (Mp A x Mp B) by simp
from this[unfolded x, simplified]
have eq: Mp (A x B) = Mp (h * h x (ha x hbd)) by (simp add: ac-simps)
hence dvd-hh: (h * h) dvdm (A x B) unfolding dvdm-def by auto
{
assume degree-m h % 0
from sf[unfolded square-free-m-def, THEN conjunct2, rule-format, OF this]
have — h x h dvdm A * B .
with dvd-hh have Fualse by simp
}
hence degree (Mp h) = 0 by auto
then obtain ¢ where he: Mp h = [: ¢ :] by (rule degree-eg-zeroE)
{
assume ¢ = (
hence Mp h = 0 unfolding hc by auto
with (1) have Mp A = 0
by (metis Mp-0 mult-zero-left poly-mod.mult-Mp(1))
with sf[unfolded square-free-m-def, THEN conjunct!] have False
by (simp add: AB)
}

hence c0: ¢ # 0 by auto
with arg-cong[OF hc[symmetric], of X f. coeff f 0, unfolded Mp-coeff M-def] m1
have ¢ > 0 ¢ < p by auto
with c0 have c-props:c > 0 ¢ < p by auto
with prime have prime p by simp
with c-props have coprime p ¢
by (auto intro: prime-imp-coprime dest: zdvd-not-zless)
then have coprime ¢ p
by (simp add: ac-simps)
from inverse-mod-coprime[OF prime this]
obtain d where d: M (¢ x d) = 1 by (auto simp: ac-simps)
show h dvdm 1 unfolding dvdm-def
proof (intro exI|of - [:d:]])

131

have Mp (h * [: d :]) = Mp (Mp h = [: d :]) by simp

also have ... = Mp ([: ¢ x d :]) unfolding hc by (auto simp: ac-simps)
also have ... = [: M (¢ * d) :] unfolding Mp-def
by (metis (no-types) M-0 map-poly-pCons Mp-0 Mp-def d zero-neg-one)
also have ... = [unfolding d by simp
finally show Mp 1 = Mp (h x [:d:]) by simp
qed
qed

lemma coprime-exp-mod: coprime lu p = n # 0 = lu modp " n # 0
using prime by fastforce

end

context poly-mod
begin

definition Dp :: int poly = int poly where
Dp f = map-poly (A a. a div m) f

lemma Dp-Mp-eq: f = Mp f + smult m (Dp f)
by (rule poly-eql, auto simp: Mp-coeff M-def Dp-def coeff-map-poly)

lemma dvd-imp-dvdm:
assumes a dvd b shows a dvdm b
by (metis assms dvd-def dvdm-def)

lemma dvdm-add:
assumes a: v dvdm a
and b: u dvdm b
shows u dvdm (a+b)
proof —
obtain ¢’ where a: a =m u*a’ using o unfolding dvdm-def by auto
obtain b’ where b: b =m uxb’ using b unfolding dvdm-def by auto
have Mp (a + b) = Mp (uxa’+uxb’) using a b
by (metis poly-mod.plus-Mp(1) poly-mod.plus-Mp(2))
also have ... = Mp (u * (a'+ b"))
by (simp add: distrib-left)
finally show ?thesis unfolding dvdm-def by auto
qed

lemma monic-dvdm-constant:
assumes vk: u dvdm [:k:]
and ul: monic v and u2: degree u > 0
shows k mod m = 0
proof —
have d1: degree-m [:k:] = degree [:k:]
by (metis degree-pCons-0 le-zero-eq poly-mod.degree-m-le)

132

obtain h where h: Mp [:k:] = Mp (u * h)
using uk unfolding dvdm-def by auto
have d2: degree-m [:k:] = degree-m (uxh) using h by metis
have d3: degree (map-poly M (u x map-poly M h)) = degree (u * map-poly M h)

by (rule degree-map-poly)
(metis coeff-degree-mult leading-coeff-0-iff mult.right-neutral M-M Mp-coeff
Mp-def ul)
thus ?thesis using assms d1 d2 d3
by (auto, metis M-def map-poly-pCons degree-mult-right-le h leD map-poly-0
mult-poly-0-right pCons-eq-0-iff M-0 Mp-def mult-Mp(2))
qed

lemma div-mod-imp-dvdm:
assumes 3¢ r. b = ¢ * a + Polynomial.smult m r
shows a dvdm b
proof —
from assms obtain ¢ r where b:b = a x ¢ + smult m r
by (metis mult.commute)
have a: Mp (Polynomial.smult m r) = 0 by auto
show ?thesis
proof (unfold dvdm-def, rule exI|of - q])
have Mp (a * ¢ + smult m r) = Mp (a * ¢ + Mp (smult m 1))
using plus-Mp(2)[of axq smult m r] by auto

also have ... = Mp (axq) by auto
finally show eq-m b (a * ¢) using b by auto
qed
qed

lemma lead-coeff-monic-mult:
fixes p :: ‘a :: {comm-semiring-1,semiring-no-zero-divisors} poly
assumes monic p shows lead-coeff (p * q) = lead-coeff q
using assms by (simp add: lead-coeff-mult)

lemma degree-m-mult-eq:
assumes p: monic p and q: lead-coeff ¢ mod m # 0 and mi: m > 1
shows degree (Mp (p * q)) = degree p + degree q
proof—
have lead-coeff (p * q) mod m # 0
using ¢ p by (auto simp: lead-coeff-monic-mult)
with m1 show ?thesis
by (auto simp: degree-m-eq introl: degree-mult-eq)
qed

lemma dvdm-imp-degree-le:
assumes pq: p dvdm g and p: monic p and q0: Mp q # 0 and mi1: m > 1
shows degree p < degree q

proof—
from q0

133

have ¢: lead-coeff (Mp q) mod m # 0
by (metis Mp-Mp Mp-coeff leading-coeff-neq-0 M-def)
from pq obtain r where Mpq: Mp ¢ = Mp (p * Mp r) by (auto elim: dvdmE)
with p ¢ have lead-coeff (Mp r) mod m # 0
by (metis Mp-Mp Mp-coeff leading-coeff-0-iff mult-poly-0-right M-def)
from degree-m-mult-eq[OF p this m1] Mpq
have degree p < degree-m q by simp
thus ?thesis using degree-m-le le-trans by blast
qed

lemma dvdm-uminus [simp]:
p dvdm —q <— p dvdm q
by (metis add.inverse-inverse dvdm-smult smult-1-left smult-minus-left)

lemma Mp-const-poly: Mp [:a:] = [:a mod m:]
by (simp add: Mp-def M-def Polynomial.map-poly-pCons)

lemma dvdm-imp-div-mod:
assumes u dvdm g
shows 3¢ r. g = gxu + smult m r
proof —
obtain ¢ where ¢: Mp g = Mp (uxq)
using assms unfolding dvdm-def by fast
have (uxq) = Mp (uxq) + smult m (Dp (uxq))
by (simp add: poly-mod.Dp-Mp-eq|of uxq))
hence uq: Mp (uxq) = (uxq) — smult m (Dp (uxq))
by auto
have g: g = Mp g + smult m (Dp g)
by (simp add: poly-mod.Dp-Mp-eq|of g])

also have ... = poly-mod.Mp m (uxq) + smult m (Dp g) using ¢ by simp

also have ... = u * ¢ — smult m (Dp (u x q)) + smult m (Dp g)
unfolding uq by auto

also have ... = u x ¢ + smult m (—=Dp (uxq)) + smult m (Dp g) by auto

also have ... = u * ¢ + smult m (—Dp (uxq) + Dp g)
unfolding smult-add-right by auto

also have ... = ¢ x u + smult m (—Dp (uxq) + Dp g) by auto

finally show ?thesis by auto

qed

corollary div-mod-iff-dvdm:
shows a dvdm b = (3¢ r. b = q x a + Polynomial.smult m)
using div-mod-imp-dvdm dvdm-imp-div-mod by blast

lemma dvdmkE":
assumes p dvdm q and Ar. ¢ =m p x Mp r = thesis
shows thesis
using assms by (auto simp: dvdm-def)

134

end

context poly-mod-2
begin
lemma factorization-m-mem-dvdm: assumes fact: factorization-m f (c,fs)
and mem: Mp g €# image-mset Mp fs
shows ¢ dvdm f
proof —
from fact have factorization-m f (Mf (¢, fs)) by auto
then obtain [where f: factorization-m f (I, image-mset Mp fs) by (auto simp:
Mf-def)
from multi-member-split{ OF mem| obtain [s where
fs: image-mset Mp fs = {# Mp g #} + Is by auto
from flunfolded fs split factorization-m-def] show g dvdm f
unfolding dvdm-def
by (intro exl|of - smult | (prod-mset ls)], auto simp del: Mp-smult
simp add: Mp-smult(2)[of - Mp g * prod-mset ls, symmetric|, simp)
qed

lemma dvdm-degree: monic v = u dvdm f = Mp f # 0 = degree u < degree

f
using dvdm-imp-degree-le m1 by blast

end

lemma (in poly-mod-prime) pl-dvdm-imp-p-dvdm:
assumes [0: | # 0
and pl-dvdm: poly-mod.dvdm (p~1) a b
shows a dvdm b
proof —
from [0 have [-gt-0: | > 0 by auto
with m1 interpret pl: poly-mod-2 p~l by (unfold-locales, auto)
from [-gt-0 have p-rw:pxp ~ (I —1)=p "1
by (cases 1) simp-all
obtain ¢ r where b: b = ¢ *x a + smult (p7l) r using pl.dvdm-imp-div-mod[OF
pl-dvdm] by auto
have smult (p71) r = smult p (smult (p ~ (I — 1)) r) unfolding smult-smult
P-TW ..
hence 02: b = g * a + smult p (smult (p ~ (I — 1)) r) using b by auto
show ?thesis
by (rule div-mod-imp-dvdm, rule exI[of - q|,
rule exI[of - (smult (p ~ (I — 1)))], auto simp add: b2)
qed

end

135

5.2 Polynomials in a Finite Field

We connect polynomials in a prime field with integer polynomials modulo
some prime.

theory Poly-Mod-Finite-Field
imports
Finite-Field
Polynomial-Interpolation. Ring-Hom-Poly
HOL— Types-To-Sets. Types-To-Sets
More-Missing-Multiset
Poly-Mod

begin

declare rel-mset-Zero[transfer-rule]

lemma mset-transfer[transfer-rule]: (list-all2 rel ===> rel-mset rel) mset mset
proof (intro rel-funl)
show list-all2 rel xs ys = rel-mset rel (mset zs) (mset ys) for zs ys
proof (induct xs arbitrary: ys)
case Nil
then show ?case by auto
next
case [H: (Cons z xs)
then show Zcase by (auto dest!:msed-rel-invL simp: list-all2-Cons1 introl:rel-mset- Plus)
qed
qed

abbreviation to-int-poly :: ’‘a :: finite mod-ring poly = int poly where
to-int-poly = map-poly to-int-mod-ring

interpretation to-int-poly-hom: map-poly-inj-zero-hom to-int-mod-ring ..

lemma irreducibley-def-0:
fixes f :: 'a :: {comm-semiring-1,semiring-no-zero-divisors} poly
shows irreducible; f = (degree f # 0 A
(V g h. degree g # 0 — degree h # 0 — [# g x h))
proof—
have degree g # 0 = g # 0 for g :: 'a poly by auto
note 1 = degree-mult-eq[OF this this, simplified]
then show ?thesis by (force elim!: irreduciblesE)
qed

5.3 Transferring to class-based mod-ring

locale poly-mod-type = poly-mod m
for m and ty :: 'a :: nontriv itself +
assumes m: m = CARD('a)

136

begin
lemma mI1: m > I using nontriv[where 'a = ‘a] by (auto simp:m)
sublocale poly-mod-2 using m1 by unfold-locales

definition MP-Rel :: int poly = 'a mod-ring poly = bool
where MP-Rel f f' = (Mp f = to-int-poly)

definition M-Rel :: int = 'a mod-ring = bool
where M-Rel z 2’ = (M z = to-int-mod-ring ')

definition MF-Rel = rel-prod M-Rel (rel-mset MP-Rel)

lemma to-int-mod-ring-plus: to-int-mod-ring ((z :: 'a mod-ring) + y) = M (to-int-mod-ring
x + to-int-mod-ring y)
unfolding M-def using m by (transfer, auto)

lemma to-int-mod-ring-times: to-int-mod-ring ((z :: 'a mod-ring) * y) = M (to-int-mod-ring
x x to-int-mod-ring y)
unfolding M-def using m by (transfer, auto)

lemma degree-MP-Rel [transfer-rule]: (MP-Rel ===> (=)) degree-m degree
unfolding MP-Rel-def rel-fun-def
by (auto intro!l: degree-map-poly)

lemma eq-M-Rel[transfer-rule]: (M-Rel ===> M-Rel ===> (=)) Az y. Mz =
My) (=)
unfolding M-Rel-def rel-fun-def by auto

interpretation to-int-mod-ring-hom: map-poly-inj-zero-hom to-int-mod-ring..

lemma eq-MP-Rel[transfer-rule]: (MP-Rel ===> MP-Rel ===> (=)) (=m) (=)
unfolding MP-Rel-def rel-fun-def by auto

lemma eq-Mf-Rel[transfer-rule]: (MF-Rel ===> MF-Rel ===> (=)) (A z y. Mf

z = Mfy) (=)

proof (intro rel-funl, goal-cases)

case (1 cfs Cfs dgs Dgs)

obtain c fs where cfs: ¢fs = (c,fs) by force

obtain C F's where Cfs: Cfs = (C,Fs) by force

obtain d gs where dgs: dgs = (d,gs) by force

obtain D Gs where Dgs: Dgs = (D,Gs) by force

note pairs = cfs Cfs dgs Dgs

from 1[unfolded pairs MF-Rel-def rel-prod.simps]

have x[transfer-rule]: M-Rel ¢ C M-Rel d D rel-mset MP-Rel fs Fs rel-mset MP-Rel
gs Gs

by auto
have eql: (M ¢ = M d) = (C = D) by transfer-prover

137

from *(3)[unfolded rel-mset-def] obtain fs’ F's’ where fs-eq: mset fs' = fs mset
Fs' = Fs
and rel-f: list-all2 MP-Rel fs’ Fs' by auto
from *(4)[unfolded rel-mset-def] obtain gs’ Gs’ where gs-eq: mset gs’ = gs mset
Gs' = Gs
and rel-g: list-all2 MP-Rel gs’ Gs’ by auto
have eq2: (image-mset Mp fs = image-mset Mp gs) = (Fs = Gs)
using *(8—4)
proof (induct fs arbitrary: Fs gs Gs)
case (empty Fs gs Gs)
from empty(1) have Fs: Fs = {#} unfolding rel-mset-def by auto
with empty show ?2case by (cases gs; cases Gs; auto simp: rel-mset-def)
next
case (add f fs Fs' gs' Gs’)
note [transfer-rule] = add(3)
from msed-rel-invL[OF add(2)]
obtain Fs F where Fs". Fs' = Fs + {#F+#} and rel[transfer-rule]:
MP-Rel f F rel-mset MP-Rel fs F's by auto
note IH = add(1)[OF rel(2)]

from add(3)[unfolded rel-mset-def] obtain gs Gs where id: mset gs = gs’
mset Gs = Gs'
and rel: list-all2 MP-Rel gs Gs by auto
have Mp f €# image-mset Mp gs' «— F €# Gs’
proof —
have ?thesis = ((Mp f € Mp * set gs) = (F € set Gs))
unfolding id[symmetric] by simp
also have ... using rel
proof (induct gs Gs rule: list-all2-induct)
case (Cons g gs G Gs)
note [transfer-rule] = Cons(1—2)
have id: (Mp g = Mp f) = (F = G) by (transfer, auto)
show ?case using id Cons(3) by auto
qged auto
finally show ?thesis by simp
qed
} note id = this
show ?case
proof (cases Mp f €# image-mset Mp gs')
case Fulse
have Mp f €# image-mset Mp (fs + {#f#}) by auto
with False have F': image-mset Mp (fs + {#f#}) # image-mset Mp gs’ by
metis
with False[unfolded id] show ?thesis unfolding Fs’ by auto
next
case True
then obtain g where fg: Mp f = Mp g and ¢: g €# gs’ by auto
from g obtain gs where gs”: gs’ = add-mset g gs by (rule mset-add)
from msed-rel-invL[OF add(3)[unfolded gs']]

138

obtain Gs G where Gs: Gs' = Gs + {# G #} and gG[transfer-rule]:
MP-Rel g G and
g9sGs: rel-mset MP-Rel gs Gs by auto
have FG: F = G by (transfer, simp add: fg)
note IH = IH|OF gsGs]
show ?thesis unfolding gs’ Fs' Gs’ by (simp add: fg IH FG)
qed
qed
show (Mf ¢fs = Mf dgs) = (Cfs = Dgs) unfolding pairs Mf-def split
by (simp add: eql eq?2)
qged

lemmas coeff-map-poly-of-int = coeff-map-polylof of-int, OF of-int-0)

lemma plus-MP-Rel[transfer-rule]: (MP-Rel ===> MP-Rel ===> MP-Rel) (+)
(++)

unfolding MP-Rel-def
proof (intro rel-funl, goal-cases)

case (1 zfyg)
have Mp (z + y) = Mp (Mp = + Mp y) by simp

also have ... = Mp (map-poly to-int-mod-ring f + map-poly to-int-mod-ring g)
unfolding 1 ..
also have ... = map-poly to-int-mod-ring (f + g) unfolding poly-eq-iff Mp-coeff

by (auto simp: to-int-mod-ring-plus)
finally show ?case .
qged

lemma times-MP-Rel[transfer-rule]: (MP-Rel ===> MP-Rel ===> MP-Rel)
() ()

unfolding MP-Rel-def
proof (intro rel-funl, goal-cases)

case (1 zfyyg)
have Mp (z x y) = Mp (Mp = x Mp y) by simp

also have ... = Mp (map-poly to-int-mod-ring f * map-poly to-int-mod-ring g)
unfolding 7 ..
also have ... = map-poly to-int-mod-ring (f * g)
proof —
{ fix n :: nat

define A where A = {.. n}
have finite A unfolding A-def by auto
then have M (> i<n. to-int-mod-ring (coeff f i) % to-int-mod-ring (coeff ¢
(n— 1)) =
to-int-mod-ring (> i<n. coeff f i x coeff g (n — 1))
unfolding A-def[symmetric]
proof (induct A)
case (insert a A)
have ?case = %case (is (21 = ?r) = -) by simp
have ?r = to-int-mod-ring (coeff f a * coeff g (n — a) + (>_ i€ A. coeff i

139

« coeff g (n — 1))

using insert(1—2) by auto

note r = this[unfolded to-int-mod-ring-plus to-int-mod-ring-times|
from insert(1—2) have 2l = M (to-int-mod-ring (coeff f a) * to-int-mod-ring

(coeff g (n — a))

+ M (3 i€A. to-int-mod-ring (coeff f i) * to-int-mod-ring (coeff g (n —
)

by simp

also have M (> i€A. to-int-mod-ring (coeff f i) x to-int-mod-ring (coeff ¢
(n — 7)) = to-int-mod-ring (D> i€A. coeff f i * coeff g (n — 7))
unfolding insert ..
finally
show ?case unfolding r by simp
qed auto
}
then show %thesis by (auto introl:poly-eql simp: coeff-mult Mp-coeff)
qed
finally show ?Zcase .
qed

lemma smult-MP-Rel[transfer-rule]: (M-Rel ===> MP-Rel ===> MP-Rel) smult
smult
unfolding MP-Rel-def M-Rel-def
proof (intro rel-funl, goal-cases)
case (1 zz' ff')
thus ?case unfolding poly-eq-iff coeff Mp-coeff
coeff-smult M-def
proof (intro alll, goal-cases)
case (1 n)
have z * coeff f n mod m = (z mod m) x (coeff f n mod m) mod m
by (simp add: mod-simps)

also have ... = to-int-mod-ring =’ * (to-int-mod-ring (coeff f' n)) mod m
using 1 by auto
also have ... = to-int-mod-ring (z’ x coeff f' n)

unfolding to-int-mod-ring-times M-def by simp
finally show ?case by auto
qged
qged

lemma one-M-Rel[transfer-rule]: M-Rel 1 1
unfolding M-Rel-def M-def
unfolding m by auto

lemma one-MP-Rel[transfer-rule]: MP-Rel 1 1

unfolding MP-Rel-def poly-eq-iff Mp-coeff M-def
unfolding m by auto

lemma zero-M-Rel[transfer-rule]: M-Rel 0 0
unfolding M-Rel-def M-def

140

unfolding m by auto

lemma zero-MP-Rel[transfer-rule]: MP-Rel 0 0
unfolding MP-Rel-def poly-eq-iff Mp-coeff M-def
unfolding m by auto

lemma listprod-MP-Rel[transfer-rule]: (list-all2 MP-Rel ===> MP-Rel) prod-list
prod-list
proof (intro rel-funl, goal-cases)
case (1 zs ys)
thus “case
proof (induct zs ys rule: list-all2-induct)
case (Cons z zs y ys)
note [transfer-rule] = this
show ?case by simp transfer-prover
qed (simp add: one-MP-Rel)
qed

lemma prod-mset-MP-Rel[transfer-rule]: (rel-mset MP-Rel ===> MP-Rel) prod-mset
prod-mset
proof (intro rel-funl, goal-cases)
case (1 zs ys)
have (MP-Rel ===> MP-Rel ===> MP-Rel) ((%)) ((x)) MP-Rel 1 1 by trans-
fer-prover+
from 1 this show ?case
proof (induct zs ys rule: rel-mset-induct)
case (add R x xs y ys)
note [transfer-rule] = this
show ?case by simp transfer-prover
qed (simp add: one-MP-Rel)
qed

lemma right-unique-MP-Rel[transfer-rule]: right-unique MP-Rel
unfolding right-unique-def MP-Rel-def by auto

lemma M-to-int-mod-ring: M (to-int-mod-ring (x :: 'a mod-ring)) = to-int-mod-ring
T
unfolding M-def unfolding m by (transfer, auto)

lemma Mp-to-int-poly: Mp (to-int-poly (f :: ‘a mod-ring poly)) = to-int-poly f
by (auto simp: poly-eq-iff Mp-coeff M-to-int-mod-ring)

lemma right-total-M-Rel[transfer-rule]: right-total M-Rel
unfolding right-total-def M-Rel-def using M-to-int-mod-ring by blast

lemma left-total-M-Rel[transfer-rule]: left-total M-Rel
unfolding left-total-def M-Rel-def[abs-def]

proof
fix z

141

show 3 z’:: 'a mod-ring. M x = to-int-mod-ring ' unfolding M-def unfolding
m
by (rule exI[of - of-int x], transfer, simp)
qed

lemma bi-total-M-Rel[transfer-rule]: bi-total M-Rel
using right-total-M-Rel left-total-M-Rel by (metis bi-totall)

lemma right-total-MP-Rel[transfer-rule]: right-total MP-Rel
unfolding right-total-def MP-Rel-def
proof
fix f :: 'a mod-ring poly
show Jz. Mp = = to-int-poly f
by (intro exI[of - to-int-poly f], simp add: Mp-to-int-poly)
qed

lemma to-int-mod-ring-of-int-M: to-int-mod-ring (of-int x :: 'a mod-ring) = M x
unfolding M-def
unfolding m by transfer auto

lemma Mp-f-representative: Mp f = to-int-poly (map-poly of-int f :: 'a mod-ring

poly)
unfolding Mp-def by (auto intro: poly-eql simp: coeff-map-poly to-int-mod-ring-of-int-M)

lemma left-total-MP-Rel[transfer-rule]: left-total MP-Rel
unfolding left-total-def MP-Rel-def[abs-def] using Mp-f-representative by blast

lemma bi-total-MP-Rel[transfer-rule]: bi-total MP-Rel
using right-total-MP-Rel left-total-MP-Rel by (metis bi-totall)

lemma bi-total- MF-Rel[transfer-rule]: bi-total MF-Rel
unfolding MF-Rel-def[abs-def]
by (intro prod.bi-total-rel multiset.bi-total-rel bi-total-MP-Rel bi-total-M-Rel)

lemma right-total-MF-Rel[transfer-rule]: right-total MF-Rel
using bi-total-MF-Rel unfolding bi-total-alt-def by auto

lemma left-total-MF-Rel[transfer-rule]: left-total MF-Rel
using bi-total-MF-Rel unfolding bi-total-alt-def by auto

lemma domain-RT-rel[transfer-domain-rule]: Domainp MP-Rel = (X f. True)
proof
fix f :: int poly
show Domainp MP-Rel f = True unfolding MP-Rel-def[abs-def] Domainp.simps
by (auto simp: Mp-f-representative)
qed

lemma mem-MP-Rel[transfer-rule]: (MP-Rel ===> rel-set MP-Rel ===> (=))
AzY.3ye Y. egmay) (€)

142

proof (intro rel-funl iffT)
fix z y X Y assume zy: MP-Rel x y and XY: rel-set MP-Rel X Y
{ assume 3z’ € X. 2 =m ¢’
then obtain z’ where z'X: '’ € X and zz”: x =m z’ by auto
with zy have z'y: MP-Rel x’ y by (auto simp: MP-Rel-def)
from rel-setD1[OF XY z'X] obtain y’ where MP-Rel 2z’ y’ and y' € Y by
auto
with z'y
show y € Y by (auto simp: MP-Rel-def)
}
assume y € YV
from rel-setD2[OF XY this] obtain z’ where z'X: 2’ € X and z'y: MP-Rel z’
y by auto
from zy 2’y have z =m 2’ by (auto simp: MP-Rel-def)
with z’X show 3z’ € X. x =m 2’ by auto
qed

lemma conversep-MP-Rel-OO-MP-Rel [simp]: MP-Rel=1=1 OO MP-Rel = (=)
using Mp-to-int-poly by (intro ext, auto simp: OO-def MP-Rel-def)

lemma MP-Rel-OO-conversep-MP-Rel [simp]: MP-Rel OO MP-Rel=*=1 = eq-m
by (intro ext, auto simp: OO-def MP-Rel-def Mp-f-representative)

lemma conversep-MP-Rel-O0-eq-m [simp]: MP-Rel='~1 0O eqg-m = MP-Rel='~!
by (intro ext, auto simp: OO-def MP-Rel-def)

lemma eg-m-O0-MP-Rel [simp]: e¢-m OO MP-Rel = MP-Rel
by (intro ext, auto simp: OO-def MP-Rel-def)

lemma eq-mset-MP-Rel [transfer-rule]: (rel-mset MP-Rel ===> rel-mset MP-Rel
===> (=)) (rel-mset eq-m) (=)
proof (intro rel-funl iffT)
fix ABXY
assume AX: rel-mset MP-Rel A X and BY: rel-mset MP-Rel B'Y
{
assume AB: rel-mset eg-m A B
from AX have rel-mset MP-Rel=*~! X A by (simp add: multiset.rel-flip)
note rel-mset-OO[OF this AB]
note rel-mset-OO[OF this BY]
then show X = Y by (simp add: multiset.rel-eq)
}
assume X = Y
with BY have rel-mset MP-Rel=*~! X B by (simp add: multiset.rel-flip)
from rel-mset-OO[OF AX this]
show rel-mset eq-m A B by simp
qed

lemma dvd-MP-Rel[transfer-rule]: (MP-Rel ===> MP-Rel ===> (=)) (dvdm)
(dvd)

143

unfolding dvdm-def[abs-def] dvd-def[abs-def]
by transfer-prover

lemma irreducible-MP-Rel [transfer-rule]: (MP-Rel ===> (=)) irreducible-m ir-
reducible

unfolding irreducible-m-def irreducible-def

by transfer-prover

lemma irreducibleq-MP-Rel [transfer-rule]: (MP-Rel ===> (=)) irreducible;-m
irreducibleg
unfolding irreducibleq-m-def[abs-def] irreducibleq-def[abs-def]

by transfer-prover

lemma UNIV-M-Rel[transfer-rule]: rel-set M-Rel {0..<m} UNIV

unfolding rel-set-def M-Rel-def[abs-def] M-def

by (auto simp: M-def m, goal-cases, metis to-int-mod-ring-of-int-mod-ring, (transfer,
auto)+)

lemma coeff-MP-Rel [transfer-rule]: (MP-Rel ===> (=) ===> M-Rel) coeff

coeff
unfolding rel-fun-def M-Rel-def MP-Rel-def Mp-coeff[symmetric] by auto

lemma M-1-1: M 1 = 1 unfolding M-def unfolding m by simp
lemma square-free-MP-Rel [transfer-rule]: (MP-Rel ===> (=)) square-free-m square-free

unfolding square-free-m-def|abs-def] square-free-def[abs-def]
by (transfer-prover-start, transfer-step+, auto)

lemma mset-factors-m-MP-Rel [transfer-rule]: (rel-mset MP-Rel ===> MP-Rel
===> (=)) mset-factors-m mset-factors

unfolding mset-factors-def mset-factors-m-def

by (transfer-prover-start, transfer-step+, auto dest:eq-m-irreducible-m)

lemma coprime-MP-Rel [transfer-rule]: (MP-Rel ===> MP-Rel ===> (=)) co-
prime-m coprime

unfolding coprime-m-def|abs-def] coprime-def’ [abs-def]

by (transfer-prover-start, transfer-step+, auto)
lemma prime-elem-MP-Rel [transfer-rule]: (MP-Rel ===> (=)) prime-elem-m
prime-elem

unfolding prime-elem-m-def prime-elem-def by transfer-prover
end
context poly-mod-2 begin

lemma non-empty: {0..<m} # {} using m! by auto

lemma type-to-set:

144

assumes type-def: 3 (Rep :: 'b = int) Abs. type-definition Rep Abs {0 ..< m ::
int}

shows class.nontriv (TYPE('b)) (is %a) and m = int CARD('D) (is 7b)
proof —

from type-def obtain rep :: 'b = int and abs :: int = ‘b where t: type-definition
rep abs {0 ..< m} by auto

have card (UNIV ::'b set) = card {0 ..< m} using t by (rule type-definition.card)

also have ... = m using m1 by auto

finally show 7 ..

then show ?¢ unfolding class.nontriv-def using mi1 by auto
qged

end

locale poly-mod-prime-type = poly-mod-type m ty for m :: int and
ty :: 'a i prime-card itself
begin

lemma factorization-MP-Rel [transfer-rulel:

(MP-Rel ===> MF-Rel ===> (=)) factorization-m (factorization Irr-Mon)

unfolding rel-fun-def
proof (intro alll impl, goal-cases)

case (1 f F cfs Cfs)

note [transfer-rule] = 1(1)

obtain c¢ fs where cfs: cfs = (¢,fs) by force

obtain C Fs where Cfs: Cfs = (C,Fs) by force

from 1(2)[unfolded rel-prod.simps cfs Cfs MF-Rel-def]

have tr[transfer-rule]: M-Rel ¢ C rel-mset MP-Rel fs Fs by auto

have eq: (f =m smult ¢ (prod-mset fs) = (F = smult C (prod-mset Fs)))

by transfer-prover

have set-mset Fs C Irr-Mon = (VY x €# F's. irreducibleq x A monic z) unfolding
Irr-Mon-def by auto

also have ... = (Vfe#fs. irreducibleg-m f N monic (Mp f))

proof (rule sym, transfer-prover-start, transfer-step+)

fix f

assume [€# fs

have monic (Mp f) «— M (coeff f (degree-m f)) = M 1
unfolding Mp-coeff[symmetric] by simp

thus (V fe#fs. irreducibleg-m f N monic (Mp f)) =
(Vze#fs. irreducibleg-m x A M (coeff x (degree-m x)) = M 1) by auto
qed
finally
show factorization-m f cfs = factorization Irr-Mon F Cfs unfolding cfs Cfs
factorization-m-def factorization-def split eq by simp
qed

lemma unique-factorization-MP-Rel [transfer-rule]: (MP-Rel ===> MF-Rel ===>

145

=)
unique-factorization-m (unique-factorization Irr-Mon)
unfolding rel-fun-def
proof (intro alll impl, goal-cases)
case (1 f F cfs Cfs)
note [transfer-rule] = 1(1,2)
let ?F = factorization Irr-Mon F
let ?f = factorization-m f
let YR = Collect 7F
let 2L = Mf ¢ Collect ?f
note X-to-r = right-total-MF-Rel[unfolded right-total-def, rule-format]
{
fix X
assume X € 7R
hence F: ?F X by simp
from X-to-z[of X] obtain z where rel[transfer-rule]: MF-Rel x X by blast
from Fluntransferred] have Mf z € ?L by blast
with rel have 3 z. Mfz € ?L AN MF-Rel X by blast
} note R-to-L = this
show unique-factorization-m f cfs = unique-factorization Irr-Mon F Cfs unfold-
ing
unique-factorization-m-def unique-factorization-def
proof —
have fF: ?F Cfs = ?f cfs by transfer simp
have (7L = {Mf c¢fs}) = (2L C {Mf c¢fs} N Mf cfs € ?L) by blast
also have ?L C {Mf cfs} = (V dfs. ?f dfs — Mf dfs = Mf cfs) by blast

also have ... = (V y. Fy — y = Cfs) (is ?left = ?right)
proof (rule; intro alll impl)
fix Dfs

assume x: ?left and F: ?F Dfs
from X-to-z[of Dfs| obtain dfs where [transfer-rule]: MF-Rel dfs Dfs by
auto
from Fluntransferred] have f: 2f dfs .
from x[rule-format, OF f] have eq: Mf dfs = Mf cfs by simp
have (Mf dfs = Mf cfs) = (Dfs = Cfs) by (transfer-prover-start, transfer-step+,
sitmp)
thus Dfs = Cfs using eq by simp
next
fix dfs
assume *: ?right and f: ?f dfs
from left-total-MF-Rel obtain Dfs where
rel[transfer-rule]: MF-Rel dfs Dfs unfolding left-total-def by blast
have ?F Dfs by (transfer, rule f)
from x[rule-format, OF this| have eq: Dfs = Cfs .
have (Mf dfs = Mf cfs) = (Dfs = Cfs) by (transfer-prover-start, transfer-step+,
stmp)
thus Mf dfs = Mf cfs using eq by simp
qed
also have Mf cfs € ?L = (3 dfs. ?f dfs N Mf cfs = Mf dfs) by auto

146

also have ... = ?F (Cfs unfolding fF'

proof
assume 3 dfs. ?f dfs N Mf cfs = Mf dfs
then obtain dfs where f: ?f dfs and id: Mf dfs = Mf cfs by auto
from f have ?f (Mf dfs) by simp
from this[unfolded id] show ?f cfs by simp

qed blast

finally show (7L = {Mf ¢fs}) = (?R = {Cfs}) by auto

qed
qed

end

context begin
private lemma 1: poly-mod-type TYPE('a :: nontriv) m = (m = int CARD('a))

and 2: class.nontriv TYPE('a) = (CARD('a) > 2)

unfolding poly-mod-type-def class.prime-card-def class.nontriv-def poly-mod-prime-type-def
by auto

private lemma 3: poly-mod-prime-type TYPE('b) m = (m = int CARD(’D))
and 4: class.prime-card TYPE('D :: prime-card) = prime CARD('b :: prime-card)

unfolding poly-mod-type-def class.prime-card-def class.nontriv-def poly-mod-prime-type-def
by auto

lemmas poly-mod-type-simps = 1 2 8 4
end

lemma remove-duplicate-premise: (PROP P = PROP P = PROP ()) = (PROP
P = PROP Q) (is 2l = ?r)
proof (intro Pure.equal-intr-rule)
assume p: PROP P and ppq: PROP ?I
from ppq[OF p p| show PROP Q.
next
assume p: PROP P and pq: PROP ?r
from pg[OF p] show PROP Q.
qed

context poly-mod-prime begin

lemma type-to-set:

assumes type-def: 3 (Rep = 'b = int) Abs. type-definition Rep Abs {0 ..< p =
int}

shows class.prime-card (TYPE('b)) (is %a) and p = int CARD(’b) (is 2b)
proof —

from prime have p2: p > 2 by (rule prime-ge-2-int)

from type-def obtain rep :: 'b = int and abs :: int = ‘b where t: type-definition
rep abs {0 ..< p} by auto

147

have card (UNIV :: 'b set) = card {0 ..< p} using t by (rule type-definition.card)
also have ... = p using p2 by auto
finally show b ..
then show ?a unfolding class.prime-card-def using prime p2 by auto
qed
end

lemmas (in poly-mod-type) prime-elem-m-dvdm-multD = prime-elem-dvd-multD
[where ‘a = 'a mod-ring poly,untransferred)

lemmas (in poly-mod-2) prime-elem-m-dvdm-multD = poly-mod-type.prime-elem-m-dvdm-multD
[unfolded poly-mod-type-simps, internalize-sort 'a :: nontriv, OF type-to-set, un-

folded remove-duplicate-premise, cancel-type-definition, OF non-empty|

lemmas(in poly-mod-prime-type) degree-m-mult-eq = degree-mult-eq
[where 'a = 'a mod-ring, untransferred]
lemmas(in poly-mod-prime) degree-m-mult-eq = poly-mod-prime-type.degree-m-mult-eq
[unfolded poly-mod-type-simps, internalize-sort 'a :: prime-card, OF type-to-set,
unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]

lemma(in poly-mod-prime) irreducibleq-lifting:
assumes n: n # 0
and deg: poly-mod.degree-m (p™n) f = degree-m f
and drr: irreducibleg-m f
shows poly-mod.irreducibleqg-m (p™n) f
proof —
interpret ¢: poly-mod-2 p~n unfolding poly-mod-2-def using n m1 by auto
show q.irreducibleg-m f
proof (rule q.irreducibles-ml)
from deg irr show q.degree-m f > 0 by (auto elim: irreducibleq-mE)
then have pdeg-f: degree-m f # 0 by (simp add: deg)
note pMp-Mp = Mp-Mp-pow-is-Mp|OF n m1]
fix g h
assume deg-g: degree g < q.degree-m f and deg-h: degree h < q.degree-m f
and eq: g.e¢-m f (g * h)
from eq have p-f: f =m (g % h) using pMp-Mp by metis
have -g =m 0 and —-h =m 0
apply (metis degree-0 mult-zero-left Mp-0 p-f pdeg-f poly-mod.mult-Mp(1))
by (metis degree-0 mult-eq-0-iff Mp-0 mult-Mp(2) p-f pdeg-f)
note [simp] = degree-m-mult-eq[OF this]
from degree-m-le[of g] deg-g
have 2: degree-m g < degree-m f by (fold deg, auto)
from degree-m-lelof h] deg-h
have 3: degree-m h < degree-m f by (fold deg, auto)
from irreducibleq-mD(2)[OF irr 2 3] p-f
show Fulse by auto
qged
qed

148

lemmas (in poly-mod-prime-type) mset-factors-exist =
mset-factors-existiwhere ‘a = 'a mod-ring poly,untransferred)
lemmas (in poly-mod-prime) mset-factors-exist = poly-mod-prime-type.mset-factors-exist
[unfolded poly-mod-type-simps, internalize-sort 'a :: prime-card, OF type-to-set,
unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty|

lemmas (in poly-mod-prime-type) mset-factors-unique =
mset-factors-unique[where 'a = 'a mod-ring poly,untransferred)

lemmas (in poly-mod-prime) mset-factors-unique = poly-mod-prime-type.mset-factors-unique
[unfolded poly-mod-type-simps, internalize-sort 'a :: prime-card, OF type-to-set,

unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty|

lemmas (in poly-mod-prime-type) prime-elem-iff-irreducible =
prime-elem-iff-irreducible[where 'a = 'a mod-ring poly,untransferred)

lemmas (in poly-mod-prime) prime-elem-iff-irreducible[simp] = poly-mod-prime-type.prime-elem-iff-irreducibl
[unfolded poly-mod-type-simps, internalize-sort 'a :: prime-card, OF type-to-set,

unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]

lemmas (in poly-mod-prime-type) irreducible-connect =
irreducible-connect-field[where 'a = 'a mod-ring, untransferred]

lemmas (in poly-mod-prime) irreducible-connect|simp] = poly-mod-prime-type.irreducible-connect
[unfolded poly-mod-type-simps, internalize-sort 'a :: prime-card, OF type-to-set,

unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]

lemmas (in poly-mod-prime-type) irreducible-degree =
irreducible-degree-field[where 'a = 'a mod-ring, untransferred)
lemmas (in poly-mod-prime) irreducible-degree = poly-mod-prime-type.irreducible-degree
[unfolded poly-mod-type-simps, internalize-sort 'a :: prime-card, OF type-to-set,
unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]

end

5.4 Karatsuba’s Multiplication Algorithm for Polynomials

theory Karatsuba-Multiplication
imports

Polynomial-Interpolation. Missing-Polynomial
begin

lemma karatsuba-main-step: fixes f :: 'a :: comm-ring-1 poly
assumes f: f = monom-mult n f1 4+ f0 and g: ¢ = monom-mult n g1 + g0
shows
monom-mult (n + n) (f1 x g1) + (monom-mult n (f1 x g1 — (f1 — f0) * (g1
—g0) 4+ f0 xg0) + f0x g0)=fxg
unfolding assms
by (auto simp: field-simps mult-monom monom-mult-def)

149

lemma karatsuba-single-sided: fixes f :: 'a :: comm-ring-1 poly
assumes f = monom-mult n f1 + f0
shows monom-mult n (f1 x g) + f0x g=f=x*g
unfolding assms by (auto simp: field-simps mult-monom monom-mult-def)

definition split-at :: nat = 'a list = 'a list x 'a list where
[code del]: split-at n xs = (take n xs, drop n xs)

lemma split-at-code[code]:

split-at n || = ()

split-at n (z # zs) = (if n = 0 then ([], ¢ # xs) else case split-at (n—1) s of
(bef aft)

= (z # bef, aft))

unfolding split-at-def by (force, cases n, auto)
fun coeffs-minus :: 'a :: ab-group-add list = 'a list = 'a list where

coeffs-minus (x # xs) (y # ys) = ((z — y) # coeffs-minus zs ys)
| coeffs-minus s [| = xs
| coeffs-minus [| ys = map uminus ys

The following constant determines at which size we will switch to the
standard multiplication algorithm.

definition karatsuba-lower-bound where [termination-simp|: karatsuba-lower-bound
= (7 :: nat)

fun karatsuba-main :: 'a :: comm-ring-1 list = nat = ’a list = nat = 'a poly
where
karatsuba-main fn g m = (if n < karatsuba-lower-bound vV m < karatsuba-lower-bound
then
let ff = poly-of-list f in foldr (Aa p. smult a ff + pCons 0 p) g 0
else let n2 = n div 2 in
if m > n2 then (case split-at n2 f of
(f0,f1) = case split-at n2 g of
(g0,91) = let
pl = karatsuba-main f1 (n — n2) g1 (m — n2);
p2 = karatsuba-main (coeffs-minus f1 f0) n2 (coeffs-minus g1 g0) n2;
p8 = karatsuba-main f0 n2 g0 n2
in monom-mult (n2 + n2) pl + (monom-mult n2 (p1 — p2 + p3) + p3))
else case split-at n2 f of
(f0.f1) = let
pl = karatsuba-main f1 (n — n2) g m;
p2 = karatsuba-main fO n2 g m
in monom-mult n2 p1 + p2)

declare karatsuba-main.simps[simp del]

lemma poly-of-list-split-at: assumes split-at n f = (f0,f1)

150

shows poly-of-list f = monom-mult n (poly-of-list 1) + poly-of-list f0
proof —
from assms have id: f1 = drop n f f0 = take n f unfolding split-at-def by auto
show ?thesis unfolding id
proof (rule poly-eql)
fix ¢
show coeff (poly-of-list f) i =
coeff (monom-mult n (poly-of-list (drop n f)) + poly-of-list (take n f)) i
unfolding monom-mult-def coeff-monom-mult coeff-add poly-of-list-def co-
eff-Poly
by (cases n < i; cases i > length f, auto simp: nth-default-nth nth-default-beyond)
qed
qed

lemma coeffs-minus: poly-of-list (coeffs-minus f1 f0) = poly-of-list f1 — poly-of-list
10
proof (rule poly-eql, unfold poly-of-list-def coeff-diff coeff-Poly)
fix ¢
show nth-default 0 (coeffs-minus f1 f0) i = nth-default 0 f1 i — nth-default 0 f0
)
proof (induct f1 f0 arbitrary: i rule: coeffs-minus.induct)
case (1 z xs y ys)
thus ?case by (cases i, auto)
next
case (8 z xs)
thus ?case unfolding coeffs-minus.simps
by (subst nth-default-map-eq[of uminus 0 0], auto)
qged auto
qed

lemma karatsuba-main: karatsuba-main f n g m = poly-of-list f x poly-of-list g
proof (induct n arbitrary: f g m rule: less-induct)
case (less n f g m)
note simp[simp] = karatsuba-main.simps[of f n g m]
show ?case (is ?lhs = ?rhs)
proof (cases (n < karatsuba-lower-bound V m < karatsuba-lower-bound) = False)
case Fulse
hence lhs: ?lhs = foldr (Aa p. smult a (poly-of-list f) + pCons 0 p) g 0 by
stmp
have rhs: ?rhs = poly-of-list g x poly-of-list f by simp
also have ... = foldr (Aa p. smult a (poly-of-list f) + pCons 0 p) (strip-while
(=)0)g) 0
unfolding times-poly-def fold-coeffs-def poly-of-list-impl ..
also have ... = ?lhs unfolding lhs
proof (induct g)
case (Cons z xs)
have Vzeset xs. © = 0 = foldr (Aa p. smult a (Poly f) + pCons 0 p) zs 0
=0
by (induct zs, auto)

151

thus ?case using Cons by (auto simp: cCons-def Cons)
qed auto
finally show ?thesis by simp
next
case True
let %n2 = n div 2
have ?n2 < nn — ?n2 < n using True unfolding karatsuba-lower-bound-def
by auto
note IH = less|OF this(1)] less|OF this(2)]
obtain fI f0 where f: split-at ?n2 f = (f0.f1) by force
obtain g1 g0 where g: split-at n2 g = (g0,91) by force
note fsplit = poly-of-list-split-at| OF f]
note gsplit = poly-of-list-split-at[OF ¢]
show ?lhs = ?rhs unfolding simp Let-def f g split IH True if-False coeffs-minus
karatsuba-single-sided|OF fsplit] karatsuba-main-step[|OF fsplit gsplit] by auto
qged
qed

definition karatsuba-mult-poly :: 'a :: comm-ring-1 poly = 'a poly = 'a poly where
karatsuba-mult-poly f g = (let ff = coeffs f; gg = coeffs g; n = length ff; m =

length gg

in (if n < karatsuba-lower-bound V m < karatsuba-lower-bound then if n < m

then foldr (Aa p. smult a g + pCons 0 p) ff 0

else foldr (Aa p. smult a f + pCons 0 p) gg 0

else if n < m

then karatsuba-main gg m ff n

else karatsuba-main ff n gg m))

lemma karatsuba-mult-poly: karatsuba-mult-poly fg = f * g
proof —
note d = karatsuba-mult-poly-def Let-def
let ?len = length (coeffs f) < length (coeffs g)
show ?thesis (is ?lhs = ?rhs)
proof (cases length (coeffs) < karatsuba-lower-bound V length (coeffs g) <
karatsuba-lower-bound)
case True note outer = this
show ?thesis
proof (cases ?len)
case True
with outer have ?2lhs = foldr (Aa p. smult a g + pCons 0 p) (coeffs f) 0
unfolding d by auto

also have ... = ?rhs unfolding times-poly-def fold-coeffs-def by auto
finally show ?thesis .

next
case Fulse

with outer have ?2lhs = foldr (Aa p. smult a f + pCons 0 p) (coeffs g) 0
unfolding d by auto
also have ... = g *x f unfolding times-poly-def fold-coeffs-def by auto

152

also have ... = ?rhs by simp
finally show ?thesis .
qed
next
case Fualse note outer = this
show ?thesis
proof (cases ?len)
case True
with outer have ?lhs = karatsuba-main (coeffs g) (length (coeffs g)) (coeffs

1) (length (coeffs f))
unfolding d by auto

also have ... = ¢ x f unfolding karatsuba-main by auto
also have ... = ?rhs by auto
finally show ?Zthesis .
next
case Fulse

with outer have ?lhs = karatsuba-main (coeffs f) (length (coeffs f)) (coeffs

9) (length (coeffs g))
unfolding d by auto

also have ... = ?rhs unfolding karatsuba-main by auto
finally show ?thesis .
qed
qed

qed

lemma karatsuba-mult-poly-code-unfold[code-unfold]: (x) = karatsuba-mult-poly
by (intro ext, unfold karatsuba-mult-poly, auto)

The following declaration will resolve a race-conflict between (x) = karat-
suba-mult-poly and monom 1 ?n x ?f = monom-mult ?n ?f
2f * monom 1 ?n = monom-mult ?n ?f.
lemmas karatsuba-monom-mult-code-unfold|code-unfold) =
monom-mult-unfold[where f = f :: 'a :: comm-ring-1 poly for f, unfolded karat-
suba-mult-poly-code-unfold]

end

5.5 Record Based Version

We provide an implementation for polynomials which may be parametrized
by the ring- or field-operations. These don’t have to be type-based!

5.5.1 Definitions

theory Polynomial-Record-Based
imports
Arithmetic- Record-Based
Karatsuba-Multiplication
begin

153

context
fixes ops :: "i arith-ops-record (structure)
begin
private abbreviation (input) zero where zero = arith-ops-record.zero ops
private abbreviation (input) one where one = arith-ops-record.one ops
private abbreviation (input) plus where plus = arith-ops-record.plus ops
private abbreviation (input) times where times = arith-ops-record.times ops
private abbreviation (input) minus where minus = arith-ops-record.minus ops
private abbreviation (input) uminus where uminus = arith-ops-record.uminus
ops
private abbreviation (input) divide where divide = arith-ops-record.divide ops
private abbreviation (input) inverse where inverse = arith-ops-record.inverse
ops
private abbreviation (input) modulo where modulo = arith-ops-record.modulo
ops
private abbreviation (input) normalize where normalize = arith-ops-record.normalize
ops
private abbreviation (input) unit-factor where unit-factor = arith-ops-record.unit-factor
ops
private abbreviation (input) DP where DP = arith-ops-record. DP ops

definition is-poly :: i list = bool where
is-poly xs <— list-all DP xs A no-trailing (HOL.eq zero) xs

definition cCons-i :: i = 'i list = i list
where
cCons-i x xs = (if s = [| A & = zero then [] else x # xs)

fun plus-poly-i :: i list = 'i list = 'i list where

plus-poly-i (z # xs) (y # ys) = cCons-i (plus x y) (plus-poly-i xs ys)
| plus-poly-i zs [| = xs
| plus-poly-i [] ys = ys

definition uminus-poly-i :: i list = 'i list where
[code-unfold): uminus-poly-i = map wminus

fun minus-poly-i :: 'i list = 'i list = 'i list where

minus-poly-i (z # xs) (y # ys) = cCons-i (minus z y) (minus-poly-i xs ys)
| minus-poly-i zs || = s
| minus-poly-i [| ys = uminus-poly-i ys

abbreviation (input) zero-poly-i :: 'i list where
zero-poly-i = ||

definition one-poly-i :: 'i list where
[code-unfold): one-poly-i = [one]

154

definition smult-i :: i = 'i list = 'i list where
smult-i a pp = (if a = zero then || else strip-while ((=) zero) (map (times a) pp))

definition sdiv-i :: i list = 'i = 'i list where
sdiv-i pp a = (strip-while ((=) zero) (map (X c. divide ¢ a) pp))

definition poly-of-list-i :: 'i list = 'i list where
poly-of-list-i = strip-while ((=) zero)

fun coeffs-minus-i :: i list = 'i list = 'i list where

coeffs-minus-i (z # xs) (y # ys) = (minus z y # coeffs-minus-i zs ys)
| coeffs-minus-i zs [| = xs
| coeffs-minus-i [| ys = map uminus ys

definition monom-mult-i :: nat = 'i list = 'i list where
monom-mult-i n xs = (if zs = || then zs else replicate n zero Q xs)

fun karatsuba-main-i :: i list = nat = 'i list = nat = i list where
karatsuba-main-i fn g m = (if n < karatsuba-lower-bound V m < karatsuba-lower-bound
then
let ff = poly-of-list-i f in foldr (Aa p. plus-poly-i (smult-i a [f) (cCons-i zero p))
g zero-poly-i
else let n2 = n div 2 in
if m > n2 then (case split-at n2 f of
(f0.f1) = case split-at n2 g of
(g0,91) = let
pl = karatsuba-main-i fI (n — n2) g1 (m — n2);
p2 = karatsuba-main-i (coeffs-minus-i f1 f0) n2 (coeffs-minus-i g1 g0) n2;
p8 = karatsuba-main-i f0 n2 g0 n2
in plus-poly-i (monom-mult-i (n2 + n2) pl)
(plus-poly-i (monom-mult-i n2 (plus-poly-i (minus-poly-i p1 p2) p3)) p3))
else case split-at n2 f of
(f0,f1) = let
pl = karatsuba-main-i fI (n — n2) g m;
p2 = karatsuba-main-i f0 n2 g m
in plus-poly-i (monom-mult-i n2 p1) p2)

definition times-poly-i :: i list = 'i list = i list where
times-poly-i f g = (let n = length f; m = length g
in (if n < karatsuba-lower-bound V m < karatsuba-lower-bound then if n < m
then
foldr (Aa p. plus-poly-i (smult-i a g) (cCons-i zero p)) f zero-poly-i else
foldr (Aa p. plus-poly-i (smult-i a f) (cCons-i zero p)) g zero-poly-i else
if n < m then karatsuba-main-i g m f n else karatsuba-main-i f n g m))

definition coeff-i :: 'i list = nat = i where
coeff-i = nth-default zero

definition degree-i :: 'i list = nat where

155

degree-i pp = length pp — 1

definition lead-coeff-i :: i list = 'i where
lead-coeff-i pp = (case pp of [| = zero | - = last pp)

definition monic-i :: i list = bool where
monic-i pp = (lead-coeff-i pp = one)

fun minus-poly-rev-list-i :: i list = 'i list = i list where
minus-poly-rev-list-i (x # xzs) (y # ys) = (minus z y) # (minus-poly-rev-list-i xs
ys)
| minus-poly-rev-list-i zs [| = xs
| minus-poly-rev-list-i || (y # ys) = ||

fun divmod-poly-one-main-i :: i list = 'i list = 'i list
= nat = 'i list x 'i list where
divmod-poly-one-main-i q v d (Suc n) = (let
a = hdr;
qqq = cCons-i a g;
rr = tl (if a = zero then r else minus-poly-rev-list-i r (map (times a) d))
in divmod-poly-one-main-i qqq rr d n)
| divmod-poly-one-main-i ¢ r d 0 = (q,r)

fun mod-poly-one-main-i :: i list = 'i list
= nat = 'i list where
mod-poly-one-main-i r d (Suc n) = (let
a = hdr;
rr = tl (if a = zero then r else minus-poly-rev-list-i v (map (times a) d))
in mod-poly-one-main-i rr d n)
| mod-poly-one-main-i r d 0 = r

definition pdivmod-monic-i :: i list = 'i list = i list X 'i list where
pdivmod-monic-i cf cg = case
divmod-poly-one-main-i [| (rev cf) (rev c¢g) (1 + length c¢f — length cg)
of (g,r) = (poly-of-list-i q, poly-of-list-i (rev r))

definition dupe-monic-i :: i list = 'i list = i list = "¢ list = ' list = 'i list x
't list where
dupe-monic-i D HS T U = (case pdivmod-monic-i (times-poly-i T U) D of (Q,R)
=
(plus-poly-i (times-poly-i S U) (times-poly-i H Q), R))

definition of-int-poly-i :: int poly = 'i list where
of-int-poly-i f = map (arith-ops-record.of-int ops) (coeffs f)

definition to-int-poly-i :: i list = int poly where
to-int-poly-i f = poly-of-list (map (arith-ops-record.to-int ops) f)

definition dupe-monic-i-int :: int poly = int poly = int poly = int poly = int

156

poly = int poly x int poly where
dupe-monic-i-int D H S T = (let
d = of-int-poly-i D;
h = of-int-poly-i H;
s = of-int-poly-i S
t = of-int-poly-i T
in (A U. case dupe-monic-i d h s t (of-int-poly-i U) of
(D',H") = (to-int-poly-i D', to-int-poly-i H')))

definition div-field-poly-i :: i list = 'i list = 'i list where
div-field-poly-i cf cg = (
if cg =[] then zero-poly-i
else let ilc = inverse (last cg); ch = map (times ilc) cg;
q = fst (divmod-poly-one-main-i [| (rev cf) (rev ch) (1 + length cf
— length cg))
in poly-of-list-i ((map (times ilc) q)))

definition mod-field-poly-i :: 'i list = 'i list = 'i list where
mod-field-poly-i cf cg = (
if cg =[] then cf
else let ilc = inverse (last cg); ch = map (times ilc) cg;
r = mod-poly-one-main-i (rev ¢f) (rev ch) (1 + length c¢f — length
cg)
in poly-of-list-i (rev r))

definition normalize-poly-i :: i list = 'i list where
normalize-poly-i xs = smult-i (inverse (unit-factor (lead-coeff-i xs))) s

definition unit-factor-poly-i :: 'i list = 'i list where
unit-factor-poly-i s = cCons-i (unit-factor (lead-coeff-i zs)) ||

fun pderiv-main-i :: i = i list = 'i list where
pderiv-main-i f (x # xs) = cCons-i (times f x) (pderiv-main-i (plus f one) xs)
| pderiv-main-i f [| = []

definition pderiv-i :: 'i list = 'i list where
pderiv-i xs = pderiv-main-i one (tl xs)

definition dvd-poly-i :: i list = 'i list = bool where
dvd-poly-i xs ys = (3 zs. is-poly zs N\ ys = times-poly-i zs zs)

definition irreducible-i :: 'i list = bool where
irreducible-i xs = (degree-i xs # 0 A
(Y qr. is-poly ¢ —> is-poly r —> degree-i q¢ < degree-i xs — degree-i r < degree-i
xs
— s # times-poly-i q T))

definition poly-ops :: 'i list arith-ops-record where
poly-ops = Arith-Ops-Record

157

zero-poly-i

one-poly-i

plus-poly-i
times-poly-1
minus-poly-i
umainus-poly-i
div-field-poly-i

(A -. []) — not defined
mod-field-poly-i
normalize-poly-i
unit-factor-poly-i

(A i. if i = 0 then || else [arith-ops-record.of-int ops i))
(A -. 0) — not defined
is-poly

definition gcd-poly-i :: 'i list = 'i list = i list where
ged-poly-i = arith-ops.gcd-eucl-i poly-ops

definition euclid-ext-poly-i :: 'i list = 'i list = ('i list x 'i list) x 'i list where
euclid-ext-poly-i = arith-ops.euclid-ext-i poly-ops

definition separable-i :: 'i list = bool where
separable-i xs = gcd-poly-i zs (pderiv-i xs) = one-poly-i

end

5.5.2 Properties

definition pdivmod-monic :: 'a::comm-ring-1 poly = 'a poly = 'a poly X 'a poly
where
pdivmod-monic f g = let cg = coeffs g; cf = coeffs f;
(g, r) = divmod-poly-one-main-list [| (rev cf) (rev cg) (1 + length c¢f — length
cg)
in (poly-of-list q, poly-of-list (rev r))

lemma coeffs-smult’: coeffs (smult a p) = (if a = 0 then [] else strip-while ((=) 0)
(map (Groups.times a) (coeffs p)))

by (simp add: coeffs-map-poly smult-conv-map-poly)
lemma coeffs-sdiv: coeffs (sdiv-poly p a) = (strip-while ((=) 0) (map (A z. z div
a) (coeffs p)))

unfolding sdiv-poly-def by (rule coeffs-map-poly)
lifting-forget poly.lifting

context ring-ops
begin

158

definition poly-rel :: 'i list = 'a poly = bool where
poly-rel x &' +— list-all2 R x (coeffs z')

lemma right-total-poly-rel[transfer-rule]:

right-total poly-rel

using list.right-total-rel[of R] right-total unfolding poly-rel-def right-total-def by
auto

lemma poly-rel-inj: poly-rel © y = poly-rel v z — y = 2
using list.bi-unique-rel| OF bi-unique] unfolding poly-rel-def coeffs-eq-iff bi-unique-def
by auto

lemma bi-unique-poly-rel[transfer-rule]: bi-unique poly-rel
using list.bi-unique-rel|OF bi-unique] unfolding poly-rel-def bi-unique-def co-
effs-eq-iff by auto

lemma Domainp-is-poly [transfer-domain-rule]:
Domainp poly-rel = is-poly ops
unfolding poly-rel-def [abs-def] is-poly-def [abs-def]
proof (intro ext iffI, unfold Domainp-iff)
note DPR = fun-cong [OF list. Domainp-rel [of R, unfolded DPR],
unfolded Domainp-iff|
let ?no-trailing = no-trailing (HOL.eq zero)
fix s
have no-trailing: no-trailing (HOL.eq 0) xs' +— ?no-trailing xs
if list-all2 R s xs’ for xs’
proof (cases xs rule: rev-cases)
case Nil
with that show ?Zthesis
by simp
next
case (snoc ys y)
with that have zs’ # []
by auto
then obtain ys’ y’ where zs’ = ys’ Q [y/]
by (cases xs’ rule: rev-cases) simp-all
with that snoc show ?thesis
by simp (meson bi-unique bi-unique-def zero)
qed
let YDPR = arith-ops-record.DP ops
{
assume Jz'. list-all2 R zs (coeffs z')
then obtain zs’ where *: list-all2 R zs (coeffs zs’) by auto
with DPR [of zs] have list-all ?DPR zs by auto
then show list-all ?DPR xzs N\ ?no-trailing s
using no-trailing [OF %] by simp
}
{

assume list-all YDPR xs A ?no-trailing xs

159

with DPR [of zs] obtain xs’ where *: list-all2 R zs xs’ and ?no-trailing xs
by auto
from no-trailing [OF *] this(2) have no-trailing (HOL.eq 0) xs'
by simp
hence coeffs (poly-of-list xs") = xs’ unfolding poly-of-list-impl by auto
with * show Jz'. list-all2 R s (coeffs ') by metis

}
qed

lemma poly-rel-zero[transfer-rule]: poly-rel zero-poly-i 0
unfolding poly-rel-def by auto

lemma poly-rel-one[transfer-rule]: poly-rel (one-poly-i ops) 1
unfolding poly-rel-def one-poly-i-def by (simp add: one)

lemma poly-rel-cCons[transfer-rule]: (R ===> list-all2 R ===> list-all2 R)
(¢Cons-i ops) cCons

unfolding cCons-i-def|abs-def] cCons-def|abs-def]

by transfer-prover

lemma poly-rel-p Cons[transfer-rule]: (R ===> poly-rel ===> poly-rel) (cCons-i
ops) pCons
unfolding rel-fun-def poly-rel-def coeffs-pCons-eq-cCons cCons-def [symmetric]
using poly-rel-cConsl[unfolded rel-fun-def] by auto

lemma poly-rel-eq[transfer-rule]: (poly-rel ===> poly-rel ===> (=)) (=) (=)
unfolding poly-rel-def[abs-def] coeffs-eq-iff [abs-def] rel-fun-def

by (metis bi-unique bi-uniqueDI bi-uniqueDr list.bi-unique-rel)

lemma poly-rel-plus[transfer-rule]: (poly-rel ===> poly-rel ===> poly-rel) (plus-poly-i
ops) (+)
proof (intro rel-funl)
fix z1 y1 z2 y2
assume poly-rel x1 2 and poly-rel y1 y2
thus poly-rel (plus-poly-i ops z1 y1) (z2 + y2)
unfolding poly-rel-def coeffs-eq-iff coeffs-plus-eq-plus-coeffs
proof (induct x1 y1 arbitrary: x2 y2 rule: plus-poly-i.induct)
case (1 z1 xs1 yI ys1 X2 Y2)
from 1(2) obtain z2 zs2 where X2: coeffs X2 = z2 # coeffs xs2
by (cases X2, auto simp: cCons-def split: if-splits)
from 1(3) obtain y2 ys2 where Y2: coeffs Y2 = y2 # coeffs ys2
by (cases Y2, auto simp: cCons-def split: if-splits)
from 1(2) 1(3) have [transfer-rule]: R z1 22 R yI y2

160

and x: list-all2 R xs1 (coeffs xs2) list-all2 R ys1 (coeffs ys2) unfolding X2
Y2 by auto
note [transfer-rule] = 1(1)[OF %
show ?case unfolding X2 Y2 by simp transfer-prover
next
case (2 zsl xs2 ys2)
thus ?case by (cases coeffs xs2, auto)
next
case (8 zs2 yl ys1 Y2)
thus ?case by (cases Y2, auto simp: cCons-def)
qed
qed

lemma poly-rel-uminus[transfer-rule]: (poly-rel ===> poly-rel) (uminus-poly-i ops)
Groups.uminus
proof (intro rel-funl)

fix x y

assume poly-rel x y

hence [transfer-rule]: list-all2 R x (coeffs y) unfolding poly-rel-def .

show poly-rel (uminus-poly-i ops x) (—y)

unfolding poly-rel-def coeffs-uminus uminus-poly-i-def by transfer-prover

qed

lemma poly-rel-minus[transfer-rule]: (poly-rel ===> poly-rel ===> poly-rel) (minus-poly-i
ops) (—)
proof (intro rel-funl)
fix z1 y1 22 y2
assume poly-rel x1 2 and poly-rel y1 y2
thus poly-rel (minus-poly-i ops z1 y1) (2 — y2)
unfolding diff-conv-add-uminus
unfolding poly-rel-def coeffs-eq-iff coeffs-plus-eq-plus-coeffs coeffs-uminus
proof (induct x1 y1 arbitrary: x2 y2 rule: minus-poly-i.induct)
case (1 z1 zs1 yI ys1 X2 Y2)
from 1(2) obtain z2 zs2 where X2: coeffs X2 = 22 # coeffs xs2
by (cases X2, auto simp: cCons-def split: if-splits)
from 1(3) obtain y2 ys2 where Y2: coeffs Y2 = y2 # coeffs ys2
by (cases Y2, auto simp: cCons-def split: if-splits)
from 1(2) 1(3) have [transfer-rule]: R =1 z2 R y1 y2
and x: list-all2 R xs1 (coeffs xs2) list-all2 R ys1 (coeffs ys2) unfolding X2
Y2 by auto
note [transfer-rule] = 1(1)[OF %]
show ?case unfolding X2 Y2 by simp transfer-prover
next
case (2 xsl xs2 ys2)
thus ?case by (cases coeffs xs2, auto)
next
case (3 zs2 yl ysl Y2)

161

from 3(1) have id0: coeffs ys1 = coeffs 0 by (cases ys1, auto)
have id1: minus-poly-i ops || (zs2 # yl1) = uminus-poly-i ops (zs2 # y1) by
simp
from 3(2) have [transfer-rule]: poly-rel (zs2 # y1) Y2 unfolding poly-rel-def
by simp
show ?case unfolding id0 id1 coeffs-uminus[symmetric] coeffs-plus-eq-plus-coeffs|symmetric]
poly-rel-def[symmetric] by simp transfer-prover
qed
qed

lemma poly-rel-smult[transfer-rule]: (R ===> poly-rel ===> poly-rel) (smult-i
ops) smult
unfolding rel-fun-def poly-rel-def coeffs-smult’ smult-i-def
proof (intro alll impl, goal-cases)
case (1 z y zs ys)
note [transfer-rule] = 1
show ?case by transfer-prover
qed

lemma poly-rel-coeffs[transfer-rule]: (poly-rel ===> list-all2 R) (\ x. x) coeffs
unfolding rel-fun-def poly-rel-def by auto

lemma poly-rel-poly-of-list[transfer-rule]: (list-all2 R ===> poly-rel) (poly-of-list-i
ops) poly-of-list
unfolding rel-fun-def poly-of-list-i-def poly-rel-def poly-of-list-impl
proof (intro alll impl, goal-cases)
case (I z y)
note [transfer-rule] = this
show ?Zcase by transfer-prover
qed

lemma poly-rel-monom-mult[transfer-rule]:
((=) ===> poly-rel ===> poly-rel) (monom-mult-i ops) monom-mult
unfolding rel-fun-def monom-mult-i-def poly-rel-def monom-mult-code Let-def
proof (auto, goal-cases)
case (1 z zs y)
show Zcase by (induct x, auto simp: 1(3) zero)
qed

declare karatsuba-main-i.simps[simp del]

lemma [ist-rel-coeffs-minus-i: assumes list-all2 R x1 z2 list-all2 R y1 y2
shows list-all2 R (coeffs-minus-i ops x1 y1) (coeffs-minus z2 y2)
proof —
note simps = coeffs-minus-i.simps coeffs-minus.simps
show ?thesis using assms

162

proof (induct x1 y1 arbitrary: z2 y2 rule: coeffs-minus-i.induct)
case (1 z zs y ys)
from 1(2—) obtain Y Ys where y2: y2 = Y # Ys unfolding list-all2-conv-all-nth
by (cases y2, auto)
with 1(2—) have y: R y Y list-all2 R ys Ys by auto
from 1(2—) obtain X Xs where 22: 22 = X # Xs unfolding list-all2-conv-all-nth
by (cases 2, auto)
with 1(2—) have z: R z X list-ali2 R xs Xs by auto
from 1(1)[OF (2) y(2)] 2(1) y(1)
show ?case unfolding z2 y2 simps using minus[unfolded rel-fun-def] by auto
next
case (3 y ys)
from 3 have 22: 22 = || by auto
from 3 obtain Y Ys where y2: y2 = Y # Ys unfolding list-all2-conv-all-nth
by (cases y2, auto)
obtain y! where yI: y # ys = yI by auto
show Zcase unfolding y2 simps x2 unfolding y2[symmetric] list-all2-map2
list-all2-map1
using 3(2) unfolding y! using uminus[unfolded rel-fun-def]
unfolding list-all2-conv-all-nth by auto
ged auto
qged

lemma poly-rel-karatsuba-main: list-all2 R x1 ©2 = list-all2 R y1 y2 —
poly-rel (karatsuba-main-i ops x1 n y1 m) (karatsuba-main x2 n y2 m)
proof (induct n arbitrary: x1 y1 z2 y2 m rule: less-induct)
case (lessn fg F G m)
note simp[simp] = karatsuba-main.simps[of F n G m] karatsuba-main-i.simps|of
ops fn g m]
note TH = less(1)
note rel[transfer-rule] = less(2—3)
show ?case (is poly-rel ?lhs ?rhs)
proof (cases (n < karatsuba-lower-bound V m < karatsuba-lower-bound) = False)
case Fulse
from Fulse
have lhs: ?lhs = foldr (Aa p. plus-poly-i ops (smult-i ops a (poly-of-list-i ops f))
(cCons-i ops zero p)) g [] by simp
from Fulse have rhs: ?rhs = foldr (Aa p. smult a (poly-of-list F') + pCons 0
p) G 0 by simp
show ?thesis unfolding [hs rhs by transfer-prover
next
case True note x = this
let %n2 = n div 2
have ?n2 < nn — ?n2 < n using True unfolding karatsuba-lower-bound-def
by auto
note IH = ITH[OF this(1)] IH[OF this(2)]
obtain fI f0 where f: split-at ?n2 f = (f0,f1) by force
obtain g1 g0 where g: split-at n2 g = (g0,91) by force

163

obtain F'1 FO where F: split-at %n2 F = (F0,F1) by force
obtain GI1 G0 where G: split-at ?n2 G = (G0,G1) by force
from rel f F have relf[transfer-rule]: list-all2 R f0 FO0 list-all2 R f1 F1
unfolding split-at-def by auto
from rel g G have relg[transfer-rule]: list-all2 R g0 GO list-all2 R g1 G1
unfolding split-at-def by auto
show ?thesis
proof (cases n2 < m)
case True
obtain p! P1 where pl: pl = karatsuba-main-i ops f1 (n — n div 2) g1 (m
—ndiv 2)
P1 = karatsuba-main F1 (n — n div 2) G1 (m — n div 2) by auto
obtain p2 P2 where p2: p2 = karatsuba-main-i ops (coeffs-minus-i ops f1
10) (n div 2)
(coeffs-minus-i ops g1 g0) (n div 2)
P2 = karatsuba-main (coeffs-minus F1 F0) (n div 2)
(coeffs-minus G1 GO) (n div 2) by auto
obtain p3 P3 where p3: p3 = karatsuba-main-i ops f0 (n div 2) g0 (n div
2)
P3 = karatsuba-main FO (n div 2) GO (n div 2) by auto
from x True have lhs: ?lhs = plus-poly-i ops (monom-mult-i ops (n div 2 +
n div 2) pl)
(plus-poly-i ops
(monom-mult-i ops (n div 2)
(plus-poly-i ops (minus-poly-i ops pI p2) p3)) p3)
unfolding simp Let-def f g split p1 p2 p3 by auto
have [transfer-rule]: poly-rel p1 P1 using IH(2)[OF relf(2) relg(2)] unfolding
pl .
have [transfer-rule]: poly-rel p3 P3 using IH (1)[OF relf(1) relg(1)] unfolding
p3 .
have [transfer-rule]: poly-rel p2 P2 unfolding p2
by (rule IH(1)[OF list-rel-coeffs-minus-i list-rel-coeffs-minus-i], insert relf
relg)
from True * have rhs: ?rhs = monom-mult (n div 2 + n div 2) P1 +
(monom-mult (n div 2) (P1 — P2 + P8) + P3)
unfolding simp Let-def F G split p1 p2 p3 by auto
show ?thesis unfolding lhs rhs by transfer-prover
next
case Fulse
obtain p! P! where pl: pl = karatsuba-main-i ops f1 (n — n div 2) g m
P1 = karatsuba-main F1 (n — n div 2) G m by auto
obtain p2 P2 where p2: p2 = karatsuba-main-i ops f0 (n div 2) g m
P2 = karatsuba-main FO (n div 2) G m by auto
from x False have lhs: ?lhs = plus-poly-i ops (monom-mult-i ops (n div 2)
pl) p2
unfolding simp Let-def f split p1 p2 by auto
from x Fualse have rhs: ?rhs = monom-mult (n div 2) P1 + P2
unfolding simp Let-def F split p1 p2 by auto
have [transfer-rule]: poly-rel p1 P1 using IH(2)[OF relf(2) rel(2)] unfolding

164

pl .
have [transfer-rule]: poly-rel p2 P2 using IH(1)[OF relf(1) rel(2)] unfolding
p2 .
show ?thesis unfolding lhs rhs by transfer-prover
qed
qed
qed

lemma poly-rel-times[transfer-rule]: (poly-rel ===> poly-rel ===> poly-rel) (times-poly-i
ops) ((x))
proof (intro rel-funl)
fix z1 y1 22 y2
assume z12[transfer-rule]: poly-rel z1 z2 and y12 [transfer-rule]: poly-rel y1 y2
hence X12[transfer-rule: list-all2 R x1 (coeffs 22) and Y12[transfer-rule]: list-all2
R y1 (coeffs y2)
unfolding poly-rel-def by auto
hence len: length (coeffs 2) = length x1 length (coeffs y2) = length y1
unfolding list-all2-conv-all-nth by auto
let ?condl = length x1 < karatsuba-lower-bound V length y1 < karatsuba-lower-bound

let ?cond2 = length x1 < length y1
note d = karatsuba-mult-poly[symmetric| karatsuba-mult-poly-def Let-def
times-poly-i-def len if-True if-False
consider (TT) ?condl = True ?cond2 = True | (TF) ?condl = True ?cond2
= False
| (FT) ?condl = False ?cond2 = True | (FF) ?condl = False ?cond2 = False
by auto
thus poly-rel (times-poly-i ops z1 y1) (22 x y2)
proof (cases)
case TT
show ?thesis unfolding d T'T
unfolding poly-rel-def coeffs-eq-iff times-poly-def times-poly-i-def fold-coeffs-def
by transfer-prover
next
case TF
show ?thesis unfolding d TF
unfolding poly-rel-def coeffs-eq-iff times-poly-def times-poly-i-def fold-coeffs-def
by transfer-prover
next
case FT
show ?thesis unfolding d FT
by (rule poly-rel-karatsuba-main|OF Y12 X12])
next
case FF
show ?thesis unfolding d FF
by (rule poly-rel-karatsuba-main|OF X12 Y12])
qged
qed

165

lemma poly-rel-coeff [transfer-rule]: (poly-rel ===> (=) ===> R) (coeff-i ops)
coeff

unfolding poly-rel-def rel-fun-def coeff-i-def nth-default-coeffs-eq[symmetric]
proof (intro alll impl, clarify)

fixzyn

assume [transfer-rule]: list-all2 R z (coeffs y)

show R (nth-default zero x n) (nth-default 0 (coeffs y) n) by transfer-prover
qged

lemma poly-rel-degree[transfer-rule]: (poly-rel ===> (=)) degree-i degree
unfolding poly-rel-def rel-fun-def degree-i-def degree-eq-length-coeffs
by (simp add: list-all2-lengthD)

lemma lead-coeff-i-def": lead-coeff-i ops x = (coeff-i ops) = (degree-i x)
unfolding lead-coeff-i-def degree-i-def coeff-i-def
proof (cases z, auto, goal-cases)
case (1 a xs)
hence id: last s = last (a # zs) by auto
show ?case unfolding id by (subst last-conv-nth-default, auto)
qed

lemma poly-rel-lead-coeff [transfer-rule]: (poly-rel ===> R) (lead-coeff-i ops) lead-coeff
unfolding lead-coeff-i-def’ [abs-def] by transfer-prover

lemma poly-rel-minus-poly-rev-list[transfer-rule]:
(list-all2 R ===> list-all2 R ===> list-all2 R) (minus-poly-rev-list-i ops) mi-
nus-poly-rev-list
proof (intro rel-funl, goal-cases)
case (1 z1 z2 yI y2)
thus ?case
proof (induct z1 y1 arbitrary: ©2 y2 rule: minus-poly-rev-list-i.induct)
case (1 z1 xs1 yI ys1 X2 Y2)
from 1(2) obtain z2 zs2 where X2: X2 = 22 # xs2 by (cases X2, auto)
from 1(3) obtain y2 ys2 where Y2: Y2 = y2 # ys2 by (cases Y2, auto)
from 1(2) 1(3) have [transfer-rule]: R =1 z2 R y1 y2
and x: list-all2 R xs1 xs2 list-all2 R ys1 ys2 unfolding X2 Y2 by auto
note [transfer-rule] = 1(1)[OF]
show ?case unfolding X2 Y2 by (simp, intro conjl, transfer-prover—+)
next
case (2 zsl xs2 ys2)
thus ?case by (cases xs2, auto)
next
case (3 zs2 yl ys1 Y2)
thus ?case by (cases Y2, auto)

166

qed
qed

lemma divmod-poly-one-main-i: assumes len: n < length Y and rel: list-all2 R
x Xlist-all2 Ry Y
list-all2 R z Z and n: n = N
shows rel-prod (list-all2 R) (list-all2 R) (divmod-poly-one-main-i ops x y z n)
(divmod-poly-one-main-list X Y Z N)
using len rel unfolding n
proof (induct N arbitrary: x X y Y z Z)
case (Sucnz Xy YzZ)
from Suc(2,4) have [transfer-rule]: R (hd y) (hd Y) by (cases y; cases Y, auto)

note [transfer-rule] = Suc(8—15)
have id: case = (rel-prod (list-all2 R) (list-all2 R)
(divmod-poly-one-main-i ops (cCons-i ops (hd y) z)
(¢l (if hd y = zero then y else minus-poly-rev-list-i ops y (map (times (hd y))
) 2 n)
(divmod-poly-one-main-list (cCons (hd Y) X)
(tl (if hd Y = 0 then Y else minus-poly-rev-list Y (map ((x) (hd Y)) Z))) Z

by (simp add: Let-def)
show ?case unfolding id
proof (rule Suc(1), goal-cases)
case I
show ?case using Suc(2) by simp
qed (transfer-prover+)
qed simp

lemma mod-poly-one-main-i: assumes len: n < length X and rel: list-all2 R z X
list-all2 Ry Y
and n: n = N
shows list-all2 R (mod-poly-one-main-i ops x y n)
(mod-poly-one-main-list X Y N)
using len rel unfolding n
proof (induct N arbitrary: x X y Y)
case (Sucny Yz 2Z)
from Suc(2,3) have [transfer-rule]: R (hd y) (hd Y') by (cases y; cases Y, auto)

note [transfer-rule] = Suc(53—4)
have id: case = (list-all2 R
(mod-poly-one-main-i ops
(tl (if hd y = zero then y else minus-poly-rev-list-i ops y (map (times (hd y))
2)) = n)
(mod-poly-one-main-list
(tl (if hd Y = 0 then Y else minus-poly-rev-list Y (map ((x) (hd Y)) Z))) Z
")

167

by (simp add: Let-def)
show ?case unfolding id
proof (rule Suc(1), goal-cases)
case I
show ?case using Suc(2) by simp
qed (transfer-prover+)
qed simp

lemma poly-rel-dvd[transfer-rule]: (poly-rel ===> poly-rel ===> (=)) (dvd-poly-i
ops) (dvd)
unfolding dvd-poly-i-def[abs-def] dvd-def[abs-def]

by (transfer-prover-start, transfer-step+, auto)

lemma poly-rel-monic[transfer-rule]: (poly-rel ===> (=)) (monic-i ops) monic
unfolding monic-i-def lead-coeff-i-def’ by transfer-prover

lemma poly-rel-pdivmod-monic: assumes mon: monic Y
and z: poly-rel x X and y: poly-rel y Y
shows rel-prod poly-rel poly-rel (pdivmod-monic-i ops © y) (pdivmod-monic X Y)
proof —
note [transfer-rule] = z y
note listall = this[unfolded poly-rel-def]
note defs = pdivmod-monic-def pdivmod-monic-i-def Let-def
from mon obtain k where len: length (coeffs Y) = Suc k unfolding poly-rel-def
list-all2-iff
by (cases coeffs Y, auto)
have [transfer-rule]:
rel-prod (list-all2 R) (list-all2 R)
(divmod-poly-one-main-i ops [| (rev z) (rev y) (1 + length © — length y))
(divmod-poly-one-main-list || (rev (coeffs X)) (rev (coeffs Y)) (1 + length
(coeffs X) — length (coeffs Y)))
by (rule divmod-poly-one-main-i, insert x y listall, auto, auto simp: poly-rel-def
list-all2-iff len)
show ?thesis unfolding defs by transfer-prover
qed

lemma ring-ops-poly: ring-ops (poly-ops ops) poly-rel
by (unfold-locales, auto simp: poly-ops-def
bi-unique-poly-rel
right-total-poly-rel
poly-rel-times
poly-rel-zero
poly-rel-one
poly-rel-minus
poly-rel-uminus
poly-rel-plus
poly-rel-eq
Domainp-is-poly)
end

168

context idom-ops
begin

lemma poly-rel-pderiv [transfer-rule]: (poly-rel ===> poly-rel) (pderiv-i ops) pderiv
proof (intro rel-funl, unfold poly-rel-def coeffs-pderiv-code pderiv-i-def pderiv-coeffs-def)
fix xs zs’
assume list-all2 R zs (coeffs xs’)
then obtain ys ys’ y y’ where id: tl xs = ys tl (coeffs xs’) = ys’ one =y 1 =
y’ and
R: list-all2 R ys ys' R y y’
by (cases xs; cases coeffs xs'; auto simp: one)
show list-all2 R (pderiv-main-i ops one (tl xs))
(pderiv-coeffs-code 1 (tl (coeffs xs’)))
unfolding id using R
proof (induct ys ys' arbitrary: y y’ rule: list-all2-induct)
case (Cons z zs ¢’ xs' y y’)
note [transfer-rule] = Cons(1,2,4)
have R (plus y one) (y' + 1) by transfer-prover
note [transfer-rule] = Cons(3)[OF this]
show ?case by (simp, transfer-prover)
qed simp
qed

lemma poly-rel-irreducible[transfer-rule]: (poly-rel ===> (=)) (irreducible-i ops)
irreducibley

unfolding irreducible-i-def|[abs-def] irreducibley-def|abs-def]

by (transfer-prover-start, transfer-step+, auto)

lemma idom-ops-poly: idom-ops (poly-ops ops) poly-rel
using ring-ops-poly unfolding ring-ops-def idom-ops-def by auto
end

context idom-divide-ops
begin

lemma poly-rel-sdiv[transfer-rule]: (poly-rel ===> R ===> poly-rel) (sdiv-i ops)
sdiv-poly
unfolding rel-fun-def poly-rel-def coeffs-sdiv sdiv-i-def
proof (intro alll impl, goal-cases)
case (1 z y xs ys)
note [transfer-rule] = 1
show ?case by transfer-prover
qed
end

context field-ops
begin

169

lemma poly-rel-div[transfer-rule]: (poly-rel ===> poly-rel ===> poly-rel)
(div-field-poly-i ops) (div)
proof (intro rel-funl, goal-cases)
case (1zXyY)
note [transfer-rule] = this
note listall = this[unfolded poly-rel-def]
note defs = div-field-poly-impl div-field-poly-impl-def div-field-poly-i-def Let-def
show ?Zcase
proof (cases y = [])
case True
with 1(2) have nil: coeffs Y = [| unfolding poly-rel-def by auto
show ?thesis unfolding defs True nil poly-rel-def by auto
next
case False
from append-butlast-last-id[OF False] obtain ys yl where y: y = ys Q [yl] by
metis
from Fulse listall have coeffs Y # [| by auto
from append-butlast-last-id|OF this| obtain Ys Y] where Y: coeffs Y = Ys
@ [Y1] by metis
from listall have [transfer-rule]: R yl YI by (simp add: y Y)
have id: last (coeffs Y) = Yl last (y) = yl
Nte (ify=1] thentelsee) =e
N te (if coeffs Y =[] then t else e) = e unfolding y Y by auto
have [transfer-rule]: (rel-prod (list-all2 R) (list-all2 R))
(divmod-poly-one-main-i ops || (rev z) (rev (map (times (inverse yl)) y))
(1 + length x — length y))
(divmod-poly-one-main-list || (rev (coeffs X))
(rev (map ((x) (Fields.inverse Y1)) (coeffs Y)))
(1 + length (coeffs X) — length (coeffs Y)))
proof (rule divmod-poly-one-main-i, goal-cases)
case 5
from listall show Zcase by (simp add: list-all2-lengthD)
next
case I
from listall show Zcase by (simp add: list-all2-lengthD Y)
qed transfer-prover+
show ?thesis unfolding defs id by transfer-prover
qed
qed

lemma poly-rel-mod[transfer-rule]: (poly-rel ===> poly-rel ===> poly-rel)
(mod-field-poly-i ops) (mod)
proof (intro rel-funl, goal-cases)
case (1zXyY)
note [transfer-rule] = this
note listall = this[unfolded poly-rel-def]
note defs = mod-poly-code mod-field-poly-i-def Let-def

170

show ?Zcase
proof (cases y = [])
case True
with 1(2) have nil: coeffs Y = [| unfolding poly-rel-def by auto
show ?thesis unfolding defs True nil poly-rel-def by (simp add: listall)
next
case Fulse
from append-butlast-last-id[OF False] obtain ys yl where y: y = ys Q [yl] by
metis
from Fualse listall have coeffs Y # [| by auto
from append-butlast-last-id[OF this] obtain Ys Y] where Y: coeffs ¥ = Vs
@ [YI] by metis
from listall have [transfer-rule]: R yl Y] by (simp add: y Y)
have id: last (coeffs Y) = Yl last (y) = yl
Nte (ify=1] thentelsee) =e
N te. (if coeffs Y =[] then t else e) = e unfolding y Y by auto
have [transfer-rule]: list-all2 R
(mod-poly-one-main-i ops (rev z) (rev (map (times (inverse yl)) y))
(1 + length x — length y))
(mod-poly-one-main-list (rev (coeffs X))
(rev (map ((x) (Fields.inverse Y1)) (coeffs Y)))
(1 + length (coeffs X) — length (coeffs Y)))
proof (rule mod-poly-one-main-i, goal-cases)
case 4
from listall show ?case by (simp add: list-all2-lengthD)
next
case [
from listall show ?case by (simp add: list-all2-lengthD Y)
qed transfer-prover—+
show ?thesis unfolding defs id by transfer-prover
qed
qed

lemma poly-rel-normalize [transfer-rule]: (poly-rel ===> poly-rel)
(normalize-poly-i ops) Rings.normalize
unfolding normalize-poly-old-def normalize-poly-i-def lead-coeff-i-def’
by transfer-prover

lemma poly-rel-unit-factor [transfer-rule]: (poly-rel ===> poly-rel)
(ungt-factor-poly-i ops) Rings.unit-factor
unfolding unit-factor-poly-def unit-factor-poly-i-def lead-coeff-i-def’
unfolding monom-0 by transfer-prover

lemma idom-divide-ops-poly: idom-divide-ops (poly-ops ops) poly-rel
proof —
interpret poly: idom-ops poly-ops ops poly-rel by (rule idom-ops-poly)
show ?thesis

171

by (unfold-locales, simp add: poly-rel-div poly-ops-def)
qed

lemma euclidean-ring-ops-poly: euclidean-ring-ops (poly-ops ops) poly-rel
proof —
interpret poly: idom-ops poly-ops ops poly-rel by (rule idom-ops-poly)
have id: arith-ops-record.normalize (poly-ops ops) = normalize-poly-i ops
arith-ops-record.unit-factor (poly-ops ops) = unit-factor-poly-i ops
unfolding poly-ops-def by simp-all
show ?thesis
by (unfold-locales, simp add: poly-rel-mod poly-ops-def, unfold id,
simp add: poly-rel-normalize, insert poly-rel-div poly-rel-unit-factor,
auto simp: poly-ops-def)
qed

lemma poly-rel-gced [transfer-rule]: (poly-rel ===> poly-rel ===> poly-rel) (ged-poly-i
ops) ged
proof —
interpret poly: euclidean-ring-ops poly-ops ops poly-rel by (rule euclidean-ring-ops-poly)
show ?thesis using poly.gcd-eucl-i unfolding ged-poly-i-def ged-eucl .
qged

lemma poly-rel-euclid-ext [transfer-rule]: (poly-rel ===> poly-rel ===>
rel-prod (rel-prod poly-rel poly-rel) poly-rel) (euclid-ext-poly-i ops) euclid-ext

proof —
interpret poly: euclidean-ring-ops poly-ops ops poly-rel by (rule euclidean-ring-ops-poly)
show ?thesis using poly.euclid-ext-i unfolding euclid-ext-poly-i-def .

qed

end

context ring-ops
begin
notepad
begin
fix zs x ys y
assume [transfer-rule]: poly-rel zs x poly-rel ys y
have z x y = y *x x by simp
from this[untransferred]
have times-poly-i ops xs ys = times-poly-i ops ys xs .
end
end
end

172

5.5.3 Over a Finite Field
theory Poly-Mod-Finite-Field- Record-Based

imports
Poly-Mod-Finite-Field
Finite-Field-Record-Based
Polynomial-Record-Based
begin

locale arith-ops-record = arith-ops ops + poly-mod m for ops :: i arith-ops-record
and m :: int
begin
definition M-rel-i :: 'i = int = bool where
M-rel-i f F = (arith-ops-record.to-int ops f = M F)

definition Mp-rel-i :: 'i list = int poly = bool where
Mp-rel-i f F = (map (arith-ops-record.to-int ops) f = coeffs (Mp F))

lemma Mp-rel-i-Mp|simp|: Mp-rel-i f (Mp F') = Mp-rel-i f F unfolding Mp-rel-i-def
by auto

lemma Mp-rel-i-Mp-to-int-poly-i: Mp-rel-i f F = Mp (to-int-poly-i ops f) =
to-int-poly-i ops f

unfolding Mp-rel-i-def to-int-poly-i-def by simp
end

locale mod-ring-gen = ring-ops [f-ops R for ff-ops :: 'i arith-ops-record and

R :: i = 'a :: nontriv mod-ring = bool +

fixes p :: int

assumes p: p = int CARD('a)

and of-int: 0 < ¢ = = < p = R (arith-ops-record.of-int ff-ops x) (of-int x)

and to-int: R y z = arith-ops-record.to-int ff-ops y = to-int-mod-ring z

and to-int”: 0 < arith-ops-record.to-int ff-ops y = arith-ops-record.to-int ff-ops
y<p=

R y (of-int (arith-ops-record.to-int [f-ops y))

begin

lemma nat-p: nat p = CARD('a) unfolding p by simp

sublocale poly-mod-type p TYPE('a)
by (unfold-locales, rule p)

lemma coeffs-to-int-poly: coeffs (to-int-poly (x :: 'a mod-ring poly)) = map to-int-mod-ring
(coeffs x)
by (rule coeffs-map-poly, auto)

lemma coeffs-of-int-poly: coeffs (of-int-poly (Mp z) :: 'a mod-ring poly) = map
of-int (coeffs (Mp z))
apply (rule coeffs-map-poly)
by (metis M-0 M-M Mp-coeff leading-coeff-0-iff of-int-hom.hom-zero to-int-mod-ring-of-int-M)

173

lemma to-int-poly-i: assumes poly-rel f g shows to-int-poly-i ff-ops f = to-int-poly
g
proof —
have *: map (arith-ops-record.to-int ff-ops) f = coeffs (to-int-poly g)
unfolding coeffs-to-int-poly
by (rule nth-equalityl, insert assms, auto simp: list-all2-conv-all-nth poly-rel-def
to-int)
show ?thesis unfolding coeffs-eq-iff to-int-poly-i-def poly-of-list-def coeffs-Poly *
strip-while-coeffs..
qged

lemma poly-rel-of-int-poly: assumes id: f' = of-int-poly-i ff-ops (Mp f) f" =
of-int-poly (Mp f)
shows poly-rel f’ f'" unfolding id poly-rel-def
unfolding list-all2-conv-all-nth coeffs-of-int-poly of-int-poly-i-def length-map
by (rule conjI[OF refl], intro alll impl, simp add: nth-coeffs-coeff Mp-coeff M-def,
rule of-int,
insert p, auto)

sublocale arith-ops-record ff-ops p .

lemma Mp-rel-il: poly-rel f1 f2 =—> MP-Rel f3 f2 = Mp-rel-i f1 f3
unfolding Mp-rel-i-def MP-Rel-def poly-rel-def
by (auto simp add: list-all2-conv-all-nth to-int intro: nth-equalityl)

lemma M-rel-il: R f1 f2 = M-Rel f3 f2 = M-rel-i fI f3
unfolding M-rel-i-def M-Rel-def by (simp add: to-int)

lemma M-rel-il": assumes R f1 f2
shows M-rel-i f1 (arith-ops-record.to-int ff-ops f1)
by (rule M-rel-iI[OF assms], simp add: to-int|OF assms] M-Rel-def M-to-int-mod-ring)

lemma Mp-rel-il: assumes poly-rel f1 f2

shows Mp-rel-i f1 (to-int-poly-i ff-ops f1)
proof (rule Mp-rel-iI[OF assms], unfold to-int-poly-iOF assms))

show MP-Rel (to-int-poly f2) f2 unfolding MP-Rel-def by (simp add: Mp-to-int-poly)
qged

lemma M-rel-iD: assumes M-rel-i f1 f3
shows
R f1 (of-int (M f3))
M-Rel f3 (of-int (M f3))
proof —
show M-Rel f3 (of-int (M f3))
using M-Rel-def to-int-mod-ring-of-int-M by auto
from assms show R f1 (of-int (M f3))
unfolding M-rel-i-def
by (metis int-one-le-iff-zero-less leD linear m1 poly-mod.M-def pos-mod-sign

174

pos-mod-bound to-int")
qed

lemma Mp-rel-iD: assumes Mp-rel-i f1 f3
shows
poly-rel f1 (of-int-poly (Mp [3))
MP-Rel f3 (of-int-poly (Mp f3))
proof —
show Rel: MP-Rel {3 (of-int-poly (Mp f3))
using MP-Rel-def Mp-Mp Mp-f-representative by auto
let ?ti = arith-ops-record.to-int ff-ops
from assms[unfolded Mp-rel-i-def] have
x: coeffs (Mp f3) = map ?ti f1 by auto

fix z
assume z € set f1
hence ?ti z € set (map ?ti f1) by auto
from this[folded] have ?ti x € range M
by (metis (no-types, lifting) MP-Rel-def M-to-int-mod-ring Rel coeffs-to-int-poly
ex-map-conv range-eql)
hence ?ti x > 0 ?ti x < p unfolding M-def using m1 by auto
hence R = (of-int (%t x))
by (rule to-int’)

thus poly-rel f1 (of-int-poly (Mp f3)) using x*
unfolding poly-rel-def coeffs-of-int-poly
by (auto simp: list-all2-map2 list-all2-same)
qed
end

locale prime-field-gen = field-ops ff-ops R + mod-ring-gen ff-ops R p for ff-ops :
't arith-ops-record and

R :: i = 'a :: prime-card mod-ring = bool and p :: int
begin

sublocale poly-mod-prime-type p TYPE('a)
by (unfold-locales, rule p)

end

lemma (in mod-ring-locale) mod-ring-rel-of-int:
0 <z = z < p = mod-ring-rel z (of-int z)
unfolding mod-ring-rel-def

by (transfer, auto simp: p)

context prime-field
begin

175

lemma prime-field-finite-field-ops-int: prime-field-gen (finite-field-ops-int p) mod-ring-rel
p
proof —
interpret field-ops finite-field-ops-int p mod-ring-rel by (rule finite-field-ops-int)
show ?thesis
by (unfold-locales, rule p,
auto simp: finite-field-ops-int-def p mod-ring-rel-def of-int-of-int-mod-ring)
qed

lemma prime-field-finite-field-ops-integer: prime-field-gen (finite-field-ops-integer
(integer-of-int p)) mod-ring-rel-integer p
proof —
interpret field-ops finite-field-ops-integer (integer-of-int p) mod-ring-rel-integer
by (rule finite-field-ops-integer, simp)
have pp: p = int-of-integer (integer-of-int p) by auto
interpret int: prime-field-gen finite-field-ops-int p mod-ring-rel
by (rule prime-field-finite-field-ops-int)
show ?thesis
by (unfold-locales, rule p, auto simp: finite-field-ops-integer-def
mod-ring-rel-integer-def[OF pp]| urel-integer-def[OF pp] mod-ring-rel-of-int
int.to-int[symmetric] finite-field-ops-int-def)
qged

lemma prime-field-finite-field-ops32: assumes small: p < 65535
shows prime-field-gen (finite-field-ops32 (uwint32-of-int p)) mod-ring-rel32 p
proof —
let ?pp = wint32-of-int p
have ppp: p = int-of-uint32 ?pp
by (subst int-of-uint32-inv, insert small p2, auto)
note x = ppp small
interpret field-ops finite-field-ops32 ?pp mod-ring-rel32
by (rule finite-field-ops32, insert x)
interpret int: prime-field-gen finite-field-ops-int p mod-ring-rel
by (rule prime-field-finite-field-ops-int)
show ?thesis
proof (unfold-locales, rule p, auto simp: finite-field-ops32-def)
fix z
assume z: 0 <z x < p
from int.of-int[OF this] have mod-ring-rel = (of-int z) by (simp add: fi-
nite-field-ops-int-def)
thus mod-ring-rel32 (uint32-of-int z) (of-int) unfolding mod-ring-rel32-def[OF
*
]
by (intro exI[of - z], auto simp: urel32-def[OF x|, subst int-of-uint32-inv,
insert * x, auto)
next
fix y 2z
assume mod-ring-rel32 y z
from this[unfolded mod-ring-rel32-def[OF x|] obtain z where yx: urel32 y x
and zz: mod-ring-rel x z by auto

176

from int.to-int[OF zz] have zx: to-int-mod-ring z = z by (simp add: fi-
nite-field-ops-int-def)
show int-of-uint32 y = to-int-mod-ring z unfolding 2z using yzr unfolding
urel32-def[OF %] by simp
next
fix y
show 0 < int-of-uint32 y = int-of-uint32 y < p = mod-ring-rel32 y (of-int
(int-of-uint32 y))
unfolding mod-ring-rel32-def[OF x| urel32-def[OF]
by (intro exI[of - int-of-uint32 y|, auto simp: mod-ring-rel-of-int)
qed
qed

lemma prime-field-finite-field-ops64: assumes small: p < 4294967295
shows prime-field-gen (finite-field-ops64 (uint64-of-int p)) mod-ring-rel64 p
proof —
let ?pp = wint64-of-int p
have ppp: p = int-of-uint64 ?pp
by (subst int-of-uint64-inv, insert small p2, auto)
note x = ppp small
interpret field-ops finite-field-ops64 ?pp mod-ring-rel64
by (rule finite-field-ops64, insert x)
interpret int: prime-field-gen finite-field-ops-int p mod-ring-rel
by (rule prime-field-finite-field-ops-int)
show ?thesis
proof (unfold-locales, rule p, auto simp: finite-field-ops64-def)
fix z
assume z: 0 <z < p
from int.of-int[OF this] have mod-ring-rel = (of-int z) by (simp add: fi-
nite-field-ops-int-def)
thus mod-ring-rel6} (uint64-of-int z) (of-int) unfolding mod-ring-rel64-def[OF
*
]
by (intro exI[of - z], auto simp: urel64-def[OF x|, subst int-of-uint64-inv,
insert * x, auto)
next
fix y 2z
assume mod-ring-rel64 y z
from this[unfolded mod-ring-rel64-def[OF x|] obtain z where yx: urel6} y x
and zz: mod-ring-rel z by auto
from int.to-int[OF zz] have zx: to-int-mod-ring z = z by (simp add: fi-
nite-field-ops-int-def)
show int-of-uint64 y = to-int-mod-ring z unfolding zr using yz unfolding
urel64-def[OF *] by simp
next
fix y
show 0 < int-of-uint64 y = int-of-uint64 y < p = mod-ring-rel64 y (of-int
(int-of-uint64 y))
unfolding mod-ring-rel64-def[OF x| urel64-def[OF]
by (intro exI|of - int-of-uint64 y], auto simp: mod-ring-rel-of-int)

177

qed
qed
end

context mod-ring-locale
begin
lemma mod-ring-finite-field-ops-int: mod-ring-gen (finite-field-ops-int p) mod-ring-rel
p
proof —

interpret ring-ops finite-field-ops-int p mod-ring-rel by (rule ring-finite-field-ops-int)

show ?thesis

by (unfold-locales, rule p,
auto simp: finite-field-ops-int-def p mod-ring-rel-def of-int-of-int-mod-ring)

qed

lemma mod-ring-finite-field-ops-integer: mod-ring-gen (finite-field-ops-integer (integer-of-int
p)) mod-ring-rel-integer p
proof —
interpret ring-ops finite-field-ops-integer (integer-of-int p) mod-ring-rel-integer
by (rule ring-finite-field-ops-integer, simp)
have pp: p = int-of-integer (integer-of-int p) by auto
interpret int: mod-ring-gen finite-field-ops-int p mod-ring-rel
by (rule mod-ring-finite-field-ops-int)
show ?thesis
by (unfold-locales, rule p, auto simp: finite-field-ops-integer-def
mod-ring-rel-integer-def[OF pp] urel-integer-def[OF pp] mod-ring-rel-of-int
int.to-int[symmetric] finite-field-ops-int-def)
qed

lemma mod-ring-finite-field-ops32: assumes small: p < 65535
shows mod-ring-gen (finite-field-ops32 (wint32-of-int p)) mod-ring-rel32 p
proof —
let ?pp = wint32-of-int p
have ppp: p = int-of-uint32 ?pp
by (subst int-of-uint32-inv, insert small p2, auto)
note x = ppp small
interpret ring-ops finite-field-ops32 ?pp mod-ring-rel32
by (rule ring-finite-field-ops32, insert x)
interpret int: mod-ring-gen finite-field-ops-int p mod-ring-rel
by (rule mod-ring-finite-field-ops-int)
show ?thesis
proof (unfold-locales, rule p, auto simp: finite-field-ops32-def)
fix z
assume z: 0 <z 2 < p
from int.of-int[OF this] have mod-ring-rel z (of-int z) by (simp add: fi-
nite-field-ops-int-def)
thus mod-ring-rel32 (uint32-of-int z) (of-int) unfolding mod-ring-rel32-def[OF
*
]

178

by (intro exI[of - z], auto simp: urel32-def[OF x|, subst int-of-uint32-inv,
insert * x, auto)
next
fix y 2z
assume mod-ring-rel32 y z
from this[unfolded mod-ring-rel32-def[OF x|] obtain x where yx: urel32 y x
and zz: mod-ring-rel z by auto
from int.to-int[OF zz] have zx: to-int-mod-ring z = z by (simp add: fi-
nite-field-ops-int-def)
show int-of-uint32 y = to-int-mod-ring z unfolding zr using yzr unfolding
urel32-def[OF *] by simp
next
fix y
show 0 < int-of-uint32 y = int-of-uint32 y < p = mod-ring-rel32 y (of-int
(int-of-uint32 y))
unfolding mod-ring-rel32-def[OF x| urel32-def[OF]
by (intro exI[of - int-of-uint32 y|, auto simp: mod-ring-rel-of-int)
qed
qed

lemma mod-ring-finite-field-ops64: assumes small: p < 4294967295
shows mod-ring-gen (finite-field-ops64 (wint64-of-int p)) mod-ring-rel64 p
proof —
let ?pp = wint64-of-int p
have ppp: p = int-of-uint64 ?pp
by (subst int-of-uint64-inv, insert small p2, auto)
note x = ppp small
interpret ring-ops finite-field-ops64 ?pp mod-ring-rel6)
by (rule ring-finite-field-ops64 , insert *)
interpret int: mod-ring-gen finite-field-ops-int p mod-ring-rel
by (rule mod-ring-finite-field-ops-int)
show ?thesis
proof (unfold-locales, rule p, auto simp: finite-field-ops64-def)
fix z
assume z: 0 < zxx <p
from int.of-int[OF this] have mod-ring-rel © (of-int z) by (simp add: fi-
nite-field-ops-int-def)
thus mod-ring-rel64 (uint64-of-int z) (of-int) unfolding mod-ring-rel64-def[OF
*k
]
by (intro exl[of - z], auto simp: urel6/-def[OF x|, subst int-of-uint64-inv,
insert * x, auto)
next
fix y 2z
assume mod-ring-rel64 y z
from this[unfolded mod-ring-rel6/-def[OF x]] obtain x where yx: urel6/ y x
and xzz: mod-ring-rel z by auto
from int.to-int[OF zz] have zx: to-int-mod-ring z = z by (simp add: fi-
nite-field-ops-int-def)
show int-of-uint64 y = to-int-mod-ring z unfolding zr using yzr unfolding

179

urel64-def[OF %] by simp
next
fix y
show 0 < int-of-uint64 y = int-of-uint6 y < p => mod-ring-rel6] y (of-int
(int-of-uint64 y))
unfolding mod-ring-rel64-def[OF x| urel64-def[OF x|
by (intro exl|of - int-of-uint64 y], auto simp: mod-ring-rel-of-int)
qed
qed
end

end

5.6 Chinese Remainder Theorem for Polynomials

We prove the Chinese Remainder Theorem, and strengthen it by showing
uniqueness

theory Chinese-Remainder-Poly

imports
HOL— Number-Theory. Residues
Polynomial-Factorization. Polynomial-Irreducibility
Polynomial-Interpolation. Missing- Polynomial

begin

lemma cong-add-poly:

[(a::"b::{ field-ged} poly) = b] (mod m) = [c = d] (mod m) = [a + ¢ = b + d]
(mod m)

by (fact cong-add)

lemma cong-mult-poly:

[(a::"b::{ field-ged} poly) = b] (mod m) = [c¢ = d] (mod m) => [a * ¢ = b * d]
(mod m)

by (fact cong-mult)

lemma cong-mult-self-poly: [(a::'b::{field-ged} poly) * m = 0] (mod m)
by (fact cong-mult-self-right)

lemma cong-scalar2-poly: [(a::'b:{field-ged} poly)= b] (mod m) = [k * a = k
b] (mod m)
by (fact cong-scalar-left)

lemma cong-sum-poly:
(Az. z € A = [((f x)::"b::{field-ged} poly) = g z] (mod m)) =
[(Oz€A. fz) = (D xz€A. g)] (mod m)

by (rule cong-sum)
lemma cong-iff-lin-poly: ([(a::'b::{field-gcd} poly) = b] (mod m)) = (3k. b= a +

m * k)
using cong-diff-iff-cong-0 [of b a m] by (auto simp add: cong-0-iff dvd-def alge-

180

bra-simps dest: cong-sym)

lemma cong-solve-poly: (a::'b::{field-ged} poly) # 0 = Jz. [a * © = ged a n]
(mod n)
proof (cases n = 0)
case True
note n0="True
show ?thesis
proof (cases monic a)
case True
have n: normalize a = a by (rule normalize-monic[OF True])
show ?thesis
by (rule exI[of - 1], auto simp add: n0 n cong-def)
next
case False
show ?thesis
by (auto simp add: True cong-def normalize-poly-old-def map-div-is-smult-inverse)
(metis mult.right-neutral mult-smult-right)
qed
next
case Fulse
note n-not-0 = Fulse
show ?thesis
using bezout-coefficients-fst-snd [of a n, symmetric]
by (auto simp add: cong-iff-lin-poly mult.commute [of a] mult.commute [of n])
qged

lemma cong-solve-coprime-poly:
assumes coprime-an:coprime (a::'b::{field-ged} poly) n
shows Jz. [a *x = 1] (mod n)
proof (cases a = 0)
case True
show ?thesis unfolding cong-def
using True coprime-an by auto
next
case Fulse
show ?thesis
using coprime-an cong-solve-poly[OF False, of n|
unfolding cong-def
by presburger
qged

lemma cong-dvd-modulus-poly:
[z = y] (mod m) = n dvd m = [z = y] (mod n) for =y :: 'b::{field-ged} poly
by (auto simp add: cong-iff-lin-poly elim!: dvdE)

lemma chinese-remainder-auz-poly:
fixes A :: 'a set

181

and m :: 'a = 'b::{field-ged} poly
assumes fin: finite A
and cop: Vi € A. (Vj € A. i # j —> coprime (m i) (m j))
shows 3b. (Vi€ A. [bi= 1] (mod mi) A[bi= 0] (mod ([[j€ A - {i}. m
)
proof (rule finite-set-choice, rule fin, rule balll)
fix ¢
assume 7 : A
with cop have coprime ([[j € A — {i}. m 7) (m9)
by (auto intro: prod-coprime-left)
then have Jz. [([[j € 4 — {i}. mj) x o = 1] (mod m 1)
by (elim cong-solve-coprime-poly)
then obtain z where [([[j € A — {i}. m j) x x = 1] (mod m 9)
by auto
moreover have [([[j€ 4 — {i}. mj) x 2 = 0]
(mod (T1j € A — {i}. m)
by (subst mult.commute, rule cong-mult-self-poly)
ultimately show Ja. [a = 1] (mod m i) A [a = 0]
(mod prod m (A — {i}))
by blast
qed

lemma chinese-remainder-poly:
fixes A :: 'a set
and m :: ‘a = 'b::{field-ged} poly
and u :: ‘a = 'b poly
assumes fin: finite A
and cop: VieA. (Vj€A. i # j — coprime (m i) (m j))
shows Jz. (Vi€A. [z = u i] (mod m 7))
proof —
from chinese-remainder-auz-poly [OF fin cop] obtain b where
bprop: Vi€ A. [b i = 1] (mod m i) A
(b= 0] (mod (I[j € A — {i}. m)
by blast
let %z = > i€A. (ui) * (bi)
show ?thesis
proof (rule exI, clarify)
fix i
assume a: 7 : A
show [?z = u 4] (mod m 7)
proof —
from fin a have %z = (3 j € {i}. uj=*bj) +
(CjeA—{it ujrbj
by (subst sum.union-disjoint [symmetric], auto intro: sum.cong)
then have [z = wixbi+ (D j€ A —{i}. ujx*bj)] (mod m 1)
unfolding cong-def
by auto

182

alsohave [uixbi+ O.jeA—{i}. ujxbj =
wixl+ (OjeA—{i}. uj= 0)] (modm 1)
apply (rule cong-add-poly)
apply (rule cong-scalar2-poly)
using bprop a apply blast
apply (rule cong-sum)
apply (rule cong-scalar2-poly)
using bprop apply auto
apply (rule cong-dvd-modulus-poly)
apply (drule (1) bspec)
apply (erule conjFE)
apply assumption
apply rule
using fin a apply auto
done
thus ?thesis
by (metis (no-types, lifting) a add.right-neutral fin mult-cancel-left1 mult-cancel-right1

sum.not-neutral-contains-not-neutral sum.remove)
qed
qged
qged

lemma cong-trans-poly:
[(a::"b::{ field-ged} poly) = b] (mod m) = [b = ¢] (mod m) = [a = ¢] (mod
m)
by (fact cong-trans)

lemma cong-mod-poly: (n::'b::{field-ged} poly) = 0 = [a mod n = a] (mod n)
by auto

lemma cong-sym-poly: [(a::'b::{field-gcd} poly) = b] (mod m) = [b = a] (mod m)
by (fact cong-sym)

lemma cong-1-poly: [(a::'b::{field-gcd} poly) = b] (mod 1)
by (fact cong-1)

lemma coprime-cong-mult-poly:

assumes [(a::'b::{field-ged} poly) = b] (mod m) and [a = b] (mod n) and coprime
mn

shows [a = b] (mod m * n)

using divides-mult assms

by (metis (no-types, opaque-lifting) cong-dvd-modulus-poly cong-iff-lin-poly dvd-mult2
dvd-refl minus-add-cancel mult.right-neutral)

lemma coprime-cong-prod-poly:

183

(VicA. (VjeA. i # j — coprime (m i) (m j))) =
(Vi€A. [(z::'b::{field-ged} poly) = y] (mod m 7)) =
[z = y] (mod (J[Ti€A. m 7))
apply (induct A rule: infinite-finite-induct)
apply auto
apply (metis coprime-cong-mult-poly prod-coprime-right)
done

lemma cong-less-modulus-unique-poly:

[(z::"b::{ field-ged} poly) = y] (mod m) = degree x < degree m — degree y <
degree m = z =y

by (simp add: cong-def mod-poly-less)

lemma chinese-remainder-unique-poly:
fixes A :: ‘a set
and m :: ‘a = 'b::{field-ged} poly
and v :: 'a = b poly
assumes nz: Vi€cA. (m i) # 0
and cop: Vi€eA. (Vj€A. i # j — coprime (m i) (m j))

and not-constant: 0 < degree (prod m A)
shows Jlz. degree x < (D i€A. degree (m 7)) N (Vi€A. [z = u 7] (mod m 7))
proof —
from not-constant have fin: finite A
by (metis degree-1 gr-implies-not0 prod.infinite)
from chinese-remainder-poly [OF fin cop]
obtain y where one: (Vi€A. [y = u i] (mod m 7))
by blast
let 2z = y mod ([[i€A. m i)
have degree-prod-sum: degree (prod m A) = (D> i€A. degree (m 7))
by (rule degree-prod-eq-sum-degree[OF nz])
from fin nz have prodnz: ([[i€A. (m 7)) # 0
by auto

have less: degree 2z < (> i€A. degree (m 7))
unfolding degree-prod-sum|[symmetric]
using degree-mod-less|OF prodnz, of y]
using not-constant

by auto
have cong: Vi€A. [?z = u i] (mod m 7)
apply auto
apply (rule cong-trans-poly)
prefer 2

using one apply auto

apply (rule cong-dvd-modulus-poly)
apply (rule cong-mod-poly)

using prodnz apply auto

apply rule

184

apply (rule fin)
apply assumption
done
have unique: V z. degree z < (Y i€ A. degree (m 7)) A
(VieA. [z = u i (mod m i) — 2z = %z
proof (clarify)
fix z::'b poly
assume zless: degree z < (> i€ A. degree (m 7))
assume zcong: (Vi€A. [z = u i] (mod m 7))
have degl: degree z < degree (prod m A)
using degree-prod-sum zless by simp
have deg2: degree 2z < degree (prod m A)
by (metis degl degree-0 degree-mod-less grOl gr-implies-not0)
have Vi€ A. [?z = 2] (mod m 1)
apply clarify
apply (rule cong-trans-poly)
using cong apply (erule bspec)
apply (rule cong-sym-poly)
using zcong by auto
with fin cop have [?z = z] (mod ([[i€A. m i))
by (intro coprime-cong-prod-poly) auto
with zless show z = %z
apply (intro cong-less-modulus-unique-poly)
apply (erule cong-sym-poly)
apply (auto simp add: degl deg2)
done
qed
from less cong unique show ?thesis by blast
qed

end

6 The Berlekamp Algorithm

theory Berlekamp- Type-Based
imports
Jordan-Normal-Form. Matriz- Kernel
Jordan-Normal-Form. Gauss-Jordan-Elimination
Jordan-Normal-Form. Missing- VectorSpace
Polynomial-Factorization.Square-Free- Factorization
Polynomial-Factorization. Missing- Multiset
Finite-Field
Chinese-Remainder-Poly
Poly-Mod-Finite-Field
HOL- Computational-Algebra. Field-as-Ring
begin

hide-const (open) up-ring.coeff up-ring.monom Modules.module subspace
Modules.module-hom

185

6.1 Auxiliary lemmas

context
fixes g :: 'b = 'a :: comm-monoid-mult
begin
lemma prod-list-map-filter: prod-list (map g (filter f xs)) * prod-list (map g (filter
N z. = fx) xs))
= prod-list (map g xs)
by (induct xs, auto simp: ac-simps)

lemma prod-list-map-partition:

assumes List.partition f zs = (ys, 2s)

shows prod-list (map g xs) = prod-list (map g ys) * prod-list (map g 2s)

using assms by (subst prod-list-map-filter[symmetric, of - f], auto simp: o-def)
end

lemma coprime-id-is-unit:
fixes a::'b::semiring-gcd
shows coprime a a <— is-unit a
using dvd-unit-imp-unit by auto

lemma dim-vec-of-list[simp]: dim-vec (vec-of-list x) = length x
by (transfer, auto)

lemma length-list-of-vec[simp): length (list-of-vec A) = dim-vec A
by (transfer’, auto)

lemma list-of-vec-vec-of-list[simp|: list-of-vec (vec-of-list a) = a
proof —
{
fix aa :: 'a list
have map (An. if n < length aa then aa ! n else undef-vec (n — length aa))
[0..<length aal
= map ((!) aa) [0..<length aa]
by simp
hence map (An. if n < length aa then aa ! n else undef-vec (n — length aa))
[0..<length aa] = aa
by (simp add: map-nth)

thus ?thesis by (transfer, simp add: mk-vec-def)
qed

context
assumes SORT-CONSTRAINT (a::finite)
begin

lemma inj-Poly-list-of-vec”: inj-on (Poly o list-of-vec) {v. dim-vec v = n}

proof (rule comp-inj-on)
show inj-on list-of-vec {v. dim-vec v = n}

186

by (auto simp add: inj-on-def, transfer, auto simp add: mk-vec-def)
show inj-on Poly (list-of-vec ¢ {v. dim-vec v = n})
proof (auto simp add: inj-on-def)
fix 7 y::'c vec assume n = dim-vec z and dim-zy: dim-vec y = dim-vec x
and Poly-eq: Poly (list-of-vec z) = Poly (list-of-vec y)
note [simp del] = nth-list-of-vec
show list-of-vec x = list-of-vec y
proof (rule nth-equalityl, auto simp: dim-zy)
have length-eq: length (list-of-vec x) = length (list-of-vec y)
using dim-zy by (transfer, auto)
fix { assume i < dim-vec x
thus list-of-vec z ! i = list-of-vec y ! i using Poly-eq unfolding poly-eq-iff
coeff-Poly-eq
using dim-zy unfolding nth-default-def by (auto, presburger)
qed
qged
qed

corollary inj-Poly-list-of-vec: inj-on (Poly o list-of-vec) (carrier-vec n)
using inj-Poly-list-of-vec’ unfolding carrier-vec-def .

lemma list-of-vec-rw-map: list-of-vec m = map (An. m $ n) [0..<dim-vec m]
by (transfer, auto simp add: mk-vec-def)

lemma degree-Poly’:

assumes xs: s # ||

shows degree (Poly zs) < length xs
using xs

by (induct zs, auto intro: Poly.simps(1))

lemma vec-of-list-list-of-vec[simp|: vec-of-list (list-of-vec a) = a
by (transfer, auto simp add: mk-vec-def)

lemma row-mat-of-rows-list:
assumes b: b < length A
and nc: Vi. i < length A — length (A ! i) = nc
shows (row (mat-of-rows-list nc A) b) = vec-of-list (A ! b)
proof (auto simp add: vec-eq-iff)
show dim-col (mat-of-rows-list nc A) = length (A ! b)
unfolding mat-of-rows-list-def using b nc by auto
fix ¢ assume i: i < length (A b)
show row (mat-of-rows-list nc A) b $ i = vec-of-list (A!b) $ i
using ¢ b nc
unfolding mat-of-rows-list-def row-def
by (transfer, auto simp add: mk-vec-def mk-mat-def)
qed

lemma degree-Poly-list-of-vec:
assumes n: T € carrier-vec n

187

and n0: n > 0
shows degree (Poly (list-of-vec x)) < n
proof —
have z-dim: dim-vec x = n using n by auto
have I: (list-of-vec x) # []
by (auto simp add: list-of-vec-rw-map vec-of-dim-0[symmetric] n0 n z-dim)
have degree (Poly (list-of-vec z)) < length (list-of-vec z) by (rule degree-Poly'|OF
1)

also have ... = n using x-dim by auto
finally show ?thesis .
qged

lemma [list-of-vec-nth:
assumes i: i < dim-vec T
shows list-of-vec z ! i =2 $ i
using ¢
by (transfer, auto simp add: mk-vec-def)

lemma coeff-Poly-list-of-vec-nth'”:

assumes i: 1 < dim-vec T

shows coeff (Poly (list-of-vec x)) i =1 $ i
using 1

by (auto simp add: list-of-vec-nth nth-default-def)

lemma list-of-vec-row-nth:

assumes z: ¢ < dim-col A

shows list-of-vec (row A i) ! z = A $$ (4, z)

using z unfolding row-def by (transfer’, auto simp add: mk-vec-def)

lemma coeff-Poly-list-of-vec-nth:
assumes z: ¢ < dim-col A
shows coeff (Poly (list-of-vec (row A ©))) z = A $3 (i,)
proof —
have coeff (Poly (list-of-vec (row A 7))) x = nth-default 0 (list-of-vec (row A
unfolding coeff-Poly-eq by simp
also have ... = A $$ (4, z) using = list-of-vec-row-nth
unfolding nth-default-def by (auto simp del: nth-list-of-vec)
finally show ?thesis .
qed

lemma inj-on-list-of-vec: inj-on list-of-vec (carrier-vec n)
unfolding inj-on-def unfolding list-of-vec-rw-map by auto

lemma vec-of-list-carrier[simp|: vec-of-list © € carrier-vec (length x)
unfolding carrier-vec-def by simp

lemma card-carrier-vec: card (carrier-vec n:: 'b::finite vec set) = CARD('b) " n
proof —

188

let ?A = UNIV::'b set
let ?B = {xs. set s C ?A A length xs = n}
let ?C = (carrier-vec n:: 'b::finite vec set)
have card ?C = card ?B
proof —
have bij-betw (list-of-vec) ?C ¢B
proof (unfold bij-betw-def, auto)
show inj-on list-of-vec (carrier-vec n) by (rule inj-on-list-of-vec)
fix z::'b list
assume n: n = length
thus = € list-of-vec ‘ carrier-vec (length x)
unfolding image-def
by auto (rule bexI[of - vec-of-list x], auto)

qed

thus ?thesis using bij-betw-same-card by blast
qged
also have ... = card ?A " n

by (rule card-lists-length-eq, simp)
finally show ?thesis .
qed

lemma finite-carrier-vec[simp): finite (carrier-vec n:: 'b::finite vec set)
by (rule card-ge-0-finite, unfold card-carrier-vec, auto)

lemma row-echelon-form-dim0-row:

assumes A € carrier-mat 0 n

shows row-echelon-form A

using assms

unfolding row-echelon-form-def pivot-fun-def Let-def by auto

lemma row-echelon-form-dim0-col:

assumes A € carrier-mat n 0

shows row-echelon-form A

using assms

unfolding row-echelon-form-def pivot-fun-def Let-def by auto

lemma row-echelon-form-one-dim0|simp|: row-echelon-form (1., 0)
unfolding row-echelon-form-def pivot-fun-def Let-def by auto

lemma Poly-list-of-vec-0[simp]: Poly (list-of-vec (0, 0)) = [:0:]
by (simp add: poly-eq-iff nth-default-def)

lemma monic-normalize:
assumes (p :: 'b :: {field,euclidean-ring-gcd} poly) # 0 shows monic (normalize

p)
by (simp add: assms normalize-poly-old-def)

189

lemma exists-factorization-prod-list:
fixes P::'b:field poly list
assumes degree (prod-list P) > 0
and A u. u € set P = degree u > 0 A monic u
and square-free (prod-list P)
shows 3 Q. prod-list Q = prod-list P N\ length P < length @
AN Vu. u € set Q — irreducible uw A monic u)
using assms
proof (induct P)
case Nil
thus ?case by auto
next
case (Cons z P)
have sf-P: square-free (prod-list P)
by (metis Cons.prems(3) dvd-triv-left prod-list. Cons mult.commute square-free-factor)
have deg-z: degree x > 0 using Cons.prems by auto
have distinct-P: distinct P
by (meson Cons.prems(2) Cons.prems(3) distinct.simps(2) square-free-prod-list-distinct)
have 3 A. finite AN x=][A AN A C {q. irreducible ¢ A\ monic ¢}
proof (rule monic-square-free-irreducible-factorization)
show monic z by (simp add: Cons.prems(2))
show square-free x
by (metis Cons.prems(83) dvd-triv-left prod-list. Cons square-free-factor)
qed
from this obtain A where fin-A: finite A
and zA: z = [[4
and A: A C {q. irreducibleg ¢ N\ monic q}
by auto
obtain A’ where s: set A’ = A and length-A": length A’ = card A
using <finite A> distinct-card finite-distinct-list by force
have A-not-empty: A # {} using zA deg-z by auto
have z-prod-list-A’: © = prod-list A’

proof —
have z = [[4 using zA by simp
also have ... = prod id A by simp
also have ... = prod id (set A') unfolding s by simp
also have ... = prod-list (map id A"
by (rule prod.distinct-set-conv-list, simp add: card-distinct length-A' s)
also have ... = prod-list A’ by auto
finally show ?thesis .
qed

show ?case
proof (cases P = [])
case True
show ?thesis
proof (rule exI[of - A’], auto simp add: True)
show prod-list A’ = x using z-prod-list-A’ by simp
show Suc 0 < length A’ using A-not-empty using s length-A’

190

by (simp add: Suc-lel card-gt-0-iff fin-A)
show Au. u € set A’ = irreducible v using s A by auto
show Au. u € set A’ = monic u using s A by auto
qed
next
case Fulse
have hyp: 3 Q. prod-list QQ = prod-list P
A length P < length Q@ A (Vu. u € set Q — irreducible u A\ monic u)
proof (rule Cons.hyps|OF - - sf-P])
have set-P: set P # {} using Fulse by auto
have prod-list P = prod-list (map id P) by simp

also have ... = prod id (set P)
using prod.distinct-set-conv-list|OF distinct-P, of id] by simp
also have ... = [[(set P) by simp
finally have prod-list P = [] (set P) .
hence degree (prod-list P) = degree ([] (set P)) by simp
also have ... = degree (prod id (set P)) by simp
also have ... = (3 i€(set P). degree (id 7))

proof (rule degree-prod-eq-sum-degree)

show Vi€set P. id i # 0 using Cons.prems(2) by force
qed
also have ... > 0

by (metis Cons.prems(2) List.finite-set set-P gr0l id-apply insert-iff list.set(2)

sum-pos)
finally show degree (prod-list P) > 0 by simp

show Au. u € set P = degree u > 0 N monic u using Cons.prems by auto

qed

from this obtain) where QP: prod-list) = prod-list P and length-P(Q): length

P < length Q

and monic-irr-Q: (Vu. u € set Q — irreducible u A monic u) by blast
show ?thesis

proof (rule exI[of - A’ @ Q], auto simp add: monic-irr-Q)

show prod-list A’ x prod-list Q = z * prod-list P unfolding QP xz-prod-list-A’

by auto
have length A’ # 0 using A-not-empty using s length-A’ by auto

thus Suc (length P) < length A’ + length Q) using QP length-PQ by linarith

show Au. u € set A’ = irreducible v using s A by auto
show Au. u € set A’ = monic u using s A by auto
qed
qed
qed

lemma normalize-eq-imp-smult:

fixes p :: 'b :: {euclidean-ring-ged} poly

assumes n: normalize p = normalize q

shows 3 c. ¢ # 0 AN g = smult cp

proof(cases p = 0)

case True with n show %thesis by (auto intro:exI[of - 1])

next

191

case p0: False

have degree-eq: degree p = degree q using n degree-normalize by metis

hence ¢0: ¢ # 0 using p0 n by auto

have p-dvd-q: p dvd g using n by (simp add: associatedD1)

from p-dvd-q obtain k£ where ¢: ¢ = k * p unfolding dvd-def by (auto simp:
ac-simps)

with ¢0 have k # 0 by auto

then have degree k = 0

using degree-eq degree-mult-eq p0 q by fastforce

then obtain ¢ where k: k = [: ¢ :] by (metis degree-0-id)

with <k # 0> have ¢ # 0 by auto

have ¢ = smult ¢ p unfolding ¢ k by simp

with <c # 0> show ?thesis by auto
qed

lemma prod-list-normalize:
fixes P :: b :: {idom-divide,normalization-semidom-multiplicative} poly list
shows normalize (prod-list P) = prod-list (map normalize P)

proof (induct P)

case Nil
show ?Zcase by auto
next

case (Cons p P)
have normalize (prod-list (p # P)) = normalize p * normalize (prod-list P)
using normalize-mult by auto

also have ... = normalize p x prod-list (map normalize P) using Cons.hyps by
auto

also have ... = prod-list (normalize p # (map normalize P)) by auto

also have ... = prod-list (map normalize (p # P)) by auto

finally show ?Zcase .
qed

lemma prod-list-dvd-prod-list-subset:
fixes A::'b::comm-monoid-mult list
assumes dA: distinct A

and dB: distinct B

and s: set A C set B
shows prod-list A dvd prod-list B

proof —
have prod-list A = prod-list (map id A) by auto
also have ... = prod id (set A)

by (rule prod.distinct-set-conv-list[symmetric, OF dA])
also have ... dvd prod id (set B)
by (rule prod-dvd-prod-subset[OF - s], auto)

also have ... = prod-list (map id B)
by (rule prod.distinct-set-conv-list| OF dB])
also have ... = prod-list B by simp

finally show ?thesis .

192

qed
end

lemma gcd-monic-constant:
ged fg e {1, f} if monic f and degree g = 0
for f g :: 'a :: {field-gcd} poly
proof (cases g = 0)
case True
moreover from (monic f» have normalize f = f
by (rule normalize-monic)
ultimately show ?thesis
by simp
next
case Fulse
with «degree g = 0> have is-unit g
by simp
then have Rings.coprime f g
by (rule is-unit-right-imp-coprime)
then show ?thesis
by simp
qged

lemma distinct-find-base-vectors:
fixes A::'a::field mat
assumes ref: row-echelon-form A
and A: A € carrier-mat nr nc
shows distinct (find-base-vectors A)
proof —
note non-pivot-base = non-pivot-base[OF ref A
let ?pp = set (pivot-positions A)
from A have dim: dim-row A = nr dim-col A = nc by auto
{
fix jj’
assume j: j < ncj ¢ snd ‘ ?pp and j" j' < nc j' ¢ snd ¢ ?pp and neq: j' # j
from non-pivot-base(2)[OF j| non-pivot-base(4)[OF j' j neq]
have non-pivot-base A (pivot-positions A) j # non-pivot-base A (pivot-positions
A) j' by auto
}
hence inj: inj-on (non-pivot-base A (pivot-positions A))
(set [j«[0..<nc] . j & snd ¢ ?pp]) unfolding inj-on-def by auto
thus “thesis unfolding find-base-vectors-def Let-def unfolding distinct-map
dim by auto
qed

lemma length-find-base-vectors:

fixes A::'a::field mat

assumes ref: row-echelon-form A
and A: A € carrier-mat nr nc

193

shows length (find-base-vectors A) = card (set (find-base-vectors A))
using distinct-card| OF distinct-find-base-vectors|OF ref A]] by auto

6.2 Previous Results

definition power-poly-f-mod :: 'a::field poly = 'a poly = nat = ’a poly where
power-poly-f-mod modulus = (Aa n. a ~ n mod modulus)

lemma power-poly-f-mod-binary: power-poly-f-mod m a n = (if n = 0 then 1 mod
m
else let (d, r) = BEuclidean-Rings.divmod-nat n 2;
rec = power-poly-f-mod m ((a * a) mod m) d in
if 1 = 0 then rec else (rec * a) mod m)
for m a :: 'a :: {field-ged} poly
proof —
note d = power-poly-f~-mod-def
show ?thesis
proof (cases n = 0)
case True
thus ?thesis unfolding d by simp
next
case Fulse
obtain ¢ r where div: Euclidean-Rings.divmod-nat n 2 = (q,r) by force
hencen: n=2x* ¢+ rand r: r = 0 V r = 1 unfolding Fuclidean-Rings.divmod-nat-def
by auto
have id: a ~ (2 x q) = (a x a) "¢
by (simp add: power-mult-distrib semiring-normalization-rules)
show ?thesis
proof (cases r = 0)
case True
show ?thesis
using power-mod [of a ¥ a m]
by (auto simp add: Euclidean-Rings.divmod-nat-def Let-def True n d div id)
next
case Fulse
with r have r: r = 1 by simp
show ?thesis
by (auto simp add: d r div Let-def mod-simps)
(simp add: n r mod-simps ac-simps power-mult-distrib power-mult power2-eq-square)
qed
qed
qed

fun power-polys where
power-polys mul-p u curr-p (Suc i) = curr-p #
power-polys mul-p u ((curr-p * mul-p) mod u) i
| power-polys mul-p u curr-p 0 =]

194

context
assumes SORT-CONSTRAINT ('a::prime-card)
begin

lemma fermat-theorem-mod-ring [simp:
fixes a::’a mod-ring
shows a =~ CARD('a) = a
proof (cases a = 0)
case True
then show ?thesis by auto
next
case Fulse
then show ?thesis
proof transfer
fix a
assume a € {0..<int CARD(’a)} and a # 0
then have a: I < a a < int CARD('a)
by simp-all
then have [simp]: a mod int CARD('a) = a
by simp
from a have — int CARD('a) dvd a
by (auto simp add: zdvd-not-zless)
then have = CARD('a) dvd nat |a|
by simp
with a have = CARD('a) dvd nat a
by simp
with prime-card have [nat a = (CARD(’a) — 1) = 1] (mod CARD(a))
by (rule fermat-theorem)
with a have int (nat a = (CARD('a) — 1) mod CARD('a)) = 1
by (simp add: cong-def)
with o have a ~ (CARD(’a) — 1) mod CARD('a) = 1
by (simp add: of-nat-mod)
then have a * (¢ = (CARD('a) — 1) mod int CARD('a)) = a
by simp
then have (a * (¢ =~ (CARD('a) — 1) mod int CARD('a))) mod int CARD('a)
= a mod int CARD(a)
by (simp only:)
then show a = CARD('a) mod int CARD('a) = a
by (simp add: mod-simps semiring-normalization-rules(27))
qed
qed

lemma mod-eq-dvd-iff-poly: ((x::'a mod-ring poly) mod n = y mod n) = (n dvd x
- y)
proof

assume H: x mod n = y mod n

hence x mod n — y mod n = 0 by simp

hence (z mod n — y mod n) mod n = 0 by simp

195

hence (z — y) mod n = 0 by (simp add: mod-diff-eq)
thus n dvd x — y by (simp add: dvd-eq-mod-eq-0)
next
assume H: n dvdz — y
then obtain k where k: z—y = nxk unfolding dvd-def by blast
hence x = nxk + y using diff-eq-eq by blast
hence z mod n = (nxk + y) mod n by simp
thus z mod n = y mod n by (simp add: mod-add-left-eq)
qed

lemma cong-gcd-eq-poly:
ged am = ged b m if [(a::’a mod-ring poly) = b] (mod m)
using that by (simp add: cong-def) (metis gcd-mod-left mod-by-0)

lemma coprime-h-c-poly:
fixes h::’a mod-ring poly
assumes cl # c2
shows coprime (h — [:cl:]) (b — [:¢2:])
proof (intro coprimel)
fix d assume d dvd h — [:c1:]
and d dvd h — [:¢2]
hence h mod d = [:c1:] mod d and h mod d = [:¢2:] mod d
using mod-eq-dvd-iff-poly by simp+
hence [:cI:] mod d = [:¢2:] mod d by simp
hence d dvd [:¢c2 — c1:]
by (metis (no-types) mod-eq-dvd-iff-poly diff-pCons right-minus-eq)
thus is-unit d
by (metis (no-types) assms dvd-trans is-unit-monom-0 monom-0 right-minus-eq)
qed

lemma coprime-h-c-poly2:

fixes h::’a mod-ring poly

assumes coprime (h — [:c1:]) (h — [:¢2:])
and - ds-unit (h — [:c1:])

shows cI # c2

using assms coprime-id-is-unit by blast

lemma degree-minus-eq-right:

fixes p::'b::ab-group-add poly

shows degree q¢ < degree p = degree (p — q) = degree p
using degree-add-eq-leftlof —q p] degree-minus by auto

lemma coprime-prod:
fixes A::'a mod-ring set and g::'a mod-ring = 'a mod-ring poly
assumes YV z€A. coprime (g a) (g x)
shows coprime (g a) (prod (Az. g z) A)

proof —

196

have f: finite A by simp
show ?thesis
using f using assms
proof (induct A)
case (insert z A)
have ([J c€insert x A. g ¢) = (g x) * ([[c€A. g ¢)
by (simp add: insert.hyps(2))
with insert.prems show ?case
by (auto simp: insert.hyps(3) prod-coprime-right)
ged auto
qged

lemma coprime-prod2:
fixes A::'b::semiring-gcd set
assumes YV z€A. coprime (a) (z) and f: finite A
shows coprime (a) (prod (\z. z) A)
using f using assms
proof (induct A)
case (insert z A)
have ([[ceinsert z A. ¢) = (z) * ([c€A. ¢)
by (simp add: insert.hyps)
with insert.prems show ?case
by (simp add: insert.hyps prod-coprime-right)
qed auto

lemma divides-prod:
fixes ¢::'a mod-ring = 'a mod-ring poly
assumes Vel c2. ¢l € ANc2 € AN cl # c2 — coprime (g cl) (g ¢2)
assumes Vce A. g ¢ dvd f
shows ([Jc€A. g ¢) dvd f
proof —
have finite-A: finite A using finite[of A] .
thus ?thesis using assms
proof (induct A)
case (insert z A)
have ([Jc€insert z A. g¢) = gz x (J[[c€ A. g ¢)
by (simp add: insert.hyps(2))
also have ... dvd f
proof (rule divides-mult)
show ¢ z dvd f using insert.prems by auto
show prod g A dvd f using insert.hyps(3) insert.prems by auto
from insert show Rings.coprime (g z) (prod g A)
by (auto intro: prod-coprime-right)
qed
finally show ?case .
qed auto

197

qed

lemma poly-monom-identity-mod-p:
monom (1::'a mod-ring) (CARD('a)) — monom 1 1 = prod (Az. [:0,1:] — [:x:])
(UNIV::'a mod-ring set)
(is ?lhs = %rhs)
proof —
let ?f=(Az::'a mod-ring. [:0,1:] — [:x:])
have ?rhs dvd ?lhs
proof (rule divides-prod)
{
fix a::'a mod-ring
have poly ?lhs a = 0
by (simp add: poly-monom,)
hence ([:0,1:] — [:a:]) dvd ?lhs
using poly-eq-0-iff-dvd by fastforce

thus Vz€ UNIV::'a mod-ring set. [:0, 1:] — [:a:] dvd monom 1 CARD('a) —
monom 1 1 by fast
show V¢l ¢2. ¢c1 € UNIV A ¢2 € UNIV A ¢l # (¢2 :: 'a mod-ring) —

coprime ([:0, 1:] — [zcl:]) ([:0, 1:] — [:¢2:])
by (auto dest!: coprime-h-c-poly[of - - [:0,1:]])
qed

from this obtain g where g: ?lhs = ?rhs x g using dvdFE by blast
have degree-lhs-card: degree ?lhs = CARD('a)
proof —
have degree (monom (1::'a mod-ring) 1) = 1 by (simp add: degree-monom-eq)
moreover have d-c: degree (monom (1::'a mod-ring) CARD('a)) = CARD('a)
by (simp add: degree-monom-eq)
ultimately have degree (monom (1::'a mod-ring) 1) < degree (monom (1::'a
mod-ring) CARD('a))
using prime-card unfolding prime-nat-iff by auto
hence degree ?lhs = degree (monom (1::'a mod-ring) CARD('a))
by (rule degree-minus-eq-right)
thus ?thesis unfolding d-c .
qed
have degree-rhs-card: degree ?rhs = CARD('a)
proof —
have degree (prod ?f UNIV) = sum (degree o ?f) UNIV
A coeff (prod ?f UNIV) (sum (degree o 2f) UNIV) = 1
by (rule degree-prod-sum-monic, auto)
moreover have sum (degree o ?f) UNIV = CARD('a) by auto
ultimately show ?thesis by presburger
qed
have monic-lhs: monic ?lhs using degree-lhs-card by auto
have monic-rhs: monic ?rhs by (rule monic-prod, simp)
have degree-eq: degree ?rhs = degree ?lhs unfolding degree-lhs-card degree-rhs-card

198

have g-not-0: g # 0 using g monic-lhs by auto
have degree-g0: degree g = 0
proof —

have degree (?rhs x g) = degree ?rhs + degree g

by (rule degree-monic-mult[OF monic-rhs g-not-0])

thus ?thesis using degree-eq g by simp
qed
have monic-g: monic g using monic-factor g monic-lhs monic-rhs by auto
have g = I using monic-degree-0[OF monic-g] degree-g0 by simp
thus ?thesis using g by auto

qed

lemma poly-identity-mod-p:
v (CARD('a)) — v = prod (Az. v — [:z:]) (UNIV::'a mod-ring set)
proof —
have id: monom 1 1 o, v = v [:0, 1] o, v = v unfolding pcompose-def
apply (auto)
by (simp add: fold-coeffs-def)
have id2: monom 1 (CARD('a)) o, v =v ~ (CARD('a)) by (metis id(1) pcom-
pose-hom.hom-power xz-pow-n)
show ?thesis using arg-cong[OF poly-monom-identity-mod-p, of A f. f o,]
unfolding pcompose-hom.hom-minus pcompose-hom.hom-prod id pcompose-const
id2 .
qed

lemma coprime-gcd:
fixes h::’a mod-ring poly
assumes Rings.coprime (h—[:cl:]) (h—[:c2:])
shows Rings.coprime (ged f(h—[:c1:])) (ged f (h—[:¢2:]))
using assms coprime-divisors by blast

lemma divides-prod-gcd:
fixes h::’a mod-ring poly
assumes Vel c2. ¢l € AN c2 € AN cl # c2— coprime (h—[:cl:]) (h—[:c2:])
shows ([[c€A. ged f (b — [:c2])) dvd f
proof —
have finite-A: finite A using finite[of A] .
thus ?thesis using assms
proof (induct A)
case (insert z A)
have ([[c€insert x A. gcd f (h — [:cl])) = (ged f (b — [:22])) * (] c€ A. ged

199

7 (h = [e)
by (simp add: insert.hyps(2))
also have ... dvd f
proof (rule divides-mult)
show gcd f (h — [:2:]) dvd f by simp
show ([[c€A. ged f (h — [:c])) dvd f using insert.hyps(3) insert.prems by
auto
show Rings.coprime (ged f (h — [:21])) ([] c€A. ged f (b — [:¢i]))
by (rule prod-coprime-right)
(metis Berlekamp- Type-Based.coprime-h-c-poly coprime-ged coprime-iff-coprime
insert.hyps(2))
qed
finally show ?case .
qed auto
qed

lemma monic-prod-gced:
assumes f: finite A and f0: (f :: 'b :: {field-ged} poly) # 0
shows monic ([[c€A. ged f (b — [:ci]))
using f
proof (induct A)
case (insert z A)
have rw: ([] c€insert x A. ged f (b — [:¢]))
= (ged f (b — [:z2])) * (][c€ A. ged f (b — [:¢3]))
by (simp add: insert.hyps)
show ?Zcase
proof (unfold rw, rule monic-mult)
show monic (ged f (h — [:2:]))
using poly-ged-monic|of f] f0
using insert.prems insert-iff by blast
show monic ([] c€A. ged f (h — [:¢1]))
using insert.hyps(3) insert.prems by blast
qed
qed auto

lemma coprime-not-unit-not-dvd:

fixes a::'b::semiring-gcd

assumes a dvd b

and coprime b ¢

and - is-unit a

shows — a dvd c

using assms coprime-divisors coprime-id-is-unit by fastforce

lemma divides-prod2:
fixes A::'b::semiring-gcd set
assumes f: finite A
and Va€A. a dvd ¢
and Val a2. al € ANa2 € AN al # a2 — coprime al a2
shows [[A dvd ¢

200

using assms
proof (induct A)
case (insert z A)
have [] (insert A) = xz x [[A by (simp add: insert.hyps(1) insert.hyps(2))
also have ... dvd ¢
proof (rule divides-mult)
show z dvd ¢ by (simp add: insert.prems)
show [[A dvd ¢ using insert by auto
from insert show Rings.coprime z (][4)
by (auto intro: prod-coprime-right)
qed
finally show ?Zcase .
qed auto

lemma coprime-polynomial-factorization:
fixes al :: 'b :: {field-ged} poly
assumes irr: as C {q. irreducible ¢ A monic q}
and finite as and al: al € as and a2: a2 € as and al-not-a2: al # a2
shows coprime al a2
proof (rule ccontr)
assume not-coprime: — coprime al a2
let b= gcd al a2
have b-dvd-al: ?b dvd a1 and b-dvd-a2: ?b dvd a2 by simp+
have irr-al: irreducible a1 using al irr by blast
have irr-a2: irreducible a2 using a2 irr by blast
have a2-not0: a2 # 0 using a2 irr by auto
have degree-al: degree al # 0 using irr-al by auto
have degree-a2: degree a2 # 0 using irr-a2 by auto
have not-a2-dvd-a1: = a2 dvd al
proof (rule ccontr, simp)
assume a2-dvd-al: a2 dvd al
from this obtain k£ where k: al = a2 * k unfolding dvd-def by auto
have k-not0: k # 0 using degree-al k by auto
show Fulse
proof (cases degree a2 = degree al)
case Fulse
have degree a2 < degree al
using False a2-dvd-al degree-al divides-degree
by fastforce
hence — irreducible al
using degree-a2 a2-dvd-al degree-a2
by (metis degree-al irreducibleqD(2) irreducibleq-multD irreducible-connect-field
k neq0-conv)
thus Fulse using irr-al by contradiction
next
case True
have degree a1l = degree a2 + degree k
unfolding k using degree-mult-eq[OF a2-not0 k-not0] by simp

201

hence degree k = 0 using True by simp
hence k = 1 using monic-factor al a2 irr k monic-degree-0 by auto
hence al = a2 using k by simp
thus Fulse using al-not-a2 by contradiction
qed
qed
have b-not0: ?b # 0 by (simp add: a2-not0)
have degree-b: degree ?b > 0
using not-coprime[simplified] b-not0 is-unit-ged is-unit-iff-degree by blast
have degree ?b < degree a2
by (meson b-dvd-al b-dvd-a2 irreducibleD’ dvd-trans ged-dvd-1 irr-a2 not-a2-dvd-al
not-coprime)
hence — irreducible; a2 using degree-a2 b-dvd-a2 degree-b
by (metis degree-smult-eq irreducibleq-dvd-smult less-not-refl3)
thus False using irr-a2 by auto
qed

theorem Berlekamp-gcd-step:
fixes f::'a mod-ring poly and h::'a mod-ring poly
assumes hg-mod-f: [W {CARD('a)) = h] (mod f) and monic-f: monic f and sf-f:
square-free f
shows f = prod (Ac. ged f (h — [:¢:])) (UNIV::'a mod-ring set) (is ?lhs = 2rhs)
proof (cases f=0)
case True
thus %thesis using coeff-0 monic-f zero-neg-one by auto
next
case Fulse note f-not-0 = Fulse
show ?thesis
proof (rule poly-dvd-antisym)
show ?rhs dvd f
using coprime-h-c-poly by (intro divides-prod-ged, auto)
have monic ?rhs by (rule monic-prod-ged[OF - f-not-0], simp)
thus coeff f (degree f) = coeff ?rhs (degree ?rhs)
using monic-f by auto
next
show f dvd ?rhs
proof —
let ?p = CARD('a)
obtain P where finite-P: finite P
and f-desc-square-free: f = ([[a€P. a)
and P: P C {q. irreducible ¢ A monic q}
using monic-square-free-irreducible-factorization| OF monic-f sf-f] by auto
have f-dvd-hqh: f dvd (h"%p — h) using hg-mod-f unfolding cong-def
using mod-eq-dvd-iff-poly by blast
also have hg-h-rw: ... = prod (Ac. b — [:¢:]) (UNIV::'a mod-ring set)
by (rule poly-identity-mod-p)
finally have f-dvd-hc: f dvd prod (Ae. h — [:¢:]) (UNIV::'a mod-ring set) by

stmp

202

have f = [] P using f-desc-square-free by simp
also have ... dvd ?rhs
proof (rule divides-prod2|OF finite-P))
show Val a2. al € PN a2 € P A\ al # a2 — coprime al a2
using coprime-polynomial-factorization|OF P finite-P] by simp
show VaeP. a dvd (][ce UNIV. ged f (b — [:¢1]))
proof
fix fi assume fi-P: fi € P
show fi dvd ?rhs
proof (rule dvd-prod, auto)
show fi dvd f using f-desc-square-free fi-P
using dvd-prod-eql finite-P by blast
hence fi dvd (h"%p — h) using dvd-trans f-dvd-hqh by auto
also have ... = prod (Ac. h — [:¢:]) (UNIV::'a mod-ring set)
unfolding hg-h-rw by simp
finally have fi-dvd-prod-he: fi dvd prod (Ac. h — [:¢:]) (UNIV::'a mod-ring
set) .
have irr-fi: irreducible (fi) using fi-P P by blast
have fi-not-unit: — is-unit fi using irr-fi by (simp add: irreducibleyD(1)
poly-dvd-1)
have fi-dvd-hc: 3c€ UNIV::'a mod-ring set. fi dvd (h—[:c:])
by (rule irreducible-dvd-prod|OF - fi-dvd-prod-hc], simp add: irr-fi)
thus Jec. fi dvd b — [:¢:] by simp
qed
qed
qed
finally show f dvd ?rhs .
qed
qed
qed

6.3 Definitions

definition berlekamp-mat :: 'a mod-ring poly = 'a mod-ring mat where

berlekamp-mat w = (let n = degree u;

mul-p = power-poly-f-mod v [:0,1:] (CARD('a));

xzks = power-polys mul-p u 1 n

in

mat-of-rows-list n (map (X cs. let coeffs-cs = (coeffs cs);

k = n — length (coeffs cs)
in (coeffs cs) @ replicate k 0) zks))

definition berlekamp-resulting-mat :: (‘a mod-ring) poly = 'a mod-ring mat where
berlekamp-resulting-mat v = (let Q) = berlekamp-mat u;

n = dim-row Q;

QI = mat nn (A (i,j). if i = j then Q $3 (i,j) — 1 else Q 3% (i,))

in (gauss-jordan-single (transpose-mat QI)))

203

definition berlekamp-basis :: 'a mod-ring poly = 'a mod-ring poly list where
berlekamp-basis u = (map (Poly o list-of-vec) (find-base-vectors (berlekamp-resulting-mat

u)))

lemma berlekamp-basis-code|code]: berlekamp-basis u =
(map (poly-of-list o list-of-vec) (find-base-vectors (berlekamp-resulting-mat u)))
unfolding berlekamp-basis-def poly-of-list-def ..

primrec berlekamp-factorization-main :: nat = 'a mod-ring poly list = 'a mod-ring
poly list = nat = 'a mod-ring poly list where
berlekamp-factorization-main i divs (v # vs) n = (if v = 1 then berlekamp-factorization-main
i divs vs n else
if length divs = n then divs else
let facts = [w . u < divs, s < [0 ..< CARD('a)], w < [ged u (v — [:of-int
sl w # 1;
(lin,nonlin) = List.partition (X q. degree ¢ = 1) facts
in lin Q berlekamp-factorization-main ¢ nonlin vs (n — length lin))
| berlekamp-factorization-main i divs [| n = divs

definition berlekamp-monic-factorization :: nat = 'a mod-ring poly = 'a mod-ring
poly list where
berlekamp-monic-factorization d f = (let
vs = berlekamp-basis f;
n = length vs;
fs = berlekamp-factorization-main d [f] vs n

6.4 Properties

lemma power-polys-works:
fixes wu::'b::unique-euclidean-semiring
assumes i: i < n and c¢: curr-p = curr-p mod u
shows power-polys mult-p u curr-p n'! i = curr-p * mult-p ~ ¢ mod u
using ¢ ¢
proof (induct n arbitrary: curr-p 7)

case 0 thus ?case by simp
next

case (Suc n)

have p-rw: power-polys mult-p w curr-p (Suc n) !

= (curr-p # power-polys mult-p u (curr-p * mult-p mod u) n) ! 4
by simp
show ?Zcase
proof (cases i=0)

case True
show ?thesis using Suc.prems unfolding p-rw True by auto
next

case Fulse note i-not-0 = Fualse
show Zthesis
proof (cases i < n)

204

case True note i-less-n = True
have power-polys mult-p u curr-p (Suc n) ! i = power-polys mult-p u (curr-p
* mult-p mod u) n! (i — 1)
unfolding p-rw using nth-Cons-pos False by auto

also have ... = (curr-p x mult-p mod u) * mult-p ~ (i—1) mod u
by (rule Suc.hyps) (auto simp add: i-less-n less-imp-diff-less)
also have ... = curr-p * mult-p ~ i mod u

using Fulse by (cases i) (simp-all add: algebra-simps mod-simps)
finally show ?Zthesis .
next
case Fulse
hence i-n: i = n using Suc.prems by auto
have power-polys mult-p u curr-p (Suc n) ! ¢ = power-polys mult-p u (curr-p
* mult-p mod u) n! (n — 1)
unfolding p-rw using nth-Cons-pos i-n i-not-0 by auto
also have ... = (curr-p x mult-p mod u) * mult-p ~ (n—1) mod u
proof (rule Suc.hyps)
show n — 1 < n using i-n i-not-0 by linarith
show curr-p x mult-p mod v = curr-p *x mult-p mod v mod u by simp
qed
also have ... = curr-p * mult-p ~ 1 mod u
using i-n [symmetric] i-not-0 by (cases) (simp-all add: algebra-simps
mod-simps)
finally show ?thesis .
qed
qged
qged

lemma length-power-polys[simp]: length (power-polys mult-p u curr-p n) = n
by (induct n arbitrary: curr-p, auto)

lemma Poly-berlekamp-mat:
assumes k: k < degree u
shows Poly (list-of-vec (row (berlekamp-mat v) k)) = [:0,1:] (CARD('a) * k) mod
u
proof —

let ?map =(map (Acs. coeffs cs @Q replicate (degree u — length (coeffs cs)) 0)

(power-polys (power-poly-f-mod w [:0, 1:] (nat (int CARD(’a)))) u 1

(degree u)))

have row (berlekamp-mat u) k = row (mat-of-rows-list (degree u) ?map) k

by (simp add: berlekamp-mat-def Let-def)
also have ... = vec-of-list (?map ! k)
proof—

{

fix 7 assume i: i < degree u

205

then have (u # 0»
by auto
let ?c= power-polys (power-poly-f-mod u [:0, 1:] CARD('a)) u 1 (degree u) !

let Zcoeffs-c=(coeffs ?c)
have ?c = 1x([:0, 1:] = CARD('a) mod u) % mod u
proof (unfold power-poly-f-mod-def, rule power-polys-works[OF i])
show 1 = 1 mod u using k mod-poly-less by force
qed
also have ... = [:0, 1:] 7 (CARD(’a) * i) mod u by (simp add: power-mod
power-mult)
finally have c-rw: ?c = [:0, 1:] ~ (CARD('a) * ©) mod u .
have length ?coeffs-c < degree u
proof —
show ?thesis
proof (cases ?c = 0)
case True thus ?thesis by auto

next

case Fulse

have length ?coeffs-c = degree (?¢) + 1 by (rule length-coeffs|OF False])

also have ... = degree ([:0, 1:] ~ (CARD('a) * i) mod u) + 1 using c-rw
by simp

also have ... < degree u
using «i < degree w <u # 0 degree-mod-less [of u «<pCons 0 1 ~
(CARD('a) *)]
by auto
finally show ?thesis .
qed
qed
then have length ?coeffs-c + (degree u — length ?coeffs-c) = degree u by auto

with k show 2thesis by (intro row-mat-of-rows-list, auto)
qed
finally have row-rw: row (berlekamp-mat u) k = vec-of-list (?map ! k) .
have Poly (list-of-vec (row (berlekamp-mat u) k)) = Poly (list-of-vec (vec-of-list

(Pmap ! k)))
unfolding row-rw ..
also have ... = Poly (?map ! k) by simp
also have ... = [:0,1:] (CARD(’a) * k) mod u
proof —

let ?cs = (power-polys (power-poly-f~mod u [:0, 1:] (nat (int CARD('a)))) u 1
(degree u)) ! k

let ?c = coeffs ?cs @Q replicate (degree u — length (coeffs %cs)) 0

have map-k-c: ?map | k = ?c by (rule nth-map, simp add: k)

have (Poly (¢map ! k)) = Poly (coeffs ?cs) unfolding map-k-c Poly-append-replicate-0

also have ... = %cs by simp

also have ... = power-polys ([:0, 1:] ~ CARD('a) mod u) u 1 (degree u) ! k
by (simp add: power-poly-f-mod-def)

206

also have ... = 1% ([:0,1:] (CARD('a)) mod u) ~k mod u
proof (rule power-polys-works|OF k)
show 1 = 1 mod u using k mod-poly-less by force

qed
also have ... = ([:0,1:] (CARD(’a)) mod u) ~ k mod u by auto
also have ... = [:0,1:] (CARD('a) * k) mod u by (simp add: power-mod

power-mult)
finally show ?thesis .
qed
finally show ?thesis .
qged

corollary Poly-berlekamp-cong-mat:

assumes k: k < degree u

shows [Poly (list-of-vec (row (berlekamp-mat u) k)) = [:0,1:] {CARD('a) * k)]
(mod u)

using Poly-berlekamp-mat]OF k] unfolding cong-def by auto

lemma mat-of-rows-list-dim[simp):
mat-of-rows-list n vs € carrier-mat (length vs) n
dim-row (mat-of-rows-list n vs) = length vs
dim-col (mat-of-rows-list n vs) = n
unfolding mat-of-rows-list-def by auto

lemma berlekamp-mat-closed|simp):
berlekamp-mat w € carrier-mat (degree u) (degree u)
dim-row (berlekamp-mat u) = degree u
dim-col (berlekamp-mat u) = degree u

unfolding carrier-mat-def berlekamp-mat-def Let-def by auto

lemma vec-of-list-coeffs-nth:
assumes i: i € {..degree h} and h-not0: h # 0
shows vec-of-list (coeffs h) $ i = coeff h i
proof —
have vec-of-list (map (coeff h) [0..<degree h] @ [coeff h (degree h)]) $ i = coeff
hi
using 1
by (transfer’, auto simp add: mk-vec-def)
(metis (no-types, lifting) Cons-eq-append-conv coeffs-def coeffs-nth degree-0
diff-zero length-upt less-eq-nat.simps(1) list.simps(8) list.simps(9) map-append
nth-Cons-0 upt-Suc upt-eq-Nil-conv)
thus vec-of-list (coeffs h) $ i = coeff h i
using ¢ h-not0
unfolding coeffs-def by simp
qed

207

lemma poly-mod-sum:

fixes z y z :: 'b::field poly

assumes f: finite A

shows sum f A mod z = sum (Ai. fimod z) A
using f
by (induct, auto simp add: poly-mod-add-left)

lemma prime-not-dvd-fact:
assumes kn: k < n and prime-n: prime n
shows — n dvd fact k
using kn
proof (induct k)
case ()
thus ?case using prime-n unfolding prime-nat-iff by auto
next
case (Suc k)
show ?Zcase
proof (rule ccontr, unfold not-not)
assume n dvd fact (Suc k)
also have ... = Suc k * [[{..k} unfolding fact-Suc unfolding fact-prod by
stmp
finally have n dvd Suc k « [[{1..k} .
hence n dvd Suc k V n dvd [[{1..k} using prime-dvd-mult-eq-nat[OF prime-n]
by blast
moreover have — n dvd Suc k by (simp add: Suc.prems(1) nat-dvd-not-less)
moreover hence - n dvd [[{1..k} using Suc.hyps Suc.prems
using Suc-lessD fact-prod|of k] by (metis of-nat-id)
ultimately show Fulse by simp
qed
qed

lemma dvd-choose-prime:
assumes kn: k < nand k: k # 0 and n: n # 0 and prime-n: prime n
shows n dvd (n choose k)
proof —
have n dvd (fact n) by (simp add: fact-num-eg-if n)
moreover have — n dvd (fact k x fact (n—k))
proof (rule ccontr, simp)
assume n dvd fact k * fact (n — k)
hence n dvd fact k vV n dvd fact (n — k) using prime-dvd-mult-eg-nat|OF
prime-n] by simp
moreover have — n dvd (fact k) by (rule prime-not-dvd-fact[OF kn prime-n])
moreover have — n dvd fact (n — k) using prime-not-dvd-fact|OF - prime-n|
kn k by simp
ultimately show Fulse by simp
qged
moreover have (fact n:nat) = fact k % fact (n—Fk) * (n choose k)

208

using binomial-fact-lemma kn by auto

ultimately show ?thesis using prime-n

by (auto simp add: prime-dvd-mult-iff)
qed

lemma add-power-poly-mod-ring:
fixes z :: ‘a mod-ring poly
shows (z + y) = CARD(’a) = ¢ =~ CARD(’a) + y ~ CARD(’a)
proof —
let ?A={0..CARD('a)}
let ?f=Mk. of-nat (CARD('a) choose k) x x "k xy ~ (CARD('a) — k)
have A-rw: ?A = insert CARD('a) (insert 0 (?A — {0} — {CARD('a)}))
by fastforce
have sum0: sum ?f (?A — {0} — {CARD('a)}) = 0
proof (rule sum.neutral, rule)
fix za assume za: za € {0..CARD('a)} — {0} — {CARD('a)}
have card-dvd-choose: CARD('a) dvd (CARD('a) choose za)
proof (rule dvd-choose-prime)
show za < CARD('a) using za by simp
show za # 0 using za by simp
show CARD('a) # 0 by simp
show prime CARD('a) by (rule prime-card)
qed
hence rw0: of-int (CARD('a) choose za) = (0 :: 'a mod-ring)
by transfer simp
have of-nat (CARD('a) choose za) = [:of-int (CARD('a) choose za) :: 'a
mod-ring:]
by (simp add: of-nat-poly)
also have ... = [:0:] using rw0 by simp
finally show of-nat (CARD(’a) choose za) x x ~xza * y ~ (CARD('a) — za)
= 0 by auto
qed
have (z + y) "CARD('a)
= (> k= 0..CARD('a). of-nat (CARD(’a) choose k) x x "k x y = (CARD('a)
— k)
unfolding binomial-ring by (rule sum.cong, auto)
also have ... = sum ?f (insert CARD('a) (insert 0 (?A — {0} — {CARD('a)})))
using A-rw by simp
also have ... = 2f 0 + 2f CARD('a) + sum ?f (?A — {0} — {CARD('a)}) by
auto
also have ... = t7CARD('a) + y CARD(’a) unfolding sum0 by auto
finally show ?thesis .
qed

lemma power-poly-sum-mod-ring:
fixes f :: 'b = 'a mod-ring poly

209

assumes [: finite A
shows (sum f A) =~ CARD('a) = sum (Xi. (fi) = CARD('a)) A
using f by (induct, auto simp add: add-power-poly-mod-ring)

lemma poly-power-card-as-sum-of-monoms:
fixes h :: 'a mod-ring poly
shows h = CARD('a) = (> i<degree h. monom (coeff h i) (CARD('a)xi))
proof —
have h = CARD('a) = (3. i<degree h. monom (coeff h i) i) = CARD('a)
by (simp add: poly-as-sum-of-monoms)

also have ... = (> i<degree h. (monom (coeff h i) i) = CARD('a))
by (simp add: power-poly-sum-mod-ring)
also have ... = (> i<degree h. monom (coeff h i) (CARD('a)x1))

proof (rule sum.cong, rule)
fix x assume z: = € {..degree h}
show monom (coeff h) x = CARD('a) = monom (coeff h) (CARD('a) * x)
by (unfold poly-eq-iff, auto simp add: monom-power)
qed
finally show ?thesis .
qed

lemma degree-Poly-berlekamp-le:

assumes i: 1 < degree u

shows degree (Poly (list-of-vec (row (berlekamp-mat u) ©))) < degree u

by (metis Poly-berlekamp-mat degree-0 degree-mod-less gr-implies-not0 i linorder-neqE-nat)

lemma monom-card-pow-mod-sum-berlekamp:
assumes i: { < degree u
shows monom 1 (CARD('a) * i) mod u = (3 j<degree u. monom ((berlekamp-mat
u) 85 (i.4)) J)
proof —
let ?p = Poly (list-of-vec (row (berlekamp-mat u) 1))
have degree-not-0: degree v # 0 using ¢ by simp
hence set-rw: {..degree u — 1} = {..<degree u} by auto
have degree-le: degree ?p < degree u
by (rule degree-Poly-berlekamp-le[OF i))
hence degree-le2: degree ?p < degree u — 1 by auto
have monom 1 (CARD('a) % i) mod v = [:0, 1:] ~ (CARD('a) * i) mod u
using z-as-monom z-pow-n by metis
also have ... = 9p
unfolding Poly-berlekamp-mat[OF i] by simp
also have ... = (> i<degree u — 1. monom (coeff ?p i) i)
using degree-le2 poly-as-sum-of-monoms’ by fastforce
also have ... = (> i<degree u. monom (coeff ?p i) i) using set-rw by auto

210

also have ... = (> j<degree u. monom ((berlekamp-mat u) 3 (i,7)) 7)
proof (rule sum.cong, rule)
fix z assume z: ¢ € {..<degree u}
have coeff ?p z = berlekamp-mat u $$ (i,)
proof (rule coeff-Poly-list-of-vec-nth)
show = < dim-col (berlekamp-mat u) using x by auto
qed
thus monom (coeff ?p) * = monom (berlekamp-mat u $$ (i, z)) z
by (simp add: poly-eq-iff)
qged
finally show ?thesis .
qed

lemma col-scalar-prod-as-sum:
assumes dim-vec v = dim-row A
shows col A j-v= (> i=0.<dimwvecv. ASS (i,j) * v 8§ 1)
using assms
unfolding col-def scalar-prod-def
by transfer’ (rule sum.cong, transfer’, auto simp add: mk-vec-def mk-mat-def)

lemma row-transpose-scalar-prod-as-sum:
assumes j: j < dim-col A and dim-v: dim-vec v = dim-row A
shows row (transpose-mat A) j - v = (>.i = 0..<dim-vec v. A $$ (i,j) x v $ 7)
proof —
have row (transpose-mat A) j - v = col A j - v using j row-transpose by auto
also have ... = ()" i = 0..<dim-vec v. A $$ (i,j) x v $ 1)
by (rule col-scalar-prod-as-sum|[OF dim-v])
finally show ?thesis .
qed

lemma poly-as-sum-eq-monoms:
assumes ss-eq: (> i<n. monom (f i) 7) = (> i<n. monom (g i) i)
and a-less-n: a<n
shows fa=ga
proof —
let 2f=M\i. if i = a then fi else 0
let 2g=M\i. if i = a then g i else 0
have sum-f-0: sum ?f ({.<n} — {a}) = 0 by (rule sum.neutral, auto)
have coeff (> i<n. monom (f i) i) a = coeff (> i<n. monom (g i) i) a
using ss-eq unfolding poly-eq-iff by simp
hence (> i<n. coeff (monom (f1i) i) a) = (O i<n. coeff (monom (g i) i) a)
by (simp add: coeff-sum)
hence 1: (3 i<n. if i = a then fielse 0) = (D i<n. if i = a then g i else 0)
unfolding coeff-monom by auto
have set-rw: {..<n} = (insert a ({..<n} — {a})) using a-less-n by auto
have (3> i<n. if i = a then fi else 0) = sum ?f (insert a ({..<n} — {a}))

211

using set-rw by auto

also have ... = ?fa + sum ?f ({..<n} — {a})
by (simp add: sum.insert-remove)
also have ... = ?f a using sum-f-0 by simp

finally have 2: (> i<n. if i = a then fielse 0) = ?fa .
have sum %9 {..<n} = sum ?g (insert a ({..<n} — {a}))
using set-rw by auto

also have ... = %9 a + sum %9 ({..<n} — {a})
by (simp add: sum.insert-remove)
also have ... = ?g a using sum-f-0 by simp

finally have 3: (> i<n. if i = a then g i else 0) = ?g a .
show ?thesis using 1 2 3 by auto
qed

lemma dim-vec-of-list-h:
assumes degree h < degree u
shows dim-vec (vec-of-list ((coeffs h) @ replicate (degree u — length (coeffs h)) 0))
= degree u
proof —

have length (coeffs h) < degree u

by (metis Suc-lel assms coeffs-0-eq-Nil degree-0 length-coeffs-degree
list.size(3) not-le-imp-less order.asym)

thus ?thesis by simp

qged

lemma vec-of-list-coeffs-nth':

assumes i: 1 € {..degree h} and h-not0: h # 0

assumes degree h < degree u

shows wvec-of-list ((coeffs h) Q replicate (degree u — length (coeffs h)) 0) $ i =
coeff h i

using assms

by (transfer’, auto simp add: mk-vec-def coeffs-nth length-coeffs-degree nth-append)

lemma vec-of-list-coeffs-replicate-nth-0:

assumes i: { € {..<degree u}

shows vec-of-list (coeffs 0 Q replicate (degree u — length (coeffs 0)) 0) $ i = coeff
01

using assms

by (transfer’, auto simp add: mk-vec-def)

lemma vec-of-list-coeffs-replicate-nth:
assumes i: 1 € {..<degree u}

212

assumes degree h < degree u
shows wvec-of-list ((coeffs h) Q replicate (degree u — length (coeffs h)) 0) $ i =
coeff h i
proof (cases h = 0)
case True
thus ?thesis using vec-of-list-coeffs-replicate-nth-0 i by auto
next
case Fulse note h-not0 = Fulse
show ?thesis
proof (cases i €{..degree h})
case True thus ?thesis using assms vec-of-list-coeffs-nth’ h-not0 by simp
next
case Fulse
have c0: coeff h i = 0 using Fulse le-degree by auto
thus ?thesis
using assms Fulse h-not0
by (transfer’, auto simp add: mk-vec-def length-coeffs-degree nth-append c0)
qed
qed

lemma equation-13:

fixes u h

defines H: H = vec-of-list ((coeffs h) @Q replicate (degree u — length (coeffs h))
0)

assumes deg-le: degree h < degree u

shows [A"CARD('a) = h| (mod u) <— (transpose-mat (berlekamp-mat w)) *, H
=H

(is ?lhs = ?rhs)
proof —

have f: finite {..degree u} by auto

have [simp]: dim-vec H = degree u unfolding H using dim-vec-of-list-h deg-le
by simp

let B = (berlekamp-mat)

let ?f = Ai. (transpose-mat ?B , H) $ i

show ?thesis

proof

assume rhs: ?rhs

have dimv-h-dimr-B: dim-vec H = dim-row ?B

by (metis berlekamp-mat-closed(2) berlekamp-mat-closed(3)
dim-mult-mat-vec indez-transpose-mat(2) rhs)

have degree-h-less-dim-H: degree h < dim-vec H by (auto simp add: deg-le)

have set-rw: {..degree u — 1} = {..<degree u} using deg-le by auto

have degree h < degree u — 1 using deg-le by simp

hence h = (Y j<degree u — 1. monom (coeff h j) j) using poly-as-sum-of-monoms’
by fastforce

also have ... = (>~ j<degree u. monom (coeff h j) j) using set-rw by simp

213

also have ... = (> j<degree u. monom (?f j) j)
proof (rule sum.cong, rule+)
fix j assume i: j € {..<degree u}
have (coeff h j) = 2fj
using rhs vec-of-list-coeffs-replicate-nth| OF i deg-le]
unfolding H by presburger
thus monom (coeff h j) j = monom (2f j) j

by simp
qed
also have ... = (3 j<degree u. monom (row (transpose-mat ¢B) j - H) 7)
by (rule sum.cong, auto)
also have ... = (> j<degree u. monom (> i = 0..<dim-vec H. ?B $$ (i,j) *
18 i) j)

proof (rule sum.cong, rule)
fix x assume z: z € {..<degree u}
show monom (row (transpose-mat ¢B) x « H) = =
monom (3.1 = 0..<dim-vec H. ?B 3 (i, z) x H $ i) z
proof (unfold monom-eq-iff, rule row-transpose-scalar-prod-as-sum[OF -
dimv-h-dimr-B])
show z < dim-col ?B using z deg-le by auto

qed
qed
also have ... = (3 j<degree u. > i = 0..<dim-vec H. monom (?B $$ (i,j) *
H$ i) j)
by (auto simp add: monom-sum)
also have ... = (> i = 0..<dim-vec H. Y j<degree u. monom (?B $$ (i,j) *
H $ i) j)
by (rule sum.swap)
also have ... = (3 i = 0..<dim-vec H.) j<degree u. monom (H $ i) 0 =

monom (?B $$ (4.5)) 7)
proof (rule sum.cong, rule, rule sum.cong, rule)
fix x za
show monom (?B $$ (z, za) x H $ z) za = monom (H $ z) 0 * monom
(2B 388 (z, za)) za
by (simp add: mult-monom)
qed
also have ... = (3 i = 0..<dim-vec H. (monom (H $) 0) x (D j<degree u.
monom (¢B $$ (i,5)) 7))
by (rule sum.cong, auto simp: sum-distrib-left)
also have ... = (3.7 = 0..<dim-vec H. (monom (H $ i) 0) * (monom 1
(CARD('a) * i) mod u))
proof (rule sum.cong, rule)
fix z assume z: z € {0..<dim-vec H}
have (> j<degree u. monom (?B $$ (z, 7)) j) = (monom 1 (CARD('a) * z)
mod u)
proof (rule monom-card-pow-mod-sum-berlekamp[symmetric])
show z < degree u using z dimv-h-dimr-B by auto
qed
thus monom (H $ z) 0 = (3 j<degree u. monom (?B $$ (z, j)) j) =

214

monom (H $ z) 0 * (monom 1 (CARD('a) x) mod u) by presburger
qed
also have ... = (}_i = 0..<dim-vec H. monom (H $ i) (CARD('a) % i) mod
u)
proof (rule sum.cong, rule)
fix z
have h-rw: monom (H $ z) 0 mod v = monom (H $ z) 0
by (metis deg-le degree-pCons-eq-if gr-implies-not-zero
linorder-neqE-nat mod-poly-less monom-0)
have monom (H $ z) (CARD('a) x) = monom (H $ z) 0 * monom 1
(CARD('a) * x)
unfolding mult-monom by simp
also have ... = smult (H $ z) (monom 1 (CARD('a) * x))
by (simp add: monom-0)
also have ... mod u = Polynomial.smult (H $ x) (monom 1 (CARD(’a) *
x) mod u)
using mod-smult-left by auto
also have ... = monom (H $ z) 0 x (monom 1 (CARD('a) x z) mod u)
by (simp add: monom-0)
finally show monom (H $ z) 0 * (monom 1 (CARD('a) * x) mod u)
= monom (H $ z) (CARD('a) * x) mod u ..

qed
also have ... = (> i = 0..<dim-vec H. monom (H $ i) (CARD('a) * i)) mod
U
by (simp add: poly-mod-sum)
also have ... = (>4 = 0..<dim-vec H. monom (coeff h i) (CARD('a) * 1))
mod u
proof (rule arg-cong|of - - A\x. x mod u], rule sum.cong, rule)
fix x assume z: z € {0..<dim-vec H}
have H $ z = (coeff h x)
proof (unfold H, rule vec-of-list-coeffs-replicate-nth|OF - deg-le])
show z € {..<degree u} using z by auto
qged
thus monom (H $ z) (CARD('a) *) = monom (coeff h z) (CARD('a) * z)
by simp
qed
also have ... = (> i<degree h. monom (coeff h i) (CARD('a) * 7)) mod u
proof (rule arg-cong[of - - Az. mod u])
let ?f=Ai. monom (coeff h i) (CARD('a) * 1)
have ss50: (> i = degree h + 1 ..< dim-vec H. ?f i) = 0
by (rule sum.neutral, simp add: coeff-eq-0)
have set-rw: {0..< dim-vec H} = {0..degree h} U {degree h + 1 ..< dim-vec
1)

using degree-h-less-dim-H by auto
have (> i = 0..<dim-vec H. ?f i) = (.1 = O..degree h. ?f i) + > i =
degree h + 1 ..< dim-vec H. ?f i)
unfolding set-rw by (rule sum.union-disjoint, auto)
also have ... = (>_ ¢ = 0..degree h. ?f i) unfolding ss0 by auto
finally show (}_i = 0..<dim-vec H. ?f i) = (D i<degree h. ?f 7)

215

by (simp add: atLeast0AtMost)
qed
also have ... = h"CARD('a) mod u
using poly-power-card-as-sum-of-monoms by auto
finally show ?lhs
unfolding cong-def
using deg-le
by (simp add: mod-poly-less)
next
assume lhs: ?lhs
have deg-le: degree h < degree u — 1 using deg-le by auto
have set-rw: {..<degree u} = {..degree u —1} using deg-le by auto
hence (3 i<degree u. monom (coeff h i) i) = (3¢ < degree uw — 1. monom
(coeff h i) i) by simp
also have ... = (> i<degree h. monom (coeff h i) 7)
unfolding poly-as-sum-of-monoms
using poly-as-sum-of-monoms’ deg-le’ by auto

also have ... = (5 i<degree h. monom (coeff h i) i) mod u
by (simp add: deg-le mod-poly-less poly-as-sum-of-monoms)

also have ... = (> i<degree h. monom (coeff h i) (CARD(’a)xi)) mod u
using lhs

unfolding cong-def poly-as-sum-of-monoms poly-power-card-as-sum-of-monoms
by auto
also have ... = (3" i<degree h. monom (coeff h i) 0 * monom 1 (CARD('a)xi))
mod u
by (rule arg-conglof - - Ax. © mod u], rule sum.cong, simp-all add: mult-monom)
also have ... = (3 i<degree h. monom (coeff h i) 0 x monom 1 (CARD('a)x{)
mod u)
by (simp add: poly-mod-sum)
also have ... = (3" i<degree h. monom (coeff h i) 0 * (monom 1 (CARD('a)xi)
mod u))
proof (rule sum.cong, rule)
fix x assume z: = € {..degree h}
have h-rw: monom (coeff h) 0 mod w = monom (coeff h z) 0
by (metis deg-le degree-pCons-eq-if gr-implies-not-zero
linorder-neqE-nat mod-poly-less monom-0)
have monom (coeff h z) 0 x monom 1 (CARD('a) x x) = smult (coeff h)
(monom 1 (CARD('a) * x))
by (simp add: monom-0)
also have ... mod u = Polynomial.smult (coeff h) (monom 1 (CARD(’a)
*) mod u)
using mod-smult-left by auto
also have ... = monom (coeff h) 0 x (monom 1 (CARD('a) * z) mod u)
by (simp add: monom-0)
finally show monom (coeff h) 0 * monom 1 (CARD('a) * z) mod u
= monom (coeff h) 0 * (monom 1 (CARD('a) * x) mod u) .
qed
also have ...

= (3 i<degree h. monom (coeff h i) 0 = (>_ j<degree u. monom
(?B 88 (1, j)))

216

proof (rule sum.cong, rule)
fix x assume z: = € {..degree h}
have (monom 1 (CARD('a) * x) mod u) = (>_ j<degree u. monom (?B $$ (z,
N))
proof (rule monom-card-pow-mod-sum-berlekamp)
show 1z < degree u using = deg-le by auto
qed
thus monom (coeff h z) 0 * (monom 1 (CARD('a) * x) mod u) =
monom (coeff h x) 0 * (3 j<degree u. monom (?B $$ (z, j)) j) by simp
qged
also have ... =
(7B 35 (i, 7)))
proof —
let ?f=X\i. monom (coeff h i) 0 x (3. j<degree u. monom (?B $$ (i, j)) 7)
have ss0: (> i=degree h+1 ..< degree u. 2f i) = 0
by (rule sum.neutral, simp add: coeff-eq-0)
have set-rw: {0..<degree u} = {0..degree h} U {degree h+1..<degree u} using
deg-le by auto
have (3~ i=0..<degree u. ?f i) = (> i=0..degree h. ?f i) + (> i=degree h+1
..< degree u. ?f i)
unfolding set-rw by (rule sum.union-disjoint, auto)
also have ... = (> i=0..degree h. ?f i) using ss0 by simp
finally show ?thesis
by (simp add: atLeast0AtMost atLeastOLessThan)
qed
also have ... = (3 i<degree u. (3 j<degree u. monom (coeff h i) 0 * monom
(¢B $$ (7, 7)) j))
by (simp add: sum-distrib-left)
also have ... = (3 i<degree u. (> j<degree u. monom (coeff h i * ?B $$ (i, 7))
)
by (simp add: mult-monom)
also have ... = (3 j<degree u. (> i<degree u. monom (coeff h i * B $$ (i, 7))
7))
using sum.swap by auto
also have ... = (3 j<degree u. monom (3 i<degree u. (coeff h i * ?B $$ (i,
) J)
by (simp add: monom-sum)
finally have ss-rw: (>~ i<degree u. monom (coeff h %) i)
= (> j<degree u. monom (3 i<degree u. coeff h i x ?B $$ (4, 7)) 7) .
have coeff-eq-sum: Vi. i < degree u — coeff h i = (> j<degree u. coeff h j *
?B $$ (j, ©))
using poly-as-sum-eq-monoms|OF ss-rw] by fast
have coeff-eq-sum’: Vi. i < degree u — H $ i = (3 j<degree u. H $ j * ?B $3
G, 1)
proof (rule+)
fix 7 assume i: { < degree u
have H $ i = coeff h i by (simp add: H deg-le i vec-of-list-coeffs-replicate-nth)
also have ... = (3. j<degree u. coeff h j = ?B $$ (j, 1)) using coeff-eq-sum i
by blast

(>~ i<degree u. monom (coeff h i) 0 = (> j<degree u. monom

217

also have ... = (3 j<degree u. H $ j x 2B $$ (3, 7))
by (rule sum.cong, auto simp add: H deg-le vec-of-list-coeffs-replicate-nth)
finally show H $ i = (> j<degree u. H $ j x ?B $$ (4, 7)) .
qed
show (transpose-mat (¢B)) *, H = H
proof (rule eg-vecl)
fix ¢
show dim-vec (transpose-mat ¢B %, H) = dim-vec (H) by auto
assume i: { < dim-vec (H)
have (transpose-mat ?B x, H) $ i = row (transpose-mat ?B) i - H using i by
stmp
also have ... = (3°j = 0..<dim-vec H. ?B $$ (j, i) x H $ j)
proof (rule row-transpose-scalar-prod-as-sum)
show i < dim-col ?B using i by simp
show dim-vec H = dim-row ¢B by simp
qed
also have ... = (3 j<degree u. H $ j x ?B $$ (j, 1)) by (rule sum.cong, auto)
also have ... = H $ i using coeff-eq-sum/'[rule-format, symmetric, of i| i by
stmp
finally show (transpose-mat ?B %, H) $i=H $ i .
qged
qged
qed

end

context
assumes SORT-CONSTRAINT ('a::prime-card)
begin

lemma exists-s-factor-dvd-h-s:
fixes fi::'a mod-ring poly
assumes finite-P: finite P
and f-desc-square-free: f = ([[a€P. a)
and P: P C {q. irreducible ¢ A monic q}
and fi-P: fi € P
and h: h € {v. [v(CARD('a)) = v] (mod f)}
shows Js. fi dvd (h — [:s])
proof —
let ?p = CARD('a)
have f-dvd-hqh: f dvd (h"%p — h) using h unfolding cong-def
using mod-eq-dvd-iff-poly by blast
also have hg-h-rw: ... = prod (Ac. b — [:¢:]) (UNIV::'a mod-ring set)
by (rule poly-identity-mod-p)
finally have f-dvd-hc: f dvd prod (Ae. h — [:c:]) (UNIV::'a mod-ring set) by
stmp
have fi dvd f using f-desc-square-free fi-P

218

using dvd-prod-eql finite-P by blast
hence fi dvd (h"%p — h) using dvd-trans f-dvd-hgh by auto
also have ... = prod (Ac. h — [:¢:]) (UNIV::'a mod-ring set) unfolding
hg-h-rw by simp
finally have fi-dvd-prod-hc: fi dvd prod (Ac. h — [:¢:]) (UNIV::'a mod-ring
set) .
have irr-fi: irreducible fi using fi-P P by blast
have fi-not-unit: — is-unit fi using irr-fi by (simp add: irreducible;D(1)
poly-dvd-1)
show ?thesis using irreducible-dvd-prod[OF - fi-dvd-prod-hc] irr-fi by auto
qged

corollary exists-unique-s-factor-dvd-h-s:
fixes fi::'a mod-ring poly
assumes finite-P: finite P
and f-desc-square-free: f = (][] a€P. a)
and P: P C {q. irreducible ¢ A monic q}
and fi-P: fi € P
and h: h € {v. [vV(CARD('a)) = v] (mod f)}
shows Jls. fi dvd (h — [:s])
proof —
obtain ¢ where fi-dvd: fi dvd (h — [:c:]) using assms exists-s-factor-dvd-h-s by
blast
have irr-fi: irreducible fi using fi-P P by blast
have fi-not-unit: — is-unit fi
by (simp add: irr-fi irreduciblegD(1) poly-dvd-1)
show ?thesis
proof (rule exlI|of - c|, auto simp add: fi-dvd)
fix ¢2 assume fi-dvd-hc2: fi dvd b — [:¢2:]
have «: fi dvd (h — [:c:]) * (h — [:¢2:]) using fi-dvd by auto
hence fi dvd (h — [:¢:]) V fi dvd (b — [:¢2:])
using irr-fi by auto

thus ¢2 = ¢
using coprime-h-c-poly coprime-not-unit-not-dvd fi-dvd fi-dvd-hc2 fi-not-unit
by blast
qged
qged

lemma exists-two-distint: 3 a b::'a mod-ring. a # b
by (rule exI[of - 0], rule exI[of - 1], auto)

lemma coprime-cong-mult-factorization-poly:
fixes f::'b::{field} poly
and a b p :: ‘c :: {field-ged} poly
assumes finite-P: finite P
and P: P C {q. irreducible q}

219

and p: VpeP. [a=b] (mod p)
and coprime-P: Vpl p2. pl € P N\ p2 € P A pl # p2 — coprime pl p2
shows [a = b] (mod (]] a€P. a))
using finite-P P p coprime-P
proof (induct P)
case empty
thus ?case by simp
next
case (insert p P)
have ab-mod-pP: [a=b] (mod (p = [[P))
proof (rule coprime-cong-mult-poly)
show [a = b] (mod p) using insert.prems by auto
show [a = b] (mod || P) using insert.prems insert.hyps by auto
from insert show Rings.coprime p (][P)
by (auto intro: prod-coprime-right)
qged
thus Zcase by (simp add: insert.hyps(1) insert.hyps(2))
qed

end

context
assumes SORT-CONSTRAINT ('a::prime-card)
begin

lemma W-eq-berlekamp-mat:
fixes u::’a mod-ring poly
shows {v. [V"CARD('a) = v] (mod u) N degree v < degree u}
= {h. let H = vec-of-list ((coeffs h) Q replicate (degree u — length (coeffs b)) 0)
in
(transpose-mat (berlekamp-mat u)) %, H = H A degree h < degree u}
using equation-13 by (auto simp add: Let-def)

lemma transpose-minus-1:

assumes dim-row) = dim-col Q

shows transpose-mat (Q — (1,, (dim-row Q))) = (transpose-mat Q@ — (1.,
(dim-row Q)))

using assms

unfolding mat-eq-iff by auto

lemma system-iff:
fixes v::'b::comm-ring-1 vec
assumes sq-Q: dim-row @ = dim-col Q and v: dim-row QQ = dim-vec v
shows (transpose-mat @ *, v = v) «— ((transpose-mat Q — 1,, (dim-row Q)) *,
v = 0, (dim-vec v))
proof —
have t1:transpose-mat @ *, v — v = 0, (dim-vec v) = (transpose-mat Q —

220

1, (dim-row Q)) *, v = 0, (dim-vec v)
by (subst minus-mult-distrib-mat-vec, insert sq-Q[symmetric] v, auto)
have t2:(transpose-mat @ — 1, (dim-row Q)) *, v = 0, (dim-vec v) => trans-
pose-mat Q *, v — v = 0, (dim-vec v)
by (subst (asm) minus-mult-distrib-mat-vec, insert sq-Q[symmetric] v, auto)
have transpose-mat @ *, v — v = v — v => transpose-mat @ *, v = v
proof —
assume al: transpose-mat Q *, v — v =10 — v
have f2: transpose-mat Q *, v € carrier-vec (dim-vec v)
by (metis dim-mult-mat-vec indezx-transpose-mat(2) sq-Q v carrier-vec-dim-vec)
then have f3: 0, (dim-vec v) + transpose-mat Q *, v = transpose-mat @ *, v
by (meson left-zero-vec)
have f4: 0, (dim-vec v) = transpose-mat @ *, v — v
using al by auto
have f5: — v € carrier-vec (dim-vec v)

by simp
then have f6: — v + transpose-mat @ *, v = v — v

using f2 al using comm-add-vec minus-add-uminus-vec by fastforce
have v — v = — v + v by auto

then have transpose-mat @ *, v = transpose-mat Q *, v — v + v
using f6 f4 f3 f2 by (metis (no-types, lifting) al assoc-add-vec comm-add-vec
15 carrier-vec-dim-vec)
then show ?thesis
using al by auto
qed
hence (transpose-mat Q *, v = v) = ((transpose-mat Q *, v) — v = v — v) by
auto
also have ... = ((transpose-mat Q *, v) — v = 0, (dim-vec v)) by auto
also have ... = ((transpose-mat Q — 1, (dim-row Q)) %, v = 0, (dim-vec v))
using t1 t2 by auto
finally show ?thesis.
qed

lemma system-if-mat-kernel:
assumes sq-Q: dim-row @ = dim-col Q and v: dim-row @ = dim-vec v
shows (transpose-mat Q *, v = v) <— v € mat-kernel (transpose-mat (Q — (1,
(dim-row @Q))))
proof —

have (transpose-mat @ *, v = v) = ((transpose-mat Q — 1., (dim-row Q)) *, v
= 0, (dim-vec v))

using assms system-iff by blast

also have ... = (v € mat-kernel (transpose-mat (Q — (1, (dim-row Q)))))
unfolding mat-kernel-def unfolding transpose-minus-1[OF sq-@)] unfolding
v by auto
finally show ?thesis .
qed

221

lemma degree-u-mod-irreducibleq-factor-0:
fixes v and u::'a mod-ring poly
defines W: W = {v. [v =~ CARD('a) = v] (mod u)}
assumes v: v € W
and finite-U: finite U and u-U: v = [[U and U-irr-monic: U C {q. irreducible
g N monic q}
and fi-U: fie U
shows degree (v mod fi) = 0
proof —
have deg-fi: degree fi > 0
using U-irr-monic
using fi-U irreducibleyD|of fi]| by auto
have fi dvd u
using u-U U-irr-monic finite-U dvd-prod-eql fi-U by blast
moreover have u dvd (v CARD('a) — v)
using v unfolding W cong-def
by (simp add: mod-eq-dvd-iff-poly)
ultimately have fi dvd (v CARD('a) — v)
by (rule dvd-trans)
then have fi-dvd-prod-ve: fi dvd prod (Ac. v — [:¢:]) (UNIV::'a mod-ring set)
by (simp add: poly-identity-mod-p)
have irr-fi: irreducible fi using fi-U U-irr-monic by blast
have fi-not-unit: — is-unit fi
using rr-fi
by (auto simp: poly-dvd-1)
have fi-dvd-ve: Je. fi dvd v — [:¢f]
using irreducible-dvd-prod[OF - fi-dvd-prod-vc] irr-fi by auto
from this obtain a where fi dvd v — [:a:] by blast
hence v mod fi = [:a:] mod fi using mod-eq-dvd-iff-poly by blast

also have ... = [:a:] by (simp add: deg-fi mod-poly-less)
finally show ?thesis by simp
qed

definition poly-abelian-monoid
= (carrier = UNIV::'a mod-ring poly set, monoid.mult = ((x)), one = 1, zero
= 0, add = (+), module.smult = smult))

interpretation vector-space-poly: vectorspace class-ring poly-abelian-monoid
rewrites [simp]: 0poly-abelian-monoid = 0
[simp]: 1p01y-abelian-monoid = 1
and [simp]: (@poly-abelian-monoid) = (+)
[simp]: (®poly-abelian-m0noid) = (¥)
[simp]: carrier poly-abelian-monoid = UNIV
and [simp]: (only—abelian—monoid)
apply unfold-locales

= smult

222

apply (auto simp: poly-abelian-monoid-def class-field-def smult-add-left smult-add-right
Units-def)
by (metis add.commute add.right-inverse)

lemma subspace-Berlekamp:
assumes f: degree f # 0
shows subspace (class-ring :: 'a mod-ring ring)
{v. [v(CARD('a)) = v] (mod f) A (degree v < degree f)} poly-abelian-monoid
proof —
{ fix v :: 'a mod-ring poly and w :: ‘a mod-ring poly
assume al: v ~ card (UNIV::'a set) mod f = v mod f
assume w ~ card (UNIV::'a set) mod f = w mod f
then have (v = card (UNIV::'a set) + w ~ card (UNIV::'a set)) mod f = (v
+ w) mod f
using al by (meson mod-add-cong)
then have (v + w) ~ card (UNIV::'a set) mod f = (v + w) mod f
by (simp add: add-power-poly-mod-ring)
} note r=this
thus ?thesis using f
by (unfold-locales, auto simp: zero-power mod-smult-left smult-power cong-def
degree-add-less)
qged

lemma berlekamp-resulting-mat-closed[simp):
berlekamp-resulting-mat w € carrier-mat (degree u) (degree u)
dim-row (berlekamp-resulting-mat u) = degree u
dim-col (berlekamp-resulting-mat u) = degree u
proof —
let ?A=(transpose-mat (mat (degree u) (degree u)
(A(Z, §). if i = j then berlekamp-mat u 83 (i, j) — 1 else berlekamp-mat
u $% (4, 7))))
let ?G=(gauss-jordan-single ?A)
have ?G €carrier-mat (degree u) (degree u)
by (rule gauss-jordan-single(2)[of ?A], auto)
thus
berlekamp-resulting-mat u € carrier-mat (degree u) (degree u)
dim-row (berlekamp-resulting-mat u) = degree u
dim-col (berlekamp-resulting-mat u) = degree u
unfolding berlekamp-resulting-mat-def Let-def by auto
qed

lemma berlekamp-resulting-mat-basis:
kernel.basis (degree u) (berlekamp-resulting-mat u) (set (find-base-vectors (berlekamp-resulting-mat

u)))

proof (rule find-base-vectors(3))
show berlekamp-resulting-mat u € carrier-mat (degree u) (degree u) by simp

223

let ?A=(transpose-mat (mat (degree u) (degree u)
(A\(%, §). if i = j then berlekamp-mat u $$ (4, j) — 1 else berlekamp-mat u
$$ (i, 7))
have row-echelon-form (gauss-jordan-single ?A)
by (rule gauss-jordan-single(3)[of ?A], auto)
thus row-echelon-form (berlekamp-resulting-mat u)
unfolding berlekamp-resulting-mat-def Let-def by auto
qed

lemma set-berlekamp-basis-eq: (set (berlekamp-basis u))
= (Poly o list-of-vec) ¢ (set (find-base-vectors (berlekamp-resulting-mat u)))
by (auto simp add: image-def o-def berlekamp-basis-def)

lemma berlekamp-resulting-mat-constant:
assumes deg-u: degree u = 0
shows berlekamp-resulting-mat u = 1, 0

by (unfold mat-eq-iff, auto simp add: deg-u)

context
fixes u::’a::prime-card mod-ring poly
begin

lemma set-berlekamp-basis-constant:
assumes deg-u: degree u = 0
shows set (berlekamp-basis u) = {}
proof —
have one-carrier: 1,, 0 € carrier-mat 0 0 by auto
have m: mat-kernel (1, 0) = {(0, 0) :: 'a mod-ring vec} unfolding mat-kernel-def
by auto
have r: row-echelon-form (1,, 0 :: 'a mod-ring mat)
unfolding row-echelon-form-def pivot-fun-def Let-def by auto
have set (find-base-vectors (1., 0)) C {0, 0 :: 'a mod-ring vec}
using find-base-vectors(1)[OF r one-carrier] unfolding m .
hence set (find-base-vectors (1,, 0) :: 'a mod-ring vec list) = {}
using find-base-vectors(2)[OF r one-carrier]
using subset-singletonD by fastforce
thus ?thesis
unfolding set-berlekamp-basis-eq unfolding berlekamp-resulting-mat-constant| OF
deg-u] by auto
qged

lemma row-echelon-form-berlekamp-resulting-mat: row-echelon-form (berlekamp-resulting-mat
u)
by (rule gauss-jordan-single(3), auto simp add: berlekamp-resulting-mat-def Let-def)

lemma mat-kernel-berlekamp-resulting-mat-degree-0:

224

assumes d: degree v = 0
shows mat-kernel (berlekamp-resulting-mat u) = {0, 0}
by (auto simp add: mat-kernel-def mult-mat-vec-def d)

lemma in-mat-kernel-berlekamp-resulting-mat:
assumes xz: transpose-mat (berlekamp-mat u) %, = z
and z-dim: © € carrier-vec (degree u)
shows = € mat-kernel (berlekamp-resulting-mat)
proof —
let ?QI=(mat(dim-row (berlekamp-mat u)) (dim-row (berlekamp-mat u))
(A\(4, j). if ¢ = j then berlekamp-mat u $$ (i, j) — 1 else berlekamp-mat u
$$ (i, 7))
have x: (transpose-mat (berlekamp-mat u) — 1., (degree u)) = transpose-mat
?QI by auto
have (transpose-mat (berlekamp-mat u) — 1, (dim-row (berlekamp-mat w))) *,
z = 0, (dim-vec x)
using system-iff[of berlekamp-mat v z| z-dim z by auto
hence transpose-mat ?QI *, © = 0, (degree u) using z-dim * by auto
hence berlekamp-resulting-mat v *, x = 0, (degree u)
unfolding berlekamp-resulting-mat-def Let-def
using gauss-jordan-single(1)[of transpose-mat ?QI degree u degree u - x| z-dim
by auto
thus ?thesis by (auto simp add: mat-kernel-def x-dim)
qed

private abbreviation V = kernel. VK (degree u) (berlekamp-resulting-mat w)
private abbreviation W = vector-space-poly.vs
{v. [v(CARD('a)) = v] (mod u) A (degree v < degree u)}

interpretation V: vectorspace class-ring V
proof —
interpret k: kernel (degree u) (degree u) (berlekamp-resulting-mat u)
by (unfold-locales; auto)
show wvectorspace class-ring V by intro-locales
qed

lemma linear-Poly-list-of-vec:
shows (Poly o list-of-vec) € module-hom class-ring V (vector-space-poly.vs {v.
[v(CARD('a)) = v] (mod u)})
proof (auto simp add: LinearCombinations.module-hom-def Matriz.module-vec-def)
fix m1 m2:: 'a mod-ring vec
assume m1: m1 € mat-kernel (berlekamp-resulting-mat u)
and m2: m2 € mat-kernel (berlekamp-resulting-mat u)
have m1-rw: list-of-vec m1 = map (An. m1 $ n) [0..<dim-vec m1]
by (transfer, auto simp add: mk-vec-def)
have m2-rw: list-of-vec m2 = map (An. m2 $ n) [0..<dim-vec m2]
by (transfer, auto simp add: mk-vec-def)
have m1 € carrier-vec (degree u) by (rule mat-kernelD(1)[OF - m1], auto)

225

moreover have m2 € carrier-vec (degree u) by (rule mat-kernelD(1)[OF - m2],
auto)
ultimately have dim-eq: dim-vec m1 = dim-vec m2 by auto
show Poly (list-of-vec (m1 + m2)) = Poly (list-of-vec m1) + Poly (list-of-vec
m2)
unfolding poly-eq-iff m1-rw m2-rw plus-vec-def
using dim-eq
by (transfer’, auto simp add: mk-vec-def nth-default-def)
next
fix r m assume m: m € mat-kernel (berlekamp-resulting-mat u)
show Poly (list-of-vec (r -, m)) = smult r (Poly (list-of-vec m))
unfolding poly-eq-iff list-of-vec-rw-maplof m| smult-vec-def
by (transfer’, auto simp add: mk-vec-def nth-default-def)
next
fix x assume z: © € mat-kernel (berlekamp-resulting-mat u)
show [Poly (list-of-vec) ~ CARD(’a) = Poly (list-of-vec x)] (mod u)
proof (cases degree u = 0)
case True
have mat-kernel (berlekamp-resulting-mat u) = {0, 0}
by (rule mat-kernel-berlekamp-resulting-mat-degree-0[OF True])
hence z-0: z = 0, 0 using z by blast
show ?thesis by (auto simp add: zero-power z-0 cong-def)
next
case Fulse note deg-u = Fulse
show ?thesis
proof —
let ?QI=(mat (degree u) (degree u)
(A(4, §). if © = j then berlekamp-mat u $$ (i, j) — 1 else berlekamp-mat u $$
(i, 7))
let YH=wvec-of-list (coeffs (Poly (list-of-vec x)) Q replicate (degree u — length
(coeffs (Poly (list-of-vec x)))) 0)
have z-dim: dim-vec x = degree u using z unfolding mat-kernel-def by auto
hence z-carrier[simp|: x € carrier-vec (degree u) by (metis carrier-vec-dim-vec)
have z-kernel: berlekamp-resulting-mat u *, x = 0, (degree u)
using z unfolding mat-kernel-def by auto
have t-QI-z-0: (transpose-mat ?QI) x, x = 0, (degree u)
using gauss-jordan-single(1)[of (transpose-mat ?QI) degree u degree u
gauss-jordan-single (transpose-mat ?QI)]
using z-kernel unfolding berlekamp-resulting-mat-def Let-def by auto
have I: (list-of-vec x) # |]
by (auto simp add: list-of-vec-rw-map vec-of-dim-0|[symmetric] deg-u z-dim)
have deg-le: degree (Poly (list-of-vec z)) < degree u
using degree-Poly-list-of-vec
using z-carrier deg-u by blast
show [Poly (list-of-vec) = CARD(’a) = Poly (list-of-vec x)| (mod u)
proof (unfold equation-13[OF deg-le))
have QR-rw: ?QI = berlekamp-mat u — 1,, (dim-row (berlekamp-mat u))
by auto
have dim-row (berlekamp-mat u) = dim-vec ?H

226

by (auto, metis le-add-diff-inverse length-list-of-vec length-strip-while-le
a-dim)
moreover have ?H € mat-kernel (transpose-mat (berlekamp-mat w — 1,
(dim-row (berlekamp-mat w))))
proof —
have Hz: ?H =z
proof (unfold vec-eg-iff, auto)
let ?H’'=wvec-of-list (strip-while ((=) 0) (list-of-vec x)
@ replicate (degree u — length (strip-while ((=) 0) (list-of-vec x))) 0)
show length (strip-while ((=) 0) (list-of-vec 1))
+ (degree u — length (strip-while ((=) 0) (list-of-vec x))) = dim-vec x
by (metis le-add-diff-inverse length-list-of-vec length-strip-while-le

x-dim)
fix ¢ assume i: { < dim-vec x
have ?H $ i = coeff (Poly (list-of-vec x)) i
proof (rule vec-of-list-coeffs-replicate-nth| OF - deg-le])
show i € {..<degree u} using z-dim i by (auto, linarith)
qed
also have ... = z § i by (rule coeff-Poly-list-of-vec-nth'|OF i])
finally show ?H’$ i = 2 $ 7 by auto
qed
have ?H € carrier-vec (degree u) using deg-le dim-vec-of-list-h Hz by
auto

moreover have transpose-mat (berlekamp-mat w — 1,, (degree u)) *, 7H
= 0, (degree u)
using t-QI-z-0 Hr QR-rw by auto
ultimately show Zthesis
by (auto simp add: mat-kernel-def)
qed
ultimately show transpose-mat (berlekamp-mat u) *, ?H = ?H
using system-if-mat-kernel[of berlekamp-mat u ?H]
by auto
qed
qed
qed
qed

lemma linear-Poly-list-of-vec”:
assumes degree u > 0
shows (Poly o list-of-vec) € module-hom R 'V W
proof (auto simp add: LinearCombinations.module-hom-def Matriz.module-vec-def)
fix m1 m2:: 'a mod-ring vec
assume mi1: mi € mat-kernel (berlekamp-resulting-mat u)
and m2: m2 € mat-kernel (berlekamp-resulting-mat u)
have m1-rw: list-of-vec m1 = map (An. m1 $ n) [0..<dim-vec m1]
by (transfer, auto simp add: mk-vec-def)
have m2-rw: list-of-vec m2 = map (An. m2 $ n) [0..<dim-vec m2]
by (transfer, auto simp add: mk-vec-def)

227

have m1 € carrier-vec (degree u) by (rule mat-kernelD(1)[OF - m1], auto)
moreover have m2 € carrier-vec (degree u) by (rule mat-kernelD(1)[OF - m2],
auto)
ultimately have dim-eq: dim-vec m1 = dim-vec m2 by auto
show Poly (list-of-vec (m1 + m2)) = Poly (list-of-vec m1) + Poly (list-of-vec
m2)
unfolding poly-eq-iff m1-rw m2-rw plus-vec-def
using dim-eq
by (transfer’, auto simp add: mk-vec-def nth-default-def)
next
fix r m assume m: m € mat-kernel (berlekamp-resulting-mat u)
show Poly (list-of-vec (r -, m)) = smult r (Poly (list-of-vec m))
unfolding poly-eq-iff list-of-vec-rw-maplof m| smult-vec-def
by (transfer’, auto simp add: mk-vec-def nth-default-def)
next
fix z assume z: x € mat-kernel (berlekamp-resulting-mat u)
show [Poly (list-of-vec) ~ CARD('a) = Poly (list-of-vec x)] (mod u)
proof (cases degree u = 0)
case True
have mat-kernel (berlekamp-resulting-mat uv) = {0, 0}
by (rule mat-kernel-berlekamp-resulting-mat-degree-0]OF True])
hence z-0: x = 0, 0 using z by blast
show ?thesis by (auto simp add: zero-power z-0 cong-def)
next
case Fulse note deg-u = Fualse
show ?thesis
proof —
let ?QI=(mat (degree u) (degree u)
(A(4, §). if © = j then berlekamp-mat u $$ (i, j) — 1 else berlekamp-mat u $$
(i, 7))
let ?H=wec-of-list (coeffs (Poly (list-of-vec x)) @ replicate (degree u — length
(coeffs (Poly (list-of-vec x)))) 0)
have z-dim: dim-vec x = degree u using z unfolding mat-kernel-def by auto
hence z-carrier[simp|: x € carrier-vec (degree u) by (metis carrier-vec-dim-vec)
have z-kernel: berlekamp-resulting-mat u *, x = 0, (degree u)
using z unfolding mat-kernel-def by auto
have t-QI-z-0: (transpose-mat ?QI) x, x = 0, (degree u)
using gauss-jordan-single(1)[of (transpose-mat ?QI) degree u degree u
gauss-jordan-single (transpose-mat ?QI) x|
using z-kernel unfolding berlekamp-resulting-mat-def Let-def by auto
have I: (list-of-vec z) # |]
by (auto simp add: list-of-vec-rw-map vec-of-dim-0[symmetric] deg-u z-dim)
have deg-le: degree (Poly (list-of-vec x)) < degree u
using degree-Poly-list-of-vec
using z-carrier deg-u by blast
show [Poly (list-of-vec) = CARD('a) = Poly (list-of-vec x)] (mod u)
proof (unfold equation-13]OF deg-le])
have QR-rw: ?QI = berlekamp-mat u — 1, (dim-row (berlekamp-mat u))
by auto

228

have dim-row (berlekamp-mat u) = dim-vec ?H
by (auto, metis le-add-diff-inverse length-list-of-vec length-strip-while-le
x-dim)
moreover have ?H € mat-kernel (transpose-mat (berlekamp-mat v — 1,
(dim-row (berlekamp-mat w))))
proof —
have Hx: 7H =z
proof (unfold vec-eg-iff, auto)
let ?H'=vec-of-list (strip-while ((=) 0) (list-of-vec x)
Q@ replicate (degree u — length (strip-while ((=) 0) (list-of-vec x))) 0)
show length (strip-while ((=) 0) (list-of-vec x))
+ (degree u — length (strip-while ((=) 0) (list-of-vec x))) = dim-vec
by (metis le-add-diff-inverse length-list-of-vec length-strip-while-le

x-dim)
fix ¢ assume i: { < dim-vec x
have ?H $ i = coeff (Poly (list-of-vec x)) i
proof (rule vec-of-list-coeffs-replicate-nth| OF - deg-le])
show ¢ € {..<degree u} using z-dim i by (auto, linarith)
qed
also have ... = ¢ § ¢ by (rule coeff-Poly-list-of-vec-nth'|OF i])
finally show ?H’$ i = z $ 7 by auto
qed
have ?H € carrier-vec (degree u) using deg-le dim-vec-of-list-h Hz by
auto

moreover have transpose-mat (berlekamp-mat u — 1., (degree u)) %, ?H
= 0, (degree u)
using t-QI-z-0 Hr QR-rw by auto
ultimately show ¢thesis
by (auto simp add: mat-kernel-def)
qed
ultimately show transpose-mat (berlekamp-mat v) *, ?H = ¢H
using system-if-mat-kernel[of berlekamp-mat u ?H]
by auto
qed
qed
qed
next
fix z assume z: x € mat-kernel (berlekamp-resulting-mat u)
show degree (Poly (list-of-vec z)) < degree u
by (rule degree-Poly-list-of-vec, insert assms x, auto simp: mat-kernel-def)
qed

lemma berlekamp-basis-eq-8:
assumes v: v € set (berlekamp-basis u)
shows [v = CARD('a) = v] (mod u)
proof —

{

fix z assume z: © € set (find-base-vectors (berlekamp-resulting-mat w))

229

have set (find-base-vectors (berlekamp-resulting-mat w)) C mat-kernel (berlekamp-resulting-mat
w)
proof (rule find-base-vectors(1))
show row-echelon-form (berlekamp-resulting-mat u)
by (rule row-echelon-form-berlekamp-resulting-mat)
show berlekamp-resulting-mat u € carrier-mat (degree u) (degree u) by simp
qed
hence z € mat-kernel (berlekamp-resulting-mat u) using = by auto
hence [Poly (list-of-vec) ~ CARD(’a) = Poly (list-of-vec x)] (mod u)
using linear-Poly-list-of-vec
unfolding LinearCombinations.module-hom-def Matrix.module-vec-def by
auto

thus [v = CARD(’a) = v] (mod u) using v unfolding set-berlekamp-basis-eq by
auto
qed

lemma surj-Poly-list-of-vec:
assumes deg-u: degree u > 0
shows (Poly o list-of-vec) * (carrier V) = carrier W
proof (auto simp add: image-def)
fix za
assume za: za € mat-kernel (berlekamp-resulting-mat u)
thus [Poly (list-of-vec za) ~ CARD(’a) = Poly (list-of-vec za)] (mod u)
using linear-Poly-list-of-vec
unfolding LinearCombinations.module-hom-def Matriz.module-vec-def by auto
show degree (Poly (list-of-vec za)) < degree u
proof (rule degree-Poly-list-of-vec[OF - deg-ul)
show za € carrier-vec (degree u) using za unfolding mat-kernel-def by simp
qed
next
fix x assume z: [z = CARD(’a) = z] (mod u)
and deg-z: degree x < degree u
show Jza € mat-kernel (berlekamp-resulting-mat u). x = Poly (list-of-vec za)
proof (rule bexI[of - vec-of-list (coeffs x @ replicate (degree u — length (coeffs
z)) 0)])
let ?X = vec-of-list (coeffs x @ replicate (degree u — length (coeffs x)) 0)
show x = Poly (list-of-vec (vec-of-list (coeffs x Q replicate (degree u — length
(coeffs 7)) 0))
by auto
have X: ?X € carrier-vec (degree u) unfolding carrier-vec-def
by (auto, metis Suc-lel coeffs-0-eq-Nil deg-x degree-0 le-add-diff-inverse
length-coeffs-degree linordered-semidom-class.add-diff-inverse list.size(3)
order.asym,)
have t: transpose-mat (berlekamp-mat u) *, ?X = ?X
using equation-13[OF deg-z] © by auto
show vec-of-list (coeffs © Q replicate (degree u — length (coeffs x)) 0)
€ mat-kernel (berlekamp-resulting-mat u) by (rule in-mat-kernel-berlekamp-resulting-mat[OF

230

t X))
qed
qed

lemma card-set-berlekamp-basis: card (set (berlekamp-basis u)) = length (berlekamp-basis
u)
proof —
have b: berlekamp-resulting-mat u € carrier-mat (degree u) (degree u) by auto
have (set (berlekamp-basis u)) = (Poly o list-of-vec) ° set (find-base-vectors
(berlekamp-resulting-mat u))
unfolding set-berlekamp-basis-eq ..
also have card ... = card (set (find-base-vectors (berlekamp-resulting-mat u)))
proof (rule card-image, rule subset-inj-on[OF inj-Poly-list-of-vec])
show set (find-base-vectors (berlekamp-resulting-mat w)) C carrier-vec (degree
u)
using find-base-vectors(1)[OF row-echelon-form-berlekamp-resulting-mat b]
unfolding carrier-vec-def mat-kernel-def
by auto
qed
also have ... = length (find-base-vectors (berlekamp-resulting-mat w))
by (rule length-find-base-vectors[symmetric, OF row-echelon-form-berlekamp-resulting-mat
b)
finally show ?thesis unfolding berlekamp-basis-def by auto
qed

context
assumes deg-u0[simp]: degree u > 0
begin

interpretation Berlekamp-subspace: vectorspace class-ring W
by (rule vector-space-poly.subspace-is-vs|OF subspace-Berlekamp], simp)

lemma linear-map-Poly-list-of-vec”: linear-map class-ring V- W (Poly o list-of-vec)
proof (auto simp add: linear-map-def)
show wvectorspace class-ring V by intro-locales
show vectorspace class-ring W by (rule Berlekamp-subspace.vectorspace-azioms)
show mod-hom class-ring VW (Poly o list-of-vec)
proof (rule mod-hom.intro, unfold mod-hom-azioms-def)
show module class-ring V by intro-locales
show module class-ring W using Berlekamp-subspace.vectorspace-axioms by
intro-locales
show Poly o list-of-vec € module-hom class-ring VW
by (rule linear-Poly-list-of-vec’| OF deg-u0])
qed
qed

lemma berlekamp-basis-basis:
Berlekamp-subspace.basis (set (berlekamp-basis u))

231

proof (unfold set-berlekamp-basis-eq, rule linear-map.linear-inj-image-is-basis)
show linear-map class-ring VW (Poly o list-of-vec)
by (rule linear-map-Poly-list-of-vec’)
show inj-on (Poly o list-of-vec) (carrier V)
proof (rule subset-inj-on|OF inj-Poly-list-of-vec])
show carrier V. C carrier-vec (degree u)
by (auto simp add: mat-kernel-def)
qed
show (Poly o list-of-vec) ‘ carrier V = carrier W
using surj-Poly-list-of-vec[OF deg-u0] by auto
show b: V.basis (set (find-base-vectors (berlekamp-resulting-mat u)))
by (rule berlekamp-resulting-mat-basis)
show V.fin-dim
proof —
have finite (set (find-base-vectors (berlekamp-resulting-mat u))) by auto
moreover have set (find-base-vectors (berlekamp-resulting-mat uw)) C carrier
V
and V.gen-set (set (find-base-vectors (berlekamp-resulting-mat w)))
using b unfolding V.basis-def by auto
ultimately show ?thesis unfolding V.fin-dim-def by auto
qged
qged

lemma finsum-sum:
fixes f::'a mod-ring poly
assumes f: finite B
and a-Pi: a € B — carrier R
and V: B C carrier W
shows (P pveB. a v O v) = sum (Av. smult (a v) v) B
using fa-Pi V
proof (induct B)
case empty
thus ?case unfolding Berlekamp-subspace.module. M .finsum-empty by auto
next
case (insert z V)
have hyp: (B v € V. av Oy v) = sum (Av. smult (a v) v) V
proof (rule insert.hyps)
show a € V — carrier R
using insert.prems unfolding class-field-def by auto
show V' C carrier W using insert.prems by simp
qed
have (P pveinsertz V.av Oy v) = (az Oy z) By (@B pwrve V.avoy
v
)
proof (rule abelian-monoid.finsum-insert)
show abelian-monoid W by (unfold-locales)
show finite V by fact
show z ¢ V by fact
show (A\v. a v Oy v) € V — carrier W

232

proof (unfold Pi-def, rule, rule alll, rule impl)
fix v assume v: v€V
show a v Oy v € carrier W
proof (rule Berlekamp-subspace.smult-closed)
show a v € carrier class-ring using insert.prems v unfolding Pi-def
by (simp add: class-field-def)
show v € carrier W using v insert.prems by auto
qed
qed
show a z Oy = € carrier W
proof (rule Berlekamp-subspace.smult-closed)
show a x € carrier class-ring using insert.prems unfolding Pi-def
by (simp add: class-field-def)
show z € carrier W using insert.prems by auto

qed
qged
also have ... = (az O z) + (B v e V. a v Oy v) by auto
also have ... = (a z O z) + sum (Av. smult (a v) v) V unfolding hyp by
stmp
also have ... = (smult (a x)) + sum (Av. smult (a v) v) V by simp
also have ... = sum (Av. smult (a v) v) (insert z V)

by (simp add: insert.hyps(1) insert.hyps(2))
finally show ?Zcase .
qed

lemma exists-vector-in-Berlekamp-subspace-dvd:
fixes p-i::'a mod-ring poly
assumes finite-P: finite P
and f-desc-square-free: v = (][] a€P. a)
and P: P C {q. irreducible ¢ A monic q}
and pi: p-i € P and pj: p-j € P and pi-pj: p-i # p-j
and monic-f: monic u and sf-f: square-free u
and not-irr-w: — irreducible w
and w-dvd-f: w dvd v and monic-w: monic w
and pi-dvd-w: p-i dvd w and pj-dvd-w: p-j dvd w
shows Jv. v € {h. [A"(CARD('a)) = h] (mod u) A degree h < degree u}
A v mod p-i # v mod p-j
A degree (v mod p-i) = 0
A degree (v mod p-j) = 0
— This implies that the algorithm decreases the degree of the reducible polynomials
in each step:
A3s gedw (v—[s])#wA gedw (v—[:s1]) # 1)
proof —
have f-not-0: v # 0 using monic-f by auto
have irr-pi: irreducible p-i using pi P by auto
have irr-pj: irreducible p-j using pj P by auto
obtain m and n::nat where P-m: P = m ‘ {i. i < n} and inj-on-m: inj-on m
{i. i < n}

233

using finite-imp-nat-seg-image-inj-on[OF finite-P] by blast
hence n = card P by (simp add: card-image)
have degree-prod: degree (prod m {i. i < n}) = degree u
by (metis P-m f-desc-square-free inj-on-m prod.reindez-cong)
have not-zero: Vie{i. i < n}. mi # 0
using P-m f-desc-square-free f-not-0 by auto
obtain ¢ where mi: m i = p-i and i: ¢ < n using P-m pi by blast
obtain j where mj: m j = p-j and j: j < n using P-m pj by blast
have ij: i # j using mi mj pi-pj by auto
obtain s-i and s-j::’a mod-ring where si-sj: s-i # s-j using exists-two-distint
by blast
let 2u=Az. if x = i then [:s-i:] else if x = j then [:s-j:] else [:0:]
have degree-si: degree [:s-i:] = 0 by auto
have degree-sj: degree [:s-j:] = 0 by auto
have 3!v. degree v < (3" ie{i. i < n}. degree (m 7)) A (Vae{i. i < n}. [v= %u
a) (mod m a))
proof (rule chinese-remainder-unique-poly)
show Vae{i. i < n}. Vbe{i. i < n}. a # b — Rings.coprime (m a) (m b)
proof (rule+)
fixabassume a € {i.i <n}and b € {i. i < n}and a # b
thus Rings.coprime (m a) (m b)
using coprime-polynomial-factorization|OF P finite-P, simplified] P-m
by (metis image-eql inj-onD inj-on-m)
qed
show Vie{i. i < n}. m i # 0 by (rule not-zero)
show 0 < degree (prod m {i. i < n}) unfolding degree-prod using deg-u0 by
blast
qed
from this obtain v where v: Vae{i. i < n}. [v = %u a] (mod m a)
and degree-v: degree v < (3 i€{i. i < n}. degree (m ©)) by blast
show ?thesis
proof (rule exI[of - v], auto)
show vp-v-mod: [v = CARD('a) = v] (mod u)
proof (unfold f-desc-square-free, rule coprime-cong-mult-factorization-poly[OF
finite-P])
show P C {q. irreducible q} using P by blast
show VpeP. [v = CARD('a) = v] (mod p)
proof (rule balll)
fix p assume p: p € P
hence irr-p: irreducible; p using P by auto
obtain k where mk: m k = p and k: k < n using P-m p by blast
have [v = %u k] (mod p) using v mk k by auto
moreover have ?u k mod p = ?u k
apply (rule mod-poly-less) using irreducibleaD(1)[OF irr-p] by auto
ultimately obtain s where v-mod-p: v mod p = [:s:] unfolding cong-def
by force
hence deg-v-p: degree (v mod p) = 0 by auto
have v mod p = [:s:] by (rule v-mod-p)
also have ... = [:s:] "TCARD('a) unfolding poly-const-pow by auto

234

also have ... = (v mod p) = CARD(’a) using v-mod-p by auto
also have ... = (v mod p) =~ CARD(’a) mod p using calculation by auto
also have ... = v“CARD('a) mod p using power-mod by blast
finally show [v = CARD('a) = v] (mod p) unfolding cong-def ..
qed
show Vpl p2. pl € P A p2 € P A\ pl # p2 — coprime pl p2
using P coprime-polynomial-factorization finite-P by auto
qed
have [v = ?u 7] (mod m i) using v ¢ by auto
hence v-pi-si-mod: v mod p-i = [:s-i] mod p-i unfolding cong-def mi by auto
also have ... = [:s-i:] apply (rule mod-poly-less) using irr-pi by auto
finally have v-pi-si: v mod p-i = [:s-i:] .

have [v = ?u j] (mod m j) using v j by auto
hence v-pj-sj-mod: v mod p-j = [:s-j:] mod p-j unfolding cong-def mj using
7j by auto
also have ... = [:s-j:] apply (rule mod-poly-less) using irr-pj by auto
finally have v-pj-sj: v mod p-j = [:s-j:] .
show v mod p-i = v mod p-j = False using si-sj v-pi-si v-pj-sj by auto
show degree (v mod p-i) = 0 unfolding v-pi-si by simp
show degree (v mod p-j) = 0 unfolding v-pj-sj by simp
show Js. ged w (v — [:s1]) # w A ged w (v — [:s:]) # 1
proof (rule exI[of - s-i], rule conjl)
have pi-dvd-v-si: p-i dvd v — [:s-i:] using v-pi-si-mod mod-eq-dvd-iff-poly by
blast
have pj-dvd-v-sj: p-j dvd v — [:s-j:] using v-pj-sj-mod mod-eq-dvd-iff-poly by
blast
have w-eq: w = prod (Ac. ged w (v — [:¢:])) (UNIV::'a mod-ring set)
proof (rule Berlekamp-ged-step)
show [v = CARD('a) = v] (mod w) using vp-v-mod cong-dvd-modulus-poly
w-dvd-f by blast
show square-free w by (rule square-free-factor|OF w-dvd-f sf-f])
show monic w by (rule monic-w)
qed
show ged w (v — [:s-it]) # w
proof (rule ccontr, simp)
assume ged-w: ged w (v — [:s-02]) = w
show Fualse apply (rule <v mod p-i = v mod p-j = Fulse»)
by (metis irreducibleE <degree (v mod p-i) = 0) ged-greatest-iff ged-w irr-pj
is-unit-field-poly mod-eq-dvd-iff-poly mod-poly-less neq0-conv pj-dvd-w v-pi-si)
qed
show ged w (v — [rs-i1]) # 1
by (metis irreducibleE ged-greatest-iff irr-pi pi-dvd-v-si pi-dvd-w)
qed
show degree v < degree u
proof —
have (37| ¢ < n. degree (m 7)) = degree (prod m {i. i < n})
by (rule degree-prod-eq-sum-degree[symmetric, OF not-zerol)
thus ?thesis using degree-v unfolding degree-prod by auto

235

qed
qed
qed

lemma exists-vector-in-Berlekamp-basis-dvd-aux:
assumes basis-V: Berlekamp-subspace.basis B
and finite-V: finite B
assumes finite-P: finite P
and f-desc-square-free: v = ([[a€P. a)
and P: P C {q. irreducible ¢ N\ monic q}
and pi: p-i € P and pj: p-j € P and pi-pj: p-i # p-j
and monic-f: monic u and sf-f: square-free u
and not-irr-w: — irreducible w
and w-dvd-f: w dvd u and monic-w: monic w
and pi-dvd-w: p-i dvd w and pj-dvd-w: p-j dvd w
shows Jv € B. v mod p-i # v mod p-j
proof (rule ccontr, auto)
have V-in-carrier: B C carrier W
using basis-V unfolding Berlekamp-subspace.basis-def by auto
assume all-eq: VveB. v mod p-i = v mod p-j
obtain z where z: z € {h. [h ~ CARD('a) = h] (mod u) A degree h < degree u}
and z-pi-pj: £ mod p-i # x mod p-j and degree (x mod p-i) = 0 and degree
(z mod p-j) = 0
(Fs. gedw (x — [:8)]) # w A ged w (z — [:s1]) # 1)
using exists-vector-in-Berlekamp-subspace-dvd[OF - - - pi pj - - - - w-dvd-f
monic-w pi-dvd-w]
assms by meson
have z-in: © € carrier W using z by auto
hence (3la. a € B — g carrier class-ring N\ Berlekamp-subspace.lincomb a B =

x)
using Berlekamp-subspace.basis-criterion|OF finite-V V-in-carrier] using ba-
sis-V
by (simp add: class-field-def)
from this obtain a where a-Pi: a« € B — g carrier class-ring
and lincomb-z: Berlekamp-subspace.lincomb a B = x
by blast
have fs-ss: (@ yveB. a v O v) = sum (Av. smult (a v) v) B
proof (rule finsum-sum)
show finite B by fact
show a € B — carrier class-ring using a-Pi by auto
show B C carrier W by (rule V-in-carrier)
qed
have x mod p-i = Berlekamp-subspace.lincomb a B mod p-i using lincomb-z by
stmp
also have ... = (@ yveB. a v ©y v) mod p-i unfolding Berlekamp-subspace.lincomb-def

also have ... = (sum (Av. smult (a v) v) B) mod p-i unfolding fs-ss ..

236

also have ... = sum (Av. smult (a v) v mod p-i) B using finite-V poly-mod-sum
by blast

also have ... = sum (Av. smult (a v) (v mod p-i)) B by (meson mod-smult-left)
also have ... = sum (Av. smult (a v) (v mod p-j)) B using all-eq by auto
also have ... = sum (Av. smult (a v) v mod p-j) B by (metis mod-smult-left)
also have ... = (sum (Av. smult (a v) v) B) mod p-j
by (metis (mono-tags, lifting) finite-V poly-mod-sum sum.cong)
also have ... = (@ yveB. a v Oy v) mod p-j unfolding fs-ss ..
also have ... = Berlekamp-subspace.lincomb a B mod p-j

unfolding Berlekamp-subspace.lincomb-def ..
also have ... = = mod p-j using lincomb-z by simp

finally have z mod p-i = x mod p-j .
thus Fulse using z-pi-pj by contradiction
qed

lemma exists-vector-in-Berlekamp-basis-dvd:
assumes basis-V: Berlekamp-subspace.basis B
and finite-V: finite B
assumes finite-P: finite P
and f-desc-square-free: uw = (][] a€P. a)
and P: P C {q. irreducible ¢ N\ monic q}
and pi: p-i € P and pj: p-j € P and pi-pj: p-i # p-j
and monic-f: monic u and sf-f: square-free u
and not-irr-w: — irreducible w
and w-dvd-f: w dvd v and monic-w: monic w
and pi-dvd-w: p-i dvd w and pj-dvd-w: p-j dvd w
shows Jv € B. v mod p-i # v mod p-j
A degree (v mod p-i) = 0
A degree (v mod p-j) = 0
— This implies that the algorithm decreases the degree of the reducible polynomials
in each step:
A (3s. gedw (v — [:s1]) # w A = coprime w (v — [:5:]))
proof —
have f-not-0: v # 0 using monic-f by auto
have irr-pi: irreducible p-i using pi P by fast
have irr-pj: irreducible p-j using pj P by fast
obtain v where vV: v € B and v-pi-pj: v mod p-i # v mod p-j
using assms exists-vector-in-Berlekamp-basis-dvd-auzx by blast
have v: v € {v. [v = CARD('a) = v] (mod u)}
using basis-V vV unfolding Berlekamp-subspace.basis-def by auto
have deg-v-pi: degree (v mod p-i) = 0
by (rule degree-u-mod-irreducibleq-factor-0[OF v finite-P f-desc-square-free P
pil)
from this obtain s-i where v-pi-si: v mod p-i = [:s-i:] using degree-eq-zeroFE
by blast
have deg-v-pj: degree (v mod p-j) = 0
by (rule degree-u-mod-irreducibley-factor-0[OF v finite-P f-desc-square-free P
pil)

237

from this obtain s-j where v-pj-sj: v mod p-j = [:s-j:] using degree-eq-zeroE
by blast
have si-sj: s-i # s-j using v-pi-si v-pj-sj v-pi-pj by auto
have (3s. ged w (v — [:81]) # w A = Rings.coprime w (v — [:s:]))
proof (rule exI[of - s-i], rule conjI)
have pi-dvd-v-si: p-i dvd v — [:s-i:] by (metis mod-eg-dvd-iff-poly mod-mod-trivial
V-pi-87)
have pj-dvd-v-sj: p-j dvd v — [:s-j:] by (metis mod-eq-dvd-iff-poly mod-mod-trivial
v-pj-5j)
have w-eq: w = prod (Ac. ged w (v — [:¢:])) (UNIV::'a mod-ring set)
proof (rule Berlekamp-gcd-step)
show [v = CARD('a) = v] (mod w) using v cong-dvd-modulus-poly w-dvd-f
by blast
show square-free w by (rule square-free-factor[OF w-dvd-f sf-f])
show monic w by (rule monic-w)
qed
show ged w (v — [:s-31]) # w
by (metis irreducibleE deg-v-pi ged-greatest-iff irr-pj is-unit-field-poly mod-eq-dvd-iff-poly
mod-poly-less neq0-conv pj-dvd-w v-pi-pj v-pi-si)
show — Rings.coprime w (v — [:s-i:])
using irr-pi pi-dvd-v-si pi-dvd-w
by (simp add: irreduciblegD(1) not-coprimel)
qed
thus ?thesis using v-pi-pj vV deg-v-pi deg-v-pj by auto
qed

lemma exists-bijective-linear-map- W-vec:
assumes finite-P: finite P
and u-desc-square-free: u = ([[a€P. a)
and P: P C {q. irreducible ¢ A monic q}
shows 3 f. linear-map class-ring W (module-vec TYPE('a mod-ring) (card P)) f
A bij-betw f (carrier W) (carrier-vec (card P)::'a mod-ring vec set)
proof —
let ?B=carrier-vec (card P)::'a mod-ring vec set
have u-not-0: u # 0 using deg-u0 degree-0 by force
obtain m and n::nat where P-m: P = m ‘ {i. i < n} and inj-on-m: inj-on m
{i. i < n}
using finite-imp-nat-seg-image-inj-on[OF finite-P)] by blast
hence n: n = card P by (simp add: card-image)
have degree-prod: degree (prod m {i. i < n}) = degree u
by (metis P-m u-desc-square-free inj-on-m prod.reindez-cong)
have not-zero: Vie{i. i < n}. mi # 0
using P-m u-desc-square-free u-not-0 by auto
have deg-sum-eq: (3 i€{i. ¢ < n}. degree (m ©)) = degree u
by (metis degree-prod degree-prod-eq-sum-degree not-zero)
have coprime-mi-mg:Vi€{i. i < n}. Vje{i. i < n}. i #j — coprime (m i) (m
J)
proof (rule+)
fix i j assume i: ¢ € {i. i < n}

238

and j: j€ {i. i < n}and 4: i #j
show coprime (m i) (m j)
proof (rule coprime-polynomial-factorization|OF P finite-P))
show m ¢ € P using ¢ P-m by auto
show m j € P using j P-m by auto
show m ¢ # m j using inj-on-m i ¢j j unfolding inj-on-def by blast
qed
qed
let 2f = Av. vec n (\i. coeff (v mod (m 7)) 0)
interpret vec-VS: vectorspace class-ring (module-vec TYPE('a mod-ring) n)
by (rule VS-Connect.vec-vs)
interpret linear-map class-ring W (module-vec TYPE('a mod-ring) n) #f
by (intro-locales, unfold mod-hom-azioms-def LinearCombinations.module-hom-def
auto simp add: vec-eq-iff module-vec-def mod-smult-left poly-mod-add-left)
have linear-map class-ring W (module-vec TYPE('a mod-ring) n) ?f
by (intro-locales)
moreover have inj-f: inj-on ?f (carrier W)
proof (rule KeO-imp-inj, auto simp add: mod-hom.ker-def)
show [0 ~ CARD('a) = 0] (mod u) by (simp add: cong-def zero-power)
show vec n (Xi. 0) =0, 210 . TYPE('a mod-ring) n by (auto simp add:
module-vec-def)
fix x assume z: [z ~ CARD('a) = z] (mod u) and deg-z: degree z < degree u
and v: vec n (\i. coeff (z mod m i) 0) =0, 2. . TYPE(
have cong-0: Vie{i. i < n}. [z = (Ai. 0) i] (mod m 1)
proof (rule, unfold cong-def)
fix 7 assume i: 7 € {i. { < n}
have deg-z-mod-mi: degree (x mod m i) = 0
proof (rule degree-u-mod-irreducibley-factor-0[OF - finite-P u-desc-square-free

'a mod-ring) n

P)
show z € {v. [v = CARD('a) = v] (mod u)} using z by auto
show m ¢ € P using P-m i by auto
qed
thus z mod m ¢ = 0 mod m i
using v
unfolding module-vec-def
by (auto, metis i leading-coeff-neq-0 mem-Collect-eq index-vec index-zero-vec(1))
qed
moreover have deg-z2: degree © < (3 i€{i. i < n}. degree (m 1))
using deg-sum-eq deg-z by simp
moreover have Vie{i. i < n}. [0 = (Ai. 0) i] (mod m 7)
by (auto simp add: cong-def)
moreover have degree 0 < (> i€{i. i < n}. degree (m 1))
using degree-prod deg-sum-eq deg-u0 by force
moreover have 3!z. degree z < (> i€{i. i < n}. degree (m 7))
A (Vie{i. i < n}. [z = (Ni. 0) 1] (mod m 7))
proof (rule chinese-remainder-unique-poly[OF not-zero))
show 0 < degree (prod m {i. i < n})
using deg-u0 degree-prod by linarith
qged (insert coprime-mi-mj, auto)

239

ultimately show z = 0 by blast
qed
moreover have ?f ¢ (carrier W) = ?B
proof (auto simp add: image-def)
fix za
show n = card P by (auto simp add: n)
next
fix z::'a mod-ring vec assume z: x € carrier-vec (card P)
have Flv. degree v < (> i€{i. i < n}. degree (m 7)) A (Vie{i. i < n}. [v =
(Ai. [z $ @2]) 4] (mod m 7))
proof (rule chinese-remainder-unique-poly[OF not-zero))
show 0 < degree (prod m {i. i < n})
using deg-u0 degree-prod by linarith
qged (insert coprime-mi-myj, auto)
from this obtain v where deg-v: degree v < (> i€{i. i < n}. degree (m i))
and v-z-cong: (Vi € {i. i < n}. [v= (Ni. [z $ @]) 7] (mod m 7)) by auto
show Jza. [za = CARD('a) = xa] (mod u) A degree za < degree u
A x = vecn (M. coeff (za mod m i) 0)
proof (rule exl[of - v], auto)
show v: [v =~ CARD('a) = v] (mod u)
proof (unfold u-desc-square-free, rule coprime-cong-mult-factorization-poly| OF
finite-P], auto)
fix y assume y: y € P thus irreducible y using P by blast
obtain ¢ where i: ¢ € {i. ¢ < n} and mi: y = m ¢ using P-m y by blast
have irreducible (m i) using ¢ P-m P by auto
moreover have [v = [:z $ i:]] (mod m ¢) using v-z-cong i by auto
ultimately have v-mi-eqg-zi: v mod m i = [:x §]
by (auto simp: cong-def introl: mod-poly-less)
have zi-pow-zi: [:z $ ©:] "TCARD(’a) = [:z $ i:] by (simp add: poly-const-pow)
hence (v mod m i) "CARD('a) = v mod m i using v-mi-eg-xi by auto
hence (v mod m i) "CARD('a) = (v CARD('a) mod m 1)
by (metis mod-mod-trivial power-mod)
thus [v = CARD(’a) = v] (mod y) unfolding mi cong-def v-mi-eq-zi xi-pow-zi
by simp
next
fix p! p2 assume p! € P and p2 € P and p! # p2
then show Rings.coprime p1 p2
using coprime-polynomial-factorization|OF P finite-P] by auto
qed
show degree v < degree u using deg-v deg-sum-eq degree-prod by presburger
show x = vec n (Ai. coeff (v mod m i) 0)
proof (unfold vec-eq-iff, rule conjI)
show dim-vec x = dim-vec (vec n (Ni. coeff (v mod m i) 0)) using z n by
stmp
show V i<dim-vec (vec n (Ai. coeff (v mod m i) 0)). z $ i = vec n (\i.
coeff (v mod mi)0)$ i
proof (auto)
fix ¢ assume i: { < n
have deg-mi: irreducible (m i) using ¢ P-m P by auto

240

have deg-v-mi: degree (v mod m i) = 0
proof (rule degree-u-mod-irreducibleq-factor-0[OF - finite-P u-desc-square-free

P))
show v € {v. [v = CARD('a) = v] (mod u)} using v by fast
show m ¢ € P using P-m i by auto
qed
have v mod m i = [:z $ i:] mod m i using v-z-cong i unfolding cong-def
by auto
also have ... = [z $ 4] using deg-mi by (auto introl: mod-poly-less)
finally show z $ i = coeff (v mod m i) 0 by simp
qed
qed
qed
qed
ultimately show ?thesis unfolding bij-betw-def n by auto
qed

lemma fin-dim-kernel-berlekamp: V.fin-dim

proof —
have finite (set (find-base-vectors (berlekamp-resulting-mat u))) by auto
moreover have set (find-base-vectors (berlekamp-resulting-mat w)) C carrier V
and V.gen-set (set (find-base-vectors (berlekamp-resulting-mat w)))

using berlekamp-resulting-mat-basis[of u] unfolding V.basis-def by auto

ultimately show ?thesis unfolding V.fin-dim-def by auto

qed

lemma Berlekamp-subspace-fin-dim: Berlekamp-subspace.fin-dim
proof (rule linear-map.surj-fin-dim[OF linear-map-Poly-list-of-vec])
show (Poly o list-of-vec) * carrier V. = carrier W
using surj-Poly-list-of-vec|OF deg-u0] by auto
show V.fin-dim by (rule fin-dim-kernel-berlekamp)
qed

context
fixes P
assumes finite-P: finite P
and u-desc-square-free: u = ([] a€P. a)
and P: P C {q. irreducible ¢ A monic q}
begin

interpretation RV: vec-space TYPE('a mod-ring) card P .

lemma Berlekamp-subspace-eq-dim-vec: Berlekamp-subspace.dim = RV .dim
proof —
obtain f where Im-f: linear-map class-ring W (module-vec TYPE(’a mod-ring)
(card P)) f
and bij-f: bij-betw f (carrier W) (carrier-vec (card P)::'a mod-ring vec set)
using exists-bijective-linear-map-W-vec|OF finite-P u-desc-square-free P| by
blast

241

show ?thesis
proof (rule linear-map.dim-eq[OF Im-f Berlekamp-subspace-fin-dim))
show inj-on f (carrier W) by (rule bij-betw-imp-inj-on| OF bij-f])
show f ¢ carrier W = carrier RV.V using bij-f unfolding bij-betw-def by
auto
qed
qed

lemma Berlekamp-subspace-dim: Berlekamp-subspace.dim = card P
using Berlekamp-subspace-eq-dim-vec RV .dim-is-n by simp

corollary card-berlekamp-basis-number-factors: card (set (berlekamp-basis u)) =
card P
unfolding Berlekamp-subspace-dim[symmetric]
by (rule Berlekamp-subspace.dim-basis[symmetric], auto simp add: berlekamp-basis-basis)

lemma length-berlekamp-basis-numbers-factors: length (berlekamp-basis u) = card
P
using card-set-berlekamp-basis card-berlekamp-basis-number-factors by auto

end
end
end
end

context
assumes SORT-CONSTRAINT('a :: prime-card)
begin

context
fixes f :: 'a mod-ring poly and n
assumes sf: square-free f
and n: n = length (berlekamp-basis f)
and monic-f: monic f
begin
lemma berlekamp-basis-length-factorization: assumes f: f = prod-list us
and d: A\ u. u € set us = degree u > 0
shows length us < n
proof (cases degree f = 0)
case True
have us = []
proof (rule ccontr)
assume us # []
from this obtain u where u: u € set us by fastforce
hence deg-u: degree w > 0 using d by auto
have degree f = degree (prod-list us) unfolding f ..

242

also have ... = sum-list (map degree us)
proof (rule degree-prod-list-eq)
fix p assume p: p € set us
show p # 0 using d[OF p] degree-0 by auto
qed
also have ... > degree u by (simp add: member-le-sum-list u)
finally have degree f > 0 using deg-u by auto
thus Fulse using True by auto
qed
thus %thesis by simp
next
case Fulse
hence f-not-0: f # 0 using degree-0 by fastforce
obtain P where fin-P: finite P and f-P: f = [[P and P: P C {p. irreducible
p A monic p}
using monic-square-free-irreducible-factorization| OF monic-f sf] by auto
have n-card-P: n = card P
using P False f-P fin-P length-berlekamp-basis-numbers-factors n by blast
have distinct-us: distinct us using d f sf square-free-prod-list-distinct by blast
let 2us’=(map normalize us)
have distinct-us’: distinct 2us’
proof (auto simp add: distinct-map)
show distinct us by (rule distinct-us)
show inj-on normalize (set us)
proof (auto simp add: inj-on-def, rule ccontr)
fix r y assume z: z € set us and y: y € set us and n: normalize x =
normalize y
and z-not-y: ¢ #£ y
from normalize-eq-imp-smult| OF n]
obtain ¢ where c0: ¢ # 0 and y-smult: y = smult ¢ x by blast
have sf-zy: square-free (xxy)
proof (rule square-free-factor|OF - sf])
have zxy = prod-list [x,y] by simp
also have ... dvd prod-list us
by (rule prod-list-dvd-prod-list-subset, auto simp add: x y z-not-y distinct-us)

also have ... = f unfolding f ..
finally show z x y dvd f .
qged

have z x y = smult ¢ (zxx) using y-smult mult-smult-right by auto
hence sf-smult: square-free (smult ¢ (z*z)) using sf-zy by auto
have xxz dvd (smult ¢ (x*z)) by (simp add: dvd-smult)
hence - square-free (smult ¢ (zxx))
by (metis d square-free-def)
thus Fulse using sf-smult by contradiction
qed

qed

have length-us-us’: length us = length ?us’ by simp

have f-us”: f = prod-list ?us’

proof —

243

have f = normalize f using monic-f f-not-0 by (simp add: normalize-monic)

also have ... = prod-list ?us’ by (unfold f, rule prod-list-normalize|of us])
finally show ?thesis .
qed

have 3 Q. prod-list Q = prod-list ?us’ A length ?us’ < length Q
A (Vu. u € set Q — irreducible u A monic u)
proof (rule exists-factorization-prod-list)
show degree (prod-list ?us’) > 0 using Fualse f-us’ by auto
show square-free (prod-list ?us’) using f-us’ sf by auto
fix v assume u: u € set Zus’
have u-not0: v # 0 using d u degree-0 by fastforce
have degree u > 0 using d u by auto
moreover have monic u using u monic-normalize[OF u-not0] by auto
ultimately show degree u > 0 A monic u by simp
qed
from this obtain @
where Q-us’: prod-list Q = prod-list ?us’
and length-us’-Q: length ?us’ < length @
and Q: (Vu. u € set QQ — drreducible uw A monic u)
by blast
have distinct-Q: distinct Q
proof (rule square-free-prod-list-distinct)
show square-free (prod-list Q) using Q-us’ f-us’ sf by auto
show Au. u € set Q = degree u > 0 using @ irreducible-degree-field by auto
qed
have set-Q-P: set Q = P
proof (rule monic-factorization-uniqueness)
show [](set Q) = [[P using Q-us’
by (metis distinct-Q f-P f-us’ list.map-ident prod.distinct-set-conv-list)
qed (insert P @Q fin-P, auto)
hence length () = card P using distinct-Q distinct-card by fastforce
have length us = length ?us’ by (rule length-us-us")
also have ... < length Q using length-us’-Q by auto

also have ... = card (set Q) using distinct-card[OF distinct-Q] by simp
also have ... = card P using set-Q-P by simp
finally show ?thesis using n-card-P by simp

qed

lemma berlekamp-basis-irreducible: assumes f: f = prod-list us

and n-us: length us = n

and us: \ u. u € set us = degree u > 0

and u: u € set us

shows irreducible u
proof (fold irreducible-connect-field, intro irreduciblegI[OF us|OF ul])

fix g r :: 'a mod-ring poly

assume dq: degree ¢ > 0 and qu: degree q < degree v and dr: degree r > 0 and
ugr: u = q x T

with us[OF u] have ¢: ¢ # 0 and r: r # 0 by auto

from split-list{OF u] obtain xs ys where id: us = zs @ u # ys by auto

244

let 2us = 2s Q q # r # ys
have f: f = prod-list ?us unfolding f id uqr by simp
{
fix z
assume z € set 7us
with us[unfolded id] dr dg have degree z > 0 by auto
}
from berlekamp-basis-length-factorization| OF f this]
have length ?us < n by simp
also have ... = length us unfolding n-us by simp
also have ... < length ?us unfolding id by simp
finally show Fulse by simp
qed
end

lemma not-irreducible-factor-yields-prime-factors:
assumes uf: u dvd (f :: 'b :: {field-ged} poly) and fin: finite P
and fP: f = [[P and P: P C {q. irreducible ¢ A monic ¢}
and u: degree u > 0 — irreducible u
shows 3 pipj. pi € PN pj € P A pi#pjApidvoduA pjdvdu
proof —
from finite-distinct-list{OF fin] obtain ps where Pps: P = set ps and dist:
distinct ps by auto
have fP: f = prod-list ps unfolding fP Pps using dist
by (simp add: prod.distinct-set-conv-list)
note P = Plunfolded Pps]
have set ps C P unfolding Pps by auto
from uf[unfolded fP] P dist this
show ?thesis
proof (induct ps)
case Nil
with v show ?case using divides-degree[of u 1] by auto
next
case (Cons p ps)
from Cons(3) have ps: set ps C {q. irreducible ¢ A monic ¢} by auto
from Cons(2) have dvd: u dvd p * prod-list ps by simp
obtain k£ where gcd: v = ged p u * k by (meson dvd-def ged-dvd2)
from Cons(3) have x: monic p irreducible p p # 0 by auto
from monic-irreducible-ged|OF *(1), of u] %(2)
have gcd p u = 1 V ged p u = p by auto
thus ?case
proof
assume ged p u = 1
then have Rings.coprime p u
by (rule gcd-eq-1-imp-coprime)
with dvd have u dvd prod-list ps
using coprime-dvd-mult-right-iff coprime-imp-coprime by blast
from Cons(1)[OF this ps] Cons(4—5) show ?thesis by auto
next

245

assume ged p u = p
with gcd have upk: u = p x k by auto
hence p: p dvd u by auto
from dvd[unfolded upk] x(3) have kps: k dvd prod-list ps by auto
from dvd u * have dk: degree k > 0
by (metis grol irreducible-mult-unit-right is-unit-iff-degree mult-zero-right
upk)
from ps kps have 3 ¢ € set ps. q dvd k
proof (induct ps)
case Nil
with dk show ?case using divides-degree[of k 1] by auto
next
case (Cons p ps)
from Cons(3) have dvd: k dvd p * prod-list ps by simp
obtain [where ged: k = ged p k * | by (meson dvd-def ged-dvd2)
from Cons(2) have *: monic p irreducible p p # 0 by auto
from monic-irreducible-gcd[OF (1), of k] *(2)
have ged p k = 1 V ged p k = p by auto
thus ?case
proof
assume ged p k = 1
with dvd have k dvd prod-list ps
by (metis dvd-triv-left ged-greatest-mult mult.left-neutral)
from Cons(1)[OF - this] Cons(2) show ?thesis by auto
next
assume ged p k= p
with gcd have upk: k = p * [by auto
hence p: p dvd k by auto
thus ?thesis by auto
qed
qed
then obtain ¢ where ¢: ¢ € set ps and dvd: q dvd k by auto
from dvd upk have qu: q dvd u by auto
from Cons(4) g have p # ¢ by auto
thus %thesis using ¢ p qu Cons(5) by auto
qed
qged
qed

lemma berlekamp-factorization-main:

fixes f::'a mod-ring poly

assumes sf-f: square-free f
and vs: vs = vsl Q vs2
and vsf: vs = berlekamp-basis f
and n-bb: n = length (berlekamp-basis f)
and n: n = length usl + n2
and us: us = usl @Q berlekamp-factorization-main d divs vs2 n2
and usi: \ u. u € set usl = monic u A irreducible u
and divs: A\ d. d € set divs = monic d A degree d > 0

246

and vsl: A wvi. v € set vsl = u € set usl U set divs
— i < CARD('a) = gcd u (v — [:0f-nat i:]) € {1,u}
and f: f = prod-list (us1 Q divs)
and deg-f: degree f > 0
and d: A\ ¢. g dvd f = degree g = d = irreducible g
shows [= prod-list us A (V u € set us. monic u A irreducible u)
proof —
have mon-f: monic f unfolding f
by (rule monic-prod-list, insert divs usl, auto)
from monic-square-free-irreducible-factorization| OF mon-f sf-f] obtain P where
P: finite P f =] P P C {q. irreducible ¢ A monic ¢} by auto
hence f0: f # 0 by auto
show ?thesis
using vs n us divs f usl vsli
proof (induct vs2 arbitrary: divs n2 usl vsl)
case (Cons v vs2)
show ?case
proof (cases v = 1)
case Fulse
from Cons(2) vsf have v: v € set (berlekamp-basis f) by auto
from berlekamp-basis-eq-8[OF this] have uf: [v =~ CARD('a) = v] (mod f) .
let ?gcd = X wi. ged u (v — [:of-int i:])
let ?gcdn = X wi. ged u (v — [:of-nat i:])
let ?map = X u. (map (X i. 29¢d u 7) [0 ..< CARD('a)])
define udivs where udivs = X u. filter (A w. w # 1) (?map u)
{
obtain zs where zs: [0..< CARD('a)] = zs by auto
have udivs = (A u. [w. i + [0 ..< CARD('a)], w < [?gcd u i], w # 1])
unfolding udivs-def s
by (intro ext, auto simp: o-def, induct zs, auto)
} note udivs-def’ = this
define facts where facts = [w . u + divs, w < udivs u]
{
fix u
assume u: u € set divs
then obtain bef aft where divs: divs = bef @ u # aft by (meson split-list)
from Cons(5)[OF u] have mon-u: monic u by simp
have uf: u dvd f unfolding Cons(6) divs by auto
from of uf have vu: [v = CARD('a) = v] (mod u) by (rule cong-dvd-modulus-poly)
from square-free-factor|OF uf sf-f] have sf-u: square-free u .
let 29 = %gcd u
from mon-u have u0: v # 0 by auto
have u = ([[c€ UNIV. ged u (v — [:¢]))
using Berlekamp-gcd-step[OF vu mon-u sf-u] .
also have ... = (J[[7 € {0..< int CARD('a)}. %g i)
by (rule sym, rule prod.reindez-cong| OF to-int-mod-ring-hom.inj-f range-to-int-mod-ring[symmetric],
simp add: of-int-of-int-mod-ring)
finally have u-prod: v = ([[¢ € {0..< int CARD("a)}. %g i) .
let 25 = {0..<int CARD("a)} — {i. ?gi =1}

247

{
fix 7

assume i € 25
hence ?g i # 1 by auto
moreover have mgi: monic (?g 7) by (rule poly-ged-monic, insert u0,
auto)
ultimately have degree (g i) > 0
using monic-degree-0 by blast
note this mgi
} note ¢S = this

have int-set: int ‘ set [0.<CARD('a)] = {0 ..< int CARD('a)}
by (simp add: image-int-atLeastLess Than)

have inj: inj-on ?g ¢S unfolding inj-on-def
proof (intro balll impI)
fix 7j
assume 7: { € ?S and j: j € 25 and gij: %gi = %9]
show i = j
proof (rule ccontr)
define S where S = {0..<int CARD('a)} — {i,j}
have id: {0..<int CARD('a)} = (insert i (insert j S)) and S: i ¢ Sj ¢
S finite S
using 7 j unfolding S-def by auto
assume 7j: | # j
have v = ([[¢ € {0..< int CARD('a)}. ?g i) by fact

also have ... = 2gix 29§« (J[[i € S. %9 7)
unfolding id using S ij by auto
also have ... = %gix %94 x ([[¢ € S. %g ©) unfolding g¢ij by simp

finally have dvd: ?g i * ?g i dvd v unfolding dvd-def by auto
with sf-u[unfolded square-free-def, THEN conjunct2, rule-format, OF

gS(1)[OF)
show Fulse by simp
qed
qed
have v = ([]i € {0..< int CARD(’a)}. %9 i) by fact
also have ... = ([[i € %S. %9 1)
by (rule sym, rule prod.setdiff-irrelevant, auto)
also have ... =[] (set (udivs u)) unfolding udivs-def set-filter set-map

by (rule sym, rule prod.reindex-conglof ?g, OF inj - refl], auto simp:
int-set[symmetric])
finally have u-udivs: v = [] (set (udivs w)) .
{
fix w
assume mem: w € set (udivs u)
then obtain 7 where w: w = %g 7 and i: ¢ € 25
unfolding udivs-def set-filter set-map int-set by auto
have wu: w dvd u by (simp add: w)

248

let v = X\ j. v — [:of-nat j]
define j where j = nat i
from ¢ have j: of-int i = (of-nat j :: 'a mod-ring) j < CARD(’a) unfolding
j-def by auto
from ¢S[OF i, folded w] have x: degree w > 0 monic w w # 0 by auto
from w have w dvd ?v j using j by simp
hence gedj: ?gedn w j = w by (metis ged.commute ged-left-idem j(1) w)
{
fix j'
assume j": j' < CARD('a)
have ?gcdn w j' € {1,w}
proof (rule ccontr)
assume not: ?gedn wj’ ¢ {1,w}
with gcdj have neq: int j' # int j by auto

let ?h = ?gcdn w j’
from «(3) not have deg: degree ?h > 0
using monic-degree-0 poly-gcd-monic by auto
have hw: ?h dvd w by auto
have ?h dvd ?gcdn u j' using wu using dvd-trans by auto
also have ?gcdn u j' = ?g j' by simp
finally have hj": ?h dvd ?g j' by auto
from divides-degree| OF this] deg u0 have degj” degree (?g j') > 0 by
auto
hence j'1: ?g j' # 1 by auto
with j' have mem”. ?g j’ € set (udivs u) unfolding udivs-def by auto
from degj’ j' have j'S: int j' € 2S5 by auto
from ¢ j have jS: int j € 25 by auto
from inj-on-contraD|OF inj neq j'S jS]
have neq: w # ?g j' using w j by auto
have cop: = coprime w (?g j') using hj’ hw deg
by (metis coprime-not-unit-not-dvd poly-dvd-1 Nat.neq0-conv)
obtain w’ where w’: ?g j' = w’ by auto
from wu-udivs sf~u have square-free (]| (set (udivs u))) by simp
from square-free-prodD|OF this finite-set mem mem’] cop neq
show Fulse by simp
qed

from ¢S[OF i, folded w] i this
have degree w > 0 monic w N\ j. j < CARD('a) = ?gcdn w j € {1,w}
by auto
} note udivs = this
let %is = filter (X i. 294 # 1) (map int [0 ..< CARD('a)])
have id: udivs v = map ?q ?is
unfolding udivs-def filter-map o-def ..
have dist: distinct (udivs u) unfolding id distinct-map
proof (rule conjI[OF distinct-filter], unfold distinct-map)
have 25 = set ?is unfolding int-set[symmetric] by auto
thus inj-on ?g (set ?%is) using inj by auto

249

qed (auto simp: inj-on-def)
from w-udivs prod.distinct-set-conv-list|OF dist, of id|
have prod-list (udivs u) = u by auto
note udivs this dist
} note udivs = this
have facts: facts = concat (map udivs divs)
unfolding facts-def by auto
obtain lin nonlin where part: List.partition (A q. degree ¢ = d) facts =
(lin,nonlin)
by force
from Cons(6) have f = prod-list usl * prod-list divs by auto
also have prod-list divs = prod-list facts unfolding facts using udivs(4)
by (induct divs, auto)
finally have f: f = prod-list us1 * prod-list facts .
note facts’ = facts
{
fix u
assume u: u € set facts
from ufunfolded facts| obtain v’ where v u’ € set divs and u: u € set
(udivs u') by auto
from v’ udivs(1—2)[OF u' u] prod-list-dvd| OF u, unfolded udivs(4)[OF u]]
have degree u > 0 monic v 3 u’' € set divs. u dvd v’ by auto
} note facts = this
have notl: (v = 1) = False using False by auto
have us = us! Q (if length divs = n2 then divs
else let (lin, nonlin) = List.partition (\q. degree ¢ = d) facts
in lin @Q berlekamp-factorization-main d nonlin vs2 (n2 — length lin))
unfolding Cons(4) facts-def udivs-def’ berlekamp-factorization-main.simps
Let-def notl if-False
by (rule arg-cong[where f = X\ x. usl @ z], rule if-cong, simp-all)
hence res: us = usl Q (if length divs = n2 then divs else
lin @ berlekamp-factorization-main d nonlin vs2 (n2 — length lin))
unfolding part by auto
show ?thesis
proof (cases length divs = n2)
case Fulse
with res have us: us = (us! Q lin) Q berlekamp-factorization-main d nonlin
vs2 (n2 — length lin)
by auto
from Cons(2) have vs: vs = (vsl @ [v]) @ vs2 by auto
have f: f = prod-list ((us! Q lin) @ nonlin)
unfolding f using prod-list-partition|OF part] by simp
{
fix u
assume u € set ((us! Q lin) @ nonlin)
with part have u € set facts U set usl by auto
with facts Cons(7) have degree u > 0 by (auto simp: irreducible-degree-field)
} note deg = this
from berlekamp-basis-length-factorization] OF sf-f n-bb mon-f f deg, unfolded

250

Cons(3)]

auto

have n2 > length lin by auto
hence n: n = length (us! Q lin) + (n2 — length lin)
unfolding Cons(3) by auto
show ?thesis
proof (rule Cons(1)[OF vs n us - f])
fix u
assume u € set nonlin
with part have u € set facts by auto
from facts|OF this] show monic u A degree u > 0 by auto
next
fix u
assume u: u € set (usl Q lin)
{
assume *: - (monic u A irreducibleg u)
with Cons(7) u have u € set lin by auto
with part have uf: u € set facts and deg: degree uw = d by auto
from facts|OF uf] obtain v’ where u’ € set divs and uu’: u dvd u’ by

from this(1) have u’ dvd f unfolding Cons(6) using prod-list-dvd[of

u’] by auto

with wu’ have u dvd f by (rule dvd-trans)
from facts|OF uf] d[OF this deg] * have False by auto

thus monic u A irreducible u by auto
next
fix wui
assume w: w € set (vsl Q [v])
and u: u € set (us! Q@ lin) U set nonlin
and i: i < CARD('a)
from u part have u: u € set usl U set facts by auto
show gcd v (w — [:of-nat i:]) € {1, u}
proof (cases u € set usl)
case True
from Cons(7)[OF this] have monic u irreducible u by auto
thus ?thesis by (rule monic-irreducible-ged)
next
case Fulse
with v have u: u € set facts by auto
show ?thesis
proof (cases w = v)
case True
from ul[unfolded facts’] obtain v’ where u: u € set (udivs u’)
and u”: v’ € set divs by auto
from udivs(3)[OF u’ u i| show ?thesis unfolding True .
next
case Fulse
with w have w: w € set vs1 by auto
from u obtain u’ where u” u’ € set divs and dvd: u dvd v’

251

using facts(3)[of u] dvd-refl[of u] by blast
from w have w € set vs1 V w = v by auto
from facts(1—2)[OF u] have u: monic u by auto
from Cons(8)[OF w - i] u’
have gcd u' (w — [zof-nat i:]) € {1, u'} by auto
with dvd u show ?thesis by (rule monic-ged-dud)
qed
qed
qed
next
case True
with res have us: us = us! Q divs by auto
from Cons(3) True have n: n = length us unfolding us by auto
show ?thesis unfolding us[symmetric]
proof (intro conjl balll)
show f: f = prod-list us unfolding us using Cons(6) by simp
{
fix u
assume u € set us
hence degree u > 0 using Cons(5) Cons(7)[unfolded irreducibleq-def]
unfolding us by (auto simp: irreducible-degree-field)
} note deg = this
fix u
assume u: u € set us
thus monic u unfolding us using Cons(5) Cons(7) by auto
show irreducible u
by (rule berlekamp-basis-irreducible|OF sf-f n-bb mon-f f n[symmetric]
deg u])
qed
qed
next
case True
with Cons(4) have us: us = usl Q berlekamp-factorization-main d divs vs2
n2 by simp
from Cons(2) True have vs: vs = (vs1 Q [1]) @ vs2 by auto
show ?thesis
proof (rule Cons(1)[OF vs Cons(3) us Cons(5—7)], goal-cases)
case (3 v u i)
show Zcase
proof (cases v = 1)
case Fulse
with 8 Cons(8)[of v u {] show ?thesis by auto
next
case True
hence deg: degree (v — [of-nat i :]) = 0
by (metis (no-types, opaque-lifting) degree-pCons-0 diff-pCons diff-zero
pCons-one)
from 3(2) Cons(5,7)[of u] have monic u by auto
from gcd-monic-constant|OF this deg] show %thesis .

252

qged
qed
qed
next
case Nil
with vsf have vs!: vs! = berlekamp-basis f by auto
from Nil(3) have us: us = usl @Q divs by auto
from Nil(4,6) have md: A\ u. u € set us = monic u A degree u > 0
unfolding us by (auto simp: irreducible-degree-field)
from Nil(7)[unfolded vs1] us
have no-further-splitting-possible:
N uwvi. v € set (berlekamp-basis f) = u € set us
= i < CARD('a) = gcd u (v — [:0f-nat i:]) € {1, u} by auto
from Nil(5) us have prod: f = prod-list us by simp
show ?Zcase
proof (intro conjl balll)
fix u
assume u: u € set us
from md[OF this] have mon-u: monic v and deg-u: degree u > 0 by auto
from prod v have uf: u dvd f by (simp add: prod-list-dvd)
from monic-square-free-irreducible-factorization|OF mon-f sf-f] obtain P
where
P: finite P f = [[P P C {q. irreducible ¢ A monic q} by auto
show irreducible u
proof (rule ccontr)
assume irr-u: - irreducible u
from not-irreducible-factor-yields-prime-factors|OF uf P deg-u this]
obtain pi pj where pij: pi € P pj € P pi # pj pi dvd u pj dvd u by blast
from exists-vector-in-Berlekamp-basis-dvd[OF
deg-f berlekamp-basis-basis|OF deg-f, folded vs1] finite-set
P pij(1—=3) mon-f sf-f irr-u uf mon-u pij(4—5), unfolded vs1]
obtain v s where v: v € set (berlekamp-basis f)
and ged: ged u (v — [:s:]) € {1,u} using is-unit-gcd by auto
from surj-of-nat-mod-ring|of s] obtain ¢ where i: i < CARD('a) and s: s
= of-nat i by auto
from no-further-splitting-possible] OF v u i] ged[unfolded s]
show Fulse by auto
qed
qed (insert prod md, auto)
qed
qed

lemma berlekamp-monic-factorization:
fixes f::’a mod-ring poly
assumes sf-f: square-free f
and us: berlekamp-monic-factorization d f = us
and d: A\ ¢. g dvd f = degree g = d = irreducible g
and deg: degree f > 0
and mon: monic f

253

shows f = prod-list us A (¥ u € set us. monic u A irreducible u)
proof —
from us|unfolded berlekamp-monic-factorization-def Let-def] deg

have us: us = [| @ berlekamp-factorization-main d [f] (berlekamp-basis f) (length
(berlekamp-basis f))
by (auto)

have id: berlekamp-basis f = [| @ berlekamp-basis f
length (berlekamp-basis) = length [| + length (berlekamp-basis f)
[= prod-list ([@ [f])
by auto
show f = prod-list us A (V u € set us. monic u A irreducible u)
by (rule berlekamp-factorization-main| OF sf-f id(1) refl refl id(2) us - - - id(3)],
insert mon deg d, auto)
qed
end

end

7 Distinct Degree Factorization

theory Distinct-Degree-Factorization

imports
Finite-Field
Polynomial-Factorization.Square-Free- Factorization
Berlekamp-Type-Based

begin

definition factors-of-same-degree :: nat = 'a :: field poly = bool where
factors-of-same-degree i f = (i # 0 A degree f # 0 N\ monic f A (V¥ g. irreducible
g — g dvd f — degree g = 7))

lemma factors-of-same-degreeD: assumes factors-of-same-degree i f
shows i # 0 degree f # 0 monic f g dvd f = irreducible g = (degree g = 1)
proof —
note x = assms[unfolded factors-of-same-degree-def]
show i: i # 0 and f: degree f # 0 monic f using * by auto
assume ¢f: g dvd f
with x have irreducible ¢ => degree g = i by auto
moreover
{
assume xx: degree g = i — irreducible g
with irreducibleq-factor[of g] i obtain h1 h2 where irr: irreducible h1 and
gh: g = h1 % h2
and deg-h2: degree h2 < degree g by auto
from xx ¢ have ¢g0: g # 0 by auto
from gf gh g0 have hi dvd f using dvd-mult-left by blast
from x f this irr have deg-h: degree h1 = i by auto
from arg-cong[OF gh, of degree] g0 have degree g = degree h1 + degree h2
by (simp add: degree-mult-eq gh)

254

with #x(1) deg-h have degree h2 = 0 by auto
from degree0-coeffs|OF this] obtain ¢ where h2: h2 = [:c:] by auto
with gh g0 have g: g = smult ¢ h1 ¢ # 0 by auto
with érr xx(2) irreducible-smult-field[of ¢ h1] have False by auto
}
ultimately show irreducible g = (degree g = i) by auto
qed

hide-const order
hide-const up-ring.monom

theorem (in field) finite-field-mult-group-has-gen2:
assumes finite:finite (carrier R)
shows Ja € carrier (mult-of R). group.ord (mult-of R) a = order (mult-of R)
A carrier (mult-of R) = {a[)i | i:nat . i € UNIV}
proof —
note mult-of-simps[simp)
have finite”: finite (carrier (mult-of R)) using finite by (rule finite-mult-of)

interpret G: group mult-of R rewrites

([Tmult—ofR) = ((["]) = - = nat = -) and Linuit-of R = 1
by (rule field-mult-group) (simp-all add: fun-eg-iff nat-pow-def)

let 2N = X z . card {a € carrier (mult-of R). group.ord (mult-of R) a = x}

have 0 < order R — 1 unfolding Coset.order-def using card-mono|[OF finite,
of {0, 1}] by simp

then have *: 0 < order (mult-of R) using assms by (simp add: order-mult-of)

have fin: finite {d. d dvd order (mult-of R) } using dvd-nat-bounds[OF x| by
force

have (3> d | d dvd order (mult-of R). ?N d)
= card (UN d:{d . d dvd order (mult-of R) }. {a € carrier (mult-of R).
group.ord (mult-of R) a = d})
(is - = card ?U)
using fin finite by (subst card-UN-disjoint) auto
also have ?U = carrier (mult-of R)
proof
{ fix = assume z:z € carrier (mult-of R)
hence z:z€carrier (mult-of R) by simp
then have group.ord (mult-of R) x dvd order (mult-of R)
using finite’ G.ord-dvd-group-order|OF z'| by (simp add: order-mult-of)
hence z € ?U using dvd-nat-bounds[of order (mult-of R) group.ord (mult-of
R) z] z by blast
} thus carrier (mult-of R) C ?U by blast
qed auto
also have card ... = Coset.order (mult-of R)

255

using order-mult-of finite’ by (simp add: Coset.order-def)
finally have sum-Ns-eq: (3. d | d dvd order (mult-of R). ?N d) = order (mult-of
R) .

{ fix d assume d:d dvd order (mult-of R)
have card {a € carrier (mult-of R). group.ord (mult-of R) a = d} < phi’ d
proof cases
assume card {a € carrier (mult-of R). group.ord (mult-of R) a = d} = 0
thus ?thesis by presburger
next
assume card {a € carrier (mult-of R). group.ord (mult-of R) a = d} # 0
hence Ja € carrier (mult-of R). group.ord (mult-of R) a = d by (auto simp:
card-eq-0-iff)
thus ?thesis using num-elems-of-ord-eq-phi’|OF finite d] by auto
qed

hence all-le:\i. i € {d. d dvd order (mult-of R) }
= (\i. card {a € carrier (mult-of R). group.ord (mult-of R) a = i}) i <
(M\i. phi’ i) i by fast
hence le:(> i | i dvd order (mult-of R). ?N 1)
< (32| i dvd order (mult-of R). phi’ 7)
using sum-monolof {d . d dvd order (mult-of R)}
Ai. card {a € carrier (mult-of R). group.ord (mult-of R) a = i}] by
presburger
have order (mult-of R) = (>_ d | d dvd order (mult-of R). phi’ d) using x
by (simp add: sum-phi’-factors)
hence eq:(>" i | ¢ dvd order (mult-of R). ?N 1)
= (D_i | i dvd order (mult-of R). phi’ 7) using le sum-Ns-eq by presburger
have Ai. i € {d. d dvd order (mult-of R) } = ?N i = (\i. phi’ @) i
proof (rule ccontr)
fix ¢
assume i1:{ € {d. d dvd order (mult-of R)} and ?N ¢ # phi’ i
hence ?Ni =0
using num-elems-of-ord-eq-phi'|OF finite, of i] by (auto simp: card-eq-0-iff)
moreover have 0 < i using * il by (simp add: dvd-nat-bounds|of order
(mult-of R) i])
ultimately have ?N i < phi’ i using phi’-nonzero by presburger
hence (> i | i dvd order (mult-of R). ?N i)
< (32| i dvd order (mult-of R). phi’ i)
using sum-strict-mono-ex1[OF fin, of ?N X\ i . phi’]
i1 all-le by auto
thus Fulse using eq by force
qed
hence ?N (order (mult-of R)) > 0 using * by (simp add: phi’-nonzero)
then obtain a¢ where a:a € carrier (mult-of R) and a-ord:group.ord (mult-of
R) a = order (mult-of R)
by (auto simp add: card-gt-0-iff)
hence set-eq:{a[)i | i::nat. i € UNIV} = (Az. a[Jz) ‘{0 .. group.ord (mult-of
R)a— 1}

256

using G.ord-elems|[OF finite'] by auto
have card-eq:card ((Az. a[Jz) ‘{0 .. group.ord (mult-of R) a — 1}) = card {0
.. group.ord (mult-of R) a — 1}
by (intro card-image G.ord-inj finite’ a)
hence card (A z . o[|z) {0 .. group.ord (mult-of R) a — 1}) = card {0 ..order
(mult-of R) — 1}
using assms by (simp add: card-eq a-ord)
hence card-R-minus-1:card {a[)i | iz:nat. ¢ € UNIV} = order (mult-of R)
using * by (subst set-eq) auto
have #x:{a[7]¢ | i::nat. i € UNIV} C carrier (mult-of R)
using G.nat-pow-closed|OF a] by auto
with - have carrier (mult-of R) = {a[Ji|iznat. i € UNIV}
by (rule card-seteq[symmetric]) (simp-all add: card-R-minus-1 finite Coset.order-def
del: UNIV-I)
thus “thesis using a a-ord by blast
qed

lemma add-power-prime-poly-mod-ring[simp):
fixes z :: ‘a::{prime-card} mod-ring poly
shows (z + y) ~ CARD('a) ™ n =z ~ (CARD('a) ™n) + y =~ CARD('a) ™n
proof (induct n arbitrary: z y)
case ()
then show “case by auto
next
case (Suc n)
define p where p: p = CARD('a)
have (z + y) "p " Sucn= (z+y) " (p*pn) by simp

also have ... = ((z + y) "p) " (p™n)
by (simp add: power-mult)
also have ... = (z7p + y») " (p"™n)
by (simp add: add-power-poly-mod-ring p)
also have ... = (z™p) (p™n) + (y"p) (p™n) using Suc.hyps unfolding p by
auto
also have ... = 2z (p(n+1)) + y (p(n+1)) by (simp add: power-mult)
finally show ?case by (simp add: p)
qged

lemma fermat-theorem-mod-ring2|simpl:
fixes a::'a::{prime-card} mod-ring
shows a = (CARD('a) "™n) = a
proof (induct n arbitrary: a)
case (Suc n)
define p where p = CARD('a)
have a« “p “Sucn=a " (p* (p " n)) by simp
also have ... = (¢ " p) "(p " n) by (simp add: power-mult)
also have ... = ¢ (p ~ n) using fermat-theorem-mod-ring[of o p] unfolding

257

p-def by auto

also have ... = a using Suc.hyps p-def by auto
finally show ?case by (simp add: p-def)
qed auto

lemma fermat-theorem-power-poly|simp]:
fixes a::'a:prime-card mod-ring
shows [:a:] = CARD('a:prime-card) ~n = [:a:]
by (auto simp add: Missing-Polynomial.poly-const-pow mod-poly-less)

lemma degree-prod-monom: degree ([[i = 0..<n. monom 1 1) = n
by (metis degree-monom-eq prod-pow z-pow-n zero-neg-one)

lemma degree-monom0|[simp]: degree (monom a 0) = 0 using degree-monom-le
by auto
lemma degree-monom0’[simp]: degree (monom 0 b) = 0 by auto

lemma sum-monom-mod:
assumes b < degree f
shows (> i<b. monom (g i) ©) mod f = (3 i<b. monom (g i))
using assms
proof (induct b)
case (
then show ?case by (auto simp add: mod-poly-less)
next
case (Suc b)
have hyp: (> i<b. monom (g i) i) mod f = (3. i<b. monom (g i) 1)
using Suc.prems Suc.hyps by simp
have rw-monom: monom (g (Suc b)) (Suc b) mod f = monom (g (Suc b)) (Suc
b)
by (metis Suc.prems degree-monom-eq mod-0 mod-poly-less monom-hom.hom-0-iff)
have rw: (3 i<Suc b. monom (g i) i) = (monom (g (Suc b)) (Suc b) + (>_ i<b.
monom (g i) 7))
by auto
have (> i<Suc b. monom (g) i) mod f
= (monom (g (Suc b)) (Suc b) + (3 i<b. monom (g i) i)) mod f using rw by
presburger
also have ... =((monom (g (Suc b)) (Suc b)) mod f) + (3 i<b. monom (g 7)

i) mod f)
using poly-mod-add-left by auto
also have ... = monom (g (Suc b)) (Suc b) + (3 i<b. monom (g i) i)
using hyp rw-monom by presburger
also have ... = (> i<Suc b. monom (g 7) i) using rw by auto
finally show ?Zcase .
qed

lemma z-power-ag-minus-1-rw:
fixes z::nat

258

assumes z: T > I
and a: a > 0
and b: b > 0

shows z “(a*xq) — 1 = ((z7a) — 1) * sum ((7) (z7a)) {..<q}

proof —

have za: (z ~ a) > 0 using z by auto

have int-rwl: int (zr " a) — 1 = int (x "a) — 1)
using za by linarith

have int-rw2: sum ((7) (int (z ~a))) {..<q} = int (sum (V) ((z " a))) {..<q})
unfolding int-sum by simp

have int (z ~a) ~ q = int (Suc ((z a) 1)) using za by auto
hence int ((z "a) “q— 1) = int (a) ~ q 1 usmg za by presburger
also have ... = (int (x " a) — 1) * sum ((7) (int (z ~a))) {..<q}
by (rule power-diff-1-eq)
also have ... = (int ((z "a) — 1)) * int (sum ((7) ((z ~a))) {..<q})
unfolding int-rwl int-rw2 by simp
also have ... = int (((z "a) — 1) * (sum ((7) ((z ~a))) {..<q})) by auto

finally have auz: int ((x ~a) "¢ — 1) =1int ((zx "a) — 1) x sum ((7) (z =
a) {.<a}) -
have z " (a*x q) — 1 = (27a) ¢ — 1
by (simp add: power-mult)
also have ... = ((z7a) — 1) * sum ((7) (z7a)) {..<q¢}
using aux unfolding int-int-eq .
finally show ?thesis .
qed

lemma dvd-power-minus-1-convl:
fixes z::nat
assumes z: > 1
and a: a > 0
and za-dvd: © "a — 1 dvd z7b — 1

and b0: b > 0
shows a dvd b
proof —

define r where r[simp]: r = b mod a
define ¢ where ¢[simp]: ¢ = b div a
have b: b = a ¥ ¢ + r by auto
have ra: r < a by (simp add: a)
hence zr-less-za: x "r — 1 <z " a — 1
using = power-strict-increasing-iff diff-less-mono x by simp
have dvd: © “a — 1 dvdz " (a x q) — 1
using z-power-ag-minus-1-rw[OF z o b0] unfolding dvd-def by auto
havez b — 1 =2 b—zr+az7r—1
using assms(1) assms(4) by auto
also have ... = z7r x (¢ (axq) — 1) + 2" r — 1
by (metis (no-types, lifting) b diff-mult-distrib2 mult.commaute nat-mult-1-right
power-add)
finally have 270 — 1 = 27r * (x (axq) — 1) + 2 r — 1 .
hence z “a — I dvdz "rx*x(z " (axq)— 1)+ x " r — 1 using za-dvd by

259

presburger
hence z7a — I dvd z7r — 1
by (metis (no-types) diff-add-inverse diff-commute dvd dvd-diff-nat dvd-trans
dvd-triv-right)
hence r = 0
using zr-less-za
by (meson nat-dvd-not-less neq0-conv one-less-power x zero-less-diff)
thus ?thesis by auto
qed

lemma dvd-power-minus-1-conv2:
fixes z::nat
assumes z: z > I
and a: a > 0
and a-dvd-b: a dvd b
and b0: b > 0
shows z “a — 1 dvd z7b — 1
proof —
define ¢ where ¢[simp]: ¢ = b div a
have b: b = a * ¢ using a-dvd-b by auto
have 270 — 1 = ((z "a) — 1) x sum ((7) (z ~a)) {..<q}
unfolding b by (rule z-power-ag-minus-1-rw][OF x a b0])
thus ?thesis unfolding dvd-def by auto
qed

corollary dvd-power-minus-1-conuv:
fixes x::nat
assumes z: > I
and a: a > 0
and b0: b > 0
shows a dvd b= (x “a — 1 dvd 2™ — 1)
using assms dvd-power-minus-1-convl dvd-power-minus-1-conv2 by blast

locale poly-mod-type-irr = poly-mod-type m TYPE('a::prime-card) for m +
fixes f::'a::{prime-card} mod-ring poly
assumes r7r-f: irreducibleg f

begin

definition plus-irr :: 'a mod-ring poly ='a mod-ring poly = 'a mod-ring poly
where plus-irr a b = (a + b) mod f

definition minus-irr :: 'a mod-ring poly ='a mod-ring poly = 'a mod-ring poly
where minus-irr x y = (x — y) mod f

260

definition uminus-irr :: ‘a mod-ring poly ='a mod-ring poly
where uminus-irr x = —x

definition mult-irr :: ‘a mod-ring poly ='a mod-ring poly = 'a mod-ring poly
where mult-irr z y = ((zxy) mod f)

definition carrier-irr :: 'a mod-ring poly set
where carrier-irr = {z. degree x < degree [}

definition power-irr :: 'a mod-ring poly = nat = 'a mod-ring poly
where power-irr p n = ((p"n) mod f)

definition R = (carrier = carrier-irr, monoid.mult = mult-irr, one = 1, zero =
0, add = plus-irr|

lemma degree-f[simp|: degree f > 0
using irr-f irreducibleaD(1) by blast

lemma element-in-carrier: (a € carrier R) = (degree a < degree f)
unfolding R-def carrier-irr-def by auto

lemma f-dvd-ab:
a=0Vb=20if fdvdaxb
and a: degree a < degree f
and b: degree b < degree f
proof (rule ccontr)
assume - (a =0 V b= 0)
then have ¢ # 0 and b # 0
by simp-all
with a b have — f dvd a and — f dvd b
by (auto simp add: mod-poly-less dvd-eq-mod-eq-0)
moreover from «f dvd a * b irr-f have f dvd a V f dvd b
by auto
ultimately show Fulse
by simp
qed

lemma ab-mod-f0:
a=0Vb=0ifaxbmodf =20
and a: degree a < degree f
and b: degree b < degree f
using that f-dvd-ab by auto

lemma irreducibleyD2:
fixes p q :: 'b::{ comm-semiring-1,semiring-no-zero-divisors} poly
assumes irreducibleg p
and degree q < degree p and degree q # 0
shows — ¢ dvd p

261

using assms irreducibleg-dvd-smult by force

lemma times-mod-f-1-imp-0:
assumes z: degree x < degree f
and z2: Vza. x x xa mod f = 1 — — degree za < degree f
shows z = 0
proof (rule ccontr)
assume z3: x # 0
let ?u = fst (bezout-coefficients f x)
let v = snd (bezout-coefficients f x)
have 7u * f + ?v x £ = gcd f x using bezout-coefficients-fst-snd by auto
also have ... = 1
proof (rule ccontr)
assume ¢: ged fax # 1
have degree (ged f x) < degree f
by (metis degree-0 dvd-eq-mod-eq-0 gcd-dvd1 ged-dvd2 irr-f
irreducibleqD(1) mod-poly-less nat-neg-iff x ©8)
have — gcd f x dvd f
proof (rule irreducibleg D2|OF irr-f])
show degree (ged f) < degree f
by (metis degree-0 dvd-eq-mod-eq-0 ged-dvdl ged-dvd2 irr-f
irreducibleqD(1) mod-poly-less nat-neg-iff x ©8)
show degree (ged fz) # 0
by (metis (no-types, opaque-lifting) g degree-mod-less’ ged.bottom-left-bottom
gcd-eq-0-iff
gcd-left-idem ged-mod-left gr-implies-not0 x)
qed
moreover have gcd f x dvd f by auto
ultimately show Fulse by contradiction
qed
finally have ?vxz mod f = 1
by (metis degree-1 degree-f mod-mult-self3 mod-poly-less)
hence (z+(%v mod f)) mod f = 1
by (simp add: mod-mult-right-eq mult.commute)
moreover have degree (?v mod f) < degree f
by (metis degree-0 degree-f degree-mod-less’ not-gr-zero)
ultimately show Fulse using z2 by auto
qed

sublocale field-R: field R
proof —
have x: Jy. degree y < degree f A fdvd x + y if degree x < degree f
for z :: 'a mod-ring poly

proof —
from that have degree (— x) < degree f
by simp
moreover have f dvd (z + —)
by simp

262

ultimately show ¢thesis
by blast
qed
have xx: degree (z * y mod f) < degree f
if degree © < degree f and degree y < degree f
for z y :: 'a mod-ring poly
using that by (cases z = 0V y = 0)
(auto intro: degree-mod-less’ dest: f-dvd-ab)
show field R
by standard (auto simp add: R-def carrier-irr-def plus-irr-def mult-irr-def
Units-def algebra-simps degree-add-less mod-poly-less mod-add-eq mult-poly-add-left
mod-mult-left-eq mod-mult-right-eq mod-eq-0-iff-dvd ab-mod-f0 x xx dest: times-mod-f-1-imp-0)
qed

lemma zero-in-carrier[simpl: 0 € carrier-irr unfolding carrier-irr-def by auto

lemma card-carrier-irr[simp|: card carrier-irr = CARD('a) (degree f)
proof —
let ?A = (carrier-vec (degree f):: 'a mod-ring vec set)
have bij-A-carrier: bij-betw (Poly o list-of-vec) ?A carrier-irr
proof (unfold bij-betw-def, rule conjl)
show inj-on (Poly o list-of-vec) ?A by (rule inj-Poly-list-of-vec)
show (Poly o list-of-vec) ¢ ¢A = carrier-irr
proof (unfold image-def o-def carrier-irr-def, auto)
fix za assume za € ?A thus degree (Poly (list-of-vec za)) < degree f
using degree- Poly-list-of-vec irr-f by blast
next
fix z::'a mod-ring poly
assume deg-z: degree x < degree f
let ?za = vec-of-list (coeffs x @ replicate (degree f — length (coeffs x)) 0)
show 3 za€carrier-vec (degree f). x = Poly (list-of-vec za)
by (rule bexl[of - ?xza], unfold carrier-vec-def, insert deg-x)
(auto simp add: degree-eq-length-coeffs)
qed
qed
have CARD('a) (degree f) = card ?A
by (simp add: card-carrier-vec)

also have ... = card carrier-irr using bij-A-carrier bij-betw-same-card by blast
finally show ?thesis ..
qed

lemma finite-carrier-irr[simp|: finite (carrier-irr)
proof —
have degree f > degree 0 using degree-0 by auto
hence carrier-irr # {} using degree-0 unfolding carrier-irr-def
by blast
moreover have card carrier-irr # 0 by auto
ultimately show %thesis using card-eq-0-iff by metis
qed

263

lemma finite-carrier-R[simp]: finite (carrier R) unfolding R-def by simp

lemma finite-carrier-mult-of [simp]: finite (carrier (mult-of R))
unfolding carrier-mult-of by auto

lemma constant-in-carrier[simp]: [:a:] € carrier R
unfolding R-def carrier-irr-def by auto

lemma mod-in-carrier[simp]: a mod f € carrier R
unfolding R-def carrier-irr-def
by (auto, metis degree-0 degree-f degree-mod-less’ less-not-refl)

lemma order-irr: Coset.order (mult-of R) = CARD(’a) “degree f — 1
by (simp add: card-Diff-singleton Coset.order-def carrier-mult-of R-def)

lemma element-power-order-eq-1:
assumes z: ¢ € carrier (mult-of R)
shows z [A](mult—of R) Coset.order (mult-of R) = L mudt-of R)
by (meson field-R.field-mult-group finite-carrier-mult-of group.pow-order-eq-1 x)

corollary element-power-order-eq-1":
assumes x: z € carrier (mult-of R)
showsz m(mult—of R) CARD('a) "degree f = z
proof —
have z H(mult-of R) CARD('a) degree f
= & O(mult-of R) © [A](mult-of R) (CARD('a) “degree f — 1)
by (metis Diff-iff One-nat-def Suc-pred field-R.m-comm field-R.nat-pow-Suc
field-R.nat-pow-closed
mult-of-simps(1) mult-of-simps(2) nat-pow-mult-of neq0-conv power-eq-0-iff
x zero-less-card-finite)
also have = @ (11 of R) * m(mult-of R) (CARD('a) “degree f — 1) =z
by (metis carrier-mult-of element-power-order-eq-1 field-R. Units-closed field-R.field-Units

field-R.r-one monoid.simps(2) mult-mult-of mult-of-def order-irr x)
finally show ?thesis .
qed

lemma pow-irr[simp|: © H(R) n= 2z~ n mod f
by (induct n, auto simp add: mod-poly-less nat-pow-def R-def mult-of-def mult-irr-def

carrier-irr-def mod-mult-right-eq mult.commaute)

lemma pow-irr-mult-of [simp]: = m(mult-of R) "= z n mod f
by (induct n, auto simp add: mod-poly-less nat-pow-def R-def mult-of-def mult-irr-def

carrier-irr-def mod-mult-right-eq mult.commute)

264

lemma fermat-theorem-power-poly-R[simp]: [:a:] [g CARD('a) ~n = [:a]
by (auto simp add: Missing-Polynomial.poly-const-pow mod-poly-less)

lemma times-mod-expand:
(a ®(R) b) = ((a mod f) ®(R) (b mod f))
by (simp add: mod-mult-eq R-def mult-irr-def)

lemma mult-closed-power:

assumes z: ¢ € carrier R and y: y € carrier R

and z [A](R) CARD('a) “m' =z

and y [A](R) CARD('a) “m' =y

shows (z ?(R)) H(R) CARD('a) “m' = (z ®(R))
using assms assms field-R.nat-pow-distrib by auto

lemma add-closed-power:
assumes z1: z [A](R) CARD('a) ~m' =
and yI: vy [A](R) CARD('a) “m’' =y
shows (ZIZ @(R) y) [T(R) CARD(/CL) “m' = (I EB(R) y)
proof —

have (z + y) ~ CARD('a) “m’'= 2z (CARD('a) “m') + y ~ (CARD(‘a) ~m’)
by auto

hence (z + y) ~CARD('a) “m'mod f = (x (CARD('a) “m') + y ~(CARD('a)
~m’)) mod f by auto

hence (z S(R)) [A](R) CARD('a) ~m/'

=(z [A](R) CARD(’a)"m") D(R) (y [A](R) CARD('a)"m")

by (auto, unfold R-def plus-irr-def, auto simp add: mod-add-eq power-mod)
also have ... =z @(R) y unfolding z1 yI by simp

X

finally show ?thesis .
qed

lemma x-power-pm-minus-1:
assumes z: ¢ € carrier (mult-of R)
and z [A](R) CARD('a) “m' =z
shows z [A](R) (CARD('a) “m' — 1) = 1(R)
by (metis (no-types, lifting) One-nat-def Suc-pred assms(2) carrier-mult-of field-R. Units-closed

field-R. Units-l-cancel field-R.field- Units field-R.l-one field-R.m-rcancel field- R.nat-pow-Suc
field-R.nat-pow-closed field-R.one-closed field-R.r-null field-R.r-one x zero-less-card-finite
zero-less-power)

context
begin

private lemma monom-a-1-P:

265

assumes m: monom 1 1 € carrier R
and eq: monom 1 1 H(R) (CARD('a) ~m") = monom 1 1
shows monom a 1 [A](R) (CARD('a) ~m') = monom a 1

proof —
have monom a 1 = [:a:] * (monom 1 1)
by (metis One-nat-def monom-0 monom-Suc mult.commute pCons-0-as-mult)
also have ... = [:a] ®(R) (monom 1 1)

by (auto simp add: R-def mult-irr-def)
(metis One-nat-def assms(2) mod-mod-trivial mod-smult-left pow-irr)
finally have eq2: monom a 1 = [:a:] ®p monom 1 1 .
show ?thesis unfolding eq?2
by (rule mult-closed-power|OF - m - eq|, insert fermat-theorem-power-poly-R,
auto)
qged

private lemma prod-monom-1-1:
defines P == (\ z n. (x[A](R) (CARD('a) "~ n) = 1))
assumes m: monom 1 1 € carrier R
and eq: P (monom 1 1) n
shows P (([[i = 0..<b:nat. monom 1 1) mod f) n
proof (induct b)
case ()
then show ?case unfolding P-def
by (simp add: power-mod)
next
case (Suc b)
let 2N = ([[i = 0..<b. monom 1 1)
have eg2: ([[i = 0..<Suc b. monom 1 1) mod f = monom 1 1 ®(R) (I[7 =
0..<b. monom 1 1)
by (metis field-R.m-comm field-R.nat-pow-Suc mod-in-carrier mod-mod-trivial
pow-irr prod-pow times-mod-expand)
also have ... = (monom 1 1 mod f) (R) ((I[7 = 0..<b. monom 1 1) mod f)
by (rule times-mod-expand)
finally have eq2: ([[¢ = 0..<Suc b. monom 1 1) mod f
= (monom 1 1 mod f) D(R) ((I[i = 0..<b. monom 1 1) mod f) .
show ?case
unfolding eq2 P-def
proof (rule mult-closed-power)
show (monom 1 1 mod f) [g CARD(‘a) ~n = monom 1 1 mod f
using P-def element-in-carrier eq m mod-poly-less by force
show (([[¢ = 0..<b. monom 1 1) mod f) [|p CARD('a) ~n = ([[¢= 0..<b.
monom 1 1) mod f
using P-def Suc.hyps by blast
qed (auto)
qed

private lemma monom-1-b:

266

defines P == (A z n. (I[A](R) (CARD('a) " n) = 1))
assumes m: monom 1 1 € carrier R
and monom-1-1: P (monom 1 1) m’
and b: b < degree f
shows P (monom 1 b) m’
proof —
have monom 1 b= (][[i = 0..<b. monom 1 1)
by (metis prod-pow x-pow-n)
also have ... = ([[i = 0..<b. monom 1 1) mod f
by (rule mod-poly-less[symmetric], auto)

(metis One-nat-def b degree-linear-power z-as-monom)
finally have eq2: monom 1 b = ([[i = 0..<b. monom 1 1) mod f .
show ?thesis unfolding eq?2 P-def

by (rule prod-monom-1-1[{OF m monom-1-1[unfolded P-def]])
qed

private lemma monom-a-b:
defines P == (A z n. (:t:[A](R) (CARD('a) ~n) = x))
assumes m: monom 1 1 € carrier R
and ml1: P (monom 1 1) m’
and b: b < degree f
shows P (monom a b) m’
proof —
have monom a b = smult a (monom 1 b)
by (simp add: smult-monom)
also have ... = [:a:] * (monom 1 b) by auto
also have ... = [:a:] ® gy (monom 1 b)
unfolding R-def mult-irr-def
by (simp add: b degree-monom-eq mod-poly-less)
finally have eq: monom a b = [:a:] ®(R) (monom 1b) .
show ?thesis unfolding eq P-def
proof (rule mult-closed-power)
show [:a:] [Jp CARD(‘a) = m' = [:a:] by (rule fermat-theorem-power-poly-R)
show monom 1 b [7]p CARD('a) ~m' = monom 1b
unfolding P-def by (rule monom-1-b[|OF m m1[unfolded P-def] b))
show monom 1 b € carrier R unfolding element-in-carrier using b
by (simp add: degree-monom-eq)
qed (auto)
qged

private lemma sum-monoms-P:
defines P == (A z n. (x[A](R) (CARD('a) ~n) = x))
assumes m: monom 1 1 € carrier R
and monom-1-1: P (monom 1 1) n
and b: b < degree f
shows P ((>_i<b. monom (g i) ©)) n

267

using b
proof (induct b)
case ()
then show ?case unfolding P-def
by (simp add: poly-const-pow mod-poly-less monom-0)
next
case (Suc b)
have b: b < degree f using Suc.prems by auto
have rw: (> i<b. monom (g i) i) mod f = (> i<b. monom (g i) i) by (rule
sum-monom-mod[OF b))
have rw2: (monom (g (Suc b)) (Suc b) mod f) = monom (g (Suc b)) (Suc b)
by (metis Suc.prems field-R.nat-pow-eone m monom-a-b pow-irr power-0 power-one-right)
have hyp: P (> i<b. monom (g i) i) n using Suc.prems Suc.hyps by auto
have (> i<Suc b. monom (g i) i) = monom (g (Suc b)) (Suc b) + (> i<b.
monom (g i) 7)

by simp
also have ... = (monom (g (Suc b)) (Suc b) mod f) + ((3i<b. monom (g i) 7)
mod f)
using rw rw2 by argo
also have ... = monom (g (Suc b)) (Suc b) ®p (3 i<b. monom (g i))

unfolding R-def plus-irr-def
by (simp add: poly-mod-add-left)
finally have eq: (3 i<Suc b. monom (g))
= monom (g (Suc b)) (Suc b) &g (> i<b. monom (g i) i) .
show ?case unfolding eq P-def
proof (rule add-closed-power)
show monom (g (Suc b)) (Suc b) [Jp CARD('a) ~ n = monom (g (Suc b))
(Suc b)
by (rule monom-a-b[OF m monom-1-1[unfolded P-def] Suc.prems])
show (3~ i<b. monom (g i) i) [|p CARD('a) ~n = (3 i<b. monom (g i) 1)
using hyp unfolding P-def by simp
qed
qed

lemma element-carrier-P:
defines P = (A z n. (fn[A}(R) (CARD('a) " n) = 1))
assumes m: monom 1 1 € carrier R
and monom-1-1: P (monom 1 1) m'
and a: a € carrier R
shows P a m’
proof —
have degree-a: degree a < degree f using a element-in-carrier by simp
have P (3 i<degree a. monom (poly.coeff a i) i) m’
unfolding P-def
by (rule sum-monoms-P[OF m monom-1-1[unfolded P-def] degree-al)
thus ?thesis unfolding poly-as-sum-of-monoms by simp
qed
end

268

end

lemma degree-divisor!:
assumes [: irreducible (f :: 'a :: prime-card mod-ring poly)
and d: degree f = d
shows f dvd (monom 1 1) ({CARD('a)"d) — monom 1 1
proof —
interpret poly-mod-type-irr CARD(’a) f by (unfold-locales, auto simp add: f)
show ?thesis
proof (cases d = 1)
case True
show ?thesis
proof (cases monom 1 1 mod f = 0)
case True
then show ?thesis
by (metis Suc-pred dvd-diff dvd-mult2 mod-eq-0-iff-dvd power.simps(2)
zero-less-card-finite zero-less-power)
next
case Fulse note mod-f-not0) = Fulse
have monom 1 (CARD('a)) mod f = monom 1 1 mod f
proof —
let 291 = (monom 1 (CARD('a))) mod f
let 2g2 = (monom 1 1) mod f
have deg-g1: degree ?g1 < degree f and deg-g2: degree ?g2 < degree f
by (metis True card-UNIV-unit d degree-0 degree-mod-less’ zero-less-card-finite
zero-neq-one)+
have ¢2: 292 [A](mult-of R) CARD('a) “degree f = 292 ~ (CARD('a) “degree
f) mod f
by (rule pow-irr-mult-of)
have %¢2 H(mult-of R) CARD('a) degree f = %g2
by (rule element-power-order-eq-1', insert mod-f-not0 deg-g2,
auto simp add: carrier-mult-of R-def carrier-irr-def)
hence %92 = CARD('a) mod f = 292 mod [using True d by auto
hence ?¢g1 mod f = 292 mod f by (metis mod-mod-trivial power-mod z-pow-n)
thus ?thesis by simp
qed
thus ?thesis by (metis True mod-eq-dvd-iff-poly power-one-right x-pow-n)
qed
next
case Fulse
have deg-f1: 1 < degree f
using False d degree-f by linarith
have monom 1 1 m(mult-of R) CARD('a) “degree f = monom 1 1
by (rule element-power-order-eq-1', insert deg-f1)
(auto simp add: carrier-mult-of R-def carrier-irr-def degree-monom-eq)
hence monom 1 1"CARD('a) “degree f mod f = monom 1 1 mod f
using deg-f1 by (auto, metis mod-mod-trivial)
thus ?thesis using d mod-eq-dvd-iff-poly by blast

269

qed
qed

lemma degree-divisor2:
assumes f: irreducible (f :: 'a :: prime-card mod-ring poly)
and d: degree f = d
and c-ge-1: 1 < cand cd: c < d
shows - f dvd monom 1 1 =~ CARD('a) ~ ¢ — monom 1 1
proof (rule ccontr)
interpret poly-mod-type-irr CARD('a) f by (unfold-locales, auto simp add: f)
have field-R: field R
by (simp add: field-R.field-azioms)
assume — - f dvd monom 1 1 =~ CARD(’a) ~ ¢ — monom 1 1
hence f-dvd: f dvd monom 1 1 = CARD('a) ~ ¢ — monom 1 1 by simp
obtain a where a-R: a € carrier (mult-of R)
and ord-a: group.ord (mult-of R) a = order (mult-of R)
and gen: carrier (mult-of R) = {a []g ¢ |i. ¢ € (UNIV:nat set)}
using field.finite-field-mult-group-has-gen2|OF field-R] by auto
have d-not1: d>1 using c-ge-1 cd by auto
have monom-in-carrier: monom 1 1 € carrier (mult-of R)
using d-not! unfolding carrier-mult-of R-def carrier-irr-def
by (simp add: d degree-monom-eq)
then have monom 1 1 ¢ {Op}
by auto
then obtain k& where monom 1 1 = a ~ k mod f
using gen monom-in-carrier by auto
then have k: o [T k = monom 1 1
by simp
have a-m-1: a [7]g (CARD('a) ¢ — 1) = 1p
proof (rule z-power-pm-minus-1[OF a-R])
let ?z = monom 1 1::'a mod-ring poly
show a [Jp CARD('a) "c=a
proof (rule element-carrier-P)
show 2z € carrier R
by (metis k mod-in-carrier pow-irr)
have 2z = CARD('a)” ¢ mod f = %z mod f using f-dvd
using mod-eq-dvd-iff-poly by blast
thus %z [Jp CARD(a)" ¢ = %
by (metis d d-notl degree-monom-eq mod-poly-less one-neg-zero pow-irr)
show a € carrier R using a-R unfolding carrier-mult-of by auto
qed
qed
have Group.group (mult-of R)
by (simp add: field-R.field-mult-group)
moreover have finite (carrier (mult-of R)) by auto
moreover have a € carrier (mult-of R) by (rule a-R)
moreover have a [],y1-of g (CARD('a) ¢ — 1) = L0f R
using a-m-1 unfolding mult-of-def

270

by (auto, metis mult-of-def pow-irr-mult-of nat-pow-mult-of)
ultimately have ord-dvd: group.ord (mult-of R) a dvd (CARD('a)"c — 1)
by (meson group.pow-eq-id)
have d dvd c
proof (rule dvd-power-minus-1-convl |[OF nontriv])
show 0 < d using cd by auto
show CARD('a) ~d — 1 dvd CARD('a) "¢ — 1
using ord-dvd by (simp add: d ord-a order-irr)
show 0 < c using c-ge-1 by auto
qged
thus Fulse using c-ge-1 cd
using nat-dvd-not-less by auto
qed

lemma degree-divisor: assumes irreducible (f :: 'a :: prime-card mod-ring poly)
degree f = d
shows f dvd (monom 1 1) (CARD('a)"d) — monom 1 1
and I < ¢ = ¢ < d = = fdvd (monom 1 1) (CARD('a) ¢) — monom 1 1
using assms degree-divisorl degree-divisor2 by blast+

context
assumes SORT-CONSTRAINT('a :: prime-card)
begin

function dist-degree-factorize-main ::
'a mod-ring poly = 'a mod-ring poly = nat = (nat x 'a mod-ring poly) list
= (nat x 'a mod-ring poly) list where
dist-degree-factorize-main v w d res = (if v = 1 then res else if d + d > degree v
then (degree v, v) # res else let
w = w (CARD('a)) mod v;
d = Suc d;
gd = ged (w — monom 1 1) v
in if gd = 1 then dist-degree-factorize-main v w d res else
let v/ = v div gd in
dist-degree-factorize-main v’ (w mod v') d ((d,gd) # res))
by pat-completeness auto

termination

proof (relation measure (A (v,w,d,res). Suc (degree v) — d), goal-cases)
case (3 v w d res z za xb xc)
have zb dvd v unfolding 3 by auto
hence zc dvd v unfolding 3 by (metis dvd-def dvd-div-mult-self)
from divides-degree[OF this] 3
show ?case by auto

qed auto

declare dist-degree-factorize-main.simps[simp del]

271

lemma dist-degree-factorize-main: assumes
dist: dist-degree-factorize-main v w d res = facts and
w: w = (monom 1 1) (CARD('a)"d) mod v and
sf: square-free v and
mon: monic u and
prod: u = v * prod-list (map snd res) and
deg: \ f. irreducible f = f dvd v => degree f > d and
res: \ i f. (i,f) € set res = { # 0 A degree f # 0 N monic f N (V¥ g. irreducible
g — g dvd f — degree g = 1)
shows u = prod-list (map snd facts) A (¥ i f. (i,f) € set facts — factors-of-same-degree
if)
using dist w prod res deg unfolding factors-of-same-degree-def
proof (induct v w d res rule: dist-degree-factorize-main.induct)
case (I v w d res)
note IH = 1(1-2)
note result = 1(3)
note w = 1(4)
note u = 1(5)
note res = 1(6)
note fact = 1(7)
note [simp] = dist-degree-factorize-main.simps|of - - d]
let 2z = monom 1 1 :: 'a mod-ring poly
show ?Zcase
proof (cases v = 1)
case True
thus ?thesis using result u mon res by auto
next
case Fulse note v = this
note IH = IH[OF this]
have mon-prod: monic (prod-list (map snd res)) by (rule monic-prod-list, insert
res, auto)
with monlunfolded u] have mon-v: monic v by (simp add: coeff-degree-mult)
with Fualse have deg-v: degree v # 0 by (simp add: monic-degree-0)
show ?thesis
proof (cases degree v < d + d)
case True
with result False have facts: facts = (degree v, v) # res by simp
show ?thesis
proof (intro alll conjl impl)
fixifg
assume x*: (i,f) € set facts irreducible g g dvd f
show degree g = i
proof (cases (i,f) € set res)
case True
from res[OF this] * show ?thesis by auto
next
case Fualse
with * facts have id: i = degree v f = v by auto
note * = %(2—3)[unfolded id]

272

from fact[OF %] have dg: d < degree g by auto
from divides-degree| OF %(2)] mon-v have deg-gu: degree g < degree v by
auto
from x(2) obtain h where vgh: v = g * h unfolding dvd-def by auto
from arg-cong[OF this, of degree] mon-v have dvgh: degree v = degree g
+ degree h
by (metis deg-v degree-mult-eq degree-mult-eq-0)
with dg deg-gv dg True have deg-h: degree h < d by auto
{
assume degree h = 0
with dvgh have degree g = degree v by simp

}

moreover
{

assume deg-h0: degree h # 0

hence 3 k. irreducibleg k N k dvd h

using dvd-triv-left irreducibley-factor by blast

then obtain k& where irr: irreducible k and k dvd h by auto

from dvd-trans[OF this(2), of v] vgh have k dvd v by auto

from fact[OF drr this]| have dk: d < degree k .

from divides-degree[OF <k dvd hy] deg-h0 have degree k < degree h by

auto
with deg-h have degree k < d by auto
with dk have Fualse by auto

ultimately have degree g = degree v by auto
thus ?thesis unfolding id by auto
qed
ged (insert v mon-v deg-v u facts res, force+)
next
case Fulse
note IH = IH|[OF this refl refl refi]
let ?p = CARD('a)
let 2w = w "~ ?p mod v
let g = ged (Pw — %z) v
let v = v div %g
let ?2d = Suc d
from result[simplified] v False
have result: (if ?g = 1 then dist-degree-factorize-main v 2w ?d res
else dist-degree-factorize-main ?v (2w mod ?v) ?d ((?d, ?g) # res))
= facts
by (auto simp: Let-def)
from mon-v have mon-g: monic 29 by (metis deg-v degree-0 poly-ged-monic)
have ww: w = %z = ?p ~ 2d mod v unfolding w
by simp (metis (mono-tags, opaque-lifting) One-nat-def mult.commute
power-Suc power-mod power-mult z-pow-n)
have gv: ?g dvd v by auto
hence gv”: v div ?g dvd v
by (metis dvd-def dvd-div-mult-self)

273

fix f
assume irr: irreducible f and fv: f dvd v and degree f = ?d
from degree-divisor(1)[OF this(1,3)]
have f dvd ?z ~ ?p ~ ?d — %z by auto
hence f dvd (z ~ %p ~ ?d — ?z) mod v using fv by (rule dvd-mod)
also have (%2 = %p ~ %d — %z) mod v = %z ~ %p ~ 2d mod v — %z mod v
by (rule poly-mod-diff-left)
also have %z ~ ?p ~ 2d mod v = ?w mod v unfolding ww by auto
also have ... — 2z mod v = (w = ?p mod v — %z) mod v by (metis
poly-mod-diff-left)
finally have f dvd (w™ % mod v — %z) using fv by (rule dvd-mod-imp-dvd)
with fv have f dvd ?g by auto
} note deg-d-dvd-g = this
show ?thesis
proof (cases %9 = 1)
case True
with result have dist: dist-degree-factorize-main v ?w ?d res = facts by

auto
show ?thesis
proof (rule IH(1)[OF True dist ww u res))
fix f
assume irr: irreducible f and fv: f dvd v
from fact[OF this| have d < degree f .
moreover have degree f # %d
proof
assume degree f = 7d
from divides-degree|OF deg-d-dvd-g[OF irr fv this]] mon-v
have degree f < degree ?g by auto
with irr have degree ?g # 0 unfolding irreducibley-def by auto
with True show Fulse by auto
qed
ultimately show ?d < degree f by auto
qed
next
case Fulse

with result
have result: dist-degree-factorize-main v (fw mod ?v) 2d ((9d, %9) # res)
= facts
by auto
from False mon-g have deg-g: degree ?g # 0 by (simp add: monic-degree-0)
have www: 2w mod v = monom 1 1 ~ ?p ~ 2d mod ?v using gv’
by (simp add: mod-mod-cancel ww)
from square-free-factor|OF - sf, of v] u have sfv: square-free v by auto
have u: u = v * prod-list (map snd ((?d, ?g) # res))
unfolding u by simp
show ?thesis
proof (rule IH(2)[OF Fulse refl result www u), goal-cases)
case (11 f)

274

show ?case
proof (cases (i,f) € set res)

case True
from res[OF this] show ?thesis by auto

next

dvd-mod)

mod v

case Fulse
with 1 have id: i = ?d f = ?¢ by auto
show ?thesis unfolding id
proof (intro conjl impl alll)
fix g
assume x: irreducible g g dvd %g
hence gv: g dvd v using dvd-trans|of g ?g v] by simp
from fact[OF x(1) this] have dg: d < degree g .
{
assume degree g > ?d
from degree-divisor(2)[OF *(1) refl - this]
have ndvd: = g dvd ?z ~ ?p ~ 2d — %z by auto
from *(2) have g dvd w — %z by simp
from this[unfolded wuw)
have g dvd 2z ~ ?p ~ 2d mod v — ?x .
with gv have g dvd (%z = ?p ~ 2d mod v — ?z) mod v by (metis

also have (?z = %p ~ 2d mod v — %z) mod v = (%z ~ %p ~ 2d — %x)

by (metis mod-diff-left-eq)
finally have g dvd %z ~ %p ~ 9d — %z using gv by (rule

dvd-mod-imp-dud)

with ndvd have Fulse by auto

}

with dg show degree g = ?d by presburger
qed (insert mon-g deg-g, auto)

qed
next
case (2 f)
note irr = 2(1)
from dvd-trans[OF 2(2) gv'] have fv: f dvd v .
from fact[OF irr fv] have df: d < degree f degree f # 0 by auto

{

}

assume degree [= 2d

from deg-d-dvd-g[OF irr fv this] have fg: f dvd ?g .

from gv have id: v = (v div ?g) * ?g by simp

from sfv id have square-free (v div ?g % ?g) by simp

from square-free-multD(1)[OF this 2(2) fg] have degree f = 0 .
with df have Fulse by auto

with df show ?d < degree f by presburger
qed

qed
qed

275

qed
qed

definition distinct-degree-factorization
2 'a mod-ring poly = (nat x 'a mod-ring poly) list where
distinct-degree-factorization f =
(if degree f = 1 then [(1,f)] else dist-degree-factorize-main f (monom 1 1) 0
)

lemma distinct-degree-factorization: assumes
dist: distinct-degree-factorization f = facts and
u: square-free f and
mon: monic f
shows f = prod-list (map snd facts) A (¥ i f. (i,f) € set facts — factors-of-same-degree
i f)
proof —
note dist = dist[unfolded distinct-degree-factorization-def)
show ?thesis
proof (cases degree f < 1)
case Fulse
hence degree f > 1 and dist: dist-degree-factorize-main f (monom 1 1) 0[] =
facts
using dist by auto
hence *: monom 1 (Suc 0) = monom 1 (Suc 0) mod f
by (simp add: degree-monom-eq mod-poly-less)
show ?thesis
by (rule dist-degree-factorize-main|OF dist - w mon)], insert %, auto simp:
irreducibleq-def)
next
case True
hence degree f = 0 V degree f = 1 by auto
thus ?thesis
proof
assume degree f = 0
with mon have f: f = I using monic-degree-0 by blast

hence facts = [] using dist unfolding dist-degree-factorize-main.simps|of -
- 0]
by auto
thus ?thesis using f by auto
next

assume deg: degree f = 1
hence facts: facts = [(1,f)] using dist by auto
show ?thesis unfolding facts factors-of-same-degree-def
proof (intro conjl alll implI; clarsimp)

fix g

assume irreducible g g dvd f

thus degree ¢ = Suc 0 using deg divides-degree[of g f] by (auto simp:
irreducibleq-def)

qed (insert mon deg, auto)

276

qed
qed
qed
end

end

8 A Combined Factorization Algorithm for Poly-
nomials over GF(p)

8.1 Type Based Version

We combine Berlekamp’s algorithm with the distinct degree factorization
to obtain an efficient factorization algorithm for square-free polynomials in

GF(p).

theory Finite-Field-Factorization
imports Berlekamp-Type-Based

Distinct-Degree-Factorization
begin

We prove soundness of the finite field factorization, indepedendent on
whether distinct-degree-factorization is applied as preprocessing or not.

consts use-distinct-degree-factorization :: bool

context
assumes SORT-CONSTRAINT ('a::prime-card)
begin

definition finite-field-factorization :: 'a mod-ring poly = 'a mod-ring x 'a mod-ring
poly list where
finite-field-factorization f = (if degree f = 0 then (lead-coeff f,[]) else let

a = lead-coeff f;

u = smult (inverse a) f;

gs = (if use-distinct-degree-factorization then distinct-degree-factorization u else
((1,0)));

(irr,hs) = List.partition (X (4,f). degree f = i) gs

in (a,map snd irr @ concat (map (X (i,9). berlekamp-monic-factorization i g)

hs)))

lemma finite-field-factorization-explicit:

fixes f::'a mod-ring poly

assumes sf-f: square-free f

and us: finite-field-factorization f = (c,us)

shows f = smult ¢ (prod-list us) A (¥ u € set us. monic u A irreducible u)
proof (cases degree f = 0)

case Fualse note f = this

define g where g = smult (inverse c) f

277

obtain gs where dist: (if use-distinct-degree-factorization then distinct-degree-factorization
g else [(1,9)]) = gs by auto
note us = us[unfolded finite-field-factorization-def Let-def)
from us f have c: ¢ = lead-coeff f by auto
obtain érr hs where part: List.partition (A (i, f). degree f = i) gs = (irr,hs) by
force
from arg-cong|OF this, of fst] have irr: irr = filter (X (4, f). degree f = i) gs
by auto
from us|folded ¢, folded g-def, unfolded dist part split] f
have us: us = map snd irr Q concat (map (A(z, y). berlekamp-monic-factorization
x y) hs) by auto
from f ¢ have c0: ¢ # 0 by auto
from False c0 have deg-g: degree g # 0 unfolding g-def by auto
have mon-g: monic g unfolding g-def
by (metis ¢ c0 field-class.field-inverse lead-coeff-smult)
from sf-f have sf-g: square-free g unfolding g-def by (simp add: c0)
from c0 have f: f = smult ¢ g unfolding g¢-def by auto
have g = prod-list (map snd gs) A (Y (i,f) € set gs. degree f > 0 A monic f A
(V h. h dvd f — degree h = i — drreducible h))
proof (cases use-distinct-degree-factorization)
case True
with dist have distinct-degree-factorization g = gs by auto
note dist = distinct-degree-factorization| OF this sf-g mon-g|
from dist have g: g = prod-list (map snd gs) by auto
show ?thesis
proof (intro conjI[OF g] balll, clarify)
fix i f
assume (4,f) € set gs
with dist have factors-of-same-degree i f by auto
from factors-of-same-degree D[OF this]
show degree f > 0 N monic f AN (Vh. h dvd f — degree h = i — irreducible
h) by auto
qed
next
case Fulse
with dist have gs: gs = [(1,9)] by auto
show ?thesis unfolding gs using deg-g mon-g linear-irreducibles[where 'a =
'a mod-ring] by auto
qed
hence g-gs: g = prod-list (map snd gs)
and mon-gs: A\ i f. (i, f) € set gs => monic f N degree f > 0
and irrl: A i fh. (i, f) € set gs = h dvd f = degree h = i = irreducible
h by auto
have ¢: g = prod-list (map snd irr) x prod-list (map snd hs) unfolding g-gs
using prod-list-map-partition|OF part] .
{
fix f
assume [€ snd ‘ set irr
from this[unfolded irr] obtain i where x: (i,f) € set gs degree f = i by auto

278

have f dvd f by auto
from @rrI[OF *(1) this x(2)] mon-gs[OF *(1)] have monic f irreducible f by
auto
} note irr = this
let Zberl = X\ hs. concat (map (A(z, y). berlekamp-monic-factorization x y) hs)
have set hs C set gs using part by auto
hence prod-list (map snd hs) = prod-list (?berl hs)
A (Y f € set (2berl hs). monic f A irreducibleg f)
proof (induct hs)
case (Cons ih hs)
obtain i h where ih: ih = (i,h) by force
have ?berl (Cons ih hs) = berlekamp-monic-factorization ¢ h Q %berl hs un-
folding ih by auto
from Cons(2)[unfolded ih] have mem: (i,h) € set gs and sub: set hs C set gs
by auto
note IH = Cons(1)[OF sub]
from mem have h € set (map snd gs) by force
from square-free-factor|OF prod-list-dvd|OF this|, folded g-gs, OF sf-g] have
sf: square-free h .
from mon-gs|OF mem] irr[[OF mem| have x: degree h > 0 monic h
A g. g dvd h = degree g = i = irreducible g by auto
from berlekamp-monic-factorization|OF sf refl %(3) x(1—2), of i
have berl: prod-list (berlekamp-monic-factorization i h) = h
and irr: A\ f. f € set (berlekamp-monic-factorization i h) = monic f A
irreducible f by auto
have prod-list (map snd (Cons ih hs)) = h * prod-list (map snd hs) unfolding
ih by simp
also have prod-list (map snd hs) = prod-list (?berl hs) using IH by auto
finally have prod-list (map snd (Cons ih hs)) = prod-list (?berl (Cons ih hs))
unfolding ih using berl by auto
thus ?case using IH irr unfolding ih by auto
qed auto
with g irr have main: ¢ = prod-list us A (¥ u € set us. monic u A irreducibleg
u) unfolding us
by auto
thus ?thesis unfolding f using sf-g by auto
next
case True
with us[unfolded finite-field-factorization-def] have ¢ = lead-coeff f and us: us
=[] by auto
with degree0-coeffs|OF True] have f: f = [:c:] by auto
show ?thesis unfolding us f by (auto simp: normalize-poly-def)
qed

lemma finite-field-factorization:
fixes f::'a mod-ring poly
assumes sf-f: square-free f
and us: finite-field-factorization f = (c,us)
shows unique-factorization Irr-Mon f (c, mset us)

279

proof —
from finite-field-factorization-explicit| OF sf-f us]
have fact: factorization Irr-Mon f (c, mset us)
unfolding factorization-def split Irr-Mon-def by (auto simp: prod-mset-prod-list)
from sf-flunfolded square-free-def] have f # 0 by auto
from ezactly-one-factorization|[OF this] fact
show ?thesis unfolding unique-factorization-def by auto
qed
end

Experiments revealed that preprocessing via distinct-degree-factorization
slows down the factorization algorithm (statement for implementation in
AFP 2017)

overloading use-distinct-degree-factorization = use-distinct-degree-factorization
begin
definition use-distinct-degree-factorization
where [code-unfold): use-distinct-degree-factorization = False
end
end

8.2 Record Based Version

theory Finite-Field-Fuactorization-Record-Based
imports
Finite-Field-Factorization
Matriz-Record-Based
Poly-Mod-Finite-Field- Record-Based
HOL— Types-To-Sets. Types-To-Sets
Jordan-Normal-Form. Matriz-1Array-Impl
Jordan-Normal-Form. Gauss-Jordan-IArray-Impl
Polynomial-Interpolation. Improved-Code- Equations
Polynomial-Factorization. Missing-List
begin

hide-const(open) monom coeff

Whereas [square-free ?f; finite-field-factorization ?f = (?¢c, 7us)] =
unique-factorization Irr-Mon ?f (?c, mset ?us) provides a result for a poly-
nomials over GF(p), we now develop a theorem which speaks about integer
polynomials modulo p.

lemma (in poly-mod-prime-type) finite-field-factorization-modulo-ring:
assumes ¢: (g :: 'a mod-ring poly) = of-int-poly f
and sf: square-free-m f
and fact: finite-field-factorization g = (d,gs)
and c: ¢ = to-int-mod-ring d
and fs: fs = map to-int-poly gs
shows unique-factorization-m f (¢, mset fs)
proof —
have [transfer-rule]: MP-Rel f g unfolding g MP-Rel-def by (simp add: Mp-f-representative)

280

have sg: square-free g by (transfer, rule sf)
have [transfer-rule]: M-Rel ¢ d unfolding M-Rel-def ¢ by (rule M-to-int-mod-ring)
have fs-gs[transfer-rule]: list-all2 MP-Rel fs gs
unfolding fs list-all2-map! MP-Rel-def[abs-def] Mp-to-int-poly by (simp add:
list.rel-refl)
have [transfer-rule]: rel-mset MP-Rel (mset fs) (mset gs)
using fs-gs using rel-mset-def by blast
have [transfer-rule]: MF-Rel (c,mset fs) (d,mset gs) unfolding MF-Rel-def by
transfer-prover
from finite-field-factorization| OF sg fact]
have uf: unique-factorization Irr-Mon g (d,mset gs) by auto
from uf[untransferred] show unique-factorization-m f (¢, mset fs) .
qed

We now have to implement finite-field-factorization.

context

fixes p :: int

and ff-ops :: 'i arith-ops-record
begin

fun power-poly-f-mod-i :: (i list = 'i list) = 'i list = nat = 'i list where
power-poly-f-mod-i modulus a n = (if n = 0 then modulus (one-poly-i [f-ops)
else let (d,r) = Euclidean-Rings.divmod-nat n 2;
rec = power-poly-f-mod-i modulus (modulus (times-poly-i ff-ops a a)) d in
if T = 0 then rec else modulus (times-poly-i ff-ops rec a))

declare power-poly-f-mod-i.simps[simp del]

fun power-polys-i :: 'i list = 'i list = 'i list = nat = 'i list list where
power-polys-i mul-p u curr-p (Suc i) = curr-p #
power-polys-i mul-p u (mod-field-poly-i ff-ops (times-poly-i ff-ops curr-p mul-p)
| power-polys-i mul-p u curr-p 0 = ||

lemma length-power-polys-i[simp): length (power-polys-i x y z n) = n
by (induct n arbitrary: z y z, auto)

definition berlekamp-mat-i :: i list = i mat where
berlekamp-mat-i u = (let n = degree-i u;
ze = arith-ops-record.zero ff-ops; on = arith-ops-record.one [f-ops;
mul-p = power-poly-f-mod-i (X v. mod-field-poly-i [f-ops v u)
[ze, on] (nat p);
zks = power-polys-i mul-p u [on] n
in mat-of-rows-list n (map (X cs. c¢s Q replicate (n — length cs) ze) zks))

definition berlekamp-resulting-mat-i :: i list = i mat where
berlekamp-resulting-mat-i u = (let Q = berlekamp-mat-i u;

n = dim-row Q;

QI = mat n n (X (i,4). if i = j then arith-ops-record.minus ff-ops (Q 3% (i,5))

281

(arith-ops-record.one ff-ops) else @ $$ (i,5))
in (gauss-jordan-single-i ff-ops (transpose-mat QI)))

definition berlekamp-basis-i :: i list = i list list where
berlekamp-basis-i v = (map (poly-of-list-i ff-ops o list-of-vec)
(find-base-vectors-i ff-ops (berlekamp-resulting-mat-i w)))

primrec berlekamp-factorization-main-i :: 'i = 'i = nat = i list list = i list list
= nat = 'i list list where
berlekamp-factorization-main-i ze on d divs (v # vs) n = (
if v = [on] then berlekamp-factorization-main-i ze on d divs vs n else
if length divs = n then divs else
let of-int = arith-ops-record.of-int ff-ops;
facts = filter (A w. w # [on])
[ged-poly-i ff-ops u (minus-poly-i ff-ops v (if s = 0 then [] else [of-int (int

9N) -
u divs, s < [0 ..< nat p][;
(lin,nonlin) = List.partition (X q. degree-i ¢ = d) facts
in lin @Q berlekamp-factorization-main-i ze on d nonlin vs (n — length lin))
| berlekamp-factorization-main-i ze on d divs [| n = divs

definition berlekamp-monic-factorization-i :: nat = 'i list = 'i list list where
berlekamp-monic-factorization-i d f = (let
vs = berlekamp-basis-i f
in berlekamp-factorization-main-i (arith-ops-record.zero ff-ops) (arith-ops-record.one

ff-ops) d [f] vs (length vs))

partial-function (tailrec) dist-degree-factorize-main-i ::
i = i = nat = i list = 'i list = nat = (nat x i list) list
= (nat x 'i list) list where
[code]: dist-degree-factorize-main-i ze on dv v w d res = (if v = [on] then res else
ifd+ d> dv
then (dv, v) # res else let
w = power-poly-f~-mod-i (\ f. mod-field-poly-i ff-ops f v) w (nat p);
d = Suc d;
gd = gcd-poly-i ff-ops (minus-poly-i ff-ops w [ze,on]) v
in if gd = [on] then dist-degree-factorize-main-i ze on dv v w d res else
let v’ = div-field-poly-i ff-ops v gd
in dist-degree-factorize-main-i ze on (degree-i v') v’ (mod-field-poly-i ff-ops w
v) d ((dgd) # res))

definition distinct-degree-factorization-i
= i list = (nat x 'i list) list where
distinct-degree-factorization-i f = (let ze = arith-ops-record.zero ff-ops;
on = arith-ops-record.one ff-ops in if degree-i f = 1 then [(1,f)] else
dist-degree-factorize-main-i ze on (degree-i f) f [ze,on] 0 [])

definition finite-field-factorization-i :: i list = i x i list list where
finite-field-factorization-i f = (if degree-i f = 0 then (lead-coeff-i ff-ops f,]]) else

282

let

a = lead-coeff-i ff-ops f;

u = smult-i ff-ops (arith-ops-record.inverse ff-ops a) f;

gs = (if use-distinct-degree-factorization then distinct-degree-factorization-i u
else [(1,u)));

(irr,hs) = List.partition (X (4,f). degree-i f = i) gs

in (a,map snd irr @ concat (map (X (i,9). berlekamp-monic-factorization-i i g)

hs)))

end

context prime-field-gen
begin

lemma power-polys-i: assumes i: i < n and [transfer-rule]: poly-rel f ' poly-rel
99
and h: poly-rel h h'
shows poly-rel (power-polys-i ff-ops g f h n! i) (power-polys g’ f' h' n ! i)
using i h
proof (induct n arbitrary: h h' i)
case (Suc n h h' i) note * = this
note [transfer-rule] = x(3)
show ?Zcase
proof (cases i)
case (
with Suc show ?thesis by auto
next
case (Suc j)
with x(2—) have j < n by auto
note IH = x(1)[OF this]
show ?thesis unfolding Suc by (simp, rule IH, transfer-prover)
qed
qed simp

lemma power-poly-f-mod-i: assumes m: (poly-rel ===> poly-rel) m (A z'. 2’ mod
m’)
shows poly-rel f f' = poly-rel (power-poly-f-mod-i ff-ops m fn) (power-poly-f-mod
m' f' n)
proof —
from m have m: A z z'. poly-rel x v’ = poly-rel (m z) (z’ mod m’)
unfolding rel-fun-def by auto
show poly-rel f f' = poly-rel (power-poly-f-mod-i ff-ops m fn) (power-poly-f-mod
m' f' n)
proof (induct n arbitrary: f f' rule: less-induct)
case (less n f f)
note f[transfer-rule] = less(2)
show ?case
proof (cases n = 0)
case True
show ?thesis

283

by (simp add: True power-poly-f-mod-i.simps power-poly-f-mod-binary,
rule m[OF poly-rel-one))
next
case Fulse
hence n: (n = 0) = False by simp
obtain ¢ r where div: Fuclidean-Rings.divmod-nat n 2 = (q,r) by force
from this[unfolded Euclidean-Rings.divmod-nat-def] n have ¢ < n by auto
note IH = less(1)[OF this]
have rec: poly-rel (power-poly-f-mod-i ff-ops m (m (times-poly-i ff-ops f f)) q)

(power-poly-f-mod m' (f' = f' mod m’) q)
by (rule IH, rule m, transfer-prover)
have other: poly-rel
(m (times-poly-i ff-ops (power-poly-f-mod-i ff-ops m (m (times-poly-i [f-ops
£ a) f)
(power-poly-f-mod m' (f' * f' mod m') q * f' mod m’)
by (rule m, rule poly-rel-times[unfolded rel-fun-def, rule-format, OF rec f])
show ?thesis unfolding power-poly-f-mod-i.simps|of - - - n] Let-def
power-poly-f-mod-binary|of - - n] div split n if-False using rec other by auto
qed
qged
qged

lemma berlekamp-mat-i[transfer-rule]: (poly-rel ===> mat-rel R)
(berlekamp-mat-i p ff-ops) berlekamp-mat
proof (intro rel-funl)
fix ff'
let ?ze = arith-ops-record.zero ff-ops
let ?on = arith-ops-record.one ff-ops
assume f[transfer-rule]: poly-rel f f’
have deg: degree-i f = degree f' by transfer-prover
{
fix 7j
assume i: i < degree f' and j: j < degree f’
define cs where cs = (\cs :: /i list. ¢s @ replicate (degree f' — length cs) ?ze)
define cs’ where cs’ = (Aes 2 'a mod-ring poly. coeffs cs Q replicate (degree
I — length (coeffs cs)) 0)
define poly where poly = power-polys-i ff-ops
(power-poly-f-mod-i ff-ops (Av. mod-field-poly-i [f-ops v f) [?ze, %on| (nat
p)) [[%on]
(degree f7)
define poly’ where poly’ = (power-polys (power-poly-f-mod f' [:0, 1:] (nat p))
f11 (degree f7))
have *: poly-rel (power-poly-f-mod-i ff-ops (Av. mod-field-poly-i ff-ops v f) [?ze,
Zon] (nat p))
(power-poly-f-mod f' [:0, 1:] (nat p))
by (rule power-poly-f-mod-i, transfer-prover, simp add: poly-rel-def one zero)
have [transfer-rule]: poly-rel (poly ! ©) (poly’! i)
unfolding poly-def poly’-def

284

by (rule power-polys-i[OF i f x|, simp add: poly-rel-def one)
have x: list-all2 R (cs (poly ! 7)) (cs’ (poly’ ! 7))
unfolding cs-def cs’-def by transfer-prover
from list-all2-nthD[OF x[unfolded poly-rel-def], of j] j
have R (cs (poly ! ©) ! j) (cs’ (poly’ ! @) ! j) unfolding cs-def by auto
hence R
(mat-of-rows-list (degree f')
(map (Aes. cs @ replicate (degree f' — length cs) ?ze)
(power-polys-i ff-ops
(power-poly-f-mod-i ff-ops (Av. mod-field-poly-i ff-ops v f) [?ze, Zon
(nat p)) f [#on]
(degree f'))) $$
(i, 7))
(mat-of-rows-list (degree)
(map (Xes. coeffs cs Q replicate (degree f' — length (coeffs cs)) 0)
(power-polys (power-poly-f-mod f' [:0, 1:] (nat p)) f' 1 (degree ")) $$
(i, 7))
unfolding mat-of-rows-list-def length-map length-power-polys-i power-polys-works
length-power-polys index-mat|OF i j] split
unfolding poly-def cs-def poly’-def cs’-def using i
by auto
} note main = this
show mat-rel R (berlekamp-mat-i p ff-ops f) (berlekamp-mat f")
unfolding berlekamp-mat-i-def berlekamp-mat-def Let-def nat-p[symmetric] deg
unfolding mat-rel-def
by (intro conjI alll impl, insert main, auto)
qged

lemma berlekamp-resulting-mat-i[transfer-rule]: (poly-rel ===> mat-rel R)
(berlekamp-resulting-mat-i p ff-ops) berlekamp-resulting-mat
proof (intro rel-funl)
fix ff
assume poly-rel f f'
from berlekamp-mat-i[unfolded rel-fun-def, rule-format, OF this
have bmi: mat-rel R (berlekamp-mat-i p ff-ops f) (berlekamp-mat f') .
show mat-rel R (berlekamp-resulting-mat-i p ff-ops f) (berlekamp-resulting-mat
f)
unfolding berlekamp-resulting-mat-def Let-def berlekamp-resulting-mat-i-def
by (rule gauss-jordan-i[unfolded rel-fun-def, rule-format],
insert bmi, auto simp: mat-rel-def one intro!: minus[unfolded rel-fun-def, rule-format))
qed

lemma berlekamp-basis-i[transfer-rule]: (poly-rel ===> list-all2 poly-rel)
(berlekamp-basis-i p ff-ops) berlekamp-basis
unfolding berlekamp-basis-i-def[abs-def| berlekamp-basis-code|abs-def] o-def
by transfer-prover

lemma berlekamp-factorization-main-i[transfer-rule]:
((=) ===> list-all2 poly-rel ===> list-all2 poly-rel ===> (=) ===> list-all2

285

poly-rel)
(berlekamp-factorization-main-i p ff-ops (arith-ops-record.zero f[f-ops)
(arith-ops-record.one [f-ops))
berlekamp-factorization-main
proof (intro rel-funl, clarify, goal-cases)
case (1 - d zs xs’ ys ys' - n)
let ?ze = arith-ops-record.zero ff-ops
let ?on = arith-ops-record.one ff-ops
let Zof-int = arith-ops-record.of-int [f-ops
from 1(2) 1(1) show ?case
proof (induct ys ys' arbitrary: zs xs' n rule: list-all2-induct)
case (Cons y ys y' ys' xs xs’ n)
note trans[transfer-rule] = Cons(1,2,4)
obtain clar0 clarl clar2 where clarify: \ s u. ged-poly-i ff-ops u
(minus-poly-i ff-ops y
(if s = 0 then [] else [Zof-int (int s)])) = clar0 s u
[0..<nat p] = clarl
[?0on] = clar2 by auto
define facts where facts = concat (map (Au. concat
(map (As. if ged-poly-i ff-ops u
(minus-poly-i ff-ops y (if s = 0 then [] else [?of-int
(int s)])) #
[2on]
then [ged-poly-i ff-ops u
(minus-poly-i ff-ops y (if s = 0 then [] else [?of-int
(int s)]))]
else [])
[0..<nat p])) zs)
define Facts where Facts = [w<—concat
(map (Au. map (As. ged-poly-i ff-ops u
(minus-poly-i ff-ops y
(if s = 0 then [] else [Zof-int (int s)])))
[0..<nat p])
xs) . w # [Zon]]
have Fucts: Facts = facts
unfolding Fuacts-def facts-def clarify
proof (induct xs)
case (Cons z xs)
show ?case by (simp add: Cons, induct clarl, auto)
qed simp
define facts’ where facts’ = concat
(map (Au. concat
(map (A\z. if ged w (y' — [rof-nat x:]) # 1
then [ged w (y" — [of-int (int x):])] else [])
[0..<nat p]))
zs’)
have id: A\ z. of-int (int) = of-nat x [?on] = one-poly-i ff-ops
by (auto simp: one-poly-i-def)
have facts[transfer-rule]: list-all2 poly-rel facts facts’

286

unfolding facts-def facts’-def
apply (rule concat-transfer|[unfolded rel-fun-def, rule-format])
apply (rule list.map-transfer|unfolded rel-fun-def, rule-format, OF - trans(3)])
apply (rule concat-transfer[unfolded rel-fun-def, rule-format])
apply (rule list-all2-map-map)
proof (unfold id)
fix ff z
assume [transfer-rule]: poly-rel f f' and z: x € set [0..<nat p]
hence x: 0 < int xz int x < p by auto
from of-int[OF this] have rel[transfer-rule]: R (?of-int (int x)) (of-nat z) by
auto
{
assume 0 < z
with * have x: 0 < int z int ¢ < p by auto
have (of-nat z :: 'a mod-ring) = of-int (int z) by simp
also have ... # 0 unfolding of-int-of-int-mod-ring using * unfolding p
by (transfer’, auto)

with rel have [transfer-rule]: poly-rel (if x = 0 then || else [?of-int (int z)])
[:of-nat x:)
unfolding poly-rel-def by (auto simp add: cCons-def p)
show list-all2 poly-rel
(if ged-poly-i [f-ops f (minus-poly-i ff-ops y (if © = 0 then || else [?of-int
(int z)])) # one-poly-i ff-ops
then [ged-poly-i ff-ops f (minus-poly-i ff-ops y (if © = 0 then || else [?of-int
(int z)]))]
else [])
(if ged f' (y' — [:of-nat x:]) # 1 then [ged f/ (y' — [of-nat z:])] else [])
by transfer-prover
qed
have id1: berlekamp-factorization-main-i p ff-ops ?ze 2on d xs (y # ys) n = (
if y = [?on] then berlekamp-factorization-main-i p ff-ops ?ze ?on d xs ys n else
if length xs = n then xs else
(let fac = facts;
(lin, nonlin) = List.partition (A\q. degree-i ¢ = d) fac
in lin @Q berlekamp-factorization-main-i p ff-ops ?ze Zon d nonlin ys (n
— length lin)))
unfolding berlekamp-factorization-main-i.simps Facts[symmetric]
by (simp add: o-def Facts-def Let-def)
have id2: berlekamp-factorization-main d zs' (y' # ys’) n = (
if y' = 1 then berlekamp-factorization-main d zs’' ys' n
else if length zs' = n then xs’ else
(let fac = facts’,
(lin, nonlin) = List.partition (A\q. degree ¢ = d) fac
in lin @ berlekamp-factorization-main d nonlin ys’' (n — length lin)))
by (simp add: o-def facts’-def nat-p)
have len: length zs = length xs’ by transfer-prover
have id3: (y = [%on]) = (y' = 1)

by (transfer-prover-start, transfer-step+, simp add: one-poly-i-def finite-field-ops-int-def)

287

show ?case
proof (cases y' = 1)
case True
hence idj: (y' = 1) = True by simp
show ?thesis unfolding id1 id2 id3 idj if-True
by (rule Cons(3), transfer-prover)
next
case Fulse
hence idj: (y' = 1) = False by simp
note id1 = idI[unfolded id3 idj if-False]
note id2 = id2[unfolded id4 if-False]
show ?thesis
proof (cases length zs’ = n)
case True
thus “thesis unfolding id! id2 Let-def len using trans by simp
next
case Fulse
hence id: (length s’ = n) = False by simp
have id": length [g+facts . degree-i ¢ = d| = length [g<facts’. degree ¢ =
d|
by transfer-prover
have [transfer-rule]: list-all2 poly-rel (berlekamp-factorization-main-i p ff-ops
2ze Zon d [z facts . degree-i x # d] ys
(n — length [g+facts . degree-i ¢ = d]))
(berlekamp-factorization-main d [z+facts’ . degree x # d] ys’
(n — length [g«facts’ . degree ¢ = d]))
unfolding id’
by (rule Cons(3), transfer-prover)
show ?thesis unfolding id1 id2 Let-def len id if-False
unfolding partition-filter-conv o-def split by transfer-prover
qed
qed
qed simp
qed

lemma berlekamp-monic-factorization-i[transfer-rule]:
((=) ===> poly-rel ===> list-all2 poly-rel)
(berlekamp-monic-factorization-i p ff-ops) berlekamp-monic-factorization
unfolding berlekamp-monic-factorization-i-def [abs-def] berlekamp-monic-factorization-def[abs-def]
Let-def
by transfer-prover

lemma dist-degree-factorize-main-i:
poly-rel F [= poly-rel G g = list-all2 (rel-prod (=) poly-rel) Res res
= list-all2 (rel-prod (=) poly-rel)
(dist-degree-factorize-main-i p ff-ops
(arith-ops-record.zero ff-ops) (arith-ops-record.one ff-ops) (degree-i F) F G
d Res)
(dist-degree-factorize-main f g d res)

288

proof (induct f g d res arbitrary: F G Res rule: dist-degree-factorize-main.induct)
case (1 vw dres VW Res)
let ?ze = arith-ops-record.zero ff-ops
let ?on = arith-ops-record.one ff-ops
note simp = dist-degree-factorize-main.simps[of v w d]
dist-degree-factorize-main-i.simps[of p [f-ops ?ze 2on degree-i V'V W d]
have v[transfer-rule]: poly-rel V v by (rule 1)
have w(transfer-rule]: poly-rel W w by (rule 1)
have res|transfer-rule]: list-all2 (rel-prod (=) poly-rel) Res res by (rule 1)
have [transfer-rule]: poly-rel [?on] 1
by (simp add: one poly-rel-def)
have id1: (V = [?0on]) = (v = 1) unfolding finite-field-ops-int-def by trans-
fer-prover
have id2: degree-i V = degree v by transfer-prover
note simp = simplunfolded id1 id2)
note IH = 1(1,2)
show ?Zcase
proof (cases v = 1)
case True
with res show ?thesis unfolding d2 simp by simp
next
case Fulse
with id! have (v = 1) = False by auto
note simp = simplunfolded this if-False]
note IH = IH|OF False]
show ?thesis
proof (cases degree v < d + d)
case True
thus ?thesis unfolding id2 simp using res v by auto
next
case Fulse
hence (degree v < d + d) = Fualse by auto
note simp = simp[unfolded this if-False]
let ?P = power-poly-f-mod-i ff-ops (Af. mod-field-poly-i ff-ops f V) W (nat

let G = ged-poly-i ff-ops (minus-poly-i ff-ops ?P [?ze, ?on]) V

let g = ged (w ~ CARD('a) mod v — monom 1 1) v

define G where G = ?G

define g where g = %¢g

note simp = simplunfolded Let-def, folded G-def g-def]

note IH = IH|OF False refl refl refl]

have [transfer-rule]: poly-rel [?ze,?on] (monom 1 1) unfolding poly-rel-def
by (auto simp: coeffs-monom one zero)

have id: w = CARD('a) mod v = power-poly-f~mod v w (nat p)
unfolding power-poly-f-mod-def by (simp add: p)

have P[transfer-rule]: poly-rel ?P (w ~ CARD('a) mod v) unfolding id
by (rule power-poly-f-mod-i|OF - w], transfer-prover)

have g[transfer-rule]: poly-rel G g unfolding G-def g-def by transfer-prover

have id3: (G = [?on]) = (g = 1) by transfer-prover

289

note simp = simp[unfolded id3)
show ?thesis
proof (cases g = 1)
case True
from [H(1)[OF this[unfolded g-def] v P res| True
show ?thesis unfolding id2 simp by simp
next
case Fulse
have vg: poly-rel (div-field-poly-i ff-ops V G) (v div g) by transfer-prover
have poly-rel (mod-field-poly-i ff-ops ?P
(div-field-poly-i [f-ops V G)) (w = CARD(’a) mod v mod (v div g)) by
transfer-prover
note [H = [H(2)[OF Fulse[unfolded g-def] refl vglunfolded G-def g-def]
this[unfolded G-def g-def],
folded g-def G-def]
have list-all2 (rel-prod (=) poly-rel) ((Suc d, G) # Res) ((Suc d, g) # res)
using g res by auto
note /H = IH[OF this]
from Fualse have (g = 1) = False by simp
note simp = simplunfolded this if-False]
show ?thesis unfolding id2 simp using IH by simp
qed
qed
qed
qed

lemma distinct-degree-factorization-i[transfer-rule]: (poly-rel ===> list-all2 (rel-prod
(=) poly-rel))
(distinct-degree-factorization-i p ff-ops) distinct-degree-factorization
proof
fix F f
assume f[transfer-rule]: poly-rel F f
have id: (degree-i F = 1) = (degree f = 1) by transfer-prover
note d = distinct-degree-factorization-i-def distinct-degree-factorization-def
let ?ze = arith-ops-record.zero ff-ops
let ?on = arith-ops-record.one ff-ops
show list-all2 (rel-prod (=) poly-rel) (distinct-degree-factorization-i p ff-ops F)
(distinct-degree-factorization f)
proof (cases degree f = 1)
case True
with id f show ?thesis unfolding d by auto
next
case Fulse
from Fulse id have ?thesis = (list-all2 (rel-prod (=) poly-rel)
(dist-degree-factorize-main-i p ff-ops ?ze Zon (degree-i F') F [?ze, %on] 0 [])
(dist-degree-factorize-main f (monom 1 1) 0 [])) unfolding d Let-def by simp

also have ...
by (rule dist-degree-factorize-main-i[OF f], auto simp: poly-rel-def

290

coeffs-monom one zero)
finally show ?thesis .
qed
qed

lemma finite-field-factorization-i[transfer-rule]:
(poly-rel ===> rel-prod R (list-all2 poly-rel))
(finite-field-factorization-i p ff-ops) finite-field-factorization
unfolding finite-field-factorization-i-def finite-field-factorization-def Let-def lead-coeff-i-def’
by transfer-prover

Since the implementation is sound, we can now combine it with the
soundness result of the finite field factorization.

lemma finite-field-i-sound:
assumes [f' = of-int-poly-i ff-ops (Mp f)
and berl-i: finite-field-factorization-i p ff-ops f' = (c',fs’)
and sq: square-free-m f
and fs: fs = map (to-int-poly-i ff-ops) fs'
and c: ¢ = arith-ops-record.to-int [f-ops c’
shows unique-factorization-m f (c, mset fs)
Aced{0.<p}
A (Y fi € set fs. set (coeffs fi) C {0 ..< p})
proof —
define [:: 'a mod-ring poly where f'' = of-int-poly (Mp f)
have rel-f[transfer-rule]: poly-rel f’ f"
by (rule poly-rel-of-int-poly[OF f], simp add: f'"'-def)
interpret pff: idom-ops poly-ops [f-ops poly-rel
by (rule idom-ops-poly)
obtain ¢ fs' where berl: finite-field-factorization ' = (c”,fs') by force
from rel-funD[OF finite-field-factorization-i rel-f, unfolded rel-prod-conv assms(2)
split berl]
have rel[transfer-rule]: R ¢’ ¢’ list-all2 poly-rel fs' fs'' by auto
from to-int[OF rel(1)] have cc”: ¢ = to-int-mod-ring ¢’ unfolding ¢ by simp
from m1 have <M c € {0 ..< p}
by (simp add: M-def cc’)
then have c: «¢c € {0 .< pp
by (simp add: M-to-int-mod-ring cc’)
{
fix f
assume [€ set fs’
with rel(2) obtain f’ where poly-rel f f' unfolding list-all2-conv-all-nth
set-conv-nth
by auto
hence is-poly ff-ops f using fun-cong|OF Domainp-is-poly, of f]
unfolding Domainp-iff [abs-def] by auto
}

hence fs”: Ball (set fs') (is-poly ff-ops) by auto

define mon :: 'a mod-ring poly = bool where mon = monic
have [transfer-rule]: (poly-rel ===> (=)) (monic-i ff-ops) mon unfolding mon-def

291

by (rule poly-rel-monic)
have len: length fs' = length fs'' by transfer-prover
have fs": fs = map to-int-poly fs'’ unfolding fs
proof (rule nth-map-conv[OF len|, intro alll impl)
fix ¢
assume i: 1 < length fs'
obtain f ¢ where id: fs'! i = f fs"' ! i = g by auto
from 1 rel(2)[unfolded list-all2-conv-all-nth|of - fs' fs'']] id
have poly-rel f g by auto
from to-int-poly-i[OF this] have to-int-poly-i ff-ops f = to-int-poly g .
thus to-int-poly-i ff-ops (fs’ ! i) = to-int-poly (fs''! i) unfolding id .
qed
have f: f' = of-int-poly f unfolding poly-eq-iff f''-def
by (simp add: to-int-mod-ring-hom.injectivity to-int-mod-ring-of-int-M Mp-coeff)
have *: unique-factorization-m f (c, mset fs)
using finite-field-factorization-modulo-ring[OF f sq berl cc’ fs'] by auto
have fs” (Vfieset fs. set (coeffs fi) C {0..<p}) unfolding fs’
using range-to-int-mod-ringlwhere 'a = 'a]
by (auto simp: coeffs-to-int-poly p)
with ¢ fs x
show ?thesis by blast
qed
end

definition finite-field-factorization-main :: int = 'i arith-ops-record = int poly =
int X int poly list where
finite-field-factorization-main p f-ops f =
let (c'.fs") = finite-field-factorization-i p f-ops (of-int-poly-i f~ops (poly-mod.Mp
pf)
in (arith-ops-record.to-int f-ops ¢', map (to-int-poly-i f-ops) fs’)

lemma(in prime-field-gen) finite-field-factorization-main:
assumes res: finite-field-factorization-main p ff-ops f = (c,fs)
and sq: square-free-m f
shows unique-factorization-m f (c, mset fs)
Aced{0.<p}
A (Y fi € set fs. set (coeffs fi) C {0 ..< p})
proof —
obtain ¢’ fs’ where
res’: finite-field-factorization-i p ff-ops (of-int-poly-i ff-ops (Mp f)) = (¢’ fs')
by force
show ?thesis
by (rule finite-field-i-sound[OF refl res’ sq|,
insert res|unfolded finite-field-factorization-main-def res’], auto)
qed

definition finite-field-factorization-int :: int = int poly = int X int poly list
where

292

finite-field-factorization-int p = (
if p < 65535
then finite-field-factorization-main p (finite-field-ops32 (uint32-of-int p))
else if p < 4294967295
then finite-field-factorization-main p (finite-field-ops64 (wint64-of-int p))
else finite-field-factorization-main p (finite-field-ops-integer (integer-of-int p)))

context poly-mod-prime begin

lemmas finite-field-factorization-main-integer = prime-field-gen.finite-field-factorization-main
[OF prime-field.prime-field-finite-field-ops-integer, unfolded prime-field-def mod-ring-locale-def,
unfolded poly-mod-type-simps, internalize-sort 'a :: prime-card, OF type-to-set,

unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty|

lemmas finite-field-factorization-main-uint32 = prime-field-gen.finite-field-factorization-main
[OF prime-field.prime-field-finite-field-ops32, unfolded prime-field-def mod-ring-locale-def
unfolded poly-mod-type-simps, internalize-sort 'a :: prime-card, OF type-to-set,

unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty|

lemmas finite-field-factorization-main-uint64 = prime-field-gen.finite-field-factorization-main
[OF prime-field.prime-field-finite-field-ops64 , unfolded prime-field-def mod-ring-locale-def
unfolded poly-mod-type-simps, internalize-sort 'a :: prime-card, OF type-to-set,

unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty|

lemma finite-field-factorization-int:

assumes sq: poly-mod.square-free-m p f

and result: finite-field-factorization-int p f = (c,fs)

shows poly-mod.unique-factorization-m p f (¢, mset fs)
Aced{0.<p}
A (Y fi € set fs. set (coeffs fi) € {0 ..< p})

using finite-field-factorization-main-integer[OF - sq, of ¢ fs]
finite-field-factorization-main-uint32[OF - - sq, of ¢ f3]
finite-field-factorization-main-uint64 [OF - - sq, of ¢ f3]
result[unfolded finite-field-factorization-int-def]

by (auto split: if-splits)

end

end

9 Hensel Lifting

9.1 Properties about Factors

We define and prove properties of Hensel-lifting. Here, we show the result
that Hensel-lifting can lift a factorization mod p to a factorization mod
p". For the lifting we have proofs for both versions, the original linear
Hensel-lifting or the quadratic approach from Zassenhaus. Via the linear
version, we also show a uniqueness result, however only in the binary case,

293

i.e., where f = g - h. Uniqueness of the general case will later be shown in
theory Berlekamp-Hensel by incorporating the factorization algorithm for
finite fields algorithm.

theory Hensel-Lifting

imports
HOL— Computational-Algebra. Euclidean-Algorithm
Poly-Mod-Finite-Field- Record-Based
Polynomial-Factorization.Square-Free- Factorization

begin

lemma uniqueness-poly-equality:
fixes f g :: 'a :: {factorial-ring-gcd,semiring-ged-mult-normalize} poly
assumes cop: coprime f g
and deg: B = 0 V degree B < degree f B' = 0 V degree B’ < degree f
and f: f#Oand eq: Axf+ Bxg=A"xf+ B'xg
shows A = A’ B = B’
proof —
from eq have x: (A — A') x f = (B’ — B) * g by (simp add: field-simps)
hence f dvd (B’ — B) * g unfolding dvd-def by (intro exI[of - A — A’], auto
sitmp: field-simps)
with cop[simplified] have dvd: f dvd (B’ — B)
by (simp add: coprime-dvd-mult-right-iff ac-simps)
from divides-degree[OF this| have degree f < degree (B’ — B) V B = B’ by auto
with degree-diff-le-maz[of B’ B] deg
show B = B’ by auto
with * f show A = A’ by auto
qed

lemmas (in poly-mod-prime-type) uniqueness-poly-equality =
uniqueness-poly-equality[where 'a='a mod-ring, untransferred)

lemmas (in poly-mod-prime) uniqueness-poly-equality = poly-mod-prime-type.uniqueness-poly-equality
[unfolded poly-mod-type-simps, internalize-sort 'a :: prime-card, OF type-to-set,

unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]

lemma pseudo-divmod-main-list-1-is-divmod-poly-one-main-list:
pseudo-divmod-main-list (1 :: 'a :: comm-ring-1) q f g n = divmod-poly-one-main-list
qfgn
by (induct n arbitrary: q f g, auto simp: Let-def)

lemma pdivmod-monic-pseudo-divmod: assumes g: monic g shows pdivmod-monic
f g = pseudo-divmod f g
proof —

from ¢ have id: (coeffs g = []) = False by auto

from g have mon: hd (rev (coeffs g)) = 1 by (metis coeffs-eq-Nil hd-rev id
last-coeffs-eq-coeff-degree)

show ?thesis

unfolding pseudo-divmod-impl pseudo-divmod-list-def id if-False pdivmod-monic-def
Let-def mon

294

pseudo-divmod-main-list-1-is-divmod-poly-one-main-list by (auto split: prod.splits)
qed

lemma pdivmod-monic: assumes g: monic g and res: pdivmod-monic f g = (g, 1)

shows f =g ¢+ rr = 0V degree r < degree g
proof —

from ¢ have ¢0: g # 0 by auto

from pseudo-divmod|OF g0 res[unfolded pdivmod-monic-pseudo-divmod|OF g]],
unfolded g]

show f = g+ g+ rr =0V degree r < degree g by auto
qged
definition dupe-monic :: 'a :: comm-ring-1 poly = 'a poly = 'a poly = 'a poly
= 'a poly =

‘a poly * 'a poly where

dupe-monic D H S T U = (case pdivmod-monic (T = U) D of (q,r) =

(S« U+ H=xgq,r))

lemma dupe-monic: assumes 1: DxS + HxT = 1
and mon: monic D
and dupe: dupe-monic D HS T U = (A,B)
shows A« D+ Bx H=UDB= 0V degree B < degree D
proof —
obtain @ R where div: pdivmod-monic ((T * U)) D = (Q,R) by force
from dupe[unfolded dupe-monic-def div split]
have A: A= (S« U + H * Q) and B: B = R by auto
from pdivmod-monic[OF mon div] have TU: T « U = D % @ + R and
deg: R = 0 V degree R < degree D by auto
hence R: R=T « U — D x @ by simp
have A« D+ Bx H= (D xS+ H x T) x U unfolding A B R by (simp add:
field-simps)
also have ... = U unfolding 1 by simp
finally show eq: A« D+ B« H= U .
show B = 0 V degree B < degree D using deg unfolding B .
qed

lemma dupe-monic-unique: fixes D :: 'a :: {factorial-ring-gcd,semiring-ged-mult-normalize}
poly

assumes 1: DxS + HxT = 1

and mon: monic D

and dupe: dupe-monic D HS T U = (A,B)

and cop: coprime D H

and other: A’ D+ B’ H= U B’ = 0 V degree B' < degree D
shows A’= A B'=B
proof —

from dupe-monic[OF 1 mon dupe] have one: A« D+ Bx H=UB =0V
degree B < degree D by auto

from mon have D0: D # 0 by auto

from uniqueness-poly-equality]OF cop one(2) other(2) DO, of A A’, unfolded

295

other, OF one(1)]
show A’ = A B’ = B by auto
qed

context ring-ops
begin
lemma poly-rel-dupe-monic-i: assumes mon: monic D
and rel: poly-rel d D poly-rel h H poly-rel s S poly-rel t T poly-rel u U
shows rel-prod poly-rel poly-rel (dupe-monic-i ops d h s t u) (dupe-monic D HS T
U)
proof —
note defs = dupe-monic-i-def dupe-monic-def
note [transfer-rule] = rel
have [transfer-rule]: rel-prod poly-rel poly-rel
(pdivmod-monic-i ops (times-poly-i ops t u) d)
(pdivmod-monic (T = U) D)
by (rule poly-rel-pdivmod-monic|OF mon), transfer-prover+)
show ?thesis unfolding defs by transfer-prover
qed
end

context mod-ring-gen
begin

lemma monic-of-int-poly: monic D = monic (of-int-poly (Mp D) :: 'a mod-ring

poly)
using Mp-f-representative Mp-to-int-poly monic-Mp by auto

lemma dupe-monic-i: assumes dupe-i: dupe-monic-i ff-ops d h s t v = (a,b)
and I: DxS + H+T =m 1
and mon: monic D
and A: A = to-int-poly-i ff-ops a
and B: B = to-int-poly-i ff-ops b
and d: Mp-rel-i d D
and h: Mp-rel-i h H
and s: Mp-rel-i s S
and t: Mp-rel-it T
and u: Mp-rel-i w U

shows
Ax D+ B+« H=mU
B = 0 V degree B < degree D
Mp-rel-i a A
Mp-rel-i b B

proof —
let 2 = X f. of-int-poly (Mp f) :: 'a mod-ring poly
let ?2¢ = to-int-poly-i [f-ops
note dd = Mp-rel-iD|OF d]
note hh = Mp-rel-iD[OF h)
note ss = Mp-rel-iD[OF s

296

note tt = Mp-rel-iD[OF]

note uu = Mp-rel-iD]|OF u]

obtain A’ B’ where dupe: dupe-monic (21 D) (21 H) (¢?1S) (?IT) (?1U) =
(A’,B") by force

from poly-rel-dupe-monic-i] OF monic-of-int-poly|OF mon] dd(1) hh(1) ss(1)
tt(1) uu(1), unfolded dupe-i dupe]

have a: poly-rel a A’ and b: poly-rel b B’ by auto

show aa: Mp-rel-i a A by (rule Mp-rel-il |OF a, folded A))

show bb: Mp-rel-i b B by (rule Mp-rel-il [OF b, folded B))

note Aa = Mp-rel-iD[OF aaq]

note Bb = Mp-rel-iD[OF bb]

from poly-rel-inj|OF a Aa(1)] A have A: A’ = 2] A by simp

from poly-rel-inj[OF b Bb(1)] B have B: B’ = ?I B by simp

note Mp = dd(2) hh(2) ss(2) tt(2) wu(2)

note [transfer-rule] = Mp

have (=) (D« S+ Hx T =m 1) (?ID=« ?1S+ ?2IH=«?T=1) by
transfer-prover

with 7 have 11: 2I D x 21 S + ?[H « I T = 1 by simp

from dupe-monic[OF 11 monic-of-int-poly| OF mon| dupe, unfolded A B]

have res: YIAx ?2I D+ ?IB* ?2I H= 2IU ?I B= 0V degree (I B) < degree
(?I D) by auto

note [transfer-rule] = Aa(2) Bb(2)

have (=) (A« D+ BxH=mU) (?IAx 21D+ ?IBx I H = *?IU)

(=) (B =m 0 V degree-m B < degree-m D) (?I B = 0 V degree (?I B) <

degree (?I D)) by transfer-prover+

with res have x: Ax D+ Bx H=m U B =m 0 V degree-m B < degree-m D
by auto

show A x D + B x H =m U by fact

have B: Mp B = B using Mp-rel-i-Mp-to-int-poly-i assms(5) bb by blast

from %(2) show B = 0 V degree B < degree D unfolding B using degree-m-le[of
D] by auto
qed

lemma Mp-rel-i-of-int-poly-i: assumes Mp F = F
shows Mp-rel-i (of-int-poly-i ff-ops F') F
by (metis Mp-f-representative Mp-rel-il’ assms poly-rel-of-int-poly to-int-poly-i)

lemma dupe-monic-i-int: assumes dupe-i: dupe-monic-i-int ff-ops D HS T U =
(4,B)

and 1: DxS + HxT =m 1

and mon: monic D

and norm: Mp D =D Mp H=HMpS=SMpT=TMpU=U
shows

Ax D+ BxH=mU

B = 0V degree B < degree D

Mp A=A
Mp B=B
proof —

let ?0i = of-int-poly-i [f-ops

297

let %ti = to-int-poly-i ff-ops

note rel = norm[THEN Mp-rel-i-of-int-poly-i]

obtain a b where dupe: dupe-monic-i ff-ops (?0i D) (?0i H) (%0t S) (%0t T)
(%0i U) = (a,b) by force

from dupe-i[unfolded dupe-monic-i-int-def this Let-def] have AB: A = ?ti a B
= %ti b by auto

from dupe-monic-i|OF dupe 1 mon AB rel] Mp-rel-i-Mp-to-int-poly-i

show A x D+ Bx H=mU

B = 0V degree B < degree D

Mp A=A

Mp B=B

unfolding AB by auto
qed
end

definition dupe-monic-dynamic
int = int poly = int poly = int poly = int poly = int poly = int poly X int
poly where
dupe-monic-dynamic p = (
if p < 65535
then dupe-monic-i-int (finite-field-ops32 (wint32-of-int p))
else if p < 4294967295
then dupe-monic-i-int (finite-field-ops64 (uwint64-of-int p))
else dupe-monic-i-int (finite-field-ops-integer (integer-of-int p)))

context poly-mod-2
begin

lemma dupe-monic-i-int-finite-field-ops-integer: assumes
dupe-i: dupe-monic-i-int (finite-field-ops-integer (integer-of-int m)) D H S T
U = (A,B)
and 1: DxS + HxT =m 1
and mon: monic D
and norm: Mp D =D Mp H=HMpS=SMp T=TMpU=U
shows
Ax D+ Bx H=mU
B = 0V degree B < degree D
Mp A=A
Mp B=B
using m1 mod-ring-gen.dupe-monic-i-int[OF
mod-ring-locale.mod-ring-finite-field-ops-integer|[unfolded mod-ring-locale-def],

internalize-sort 'a :: nontriv, OF type-to-set, unfolded remove-duplicate-premise,
cancel-type-definition, OF - assms| by auto
lemma dupe-monic-i-int-finite-field-ops32: assumes

m: m < 65535

298

and dupe-i: dupe-monic-i-int (finite-field-ops32 (uwint32-of-int m)) D HS T U =
(4,B)

and I: DxS + H+T =m 1

and mon: monic D

and norm: Mp D =D Mp H=HMpS=SMpT=TMpU=U
shows

Ax D+ B+« H=mU

B = 0V degree B < degree D

Mp A=A

Mp B=B

using mI1 mod-ring-gen.dupe-monic-i-int[OF

mod-ring-locale.mod-ring-finite-field-ops32 [unfolded mod-ring-locale-def],
internalize-sort 'a :: nontriv, OF type-to-set, unfolded remove-duplicate-premise,

cancel-type-definition, OF - assms| by auto

lemma dupe-monic-i-int-finite-field-ops6/: assumes
m: m < 4294967295
and dupe-i: dupe-monic-i-int (finite-field-ops64 (uwint64-of-int m)) D HS T U =
(4.B)
and 1: DxS + HxT =m 1
and mon: monic D
and norm: Mp D =D Mp H=HMpS=SMpT=TMpU=U
shows
Ax D+ B+« H=mU
B = 0V degree B < degree D
Mp A=A
Mp B=B
using m1 mod-ring-gen.dupe-monic-i-int[OF
mod-ring-locale.mod-ring-finite-field-ops64 [unfolded mod-ring-locale-def),
internalize-sort 'a :: nontriv, OF type-to-set, unfolded remove-duplicate-premise,

cancel-type-definition, OF - assms| by auto

lemma dupe-monic-dynamic: assumes dupe: dupe-monic-dynamic m D HS T U
= (4,B)

and 1: DxS + HxT =m 1

and mon: monic D

and norm: Mp D =D Mp H=HMpS=SMpT=TMpU=U
shows

Ax D+ B+« H=mU

B = 0V degree B < degree D

Mp A=A
Mp B=B
using dupe

dupe-monic-i-int-finite-field-ops82[OF - - 1 mon norm, of A B]

dupe-monic-i-int-finite-field-ops64|OF - - 1 mon norm, of A B]

dupe-monic-i-int-finite-field-ops-integer[OF - 1 mon norm, of A B
unfolding dupe-monic-dynamic-def by (auto split: if-splits)

299

end

context poly-mod
begin

definition dupe-monic-int :: int poly = int poly = int poly = int poly = int poly
=
int poly *x int poly where
dupe-monic-int D HS T U = (case pdivmod-monic (Mp (T = U)) D of (q,r) =
(Mp (S« U+ H *q), Mp r))

end

declare poly-mod.dupe-monic-int-def|code]

Old direct proof on int poly. It does not permit to change implementa-
tion. This proof is still present, since we did not export the uniqueness part
from the type-based uniqueness result [¢D x 2S + ?H % ?T = 1; monic ?D;
dupe-monic ¢D ?H 25 ?T ?2U = (?A, ?B); comm-monoid-mult-class.coprime
?D ?H; ?A" x 2D + ¢?B'x ?H = ?U; ?B' = 0 V degree ?B’ < degree ?D]
= 74" = 74

12D % ¢S + ?H % ¢T = 1; monic ?D; dupe-monic ?D ?H 25 ?T ?U =
(24, ?B); comm-monoid-mult-class.coprime ?D ?H; ?A" « 2D + ¢B’ x ?H
= ?U; ?B' = 0 V degree ?B’ < degree ?D] = ?B’ = ?B via the various
relations.

lemma (in poly-mod-2) dupe-monic-int: assumes 1: DxS + HxT =m 1
and mon: monic D
and dupe: dupe-monic-int D HS T U = (A,B)
shows A« D+ Bx H=m UB =0V degree B < degree D Mp A = A Mp B
=B
coprime-m D H => A’ x D + B'x H=m U = B’ = 0 V degree B’ < degree
D= MpD=D
= Mp A'=A'=— Mp B'= B’ = prime m
— A'=AANB' =B
proof —
obtain @ R where div: pdivmod-monic (Mp (T * U)) D = (Q,R) by force
from dupe[unfolded dupe-monic-int-def div split]
have A: A= Mp (S +« U+ H x Q) and B: B = Mp R by auto
from pdivmod-monic[OF mon div] have TU: Mp (T = U) = D x Q@ + R and
deg: R = 0 V degree R < degree D by auto
hence Mp R = Mp (Mp (T x U) — D * Q) by simp
also have ... = Mp (T «x U — Mp (Mp (Mp D % @Q))) unfolding Mp-Mp
unfolding minus-Mp
using minus-Mp mult-Mp by metis
also have ... = Mp (T x U — D * Q) by simp
finally have r: Mp R = Mp (T « U — D % @) by simp
have Mp (A« D+ Bx H) = Mp (Mp (A « D) + Mp (B x H)) by simp

300

also have Mp (A « D) = Mp ((S « U + H * Q) = D) unfolding A by simp
also have Mp (B « H) = Mp (Mp R x Mp H) unfolding B by simp
also have ... = Mp ((T * U — D * @) x H) unfolding r by simp
also have Mp (Mp (S* U+ H* Q) D)+ Mp ((T* U — D x Q) x H)) =
Mp (S« U+ Hx+x Q)+« D+ (T*U—D=x Q)+ H) by simp
alsohave (S* U+ H*Q)*x D+ (T« U —-DxQ)«H=(DxS+ H=«T)
* U
by (simp add: field-simps)
also have Mp ... = Mp (Mp (D xS+ H x T) = U) by simp
also have Mp (D« S + H * T) = 1 using I by simp
finally show eq: A * D + B « H =m U by simp
have id: degree-m (Mp R) = degree-m R by simp
have id” degree D = degree-m D using mon by simp
show degB: B = 0 V degree B < degree D using deg unfolding B id id’
using degree-m-le[of R] by (cases R = 0, auto)
show Mp: Mp A = A Mp B = B unfolding A B by auto
assume another: A’ * D + B’ x H =m U and degB": B’ = 0 V degree B’ <
degree D
and norm: Mp A’ = A’ Mp B’ = B’ and cop: coprime-m D H and D: Mp D
=D
and prime: prime m
from degB Mp D have degB: B =m 0 V degree-m B < degree-m D by auto
from degB’ Mp D norm have degB’: B’ =m 0 V degree-m B’ < degree-m D by
auto
from mon D have D0: = (D =m 0) by auto
from prime interpret poly-mod-prime m by unfold-locales
from another eg have A’ * D + B'x H =m A x D + B x H by simp
from uniqueness-poly-equality| OF cop degB’ degB DO this]
show A’ = A A B’ = B unfolding norm Mp by auto
qed

* 5

lemma coprime-bezout-coefficients:
assumes cop: coprime f g
and ext: bezout-coefficients f g = (a, b)
shows a x f + bxg=1
using assms bezout-coefficients [of f g a b]
by simp

lemma (in poly-mod-prime-type) bezout-coefficients-mod-int: assumes f: (F :: 'a
mod-ring poly) = of-int-poly f

and g: (G :: 'a mod-ring poly) = of-int-poly g

and cop: coprime-m f g

and fact: bezout-coefficients F G = (A,B)

and a: a = to-int-poly A

and b: b = to-int-poly B

shows f x a4+ gx b=m 1
proof —

have f[transfer-rule]: MP-Rel f F unfolding f MP-Rel-def by (simp add: Mp-f-representative)

301

have g[transfer-rule]: MP-Rel ¢ G unfolding g MP-Rel-def by (simp add:
Mp-f-representative)

have [transfer-rule]: MP-Rel a A unfolding a MP-Rel-def by (rule Mp-to-int-poly)
have [transfer-rule]: MP-Rel b B unfolding b MP-Rel-def by (rule Mp-to-int-poly)

from cop have coprime F G using coprime-MP-Rel[unfolded rel-fun-def] f g by
auto

from coprime-bezout-coefficients [OF this fact]

have Ax F+ Bx G=1.

from this [untransferred)

show ?thesis by (simp add: ac-simps)
qged

definition bezout-coefficients-i :: 'i arith-ops-record = 'i list = 'i list = 'i list x
'i list where
bezout-coefficients-i ff-ops f g = fst (euclid-ext-poly-i ff-ops f g)

definition euclid-ext-poly-mod-main :: int = 'a arith-ops-record = int poly = int
poly = int poly x int poly where
euclid-ext-poly-mod-main p ff-ops f g = (case bezout-coefficients-i ff-ops (of-int-poly-i
fF-0ps f) (of-int-poly-i ff-ops g) of
(a,b) = (to-int-poly-i ff-ops a, to-int-poly-i ff-ops b))

definition euclid-ext-poly-dynamic :: int = int poly = int poly = int poly X int
poly where
euclid-ext-poly-dynamic p = (

if p < 65535

then euclid-ext-poly-mod-main p (finite-field-ops32 (uwint32-of-int p))

else if p < 4294967295

then euclid-ext-poly-mod-main p (finite-field-ops64 (uint64-of-int p))

else euclid-ext-poly-mod-main p (finite-field-ops-integer (integer-of-int p)))

context prime-field-gen

begin
lemma bezout-coefficients-i[transfer-rule]:
(poly-rel ===> poly-rel ===> rel-prod poly-rel poly-rel)

(bezout-coefficients-i ff-ops) bezout-coefficients
unfolding bezout-coefficients-i-def bezout-coefficients-def
by transfer-prover

lemma bezout-coefficients-i-sound: assumes f: f' = of-int-poly-i ff-ops f Mp f = f
and ¢: ¢/ = of-int-poly-i ff-ops g Mp g = g
and cop: coprime-m f g
and res: bezout-coefficients-i ff-ops f' g’ = (a’,b")
and a: a = to-int-poly-i ff-ops a’
and b: b = to-int-poly-i ff-ops b’
shows f x a + g*x b=m 1
Mpa=aMpb=2>
proof —
from f have f” f’ = of-int-poly-i ff-ops (Mp f) by simp

302

define [where f"' = of-int-poly (Mp f) :: 'a mod-ring poly
have [f' = of-int-poly f unfolding f'’-def f by simp
have rel-f[transfer-rule]: poly-rel f’ f"
by (rule poly-rel-of-int-poly[OF f], simp add: " f)
from ¢ have ¢" ¢’ = of-int-poly-i ff-ops (Mp g) by simp
define ¢"’ where g’ = of-int-poly (Mp g) :: 'a mod-ring poly
have ¢’ g’ = of-int-poly g unfolding ¢’’-def g by simp
have rel-g[transfer-rule]: poly-rel g’ g”’
by (rule poly-rel-of-int-poly[OF ¢'], simp add: g"' g)
obtain a’' b" where eucl: bezout-coefficients f'' ¢ = (a’,b"") by force
from bezout-coefficients-i[unfolded rel-fun-def rel-prod-conv, rule-format, OF rel-f
rel-g,
unfolded res split eucl]
have rel[transfer-rule]: poly-rel a’ o'’ poly-rel b’ b”’ by auto
with to-int-poly-i have a: a = to-int-poly a’’
and b: b = to-int-poly b’ unfolding a b by auto
from bezout-coefficients-mod-int [OF "' g cop eucl a b
show fxa+ gxb=m1.
show Mp a = a Mp b = b unfolding a b by (auto simp: Mp-to-int-poly)
qed

lemma euclid-ext-poly-mod-main: assumes cop: coprime-m f g
and f: Mpf=fand g: Mpg= g
and res: euclid-ext-poly-mod-main m ff-ops f g = (a,b)
shows f x a + gx b=m 1
Mpa=aMpb=»>
proof —
obtain o’ b’ where res”: bezout-coefficients-i [f-ops (of-int-poly-i [f-ops f)
(of-int-poly-i ff-ops g) = (a’, b’) by force
show f x a4+ gx b=m 1
Mpa=aMpb=2>
by (insert bezout-coefficients-i-sound|[OF refl f refl g cop res’]
res [unfolded euclid-ext-poly-mod-main-def res’], auto)
qed

end
context poly-mod-prime begin

lemmas euclid-ext-poly-mod-integer = prime-field-gen.euclid-ext-poly-mod-main

[OF prime-field.prime-field-finite-field-ops-integer,

unfolded prime-field-def mod-ring-locale-def poly-mod-type-simps, internalize-sort
'a :: prime-card, OF type-to-set, unfolded remove-duplicate-premise, cancel-type-definition,
OF non-empty|

lemmas euclid-ext-poly-mod-uint32 = prime-field-gen.euclid-ext-poly-mod-main
[OF prime-field.prime-field-finite-field-ops32,
unfolded prime-field-def mod-ring-locale-def poly-mod-type-simps, internalize-sort
'a :: prime-card, OF type-to-set, unfolded remove-duplicate-premise, cancel-type-definition,

303

OF non-empty|

lemmas euclid-ext-poly-mod-uwint6 = prime-field-gen.euclid-ext-poly-mod-main| OF
prime-field.prime-field-finite-field-ops64 ,

unfolded prime-field-def mod-ring-locale-def poly-mod-type-simps, internalize-sort
‘a :: prime-card, OF type-to-set, unfolded remove-duplicate-premise, cancel-type-definition,
OF non-empty|

lemma euclid-ext-poly-dynamic:

assumes cop: coprime-m fgand f: Mp f = fand ¢g: Mp g = ¢
and res: euclid-ext-poly-dynamic p f g = (a,b)

shows f xa + gx b=m 1
Mpa=aMpb=5

using euclid-ext-poly-mod-integer|OF cop f g, of p a b
euclid-ext-poly-mod-uint32[OF - cop f g, of p a b]
euclid-ext-poly-mod-uint64 [OF - cop f g, of p a b]
res[unfolded euclid-ext-poly-dynamic-def] by (auto split: if-splits)

end

lemma range-sum-prod: assumes zy: z € {0..<q} (y :: int) € {0..<p}
shows z + ¢ x y € {0..<p * ¢}
proof —
{
fix z q :: int
have z € {0 .< ¢} +— 0 < z A z < ¢ by auto
} note id = this
from zy have 0: 0 < x + ¢q % y by auto
have z + ¢ x y < ¢ — 1 + ¢ x y using zy by simp
also have ¢ x y < ¢ * (p — 1) using zy by auto
finally have z + gxy < ¢ — 1 + ¢ *x (p — 1) by auto
also have ... = p x ¢ — 1 by (simp add: field-simps)
finally show ?thesis using 0 by auto
qed

context
fixes C :: int poly
begin

context
fixes p :: int and S T D1 H1 :: int poly
begin

fun linear-hensel-main where
linear-hensel-main (Suc 0) = (D1,H1)
| linear-hensel-main (Suc n) = (
let (D,H) = linear-hensel-main n;
qg=1p n
U = poly-mod.Mp p (sdiv-poly (C — D = H) q); — H2 + H3

304

(A,B) = poly-mod.dupe-monic-int p DI H1 S T U
in (D + smult ¢ B, H + smult ¢ A)) — H/4
| linear-hensel-main 0 = (D1,H1)

lemma linear-hensel-main: assumes 1: poly-mod.eqg-m p (D1 * S + HI = T) 1
and equiv: poly-mod.eq-m p (D1 x H1) C
and monD1: monic D1
and normDH1: poly-mod.Mp p D1 = D1 poly-mod.Mp p HI = HI
and res: linear-hensel-main n = (D,H)
and n: n # 0
and prime: prime p — p > 1 suffices if one does not need uniqueness
and cop: poly-mod.coprime-m p D1 H1
shows poly-mod.eq-m (p™n) (D x H) C
A monic D
A poly-mod.eqg-m p D D1 A poly-mod.eq-m p H H1
A poly-mod.Mp (p™n) D = D
A poly-mod.Mp (p™n) H=H A
(poly-mod.eq¢-m (p™n) (D'« H') C —
poly-mod.eq-m p D' DI —
poly-mod.eq-m p H' HI —
poly-mod.Mp (p™n) D' = D' —
poly-mod.Mp (p™n) H' = H' — monic D' — D'= D AN H' = H)

using res n
proof (induct n arbitrary: D H D' H')

case (Sucn D' H' D" H")

show ?Zcase

proof (cases n = 0)
case True
with Suc equiv monD1 normDH1 show ?thesis by auto

next
case Fulse
hence n: n # 0 by auto
let 2¢g =p™n
let ?pg = p *x p'n
from prime have p: p > 1 using prime-gt-1-int by force
from n p have ¢: ¢ > 1 by auto
from n p have pq: ?pq > 1 by (metis power-gt1-lemma)
interpret p: poly-mod-2 p using p unfolding poly-mod-2-def .
interpret ¢: poly-mod-2 ?q using ¢ unfolding poly-mod-2-def .
interpret pq: poly-mod-2 ?pq using pq unfolding poly-mod-2-def .
obtain D H where rec: linear-hensel-main n = (D,H) by force
obtain V where V: sdiv-poly (C — D = H) ?q = V by force
obtain U where U: p.Mp (sdiv-poly (C — D * H) ?q) = U by auto
obtain A B where dupe: p.dupe-monic-int D1 H1 S T U = (A,B) by force
note IH = Suc(1)[OF rec n]
from IH
have CDH: q.e¢-m (D x H) C

and monD: monic D

305

and p-eq: p.e¢-m D D1 p.eg-m H HI
and norm: ¢.Mp D = D q.Mp H = H by auto
from n obtain k where n: n = Suc k by (cases n, auto)
have qq: ?q x ?qg = ?pq *x p~k unfolding n by simp
from Suc(2)[unfolded n linear-hensel-main.simps, folded n, unfolded rec split
Let-def U dupe]
have D D' = D + smult ¢ Band H: H' = H + smult ?q A by auto
note dupe = p.dupe-monic-int[OF 1 monD1 dupe]
from CDH have ¢.Mp C — ¢.Mp (D x H) = 0 by simp
hence ¢.Mp (¢.Mp C — ¢.Mp (D % H)) = 0 by simp
hence ¢.Mp (C — DxH) = 0 by simp
from q.Mp-0-smult-sdiv-poly| OF this] have CDHgq: smult ?q (sdiv-poly (C' —
D« H)?%)=C—-D=xH.
have ADBHU: p.e¢-m (A x D + B x H) U using p-eq dupe(1)
by (metis (mono-tags, lifting) p.mult-Mp(2) poly-mod.plus-Mp)
have pg.Mp (D'« H') = pq.Mp (D + smult ?q B) x (H + smult 2q A))
unfolding D’ H' by simp
also have (D + smult g B) * (H + smult g A) = (D x H + smult %q (A *
D+ B x H)) + smult (?q * ?q) (A = B)
by (simp add: field-simps smult-distribs)
also have pg.Mp ... = pg.Mp (D « H + pq.Mp (smult ?q (A« D + B * H))
+ pg.Mp (smult (?q x ?q) (A * B)))
using pq.plus-Mp by metis
also have pg.Mp (smult (?q * ?q) (A * B)) = 0 unfolding qq
by (metis pg. Mp-smult-m-0 smult-smult)
finally have DH’: pq.Mp (D'« H') = pq.Mp (D * H + pq.Mp (smult ?q (A *
D + B x H))) by simp
also have pg.Mp (smult g (A« D + B+ H)) = pg.Mp (smult ?q U)
using p. Mp-lift-modulus|OF ADBHU, of ?q] by simp
also have ... = pg.Mp (C — D x H)
unfolding arg-cong[OF CDHyg, of pq.Mp, symmetric] Ulsymmetric] V
by (rule p.Mp-lift-modulus|of - - ?q|, auto)
also have pg.Mp (D x H + pg.Mp (C — D x H)) = pg.Mp C by simp
finally have CDH: pg.eq-m C (D’ x H') by simp

have deg: degree D1 = degree D using p-eq(1) monD1 monD

by (metis p.monic-degree-m)
have mon: monic D’ unfolding D’ using dupe(2) monD unfolding deg by

(rule monic-smult-add-small)

have normD" pq.Mp D' = D'

unfolding D’ pq. Mp-ident-iff poly-mod. Mp-coeff plus-poly.rep-eq coeff-smult
proof

fix ¢

from norm(1) dupe(4) have coeff D i € {0..<2q} coeff B i € {0..<p}

unfolding p. Mp-ident-iff q.Mp-ident-iff by auto

thus coeff D i + ?q * coeff B i € {0..< ?pq} by (rule range-sum-prod)
qed
have normH": pq.Mp H' = H'

unfolding H' pq. Mp-ident-iff poly-mod. Mp-coeff plus-poly.rep-eq coeff-smult

306

proof
fix ¢
from norm(2) dupe(3) have coeff H i € {0..<?2q} coeff A i € {0..<p}
unfolding p. Mp-ident-iff q.Mp-ident-iff by auto
thus coeff Hi + ?q x coeff A i € {0..< ?pq} by (rule range-sum-prod)
qed
have eq: p.eg-m D D' p.eq-m H H' unfolding D' H' n
poly-eq-iff p. Mp-coeff p.M-def by (auto simp: field-simps)
with p-eq have eq: p.eq-m D’ D1 p.eqg-m H' H1 by auto
{
assume CDH'" pq.eq¢-m C (D" « H')
and DH1'": p.eq-m D1 D" p.eg-m H1 H"
and norm’: pq.Mp D' = D" pq.Mp H" = H"
and monD': monic D"
from q.Dp-Mp-eqof D] obtain d B’ where D": D" = ¢.Mp d + smult ?q
B’ by auto
from q.Dp-Mp-eq[of H"] obtain h A’ where H": H' = q.Mp h + smult ?q
A’ by auto
{
fix A B
assume *: pg.Mp (¢.Mp A + smult ?q¢ B) = ¢.Mp A + smult ?q B
have p.Mp B = B unfolding p.Mp-ident-iff
proof
fix ¢
from arg-cong|OF *, of X f. coeff f i, unfolded pq.Mp-coeff pq. M-def]
have coeff (¢.Mp A + smult ?q B) i € {0 ..< ?pq} using * pq. Mp-ident-iff
by blast
hence sum: coeff (¢.Mp A) i + 2q x coeff Bi € {0 ..< ?pq} by auto
have ¢.Mp (¢.Mp A) = q¢.Mp A by auto
from this[unfolded q.Mp-ident-iff] have A: coeff (¢.Mp A) i € {0 ..< p™n}

by auto
{
assume coeff B i < 0 hence coeff B i < —1 by auto
from mult-left-mono[OF this, of ?q] q.m1 have ?q * coeff B i < —%q
by simp
with A sum have Fulse by auto
} hence coeff B i > 0 by force
moreover
{
assume coeff Bi > p
from mult-left-mono|OF this, of ?q] ¢.m1 have ?q * coeff B i > ?pq by
simp

with A sum have Fulse by auto
} hence coeff B i < p by force
ultimately show coeff B i € {0 ..< p} by auto
qed
} note norm-convert = this
from norm-convert| OF norm''(1)[unfolded D'']] have normB" p.Mp B’ = B’

307

from norm-convert|OF norm''(2)[unfolded H")] have normA’": p.Mp A’ = A’

let ?d = q.Mp d
let 2h = ¢.Mp h
{
assume lt: degree ?d < degree B’
hence eq: degree D'’ = degree B’ unfolding D'’ using ¢q.m1 p.ml
by (subst degree-add-eq-right, auto)
from It have [simp]: coeff ?d (degree B’) = 0 by (rule coeff-eq-0)
from monD"[unfolded eq, unfolded D", simplified] False q.m1 It have False
by (metis mod-mult-self1-is-0 poly-mod.M-def q.M-1 zero-neq-one)
}
hence deg-dB’: degree ?d > degree B’ by presburger
{
assume eq: degree ?d = degree B’ and B": B’ # 0
let B = coeff B’ (degree B’)
from normB'[unfolded p.Mp-ident-iff, rule-format, of degree B’ B’
have ?B € {0..<p} — {0} by simp
hence bnds: B > 0 ?B < p by auto
have degD"": degree D" < degree ?d unfolding D"’ using eq by (simp add:
degree-add-le)
have ?¢ x ?B > 1 x 1 by (rule mult-mono, insert q.m1 bnds, auto)
moreover have coeff D" (degree ?d) = 1 + ?q x ¢B using monD"’
unfolding D'’ using eq
by (metis D" coeff-smult monD'" plus-poly.rep-eq poly-mod. Dp-Mp-eq
poly-mod.degree-m-eq-monic poly-mod.plus-Mp(1)
q.Mp-smult-m-0 q.m1 q.monic-Mp q.plus-Mp(2))
ultimately have gt: coeff D" (degree ?d) > 1 by auto
hence coeff D" (degree ?d) # 0 by auto
hence degree D" > degree ?d by (rule le-degree)
with degree-add-le-maz[of ?d smult ?q B, folded D" eq
have deg: degree D' = degree ?d using degD’ by linarith
from gt[folded this] have — monic D' by auto
with monD'’ have False by auto
}
with deg-dB' have deg-dB2: B' = 0 V degree B' < degree ?d by fastforce
have d: ¢.Mp D' = ?d unfolding D"’
by (metis add.right-neutral poly-mod. Mp-smult-m-0 poly-mod.plus-Mp)
have h: ¢.Mp H" = ?h unfolding H"'
by (metis add.right-neutral poly-mod. Mp-smult-m-0 poly-mod.plus-Mp)
from CDH'" have pq.Mp C = pg.Mp (D" x H') by simp
from arg-cong[OF this, of q.Mp)
have ¢.Mp C = ¢q.Mp (D" « H")
using p.m1 q.Mp-product-modulus by auto
also have ... = ¢.Mp (¢.Mp D" x ¢.Mp H'") by simp
also have ... = ¢.Mp (?d * ?h) unfolding d h by simp
finally have eqC: q.eq-m (?d = ?h) C by auto
have dI: p.e¢-m ?d DI unfolding d[symmetric] using DH1"
using assms(4) n p.Mp-product-modulus p.m1 by auto

308

have h1: p.e¢-m ?h HI unfolding h[symmetric] using DH1"'
using assms(5) n p. Mp-product-modulus p.m1 by auto
have mond: monic (¢.Mp d) using monD'" deg-dB2 unfolding D"’
using d q.monic-Mp|OF monD"| by simp
from eqC dI h1 mond IH[of ¢.Mp d q.Mp h] have IH: ?d = D ?h = H by
auto
from deg-dB2[unfolded IH] have degB”" B’ = 0 V degree B’ < degree D by
auto
from IH have D': D" = D + smult ?¢ B'and H": H" = H + smult ?q A’
unfolding D’ H" by auto
have pq.Mp (D" « H') = pq.Mp (D' + H') using CDH" CDH by simp
also have pq.Mp (D" « H') = pg.Mp ((D + smult ¢q B) x (H + smult %q
A7)
unfolding D’ H" by simp
also have (D + smult ?q B') x (H + smult 2q A) = (D « H + smult ?q (A’
x D+ B’ x H)) + smult (?q * ?q) (A’ * B)
by (simp add: field-simps smult-distribs)
also have pq.Mp ... = pqg.Mp (D x H + pq.Mp (smult 2q (A’ x D + B’
H)) + pg.Mp (smult (?q * ?q) (A’ x B')))
using pq.plus-Mp by metis
also have pq.Mp (smult (?q * ?q) (A’ * B’)) = 0 unfolding qq
by (metis pq. Mp-smult-m-0 smult-smult)
finally have pq.Mp (D « H + pq.Mp (smult 2q (A’ * D + B’ x H)))
= pq.Mp (D x H 4+ pg.Mp (smult ?q (A x D + B * H))) unfolding DH’
by simp
hence pq.Mp (smult 2q (A’ x D + B’ x H)) = pq.Mp (smult 2q (A« D + B
«)
by (metis (no-types, lifting) add-diff-cancel-left’ poly-mod.minus-Mp(1)
poly-mod.plus-Mp(2))
hence p.Mp (A’ «* D + B'« H) = p.Mp (A * D + B % H) unfolding
poly-eq-iff p.Mp-coeff pq. Mp-coeff coeff-smult
by (insert p, auto simp: p.M-def pq. M-def)
hence p.Mp (A’ « D1 + B’ x H1) = p.Mp (A = D1 + B x H1) using p-eq
by (metis p.mult-Mp(2) poly-mod.plus-Mp)
hence eq: p.e¢-m (A’ x D1 + B’ x H1) U using dupe(1) by auto
have degree D = degree D1 using monD monD1
arg-cong|OF p-eq(1), of degree]
p.degree-m-eg-monic[OF - p.m1] by auto
hence B’ = 0 V degree B’ < degree D1 using degB’ by simp
from dupe(5)[OF cop eq this normDHI (1) normA’ normB’ prime] have A’
= A B’ = B by auto
hence D" = D’ H" = H' unfolding D" H” D’ H' by auto

thus ?thesis using normD’ normH' CDH mon eq by simp
qed
qed simp
end
end

309

definition linear-hensel-binary :: int = nat = int poly = int poly = int poly =
int poly x int poly where
linear-hensel-binary p n C D H = (let
(S,T) = euclid-ext-poly-dynamic p D H
in linear-hensel-main Cp S T D H n)

lemma (in poly-mod-prime) unique-hensel-binary:
assumes prime: prime p
and cop: coprime-m D H and eq: e¢-m (D « H) C
and normalized-input: Mp D = D Mp H = H
and monic-input: monic D
and n: n # 0
shows 3! (D' H’). — D', H' are computed via linear-hensel-binary
poly-mod.eqg-m (p™n) (D’ x H') C'— the main result: equivalence mod p™n
A monic D’ — monic output
A eg-m D D' N\ eq-m H H'— apply ‘mod p‘on D’ and H'yields D and H again
A poly-mod.Mp (p™n) D' = D’ A poly-mod.Mp (p™n) H' = H' — output is
normalized
proof —
obtain D’ H' where hensel-result: linear-hensel-binary p n C D H = (D' H’)
by force
from m1 have p: p > 1.
obtain S T where ext: euclid-ext-poly-dynamic p D H = (S,T) by force
obtain DI H! where main: linear-hensel-main Cp S T D Hn = (D1,HI) by
force
from hensel-result[unfolded linear-hensel-binary-def ext split Let-def main]
have id: DI = D’ Hl = H' by auto
note eucl = euclid-ext-poly-dynamic [OF cop normalized-input ext)
from linear-hensel-main [OF eucl(1)
eq monic-input normalized-input main [unfolded id] n prime cop]
show ?thesis by (intro exll, auto)
qed

context
fixes C :: int poly
begin

lemma hensel-step-main: assumes
one-q: poly-mod.e¢-m q (D« S + H = T) 1
and one-p: poly-mod.eq-m p (D1 x S1 + H1 x T1) 1
and CDHg: poly-mod.eq-m q C' (D % H)
and D1D: poly-mod.eqg-m p D1 D
and HIH: poly-mod.eq-m p H1 H
and S1S: poly-mod.eqg-m p S1 S
and T1T: poly-mod.eq-m p T1 T
and mon: monic D
and monl: monic D1
and ¢: ¢ > 1

310

and p: p > I

and D1: poly-mod.Mp p D1 = D1

and HI: poly-mod.Mp p HI = HI

and S1: poly-mod.Mp p S1 = S1

and T1: poly-mod.Mp p T1 = T1

and D: poly-mod.Mp q D = D

and H: poly-mod.Mp ¢ H = H

and S: poly-mod.Mp ¢ S = S

and T: poly-mod.Mp q T = T

and Ul: Ul = poly-mod.Mp p (sdiv-poly (C — D = H) q)

and dupel: dupe-monic-dynamic p D1 H1 S1 T1 U1 = (A,B)

and D" D' = D + smult ¢ B

and H: H' = H + smult ¢ A

and U2: U2 = poly-mod.Mp q (sdiv-poly (SxD' + T+H' — 1) p)

and dupe2: dupe-monic-dynamic ¢ D HS T U2 = (A’,B’)

and rg: r =p * g

and pq: p dvd q

and S”: S’ = poly-mod.Mp r (S — smult p A')

and T T’ = poly-mod.Mp r (T — smult p B’
shows poly-mod.e¢-m r C' (D' x H')

poly-mod.Mp r D' = D'

poly-mod.Mp r H' = H'

poly-mod.Mp r S' = S’

poly-mod.Mp r T' = T’

poly-mod.e¢-m v (D'« S"+ H' x T') 1

monic D’

unfolding rq
proof —

from pq obtain k& where gp: ¢ = p * k unfolding dvd-def by auto

from arg-cong[OF qp, of sgn] q p have k0: k > 0 unfolding sgn-mult by (auto
simp: sgn-1-pos)

from ¢p have ¢q: ¢ x ¢ = p x ¢ x k by auto

let 7r = p x q

interpret poly-mod-2 p by (standard, insert p, auto)

interpret ¢: poly-mod-2 q by (standard, insert q, auto)

from p ¢ have r: ?r > 1 by (simp add: less-1-mult)

interpret r: poly-mod-2 ?r using r unfolding poly-mod-2-def .

have Mp-conv: Mp (¢.Mp) = Mp z for z unfolding ¢p

by (rule Mp-product-modulus|OF refl k0))

from arg-cong|OF CDHgq, of Mp, unfolded Mp-conv] have Mp C = Mp (Mp D

x Mp H)
by simp

also have Mp D = Mp D1 using D1D by simp

also have Mp H = Mp H1 using H1H by simp

finally have CDHp: eq¢-m C (D1 x H1) by simp

have Mp Ul = Ul unfolding U! by simp

note dupel = dupe-monic-dynamic|OF dupel one-p monl D1 H1 S1 T1 this

have ¢.Mp U2 = U2 unfolding U2 by simp

note dupe?2 = q.dupe-monic-dynamic[OF dupe2 one-q mon D H S T this]

311

from CDHq have ¢.Mp C — ¢.Mp (D x H) = 0 by simp

hence ¢.Mp (¢.Mp C — q¢.Mp (D x H)) = 0 by simp

hence ¢.Mp (C — DxH) = 0 by simp

from ¢. Mp-0-smult-sdiv-poly[OF this]| have CDHgq: smult q (sdiv-poly (C' — D x

H)q=C—DxH.

{
fix A B
have Mp (A * D1 + Bx H1) = Mp (Mp (A * D1) + Mp (B % H1)) by simp
also have Mp (A x D1) = Mp (A x Mp D1) by simp

also have ... = Mp (A x D) unfolding D1D by simp
also have Mp (B x H1) = Mp (B x Mp H1) by simp
also have ... = Mp (B * H) unfolding H1H by simp

finally have Mp (A « D1 + B H1) = Mp (A« D + B *x H) by simp
} note DIHI = this
have r.Mp (D'« H') = r.Mp ((D + smult ¢ B) * (H + smult g A))
unfolding D’ H' by simp
also have (D + smult ¢ B) x (H + smult ¢ A) = (D x H + smult ¢ (A * D +
B« H)) + smult (¢ x q) (A x B)
by (simp add: field-simps smult-distribs)
also have r.Mp ... = r.Mp (D« H 4+ r.Mp (smult ¢ (A D+ Bx H)) + r.Mp
(smult (q *x q) (A * B)))
using r.plus-Mp by metis
also have r.Mp (smult (¢ * q) (A x B)) = 0 unfolding ¢q
by (metis r.Mp-smult-m-0 smult-smult)
also have r.Mp (smult ¢ (A« D + B x H)) = r.Mp (smult q U1)
proof (rule Mp-lift-modulus|of - - q])
show Mp (A *x D + B x H) = Mp Ul using dupel (1) unfolding DI1H1 by
stmp
qed
also have ... = r.Mp (C — D x H)
unfolding arg-cong[OF CDHg, of r.Mp, symmetric]
using Mp-lift-modulus[of Ul sdiv-poly (C — D % H) q ¢] unfolding U1
by simp
also have r.Mp (D « H 4+ r.Mp (C — D x H) + 0) = r.Mp C by simp
finally show CDH: r.eq¢-m C (D' + H’) by simp
have degree D1 = degree (Mp D1) using monl by simp
also have ... = degree D unfolding D1D using mon by simp
finally have deg-eq: degree D1 = degree D by simp
show mon: monic D’ unfolding D’ using dupel(2) mon unfolding deg-eq by
(rule monic-smult-add-small)
have Mp (S« D'+ T« H' — 1) = Mp (Mp (D« S + H « T) + (smult q (S *
B+ T=xA)— 1))
unfolding D’ H' plus-Mp by (simp add: field-simps smult-distribs)
also have Mp (D« S+ H +« T) = Mp (Mp (D1 « Mp S) + Mp (HI = Mp T))
using D1HI1[of S T] by (simp add: ac-simps)
also have ... = 1 using one-p unfolding S1S[symmetric] T1T[symmetric] by
simp
also have Mp (1 + (smult ¢ (S* B+ T x A) — 1)) = Mp (smult q (S * B +
T % A)) by simp

312

also have ... = 0 unfolding ¢p by (metis Mp-smult-m-0 smult-smult)
finally have Mp (S« D'+ T« H' — 1) =0 .
from Mp-0-smult-sdiv-poly| OF this]
have SDTH: smult p (sdiv-poly (S* D'+ T« H' — 1) p) =S« D'+ T x H’
— 1.
have swap: ¢ x p = p *x ¢ by simp
have r.Mp (D'« S'+ H'« T') =
r.Mp (D + smult ¢ B) x (S — smult p A) + (H + smult ¢ A) = (T — smult

p B')
unfolding D’ S’ H' T’ rq using r.plus-Mp r.mult-Mp by metis
alsohave ... =r.Mp (D« S+ H=x* T +
smult g (Bx S+ AxT)) — smultp (A'x D+ B'x H) — smult 9r (A x B’
+ Bx A')
by (simp add: field-simps smult-distribs)
alsohave ... = r.Mp (Dx S+ H=+ T +

smult ¢ (Bx S+ AxT)) — r.Mp (smult p (A« D+ B'x H)) — r.Mp (smult
r (Ax B'+ B x A"))
using r.plus-Mp r.minus-Mp by metis
also have r.Mp (smult r (A« B'+ B x A')) = 0 by simp
also have r.Mp (smult p (A"« D + B’ x H)) = r.Mp (smult p U2)
using ¢. Mp-lift-modulus|OF dupe2(1), of p] unfolding swap .
also have ... =r.Mp (S« D'+ T« H — 1)
unfolding arg-cong[OF SDTH, of r.Mp, symmetric]
using ¢. Mp-lift-modulus|[of U2 sdiv-poly (S * D'+ T « H' — 1) p p]
unfolding U2 swap by simp
alsohave S« D'+ T« H — 1 =S« D+ Tx H+ smultq (B*xS + A *
T) — 1
unfolding D’ H' by (simp add: field-simps smult-distribs)
also have r-Mp (D« S+ Hx« T + smult q(B* S+ AxT) —
rMp (S« D+ TxH+smultq(BxS+A*xT)—1)—0)
= 1 by simp
finally show 1: r.eq-m (D' S’ + H'x T') 1 by simp
show D’ r.Mp D' = D’ unfolding D’ r. Mp-ident-iff poly-mod. Mp-coeff plus-poly.rep-eq
coeff-smult
proof
fix n
from D dupel(4) have coeff D n € {0..<q} coeff Bn € {0..<p}
unfolding q.Mp-ident-iff Mp-ident-iff by auto
thus coeff D n + ¢ x coeff B n € {0..<?r} by (metis range-sum-prod)
qed
show H'’: r.Mp H' = H'unfolding H' r. Mp-ident-iff poly-mod. Mp-coeff plus-poly.rep-eq
coeff-smult
proof
fix n
from H dupel(3) have coeff Hn € {0..<q} coeff A n € {0..<p}
unfolding q.Mp-ident-iff Mp-ident-iff by auto
thus coeff Hn + q x coeff A n € {0..<?r} by (metis range-sum-prod)
qged
show poly-mod.Mp ?r S’ = S’ poly-mod.Mp ?r T' = T’

313

unfolding S’ T’ rq by auto
qed

definition hensel-step where
hensel-step p ¢ S1 T1 D1 HI ST D H = (

let U = poly-mod.Mp p (sdiv-poly (C — D x H) q); — Z2 and Z3
(A,B) = dupe-monic-dynamic p D1 H1 S1 T1 U,
D' =D + smult ¢ B, — Z}
H' = H + smult q A;
U’ = poly-mod.Mp q (sdiv-poly (SxD' + T+xH' — 1) p); — Z5 + Z6
(A",B") = dupe-monic-dynamic ¢q D HS T U’;
q'=p*g
S’ = poly-mod.Mp q’ (S — smult p A'); — Z7
T' = poly-mod.Mp q' (T — smult p B’

in (S, T".D"H"))

definition quadratic-hensel-step ¢ S T D H = hensel-step q ¢ S TD HS T D H

lemma quadratic-hensel-step-code|code):
quadratic-hensel-step ¢ S T D H =
(let dupe = dupe-monic-dynamic ¢ D H S T; — this will share the conversions
of DHS T
U = poly-mod.Mp q (sdiv-poly (C — D x H) q);
(A, B) = dupe U,
D' = D + Polynomial.smult q B;
H' = H + Polynomial.smult q A;
U’ = poly-mod.Mp q (sdiv-poly (S« D'+ T x H' — 1) q);
(A’, B") = dupe U;
q'=qx*q
S’ = poly-mod.Mp q’ (S — Polynomial.smult ¢ A");
T' = poly-mod.Mp q' (T — Polynomial.smult ¢ B”)
in (S, T', D', H"))
unfolding quadratic-hensel-step-def [unfolded hensel-step-def] Let-def ..

definition simple-quadratic-hensel-step where — do not compute new values S’
and T'
simple-quadratic-hensel-step ¢ S T D H = (
let U = poly-mod.Mp q (sdiv-poly (C — D * H) q); — Z2 + Z3
(A,B) = dupe-monic-dynamic ¢ D HS T U,
D'= D + smult ¢ B, — Z}
H' = H + smult ¢ A
in (D',H"))

lemma hensel-step: assumes step: hensel-step p ¢ S1 T1 D1 H1 S T D H = (5,
T/, D', H')

and one-p: poly-mod.eq-m p (D1 x S1 + H1 x T1) 1

and monl: monic D1

and p: p > 1

and CDHg: poly-mod.eqg-m q C (D x H)

314

and one-q: poly-mod.eq¢-m q (D * S + H x T) 1
and DI1D: poly-mod.eq-m p D1 D
and HIH: poly-mod.eq-m p H1 H
and S1S: poly-mod.eq-m p S1 S
and TI1T: poly-mod.eqg-m p T1 T
and mon: monic D
and ¢: ¢ > 1
and D1I: poly-mod.Mp p D1 = D1
and HI: poly-mod.Mp p HI = HI
and S71: poly-mod.Mp p S1 = S1
and T1: poly-mod.Mp p T1 = T1
and D: poly-mod.Mp ¢ D = D
and H: poly-mod.Mp ¢q H = H
and S: poly-mod.Mp ¢ S = S
and T: poly-mod.Mp q T = T
and rg: r =p * g
and pq: p dvd q
shows
poly-mod.eq-m r C (D' x H')
poly-mod.e¢-m v (D'« S"+ H'x T') 1
poly-mod.Mp r D' = D'
poly-mod.Mp r H' = H'
poly-mod.Mp r S' = S’
poly-mod.Mp r T' = T’
poly-mod.Mp p D1 = poly-mod.Mp p D'
poly-mod.Mp p HI = poly-mod.Mp p H'
poly-mod.Mp p S1 = poly-mod.Mp p S’
poly-mod.Mp p T1 = poly-mod.Mp p T’
monic D’
proof —
define U where U: U = poly-mod.Mp p (sdiv-poly (C — D % H) q)
note step = step[unfolded hensel-step-def Let-def, folded U]
obtain A B where dupel: dupe-monic-dynamic p D1 H1 §1 T1 U = (A,B) by
force
note step = step|unfolded dupel split]
from step have D" D' = D + smult ¢ Band H: H' = H + smult q¢ A
by (auto split: prod.splits)
define U’ where U": U’ = poly-mod.Mp q (sdiv-poly (S * D'+ T « H' — 1)
p)
obtain A’ B’ where dupe2: dupe-monic-dynamic ¢ D HS T U’ = (A’,B’) by
force
from step[folded D' H', folded U’', unfolded dupe2 split, folded rq]
have S”: S’ = poly-mod.Mp r (S — Polynomial.smult p A’) and
T" T' = poly-mod.Mp r (T — Polynomial.smult p B’) by auto
from hensel-step-main| OF one-q one-p CDHq D1D H1H S1S T1T mon monl q
pDIHISITIDHS T U
dupel D' H' U’ dupe2 rq pg S’ T
show poly-mod.eq-m r (D"« S"+ H' x T') 1
poly-mod.eq-m r C (D'« H')

315

poly-mod.Mp r D' = D’
poly-mod.Mp r H' = H'
poly-mod.Mp r S' = S’
poly-mod.Mp r T' = T'
monic D' by auto
from pg obtain s where ¢: ¢ = p * s by (metis dvdE)
show poly-mod.Mp p D1 = poly-mod.Mp p D’
poly-mod.Mp p HI = poly-mod.Mp p H'
unfolding ¢ D’ D1D H' HIH
by (metis add.right-neutral poly-mod. Mp-smult-m-0 poly-mod.plus-Mp(2) smult-smult)+

from «¢ > 1) have ¢0: ¢ > 0 by auto
show poly-mod.Mp p S1 = poly-mod.Mp p S’
poly-mod.Mp p T1 = poly-mod.Mp p T’
unfolding S’ 515 T’ T1T poly-mod-2. Mp-product-modulus[OF poly-mod-2.intro| OF
<p > D] rq q0]
by (metis group-add-class. diff-0-right poly-mod. Mp-smult-m-0 poly-mod.minus-Mp(2))+

qed

lemma quadratic-hensel-step: assumes step: quadratic-hensel-step ¢ S T D H =
(S', T, D', H')
and CDH: poly-mod.e¢-m q C (D * H)
and one: poly-mod.e¢-m q (D « S + H x T) 1
and D: poly-mod.Mp ¢q D = D
and H: poly-mod.Mp q H = H
and S: poly-mod.Mp ¢ S = S
and T: poly-mod.Mp q T =T
and mon: monic D
and ¢: ¢ > 1
and rq: r = q * q
shows
poly-mod.eq¢-m r C (D'« H')
poly-mod.eq-m v (D'« S"+ H'x T') 1
poly-mod.Mp v D' = D’
poly-mod.Mp r H' = H'
poly-mod.Mp r S’' = S’
poly-mod.Mp r T' = T’
poly-mod.Mp q D = poly-mod.Mp q D’
poly-mod.Mp q H = poly-mod.Mp q H'
poly-mod.Mp q S = poly-mod.Mp q S’
poly-mod.Mp q T = poly-mod.Mp q T'
monic D'
proof (atomize(full), goal-cases)
case I
from hensel-step|OF step[unfolded quadratic-hensel-step-def] one mon ¢ CDH
one refl refl refl refl mon ¢ D HS T D HS T rq
show ?Zcase by auto
qed

316

context
fixes p :: int and S1 T1 D1 H1 :: int poly
begin
private lemma decrease[termination-simp|: = j < 1 = odd j = Suc (j div 2)
< j by presburger

fun quadratic-hensel-loop where
quadratic-hensel-loop (j :: nat) = (
if § < 1 then (p, S1, T1, D1, H1) else
if even j then
(case quadratic-hensel-loop (j div 2) of
(q’ S’ T’ ‘D7 H) :>
let qq = q * q in
(case quadratic-hensel-step ¢ S T D H of — quadratic step
(S, T', D', H) = (qq, S, T', D', H")))
else — odd j
(case quadratic-hensel-loop (j div 2 + 1) of
(¢, S, T,D, H) =
(case quadratic-hensel-step ¢ S T D H of — quadratic step
(S, T, D', H) =
let q¢ = q * q; pj = qq div p; down = poly-mod.Mp pj in
(pj, down S’, down T’', down D', down H'))))

definition quadratic-hensel-main j = (case quadratic-hensel-loop j of
(a¢; S, T, D, H) = (D, H))

declare quadratic-hensel-loop.simps[simp del]

— unroll the definition of hensel-loop so that in outermost iteration we can use
stmple-hensel-step
lemma quadratic-hensel-main-code[code]: quadratic-hensel-main j = (
if j < 1 then (D1, HI1)
else if even j
then (case quadratic-hensel-loop (j div 2) of
(