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Abstract

We formalize the Berlekamp-Zassenhaus algorithm for factoring
square-free integer polynomials in Isabelle/HOL. We further adapt an
existing formalization of Yun’s square-free factorization algorithm to
integer polynomials, and thus provide an efficient and certified factor-
ization algorithm for arbitrary univariate polynomials.

The algorithm first performs a factorization in the prime field GF(p)
and then performs computations in the integer ring modulo pk, where
both p and k are determined at runtime. Since a natural modeling of
these structures via dependent types is not possible in Isabelle/HOL,
we formalize the whole algorithm using Isabelle’s recent addition of
local type definitions.

Through experiments we verify that our algorithm factors polyno-
mials of degree 100 within seconds.
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1 Introduction
Modern algorithms to factor integer polynomials – following Berlekamp and
Zassenhaus – work via polynomial factorization over prime fields GF(p) and
quotient rings Z/pkZ [2, 3]. Algorithm 1 illustrates the basic structure of
such an algorithm.1

Algorithm 1: A modern factorization algorithm
Input: Square-free integer polynomial f .
Output: Irreducible factors f1, . . . , fn such that f = f1 · . . . · fn.

4 Choose a suitable prime p depending on f .
5 Factor f in GF(p): f ≡ g1 · . . . · gm (mod p).
6 Determine a suitable bound d on the degree, depending on

g1, . . . , gm. Choose an exponent k such that every coefficient of a
factor of a given multiple of f in Z with degree at most d can be
uniquely represent by a number below pk.

7 From step 5 compute the unique factorization f ≡ h1 · . . . · hm
(mod pk) via the Hensel lifting.

8 Construct a factorization f = f1 · . . . · fn over the integers where
each fi corresponds to the product of one or more hj .

In previous work on algebraic numbers [12], we implemented Algorithm 1
in Isabelle/HOL [11] as a function of type int poly⇒ int poly list, where we
chose Berlekamp’s algorithm in step 5. However, the algorithm was available
only as an oracle, and thus a validity check on the result factorization had
to be performed.

In this work we fully formalize the correctness of our implementation.

1Our algorithm starts with step 4, so that section numbers and step-numbers coincide.
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Theorem 1 (Berlekamp-Zassenhaus’ Algorithm)

assumes square_free (f :: int poly)
and degree f 6= 0

and berlekamp_zassenhaus_factorization f = fs

shows f = prod_list fs
and ∀fi ∈ set fs. irreducible fi

To obtain Theorem 1 we perform the following tasks.

• We introduce two formulations of GF(p) and Z/pkZ. We first define a
type to represent these domains, employing ideas from HOL multivari-
ate analysis. This is essential for reusing many type-based algorithms
from the Isabelle distribution and the AFP (archive of formal proofs).
At some points in our developement, the type-based setting is still
too restrictive. Hence we also introduce a second formulation which is
locale-based.

• The prime p in step 4 must be chosen so that f remains square-free
in GF(p). For the termination of the algorithm, we prove that such a
prime always exists.

• We explain Berlekamp’s algorithm that factors polynomials over prime
fields, and formalize its correctness using the type-based representa-
tion. Since Isabelle’s code generation does not work for the type-
based representation of prime fields, we define an implementation of
Berlekamp’s algorithm which avoids type-based polynomial algorithms
and type-based prime fields. The soundness of this implementation
is proved via the transfer package [5]: we transform the type-based
soundness statement of Berlekamp’s algorithm into a statement which
speaks solely about integer polynomials. Here, we crucially rely upon
local type definitions [9] to eliminate the presence of the type for the
prime field GF(p).

• For step 6 we need to find a bound on the coefficients of the factors of
a polynomial. For this purpose, we formalize Mignotte’s factor bound.
During this formalization task we detected a bug in our previous oracle
implementation, which computed improper bounds on the degrees of
factors.

• We formalize the Hensel lifting. As for Berlekamp’s algorithm, we
first formalize basic operations in the type-based setting. Unfortu-
nately, however, this result cannot be extended to the full Hensel lift-
ing. Therefore, we model the Hensel lifting in a locale-based way so
that modulo operation is explicitly applied on polynomials.
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• For the reconstruction in step 8 we closely follow the description of
Knuth [7, page 452]. Here, we use the same representation of polyno-
mials over Z/pkZ as for the Hensel lifting.

• We adapt an existing square-free factorization algorithm from Q to Z.
In combination with the previous results this leads to a factorization
algorithm for arbitrary integer and rational polynomials.

To our knowledge, this is the first formalization of the Berlekamp-Zassenhaus
algorithm. For instance, Barthe et al. report that there is no formalization
of an efficient factorization algorithm over GF(p) available in Coq [1, Section
6, note 3 on formalization].

Some key theorems leading to the algorithm have already been formalized
in Isabelle or other proof assistants. In ACL2, for instance, polynomials
over a field are shown to be a unique factorization domain (UFD) [4]. A
more general result, namely that polynomials over UFD are also UFD, was
already developed in Isabelle/HOL for implementing algebraic numbers [12]
and an independent development by Eberl is now available in the Isabelle
distribution.

An Isabelle formalization of Hensel’s lemma is provided by Kobayashi
et al. [8], who defined the valuations of polynomials via Cauchy sequences,
and used this setup to prove the lemma. Consequently, their result re-
quires a ‘valuation ring’ as precondition in their formalization. While this
extra precondition is theoretically met in our setting, we did not attempt
to reuse their results, because the type of polynomials in their formalization
(from HOL-Algebra) differs from the polynomials in our development (from
HOL/Library). Instead, we formalize a direct proof for Hensel’s lemma.
Our formalizations are incomparable: On the one hand, Kobayashi et al.
did not consider only integer polynomials as we do. On the other hand, we
additionally formalize the quadratic Hensel lifting [13], extend the lifting
from binary to n-ary factorizations, and prove a uniqueness result, which is
required for proving the soundness of Theorem 1.

A Coq formalization of Hensel’s lemma is also available, which is used
for certifying integral roots and ‘hardest-to-round computation’ [10]. If one
is interested in certifying a factorization, rather than a certified algorithm
that performs it, it suffices to test that all the found factors are irreducible.
Kirkels [6] formalized a sufficient criterion for this test in Coq: when a
polynomial is irreducible modulo some prime, it is also irreducible in Z.
Both formalizations are in Coq, and we did not attempt to reuse them.

2 Finite Rings and Fields
We start by establishing some preliminary results about finite rings and
finite fields
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2.1 Finite Rings
theory Finite-Field
imports

HOL−Computational-Algebra.Primes
HOL−Number-Theory.Residues
HOL−Library.Cardinality
Subresultants.Binary-Exponentiation
Polynomial-Interpolation.Ring-Hom-Poly

begin

typedef ( ′a::finite) mod-ring = {0 ..<int CARD( ′a)} by auto

setup-lifting type-definition-mod-ring

lemma CARD-mod-ring[simp]: CARD( ′a mod-ring) = CARD( ′a::finite)
proof −

have card {y. ∃ x∈{0 ..<int CARD( ′a)}. (y:: ′a mod-ring) = Abs-mod-ring x} =
card {0 ..<int CARD( ′a)}

proof (rule bij-betw-same-card)
have inj-on Rep-mod-ring {y. ∃ x∈{0 ..<int CARD( ′a)}. y = Abs-mod-ring x}

by (meson Rep-mod-ring-inject inj-onI )
moreover have Rep-mod-ring ‘ {y. ∃ x∈{0 ..<int CARD( ′a)}. (y:: ′a mod-ring)

= Abs-mod-ring x} = {0 ..<int CARD( ′a)}
proof (auto simp add: image-def Rep-mod-ring-inject)

fix xb show 0 ≤ Rep-mod-ring (Abs-mod-ring xb)
using Rep-mod-ring atLeastLessThan-iff by blast

assume xb1 : 0 ≤ xb and xb2 : xb < int CARD( ′a)
thus Rep-mod-ring (Abs-mod-ring xb) < int CARD( ′a)
by (metis Abs-mod-ring-inverse Rep-mod-ring atLeastLessThan-iff le-less-trans

linear)
have xb: xb ∈ {0 ..<int CARD( ′a)} using xb1 xb2 by simp
show ∃ xa:: ′a mod-ring. (∃ x∈{0 ..<int CARD( ′a)}. xa = Abs-mod-ring x) ∧

xb = Rep-mod-ring xa
by (rule exI [of - Abs-mod-ring xb], auto simp add: xb1 xb2 , rule Abs-mod-ring-inverse[OF

xb, symmetric])
qed
ultimately show bij-betw Rep-mod-ring
{y. ∃ x∈{0 ..<int CARD( ′a)}. (y:: ′a mod-ring) = Abs-mod-ring x}
{0 ..<int CARD( ′a)}
by (simp add: bij-betw-def )

qed
thus ?thesis

unfolding type-definition.univ[OF type-definition-mod-ring]
unfolding image-def by auto

qed

instance mod-ring :: (finite) finite
proof (intro-classes)

show finite (UNIV :: ′a mod-ring set)
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unfolding type-definition.univ[OF type-definition-mod-ring]
using finite by simp

qed

instantiation mod-ring :: (finite) equal
begin
lift-definition equal-mod-ring :: ′a mod-ring ⇒ ′a mod-ring ⇒ bool is (=) .
instance by (intro-classes, transfer , auto)
end

instantiation mod-ring :: (finite) comm-ring
begin

lift-definition plus-mod-ring :: ′a mod-ring ⇒ ′a mod-ring ⇒ ′a mod-ring is
λ x y. (x + y) mod int (CARD( ′a)) by simp

lift-definition uminus-mod-ring :: ′a mod-ring ⇒ ′a mod-ring is
λ x. if x = 0 then 0 else int (CARD( ′a)) − x by simp

lift-definition minus-mod-ring :: ′a mod-ring ⇒ ′a mod-ring ⇒ ′a mod-ring is
λ x y. (x − y) mod int (CARD( ′a)) by simp

lift-definition times-mod-ring :: ′a mod-ring ⇒ ′a mod-ring ⇒ ′a mod-ring is
λ x y. (x ∗ y) mod int (CARD( ′a)) by simp

lift-definition zero-mod-ring :: ′a mod-ring is 0 by simp

instance
by standard
(transfer ; auto simp add: mod-simps algebra-simps intro: mod-diff-cong)+

end

lift-definition to-int-mod-ring :: ′a::finite mod-ring ⇒ int is λ x. x .

lift-definition of-int-mod-ring :: int ⇒ ′a::finite mod-ring is
λ x. x mod int (CARD( ′a)) by simp

interpretation to-int-mod-ring-hom: inj-zero-hom to-int-mod-ring
by (unfold-locales; transfer , auto)

lemma int-nat-card[simp]: int (nat CARD( ′a::finite)) = CARD( ′a) by auto

interpretation of-int-mod-ring-hom: zero-hom of-int-mod-ring
by (unfold-locales, transfer , auto)

lemma of-int-mod-ring-to-int-mod-ring[simp]:
of-int-mod-ring (to-int-mod-ring x) = x by (transfer , auto)

7



lemma to-int-mod-ring-of-int-mod-ring[simp]: 0 ≤ x =⇒ x < int CARD( ′a :: fi-
nite) =⇒

to-int-mod-ring (of-int-mod-ring x :: ′a mod-ring) = x
by (transfer , auto)

lemma range-to-int-mod-ring:
range (to-int-mod-ring :: ( ′a :: finite mod-ring ⇒ int)) = {0 ..< CARD( ′a)}
apply (intro equalityI subsetI )
apply (elim rangeE , transfer , force)
by (auto intro!: range-eqI to-int-mod-ring-of-int-mod-ring[symmetric])

2.2 Nontrivial Finite Rings
class nontriv = assumes nontriv: CARD( ′a) > 1

subclass(in nontriv) finite by(intro-classes,insert nontriv,auto intro:card-ge-0-finite)

instantiation mod-ring :: (nontriv) comm-ring-1
begin

lift-definition one-mod-ring :: ′a mod-ring is 1 using nontriv[where ? ′a= ′a] by
auto

instance by (intro-classes; transfer , simp)

end

interpretation to-int-mod-ring-hom: inj-one-hom to-int-mod-ring
by (unfold-locales, transfer , simp)

lemma of-nat-of-int-mod-ring [code-unfold]:
of-nat = of-int-mod-ring o int

proof (rule ext, unfold o-def )
show of-nat n = of-int-mod-ring (int n) for n
proof (induct n)

case (Suc n)
show ?case

by (simp only: of-nat-Suc Suc, transfer) (simp add: mod-simps)
qed simp

qed

lemma of-nat-card-eq-0 [simp]: (of-nat (CARD( ′a::nontriv)) :: ′a mod-ring) = 0
by (unfold of-nat-of-int-mod-ring, transfer , auto)

lemma of-int-of-int-mod-ring[code-unfold]: of-int = of-int-mod-ring
proof (rule ext)

fix x :: int
obtain n1 n2 where x: x = int n1 − int n2 by (rule int-diff-cases)
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show of-int x = of-int-mod-ring x
unfolding x of-int-diff of-int-of-nat-eq of-nat-of-int-mod-ring o-def
by (transfer , simp add: mod-diff-right-eq mod-diff-left-eq)

qed

unbundle lifting-syntax

lemma pcr-mod-ring-to-int-mod-ring: pcr-mod-ring = (λx y. x = to-int-mod-ring
y)
unfolding mod-ring.pcr-cr-eq unfolding cr-mod-ring-def to-int-mod-ring.rep-eq

..

lemma [transfer-rule]:
((=) ===> pcr-mod-ring) (λ x. int x mod int (CARD( ′a :: nontriv))) (of-nat ::

nat ⇒ ′a mod-ring)
by (intro rel-funI , unfold pcr-mod-ring-to-int-mod-ring of-nat-of-int-mod-ring,

transfer , auto)

lemma [transfer-rule]:
((=) ===> pcr-mod-ring) (λ x. x mod int (CARD( ′a :: nontriv))) (of-int :: int
⇒ ′a mod-ring)

by (intro rel-funI , unfold pcr-mod-ring-to-int-mod-ring of-int-of-int-mod-ring,
transfer , auto)

lemma one-mod-card [simp]: 1 mod CARD( ′a::nontriv) = 1
using mod-less nontriv by blast

lemma Suc-0-mod-card [simp]: Suc 0 mod CARD( ′a::nontriv) = 1
using one-mod-card by simp

lemma one-mod-card-int [simp]: 1 mod int CARD( ′a::nontriv) = 1
proof −

from nontriv [where ? ′a = ′a] have int (1 mod CARD( ′a::nontriv)) = 1
by simp

then show ?thesis
using of-nat-mod [of 1 CARD( ′a), where ? ′a = int] by simp

qed

lemma pow-mod-ring-transfer [transfer-rule]:
(pcr-mod-ring ===> (=) ===> pcr-mod-ring)
(λa::int. λn. a^n mod CARD( ′a::nontriv)) ((^):: ′a mod-ring ⇒ nat ⇒ ′a mod-ring)

unfolding pcr-mod-ring-to-int-mod-ring
proof (intro rel-funI ,simp)

fix x:: ′a mod-ring and n
show to-int-mod-ring x ^ n mod int CARD( ′a) = to-int-mod-ring (x ^ n)
proof (induct n)

case 0
thus ?case by auto

next
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case (Suc n)
have to-int-mod-ring (x ^ Suc n) = to-int-mod-ring (x ∗ x ^ n) by auto
also have ... = to-int-mod-ring x ∗ to-int-mod-ring (x ^ n) mod CARD( ′a)

unfolding to-int-mod-ring-def using times-mod-ring.rep-eq by auto
also have ... = to-int-mod-ring x ∗ (to-int-mod-ring x ^ n mod CARD( ′a)) mod

CARD( ′a)
using Suc.hyps by auto

also have ... = to-int-mod-ring x ^ Suc n mod int CARD( ′a)
by (simp add: mod-simps)

finally show ?case ..
qed

qed

lemma dvd-mod-ring-transfer [transfer-rule]:
((pcr-mod-ring :: int ⇒ ′a :: nontriv mod-ring ⇒ bool) ===>
(pcr-mod-ring :: int ⇒ ′a mod-ring ⇒ bool) ===> (=))
(λ i j. ∃ k ∈ {0 ..<int CARD( ′a)}. j = i ∗ k mod int CARD( ′a)) (dvd)

proof (unfold pcr-mod-ring-to-int-mod-ring, intro rel-funI iffI )
fix x y :: ′a mod-ring and i j
assume i: i = to-int-mod-ring x and j: j = to-int-mod-ring y
{ assume x dvd y

then obtain z where y = x ∗ z by (elim dvdE , auto)
then have j = i ∗ to-int-mod-ring z mod CARD( ′a) by (unfold i j, transfer)
with range-to-int-mod-ring
show ∃ k ∈ {0 ..<int CARD( ′a)}. j = i ∗ k mod CARD( ′a) by auto

}
assume ∃ k ∈ {0 ..<int CARD( ′a)}. j = i ∗ k mod CARD( ′a)
then obtain k where k: k ∈ {0 ..<int CARD( ′a)} and dvd: j = i ∗ k mod

CARD( ′a) by auto
from k have to-int-mod-ring (of-int k :: ′a mod-ring) = k by (transfer , auto)
also from dvd have j = i ∗ ... mod CARD( ′a) by auto
finally have y = x ∗ (of-int k :: ′a mod-ring) unfolding i j using k by (transfer ,

auto)
then show x dvd y by auto

qed

lemma Rep-mod-ring-mod[simp]: Rep-mod-ring (a :: ′a :: nontriv mod-ring) mod
CARD( ′a) = Rep-mod-ring a

using Rep-mod-ring[where ′a = ′a] by auto

2.3 Finite Fields
When the domain is prime, the ring becomes a field
class prime-card = assumes prime-card: prime (CARD( ′a))
begin
lemma prime-card-int: prime (int (CARD( ′a))) using prime-card by auto

subclass nontriv using prime-card prime-gt-1-nat by (intro-classes,auto)
end
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instance bool :: prime-card
by standard auto

instantiation mod-ring :: (prime-card) field
begin

definition inverse-mod-ring :: ′a mod-ring ⇒ ′a mod-ring where
inverse-mod-ring x = (if x = 0 then 0 else x ^ (nat (CARD( ′a) − 2 )))

definition divide-mod-ring :: ′a mod-ring ⇒ ′a mod-ring ⇒ ′a mod-ring where
divide-mod-ring x y = x ∗ ((λc. if c = 0 then 0 else c ^ (nat (CARD( ′a) − 2 )))

y)

instance
proof

fix a b c:: ′a mod-ring
show inverse 0 = (0 :: ′a mod-ring) by (simp add: inverse-mod-ring-def )
show a div b = a ∗ inverse b

unfolding inverse-mod-ring-def by (transfer ′, simp add: divide-mod-ring-def )
show a 6= 0 =⇒ inverse a ∗ a = 1
proof (unfold inverse-mod-ring-def , transfer)

let ?p=CARD( ′a)
fix x
assume x: x ∈ {0 ..<int CARD( ′a)} and x0 : x 6= 0
have p0 ′: 0≤?p by auto
have ¬ ?p dvd x

using x x0 zdvd-imp-le by fastforce
then have ¬ CARD( ′a) dvd nat |x|

by simp
with x have ¬ CARD( ′a) dvd nat x

by simp
have rw: x ^ nat (int (?p − 2 )) ∗ x = x ^ nat (?p − 1 )
proof −

have p2 : 0 ≤ int (?p−2 ) using x by simp
have card-rw: (CARD( ′a) − Suc 0 ) = nat (1 + int (CARD( ′a) − 2 ))

using nat-eq-iff x x0 by auto
have x ^ nat (?p − 2 )∗x = x ^ (Suc (nat (?p − 2 ))) by simp
also have ... = x ^ (nat (?p − 1 ))

using Suc-nat-eq-nat-zadd1 [OF p2 ] card-rw by auto
finally show ?thesis .

qed
have [int (nat x ^ (CARD( ′a) − 1 )) = int 1 ] (mod CARD( ′a))

using fermat-theorem [OF prime-card ‹¬ CARD( ′a) dvd nat x›]
by (simp only: cong-def cong-def of-nat-mod [symmetric])

then have ∗: [x ^ (CARD( ′a) − 1 ) = 1 ] (mod CARD( ′a))
using x by auto

have x ^ (CARD( ′a) − 2 ) mod CARD( ′a) ∗ x mod CARD( ′a)
= (x ^ nat (CARD( ′a) − 2 ) ∗ x) mod CARD( ′a) by (simp add: mod-simps)
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also have ... = (x ^ nat (?p − 1 ) mod ?p) unfolding rw by simp
also have ... = (x ^ (nat ?p − 1 ) mod ?p) using p0 ′ by (simp add: nat-diff-distrib ′)
also have ... = 1

using ∗ by (simp add: cong-def )
finally show (if x = 0 then 0 else x ^ nat (int (CARD( ′a) − 2 )) mod CARD( ′a))

∗ x mod CARD( ′a) = 1
using x0 by auto

qed
qed
end

instantiation mod-ring :: (prime-card) {normalization-euclidean-semiring, euclidean-ring}
begin

definition modulo-mod-ring :: ′a mod-ring ⇒ ′a mod-ring ⇒ ′a mod-ring where
modulo-mod-ring x y = (if y = 0 then x else 0 )
definition normalize-mod-ring :: ′a mod-ring ⇒ ′a mod-ring where normalize-mod-ring
x = (if x = 0 then 0 else 1 )
definition unit-factor-mod-ring :: ′a mod-ring ⇒ ′a mod-ring where unit-factor-mod-ring
x = x
definition euclidean-size-mod-ring :: ′a mod-ring ⇒ nat where euclidean-size-mod-ring
x = (if x = 0 then 0 else 1 )

instance
proof (intro-classes)

fix a :: ′a mod-ring show a 6= 0 =⇒ unit-factor a dvd 1
unfolding dvd-def unit-factor-mod-ring-def by (intro exI [of - inverse a], auto)

qed (auto simp: normalize-mod-ring-def unit-factor-mod-ring-def modulo-mod-ring-def
euclidean-size-mod-ring-def field-simps)

end

instantiation mod-ring :: (prime-card) euclidean-ring-gcd
begin

definition gcd-mod-ring :: ′a mod-ring ⇒ ′a mod-ring ⇒ ′a mod-ring where
gcd-mod-ring = Euclidean-Algorithm.gcd
definition lcm-mod-ring :: ′a mod-ring ⇒ ′a mod-ring ⇒ ′a mod-ring where
lcm-mod-ring = Euclidean-Algorithm.lcm
definition Gcd-mod-ring :: ′a mod-ring set ⇒ ′a mod-ring where Gcd-mod-ring
= Euclidean-Algorithm.Gcd
definition Lcm-mod-ring :: ′a mod-ring set ⇒ ′a mod-ring where Lcm-mod-ring
= Euclidean-Algorithm.Lcm

instance by (intro-classes, auto simp: gcd-mod-ring-def lcm-mod-ring-def Gcd-mod-ring-def
Lcm-mod-ring-def )
end

instantiation mod-ring :: (prime-card) unique-euclidean-ring
begin

12



definition [simp]: division-segment-mod-ring (x :: ′a mod-ring) = (1 :: ′a mod-ring)

instance by intro-classes (auto simp: euclidean-size-mod-ring-def split: if-splits)

end

instance mod-ring :: (prime-card) field-gcd
by intro-classes auto

lemma surj-of-nat-mod-ring: ∃ i. i < CARD( ′a :: prime-card) ∧ (x :: ′a mod-ring)
= of-nat i

by (rule exI [of - nat (to-int-mod-ring x)], unfold of-nat-of-int-mod-ring o-def ,
subst nat-0-le, transfer , simp, simp, transfer , auto)

lemma of-nat-0-mod-ring-dvd: assumes x: of-nat x = (0 :: ′a ::prime-card mod-ring)
shows CARD( ′a) dvd x

proof −
let ?x = of-nat x :: int
from x have of-int-mod-ring ?x = (0 :: ′a mod-ring) by (fold of-int-of-int-mod-ring,

simp)
hence ?x mod CARD( ′a) = 0 by (transfer , auto)
hence x mod CARD( ′a) = 0 by presburger
thus ?thesis unfolding mod-eq-0-iff-dvd .

qed

lemma semiring-char-mod-ring [simp]:
CHAR( ′n :: nontriv mod-ring) = CARD( ′n)

proof (rule CHAR-eq-posI )
fix x assume x > 0 x < CARD( ′n)
thus of-nat x 6= (0 :: ′n mod-ring)

by transfer auto
qed auto

The following Material was contributed by Manuel Eberl
instance mod-ring :: (prime-card) finite-field

by standard simp-all

instantiation mod-ring :: (prime-card) enum-finite-field
begin

definition enum-finite-field-mod-ring :: nat ⇒ ′a mod-ring where
enum-finite-field-mod-ring n = of-int-mod-ring (int n)

instance proof
interpret type-definition Rep-mod-ring :: ′a mod-ring ⇒ int Abs-mod-ring {0 ..<CARD( ′a)}

by (rule type-definition-mod-ring)
have enum-finite-field ‘ {..<CARD( ′a mod-ring)} = of-int-mod-ring ‘ int ‘ {..<CARD( ′a

13



mod-ring)}
unfolding enum-finite-field-mod-ring-def by (simp add: image-image o-def )

also have int ‘ {..<CARD( ′a mod-ring)} = {0 ..<int CARD( ′a mod-ring)}
by (simp add: image-atLeastZeroLessThan-int)

also have of-int-mod-ring ‘ . . . = (Abs-mod-ring ‘ . . . :: ′a mod-ring set)
by (intro image-cong refl) (auto simp: of-int-mod-ring-def )

also have . . . = (UNIV :: ′a mod-ring set)
using Abs-image by simp

finally show enum-finite-field ‘ {..<CARD( ′a mod-ring)} = (UNIV :: ′a mod-ring
set) .
qed

end

typedef (overloaded) ′a :: semiring-1 ring-char = if CHAR( ′a) = 0 then UNIV
else {0 ..<CHAR( ′a)}

by auto

lemma CARD-ring-char [simp]: CARD ( ′a :: semiring-1 ring-char) = CHAR( ′a)
proof −

let ?A = if CHAR( ′a) = 0 then UNIV else {0 ..<CHAR( ′a)}
interpret type-definition Rep-ring-char :: ′a ring-char ⇒ nat Abs-ring-char ?A

by (rule type-definition-ring-char)
from card show ?thesis

by auto
qed

instance ring-char :: (semiring-prime-char) nontriv
proof

show CARD( ′a ring-char) > 1
using prime-nat-iff by auto

qed

instance ring-char :: (semiring-prime-char) prime-card
proof

from CARD-ring-char show prime CARD( ′a ring-char)
by auto

qed

lemma to-int-mod-ring-add:
to-int-mod-ring (x + y :: ′a :: finite mod-ring) = (to-int-mod-ring x + to-int-mod-ring

y) mod CARD( ′a)
by transfer auto

lemma to-int-mod-ring-mult:
to-int-mod-ring (x ∗ y :: ′a :: finite mod-ring) = (to-int-mod-ring x ∗ to-int-mod-ring

y) mod CARD( ′a)
by transfer auto
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lemma of-nat-mod-CHAR [simp]: of-nat (x mod CHAR( ′a :: semiring-1 )) = (of-nat
x :: ′a)
by (metis (no-types, opaque-lifting) comm-monoid-add-class.add-0 div-mod-decomp

mult-zero-right of-nat-CHAR of-nat-add of-nat-mult)

lemma of-int-mod-CHAR [simp]: of-int (x mod int CHAR( ′a :: ring-1 )) = (of-int
x :: ′a)

by (simp add: of-int-eq-iff-cong-CHAR)

end

3 Arithmetics via Records
We create a locale for rings and fields based on a record that includes all
the necessary operations.
theory Arithmetic-Record-Based
imports

HOL−Library.More-List
HOL−Computational-Algebra.Euclidean-Algorithm

begin
datatype ′a arith-ops-record = Arith-Ops-Record
(zero : ′a)
(one : ′a)
(plus : ′a ⇒ ′a ⇒ ′a)
(times : ′a ⇒ ′a ⇒ ′a)
(minus : ′a ⇒ ′a ⇒ ′a)
(uminus : ′a ⇒ ′a)
(divide : ′a ⇒ ′a ⇒ ′a)
(inverse : ′a ⇒ ′a)
(modulo : ′a ⇒ ′a ⇒ ′a)
(normalize : ′a ⇒ ′a)
(unit-factor : ′a ⇒ ′a)
(of-int : int ⇒ ′a)
(to-int : ′a ⇒ int)
(DP : ′a ⇒ bool)

hide-const (open)
zero
one
plus
times
minus
uminus
divide
inverse
modulo
normalize
unit-factor
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of-int
to-int
DP

fun listprod-i :: ′i arith-ops-record ⇒ ′i list ⇒ ′i where
listprod-i ops (x # xs) = arith-ops-record.times ops x (listprod-i ops xs)
| listprod-i ops [] = arith-ops-record.one ops

locale arith-ops = fixes ops :: ′i arith-ops-record (structure)
begin

abbreviation (input) zero where zero ≡ arith-ops-record.zero ops
abbreviation (input) one where one ≡ arith-ops-record.one ops
abbreviation (input) plus where plus ≡ arith-ops-record.plus ops
abbreviation (input) times where times ≡ arith-ops-record.times ops
abbreviation (input) minus where minus ≡ arith-ops-record.minus ops
abbreviation (input) uminus where uminus ≡ arith-ops-record.uminus ops
abbreviation (input) divide where divide ≡ arith-ops-record.divide ops
abbreviation (input) inverse where inverse ≡ arith-ops-record.inverse ops
abbreviation (input) modulo where modulo ≡ arith-ops-record.modulo ops
abbreviation (input) normalize where normalize ≡ arith-ops-record.normalize
ops
abbreviation (input) unit-factor where unit-factor ≡ arith-ops-record.unit-factor
ops
abbreviation (input) DP where DP ≡ arith-ops-record.DP ops

partial-function (tailrec) gcd-eucl-i :: ′i ⇒ ′i ⇒ ′i where
gcd-eucl-i a b = (if b = zero

then normalize a else gcd-eucl-i b (modulo a b))

partial-function (tailrec) euclid-ext-aux-i :: ′i ⇒ ′i ⇒ ′i ⇒ ′i ⇒ ′i ⇒ ′i ⇒ ( ′i
× ′i) × ′i where

euclid-ext-aux-i s ′ s t ′ t r ′ r = (
if r = zero then let c = divide one (unit-factor r ′) in ((times s ′ c, times t ′ c),

normalize r ′)
else let q = divide r ′ r

in euclid-ext-aux-i s (minus s ′ (times q s)) t (minus t ′ (times q t)) r
(modulo r ′ r))

abbreviation (input) euclid-ext-i :: ′i ⇒ ′i ⇒ ( ′i × ′i) × ′i where
euclid-ext-i ≡ euclid-ext-aux-i one zero zero one

end

declare arith-ops.gcd-eucl-i.simps[code]
declare arith-ops.euclid-ext-aux-i.simps[code]

unbundle lifting-syntax
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locale ring-ops = arith-ops ops for ops :: ′i arith-ops-record +
fixes R :: ′i ⇒ ′a :: comm-ring-1 ⇒ bool
assumes bi-unique[transfer-rule]: bi-unique R
and right-total[transfer-rule]: right-total R
and zero[transfer-rule]: R zero 0
and one[transfer-rule]: R one 1
and plus[transfer-rule]: (R ===> R ===> R) plus (+)
and minus[transfer-rule]: (R ===> R ===> R) minus (−)
and uminus[transfer-rule]: (R ===> R) uminus Groups.uminus
and times[transfer-rule]: (R ===> R ===> R) times ((∗))
and eq[transfer-rule]: (R ===> R ===> (=)) (=) (=)
and DPR[transfer-domain-rule]: Domainp R = DP

begin
lemma left-right-unique[transfer-rule]: left-unique R right-unique R

using bi-unique unfolding bi-unique-def left-unique-def right-unique-def by auto

lemma listprod-i[transfer-rule]: (list-all2 R ===> R) (listprod-i ops) prod-list
proof (intro rel-funI , goal-cases)

case (1 xs ys)
thus ?case
proof (induct xs ys rule: list-all2-induct)

case (Cons x xs y ys)
note [transfer-rule] = this
show ?case by simp transfer-prover

qed (simp add: one)
qed
end

locale idom-ops = ring-ops ops R for ops :: ′i arith-ops-record and
R :: ′i ⇒ ′a :: idom ⇒ bool

locale idom-divide-ops = idom-ops ops R for ops :: ′i arith-ops-record and
R :: ′i ⇒ ′a :: idom-divide ⇒ bool +
assumes divide[transfer-rule]: (R ===> R ===> R) divide Rings.divide

locale euclidean-semiring-ops = idom-ops ops R for ops :: ′i arith-ops-record and
R :: ′i ⇒ ′a :: {idom,normalization-euclidean-semiring} ⇒ bool +
assumes modulo[transfer-rule]: (R ===> R ===> R) modulo (mod)

and normalize[transfer-rule]: (R ===> R) normalize Rings.normalize
and unit-factor [transfer-rule]: (R ===> R) unit-factor Rings.unit-factor

begin
lemma gcd-eucl-i [transfer-rule]: (R ===> R ===> R) gcd-eucl-i Euclidean-Algorithm.gcd

proof (intro rel-funI , goal-cases)
case (1 x X y Y )
thus ?case
proof (induct X Y arbitrary: x y rule: Euclidean-Algorithm.gcd.induct)

case (1 X Y x y)
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note [transfer-rule] = 1 (2−)
note simps = gcd-eucl-i.simps[of x y] Euclidean-Algorithm.gcd.simps[of X Y ]
have eq: (y = zero) = (Y = 0 ) by transfer-prover
show ?case
proof (cases Y = 0 )

case True
hence ∗: y = zero using eq by simp
have R (normalize x) (Rings.normalize X) by transfer-prover
thus ?thesis unfolding simps unfolding True ∗ by simp

next
case False
with eq have yz: y 6= zero by simp
have R (gcd-eucl-i y (modulo x y)) (Euclidean-Algorithm.gcd Y (X mod Y ))

by (rule 1 (1 )[OF False], transfer-prover+)
thus ?thesis unfolding simps using False yz by simp

qed
qed

qed
end

locale euclidean-ring-ops = euclidean-semiring-ops ops R for ops :: ′i arith-ops-record
and

R :: ′i ⇒ ′a :: {idom,euclidean-ring-gcd} ⇒ bool +
assumes divide[transfer-rule]: (R ===> R ===> R) divide (div)

begin
lemma euclid-ext-aux-i[transfer-rule]:
(R ===> R ===> R ===> R ===> R ===> R ===> rel-prod (rel-prod

R R) R) euclid-ext-aux-i euclid-ext-aux
proof (intro rel-funI , goal-cases)

case (1 z Z a A b B c C x X y Y )
thus ?case
proof (induct Z A B C X Y arbitrary: z a b c x y rule: euclid-ext-aux.induct)

case (1 Z A B C X Y z a b c x y)
note [transfer-rule] = 1 (2−)
note simps = euclid-ext-aux-i.simps[of z a b c x y] euclid-ext-aux.simps[of Z A

B C X Y ]
have eq: (y = zero) = (Y = 0 ) by transfer-prover
show ?case
proof (cases Y = 0 )

case True
hence ∗: (y = zero) = True (Y = 0 ) = True using eq by auto
show ?thesis unfolding simps unfolding ∗ if-True

by transfer-prover
next

case False
hence ∗: (y = zero) = False (Y = 0 ) = False using eq by auto
have XY : R (modulo x y) (X mod Y ) by transfer-prover

have YA: R (minus z (times (divide x y) a)) (Z − X div Y ∗ A) by
transfer-prover
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have YC : R (minus b (times (divide x y) c)) (B − X div Y ∗ C ) by
transfer-prover

note [transfer-rule] = 1 (1 )[OF False refl 1 (3 ) YA 1 (5 ) YC 1 (7 ) XY ]

show ?thesis unfolding simps ∗ if-False Let-def by transfer-prover
qed

qed
qed

lemma euclid-ext-i [transfer-rule]:
(R ===> R ===> rel-prod (rel-prod R R) R) euclid-ext-i euclid-ext
by transfer-prover

end

locale field-ops = idom-divide-ops ops R + euclidean-semiring-ops ops R for ops
:: ′i arith-ops-record and

R :: ′i ⇒ ′a :: {field-gcd} ⇒ bool +
assumes inverse[transfer-rule]: (R ===> R) inverse Fields.inverse

lemma nth-default-rel[transfer-rule]: (S ===> list-all2 S ===> (=) ===> S)
nth-default nth-default
proof (intro rel-funI , clarify, goal-cases)

case (1 x y xs ys - n)
from 1 (2 ) show ?case
proof (induct arbitrary: n)

case Nil
thus ?case using 1 (1 ) by simp

next
case (Cons x y xs ys n)
thus ?case by (cases n, auto)

qed
qed

lemma strip-while-rel[transfer-rule]:
((A ===> (=)) ===> list-all2 A ===> list-all2 A) strip-while strip-while
unfolding strip-while-def [abs-def ] by transfer-prover

lemma list-all2-last[simp]: list-all2 A (xs @ [x]) (ys @ [y]) ←→ list-all2 A xs ys ∧
A x y
proof (cases length xs = length ys)

case True
show ?thesis by (simp add: list-all2-append[OF True])

next
case False
note len = list-all2-lengthD[of A]
from len[of xs ys] len[of xs @ [x] ys @ [y]] False
show ?thesis by auto
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qed

end

3.1 Finite Fields
We provide four implementations for GF (p) – the field with p elements for
some prime p – one by int, one by integers, one by 32-bit numbers and one
64-bit implementation. Correctness of the implementations is proven by
transfer rules to the type-based version of GF (p).
theory Finite-Field-Record-Based
imports

Finite-Field
Arithmetic-Record-Based
Native-Word.Uint32
Native-Word.Uint64
HOL−Library.Code-Target-Numeral
Native-Word.Code-Target-Int-Bit

begin

definition mod-nonneg-pos :: integer ⇒ integer ⇒ integer where
x ≥ 0 =⇒ y > 0 =⇒ mod-nonneg-pos x y = (x mod y)

code-printing — FIXME illusion of partiality
constant mod-nonneg-pos ⇀

(SML) IntInf .mod/ ( -,/ - )
and (Eval) IntInf .mod/ ( -,/ - )
and (OCaml) Z .rem
and (Haskell) Prelude.mod/ ( - )/ ( - )
and (Scala) !((k: BigInt) => (l: BigInt) =>/ (k ′% l))

definition mod-nonneg-pos-int :: int ⇒ int ⇒ int where
mod-nonneg-pos-int x y = int-of-integer (mod-nonneg-pos (integer-of-int x) (integer-of-int

y))

lemma mod-nonneg-pos-int[simp]: x ≥ 0 =⇒ y > 0 =⇒ mod-nonneg-pos-int x y
= (x mod y)

unfolding mod-nonneg-pos-int-def using mod-nonneg-pos-def by simp

context
fixes p :: int

begin
definition plus-p :: int ⇒ int ⇒ int where

plus-p x y ≡ let z = x + y in if z ≥ p then z − p else z

definition minus-p :: int ⇒ int ⇒ int where
minus-p x y ≡ if y ≤ x then x − y else x + p − y
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definition uminus-p :: int ⇒ int where
uminus-p x = (if x = 0 then 0 else p − x)

definition mult-p :: int ⇒ int ⇒ int where
mult-p x y = (mod-nonneg-pos-int (x ∗ y) p)

fun power-p :: int ⇒ nat ⇒ int where
power-p x n = (if n = 0 then 1 else

let (d,r) = Euclidean-Rings.divmod-nat n 2 ;
rec = power-p (mult-p x x) d in

if r = 0 then rec else mult-p rec x)

In experiments with Berlekamp-factorization (where the prime p is usu-
ally small), it turned out that taking the below implementation of inverse
via exponentiation is faster than the one based on the extended Euclidean
algorithm.
definition inverse-p :: int ⇒ int where

inverse-p x = (if x = 0 then 0 else power-p x (nat (p − 2 )))

definition divide-p :: int ⇒ int ⇒ int where
divide-p x y = mult-p x (inverse-p y)

definition finite-field-ops-int :: int arith-ops-record where
finite-field-ops-int ≡ Arith-Ops-Record

0
1
plus-p
mult-p
minus-p
uminus-p
divide-p
inverse-p
(λ x y . if y = 0 then x else 0 )
(λ x . if x = 0 then 0 else 1 )
(λ x . x)
(λ x . x)
(λ x . x)
(λ x. 0 ≤ x ∧ x < p)

end

context
fixes p :: uint32

begin
definition plus-p32 :: uint32 ⇒ uint32 ⇒ uint32 where

plus-p32 x y ≡ let z = x + y in if z ≥ p then z − p else z

definition minus-p32 :: uint32 ⇒ uint32 ⇒ uint32 where
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minus-p32 x y ≡ if y ≤ x then x − y else (x + p) − y

definition uminus-p32 :: uint32 ⇒ uint32 where
uminus-p32 x = (if x = 0 then 0 else p − x)

definition mult-p32 :: uint32 ⇒ uint32 ⇒ uint32 where
mult-p32 x y = (x ∗ y mod p)

lemma int-of-uint32-shift: int-of-uint32 (drop-bit k n) = (int-of-uint32 n) div (2
^ k)

apply transfer
apply transfer
apply (simp add: take-bit-drop-bit min-def )
apply (simp add: drop-bit-eq-div)
done

lemma int-of-uint32-0-iff : int-of-uint32 n = 0 ←→ n = 0
by (transfer , rule uint-0-iff )

lemma int-of-uint32-0 : int-of-uint32 0 = 0 unfolding int-of-uint32-0-iff by simp

lemma int-of-uint32-ge-0 : int-of-uint32 n ≥ 0
by (transfer , auto)

lemma two-32 : 2 ^ LENGTH (32 ) = (4294967296 :: int) by simp

lemma int-of-uint32-plus: int-of-uint32 (x + y) = (int-of-uint32 x + int-of-uint32
y) mod 4294967296

by (transfer , unfold uint-word-ariths two-32 , rule refl)

lemma int-of-uint32-minus: int-of-uint32 (x − y) = (int-of-uint32 x − int-of-uint32
y) mod 4294967296

by (transfer , unfold uint-word-ariths two-32 , rule refl)

lemma int-of-uint32-mult: int-of-uint32 (x ∗ y) = (int-of-uint32 x ∗ int-of-uint32
y) mod 4294967296

by (transfer , unfold uint-word-ariths two-32 , rule refl)

lemma int-of-uint32-mod: int-of-uint32 (x mod y) = (int-of-uint32 x mod int-of-uint32
y)

by (transfer , unfold uint-mod two-32 , rule refl)

lemma int-of-uint32-inv: 0 ≤ x =⇒ x < 4294967296 =⇒ int-of-uint32 (uint32-of-int
x) = x

by transfer (simp add: take-bit-int-eq-self unsigned-of-int)

context
includes bit-operations-syntax

begin
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function power-p32 :: uint32 ⇒ uint32 ⇒ uint32 where
power-p32 x n = (if n = 0 then 1 else

let rec = power-p32 (mult-p32 x x) (drop-bit 1 n) in
if n AND 1 = 0 then rec else mult-p32 rec x)

by pat-completeness auto

termination
proof −

{
fix n :: uint32
assume n 6= 0
with int-of-uint32-ge-0 [of n] int-of-uint32-0-iff [of n] have int-of-uint32 n > 0

by auto
hence 0 < int-of-uint32 n int-of-uint32 n div 2 < int-of-uint32 n by auto

} note ∗ = this
show ?thesis
by (relation measure (λ (x,n). nat (int-of-uint32 n)), auto simp: int-of-uint32-shift

∗)
qed

end

In experiments with Berlekamp-factorization (where the prime p is usu-
ally small), it turned out that taking the below implementation of inverse
via exponentiation is faster than the one based on the extended Euclidean
algorithm.
definition inverse-p32 :: uint32 ⇒ uint32 where

inverse-p32 x = (if x = 0 then 0 else power-p32 x (p − 2 ))

definition divide-p32 :: uint32 ⇒ uint32 ⇒ uint32 where
divide-p32 x y = mult-p32 x (inverse-p32 y)

definition finite-field-ops32 :: uint32 arith-ops-record where
finite-field-ops32 ≡ Arith-Ops-Record

0
1
plus-p32
mult-p32
minus-p32
uminus-p32
divide-p32
inverse-p32
(λ x y . if y = 0 then x else 0 )
(λ x . if x = 0 then 0 else 1 )
(λ x . x)
uint32-of-int
int-of-uint32
(λ x. 0 ≤ x ∧ x < p)
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end

lemma shiftr-uint32-code [code-unfold]: drop-bit 1 x = (uint32-shiftr x 1 )
by (simp add: uint32 .shiftr-def )

3.1.1 Transfer Relation
locale mod-ring-locale =

fixes p :: int and ty :: ′a :: nontriv itself
assumes p: p = int CARD( ′a)

begin
lemma nat-p: nat p = CARD( ′a) unfolding p by simp
lemma p2 : p ≥ 2 unfolding p using nontriv[where ′a = ′a] by auto
lemma p2-ident: int (CARD( ′a) − 2 ) = p − 2 using p2 unfolding p by simp

definition mod-ring-rel :: int ⇒ ′a mod-ring ⇒ bool where
mod-ring-rel x x ′ = (x = to-int-mod-ring x ′)

lemma Domainp-mod-ring-rel [transfer-domain-rule]:
Domainp (mod-ring-rel) = (λ v. v ∈ {0 ..< p})

proof −
{

fix v :: int
assume ∗: 0 ≤ v v < p
have Domainp mod-ring-rel v
proof

show mod-ring-rel v (of-int-mod-ring v) unfolding mod-ring-rel-def using ∗
p by auto

qed
} note ∗ = this
show ?thesis

by (intro ext iffI , insert range-to-int-mod-ring[where ′a = ′a] ∗, auto simp:
mod-ring-rel-def p)
qed

lemma bi-unique-mod-ring-rel [transfer-rule]:
bi-unique mod-ring-rel left-unique mod-ring-rel right-unique mod-ring-rel
unfolding mod-ring-rel-def bi-unique-def left-unique-def right-unique-def
by auto

lemma right-total-mod-ring-rel [transfer-rule]: right-total mod-ring-rel
unfolding mod-ring-rel-def right-total-def by simp

3.1.2 Transfer Rules
lemma mod-ring-0 [transfer-rule]: mod-ring-rel 0 0 unfolding mod-ring-rel-def by
simp
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lemma mod-ring-1 [transfer-rule]: mod-ring-rel 1 1 unfolding mod-ring-rel-def by
simp

lemma plus-p-mod-def : assumes x: x ∈ {0 ..< p} and y: y ∈ {0 ..< p}
shows plus-p p x y = ((x + y) mod p)

proof (cases p ≤ x + y)
case False
thus ?thesis using x y unfolding plus-p-def Let-def by auto

next
case True
from True x y have ∗: p > 0 0 ≤ x + y − p x + y − p < p by auto
from True have id: plus-p p x y = x + y − p unfolding plus-p-def by auto
show ?thesis unfolding id using ∗ using mod-pos-pos-trivial by fastforce

qed

lemma mod-ring-plus[transfer-rule]: (mod-ring-rel ===> mod-ring-rel ===> mod-ring-rel)
(plus-p p) (+)
proof −

{
fix x y :: ′a mod-ring
have plus-p p (to-int-mod-ring x) (to-int-mod-ring y) = to-int-mod-ring (x +

y)
by (transfer , subst plus-p-mod-def , auto, auto simp: p)

} note ∗ = this
show ?thesis

by (intro rel-funI , auto simp: mod-ring-rel-def ∗)
qed

lemma minus-p-mod-def : assumes x: x ∈ {0 ..< p} and y: y ∈ {0 ..< p}
shows minus-p p x y = ((x − y) mod p)

proof (cases x − y < 0 )
case False
thus ?thesis using x y unfolding minus-p-def Let-def by auto

next
case True
from True x y have ∗: p > 0 0 ≤ x − y + p x − y + p < p by auto
from True have id: minus-p p x y = x − y + p unfolding minus-p-def by auto
show ?thesis unfolding id using ∗ using mod-pos-pos-trivial by fastforce

qed

lemma mod-ring-minus[transfer-rule]: (mod-ring-rel ===> mod-ring-rel ===>
mod-ring-rel) (minus-p p) (−)
proof −

{
fix x y :: ′a mod-ring
have minus-p p (to-int-mod-ring x) (to-int-mod-ring y) = to-int-mod-ring (x −

y)
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by (transfer , subst minus-p-mod-def , auto simp: p)
} note ∗ = this
show ?thesis

by (intro rel-funI , auto simp: mod-ring-rel-def ∗)
qed

lemma mod-ring-uminus[transfer-rule]: (mod-ring-rel ===> mod-ring-rel) (uminus-p
p) uminus
proof −

{
fix x :: ′a mod-ring
have uminus-p p (to-int-mod-ring x) = to-int-mod-ring (uminus x)

by (transfer , auto simp: uminus-p-def p)
} note ∗ = this
show ?thesis

by (intro rel-funI , auto simp: mod-ring-rel-def ∗)
qed

lemma mod-ring-mult[transfer-rule]: (mod-ring-rel ===> mod-ring-rel ===>
mod-ring-rel) (mult-p p) ((∗))
proof −

{
fix x y :: ′a mod-ring
have mult-p p (to-int-mod-ring x) (to-int-mod-ring y) = to-int-mod-ring (x ∗

y)
by (transfer , auto simp: mult-p-def p)

} note ∗ = this
show ?thesis

by (intro rel-funI , auto simp: mod-ring-rel-def ∗)
qed

lemma mod-ring-eq[transfer-rule]: (mod-ring-rel ===> mod-ring-rel ===> (=))
(=) (=)

by (intro rel-funI , auto simp: mod-ring-rel-def )

lemma mod-ring-power [transfer-rule]: (mod-ring-rel ===> (=) ===> mod-ring-rel)
(power-p p) (^)
proof (intro rel-funI , clarify, unfold binary-power [symmetric], goal-cases)

fix x y n
assume xy: mod-ring-rel x y
from xy show mod-ring-rel (power-p p x n) (binary-power y n)
proof (induct y n arbitrary: x rule: binary-power .induct)

case (1 x n y)
note 1 (2 )[transfer-rule]
show ?case
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proof (cases n = 0 )
case True
thus ?thesis by (simp add: mod-ring-1 )

next
case False
obtain d r where id: Euclidean-Rings.divmod-nat n 2 = (d,r) by force
let ?int = power-p p (mult-p p y y) d
let ?gfp = binary-power (x ∗ x) d
from False have id ′: ?thesis = (mod-ring-rel

(if r = 0 then ?int else mult-p p ?int y)
(if r = 0 then ?gfp else ?gfp ∗ x))

unfolding power-p.simps[of - - n] binary-power .simps[of - n] Let-def id split
by simp

have [transfer-rule]: mod-ring-rel ?int ?gfp
by (rule 1 (1 )[OF False refl id[symmetric]], transfer-prover)

show ?thesis unfolding id ′ by transfer-prover
qed

qed
qed

declare power-p.simps[simp del]

lemma ring-finite-field-ops-int: ring-ops (finite-field-ops-int p) mod-ring-rel
by (unfold-locales, auto simp:
finite-field-ops-int-def
bi-unique-mod-ring-rel
right-total-mod-ring-rel
mod-ring-plus
mod-ring-minus
mod-ring-uminus
mod-ring-mult
mod-ring-eq
mod-ring-0
mod-ring-1
Domainp-mod-ring-rel)

end

locale prime-field = mod-ring-locale p ty for p and ty :: ′a :: prime-card itself
begin

lemma prime: prime p unfolding p using prime-card[where ′a = ′a] by simp

lemma mod-ring-mod[transfer-rule]:
(mod-ring-rel ===> mod-ring-rel ===> mod-ring-rel) ((λ x y. if y = 0 then x

else 0 )) (mod)
proof −

{
fix x y :: ′a mod-ring
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have (if to-int-mod-ring y = 0 then to-int-mod-ring x else 0 ) = to-int-mod-ring
(x mod y)

unfolding modulo-mod-ring-def by auto
} note ∗ = this
show ?thesis

by (intro rel-funI , auto simp: mod-ring-rel-def ∗[symmetric])
qed

lemma mod-ring-normalize[transfer-rule]: (mod-ring-rel ===> mod-ring-rel) ((λ
x. if x = 0 then 0 else 1 )) normalize
proof −

{
fix x :: ′a mod-ring
have (if to-int-mod-ring x = 0 then 0 else 1 ) = to-int-mod-ring (normalize x)

unfolding normalize-mod-ring-def by auto
} note ∗ = this
show ?thesis

by (intro rel-funI , auto simp: mod-ring-rel-def ∗[symmetric])
qed

lemma mod-ring-unit-factor [transfer-rule]: (mod-ring-rel ===> mod-ring-rel) (λ
x. x) unit-factor
proof −

{
fix x :: ′a mod-ring
have to-int-mod-ring x = to-int-mod-ring (unit-factor x)

unfolding unit-factor-mod-ring-def by auto
} note ∗ = this
show ?thesis

by (intro rel-funI , auto simp: mod-ring-rel-def ∗[symmetric])
qed

lemma mod-ring-inverse[transfer-rule]: (mod-ring-rel ===> mod-ring-rel) (inverse-p
p) inverse
proof (intro rel-funI )

fix x y
assume [transfer-rule]: mod-ring-rel x y
show mod-ring-rel (inverse-p p x) (inverse y)

unfolding inverse-p-def inverse-mod-ring-def
apply (transfer-prover-start)
apply (transfer-step)+
apply (unfold p2-ident)
apply (rule refl)
done

qed
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lemma mod-ring-divide[transfer-rule]: (mod-ring-rel ===> mod-ring-rel ===>
mod-ring-rel)
(divide-p p) (/)
unfolding divide-p-def [abs-def ] divide-mod-ring-def [abs-def ] inverse-mod-ring-def [symmetric]
by transfer-prover

lemma mod-ring-rel-unsafe: assumes x < CARD( ′a)
shows mod-ring-rel (int x) (of-nat x) 0 < x =⇒ of-nat x 6= (0 :: ′a mod-ring)

proof −
have id: of-nat x = (of-int (int x) :: ′a mod-ring) by simp
show mod-ring-rel (int x) (of-nat x) 0 < x =⇒ of-nat x 6= (0 :: ′a mod-ring)

unfolding id
unfolding mod-ring-rel-def
proof (auto simp add: assms of-int-of-int-mod-ring)

assume 0 < x with assms
have of-int-mod-ring (int x) 6= (0 :: ′a mod-ring)
by (metis (no-types) less-imp-of-nat-less less-irrefl of-nat-0-le-iff of-nat-0-less-iff

to-int-mod-ring-hom.hom-zero to-int-mod-ring-of-int-mod-ring)
thus of-int-mod-ring (int x) = (0 :: ′a mod-ring) =⇒ False by blast

qed
qed

lemma finite-field-ops-int: field-ops (finite-field-ops-int p) mod-ring-rel
by (unfold-locales, auto simp:
finite-field-ops-int-def
bi-unique-mod-ring-rel
right-total-mod-ring-rel
mod-ring-divide
mod-ring-plus
mod-ring-minus
mod-ring-uminus
mod-ring-inverse
mod-ring-mod
mod-ring-unit-factor
mod-ring-normalize
mod-ring-mult
mod-ring-eq
mod-ring-0
mod-ring-1
Domainp-mod-ring-rel)

end

Once we have proven the soundness of the implementation, we do not
care any longer that ′a mod-ring has been defined internally via lifting.
Disabling the transfer-rules will hide the internal definition in further appli-
cations of transfer.
lifting-forget mod-ring.lifting

29



For soundness of the 32-bit implementation, we mainly prove that this
implementation implements the int-based implementation of the mod-ring.
context mod-ring-locale
begin

context fixes pp :: uint32
assumes ppp: p = int-of-uint32 pp
and small: p ≤ 65535

begin

lemmas uint32-simps =
int-of-uint32-0
int-of-uint32-plus
int-of-uint32-minus
int-of-uint32-mult

definition urel32 :: uint32 ⇒ int ⇒ bool where urel32 x y = (y = int-of-uint32
x ∧ y < p)

definition mod-ring-rel32 :: uint32 ⇒ ′a mod-ring ⇒ bool where
mod-ring-rel32 x y = (∃ z. urel32 x z ∧ mod-ring-rel z y)

lemma urel32-0 : urel32 0 0 unfolding urel32-def using p2 by (simp, transfer ,
simp)

lemma urel32-1 : urel32 1 1 unfolding urel32-def using p2 by (simp, transfer ,
simp)

lemma le-int-of-uint32 : (x ≤ y) = (int-of-uint32 x ≤ int-of-uint32 y)
by (transfer , simp add: word-le-def )

lemma urel32-plus: assumes urel32 x y urel32 x ′ y ′

shows urel32 (plus-p32 pp x x ′) (plus-p p y y ′)
proof −

let ?x = int-of-uint32 x
let ?x ′ = int-of-uint32 x ′

let ?p = int-of-uint32 pp
from assms int-of-uint32-ge-0 have id: y = ?x y ′ = ?x ′

and rel: 0 ≤ ?x ?x < p
0 ≤ ?x ′ ?x ′ ≤ p unfolding urel32-def by auto

have le: (pp ≤ x + x ′) = (?p ≤ ?x + ?x ′) unfolding le-int-of-uint32
using rel small by (auto simp: uint32-simps)

show ?thesis
proof (cases ?p ≤ ?x + ?x ′)

case True
hence True: (?p ≤ ?x + ?x ′) = True by simp
show ?thesis unfolding id

using small rel unfolding plus-p32-def plus-p-def Let-def urel32-def
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unfolding ppp le True if-True
using True by (auto simp: uint32-simps)

next
case False
hence False: (?p ≤ ?x + ?x ′) = False by simp
show ?thesis unfolding id

using small rel unfolding plus-p32-def plus-p-def Let-def urel32-def
unfolding ppp le False if-False
using False by (auto simp: uint32-simps)

qed
qed

lemma urel32-minus: assumes urel32 x y urel32 x ′ y ′

shows urel32 (minus-p32 pp x x ′) (minus-p p y y ′)
proof −

let ?x = int-of-uint32 x
let ?x ′ = int-of-uint32 x ′

from assms int-of-uint32-ge-0 have id: y = ?x y ′ = ?x ′

and rel: 0 ≤ ?x ?x < p
0 ≤ ?x ′ ?x ′ ≤ p unfolding urel32-def by auto

have le: (x ′ ≤ x) = (?x ′ ≤ ?x) unfolding le-int-of-uint32
using rel small by (auto simp: uint32-simps)

show ?thesis
proof (cases ?x ′ ≤ ?x)

case True
hence True: (?x ′ ≤ ?x) = True by simp
show ?thesis unfolding id

using small rel unfolding minus-p32-def minus-p-def Let-def urel32-def
unfolding ppp le True if-True
using True by (auto simp: uint32-simps)

next
case False
hence False: (?x ′ ≤ ?x) = False by simp
show ?thesis unfolding id

using small rel unfolding minus-p32-def minus-p-def Let-def urel32-def
unfolding ppp le False if-False
using False by (auto simp: uint32-simps)

qed
qed

lemma urel32-uminus: assumes urel32 x y
shows urel32 (uminus-p32 pp x) (uminus-p p y)

proof −
let ?x = int-of-uint32 x
from assms int-of-uint32-ge-0 have id: y = ?x

and rel: 0 ≤ ?x ?x < p
unfolding urel32-def by auto

have le: (x = 0 ) = (?x = 0 ) unfolding int-of-uint32-0-iff
using rel small by (auto simp: uint32-simps)
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show ?thesis
proof (cases ?x = 0 )

case True
hence True: (?x = 0 ) = True by simp
show ?thesis unfolding id

using small rel unfolding uminus-p32-def uminus-p-def Let-def urel32-def
unfolding ppp le True if-True
using True by (auto simp: uint32-simps)

next
case False
hence False: (?x = 0 ) = False by simp
show ?thesis unfolding id

using small rel unfolding uminus-p32-def uminus-p-def Let-def urel32-def
unfolding ppp le False if-False
using False by (auto simp: uint32-simps)

qed
qed

lemma urel32-mult: assumes urel32 x y urel32 x ′ y ′

shows urel32 (mult-p32 pp x x ′) (mult-p p y y ′)
proof −

let ?x = int-of-uint32 x
let ?x ′ = int-of-uint32 x ′

from assms int-of-uint32-ge-0 have id: y = ?x y ′ = ?x ′

and rel: 0 ≤ ?x ?x < p
0 ≤ ?x ′ ?x ′ < p unfolding urel32-def by auto

from rel have ?x ∗ ?x ′ < p ∗ p by (metis mult-strict-mono ′)
also have . . . ≤ 65536 ∗ 65536

by (rule mult-mono, insert p2 small, auto)
finally have le: ?x ∗ ?x ′ < 4294967296 by simp
show ?thesis unfolding id

using small rel unfolding mult-p32-def mult-p-def Let-def urel32-def
unfolding ppp

by (auto simp: uint32-simps, unfold int-of-uint32-mod int-of-uint32-mult,
subst mod-pos-pos-trivial[of - 4294967296 ], insert le, auto)

qed

lemma urel32-eq: assumes urel32 x y urel32 x ′ y ′

shows (x = x ′) = (y = y ′)
proof −

let ?x = int-of-uint32 x
let ?x ′ = int-of-uint32 x ′

from assms int-of-uint32-ge-0 have id: y = ?x y ′ = ?x ′

unfolding urel32-def by auto
show ?thesis unfolding id by (transfer , transfer) rule

qed

lemma urel32-normalize:
assumes x: urel32 x y
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shows urel32 (if x = 0 then 0 else 1 ) (if y = 0 then 0 else 1 )
unfolding urel32-eq[OF x urel32-0 ] using urel32-0 urel32-1 by auto

lemma urel32-mod:
assumes x: urel32 x x ′ and y: urel32 y y ′

shows urel32 (if y = 0 then x else 0 ) (if y ′ = 0 then x ′ else 0 )
unfolding urel32-eq[OF y urel32-0 ] using urel32-0 x by auto

lemma urel32-power : urel32 x x ′ =⇒ urel32 y (int y ′) =⇒ urel32 (power-p32 pp
x y) (power-p p x ′ y ′)
including bit-operations-syntax proof (induct x ′ y ′ arbitrary: x y rule: power-p.induct[of
- p])

case (1 x ′ y ′ x y)
note x = 1 (2 ) note y = 1 (3 )
show ?case
proof (cases y ′ = 0 )

case True
hence y: y = 0 using urel32-eq[OF y urel32-0 ] by auto
show ?thesis unfolding y True by (simp add: power-p.simps urel32-1 )

next
case False
hence id: (y = 0 ) = False (y ′ = 0 ) = False using urel32-eq[OF y urel32-0 ]

by auto
from y have ‹int y ′ = int-of-uint32 y› ‹int y ′ < p›

by (simp-all add: urel32-def )
obtain d ′ r ′ where dr ′: Euclidean-Rings.divmod-nat y ′ 2 = (d ′,r ′) by force
from Euclidean-Rings.divmod-nat-def [of y ′ 2 , unfolded dr ′]
have r ′: r ′ = y ′ mod 2 and d ′: d ′ = y ′ div 2 by auto
have urel32 (y AND 1 ) r ′

using ‹int y ′ < p› small
apply (simp add: urel32-def and-one-eq r ′)
apply (auto simp add: ppp and-one-eq)

apply (simp add: of-nat-mod int-of-uint32 .rep-eq modulo-uint32 .rep-eq uint-mod
‹int y ′ = int-of-uint32 y›)

done
from urel32-eq[OF this urel32-0 ]
have rem: (y AND 1 = 0 ) = (r ′ = 0 ) by simp
have div: urel32 (drop-bit 1 y) (int d ′) unfolding d ′ using y unfolding

urel32-def using small
unfolding ppp
apply transfer
apply transfer
apply (auto simp add: drop-bit-Suc take-bit-int-eq-self )
done

note IH = 1 (1 )[OF False refl dr ′[symmetric] urel32-mult[OF x x] div]
show ?thesis unfolding power-p.simps[of - - y ′] power-p32 .simps[of - - y] dr ′

id if-False rem
using IH urel32-mult[OF IH x] by (auto simp: Let-def )

qed
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qed

lemma urel32-inverse: assumes x: urel32 x x ′

shows urel32 (inverse-p32 pp x) (inverse-p p x ′)
proof −

have p: urel32 (pp − 2 ) (int (nat (p − 2 ))) using p2 small unfolding urel32-def
unfolding ppp

by (simp add: int-of-uint32 .rep-eq minus-uint32 .rep-eq uint-sub-if ′)
show ?thesis
unfolding inverse-p32-def inverse-p-def urel32-eq[OF x urel32-0 ] using urel32-0

urel32-power [OF x p]
by auto

qed

lemma mod-ring-0-32 : mod-ring-rel32 0 0
using urel32-0 mod-ring-0 unfolding mod-ring-rel32-def by blast

lemma mod-ring-1-32 : mod-ring-rel32 1 1
using urel32-1 mod-ring-1 unfolding mod-ring-rel32-def by blast

lemma mod-ring-uminus32 : (mod-ring-rel32 ===> mod-ring-rel32 ) (uminus-p32
pp) uminus

using urel32-uminus mod-ring-uminus unfolding mod-ring-rel32-def rel-fun-def
by blast

lemma mod-ring-plus32 : (mod-ring-rel32 ===> mod-ring-rel32 ===> mod-ring-rel32 )
(plus-p32 pp) (+)

using urel32-plus mod-ring-plus unfolding mod-ring-rel32-def rel-fun-def by
blast

lemma mod-ring-minus32 : (mod-ring-rel32 ===> mod-ring-rel32 ===> mod-ring-rel32 )
(minus-p32 pp) (−)

using urel32-minus mod-ring-minus unfolding mod-ring-rel32-def rel-fun-def by
blast

lemma mod-ring-mult32 : (mod-ring-rel32 ===> mod-ring-rel32 ===> mod-ring-rel32 )
(mult-p32 pp) ((∗))

using urel32-mult mod-ring-mult unfolding mod-ring-rel32-def rel-fun-def by
blast

lemma mod-ring-eq32 : (mod-ring-rel32 ===> mod-ring-rel32 ===> (=)) (=)
(=)

using urel32-eq mod-ring-eq unfolding mod-ring-rel32-def rel-fun-def by blast

lemma urel32-inj: urel32 x y =⇒ urel32 x z =⇒ y = z
using urel32-eq[of x y x z] by auto

lemma urel32-inj ′: urel32 x z =⇒ urel32 y z =⇒ x = y
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using urel32-eq[of x z y z] by auto

lemma bi-unique-mod-ring-rel32 :
bi-unique mod-ring-rel32 left-unique mod-ring-rel32 right-unique mod-ring-rel32
using bi-unique-mod-ring-rel urel32-inj ′
unfolding mod-ring-rel32-def bi-unique-def left-unique-def right-unique-def
by (auto simp: urel32-def )

lemma right-total-mod-ring-rel32 : right-total mod-ring-rel32
unfolding mod-ring-rel32-def right-total-def

proof
fix y :: ′a mod-ring
from right-total-mod-ring-rel[unfolded right-total-def , rule-format, of y]
obtain z where zy: mod-ring-rel z y by auto
hence zp: 0 ≤ z z < p unfolding mod-ring-rel-def p using range-to-int-mod-ring[where

′a = ′a] by auto
hence urel32 (uint32-of-int z) z unfolding urel32-def using small unfolding

ppp
by (auto simp: int-of-uint32-inv)

with zy show ∃ x z. urel32 x z ∧ mod-ring-rel z y by blast
qed

lemma Domainp-mod-ring-rel32 : Domainp mod-ring-rel32 = (λx. 0 ≤ x ∧ x <
pp)
proof

fix x
show Domainp mod-ring-rel32 x = (0 ≤ x ∧ x < pp)

unfolding Domainp.simps
unfolding mod-ring-rel32-def

proof
let ?i = int-of-uint32
assume ∗: 0 ≤ x ∧ x < pp
hence 0 ≤ ?i x ∧ ?i x < p using small unfolding ppp

by (transfer , auto simp: word-less-def )
hence ?i x ∈ {0 ..< p} by auto
with Domainp-mod-ring-rel
have Domainp mod-ring-rel (?i x) by auto
from this[unfolded Domainp.simps]
obtain b where b: mod-ring-rel (?i x) b by auto
show ∃ a b. x = a ∧ (∃ z. urel32 a z ∧ mod-ring-rel z b)
proof (intro exI , rule conjI [OF refl], rule exI , rule conjI [OF - b])

show urel32 x (?i x) unfolding urel32-def using small ∗ unfolding ppp
by (transfer , auto simp: word-less-def )

qed
next

assume ∃ a b. x = a ∧ (∃ z. urel32 a z ∧ mod-ring-rel z b)
then obtain b z where xz: urel32 x z and zb: mod-ring-rel z b by auto
hence Domainp mod-ring-rel z by auto
with Domainp-mod-ring-rel have 0 ≤ z z < p by auto
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with xz show 0 ≤ x ∧ x < pp unfolding urel32-def using small unfolding
ppp

by (transfer , auto simp: word-less-def )
qed

qed

lemma ring-finite-field-ops32 : ring-ops (finite-field-ops32 pp) mod-ring-rel32
by (unfold-locales, auto simp:
finite-field-ops32-def
bi-unique-mod-ring-rel32
right-total-mod-ring-rel32
mod-ring-plus32
mod-ring-minus32
mod-ring-uminus32
mod-ring-mult32
mod-ring-eq32
mod-ring-0-32
mod-ring-1-32
Domainp-mod-ring-rel32 )

end
end

context prime-field
begin
context fixes pp :: uint32

assumes ∗: p = int-of-uint32 pp p ≤ 65535
begin

lemma mod-ring-normalize32 : (mod-ring-rel32 ===> mod-ring-rel32 ) (λx. if x
= 0 then 0 else 1 ) normalize
using urel32-normalize[OF ∗] mod-ring-normalize unfolding mod-ring-rel32-def [OF
∗] rel-fun-def by blast

lemma mod-ring-mod32 : (mod-ring-rel32 ===> mod-ring-rel32 ===> mod-ring-rel32 )
(λx y. if y = 0 then x else 0 ) (mod)

using urel32-mod[OF ∗] mod-ring-mod unfolding mod-ring-rel32-def [OF ∗]
rel-fun-def by blast

lemma mod-ring-unit-factor32 : (mod-ring-rel32 ===> mod-ring-rel32 ) (λx. x)
unit-factor

using mod-ring-unit-factor unfolding mod-ring-rel32-def [OF ∗] rel-fun-def by
blast

lemma mod-ring-inverse32 : (mod-ring-rel32 ===> mod-ring-rel32 ) (inverse-p32
pp) inverse

using urel32-inverse[OF ∗] mod-ring-inverse unfolding mod-ring-rel32-def [OF
∗] rel-fun-def by blast

lemma mod-ring-divide32 : (mod-ring-rel32 ===> mod-ring-rel32 ===> mod-ring-rel32 )
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(divide-p32 pp) (/)
using mod-ring-inverse32 mod-ring-mult32 [OF ∗]
unfolding divide-p32-def divide-mod-ring-def inverse-mod-ring-def [symmetric]

rel-fun-def by blast

lemma finite-field-ops32 : field-ops (finite-field-ops32 pp) mod-ring-rel32
by (unfold-locales, insert ring-finite-field-ops32 [OF ∗], auto simp:
ring-ops-def
finite-field-ops32-def
mod-ring-divide32
mod-ring-inverse32
mod-ring-mod32
mod-ring-normalize32 )

end
end

context
fixes p :: uint64

begin
definition plus-p64 :: uint64 ⇒ uint64 ⇒ uint64 where

plus-p64 x y ≡ let z = x + y in if z ≥ p then z − p else z

definition minus-p64 :: uint64 ⇒ uint64 ⇒ uint64 where
minus-p64 x y ≡ if y ≤ x then x − y else (x + p) − y

definition uminus-p64 :: uint64 ⇒ uint64 where
uminus-p64 x = (if x = 0 then 0 else p − x)

definition mult-p64 :: uint64 ⇒ uint64 ⇒ uint64 where
mult-p64 x y = (x ∗ y mod p)

lemma int-of-uint64-shift: int-of-uint64 (drop-bit k n) = (int-of-uint64 n) div (2
^ k)

apply transfer
apply transfer
apply (simp add: take-bit-drop-bit min-def )
apply (simp add: drop-bit-eq-div)
done

lemma int-of-uint64-0-iff : int-of-uint64 n = 0 ←→ n = 0
by (transfer , rule uint-0-iff )

lemma int-of-uint64-0 : int-of-uint64 0 = 0 unfolding int-of-uint64-0-iff by simp

lemma int-of-uint64-ge-0 : int-of-uint64 n ≥ 0
by (transfer , auto)
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lemma two-64 : 2 ^ LENGTH (64 ) = (18446744073709551616 :: int) by simp

lemma int-of-uint64-plus: int-of-uint64 (x + y) = (int-of-uint64 x + int-of-uint64
y) mod 18446744073709551616

by (transfer , unfold uint-word-ariths two-64 , rule refl)

lemma int-of-uint64-minus: int-of-uint64 (x − y) = (int-of-uint64 x − int-of-uint64
y) mod 18446744073709551616

by (transfer , unfold uint-word-ariths two-64 , rule refl)

lemma int-of-uint64-mult: int-of-uint64 (x ∗ y) = (int-of-uint64 x ∗ int-of-uint64
y) mod 18446744073709551616

by (transfer , unfold uint-word-ariths two-64 , rule refl)

lemma int-of-uint64-mod: int-of-uint64 (x mod y) = (int-of-uint64 x mod int-of-uint64
y)

by (transfer , unfold uint-mod two-64 , rule refl)

lemma int-of-uint64-inv: 0 ≤ x =⇒ x < 18446744073709551616 =⇒ int-of-uint64
(uint64-of-int x) = x

by transfer (simp add: take-bit-int-eq-self unsigned-of-int)

context
includes bit-operations-syntax

begin

function power-p64 :: uint64 ⇒ uint64 ⇒ uint64 where
power-p64 x n = (if n = 0 then 1 else

let rec = power-p64 (mult-p64 x x) (drop-bit 1 n) in
if n AND 1 = 0 then rec else mult-p64 rec x)

by pat-completeness auto

termination
proof −

{
fix n :: uint64
assume n 6= 0
with int-of-uint64-ge-0 [of n] int-of-uint64-0-iff [of n] have int-of-uint64 n > 0

by auto
hence 0 < int-of-uint64 n int-of-uint64 n div 2 < int-of-uint64 n by auto

} note ∗ = this
show ?thesis
by (relation measure (λ (x,n). nat (int-of-uint64 n)), auto simp: int-of-uint64-shift

∗)
qed

end

In experiments with Berlekamp-factorization (where the prime p is usu-
ally small), it turned out that taking the below implementation of inverse
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via exponentiation is faster than the one based on the extended Euclidean
algorithm.
definition inverse-p64 :: uint64 ⇒ uint64 where

inverse-p64 x = (if x = 0 then 0 else power-p64 x (p − 2 ))

definition divide-p64 :: uint64 ⇒ uint64 ⇒ uint64 where
divide-p64 x y = mult-p64 x (inverse-p64 y)

definition finite-field-ops64 :: uint64 arith-ops-record where
finite-field-ops64 ≡ Arith-Ops-Record

0
1
plus-p64
mult-p64
minus-p64
uminus-p64
divide-p64
inverse-p64
(λ x y . if y = 0 then x else 0 )
(λ x . if x = 0 then 0 else 1 )
(λ x . x)
uint64-of-int
int-of-uint64
(λ x. 0 ≤ x ∧ x < p)

end

lemma shiftr-uint64-code [code-unfold]: drop-bit 1 x = (uint64-shiftr x 1 )
by (simp add: uint64 .shiftr-def )

For soundness of the 64-bit implementation, we mainly prove that this
implementation implements the int-based implementation of GF(p).
context mod-ring-locale
begin

context fixes pp :: uint64
assumes ppp: p = int-of-uint64 pp
and small: p ≤ 4294967295

begin

lemmas uint64-simps =
int-of-uint64-0
int-of-uint64-plus
int-of-uint64-minus
int-of-uint64-mult

definition urel64 :: uint64 ⇒ int ⇒ bool where urel64 x y = (y = int-of-uint64
x ∧ y < p)
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definition mod-ring-rel64 :: uint64 ⇒ ′a mod-ring ⇒ bool where
mod-ring-rel64 x y = (∃ z. urel64 x z ∧ mod-ring-rel z y)

lemma urel64-0 : urel64 0 0 unfolding urel64-def using p2 by (simp, transfer ,
simp)

lemma urel64-1 : urel64 1 1 unfolding urel64-def using p2 by (simp, transfer ,
simp)

lemma le-int-of-uint64 : (x ≤ y) = (int-of-uint64 x ≤ int-of-uint64 y)
by (transfer , simp add: word-le-def )

lemma urel64-plus: assumes urel64 x y urel64 x ′ y ′

shows urel64 (plus-p64 pp x x ′) (plus-p p y y ′)
proof −

let ?x = int-of-uint64 x
let ?x ′ = int-of-uint64 x ′

let ?p = int-of-uint64 pp
from assms int-of-uint64-ge-0 have id: y = ?x y ′ = ?x ′

and rel: 0 ≤ ?x ?x < p
0 ≤ ?x ′ ?x ′ ≤ p unfolding urel64-def by auto

have le: (pp ≤ x + x ′) = (?p ≤ ?x + ?x ′) unfolding le-int-of-uint64
using rel small by (auto simp: uint64-simps)

show ?thesis
proof (cases ?p ≤ ?x + ?x ′)

case True
hence True: (?p ≤ ?x + ?x ′) = True by simp
show ?thesis unfolding id

using small rel unfolding plus-p64-def plus-p-def Let-def urel64-def
unfolding ppp le True if-True
using True by (auto simp: uint64-simps)

next
case False
hence False: (?p ≤ ?x + ?x ′) = False by simp
show ?thesis unfolding id

using small rel unfolding plus-p64-def plus-p-def Let-def urel64-def
unfolding ppp le False if-False
using False by (auto simp: uint64-simps)

qed
qed

lemma urel64-minus: assumes urel64 x y urel64 x ′ y ′

shows urel64 (minus-p64 pp x x ′) (minus-p p y y ′)
proof −

let ?x = int-of-uint64 x
let ?x ′ = int-of-uint64 x ′

from assms int-of-uint64-ge-0 have id: y = ?x y ′ = ?x ′

and rel: 0 ≤ ?x ?x < p
0 ≤ ?x ′ ?x ′ ≤ p unfolding urel64-def by auto

40



have le: (x ′ ≤ x) = (?x ′ ≤ ?x) unfolding le-int-of-uint64
using rel small by (auto simp: uint64-simps)

show ?thesis
proof (cases ?x ′ ≤ ?x)

case True
hence True: (?x ′ ≤ ?x) = True by simp
show ?thesis unfolding id

using small rel unfolding minus-p64-def minus-p-def Let-def urel64-def
unfolding ppp le True if-True
using True by (auto simp: uint64-simps)

next
case False
hence False: (?x ′ ≤ ?x) = False by simp
show ?thesis unfolding id

using small rel unfolding minus-p64-def minus-p-def Let-def urel64-def
unfolding ppp le False if-False
using False by (auto simp: uint64-simps)

qed
qed

lemma urel64-uminus: assumes urel64 x y
shows urel64 (uminus-p64 pp x) (uminus-p p y)

proof −
let ?x = int-of-uint64 x
from assms int-of-uint64-ge-0 have id: y = ?x

and rel: 0 ≤ ?x ?x < p
unfolding urel64-def by auto

have le: (x = 0 ) = (?x = 0 ) unfolding int-of-uint64-0-iff
using rel small by (auto simp: uint64-simps)

show ?thesis
proof (cases ?x = 0 )

case True
hence True: (?x = 0 ) = True by simp
show ?thesis unfolding id

using small rel unfolding uminus-p64-def uminus-p-def Let-def urel64-def
unfolding ppp le True if-True
using True by (auto simp: uint64-simps)

next
case False
hence False: (?x = 0 ) = False by simp
show ?thesis unfolding id

using small rel unfolding uminus-p64-def uminus-p-def Let-def urel64-def
unfolding ppp le False if-False
using False by (auto simp: uint64-simps)

qed
qed

lemma urel64-mult: assumes urel64 x y urel64 x ′ y ′

shows urel64 (mult-p64 pp x x ′) (mult-p p y y ′)
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proof −
let ?x = int-of-uint64 x
let ?x ′ = int-of-uint64 x ′

from assms int-of-uint64-ge-0 have id: y = ?x y ′ = ?x ′

and rel: 0 ≤ ?x ?x < p
0 ≤ ?x ′ ?x ′ < p unfolding urel64-def by auto

from rel have ?x ∗ ?x ′ < p ∗ p by (metis mult-strict-mono ′)
also have . . . ≤ 4294967296 ∗ 4294967296

by (rule mult-mono, insert p2 small, auto)
finally have le: ?x ∗ ?x ′ < 18446744073709551616 by simp
show ?thesis unfolding id

using small rel unfolding mult-p64-def mult-p-def Let-def urel64-def
unfolding ppp

by (auto simp: uint64-simps, unfold int-of-uint64-mod int-of-uint64-mult,
subst mod-pos-pos-trivial[of - 18446744073709551616 ], insert le, auto)

qed

lemma urel64-eq: assumes urel64 x y urel64 x ′ y ′

shows (x = x ′) = (y = y ′)
proof −

let ?x = int-of-uint64 x
let ?x ′ = int-of-uint64 x ′

from assms int-of-uint64-ge-0 have id: y = ?x y ′ = ?x ′

unfolding urel64-def by auto
show ?thesis unfolding id by (transfer , transfer) rule

qed

lemma urel64-normalize:
assumes x: urel64 x y
shows urel64 (if x = 0 then 0 else 1 ) (if y = 0 then 0 else 1 )
unfolding urel64-eq[OF x urel64-0 ] using urel64-0 urel64-1 by auto

lemma urel64-mod:
assumes x: urel64 x x ′ and y: urel64 y y ′

shows urel64 (if y = 0 then x else 0 ) (if y ′ = 0 then x ′ else 0 )
unfolding urel64-eq[OF y urel64-0 ] using urel64-0 x by auto

lemma urel64-power : urel64 x x ′ =⇒ urel64 y (int y ′) =⇒ urel64 (power-p64 pp
x y) (power-p p x ′ y ′)
including bit-operations-syntax proof (induct x ′ y ′ arbitrary: x y rule: power-p.induct[of
- p])

case (1 x ′ y ′ x y)
note x = 1 (2 ) note y = 1 (3 )
show ?case
proof (cases y ′ = 0 )

case True
hence y: y = 0 using urel64-eq[OF y urel64-0 ] by auto
show ?thesis unfolding y True by (simp add: power-p.simps urel64-1 )

next
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case False
hence id: (y = 0 ) = False (y ′ = 0 ) = False using urel64-eq[OF y urel64-0 ]

by auto
from y have ‹int y ′ = int-of-uint64 y› ‹int y ′ < p›

by (simp-all add: urel64-def )
obtain d ′ r ′ where dr ′: Euclidean-Rings.divmod-nat y ′ 2 = (d ′,r ′) by force
from Euclidean-Rings.divmod-nat-def [of y ′ 2 , unfolded dr ′]
have r ′: r ′ = y ′ mod 2 and d ′: d ′ = y ′ div 2 by auto
have urel64 (y AND 1 ) r ′

using ‹int y ′ < p› small
apply (simp add: urel64-def and-one-eq r ′)
apply (auto simp add: ppp and-one-eq)

apply (simp add: of-nat-mod int-of-uint64 .rep-eq modulo-uint64 .rep-eq uint-mod
‹int y ′ = int-of-uint64 y›)

done
from urel64-eq[OF this urel64-0 ]
have rem: (y AND 1 = 0 ) = (r ′ = 0 ) by simp
have div: urel64 (drop-bit 1 y) (int d ′) unfolding d ′ using y unfolding

urel64-def using small
unfolding ppp
apply transfer
apply transfer
apply (auto simp add: drop-bit-Suc take-bit-int-eq-self )
done

note IH = 1 (1 )[OF False refl dr ′[symmetric] urel64-mult[OF x x] div]
show ?thesis unfolding power-p.simps[of - - y ′] power-p64 .simps[of - - y] dr ′

id if-False rem
using IH urel64-mult[OF IH x] by (auto simp: Let-def )

qed
qed

lemma urel64-inverse: assumes x: urel64 x x ′

shows urel64 (inverse-p64 pp x) (inverse-p p x ′)
proof −

have p: urel64 (pp − 2 ) (int (nat (p − 2 ))) using p2 small unfolding urel64-def
unfolding ppp

by (simp add: int-of-uint64 .rep-eq minus-uint64 .rep-eq uint-sub-if ′)
show ?thesis
unfolding inverse-p64-def inverse-p-def urel64-eq[OF x urel64-0 ] using urel64-0

urel64-power [OF x p]
by auto

qed

lemma mod-ring-0-64 : mod-ring-rel64 0 0
using urel64-0 mod-ring-0 unfolding mod-ring-rel64-def by blast

lemma mod-ring-1-64 : mod-ring-rel64 1 1
using urel64-1 mod-ring-1 unfolding mod-ring-rel64-def by blast
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lemma mod-ring-uminus64 : (mod-ring-rel64 ===> mod-ring-rel64 ) (uminus-p64
pp) uminus

using urel64-uminus mod-ring-uminus unfolding mod-ring-rel64-def rel-fun-def
by blast

lemma mod-ring-plus64 : (mod-ring-rel64 ===> mod-ring-rel64 ===> mod-ring-rel64 )
(plus-p64 pp) (+)

using urel64-plus mod-ring-plus unfolding mod-ring-rel64-def rel-fun-def by
blast

lemma mod-ring-minus64 : (mod-ring-rel64 ===> mod-ring-rel64 ===> mod-ring-rel64 )
(minus-p64 pp) (−)

using urel64-minus mod-ring-minus unfolding mod-ring-rel64-def rel-fun-def by
blast

lemma mod-ring-mult64 : (mod-ring-rel64 ===> mod-ring-rel64 ===> mod-ring-rel64 )
(mult-p64 pp) ((∗))

using urel64-mult mod-ring-mult unfolding mod-ring-rel64-def rel-fun-def by
blast

lemma mod-ring-eq64 : (mod-ring-rel64 ===> mod-ring-rel64 ===> (=)) (=)
(=)

using urel64-eq mod-ring-eq unfolding mod-ring-rel64-def rel-fun-def by blast

lemma urel64-inj: urel64 x y =⇒ urel64 x z =⇒ y = z
using urel64-eq[of x y x z] by auto

lemma urel64-inj ′: urel64 x z =⇒ urel64 y z =⇒ x = y
using urel64-eq[of x z y z] by auto

lemma bi-unique-mod-ring-rel64 :
bi-unique mod-ring-rel64 left-unique mod-ring-rel64 right-unique mod-ring-rel64
using bi-unique-mod-ring-rel urel64-inj ′
unfolding mod-ring-rel64-def bi-unique-def left-unique-def right-unique-def
by (auto simp: urel64-def )

lemma right-total-mod-ring-rel64 : right-total mod-ring-rel64
unfolding mod-ring-rel64-def right-total-def

proof
fix y :: ′a mod-ring
from right-total-mod-ring-rel[unfolded right-total-def , rule-format, of y]
obtain z where zy: mod-ring-rel z y by auto
hence zp: 0 ≤ z z < p unfolding mod-ring-rel-def p using range-to-int-mod-ring[where

′a = ′a] by auto
hence urel64 (uint64-of-int z) z unfolding urel64-def using small unfolding

ppp
by (auto simp: int-of-uint64-inv)

with zy show ∃ x z. urel64 x z ∧ mod-ring-rel z y by blast
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qed

lemma Domainp-mod-ring-rel64 : Domainp mod-ring-rel64 = (λx. 0 ≤ x ∧ x <
pp)
proof

fix x
show Domainp mod-ring-rel64 x = (0 ≤ x ∧ x < pp)

unfolding Domainp.simps
unfolding mod-ring-rel64-def

proof
let ?i = int-of-uint64
assume ∗: 0 ≤ x ∧ x < pp
hence 0 ≤ ?i x ∧ ?i x < p using small unfolding ppp

by (transfer , auto simp: word-less-def )
hence ?i x ∈ {0 ..< p} by auto
with Domainp-mod-ring-rel
have Domainp mod-ring-rel (?i x) by auto
from this[unfolded Domainp.simps]
obtain b where b: mod-ring-rel (?i x) b by auto
show ∃ a b. x = a ∧ (∃ z. urel64 a z ∧ mod-ring-rel z b)
proof (intro exI , rule conjI [OF refl], rule exI , rule conjI [OF - b])

show urel64 x (?i x) unfolding urel64-def using small ∗ unfolding ppp
by (transfer , auto simp: word-less-def )

qed
next

assume ∃ a b. x = a ∧ (∃ z. urel64 a z ∧ mod-ring-rel z b)
then obtain b z where xz: urel64 x z and zb: mod-ring-rel z b by auto
hence Domainp mod-ring-rel z by auto
with Domainp-mod-ring-rel have 0 ≤ z z < p by auto
with xz show 0 ≤ x ∧ x < pp unfolding urel64-def using small unfolding

ppp
by (transfer , auto simp: word-less-def )

qed
qed

lemma ring-finite-field-ops64 : ring-ops (finite-field-ops64 pp) mod-ring-rel64
by (unfold-locales, auto simp:
finite-field-ops64-def
bi-unique-mod-ring-rel64
right-total-mod-ring-rel64
mod-ring-plus64
mod-ring-minus64
mod-ring-uminus64
mod-ring-mult64
mod-ring-eq64
mod-ring-0-64
mod-ring-1-64
Domainp-mod-ring-rel64 )

end
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end

context prime-field
begin
context fixes pp :: uint64

assumes ∗: p = int-of-uint64 pp p ≤ 4294967295
begin

lemma mod-ring-normalize64 : (mod-ring-rel64 ===> mod-ring-rel64 ) (λx. if x
= 0 then 0 else 1 ) normalize
using urel64-normalize[OF ∗] mod-ring-normalize unfolding mod-ring-rel64-def [OF
∗] rel-fun-def by blast

lemma mod-ring-mod64 : (mod-ring-rel64 ===> mod-ring-rel64 ===> mod-ring-rel64 )
(λx y. if y = 0 then x else 0 ) (mod)

using urel64-mod[OF ∗] mod-ring-mod unfolding mod-ring-rel64-def [OF ∗]
rel-fun-def by blast

lemma mod-ring-unit-factor64 : (mod-ring-rel64 ===> mod-ring-rel64 ) (λx. x)
unit-factor

using mod-ring-unit-factor unfolding mod-ring-rel64-def [OF ∗] rel-fun-def by
blast

lemma mod-ring-inverse64 : (mod-ring-rel64 ===> mod-ring-rel64 ) (inverse-p64
pp) inverse

using urel64-inverse[OF ∗] mod-ring-inverse unfolding mod-ring-rel64-def [OF
∗] rel-fun-def by blast

lemma mod-ring-divide64 : (mod-ring-rel64 ===> mod-ring-rel64 ===> mod-ring-rel64 )
(divide-p64 pp) (/)

using mod-ring-inverse64 mod-ring-mult64 [OF ∗]
unfolding divide-p64-def divide-mod-ring-def inverse-mod-ring-def [symmetric]

rel-fun-def by blast

lemma finite-field-ops64 : field-ops (finite-field-ops64 pp) mod-ring-rel64
by (unfold-locales, insert ring-finite-field-ops64 [OF ∗], auto simp:
ring-ops-def
finite-field-ops64-def
mod-ring-divide64
mod-ring-inverse64
mod-ring-mod64
mod-ring-normalize64 )

end
end

context
fixes p :: integer

begin
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definition plus-p-integer :: integer ⇒ integer ⇒ integer where
plus-p-integer x y ≡ let z = x + y in if z ≥ p then z − p else z

definition minus-p-integer :: integer ⇒ integer ⇒ integer where
minus-p-integer x y ≡ if y ≤ x then x − y else (x + p) − y

definition uminus-p-integer :: integer ⇒ integer where
uminus-p-integer x = (if x = 0 then 0 else p − x)

definition mult-p-integer :: integer ⇒ integer ⇒ integer where
mult-p-integer x y = (x ∗ y mod p)

context
includes bit-operations-syntax

begin

function power-p-integer :: integer ⇒ integer ⇒ integer where
power-p-integer x n = (if n ≤ 0 then 1 else

let rec = power-p-integer (mult-p-integer x x) (drop-bit 1 n) in
if n AND 1 = 0 then rec else mult-p-integer rec x)

by pat-completeness auto

termination
proof −

include integer .lifting
have ∗: ‹nat-of-integer (n div 2 ) < nat-of-integer n› if ‹0 < n› for n

using that by transfer simp
show ?thesis

by (relation ‹measure (nat-of-integer ◦ snd)›)
(simp-all add: not-le drop-bit-Suc ∗)

qed

end

In experiments with Berlekamp-factorization (where the prime p is usu-
ally small), it turned out that taking the below implementation of inverse
via exponentiation is faster than the one based on the extended Euclidean
algorithm.
definition inverse-p-integer :: integer ⇒ integer where

inverse-p-integer x = (if x = 0 then 0 else power-p-integer x (p − 2 ))

definition divide-p-integer :: integer ⇒ integer ⇒ integer where
divide-p-integer x y = mult-p-integer x (inverse-p-integer y)

definition finite-field-ops-integer :: integer arith-ops-record where
finite-field-ops-integer ≡ Arith-Ops-Record

0
1
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plus-p-integer
mult-p-integer
minus-p-integer
uminus-p-integer
divide-p-integer
inverse-p-integer
(λ x y . if y = 0 then x else 0 )
(λ x . if x = 0 then 0 else 1 )
(λ x . x)
integer-of-int
int-of-integer
(λ x. 0 ≤ x ∧ x < p)

end

For soundness of the integer implementation, we mainly prove that this
implementation implements the int-based implementation of GF(p).
context mod-ring-locale
begin

context fixes pp :: integer
assumes ppp: p = int-of-integer pp

begin

lemma integer-simps:
‹int-of-integer 0 = 0 ›
‹int-of-integer (x + y) = int-of-integer x + int-of-integer y›
‹int-of-integer (x − y) = int-of-integer x − int-of-integer y›
‹int-of-integer (x ∗ y) = int-of-integer x ∗ int-of-integer y›
by simp-all

definition urel-integer :: integer ⇒ int ⇒ bool where urel-integer x y = (y =
int-of-integer x ∧ y ≥ 0 ∧ y < p)

definition mod-ring-rel-integer :: integer ⇒ ′a mod-ring ⇒ bool where
mod-ring-rel-integer x y = (∃ z. urel-integer x z ∧ mod-ring-rel z y)

lemma urel-integer-0 : urel-integer 0 0 unfolding urel-integer-def using p2 by
simp

lemma urel-integer-1 : urel-integer 1 1 unfolding urel-integer-def using p2 by
simp

lemma le-int-of-integer : (x ≤ y) = (int-of-integer x ≤ int-of-integer y)
by (rule less-eq-integer .rep-eq)

lemma urel-integer-plus: assumes urel-integer x y urel-integer x ′ y ′

shows urel-integer (plus-p-integer pp x x ′) (plus-p p y y ′)
proof −

let ?x = int-of-integer x
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let ?x ′ = int-of-integer x ′

let ?p = int-of-integer pp
from assms have id: y = ?x y ′ = ?x ′

and rel: 0 ≤ ?x ?x < p
0 ≤ ?x ′ ?x ′ ≤ p unfolding urel-integer-def by auto

have le: (pp ≤ x + x ′) = (?p ≤ ?x + ?x ′) unfolding le-int-of-integer
using rel by auto

show ?thesis
proof (cases ?p ≤ ?x + ?x ′)

case True
hence True: (?p ≤ ?x + ?x ′) = True by simp
show ?thesis unfolding id

using rel unfolding plus-p-integer-def plus-p-def Let-def urel-integer-def
unfolding ppp le True if-True
using True by auto

next
case False
hence False: (?p ≤ ?x + ?x ′) = False by simp
show ?thesis unfolding id

using rel unfolding plus-p-integer-def plus-p-def Let-def urel-integer-def
unfolding ppp le False if-False
using False by auto

qed
qed

lemma urel-integer-minus: assumes urel-integer x y urel-integer x ′ y ′

shows urel-integer (minus-p-integer pp x x ′) (minus-p p y y ′)
proof −

let ?x = int-of-integer x
let ?x ′ = int-of-integer x ′

from assms have id: y = ?x y ′ = ?x ′

and rel: 0 ≤ ?x ?x < p
0 ≤ ?x ′ ?x ′ ≤ p unfolding urel-integer-def by auto

have le: (x ′ ≤ x) = (?x ′ ≤ ?x) unfolding le-int-of-integer
using rel by auto

show ?thesis
proof (cases ?x ′ ≤ ?x)

case True
hence True: (?x ′ ≤ ?x) = True by simp
show ?thesis unfolding id

using rel unfolding minus-p-integer-def minus-p-def Let-def urel-integer-def
unfolding ppp le True if-True
using True by auto

next
case False
hence False: (?x ′ ≤ ?x) = False by simp
show ?thesis unfolding id

using rel unfolding minus-p-integer-def minus-p-def Let-def urel-integer-def
unfolding ppp le False if-False
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using False by auto
qed

qed

lemma urel-integer-uminus: assumes urel-integer x y
shows urel-integer (uminus-p-integer pp x) (uminus-p p y)

proof −
include integer .lifting
let ?x = int-of-integer x
from assms have id: y = ?x

and rel: 0 ≤ ?x ?x < p
unfolding urel-integer-def by auto

have le: (x = 0 ) = (?x = 0 )
by transfer rule

show ?thesis
proof (cases ?x = 0 )

case True
hence True: (?x = 0 ) = True by simp
show ?thesis unfolding id
using rel unfolding uminus-p-integer-def uminus-p-def Let-def urel-integer-def

unfolding ppp le True if-True
using True by auto

next
case False
hence False: (?x = 0 ) = False by simp
show ?thesis unfolding id
using rel unfolding uminus-p-integer-def uminus-p-def Let-def urel-integer-def

unfolding ppp le False if-False
using False by auto

qed
qed

lemma pp-pos: int-of-integer pp > 0
using ppp nontriv[where ′a = ′a] unfolding p
by (simp add: less-integer .rep-eq)

lemma urel-integer-mult: assumes urel-integer x y urel-integer x ′ y ′

shows urel-integer (mult-p-integer pp x x ′) (mult-p p y y ′)
proof −

let ?x = int-of-integer x
let ?x ′ = int-of-integer x ′

from assms have id: y = ?x y ′ = ?x ′

and rel: 0 ≤ ?x ?x < p
0 ≤ ?x ′ ?x ′ < p unfolding urel-integer-def by auto

from rel(1 ,3 ) have xx: 0 ≤ ?x ∗ ?x ′ by simp
show ?thesis unfolding id

using rel unfolding mult-p-integer-def mult-p-def Let-def urel-integer-def
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unfolding ppp mod-nonneg-pos-int[OF xx pp-pos] using xx pp-pos by simp

qed

lemma urel-integer-eq: assumes urel-integer x y urel-integer x ′ y ′

shows (x = x ′) = (y = y ′)
proof −

let ?x = int-of-integer x
let ?x ′ = int-of-integer x ′

from assms have id: y = ?x y ′ = ?x ′

unfolding urel-integer-def by auto
show ?thesis unfolding id integer-eq-iff ..

qed

lemma urel-integer-normalize:
assumes x: urel-integer x y
shows urel-integer (if x = 0 then 0 else 1 ) (if y = 0 then 0 else 1 )
unfolding urel-integer-eq[OF x urel-integer-0 ] using urel-integer-0 urel-integer-1

by auto

lemma urel-integer-mod:
assumes x: urel-integer x x ′ and y: urel-integer y y ′

shows urel-integer (if y = 0 then x else 0 ) (if y ′ = 0 then x ′ else 0 )
unfolding urel-integer-eq[OF y urel-integer-0 ] using urel-integer-0 x by auto

lemma urel-integer-power : urel-integer x x ′=⇒ urel-integer y (int y ′) =⇒ urel-integer
(power-p-integer pp x y) (power-p p x ′ y ′)
including bit-operations-syntax proof (induct x ′ y ′ arbitrary: x y rule: power-p.induct[of
- p])

case (1 x ′ y ′ x y)
note x = 1 (2 ) note y = 1 (3 )
show ?case
proof (cases y ′ ≤ 0 )

case True
hence y: y = 0 y ′ = 0 using urel-integer-eq[OF y urel-integer-0 ] by auto
show ?thesis unfolding y True by (simp add: power-p.simps urel-integer-1 )

next
case False
hence id: (y ≤ 0 ) = False (y ′ = 0 ) = False using False y
by (auto simp add: urel-integer-def not-le) (metis of-int-integer-of of-int-of-nat-eq

of-nat-0-less-iff )
obtain d ′ r ′ where dr ′: Euclidean-Rings.divmod-nat y ′ 2 = (d ′,r ′) by force
from Euclidean-Rings.divmod-nat-def [of y ′ 2 , unfolded dr ′]
have r ′: r ′ = y ′ mod 2 and d ′: d ′ = y ′ div 2 by auto
have aux:

∧
y ′. int (y ′ mod 2 ) = int y ′ mod 2 by presburger

have urel-integer (y AND 1 ) r ′ unfolding r ′ using y unfolding urel-integer-def

unfolding ppp
apply (auto simp add: and-one-eq)
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apply (simp add: of-nat-mod)
done

from urel-integer-eq[OF this urel-integer-0 ]
have rem: (y AND 1 = 0 ) = (r ′ = 0 ) by simp
have div: urel-integer (drop-bit 1 y) (int d ′)

unfolding d ′ using y unfolding urel-integer-def
unfolding ppp by (auto simp add: of-nat-div drop-bit-Suc)

from id have y ′ 6= 0 by auto
note IH = 1 (1 )[OF this refl dr ′[symmetric] urel-integer-mult[OF x x] div]
show ?thesis unfolding power-p.simps[of - - y ′] power-p-integer .simps[of - - y]

dr ′ id if-False rem
using IH urel-integer-mult[OF IH x] by (auto simp: Let-def )

qed
qed

lemma urel-integer-inverse: assumes x: urel-integer x x ′

shows urel-integer (inverse-p-integer pp x) (inverse-p p x ′)
proof −
have p: urel-integer (pp − 2 ) (int (nat (p − 2 ))) using p2 unfolding urel-integer-def

unfolding ppp
by auto

show ?thesis
unfolding inverse-p-integer-def inverse-p-def urel-integer-eq[OF x urel-integer-0 ]

using urel-integer-0 urel-integer-power [OF x p]
by auto

qed

lemma mod-ring-0--integer : mod-ring-rel-integer 0 0
using urel-integer-0 mod-ring-0 unfolding mod-ring-rel-integer-def by blast

lemma mod-ring-1--integer : mod-ring-rel-integer 1 1
using urel-integer-1 mod-ring-1 unfolding mod-ring-rel-integer-def by blast

lemma mod-ring-uminus-integer : (mod-ring-rel-integer ===> mod-ring-rel-integer)
(uminus-p-integer pp) uminus

using urel-integer-uminus mod-ring-uminus unfolding mod-ring-rel-integer-def
rel-fun-def by blast

lemma mod-ring-plus-integer : (mod-ring-rel-integer ===> mod-ring-rel-integer
===> mod-ring-rel-integer) (plus-p-integer pp) (+)
using urel-integer-plus mod-ring-plus unfolding mod-ring-rel-integer-def rel-fun-def

by blast

lemma mod-ring-minus-integer : (mod-ring-rel-integer ===> mod-ring-rel-integer
===> mod-ring-rel-integer) (minus-p-integer pp) (−)
using urel-integer-minus mod-ring-minus unfolding mod-ring-rel-integer-def rel-fun-def

by blast
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lemma mod-ring-mult-integer : (mod-ring-rel-integer ===> mod-ring-rel-integer
===> mod-ring-rel-integer) (mult-p-integer pp) ((∗))
using urel-integer-mult mod-ring-mult unfolding mod-ring-rel-integer-def rel-fun-def

by blast

lemma mod-ring-eq-integer : (mod-ring-rel-integer ===> mod-ring-rel-integer ===>
(=)) (=) (=)

using urel-integer-eq mod-ring-eq unfolding mod-ring-rel-integer-def rel-fun-def
by blast

lemma urel-integer-inj: urel-integer x y =⇒ urel-integer x z =⇒ y = z
using urel-integer-eq[of x y x z] by auto

lemma urel-integer-inj ′: urel-integer x z =⇒ urel-integer y z =⇒ x = y
using urel-integer-eq[of x z y z] by auto

lemma bi-unique-mod-ring-rel-integer :
bi-unique mod-ring-rel-integer left-unique mod-ring-rel-integer right-unique mod-ring-rel-integer
using bi-unique-mod-ring-rel urel-integer-inj ′
unfolding mod-ring-rel-integer-def bi-unique-def left-unique-def right-unique-def
by (auto simp: urel-integer-def )

lemma right-total-mod-ring-rel-integer : right-total mod-ring-rel-integer
unfolding mod-ring-rel-integer-def right-total-def

proof
fix y :: ′a mod-ring
from right-total-mod-ring-rel[unfolded right-total-def , rule-format, of y]
obtain z where zy: mod-ring-rel z y by auto
hence zp: 0 ≤ z z < p unfolding mod-ring-rel-def p using range-to-int-mod-ring[where

′a = ′a] by auto
hence urel-integer (integer-of-int z) z unfolding urel-integer-def unfolding ppp

by auto
with zy show ∃ x z. urel-integer x z ∧ mod-ring-rel z y by blast

qed

lemma Domainp-mod-ring-rel-integer : Domainp mod-ring-rel-integer = (λx. 0 ≤
x ∧ x < pp)
proof

fix x
show Domainp mod-ring-rel-integer x = (0 ≤ x ∧ x < pp)

unfolding Domainp.simps
unfolding mod-ring-rel-integer-def

proof
let ?i = int-of-integer
assume ∗: 0 ≤ x ∧ x < pp
hence 0 ≤ ?i x ∧ ?i x < p unfolding ppp

by (simp add: le-int-of-integer less-integer .rep-eq)
hence ?i x ∈ {0 ..< p} by auto
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with Domainp-mod-ring-rel
have Domainp mod-ring-rel (?i x) by auto
from this[unfolded Domainp.simps]
obtain b where b: mod-ring-rel (?i x) b by auto
show ∃ a b. x = a ∧ (∃ z. urel-integer a z ∧ mod-ring-rel z b)
proof (intro exI , rule conjI [OF refl], rule exI , rule conjI [OF - b])
show urel-integer x (?i x) unfolding urel-integer-def using ∗ unfolding ppp

by (simp add: le-int-of-integer less-integer .rep-eq)
qed

next
assume ∃ a b. x = a ∧ (∃ z. urel-integer a z ∧ mod-ring-rel z b)
then obtain b z where xz: urel-integer x z and zb: mod-ring-rel z b by auto
hence Domainp mod-ring-rel z by auto
with Domainp-mod-ring-rel have 0 ≤ z z < p by auto
with xz show 0 ≤ x ∧ x < pp unfolding urel-integer-def unfolding ppp

by (simp add: le-int-of-integer less-integer .rep-eq)
qed

qed

lemma ring-finite-field-ops-integer : ring-ops (finite-field-ops-integer pp) mod-ring-rel-integer
by (unfold-locales, auto simp:
finite-field-ops-integer-def
bi-unique-mod-ring-rel-integer
right-total-mod-ring-rel-integer
mod-ring-plus-integer
mod-ring-minus-integer
mod-ring-uminus-integer
mod-ring-mult-integer
mod-ring-eq-integer
mod-ring-0--integer
mod-ring-1--integer
Domainp-mod-ring-rel-integer)

end
end

context prime-field
begin
context fixes pp :: integer

assumes ∗: p = int-of-integer pp
begin

lemma mod-ring-normalize-integer : (mod-ring-rel-integer ===> mod-ring-rel-integer)
(λx. if x = 0 then 0 else 1 ) normalize
using urel-integer-normalize[OF ∗] mod-ring-normalize unfolding mod-ring-rel-integer-def [OF
∗] rel-fun-def by blast

lemma mod-ring-mod-integer : (mod-ring-rel-integer ===> mod-ring-rel-integer
===> mod-ring-rel-integer) (λx y. if y = 0 then x else 0 ) (mod)
using urel-integer-mod[OF ∗] mod-ring-mod unfolding mod-ring-rel-integer-def [OF
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∗] rel-fun-def by blast

lemma mod-ring-unit-factor-integer : (mod-ring-rel-integer ===> mod-ring-rel-integer)
(λx. x) unit-factor

using mod-ring-unit-factor unfolding mod-ring-rel-integer-def [OF ∗] rel-fun-def
by blast

lemma mod-ring-inverse-integer : (mod-ring-rel-integer ===> mod-ring-rel-integer)
(inverse-p-integer pp) inverse
using urel-integer-inverse[OF ∗] mod-ring-inverse unfolding mod-ring-rel-integer-def [OF
∗] rel-fun-def by blast

lemma mod-ring-divide-integer : (mod-ring-rel-integer ===> mod-ring-rel-integer
===> mod-ring-rel-integer) (divide-p-integer pp) (/)

using mod-ring-inverse-integer mod-ring-mult-integer [OF ∗]
unfolding divide-p-integer-def divide-mod-ring-def inverse-mod-ring-def [symmetric]

rel-fun-def by blast

lemma finite-field-ops-integer : field-ops (finite-field-ops-integer pp) mod-ring-rel-integer
by (unfold-locales, insert ring-finite-field-ops-integer [OF ∗], auto simp:
ring-ops-def
finite-field-ops-integer-def
mod-ring-divide-integer
mod-ring-inverse-integer
mod-ring-mod-integer
mod-ring-normalize-integer)

end
end

context prime-field
begin

thm
finite-field-ops64
finite-field-ops32
finite-field-ops-integer
finite-field-ops-int

end

context mod-ring-locale
begin

thm
ring-finite-field-ops64
ring-finite-field-ops32
ring-finite-field-ops-integer
ring-finite-field-ops-int

end
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end

3.2 Matrix Operations in Fields
We use our record based description of a field to perform matrix operations.
theory Matrix-Record-Based
imports

Jordan-Normal-Form.Gauss-Jordan-Elimination
Jordan-Normal-Form.Gauss-Jordan-IArray-Impl
Arithmetic-Record-Based

begin

definition mat-rel :: ( ′a ⇒ ′b ⇒ bool) ⇒ ′a mat ⇒ ′b mat ⇒ bool where
mat-rel R A B ≡ dim-row A = dim-row B ∧ dim-col A = dim-col B ∧

(∀ i j. i < dim-row B −→ j < dim-col B −→ R (A $$ (i,j)) (B $$ (i,j)))

lemma right-total-mat-rel: right-total R =⇒ right-total (mat-rel R)
unfolding right-total-def

proof
fix B
assume ∀ y. ∃ x. R x y
from choice[OF this] obtain f where f :

∧
x. R (f x) x by auto

show ∃ A. mat-rel R A B
by (rule exI [of - map-mat f B], unfold mat-rel-def , auto simp: f )

qed

lemma left-unique-mat-rel: left-unique R =⇒ left-unique (mat-rel R)
unfolding left-unique-def mat-rel-def mat-eq-iff by (auto, blast)

lemma right-unique-mat-rel: right-unique R =⇒ right-unique (mat-rel R)
unfolding right-unique-def mat-rel-def mat-eq-iff by (auto, blast)

lemma bi-unique-mat-rel: bi-unique R =⇒ bi-unique (mat-rel R)
using left-unique-mat-rel[of R] right-unique-mat-rel[of R]
unfolding bi-unique-def left-unique-def right-unique-def by blast

lemma mat-rel-eq: ((R ===> R ===> (=))) (=) (=) =⇒
((mat-rel R ===> mat-rel R ===> (=))) (=) (=)
unfolding mat-rel-def rel-fun-def mat-eq-iff by (auto, blast+)

definition vec-rel :: ( ′a ⇒ ′b ⇒ bool) ⇒ ′a vec ⇒ ′b vec ⇒ bool where
vec-rel R A B ≡ dim-vec A = dim-vec B ∧ (∀ i. i < dim-vec B −→ R (A $ i)

(B $ i))

lemma right-total-vec-rel: right-total R =⇒ right-total (vec-rel R)
unfolding right-total-def

proof
fix B
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assume ∀ y. ∃ x. R x y
from choice[OF this] obtain f where f :

∧
x. R (f x) x by auto

show ∃ A. vec-rel R A B
by (rule exI [of - map-vec f B], unfold vec-rel-def , auto simp: f )

qed

lemma left-unique-vec-rel: left-unique R =⇒ left-unique (vec-rel R)
unfolding left-unique-def vec-rel-def vec-eq-iff by auto

lemma right-unique-vec-rel: right-unique R =⇒ right-unique (vec-rel R)
unfolding right-unique-def vec-rel-def vec-eq-iff by auto

lemma bi-unique-vec-rel: bi-unique R =⇒ bi-unique (vec-rel R)
using left-unique-vec-rel[of R] right-unique-vec-rel[of R]
unfolding bi-unique-def left-unique-def right-unique-def by blast

lemma vec-rel-eq: ((R ===> R ===> (=))) (=) (=) =⇒
((vec-rel R ===> vec-rel R ===> (=))) (=) (=)
unfolding vec-rel-def rel-fun-def vec-eq-iff by (auto, blast+)

lemma multrow-transfer [transfer-rule]: ((R ===> R ===> R) ===> (=) ===>
R
===> mat-rel R ===> mat-rel R) mat-multrow-gen mat-multrow-gen
unfolding mat-rel-def [abs-def ] mat-multrow-gen-def [abs-def ]
by (intro rel-funI conjI allI impI eq-matI , auto simp: rel-fun-def )

lemma swap-rows-transfer : mat-rel R A B =⇒ i < dim-row B =⇒ j < dim-row
B =⇒

mat-rel R (mat-swaprows i j A) (mat-swaprows i j B)
unfolding mat-rel-def mat-swaprows-def
by (intro rel-funI conjI allI impI eq-matI , auto)

lemma pivot-positions-gen-transfer : assumes [transfer-rule]: (R ===> R ===>
(=)) (=) (=)

shows
(R ===> mat-rel R ===> (=)) pivot-positions-gen pivot-positions-gen

proof (intro rel-funI , goal-cases)
case (1 ze ze ′ A A ′)
note trans[transfer-rule] = 1
from 1 have dim: dim-row A = dim-row A ′ dim-col A = dim-col A ′ unfolding

mat-rel-def by auto
obtain i j where id: i = 0 j = 0 and ij: i ≤ dim-row A ′ j ≤ dim-col A ′ by

auto
have pivot-positions-main-gen ze A (dim-row A) (dim-col A) i j =

pivot-positions-main-gen ze ′ A ′ (dim-row A ′) (dim-col A ′) i j
using ij

proof (induct i j rule: pivot-positions-main-gen.induct[of dim-row A ′ dim-col A ′

A ′ ze ′])
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case (1 i j)
note simps[simp] = pivot-positions-main-gen.simps[of - - - - i j]
show ?case
proof (cases i < dim-row A ′ ∧ j < dim-col A ′)

case False
with dim show ?thesis by auto

next
case True
hence ij: i < dim-row A ′ j < dim-col A ′ and j: Suc j ≤ dim-col A ′ by auto
note IH = 1 (1−2 )[OF ij - - j]
from ij True trans have [transfer-rule]:R (A $$ (i,j)) (A ′ $$ (i,j))

unfolding mat-rel-def by auto
have eq: (A $$ (i,j) = ze) = (A ′ $$ (i,j) = ze ′) by transfer-prover
show ?thesis
proof (cases A ′ $$ (i,j) = ze ′)

case True
from ij have i ≤ dim-row A ′ by auto
note IH = IH (1 )[OF True this]
thus ?thesis using True ij dim eq by simp

next
case False
from ij have Suc i ≤ dim-row A ′ by auto
note IH = IH (2 )[OF False this]
thus ?thesis using False ij dim eq by simp

qed
qed

qed
thus pivot-positions-gen ze A = pivot-positions-gen ze ′ A ′

unfolding pivot-positions-gen-def id .
qed

lemma set-pivot-positions-main-gen:
set (pivot-positions-main-gen ze A nr nc i j) ⊆ {0 ..< nr} × {0 ..< nc}

proof (induct i j rule: pivot-positions-main-gen.induct[of nr nc A ze])
case (1 i j)
note [simp] = pivot-positions-main-gen.simps[of - - - - i j]
from 1 show ?case

by (cases i < nr ∧ j < nc, auto)
qed

lemma find-base-vectors-transfer : assumes [transfer-rule]: (R ===> R ===>
(=)) (=) (=)

shows ((R ===> R) ===> R ===> R ===> mat-rel R
===> list-all2 (vec-rel R)) find-base-vectors-gen find-base-vectors-gen

proof (intro rel-funI , goal-cases)
case (1 um um ′ ze ze ′ on on ′ A A ′)
note trans[transfer-rule] = 1 pivot-positions-gen-transfer [OF assms]
from 1 (4 ) have dim: dim-row A = dim-row A ′ dim-col A = dim-col A ′ unfolding

mat-rel-def by auto
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have id: pivot-positions-gen ze A = pivot-positions-gen ze ′ A ′ by transfer-prover
obtain xs where xs: map snd (pivot-positions-gen ze ′ A ′) = xs by auto
obtain ys where ys: [j←[0 ..<dim-col A ′] . j /∈ set xs] = ys by auto
show list-all2 (vec-rel R) (find-base-vectors-gen um ze on A)
(find-base-vectors-gen um ′ ze ′ on ′ A ′)

unfolding find-base-vectors-gen-def Let-def id xs list-all2-conv-all-nth length-map
ys dim

proof (intro conjI [OF refl] allI impI )
fix i
assume i: i < length ys
define y where y = ys ! i
from i have y: y < dim-col A ′ unfolding y-def ys[symmetric] using nth-mem

by fastforce
let ?map = map-of (map prod.swap (pivot-positions-gen ze ′ A ′))
{

fix i
assume i: i < dim-col A ′

and neq: i 6= y
have R (case ?map i of None ⇒ ze | Some j ⇒ um (A $$ (j, y)))

(case ?map i of None ⇒ ze ′ | Some j ⇒ um ′ (A ′ $$ (j, y)))
proof (cases ?map i)

case None
with trans(2 ) show ?thesis by auto

next
case (Some j)
from map-of-SomeD[OF this] have (j,i) ∈ set (pivot-positions-gen ze ′ A ′)

by auto
from subsetD[OF set-pivot-positions-main-gen this[unfolded pivot-positions-gen-def ]]

have j: j < dim-row A ′ by auto
with trans(4 ) y have [transfer-rule]: R (A $$ (j,y)) (A ′ $$ (j,y)) unfolding

mat-rel-def by auto
show ?thesis unfolding Some by (simp, transfer-prover)

qed
} note main = this
show vec-rel R (map (non-pivot-base-gen um ze on A (pivot-positions-gen ze ′

A ′)) ys ! i)
(map (non-pivot-base-gen um ′ ze ′ on ′ A ′ (pivot-positions-gen ze ′ A ′)) ys !

i)
unfolding y-def [symmetric] nth-map[OF i]
unfolding non-pivot-base-gen-def Let-def dim vec-rel-def
by (intro conjI allI impI , force, insert main, auto simp: trans(3 ))

qed
qed

lemma eliminate-entries-gen-transfer : assumes ∗[transfer-rule]: (R ===> R ===>
R) ad ad ′

(R ===> R ===> R) mul mul ′
and vs:

∧
j. j < dim-row B ′ =⇒ R (vs j) (vs ′ j)
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and i: i < dim-row B ′

and B: mat-rel R B B ′

shows mat-rel R
(eliminate-entries-gen ad mul vs B i j)
(eliminate-entries-gen ad ′ mul ′ vs ′ B ′ i j)

proof −
note BB = B[unfolded mat-rel-def ]
show ?thesis unfolding mat-rel-def dim-eliminate-entries-gen
proof (intro conjI impI allI )

fix i ′ j ′
assume ij ′: i ′ < dim-row B ′ j ′ < dim-col B ′

with BB have ij: i ′< dim-row B j ′ < dim-col B by auto
have [transfer-rule]: R (B $$ (i ′, j ′)) (B ′ $$ (i ′, j ′)) using BB ij ′ by auto
have [transfer-rule]: R (B $$ (i, j ′)) (B ′ $$ (i, j ′)) using BB ij ′ i by auto
have [transfer-rule]: R (vs i ′) (vs ′ i ′) using ij ′ vs[of i ′] by auto
show R (eliminate-entries-gen ad mul vs B i j $$ (i ′, j ′))

(eliminate-entries-gen ad ′ mul ′ vs ′ B ′ i j $$ (i ′, j ′))
unfolding eliminate-entries-gen-def index-mat(1 )[OF ij] index-mat(1 )[OF ij ′]

split
by transfer-prover

qed (insert BB, auto)
qed

context
fixes ops :: ′i arith-ops-record (structure)

begin
private abbreviation (input) zero where zero ≡ arith-ops-record.zero ops
private abbreviation (input) one where one ≡ arith-ops-record.one ops
private abbreviation (input) plus where plus ≡ arith-ops-record.plus ops
private abbreviation (input) times where times ≡ arith-ops-record.times ops
private abbreviation (input) minus where minus ≡ arith-ops-record.minus ops
private abbreviation (input) uminus where uminus ≡ arith-ops-record.uminus
ops
private abbreviation (input) divide where divide ≡ arith-ops-record.divide ops
private abbreviation (input) inverse where inverse ≡ arith-ops-record.inverse
ops
private abbreviation (input) modulo where modulo ≡ arith-ops-record.modulo
ops
private abbreviation (input) normalize where normalize ≡ arith-ops-record.normalize
ops

definition eliminate-entries-gen-zero :: ( ′a ⇒ ′a ⇒ ′a) ⇒ ( ′a ⇒ ′a ⇒ ′a) ⇒ ′a
⇒ (integer ⇒ ′a) ⇒ ′a mat ⇒ nat ⇒ nat ⇒ ′a mat where

eliminate-entries-gen-zero minu time z v A I J = mat (dim-row A) (dim-col A)
(λ (i, j).

if v (integer-of-nat i) 6= z ∧ i 6= I then minu (A $$ (i,j)) (time (v (integer-of-nat
i)) (A $$ (I ,j))) else A $$ (i,j))

definition eliminate-entries-i where eliminate-entries-i ≡ eliminate-entries-gen-zero
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minus times zero
definition multrow-i where multrow-i ≡ mat-multrow-gen times

lemma dim-eliminate-entries-gen-zero[simp]:
dim-row (eliminate-entries-gen-zero mm tt z v B i as) = dim-row B
dim-col (eliminate-entries-gen-zero mm tt z v B i as) = dim-col B
unfolding eliminate-entries-gen-zero-def by auto

partial-function (tailrec) gauss-jordan-main-i :: nat ⇒ nat ⇒ ′i mat ⇒ nat ⇒
nat ⇒ ′i mat where
[code]: gauss-jordan-main-i nr nc A i j = (

if i < nr ∧ j < nc then let aij = A $$ (i,j) in if aij = zero then
(case [ i ′ . i ′ <− [Suc i ..< nr ], A $$ (i ′,j) 6= zero]

of [] ⇒ gauss-jordan-main-i nr nc A i (Suc j)
| (i ′ # -) ⇒ gauss-jordan-main-i nr nc (swaprows i i ′ A) i j)

else if aij = one then let
v = (λ i. A $$ (nat-of-integer i,j)) in
gauss-jordan-main-i nr nc
(eliminate-entries-i v A i j) (Suc i) (Suc j)

else let iaij = inverse aij; A ′ = multrow-i i iaij A;
v = (λ i. A ′ $$ (nat-of-integer i,j))
in gauss-jordan-main-i nr nc (eliminate-entries-i v A ′ i j) (Suc i) (Suc j)

else A)

definition gauss-jordan-single-i :: ′i mat ⇒ ′i mat where
gauss-jordan-single-i A ≡ gauss-jordan-main-i (dim-row A) (dim-col A) A 0 0

definition find-base-vectors-i :: ′i mat ⇒ ′i vec list where
find-base-vectors-i A ≡ find-base-vectors-gen uminus zero one A

end

context field-ops
begin

lemma right-total-poly-rel[transfer-rule]: right-total (mat-rel R)
using right-total-mat-rel[of R] right-total .

lemma bi-unique-poly-rel[transfer-rule]: bi-unique (mat-rel R)
using bi-unique-mat-rel[of R] bi-unique .

lemma eq-mat-rel[transfer-rule]: (mat-rel R ===> mat-rel R ===> (=)) (=)
(=)

by (rule mat-rel-eq[OF eq])

lemma multrow-i[transfer-rule]: ((=) ===> R ===> mat-rel R ===> mat-rel
R)
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(multrow-i ops) multrow
using multrow-transfer [of R] times unfolding multrow-i-def rel-fun-def by blast

lemma eliminate-entries-gen-zero[simp]:
assumes mat-rel R A A ′ I < dim-row A ′ shows
eliminate-entries-gen-zero minus times zero v A I J = eliminate-entries-gen minus

times (v o integer-of-nat) A I J
unfolding eliminate-entries-gen-def eliminate-entries-gen-zero-def

proof(standard,goal-cases)
case (1 i j)
have d1 :DP (A $$ (I , j)) and d2 :DP (A $$ (i, j)) using assms DPR 1

unfolding mat-rel-def dim-col-mat dim-row-mat
by (metis Domainp.DomainI )+

have e1 :
∧

x. (0 :: ′a) ∗ x = 0 and e2 :
∧

x. x − (0 :: ′a) = x by auto
from e1 [untransferred,OF d1 ] e2 [untransferred,OF d2 ] 1 show ?case by auto

qed auto

lemma eliminate-entries-i: assumes
vs:

∧
j. j < dim-row B ′ =⇒ R (vs (integer-of-nat j)) (vs ′ j)

and i: i < dim-row B ′

and B: mat-rel R B B ′

shows mat-rel R (eliminate-entries-i ops vs B i j)
(eliminate-entries vs ′ B ′ i j)

unfolding eliminate-entries-i-def eliminate-entries-gen-zero[OF B i]
by (rule eliminate-entries-gen-transfer , insert assms, auto simp: plus times mi-

nus)

lemma gauss-jordan-main-i:
nr = dim-row A ′ =⇒ nc = dim-col A ′ =⇒ mat-rel R A A ′ =⇒ i ≤ nr =⇒ j ≤

nc =⇒
mat-rel R (gauss-jordan-main-i ops nr nc A i j) (fst (gauss-jordan-main A ′ B ′

i j))
proof −

obtain P where P: P = (A ′,i,j) by auto
let ?Rel = measures [λ (A ′ :: ′a mat,i,j). nc − j, λ (A ′,i,j). if A ′ $$ (i,j) = 0

then 1 else 0 ]
have wf : wf ?Rel by simp
show nr = dim-row A ′ =⇒ nc = dim-col A ′ =⇒ mat-rel R A A ′ =⇒ i ≤ nr =⇒

j ≤ nc =⇒
mat-rel R (gauss-jordan-main-i ops nr nc A i j) (fst (gauss-jordan-main A ′ B ′

i j))
using P

proof (induct P arbitrary: A ′ B ′ A i j rule: wf-induct[OF wf ])
case (1 P A ′ B ′ A i j)
note prems = 1 (2−6 )
note P = 1 (7 )
note A[transfer-rule] = prems(3 )
note IH = 1 (1 )[rule-format, OF - - - - - - refl]
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note simps = gauss-jordan-main-code[of A ′ B ′ i j, unfolded Let-def , folded
prems(1−2 )]

gauss-jordan-main-i.simps[of ops nr nc A i j] Let-def if-True if-False
show ?case
proof (cases i < nr ∧ j < nc)

case False
hence id: (i < nr ∧ j < nc) = False by simp
show ?thesis unfolding simps id by simp transfer-prover

next
case True note ij ′ = this
hence id: (i < nr ∧ j < nc) = True

∧
x y z. (if x = x then y else z) = y by

auto
from True prems have ij [transfer-rule]:R (A $$ (i,j)) (A ′ $$ (i,j))

unfolding mat-rel-def by auto
from True prems have i: i < dim-row A ′ j < dim-col A ′ and i ′: i < nr j <

nc by auto
{

fix i
assume i < dim-row A ′

with i True prems have R[transfer-rule]:R (A $$ (i,j)) (A ′ $$ (i,j))
unfolding mat-rel-def by auto

have (A $$ (i,j) = zero) = (A ′ $$ (i,j) = 0 ) by transfer-prover
note this R

} note eq-gen = this
have eq: (A $$ (i,j) = zero) = (A ′ $$ (i,j) = 0 )
(A $$ (i,j) = one) = (A ′ $$ (i,j) = 1 )
by transfer-prover+

show ?thesis
proof (cases A ′ $$ (i, j) = 0 )

case True
hence eq: A $$ (i,j) = zero using eq by auto
let ?is = [ i ′ . i ′ <− [Suc i ..< nr ], A $$ (i ′,j) 6= zero]
let ?is ′ = [ i ′ . i ′ <− [Suc i ..< nr ], A ′ $$ (i ′,j) 6= 0 ]
define xs where xs = [Suc i..<nr ]
have xs: set xs ⊆ {0 ..< dim-row A ′} unfolding xs-def using prems by

auto
hence id ′: ?is = ?is ′ unfolding xs-def [symmetric]

by (induct xs, insert eq-gen, auto)
show ?thesis
proof (cases ?is ′)

case Nil
have ?thesis = (mat-rel R (gauss-jordan-main-i ops nr nc A i (Suc j))
(fst (gauss-jordan-main A ′ B ′ i (Suc j))))
unfolding True simps id eq unfolding Nil id ′[unfolded Nil] by simp

also have . . .
by (rule IH , insert i prems P, auto)

finally show ?thesis .
next

case (Cons i ′ idx ′)

63



from arg-cong[OF this, of set] i
have i ′: i ′ < nr A ′ $$ (i ′, j) 6= 0 by auto

with ij ′ prems(1−2 ) have ∗: i ′ < dim-row A ′ i < dim-row A ′ j < dim-col
A ′ by auto

have rel: ((swaprows i i ′ A ′, i, j), P) ∈ ?Rel
by (simp add: P True ∗ i ′)

have ?thesis = (mat-rel R (gauss-jordan-main-i ops nr nc (swaprows i i ′
A) i j)

(fst (gauss-jordan-main (swaprows i i ′ A ′) (swaprows i i ′ B ′) i j)))
unfolding True simps id eq Cons id ′[unfolded Cons] by simp

also have . . .
by (rule IH [OF rel - - swap-rows-transfer ], insert i i ′ prems P True, auto)
finally show ?thesis .

qed
next

case False
from False eq have neq: (A $$ (i, j) = zero) = False (A ′ $$ (i, j) = 0 ) =

False by auto
{

fix B B ′ i
assume B[transfer-rule]: mat-rel R B B ′ and dim: dim-col B ′ = nc and

i: i < dim-row B ′

from dim i True have j < dim-col B ′ by simp
with B i have R (B $$ (i,j)) (B ′ $$ (i,j))

by (simp add: mat-rel-def )
} note vec-rel = this
from prems have dim: dim-row A = dim-row A ′ unfolding mat-rel-def by

auto
show ?thesis
proof (cases A ′ $$ (i, j) = 1 )

case True
from True eq have eq: (A $$ (i,j) = one) = True (A ′ $$ (i,j) = 1 ) =

True by auto
note rel = vec-rel[OF A]
show ?thesis unfolding simps id neq eq

by (rule IH [OF - - - eliminate-entries-i], insert rel prems ij i P dim,
auto)

next
case False
from False eq have eq: (A $$ (i,j) = one) = False (A ′ $$ (i,j) = 1 ) =

False by auto
show ?thesis unfolding simps id neq eq
proof (rule IH , goal-cases)

case 4
have A ′: mat-rel R (multrow-i ops i (inverse (A $$ (i, j))) A)
(multrow i (inverse-class.inverse (A ′ $$ (i, j))) A ′) by transfer-prover

note rel = vec-rel[OF A ′]
show ?case

by (rule eliminate-entries-i[OF - - A ′], insert rel prems i dim, auto)
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qed (insert prems i P, auto)
qed

qed
qed

qed
qed

lemma gauss-jordan-i[transfer-rule]:
(mat-rel R ===> mat-rel R) (gauss-jordan-single-i ops) gauss-jordan-single

proof (intro rel-funI )
fix A A ′

assume A: mat-rel R A A ′

show mat-rel R (gauss-jordan-single-i ops A) (gauss-jordan-single A ′)
unfolding gauss-jordan-single-def gauss-jordan-single-i-def gauss-jordan-def
by (rule gauss-jordan-main-i[OF - - A], insert A, auto simp: mat-rel-def )

qed

lemma find-base-vectors-i[transfer-rule]:
(mat-rel R ===> list-all2 (vec-rel R)) (find-base-vectors-i ops) find-base-vectors
unfolding find-base-vectors-i-def [abs-def ]
using find-base-vectors-transfer [OF eq] uminus zero one
unfolding rel-fun-def by blast

end

lemma list-of-vec-transfer [transfer-rule]: (vec-rel A ===> list-all2 A) list-of-vec
list-of-vec

unfolding rel-fun-def vec-rel-def vec-eq-iff list-all2-conv-all-nth
by auto

lemma IArray-sub ′[simp]: i < IArray.length a =⇒ IArray.sub ′ (a, integer-of-nat
i) = IArray.sub a i

by auto

lift-definition eliminate-entries-i2 ::
′a ⇒ ( ′a ⇒ ′a ⇒ ′a) ⇒ ( ′a ⇒ ′a ⇒ ′a) ⇒ (integer ⇒ ′a) ⇒ ′a mat-impl ⇒

integer ⇒ ′a mat-impl is
λ z mminus ttimes v (nr , nc, a) i ′.
(nr ,nc,let ai ′ = IArray.sub ′ (a, i ′) in (IArray.tabulate (integer-of-nat nr , λ i. let

ai = IArray.sub ′ (a, i) in
if i = i ′ then ai else
let vi ′j = v i
in if vi ′j = z then ai

else
IArray.tabulate (integer-of-nat nc, λ j. mminus (IArray.sub ′ (ai, j))

(ttimes vi ′j
(IArray.sub ′ (ai ′, j))))

)))
proof(goal-cases)
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case (1 z mm tt vec prod nat2 )
thus ?case by(cases prod;cases snd (snd prod);auto simp:Let-def )

qed

lemma eliminate-entries-gen-zero [simp]:
assumes i<(dim-row A) j<(dim-col A) shows
eliminate-entries-gen-zero mminus ttimes z v A I J $$ (i, j) =
(if v (integer-of-nat i) = z ∨ i = I then A $$ (i,j) else mminus (A $$ (i,j))

(ttimes (v (integer-of-nat i)) (A $$ (I ,j))))
using assms unfolding eliminate-entries-gen-zero-def by auto

lemma eliminate-entries-gen [simp]:
assumes i<(dim-row A) j<(dim-col A) shows
eliminate-entries-gen mminus ttimes v A I J $$ (i, j) =
(if i = I then A $$ (i,j) else mminus (A $$ (i,j)) (ttimes (v i) (A $$ (I ,j))))

using assms unfolding eliminate-entries-gen-def by auto

lemma dim-mat-impl [simp]:
dim-row (mat-impl x) = dim-row-impl x
dim-col (mat-impl x) = dim-col-impl x
by (cases Rep-mat-impl x;auto simp:mat-impl.rep-eq dim-row-def dim-col-def

dim-row-impl.rep-eq dim-col-impl.rep-eq)+

lemma dim-eliminate-entries-i2 [simp]:
dim-row-impl (eliminate-entries-i2 z mm tt v m i) = dim-row-impl m
dim-col-impl (eliminate-entries-i2 z mm tt v m i) = dim-col-impl m
by (transfer , auto)+

lemma tabulate-nth: i < n =⇒ IArray.tabulate (integer-of-nat n, f ) !! i = f
(integer-of-nat i)

using of-fun-nth[of i n] by auto

lemma eliminate-entries-i2 [code]:eliminate-entries-gen-zero mm tt z v (mat-impl
m) i j

= (if i < dim-row-impl m
then mat-impl (eliminate-entries-i2 z mm tt v m (integer-of-nat i))
else (Code.abort (STR ′′index out of range in eliminate-entries ′′)
(λ -. eliminate-entries-gen-zero mm tt z v (mat-impl m) i j)))

proof (cases i < dim-row-impl m)
case True
hence id: (i < dim-row-impl m) = True by simp
show ?thesis unfolding id if-True
proof (standard;goal-cases)

case (1 i j)
have dims: i < dim-row (mat-impl m) j < dim-col (mat-impl m) using 1 by

(auto simp:eliminate-entries-i2 .rep-eq)
then show ?case unfolding eliminate-entries-gen-zero[OF dims] using True
proof(transfer , goal-cases)
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case (1 i m j ia v z mm tt)
obtain nr nc M where m: m = (nr ,nc,M ) by (cases m)
note 1 = 1 [unfolded m, simplified]
have mk:

∧
f . mk-mat nr nc f (i,j) = f (i,j)∧

f . mk-mat nr nc f (ia,j) = f (ia,j)
using 1 unfolding mk-mat-def mk-vec-def by auto

note of-fun = of-fun-nth[OF 1 (2 )] of-fun-nth[OF 1 (3 )] tabulate-nth[OF 1 (2 )]
tabulate-nth[OF 1 (3 )]

let ?c1 = v (integer-of-nat i) = z
show ?case
proof (cases ?c1 ∨ i = ia)

case True
hence id: (if ?c1 ∨ i = ia then x else y) = x
(if integer-of-nat i = integer-of-nat ia then x else if ?c1 then x else y) = x

for x y
by auto

show ?thesis unfolding id m o-def Let-def split snd-conv mk of-fun by (auto
simp: 1 )

next
case False
hence id: ?c1 = False (integer-of-nat i = integer-of-nat ia) = False (False

∨ i = ia) = False
by (auto simp add: integer-of-nat-eq-of-nat)

show ?thesis unfolding m o-def Let-def split snd-conv mk of-fun id if-False
by (auto simp: 1 )

qed
qed

qed (auto simp:eliminate-entries-i2 .rep-eq)
qed auto

end
theory More-Missing-Multiset

imports
HOL−Combinatorics.Permutations
Polynomial-Factorization.Missing-Multiset

begin

lemma rel-mset-free:
assumes rel: rel-mset rel X Y and xs: mset xs = X
shows ∃ ys. mset ys = Y ∧ list-all2 rel xs ys

proof−
from rel[unfolded rel-mset-def ] obtain xs ′ ys ′

where xs ′: mset xs ′ = X and ys ′: mset ys ′ = Y and xsys ′: list-all2 rel xs ′ ys ′

by auto
from xs ′ xs have mset xs = mset xs ′ by auto
from mset-eq-permutation[OF this]
obtain f where perm: f permutes {..<length xs ′} and xs ′: permute-list f xs ′ =

xs.
then have [simp]: length xs ′ = length xs by auto
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from permute-list-nth[OF perm, unfolded xs ′] have ∗:
∧

i. i < length xs =⇒ xs
! i = xs ′ ! f i by auto

note [simp] = list-all2-lengthD[OF xsys ′,symmetric]
note [simp] = atLeast0LessThan[symmetric]
note bij = permutes-bij[OF perm]
define ys where ys ≡ map (nth ys ′ ◦ f ) [0 ..<length ys ′]
then have [simp]: length ys = length ys ′ by auto
have mset ys = mset (map (nth ys ′) (map f [0 ..<length ys ′]))
unfolding ys-def by auto

also have ... = image-mset (nth ys ′) (image-mset f (mset [0 ..<length ys ′]))
by (simp add: multiset.map-comp)

also have (mset [0 ..<length ys ′]) = mset-set {0 ..<length ys ′}
by (metis mset-sorted-list-of-multiset sorted-list-of-mset-set sorted-list-of-set-range)

also have image-mset f (...) = mset-set (f ‘ {..<length ys ′})
using subset-inj-on[OF bij-is-inj[OF bij]] by (subst image-mset-mset-set, auto)

also have ... = mset [0 ..<length ys ′] using perm by (simp add: permutes-image)
also have image-mset (nth ys ′) ... = mset ys ′ by(fold mset-map, unfold map-nth,

auto)
finally have mset ys = Y using ys ′ by auto
moreover have list-all2 rel xs ys
proof(rule list-all2-all-nthI )

fix i assume i: i < length xs
with ∗ have xs ! i = xs ′ ! f i by auto
also from i permutes-in-image[OF perm]
have rel (xs ′ ! f i) (ys ′ ! f i) by (intro list-all2-nthD[OF xsys ′], auto)
finally show rel (xs ! i) (ys ! i) unfolding ys-def using i by simp

qed simp
ultimately show ?thesis by auto

qed

lemma rel-mset-split:
assumes rel: rel-mset rel (X1+X2 ) Y
shows ∃Y1 Y2 . Y = Y1 + Y2 ∧ rel-mset rel X1 Y1 ∧ rel-mset rel X2 Y2

proof−
obtain xs1 where xs1 : mset xs1 = X1 using ex-mset by auto
obtain xs2 where xs2 : mset xs2 = X2 using ex-mset by auto
from xs1 xs2 have mset (xs1 @ xs2 ) = X1 + X2 by auto
from rel-mset-free[OF rel this] obtain ys

where ys: mset ys = Y list-all2 rel (xs1 @ xs2 ) ys by auto
then obtain ys1 ys2

where ys12 : ys = ys1 @ ys2
and xs1ys1 : list-all2 rel xs1 ys1
and xs2ys2 : list-all2 rel xs2 ys2

using list-all2-append1 by blast
from ys12 ys have Y = mset ys1 + mset ys2 by auto
moreover from xs1 xs1ys1 have rel-mset rel X1 (mset ys1 ) unfolding rel-mset-def

by auto
moreover from xs2 xs2ys2 have rel-mset rel X2 (mset ys2 ) unfolding rel-mset-def
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by auto
ultimately show ?thesis by (subst exI [of - mset ys1 ], subst exI [of - mset

ys2 ],auto)
qed

lemma rel-mset-OO:
assumes AB: rel-mset R A B and BC : rel-mset S B C
shows rel-mset (R OO S) A C

proof−
from AB obtain as bs where A-as: A = mset as and B-bs: B = mset bs and

as-bs: list-all2 R as bs
by (auto simp: rel-mset-def )

from rel-mset-free[OF BC ] B-bs obtain cs where C-cs: C = mset cs and bs-cs:
list-all2 S bs cs

by auto
from list-all2-trans[OF - as-bs bs-cs, of R OO S ] A-as C-cs
show ?thesis by (auto simp: rel-mset-def )

qed

lemma ex-mset-zip-right:
assumes length xs = length ys mset ys ′ = mset ys
shows ∃ xs ′. length ys ′ = length xs ′ ∧ mset (zip xs ′ ys ′) = mset (zip xs ys)

using assms
proof (induct xs ys arbitrary: ys ′ rule: list-induct2 )

case Nil
thus ?case

by auto
next

case (Cons x xs y ys ys ′)
obtain j where j-len: j < length ys ′ and nth-j: ys ′ ! j = y

by (metis Cons.prems in-set-conv-nth list.set-intros(1 ) mset-eq-setD)

define ysa where ysa = take j ys ′ @ drop (Suc j) ys ′

have mset ys ′ = {#y#} + mset ysa
unfolding ysa-def using j-len nth-j

by (metis Cons-nth-drop-Suc union-mset-add-mset-right add-mset-remove-trivial
add-diff-cancel-left ′

append-take-drop-id mset.simps(2 ) mset-append)
hence ms-y: mset ysa = mset ys

by (simp add: Cons.prems)
then obtain xsa where

len-a: length ysa = length xsa and ms-a: mset (zip xsa ysa) = mset (zip xs ys)
using Cons.hyps(2 ) by blast

define xs ′ where xs ′ = take j xsa @ x # drop j xsa
have ys ′: ys ′ = take j ysa @ y # drop j ysa

using ms-y j-len nth-j Cons.prems ysa-def
by (metis append-eq-append-conv append-take-drop-id diff-Suc-Suc Cons-nth-drop-Suc
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length-Cons
length-drop size-mset)

have j-len ′: j ≤ length ysa
using j-len ys ′ ysa-def

by (metis add-Suc-right append-take-drop-id length-Cons length-append less-eq-Suc-le
not-less)

have length ys ′ = length xs ′

unfolding xs ′-def using Cons.prems len-a ms-y
by (metis add-Suc-right append-take-drop-id length-Cons length-append mset-eq-length)

moreover have mset (zip xs ′ ys ′) = mset (zip (x # xs) (y # ys))
unfolding ys ′ xs ′-def
apply (rule HOL.trans[OF mset-zip-take-Cons-drop-twice])
using j-len ′ by (auto simp: len-a ms-a)

ultimately show ?case
by blast

qed

lemma list-all2-reorder-right-invariance:
assumes rel: list-all2 R xs ys and ms-y: mset ys ′ = mset ys
shows ∃ xs ′. list-all2 R xs ′ ys ′ ∧ mset xs ′ = mset xs

proof −
have len: length xs = length ys

using rel list-all2-conv-all-nth by auto
obtain xs ′ where

len ′: length xs ′ = length ys ′ and ms-xy: mset (zip xs ′ ys ′) = mset (zip xs ys)
using len ms-y by (metis ex-mset-zip-right)

have list-all2 R xs ′ ys ′

using assms(1 ) len ′ ms-xy unfolding list-all2-iff by (blast dest: mset-eq-setD)
moreover have mset xs ′ = mset xs

using len len ′ ms-xy map-fst-zip mset-map by metis
ultimately show ?thesis

by blast
qed

lemma rel-mset-via-perm: rel-mset rel (mset xs) (mset ys) ←→ (∃ zs. mset xs =
mset zs ∧ list-all2 rel zs ys)
proof (unfold rel-mset-def , intro iffI , goal-cases)

case 1
then obtain zs ws where zs: mset zs = mset xs and ws: mset ws = mset ys

and zsws: list-all2 rel zs ws by auto
note list-all2-reorder-right-invariance[OF zsws ws[symmetric], unfolded zs]
then show ?case by (auto dest: sym)

next
case 2
from this show ?case by force

qed

end
theory Unique-Factorization
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imports
Polynomial-Interpolation.Ring-Hom-Poly
Polynomial-Factorization.Polynomial-Irreducibility
HOL−Combinatorics.Permutations
HOL−Computational-Algebra.Euclidean-Algorithm
Containers.Containers-Auxiliary
More-Missing-Multiset
HOL−Algebra.Divisibility

begin

hide-const(open)
Divisibility.prime
Divisibility.irreducible

hide-fact(open)
Divisibility.irreducible-def
Divisibility.irreducibleI
Divisibility.irreducibleD
Divisibility.irreducibleE

hide-const (open) Rings.coprime

lemma irreducible-uminus [simp]:
fixes a:: ′a::idom
shows irreducible (−a) ←→ irreducible a
using irreducible-mult-unit-left[of −1 :: ′a] by auto

context comm-monoid-mult begin

definition coprime :: ′a ⇒ ′a ⇒ bool
where coprime-def ′: coprime p q ≡ ∀ r . r dvd p −→ r dvd q −→ r dvd 1

lemma coprimeI :
assumes

∧
r . r dvd p =⇒ r dvd q =⇒ r dvd 1

shows coprime p q using assms by (auto simp: coprime-def ′)

lemma coprimeE :
assumes coprime p q

and (
∧

r . r dvd p =⇒ r dvd q =⇒ r dvd 1 ) =⇒ thesis
shows thesis using assms by (auto simp: coprime-def ′)

lemma coprime-commute [ac-simps]:
coprime p q ←→ coprime q p
by (auto simp add: coprime-def ′)

lemma not-coprime-iff-common-factor :
¬ coprime p q ←→ (∃ r . r dvd p ∧ r dvd q ∧ ¬ r dvd 1 )
by (auto simp add: coprime-def ′)
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end

lemma (in algebraic-semidom) coprime-iff-coprime [simp, code]:
coprime = Rings.coprime
by (simp add: fun-eq-iff coprime-def coprime-def ′)

lemma (in comm-semiring-1 ) coprime-0 [simp]:
coprime p 0 ←→ p dvd 1 coprime 0 p ←→ p dvd 1
by (auto intro: coprimeI elim: coprimeE dest: dvd-trans)

lemma dvd-rewrites: dvd.dvd ((∗)) = (dvd) by (unfold dvd.dvd-def dvd-def , rule)

3.3 Interfacing UFD properties
hide-const (open) Divisibility.irreducible

context comm-monoid-mult-isom begin
lemma coprime-hom[simp]: coprime (hom x) y ′←→ coprime x (Hilbert-Choice.inv

hom y ′)
proof−

show ?thesis by (unfold coprime-def ′, fold ball-UNIV , subst surj[symmetric],
simp)

qed
lemma coprime-inv-hom[simp]: coprime (Hilbert-Choice.inv hom x ′) y ←→ co-

prime x ′ (hom y)
proof−

interpret inv: comm-monoid-mult-isom Hilbert-Choice.inv hom..
show ?thesis by simp

qed
end

3.3.1 Original part
lemma dvd-dvd-imp-smult:

fixes p q :: ′a :: idom poly
assumes pq: p dvd q and qp: q dvd p shows ∃ c. p = smult c q

proof (cases p = 0 )
case True then show ?thesis by auto

next
case False
from qp obtain r where r : p = q ∗ r by (elim dvdE , auto)
with False qp have r0 : r 6= 0 and q0 : q 6= 0 by auto
with divides-degree[OF pq] divides-degree[OF qp] False
have degree p = degree q by auto
with r degree-mult-eq[OF q0 r0 ] have degree r = 0 by auto
from degree-0-id[OF this] obtain c where r = [:c:] by metis
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from r [unfolded this] show ?thesis by auto
qed

lemma dvd-const:
assumes pq: (p:: ′a::semidom poly) dvd q and q0 : q 6= 0 and degq: degree q = 0
shows degree p = 0

proof−
from dvdE [OF pq] obtain r where ∗: q = p ∗ r.
with q0 have p 6= 0 r 6= 0 by auto
from degree-mult-eq[OF this] degq ∗ show degree p = 0 by auto

qed

context Rings.dvd begin
abbreviation ddvd (infix ‹ddvd› 40 ) where x ddvd y ≡ x dvd y ∧ y dvd x
lemma ddvd-sym[sym]: x ddvd y =⇒ y ddvd x by auto

end

context comm-monoid-mult begin
lemma ddvd-trans[trans]: x ddvd y =⇒ y ddvd z =⇒ x ddvd z using dvd-trans

by auto
lemma ddvd-transp: transp (ddvd) by (intro transpI , fact ddvd-trans)

end

context comm-semiring-1 begin

definition mset-factors where mset-factors F p ≡
F 6= {#} ∧ (∀ f . f ∈# F −→ irreducible f ) ∧ p = prod-mset F

lemma mset-factorsI [intro!]:
assumes

∧
f . f ∈# F =⇒ irreducible f and F 6= {#} and prod-mset F = p

shows mset-factors F p
unfolding mset-factors-def using assms by auto

lemma mset-factorsD:
assumes mset-factors F p
shows f ∈# F =⇒ irreducible f and F 6= {#} and prod-mset F = p
using assms[unfolded mset-factors-def ] by auto

lemma mset-factorsE [elim]:
assumes mset-factors F p

and (
∧

f . f ∈# F =⇒ irreducible f ) =⇒ F 6= {#} =⇒ prod-mset F = p =⇒
thesis

shows thesis
using assms[unfolded mset-factors-def ] by auto

lemma mset-factors-imp-not-is-unit:
assumes mset-factors F p
shows ¬ p dvd 1

proof(cases F)
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case empty with assms show ?thesis by auto
next

case (add f F)
with assms have ¬ f dvd 1 p = f ∗ prod-mset F by (auto intro!: irreducible-not-unit)
then show ?thesis by auto

qed

definition primitive-poly where primitive-poly f ≡ ∀ d. (∀ i. d dvd coeff f i) −→
d dvd 1

end

lemma(in semidom) mset-factors-imp-nonzero:
assumes mset-factors F p
shows p 6= 0

proof
assume p = 0
moreover from assms have prod-mset F = p by auto
ultimately obtain f where f ∈# F f = 0 by auto
with assms show False by auto

qed

class ufd = idom +
assumes mset-factors-exist:

∧
x. x 6= 0 =⇒ ¬ x dvd 1 =⇒ ∃F . mset-factors F x

and mset-factors-unique:
∧

x F G. mset-factors F x =⇒ mset-factors G x =⇒
rel-mset (ddvd) F G

3.3.2 Connecting to HOL/Divisibility
context comm-semiring-1 begin

abbreviation mk-monoid ≡ (|carrier = UNIV − {0}, mult = (∗), one = 1 |)

lemma carrier-0 [simp]: x ∈ carrier mk-monoid ←→ x 6= 0 by auto

lemmas mk-monoid-simps = carrier-0 monoid.simps

abbreviation irred where irred ≡ Divisibility.irreducible mk-monoid
abbreviation factor where factor ≡ Divisibility.factor mk-monoid
abbreviation factors where factors ≡ Divisibility.factors mk-monoid
abbreviation properfactor where properfactor ≡ Divisibility.properfactor mk-monoid

lemma factors: factors fs y ←→ prod-list fs = y ∧ Ball (set fs) irred
proof −

have prod-list fs = foldr (∗) fs 1 by (induct fs, auto)
thus ?thesis unfolding factors-def by auto

qed

lemma factor : factor x y ←→ (∃ z. z 6= 0 ∧ x ∗ z = y) unfolding factor-def

74



by auto

lemma properfactor-nz:
shows (y :: ′a) 6= 0 =⇒ properfactor x y ←→ x dvd y ∧ ¬ y dvd x
by (auto simp: properfactor-def factor-def dvd-def )

lemma mem-Units[simp]: y ∈ Units mk-monoid ←→ y dvd 1
unfolding dvd-def Units-def by (auto simp: ac-simps)

end

context idom begin
lemma irred-0 [simp]: irred (0 :: ′a) by (unfold Divisibility.irreducible-def , auto

simp: factor properfactor-def )
lemma factor-idom[simp]: factor (x:: ′a) y ←→ (if y = 0 then x = 0 else x dvd

y)
by (cases y = 0 ; auto intro: exI [of - 1 ] elim: dvdE simp: factor)

lemma associated-connect[simp]: (∼mk-monoid) = (ddvd) by (intro ext, unfold
associated-def , auto)

lemma essentially-equal-connect[simp]:
essentially-equal mk-monoid fs gs ←→ rel-mset (ddvd) (mset fs) (mset gs)
by (auto simp: essentially-equal-def rel-mset-via-perm)

lemma irred-idom-nz:
assumes x0 : (x:: ′a) 6= 0
shows irred x ←→ irreducible x
using x0 by (auto simp: irreducible-altdef Divisibility.irreducible-def properfac-

tor-nz)

lemma dvd-dvd-imp-unit-mult:
assumes xy: x dvd y and yx: y dvd x
shows ∃ z. z dvd 1 ∧ y = x ∗ z

proof(cases x = 0 )
case True with xy show ?thesis by (auto intro: exI [of - 1 ])

next
case x0 : False
from xy obtain z where z: y = x ∗ z by (elim dvdE , auto)
from yx obtain w where w: x = y ∗ w by (elim dvdE , auto)
from z w have x ∗ (z ∗ w) = x by (auto simp: ac-simps)
then have z ∗ w = 1 using x0 by auto
with z show ?thesis by (auto intro: exI [of - z])

qed

lemma irred-inner-nz:
assumes x0 : x 6= 0
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shows (∀ b. b dvd x −→ ¬ x dvd b −→ b dvd 1 ) ←→ (∀ a b. x = a ∗ b −→ a
dvd 1 ∨ b dvd 1 ) (is ?l ←→ ?r)

proof (intro iffI allI impI )
assume l: ?l
fix a b
assume xab: x = a ∗ b
then have ax: a dvd x and bx: b dvd x by auto
{ assume a1 : ¬ a dvd 1

with l ax have xa: x dvd a by auto
from dvd-dvd-imp-unit-mult[OF ax xa] obtain z where z1 : z dvd 1 and xaz:

x = a ∗ z by auto
from xab x0 have a 6= 0 by auto
with xab xaz have b = z by auto
with z1 have b dvd 1 by auto

}
then show a dvd 1 ∨ b dvd 1 by auto

next
assume r : ?r
fix b assume bx: b dvd x and xb: ¬ x dvd b
then obtain a where xab: x = a ∗ b by (elim dvdE , auto simp: ac-simps)
with r consider a dvd 1 | b dvd 1 by auto
then show b dvd 1
proof(cases)

case 2 then show ?thesis by auto
next

case 1
then obtain c where ac1 : a ∗ c = 1 by (elim dvdE , auto)
from xab have x ∗ c = b ∗ (a ∗ c) by (auto simp: ac-simps)
with ac1 have x ∗ c = b by auto
then have x dvd b by auto
with xb show ?thesis by auto

qed
qed

lemma irred-idom[simp]: irred x ←→ x = 0 ∨ irreducible x
by (cases x = 0 ; simp add: irred-idom-nz irred-inner-nz irreducible-def )

lemma assumes x 6= 0 and factors fs x and f ∈ set fs shows f 6= 0
using assms by (auto simp: factors)

lemma factors-as-mset-factors:
assumes x0 : x 6= 0 and x1 : x 6= 1
shows factors fs x ←→ mset-factors (mset fs) x using assms
by (auto simp: factors prod-mset-prod-list)

end

context ufd begin
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interpretation comm-monoid-cancel: comm-monoid-cancel mk-monoid:: ′a monoid
apply (unfold-locales)
apply simp-all
using mult-left-cancel
apply (auto simp: ac-simps)
done

lemma factors-exist:
assumes a 6= 0
and ¬ a dvd 1
shows ∃ fs. set fs ⊆ UNIV − {0} ∧ factors fs a

proof−
from mset-factors-exist[OF assms]
obtain F where mset-factors F a by auto
also from ex-mset obtain fs where F = mset fs by metis
finally have fs: mset-factors (mset fs) a.
then have factors fs a using assms by (subst factors-as-mset-factors, auto)
moreover have set fs ⊆ UNIV − {0} using fs by (auto elim!: mset-factorsE)
ultimately show ?thesis by auto

qed

lemma factors-unique:
assumes fs: factors fs a

and gs: factors gs a
and a0 : a 6= 0
and a1 : ¬ a dvd 1

shows rel-mset (ddvd) (mset fs) (mset gs)
proof−

from a1 have a 6= 1 by auto
with a0 fs gs have mset-factors (mset fs) a mset-factors (mset gs) a by (unfold

factors-as-mset-factors)
from mset-factors-unique[OF this] show ?thesis.

qed

lemma factorial-monoid: factorial-monoid (mk-monoid :: ′a monoid)
by (unfold-locales; auto simp add: factors-exist factors-unique)

end

lemma (in idom) factorial-monoid-imp-ufd:
assumes factorial-monoid (mk-monoid :: ′a monoid)
shows class.ufd ((∗) :: ′a ⇒ -) 1 (+) 0 (−) uminus

proof (unfold-locales)
interpret factorial-monoid mk-monoid :: ′a monoid by (fact assms)
{

fix x assume x: x 6= 0 ¬ x dvd 1
note ∗ = factors-exist[simplified, OF this]
with x show ∃F . mset-factors F x by (subst(asm) factors-as-mset-factors,

auto)
}
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fix x F G assume FG: mset-factors F x mset-factors G x
with mset-factors-imp-not-is-unit have x1 : ¬ x dvd 1 by auto
from FG(1 ) have x0 : x 6= 0 by (rule mset-factors-imp-nonzero)
obtain fs gs where fsgs: F = mset fs G = mset gs using ex-mset by metis
note FG = FG[unfolded this]
then have 0 : 0 /∈ set fs 0 /∈ set gs by (auto elim!: mset-factorsE)
from x1 have x 6= 1 by auto
note FG[folded factors-as-mset-factors[OF x0 this]]
from factors-unique[OF this, simplified, OF x0 x1 , folded fsgs] 0
show rel-mset (ddvd) F G by auto

qed

3.4 Preservation of Irreducibility
locale comm-semiring-1-hom = comm-monoid-mult-hom hom + zero-hom hom

for hom :: ′a :: comm-semiring-1 ⇒ ′b :: comm-semiring-1

locale irreducibility-hom = comm-semiring-1-hom +
assumes irreducible-imp-irreducible-hom: irreducible a =⇒ irreducible (hom a)

begin
lemma hom-mset-factors:

assumes F : mset-factors F p
shows mset-factors (image-mset hom F) (hom p)

proof (unfold mset-factors-def , intro conjI allI impI )
from F show hom p = prod-mset (image-mset hom F) image-mset hom F 6=

{#} by (auto simp: hom-distribs)
fix f ′ assume f ′ ∈# image-mset hom F
then obtain f where f : f ∈# F and f ′f : f ′ = hom f by auto
with F irreducible-imp-irreducible-hom show irreducible f ′ unfolding f ′f by

auto
qed

end

locale unit-preserving-hom = comm-semiring-1-hom +
assumes is-unit-hom-if :

∧
x. hom x dvd 1 =⇒ x dvd 1

begin
lemma is-unit-hom-iff [simp]: hom x dvd 1 ←→ x dvd 1 using is-unit-hom-if

hom-dvd by force

lemma irreducible-hom-imp-irreducible:
assumes irr : irreducible (hom a) shows irreducible a

proof (intro irreducibleI )
from irr show a 6= 0 by auto
from irr show ¬ a dvd 1 by (auto dest: irreducible-not-unit)
fix b c assume a = b ∗ c
then have hom a = hom b ∗ hom c by (simp add: hom-distribs)
with irr have hom b dvd 1 ∨ hom c dvd 1 by (auto dest: irreducibleD)
then show b dvd 1 ∨ c dvd 1 by simp

qed
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end

locale factor-preserving-hom = unit-preserving-hom + irreducibility-hom
begin

lemma irreducible-hom[simp]: irreducible (hom a) ←→ irreducible a
using irreducible-hom-imp-irreducible irreducible-imp-irreducible-hom by metis

end

lemma factor-preserving-hom-comp:
assumes f : factor-preserving-hom f and g: factor-preserving-hom g
shows factor-preserving-hom (f o g)

proof−
interpret f : factor-preserving-hom f by (rule f )
interpret g: factor-preserving-hom g by (rule g)
show ?thesis by (unfold-locales, auto simp: hom-distribs)

qed

context comm-semiring-isom begin
sublocale unit-preserving-hom by (unfold-locales, auto)
sublocale factor-preserving-hom
proof (standard)

fix a :: ′a
assume irreducible a
note a = this[unfolded irreducible-def ]
show irreducible (hom a)
proof (rule ccontr)

assume ¬ irreducible (hom a)
from this[unfolded Factorial-Ring.irreducible-def ,simplified] a
obtain hb hc where eq: hom a = hb ∗ hc and nu: ¬ hb dvd 1 ¬ hc dvd 1

by auto
from bij obtain b where hb: hb = hom b by (elim bij-pointE)
from bij obtain c where hc: hc = hom c by (elim bij-pointE)
from eq[unfolded hb hc, folded hom-mult] have a = b ∗ c by auto
with nu hb hc have a = b ∗ c ¬ b dvd 1 ¬ c dvd 1 by auto
with a show False by auto

qed
qed

end

3.4.1 Back to divisibility
lemma(in comm-semiring-1 ) mset-factors-mult:

assumes F : mset-factors F a
and G: mset-factors G b

shows mset-factors (F+G) (a∗b)
proof(intro mset-factorsI )

fix f assume f ∈# F + G
then consider f ∈# F | f ∈# G by auto
then show irreducible f by(cases, insert F G, auto)

79



qed (insert F G, auto)

lemma(in ufd) dvd-imp-subset-factors:
assumes ab: a dvd b

and F : mset-factors F a
and G: mset-factors G b

shows ∃G ′. G ′ ⊆# G ∧ rel-mset (ddvd) F G ′

proof−
from F G have a0 : a 6= 0 and b0 : b 6= 0 by (simp-all add: mset-factors-imp-nonzero)
from ab obtain c where c: b = a ∗ c by (elim dvdE , auto)
with b0 have c0 : c 6= 0 by auto
show ?thesis
proof(cases c dvd 1 )

case True
show ?thesis

proof(cases F)
case empty with F show ?thesis by auto

next
case (add f F ′)

with F
have a: f ∗ prod-mset F ′ = a
and F ′:

∧
f . f ∈# F ′ =⇒ irreducible f

and irrf : irreducible f by auto
from irrf have f0 : f 6= 0 and f1 : ¬f dvd 1 by (auto dest: irre-

ducible-not-unit)
from a c have (f ∗ c) ∗ prod-mset F ′ = b by (auto simp: ac-simps)
moreover {

have irreducible (f ∗ c) using True irrf by (subst irreducible-mult-unit-right)
with F ′ irrf have

∧
f ′. f ′ ∈# F ′ + {#f ∗ c#} =⇒ irreducible f ′ by

auto
}

ultimately have mset-factors (F ′ + {#f ∗ c#}) b by (intro mset-factorsI ,
auto)

from mset-factors-unique[OF this G]
have F ′G: rel-mset (ddvd) (F ′ + {#f ∗ c#}) G.
from True add have FF ′: rel-mset (ddvd) F (F ′ + {#f ∗ c#})

by (auto simp add: multiset.rel-refl intro!: rel-mset-Plus)
have rel-mset (ddvd) F G

apply(rule transpD[OF multiset.rel-transp[OF transpI ] FF ′ F ′G])
using ddvd-trans.

then show ?thesis by auto
qed

next
case False

from mset-factors-exist[OF c0 this] obtain H where H : mset-factors H c
by auto

from c mset-factors-mult[OF F H ] have mset-factors (F + H ) b by auto
note mset-factors-unique[OF this G]
from rel-mset-split[OF this] obtain G1 G2
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where G = G1 + G2 rel-mset (ddvd) F G1 rel-mset (ddvd) H G2 by auto
then show ?thesis by (intro exI [of - G1 ], auto)

qed
qed

lemma(in idom) irreducible-factor-singleton:
assumes a: irreducible a
shows mset-factors F a ←→ F = {#a#}

proof(cases F)
case empty with mset-factorsD show ?thesis by auto

next
case (add f F ′)
show ?thesis
proof

assume F : mset-factors F a
from add mset-factorsD[OF F ] have ∗: a = f ∗ prod-mset F ′ by auto
then have fa: f dvd a by auto
from ∗ a have f0 : f 6= 0 by auto
from add have f ∈# F by auto
with F have f : irreducible f by auto
from add have F ′ ⊆# F by auto
then have unitemp: prod-mset F ′ dvd 1 =⇒ F ′ = {#}
proof(induct F ′)

case empty then show ?case by auto
next

case (add f F ′)
from add have f ∈# F by (simp add: mset-subset-eq-insertD)
with F irreducible-not-unit have ¬ f dvd 1 by auto
then have ¬ (prod-mset F ′ ∗ f ) dvd 1 by simp
with add show ?case by auto

qed
show F = {#a#}
proof(cases a dvd f )

case True
then obtain r where f = a ∗ r by (elim dvdE , auto)
with ∗ have f = (r ∗ prod-mset F ′) ∗ f by (auto simp: ac-simps)
with f0 have r ∗ prod-mset F ′ = 1 by auto
then have prod-mset F ′ dvd 1 by (metis dvd-triv-right)
with unitemp ∗ add show ?thesis by auto

next
case False with fa a f show ?thesis by (auto simp: irreducible-altdef )

qed
qed (insert a, auto)

qed

lemma(in ufd) irreducible-dvd-imp-factor :
assumes ab: a dvd b

and a: irreducible a
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and G: mset-factors G b
shows ∃ g ∈# G. a ddvd g

proof−
from a have mset-factors {#a#} a by auto
from dvd-imp-subset-factors[OF ab this G]
obtain G ′ where G ′G: G ′ ⊆# G and rel: rel-mset (ddvd) {#a#} G ′ by auto
with rel-mset-size size-1-singleton-mset size-single
obtain g where gG ′: G ′ = {#g#} by fastforce
from rel[unfolded this rel-mset-def ]
have a ddvd g by auto
with gG ′ G ′G show ?thesis by auto

qed

lemma(in idom) prod-mset-remove-units:
prod-mset F ddvd prod-mset {# f ∈# F . ¬f dvd 1 #}

proof(induct F)
case (add f F) then show ?case by (cases f = 0 , auto)

qed auto

lemma(in comm-semiring-1 ) mset-factors-imp-dvd:
assumes mset-factors F x and f ∈# F shows f dvd x
using assms by (simp add: dvd-prod-mset mset-factors-def )

lemma(in ufd) prime-elem-iff-irreducible[iff ]:
prime-elem x ←→ irreducible x

proof (intro iffI , fact prime-elem-imp-irreducible, rule prime-elemI )
assume r : irreducible x
then show x0 : x 6= 0 and x1 : ¬ x dvd 1 by (auto dest: irreducible-not-unit)
from irreducible-factor-singleton[OF r ]
have ∗: mset-factors {#x#} x by auto
fix a b
assume x dvd a ∗ b
then obtain c where abxc: a ∗ b = x ∗ c by (elim dvdE , auto)
show x dvd a ∨ x dvd b
proof(cases c = 0 ∨ a = 0 ∨ b = 0 )

case True with abxc show ?thesis by auto
next

case False
then have a0 : a 6= 0 and b0 : b 6= 0 and c0 : c 6= 0 by auto
from x0 c0 have xc0 : x ∗ c 6= 0 by auto
from x1 have xc1 : ¬ x ∗ c dvd 1 by auto
show ?thesis
proof (cases a dvd 1 ∨ b dvd 1 )

case False
then have a1 : ¬ a dvd 1 and b1 : ¬ b dvd 1 by auto
from mset-factors-exist[OF a0 a1 ]
obtain F where Fa: mset-factors F a by auto
then have F0 : F 6= {#} by auto
from mset-factors-exist[OF b0 b1 ]
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obtain G where Gb: mset-factors G b by auto
then have G0 : G 6= {#} by auto
from mset-factors-mult[OF Fa Gb]
have FGxc: mset-factors (F + G) (x ∗ c) by (simp add: abxc)
show ?thesis
proof (cases c dvd 1 )

case True
from r irreducible-mult-unit-right[OF this] have irreducible (x∗c) by simp
note irreducible-factor-singleton[OF this] FGxc
with F0 G0 have False by (cases F ; cases G; auto)
then show ?thesis by auto

next
case False
from mset-factors-exist[OF c0 this] obtain H where mset-factors H c by

auto
with ∗ have xHxc: mset-factors (add-mset x H ) (x ∗ c) by force
note rel = mset-factors-unique[OF this FGxc]
obtain hs where mset hs = H using ex-mset by auto
then have mset (x#hs) = add-mset x H by auto
from rel-mset-free[OF rel this]
obtain jjs where jjsGH : mset jjs = F + G and rel: list-all2 (ddvd) (x #

hs) jjs by auto
then obtain j js where jjs: jjs = j # js by (cases jjs, auto)
with rel have xj: x ddvd j by auto

from jjs jjsGH have j: j ∈ set-mset (F + G) by (intro union-single-eq-member ,
auto)

from j consider j ∈# F | j ∈# G by auto
then show ?thesis
proof(cases)

case 1
with Fa have j dvd a by (auto intro: mset-factors-imp-dvd)
with xj dvd-trans have x dvd a by auto
then show ?thesis by auto

next
case 2
with Gb have j dvd b by (auto intro: mset-factors-imp-dvd)
with xj dvd-trans have x dvd b by auto
then show ?thesis by auto

qed
qed

next
case True
then consider a dvd 1 | b dvd 1 by auto
then show ?thesis
proof(cases)

case 1
then obtain d where ad: a ∗ d = 1 by (elim dvdE , auto)
from abxc have x ∗ (c ∗ d) = a ∗ b ∗ d by (auto simp: ac-simps)
also have ... = a ∗ d ∗ b by (auto simp: ac-simps)
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finally have x dvd b by (intro dvdI , auto simp: ad)
then show ?thesis by auto

next
case 2
then obtain d where bd: b ∗ d = 1 by (elim dvdE , auto)
from abxc have x ∗ (c ∗ d) = a ∗ b ∗ d by (auto simp: ac-simps)
also have ... = (b ∗ d) ∗ a by (auto simp: ac-simps)
finally have x dvd a by (intro dvdI , auto simp:bd)
then show ?thesis by auto

qed
qed

qed
qed

3.5 Results for GCDs etc.
lemma prod-list-remove1 : (x :: ′b :: comm-monoid-mult) ∈ set xs =⇒ prod-list
(remove1 x xs) ∗ x = prod-list xs

by (induct xs, auto simp: ac-simps)

class comm-monoid-gcd = gcd + comm-semiring-1 +
assumes gcd-dvd1 [iff ]: gcd a b dvd a

and gcd-dvd2 [iff ]: gcd a b dvd b
and gcd-greatest: c dvd a =⇒ c dvd b =⇒ c dvd gcd a b

begin

lemma gcd-0-0 [simp]: gcd 0 0 = 0
using gcd-greatest[OF dvd-0-right dvd-0-right, of 0 ] by auto

lemma gcd-zero-iff [simp]: gcd a b = 0 ←→ a = 0 ∧ b = 0
proof

assume gcd a b = 0
from gcd-dvd1 [of a b, unfolded this] gcd-dvd2 [of a b, unfolded this]
show a = 0 ∧ b = 0 by auto

qed auto

lemma gcd-zero-iff ′[simp]: 0 = gcd a b ←→ a = 0 ∧ b = 0
using gcd-zero-iff by metis

lemma dvd-gcd-0-iff [simp]:
shows x dvd gcd 0 a ←→ x dvd a (is ?g1 )

and x dvd gcd a 0 ←→ x dvd a (is ?g2 )
proof−

have a dvd gcd a 0 a dvd gcd 0 a by (auto intro: gcd-greatest)
with dvd-refl show ?g1 ?g2 by (auto dest: dvd-trans)

qed

lemma gcd-dvd-1 [simp]: gcd a b dvd 1 ←→ coprime a b
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using dvd-trans[OF gcd-greatest[of - a b], of - 1 ]
by (cases a = 0 ∧ b = 0 ) (auto intro!: coprimeI elim: coprimeE)

lemma dvd-imp-gcd-dvd-gcd: b dvd c =⇒ gcd a b dvd gcd a c
by (meson gcd-dvd1 gcd-dvd2 gcd-greatest dvd-trans)

definition listgcd :: ′a list ⇒ ′a where
listgcd xs = foldr gcd xs 0

lemma listgcd-simps[simp]: listgcd [] = 0 listgcd (x # xs) = gcd x (listgcd xs)
by (auto simp: listgcd-def )

lemma listgcd: x ∈ set xs =⇒ listgcd xs dvd x
proof (induct xs)

case (Cons y ys)
show ?case
proof (cases x = y)

case False
with Cons have dvd: listgcd ys dvd x by auto
thus ?thesis unfolding listgcd-simps using dvd-trans by blast

next
case True
thus ?thesis unfolding listgcd-simps using dvd-trans by blast

qed
qed simp

lemma listgcd-greatest: (
∧

x. x ∈ set xs =⇒ y dvd x) =⇒ y dvd listgcd xs
by (induct xs arbitrary:y, auto intro: gcd-greatest)

end

context Rings.dvd begin

definition is-gcd x a b ≡ x dvd a ∧ x dvd b ∧ (∀ y. y dvd a −→ y dvd b −→ y
dvd x)

definition some-gcd a b ≡ SOME x. is-gcd x a b

lemma is-gcdI [intro!]:
assumes x dvd a x dvd b

∧
y. y dvd a =⇒ y dvd b =⇒ y dvd x

shows is-gcd x a b by (insert assms, auto simp: is-gcd-def )

lemma is-gcdE [elim!]:
assumes is-gcd x a b

and x dvd a =⇒ x dvd b =⇒ (
∧

y. y dvd a =⇒ y dvd b =⇒ y dvd x) =⇒
thesis

shows thesis by (insert assms, auto simp: is-gcd-def )
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lemma is-gcd-some-gcdI :
assumes ∃ x. is-gcd x a b shows is-gcd (some-gcd a b) a b
by (unfold some-gcd-def , rule someI-ex[OF assms])

end

context comm-semiring-1 begin

lemma some-gcd-0 [intro!]: is-gcd (some-gcd a 0 ) a 0 is-gcd (some-gcd 0 b) 0 b
by (auto intro!: is-gcd-some-gcdI intro: exI [of - a] exI [of - b])

lemma some-gcd-0-dvd[intro!]:
some-gcd a 0 dvd a some-gcd 0 b dvd b using some-gcd-0 by auto

lemma dvd-some-gcd-0 [intro!]:
a dvd some-gcd a 0 b dvd some-gcd 0 b using some-gcd-0 [of a] some-gcd-0 [of

b] by auto

end

context idom begin

lemma is-gcd-connect:
assumes a 6= 0 b 6= 0 shows isgcd mk-monoid x a b ←→ is-gcd x a b
using assms by (force simp: isgcd-def )

lemma some-gcd-connect:
assumes a 6= 0 and b 6= 0 shows somegcd mk-monoid a b = some-gcd a b

using assms by (auto intro!: arg-cong[of - - Eps] simp: is-gcd-connect some-gcd-def
somegcd-def )
end

context comm-monoid-gcd
begin

lemma is-gcd-gcd: is-gcd (gcd a b) a b using gcd-greatest by auto
lemma is-gcd-some-gcd: is-gcd (some-gcd a b) a b by (insert is-gcd-gcd, auto

intro!: is-gcd-some-gcdI )
lemma gcd-dvd-some-gcd: gcd a b dvd some-gcd a b using is-gcd-some-gcd by

auto
lemma some-gcd-dvd-gcd: some-gcd a b dvd gcd a b using is-gcd-some-gcd by

(auto intro: gcd-greatest)
lemma some-gcd-ddvd-gcd: some-gcd a b ddvd gcd a b by (auto intro: gcd-dvd-some-gcd

some-gcd-dvd-gcd)
lemma some-gcd-dvd: some-gcd a b dvd d ←→ gcd a b dvd d d dvd some-gcd a b
←→ d dvd gcd a b

using some-gcd-ddvd-gcd[of a b] by (auto dest:dvd-trans)

end
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class idom-gcd = comm-monoid-gcd + idom
begin

interpretation raw: comm-monoid-cancel mk-monoid :: ′a monoid
by (unfold-locales, auto intro: mult-commute mult-assoc)

interpretation raw: gcd-condition-monoid mk-monoid :: ′a monoid
by (unfold-locales, auto simp: is-gcd-connect intro!: exI [of - gcd - -] dest:

gcd-greatest)

lemma gcd-mult-ddvd:
d ∗ gcd a b ddvd gcd (d ∗ a) (d ∗ b)

proof (cases d = 0 )
case True then show ?thesis by auto

next
case d0 : False
show ?thesis
proof (cases a = 0 ∨ b = 0 )

case False
note some-gcd-ddvd-gcd[of a b]
with d0 have d ∗ gcd a b ddvd d ∗ some-gcd a b by auto
also have d ∗ some-gcd a b ddvd some-gcd (d ∗ a) (d ∗ b)

using False d0 raw.gcd-mult by (simp add: some-gcd-connect)
also note some-gcd-ddvd-gcd
finally show ?thesis.

next
case True
with d0 show ?thesis

apply (elim disjE)
apply (rule ddvd-trans[of - d ∗ b]; force)
apply (rule ddvd-trans[of - d ∗ a]; force)

done
qed

qed

lemma gcd-greatest-mult: assumes cad: c dvd a ∗ d and cbd: c dvd b ∗ d
shows c dvd gcd a b ∗ d

proof−
from gcd-greatest[OF assms] have c: c dvd gcd (d ∗ a) (d ∗ b) by (auto simp:

ac-simps)
note gcd-mult-ddvd[of d a b]
then have gcd (d ∗ a) (d ∗ b) dvd gcd a b ∗ d by (auto simp: ac-simps)
from dvd-trans[OF c this] show ?thesis .

qed

lemma listgcd-greatest-mult: (
∧

x :: ′a. x ∈ set xs =⇒ y dvd x ∗ z) =⇒ y dvd
listgcd xs ∗ z

proof (induct xs)
case (Cons x xs)
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from Cons have y dvd x ∗ z y dvd listgcd xs ∗ z by auto
thus ?case unfolding listgcd-simps by (rule gcd-greatest-mult)

qed (simp)

lemma dvd-factor-mult-gcd:
assumes dvd: k dvd p ∗ q k dvd p ∗ r

and q0 : q 6= 0 and r0 : r 6= 0
shows k dvd p ∗ gcd q r

proof −
from dvd gcd-greatest[of k p ∗ q p ∗ r ]
have k dvd gcd (p ∗ q) (p ∗ r) by simp
also from gcd-mult-ddvd[of p q r ]
have ... dvd (p ∗ gcd q r) by auto
finally show ?thesis .

qed

lemma coprime-mult-cross-dvd:
assumes coprime: coprime p q and eq: p ′ ∗ p = q ′ ∗ q
shows p dvd q ′ (is ?g1 ) and q dvd p ′ (is ?g2 )

proof (atomize(full), cases p = 0 ∨ q = 0 )
case True
then show ?g1 ∧ ?g2
proof

assume p0 : p = 0 with coprime have q dvd 1 by auto
with eq p0 show ?thesis by auto

next
assume q0 : q = 0 with coprime have p dvd 1 by auto
with eq q0 show ?thesis by auto

qed
next

case False
{

fix p q r p ′ q ′ :: ′a
assume cop: coprime p q and eq: p ′ ∗ p = q ′ ∗ q and p: p 6= 0 and q: q 6= 0

and r : r dvd p r dvd q
let ?gcd = gcd q p
from eq have p ′ ∗ p dvd q ′ ∗ q by auto
hence d1 : p dvd q ′ ∗ q by (rule dvd-mult-right)
have d2 : p dvd q ′ ∗ p by auto
from dvd-factor-mult-gcd[OF d1 d2 q p] have 1 : p dvd q ′ ∗ ?gcd .
from q p have 2 : ?gcd dvd q by auto
from q p have 3 : ?gcd dvd p by auto
from cop[unfolded coprime-def ′, rule-format, OF 3 2 ] have ?gcd dvd 1 .
from 1 dvd-mult-unit-iff [OF this] have p dvd q ′ by auto

} note main = this
from main[OF coprime eq,of 1 ] False coprime coprime-commute main[OF -

eq[symmetric], of 1 ]
show ?g1 ∧ ?g2 by auto

qed
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end

subclass (in ring-gcd) idom-gcd by (unfold-locales, auto)

lemma coprime-rewrites: comm-monoid-mult.coprime ((∗)) 1 = coprime
apply (intro ext)
apply (subst comm-monoid-mult.coprime-def ′)
apply (unfold-locales)
apply (unfold dvd-rewrites)
apply (fold coprime-def ′) ..

locale gcd-condition =
fixes ty :: ′a :: idom itself
assumes gcd-exists:

∧
a b :: ′a. ∃ x. is-gcd x a b

begin
sublocale idom-gcd (∗) 1 :: ′a (+) 0 (−) uminus some-gcd

rewrites dvd.dvd ((∗)) = (dvd)
and comm-monoid-mult.coprime ((∗) ) 1 = Unique-Factorization.coprime

proof−
have is-gcd (some-gcd a b) a b for a b :: ′a by (intro is-gcd-some-gcdI gcd-exists)
from this[unfolded is-gcd-def ]

show class.idom-gcd (∗) (1 :: ′a) (+) 0 (−) uminus some-gcd by (unfold-locales,
auto simp: dvd-rewrites)

qed (simp-all add: dvd-rewrites coprime-rewrites)
end

instance semiring-gcd ⊆ comm-monoid-gcd by (intro-classes, auto)

lemma listgcd-connect: listgcd = gcd-list
proof (intro ext)

fix xs :: ′a list
show listgcd xs = gcd-list xs by(induct xs, auto)

qed

interpretation some-gcd: gcd-condition TYPE( ′a::ufd)
proof(unfold-locales, intro exI )

interpret factorial-monoid mk-monoid :: ′a monoid by (fact factorial-monoid)
note d = dvd.dvd-def some-gcd-def carrier-0
fix a b :: ′a
show is-gcd (some-gcd a b) a b
proof (cases a = 0 ∨ b = 0 )

case True
thus ?thesis using some-gcd-0 by auto

next
case False
with gcdof-exists[of a b]

show ?thesis by (auto intro!: is-gcd-some-gcdI simp add: is-gcd-connect some-gcd-connect)
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qed
qed

lemma some-gcd-listgcd-dvd-listgcd: some-gcd.listgcd xs dvd listgcd xs
by (induct xs, auto simp:some-gcd-dvd intro:dvd-imp-gcd-dvd-gcd)

lemma listgcd-dvd-some-gcd-listgcd: listgcd xs dvd some-gcd.listgcd xs
by (induct xs, auto simp:some-gcd-dvd intro:dvd-imp-gcd-dvd-gcd)

context factorial-ring-gcd begin

Do not declare the following as subclass, to avoid conflict in field ⊆
gcd-condition vs. factorial-ring-gcd ⊆ gcd-condition.
sublocale as-ufd: ufd
proof(unfold-locales, goal-cases)

case (1 x)
from prime-factorization-exists[OF ‹x 6= 0 ›]
obtain F where f :

∧
f . f ∈# F =⇒ prime-elem f

and Fx: normalize (prod-mset F) = normalize x by auto
from associatedE2 [OF Fx] obtain u where u: is-unit u x = u ∗ prod-mset F

by blast
from ‹¬ is-unit x› Fx have F 6= {#} by auto
then obtain g G where F : F = add-mset g G by (cases F , auto)
then have g ∈# F by auto
with f [OF this]prime-elem-iff-irreducible

irreducible-mult-unit-left[OF unit-factor-is-unit[OF ‹x 6= 0 ›]]
have g: irreducible (u ∗ g) using u(1 )

by (subst irreducible-mult-unit-left) simp-all
show ?case
proof (intro exI conjI mset-factorsI )

show prod-mset (add-mset (u ∗ g) G) = x
using ‹x 6= 0 › by (simp add: F ac-simps u)

fix f assume f ∈# add-mset (u ∗ g) G
with f [unfolded F ] g prime-elem-iff-irreducible
show irreducible f by auto

qed auto
next

case (2 x F G)
note transpD[OF multiset.rel-transp[OF ddvd-transp],trans]
obtain fs where F : F = mset fs by (metis ex-mset)
have list-all2 (ddvd) fs (map normalize fs) by (intro list-all2-all-nthI , auto)
then have FH : rel-mset (ddvd) F (image-mset normalize F) by (unfold rel-mset-def

F , force)
also
have FG: image-mset normalize F = image-mset normalize G
proof (intro prime-factorization-unique ′′)

from 2 have xF : x = prod-mset F and xG: x = prod-mset G by auto
from xF have normalize x = normalize (prod-mset (image-mset normalize F))

by (simp add: normalize-prod-mset-normalize)
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with xG have nFG: . . . = normalize (prod-mset (image-mset normalize G))
by (simp-all add: normalize-prod-mset-normalize)

then show normalize (
∏

i∈#image-mset normalize F . i) =
normalize (

∏
i∈#image-mset normalize G. i) by auto

next
from 2 prime-elem-iff-irreducible have f ∈# F =⇒ prime-elem f g ∈# G =⇒

prime-elem g for f g
by (auto intro: prime-elemI )

then show Multiset.Ball (image-mset normalize F) prime
Multiset.Ball (image-mset normalize G) prime by auto

qed
also

obtain gs where G: G = mset gs by (metis ex-mset)
have list-all2 ((ddvd)−1−1) gs (map normalize gs) by (intro list-all2-all-nthI ,

auto)
then have rel-mset (ddvd) (image-mset normalize G) G

by (subst multiset.rel-flip[symmetric], unfold rel-mset-def G, force)
finally show ?case.

qed

end

instance int :: ufd by (intro ufd.intro-of-class as-ufd.ufd-axioms)
instance int :: idom-gcd by (intro-classes, auto)

instance field ⊆ ufd by (intro-classes, auto simp: dvd-field-iff )

end

4 Unique Factorization Domain for Polynomials
In this theory we prove that the polynomials over a unique factorization
domain (UFD) form a UFD.
theory Unique-Factorization-Poly
imports

Unique-Factorization
Polynomial-Factorization.Missing-Polynomial-Factorial
Subresultants.More-Homomorphisms
HOL−Computational-Algebra.Field-as-Ring

begin

hide-const (open) module.smult
hide-const (open) Divisibility.irreducible

instantiation fract :: (idom) {normalization-euclidean-semiring, euclidean-ring}
begin

definition [simp]: normalize-fract ≡ (normalize-field :: ′a fract ⇒ -)
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definition [simp]: unit-factor-fract = (unit-factor-field :: ′a fract ⇒ -)
definition [simp]: euclidean-size-fract = (euclidean-size-field :: ′a fract ⇒ -)
definition [simp]: modulo-fract = (mod-field :: ′a fract ⇒ -)

instance by standard (simp-all add: dvd-field-iff divide-simps)

end

instantiation fract :: (idom) euclidean-ring-gcd
begin

definition gcd-fract :: ′a fract ⇒ ′a fract ⇒ ′a fract where
gcd-fract ≡ Euclidean-Algorithm.gcd

definition lcm-fract :: ′a fract ⇒ ′a fract ⇒ ′a fract where
lcm-fract ≡ Euclidean-Algorithm.lcm

definition Gcd-fract :: ′a fract set ⇒ ′a fract where
Gcd-fract ≡ Euclidean-Algorithm.Gcd

definition Lcm-fract :: ′a fract set ⇒ ′a fract where
Lcm-fract ≡ Euclidean-Algorithm.Lcm

instance
by (standard, simp-all add: gcd-fract-def lcm-fract-def Gcd-fract-def Lcm-fract-def )

end

instantiation fract :: (idom) unique-euclidean-ring
begin

definition [simp]: division-segment-fract (x :: ′a fract) = (1 :: ′a fract)

instance by standard (auto split: if-splits)
end

instance fract :: (idom) field-gcd by standard auto

definition divides-ff :: ′a::idom fract ⇒ ′a fract ⇒ bool
where divides-ff x y ≡ ∃ r . y = x ∗ to-fract r

lemma ff-list-pairs:
∃ xs. X = map (λ (x,y). Fraction-Field.Fract x y) xs ∧ 0 /∈ snd ‘ set xs

proof (induct X)
case (Cons a X)
from Cons(1 ) obtain xs where X : X = map (λ (x,y). Fraction-Field.Fract x

y) xs and xs: 0 /∈ snd ‘ set xs
by auto

obtain x y where a: a = Fraction-Field.Fract x y and y: y 6= 0 by (cases a,
auto)
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show ?case unfolding X a using xs y
by (intro exI [of - (x,y) # xs], auto)

qed auto

lemma divides-ff-to-fract[simp]: divides-ff (to-fract x) (to-fract y) ←→ x dvd y
unfolding divides-ff-def dvd-def
by (simp add: to-fract-def eq-fract(1 ) mult.commute)

lemma
shows divides-ff-mult-cancel-left[simp]: divides-ff (z ∗ x) (z ∗ y) ←→ z = 0 ∨

divides-ff x y
and divides-ff-mult-cancel-right[simp]: divides-ff (x ∗ z) (y ∗ z) ←→ z = 0 ∨

divides-ff x y
unfolding divides-ff-def by auto

definition gcd-ff-list :: ′a::ufd fract list ⇒ ′a fract ⇒ bool where
gcd-ff-list X g = (

(∀ x ∈ set X . divides-ff g x) ∧
(∀ d. (∀ x ∈ set X . divides-ff d x) −→ divides-ff d g))

lemma gcd-ff-list-exists: ∃ g. gcd-ff-list (X :: ′a::ufd fract list) g
proof −

interpret some-gcd: idom-gcd (∗) 1 :: ′a (+) 0 (−) uminus some-gcd
rewrites dvd.dvd ((∗)) = (dvd) by (unfold-locales, auto simp: dvd-rewrites)

from ff-list-pairs[of X ] obtain xs where X : X = map (λ (x,y). Fraction-Field.Fract
x y) xs

and xs: 0 /∈ snd ‘ set xs by auto
define r where r ≡ prod-list (map snd xs)
have r : r 6= 0 unfolding r-def prod-list-zero-iff using xs by auto
define ys where ys ≡ map (λ (x,y). x ∗ prod-list (remove1 y (map snd xs))) xs
{

fix i
assume i < length X
hence i: i < length xs unfolding X by auto
obtain x y where xsi: xs ! i = (x,y) by force
with i have (x,y) ∈ set xs unfolding set-conv-nth by force
hence y-mem: y ∈ set (map snd xs) by force
with xs have y: y 6= 0 by force
from i have id1 : ys ! i = x ∗ prod-list (remove1 y (map snd xs)) unfolding

ys-def using xsi by auto
from i xsi have id2 : X ! i = Fraction-Field.Fract x y unfolding X by auto
have lp: prod-list (remove1 y (map snd xs)) ∗ y = r unfolding r-def

by (rule prod-list-remove1 [OF y-mem])
have ys ! i ∈ set ys using i unfolding ys-def by auto
moreover have to-fract (ys ! i) = to-fract r ∗ (X ! i)

unfolding id1 id2 to-fract-def mult-fract
by (subst eq-fract(1 ), force, force simp: y, simp add: lp)

ultimately have ys ! i ∈ set ys to-fract (ys ! i) = to-fract r ∗ (X ! i) .
} note ys = this
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define G where G ≡ some-gcd.listgcd ys
define g where g ≡ to-fract G ∗ Fraction-Field.Fract 1 r
have len: length X = length ys unfolding X ys-def by auto
show ?thesis
proof (rule exI [of - g], unfold gcd-ff-list-def , intro ballI conjI impI allI )

fix x
assume x ∈ set X
then obtain i where i: i < length X and x: x = X ! i unfolding set-conv-nth

by auto
from ys[OF i] have id: to-fract (ys ! i) = to-fract r ∗ x

and ysi: ys ! i ∈ set ys unfolding x by auto
from some-gcd.listgcd[OF ysi] have G dvd ys ! i unfolding G-def .
then obtain d where ysi: ys ! i = G ∗ d unfolding dvd-def by auto
have to-fract d ∗ (to-fract G ∗ Fraction-Field.Fract 1 r) = x ∗ (to-fract r ∗

Fraction-Field.Fract 1 r)
using id[unfolded ysi]
by (simp add: ac-simps)
also have . . . = x using r unfolding to-fract-def by (simp add: eq-fract

One-fract-def )
finally have to-fract d ∗ (to-fract G ∗ Fraction-Field.Fract 1 r) = x by simp
thus divides-ff g x unfolding divides-ff-def g-def

by (intro exI [of - d], auto)
next

fix d
assume ∀ x ∈ set X . divides-ff d x
hence Ball ((λ x. to-fract r ∗ x) ‘ set X) ( divides-ff (to-fract r ∗ d)) by simp
also have (λ x. to-fract r ∗ x) ‘ set X = to-fract ‘ set ys

unfolding set-conv-nth using ys len by force
finally have dvd: Ball (set ys) (λ y. divides-ff (to-fract r ∗ d) (to-fract y)) by

auto
obtain nd dd where d: d = Fraction-Field.Fract nd dd and dd: dd 6= 0 by

(cases d, auto)
{

fix y
assume y ∈ set ys
hence divides-ff (to-fract r ∗ d) (to-fract y) using dvd by auto
from this[unfolded divides-ff-def d to-fract-def mult-fract]
obtain ra where Fraction-Field.Fract y 1 = Fraction-Field.Fract (r ∗ nd ∗

ra) dd by auto
hence y ∗ dd = ra ∗ (r ∗ nd) by (simp add: eq-fract dd)
hence r ∗ nd dvd y ∗ dd by auto

}
hence r ∗ nd dvd some-gcd.listgcd ys ∗ dd by (rule some-gcd.listgcd-greatest-mult)
hence divides-ff (to-fract r ∗ d) (to-fract G) unfolding to-fract-def d mult-fract

G-def divides-ff-def by (auto simp add: eq-fract dd dvd-def )
also have to-fract G = to-fract r ∗ g unfolding g-def using r

by (auto simp: to-fract-def eq-fract)
finally show divides-ff d g using r by simp

qed
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qed

definition some-gcd-ff-list :: ′a :: ufd fract list ⇒ ′a fract where
some-gcd-ff-list xs = (SOME g. gcd-ff-list xs g)

lemma some-gcd-ff-list: gcd-ff-list xs (some-gcd-ff-list xs)
unfolding some-gcd-ff-list-def using gcd-ff-list-exists[of xs]
by (rule someI-ex)

lemma some-gcd-ff-list-divides: x ∈ set xs =⇒ divides-ff (some-gcd-ff-list xs) x
using some-gcd-ff-list[of xs] unfolding gcd-ff-list-def by auto

lemma some-gcd-ff-list-greatest: (∀ x ∈ set xs. divides-ff d x) =⇒ divides-ff d
(some-gcd-ff-list xs)

using some-gcd-ff-list[of xs] unfolding gcd-ff-list-def by auto

lemma divides-ff-refl[simp]: divides-ff x x
unfolding divides-ff-def
by (rule exI [of - 1 ], auto simp: to-fract-def One-fract-def )

lemma divides-ff-trans:
divides-ff x y =⇒ divides-ff y z =⇒ divides-ff x z
unfolding divides-ff-def
by (auto simp del: to-fract-hom.hom-mult simp add: to-fract-hom.hom-mult[symmetric])

lemma divides-ff-mult-right: a 6= 0 =⇒ divides-ff (x ∗ inverse a) y =⇒ divides-ff
x (a ∗ y)

unfolding divides-ff-def divide-inverse[symmetric] by auto

definition eq-dff :: ′a :: ufd fract ⇒ ′a fract ⇒ bool (infix ‹=dff › 50 ) where
x =dff y ←→ divides-ff x y ∧ divides-ff y x

lemma eq-dffI [intro]: divides-ff x y =⇒ divides-ff y x =⇒ x =dff y
unfolding eq-dff-def by auto

lemma eq-dff-refl[simp]: x =dff x
by (intro eq-dffI , auto)

lemma eq-dff-sym: x =dff y =⇒ y =dff x unfolding eq-dff-def by auto

lemma eq-dff-trans[trans]: x =dff y =⇒ y =dff z =⇒ x =dff z
unfolding eq-dff-def using divides-ff-trans by auto

lemma eq-dff-cancel-right[simp]: x ∗ y =dff x ∗ z ←→ x = 0 ∨ y =dff z
unfolding eq-dff-def by auto

lemma eq-dff-mult-right-trans[trans]: x =dff y ∗ z =⇒ z =dff u =⇒ x =dff y ∗ u
using eq-dff-trans by force

95



lemma some-gcd-ff-list-smult: a 6= 0 =⇒ some-gcd-ff-list (map ((∗) a) xs) =dff a
∗ some-gcd-ff-list xs
proof

let ?g = some-gcd-ff-list (map ((∗) a) xs)
show divides-ff (a ∗ some-gcd-ff-list xs) ?g

by (rule some-gcd-ff-list-greatest, insert some-gcd-ff-list-divides[of - xs], auto
simp: divides-ff-def )

assume a: a 6= 0
show divides-ff ?g (a ∗ some-gcd-ff-list xs)
proof (rule divides-ff-mult-right[OF a some-gcd-ff-list-greatest], intro ballI )

fix x
assume x: x ∈ set xs
have divides-ff (?g ∗ inverse a) x = divides-ff (inverse a ∗ ?g) (inverse a ∗ (a

∗ x))
using a by (simp add: field-simps)

also have . . . using a x by (auto intro: some-gcd-ff-list-divides)
finally show divides-ff (?g ∗ inverse a) x .

qed
qed

definition content-ff :: ′a::ufd fract poly ⇒ ′a fract where
content-ff p = some-gcd-ff-list (coeffs p)

lemma content-ff-iff : divides-ff x (content-ff p)←→ (∀ c ∈ set (coeffs p). divides-ff
x c) (is ?l = ?r)
proof

assume ?l
from divides-ff-trans[OF this, unfolded content-ff-def , OF some-gcd-ff-list-divides]

show ?r ..
next

assume ?r
thus ?l unfolding content-ff-def by (intro some-gcd-ff-list-greatest, auto)

qed

lemma content-ff-divides-ff : x ∈ set (coeffs p) =⇒ divides-ff (content-ff p) x
unfolding content-ff-def by (rule some-gcd-ff-list-divides)

lemma content-ff-0 [simp]: content-ff 0 = 0
using content-ff-iff [of 0 0 ] by (auto simp: divides-ff-def )

lemma content-ff-0-iff [simp]: (content-ff p = 0 ) = (p = 0 )
proof (cases p = 0 )

case False
define a where a ≡ last (coeffs p)
define xs where xs ≡ coeffs p
from False
have mem: a ∈ set (coeffs p) and a: a 6= 0

unfolding a-def last-coeffs-eq-coeff-degree[OF False] coeffs-def by auto
from content-ff-divides-ff [OF mem] have divides-ff (content-ff p) a .
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with a have content-ff p 6= 0 unfolding divides-ff-def by auto
with False show ?thesis by auto

qed auto

lemma content-ff-eq-dff-nonzero: content-ff p =dff x =⇒ x 6= 0 =⇒ p 6= 0
using divides-ff-def eq-dff-def by force

lemma content-ff-smult: content-ff (smult (a:: ′a::ufd fract) p) =dff a ∗ content-ff
p
proof (cases a = 0 )

case False note a = this
have id: coeffs (smult a p) = map ((∗) a) (coeffs p)

unfolding coeffs-smult using a by (simp add: Polynomial.coeffs-smult)
show ?thesis unfolding content-ff-def id using some-gcd-ff-list-smult[OF a] .

qed simp

definition normalize-content-ff
where normalize-content-ff (p:: ′a::ufd fract poly) ≡ smult (inverse (content-ff

p)) p

lemma smult-normalize-content-ff : smult (content-ff p) (normalize-content-ff p) =
p

unfolding normalize-content-ff-def
by (cases p = 0 , auto)

lemma content-ff-normalize-content-ff-1 : assumes p0 : p 6= 0
shows content-ff (normalize-content-ff p) =dff 1

proof −
have content-ff p = content-ff (smult (content-ff p) (normalize-content-ff p))

unfolding smult-normalize-content-ff ..
also have . . . =dff content-ff p ∗ content-ff (normalize-content-ff p) by (rule

content-ff-smult)
finally show ?thesis unfolding eq-dff-def divides-ff-def using p0 by auto

qed

lemma content-ff-to-fract: assumes set (coeffs p) ⊆ range to-fract
shows content-ff p ∈ range to-fract

proof −
have divides-ff 1 (content-ff p) using assms

unfolding content-ff-iff unfolding divides-ff-def [abs-def ] by auto
thus ?thesis unfolding divides-ff-def by auto

qed

lemma content-ff-map-poly-to-fract: content-ff (map-poly to-fract (p :: ′a :: ufd
poly)) ∈ range to-fract

by (rule content-ff-to-fract, subst coeffs-map-poly, auto)

lemma range-coeffs-to-fract: assumes set (coeffs p) ⊆ range to-fract
shows ∃ m. coeff p i = to-fract m
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proof −
from assms(1 ) to-fract-0 have coeff p i ∈ range to-fract using range-coeff [of

p]
by auto (metis contra-subsetD to-fract-hom.hom-zero insertE range-eqI )

thus ?thesis by auto
qed

lemma divides-ff-coeff : assumes set (coeffs p) ⊆ range to-fract and divides-ff
(to-fract n) (coeff p i)

shows ∃ m. coeff p i = to-fract n ∗ to-fract m
proof −

from range-coeffs-to-fract[OF assms(1 )] obtain k where pi: coeff p i = to-fract
k by auto

from assms(2 )[unfolded this] have n dvd k by simp
then obtain j where k: k = n ∗ j unfolding Rings.dvd-def by auto
show ?thesis unfolding pi k by auto

qed

definition inv-embed :: ′a :: ufd fract ⇒ ′a where
inv-embed = the-inv to-fract

lemma inv-embed[simp]: inv-embed (to-fract x) = x
unfolding inv-embed-def
by (rule the-inv-f-f , auto simp: inj-on-def )

lemma inv-embed-0 [simp]: inv-embed 0 = 0 unfolding to-fract-0 [symmetric] inv-embed
by simp

lemma range-to-fract-embed-poly: assumes set (coeffs p) ⊆ range to-fract
shows p = map-poly to-fract (map-poly inv-embed p)

proof −
have p = map-poly (to-fract o inv-embed) p

by (rule sym, rule map-poly-idI , insert assms, auto)
also have . . . = map-poly to-fract (map-poly inv-embed p)

by (subst map-poly-map-poly, auto)
finally show ?thesis .

qed

lemma content-ff-to-fract-coeffs-to-fract: assumes content-ff p ∈ range to-fract
shows set (coeffs p) ⊆ range to-fract

proof
fix x
assume x ∈ set (coeffs p)
from content-ff-divides-ff [OF this] assms[unfolded eq-dff-def ] show x ∈ range

to-fract
unfolding divides-ff-def by (auto simp del: to-fract-hom.hom-mult simp: to-fract-hom.hom-mult[symmetric])

qed

lemma content-ff-1-coeffs-to-fract: assumes content-ff p =dff 1
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shows set (coeffs p) ⊆ range to-fract
proof

fix x
assume x ∈ set (coeffs p)
from content-ff-divides-ff [OF this] assms[unfolded eq-dff-def ] show x ∈ range

to-fract
unfolding divides-ff-def by (auto simp del: to-fract-hom.hom-mult simp: to-fract-hom.hom-mult[symmetric])

qed

lemma gauss-lemma:
fixes p q :: ′a :: ufd fract poly
shows content-ff (p ∗ q) =dff content-ff p ∗ content-ff q

proof (cases p = 0 ∨ q = 0 )
case False
hence p: p 6= 0 and q: q 6= 0 by auto
let ?c = content-ff :: ′a fract poly ⇒ ′a fract
{

fix p q :: ′a fract poly
assume cp1 : ?c p =dff 1 and cq1 : ?c q =dff 1
define ip where ip ≡ map-poly inv-embed p
define iq where iq ≡ map-poly inv-embed q
interpret map-poly-hom: map-poly-comm-ring-hom to-fract..

from content-ff-1-coeffs-to-fract[OF cp1 ] have cp: set (coeffs p) ⊆ range to-fract
.

from content-ff-1-coeffs-to-fract[OF cq1 ] have cq: set (coeffs q) ⊆ range to-fract
.

have ip: p = map-poly to-fract ip unfolding ip-def
by (rule range-to-fract-embed-poly[OF cp])

have iq: q = map-poly to-fract iq unfolding iq-def
by (rule range-to-fract-embed-poly[OF cq])

have cpq0 : ?c (p ∗ q) 6= 0
unfolding content-ff-0-iff using cp1 cq1 content-ff-eq-dff-nonzero[of - 1 ] by

auto
have cpq: set (coeffs (p ∗ q)) ⊆ range to-fract unfolding ip iq

unfolding map-poly-hom.hom-mult[symmetric] to-fract-hom.coeffs-map-poly-hom
by auto

have ctnt: ?c (p ∗ q) ∈ range to-fract using content-ff-to-fract[OF cpq] .
then obtain cpq where id: ?c (p ∗ q) = to-fract cpq by auto
have dvd: divides-ff 1 (?c (p ∗ q)) using ctnt unfolding divides-ff-def by auto
from cpq0 [unfolded id] have cpq0 : cpq 6= 0 unfolding to-fract-def Zero-fract-def

by auto
hence cpqM : cpq ∈ carrier mk-monoid by auto
have ?c (p ∗ q) =dff 1
proof (rule ccontr)

assume ¬ ?c (p ∗ q) =dff 1
with dvd have ¬ divides-ff (?c (p ∗ q)) 1

unfolding eq-dff-def by auto
from this[unfolded id divides-ff-def ] have cpq:

∧
r . cpq ∗ r 6= 1

by (auto simp: to-fract-def One-fract-def eq-fract)
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then have cpq1 : ¬ cpq dvd 1 by (auto elim:dvdE simp:ac-simps)
from mset-factors-exist[OF cpq0 cpq1 ]
obtain F where F : mset-factors F cpq by auto
have F 6= {#} using F by auto
then obtain f where f : f ∈# F by auto
with F have irrf : irreducible f and f0 : f 6= 0 by (auto dest: mset-factorsD)
from irrf have pf : prime-elem f by simp
note ∗ = this[unfolded prime-elem-def ]
from ∗ have no-unit: ¬ f dvd 1 by auto
from ∗ f0 have prime:

∧
a b. f dvd a ∗ b =⇒ f dvd a ∨ f dvd b unfolding

dvd-def by force
let ?f = to-fract f
from F f
have fdvd: f dvd cpq by (auto intro:mset-factors-imp-dvd)
hence divides-ff ?f (to-fract cpq) by simp
from divides-ff-trans[OF this, folded id, OF content-ff-divides-ff ]
have dvd:

∧
z. z ∈ set (coeffs (p ∗ q)) =⇒ divides-ff ?f z .

{
fix p :: ′a fract poly
assume cp: ?c p =dff 1
let ?P = λ i. ¬ divides-ff ?f (coeff p i)
{

assume ∀ c ∈ set (coeffs p). divides-ff ?f c
hence n: divides-ff ?f (?c p) unfolding content-ff-iff by auto
from divides-ff-trans[OF this] cp[unfolded eq-dff-def ] have divides-ff ?f 1

by auto
also have 1 = to-fract 1 by simp
finally have f dvd 1 by (unfold divides-ff-to-fract)
hence False using no-unit unfolding dvd-def by (auto simp: ac-simps)

}
then obtain cp where cp: cp ∈ set (coeffs p) and ncp: ¬ divides-ff ?f cp

by auto
hence cp ∈ range (coeff p) unfolding range-coeff by auto
with ncp have ∃ i. ?P i by auto
from LeastI-ex[OF this] not-less-Least[of - ?P]
have ∃ i. ?P i ∧ (∀ j. j < i −→ divides-ff ?f (coeff p j)) by blast

} note cont = this
from cont[OF cp1 ] obtain r where

r : ¬ divides-ff ?f (coeff p r) and r ′:
∧

i. i < r =⇒ divides-ff ?f (coeff p i)
by auto

have ∀ i. ∃ k. i < r −→ coeff p i = ?f ∗ to-fract k using divides-ff-coeff [OF
cp r ′] by blast

from choice[OF this] obtain rr where r ′:
∧

i. i < r =⇒ coeff p i = ?f ∗
to-fract (rr i) by blast

let ?r = coeff p r
from cont[OF cq1 ] obtain s where

s: ¬ divides-ff ?f (coeff q s) and s ′:
∧

i. i < s =⇒ divides-ff ?f (coeff q i)
by auto

have ∀ i. ∃ k. i < s −→ coeff q i = ?f ∗ to-fract k using divides-ff-coeff [OF
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cq s ′] by blast
from choice[OF this] obtain ss where s ′:

∧
i. i < s =⇒ coeff q i = ?f ∗

to-fract (ss i) by blast
from range-coeffs-to-fract[OF cp] have ∀ i. ∃ m. coeff p i = to-fract m ..
from choice[OF this] obtain pi where pi:

∧
i. coeff p i = to-fract (pi i) by

blast
from range-coeffs-to-fract[OF cq] have ∀ i. ∃ m. coeff q i = to-fract m ..
from choice[OF this] obtain qi where qi:

∧
i. coeff q i = to-fract (qi i) by

blast
let ?s = coeff q s
let ?g = λ i. coeff p i ∗ coeff q (r + s − i)
define a where a = (

∑
i∈{..<r}. (rr i ∗ qi (r + s − i)))

define b where b = (
∑

i ∈ {Suc r ..r + s}. pi i ∗ (ss (r + s − i)))
have coeff (p ∗ q) (r + s) = (

∑
i≤r + s. ?g i) unfolding coeff-mult ..

also have {..r+s} = {..< r} ∪ {r .. r+s} by auto
also have (

∑
i∈{..<r} ∪ {r ..r + s}. ?g i)

= (
∑

i∈{..<r}. ?g i) + (
∑

i ∈ {r ..r + s}. ?g i)
by (rule sum.union-disjoint, auto)

also have (
∑

i∈{..<r}. ?g i) = (
∑

i∈{..<r}. ?f ∗ (to-fract (rr i) ∗ to-fract
(qi (r + s − i))))

by (rule sum.cong[OF refl], insert r ′ qi, auto)
also have . . . = to-fract (f ∗ a) by (simp add: a-def sum-distrib-left)
also have (

∑
i ∈ {r ..r + s}. ?g i) = ?g r + (

∑
i ∈ {Suc r ..r + s}. ?g i)

by (subst sum.remove[of - r ], auto intro: sum.cong)
also have (

∑
i ∈ {Suc r ..r + s}. ?g i) = (

∑
i ∈ {Suc r ..r + s}. ?f ∗

(to-fract (pi i) ∗ to-fract (ss (r + s − i))))
by (rule sum.cong[OF refl], insert s ′ pi, auto)

also have . . . = to-fract (f ∗ b) by (simp add: sum-distrib-left b-def )
finally have cpq: coeff (p ∗ q) (r + s) = to-fract (f ∗ (a + b)) + ?r ∗ ?s by

(simp add: field-simps)
{

fix i
from dvd[of coeff (p ∗ q) i] have divides-ff ?f (coeff (p ∗ q) i) using

range-coeff [of p ∗ q]
by (cases coeff (p ∗ q) i = 0 , auto simp: divides-ff-def )

}
from this[of r + s, unfolded cpq] have divides-ff ?f (to-fract (f ∗ (a + b) +

pi r ∗ qi s))
unfolding pi qi by simp

from this[unfolded divides-ff-to-fract] have f dvd pi r ∗ qi s
by (metis dvd-add-times-triv-left-iff mult.commute)

from prime[OF this] have f dvd pi r ∨ f dvd qi s by auto
with r s show False unfolding pi qi by auto

qed
} note main = this
define n where n ≡ normalize-content-ff :: ′a fract poly ⇒ ′a fract poly
let ?s = λ p. smult (content-ff p) (n p)
have ?c (p ∗ q) = ?c (?s p ∗ ?s q) unfolding smult-normalize-content-ff n-def

by simp
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also have ?s p ∗ ?s q = smult (?c p ∗ ?c q) (n p ∗ n q) by (simp add:
mult.commute)

also have ?c (. . . ) =dff (?c p ∗ ?c q) ∗ ?c (n p ∗ n q) by (rule content-ff-smult)
also have ?c (n p ∗ n q) =dff 1 unfolding n-def

by (rule main, insert p q, auto simp: content-ff-normalize-content-ff-1 )
finally show ?thesis by simp

qed auto

abbreviation (input) content-ff-ff p ≡ content-ff (map-poly to-fract p)

lemma factorization-to-fract:
assumes q: q 6= 0 and factor : map-poly to-fract (p :: ′a :: ufd poly) = q ∗ r
shows ∃ q ′ r ′ c. c 6= 0 ∧ q = smult c (map-poly to-fract q ′) ∧

r = smult (inverse c) (map-poly to-fract r ′) ∧
content-ff-ff q ′ =dff 1 ∧ p = q ′ ∗ r ′

proof −
let ?c = content-ff
let ?p = map-poly to-fract p
interpret map-poly-inj-comm-ring-hom to-fract :: ′a ⇒ -..
define cq where cq ≡ normalize-content-ff q
define cr where cr ≡ smult (content-ff q) r
define q ′ where q ′ ≡ map-poly inv-embed cq
define r ′ where r ′ ≡ map-poly inv-embed cr
from content-ff-map-poly-to-fract have cp-ff : ?c ?p ∈ range to-fract by auto
from smult-normalize-content-ff [of q] have cqs: q = smult (content-ff q) cq un-

folding cq-def ..
from content-ff-normalize-content-ff-1 [OF q] have c-cq: content-ff cq =dff 1

unfolding cq-def .
from content-ff-1-coeffs-to-fract[OF this] have cq-ff : set (coeffs cq) ⊆ range

to-fract .
have factor : ?p = cq ∗ cr unfolding factor cr-def using cqs

by (metis mult-smult-left mult-smult-right)
from gauss-lemma[of cq cr ] have cp: ?c ?p =dff ?c cq ∗ ?c cr unfolding factor

.
with c-cq have ?c ?p =dff ?c cr

by (metis eq-dff-mult-right-trans mult.commute mult.right-neutral)
with cp-ff have ?c cr ∈ range to-fract

by (metis divides-ff-def to-fract-hom.hom-mult eq-dff-def image-iff range-eqI )
from content-ff-to-fract-coeffs-to-fract[OF this] have cr-ff : set (coeffs cr) ⊆ range

to-fract by auto
have cq: cq = map-poly to-fract q ′ unfolding q ′-def

by (rule range-to-fract-embed-poly[OF cq-ff ])
have cr : cr = map-poly to-fract r ′ unfolding r ′-def

by (rule range-to-fract-embed-poly[OF cr-ff ])
from factor [unfolded cq cr ]
have p: p = q ′ ∗ r ′ by (simp add: injectivity)
from c-cq have ctnt: content-ff-ff q ′ =dff 1 using cq q ′-def by force
from cqs have idq: q = smult (?c q) (map-poly to-fract q ′) unfolding cq .
with q have cq: ?c q 6= 0 by auto
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have r = smult (inverse (?c q)) cr unfolding cr-def using cq by auto
also have cr = map-poly to-fract r ′ by (rule cr)
finally have idr : r = smult (inverse (?c q)) (map-poly to-fract r ′) by auto
from cq p ctnt idq idr show ?thesis by blast

qed

lemma irreducible-PM-M-PFM :
assumes irr : irreducible p
shows degree p = 0 ∧ irreducible (coeff p 0 ) ∨
degree p 6= 0 ∧ irreducible (map-poly to-fract p) ∧ content-ff-ff p =dff 1

proof−
interpret map-poly-inj-idom-hom to-fract..
from irr [unfolded irreducible-altdef ]
have p0 : p 6= 0 and irr : ¬ p dvd 1

∧
b. b dvd p =⇒ ¬ p dvd b =⇒ b dvd 1 by

auto
show ?thesis
proof (cases degree p = 0 )

case True
from degree0-coeffs[OF True] obtain a where p: p = [:a:] by auto
note irr = irr [unfolded p]
from p p0 have a0 : a 6= 0 by auto
moreover have ¬ a dvd 1 using irr(1 ) by simp
moreover {

fix b
assume b dvd a ¬ a dvd b
hence [:b:] dvd [:a:] ¬ [:a:] dvd [:b:] unfolding const-poly-dvd .
from irr(2 )[OF this] have b dvd 1 unfolding const-poly-dvd-1 .

}
ultimately have irreducible a unfolding irreducible-altdef by auto
with True show ?thesis unfolding p by auto

next
case False
let ?E = map-poly to-fract
let ?p = ?E p
have dp: degree ?p 6= 0 using False by simp
from p0 have p ′: ?p 6= 0 by simp
moreover have ¬ ?p dvd 1

proof
assume ?p dvd 1 then obtain q where id: ?p ∗ q = 1 unfolding dvd-def

by auto
have deg: degree (?p ∗ q) = degree ?p + degree q

by (rule degree-mult-eq, insert id, auto)
from arg-cong[OF id, of degree, unfolded deg] dp show False by auto

qed
moreover {

fix q
assume q dvd ?p and ndvd: ¬ ?p dvd q
then obtain r where fact: ?p = q ∗ r unfolding dvd-def by auto
with p ′ have q0 : q 6= 0 by auto
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from factorization-to-fract[OF this fact] obtain q ′ r ′ c where ∗: c 6= 0 q =
smult c (?E q ′)

r = smult (inverse c) (?E r ′) content-ff-ff q ′ =dff 1
p = q ′ ∗ r ′ by auto

hence q ′ dvd p unfolding dvd-def by auto
note irr = irr(2 )[OF this]
have ¬ p dvd q ′

proof
assume p dvd q ′

then obtain u where q ′: q ′ = p ∗ u unfolding dvd-def by auto
from arg-cong[OF this, of λ x. smult c (?E x), unfolded ∗(2 )[symmetric]]
have q = ?p ∗ smult c (?E u) by simp
hence ?p dvd q unfolding dvd-def by blast
with ndvd show False ..

qed
from irr [OF this] have q ′ dvd 1 .
from divides-degree[OF this] have degree q ′ = 0 by auto
from degree0-coeffs[OF this] obtain a ′ where q ′ = [:a ′:] by auto
from ∗(2 )[unfolded this] obtain a where q: q = [:a:]

by (simp add: to-fract-hom.map-poly-pCons-hom)
with q0 have a: a 6= 0 by auto
have q dvd 1 unfolding q const-poly-dvd-1 using a unfolding dvd-def

by (intro exI [of - inverse a], auto)
}
ultimately have irr-p ′: irreducible ?p unfolding irreducible-altdef by auto
let ?c = content-ff
have ?c ?p ∈ range to-fract

by (rule content-ff-to-fract, unfold to-fract-hom.coeffs-map-poly-hom, auto)
then obtain c where cp: ?c ?p = to-fract c by auto
from p ′ cp have c: c 6= 0 by auto
have ?c ?p =dff 1 unfolding cp
proof (rule ccontr)

define cp where cp = normalize-content-ff ?p
from smult-normalize-content-ff [of ?p] have cps: ?p = smult (to-fract c) cp

unfolding cp-def cp ..
from content-ff-normalize-content-ff-1 [OF p ′] have c-cp: content-ff cp =dff 1

unfolding cp-def .
from range-to-fract-embed-poly[OF content-ff-1-coeffs-to-fract[OF c-cp]] ob-

tain cp ′ where cp = ?E cp ′ by auto
from cps[unfolded this] have p = smult c cp ′ by (simp add: injectivity)
hence dvd: [: c :] dvd p unfolding dvd-def by auto
have ¬ p dvd [: c :] using divides-degree[of p [: c :]] c False by auto
from irr(2 )[OF dvd this] have c dvd 1 by simp
assume ¬ to-fract c =dff 1

from this[unfolded eq-dff-def One-fract-def to-fract-def [symmetric] divides-ff-def
to-fract-mult]

have c1 :
∧

r . 1 6= c ∗ r by (auto simp: ac-simps simp del: to-fract-hom.hom-mult
simp: to-fract-hom.hom-mult[symmetric])

with ‹c dvd 1 › show False unfolding dvd-def by blast
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qed
with False irr-p ′ show ?thesis by auto

qed
qed

lemma irreducible-M-PM :
fixes p :: ′a :: ufd poly assumes 0 : degree p = 0 and irr : irreducible (coeff p 0 )
shows irreducible p

proof (cases p = 0 )
case True
thus ?thesis using assms by auto

next
case False
from degree0-coeffs[OF 0 ] obtain a where p: p = [:a:] by auto
with False have a0 : a 6= 0 by auto
from p irr have irreducible a by auto
from this[unfolded irreducible-altdef ]
have a1 : ¬ a dvd 1 and irr :

∧
b. b dvd a =⇒ ¬ a dvd b =⇒ b dvd 1 by auto

{
fix b
assume ∗: b dvd [:a:] ¬ [:a:] dvd b
from divides-degree[OF this(1 )] a0 have degree b = 0 by auto
from degree0-coeffs[OF this] obtain bb where b: b = [: bb :] by auto
from ∗ irr [of bb] have b dvd 1 unfolding b const-poly-dvd by auto

}
with a0 a1 show ?thesis by (auto simp: irreducible-altdef p)

qed

lemma primitive-irreducible-imp-degree:
primitive (p:: ′a::{semiring-gcd,idom} poly) =⇒ irreducible p =⇒ degree p > 0
by (unfold irreducible-primitive-connect[symmetric], auto)

lemma irreducible-degree-field:
fixes p :: ′a :: field poly assumes irreducible p
shows degree p > 0

proof−
{

assume degree p = 0
from degree0-coeffs[OF this] assms obtain a where p: p = [:a:] and a: a 6= 0

by auto
hence 1 = p ∗ [:inverse a:] by auto
hence p dvd 1 ..
hence p ∈ Units mk-monoid by simp
with assms have False unfolding irreducible-def by auto

} then show ?thesis by auto
qed

lemma irreducible-PFM-PM : assumes
irr : irreducible (map-poly to-fract p) and ct: content-ff-ff p =dff 1
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shows irreducible p
proof −

let ?E = map-poly to-fract
let ?p = ?E p
from ct have p0 : p 6= 0 by (auto simp: eq-dff-def divides-ff-def )
moreover

from irreducible-degree-field[OF irr ] have deg: degree p 6= 0 by simp
from irr [unfolded irreducible-altdef ]
have irr :

∧
b. b dvd ?p =⇒ ¬ ?p dvd b =⇒ b dvd 1 by auto

have ¬ p dvd 1 using deg divides-degree[of p 1 ] by auto
moreover {

fix q :: ′a poly
assume dvd: q dvd p and ndvd: ¬ p dvd q
from dvd obtain r where pqr : p = q ∗ r ..
from arg-cong[OF this, of ?E ] have pqr ′: ?p = ?E q ∗ ?E r by simp
from p0 pqr have q: q 6= 0 and r : r 6= 0 by auto
have dp: degree p = degree q + degree r unfolding pqr

by (subst degree-mult-eq, insert q r , auto)
from eq-dff-trans[OF eq-dff-sym[OF gauss-lemma[of ?E q ?E r , folded pqr ′]] ct]
have ct: content-ff (?E q) ∗ content-ff (?E r) =dff 1 .
from content-ff-map-poly-to-fract obtain cq where cq: content-ff (?E q) =

to-fract cq by auto
from content-ff-map-poly-to-fract obtain cr where cr : content-ff (?E r) =

to-fract cr by auto
note ct[unfolded cq cr to-fract-mult eq-dff-def divides-ff-def ]
from this[folded hom-distribs]
obtain c where c: cq ∗ cr ∗ c = 1 by (auto simp del: to-fract-hom.hom-mult

simp: to-fract-hom.hom-mult[symmetric])
hence one: 1 = cq ∗ (c ∗ cr) 1 = cr ∗ (c ∗ cq) by (auto simp: ac-simps)
{

assume ∗: degree q 6= 0 ∧ degree r 6= 0
with dp have degree q < degree p by auto
hence degree (?E q) < degree (?E p) by simp
hence ndvd: ¬ ?p dvd ?E q using divides-degree[of ?p ?E q] q by auto
have ?E q dvd ?p unfolding pqr ′ by auto
from irr [OF this ndvd] have ?E q dvd 1 .
from divides-degree[OF this] ∗ have False by auto

}
hence degree q = 0 ∨ degree r = 0 by blast
then have q dvd 1
proof

assume degree q = 0
from degree0-coeffs[OF this] q obtain a where q: q = [:a:] and a: a 6= 0 by

auto
hence id: set (coeffs (?E q)) = {to-fract a} by auto
have divides-ff (to-fract a) (content-ff (?E q)) unfolding content-ff-iff id by

auto
from this[unfolded cq divides-ff-def , folded hom-distribs]
obtain rr where cq: cq = a ∗ rr by (auto simp del: to-fract-hom.hom-mult
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simp: to-fract-hom.hom-mult[symmetric])
with one(1 ) have 1 = a ∗ (rr ∗ c ∗ cr) by (auto simp: ac-simps)
hence a dvd 1 ..
thus ?thesis by (simp add: q)

next
assume degree r = 0
from degree0-coeffs[OF this] r obtain a where r : r = [:a:] and a: a 6= 0 by

auto
hence id: set (coeffs (?E r)) = {to-fract a} by auto
have divides-ff (to-fract a) (content-ff (?E r)) unfolding content-ff-iff id by

auto
note this[unfolded cr divides-ff-def to-fract-mult]
note this[folded hom-distribs]

then obtain rr where cr : cr = a ∗ rr by (auto simp del: to-fract-hom.hom-mult
simp: to-fract-hom.hom-mult[symmetric])

with one(2 ) have one: 1 = a ∗ (rr ∗ c ∗ cq) by (auto simp: ac-simps)
from arg-cong[OF pqr [unfolded r ], of λ p. p ∗ [:rr ∗ c ∗ cq:]]
have p ∗ [:rr ∗ c ∗ cq:] = q ∗ [:a ∗ (rr ∗ c ∗ cq):] by (simp add: ac-simps)
also have . . . = q unfolding one[symmetric] by auto
finally obtain r where q = p ∗ r by blast
hence p dvd q ..
with ndvd show ?thesis by auto

qed
}
ultimately show ?thesis by (auto simp:irreducible-altdef )

qed

lemma irreducible-cases: irreducible p ←→
degree p = 0 ∧ irreducible (coeff p 0 ) ∨
degree p 6= 0 ∧ irreducible (map-poly to-fract p) ∧ content-ff-ff p =dff 1
using irreducible-PM-M-PFM irreducible-M-PM irreducible-PFM-PM
by blast

lemma dvd-PM-iff : p dvd q ←→ divides-ff (content-ff-ff p) (content-ff-ff q) ∧
map-poly to-fract p dvd map-poly to-fract q

proof −
interpret map-poly-inj-idom-hom to-fract..
let ?E = map-poly to-fract
show ?thesis (is ?l = ?r)
proof

assume p dvd q
then obtain r where qpr : q = p ∗ r ..
from arg-cong[OF this, of ?E ]
have dvd: ?E p dvd ?E q by auto

from content-ff-map-poly-to-fract obtain cq where cq: content-ff-ff q = to-fract
cq by auto

from content-ff-map-poly-to-fract obtain cp where cp: content-ff-ff p = to-fract
cp by auto

from content-ff-map-poly-to-fract obtain cr where cr : content-ff-ff r = to-fract
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cr by auto
from gauss-lemma[of ?E p ?E r , folded hom-distribs qpr , unfolded cq cp cr ]
have divides-ff (content-ff-ff p) (content-ff-ff q) unfolding cq cp eq-dff-def

by (metis divides-ff-def divides-ff-trans)
with dvd show ?r by blast

next
assume ?r
show ?l
proof (cases q = 0 )

case True
with ‹?r› show ?l by auto

next
case False note q = this
hence q ′: ?E q 6= 0 by auto
from ‹?r› obtain rr where qpr : ?E q = ?E p ∗ rr unfolding dvd-def by

auto
with q have p: p 6= 0 and Ep: ?E p 6= 0 and rr : rr 6= 0 by auto
from gauss-lemma[of ?E p rr , folded qpr ]
have ct: content-ff-ff q =dff content-ff-ff p ∗ content-ff rr

by auto
from content-ff-map-poly-to-fract[of p] obtain cp where cp: content-ff-ff p

= to-fract cp by auto
from content-ff-map-poly-to-fract[of q] obtain cq where cq: content-ff-ff q =

to-fract cq by auto
from ‹?r›[unfolded cp cq] have divides-ff (to-fract cp) (to-fract cq) ..
with ct[unfolded cp cq eq-dff-def ] have content-ff rr ∈ range to-fract

by (metis (no-types, lifting) Ep content-ff-0-iff cp divides-ff-def
divides-ff-trans mult.commute mult-right-cancel range-eqI )

from range-to-fract-embed-poly[OF content-ff-to-fract-coeffs-to-fract[OF this]]
obtain r

where rr : rr = ?E r by auto
from qpr [unfolded rr , folded hom-distribs]
have q = p ∗ r by (rule injectivity)
thus p dvd q ..

qed
qed

qed

lemma factorial-monoid-poly: factorial-monoid (mk-monoid :: ′a :: ufd poly monoid)
proof (fold factorial-condition-one, intro conjI )
interpret M : factorial-monoid mk-monoid :: ′a monoid by (fact factorial-monoid)
interpret PFM : factorial-monoid mk-monoid :: ′a fract poly monoid

by (rule as-ufd.factorial-monoid)
interpret PM : comm-monoid-cancel mk-monoid :: ′a poly monoid by (unfold-locales,

auto)
let ?E = map-poly to-fract
show divisor-chain-condition-monoid (mk-monoid:: ′a poly monoid)
proof (unfold-locales, unfold mk-monoid-simps)

let ?rel ′ = {(x:: ′a poly, y). x 6= 0 ∧ y 6= 0 ∧ properfactor x y}
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let ?rel ′′ = {(x:: ′a, y). x 6= 0 ∧ y 6= 0 ∧ properfactor x y}
let ?relPM = {(x, y). x 6= 0 ∧ y 6= 0 ∧ x dvd y ∧ ¬ y dvd (x :: ′a poly)}
let ?relM = {(x, y). x 6= 0 ∧ y 6= 0 ∧ x dvd y ∧ ¬ y dvd (x :: ′a)}
have id: ?rel ′ = ?relPM using properfactor-nz by auto
have id ′: ?rel ′′ = ?relM using properfactor-nz by auto
have wf ?rel ′′ using M .division-wellfounded by auto
hence wfM : wf ?relM using id ′ by auto
let ?c = λ p. inv-embed (content-ff-ff p)
let ?f = λ p. (degree p, ?c p)
note wf = wf-inv-image[OF wf-lex-prod[OF wf-less wfM ], of ?f ]
show wf ?rel ′ unfolding id
proof (rule wf-subset[OF wf ], clarify)

fix p q :: ′a poly
assume p: p 6= 0 and q: q 6= 0 and dvd: p dvd q and ndvd: ¬ q dvd p
from dvd obtain r where qpr : q = p ∗ r ..
from degree-mult-eq[of p r , folded qpr ] q qpr have r : r 6= 0

and deg: degree q = degree p + degree r by auto
show (p,q) ∈ inv-image ({(x, y). x < y} <∗lex∗> ?relM ) ?f
proof (cases degree p = degree q)

case False
with deg have degree p < degree q by auto
thus ?thesis by auto

next
case True
with deg have degree r = 0 by simp
from degree0-coeffs[OF this] r obtain a where ra: r = [:a:] and a: a 6= 0

by auto
from arg-cong[OF qpr , of λ p. ?E p ∗ [:inverse (to-fract a):]] a
have ?E p = ?E q ∗ [:inverse (to-fract a):]

by (auto simp: ac-simps ra)
hence ?E q dvd ?E p ..
with ndvd dvd-PM-iff have ndvd: ¬ divides-ff (content-ff-ff q) (content-ff-ff

p) by auto
from content-ff-map-poly-to-fract obtain cq where cq: content-ff-ff q =

to-fract cq by auto
from content-ff-map-poly-to-fract obtain cp where cp: content-ff-ff p =

to-fract cp by auto
from ndvd[unfolded cp cq] have ndvd: ¬ cq dvd cp by simp
from iffD1 [OF dvd-PM-iff ,OF dvd,unfolded cq cp]
have dvd: cp dvd cq by simp
have c-p: ?c p = cp unfolding cp by simp
have c-q: ?c q = cq unfolding cq by simp
from q cq have cq0 : cq 6= 0 by auto
from p cp have cp0 : cp 6= 0 by auto
from ndvd cq0 cp0 dvd have (?c p, ?c q) ∈ ?relM unfolding c-p c-q by

auto
with True show ?thesis by auto

qed
qed
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qed
show primeness-condition-monoid (mk-monoid:: ′a poly monoid)
proof (unfold-locales, unfold mk-monoid-simps)

fix p :: ′a poly
assume p: p 6= 0 and irred p
then have irr : irreducible p by auto
from p have p ′: ?E p 6= 0 by auto
from irreducible-PM-M-PFM [OF irr ] have choice: degree p = 0 ∧ irred (coeff

p 0 )
∨ degree p 6= 0 ∧ irred (?E p) ∧ content-ff-ff p =dff 1 by auto

show Divisibility.prime mk-monoid p
proof (rule Divisibility.primeI , unfold mk-monoid-simps mem-Units)

show ¬ p dvd 1
proof

assume p dvd 1
from divides-degree[OF this] have dp: degree p = 0 by auto
from degree0-coeffs[OF this] p obtain a where p: p = [:a:] and a: a 6= 0

by auto
with choice have irr : irreducible a by auto
from ‹p dvd 1 ›[unfolded p] have a dvd 1 by auto
with irr show False unfolding irreducible-def by auto

qed
fix q r :: ′a poly
assume q: q 6= 0 and r : r 6= 0 and factor p (q ∗ r)
from this[unfolded factor-idom] have p dvd q ∗ r by auto

from iffD1 [OF dvd-PM-iff this] have dvd-ct: divides-ff (content-ff-ff p)
(content-ff (?E (q ∗ r)))

and dvd-E : ?E p dvd ?E q ∗ ?E r by auto
from gauss-lemma[of ?E q ?E r ] divides-ff-trans[OF dvd-ct, of content-ff-ff q

∗ content-ff-ff r ]
have dvd-ct: divides-ff (content-ff-ff p) (content-ff-ff q ∗ content-ff-ff r)

unfolding eq-dff-def by auto
from choice
have p dvd q ∨ p dvd r
proof

assume degree p 6= 0 ∧ irred (?E p) ∧ content-ff-ff p =dff 1
hence deg: degree p 6= 0 and irr : irred (?E p) and ct: content-ff-ff p =dff

1 by auto
from PFM .irreducible-prime[OF irr ] p have prime: Divisibility.prime

mk-monoid (?E p) by auto
from q r have Eq: ?E q ∈ carrier mk-monoid and Er : ?E r ∈ carrier

mk-monoid
and q ′: ?E q 6= 0 and r ′: ?E r 6= 0 and qr ′: ?E q ∗ ?E r 6= 0 by auto

from PFM .prime-divides[OF Eq Er prime] q ′ r ′ qr ′ dvd-E
have dvd-E : ?E p dvd ?E q ∨ ?E p dvd ?E r by simp
from ct have ct: divides-ff (content-ff-ff p) 1 unfolding eq-dff-def by auto

moreover have
∧

q. divides-ff 1 (content-ff-ff q) using content-ff-map-poly-to-fract
unfolding divides-ff-def by auto

from divides-ff-trans[OF ct this] have ct:
∧

q. divides-ff (content-ff-ff p)
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(content-ff-ff q) .
with dvd-E show ?thesis using dvd-PM-iff by blast

next
assume degree p = 0 ∧ irred (coeff p 0 )
hence deg: degree p = 0 and irr : irred (coeff p 0 ) by auto
from degree0-coeffs[OF deg] p obtain a where p: p = [:a:] and a: a 6= 0

by auto
with irr have irr : irred a and aM : a ∈ carrier mk-monoid by auto

from M .irreducible-prime[OF irr aM ] have prime: Divisibility.prime
mk-monoid a .

from content-ff-map-poly-to-fract obtain cq where cq: content-ff-ff q =
to-fract cq by auto

from content-ff-map-poly-to-fract obtain cp where cp: content-ff-ff p =
to-fract cp by auto

from content-ff-map-poly-to-fract obtain cr where cr : content-ff-ff r =
to-fract cr by auto

have divides-ff (to-fract a) (content-ff-ff p) unfolding p content-ff-iff using
a by auto

from divides-ff-trans[OF this[unfolded cp] dvd-ct[unfolded cp cq cr ]]
have divides-ff (to-fract a) (to-fract (cq ∗ cr)) by simp

hence dvd: a dvd cq ∗ cr by (auto simp add: divides-ff-def simp del:
to-fract-hom.hom-mult simp: to-fract-hom.hom-mult[symmetric])

from content-ff-divides-ff [of to-fract a ?E p] have divides-ff (to-fract cp)
(to-fract a)

using cp a p by auto
hence cpa: cp dvd a by simp
from a q r cq cr have aM : a ∈ carrier mk-monoid and qM : cq ∈ carrier

mk-monoid and rM : cr ∈ carrier mk-monoid
and q ′: cq 6= 0 and r ′: cr 6= 0 and qr ′: cq ∗ cr 6= 0
by auto

from M .prime-divides[OF qM rM prime] q ′ r ′ qr ′ dvd
have a dvd cq ∨ a dvd cr by simp
with dvd-trans[OF cpa] have dvd: cp dvd cq ∨ cp dvd cr by auto
have

∧
q. ?E p ∗ (smult (inverse (to-fract a)) q) = q unfolding p using

a by (auto simp: one-poly-def )
hence Edvd:

∧
q. ?E p dvd q unfolding dvd-def by metis

from dvd Edvd show ?thesis apply (subst(1 2 ) dvd-PM-iff ) unfolding cp
cq cr by auto

qed
thus factor p q ∨ factor p r unfolding factor-idom using p q r by auto

qed
qed

qed

instance poly :: (ufd) ufd
by (intro ufd.intro-of-class factorial-monoid-imp-ufd factorial-monoid-poly)

lemma primitive-iff-some-content-dvd-1 :
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fixes f :: ′a :: ufd poly
shows primitive f ←→ some-gcd.listgcd (coeffs f ) dvd 1 (is - ←→ ?c dvd 1 )

proof(intro iffI primitiveI )
fix x
assume (

∧
y. y ∈ set (coeffs f ) =⇒ x dvd y)

from some-gcd.listgcd-greatest[of coeffs f , OF this]
have x dvd ?c by simp
also assume ?c dvd 1
finally show x dvd 1 .

next
assume primitive f
from primitiveD[OF this some-gcd.listgcd[of - coeffs f ]]
show ?c dvd 1 by auto

qed

end

5 Polynomials in Rings and Fields
5.1 Polynomials in Rings
We use a locale to work with polynomials in some integer-modulo ring.
theory Poly-Mod

imports
HOL−Computational-Algebra.Primes
Polynomial-Factorization.Square-Free-Factorization
Unique-Factorization-Poly

begin

locale poly-mod = fixes m :: int
begin

definition M :: int ⇒ int where M x = x mod m

lemma M-0 [simp]: M 0 = 0
by (auto simp add: M-def )

lemma M-M [simp]: M (M x) = M x
by (auto simp add: M-def )

lemma M-plus[simp]: M (M x + y) = M (x + y) M (x + M y) = M (x + y)
by (auto simp add: M-def mod-simps)

lemma M-minus[simp]: M (M x − y) = M (x − y) M (x − M y) = M (x − y)
by (auto simp add: M-def mod-simps)

lemma M-times[simp]: M (M x ∗ y) = M (x ∗ y) M (x ∗ M y) = M (x ∗ y)
by (auto simp add: M-def mod-simps)
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lemma M-sum: M (sum (λ x. M (f x)) A) = M (sum f A)
proof (induct A rule: infinite-finite-induct)

case (insert x A)
from insert(1−2 ) have M (

∑
x∈insert x A. M (f x)) = M (f x + M ((

∑
x∈A.

M (f x)))) by simp
also have M ((

∑
x∈A. M (f x))) = M ((

∑
x∈A. f x)) using insert by simp

finally show ?case using insert by simp
qed auto

definition inv-M :: int ⇒ int where
inv-M = (λ x. if x + x ≤ m then x else x − m)

lemma M-inv-M-id[simp]: M (inv-M x) = M x
unfolding inv-M-def M-def by simp

definition Mp :: int poly ⇒ int poly where Mp = map-poly M

lemma Mp-0 [simp]: Mp 0 = 0 unfolding Mp-def by auto

lemma Mp-coeff : coeff (Mp f ) i = M (coeff f i) unfolding Mp-def
by (simp add: M-def coeff-map-poly)

abbreviation eq-m :: int poly ⇒ int poly ⇒ bool (infixl ‹=m› 50 ) where
f =m g ≡ (Mp f = Mp g)

notation eq-m (infixl ‹=m› 50 )

abbreviation degree-m :: int poly ⇒ nat where
degree-m f ≡ degree (Mp f )

lemma mult-Mp[simp]: Mp (Mp f ∗ g) = Mp (f ∗ g) Mp (f ∗ Mp g) = Mp (f ∗
g)
proof −

{
fix f g
have Mp (Mp f ∗ g) = Mp (f ∗ g)
unfolding poly-eq-iff Mp-coeff unfolding coeff-mult Mp-coeff
proof

fix n
show M (

∑
i≤n. M (coeff f i) ∗ coeff g (n − i)) = M (

∑
i≤n. coeff f i ∗

coeff g (n − i))
by (subst M-sum[symmetric], rule sym, subst M-sum[symmetric], unfold

M-times, simp)
qed

}
from this[of f g] this[of g f ] show Mp (Mp f ∗ g) = Mp (f ∗ g) Mp (f ∗ Mp g)

= Mp (f ∗ g)
by (auto simp: ac-simps)
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qed

lemma plus-Mp[simp]: Mp (Mp f + g) = Mp (f + g) Mp (f + Mp g) = Mp (f +
g)

unfolding poly-eq-iff Mp-coeff unfolding coeff-mult Mp-coeff by (auto simp
add: Mp-coeff )

lemma minus-Mp[simp]: Mp (Mp f − g) = Mp (f − g) Mp (f − Mp g) = Mp (f
− g)

unfolding poly-eq-iff Mp-coeff unfolding coeff-mult Mp-coeff by (auto simp
add: Mp-coeff )

lemma Mp-smult[simp]: Mp (smult (M a) f ) = Mp (smult a f ) Mp (smult a (Mp
f )) = Mp (smult a f )

unfolding Mp-def smult-as-map-poly
by (rule poly-eqI , auto simp: coeff-map-poly)+

lemma Mp-Mp[simp]: Mp (Mp f ) = Mp f unfolding Mp-def
by (intro poly-eqI , auto simp: coeff-map-poly)

lemma Mp-smult-m-0 [simp]: Mp (smult m f ) = 0
by (intro poly-eqI , auto simp: Mp-coeff , auto simp: M-def )

definition dvdm :: int poly ⇒ int poly ⇒ bool (infix ‹dvdm› 50 ) where
f dvdm g = (∃ h. g =m f ∗ h)

notation dvdm (infix ‹dvdm› 50 )

lemma dvdmE :
assumes fg: f dvdm g

and main:
∧

h. g =m f ∗ h =⇒ Mp h = h =⇒ thesis
shows thesis

proof−
from fg obtain h where g =m f ∗ h by (auto simp: dvdm-def )
then have g =m f ∗ Mp h by auto
from main[OF this] show thesis by auto

qed

lemma Mp-dvdm[simp]: Mp f dvdm g ←→ f dvdm g
and dvdm-Mp[simp]: f dvdm Mp g ←→ f dvdm g by (auto simp: dvdm-def )

definition irreducible-m
where irreducible-m f = (¬f =m 0 ∧ ¬ f dvdm 1 ∧ (∀ a b. f =m a ∗ b −→ a

dvdm 1 ∨ b dvdm 1 ))

definition irreducibled-m :: int poly ⇒ bool where irreducibled-m f ≡
degree-m f > 0 ∧
(∀ g h. degree-m g < degree-m f −→ degree-m h < degree-m f −→ ¬ f =m g ∗

h)
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definition prime-elem-m
where prime-elem-m f ≡ ¬ f =m 0 ∧ ¬ f dvdm 1 ∧ (∀ g h. f dvdm g ∗ h −→ f

dvdm g ∨ f dvdm h)

lemma degree-m-le-degree [intro!]: degree-m f ≤ degree f
by (simp add: Mp-def degree-map-poly-le)

lemma irreducibled-mI :
assumes f0 : degree-m f > 0

and main:
∧

g h. Mp g = g =⇒ Mp h = h =⇒ degree g > 0 =⇒ degree g <
degree-m f =⇒ degree h > 0 =⇒ degree h < degree-m f =⇒ f =m g ∗ h =⇒ False

shows irreducibled-m f
proof (unfold irreducibled-m-def , intro conjI allI impI f0 notI )

fix g h
assume deg: degree-m g < degree-m f degree-m h < degree-m f and f =m g ∗ h
then have f : f =m Mp g ∗ Mp h by simp
have degree-m f ≤ degree-m g + degree-m h

unfolding f using degree-mult-le order .trans by blast
with main[of Mp g Mp h] deg f show False by auto

qed

lemma irreducibled-mE :
assumes irreducibled-m f

and degree-m f > 0 =⇒ (
∧

g h. degree-m g < degree-m f =⇒ degree-m h <
degree-m f =⇒ ¬ f =m g ∗ h) =⇒ thesis

shows thesis
using assms by (unfold irreducibled-m-def , auto)

lemma irreducibled-mD:
assumes irreducibled-m f
shows degree-m f > 0 and

∧
g h. degree-m g < degree-m f =⇒ degree-m h <

degree-m f =⇒ ¬ f =m g ∗ h
using assms by (auto elim: irreducibled-mE)

definition square-free-m :: int poly ⇒ bool where
square-free-m f = (¬ f =m 0 ∧ (∀ g. degree-m g 6= 0 −→ ¬ (g ∗ g dvdm f )))

definition coprime-m :: int poly ⇒ int poly ⇒ bool where
coprime-m f g = (∀ h. h dvdm f −→ h dvdm g −→ h dvdm 1 )

lemma Mp-square-free-m[simp]: square-free-m (Mp f ) = square-free-m f
unfolding square-free-m-def dvdm-def by simp

lemma square-free-m-cong: square-free-m f =⇒ Mp f = Mp g =⇒ square-free-m
g

unfolding square-free-m-def dvdm-def by simp

lemma Mp-prod-mset[simp]: Mp (prod-mset (image-mset Mp b)) = Mp (prod-mset
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b)
proof (induct b)

case (add x b)
have Mp (prod-mset (image-mset Mp ({#x#}+b))) = Mp (Mp x ∗ prod-mset

(image-mset Mp b)) by simp
also have . . . = Mp (Mp x ∗ Mp (prod-mset (image-mset Mp b))) by simp
also have . . . = Mp ( Mp x ∗ Mp (prod-mset b)) unfolding add by simp
finally show ?case by simp

qed simp

lemma Mp-prod-list: Mp (prod-list (map Mp b)) = Mp (prod-list b)
proof (induct b)

case (Cons b xs)
have Mp (prod-list (map Mp (b # xs))) = Mp (Mp b ∗ prod-list (map Mp xs))

by simp
also have . . . = Mp (Mp b ∗ Mp (prod-list (map Mp xs))) by simp
also have . . . = Mp (Mp b ∗ Mp (prod-list xs)) unfolding Cons by simp
finally show ?case by simp

qed simp

Polynomial evaluation modulo
definition M-poly p x ≡ M (poly p x)

lemma M-poly-Mp[simp]: M-poly (Mp p) = M-poly p
proof(intro ext, induct p)

case 0 show ?case by auto
next

case IH : (pCons a p)
from IH (1 ) have M-poly (Mp (pCons a p)) x = M (a + M (x ∗ M-poly (Mp p)

x))
by (simp add: M-poly-def Mp-def )

also note IH (2 )[of x]
finally show ?case by (simp add: M-poly-def )

qed

lemma Mp-lift-modulus: assumes f =m g
shows poly-mod.eq-m (m ∗ k) (smult k f ) (smult k g)
using assms unfolding poly-eq-iff poly-mod.Mp-coeff coeff-smult
unfolding poly-mod.M-def by simp

lemma Mp-ident-product: n > 0 =⇒ Mp f = f =⇒ poly-mod.Mp (m ∗ n) f = f
unfolding poly-eq-iff poly-mod.Mp-coeff poly-mod.M-def
by (auto simp add: zmod-zmult2-eq) (metis mod-div-trivial mod-0 )

lemma Mp-shrink-modulus: assumes poly-mod.eq-m (m ∗ k) f g k 6= 0
shows f =m g

proof −
from assms have a:

∧
n. coeff f n mod (m ∗ k) = coeff g n mod (m ∗ k)

unfolding poly-eq-iff poly-mod.Mp-coeff unfolding poly-mod.M-def by auto
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show ?thesis unfolding poly-eq-iff poly-mod.Mp-coeff unfolding poly-mod.M-def
proof

fix n
show coeff f n mod m = coeff g n mod m using a[of n] ‹k 6= 0 ›

by (metis mod-mult-right-eq mult.commute mult-cancel-left mult-mod-right)
qed

qed

lemma degree-m-le: degree-m f ≤ degree f unfolding Mp-def by (rule degree-map-poly-le)

lemma degree-m-eq: coeff f (degree f ) mod m 6= 0 =⇒ m > 1 =⇒ degree-m f =
degree f

using degree-m-le[of f ] unfolding Mp-def
by (auto intro: degree-map-poly simp: Mp-def poly-mod.M-def )

lemma degree-m-mult-le:
assumes eq: f =m g ∗ h
shows degree-m f ≤ degree-m g + degree-m h

proof −
have degree-m f = degree-m (Mp g ∗ Mp h) using eq by simp
also have . . . ≤ degree (Mp g ∗ Mp h) by (rule degree-m-le)
also have . . . ≤ degree-m g + degree-m h by (rule degree-mult-le)
finally show ?thesis by auto

qed

lemma degree-m-smult-le: degree-m (smult c f ) ≤ degree-m f
by (metis Mp-0 coeff-0 degree-le degree-m-le degree-smult-eq poly-mod.Mp-smult(2 )

smult-eq-0-iff )

lemma irreducible-m-Mp[simp]: irreducible-m (Mp f )←→ irreducible-m f by (simp
add: irreducible-m-def )

lemma eq-m-irreducible-m: f =m g =⇒ irreducible-m f ←→ irreducible-m g
using irreducible-m-Mp by metis

definition mset-factors-m where mset-factors-m F p ≡
F 6= {#} ∧ (∀ f . f ∈# F −→ irreducible-m f ) ∧ p =m prod-mset F

end

declare poly-mod.M-def [code]
declare poly-mod.Mp-def [code]
declare poly-mod.inv-M-def [code]

definition Irr-Mon :: ′a :: comm-semiring-1 poly set
where Irr-Mon = {x. irreducible x ∧ monic x}

definition factorization :: ′a :: comm-semiring-1 poly set ⇒ ′a poly ⇒ ( ′a × ′a
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poly multiset) ⇒ bool where
factorization Factors f cfs ≡ (case cfs of (c,fs) ⇒ f = (smult c (prod-mset fs)) ∧

(set-mset fs ⊆ Factors))

definition unique-factorization :: ′a :: comm-semiring-1 poly set ⇒ ′a poly ⇒ ( ′a
× ′a poly multiset) ⇒ bool where

unique-factorization Factors f cfs = (Collect (factorization Factors f ) = {cfs})

lemma irreducible-multD:
assumes l: irreducible (a∗b)
shows a dvd 1 ∧ irreducible b ∨ b dvd 1 ∧ irreducible a

proof−
from l have a dvd 1 ∨ b dvd 1 by auto
then show ?thesis
proof(elim disjE)

assume a: a dvd 1
with l have irreducible b

unfolding irreducible-def
by (meson is-unit-mult-iff mult.left-commute mult-not-zero)

with a show ?thesis by auto
next

assume a: b dvd 1
with l have irreducible a

unfolding irreducible-def
by (meson is-unit-mult-iff mult-not-zero semiring-normalization-rules(16 ))

with a show ?thesis by auto
qed

qed

lemma irreducible-dvd-prod-mset:
fixes p :: ′a :: field poly
assumes irr : irreducible p and dvd: p dvd prod-mset as
shows ∃ a ∈# as. p dvd a

proof −
from irr [unfolded irreducible-def ] have deg: degree p 6= 0 by auto
hence p1 : ¬ p dvd 1 unfolding dvd-def

by (metis degree-1 nonzero-mult-div-cancel-left div-poly-less linorder-neqE-nat
mult-not-zero not-less0 zero-neq-one)

from dvd show ?thesis
proof (induct as)

case (add a as)
hence prod-mset (add-mset a as) = a ∗ prod-mset as by auto
from add(2 )[unfolded this] add(1 ) irr
show ?case by auto

qed (insert p1 , auto)
qed

lemma monic-factorization-unique-mset:
fixes P:: ′a::field poly multiset
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assumes eq: prod-mset P = prod-mset Q
and P: set-mset P ⊆ {q. irreducible q ∧ monic q}
and Q: set-mset Q ⊆ {q. irreducible q ∧ monic q}

shows P = Q
proof −

{
fix P Q :: ′a poly multiset
assume id: prod-mset P = prod-mset Q
and P: set-mset P ⊆ {q. irreducible q ∧ monic q}
and Q: set-mset Q ⊆ {q. irreducible q ∧ monic q}
hence P ⊆# Q
proof (induct P arbitrary: Q)

case (add x P Q ′)
from add(3 ) have irr : irreducible x and mon: monic x by auto
have ∃ a ∈# Q ′. x dvd a
proof (rule irreducible-dvd-prod-mset[OF irr ])

show x dvd prod-mset Q ′ unfolding add(2 )[symmetric] by simp
qed
then obtain y Q where Q ′: Q ′ = add-mset y Q and xy: x dvd y by (meson

mset-add)
from add(4 ) Q ′ have irr ′: irreducible y and mon ′: monic y by auto
have x = y using irr irr ′ xy mon mon ′

by (metis irreducibleD ′ irreducible-not-unit poly-dvd-antisym)
hence Q ′: Q ′ = Q + {#x#} using Q ′ by auto
from mon have x0 : x 6= 0 by auto
from arg-cong[OF add(2 )[unfolded Q ′], of λ z. z div x]
have eq: prod-mset P = prod-mset Q using x0 by auto
from add(3−4 )[unfolded Q ′]
have set-mset P ⊆ {q. irreducible q ∧ monic q} set-mset Q ⊆ {q. irreducible

q ∧ monic q}
by auto

from add(1 )[OF eq this] show ?case unfolding Q ′ by auto
qed auto

}
from this[OF eq P Q] this[OF eq[symmetric] Q P]
show ?thesis by auto

qed

lemma exactly-one-monic-factorization:
assumes mon: monic (f :: ′a :: field poly)
shows ∃ ! fs. f = prod-mset fs ∧ set-mset fs ⊆ {q. irreducible q ∧ monic q}

proof −
from monic-irreducible-factorization[OF mon]
obtain gs g where fin: finite gs and f : f = (

∏
a∈gs. a ^ Suc (g a))

and gs: gs ⊆ {q. irreducible q ∧ monic q}
by blast

from fin
have ∃ fs. set-mset fs ⊆ gs ∧ prod-mset fs = (

∏
a∈gs. a ^ Suc (g a))
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proof (induct gs)
case (insert a gs)
from insert(3 ) obtain fs where ∗: set-mset fs ⊆ gs prod-mset fs = (

∏
a∈gs.

a ^ Suc (g a)) by auto
let ?fs = fs + replicate-mset (Suc (g a)) a
show ?case
proof (rule exI [of - fs + replicate-mset (Suc (g a)) a], intro conjI )

show set-mset ?fs ⊆ insert a gs using ∗(1 ) by auto
show prod-mset ?fs = (

∏
a∈insert a gs. a ^ Suc (g a))

by (subst prod.insert[OF insert(1−2 )], auto simp: ∗(2 ))
qed

qed simp
then obtain fs where set-mset fs ⊆ gs prod-mset fs = (

∏
a∈gs. a ^ Suc (g a))

by auto
with gs f have ex: ∃ fs. f = prod-mset fs ∧ set-mset fs ⊆ {q. irreducible q ∧

monic q}
by (intro exI [of - fs], auto)

thus ?thesis using monic-factorization-unique-mset by blast
qed

lemma monic-prod-mset:
fixes as :: ′a :: idom poly multiset
assumes

∧
a. a ∈ set-mset as =⇒ monic a

shows monic (prod-mset as) using assms
by (induct as, auto intro: monic-mult)

lemma exactly-one-factorization:
assumes f : f 6= (0 :: ′a :: field poly)
shows ∃ ! cfs. factorization Irr-Mon f cfs

proof −
let ?a = coeff f (degree f )
let ?b = inverse ?a
let ?g = smult ?b f
define g where g = ?g
from f have a: ?a 6= 0 ?b 6= 0 by (auto simp: field-simps)
hence monic g unfolding g-def by simp
note ex1 = exactly-one-monic-factorization[OF this, folded Irr-Mon-def ]
then obtain fs where g: g = prod-mset fs set-mset fs ⊆ Irr-Mon by auto
let ?cfs = (?a,fs)
have cfs: factorization Irr-Mon f ?cfs unfolding factorization-def split g(1 )[symmetric]

using g(2 ) unfolding g-def by (simp add: a field-simps)
show ?thesis
proof (rule, rule cfs)

fix dgs
assume fact: factorization Irr-Mon f dgs
obtain d gs where dgs: dgs = (d,gs) by force
from fact[unfolded factorization-def dgs split]
have fd: f = smult d (prod-mset gs) and gs: set-mset gs ⊆ Irr-Mon by auto

have monic (prod-mset gs) by (rule monic-prod-mset, insert gs[unfolded Irr-Mon-def ],
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auto)
hence d: d = ?a unfolding fd by auto
from arg-cong[OF fd, of λ x. smult ?b x, unfolded d g-def [symmetric]]
have g = prod-mset gs using a by (simp add: field-simps)
with ex1 g gs have gs = fs by auto
thus dgs = ?cfs unfolding dgs d by auto

qed
qed

lemma mod-ident-iff :
‹(x :: int) mod m = x ←→ x ∈ {0 ..< m}›
if ‹m > 0 ›

proof −
from that pos-mod-bound [of m x] pos-mod-sign [of m x ] have ‹0 ≤ x mod m›

‹x mod m < m›
by simp-all

with that show ?thesis by auto
qed

declare prod-mset-prod-list[simp]

lemma mult-1-is-id[simp]: (∗) (1 :: ′a :: ring-1 ) = id by auto

context poly-mod
begin

lemma degree-m-eq-monic: monic f =⇒ m > 1 =⇒ degree-m f = degree f
by (rule degree-m-eq) auto

lemma monic-degree-m-lift: assumes monic f k > 1 m > 1
shows monic (poly-mod.Mp (m ∗ k) f )

proof −
have deg: degree (poly-mod.Mp (m ∗ k) f ) = degree f

by (rule poly-mod.degree-m-eq-monic[of f m ∗ k], insert assms, auto simp:
less-1-mult)

show ?thesis unfolding poly-mod.Mp-coeff deg assms poly-mod.M-def using
assms(2−)

by (simp add: less-1-mult)
qed

end

locale poly-mod-2 = poly-mod m for m +
assumes m1 : m > 1

begin

lemma M-1 [simp]: M 1 = 1 unfolding M-def using m1
by auto
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lemma Mp-1 [simp]: Mp 1 = 1 unfolding Mp-def by simp

lemma monic-degree-m[simp]: monic f =⇒ degree-m f = degree f
using degree-m-eq-monic[of f ] using m1 by auto

lemma monic-Mp: monic f =⇒ monic (Mp f )
by (auto simp: Mp-coeff )

lemma Mp-0-smult-sdiv-poly: assumes Mp f = 0
shows smult m (sdiv-poly f m) = f

proof (intro poly-eqI , unfold Mp-coeff coeff-smult sdiv-poly-def , subst coeff-map-poly,
force)

fix n
from assms have coeff (Mp f ) n = 0 by simp
hence 0 : coeff f n mod m = 0 unfolding Mp-coeff M-def .
thus m ∗ (coeff f n div m) = coeff f n by auto

qed

lemma Mp-product-modulus: m ′ = m ∗ k =⇒ k > 0 =⇒ Mp (poly-mod.Mp m ′ f )
= Mp f
by (intro poly-eqI , unfold poly-mod.Mp-coeff poly-mod.M-def , auto simp: mod-mod-cancel)

lemma inv-M-rev: assumes bnd: 2 ∗ abs c < m
shows inv-M (M c) = c

proof (cases c ≥ 0 )
case True
with bnd show ?thesis unfolding M-def inv-M-def by auto

next
case False
have 2 :

∧
v :: int. 2 ∗ v = v + v by auto

from False have c: c < 0 by auto
from bnd c have c + m > 0 c + m < m by auto
with c have cm: c mod m = c + m

by (metis le-less mod-add-self2 mod-pos-pos-trivial)
from c bnd have 2 ∗ (c mod m) > m unfolding cm by auto
with bnd c show ?thesis unfolding M-def inv-M-def cm by auto

qed

end

lemma (in poly-mod) degree-m-eq-prime:
assumes f0 : Mp f 6= 0
and deg: degree-m f = degree f
and eq: f =m g ∗ h
and p: prime m
shows degree-m f = degree-m g + degree-m h

proof −
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interpret poly-mod-2 m using prime-ge-2-int[OF p] unfolding poly-mod-2-def
by simp

from f0 eq have Mp (Mp g ∗ Mp h) 6= 0 by auto
hence Mp g ∗ Mp h 6= 0 using Mp-0 by (cases Mp g ∗ Mp h, auto)
hence g0 : Mp g 6= 0 and h0 : Mp h 6= 0 by auto
have degree (Mp (g ∗ h)) = degree-m (Mp g ∗ Mp h) by simp
also have . . . = degree (Mp g ∗ Mp h)
proof (rule degree-m-eq[OF - m1 ], rule)

have id:
∧

g. coeff (Mp g) (degree (Mp g)) mod m = coeff (Mp g) (degree (Mp
g))

unfolding M-def [symmetric] Mp-coeff by simp
from p have p ′: prime m unfolding prime-int-nat-transfer unfolding prime-nat-iff

by auto
assume coeff (Mp g ∗ Mp h) (degree (Mp g ∗ Mp h)) mod m = 0
from this[unfolded coeff-degree-mult]
have coeff (Mp g) (degree (Mp g)) mod m = 0 ∨ coeff (Mp h) (degree (Mp h))

mod m = 0
unfolding dvd-eq-mod-eq-0 [symmetric] using m1 prime-dvd-mult-int[OF p ′]

by auto
with g0 h0 show False unfolding id by auto

qed
also have . . . = degree (Mp g) + degree (Mp h)

by (rule degree-mult-eq[OF g0 h0 ])
finally show ?thesis using eq by simp

qed

lemma monic-smult-add-small: assumes f = 0 ∨ degree f < degree g and mon:
monic g

shows monic (g + smult q f )
proof (cases f = 0 )

case True
thus ?thesis using mon by auto

next
case False
with assms have degree f < degree g by auto
hence degree (smult q f ) < degree g by (meson degree-smult-le not-less or-

der-trans)
thus ?thesis using mon using coeff-eq-0 degree-add-eq-left by fastforce

qed

context poly-mod
begin

definition factorization-m :: int poly ⇒ (int × int poly multiset) ⇒ bool where
factorization-m f cfs ≡ (case cfs of (c,fs) ⇒ f =m (smult c (prod-mset fs)) ∧
(∀ f ∈ set-mset fs. irreducibled-m f ∧ monic (Mp f )))

definition Mf :: int × int poly multiset ⇒ int × int poly multiset where
Mf cfs ≡ case cfs of (c,fs) ⇒ (M c, image-mset Mp fs)
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lemma Mf-Mf [simp]: Mf (Mf x) = Mf x
proof (cases x, auto simp: Mf-def , goal-cases)

case (1 c fs)
show ?case by (induct fs, auto)

qed

definition equivalent-fact-m :: int × int poly multiset ⇒ int × int poly multiset
⇒ bool where

equivalent-fact-m cfs dgs = (Mf cfs = Mf dgs)

definition unique-factorization-m :: int poly ⇒ (int × int poly multiset) ⇒ bool
where

unique-factorization-m f cfs = (Mf ‘ Collect (factorization-m f ) = {Mf cfs})

lemma Mp-irreducibled-m[simp]: irreducibled-m (Mp f ) = irreducibled-m f
unfolding irreducibled-m-def dvdm-def by simp

lemma Mf-factorization-m[simp]: factorization-m f (Mf cfs) = factorization-m f
cfs

unfolding factorization-m-def Mf-def
proof (cases cfs, simp, goal-cases)

case (1 c fs)
have Mp (smult c (prod-mset fs)) = Mp (smult (M c) (Mp (prod-mset fs))) by

simp
also have . . . = Mp (smult (M c) (Mp (prod-mset (image-mset Mp fs))))

unfolding Mp-prod-mset by simp
also have . . . = Mp (smult (M c) (prod-mset (image-mset Mp fs))) unfolding

Mp-smult ..
finally show ?case by auto

qed

lemma unique-factorization-m-imp-factorization: assumes unique-factorization-m
f cfs

shows factorization-m f cfs
proof −

from assms[unfolded unique-factorization-m-def ] obtain dfs where
fact: factorization-m f dfs and id: Mf cfs = Mf dfs by blast

from fact have factorization-m f (Mf dfs) by simp
from this[folded id] show ?thesis by simp

qed

lemma unique-factorization-m-alt-def : unique-factorization-m f cfs = (factorization-m
f cfs
∧ (∀ dgs. factorization-m f dgs −→ Mf dgs = Mf cfs))
using unique-factorization-m-imp-factorization[of f cfs]
unfolding unique-factorization-m-def by auto

end
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context poly-mod-2
begin

lemma factorization-m-lead-coeff : assumes factorization-m f (c,fs)
shows lead-coeff (Mp f ) = M c

proof −
note ∗ = assms[unfolded factorization-m-def split]
have monic (prod-mset (image-mset Mp fs)) by (rule monic-prod-mset, insert ∗,

auto)
hence monic (Mp (prod-mset (image-mset Mp fs))) by (rule monic-Mp)
from this[unfolded Mp-prod-mset] have monic: monic (Mp (prod-mset fs)) by

simp
from ∗ have lead-coeff (Mp f ) = lead-coeff (Mp (smult c (prod-mset fs))) by

simp
also have Mp (smult c (prod-mset fs)) = Mp (smult (M c) (Mp (prod-mset fs)))

by simp
finally show ?thesis

using monic ‹smult c (prod-mset fs) =m smult (M c) (Mp (prod-mset fs))›
by (metis M-M M-def Mp-0 Mp-coeff lead-coeff-smult m1 mult-cancel-left2

poly-mod.degree-m-eq smult-eq-0-iff )
qed

lemma factorization-m-smult: assumes factorization-m f (c,fs)
shows factorization-m (smult d f ) (c ∗ d,fs)

proof −
note ∗ = assms[unfolded factorization-m-def split]
from ∗ have f : Mp f = Mp (smult c (prod-mset fs)) by simp
have Mp (smult d f ) = Mp (smult d (Mp f )) by simp
also have . . . = Mp (smult (c ∗ d) (prod-mset fs)) unfolding f by (simp add:

ac-simps)
finally show ?thesis using assms
unfolding factorization-m-def split by auto

qed

lemma factorization-m-prod: assumes factorization-m f (c,fs) factorization-m g
(d,gs)

shows factorization-m (f ∗ g) (c ∗ d, fs + gs)
proof −

note ∗ = assms[unfolded factorization-m-def split]
have Mp (f ∗ g) = Mp (Mp f ∗ Mp g) by simp
also have Mp f = Mp (smult c (prod-mset fs)) using ∗ by simp
also have Mp g = Mp (smult d (prod-mset gs)) using ∗ by simp
finally have Mp (f ∗ g) = Mp (smult (c ∗ d) (prod-mset (fs + gs))) unfolding

mult-Mp
by (simp add: ac-simps)

with ∗ show ?thesis unfolding factorization-m-def split by auto
qed
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lemma Mp-factorization-m[simp]: factorization-m (Mp f ) cfs = factorization-m f
cfs

unfolding factorization-m-def by simp

lemma Mp-unique-factorization-m[simp]:
unique-factorization-m (Mp f ) cfs = unique-factorization-m f cfs
unfolding unique-factorization-m-alt-def by simp

lemma unique-factorization-m-cong: unique-factorization-m f cfs =⇒ Mp f = Mp
g
=⇒ unique-factorization-m g cfs
unfolding Mp-unique-factorization-m[of f , symmetric] by simp

lemma unique-factorization-mI : assumes factorization-m f (c,fs)
and

∧
d gs. factorization-m f (d,gs) =⇒ Mf (d,gs) = Mf (c,fs)

shows unique-factorization-m f (c,fs)
unfolding unique-factorization-m-alt-def

by (intro conjI [OF assms(1 )] allI impI , insert assms(2 ), auto)

lemma unique-factorization-m-smult: assumes uf : unique-factorization-m f (c,fs)
and d: M (di ∗ d) = 1
shows unique-factorization-m (smult d f ) (c ∗ d,fs)

proof (rule unique-factorization-mI [OF factorization-m-smult])
show factorization-m f (c, fs) using uf [unfolded unique-factorization-m-alt-def ]

by auto
fix e gs
assume fact: factorization-m (smult d f ) (e,gs)
from factorization-m-smult[OF this, of di]
have factorization-m (Mp (smult di (smult d f ))) (e ∗ di, gs) by simp
also have Mp (smult di (smult d f )) = Mp (smult (M (di ∗ d)) f ) by simp
also have . . . = Mp f unfolding d by simp
finally have fact: factorization-m f (e ∗ di, gs) by simp
with uf [unfolded unique-factorization-m-alt-def ] have eq: Mf (e ∗ di, gs) = Mf

(c, fs) by blast
from eq[unfolded Mf-def ] have M (e ∗ di) = M c by simp
from arg-cong[OF this, of λ x. M (x ∗ d)]
have M (e ∗ M (di ∗ d)) = M (c ∗ d) by (simp add: ac-simps)
from this[unfolded d] have e: M e = M (c ∗ d) by simp
with eq
show Mf (e,gs) = Mf (c ∗ d, fs) unfolding Mf-def split by simp

qed

lemma unique-factorization-m-smultD: assumes uf : unique-factorization-m (smult
d f ) (c,fs)

and d: M (di ∗ d) = 1
shows unique-factorization-m f (c ∗ di,fs)

proof −
from d have d ′: M (d ∗ di) = 1 by (simp add: ac-simps)
show ?thesis
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proof (rule unique-factorization-m-cong[OF unique-factorization-m-smult[OF uf
d ′]],

rule poly-eqI , unfold Mp-coeff coeff-smult)
fix n
have M (di ∗ (d ∗ coeff f n)) = M (M (di ∗ d) ∗ coeff f n) by (auto simp:

ac-simps)
from this[unfolded d] show M (di ∗ (d ∗ coeff f n)) = M (coeff f n) by simp

qed
qed

lemma degree-m-eq-lead-coeff : degree-m f = degree f =⇒ lead-coeff (Mp f ) = M
(lead-coeff f )

by (simp add: Mp-coeff )

lemma unique-factorization-m-zero: assumes unique-factorization-m f (c,fs)
shows M c 6= 0

proof
assume c: M c = 0
from unique-factorization-m-imp-factorization[OF assms]
have Mp f = Mp (smult (M c) (prod-mset fs)) unfolding factorization-m-def

split
by simp

from this[unfolded c] have f : Mp f = 0 by simp
have factorization-m f (0 ,{#})

unfolding factorization-m-def split f by auto
moreover have Mf (0 ,{#}) = (0 ,{#}) unfolding Mf-def by auto
ultimately have fact1 : (0 , {#}) ∈ Mf ‘ Collect (factorization-m f ) by force
define g :: int poly where g = [:0 ,1 :]
have mpg: Mp g = [:0 ,1 :] unfolding Mp-def

by (auto simp: g-def )
{

fix g h
assume ∗: degree (Mp g) = 0 degree (Mp h) = 0 [:0 , 1 :] = Mp (g ∗ h)
from arg-cong[OF ∗(3 ), of degree] have 1 = degree-m (Mp g ∗ Mp h) by simp
also have . . . ≤ degree (Mp g ∗ Mp h) by (rule degree-m-le)
also have . . . ≤ degree (Mp g) + degree (Mp h) by (rule degree-mult-le)
also have . . . ≤ 0 using ∗ by simp
finally have False by simp

} note irr = this
have factorization-m f (0 ,{# g #})

unfolding factorization-m-def split using irr
by (auto simp: irreducibled-m-def f mpg)

moreover have Mf (0 ,{# g #}) = (0 ,{# g #}) unfolding Mf-def by (auto
simp: mpg, simp add: g-def )

ultimately have fact2 : (0 , {#g#}) ∈ Mf ‘ Collect (factorization-m f ) by force
note [simp] = assms[unfolded unique-factorization-m-def ]
from fact1 [simplified, folded fact2 [simplified]] show False by auto

qed
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end

context poly-mod
begin

lemma dvdm-smult: assumes f dvdm g
shows f dvdm smult c g

proof −
from assms[unfolded dvdm-def ] obtain h where g: g =m f ∗ h by auto
show ?thesis unfolding dvdm-def
proof (intro exI [of - smult c h])

have Mp (smult c g) = Mp (smult c (Mp g)) by simp
also have Mp g = Mp (f ∗ h) using g by simp
finally show Mp (smult c g) = Mp (f ∗ smult c h) by simp

qed
qed

lemma dvdm-factor : assumes f dvdm g
shows f dvdm g ∗ h

proof −
from assms[unfolded dvdm-def ] obtain k where g: g =m f ∗ k by auto
show ?thesis unfolding dvdm-def
proof (intro exI [of - h ∗ k])

have Mp (g ∗ h) = Mp (Mp g ∗ h) by simp
also have Mp g = Mp (f ∗ k) using g by simp
finally show Mp (g ∗ h) = Mp (f ∗ (h ∗ k)) by (simp add: ac-simps)

qed
qed

lemma square-free-m-smultD: assumes square-free-m (smult c f )
shows square-free-m f
unfolding square-free-m-def

proof (intro conjI allI impI )
fix g
assume degree-m g 6= 0
with assms[unfolded square-free-m-def ] have ¬ g ∗ g dvdm smult c f by auto
thus ¬ g ∗ g dvdm f using dvdm-smult[of g ∗ g f c] by blast

next
from assms[unfolded square-free-m-def ] have ¬ smult c f =m 0 by simp
thus ¬ f =m 0

by (metis Mp-smult(2 ) smult-0-right)
qed

lemma square-free-m-smultI : assumes sf : square-free-m f
and inv: M (ci ∗ c) = 1
shows square-free-m (smult c f )

proof −
have square-free-m (smult ci (smult c f ))
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proof (rule square-free-m-cong[OF sf ], rule poly-eqI , unfold Mp-coeff coeff-smult)
fix n
have M (ci ∗ (c ∗ coeff f n)) = M ( M (ci ∗ c) ∗ coeff f n) by (simp add:

ac-simps)
from this[unfolded inv] show M (coeff f n) = M (ci ∗ (c ∗ coeff f n)) by simp

qed
from square-free-m-smultD[OF this] show ?thesis .

qed

lemma square-free-m-factor : assumes square-free-m (f ∗ g)
shows square-free-m f square-free-m g

proof −
{

fix f g
assume sf : square-free-m (f ∗ g)
have square-free-m f

unfolding square-free-m-def
proof (intro conjI allI impI )

fix h
assume degree-m h 6= 0
with sf [unfolded square-free-m-def ] have ¬ h ∗ h dvdm f ∗ g by auto
thus ¬ h ∗ h dvdm f using dvdm-factor [of h ∗ h f g] by blast

next
from sf [unfolded square-free-m-def ] have ¬ f ∗ g =m 0 by simp
thus ¬ f =m 0

by (metis mult.commute mult-zero-right poly-mod.mult-Mp(2 ))
qed

}
from this[of f g] this[of g f ] assms
show square-free-m f square-free-m g by (auto simp: ac-simps)

qed

end

context poly-mod-2
begin

lemma Mp-ident-iff : Mp f = f ←→ (∀ n. coeff f n ∈ {0 ..< m})
proof −

have m0 : m > 0 using m1 by simp
show ?thesis unfolding poly-eq-iff Mp-coeff M-def mod-ident-iff [OF m0 ] by simp

qed

lemma Mp-ident-iff ′: Mp f = f ←→ (set (coeffs f ) ⊆ {0 ..< m})
proof −

have 0 : 0 ∈ {0 ..< m} using m1 by auto
have ran: (∀n. coeff f n ∈ {0 ..<m}) ←→ range (coeff f ) ⊆ {0 ..< m} by blast
show ?thesis unfolding Mp-ident-iff ran using range-coeff [of f ] 0 by auto
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qed
end

lemma Mp-Mp-pow-is-Mp: n 6= 0 =⇒ p > 1 =⇒ poly-mod.Mp p (poly-mod.Mp
(p^n) f )
= poly-mod.Mp p f
using poly-mod-2 .Mp-product-modulus poly-mod-2-def by(subst power-eq-if , auto)

lemma M-M-pow-is-M : n 6= 0 =⇒ p > 1 =⇒ poly-mod.M p (poly-mod.M (p^n)
f )
= poly-mod.M p f using Mp-Mp-pow-is-Mp[of n p [:f :]]
by (metis coeff-pCons-0 poly-mod.Mp-coeff )

definition inverse-mod :: int ⇒ int ⇒ int where
inverse-mod x m = fst (bezout-coefficients x m)

lemma inverse-mod:
(inverse-mod x m ∗ x) mod m = 1
if coprime x m m > 1

proof −
from bezout-coefficients [of x m inverse-mod x m snd (bezout-coefficients x m)]
have inverse-mod x m ∗ x + snd (bezout-coefficients x m) ∗ m = gcd x m

by (simp add: inverse-mod-def )
with that have inverse-mod x m ∗ x + snd (bezout-coefficients x m) ∗ m = 1

by simp
then have (inverse-mod x m ∗ x + snd (bezout-coefficients x m) ∗ m) mod m =

1 mod m
by simp

with ‹m > 1 › show ?thesis
by simp

qed

lemma inverse-mod-pow:
(inverse-mod x (p ^ n) ∗ x) mod (p ^ n) = 1
if coprime x p p > 1 n 6= 0
using that by (auto intro: inverse-mod)

lemma (in poly-mod) inverse-mod-coprime:
assumes p: prime m
and cop: coprime x m shows M (inverse-mod x m ∗ x) = 1
unfolding M-def using inverse-mod-pow[OF cop, of 1 ] p
by (auto simp: prime-int-iff )

lemma (in poly-mod) inverse-mod-coprime-exp:
assumes m: m = p^n and p: prime p
and n: n 6= 0 and cop: coprime x p
shows M (inverse-mod x m ∗ x) = 1
unfolding M-def unfolding m using inverse-mod-pow[OF cop - n] p
by (auto simp: prime-int-iff )
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locale poly-mod-prime = poly-mod p for p :: int +
assumes prime: prime p

begin

sublocale poly-mod-2 p using prime unfolding poly-mod-2-def
using prime-gt-1-int by force

lemma square-free-m-prod-imp-coprime-m: assumes sf : square-free-m (A ∗ B)
shows coprime-m A B
unfolding coprime-m-def

proof (intro allI impI )
fix h
assume dvd: h dvdm A h dvdm B
then obtain ha hb where ∗: Mp A = Mp (h ∗ ha) Mp B = Mp (h ∗ hb)

unfolding dvdm-def by auto
have AB: Mp (A ∗ B) = Mp (Mp A ∗ Mp B) by simp
from this[unfolded ∗, simplified]
have eq: Mp (A ∗ B) = Mp (h ∗ h ∗ (ha ∗ hb)) by (simp add: ac-simps)
hence dvd-hh: (h ∗ h) dvdm (A ∗ B) unfolding dvdm-def by auto
{

assume degree-m h 6= 0
from sf [unfolded square-free-m-def , THEN conjunct2 , rule-format, OF this]
have ¬ h ∗ h dvdm A ∗ B .
with dvd-hh have False by simp

}
hence degree (Mp h) = 0 by auto
then obtain c where hc: Mp h = [: c :] by (rule degree-eq-zeroE)
{

assume c = 0
hence Mp h = 0 unfolding hc by auto
with ∗(1 ) have Mp A = 0

by (metis Mp-0 mult-zero-left poly-mod.mult-Mp(1 ))
with sf [unfolded square-free-m-def , THEN conjunct1 ] have False

by (simp add: AB)
}
hence c0 : c 6= 0 by auto
with arg-cong[OF hc[symmetric], of λ f . coeff f 0 , unfolded Mp-coeff M-def ] m1
have c ≥ 0 c < p by auto
with c0 have c-props:c > 0 c < p by auto
with prime have prime p by simp
with c-props have coprime p c

by (auto intro: prime-imp-coprime dest: zdvd-not-zless)
then have coprime c p

by (simp add: ac-simps)
from inverse-mod-coprime[OF prime this]
obtain d where d: M (c ∗ d) = 1 by (auto simp: ac-simps)
show h dvdm 1 unfolding dvdm-def
proof (intro exI [of - [:d:]])
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have Mp (h ∗ [: d :]) = Mp (Mp h ∗ [: d :]) by simp
also have . . . = Mp ([: c ∗ d :]) unfolding hc by (auto simp: ac-simps)
also have . . . = [: M (c ∗ d) :] unfolding Mp-def

by (metis (no-types) M-0 map-poly-pCons Mp-0 Mp-def d zero-neq-one)
also have . . . = 1 unfolding d by simp
finally show Mp 1 = Mp (h ∗ [:d:]) by simp

qed
qed

lemma coprime-exp-mod: coprime lu p =⇒ n 6= 0 =⇒ lu mod p ^ n 6= 0
using prime by fastforce

end

context poly-mod
begin

definition Dp :: int poly ⇒ int poly where
Dp f = map-poly (λ a. a div m) f

lemma Dp-Mp-eq: f = Mp f + smult m (Dp f )
by (rule poly-eqI , auto simp: Mp-coeff M-def Dp-def coeff-map-poly)

lemma dvd-imp-dvdm:
assumes a dvd b shows a dvdm b
by (metis assms dvd-def dvdm-def )

lemma dvdm-add:
assumes a: u dvdm a
and b: u dvdm b
shows u dvdm (a+b)

proof −
obtain a ′ where a: a =m u∗a ′ using a unfolding dvdm-def by auto
obtain b ′ where b: b =m u∗b ′ using b unfolding dvdm-def by auto
have Mp (a + b) = Mp (u∗a ′+u∗b ′) using a b

by (metis poly-mod.plus-Mp(1 ) poly-mod.plus-Mp(2 ))
also have ... = Mp (u ∗ (a ′+ b ′))

by (simp add: distrib-left)
finally show ?thesis unfolding dvdm-def by auto

qed

lemma monic-dvdm-constant:
assumes uk: u dvdm [:k:]
and u1 : monic u and u2 : degree u > 0
shows k mod m = 0

proof −
have d1 : degree-m [:k:] = degree [:k:]

by (metis degree-pCons-0 le-zero-eq poly-mod.degree-m-le)
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obtain h where h: Mp [:k:] = Mp (u ∗ h)
using uk unfolding dvdm-def by auto

have d2 : degree-m [:k:] = degree-m (u∗h) using h by metis
have d3 : degree (map-poly M (u ∗ map-poly M h)) = degree (u ∗ map-poly M h)

by (rule degree-map-poly)
(metis coeff-degree-mult leading-coeff-0-iff mult.right-neutral M-M Mp-coeff

Mp-def u1 )
thus ?thesis using assms d1 d2 d3

by (auto, metis M-def map-poly-pCons degree-mult-right-le h leD map-poly-0
mult-poly-0-right pCons-eq-0-iff M-0 Mp-def mult-Mp(2 ))

qed

lemma div-mod-imp-dvdm:
assumes ∃ q r . b = q ∗ a + Polynomial.smult m r
shows a dvdm b

proof −
from assms obtain q r where b:b = a ∗ q + smult m r

by (metis mult.commute)
have a: Mp (Polynomial.smult m r) = 0 by auto
show ?thesis
proof (unfold dvdm-def , rule exI [of - q])

have Mp (a ∗ q + smult m r) = Mp (a ∗ q + Mp (smult m r))
using plus-Mp(2 )[of a∗q smult m r ] by auto

also have ... = Mp (a∗q) by auto
finally show eq-m b (a ∗ q) using b by auto

qed
qed

lemma lead-coeff-monic-mult:
fixes p :: ′a :: {comm-semiring-1 ,semiring-no-zero-divisors} poly
assumes monic p shows lead-coeff (p ∗ q) = lead-coeff q
using assms by (simp add: lead-coeff-mult)

lemma degree-m-mult-eq:
assumes p: monic p and q: lead-coeff q mod m 6= 0 and m1 : m > 1
shows degree (Mp (p ∗ q)) = degree p + degree q

proof−
have lead-coeff (p ∗ q) mod m 6= 0

using q p by (auto simp: lead-coeff-monic-mult)
with m1 show ?thesis

by (auto simp: degree-m-eq intro!: degree-mult-eq)
qed

lemma dvdm-imp-degree-le:
assumes pq: p dvdm q and p: monic p and q0 : Mp q 6= 0 and m1 : m > 1
shows degree p ≤ degree q

proof−
from q0
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have q: lead-coeff (Mp q) mod m 6= 0
by (metis Mp-Mp Mp-coeff leading-coeff-neq-0 M-def )

from pq obtain r where Mpq: Mp q = Mp (p ∗ Mp r) by (auto elim: dvdmE)
with p q have lead-coeff (Mp r) mod m 6= 0

by (metis Mp-Mp Mp-coeff leading-coeff-0-iff mult-poly-0-right M-def )
from degree-m-mult-eq[OF p this m1 ] Mpq
have degree p ≤ degree-m q by simp
thus ?thesis using degree-m-le le-trans by blast

qed

lemma dvdm-uminus [simp]:
p dvdm −q ←→ p dvdm q
by (metis add.inverse-inverse dvdm-smult smult-1-left smult-minus-left)

lemma Mp-const-poly: Mp [:a:] = [:a mod m:]
by (simp add: Mp-def M-def Polynomial.map-poly-pCons)

lemma dvdm-imp-div-mod:
assumes u dvdm g
shows ∃ q r . g = q∗u + smult m r

proof −
obtain q where q: Mp g = Mp (u∗q)

using assms unfolding dvdm-def by fast
have (u∗q) = Mp (u∗q) + smult m (Dp (u∗q))

by (simp add: poly-mod.Dp-Mp-eq[of u∗q])
hence uq: Mp (u∗q) = (u∗q) − smult m (Dp (u∗q))

by auto
have g: g = Mp g + smult m (Dp g)

by (simp add: poly-mod.Dp-Mp-eq[of g])
also have ... = poly-mod.Mp m (u∗q) + smult m (Dp g) using q by simp
also have ... = u ∗ q − smult m (Dp (u ∗ q)) + smult m (Dp g)

unfolding uq by auto
also have ... = u ∗ q + smult m (−Dp (u∗q)) + smult m (Dp g) by auto
also have ... = u ∗ q + smult m (−Dp (u∗q) + Dp g)

unfolding smult-add-right by auto
also have ... = q ∗ u + smult m (−Dp (u∗q) + Dp g) by auto
finally show ?thesis by auto

qed

corollary div-mod-iff-dvdm:
shows a dvdm b = (∃ q r . b = q ∗ a + Polynomial.smult m r)
using div-mod-imp-dvdm dvdm-imp-div-mod by blast

lemma dvdmE ′:
assumes p dvdm q and

∧
r . q =m p ∗ Mp r =⇒ thesis

shows thesis
using assms by (auto simp: dvdm-def )
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end

context poly-mod-2
begin
lemma factorization-m-mem-dvdm: assumes fact: factorization-m f (c,fs)

and mem: Mp g ∈# image-mset Mp fs
shows g dvdm f
proof −

from fact have factorization-m f (Mf (c, fs)) by auto
then obtain l where f : factorization-m f (l, image-mset Mp fs) by (auto simp:

Mf-def )
from multi-member-split[OF mem] obtain ls where

fs: image-mset Mp fs = {# Mp g #} + ls by auto
from f [unfolded fs split factorization-m-def ] show g dvdm f

unfolding dvdm-def
by (intro exI [of - smult l (prod-mset ls)], auto simp del: Mp-smult

simp add: Mp-smult(2 )[of - Mp g ∗ prod-mset ls, symmetric], simp)
qed

lemma dvdm-degree: monic u =⇒ u dvdm f =⇒ Mp f 6= 0 =⇒ degree u ≤ degree
f

using dvdm-imp-degree-le m1 by blast

end

lemma (in poly-mod-prime) pl-dvdm-imp-p-dvdm:
assumes l0 : l 6= 0
and pl-dvdm: poly-mod.dvdm (p^l) a b
shows a dvdm b

proof −
from l0 have l-gt-0 : l > 0 by auto
with m1 interpret pl: poly-mod-2 p^l by (unfold-locales, auto)
from l-gt-0 have p-rw: p ∗ p ^ (l − 1 ) = p ^ l

by (cases l) simp-all
obtain q r where b: b = q ∗ a + smult (p^l) r using pl.dvdm-imp-div-mod[OF

pl-dvdm] by auto
have smult (p^l) r = smult p (smult (p ^ (l − 1 )) r) unfolding smult-smult

p-rw ..
hence b2 : b = q ∗ a + smult p (smult (p ^ (l − 1 )) r) using b by auto
show ?thesis

by (rule div-mod-imp-dvdm, rule exI [of - q],
rule exI [of - (smult (p ^ (l − 1 )) r)], auto simp add: b2 )

qed

end
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5.2 Polynomials in a Finite Field
We connect polynomials in a prime field with integer polynomials modulo
some prime.
theory Poly-Mod-Finite-Field

imports
Finite-Field
Polynomial-Interpolation.Ring-Hom-Poly
HOL−Types-To-Sets.Types-To-Sets
More-Missing-Multiset
Poly-Mod

begin

declare rel-mset-Zero[transfer-rule]

lemma mset-transfer [transfer-rule]: (list-all2 rel ===> rel-mset rel) mset mset
proof (intro rel-funI )

show list-all2 rel xs ys =⇒ rel-mset rel (mset xs) (mset ys) for xs ys
proof (induct xs arbitrary: ys)

case Nil
then show ?case by auto

next
case IH : (Cons x xs)

then show ?case by (auto dest!:msed-rel-invL simp: list-all2-Cons1 intro!:rel-mset-Plus)
qed

qed

abbreviation to-int-poly :: ′a :: finite mod-ring poly ⇒ int poly where
to-int-poly ≡ map-poly to-int-mod-ring

interpretation to-int-poly-hom: map-poly-inj-zero-hom to-int-mod-ring ..

lemma irreducibled-def-0 :
fixes f :: ′a :: {comm-semiring-1 ,semiring-no-zero-divisors} poly
shows irreducibled f = (degree f 6= 0 ∧
(∀ g h. degree g 6= 0 −→ degree h 6= 0 −→ f 6= g ∗ h))

proof−
have degree g 6= 0 =⇒ g 6= 0 for g :: ′a poly by auto
note 1 = degree-mult-eq[OF this this, simplified]
then show ?thesis by (force elim!: irreducibledE)

qed

5.3 Transferring to class-based mod-ring
locale poly-mod-type = poly-mod m

for m and ty :: ′a :: nontriv itself +
assumes m: m = CARD( ′a)
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begin

lemma m1 : m > 1 using nontriv[where ′a = ′a] by (auto simp:m)

sublocale poly-mod-2 using m1 by unfold-locales

definition MP-Rel :: int poly ⇒ ′a mod-ring poly ⇒ bool
where MP-Rel f f ′ ≡ (Mp f = to-int-poly f ′)

definition M-Rel :: int ⇒ ′a mod-ring ⇒ bool
where M-Rel x x ′ ≡ (M x = to-int-mod-ring x ′)

definition MF-Rel ≡ rel-prod M-Rel (rel-mset MP-Rel)

lemma to-int-mod-ring-plus: to-int-mod-ring ((x :: ′a mod-ring) + y) = M (to-int-mod-ring
x + to-int-mod-ring y)

unfolding M-def using m by (transfer , auto)

lemma to-int-mod-ring-times: to-int-mod-ring ((x :: ′a mod-ring) ∗ y) = M (to-int-mod-ring
x ∗ to-int-mod-ring y)

unfolding M-def using m by (transfer , auto)

lemma degree-MP-Rel [transfer-rule]: (MP-Rel ===> (=)) degree-m degree
unfolding MP-Rel-def rel-fun-def
by (auto intro!: degree-map-poly)

lemma eq-M-Rel[transfer-rule]: (M-Rel ===> M-Rel ===> (=)) (λ x y. M x =
M y) (=)

unfolding M-Rel-def rel-fun-def by auto

interpretation to-int-mod-ring-hom: map-poly-inj-zero-hom to-int-mod-ring..

lemma eq-MP-Rel[transfer-rule]: (MP-Rel ===> MP-Rel ===> (=)) (=m) (=)
unfolding MP-Rel-def rel-fun-def by auto

lemma eq-Mf-Rel[transfer-rule]: (MF-Rel ===> MF-Rel ===> (=)) (λ x y. Mf
x = Mf y) (=)
proof (intro rel-funI , goal-cases)

case (1 cfs Cfs dgs Dgs)
obtain c fs where cfs: cfs = (c,fs) by force
obtain C Fs where Cfs: Cfs = (C ,Fs) by force
obtain d gs where dgs: dgs = (d,gs) by force
obtain D Gs where Dgs: Dgs = (D,Gs) by force
note pairs = cfs Cfs dgs Dgs
from 1 [unfolded pairs MF-Rel-def rel-prod.simps]
have ∗[transfer-rule]: M-Rel c C M-Rel d D rel-mset MP-Rel fs Fs rel-mset MP-Rel

gs Gs
by auto

have eq1 : (M c = M d) = (C = D) by transfer-prover
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from ∗(3 )[unfolded rel-mset-def ] obtain fs ′ Fs ′ where fs-eq: mset fs ′ = fs mset
Fs ′ = Fs

and rel-f : list-all2 MP-Rel fs ′ Fs ′ by auto
from ∗(4 )[unfolded rel-mset-def ] obtain gs ′ Gs ′ where gs-eq: mset gs ′ = gs mset

Gs ′ = Gs
and rel-g: list-all2 MP-Rel gs ′ Gs ′ by auto

have eq2 : (image-mset Mp fs = image-mset Mp gs) = (Fs = Gs)
using ∗(3−4 )

proof (induct fs arbitrary: Fs gs Gs)
case (empty Fs gs Gs)
from empty(1 ) have Fs: Fs = {#} unfolding rel-mset-def by auto
with empty show ?case by (cases gs; cases Gs; auto simp: rel-mset-def )

next
case (add f fs Fs ′ gs ′ Gs ′)
note [transfer-rule] = add(3 )
from msed-rel-invL[OF add(2 )]
obtain Fs F where Fs ′: Fs ′ = Fs + {#F#} and rel[transfer-rule]:

MP-Rel f F rel-mset MP-Rel fs Fs by auto
note IH = add(1 )[OF rel(2 )]
{

from add(3 )[unfolded rel-mset-def ] obtain gs Gs where id: mset gs = gs ′

mset Gs = Gs ′

and rel: list-all2 MP-Rel gs Gs by auto
have Mp f ∈# image-mset Mp gs ′←→ F ∈# Gs ′

proof −
have ?thesis = ((Mp f ∈ Mp ‘ set gs) = (F ∈ set Gs))

unfolding id[symmetric] by simp
also have . . . using rel
proof (induct gs Gs rule: list-all2-induct)

case (Cons g gs G Gs)
note [transfer-rule] = Cons(1−2 )
have id: (Mp g = Mp f ) = (F = G) by (transfer , auto)
show ?case using id Cons(3 ) by auto

qed auto
finally show ?thesis by simp

qed
} note id = this
show ?case
proof (cases Mp f ∈# image-mset Mp gs ′)

case False
have Mp f ∈# image-mset Mp (fs + {#f#}) by auto
with False have F : image-mset Mp (fs + {#f#}) 6= image-mset Mp gs ′ by

metis
with False[unfolded id] show ?thesis unfolding Fs ′ by auto

next
case True
then obtain g where fg: Mp f = Mp g and g: g ∈# gs ′ by auto
from g obtain gs where gs ′: gs ′ = add-mset g gs by (rule mset-add)
from msed-rel-invL[OF add(3 )[unfolded gs ′]]
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obtain Gs G where Gs ′: Gs ′ = Gs + {# G #} and gG[transfer-rule]:
MP-Rel g G and

gsGs: rel-mset MP-Rel gs Gs by auto
have FG: F = G by (transfer , simp add: fg)
note IH = IH [OF gsGs]
show ?thesis unfolding gs ′ Fs ′ Gs ′ by (simp add: fg IH FG)

qed
qed
show (Mf cfs = Mf dgs) = (Cfs = Dgs) unfolding pairs Mf-def split

by (simp add: eq1 eq2 )
qed

lemmas coeff-map-poly-of-int = coeff-map-poly[of of-int, OF of-int-0 ]

lemma plus-MP-Rel[transfer-rule]: (MP-Rel ===> MP-Rel ===> MP-Rel) (+)
(+)

unfolding MP-Rel-def
proof (intro rel-funI , goal-cases)

case (1 x f y g)
have Mp (x + y) = Mp (Mp x + Mp y) by simp
also have . . . = Mp (map-poly to-int-mod-ring f + map-poly to-int-mod-ring g)

unfolding 1 ..
also have . . . = map-poly to-int-mod-ring (f + g) unfolding poly-eq-iff Mp-coeff

by (auto simp: to-int-mod-ring-plus)
finally show ?case .

qed

lemma times-MP-Rel[transfer-rule]: (MP-Rel ===> MP-Rel ===> MP-Rel)
((∗)) ((∗))

unfolding MP-Rel-def
proof (intro rel-funI , goal-cases)

case (1 x f y g)
have Mp (x ∗ y) = Mp (Mp x ∗ Mp y) by simp
also have . . . = Mp (map-poly to-int-mod-ring f ∗ map-poly to-int-mod-ring g)

unfolding 1 ..
also have . . . = map-poly to-int-mod-ring (f ∗ g)
proof −

{ fix n :: nat
define A where A = {.. n}
have finite A unfolding A-def by auto
then have M (

∑
i≤n. to-int-mod-ring (coeff f i) ∗ to-int-mod-ring (coeff g

(n − i))) =
to-int-mod-ring (

∑
i≤n. coeff f i ∗ coeff g (n − i))

unfolding A-def [symmetric]
proof (induct A)

case (insert a A)
have ?case = ?case (is (?l = ?r) = -) by simp
have ?r = to-int-mod-ring (coeff f a ∗ coeff g (n − a) + (

∑
i∈ A. coeff f i

139



∗ coeff g (n − i)))
using insert(1−2 ) by auto

note r = this[unfolded to-int-mod-ring-plus to-int-mod-ring-times]
from insert(1−2 ) have ?l = M (to-int-mod-ring (coeff f a) ∗ to-int-mod-ring

(coeff g (n − a))
+ M (

∑
i∈A. to-int-mod-ring (coeff f i) ∗ to-int-mod-ring (coeff g (n −

i))))
by simp

also have M (
∑

i∈A. to-int-mod-ring (coeff f i) ∗ to-int-mod-ring (coeff g
(n − i))) = to-int-mod-ring (

∑
i∈A. coeff f i ∗ coeff g (n − i))

unfolding insert ..
finally
show ?case unfolding r by simp

qed auto
}
then show ?thesis by (auto intro!:poly-eqI simp: coeff-mult Mp-coeff )

qed
finally show ?case .

qed

lemma smult-MP-Rel[transfer-rule]: (M-Rel ===> MP-Rel ===> MP-Rel) smult
smult

unfolding MP-Rel-def M-Rel-def
proof (intro rel-funI , goal-cases)

case (1 x x ′ f f ′)
thus ?case unfolding poly-eq-iff coeff Mp-coeff

coeff-smult M-def
proof (intro allI , goal-cases)

case (1 n)
have x ∗ coeff f n mod m = (x mod m) ∗ (coeff f n mod m) mod m

by (simp add: mod-simps)
also have . . . = to-int-mod-ring x ′ ∗ (to-int-mod-ring (coeff f ′ n)) mod m

using 1 by auto
also have . . . = to-int-mod-ring (x ′ ∗ coeff f ′ n)

unfolding to-int-mod-ring-times M-def by simp
finally show ?case by auto

qed
qed

lemma one-M-Rel[transfer-rule]: M-Rel 1 1
unfolding M-Rel-def M-def
unfolding m by auto

lemma one-MP-Rel[transfer-rule]: MP-Rel 1 1
unfolding MP-Rel-def poly-eq-iff Mp-coeff M-def
unfolding m by auto

lemma zero-M-Rel[transfer-rule]: M-Rel 0 0
unfolding M-Rel-def M-def
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unfolding m by auto

lemma zero-MP-Rel[transfer-rule]: MP-Rel 0 0
unfolding MP-Rel-def poly-eq-iff Mp-coeff M-def
unfolding m by auto

lemma listprod-MP-Rel[transfer-rule]: (list-all2 MP-Rel ===> MP-Rel) prod-list
prod-list
proof (intro rel-funI , goal-cases)

case (1 xs ys)
thus ?case
proof (induct xs ys rule: list-all2-induct)

case (Cons x xs y ys)
note [transfer-rule] = this
show ?case by simp transfer-prover

qed (simp add: one-MP-Rel)
qed

lemma prod-mset-MP-Rel[transfer-rule]: (rel-mset MP-Rel ===> MP-Rel) prod-mset
prod-mset
proof (intro rel-funI , goal-cases)

case (1 xs ys)
have (MP-Rel ===> MP-Rel ===> MP-Rel) ((∗)) ((∗)) MP-Rel 1 1 by trans-

fer-prover+
from 1 this show ?case
proof (induct xs ys rule: rel-mset-induct)

case (add R x xs y ys)
note [transfer-rule] = this
show ?case by simp transfer-prover

qed (simp add: one-MP-Rel)
qed

lemma right-unique-MP-Rel[transfer-rule]: right-unique MP-Rel
unfolding right-unique-def MP-Rel-def by auto

lemma M-to-int-mod-ring: M (to-int-mod-ring (x :: ′a mod-ring)) = to-int-mod-ring
x

unfolding M-def unfolding m by (transfer , auto)

lemma Mp-to-int-poly: Mp (to-int-poly (f :: ′a mod-ring poly)) = to-int-poly f
by (auto simp: poly-eq-iff Mp-coeff M-to-int-mod-ring)

lemma right-total-M-Rel[transfer-rule]: right-total M-Rel
unfolding right-total-def M-Rel-def using M-to-int-mod-ring by blast

lemma left-total-M-Rel[transfer-rule]: left-total M-Rel
unfolding left-total-def M-Rel-def [abs-def ]

proof
fix x

141



show ∃ x ′ :: ′a mod-ring. M x = to-int-mod-ring x ′ unfolding M-def unfolding
m

by (rule exI [of - of-int x], transfer , simp)
qed

lemma bi-total-M-Rel[transfer-rule]: bi-total M-Rel
using right-total-M-Rel left-total-M-Rel by (metis bi-totalI )

lemma right-total-MP-Rel[transfer-rule]: right-total MP-Rel
unfolding right-total-def MP-Rel-def

proof
fix f :: ′a mod-ring poly
show ∃ x. Mp x = to-int-poly f

by (intro exI [of - to-int-poly f ], simp add: Mp-to-int-poly)
qed

lemma to-int-mod-ring-of-int-M : to-int-mod-ring (of-int x :: ′a mod-ring) = M x
unfolding M-def

unfolding m by transfer auto

lemma Mp-f-representative: Mp f = to-int-poly (map-poly of-int f :: ′a mod-ring
poly)
unfolding Mp-def by (auto intro: poly-eqI simp: coeff-map-poly to-int-mod-ring-of-int-M )

lemma left-total-MP-Rel[transfer-rule]: left-total MP-Rel
unfolding left-total-def MP-Rel-def [abs-def ] using Mp-f-representative by blast

lemma bi-total-MP-Rel[transfer-rule]: bi-total MP-Rel
using right-total-MP-Rel left-total-MP-Rel by (metis bi-totalI )

lemma bi-total-MF-Rel[transfer-rule]: bi-total MF-Rel
unfolding MF-Rel-def [abs-def ]
by (intro prod.bi-total-rel multiset.bi-total-rel bi-total-MP-Rel bi-total-M-Rel)

lemma right-total-MF-Rel[transfer-rule]: right-total MF-Rel
using bi-total-MF-Rel unfolding bi-total-alt-def by auto

lemma left-total-MF-Rel[transfer-rule]: left-total MF-Rel
using bi-total-MF-Rel unfolding bi-total-alt-def by auto

lemma domain-RT-rel[transfer-domain-rule]: Domainp MP-Rel = (λ f . True)
proof

fix f :: int poly
show Domainp MP-Rel f = True unfolding MP-Rel-def [abs-def ] Domainp.simps

by (auto simp: Mp-f-representative)
qed

lemma mem-MP-Rel[transfer-rule]: (MP-Rel ===> rel-set MP-Rel ===> (=))
(λ x Y . ∃ y ∈ Y . eq-m x y) (∈)
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proof (intro rel-funI iffI )
fix x y X Y assume xy: MP-Rel x y and XY : rel-set MP-Rel X Y
{ assume ∃ x ′ ∈ X . x =m x ′

then obtain x ′ where x ′X : x ′ ∈ X and xx ′: x =m x ′ by auto
with xy have x ′y: MP-Rel x ′ y by (auto simp: MP-Rel-def )
from rel-setD1 [OF XY x ′X ] obtain y ′ where MP-Rel x ′ y ′ and y ′ ∈ Y by

auto
with x ′y
show y ∈ Y by (auto simp: MP-Rel-def )

}
assume y ∈ Y
from rel-setD2 [OF XY this] obtain x ′ where x ′X : x ′ ∈ X and x ′y: MP-Rel x ′

y by auto
from xy x ′y have x =m x ′ by (auto simp: MP-Rel-def )
with x ′X show ∃ x ′ ∈ X . x =m x ′ by auto

qed

lemma conversep-MP-Rel-OO-MP-Rel [simp]: MP-Rel−1−1 OO MP-Rel = (=)
using Mp-to-int-poly by (intro ext, auto simp: OO-def MP-Rel-def )

lemma MP-Rel-OO-conversep-MP-Rel [simp]: MP-Rel OO MP-Rel−1−1 = eq-m
by (intro ext, auto simp: OO-def MP-Rel-def Mp-f-representative)

lemma conversep-MP-Rel-OO-eq-m [simp]: MP-Rel−1−1 OO eq-m = MP-Rel−1−1

by (intro ext, auto simp: OO-def MP-Rel-def )

lemma eq-m-OO-MP-Rel [simp]: eq-m OO MP-Rel = MP-Rel
by (intro ext, auto simp: OO-def MP-Rel-def )

lemma eq-mset-MP-Rel [transfer-rule]: (rel-mset MP-Rel ===> rel-mset MP-Rel
===> (=)) (rel-mset eq-m) (=)
proof (intro rel-funI iffI )

fix A B X Y
assume AX : rel-mset MP-Rel A X and BY : rel-mset MP-Rel B Y
{

assume AB: rel-mset eq-m A B
from AX have rel-mset MP-Rel−1−1 X A by (simp add: multiset.rel-flip)
note rel-mset-OO[OF this AB]
note rel-mset-OO[OF this BY ]
then show X = Y by (simp add: multiset.rel-eq)

}
assume X = Y
with BY have rel-mset MP-Rel−1−1 X B by (simp add: multiset.rel-flip)
from rel-mset-OO[OF AX this]
show rel-mset eq-m A B by simp

qed

lemma dvd-MP-Rel[transfer-rule]: (MP-Rel ===> MP-Rel ===> (=)) (dvdm)
(dvd)
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unfolding dvdm-def [abs-def ] dvd-def [abs-def ]
by transfer-prover

lemma irreducible-MP-Rel [transfer-rule]: (MP-Rel ===> (=)) irreducible-m ir-
reducible

unfolding irreducible-m-def irreducible-def
by transfer-prover

lemma irreducibled-MP-Rel [transfer-rule]: (MP-Rel ===> (=)) irreducibled-m
irreducibled

unfolding irreducibled-m-def [abs-def ] irreducibled-def [abs-def ]
by transfer-prover

lemma UNIV-M-Rel[transfer-rule]: rel-set M-Rel {0 ..<m} UNIV
unfolding rel-set-def M-Rel-def [abs-def ] M-def
by (auto simp: M-def m, goal-cases, metis to-int-mod-ring-of-int-mod-ring, (transfer ,

auto)+)

lemma coeff-MP-Rel [transfer-rule]: (MP-Rel ===> (=) ===> M-Rel) coeff
coeff

unfolding rel-fun-def M-Rel-def MP-Rel-def Mp-coeff [symmetric] by auto

lemma M-1-1 : M 1 = 1 unfolding M-def unfolding m by simp

lemma square-free-MP-Rel [transfer-rule]: (MP-Rel ===> (=)) square-free-m square-free
unfolding square-free-m-def [abs-def ] square-free-def [abs-def ]
by (transfer-prover-start, transfer-step+, auto)

lemma mset-factors-m-MP-Rel [transfer-rule]: (rel-mset MP-Rel ===> MP-Rel
===> (=)) mset-factors-m mset-factors

unfolding mset-factors-def mset-factors-m-def
by (transfer-prover-start, transfer-step+, auto dest:eq-m-irreducible-m)

lemma coprime-MP-Rel [transfer-rule]: (MP-Rel ===> MP-Rel ===> (=)) co-
prime-m coprime

unfolding coprime-m-def [abs-def ] coprime-def ′ [abs-def ]
by (transfer-prover-start, transfer-step+, auto)

lemma prime-elem-MP-Rel [transfer-rule]: (MP-Rel ===> (=)) prime-elem-m
prime-elem

unfolding prime-elem-m-def prime-elem-def by transfer-prover

end

context poly-mod-2 begin

lemma non-empty: {0 ..<m} 6= {} using m1 by auto

lemma type-to-set:
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assumes type-def : ∃ (Rep :: ′b ⇒ int) Abs. type-definition Rep Abs {0 ..< m ::
int}

shows class.nontriv (TYPE( ′b)) (is ?a) and m = int CARD( ′b) (is ?b)
proof −

from type-def obtain rep :: ′b ⇒ int and abs :: int ⇒ ′b where t: type-definition
rep abs {0 ..< m} by auto
have card (UNIV :: ′b set) = card {0 ..< m} using t by (rule type-definition.card)
also have . . . = m using m1 by auto
finally show ?b ..
then show ?a unfolding class.nontriv-def using m1 by auto

qed

end

locale poly-mod-prime-type = poly-mod-type m ty for m :: int and
ty :: ′a :: prime-card itself

begin

lemma factorization-MP-Rel [transfer-rule]:
(MP-Rel ===> MF-Rel ===> (=)) factorization-m (factorization Irr-Mon)
unfolding rel-fun-def

proof (intro allI impI , goal-cases)
case (1 f F cfs Cfs)
note [transfer-rule] = 1 (1 )
obtain c fs where cfs: cfs = (c,fs) by force
obtain C Fs where Cfs: Cfs = (C ,Fs) by force
from 1 (2 )[unfolded rel-prod.simps cfs Cfs MF-Rel-def ]
have tr [transfer-rule]: M-Rel c C rel-mset MP-Rel fs Fs by auto
have eq: (f =m smult c (prod-mset fs) = (F = smult C (prod-mset Fs)))

by transfer-prover
have set-mset Fs ⊆ Irr-Mon = (∀ x ∈# Fs. irreducibled x ∧ monic x) unfolding

Irr-Mon-def by auto
also have . . . = (∀ f∈#fs. irreducibled-m f ∧ monic (Mp f ))
proof (rule sym, transfer-prover-start, transfer-step+)

{
fix f
assume f ∈# fs
have monic (Mp f ) ←→ M (coeff f (degree-m f )) = M 1

unfolding Mp-coeff [symmetric] by simp
}
thus (∀ f∈#fs. irreducibled-m f ∧ monic (Mp f )) =
(∀ x∈#fs. irreducibled-m x ∧ M (coeff x (degree-m x)) = M 1 ) by auto

qed
finally
show factorization-m f cfs = factorization Irr-Mon F Cfs unfolding cfs Cfs

factorization-m-def factorization-def split eq by simp
qed

lemma unique-factorization-MP-Rel [transfer-rule]: (MP-Rel ===> MF-Rel ===>
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(=))
unique-factorization-m (unique-factorization Irr-Mon)
unfolding rel-fun-def

proof (intro allI impI , goal-cases)
case (1 f F cfs Cfs)
note [transfer-rule] = 1 (1 ,2 )
let ?F = factorization Irr-Mon F
let ?f = factorization-m f
let ?R = Collect ?F
let ?L = Mf ‘ Collect ?f
note X-to-x = right-total-MF-Rel[unfolded right-total-def , rule-format]
{

fix X
assume X ∈ ?R
hence F : ?F X by simp
from X-to-x[of X ] obtain x where rel[transfer-rule]: MF-Rel x X by blast
from F [untransferred] have Mf x ∈ ?L by blast
with rel have ∃ x. Mf x ∈ ?L ∧ MF-Rel x X by blast

} note R-to-L = this
show unique-factorization-m f cfs = unique-factorization Irr-Mon F Cfs unfold-

ing
unique-factorization-m-def unique-factorization-def

proof −
have fF : ?F Cfs = ?f cfs by transfer simp
have (?L = {Mf cfs}) = (?L ⊆ {Mf cfs} ∧ Mf cfs ∈ ?L) by blast
also have ?L ⊆ {Mf cfs} = (∀ dfs. ?f dfs −→ Mf dfs = Mf cfs) by blast
also have . . . = (∀ y. ?F y −→ y = Cfs) (is ?left = ?right)
proof (rule; intro allI impI )

fix Dfs
assume ∗: ?left and F : ?F Dfs
from X-to-x[of Dfs] obtain dfs where [transfer-rule]: MF-Rel dfs Dfs by

auto
from F [untransferred] have f : ?f dfs .
from ∗[rule-format, OF f ] have eq: Mf dfs = Mf cfs by simp

have (Mf dfs = Mf cfs) = (Dfs = Cfs) by (transfer-prover-start, transfer-step+,
simp)

thus Dfs = Cfs using eq by simp
next

fix dfs
assume ∗: ?right and f : ?f dfs
from left-total-MF-Rel obtain Dfs where

rel[transfer-rule]: MF-Rel dfs Dfs unfolding left-total-def by blast
have ?F Dfs by (transfer , rule f )
from ∗[rule-format, OF this] have eq: Dfs = Cfs .

have (Mf dfs = Mf cfs) = (Dfs = Cfs) by (transfer-prover-start, transfer-step+,
simp)

thus Mf dfs = Mf cfs using eq by simp
qed
also have Mf cfs ∈ ?L = (∃ dfs. ?f dfs ∧ Mf cfs = Mf dfs) by auto
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also have . . . = ?F Cfs unfolding fF
proof

assume ∃ dfs. ?f dfs ∧ Mf cfs = Mf dfs
then obtain dfs where f : ?f dfs and id: Mf dfs = Mf cfs by auto
from f have ?f (Mf dfs) by simp
from this[unfolded id] show ?f cfs by simp

qed blast
finally show (?L = {Mf cfs}) = (?R = {Cfs}) by auto

qed
qed

end

context begin
private lemma 1 : poly-mod-type TYPE( ′a :: nontriv) m = (m = int CARD( ′a))

and 2 : class.nontriv TYPE( ′a) = (CARD( ′a) ≥ 2 )
unfolding poly-mod-type-def class.prime-card-def class.nontriv-def poly-mod-prime-type-def

by auto

private lemma 3 : poly-mod-prime-type TYPE( ′b) m = (m = int CARD( ′b))
and 4 : class.prime-card TYPE( ′b :: prime-card) = prime CARD( ′b :: prime-card)

unfolding poly-mod-type-def class.prime-card-def class.nontriv-def poly-mod-prime-type-def
by auto

lemmas poly-mod-type-simps = 1 2 3 4
end

lemma remove-duplicate-premise: (PROP P =⇒ PROP P =⇒ PROP Q) ≡ (PROP
P =⇒ PROP Q) (is ?l ≡ ?r)
proof (intro Pure.equal-intr-rule)

assume p: PROP P and ppq: PROP ?l
from ppq[OF p p] show PROP Q.

next
assume p: PROP P and pq: PROP ?r
from pq[OF p] show PROP Q.

qed

context poly-mod-prime begin

lemma type-to-set:
assumes type-def : ∃ (Rep :: ′b ⇒ int) Abs. type-definition Rep Abs {0 ..< p ::

int}
shows class.prime-card (TYPE( ′b)) (is ?a) and p = int CARD( ′b) (is ?b)

proof −
from prime have p2 : p ≥ 2 by (rule prime-ge-2-int)
from type-def obtain rep :: ′b ⇒ int and abs :: int ⇒ ′b where t: type-definition

rep abs {0 ..< p} by auto
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have card (UNIV :: ′b set) = card {0 ..< p} using t by (rule type-definition.card)
also have . . . = p using p2 by auto
finally show ?b ..
then show ?a unfolding class.prime-card-def using prime p2 by auto

qed
end

lemmas (in poly-mod-type) prime-elem-m-dvdm-multD = prime-elem-dvd-multD
[where ′a = ′a mod-ring poly,untransferred]

lemmas (in poly-mod-2 ) prime-elem-m-dvdm-multD = poly-mod-type.prime-elem-m-dvdm-multD
[unfolded poly-mod-type-simps, internalize-sort ′a :: nontriv, OF type-to-set, un-

folded remove-duplicate-premise, cancel-type-definition, OF non-empty]

lemmas(in poly-mod-prime-type) degree-m-mult-eq = degree-mult-eq
[where ′a = ′a mod-ring, untransferred]

lemmas(in poly-mod-prime) degree-m-mult-eq = poly-mod-prime-type.degree-m-mult-eq
[unfolded poly-mod-type-simps, internalize-sort ′a :: prime-card, OF type-to-set,

unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]

lemma(in poly-mod-prime) irreducibled-lifting:
assumes n: n 6= 0

and deg: poly-mod.degree-m (p^n) f = degree-m f
and irr : irreducibled-m f

shows poly-mod.irreducibled-m (p^n) f
proof −

interpret q: poly-mod-2 p^n unfolding poly-mod-2-def using n m1 by auto
show q.irreducibled-m f
proof (rule q.irreducibled-mI )

from deg irr show q.degree-m f > 0 by (auto elim: irreducibled-mE)
then have pdeg-f : degree-m f 6= 0 by (simp add: deg)
note pMp-Mp = Mp-Mp-pow-is-Mp[OF n m1 ]
fix g h
assume deg-g: degree g < q.degree-m f and deg-h: degree h < q.degree-m f

and eq: q.eq-m f (g ∗ h)
from eq have p-f : f =m (g ∗ h) using pMp-Mp by metis
have ¬g =m 0 and ¬h =m 0

apply (metis degree-0 mult-zero-left Mp-0 p-f pdeg-f poly-mod.mult-Mp(1 ))
by (metis degree-0 mult-eq-0-iff Mp-0 mult-Mp(2 ) p-f pdeg-f )

note [simp] = degree-m-mult-eq[OF this]
from degree-m-le[of g] deg-g
have 2 : degree-m g < degree-m f by (fold deg, auto)
from degree-m-le[of h] deg-h
have 3 : degree-m h < degree-m f by (fold deg, auto)
from irreducibled-mD(2 )[OF irr 2 3 ] p-f
show False by auto

qed
qed
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lemmas (in poly-mod-prime-type) mset-factors-exist =
mset-factors-exist[where ′a = ′a mod-ring poly,untransferred]

lemmas (in poly-mod-prime) mset-factors-exist = poly-mod-prime-type.mset-factors-exist
[unfolded poly-mod-type-simps, internalize-sort ′a :: prime-card, OF type-to-set,

unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]

lemmas (in poly-mod-prime-type) mset-factors-unique =
mset-factors-unique[where ′a = ′a mod-ring poly,untransferred]

lemmas (in poly-mod-prime) mset-factors-unique = poly-mod-prime-type.mset-factors-unique
[unfolded poly-mod-type-simps, internalize-sort ′a :: prime-card, OF type-to-set,

unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]

lemmas (in poly-mod-prime-type) prime-elem-iff-irreducible =
prime-elem-iff-irreducible[where ′a = ′a mod-ring poly,untransferred]

lemmas (in poly-mod-prime) prime-elem-iff-irreducible[simp] = poly-mod-prime-type.prime-elem-iff-irreducible
[unfolded poly-mod-type-simps, internalize-sort ′a :: prime-card, OF type-to-set,

unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]

lemmas (in poly-mod-prime-type) irreducible-connect =
irreducible-connect-field[where ′a = ′a mod-ring, untransferred]

lemmas (in poly-mod-prime) irreducible-connect[simp] = poly-mod-prime-type.irreducible-connect
[unfolded poly-mod-type-simps, internalize-sort ′a :: prime-card, OF type-to-set,

unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]

lemmas (in poly-mod-prime-type) irreducible-degree =
irreducible-degree-field[where ′a = ′a mod-ring, untransferred]

lemmas (in poly-mod-prime) irreducible-degree = poly-mod-prime-type.irreducible-degree
[unfolded poly-mod-type-simps, internalize-sort ′a :: prime-card, OF type-to-set,

unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]

end

5.4 Karatsuba’s Multiplication Algorithm for Polynomials
theory Karatsuba-Multiplication
imports

Polynomial-Interpolation.Missing-Polynomial
begin

lemma karatsuba-main-step: fixes f :: ′a :: comm-ring-1 poly
assumes f : f = monom-mult n f1 + f0 and g: g = monom-mult n g1 + g0
shows

monom-mult (n + n) (f1 ∗ g1 ) + (monom-mult n (f1 ∗ g1 − (f1 − f0 ) ∗ (g1
− g0 ) + f0 ∗ g0 ) + f0 ∗ g0 ) = f ∗ g

unfolding assms
by (auto simp: field-simps mult-monom monom-mult-def )
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lemma karatsuba-single-sided: fixes f :: ′a :: comm-ring-1 poly
assumes f = monom-mult n f1 + f0
shows monom-mult n (f1 ∗ g) + f0 ∗ g = f ∗ g
unfolding assms by (auto simp: field-simps mult-monom monom-mult-def )

definition split-at :: nat ⇒ ′a list ⇒ ′a list × ′a list where
[code del]: split-at n xs = (take n xs, drop n xs)

lemma split-at-code[code]:
split-at n [] = ([],[])
split-at n (x # xs) = (if n = 0 then ([], x # xs) else case split-at (n−1 ) xs of

(bef ,aft)
⇒ (x # bef , aft))

unfolding split-at-def by (force, cases n, auto)

fun coeffs-minus :: ′a :: ab-group-add list ⇒ ′a list ⇒ ′a list where
coeffs-minus (x # xs) (y # ys) = ((x − y) # coeffs-minus xs ys)
| coeffs-minus xs [] = xs
| coeffs-minus [] ys = map uminus ys

The following constant determines at which size we will switch to the
standard multiplication algorithm.
definition karatsuba-lower-bound where [termination-simp]: karatsuba-lower-bound
= (7 :: nat)

fun karatsuba-main :: ′a :: comm-ring-1 list ⇒ nat ⇒ ′a list ⇒ nat ⇒ ′a poly
where
karatsuba-main f n g m = (if n ≤ karatsuba-lower-bound ∨ m ≤ karatsuba-lower-bound

then
let ff = poly-of-list f in foldr (λa p. smult a ff + pCons 0 p) g 0

else let n2 = n div 2 in
if m > n2 then (case split-at n2 f of
(f0 ,f1 ) ⇒ case split-at n2 g of
(g0 ,g1 ) ⇒ let

p1 = karatsuba-main f1 (n − n2 ) g1 (m − n2 );
p2 = karatsuba-main (coeffs-minus f1 f0 ) n2 (coeffs-minus g1 g0 ) n2 ;
p3 = karatsuba-main f0 n2 g0 n2
in monom-mult (n2 + n2 ) p1 + (monom-mult n2 (p1 − p2 + p3 ) + p3 ))

else case split-at n2 f of
(f0 ,f1 ) ⇒ let

p1 = karatsuba-main f1 (n − n2 ) g m;
p2 = karatsuba-main f0 n2 g m

in monom-mult n2 p1 + p2 )

declare karatsuba-main.simps[simp del]

lemma poly-of-list-split-at: assumes split-at n f = (f0 ,f1 )
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shows poly-of-list f = monom-mult n (poly-of-list f1 ) + poly-of-list f0
proof −

from assms have id: f1 = drop n f f0 = take n f unfolding split-at-def by auto
show ?thesis unfolding id
proof (rule poly-eqI )

fix i
show coeff (poly-of-list f ) i =

coeff (monom-mult n (poly-of-list (drop n f )) + poly-of-list (take n f )) i
unfolding monom-mult-def coeff-monom-mult coeff-add poly-of-list-def co-

eff-Poly
by (cases n ≤ i; cases i ≥ length f , auto simp: nth-default-nth nth-default-beyond)

qed
qed

lemma coeffs-minus: poly-of-list (coeffs-minus f1 f0 ) = poly-of-list f1 − poly-of-list
f0
proof (rule poly-eqI , unfold poly-of-list-def coeff-diff coeff-Poly)

fix i
show nth-default 0 (coeffs-minus f1 f0 ) i = nth-default 0 f1 i − nth-default 0 f0

i
proof (induct f1 f0 arbitrary: i rule: coeffs-minus.induct)

case (1 x xs y ys)
thus ?case by (cases i, auto)

next
case (3 x xs)
thus ?case unfolding coeffs-minus.simps

by (subst nth-default-map-eq[of uminus 0 0 ], auto)
qed auto

qed

lemma karatsuba-main: karatsuba-main f n g m = poly-of-list f ∗ poly-of-list g
proof (induct n arbitrary: f g m rule: less-induct)

case (less n f g m)
note simp[simp] = karatsuba-main.simps[of f n g m]
show ?case (is ?lhs = ?rhs)
proof (cases (n ≤ karatsuba-lower-bound ∨ m ≤ karatsuba-lower-bound) = False)

case False
hence lhs: ?lhs = foldr (λa p. smult a (poly-of-list f ) + pCons 0 p) g 0 by

simp
have rhs: ?rhs = poly-of-list g ∗ poly-of-list f by simp
also have . . . = foldr (λa p. smult a (poly-of-list f ) + pCons 0 p) (strip-while

((=) 0 ) g) 0
unfolding times-poly-def fold-coeffs-def poly-of-list-impl ..

also have . . . = ?lhs unfolding lhs
proof (induct g)

case (Cons x xs)
have ∀ x∈set xs. x = 0 =⇒ foldr (λa p. smult a (Poly f ) + pCons 0 p) xs 0

= 0
by (induct xs, auto)
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thus ?case using Cons by (auto simp: cCons-def Cons)
qed auto
finally show ?thesis by simp

next
case True
let ?n2 = n div 2
have ?n2 < n n − ?n2 < n using True unfolding karatsuba-lower-bound-def

by auto
note IH = less[OF this(1 )] less[OF this(2 )]
obtain f1 f0 where f : split-at ?n2 f = (f0 ,f1 ) by force
obtain g1 g0 where g: split-at ?n2 g = (g0 ,g1 ) by force
note fsplit = poly-of-list-split-at[OF f ]
note gsplit = poly-of-list-split-at[OF g]
show ?lhs = ?rhs unfolding simp Let-def f g split IH True if-False coeffs-minus

karatsuba-single-sided[OF fsplit] karatsuba-main-step[OF fsplit gsplit] by auto
qed

qed

definition karatsuba-mult-poly :: ′a :: comm-ring-1 poly ⇒ ′a poly ⇒ ′a poly where
karatsuba-mult-poly f g = (let ff = coeffs f ; gg = coeffs g; n = length ff ; m =

length gg
in (if n ≤ karatsuba-lower-bound ∨ m ≤ karatsuba-lower-bound then if n ≤ m
then foldr (λa p. smult a g + pCons 0 p) ff 0
else foldr (λa p. smult a f + pCons 0 p) gg 0
else if n ≤ m
then karatsuba-main gg m ff n
else karatsuba-main ff n gg m))

lemma karatsuba-mult-poly: karatsuba-mult-poly f g = f ∗ g
proof −

note d = karatsuba-mult-poly-def Let-def
let ?len = length (coeffs f ) ≤ length (coeffs g)
show ?thesis (is ?lhs = ?rhs)
proof (cases length (coeffs f ) ≤ karatsuba-lower-bound ∨ length (coeffs g) ≤

karatsuba-lower-bound)
case True note outer = this
show ?thesis
proof (cases ?len)

case True
with outer have ?lhs = foldr (λa p. smult a g + pCons 0 p) (coeffs f ) 0

unfolding d by auto
also have . . . = ?rhs unfolding times-poly-def fold-coeffs-def by auto
finally show ?thesis .

next
case False
with outer have ?lhs = foldr (λa p. smult a f + pCons 0 p) (coeffs g) 0

unfolding d by auto
also have . . . = g ∗ f unfolding times-poly-def fold-coeffs-def by auto
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also have . . . = ?rhs by simp
finally show ?thesis .

qed
next

case False note outer = this
show ?thesis
proof (cases ?len)

case True
with outer have ?lhs = karatsuba-main (coeffs g) (length (coeffs g)) (coeffs

f ) (length (coeffs f ))
unfolding d by auto

also have . . . = g ∗ f unfolding karatsuba-main by auto
also have . . . = ?rhs by auto
finally show ?thesis .

next
case False
with outer have ?lhs = karatsuba-main (coeffs f ) (length (coeffs f )) (coeffs

g) (length (coeffs g))
unfolding d by auto

also have . . . = ?rhs unfolding karatsuba-main by auto
finally show ?thesis .

qed
qed

qed

lemma karatsuba-mult-poly-code-unfold[code-unfold]: (∗) = karatsuba-mult-poly
by (intro ext, unfold karatsuba-mult-poly, auto)

The following declaration will resolve a race-conflict between (∗) = karat-
suba-mult-poly and monom 1 ?n ∗ ?f = monom-mult ?n ?f

?f ∗ monom 1 ?n = monom-mult ?n ?f.
lemmas karatsuba-monom-mult-code-unfold[code-unfold] =

monom-mult-unfold[where f = f :: ′a :: comm-ring-1 poly for f , unfolded karat-
suba-mult-poly-code-unfold]

end

5.5 Record Based Version
We provide an implementation for polynomials which may be parametrized
by the ring- or field-operations. These don’t have to be type-based!

5.5.1 Definitions
theory Polynomial-Record-Based
imports

Arithmetic-Record-Based
Karatsuba-Multiplication

begin
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context
fixes ops :: ′i arith-ops-record (structure)

begin
private abbreviation (input) zero where zero ≡ arith-ops-record.zero ops
private abbreviation (input) one where one ≡ arith-ops-record.one ops
private abbreviation (input) plus where plus ≡ arith-ops-record.plus ops
private abbreviation (input) times where times ≡ arith-ops-record.times ops
private abbreviation (input) minus where minus ≡ arith-ops-record.minus ops
private abbreviation (input) uminus where uminus ≡ arith-ops-record.uminus
ops
private abbreviation (input) divide where divide ≡ arith-ops-record.divide ops
private abbreviation (input) inverse where inverse ≡ arith-ops-record.inverse
ops
private abbreviation (input) modulo where modulo ≡ arith-ops-record.modulo
ops
private abbreviation (input) normalize where normalize ≡ arith-ops-record.normalize
ops
private abbreviation (input) unit-factor where unit-factor ≡ arith-ops-record.unit-factor
ops
private abbreviation (input) DP where DP ≡ arith-ops-record.DP ops

definition is-poly :: ′i list ⇒ bool where
is-poly xs ←→ list-all DP xs ∧ no-trailing (HOL.eq zero) xs

definition cCons-i :: ′i ⇒ ′i list ⇒ ′i list
where

cCons-i x xs = (if xs = [] ∧ x = zero then [] else x # xs)

fun plus-poly-i :: ′i list ⇒ ′i list ⇒ ′i list where
plus-poly-i (x # xs) (y # ys) = cCons-i (plus x y) (plus-poly-i xs ys)
| plus-poly-i xs [] = xs
| plus-poly-i [] ys = ys

definition uminus-poly-i :: ′i list ⇒ ′i list where
[code-unfold]: uminus-poly-i = map uminus

fun minus-poly-i :: ′i list ⇒ ′i list ⇒ ′i list where
minus-poly-i (x # xs) (y # ys) = cCons-i (minus x y) (minus-poly-i xs ys)
| minus-poly-i xs [] = xs
| minus-poly-i [] ys = uminus-poly-i ys

abbreviation (input) zero-poly-i :: ′i list where
zero-poly-i ≡ []

definition one-poly-i :: ′i list where
[code-unfold]: one-poly-i = [one]
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definition smult-i :: ′i ⇒ ′i list ⇒ ′i list where
smult-i a pp = (if a = zero then [] else strip-while ((=) zero) (map (times a) pp))

definition sdiv-i :: ′i list ⇒ ′i ⇒ ′i list where
sdiv-i pp a = (strip-while ((=) zero) (map (λ c. divide c a) pp))

definition poly-of-list-i :: ′i list ⇒ ′i list where
poly-of-list-i = strip-while ((=) zero)

fun coeffs-minus-i :: ′i list ⇒ ′i list ⇒ ′i list where
coeffs-minus-i (x # xs) (y # ys) = (minus x y # coeffs-minus-i xs ys)
| coeffs-minus-i xs [] = xs
| coeffs-minus-i [] ys = map uminus ys

definition monom-mult-i :: nat ⇒ ′i list ⇒ ′i list where
monom-mult-i n xs = (if xs = [] then xs else replicate n zero @ xs)

fun karatsuba-main-i :: ′i list ⇒ nat ⇒ ′i list ⇒ nat ⇒ ′i list where
karatsuba-main-i f n g m = (if n ≤ karatsuba-lower-bound ∨ m ≤ karatsuba-lower-bound

then
let ff = poly-of-list-i f in foldr (λa p. plus-poly-i (smult-i a ff ) (cCons-i zero p))

g zero-poly-i
else let n2 = n div 2 in
if m > n2 then (case split-at n2 f of
(f0 ,f1 ) ⇒ case split-at n2 g of
(g0 ,g1 ) ⇒ let

p1 = karatsuba-main-i f1 (n − n2 ) g1 (m − n2 );
p2 = karatsuba-main-i (coeffs-minus-i f1 f0 ) n2 (coeffs-minus-i g1 g0 ) n2 ;
p3 = karatsuba-main-i f0 n2 g0 n2
in plus-poly-i (monom-mult-i (n2 + n2 ) p1 )
(plus-poly-i (monom-mult-i n2 (plus-poly-i (minus-poly-i p1 p2 ) p3 )) p3 ))

else case split-at n2 f of
(f0 ,f1 ) ⇒ let

p1 = karatsuba-main-i f1 (n − n2 ) g m;
p2 = karatsuba-main-i f0 n2 g m

in plus-poly-i (monom-mult-i n2 p1 ) p2 )

definition times-poly-i :: ′i list ⇒ ′i list ⇒ ′i list where
times-poly-i f g ≡ (let n = length f ; m = length g

in (if n ≤ karatsuba-lower-bound ∨ m ≤ karatsuba-lower-bound then if n ≤ m
then

foldr (λa p. plus-poly-i (smult-i a g) (cCons-i zero p)) f zero-poly-i else
foldr (λa p. plus-poly-i (smult-i a f ) (cCons-i zero p)) g zero-poly-i else
if n ≤ m then karatsuba-main-i g m f n else karatsuba-main-i f n g m))

definition coeff-i :: ′i list ⇒ nat ⇒ ′i where
coeff-i = nth-default zero

definition degree-i :: ′i list ⇒ nat where
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degree-i pp ≡ length pp − 1

definition lead-coeff-i :: ′i list ⇒ ′i where
lead-coeff-i pp = (case pp of [] ⇒ zero | - ⇒ last pp)

definition monic-i :: ′i list ⇒ bool where
monic-i pp = (lead-coeff-i pp = one)

fun minus-poly-rev-list-i :: ′i list ⇒ ′i list ⇒ ′i list where
minus-poly-rev-list-i (x # xs) (y # ys) = (minus x y) # (minus-poly-rev-list-i xs

ys)
| minus-poly-rev-list-i xs [] = xs
| minus-poly-rev-list-i [] (y # ys) = []

fun divmod-poly-one-main-i :: ′i list ⇒ ′i list ⇒ ′i list
⇒ nat ⇒ ′i list × ′i list where
divmod-poly-one-main-i q r d (Suc n) = (let

a = hd r ;
qqq = cCons-i a q;
rr = tl (if a = zero then r else minus-poly-rev-list-i r (map (times a) d))
in divmod-poly-one-main-i qqq rr d n)

| divmod-poly-one-main-i q r d 0 = (q,r)

fun mod-poly-one-main-i :: ′i list ⇒ ′i list
⇒ nat ⇒ ′i list where
mod-poly-one-main-i r d (Suc n) = (let

a = hd r ;
rr = tl (if a = zero then r else minus-poly-rev-list-i r (map (times a) d))
in mod-poly-one-main-i rr d n)

| mod-poly-one-main-i r d 0 = r

definition pdivmod-monic-i :: ′i list ⇒ ′i list ⇒ ′i list × ′i list where
pdivmod-monic-i cf cg ≡ case

divmod-poly-one-main-i [] (rev cf ) (rev cg) (1 + length cf − length cg)
of (q,r) ⇒ (poly-of-list-i q, poly-of-list-i (rev r))

definition dupe-monic-i :: ′i list ⇒ ′i list ⇒ ′i list ⇒ ′i list ⇒ ′i list ⇒ ′i list ×
′i list where

dupe-monic-i D H S T U = (case pdivmod-monic-i (times-poly-i T U ) D of (Q,R)
⇒

(plus-poly-i (times-poly-i S U ) (times-poly-i H Q), R))

definition of-int-poly-i :: int poly ⇒ ′i list where
of-int-poly-i f = map (arith-ops-record.of-int ops) (coeffs f )

definition to-int-poly-i :: ′i list ⇒ int poly where
to-int-poly-i f = poly-of-list (map (arith-ops-record.to-int ops) f )

definition dupe-monic-i-int :: int poly ⇒ int poly ⇒ int poly ⇒ int poly ⇒ int
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poly ⇒ int poly × int poly where
dupe-monic-i-int D H S T = (let

d = of-int-poly-i D;
h = of-int-poly-i H ;
s = of-int-poly-i S ;
t = of-int-poly-i T

in (λ U . case dupe-monic-i d h s t (of-int-poly-i U ) of
(D ′,H ′) ⇒ (to-int-poly-i D ′, to-int-poly-i H ′)))

definition div-field-poly-i :: ′i list ⇒ ′i list ⇒ ′i list where
div-field-poly-i cf cg = (

if cg = [] then zero-poly-i
else let ilc = inverse (last cg); ch = map (times ilc) cg;

q = fst (divmod-poly-one-main-i [] (rev cf ) (rev ch) (1 + length cf
− length cg))

in poly-of-list-i ((map (times ilc) q)))

definition mod-field-poly-i :: ′i list ⇒ ′i list ⇒ ′i list where
mod-field-poly-i cf cg = (

if cg = [] then cf
else let ilc = inverse (last cg); ch = map (times ilc) cg;

r = mod-poly-one-main-i (rev cf ) (rev ch) (1 + length cf − length
cg)

in poly-of-list-i (rev r))

definition normalize-poly-i :: ′i list ⇒ ′i list where
normalize-poly-i xs = smult-i (inverse (unit-factor (lead-coeff-i xs))) xs

definition unit-factor-poly-i :: ′i list ⇒ ′i list where
unit-factor-poly-i xs = cCons-i (unit-factor (lead-coeff-i xs)) []

fun pderiv-main-i :: ′i ⇒ ′i list ⇒ ′i list where
pderiv-main-i f (x # xs) = cCons-i (times f x) (pderiv-main-i (plus f one) xs)
| pderiv-main-i f [] = []

definition pderiv-i :: ′i list ⇒ ′i list where
pderiv-i xs = pderiv-main-i one (tl xs)

definition dvd-poly-i :: ′i list ⇒ ′i list ⇒ bool where
dvd-poly-i xs ys = (∃ zs. is-poly zs ∧ ys = times-poly-i xs zs)

definition irreducible-i :: ′i list ⇒ bool where
irreducible-i xs = (degree-i xs 6= 0 ∧
(∀ q r . is-poly q −→ is-poly r −→ degree-i q < degree-i xs −→ degree-i r < degree-i

xs
−→ xs 6= times-poly-i q r))

definition poly-ops :: ′i list arith-ops-record where
poly-ops ≡ Arith-Ops-Record

157



zero-poly-i
one-poly-i
plus-poly-i
times-poly-i
minus-poly-i
uminus-poly-i
div-field-poly-i
(λ -. []) — not defined
mod-field-poly-i
normalize-poly-i
unit-factor-poly-i
(λ i. if i = 0 then [] else [arith-ops-record.of-int ops i])
(λ -. 0 ) — not defined
is-poly

definition gcd-poly-i :: ′i list ⇒ ′i list ⇒ ′i list where
gcd-poly-i = arith-ops.gcd-eucl-i poly-ops

definition euclid-ext-poly-i :: ′i list ⇒ ′i list ⇒ ( ′i list × ′i list) × ′i list where
euclid-ext-poly-i = arith-ops.euclid-ext-i poly-ops

definition separable-i :: ′i list ⇒ bool where
separable-i xs ≡ gcd-poly-i xs (pderiv-i xs) = one-poly-i

end

5.5.2 Properties
definition pdivmod-monic :: ′a::comm-ring-1 poly ⇒ ′a poly ⇒ ′a poly × ′a poly
where

pdivmod-monic f g ≡ let cg = coeffs g; cf = coeffs f ;
(q, r) = divmod-poly-one-main-list [] (rev cf ) (rev cg) (1 + length cf − length

cg)
in (poly-of-list q, poly-of-list (rev r))

lemma coeffs-smult ′: coeffs (smult a p) = (if a = 0 then [] else strip-while ((=) 0 )
(map (Groups.times a) (coeffs p)))

by (simp add: coeffs-map-poly smult-conv-map-poly)

lemma coeffs-sdiv: coeffs (sdiv-poly p a) = (strip-while ((=) 0 ) (map (λ x. x div
a) (coeffs p)))

unfolding sdiv-poly-def by (rule coeffs-map-poly)

lifting-forget poly.lifting

context ring-ops
begin
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definition poly-rel :: ′i list ⇒ ′a poly ⇒ bool where
poly-rel x x ′←→ list-all2 R x (coeffs x ′)

lemma right-total-poly-rel[transfer-rule]:
right-total poly-rel
using list.right-total-rel[of R] right-total unfolding poly-rel-def right-total-def by

auto

lemma poly-rel-inj: poly-rel x y =⇒ poly-rel x z =⇒ y = z
using list.bi-unique-rel[OF bi-unique] unfolding poly-rel-def coeffs-eq-iff bi-unique-def

by auto

lemma bi-unique-poly-rel[transfer-rule]: bi-unique poly-rel
using list.bi-unique-rel[OF bi-unique] unfolding poly-rel-def bi-unique-def co-

effs-eq-iff by auto

lemma Domainp-is-poly [transfer-domain-rule]:
Domainp poly-rel = is-poly ops

unfolding poly-rel-def [abs-def ] is-poly-def [abs-def ]
proof (intro ext iffI , unfold Domainp-iff )

note DPR = fun-cong [OF list.Domainp-rel [of R, unfolded DPR],
unfolded Domainp-iff ]

let ?no-trailing = no-trailing (HOL.eq zero)
fix xs
have no-trailing: no-trailing (HOL.eq 0 ) xs ′←→ ?no-trailing xs

if list-all2 R xs xs ′ for xs ′

proof (cases xs rule: rev-cases)
case Nil
with that show ?thesis

by simp
next

case (snoc ys y)
with that have xs ′ 6= []

by auto
then obtain ys ′ y ′ where xs ′ = ys ′ @ [y ′]

by (cases xs ′ rule: rev-cases) simp-all
with that snoc show ?thesis

by simp (meson bi-unique bi-unique-def zero)
qed
let ?DPR = arith-ops-record.DP ops
{

assume ∃ x ′. list-all2 R xs (coeffs x ′)
then obtain xs ′ where ∗: list-all2 R xs (coeffs xs ′) by auto
with DPR [of xs] have list-all ?DPR xs by auto
then show list-all ?DPR xs ∧ ?no-trailing xs

using no-trailing [OF ∗] by simp
}
{

assume list-all ?DPR xs ∧ ?no-trailing xs
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with DPR [of xs] obtain xs ′ where ∗: list-all2 R xs xs ′ and ?no-trailing xs
by auto

from no-trailing [OF ∗] this(2 ) have no-trailing (HOL.eq 0 ) xs ′

by simp
hence coeffs (poly-of-list xs ′) = xs ′ unfolding poly-of-list-impl by auto
with ∗ show ∃ x ′. list-all2 R xs (coeffs x ′) by metis

}
qed

lemma poly-rel-zero[transfer-rule]: poly-rel zero-poly-i 0
unfolding poly-rel-def by auto

lemma poly-rel-one[transfer-rule]: poly-rel (one-poly-i ops) 1
unfolding poly-rel-def one-poly-i-def by (simp add: one)

lemma poly-rel-cCons[transfer-rule]: (R ===> list-all2 R ===> list-all2 R)
(cCons-i ops) cCons

unfolding cCons-i-def [abs-def ] cCons-def [abs-def ]
by transfer-prover

lemma poly-rel-pCons[transfer-rule]: (R ===> poly-rel ===> poly-rel) (cCons-i
ops) pCons

unfolding rel-fun-def poly-rel-def coeffs-pCons-eq-cCons cCons-def [symmetric]
using poly-rel-cCons[unfolded rel-fun-def ] by auto

lemma poly-rel-eq[transfer-rule]: (poly-rel ===> poly-rel ===> (=)) (=) (=)
unfolding poly-rel-def [abs-def ] coeffs-eq-iff [abs-def ] rel-fun-def
by (metis bi-unique bi-uniqueDl bi-uniqueDr list.bi-unique-rel)

lemma poly-rel-plus[transfer-rule]: (poly-rel ===> poly-rel ===> poly-rel) (plus-poly-i
ops) (+)
proof (intro rel-funI )

fix x1 y1 x2 y2
assume poly-rel x1 x2 and poly-rel y1 y2
thus poly-rel (plus-poly-i ops x1 y1 ) (x2 + y2 )

unfolding poly-rel-def coeffs-eq-iff coeffs-plus-eq-plus-coeffs
proof (induct x1 y1 arbitrary: x2 y2 rule: plus-poly-i.induct)

case (1 x1 xs1 y1 ys1 X2 Y2 )
from 1 (2 ) obtain x2 xs2 where X2 : coeffs X2 = x2 # coeffs xs2

by (cases X2 , auto simp: cCons-def split: if-splits)
from 1 (3 ) obtain y2 ys2 where Y2 : coeffs Y2 = y2 # coeffs ys2

by (cases Y2 , auto simp: cCons-def split: if-splits)
from 1 (2 ) 1 (3 ) have [transfer-rule]: R x1 x2 R y1 y2
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and ∗: list-all2 R xs1 (coeffs xs2 ) list-all2 R ys1 (coeffs ys2 ) unfolding X2
Y2 by auto

note [transfer-rule] = 1 (1 )[OF ∗]
show ?case unfolding X2 Y2 by simp transfer-prover

next
case (2 xs1 xs2 ys2 )
thus ?case by (cases coeffs xs2 , auto)

next
case (3 xs2 y1 ys1 Y2 )
thus ?case by (cases Y2 , auto simp: cCons-def )

qed
qed

lemma poly-rel-uminus[transfer-rule]: (poly-rel ===> poly-rel) (uminus-poly-i ops)
Groups.uminus
proof (intro rel-funI )

fix x y
assume poly-rel x y
hence [transfer-rule]: list-all2 R x (coeffs y) unfolding poly-rel-def .
show poly-rel (uminus-poly-i ops x) (−y)

unfolding poly-rel-def coeffs-uminus uminus-poly-i-def by transfer-prover
qed

lemma poly-rel-minus[transfer-rule]: (poly-rel ===> poly-rel ===> poly-rel) (minus-poly-i
ops) (−)
proof (intro rel-funI )

fix x1 y1 x2 y2
assume poly-rel x1 x2 and poly-rel y1 y2
thus poly-rel (minus-poly-i ops x1 y1 ) (x2 − y2 )

unfolding diff-conv-add-uminus
unfolding poly-rel-def coeffs-eq-iff coeffs-plus-eq-plus-coeffs coeffs-uminus

proof (induct x1 y1 arbitrary: x2 y2 rule: minus-poly-i.induct)
case (1 x1 xs1 y1 ys1 X2 Y2 )
from 1 (2 ) obtain x2 xs2 where X2 : coeffs X2 = x2 # coeffs xs2

by (cases X2 , auto simp: cCons-def split: if-splits)
from 1 (3 ) obtain y2 ys2 where Y2 : coeffs Y2 = y2 # coeffs ys2

by (cases Y2 , auto simp: cCons-def split: if-splits)
from 1 (2 ) 1 (3 ) have [transfer-rule]: R x1 x2 R y1 y2

and ∗: list-all2 R xs1 (coeffs xs2 ) list-all2 R ys1 (coeffs ys2 ) unfolding X2
Y2 by auto

note [transfer-rule] = 1 (1 )[OF ∗]
show ?case unfolding X2 Y2 by simp transfer-prover

next
case (2 xs1 xs2 ys2 )
thus ?case by (cases coeffs xs2 , auto)

next
case (3 xs2 y1 ys1 Y2 )
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from 3 (1 ) have id0 : coeffs ys1 = coeffs 0 by (cases ys1 , auto)
have id1 : minus-poly-i ops [] (xs2 # y1 ) = uminus-poly-i ops (xs2 # y1 ) by

simp
from 3 (2 ) have [transfer-rule]: poly-rel (xs2 # y1 ) Y2 unfolding poly-rel-def

by simp
show ?case unfolding id0 id1 coeffs-uminus[symmetric] coeffs-plus-eq-plus-coeffs[symmetric]

poly-rel-def [symmetric] by simp transfer-prover
qed

qed

lemma poly-rel-smult[transfer-rule]: (R ===> poly-rel ===> poly-rel) (smult-i
ops) smult

unfolding rel-fun-def poly-rel-def coeffs-smult ′ smult-i-def
proof (intro allI impI , goal-cases)

case (1 x y xs ys)
note [transfer-rule] = 1
show ?case by transfer-prover

qed

lemma poly-rel-coeffs[transfer-rule]: (poly-rel ===> list-all2 R) (λ x. x) coeffs
unfolding rel-fun-def poly-rel-def by auto

lemma poly-rel-poly-of-list[transfer-rule]: (list-all2 R ===> poly-rel) (poly-of-list-i
ops) poly-of-list

unfolding rel-fun-def poly-of-list-i-def poly-rel-def poly-of-list-impl
proof (intro allI impI , goal-cases)

case (1 x y)
note [transfer-rule] = this
show ?case by transfer-prover

qed

lemma poly-rel-monom-mult[transfer-rule]:
((=) ===> poly-rel ===> poly-rel) (monom-mult-i ops) monom-mult
unfolding rel-fun-def monom-mult-i-def poly-rel-def monom-mult-code Let-def

proof (auto, goal-cases)
case (1 x xs y)
show ?case by (induct x, auto simp: 1 (3 ) zero)

qed

declare karatsuba-main-i.simps[simp del]

lemma list-rel-coeffs-minus-i: assumes list-all2 R x1 x2 list-all2 R y1 y2
shows list-all2 R (coeffs-minus-i ops x1 y1 ) (coeffs-minus x2 y2 )

proof −
note simps = coeffs-minus-i.simps coeffs-minus.simps
show ?thesis using assms
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proof (induct x1 y1 arbitrary: x2 y2 rule: coeffs-minus-i.induct)
case (1 x xs y ys)

from 1 (2−) obtain Y Ys where y2 : y2 = Y # Ys unfolding list-all2-conv-all-nth
by (cases y2 , auto)

with 1 (2−) have y: R y Y list-all2 R ys Ys by auto
from 1 (2−) obtain X Xs where x2 : x2 = X # Xs unfolding list-all2-conv-all-nth

by (cases x2 , auto)
with 1 (2−) have x: R x X list-all2 R xs Xs by auto
from 1 (1 )[OF x(2 ) y(2 )] x(1 ) y(1 )
show ?case unfolding x2 y2 simps using minus[unfolded rel-fun-def ] by auto

next
case (3 y ys)
from 3 have x2 : x2 = [] by auto
from 3 obtain Y Ys where y2 : y2 = Y # Ys unfolding list-all2-conv-all-nth

by (cases y2 , auto)
obtain y1 where y1 : y # ys = y1 by auto
show ?case unfolding y2 simps x2 unfolding y2 [symmetric] list-all2-map2

list-all2-map1
using 3 (2 ) unfolding y1 using uminus[unfolded rel-fun-def ]
unfolding list-all2-conv-all-nth by auto

qed auto
qed

lemma poly-rel-karatsuba-main: list-all2 R x1 x2 =⇒ list-all2 R y1 y2 =⇒
poly-rel (karatsuba-main-i ops x1 n y1 m) (karatsuba-main x2 n y2 m)

proof (induct n arbitrary: x1 y1 x2 y2 m rule: less-induct)
case (less n f g F G m)
note simp[simp] = karatsuba-main.simps[of F n G m] karatsuba-main-i.simps[of

ops f n g m]
note IH = less(1 )
note rel[transfer-rule] = less(2−3 )
show ?case (is poly-rel ?lhs ?rhs)
proof (cases (n ≤ karatsuba-lower-bound ∨ m ≤ karatsuba-lower-bound) = False)

case False
from False
have lhs: ?lhs = foldr (λa p. plus-poly-i ops (smult-i ops a (poly-of-list-i ops f ))

(cCons-i ops zero p)) g [] by simp
from False have rhs: ?rhs = foldr (λa p. smult a (poly-of-list F) + pCons 0

p) G 0 by simp
show ?thesis unfolding lhs rhs by transfer-prover

next
case True note ∗ = this
let ?n2 = n div 2
have ?n2 < n n − ?n2 < n using True unfolding karatsuba-lower-bound-def

by auto
note IH = IH [OF this(1 )] IH [OF this(2 )]
obtain f1 f0 where f : split-at ?n2 f = (f0 ,f1 ) by force
obtain g1 g0 where g: split-at ?n2 g = (g0 ,g1 ) by force
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obtain F1 F0 where F : split-at ?n2 F = (F0 ,F1 ) by force
obtain G1 G0 where G: split-at ?n2 G = (G0 ,G1 ) by force
from rel f F have relf [transfer-rule]: list-all2 R f0 F0 list-all2 R f1 F1

unfolding split-at-def by auto
from rel g G have relg[transfer-rule]: list-all2 R g0 G0 list-all2 R g1 G1

unfolding split-at-def by auto
show ?thesis
proof (cases ?n2 < m)

case True
obtain p1 P1 where p1 : p1 = karatsuba-main-i ops f1 (n − n div 2 ) g1 (m

− n div 2 )
P1 = karatsuba-main F1 (n − n div 2 ) G1 (m − n div 2 ) by auto

obtain p2 P2 where p2 : p2 = karatsuba-main-i ops (coeffs-minus-i ops f1
f0 ) (n div 2 )

(coeffs-minus-i ops g1 g0 ) (n div 2 )
P2 = karatsuba-main (coeffs-minus F1 F0 ) (n div 2 )

(coeffs-minus G1 G0 ) (n div 2 ) by auto
obtain p3 P3 where p3 : p3 = karatsuba-main-i ops f0 (n div 2 ) g0 (n div

2 )
P3 = karatsuba-main F0 (n div 2 ) G0 (n div 2 ) by auto

from ∗ True have lhs: ?lhs = plus-poly-i ops (monom-mult-i ops (n div 2 +
n div 2 ) p1 )

(plus-poly-i ops
(monom-mult-i ops (n div 2 )
(plus-poly-i ops (minus-poly-i ops p1 p2 ) p3 )) p3 )

unfolding simp Let-def f g split p1 p2 p3 by auto
have [transfer-rule]: poly-rel p1 P1 using IH (2 )[OF relf (2 ) relg(2 )] unfolding

p1 .
have [transfer-rule]: poly-rel p3 P3 using IH (1 )[OF relf (1 ) relg(1 )] unfolding

p3 .
have [transfer-rule]: poly-rel p2 P2 unfolding p2

by (rule IH (1 )[OF list-rel-coeffs-minus-i list-rel-coeffs-minus-i], insert relf
relg)

from True ∗ have rhs: ?rhs = monom-mult (n div 2 + n div 2 ) P1 +
(monom-mult (n div 2 ) (P1 − P2 + P3 ) + P3 )

unfolding simp Let-def F G split p1 p2 p3 by auto
show ?thesis unfolding lhs rhs by transfer-prover

next
case False
obtain p1 P1 where p1 : p1 = karatsuba-main-i ops f1 (n − n div 2 ) g m

P1 = karatsuba-main F1 (n − n div 2 ) G m by auto
obtain p2 P2 where p2 : p2 = karatsuba-main-i ops f0 (n div 2 ) g m

P2 = karatsuba-main F0 (n div 2 ) G m by auto
from ∗ False have lhs: ?lhs = plus-poly-i ops (monom-mult-i ops (n div 2 )

p1 ) p2
unfolding simp Let-def f split p1 p2 by auto

from ∗ False have rhs: ?rhs = monom-mult (n div 2 ) P1 + P2
unfolding simp Let-def F split p1 p2 by auto

have [transfer-rule]: poly-rel p1 P1 using IH (2 )[OF relf (2 ) rel(2 )] unfolding
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p1 .
have [transfer-rule]: poly-rel p2 P2 using IH (1 )[OF relf (1 ) rel(2 )] unfolding

p2 .
show ?thesis unfolding lhs rhs by transfer-prover

qed
qed

qed

lemma poly-rel-times[transfer-rule]: (poly-rel ===> poly-rel ===> poly-rel) (times-poly-i
ops) ((∗))
proof (intro rel-funI )

fix x1 y1 x2 y2
assume x12 [transfer-rule]: poly-rel x1 x2 and y12 [transfer-rule]: poly-rel y1 y2
hence X12 [transfer-rule]: list-all2 R x1 (coeffs x2 ) and Y12 [transfer-rule]: list-all2

R y1 (coeffs y2 )
unfolding poly-rel-def by auto

hence len: length (coeffs x2 ) = length x1 length (coeffs y2 ) = length y1
unfolding list-all2-conv-all-nth by auto

let ?cond1 = length x1 ≤ karatsuba-lower-bound ∨ length y1 ≤ karatsuba-lower-bound

let ?cond2 = length x1 ≤ length y1
note d = karatsuba-mult-poly[symmetric] karatsuba-mult-poly-def Let-def

times-poly-i-def len if-True if-False
consider (TT ) ?cond1 = True ?cond2 = True | (TF) ?cond1 = True ?cond2

= False
| (FT ) ?cond1 = False ?cond2 = True | (FF) ?cond1 = False ?cond2 = False

by auto
thus poly-rel (times-poly-i ops x1 y1 ) (x2 ∗ y2 )
proof (cases)

case TT
show ?thesis unfolding d TT
unfolding poly-rel-def coeffs-eq-iff times-poly-def times-poly-i-def fold-coeffs-def
by transfer-prover

next
case TF
show ?thesis unfolding d TF
unfolding poly-rel-def coeffs-eq-iff times-poly-def times-poly-i-def fold-coeffs-def
by transfer-prover

next
case FT
show ?thesis unfolding d FT

by (rule poly-rel-karatsuba-main[OF Y12 X12 ])
next

case FF
show ?thesis unfolding d FF

by (rule poly-rel-karatsuba-main[OF X12 Y12 ])
qed

qed
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lemma poly-rel-coeff [transfer-rule]: (poly-rel ===> (=) ===> R) (coeff-i ops)
coeff

unfolding poly-rel-def rel-fun-def coeff-i-def nth-default-coeffs-eq[symmetric]
proof (intro allI impI , clarify)

fix x y n
assume [transfer-rule]: list-all2 R x (coeffs y)
show R (nth-default zero x n) (nth-default 0 (coeffs y) n) by transfer-prover

qed

lemma poly-rel-degree[transfer-rule]: (poly-rel ===> (=)) degree-i degree
unfolding poly-rel-def rel-fun-def degree-i-def degree-eq-length-coeffs
by (simp add: list-all2-lengthD)

lemma lead-coeff-i-def ′: lead-coeff-i ops x = (coeff-i ops) x (degree-i x)
unfolding lead-coeff-i-def degree-i-def coeff-i-def

proof (cases x, auto, goal-cases)
case (1 a xs)
hence id: last xs = last (a # xs) by auto
show ?case unfolding id by (subst last-conv-nth-default, auto)

qed

lemma poly-rel-lead-coeff [transfer-rule]: (poly-rel ===> R) (lead-coeff-i ops) lead-coeff
unfolding lead-coeff-i-def ′ [abs-def ] by transfer-prover

lemma poly-rel-minus-poly-rev-list[transfer-rule]:
(list-all2 R ===> list-all2 R ===> list-all2 R) (minus-poly-rev-list-i ops) mi-

nus-poly-rev-list
proof (intro rel-funI , goal-cases)

case (1 x1 x2 y1 y2 )
thus ?case
proof (induct x1 y1 arbitrary: x2 y2 rule: minus-poly-rev-list-i.induct)

case (1 x1 xs1 y1 ys1 X2 Y2 )
from 1 (2 ) obtain x2 xs2 where X2 : X2 = x2 # xs2 by (cases X2 , auto)
from 1 (3 ) obtain y2 ys2 where Y2 : Y2 = y2 # ys2 by (cases Y2 , auto)
from 1 (2 ) 1 (3 ) have [transfer-rule]: R x1 x2 R y1 y2

and ∗: list-all2 R xs1 xs2 list-all2 R ys1 ys2 unfolding X2 Y2 by auto
note [transfer-rule] = 1 (1 )[OF ∗]
show ?case unfolding X2 Y2 by (simp, intro conjI , transfer-prover+)

next
case (2 xs1 xs2 ys2 )
thus ?case by (cases xs2 , auto)

next
case (3 xs2 y1 ys1 Y2 )
thus ?case by (cases Y2 , auto)
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qed
qed

lemma divmod-poly-one-main-i: assumes len: n ≤ length Y and rel: list-all2 R
x X list-all2 R y Y

list-all2 R z Z and n: n = N
shows rel-prod (list-all2 R) (list-all2 R) (divmod-poly-one-main-i ops x y z n)

(divmod-poly-one-main-list X Y Z N )
using len rel unfolding n

proof (induct N arbitrary: x X y Y z Z )
case (Suc n x X y Y z Z )
from Suc(2 ,4 ) have [transfer-rule]: R (hd y) (hd Y ) by (cases y; cases Y , auto)

note [transfer-rule] = Suc(3−5 )
have id: ?case = (rel-prod (list-all2 R) (list-all2 R)

(divmod-poly-one-main-i ops (cCons-i ops (hd y) x)
(tl (if hd y = zero then y else minus-poly-rev-list-i ops y (map (times (hd y))

z))) z n)
(divmod-poly-one-main-list (cCons (hd Y ) X)
(tl (if hd Y = 0 then Y else minus-poly-rev-list Y (map ((∗) (hd Y )) Z ))) Z

n))
by (simp add: Let-def )

show ?case unfolding id
proof (rule Suc(1 ), goal-cases)

case 1
show ?case using Suc(2 ) by simp

qed (transfer-prover+)
qed simp

lemma mod-poly-one-main-i: assumes len: n ≤ length X and rel: list-all2 R x X
list-all2 R y Y

and n: n = N
shows list-all2 R (mod-poly-one-main-i ops x y n)

(mod-poly-one-main-list X Y N )
using len rel unfolding n

proof (induct N arbitrary: x X y Y )
case (Suc n y Y z Z )
from Suc(2 ,3 ) have [transfer-rule]: R (hd y) (hd Y ) by (cases y; cases Y , auto)

note [transfer-rule] = Suc(3−4 )
have id: ?case = (list-all2 R

(mod-poly-one-main-i ops
(tl (if hd y = zero then y else minus-poly-rev-list-i ops y (map (times (hd y))

z))) z n)
(mod-poly-one-main-list
(tl (if hd Y = 0 then Y else minus-poly-rev-list Y (map ((∗) (hd Y )) Z ))) Z

n))
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by (simp add: Let-def )
show ?case unfolding id
proof (rule Suc(1 ), goal-cases)

case 1
show ?case using Suc(2 ) by simp

qed (transfer-prover+)
qed simp

lemma poly-rel-dvd[transfer-rule]: (poly-rel ===> poly-rel ===> (=)) (dvd-poly-i
ops) (dvd)

unfolding dvd-poly-i-def [abs-def ] dvd-def [abs-def ]
by (transfer-prover-start, transfer-step+, auto)

lemma poly-rel-monic[transfer-rule]: (poly-rel ===> (=)) (monic-i ops) monic
unfolding monic-i-def lead-coeff-i-def ′ by transfer-prover

lemma poly-rel-pdivmod-monic: assumes mon: monic Y
and x: poly-rel x X and y: poly-rel y Y
shows rel-prod poly-rel poly-rel (pdivmod-monic-i ops x y) (pdivmod-monic X Y )

proof −
note [transfer-rule] = x y
note listall = this[unfolded poly-rel-def ]
note defs = pdivmod-monic-def pdivmod-monic-i-def Let-def
from mon obtain k where len: length (coeffs Y ) = Suc k unfolding poly-rel-def

list-all2-iff
by (cases coeffs Y , auto)

have [transfer-rule]:
rel-prod (list-all2 R) (list-all2 R)

(divmod-poly-one-main-i ops [] (rev x) (rev y) (1 + length x − length y))
(divmod-poly-one-main-list [] (rev (coeffs X)) (rev (coeffs Y )) (1 + length

(coeffs X) − length (coeffs Y )))
by (rule divmod-poly-one-main-i, insert x y listall, auto, auto simp: poly-rel-def

list-all2-iff len)
show ?thesis unfolding defs by transfer-prover

qed

lemma ring-ops-poly: ring-ops (poly-ops ops) poly-rel
by (unfold-locales, auto simp: poly-ops-def
bi-unique-poly-rel
right-total-poly-rel
poly-rel-times
poly-rel-zero
poly-rel-one
poly-rel-minus
poly-rel-uminus
poly-rel-plus
poly-rel-eq
Domainp-is-poly)

end
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context idom-ops
begin

lemma poly-rel-pderiv [transfer-rule]: (poly-rel ===> poly-rel) (pderiv-i ops) pderiv
proof (intro rel-funI , unfold poly-rel-def coeffs-pderiv-code pderiv-i-def pderiv-coeffs-def )

fix xs xs ′

assume list-all2 R xs (coeffs xs ′)
then obtain ys ys ′ y y ′ where id: tl xs = ys tl (coeffs xs ′) = ys ′ one = y 1 =

y ′ and
R: list-all2 R ys ys ′ R y y ′

by (cases xs; cases coeffs xs ′; auto simp: one)
show list-all2 R (pderiv-main-i ops one (tl xs))

(pderiv-coeffs-code 1 (tl (coeffs xs ′)))
unfolding id using R

proof (induct ys ys ′ arbitrary: y y ′ rule: list-all2-induct)
case (Cons x xs x ′ xs ′ y y ′)
note [transfer-rule] = Cons(1 ,2 ,4 )
have R (plus y one) (y ′ + 1 ) by transfer-prover
note [transfer-rule] = Cons(3 )[OF this]
show ?case by (simp, transfer-prover)

qed simp
qed

lemma poly-rel-irreducible[transfer-rule]: (poly-rel ===> (=)) (irreducible-i ops)
irreducibled

unfolding irreducible-i-def [abs-def ] irreducibled-def [abs-def ]
by (transfer-prover-start, transfer-step+, auto)

lemma idom-ops-poly: idom-ops (poly-ops ops) poly-rel
using ring-ops-poly unfolding ring-ops-def idom-ops-def by auto

end

context idom-divide-ops
begin

lemma poly-rel-sdiv[transfer-rule]: (poly-rel ===> R ===> poly-rel) (sdiv-i ops)
sdiv-poly

unfolding rel-fun-def poly-rel-def coeffs-sdiv sdiv-i-def
proof (intro allI impI , goal-cases)

case (1 x y xs ys)
note [transfer-rule] = 1
show ?case by transfer-prover

qed
end

context field-ops
begin
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lemma poly-rel-div[transfer-rule]: (poly-rel ===> poly-rel ===> poly-rel)
(div-field-poly-i ops) (div)

proof (intro rel-funI , goal-cases)
case (1 x X y Y )
note [transfer-rule] = this
note listall = this[unfolded poly-rel-def ]
note defs = div-field-poly-impl div-field-poly-impl-def div-field-poly-i-def Let-def
show ?case
proof (cases y = [])

case True
with 1 (2 ) have nil: coeffs Y = [] unfolding poly-rel-def by auto
show ?thesis unfolding defs True nil poly-rel-def by auto

next
case False
from append-butlast-last-id[OF False] obtain ys yl where y: y = ys @ [yl] by

metis
from False listall have coeffs Y 6= [] by auto
from append-butlast-last-id[OF this] obtain Ys Yl where Y : coeffs Y = Ys

@ [Yl] by metis
from listall have [transfer-rule]: R yl Yl by (simp add: y Y )
have id: last (coeffs Y ) = Yl last (y) = yl∧

t e. (if y = [] then t else e) = e∧
t e. (if coeffs Y = [] then t else e) = e unfolding y Y by auto

have [transfer-rule]: (rel-prod (list-all2 R) (list-all2 R))
(divmod-poly-one-main-i ops [] (rev x) (rev (map (times (inverse yl)) y))
(1 + length x − length y))

(divmod-poly-one-main-list [] (rev (coeffs X))
(rev (map ((∗) (Fields.inverse Yl)) (coeffs Y )))
(1 + length (coeffs X) − length (coeffs Y )))

proof (rule divmod-poly-one-main-i, goal-cases)
case 5
from listall show ?case by (simp add: list-all2-lengthD)

next
case 1
from listall show ?case by (simp add: list-all2-lengthD Y )

qed transfer-prover+
show ?thesis unfolding defs id by transfer-prover

qed
qed

lemma poly-rel-mod[transfer-rule]: (poly-rel ===> poly-rel ===> poly-rel)
(mod-field-poly-i ops) (mod)

proof (intro rel-funI , goal-cases)
case (1 x X y Y )
note [transfer-rule] = this
note listall = this[unfolded poly-rel-def ]
note defs = mod-poly-code mod-field-poly-i-def Let-def
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show ?case
proof (cases y = [])

case True
with 1 (2 ) have nil: coeffs Y = [] unfolding poly-rel-def by auto
show ?thesis unfolding defs True nil poly-rel-def by (simp add: listall)

next
case False
from append-butlast-last-id[OF False] obtain ys yl where y: y = ys @ [yl] by

metis
from False listall have coeffs Y 6= [] by auto
from append-butlast-last-id[OF this] obtain Ys Yl where Y : coeffs Y = Ys

@ [Yl] by metis
from listall have [transfer-rule]: R yl Yl by (simp add: y Y )
have id: last (coeffs Y ) = Yl last (y) = yl∧

t e. (if y = [] then t else e) = e∧
t e. (if coeffs Y = [] then t else e) = e unfolding y Y by auto

have [transfer-rule]: list-all2 R
(mod-poly-one-main-i ops (rev x) (rev (map (times (inverse yl)) y))
(1 + length x − length y))

(mod-poly-one-main-list (rev (coeffs X))
(rev (map ((∗) (Fields.inverse Yl)) (coeffs Y )))
(1 + length (coeffs X) − length (coeffs Y )))

proof (rule mod-poly-one-main-i, goal-cases)
case 4
from listall show ?case by (simp add: list-all2-lengthD)

next
case 1
from listall show ?case by (simp add: list-all2-lengthD Y )

qed transfer-prover+
show ?thesis unfolding defs id by transfer-prover

qed
qed

lemma poly-rel-normalize [transfer-rule]: (poly-rel ===> poly-rel)
(normalize-poly-i ops) Rings.normalize
unfolding normalize-poly-old-def normalize-poly-i-def lead-coeff-i-def ′

by transfer-prover

lemma poly-rel-unit-factor [transfer-rule]: (poly-rel ===> poly-rel)
(unit-factor-poly-i ops) Rings.unit-factor
unfolding unit-factor-poly-def unit-factor-poly-i-def lead-coeff-i-def ′

unfolding monom-0 by transfer-prover

lemma idom-divide-ops-poly: idom-divide-ops (poly-ops ops) poly-rel
proof −

interpret poly: idom-ops poly-ops ops poly-rel by (rule idom-ops-poly)
show ?thesis
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by (unfold-locales, simp add: poly-rel-div poly-ops-def )
qed

lemma euclidean-ring-ops-poly: euclidean-ring-ops (poly-ops ops) poly-rel
proof −

interpret poly: idom-ops poly-ops ops poly-rel by (rule idom-ops-poly)
have id: arith-ops-record.normalize (poly-ops ops) = normalize-poly-i ops

arith-ops-record.unit-factor (poly-ops ops) = unit-factor-poly-i ops
unfolding poly-ops-def by simp-all

show ?thesis
by (unfold-locales, simp add: poly-rel-mod poly-ops-def , unfold id,

simp add: poly-rel-normalize, insert poly-rel-div poly-rel-unit-factor ,
auto simp: poly-ops-def )

qed

lemma poly-rel-gcd [transfer-rule]: (poly-rel ===> poly-rel ===> poly-rel) (gcd-poly-i
ops) gcd
proof −
interpret poly: euclidean-ring-ops poly-ops ops poly-rel by (rule euclidean-ring-ops-poly)
show ?thesis using poly.gcd-eucl-i unfolding gcd-poly-i-def gcd-eucl .

qed

lemma poly-rel-euclid-ext [transfer-rule]: (poly-rel ===> poly-rel ===>
rel-prod (rel-prod poly-rel poly-rel) poly-rel) (euclid-ext-poly-i ops) euclid-ext

proof −
interpret poly: euclidean-ring-ops poly-ops ops poly-rel by (rule euclidean-ring-ops-poly)
show ?thesis using poly.euclid-ext-i unfolding euclid-ext-poly-i-def .

qed

end

context ring-ops
begin
notepad
begin

fix xs x ys y
assume [transfer-rule]: poly-rel xs x poly-rel ys y
have x ∗ y = y ∗ x by simp
from this[untransferred]
have times-poly-i ops xs ys = times-poly-i ops ys xs .

end
end
end
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5.5.3 Over a Finite Field
theory Poly-Mod-Finite-Field-Record-Based
imports

Poly-Mod-Finite-Field
Finite-Field-Record-Based
Polynomial-Record-Based

begin

locale arith-ops-record = arith-ops ops + poly-mod m for ops :: ′i arith-ops-record
and m :: int
begin
definition M-rel-i :: ′i ⇒ int ⇒ bool where

M-rel-i f F = (arith-ops-record.to-int ops f = M F)

definition Mp-rel-i :: ′i list ⇒ int poly ⇒ bool where
Mp-rel-i f F = (map (arith-ops-record.to-int ops) f = coeffs (Mp F))

lemma Mp-rel-i-Mp[simp]: Mp-rel-i f (Mp F) = Mp-rel-i f F unfolding Mp-rel-i-def
by auto

lemma Mp-rel-i-Mp-to-int-poly-i: Mp-rel-i f F =⇒ Mp (to-int-poly-i ops f ) =
to-int-poly-i ops f

unfolding Mp-rel-i-def to-int-poly-i-def by simp
end

locale mod-ring-gen = ring-ops ff-ops R for ff-ops :: ′i arith-ops-record and
R :: ′i ⇒ ′a :: nontriv mod-ring ⇒ bool +
fixes p :: int
assumes p: p = int CARD( ′a)
and of-int: 0 ≤ x =⇒ x < p =⇒ R (arith-ops-record.of-int ff-ops x) (of-int x)
and to-int: R y z =⇒ arith-ops-record.to-int ff-ops y = to-int-mod-ring z
and to-int ′: 0 ≤ arith-ops-record.to-int ff-ops y =⇒ arith-ops-record.to-int ff-ops

y < p =⇒
R y (of-int (arith-ops-record.to-int ff-ops y))

begin

lemma nat-p: nat p = CARD( ′a) unfolding p by simp

sublocale poly-mod-type p TYPE( ′a)
by (unfold-locales, rule p)

lemma coeffs-to-int-poly: coeffs (to-int-poly (x :: ′a mod-ring poly)) = map to-int-mod-ring
(coeffs x)

by (rule coeffs-map-poly, auto)

lemma coeffs-of-int-poly: coeffs (of-int-poly (Mp x) :: ′a mod-ring poly) = map
of-int (coeffs (Mp x))

apply (rule coeffs-map-poly)
by (metis M-0 M-M Mp-coeff leading-coeff-0-iff of-int-hom.hom-zero to-int-mod-ring-of-int-M )
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lemma to-int-poly-i: assumes poly-rel f g shows to-int-poly-i ff-ops f = to-int-poly
g
proof −

have ∗: map (arith-ops-record.to-int ff-ops) f = coeffs (to-int-poly g)
unfolding coeffs-to-int-poly
by (rule nth-equalityI , insert assms, auto simp: list-all2-conv-all-nth poly-rel-def

to-int)
show ?thesis unfolding coeffs-eq-iff to-int-poly-i-def poly-of-list-def coeffs-Poly ∗

strip-while-coeffs..
qed

lemma poly-rel-of-int-poly: assumes id: f ′ = of-int-poly-i ff-ops (Mp f ) f ′′ =
of-int-poly (Mp f )

shows poly-rel f ′ f ′′ unfolding id poly-rel-def
unfolding list-all2-conv-all-nth coeffs-of-int-poly of-int-poly-i-def length-map
by (rule conjI [OF refl], intro allI impI , simp add: nth-coeffs-coeff Mp-coeff M-def ,

rule of-int,
insert p, auto)

sublocale arith-ops-record ff-ops p .

lemma Mp-rel-iI : poly-rel f1 f2 =⇒ MP-Rel f3 f2 =⇒ Mp-rel-i f1 f3
unfolding Mp-rel-i-def MP-Rel-def poly-rel-def
by (auto simp add: list-all2-conv-all-nth to-int intro: nth-equalityI )

lemma M-rel-iI : R f1 f2 =⇒ M-Rel f3 f2 =⇒ M-rel-i f1 f3
unfolding M-rel-i-def M-Rel-def by (simp add: to-int)

lemma M-rel-iI ′: assumes R f1 f2
shows M-rel-i f1 (arith-ops-record.to-int ff-ops f1 )
by (rule M-rel-iI [OF assms], simp add: to-int[OF assms] M-Rel-def M-to-int-mod-ring)

lemma Mp-rel-iI ′: assumes poly-rel f1 f2
shows Mp-rel-i f1 (to-int-poly-i ff-ops f1 )

proof (rule Mp-rel-iI [OF assms], unfold to-int-poly-i[OF assms])
show MP-Rel (to-int-poly f2 ) f2 unfolding MP-Rel-def by (simp add: Mp-to-int-poly)

qed

lemma M-rel-iD: assumes M-rel-i f1 f3
shows

R f1 (of-int (M f3 ))
M-Rel f3 (of-int (M f3 ))

proof −
show M-Rel f3 (of-int (M f3 ))

using M-Rel-def to-int-mod-ring-of-int-M by auto
from assms show R f1 (of-int (M f3 ))

unfolding M-rel-i-def
by (metis int-one-le-iff-zero-less leD linear m1 poly-mod.M-def pos-mod-sign
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pos-mod-bound to-int ′)
qed

lemma Mp-rel-iD: assumes Mp-rel-i f1 f3
shows

poly-rel f1 (of-int-poly (Mp f3 ))
MP-Rel f3 (of-int-poly (Mp f3 ))

proof −
show Rel: MP-Rel f3 (of-int-poly (Mp f3 ))

using MP-Rel-def Mp-Mp Mp-f-representative by auto
let ?ti = arith-ops-record.to-int ff-ops
from assms[unfolded Mp-rel-i-def ] have
∗: coeffs (Mp f3 ) = map ?ti f1 by auto

{
fix x
assume x ∈ set f1
hence ?ti x ∈ set (map ?ti f1 ) by auto
from this[folded ∗] have ?ti x ∈ range M
by (metis (no-types, lifting) MP-Rel-def M-to-int-mod-ring Rel coeffs-to-int-poly

ex-map-conv range-eqI )
hence ?ti x ≥ 0 ?ti x < p unfolding M-def using m1 by auto
hence R x (of-int (?ti x))

by (rule to-int ′)
}
thus poly-rel f1 (of-int-poly (Mp f3 )) using ∗

unfolding poly-rel-def coeffs-of-int-poly
by (auto simp: list-all2-map2 list-all2-same)

qed
end

locale prime-field-gen = field-ops ff-ops R + mod-ring-gen ff-ops R p for ff-ops ::
′i arith-ops-record and

R :: ′i ⇒ ′a :: prime-card mod-ring ⇒ bool and p :: int
begin

sublocale poly-mod-prime-type p TYPE( ′a)
by (unfold-locales, rule p)

end

lemma (in mod-ring-locale) mod-ring-rel-of-int:
0 ≤ x =⇒ x < p =⇒ mod-ring-rel x (of-int x)
unfolding mod-ring-rel-def
by (transfer , auto simp: p)

context prime-field
begin
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lemma prime-field-finite-field-ops-int: prime-field-gen (finite-field-ops-int p) mod-ring-rel
p
proof −

interpret field-ops finite-field-ops-int p mod-ring-rel by (rule finite-field-ops-int)
show ?thesis

by (unfold-locales, rule p,
auto simp: finite-field-ops-int-def p mod-ring-rel-def of-int-of-int-mod-ring)

qed

lemma prime-field-finite-field-ops-integer : prime-field-gen (finite-field-ops-integer
(integer-of-int p)) mod-ring-rel-integer p
proof −

interpret field-ops finite-field-ops-integer (integer-of-int p) mod-ring-rel-integer
by (rule finite-field-ops-integer , simp)

have pp: p = int-of-integer (integer-of-int p) by auto
interpret int: prime-field-gen finite-field-ops-int p mod-ring-rel

by (rule prime-field-finite-field-ops-int)
show ?thesis

by (unfold-locales, rule p, auto simp: finite-field-ops-integer-def
mod-ring-rel-integer-def [OF pp] urel-integer-def [OF pp] mod-ring-rel-of-int
int.to-int[symmetric] finite-field-ops-int-def )

qed

lemma prime-field-finite-field-ops32 : assumes small: p ≤ 65535
shows prime-field-gen (finite-field-ops32 (uint32-of-int p)) mod-ring-rel32 p

proof −
let ?pp = uint32-of-int p
have ppp: p = int-of-uint32 ?pp

by (subst int-of-uint32-inv, insert small p2 , auto)
note ∗ = ppp small
interpret field-ops finite-field-ops32 ?pp mod-ring-rel32

by (rule finite-field-ops32 , insert ∗)
interpret int: prime-field-gen finite-field-ops-int p mod-ring-rel

by (rule prime-field-finite-field-ops-int)
show ?thesis
proof (unfold-locales, rule p, auto simp: finite-field-ops32-def )

fix x
assume x: 0 ≤ x x < p

from int.of-int[OF this] have mod-ring-rel x (of-int x) by (simp add: fi-
nite-field-ops-int-def )

thus mod-ring-rel32 (uint32-of-int x) (of-int x) unfolding mod-ring-rel32-def [OF
∗]

by (intro exI [of - x], auto simp: urel32-def [OF ∗], subst int-of-uint32-inv,
insert ∗ x, auto)

next
fix y z
assume mod-ring-rel32 y z
from this[unfolded mod-ring-rel32-def [OF ∗]] obtain x where yx: urel32 y x

and xz: mod-ring-rel x z by auto
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from int.to-int[OF xz] have zx: to-int-mod-ring z = x by (simp add: fi-
nite-field-ops-int-def )

show int-of-uint32 y = to-int-mod-ring z unfolding zx using yx unfolding
urel32-def [OF ∗] by simp

next
fix y
show 0 ≤ int-of-uint32 y =⇒ int-of-uint32 y < p =⇒ mod-ring-rel32 y (of-int

(int-of-uint32 y))
unfolding mod-ring-rel32-def [OF ∗] urel32-def [OF ∗]
by (intro exI [of - int-of-uint32 y], auto simp: mod-ring-rel-of-int)

qed
qed

lemma prime-field-finite-field-ops64 : assumes small: p ≤ 4294967295
shows prime-field-gen (finite-field-ops64 (uint64-of-int p)) mod-ring-rel64 p

proof −
let ?pp = uint64-of-int p
have ppp: p = int-of-uint64 ?pp

by (subst int-of-uint64-inv, insert small p2 , auto)
note ∗ = ppp small
interpret field-ops finite-field-ops64 ?pp mod-ring-rel64

by (rule finite-field-ops64 , insert ∗)
interpret int: prime-field-gen finite-field-ops-int p mod-ring-rel

by (rule prime-field-finite-field-ops-int)
show ?thesis
proof (unfold-locales, rule p, auto simp: finite-field-ops64-def )

fix x
assume x: 0 ≤ x x < p

from int.of-int[OF this] have mod-ring-rel x (of-int x) by (simp add: fi-
nite-field-ops-int-def )

thus mod-ring-rel64 (uint64-of-int x) (of-int x) unfolding mod-ring-rel64-def [OF
∗]

by (intro exI [of - x], auto simp: urel64-def [OF ∗], subst int-of-uint64-inv,
insert ∗ x, auto)

next
fix y z
assume mod-ring-rel64 y z
from this[unfolded mod-ring-rel64-def [OF ∗]] obtain x where yx: urel64 y x

and xz: mod-ring-rel x z by auto
from int.to-int[OF xz] have zx: to-int-mod-ring z = x by (simp add: fi-

nite-field-ops-int-def )
show int-of-uint64 y = to-int-mod-ring z unfolding zx using yx unfolding

urel64-def [OF ∗] by simp
next

fix y
show 0 ≤ int-of-uint64 y =⇒ int-of-uint64 y < p =⇒ mod-ring-rel64 y (of-int

(int-of-uint64 y))
unfolding mod-ring-rel64-def [OF ∗] urel64-def [OF ∗]
by (intro exI [of - int-of-uint64 y], auto simp: mod-ring-rel-of-int)
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qed
qed
end

context mod-ring-locale
begin
lemma mod-ring-finite-field-ops-int: mod-ring-gen (finite-field-ops-int p) mod-ring-rel
p
proof −
interpret ring-ops finite-field-ops-int p mod-ring-rel by (rule ring-finite-field-ops-int)
show ?thesis

by (unfold-locales, rule p,
auto simp: finite-field-ops-int-def p mod-ring-rel-def of-int-of-int-mod-ring)

qed

lemma mod-ring-finite-field-ops-integer : mod-ring-gen (finite-field-ops-integer (integer-of-int
p)) mod-ring-rel-integer p
proof −

interpret ring-ops finite-field-ops-integer (integer-of-int p) mod-ring-rel-integer
by (rule ring-finite-field-ops-integer , simp)

have pp: p = int-of-integer (integer-of-int p) by auto
interpret int: mod-ring-gen finite-field-ops-int p mod-ring-rel

by (rule mod-ring-finite-field-ops-int)
show ?thesis

by (unfold-locales, rule p, auto simp: finite-field-ops-integer-def
mod-ring-rel-integer-def [OF pp] urel-integer-def [OF pp] mod-ring-rel-of-int
int.to-int[symmetric] finite-field-ops-int-def )

qed

lemma mod-ring-finite-field-ops32 : assumes small: p ≤ 65535
shows mod-ring-gen (finite-field-ops32 (uint32-of-int p)) mod-ring-rel32 p

proof −
let ?pp = uint32-of-int p
have ppp: p = int-of-uint32 ?pp

by (subst int-of-uint32-inv, insert small p2 , auto)
note ∗ = ppp small
interpret ring-ops finite-field-ops32 ?pp mod-ring-rel32

by (rule ring-finite-field-ops32 , insert ∗)
interpret int: mod-ring-gen finite-field-ops-int p mod-ring-rel

by (rule mod-ring-finite-field-ops-int)
show ?thesis
proof (unfold-locales, rule p, auto simp: finite-field-ops32-def )

fix x
assume x: 0 ≤ x x < p

from int.of-int[OF this] have mod-ring-rel x (of-int x) by (simp add: fi-
nite-field-ops-int-def )

thus mod-ring-rel32 (uint32-of-int x) (of-int x) unfolding mod-ring-rel32-def [OF
∗]
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by (intro exI [of - x], auto simp: urel32-def [OF ∗], subst int-of-uint32-inv,
insert ∗ x, auto)

next
fix y z
assume mod-ring-rel32 y z
from this[unfolded mod-ring-rel32-def [OF ∗]] obtain x where yx: urel32 y x

and xz: mod-ring-rel x z by auto
from int.to-int[OF xz] have zx: to-int-mod-ring z = x by (simp add: fi-

nite-field-ops-int-def )
show int-of-uint32 y = to-int-mod-ring z unfolding zx using yx unfolding

urel32-def [OF ∗] by simp
next

fix y
show 0 ≤ int-of-uint32 y =⇒ int-of-uint32 y < p =⇒ mod-ring-rel32 y (of-int

(int-of-uint32 y))
unfolding mod-ring-rel32-def [OF ∗] urel32-def [OF ∗]
by (intro exI [of - int-of-uint32 y], auto simp: mod-ring-rel-of-int)

qed
qed

lemma mod-ring-finite-field-ops64 : assumes small: p ≤ 4294967295
shows mod-ring-gen (finite-field-ops64 (uint64-of-int p)) mod-ring-rel64 p

proof −
let ?pp = uint64-of-int p
have ppp: p = int-of-uint64 ?pp

by (subst int-of-uint64-inv, insert small p2 , auto)
note ∗ = ppp small
interpret ring-ops finite-field-ops64 ?pp mod-ring-rel64

by (rule ring-finite-field-ops64 , insert ∗)
interpret int: mod-ring-gen finite-field-ops-int p mod-ring-rel

by (rule mod-ring-finite-field-ops-int)
show ?thesis
proof (unfold-locales, rule p, auto simp: finite-field-ops64-def )

fix x
assume x: 0 ≤ x x < p

from int.of-int[OF this] have mod-ring-rel x (of-int x) by (simp add: fi-
nite-field-ops-int-def )

thus mod-ring-rel64 (uint64-of-int x) (of-int x) unfolding mod-ring-rel64-def [OF
∗]

by (intro exI [of - x], auto simp: urel64-def [OF ∗], subst int-of-uint64-inv,
insert ∗ x, auto)

next
fix y z
assume mod-ring-rel64 y z
from this[unfolded mod-ring-rel64-def [OF ∗]] obtain x where yx: urel64 y x

and xz: mod-ring-rel x z by auto
from int.to-int[OF xz] have zx: to-int-mod-ring z = x by (simp add: fi-

nite-field-ops-int-def )
show int-of-uint64 y = to-int-mod-ring z unfolding zx using yx unfolding
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urel64-def [OF ∗] by simp
next

fix y
show 0 ≤ int-of-uint64 y =⇒ int-of-uint64 y < p =⇒ mod-ring-rel64 y (of-int

(int-of-uint64 y))
unfolding mod-ring-rel64-def [OF ∗] urel64-def [OF ∗]
by (intro exI [of - int-of-uint64 y], auto simp: mod-ring-rel-of-int)

qed
qed
end

end

5.6 Chinese Remainder Theorem for Polynomials
We prove the Chinese Remainder Theorem, and strengthen it by showing
uniqueness
theory Chinese-Remainder-Poly
imports

HOL−Number-Theory.Residues
Polynomial-Factorization.Polynomial-Irreducibility
Polynomial-Interpolation.Missing-Polynomial

begin

lemma cong-add-poly:
[(a:: ′b::{field-gcd} poly) = b] (mod m) =⇒ [c = d] (mod m) =⇒ [a + c = b + d]

(mod m)
by (fact cong-add)

lemma cong-mult-poly:
[(a:: ′b::{field-gcd} poly) = b] (mod m) =⇒ [c = d] (mod m) =⇒ [a ∗ c = b ∗ d]

(mod m)
by (fact cong-mult)

lemma cong-mult-self-poly: [(a:: ′b::{field-gcd} poly) ∗ m = 0 ] (mod m)
by (fact cong-mult-self-right)

lemma cong-scalar2-poly: [(a:: ′b::{field-gcd} poly)= b] (mod m) =⇒ [k ∗ a = k ∗
b] (mod m)

by (fact cong-scalar-left)

lemma cong-sum-poly:
(
∧

x. x ∈ A =⇒ [((f x):: ′b::{field-gcd} poly) = g x] (mod m)) =⇒
[(
∑

x∈A. f x) = (
∑

x∈A. g x)] (mod m)
by (rule cong-sum)

lemma cong-iff-lin-poly: ([(a:: ′b::{field-gcd} poly) = b] (mod m)) = (∃ k. b = a +
m ∗ k)

using cong-diff-iff-cong-0 [of b a m] by (auto simp add: cong-0-iff dvd-def alge-
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bra-simps dest: cong-sym)

lemma cong-solve-poly: (a:: ′b::{field-gcd} poly) 6= 0 =⇒ ∃ x. [a ∗ x = gcd a n]
(mod n)
proof (cases n = 0 )

case True
note n0=True
show ?thesis
proof (cases monic a)

case True
have n: normalize a = a by (rule normalize-monic[OF True])
show ?thesis
by (rule exI [of - 1 ], auto simp add: n0 n cong-def )

next
case False
show ?thesis
by (auto simp add: True cong-def normalize-poly-old-def map-div-is-smult-inverse)

(metis mult.right-neutral mult-smult-right)
qed

next
case False
note n-not-0 = False
show ?thesis

using bezout-coefficients-fst-snd [of a n, symmetric]
by (auto simp add: cong-iff-lin-poly mult.commute [of a] mult.commute [of n])

qed

lemma cong-solve-coprime-poly:
assumes coprime-an:coprime (a:: ′b::{field-gcd} poly) n
shows ∃ x. [a ∗ x = 1 ] (mod n)
proof (cases a = 0 )

case True
show ?thesis unfolding cong-def

using True coprime-an by auto
next

case False
show ?thesis

using coprime-an cong-solve-poly[OF False, of n]
unfolding cong-def
by presburger

qed

lemma cong-dvd-modulus-poly:
[x = y] (mod m) =⇒ n dvd m =⇒ [x = y] (mod n) for x y :: ′b::{field-gcd} poly
by (auto simp add: cong-iff-lin-poly elim!: dvdE)

lemma chinese-remainder-aux-poly:
fixes A :: ′a set
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and m :: ′a ⇒ ′b::{field-gcd} poly
assumes fin: finite A

and cop: ∀ i ∈ A. (∀ j ∈ A. i 6= j −→ coprime (m i) (m j))
shows ∃ b. (∀ i ∈ A. [b i = 1 ] (mod m i) ∧ [b i = 0 ] (mod (

∏
j ∈ A − {i}. m

j)))
proof (rule finite-set-choice, rule fin, rule ballI )

fix i
assume i : A
with cop have coprime (

∏
j ∈ A − {i}. m j) (m i)

by (auto intro: prod-coprime-left)
then have ∃ x. [(

∏
j ∈ A − {i}. m j) ∗ x = 1 ] (mod m i)

by (elim cong-solve-coprime-poly)
then obtain x where [(

∏
j ∈ A − {i}. m j) ∗ x = 1 ] (mod m i)

by auto
moreover have [(

∏
j ∈ A − {i}. m j) ∗ x = 0 ]

(mod (
∏

j ∈ A − {i}. m j))
by (subst mult.commute, rule cong-mult-self-poly)

ultimately show ∃ a. [a = 1 ] (mod m i) ∧ [a = 0 ]
(mod prod m (A − {i}))

by blast
qed

lemma chinese-remainder-poly:
fixes A :: ′a set

and m :: ′a ⇒ ′b::{field-gcd} poly
and u :: ′a ⇒ ′b poly

assumes fin: finite A
and cop: ∀ i∈A. (∀ j∈A. i 6= j −→ coprime (m i) (m j))

shows ∃ x. (∀ i∈A. [x = u i] (mod m i))
proof −

from chinese-remainder-aux-poly [OF fin cop] obtain b where
bprop: ∀ i∈A. [b i = 1 ] (mod m i) ∧
[b i = 0 ] (mod (

∏
j ∈ A − {i}. m j))

by blast
let ?x =

∑
i∈A. (u i) ∗ (b i)

show ?thesis
proof (rule exI , clarify)

fix i
assume a: i : A
show [?x = u i] (mod m i)
proof −

from fin a have ?x = (
∑

j ∈ {i}. u j ∗ b j) +
(
∑

j ∈ A − {i}. u j ∗ b j)
by (subst sum.union-disjoint [symmetric], auto intro: sum.cong)

then have [?x = u i ∗ b i + (
∑

j ∈ A − {i}. u j ∗ b j)] (mod m i)
unfolding cong-def
by auto
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also have [u i ∗ b i + (
∑

j ∈ A − {i}. u j ∗ b j) =
u i ∗ 1 + (

∑
j ∈ A − {i}. u j ∗ 0 )] (mod m i)

apply (rule cong-add-poly)
apply (rule cong-scalar2-poly)
using bprop a apply blast
apply (rule cong-sum)
apply (rule cong-scalar2-poly)
using bprop apply auto
apply (rule cong-dvd-modulus-poly)
apply (drule (1 ) bspec)
apply (erule conjE)
apply assumption
apply rule
using fin a apply auto
done

thus ?thesis
by (metis (no-types, lifting) a add.right-neutral fin mult-cancel-left1 mult-cancel-right1

sum.not-neutral-contains-not-neutral sum.remove)
qed

qed
qed

lemma cong-trans-poly:
[(a:: ′b::{field-gcd} poly) = b] (mod m) =⇒ [b = c] (mod m) =⇒ [a = c] (mod

m)
by (fact cong-trans)

lemma cong-mod-poly: (n:: ′b::{field-gcd} poly) ∼= 0 =⇒ [a mod n = a] (mod n)
by auto

lemma cong-sym-poly: [(a:: ′b::{field-gcd} poly) = b] (mod m) =⇒ [b = a] (mod m)
by (fact cong-sym)

lemma cong-1-poly: [(a:: ′b::{field-gcd} poly) = b] (mod 1 )
by (fact cong-1 )

lemma coprime-cong-mult-poly:
assumes [(a:: ′b::{field-gcd} poly) = b] (mod m) and [a = b] (mod n) and coprime

m n
shows [a = b] (mod m ∗ n)
using divides-mult assms
by (metis (no-types, opaque-lifting) cong-dvd-modulus-poly cong-iff-lin-poly dvd-mult2

dvd-refl minus-add-cancel mult.right-neutral)

lemma coprime-cong-prod-poly:
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(∀ i∈A. (∀ j∈A. i 6= j −→ coprime (m i) (m j))) =⇒
(∀ i∈A. [(x:: ′b::{field-gcd} poly) = y] (mod m i)) =⇒

[x = y] (mod (
∏

i∈A. m i))
apply (induct A rule: infinite-finite-induct)

apply auto
apply (metis coprime-cong-mult-poly prod-coprime-right)
done

lemma cong-less-modulus-unique-poly:
[(x:: ′b::{field-gcd} poly) = y] (mod m) =⇒ degree x < degree m =⇒ degree y <

degree m =⇒ x = y
by (simp add: cong-def mod-poly-less)

lemma chinese-remainder-unique-poly:
fixes A :: ′a set

and m :: ′a ⇒ ′b::{field-gcd} poly
and u :: ′a ⇒ ′b poly

assumes nz: ∀ i∈A. (m i) 6= 0
and cop: ∀ i∈A. (∀ j∈A. i 6= j −→ coprime (m i) (m j))

and not-constant: 0 < degree (prod m A)
shows ∃ !x. degree x < (

∑
i∈A. degree (m i)) ∧ (∀ i∈A. [x = u i] (mod m i))

proof −
from not-constant have fin: finite A

by (metis degree-1 gr-implies-not0 prod.infinite)
from chinese-remainder-poly [OF fin cop]
obtain y where one: (∀ i∈A. [y = u i] (mod m i))

by blast
let ?x = y mod (

∏
i∈A. m i)

have degree-prod-sum: degree (prod m A) = (
∑

i∈A. degree (m i))
by (rule degree-prod-eq-sum-degree[OF nz])

from fin nz have prodnz: (
∏

i∈A. (m i)) 6= 0
by auto

have less: degree ?x < (
∑

i∈A. degree (m i))
unfolding degree-prod-sum[symmetric]
using degree-mod-less[OF prodnz, of y]
using not-constant
by auto

have cong: ∀ i∈A. [?x = u i] (mod m i)
apply auto
apply (rule cong-trans-poly)
prefer 2
using one apply auto
apply (rule cong-dvd-modulus-poly)
apply (rule cong-mod-poly)
using prodnz apply auto
apply rule
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apply (rule fin)
apply assumption
done

have unique: ∀ z. degree z < (
∑

i∈A. degree (m i)) ∧
(∀ i∈A. [z = u i] (mod m i)) −→ z = ?x

proof (clarify)
fix z:: ′b poly
assume zless: degree z < (

∑
i∈A. degree (m i))

assume zcong: (∀ i∈A. [z = u i] (mod m i))
have deg1 : degree z < degree (prod m A)

using degree-prod-sum zless by simp
have deg2 : degree ?x < degree (prod m A)

by (metis deg1 degree-0 degree-mod-less gr0I gr-implies-not0 )
have ∀ i∈A. [?x = z] (mod m i)

apply clarify
apply (rule cong-trans-poly)
using cong apply (erule bspec)
apply (rule cong-sym-poly)
using zcong by auto

with fin cop have [?x = z] (mod (
∏

i∈A. m i))
by (intro coprime-cong-prod-poly) auto

with zless show z = ?x
apply (intro cong-less-modulus-unique-poly)
apply (erule cong-sym-poly)
apply (auto simp add: deg1 deg2 )
done

qed
from less cong unique show ?thesis by blast

qed

end

6 The Berlekamp Algorithm
theory Berlekamp-Type-Based
imports

Jordan-Normal-Form.Matrix-Kernel
Jordan-Normal-Form.Gauss-Jordan-Elimination
Jordan-Normal-Form.Missing-VectorSpace
Polynomial-Factorization.Square-Free-Factorization
Polynomial-Factorization.Missing-Multiset
Finite-Field
Chinese-Remainder-Poly
Poly-Mod-Finite-Field
HOL−Computational-Algebra.Field-as-Ring

begin

hide-const (open) up-ring.coeff up-ring.monom Modules.module subspace
Modules.module-hom
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6.1 Auxiliary lemmas
context

fixes g :: ′b ⇒ ′a :: comm-monoid-mult
begin
lemma prod-list-map-filter : prod-list (map g (filter f xs)) ∗ prod-list (map g (filter
(λ x. ¬ f x) xs))
= prod-list (map g xs)
by (induct xs, auto simp: ac-simps)

lemma prod-list-map-partition:
assumes List.partition f xs = (ys, zs)
shows prod-list (map g xs) = prod-list (map g ys) ∗ prod-list (map g zs)
using assms by (subst prod-list-map-filter [symmetric, of - f ], auto simp: o-def )

end

lemma coprime-id-is-unit:
fixes a:: ′b::semiring-gcd
shows coprime a a ←→ is-unit a
using dvd-unit-imp-unit by auto

lemma dim-vec-of-list[simp]: dim-vec (vec-of-list x) = length x
by (transfer , auto)

lemma length-list-of-vec[simp]: length (list-of-vec A) = dim-vec A
by (transfer ′, auto)

lemma list-of-vec-vec-of-list[simp]: list-of-vec (vec-of-list a) = a
proof −

{
fix aa :: ′a list
have map (λn. if n < length aa then aa ! n else undef-vec (n − length aa))

[0 ..<length aa]
= map ((!) aa) [0 ..<length aa]
by simp

hence map (λn. if n < length aa then aa ! n else undef-vec (n − length aa))
[0 ..<length aa] = aa

by (simp add: map-nth)
}
thus ?thesis by (transfer , simp add: mk-vec-def )

qed

context
assumes SORT-CONSTRAINT ( ′a::finite)
begin

lemma inj-Poly-list-of-vec ′: inj-on (Poly ◦ list-of-vec) {v. dim-vec v = n}
proof (rule comp-inj-on)

show inj-on list-of-vec {v. dim-vec v = n}
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by (auto simp add: inj-on-def , transfer , auto simp add: mk-vec-def )
show inj-on Poly (list-of-vec ‘ {v. dim-vec v = n})
proof (auto simp add: inj-on-def )

fix x y:: ′c vec assume n = dim-vec x and dim-xy: dim-vec y = dim-vec x
and Poly-eq: Poly (list-of-vec x) = Poly (list-of-vec y)
note [simp del] = nth-list-of-vec
show list-of-vec x = list-of-vec y
proof (rule nth-equalityI , auto simp: dim-xy)

have length-eq: length (list-of-vec x ) = length (list-of-vec y)
using dim-xy by (transfer , auto)

fix i assume i < dim-vec x
thus list-of-vec x ! i = list-of-vec y ! i using Poly-eq unfolding poly-eq-iff

coeff-Poly-eq
using dim-xy unfolding nth-default-def by (auto, presburger)

qed
qed

qed

corollary inj-Poly-list-of-vec: inj-on (Poly ◦ list-of-vec) (carrier-vec n)
using inj-Poly-list-of-vec ′ unfolding carrier-vec-def .

lemma list-of-vec-rw-map: list-of-vec m = map (λn. m $ n) [0 ..<dim-vec m]
by (transfer , auto simp add: mk-vec-def )

lemma degree-Poly ′:
assumes xs: xs 6= []
shows degree (Poly xs) < length xs
using xs
by (induct xs, auto intro: Poly.simps(1 ))

lemma vec-of-list-list-of-vec[simp]: vec-of-list (list-of-vec a) = a
by (transfer , auto simp add: mk-vec-def )

lemma row-mat-of-rows-list:
assumes b: b < length A
and nc: ∀ i. i < length A −→ length (A ! i) = nc
shows (row (mat-of-rows-list nc A) b) = vec-of-list (A ! b)
proof (auto simp add: vec-eq-iff )

show dim-col (mat-of-rows-list nc A) = length (A ! b)
unfolding mat-of-rows-list-def using b nc by auto

fix i assume i: i < length (A ! b)
show row (mat-of-rows-list nc A) b $ i = vec-of-list (A ! b) $ i

using i b nc
unfolding mat-of-rows-list-def row-def
by (transfer , auto simp add: mk-vec-def mk-mat-def )

qed

lemma degree-Poly-list-of-vec:
assumes n: x ∈ carrier-vec n
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and n0 : n > 0
shows degree (Poly (list-of-vec x)) < n
proof −

have x-dim: dim-vec x = n using n by auto
have l: (list-of-vec x) 6= []

by (auto simp add: list-of-vec-rw-map vec-of-dim-0 [symmetric] n0 n x-dim)
have degree (Poly (list-of-vec x)) < length (list-of-vec x) by (rule degree-Poly ′[OF

l])
also have ... = n using x-dim by auto
finally show ?thesis .

qed

lemma list-of-vec-nth:
assumes i: i < dim-vec x
shows list-of-vec x ! i = x $ i
using i
by (transfer , auto simp add: mk-vec-def )

lemma coeff-Poly-list-of-vec-nth ′:
assumes i: i < dim-vec x
shows coeff (Poly (list-of-vec x)) i = x $ i
using i
by (auto simp add: list-of-vec-nth nth-default-def )

lemma list-of-vec-row-nth:
assumes x: x < dim-col A
shows list-of-vec (row A i) ! x = A $$ (i, x)
using x unfolding row-def by (transfer ′, auto simp add: mk-vec-def )

lemma coeff-Poly-list-of-vec-nth:
assumes x: x < dim-col A
shows coeff (Poly (list-of-vec (row A i))) x = A $$ (i, x)
proof −

have coeff (Poly (list-of-vec (row A i))) x = nth-default 0 (list-of-vec (row A
i)) x

unfolding coeff-Poly-eq by simp
also have ... = A $$ (i, x) using x list-of-vec-row-nth

unfolding nth-default-def by (auto simp del: nth-list-of-vec)
finally show ?thesis .

qed

lemma inj-on-list-of-vec: inj-on list-of-vec (carrier-vec n)
unfolding inj-on-def unfolding list-of-vec-rw-map by auto

lemma vec-of-list-carrier [simp]: vec-of-list x ∈ carrier-vec (length x)
unfolding carrier-vec-def by simp

lemma card-carrier-vec: card (carrier-vec n:: ′b::finite vec set) = CARD( ′b) ^ n
proof −
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let ?A = UNIV :: ′b set
let ?B = {xs. set xs ⊆ ?A ∧ length xs = n}
let ?C = (carrier-vec n:: ′b::finite vec set)
have card ?C = card ?B
proof −

have bij-betw (list-of-vec) ?C ?B
proof (unfold bij-betw-def , auto)

show inj-on list-of-vec (carrier-vec n) by (rule inj-on-list-of-vec)
fix x:: ′b list
assume n: n = length x
thus x ∈ list-of-vec ‘ carrier-vec (length x)

unfolding image-def
by auto (rule bexI [of - vec-of-list x], auto)

qed
thus ?thesis using bij-betw-same-card by blast

qed
also have ... = card ?A ^ n

by (rule card-lists-length-eq, simp)
finally show ?thesis .

qed

lemma finite-carrier-vec[simp]: finite (carrier-vec n:: ′b::finite vec set)
by (rule card-ge-0-finite, unfold card-carrier-vec, auto)

lemma row-echelon-form-dim0-row:
assumes A ∈ carrier-mat 0 n
shows row-echelon-form A
using assms
unfolding row-echelon-form-def pivot-fun-def Let-def by auto

lemma row-echelon-form-dim0-col:
assumes A ∈ carrier-mat n 0
shows row-echelon-form A
using assms
unfolding row-echelon-form-def pivot-fun-def Let-def by auto

lemma row-echelon-form-one-dim0 [simp]: row-echelon-form (1m 0 )
unfolding row-echelon-form-def pivot-fun-def Let-def by auto

lemma Poly-list-of-vec-0 [simp]: Poly (list-of-vec (0 v 0 )) = [:0 :]
by (simp add: poly-eq-iff nth-default-def )

lemma monic-normalize:
assumes (p :: ′b :: {field,euclidean-ring-gcd} poly) 6= 0 shows monic (normalize
p)
by (simp add: assms normalize-poly-old-def )

189



lemma exists-factorization-prod-list:
fixes P:: ′b::field poly list
assumes degree (prod-list P) > 0

and
∧

u. u ∈ set P =⇒ degree u > 0 ∧ monic u
and square-free (prod-list P)

shows ∃Q. prod-list Q = prod-list P ∧ length P ≤ length Q
∧ (∀ u. u ∈ set Q −→ irreducible u ∧ monic u)

using assms
proof (induct P)

case Nil
thus ?case by auto

next
case (Cons x P)
have sf-P: square-free (prod-list P)
by (metis Cons.prems(3 ) dvd-triv-left prod-list.Cons mult.commute square-free-factor)

have deg-x: degree x > 0 using Cons.prems by auto
have distinct-P: distinct P
by (meson Cons.prems(2 ) Cons.prems(3 ) distinct.simps(2 ) square-free-prod-list-distinct)

have ∃A. finite A ∧ x =
∏

A ∧ A ⊆ {q. irreducible q ∧ monic q}
proof (rule monic-square-free-irreducible-factorization)

show monic x by (simp add: Cons.prems(2 ))
show square-free x

by (metis Cons.prems(3 ) dvd-triv-left prod-list.Cons square-free-factor)
qed
from this obtain A where fin-A: finite A
and xA: x =

∏
A

and A: A ⊆ {q. irreducibled q ∧ monic q}
by auto
obtain A ′ where s: set A ′ = A and length-A ′: length A ′ = card A

using ‹finite A› distinct-card finite-distinct-list by force
have A-not-empty: A 6= {} using xA deg-x by auto
have x-prod-list-A ′: x = prod-list A ′

proof −
have x =

∏
A using xA by simp

also have ... = prod id A by simp
also have ... = prod id (set A ′) unfolding s by simp
also have ... = prod-list (map id A ′)

by (rule prod.distinct-set-conv-list, simp add: card-distinct length-A ′ s)
also have ... = prod-list A ′ by auto
finally show ?thesis .

qed
show ?case
proof (cases P = [])

case True
show ?thesis
proof (rule exI [of - A ′], auto simp add: True)

show prod-list A ′ = x using x-prod-list-A ′ by simp
show Suc 0 ≤ length A ′ using A-not-empty using s length-A ′
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by (simp add: Suc-leI card-gt-0-iff fin-A)
show

∧
u. u ∈ set A ′ =⇒ irreducible u using s A by auto

show
∧

u. u ∈ set A ′ =⇒ monic u using s A by auto
qed

next
case False
have hyp: ∃Q. prod-list Q = prod-list P
∧ length P ≤ length Q ∧ (∀ u. u ∈ set Q −→ irreducible u ∧ monic u)

proof (rule Cons.hyps[OF - - sf-P])
have set-P: set P 6= {} using False by auto
have prod-list P = prod-list (map id P) by simp
also have ... = prod id (set P)

using prod.distinct-set-conv-list[OF distinct-P, of id] by simp
also have ... =

∏
(set P) by simp

finally have prod-list P =
∏

(set P) .
hence degree (prod-list P) = degree (

∏
(set P)) by simp

also have ... = degree (prod id (set P)) by simp
also have ... = (

∑
i∈(set P). degree (id i))

proof (rule degree-prod-eq-sum-degree)
show ∀ i∈set P. id i 6= 0 using Cons.prems(2 ) by force

qed
also have ... > 0
by (metis Cons.prems(2 ) List.finite-set set-P gr0I id-apply insert-iff list.set(2 )

sum-pos)
finally show degree (prod-list P) > 0 by simp
show

∧
u. u ∈ set P =⇒ degree u > 0 ∧ monic u using Cons.prems by auto

qed
from this obtain Q where QP: prod-list Q = prod-list P and length-PQ: length

P ≤ length Q
and monic-irr-Q: (∀ u. u ∈ set Q −→ irreducible u ∧ monic u) by blast
show ?thesis
proof (rule exI [of - A ′ @ Q], auto simp add: monic-irr-Q)

show prod-list A ′ ∗ prod-list Q = x ∗ prod-list P unfolding QP x-prod-list-A ′

by auto
have length A ′ 6= 0 using A-not-empty using s length-A ′ by auto
thus Suc (length P) ≤ length A ′ + length Q using QP length-PQ by linarith
show

∧
u. u ∈ set A ′ =⇒ irreducible u using s A by auto

show
∧

u. u ∈ set A ′ =⇒ monic u using s A by auto
qed

qed
qed

lemma normalize-eq-imp-smult:
fixes p :: ′b :: {euclidean-ring-gcd} poly
assumes n: normalize p = normalize q
shows ∃ c. c 6= 0 ∧ q = smult c p

proof(cases p = 0 )
case True with n show ?thesis by (auto intro:exI [of - 1 ])

next
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case p0 : False
have degree-eq: degree p = degree q using n degree-normalize by metis
hence q0 : q 6= 0 using p0 n by auto
have p-dvd-q: p dvd q using n by (simp add: associatedD1 )
from p-dvd-q obtain k where q: q = k ∗ p unfolding dvd-def by (auto simp:

ac-simps)
with q0 have k 6= 0 by auto
then have degree k = 0

using degree-eq degree-mult-eq p0 q by fastforce
then obtain c where k: k = [: c :] by (metis degree-0-id)
with ‹k 6= 0 › have c 6= 0 by auto
have q = smult c p unfolding q k by simp
with ‹c 6= 0 › show ?thesis by auto

qed

lemma prod-list-normalize:
fixes P :: ′b :: {idom-divide,normalization-semidom-multiplicative} poly list
shows normalize (prod-list P) = prod-list (map normalize P)

proof (induct P)
case Nil
show ?case by auto

next
case (Cons p P)
have normalize (prod-list (p # P)) = normalize p ∗ normalize (prod-list P)

using normalize-mult by auto
also have ... = normalize p ∗ prod-list (map normalize P) using Cons.hyps by

auto
also have ... = prod-list (normalize p # (map normalize P)) by auto
also have ... = prod-list (map normalize (p # P)) by auto
finally show ?case .

qed

lemma prod-list-dvd-prod-list-subset:
fixes A:: ′b::comm-monoid-mult list
assumes dA: distinct A

and dB: distinct B
and s: set A ⊆ set B

shows prod-list A dvd prod-list B
proof −

have prod-list A = prod-list (map id A) by auto
also have ... = prod id (set A)

by (rule prod.distinct-set-conv-list[symmetric, OF dA])
also have ... dvd prod id (set B)

by (rule prod-dvd-prod-subset[OF - s], auto)
also have ... = prod-list (map id B)

by (rule prod.distinct-set-conv-list[OF dB])
also have ... = prod-list B by simp
finally show ?thesis .
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qed

end

lemma gcd-monic-constant:
gcd f g ∈ {1 , f } if monic f and degree g = 0

for f g :: ′a :: {field-gcd} poly
proof (cases g = 0 )

case True
moreover from ‹monic f › have normalize f = f

by (rule normalize-monic)
ultimately show ?thesis

by simp
next

case False
with ‹degree g = 0 › have is-unit g

by simp
then have Rings.coprime f g

by (rule is-unit-right-imp-coprime)
then show ?thesis

by simp
qed

lemma distinct-find-base-vectors:
fixes A:: ′a::field mat
assumes ref : row-echelon-form A

and A: A ∈ carrier-mat nr nc
shows distinct (find-base-vectors A)
proof −

note non-pivot-base = non-pivot-base[OF ref A]
let ?pp = set (pivot-positions A)
from A have dim: dim-row A = nr dim-col A = nc by auto
{

fix j j ′
assume j: j < nc j /∈ snd ‘ ?pp and j ′: j ′ < nc j ′ /∈ snd ‘ ?pp and neq: j ′ 6= j
from non-pivot-base(2 )[OF j] non-pivot-base(4 )[OF j ′ j neq]
have non-pivot-base A (pivot-positions A) j 6= non-pivot-base A (pivot-positions

A) j ′ by auto
}
hence inj: inj-on (non-pivot-base A (pivot-positions A))

(set [j←[0 ..<nc] . j /∈ snd ‘ ?pp]) unfolding inj-on-def by auto
thus ?thesis unfolding find-base-vectors-def Let-def unfolding distinct-map

dim by auto
qed

lemma length-find-base-vectors:
fixes A:: ′a::field mat
assumes ref : row-echelon-form A

and A: A ∈ carrier-mat nr nc
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shows length (find-base-vectors A) = card (set (find-base-vectors A))
using distinct-card[OF distinct-find-base-vectors[OF ref A]] by auto

6.2 Previous Results
definition power-poly-f-mod :: ′a::field poly ⇒ ′a poly ⇒ nat ⇒ ′a poly where

power-poly-f-mod modulus = (λa n. a ^ n mod modulus)

lemma power-poly-f-mod-binary: power-poly-f-mod m a n = (if n = 0 then 1 mod
m

else let (d, r) = Euclidean-Rings.divmod-nat n 2 ;
rec = power-poly-f-mod m ((a ∗ a) mod m) d in

if r = 0 then rec else (rec ∗ a) mod m)
for m a :: ′a :: {field-gcd} poly

proof −
note d = power-poly-f-mod-def
show ?thesis
proof (cases n = 0 )

case True
thus ?thesis unfolding d by simp

next
case False
obtain q r where div: Euclidean-Rings.divmod-nat n 2 = (q,r) by force

hence n: n = 2 ∗ q + r and r : r = 0 ∨ r = 1 unfolding Euclidean-Rings.divmod-nat-def
by auto

have id: a ^ (2 ∗ q) = (a ∗ a) ^ q
by (simp add: power-mult-distrib semiring-normalization-rules)

show ?thesis
proof (cases r = 0 )

case True
show ?thesis

using power-mod [of a ∗ a m q]
by (auto simp add: Euclidean-Rings.divmod-nat-def Let-def True n d div id)

next
case False
with r have r : r = 1 by simp
show ?thesis

by (auto simp add: d r div Let-def mod-simps)
(simp add: n r mod-simps ac-simps power-mult-distrib power-mult power2-eq-square)

qed
qed

qed

fun power-polys where
power-polys mul-p u curr-p (Suc i) = curr-p #

power-polys mul-p u ((curr-p ∗ mul-p) mod u) i
| power-polys mul-p u curr-p 0 = []
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context
assumes SORT-CONSTRAINT ( ′a::prime-card)
begin

lemma fermat-theorem-mod-ring [simp]:
fixes a:: ′a mod-ring
shows a ^ CARD( ′a) = a

proof (cases a = 0 )
case True
then show ?thesis by auto

next
case False
then show ?thesis
proof transfer

fix a
assume a ∈ {0 ..<int CARD( ′a)} and a 6= 0
then have a: 1 ≤ a a < int CARD( ′a)

by simp-all
then have [simp]: a mod int CARD( ′a) = a

by simp
from a have ¬ int CARD( ′a) dvd a

by (auto simp add: zdvd-not-zless)
then have ¬ CARD( ′a) dvd nat |a|

by simp
with a have ¬ CARD( ′a) dvd nat a

by simp
with prime-card have [nat a ^ (CARD( ′a) − 1 ) = 1 ] (mod CARD( ′a))

by (rule fermat-theorem)
with a have int (nat a ^ (CARD( ′a) − 1 ) mod CARD( ′a)) = 1

by (simp add: cong-def )
with a have a ^ (CARD( ′a) − 1 ) mod CARD( ′a) = 1

by (simp add: of-nat-mod)
then have a ∗ (a ^ (CARD( ′a) − 1 ) mod int CARD( ′a)) = a

by simp
then have (a ∗ (a ^ (CARD( ′a) − 1 ) mod int CARD( ′a))) mod int CARD( ′a)

= a mod int CARD( ′a)
by (simp only:)

then show a ^ CARD( ′a) mod int CARD( ′a) = a
by (simp add: mod-simps semiring-normalization-rules(27 ))

qed
qed

lemma mod-eq-dvd-iff-poly: ((x:: ′a mod-ring poly) mod n = y mod n) = (n dvd x
− y)
proof

assume H : x mod n = y mod n
hence x mod n − y mod n = 0 by simp
hence (x mod n − y mod n) mod n = 0 by simp
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hence (x − y) mod n = 0 by (simp add: mod-diff-eq)
thus n dvd x − y by (simp add: dvd-eq-mod-eq-0 )

next
assume H : n dvd x − y
then obtain k where k: x−y = n∗k unfolding dvd-def by blast
hence x = n∗k + y using diff-eq-eq by blast
hence x mod n = (n∗k + y) mod n by simp
thus x mod n = y mod n by (simp add: mod-add-left-eq)

qed

lemma cong-gcd-eq-poly:
gcd a m = gcd b m if [(a:: ′a mod-ring poly) = b] (mod m)
using that by (simp add: cong-def ) (metis gcd-mod-left mod-by-0 )

lemma coprime-h-c-poly:
fixes h:: ′a mod-ring poly
assumes c1 6= c2
shows coprime (h − [:c1 :]) (h − [:c2 :])
proof (intro coprimeI )

fix d assume d dvd h − [:c1 :]
and d dvd h − [:c2 :]
hence h mod d = [:c1 :] mod d and h mod d = [:c2 :] mod d

using mod-eq-dvd-iff-poly by simp+
hence [:c1 :] mod d = [:c2 :] mod d by simp
hence d dvd [:c2 − c1 :]

by (metis (no-types) mod-eq-dvd-iff-poly diff-pCons right-minus-eq)
thus is-unit d
by (metis (no-types) assms dvd-trans is-unit-monom-0 monom-0 right-minus-eq)

qed

lemma coprime-h-c-poly2 :
fixes h:: ′a mod-ring poly
assumes coprime (h − [:c1 :]) (h − [:c2 :])
and ¬ is-unit (h − [:c1 :])
shows c1 6= c2
using assms coprime-id-is-unit by blast

lemma degree-minus-eq-right:
fixes p:: ′b::ab-group-add poly
shows degree q < degree p =⇒ degree (p − q) = degree p
using degree-add-eq-left[of −q p] degree-minus by auto

lemma coprime-prod:
fixes A:: ′a mod-ring set and g:: ′a mod-ring ⇒ ′a mod-ring poly
assumes ∀ x∈A. coprime (g a) (g x)
shows coprime (g a) (prod (λx. g x) A)

proof −
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have f : finite A by simp
show ?thesis
using f using assms
proof (induct A)

case (insert x A)
have (

∏
c∈insert x A. g c) = (g x) ∗ (

∏
c∈A. g c)

by (simp add: insert.hyps(2 ))
with insert.prems show ?case

by (auto simp: insert.hyps(3 ) prod-coprime-right)
qed auto

qed

lemma coprime-prod2 :
fixes A:: ′b::semiring-gcd set
assumes ∀ x∈A. coprime (a) (x) and f : finite A
shows coprime (a) (prod (λx. x) A)
using f using assms

proof (induct A)
case (insert x A)
have (

∏
c∈insert x A. c) = (x) ∗ (

∏
c∈A. c)

by (simp add: insert.hyps)
with insert.prems show ?case

by (simp add: insert.hyps prod-coprime-right)
qed auto

lemma divides-prod:
fixes g:: ′a mod-ring ⇒ ′a mod-ring poly
assumes ∀ c1 c2 . c1 ∈ A ∧ c2 ∈ A ∧ c1 6= c2 −→ coprime (g c1 ) (g c2 )
assumes ∀ c∈ A. g c dvd f
shows (

∏
c∈A. g c) dvd f

proof −
have finite-A: finite A using finite[of A] .
thus ?thesis using assms
proof (induct A)

case (insert x A)
have (

∏
c∈insert x A. g c) = g x ∗ (

∏
c∈ A. g c)

by (simp add: insert.hyps(2 ))
also have ... dvd f
proof (rule divides-mult)

show g x dvd f using insert.prems by auto
show prod g A dvd f using insert.hyps(3 ) insert.prems by auto
from insert show Rings.coprime (g x) (prod g A)

by (auto intro: prod-coprime-right)
qed
finally show ?case .

qed auto
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qed

lemma poly-monom-identity-mod-p:
monom (1 :: ′a mod-ring) (CARD( ′a)) − monom 1 1 = prod (λx. [:0 ,1 :] − [:x:])

(UNIV :: ′a mod-ring set)
(is ?lhs = ?rhs)

proof −
let ?f=(λx:: ′a mod-ring. [:0 ,1 :] − [:x:])
have ?rhs dvd ?lhs
proof (rule divides-prod)

{
fix a:: ′a mod-ring
have poly ?lhs a = 0

by (simp add: poly-monom)
hence ([:0 ,1 :] − [:a:]) dvd ?lhs

using poly-eq-0-iff-dvd by fastforce
}
thus ∀ x∈UNIV :: ′a mod-ring set. [:0 , 1 :] − [:x:] dvd monom 1 CARD( ′a) −

monom 1 1 by fast
show ∀ c1 c2 . c1 ∈ UNIV ∧ c2 ∈ UNIV ∧ c1 6= (c2 :: ′a mod-ring) −→

coprime ([:0 , 1 :] − [:c1 :]) ([:0 , 1 :] − [:c2 :])
by (auto dest!: coprime-h-c-poly[of - - [:0 ,1 :]])

qed
from this obtain g where g: ?lhs = ?rhs ∗ g using dvdE by blast
have degree-lhs-card: degree ?lhs = CARD( ′a)
proof −

have degree (monom (1 :: ′a mod-ring) 1 ) = 1 by (simp add: degree-monom-eq)
moreover have d-c: degree (monom (1 :: ′a mod-ring) CARD( ′a)) = CARD( ′a)

by (simp add: degree-monom-eq)
ultimately have degree (monom (1 :: ′a mod-ring) 1 ) < degree (monom (1 :: ′a

mod-ring) CARD( ′a))
using prime-card unfolding prime-nat-iff by auto

hence degree ?lhs = degree (monom (1 :: ′a mod-ring) CARD( ′a))
by (rule degree-minus-eq-right)

thus ?thesis unfolding d-c .
qed
have degree-rhs-card: degree ?rhs = CARD( ′a)
proof −

have degree (prod ?f UNIV ) = sum (degree ◦ ?f ) UNIV
∧ coeff (prod ?f UNIV ) (sum (degree ◦ ?f ) UNIV ) = 1
by (rule degree-prod-sum-monic, auto)

moreover have sum (degree ◦ ?f ) UNIV = CARD( ′a) by auto
ultimately show ?thesis by presburger

qed
have monic-lhs: monic ?lhs using degree-lhs-card by auto
have monic-rhs: monic ?rhs by (rule monic-prod, simp)
have degree-eq: degree ?rhs = degree ?lhs unfolding degree-lhs-card degree-rhs-card
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..
have g-not-0 : g 6= 0 using g monic-lhs by auto
have degree-g0 : degree g = 0
proof −

have degree (?rhs ∗ g) = degree ?rhs + degree g
by (rule degree-monic-mult[OF monic-rhs g-not-0 ])

thus ?thesis using degree-eq g by simp
qed
have monic-g: monic g using monic-factor g monic-lhs monic-rhs by auto
have g = 1 using monic-degree-0 [OF monic-g] degree-g0 by simp
thus ?thesis using g by auto

qed

lemma poly-identity-mod-p:
v^(CARD( ′a)) − v = prod (λx. v − [:x:]) (UNIV :: ′a mod-ring set)

proof −
have id: monom 1 1 ◦p v = v [:0 , 1 :] ◦p v = v unfolding pcompose-def

apply (auto)
by (simp add: fold-coeffs-def )

have id2 : monom 1 (CARD( ′a)) ◦p v = v ^ (CARD( ′a)) by (metis id(1 ) pcom-
pose-hom.hom-power x-pow-n)

show ?thesis using arg-cong[OF poly-monom-identity-mod-p, of λ f . f ◦p v]
unfolding pcompose-hom.hom-minus pcompose-hom.hom-prod id pcompose-const

id2 .
qed

lemma coprime-gcd:
fixes h:: ′a mod-ring poly
assumes Rings.coprime (h−[:c1 :]) (h−[:c2 :])
shows Rings.coprime (gcd f (h−[:c1 :])) (gcd f (h−[:c2 :]))
using assms coprime-divisors by blast

lemma divides-prod-gcd:
fixes h:: ′a mod-ring poly
assumes ∀ c1 c2 . c1 ∈ A ∧ c2 ∈ A ∧ c1 6= c2−→ coprime (h−[:c1 :]) (h−[:c2 :])
shows (

∏
c∈A. gcd f (h − [:c:])) dvd f

proof −
have finite-A: finite A using finite[of A] .
thus ?thesis using assms
proof (induct A)

case (insert x A)
have (

∏
c∈insert x A. gcd f (h − [:c:])) = (gcd f (h − [:x:])) ∗ (

∏
c∈ A. gcd
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f (h − [:c:]))
by (simp add: insert.hyps(2 ))

also have ... dvd f
proof (rule divides-mult)

show gcd f (h − [:x:]) dvd f by simp
show (

∏
c∈A. gcd f (h − [:c:])) dvd f using insert.hyps(3 ) insert.prems by

auto
show Rings.coprime (gcd f (h − [:x:])) (

∏
c∈A. gcd f (h − [:c:]))

by (rule prod-coprime-right)
(metis Berlekamp-Type-Based.coprime-h-c-poly coprime-gcd coprime-iff-coprime

insert.hyps(2 ))
qed
finally show ?case .

qed auto
qed

lemma monic-prod-gcd:
assumes f : finite A and f0 : (f :: ′b :: {field-gcd} poly) 6= 0
shows monic (

∏
c∈A. gcd f (h − [:c:]))

using f
proof (induct A)

case (insert x A)
have rw: (

∏
c∈insert x A. gcd f (h − [:c:]))

= (gcd f (h − [:x:])) ∗ (
∏

c∈ A. gcd f (h − [:c:]))
by (simp add: insert.hyps)

show ?case
proof (unfold rw, rule monic-mult)

show monic (gcd f (h − [:x:]))
using poly-gcd-monic[of f ] f0
using insert.prems insert-iff by blast

show monic (
∏

c∈A. gcd f (h − [:c:]))
using insert.hyps(3 ) insert.prems by blast

qed
qed auto

lemma coprime-not-unit-not-dvd:
fixes a:: ′b::semiring-gcd
assumes a dvd b
and coprime b c
and ¬ is-unit a
shows ¬ a dvd c
using assms coprime-divisors coprime-id-is-unit by fastforce

lemma divides-prod2 :
fixes A:: ′b::semiring-gcd set
assumes f : finite A
and ∀ a∈A. a dvd c
and ∀ a1 a2 . a1 ∈ A ∧ a2 ∈ A ∧ a1 6= a2 −→ coprime a1 a2
shows

∏
A dvd c
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using assms
proof (induct A)

case (insert x A)
have

∏
(insert x A) = x ∗

∏
A by (simp add: insert.hyps(1 ) insert.hyps(2 ))

also have ... dvd c
proof (rule divides-mult)

show x dvd c by (simp add: insert.prems)
show

∏
A dvd c using insert by auto

from insert show Rings.coprime x (
∏

A)
by (auto intro: prod-coprime-right)

qed
finally show ?case .

qed auto

lemma coprime-polynomial-factorization:
fixes a1 :: ′b :: {field-gcd} poly
assumes irr : as ⊆ {q. irreducible q ∧ monic q}
and finite as and a1 : a1 ∈ as and a2 : a2 ∈ as and a1-not-a2 : a1 6= a2
shows coprime a1 a2

proof (rule ccontr)
assume not-coprime: ¬ coprime a1 a2
let ?b= gcd a1 a2
have b-dvd-a1 : ?b dvd a1 and b-dvd-a2 : ?b dvd a2 by simp+
have irr-a1 : irreducible a1 using a1 irr by blast
have irr-a2 : irreducible a2 using a2 irr by blast
have a2-not0 : a2 6= 0 using a2 irr by auto
have degree-a1 : degree a1 6= 0 using irr-a1 by auto
have degree-a2 : degree a2 6= 0 using irr-a2 by auto
have not-a2-dvd-a1 : ¬ a2 dvd a1
proof (rule ccontr , simp)

assume a2-dvd-a1 : a2 dvd a1
from this obtain k where k: a1 = a2 ∗ k unfolding dvd-def by auto
have k-not0 : k 6= 0 using degree-a1 k by auto
show False
proof (cases degree a2 = degree a1 )

case False
have degree a2 < degree a1

using False a2-dvd-a1 degree-a1 divides-degree
by fastforce

hence ¬ irreducible a1
using degree-a2 a2-dvd-a1 degree-a2

by (metis degree-a1 irreducibledD(2 ) irreducibled-multD irreducible-connect-field
k neq0-conv)

thus False using irr-a1 by contradiction
next

case True
have degree a1 = degree a2 + degree k

unfolding k using degree-mult-eq[OF a2-not0 k-not0 ] by simp
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hence degree k = 0 using True by simp
hence k = 1 using monic-factor a1 a2 irr k monic-degree-0 by auto
hence a1 = a2 using k by simp
thus False using a1-not-a2 by contradiction

qed
qed
have b-not0 : ?b 6= 0 by (simp add: a2-not0 )
have degree-b: degree ?b > 0

using not-coprime[simplified] b-not0 is-unit-gcd is-unit-iff-degree by blast
have degree ?b < degree a2
by (meson b-dvd-a1 b-dvd-a2 irreducibleD ′ dvd-trans gcd-dvd-1 irr-a2 not-a2-dvd-a1

not-coprime)
hence ¬ irreducibled a2 using degree-a2 b-dvd-a2 degree-b

by (metis degree-smult-eq irreducibled-dvd-smult less-not-refl3 )
thus False using irr-a2 by auto

qed

theorem Berlekamp-gcd-step:
fixes f :: ′a mod-ring poly and h:: ′a mod-ring poly
assumes hq-mod-f : [h^(CARD( ′a)) = h] (mod f ) and monic-f : monic f and sf-f :
square-free f
shows f = prod (λc. gcd f (h − [:c:])) (UNIV :: ′a mod-ring set) (is ?lhs = ?rhs)
proof (cases f=0 )

case True
thus ?thesis using coeff-0 monic-f zero-neq-one by auto
next
case False note f-not-0 = False
show ?thesis
proof (rule poly-dvd-antisym)

show ?rhs dvd f
using coprime-h-c-poly by (intro divides-prod-gcd, auto)

have monic ?rhs by (rule monic-prod-gcd[OF - f-not-0 ], simp)
thus coeff f (degree f ) = coeff ?rhs (degree ?rhs)

using monic-f by auto
next
show f dvd ?rhs
proof −

let ?p = CARD( ′a)
obtain P where finite-P: finite P
and f-desc-square-free: f = (

∏
a∈P. a)

and P: P ⊆ {q. irreducible q ∧ monic q}
using monic-square-free-irreducible-factorization[OF monic-f sf-f ] by auto

have f-dvd-hqh: f dvd (h^?p − h) using hq-mod-f unfolding cong-def
using mod-eq-dvd-iff-poly by blast

also have hq-h-rw: ... = prod (λc. h − [:c:]) (UNIV :: ′a mod-ring set)
by (rule poly-identity-mod-p)

finally have f-dvd-hc: f dvd prod (λc. h − [:c:]) (UNIV :: ′a mod-ring set) by
simp
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have f =
∏

P using f-desc-square-free by simp
also have ... dvd ?rhs
proof (rule divides-prod2 [OF finite-P])

show ∀ a1 a2 . a1 ∈ P ∧ a2 ∈ P ∧ a1 6= a2 −→ coprime a1 a2
using coprime-polynomial-factorization[OF P finite-P] by simp

show ∀ a∈P. a dvd (
∏

c∈UNIV . gcd f (h − [:c:]))
proof

fix fi assume fi-P: fi ∈ P
show fi dvd ?rhs
proof (rule dvd-prod, auto)

show fi dvd f using f-desc-square-free fi-P
using dvd-prod-eqI finite-P by blast

hence fi dvd (h^?p − h) using dvd-trans f-dvd-hqh by auto
also have ... = prod (λc. h − [:c:]) (UNIV :: ′a mod-ring set)

unfolding hq-h-rw by simp
finally have fi-dvd-prod-hc: fi dvd prod (λc. h − [:c:]) (UNIV :: ′a mod-ring

set) .
have irr-fi: irreducible (fi) using fi-P P by blast

have fi-not-unit: ¬ is-unit fi using irr-fi by (simp add: irreducibledD(1 )
poly-dvd-1 )

have fi-dvd-hc: ∃ c∈UNIV :: ′a mod-ring set. fi dvd (h−[:c:])
by (rule irreducible-dvd-prod[OF - fi-dvd-prod-hc], simp add: irr-fi)

thus ∃ c. fi dvd h − [:c:] by simp
qed

qed
qed
finally show f dvd ?rhs .

qed
qed

qed

6.3 Definitions
definition berlekamp-mat :: ′a mod-ring poly ⇒ ′a mod-ring mat where

berlekamp-mat u = (let n = degree u;
mul-p = power-poly-f-mod u [:0 ,1 :] (CARD( ′a));
xks = power-polys mul-p u 1 n

in
mat-of-rows-list n (map (λ cs. let coeffs-cs = (coeffs cs);

k = n − length (coeffs cs)
in (coeffs cs) @ replicate k 0 ) xks))

definition berlekamp-resulting-mat :: ( ′a mod-ring) poly ⇒ ′a mod-ring mat where
berlekamp-resulting-mat u = (let Q = berlekamp-mat u;

n = dim-row Q;
QI = mat n n (λ (i,j). if i = j then Q $$ (i,j) − 1 else Q $$ (i,j))
in (gauss-jordan-single (transpose-mat QI )))
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definition berlekamp-basis :: ′a mod-ring poly ⇒ ′a mod-ring poly list where
berlekamp-basis u = (map (Poly o list-of-vec) (find-base-vectors (berlekamp-resulting-mat

u)))

lemma berlekamp-basis-code[code]: berlekamp-basis u =
(map (poly-of-list o list-of-vec) (find-base-vectors (berlekamp-resulting-mat u)))
unfolding berlekamp-basis-def poly-of-list-def ..

primrec berlekamp-factorization-main :: nat ⇒ ′a mod-ring poly list ⇒ ′a mod-ring
poly list ⇒ nat ⇒ ′a mod-ring poly list where
berlekamp-factorization-main i divs (v # vs) n = (if v = 1 then berlekamp-factorization-main

i divs vs n else
if length divs = n then divs else
let facts = [ w . u ← divs, s ← [0 ..< CARD( ′a)], w ← [gcd u (v − [:of-int

s:])], w 6= 1 ];
(lin,nonlin) = List.partition (λ q. degree q = i) facts
in lin @ berlekamp-factorization-main i nonlin vs (n − length lin))

| berlekamp-factorization-main i divs [] n = divs

definition berlekamp-monic-factorization :: nat ⇒ ′a mod-ring poly ⇒ ′a mod-ring
poly list where

berlekamp-monic-factorization d f = (let
vs = berlekamp-basis f ;
n = length vs;
fs = berlekamp-factorization-main d [f ] vs n

in fs)

6.4 Properties
lemma power-polys-works:
fixes u:: ′b::unique-euclidean-semiring
assumes i: i < n and c: curr-p = curr-p mod u
shows power-polys mult-p u curr-p n ! i = curr-p ∗ mult-p ^ i mod u
using i c
proof (induct n arbitrary: curr-p i)

case 0 thus ?case by simp
next

case (Suc n)
have p-rw: power-polys mult-p u curr-p (Suc n) ! i

= (curr-p # power-polys mult-p u (curr-p ∗ mult-p mod u) n) ! i
by simp

show ?case
proof (cases i=0 )

case True
show ?thesis using Suc.prems unfolding p-rw True by auto

next
case False note i-not-0 = False
show ?thesis
proof (cases i < n)
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case True note i-less-n = True
have power-polys mult-p u curr-p (Suc n) ! i = power-polys mult-p u (curr-p

∗ mult-p mod u) n ! (i − 1 )
unfolding p-rw using nth-Cons-pos False by auto

also have ... = (curr-p ∗ mult-p mod u) ∗ mult-p ^ (i−1 ) mod u
by (rule Suc.hyps) (auto simp add: i-less-n less-imp-diff-less)

also have ... = curr-p ∗ mult-p ^ i mod u
using False by (cases i) (simp-all add: algebra-simps mod-simps)

finally show ?thesis .
next

case False
hence i-n: i = n using Suc.prems by auto
have power-polys mult-p u curr-p (Suc n) ! i = power-polys mult-p u (curr-p

∗ mult-p mod u) n ! (n − 1 )
unfolding p-rw using nth-Cons-pos i-n i-not-0 by auto

also have ... = (curr-p ∗ mult-p mod u) ∗ mult-p ^ (n−1 ) mod u
proof (rule Suc.hyps)

show n − 1 < n using i-n i-not-0 by linarith
show curr-p ∗ mult-p mod u = curr-p ∗ mult-p mod u mod u by simp

qed
also have ... = curr-p ∗ mult-p ^ i mod u

using i-n [symmetric] i-not-0 by (cases i) (simp-all add: algebra-simps
mod-simps)

finally show ?thesis .
qed

qed
qed

lemma length-power-polys[simp]: length (power-polys mult-p u curr-p n) = n
by (induct n arbitrary: curr-p, auto)

lemma Poly-berlekamp-mat:
assumes k: k < degree u
shows Poly (list-of-vec (row (berlekamp-mat u) k)) = [:0 ,1 :]^(CARD( ′a) ∗ k) mod
u
proof −

let ?map =(map (λcs. coeffs cs @ replicate (degree u − length (coeffs cs)) 0 )
(power-polys (power-poly-f-mod u [:0 , 1 :] (nat (int CARD( ′a)))) u 1

(degree u)))
have row (berlekamp-mat u) k = row (mat-of-rows-list (degree u) ?map) k

by (simp add: berlekamp-mat-def Let-def )
also have ... = vec-of-list (?map ! k)
proof−

{
fix i assume i: i < degree u
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then have ‹u 6= 0 ›
by auto

let ?c= power-polys (power-poly-f-mod u [:0 , 1 :] CARD( ′a)) u 1 (degree u) !
i

let ?coeffs-c=(coeffs ?c)
have ?c = 1∗([:0 , 1 :] ^ CARD( ′a) mod u)^i mod u
proof (unfold power-poly-f-mod-def , rule power-polys-works[OF i])

show 1 = 1 mod u using k mod-poly-less by force
qed
also have ... = [:0 , 1 :] ^ (CARD( ′a) ∗ i) mod u by (simp add: power-mod

power-mult)
finally have c-rw: ?c = [:0 , 1 :] ^ (CARD( ′a) ∗ i) mod u .
have length ?coeffs-c ≤ degree u
proof −

show ?thesis
proof (cases ?c = 0 )

case True thus ?thesis by auto
next
case False
have length ?coeffs-c = degree (?c) + 1 by (rule length-coeffs[OF False])
also have ... = degree ([:0 , 1 :] ^ (CARD( ′a) ∗ i) mod u) + 1 using c-rw

by simp
also have ... ≤ degree u

using ‹i < degree u› ‹u 6= 0 › degree-mod-less [of u ‹pCons 0 1 ^
(CARD( ′a) ∗ i)›]

by auto
finally show ?thesis .

qed
qed
then have length ?coeffs-c + (degree u − length ?coeffs-c) = degree u by auto

}
with k show ?thesis by (intro row-mat-of-rows-list, auto)

qed
finally have row-rw: row (berlekamp-mat u) k = vec-of-list (?map ! k) .
have Poly (list-of-vec (row (berlekamp-mat u) k)) = Poly (list-of-vec (vec-of-list

(?map ! k)))
unfolding row-rw ..

also have ... = Poly (?map ! k) by simp
also have ... = [:0 ,1 :]^(CARD( ′a) ∗ k) mod u
proof −

let ?cs = (power-polys (power-poly-f-mod u [:0 , 1 :] (nat (int CARD( ′a)))) u 1
(degree u)) ! k

let ?c = coeffs ?cs @ replicate (degree u − length (coeffs ?cs)) 0
have map-k-c: ?map ! k = ?c by (rule nth-map, simp add: k)

have (Poly (?map ! k)) = Poly (coeffs ?cs) unfolding map-k-c Poly-append-replicate-0
..

also have ... = ?cs by simp
also have ... = power-polys ([:0 , 1 :] ^ CARD( ′a) mod u) u 1 (degree u) ! k

by (simp add: power-poly-f-mod-def )
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also have ... = 1∗ ([:0 ,1 :]^(CARD( ′a)) mod u) ^ k mod u
proof (rule power-polys-works[OF k])

show 1 = 1 mod u using k mod-poly-less by force
qed
also have ... = ([:0 ,1 :]^(CARD( ′a)) mod u) ^ k mod u by auto

also have ... = [:0 ,1 :]^(CARD( ′a) ∗ k) mod u by (simp add: power-mod
power-mult)

finally show ?thesis .
qed

finally show ?thesis .
qed

corollary Poly-berlekamp-cong-mat:
assumes k: k < degree u
shows [Poly (list-of-vec (row (berlekamp-mat u) k)) = [:0 ,1 :]^(CARD( ′a) ∗ k)]
(mod u)
using Poly-berlekamp-mat[OF k] unfolding cong-def by auto

lemma mat-of-rows-list-dim[simp]:
mat-of-rows-list n vs ∈ carrier-mat (length vs) n
dim-row (mat-of-rows-list n vs) = length vs
dim-col (mat-of-rows-list n vs) = n
unfolding mat-of-rows-list-def by auto

lemma berlekamp-mat-closed[simp]:
berlekamp-mat u ∈ carrier-mat (degree u) (degree u)
dim-row (berlekamp-mat u) = degree u
dim-col (berlekamp-mat u) = degree u

unfolding carrier-mat-def berlekamp-mat-def Let-def by auto

lemma vec-of-list-coeffs-nth:
assumes i: i ∈ {..degree h} and h-not0 : h 6= 0
shows vec-of-list (coeffs h) $ i = coeff h i
proof −

have vec-of-list (map (coeff h) [0 ..<degree h] @ [coeff h (degree h)]) $ i = coeff
h i

using i
by (transfer ′, auto simp add: mk-vec-def )

(metis (no-types, lifting) Cons-eq-append-conv coeffs-def coeffs-nth degree-0
diff-zero length-upt less-eq-nat.simps(1 ) list.simps(8 ) list.simps(9 ) map-append

nth-Cons-0 upt-Suc upt-eq-Nil-conv)
thus vec-of-list (coeffs h) $ i = coeff h i

using i h-not0
unfolding coeffs-def by simp

qed
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lemma poly-mod-sum:
fixes x y z :: ′b::field poly
assumes f : finite A
shows sum f A mod z = sum (λi. f i mod z) A

using f
by (induct, auto simp add: poly-mod-add-left)

lemma prime-not-dvd-fact:
assumes kn: k < n and prime-n: prime n
shows ¬ n dvd fact k
using kn
proof (induct k)

case 0
thus ?case using prime-n unfolding prime-nat-iff by auto

next
case (Suc k)
show ?case
proof (rule ccontr , unfold not-not)

assume n dvd fact (Suc k)
also have ... = Suc k ∗

∏
{1 ..k} unfolding fact-Suc unfolding fact-prod by

simp
finally have n dvd Suc k ∗

∏
{1 ..k} .

hence n dvd Suc k ∨ n dvd
∏
{1 ..k} using prime-dvd-mult-eq-nat[OF prime-n]

by blast
moreover have ¬ n dvd Suc k by (simp add: Suc.prems(1 ) nat-dvd-not-less)
moreover hence ¬ n dvd

∏
{1 ..k} using Suc.hyps Suc.prems

using Suc-lessD fact-prod[of k] by (metis of-nat-id)
ultimately show False by simp

qed
qed

lemma dvd-choose-prime:
assumes kn: k < n and k: k 6= 0 and n: n 6= 0 and prime-n: prime n
shows n dvd (n choose k)
proof −

have n dvd (fact n) by (simp add: fact-num-eq-if n)
moreover have ¬ n dvd (fact k ∗ fact (n−k))
proof (rule ccontr , simp)

assume n dvd fact k ∗ fact (n − k)
hence n dvd fact k ∨ n dvd fact (n − k) using prime-dvd-mult-eq-nat[OF

prime-n] by simp
moreover have ¬ n dvd (fact k) by (rule prime-not-dvd-fact[OF kn prime-n])
moreover have ¬ n dvd fact (n − k) using prime-not-dvd-fact[OF - prime-n]

kn k by simp
ultimately show False by simp

qed
moreover have (fact n::nat) = fact k ∗ fact (n−k) ∗ (n choose k)
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using binomial-fact-lemma kn by auto
ultimately show ?thesis using prime-n

by (auto simp add: prime-dvd-mult-iff )
qed

lemma add-power-poly-mod-ring:
fixes x :: ′a mod-ring poly
shows (x + y) ^ CARD( ′a) = x ^ CARD( ′a) + y ^ CARD( ′a)
proof −

let ?A={0 ..CARD( ′a)}
let ?f=λk. of-nat (CARD( ′a) choose k) ∗ x ^ k ∗ y ^ (CARD( ′a) − k)
have A-rw: ?A = insert CARD( ′a) (insert 0 (?A − {0} − {CARD( ′a)}))

by fastforce
have sum0 : sum ?f (?A − {0} − {CARD( ′a)}) = 0
proof (rule sum.neutral, rule)

fix xa assume xa: xa ∈ {0 ..CARD( ′a)} − {0} − {CARD( ′a)}
have card-dvd-choose: CARD( ′a) dvd (CARD( ′a) choose xa)
proof (rule dvd-choose-prime)

show xa < CARD( ′a) using xa by simp
show xa 6= 0 using xa by simp
show CARD( ′a) 6= 0 by simp
show prime CARD( ′a) by (rule prime-card)

qed
hence rw0 : of-int (CARD( ′a) choose xa) = (0 :: ′a mod-ring)

by transfer simp
have of-nat (CARD( ′a) choose xa) = [:of-int (CARD( ′a) choose xa) :: ′a

mod-ring:]
by (simp add: of-nat-poly)

also have ... = [:0 :] using rw0 by simp
finally show of-nat (CARD( ′a) choose xa) ∗ x ^ xa ∗ y ^ (CARD( ′a) − xa)

= 0 by auto
qed
have (x + y)^CARD( ′a)
= (

∑
k = 0 ..CARD( ′a). of-nat (CARD( ′a) choose k) ∗ x ^ k ∗ y ^ (CARD( ′a)

− k))
unfolding binomial-ring by (rule sum.cong, auto)

also have ... = sum ?f (insert CARD( ′a) (insert 0 (?A − {0} − {CARD( ′a)})))
using A-rw by simp

also have ... = ?f 0 + ?f CARD( ′a) + sum ?f (?A − {0} − {CARD( ′a)}) by
auto

also have ... = x^CARD( ′a) + y^CARD( ′a) unfolding sum0 by auto
finally show ?thesis .

qed

lemma power-poly-sum-mod-ring:
fixes f :: ′b ⇒ ′a mod-ring poly
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assumes f : finite A
shows (sum f A) ^ CARD( ′a) = sum (λi. (f i) ^ CARD( ′a)) A
using f by (induct, auto simp add: add-power-poly-mod-ring)

lemma poly-power-card-as-sum-of-monoms:
fixes h :: ′a mod-ring poly
shows h ^ CARD( ′a) = (

∑
i≤degree h. monom (coeff h i) (CARD( ′a)∗i))

proof −
have h ^ CARD( ′a) = (

∑
i≤degree h. monom (coeff h i) i) ^ CARD( ′a)

by (simp add: poly-as-sum-of-monoms)
also have ... = (

∑
i≤degree h. (monom (coeff h i) i) ^ CARD( ′a))

by (simp add: power-poly-sum-mod-ring)
also have ... = (

∑
i≤degree h. monom (coeff h i) (CARD( ′a)∗i))

proof (rule sum.cong, rule)
fix x assume x: x ∈ {..degree h}
show monom (coeff h x) x ^ CARD( ′a) = monom (coeff h x) (CARD( ′a) ∗ x)

by (unfold poly-eq-iff , auto simp add: monom-power)
qed
finally show ?thesis .

qed

lemma degree-Poly-berlekamp-le:
assumes i: i < degree u
shows degree (Poly (list-of-vec (row (berlekamp-mat u) i))) < degree u
by (metis Poly-berlekamp-mat degree-0 degree-mod-less gr-implies-not0 i linorder-neqE-nat)

lemma monom-card-pow-mod-sum-berlekamp:
assumes i: i < degree u
shows monom 1 (CARD( ′a) ∗ i) mod u = (

∑
j<degree u. monom ((berlekamp-mat

u) $$ (i,j)) j)
proof −

let ?p = Poly (list-of-vec (row (berlekamp-mat u) i))
have degree-not-0 : degree u 6= 0 using i by simp
hence set-rw: {..degree u − 1} = {..<degree u} by auto
have degree-le: degree ?p < degree u

by (rule degree-Poly-berlekamp-le[OF i])
hence degree-le2 : degree ?p ≤ degree u − 1 by auto
have monom 1 (CARD( ′a) ∗ i) mod u = [:0 , 1 :] ^ (CARD( ′a) ∗ i) mod u

using x-as-monom x-pow-n by metis
also have ... = ?p

unfolding Poly-berlekamp-mat[OF i] by simp
also have ... = (

∑
i≤degree u − 1 . monom (coeff ?p i) i)

using degree-le2 poly-as-sum-of-monoms ′ by fastforce
also have ... = (

∑
i<degree u. monom (coeff ?p i) i) using set-rw by auto

210



also have ... = (
∑

j<degree u. monom ((berlekamp-mat u) $$ (i,j)) j)
proof (rule sum.cong, rule)

fix x assume x: x ∈ {..<degree u}
have coeff ?p x = berlekamp-mat u $$ (i, x)
proof (rule coeff-Poly-list-of-vec-nth)

show x < dim-col (berlekamp-mat u) using x by auto
qed
thus monom (coeff ?p x) x = monom (berlekamp-mat u $$ (i, x)) x

by (simp add: poly-eq-iff )
qed
finally show ?thesis .

qed

lemma col-scalar-prod-as-sum:
assumes dim-vec v = dim-row A
shows col A j · v = (

∑
i = 0 ..<dim-vec v. A $$ (i,j) ∗ v $ i)

using assms
unfolding col-def scalar-prod-def
by transfer ′ (rule sum.cong, transfer ′, auto simp add: mk-vec-def mk-mat-def )

lemma row-transpose-scalar-prod-as-sum:
assumes j: j < dim-col A and dim-v: dim-vec v = dim-row A
shows row (transpose-mat A) j · v = (

∑
i = 0 ..<dim-vec v. A $$ (i,j) ∗ v $ i)

proof −
have row (transpose-mat A) j · v = col A j · v using j row-transpose by auto
also have ... = (

∑
i = 0 ..<dim-vec v. A $$ (i,j) ∗ v $ i)

by (rule col-scalar-prod-as-sum[OF dim-v])
finally show ?thesis .

qed

lemma poly-as-sum-eq-monoms:
assumes ss-eq: (

∑
i<n. monom (f i) i) = (

∑
i<n. monom (g i) i)

and a-less-n: a<n
shows f a = g a
proof −

let ?f=λi. if i = a then f i else 0
let ?g=λi. if i = a then g i else 0
have sum-f-0 : sum ?f ({..<n} − {a}) = 0 by (rule sum.neutral, auto)
have coeff (

∑
i<n. monom (f i) i) a = coeff (

∑
i<n. monom (g i) i) a

using ss-eq unfolding poly-eq-iff by simp
hence (

∑
i<n. coeff (monom (f i) i) a) = (

∑
i<n. coeff (monom (g i) i) a)

by (simp add: coeff-sum)
hence 1 : (

∑
i<n. if i = a then f i else 0 ) = (

∑
i<n. if i = a then g i else 0 )

unfolding coeff-monom by auto
have set-rw: {..<n} = (insert a ({..<n} − {a})) using a-less-n by auto
have (

∑
i<n. if i = a then f i else 0 ) = sum ?f (insert a ({..<n} − {a}))
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using set-rw by auto
also have ... = ?f a + sum ?f ({..<n} − {a})

by (simp add: sum.insert-remove)
also have ... = ?f a using sum-f-0 by simp
finally have 2 : (

∑
i<n. if i = a then f i else 0 ) = ?f a .

have sum ?g {..<n} = sum ?g (insert a ({..<n} − {a}))
using set-rw by auto

also have ... = ?g a + sum ?g ({..<n} − {a})
by (simp add: sum.insert-remove)

also have ... = ?g a using sum-f-0 by simp
finally have 3 : (

∑
i<n. if i = a then g i else 0 ) = ?g a .

show ?thesis using 1 2 3 by auto
qed

lemma dim-vec-of-list-h:
assumes degree h < degree u
shows dim-vec (vec-of-list ((coeffs h) @ replicate (degree u − length (coeffs h)) 0 ))
= degree u
proof −

have length (coeffs h) ≤ degree u
by (metis Suc-leI assms coeffs-0-eq-Nil degree-0 length-coeffs-degree

list.size(3 ) not-le-imp-less order .asym)
thus ?thesis by simp

qed

lemma vec-of-list-coeffs-nth ′:
assumes i: i ∈ {..degree h} and h-not0 : h 6= 0
assumes degree h < degree u
shows vec-of-list ((coeffs h) @ replicate (degree u − length (coeffs h)) 0 ) $ i =
coeff h i
using assms
by (transfer ′, auto simp add: mk-vec-def coeffs-nth length-coeffs-degree nth-append)

lemma vec-of-list-coeffs-replicate-nth-0 :
assumes i: i ∈ {..<degree u}
shows vec-of-list (coeffs 0 @ replicate (degree u − length (coeffs 0 )) 0 ) $ i = coeff
0 i
using assms
by (transfer ′, auto simp add: mk-vec-def )

lemma vec-of-list-coeffs-replicate-nth:
assumes i: i ∈ {..<degree u}
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assumes degree h < degree u
shows vec-of-list ((coeffs h) @ replicate (degree u − length (coeffs h)) 0 ) $ i =
coeff h i
proof (cases h = 0 )

case True
thus ?thesis using vec-of-list-coeffs-replicate-nth-0 i by auto

next
case False note h-not0 = False
show ?thesis
proof (cases i ∈{..degree h})

case True thus ?thesis using assms vec-of-list-coeffs-nth ′ h-not0 by simp
next

case False
have c0 : coeff h i = 0 using False le-degree by auto
thus ?thesis

using assms False h-not0
by (transfer ′, auto simp add: mk-vec-def length-coeffs-degree nth-append c0 )

qed
qed

lemma equation-13 :
fixes u h
defines H : H ≡ vec-of-list ((coeffs h) @ replicate (degree u − length (coeffs h))

0 )
assumes deg-le: degree h < degree u
shows [h^CARD( ′a) = h] (mod u) ←→ (transpose-mat (berlekamp-mat u)) ∗v H

= H
(is ?lhs = ?rhs)

proof −
have f : finite {..degree u} by auto
have [simp]: dim-vec H = degree u unfolding H using dim-vec-of-list-h deg-le

by simp
let ?B = (berlekamp-mat u)
let ?f = λi. (transpose-mat ?B ∗v H ) $ i
show ?thesis
proof
assume rhs: ?rhs
have dimv-h-dimr-B: dim-vec H = dim-row ?B

by (metis berlekamp-mat-closed(2 ) berlekamp-mat-closed(3 )
dim-mult-mat-vec index-transpose-mat(2 ) rhs)

have degree-h-less-dim-H : degree h < dim-vec H by (auto simp add: deg-le)
have set-rw: {..degree u − 1} = {..<degree u} using deg-le by auto
have degree h ≤ degree u − 1 using deg-le by simp
hence h = (

∑
j≤degree u − 1 . monom (coeff h j) j) using poly-as-sum-of-monoms ′

by fastforce
also have ... = (

∑
j<degree u. monom (coeff h j) j) using set-rw by simp
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also have ... = (
∑

j<degree u. monom (?f j) j)
proof (rule sum.cong, rule+)

fix j assume i: j ∈ {..<degree u}
have (coeff h j) = ?f j

using rhs vec-of-list-coeffs-replicate-nth[OF i deg-le]
unfolding H by presburger

thus monom (coeff h j) j = monom (?f j) j
by simp

qed
also have ... = (

∑
j<degree u. monom (row (transpose-mat ?B) j · H ) j)

by (rule sum.cong, auto)
also have ... = (

∑
j<degree u. monom (

∑
i = 0 ..<dim-vec H . ?B $$ (i,j) ∗

H $ i) j)
proof (rule sum.cong, rule)

fix x assume x: x ∈ {..<degree u}
show monom (row (transpose-mat ?B) x · H ) x =
monom (

∑
i = 0 ..<dim-vec H . ?B $$ (i, x) ∗ H $ i) x

proof (unfold monom-eq-iff , rule row-transpose-scalar-prod-as-sum[OF -
dimv-h-dimr-B])

show x < dim-col ?B using x deg-le by auto
qed

qed
also have ... = (

∑
j<degree u.

∑
i = 0 ..<dim-vec H . monom (?B $$ (i,j) ∗

H $ i) j)
by (auto simp add: monom-sum)

also have ... = (
∑

i = 0 ..<dim-vec H .
∑

j<degree u. monom (?B $$ (i,j) ∗
H $ i) j)

by (rule sum.swap)
also have ... = (

∑
i = 0 ..<dim-vec H .

∑
j<degree u. monom (H $ i) 0 ∗

monom (?B $$ (i,j)) j)
proof (rule sum.cong, rule, rule sum.cong, rule)

fix x xa
show monom (?B $$ (x, xa) ∗ H $ x) xa = monom (H $ x) 0 ∗ monom

(?B $$ (x, xa)) xa
by (simp add: mult-monom)

qed
also have ... = (

∑
i = 0 ..<dim-vec H . (monom (H $ i) 0 ) ∗ (

∑
j<degree u.

monom (?B $$ (i,j)) j))
by (rule sum.cong, auto simp: sum-distrib-left)
also have ... = (

∑
i = 0 ..<dim-vec H . (monom (H $ i) 0 ) ∗ (monom 1

(CARD( ′a) ∗ i) mod u))
proof (rule sum.cong, rule)

fix x assume x: x ∈ {0 ..<dim-vec H}
have (

∑
j<degree u. monom (?B $$ (x, j)) j) = (monom 1 (CARD( ′a) ∗ x)

mod u)
proof (rule monom-card-pow-mod-sum-berlekamp[symmetric])

show x < degree u using x dimv-h-dimr-B by auto
qed
thus monom (H $ x) 0 ∗ (

∑
j<degree u. monom (?B $$ (x, j)) j) =
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monom (H $ x) 0 ∗ (monom 1 (CARD( ′a) ∗ x) mod u) by presburger
qed
also have ... = (

∑
i = 0 ..<dim-vec H . monom (H $ i) (CARD( ′a) ∗ i) mod

u)
proof (rule sum.cong, rule)

fix x
have h-rw: monom (H $ x) 0 mod u = monom (H $ x) 0

by (metis deg-le degree-pCons-eq-if gr-implies-not-zero
linorder-neqE-nat mod-poly-less monom-0 )

have monom (H $ x) (CARD( ′a) ∗ x) = monom (H $ x) 0 ∗ monom 1
(CARD( ′a) ∗ x)

unfolding mult-monom by simp
also have ... = smult (H $ x) (monom 1 (CARD( ′a) ∗ x))

by (simp add: monom-0 )
also have ... mod u = Polynomial.smult (H $ x) (monom 1 (CARD( ′a) ∗

x) mod u)
using mod-smult-left by auto

also have ... = monom (H $ x) 0 ∗ (monom 1 (CARD( ′a) ∗ x) mod u)
by (simp add: monom-0 )

finally show monom (H $ x) 0 ∗ (monom 1 (CARD( ′a) ∗ x) mod u)
= monom (H $ x) (CARD( ′a) ∗ x) mod u ..

qed
also have ... = (

∑
i = 0 ..<dim-vec H . monom (H $ i) (CARD( ′a) ∗ i)) mod

u
by (simp add: poly-mod-sum)

also have ... = (
∑

i = 0 ..<dim-vec H . monom (coeff h i) (CARD( ′a) ∗ i))
mod u

proof (rule arg-cong[of - - λx. x mod u], rule sum.cong, rule)
fix x assume x: x ∈ {0 ..<dim-vec H}
have H $ x = (coeff h x)
proof (unfold H , rule vec-of-list-coeffs-replicate-nth[OF - deg-le])

show x ∈ {..<degree u} using x by auto
qed
thus monom (H $ x) (CARD( ′a) ∗ x) = monom (coeff h x) (CARD( ′a) ∗ x)

by simp
qed
also have ... = (

∑
i≤degree h. monom (coeff h i) (CARD( ′a) ∗ i)) mod u

proof (rule arg-cong[of - - λx. x mod u])
let ?f=λi. monom (coeff h i) (CARD( ′a) ∗ i)
have ss0 : (

∑
i = degree h + 1 ..< dim-vec H . ?f i) = 0

by (rule sum.neutral, simp add: coeff-eq-0 )
have set-rw: {0 ..< dim-vec H} = {0 ..degree h} ∪ {degree h + 1 ..< dim-vec

H}
using degree-h-less-dim-H by auto
have (

∑
i = 0 ..<dim-vec H . ?f i) = (

∑
i = 0 ..degree h. ?f i) + (

∑
i =

degree h + 1 ..< dim-vec H . ?f i)
unfolding set-rw by (rule sum.union-disjoint, auto)

also have ... = (
∑

i = 0 ..degree h. ?f i) unfolding ss0 by auto
finally show (

∑
i = 0 ..<dim-vec H . ?f i) = (

∑
i≤degree h. ?f i)
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by (simp add: atLeast0AtMost)
qed
also have ... = h^CARD( ′a) mod u

using poly-power-card-as-sum-of-monoms by auto
finally show ?lhs

unfolding cong-def
using deg-le
by (simp add: mod-poly-less)

next
assume lhs: ?lhs
have deg-le ′: degree h ≤ degree u − 1 using deg-le by auto
have set-rw: {..<degree u} = {..degree u −1} using deg-le by auto
hence (

∑
i<degree u. monom (coeff h i) i) = (

∑
i ≤ degree u − 1 . monom

(coeff h i) i) by simp
also have ... = (

∑
i≤degree h. monom (coeff h i) i)

unfolding poly-as-sum-of-monoms
using poly-as-sum-of-monoms ′ deg-le ′ by auto

also have ... = (
∑

i≤degree h. monom (coeff h i) i) mod u
by (simp add: deg-le mod-poly-less poly-as-sum-of-monoms)

also have ... = (
∑

i≤degree h. monom (coeff h i) (CARD( ′a)∗i)) mod u
using lhs

unfolding cong-def poly-as-sum-of-monoms poly-power-card-as-sum-of-monoms
by auto

also have ... = (
∑

i≤degree h. monom (coeff h i) 0 ∗ monom 1 (CARD( ′a)∗i))
mod u

by (rule arg-cong[of - - λx. x mod u], rule sum.cong, simp-all add: mult-monom)
also have ... = (

∑
i≤degree h. monom (coeff h i) 0 ∗ monom 1 (CARD( ′a)∗i)

mod u)
by (simp add: poly-mod-sum)

also have ... = (
∑

i≤degree h. monom (coeff h i) 0 ∗ (monom 1 (CARD( ′a)∗i)
mod u))

proof (rule sum.cong, rule)
fix x assume x: x ∈ {..degree h}
have h-rw: monom (coeff h x) 0 mod u = monom (coeff h x) 0

by (metis deg-le degree-pCons-eq-if gr-implies-not-zero
linorder-neqE-nat mod-poly-less monom-0 )

have monom (coeff h x) 0 ∗ monom 1 (CARD( ′a) ∗ x) = smult (coeff h x)
(monom 1 (CARD( ′a) ∗ x))

by (simp add: monom-0 )
also have ... mod u = Polynomial.smult (coeff h x) (monom 1 (CARD( ′a)

∗ x) mod u)
using mod-smult-left by auto

also have ... = monom (coeff h x) 0 ∗ (monom 1 (CARD( ′a) ∗ x) mod u)
by (simp add: monom-0 )

finally show monom (coeff h x) 0 ∗ monom 1 (CARD( ′a) ∗ x) mod u
= monom (coeff h x) 0 ∗ (monom 1 (CARD( ′a) ∗ x) mod u) .

qed
also have ... = (

∑
i≤degree h. monom (coeff h i) 0 ∗ (

∑
j<degree u. monom

(?B $$ (i, j)) j))
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proof (rule sum.cong, rule)
fix x assume x: x ∈ {..degree h}
have (monom 1 (CARD( ′a) ∗ x) mod u) = (

∑
j<degree u. monom (?B $$ (x,

j)) j)
proof (rule monom-card-pow-mod-sum-berlekamp)

show x < degree u using x deg-le by auto
qed
thus monom (coeff h x) 0 ∗ (monom 1 (CARD( ′a) ∗ x) mod u) =

monom (coeff h x) 0 ∗ (
∑

j<degree u. monom (?B $$ (x, j)) j) by simp
qed
also have ... = (

∑
i<degree u. monom (coeff h i) 0 ∗ (

∑
j<degree u. monom

(?B $$ (i, j)) j))
proof −

let ?f=λi. monom (coeff h i) 0 ∗ (
∑

j<degree u. monom (?B $$ (i, j)) j)
have ss0 : (

∑
i=degree h+1 ..< degree u. ?f i) = 0

by (rule sum.neutral, simp add: coeff-eq-0 )
have set-rw: {0 ..<degree u} = {0 ..degree h} ∪ {degree h+1 ..<degree u} using

deg-le by auto
have (

∑
i=0 ..<degree u. ?f i) = (

∑
i=0 ..degree h. ?f i) + (

∑
i=degree h+1

..< degree u. ?f i)
unfolding set-rw by (rule sum.union-disjoint, auto)
also have ... = (

∑
i=0 ..degree h. ?f i) using ss0 by simp

finally show ?thesis
by (simp add: atLeast0AtMost atLeast0LessThan)

qed
also have ... = (

∑
i<degree u. (

∑
j<degree u. monom (coeff h i) 0 ∗ monom

(?B $$ (i, j)) j))
by (simp add: sum-distrib-left)

also have ... = (
∑

i<degree u. (
∑

j<degree u. monom (coeff h i ∗ ?B $$ (i, j))
j))

by (simp add: mult-monom)
also have ... = (

∑
j<degree u. (

∑
i<degree u. monom (coeff h i ∗ ?B $$ (i, j))

j))
using sum.swap by auto

also have ... = (
∑

j<degree u. monom (
∑

i<degree u. (coeff h i ∗ ?B $$ (i,
j))) j)

by (simp add: monom-sum)
finally have ss-rw: (

∑
i<degree u. monom (coeff h i) i)

= (
∑

j<degree u. monom (
∑

i<degree u. coeff h i ∗ ?B $$ (i, j)) j) .
have coeff-eq-sum: ∀ i. i < degree u −→ coeff h i = (

∑
j<degree u. coeff h j ∗

?B $$ (j, i))
using poly-as-sum-eq-monoms[OF ss-rw] by fast

have coeff-eq-sum ′: ∀ i. i < degree u −→ H $ i = (
∑

j<degree u. H $ j ∗ ?B $$
(j, i))

proof (rule+)
fix i assume i: i < degree u
have H $ i = coeff h i by (simp add: H deg-le i vec-of-list-coeffs-replicate-nth)
also have ... = (

∑
j<degree u. coeff h j ∗ ?B $$ (j, i)) using coeff-eq-sum i

by blast
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also have ... = (
∑

j<degree u. H $ j ∗ ?B $$ (j, i))
by (rule sum.cong, auto simp add: H deg-le vec-of-list-coeffs-replicate-nth)

finally show H $ i = (
∑

j<degree u. H $ j ∗ ?B $$ (j, i)) .
qed
show (transpose-mat (?B)) ∗v H = H
proof (rule eq-vecI )

fix i
show dim-vec (transpose-mat ?B ∗v H ) = dim-vec (H ) by auto
assume i: i < dim-vec (H )
have (transpose-mat ?B ∗v H ) $ i = row (transpose-mat ?B) i · H using i by

simp
also have ... = (

∑
j = 0 ..<dim-vec H . ?B $$ (j, i) ∗ H $ j)

proof (rule row-transpose-scalar-prod-as-sum)
show i < dim-col ?B using i by simp
show dim-vec H = dim-row ?B by simp

qed
also have ... = (

∑
j<degree u. H $ j ∗ ?B $$ (j, i)) by (rule sum.cong, auto)

also have ... = H $ i using coeff-eq-sum ′[rule-format, symmetric, of i] i by
simp

finally show (transpose-mat ?B ∗v H ) $ i = H $ i .
qed

qed
qed

end

context
assumes SORT-CONSTRAINT ( ′a::prime-card)
begin

lemma exists-s-factor-dvd-h-s:
fixes fi:: ′a mod-ring poly
assumes finite-P: finite P

and f-desc-square-free: f = (
∏

a∈P. a)
and P: P ⊆ {q. irreducible q ∧ monic q}
and fi-P: fi ∈ P
and h: h ∈ {v. [v^(CARD( ′a)) = v] (mod f )}
shows ∃ s. fi dvd (h − [:s:])

proof −
let ?p = CARD( ′a)

have f-dvd-hqh: f dvd (h^?p − h) using h unfolding cong-def
using mod-eq-dvd-iff-poly by blast

also have hq-h-rw: ... = prod (λc. h − [:c:]) (UNIV :: ′a mod-ring set)
by (rule poly-identity-mod-p)

finally have f-dvd-hc: f dvd prod (λc. h − [:c:]) (UNIV :: ′a mod-ring set) by
simp

have fi dvd f using f-desc-square-free fi-P
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using dvd-prod-eqI finite-P by blast
hence fi dvd (h^?p − h) using dvd-trans f-dvd-hqh by auto
also have ... = prod (λc. h − [:c:]) (UNIV :: ′a mod-ring set) unfolding

hq-h-rw by simp
finally have fi-dvd-prod-hc: fi dvd prod (λc. h − [:c:]) (UNIV :: ′a mod-ring

set) .
have irr-fi: irreducible fi using fi-P P by blast
have fi-not-unit: ¬ is-unit fi using irr-fi by (simp add: irreducibledD(1 )

poly-dvd-1 )
show ?thesis using irreducible-dvd-prod[OF - fi-dvd-prod-hc] irr-fi by auto

qed

corollary exists-unique-s-factor-dvd-h-s:
fixes fi:: ′a mod-ring poly
assumes finite-P: finite P

and f-desc-square-free: f = (
∏

a∈P. a)
and P: P ⊆ {q. irreducible q ∧ monic q}
and fi-P: fi ∈ P
and h: h ∈ {v. [v^(CARD( ′a)) = v] (mod f )}
shows ∃ !s. fi dvd (h − [:s:])

proof −
obtain c where fi-dvd: fi dvd (h − [:c:]) using assms exists-s-factor-dvd-h-s by

blast
have irr-fi: irreducible fi using fi-P P by blast
have fi-not-unit: ¬ is-unit fi

by (simp add: irr-fi irreducibledD(1 ) poly-dvd-1 )
show ?thesis
proof (rule ex1I [of - c], auto simp add: fi-dvd)

fix c2 assume fi-dvd-hc2 : fi dvd h − [:c2 :]
have ∗: fi dvd (h − [:c:]) ∗ (h − [:c2 :]) using fi-dvd by auto
hence fi dvd (h − [:c:]) ∨ fi dvd (h − [:c2 :])

using irr-fi by auto
thus c2 = c

using coprime-h-c-poly coprime-not-unit-not-dvd fi-dvd fi-dvd-hc2 fi-not-unit
by blast

qed
qed

lemma exists-two-distint: ∃ a b:: ′a mod-ring. a 6= b
by (rule exI [of - 0 ], rule exI [of - 1 ], auto)

lemma coprime-cong-mult-factorization-poly:
fixes f :: ′b::{field} poly

and a b p :: ′c :: {field-gcd} poly
assumes finite-P: finite P

and P: P ⊆ {q. irreducible q}

219



and p: ∀ p∈P. [a=b] (mod p)
and coprime-P: ∀ p1 p2 . p1 ∈ P ∧ p2 ∈ P ∧ p1 6= p2 −→ coprime p1 p2

shows [a = b] (mod (
∏

a∈P. a))
using finite-P P p coprime-P
proof (induct P)

case empty
thus ?case by simp

next
case (insert p P)
have ab-mod-pP: [a=b] (mod (p ∗

∏
P))

proof (rule coprime-cong-mult-poly)
show [a = b] (mod p) using insert.prems by auto
show [a = b] (mod

∏
P) using insert.prems insert.hyps by auto

from insert show Rings.coprime p (
∏

P)
by (auto intro: prod-coprime-right)

qed
thus ?case by (simp add: insert.hyps(1 ) insert.hyps(2 ))

qed

end

context
assumes SORT-CONSTRAINT ( ′a::prime-card)
begin

lemma W-eq-berlekamp-mat:
fixes u:: ′a mod-ring poly
shows {v. [v^CARD( ′a) = v] (mod u) ∧ degree v < degree u}
= {h. let H = vec-of-list ((coeffs h) @ replicate (degree u − length (coeffs h)) 0 )

in
(transpose-mat (berlekamp-mat u)) ∗v H = H ∧ degree h < degree u}

using equation-13 by (auto simp add: Let-def )

lemma transpose-minus-1 :
assumes dim-row Q = dim-col Q
shows transpose-mat (Q − (1m (dim-row Q))) = (transpose-mat Q − (1m

(dim-row Q)))
using assms
unfolding mat-eq-iff by auto

lemma system-iff :
fixes v:: ′b::comm-ring-1 vec
assumes sq-Q: dim-row Q = dim-col Q and v: dim-row Q = dim-vec v
shows (transpose-mat Q ∗v v = v) ←→ ((transpose-mat Q − 1m (dim-row Q)) ∗v
v = 0 v (dim-vec v))
proof −

have t1 :transpose-mat Q ∗v v − v = 0 v (dim-vec v) =⇒ (transpose-mat Q −
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1m (dim-row Q)) ∗v v = 0 v (dim-vec v)
by (subst minus-mult-distrib-mat-vec, insert sq-Q[symmetric] v, auto)

have t2 :(transpose-mat Q − 1m (dim-row Q)) ∗v v = 0 v (dim-vec v) =⇒ trans-
pose-mat Q ∗v v − v = 0 v (dim-vec v)

by (subst (asm) minus-mult-distrib-mat-vec, insert sq-Q[symmetric] v, auto)
have transpose-mat Q ∗v v − v = v − v =⇒ transpose-mat Q ∗v v = v
proof −
assume a1 : transpose-mat Q ∗v v − v = v − v
have f2 : transpose-mat Q ∗v v ∈ carrier-vec (dim-vec v)
by (metis dim-mult-mat-vec index-transpose-mat(2 ) sq-Q v carrier-vec-dim-vec)

then have f3 : 0 v (dim-vec v) + transpose-mat Q ∗v v = transpose-mat Q ∗v v
by (meson left-zero-vec)

have f4 : 0 v (dim-vec v) = transpose-mat Q ∗v v − v
using a1 by auto

have f5 : − v ∈ carrier-vec (dim-vec v)
by simp

then have f6 : − v + transpose-mat Q ∗v v = v − v
using f2 a1 using comm-add-vec minus-add-uminus-vec by fastforce

have v − v = − v + v by auto
then have transpose-mat Q ∗v v = transpose-mat Q ∗v v − v + v

using f6 f4 f3 f2 by (metis (no-types, lifting) a1 assoc-add-vec comm-add-vec
f5 carrier-vec-dim-vec)

then show ?thesis
using a1 by auto

qed
hence (transpose-mat Q ∗v v = v) = ((transpose-mat Q ∗v v) − v = v − v) by

auto
also have ... = ((transpose-mat Q ∗v v) − v = 0 v (dim-vec v)) by auto
also have ... = ((transpose-mat Q − 1m (dim-row Q)) ∗v v = 0 v (dim-vec v))

using t1 t2 by auto
finally show ?thesis.

qed

lemma system-if-mat-kernel:
assumes sq-Q: dim-row Q = dim-col Q and v: dim-row Q = dim-vec v
shows (transpose-mat Q ∗v v = v) ←→ v ∈ mat-kernel (transpose-mat (Q − (1m

(dim-row Q))))
proof −

have (transpose-mat Q ∗v v = v) = ((transpose-mat Q − 1m (dim-row Q)) ∗v v
= 0 v (dim-vec v))

using assms system-iff by blast
also have ... = (v ∈ mat-kernel (transpose-mat (Q − (1m (dim-row Q)))))

unfolding mat-kernel-def unfolding transpose-minus-1 [OF sq-Q] unfolding
v by auto

finally show ?thesis .
qed
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lemma degree-u-mod-irreducibled-factor-0 :
fixes v and u:: ′a mod-ring poly
defines W : W ≡ {v. [v ^ CARD( ′a) = v] (mod u)}
assumes v: v ∈ W
and finite-U : finite U and u-U : u =

∏
U and U-irr-monic: U ⊆ {q. irreducible

q ∧ monic q}
and fi-U : fi ∈ U
shows degree (v mod fi) = 0
proof −

have deg-fi: degree fi > 0
using U-irr-monic
using fi-U irreducibledD[of fi] by auto

have fi dvd u
using u-U U-irr-monic finite-U dvd-prod-eqI fi-U by blast

moreover have u dvd (v^CARD( ′a) − v)
using v unfolding W cong-def
by (simp add: mod-eq-dvd-iff-poly)

ultimately have fi dvd (v^CARD( ′a) − v)
by (rule dvd-trans)

then have fi-dvd-prod-vc: fi dvd prod (λc. v − [:c:]) (UNIV :: ′a mod-ring set)
by (simp add: poly-identity-mod-p)

have irr-fi: irreducible fi using fi-U U-irr-monic by blast
have fi-not-unit: ¬ is-unit fi

using irr-fi
by (auto simp: poly-dvd-1 )

have fi-dvd-vc: ∃ c. fi dvd v − [:c:]
using irreducible-dvd-prod[OF - fi-dvd-prod-vc] irr-fi by auto

from this obtain a where fi dvd v − [:a:] by blast
hence v mod fi = [:a:] mod fi using mod-eq-dvd-iff-poly by blast
also have ... = [:a:] by (simp add: deg-fi mod-poly-less)
finally show ?thesis by simp

qed

definition poly-abelian-monoid
= (|carrier = UNIV :: ′a mod-ring poly set, monoid.mult = ((∗)), one = 1 , zero

= 0 , add = (+), module.smult = smult|)

interpretation vector-space-poly: vectorspace class-ring poly-abelian-monoid
rewrites [simp]: 0poly-abelian-monoid = 0

and [simp]: 1poly-abelian-monoid = 1
and [simp]: (⊕poly-abelian-monoid) = (+)

and [simp]: (⊗poly-abelian-monoid) = (∗)
and [simp]: carrier poly-abelian-monoid = UNIV
and [simp]: (�poly-abelian-monoid) = smult

apply unfold-locales

222



apply (auto simp: poly-abelian-monoid-def class-field-def smult-add-left smult-add-right
Units-def )

by (metis add.commute add.right-inverse)

lemma subspace-Berlekamp:
assumes f : degree f 6= 0
shows subspace (class-ring :: ′a mod-ring ring)
{v. [v^(CARD( ′a)) = v] (mod f ) ∧ (degree v < degree f )} poly-abelian-monoid

proof −
{ fix v :: ′a mod-ring poly and w :: ′a mod-ring poly

assume a1 : v ^ card (UNIV :: ′a set) mod f = v mod f
assume w ^ card (UNIV :: ′a set) mod f = w mod f
then have (v ^ card (UNIV :: ′a set) + w ^ card (UNIV :: ′a set)) mod f = (v

+ w) mod f
using a1 by (meson mod-add-cong)

then have (v + w) ^ card (UNIV :: ′a set) mod f = (v + w) mod f
by (simp add: add-power-poly-mod-ring)

} note r=this
thus ?thesis using f

by (unfold-locales, auto simp: zero-power mod-smult-left smult-power cong-def
degree-add-less)
qed

lemma berlekamp-resulting-mat-closed[simp]:
berlekamp-resulting-mat u ∈ carrier-mat (degree u) (degree u)
dim-row (berlekamp-resulting-mat u) = degree u
dim-col (berlekamp-resulting-mat u) = degree u

proof −
let ?A=(transpose-mat (mat (degree u) (degree u)

(λ(i, j). if i = j then berlekamp-mat u $$ (i, j) − 1 else berlekamp-mat
u $$ (i, j))))

let ?G=(gauss-jordan-single ?A)
have ?G ∈carrier-mat (degree u) (degree u)

by (rule gauss-jordan-single(2 )[of ?A], auto)
thus

berlekamp-resulting-mat u ∈ carrier-mat (degree u) (degree u)
dim-row (berlekamp-resulting-mat u) = degree u
dim-col (berlekamp-resulting-mat u) = degree u
unfolding berlekamp-resulting-mat-def Let-def by auto

qed

lemma berlekamp-resulting-mat-basis:
kernel.basis (degree u) (berlekamp-resulting-mat u) (set (find-base-vectors (berlekamp-resulting-mat
u)))
proof (rule find-base-vectors(3 ))

show berlekamp-resulting-mat u ∈ carrier-mat (degree u) (degree u) by simp
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let ?A=(transpose-mat (mat (degree u) (degree u)
(λ(i, j). if i = j then berlekamp-mat u $$ (i, j) − 1 else berlekamp-mat u

$$ (i, j))))
have row-echelon-form (gauss-jordan-single ?A)

by (rule gauss-jordan-single(3 )[of ?A], auto)
thus row-echelon-form (berlekamp-resulting-mat u)

unfolding berlekamp-resulting-mat-def Let-def by auto
qed

lemma set-berlekamp-basis-eq: (set (berlekamp-basis u))
= (Poly ◦ list-of-vec)‘ (set (find-base-vectors (berlekamp-resulting-mat u)))
by (auto simp add: image-def o-def berlekamp-basis-def )

lemma berlekamp-resulting-mat-constant:
assumes deg-u: degree u = 0
shows berlekamp-resulting-mat u = 1m 0

by (unfold mat-eq-iff , auto simp add: deg-u)

context
fixes u:: ′a::prime-card mod-ring poly

begin

lemma set-berlekamp-basis-constant:
assumes deg-u: degree u = 0
shows set (berlekamp-basis u) = {}
proof −

have one-carrier : 1m 0 ∈ carrier-mat 0 0 by auto
have m: mat-kernel (1m 0 ) = {(0 v 0 ) :: ′a mod-ring vec} unfolding mat-kernel-def

by auto
have r : row-echelon-form (1m 0 :: ′a mod-ring mat)

unfolding row-echelon-form-def pivot-fun-def Let-def by auto
have set (find-base-vectors (1m 0 )) ⊆ {0 v 0 :: ′a mod-ring vec}

using find-base-vectors(1 )[OF r one-carrier ] unfolding m .
hence set (find-base-vectors (1m 0 ) :: ′a mod-ring vec list) = {}

using find-base-vectors(2 )[OF r one-carrier ]
using subset-singletonD by fastforce

thus ?thesis
unfolding set-berlekamp-basis-eq unfolding berlekamp-resulting-mat-constant[OF

deg-u] by auto
qed

lemma row-echelon-form-berlekamp-resulting-mat: row-echelon-form (berlekamp-resulting-mat
u)
by (rule gauss-jordan-single(3 ), auto simp add: berlekamp-resulting-mat-def Let-def )

lemma mat-kernel-berlekamp-resulting-mat-degree-0 :
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assumes d: degree u = 0
shows mat-kernel (berlekamp-resulting-mat u) = {0 v 0}

by (auto simp add: mat-kernel-def mult-mat-vec-def d)

lemma in-mat-kernel-berlekamp-resulting-mat:
assumes x: transpose-mat (berlekamp-mat u) ∗v x = x
and x-dim: x ∈ carrier-vec (degree u)
shows x ∈ mat-kernel (berlekamp-resulting-mat u)
proof −
let ?QI=(mat(dim-row (berlekamp-mat u)) (dim-row (berlekamp-mat u))

(λ(i, j). if i = j then berlekamp-mat u $$ (i, j) − 1 else berlekamp-mat u
$$ (i, j)))

have ∗: (transpose-mat (berlekamp-mat u) − 1m (degree u)) = transpose-mat
?QI by auto

have (transpose-mat (berlekamp-mat u) − 1m (dim-row (berlekamp-mat u))) ∗v
x = 0 v (dim-vec x)

using system-iff [of berlekamp-mat u x] x-dim x by auto
hence transpose-mat ?QI ∗v x = 0 v (degree u) using x-dim ∗ by auto
hence berlekamp-resulting-mat u ∗v x = 0 v (degree u)

unfolding berlekamp-resulting-mat-def Let-def
using gauss-jordan-single(1 )[of transpose-mat ?QI degree u degree u - x] x-dim

by auto
thus ?thesis by (auto simp add: mat-kernel-def x-dim)

qed

private abbreviation V ≡ kernel.VK (degree u) (berlekamp-resulting-mat u)
private abbreviation W ≡ vector-space-poly.vs
{v. [v^(CARD( ′a)) = v] (mod u) ∧ (degree v < degree u)}

interpretation V : vectorspace class-ring V
proof −

interpret k: kernel (degree u) (degree u) (berlekamp-resulting-mat u)
by (unfold-locales; auto)

show vectorspace class-ring V by intro-locales
qed

lemma linear-Poly-list-of-vec:
shows (Poly ◦ list-of-vec) ∈ module-hom class-ring V (vector-space-poly.vs {v.
[v^(CARD( ′a)) = v] (mod u)})
proof (auto simp add: LinearCombinations.module-hom-def Matrix.module-vec-def )

fix m1 m2 :: ′a mod-ring vec
assume m1 : m1 ∈ mat-kernel (berlekamp-resulting-mat u)
and m2 : m2 ∈ mat-kernel (berlekamp-resulting-mat u)
have m1-rw: list-of-vec m1 = map (λn. m1 $ n) [0 ..<dim-vec m1 ]

by (transfer , auto simp add: mk-vec-def )
have m2-rw: list-of-vec m2 = map (λn. m2 $ n) [0 ..<dim-vec m2 ]

by (transfer , auto simp add: mk-vec-def )
have m1 ∈ carrier-vec (degree u) by (rule mat-kernelD(1 )[OF - m1 ], auto)
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moreover have m2 ∈ carrier-vec (degree u) by (rule mat-kernelD(1 )[OF - m2 ],
auto)

ultimately have dim-eq: dim-vec m1 = dim-vec m2 by auto
show Poly (list-of-vec (m1 + m2 )) = Poly (list-of-vec m1 ) + Poly (list-of-vec

m2 )
unfolding poly-eq-iff m1-rw m2-rw plus-vec-def
using dim-eq
by (transfer ′, auto simp add: mk-vec-def nth-default-def )

next
fix r m assume m: m ∈ mat-kernel (berlekamp-resulting-mat u)
show Poly (list-of-vec (r ·v m)) = smult r (Poly (list-of-vec m))

unfolding poly-eq-iff list-of-vec-rw-map[of m] smult-vec-def
by (transfer ′, auto simp add: mk-vec-def nth-default-def )

next
fix x assume x: x ∈ mat-kernel (berlekamp-resulting-mat u)
show [Poly (list-of-vec x) ^ CARD( ′a) = Poly (list-of-vec x)] (mod u)
proof (cases degree u = 0 )

case True
have mat-kernel (berlekamp-resulting-mat u) = {0 v 0}

by (rule mat-kernel-berlekamp-resulting-mat-degree-0 [OF True])
hence x-0 : x = 0 v 0 using x by blast
show ?thesis by (auto simp add: zero-power x-0 cong-def )

next
case False note deg-u = False
show ?thesis
proof −

let ?QI=(mat (degree u) (degree u)
(λ(i, j). if i = j then berlekamp-mat u $$ (i, j) − 1 else berlekamp-mat u $$

(i, j)))
let ?H=vec-of-list (coeffs (Poly (list-of-vec x)) @ replicate (degree u − length

(coeffs (Poly (list-of-vec x)))) 0 )
have x-dim: dim-vec x = degree u using x unfolding mat-kernel-def by auto

hence x-carrier [simp]: x ∈ carrier-vec (degree u) by (metis carrier-vec-dim-vec)
have x-kernel: berlekamp-resulting-mat u ∗v x = 0 v (degree u)

using x unfolding mat-kernel-def by auto
have t-QI-x-0 : (transpose-mat ?QI ) ∗v x = 0 v (degree u)

using gauss-jordan-single(1 )[of (transpose-mat ?QI ) degree u degree u
gauss-jordan-single (transpose-mat ?QI ) x]

using x-kernel unfolding berlekamp-resulting-mat-def Let-def by auto
have l: (list-of-vec x) 6= []
by (auto simp add: list-of-vec-rw-map vec-of-dim-0 [symmetric] deg-u x-dim)

have deg-le: degree (Poly (list-of-vec x)) < degree u
using degree-Poly-list-of-vec
using x-carrier deg-u by blast

show [Poly (list-of-vec x) ^ CARD( ′a) = Poly (list-of-vec x)] (mod u)
proof (unfold equation-13 [OF deg-le])

have QR-rw: ?QI = berlekamp-mat u − 1m (dim-row (berlekamp-mat u))
by auto

have dim-row (berlekamp-mat u) = dim-vec ?H

226



by (auto, metis le-add-diff-inverse length-list-of-vec length-strip-while-le
x-dim)

moreover have ?H ∈ mat-kernel (transpose-mat (berlekamp-mat u − 1m

(dim-row (berlekamp-mat u))))
proof −

have Hx: ?H = x
proof (unfold vec-eq-iff , auto)

let ?H ′=vec-of-list (strip-while ((=) 0 ) (list-of-vec x)
@ replicate (degree u − length (strip-while ((=) 0 ) (list-of-vec x))) 0 )

show length (strip-while ((=) 0 ) (list-of-vec x))
+ (degree u − length (strip-while ((=) 0 ) (list-of-vec x))) = dim-vec x

by (metis le-add-diff-inverse length-list-of-vec length-strip-while-le
x-dim)

fix i assume i: i < dim-vec x
have ?H $ i = coeff (Poly (list-of-vec x)) i
proof (rule vec-of-list-coeffs-replicate-nth[OF - deg-le])
show i ∈ {..<degree u} using x-dim i by (auto, linarith)

qed
also have ... = x $ i by (rule coeff-Poly-list-of-vec-nth ′[OF i])
finally show ?H ′ $ i = x $ i by auto

qed
have ?H ∈ carrier-vec (degree u) using deg-le dim-vec-of-list-h Hx by

auto
moreover have transpose-mat (berlekamp-mat u − 1m (degree u)) ∗v ?H

= 0 v (degree u)
using t-QI-x-0 Hx QR-rw by auto

ultimately show ?thesis
by (auto simp add: mat-kernel-def )

qed
ultimately show transpose-mat (berlekamp-mat u) ∗v ?H = ?H

using system-if-mat-kernel[of berlekamp-mat u ?H ]
by auto

qed
qed

qed
qed

lemma linear-Poly-list-of-vec ′:
assumes degree u > 0
shows (Poly ◦ list-of-vec) ∈ module-hom R V W

proof (auto simp add: LinearCombinations.module-hom-def Matrix.module-vec-def )
fix m1 m2 :: ′a mod-ring vec
assume m1 : m1 ∈ mat-kernel (berlekamp-resulting-mat u)
and m2 : m2 ∈ mat-kernel (berlekamp-resulting-mat u)
have m1-rw: list-of-vec m1 = map (λn. m1 $ n) [0 ..<dim-vec m1 ]

by (transfer , auto simp add: mk-vec-def )
have m2-rw: list-of-vec m2 = map (λn. m2 $ n) [0 ..<dim-vec m2 ]

by (transfer , auto simp add: mk-vec-def )
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have m1 ∈ carrier-vec (degree u) by (rule mat-kernelD(1 )[OF - m1 ], auto)
moreover have m2 ∈ carrier-vec (degree u) by (rule mat-kernelD(1 )[OF - m2 ],

auto)
ultimately have dim-eq: dim-vec m1 = dim-vec m2 by auto
show Poly (list-of-vec (m1 + m2 )) = Poly (list-of-vec m1 ) + Poly (list-of-vec

m2 )
unfolding poly-eq-iff m1-rw m2-rw plus-vec-def
using dim-eq
by (transfer ′, auto simp add: mk-vec-def nth-default-def )

next
fix r m assume m: m ∈ mat-kernel (berlekamp-resulting-mat u)
show Poly (list-of-vec (r ·v m)) = smult r (Poly (list-of-vec m))

unfolding poly-eq-iff list-of-vec-rw-map[of m] smult-vec-def
by (transfer ′, auto simp add: mk-vec-def nth-default-def )

next
fix x assume x: x ∈ mat-kernel (berlekamp-resulting-mat u)
show [Poly (list-of-vec x) ^ CARD( ′a) = Poly (list-of-vec x)] (mod u)
proof (cases degree u = 0 )

case True
have mat-kernel (berlekamp-resulting-mat u) = {0 v 0}

by (rule mat-kernel-berlekamp-resulting-mat-degree-0 [OF True])
hence x-0 : x = 0 v 0 using x by blast
show ?thesis by (auto simp add: zero-power x-0 cong-def )

next
case False note deg-u = False
show ?thesis
proof −

let ?QI=(mat (degree u) (degree u)
(λ(i, j). if i = j then berlekamp-mat u $$ (i, j) − 1 else berlekamp-mat u $$

(i, j)))
let ?H=vec-of-list (coeffs (Poly (list-of-vec x)) @ replicate (degree u − length

(coeffs (Poly (list-of-vec x)))) 0 )
have x-dim: dim-vec x = degree u using x unfolding mat-kernel-def by auto

hence x-carrier [simp]: x ∈ carrier-vec (degree u) by (metis carrier-vec-dim-vec)
have x-kernel: berlekamp-resulting-mat u ∗v x = 0 v (degree u)

using x unfolding mat-kernel-def by auto
have t-QI-x-0 : (transpose-mat ?QI ) ∗v x = 0 v (degree u)

using gauss-jordan-single(1 )[of (transpose-mat ?QI ) degree u degree u
gauss-jordan-single (transpose-mat ?QI ) x]

using x-kernel unfolding berlekamp-resulting-mat-def Let-def by auto
have l: (list-of-vec x) 6= []
by (auto simp add: list-of-vec-rw-map vec-of-dim-0 [symmetric] deg-u x-dim)

have deg-le: degree (Poly (list-of-vec x)) < degree u
using degree-Poly-list-of-vec
using x-carrier deg-u by blast

show [Poly (list-of-vec x) ^ CARD( ′a) = Poly (list-of-vec x)] (mod u)
proof (unfold equation-13 [OF deg-le])

have QR-rw: ?QI = berlekamp-mat u − 1m (dim-row (berlekamp-mat u))
by auto
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have dim-row (berlekamp-mat u) = dim-vec ?H
by (auto, metis le-add-diff-inverse length-list-of-vec length-strip-while-le

x-dim)
moreover have ?H ∈ mat-kernel (transpose-mat (berlekamp-mat u − 1m

(dim-row (berlekamp-mat u))))
proof −

have Hx: ?H = x
proof (unfold vec-eq-iff , auto)

let ?H ′=vec-of-list (strip-while ((=) 0 ) (list-of-vec x)
@ replicate (degree u − length (strip-while ((=) 0 ) (list-of-vec x))) 0 )

show length (strip-while ((=) 0 ) (list-of-vec x))
+ (degree u − length (strip-while ((=) 0 ) (list-of-vec x))) = dim-vec x

by (metis le-add-diff-inverse length-list-of-vec length-strip-while-le
x-dim)

fix i assume i: i < dim-vec x
have ?H $ i = coeff (Poly (list-of-vec x)) i
proof (rule vec-of-list-coeffs-replicate-nth[OF - deg-le])
show i ∈ {..<degree u} using x-dim i by (auto, linarith)

qed
also have ... = x $ i by (rule coeff-Poly-list-of-vec-nth ′[OF i])
finally show ?H ′ $ i = x $ i by auto

qed
have ?H ∈ carrier-vec (degree u) using deg-le dim-vec-of-list-h Hx by

auto
moreover have transpose-mat (berlekamp-mat u − 1m (degree u)) ∗v ?H

= 0 v (degree u)
using t-QI-x-0 Hx QR-rw by auto

ultimately show ?thesis
by (auto simp add: mat-kernel-def )

qed
ultimately show transpose-mat (berlekamp-mat u) ∗v ?H = ?H

using system-if-mat-kernel[of berlekamp-mat u ?H ]
by auto

qed
qed

qed
next

fix x assume x: x ∈ mat-kernel (berlekamp-resulting-mat u)
show degree (Poly (list-of-vec x)) < degree u

by (rule degree-Poly-list-of-vec, insert assms x, auto simp: mat-kernel-def )
qed

lemma berlekamp-basis-eq-8 :
assumes v: v ∈ set (berlekamp-basis u)
shows [v ^ CARD( ′a) = v] (mod u)

proof −
{

fix x assume x: x ∈ set (find-base-vectors (berlekamp-resulting-mat u))
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have set (find-base-vectors (berlekamp-resulting-mat u)) ⊆ mat-kernel (berlekamp-resulting-mat
u)

proof (rule find-base-vectors(1 ))
show row-echelon-form (berlekamp-resulting-mat u)

by (rule row-echelon-form-berlekamp-resulting-mat)
show berlekamp-resulting-mat u ∈ carrier-mat (degree u) (degree u) by simp

qed
hence x ∈ mat-kernel (berlekamp-resulting-mat u) using x by auto
hence [Poly (list-of-vec x) ^ CARD( ′a) = Poly (list-of-vec x)] (mod u)

using linear-Poly-list-of-vec
unfolding LinearCombinations.module-hom-def Matrix.module-vec-def by

auto
}
thus [v ^ CARD( ′a) = v] (mod u) using v unfolding set-berlekamp-basis-eq by

auto
qed

lemma surj-Poly-list-of-vec:
assumes deg-u: degree u > 0
shows (Poly ◦ list-of-vec)‘ (carrier V ) = carrier W

proof (auto simp add: image-def )
fix xa
assume xa: xa ∈ mat-kernel (berlekamp-resulting-mat u)
thus [Poly (list-of-vec xa) ^ CARD( ′a) = Poly (list-of-vec xa)] (mod u)

using linear-Poly-list-of-vec
unfolding LinearCombinations.module-hom-def Matrix.module-vec-def by auto

show degree (Poly (list-of-vec xa)) < degree u
proof (rule degree-Poly-list-of-vec[OF - deg-u])

show xa ∈ carrier-vec (degree u) using xa unfolding mat-kernel-def by simp
qed

next
fix x assume x: [x ^ CARD( ′a) = x] (mod u)
and deg-x: degree x < degree u
show ∃ xa ∈ mat-kernel (berlekamp-resulting-mat u). x = Poly (list-of-vec xa)
proof (rule bexI [of - vec-of-list (coeffs x @ replicate (degree u − length (coeffs

x)) 0 )])
let ?X = vec-of-list (coeffs x @ replicate (degree u − length (coeffs x)) 0 )
show x = Poly (list-of-vec (vec-of-list (coeffs x @ replicate (degree u − length

(coeffs x)) 0 )))
by auto

have X : ?X ∈ carrier-vec (degree u) unfolding carrier-vec-def
by (auto, metis Suc-leI coeffs-0-eq-Nil deg-x degree-0 le-add-diff-inverse

length-coeffs-degree linordered-semidom-class.add-diff-inverse list.size(3 )
order .asym)

have t: transpose-mat (berlekamp-mat u) ∗v ?X = ?X
using equation-13 [OF deg-x] x by auto

show vec-of-list (coeffs x @ replicate (degree u − length (coeffs x)) 0 )
∈ mat-kernel (berlekamp-resulting-mat u) by (rule in-mat-kernel-berlekamp-resulting-mat[OF
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t X ])
qed

qed

lemma card-set-berlekamp-basis: card (set (berlekamp-basis u)) = length (berlekamp-basis
u)
proof −

have b: berlekamp-resulting-mat u ∈ carrier-mat (degree u) (degree u) by auto
have (set (berlekamp-basis u)) = (Poly ◦ list-of-vec) ‘ set (find-base-vectors

(berlekamp-resulting-mat u))
unfolding set-berlekamp-basis-eq ..

also have card ... = card (set (find-base-vectors (berlekamp-resulting-mat u)))
proof (rule card-image, rule subset-inj-on[OF inj-Poly-list-of-vec])

show set (find-base-vectors (berlekamp-resulting-mat u)) ⊆ carrier-vec (degree
u)

using find-base-vectors(1 )[OF row-echelon-form-berlekamp-resulting-mat b]
unfolding carrier-vec-def mat-kernel-def
by auto

qed
also have ... = length (find-base-vectors (berlekamp-resulting-mat u))
by (rule length-find-base-vectors[symmetric, OF row-echelon-form-berlekamp-resulting-mat

b])
finally show ?thesis unfolding berlekamp-basis-def by auto

qed

context
assumes deg-u0 [simp]: degree u > 0

begin

interpretation Berlekamp-subspace: vectorspace class-ring W
by (rule vector-space-poly.subspace-is-vs[OF subspace-Berlekamp], simp)

lemma linear-map-Poly-list-of-vec ′: linear-map class-ring V W (Poly ◦ list-of-vec)
proof (auto simp add: linear-map-def )

show vectorspace class-ring V by intro-locales
show vectorspace class-ring W by (rule Berlekamp-subspace.vectorspace-axioms)
show mod-hom class-ring V W (Poly ◦ list-of-vec)
proof (rule mod-hom.intro, unfold mod-hom-axioms-def )

show module class-ring V by intro-locales
show module class-ring W using Berlekamp-subspace.vectorspace-axioms by

intro-locales
show Poly ◦ list-of-vec ∈ module-hom class-ring V W

by (rule linear-Poly-list-of-vec ′[OF deg-u0 ])
qed

qed

lemma berlekamp-basis-basis:
Berlekamp-subspace.basis (set (berlekamp-basis u))
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proof (unfold set-berlekamp-basis-eq, rule linear-map.linear-inj-image-is-basis)
show linear-map class-ring V W (Poly ◦ list-of-vec)

by (rule linear-map-Poly-list-of-vec ′)
show inj-on (Poly ◦ list-of-vec) (carrier V )
proof (rule subset-inj-on[OF inj-Poly-list-of-vec])

show carrier V ⊆ carrier-vec (degree u)
by (auto simp add: mat-kernel-def )

qed
show (Poly ◦ list-of-vec) ‘ carrier V = carrier W

using surj-Poly-list-of-vec[OF deg-u0 ] by auto
show b: V .basis (set (find-base-vectors (berlekamp-resulting-mat u)))

by (rule berlekamp-resulting-mat-basis)
show V .fin-dim
proof −

have finite (set (find-base-vectors (berlekamp-resulting-mat u))) by auto
moreover have set (find-base-vectors (berlekamp-resulting-mat u)) ⊆ carrier

V
and V .gen-set (set (find-base-vectors (berlekamp-resulting-mat u)))

using b unfolding V .basis-def by auto
ultimately show ?thesis unfolding V .fin-dim-def by auto

qed
qed

lemma finsum-sum:
fixes f :: ′a mod-ring poly
assumes f : finite B
and a-Pi: a ∈ B → carrier R
and V : B ⊆ carrier W
shows (

⊕
Wv∈B. a v �W v) = sum (λv. smult (a v) v) B

using f a-Pi V
proof (induct B)

case empty
thus ?case unfolding Berlekamp-subspace.module.M .finsum-empty by auto
next
case (insert x V )
have hyp: (

⊕
Wv ∈ V . a v �W v) = sum (λv. smult (a v) v) V

proof (rule insert.hyps)
show a ∈ V → carrier R

using insert.prems unfolding class-field-def by auto
show V ⊆ carrier W using insert.prems by simp

qed
have (

⊕
Wv∈insert x V . a v �W v) = (a x �W x) ⊕W (

⊕
Wv ∈ V . a v �W

v)
proof (rule abelian-monoid.finsum-insert)

show abelian-monoid W by (unfold-locales)
show finite V by fact
show x /∈ V by fact
show (λv. a v �W v) ∈ V → carrier W
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proof (unfold Pi-def , rule, rule allI , rule impI )
fix v assume v: v∈V
show a v �W v ∈ carrier W
proof (rule Berlekamp-subspace.smult-closed)

show a v ∈ carrier class-ring using insert.prems v unfolding Pi-def
by (simp add: class-field-def )

show v ∈ carrier W using v insert.prems by auto
qed

qed
show a x �W x ∈ carrier W
proof (rule Berlekamp-subspace.smult-closed)

show a x ∈ carrier class-ring using insert.prems unfolding Pi-def
by (simp add: class-field-def )

show x ∈ carrier W using insert.prems by auto
qed

qed
also have ... = (a x �W x) + (

⊕
Wv ∈ V . a v �W v) by auto

also have ... = (a x �W x) + sum (λv. smult (a v) v) V unfolding hyp by
simp

also have ... = (smult (a x) x) + sum (λv. smult (a v) v) V by simp
also have ... = sum (λv. smult (a v) v) (insert x V )

by (simp add: insert.hyps(1 ) insert.hyps(2 ))
finally show ?case .

qed

lemma exists-vector-in-Berlekamp-subspace-dvd:
fixes p-i:: ′a mod-ring poly
assumes finite-P: finite P

and f-desc-square-free: u = (
∏

a∈P. a)
and P: P ⊆ {q. irreducible q ∧ monic q}
and pi: p-i ∈ P and pj: p-j ∈ P and pi-pj: p-i 6= p-j
and monic-f : monic u and sf-f : square-free u
and not-irr-w: ¬ irreducible w
and w-dvd-f : w dvd u and monic-w: monic w
and pi-dvd-w: p-i dvd w and pj-dvd-w: p-j dvd w

shows ∃ v. v ∈ {h. [h^(CARD( ′a)) = h] (mod u) ∧ degree h < degree u}
∧ v mod p-i 6= v mod p-j
∧ degree (v mod p-i) = 0
∧ degree (v mod p-j) = 0

— This implies that the algorithm decreases the degree of the reducible polynomials
in each step:
∧ (∃ s. gcd w (v − [:s:]) 6= w ∧ gcd w (v − [:s:]) 6= 1 )

proof −
have f-not-0 : u 6= 0 using monic-f by auto
have irr-pi: irreducible p-i using pi P by auto
have irr-pj: irreducible p-j using pj P by auto
obtain m and n::nat where P-m: P = m ‘ {i. i < n} and inj-on-m: inj-on m
{i. i < n}
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using finite-imp-nat-seg-image-inj-on[OF finite-P] by blast
hence n = card P by (simp add: card-image)
have degree-prod: degree (prod m {i. i < n}) = degree u

by (metis P-m f-desc-square-free inj-on-m prod.reindex-cong)
have not-zero: ∀ i∈{i. i < n}. m i 6= 0

using P-m f-desc-square-free f-not-0 by auto
obtain i where mi: m i = p-i and i: i < n using P-m pi by blast
obtain j where mj: m j = p-j and j: j < n using P-m pj by blast
have ij: i 6= j using mi mj pi-pj by auto
obtain s-i and s-j:: ′a mod-ring where si-sj: s-i 6= s-j using exists-two-distint

by blast
let ?u=λx. if x = i then [:s-i:] else if x = j then [:s-j:] else [:0 :]
have degree-si: degree [:s-i:] = 0 by auto
have degree-sj: degree [:s-j:] = 0 by auto
have ∃ !v. degree v < (

∑
i∈{i. i < n}. degree (m i)) ∧ (∀ a∈{i. i < n}. [v = ?u

a] (mod m a))
proof (rule chinese-remainder-unique-poly)

show ∀ a∈{i. i < n}. ∀ b∈{i. i < n}. a 6= b −→ Rings.coprime (m a) (m b)
proof (rule+)

fix a b assume a ∈ {i. i < n} and b ∈ {i. i < n} and a 6= b
thus Rings.coprime (m a) (m b)

using coprime-polynomial-factorization[OF P finite-P, simplified] P-m
by (metis image-eqI inj-onD inj-on-m)

qed
show ∀ i∈{i. i < n}. m i 6= 0 by (rule not-zero)
show 0 < degree (prod m {i. i < n}) unfolding degree-prod using deg-u0 by

blast
qed
from this obtain v where v: ∀ a∈{i. i < n}. [v = ?u a] (mod m a)
and degree-v: degree v < (

∑
i∈{i. i < n}. degree (m i)) by blast

show ?thesis
proof (rule exI [of - v], auto)

show vp-v-mod: [v ^ CARD( ′a) = v] (mod u)
proof (unfold f-desc-square-free, rule coprime-cong-mult-factorization-poly[OF

finite-P])
show P ⊆ {q. irreducible q} using P by blast
show ∀ p∈P. [v ^ CARD( ′a) = v] (mod p)
proof (rule ballI )

fix p assume p: p ∈ P
hence irr-p: irreducibled p using P by auto
obtain k where mk: m k = p and k: k < n using P-m p by blast
have [v = ?u k] (mod p) using v mk k by auto
moreover have ?u k mod p = ?u k

apply (rule mod-poly-less) using irreducibledD(1 )[OF irr-p] by auto
ultimately obtain s where v-mod-p: v mod p = [:s:] unfolding cong-def

by force
hence deg-v-p: degree (v mod p) = 0 by auto
have v mod p = [:s:] by (rule v-mod-p)
also have ... = [:s:]^CARD( ′a) unfolding poly-const-pow by auto

234



also have ... = (v mod p) ^ CARD( ′a) using v-mod-p by auto
also have ... = (v mod p) ^ CARD( ′a) mod p using calculation by auto
also have ... = v^CARD( ′a) mod p using power-mod by blast
finally show [v ^ CARD( ′a) = v] (mod p) unfolding cong-def ..

qed
show ∀ p1 p2 . p1 ∈ P ∧ p2 ∈ P ∧ p1 6= p2 −→ coprime p1 p2

using P coprime-polynomial-factorization finite-P by auto
qed
have [v = ?u i] (mod m i) using v i by auto
hence v-pi-si-mod: v mod p-i = [:s-i:] mod p-i unfolding cong-def mi by auto
also have ... = [:s-i:] apply (rule mod-poly-less) using irr-pi by auto
finally have v-pi-si: v mod p-i = [:s-i:] .

have [v = ?u j] (mod m j) using v j by auto
hence v-pj-sj-mod: v mod p-j = [:s-j:] mod p-j unfolding cong-def mj using

ij by auto
also have ... = [:s-j:] apply (rule mod-poly-less) using irr-pj by auto
finally have v-pj-sj: v mod p-j = [:s-j:] .
show v mod p-i = v mod p-j =⇒ False using si-sj v-pi-si v-pj-sj by auto
show degree (v mod p-i) = 0 unfolding v-pi-si by simp
show degree (v mod p-j) = 0 unfolding v-pj-sj by simp
show ∃ s. gcd w (v − [:s:]) 6= w ∧ gcd w (v − [:s:]) 6= 1
proof (rule exI [of - s-i], rule conjI )

have pi-dvd-v-si: p-i dvd v − [:s-i:] using v-pi-si-mod mod-eq-dvd-iff-poly by
blast

have pj-dvd-v-sj: p-j dvd v − [:s-j:] using v-pj-sj-mod mod-eq-dvd-iff-poly by
blast

have w-eq: w = prod (λc. gcd w (v − [:c:])) (UNIV :: ′a mod-ring set)
proof (rule Berlekamp-gcd-step)

show [v ^ CARD( ′a) = v] (mod w) using vp-v-mod cong-dvd-modulus-poly
w-dvd-f by blast

show square-free w by (rule square-free-factor [OF w-dvd-f sf-f ])
show monic w by (rule monic-w)

qed
show gcd w (v − [:s-i:]) 6= w
proof (rule ccontr , simp)

assume gcd-w: gcd w (v − [:s-i:]) = w
show False apply (rule ‹v mod p-i = v mod p-j =⇒ False›)
by (metis irreducibleE ‹degree (v mod p-i) = 0 › gcd-greatest-iff gcd-w irr-pj

is-unit-field-poly mod-eq-dvd-iff-poly mod-poly-less neq0-conv pj-dvd-w v-pi-si)
qed
show gcd w (v − [:s-i:]) 6= 1

by (metis irreducibleE gcd-greatest-iff irr-pi pi-dvd-v-si pi-dvd-w)
qed
show degree v < degree u
proof −

have (
∑

i | i < n. degree (m i)) = degree (prod m {i. i < n})
by (rule degree-prod-eq-sum-degree[symmetric, OF not-zero])

thus ?thesis using degree-v unfolding degree-prod by auto
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qed
qed

qed

lemma exists-vector-in-Berlekamp-basis-dvd-aux:
assumes basis-V : Berlekamp-subspace.basis B

and finite-V : finite B
assumes finite-P: finite P

and f-desc-square-free: u = (
∏

a∈P. a)
and P: P ⊆ {q. irreducible q ∧ monic q}
and pi: p-i ∈ P and pj: p-j ∈ P and pi-pj: p-i 6= p-j
and monic-f : monic u and sf-f : square-free u
and not-irr-w: ¬ irreducible w
and w-dvd-f : w dvd u and monic-w: monic w
and pi-dvd-w: p-i dvd w and pj-dvd-w: p-j dvd w

shows ∃ v ∈ B. v mod p-i 6= v mod p-j
proof (rule ccontr , auto)

have V-in-carrier : B ⊆ carrier W
using basis-V unfolding Berlekamp-subspace.basis-def by auto

assume all-eq: ∀ v∈B. v mod p-i = v mod p-j
obtain x where x: x ∈ {h. [h ^ CARD( ′a) = h] (mod u) ∧ degree h < degree u}

and x-pi-pj: x mod p-i 6= x mod p-j and degree (x mod p-i) = 0 and degree
(x mod p-j) = 0

(∃ s. gcd w (x − [:s:]) 6= w ∧ gcd w (x − [:s:]) 6= 1 )
using exists-vector-in-Berlekamp-subspace-dvd[OF - - - pi pj - - - - w-dvd-f

monic-w pi-dvd-w]
assms by meson

have x-in: x ∈ carrier W using x by auto
hence (∃ !a. a ∈ B →E carrier class-ring ∧ Berlekamp-subspace.lincomb a B =

x)
using Berlekamp-subspace.basis-criterion[OF finite-V V-in-carrier ] using ba-

sis-V
by (simp add: class-field-def )

from this obtain a where a-Pi: a ∈ B →E carrier class-ring
and lincomb-x: Berlekamp-subspace.lincomb a B = x
by blast

have fs-ss: (
⊕

Wv∈B. a v �W v) = sum (λv. smult (a v) v) B
proof (rule finsum-sum)

show finite B by fact
show a ∈ B → carrier class-ring using a-Pi by auto
show B ⊆ carrier W by (rule V-in-carrier)

qed
have x mod p-i = Berlekamp-subspace.lincomb a B mod p-i using lincomb-x by

simp
also have ... = (

⊕
Wv∈B. a v �W v) mod p-i unfolding Berlekamp-subspace.lincomb-def

..
also have ... = (sum (λv. smult (a v) v) B) mod p-i unfolding fs-ss ..
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also have ... = sum (λv. smult (a v) v mod p-i) B using finite-V poly-mod-sum
by blast

also have ... = sum (λv. smult (a v) (v mod p-i)) B by (meson mod-smult-left)
also have ... = sum (λv. smult (a v) (v mod p-j)) B using all-eq by auto
also have ... = sum (λv. smult (a v) v mod p-j) B by (metis mod-smult-left)
also have ... = (sum (λv. smult (a v) v) B) mod p-j
by (metis (mono-tags, lifting) finite-V poly-mod-sum sum.cong)
also have ... = (

⊕
Wv∈B. a v �W v) mod p-j unfolding fs-ss ..

also have ... = Berlekamp-subspace.lincomb a B mod p-j
unfolding Berlekamp-subspace.lincomb-def ..

also have ... = x mod p-j using lincomb-x by simp
finally have x mod p-i = x mod p-j .
thus False using x-pi-pj by contradiction

qed

lemma exists-vector-in-Berlekamp-basis-dvd:
assumes basis-V : Berlekamp-subspace.basis B
and finite-V : finite B
assumes finite-P: finite P

and f-desc-square-free: u = (
∏

a∈P. a)
and P: P ⊆ {q. irreducible q ∧ monic q}
and pi: p-i ∈ P and pj: p-j ∈ P and pi-pj: p-i 6= p-j
and monic-f : monic u and sf-f : square-free u
and not-irr-w: ¬ irreducible w
and w-dvd-f : w dvd u and monic-w: monic w
and pi-dvd-w: p-i dvd w and pj-dvd-w: p-j dvd w

shows ∃ v ∈ B. v mod p-i 6= v mod p-j
∧ degree (v mod p-i) = 0
∧ degree (v mod p-j) = 0

— This implies that the algorithm decreases the degree of the reducible polynomials
in each step:
∧ (∃ s. gcd w (v − [:s:]) 6= w ∧ ¬ coprime w (v − [:s:]))

proof −
have f-not-0 : u 6= 0 using monic-f by auto
have irr-pi: irreducible p-i using pi P by fast
have irr-pj: irreducible p-j using pj P by fast
obtain v where vV : v ∈ B and v-pi-pj: v mod p-i 6= v mod p-j

using assms exists-vector-in-Berlekamp-basis-dvd-aux by blast
have v: v ∈ {v. [v ^ CARD( ′a) = v] (mod u)}

using basis-V vV unfolding Berlekamp-subspace.basis-def by auto
have deg-v-pi: degree (v mod p-i) = 0

by (rule degree-u-mod-irreducibled-factor-0 [OF v finite-P f-desc-square-free P
pi])

from this obtain s-i where v-pi-si: v mod p-i = [:s-i:] using degree-eq-zeroE
by blast

have deg-v-pj: degree (v mod p-j) = 0
by (rule degree-u-mod-irreducibled-factor-0 [OF v finite-P f-desc-square-free P

pj])
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from this obtain s-j where v-pj-sj: v mod p-j = [:s-j:] using degree-eq-zeroE
by blast

have si-sj: s-i 6= s-j using v-pi-si v-pj-sj v-pi-pj by auto
have (∃ s. gcd w (v − [:s:]) 6= w ∧ ¬ Rings.coprime w (v − [:s:]))
proof (rule exI [of - s-i], rule conjI )
have pi-dvd-v-si: p-i dvd v − [:s-i:] by (metis mod-eq-dvd-iff-poly mod-mod-trivial

v-pi-si)
have pj-dvd-v-sj: p-j dvd v − [:s-j:] by (metis mod-eq-dvd-iff-poly mod-mod-trivial

v-pj-sj)
have w-eq: w = prod (λc. gcd w (v − [:c:])) (UNIV :: ′a mod-ring set)
proof (rule Berlekamp-gcd-step)

show [v ^ CARD( ′a) = v] (mod w) using v cong-dvd-modulus-poly w-dvd-f
by blast

show square-free w by (rule square-free-factor [OF w-dvd-f sf-f ])
show monic w by (rule monic-w)

qed
show gcd w (v − [:s-i:]) 6= w
by (metis irreducibleE deg-v-pi gcd-greatest-iff irr-pj is-unit-field-poly mod-eq-dvd-iff-poly

mod-poly-less neq0-conv pj-dvd-w v-pi-pj v-pi-si)
show ¬ Rings.coprime w (v − [:s-i:])

using irr-pi pi-dvd-v-si pi-dvd-w
by (simp add: irreducibledD(1 ) not-coprimeI )

qed
thus ?thesis using v-pi-pj vV deg-v-pi deg-v-pj by auto

qed

lemma exists-bijective-linear-map-W-vec:
assumes finite-P: finite P

and u-desc-square-free: u = (
∏

a∈P. a)
and P: P ⊆ {q. irreducible q ∧ monic q}

shows ∃ f . linear-map class-ring W (module-vec TYPE( ′a mod-ring) (card P)) f
∧ bij-betw f (carrier W ) (carrier-vec (card P):: ′a mod-ring vec set)

proof −
let ?B=carrier-vec (card P):: ′a mod-ring vec set
have u-not-0 : u 6= 0 using deg-u0 degree-0 by force
obtain m and n::nat where P-m: P = m ‘ {i. i < n} and inj-on-m: inj-on m
{i. i < n}

using finite-imp-nat-seg-image-inj-on[OF finite-P] by blast
hence n: n = card P by (simp add: card-image)
have degree-prod: degree (prod m {i. i < n}) = degree u

by (metis P-m u-desc-square-free inj-on-m prod.reindex-cong)
have not-zero: ∀ i∈{i. i < n}. m i 6= 0

using P-m u-desc-square-free u-not-0 by auto
have deg-sum-eq: (

∑
i∈{i. i < n}. degree (m i)) = degree u

by (metis degree-prod degree-prod-eq-sum-degree not-zero)
have coprime-mi-mj:∀ i∈{i. i < n}. ∀ j∈{i. i < n}. i 6= j −→ coprime (m i) (m

j)
proof (rule+)

fix i j assume i: i ∈ {i. i < n}
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and j: j ∈ {i. i < n} and ij: i 6= j
show coprime (m i) (m j)
proof (rule coprime-polynomial-factorization[OF P finite-P])

show m i ∈ P using i P-m by auto
show m j ∈ P using j P-m by auto
show m i 6= m j using inj-on-m i ij j unfolding inj-on-def by blast

qed
qed
let ?f = λv. vec n (λi. coeff (v mod (m i)) 0 )
interpret vec-VS : vectorspace class-ring (module-vec TYPE( ′a mod-ring) n)

by (rule VS-Connect.vec-vs)
interpret linear-map class-ring W (module-vec TYPE( ′a mod-ring) n) ?f
by (intro-locales, unfold mod-hom-axioms-def LinearCombinations.module-hom-def ,

auto simp add: vec-eq-iff module-vec-def mod-smult-left poly-mod-add-left)
have linear-map class-ring W (module-vec TYPE( ′a mod-ring) n) ?f

by (intro-locales)
moreover have inj-f : inj-on ?f (carrier W )
proof (rule Ke0-imp-inj, auto simp add: mod-hom.ker-def )

show [0 ^ CARD( ′a) = 0 ] (mod u) by (simp add: cong-def zero-power)
show vec n (λi. 0 ) = 0module-vec TYPE( ′a mod-ring) n by (auto simp add:

module-vec-def )
fix x assume x: [x ^ CARD( ′a) = x] (mod u) and deg-x: degree x < degree u
and v: vec n (λi. coeff (x mod m i) 0 ) = 0module-vec TYPE( ′a mod-ring) n
have cong-0 : ∀ i∈{i. i < n}. [x = (λi. 0 ) i] (mod m i)
proof (rule, unfold cong-def )

fix i assume i: i ∈ {i. i < n}
have deg-x-mod-mi: degree (x mod m i) = 0

proof (rule degree-u-mod-irreducibled-factor-0 [OF - finite-P u-desc-square-free
P])

show x ∈ {v. [v ^ CARD( ′a) = v] (mod u)} using x by auto
show m i ∈ P using P-m i by auto

qed
thus x mod m i = 0 mod m i
using v
unfolding module-vec-def

by (auto, metis i leading-coeff-neq-0 mem-Collect-eq index-vec index-zero-vec(1 ))
qed
moreover have deg-x2 : degree x < (

∑
i∈{i. i < n}. degree (m i))

using deg-sum-eq deg-x by simp
moreover have ∀ i∈{i. i < n}. [0 = (λi. 0 ) i] (mod m i)
by (auto simp add: cong-def )

moreover have degree 0 < (
∑

i∈{i. i < n}. degree (m i))
using degree-prod deg-sum-eq deg-u0 by force

moreover have ∃ !x. degree x < (
∑

i∈{i. i < n}. degree (m i))
∧ (∀ i∈{i. i < n}. [x = (λi. 0 ) i] (mod m i))

proof (rule chinese-remainder-unique-poly[OF not-zero])
show 0 < degree (prod m {i. i < n})

using deg-u0 degree-prod by linarith
qed (insert coprime-mi-mj, auto)
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ultimately show x = 0 by blast
qed
moreover have ?f ‘ (carrier W ) = ?B
proof (auto simp add: image-def )

fix xa
show n = card P by (auto simp add: n)
next
fix x:: ′a mod-ring vec assume x: x ∈ carrier-vec (card P)
have ∃ !v. degree v < (

∑
i∈{i. i < n}. degree (m i)) ∧ (∀ i∈{i. i < n}. [v =

(λi. [:x $ i:]) i] (mod m i))
proof (rule chinese-remainder-unique-poly[OF not-zero])

show 0 < degree (prod m {i. i < n})
using deg-u0 degree-prod by linarith

qed (insert coprime-mi-mj, auto)
from this obtain v where deg-v: degree v < (

∑
i∈{i. i < n}. degree (m i))

and v-x-cong: (∀ i ∈ {i. i < n}. [v = (λi. [:x $ i:]) i] (mod m i)) by auto
show ∃ xa. [xa ^ CARD( ′a) = xa] (mod u) ∧ degree xa < degree u
∧ x = vec n (λi. coeff (xa mod m i) 0 )

proof (rule exI [of - v], auto)
show v: [v ^ CARD( ′a) = v] (mod u)

proof (unfold u-desc-square-free, rule coprime-cong-mult-factorization-poly[OF
finite-P], auto)

fix y assume y: y ∈ P thus irreducible y using P by blast
obtain i where i: i ∈ {i. i < n} and mi: y = m i using P-m y by blast
have irreducible (m i) using i P-m P by auto
moreover have [v = [:x $ i:]] (mod m i) using v-x-cong i by auto
ultimately have v-mi-eq-xi: v mod m i = [:x $ i:]

by (auto simp: cong-def intro!: mod-poly-less)
have xi-pow-xi: [:x $ i:]^CARD( ′a) = [:x $ i:] by (simp add: poly-const-pow)
hence (v mod m i)^CARD( ′a) = v mod m i using v-mi-eq-xi by auto
hence (v mod m i)^CARD( ′a) = (v^CARD( ′a) mod m i)

by (metis mod-mod-trivial power-mod)
thus [v ^ CARD( ′a) = v] (mod y) unfolding mi cong-def v-mi-eq-xi xi-pow-xi

by simp
next

fix p1 p2 assume p1 ∈ P and p2 ∈ P and p1 6= p2
then show Rings.coprime p1 p2

using coprime-polynomial-factorization[OF P finite-P] by auto
qed
show degree v < degree u using deg-v deg-sum-eq degree-prod by presburger
show x = vec n (λi. coeff (v mod m i) 0 )
proof (unfold vec-eq-iff , rule conjI )

show dim-vec x = dim-vec (vec n (λi. coeff (v mod m i) 0 )) using x n by
simp

show ∀ i<dim-vec (vec n (λi. coeff (v mod m i) 0 )). x $ i = vec n (λi.
coeff (v mod m i) 0 ) $ i

proof (auto)
fix i assume i: i < n
have deg-mi: irreducible (m i) using i P-m P by auto
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have deg-v-mi: degree (v mod m i) = 0
proof (rule degree-u-mod-irreducibled-factor-0 [OF - finite-P u-desc-square-free

P])
show v ∈ {v. [v ^ CARD( ′a) = v] (mod u)} using v by fast
show m i ∈ P using P-m i by auto

qed
have v mod m i = [:x $ i:] mod m i using v-x-cong i unfolding cong-def

by auto
also have ... = [:x $ i:] using deg-mi by (auto intro!: mod-poly-less)
finally show x $ i = coeff (v mod m i) 0 by simp

qed
qed

qed
qed
ultimately show ?thesis unfolding bij-betw-def n by auto

qed

lemma fin-dim-kernel-berlekamp: V .fin-dim
proof −

have finite (set (find-base-vectors (berlekamp-resulting-mat u))) by auto
moreover have set (find-base-vectors (berlekamp-resulting-mat u)) ⊆ carrier V
and V .gen-set (set (find-base-vectors (berlekamp-resulting-mat u)))

using berlekamp-resulting-mat-basis[of u] unfolding V .basis-def by auto
ultimately show ?thesis unfolding V .fin-dim-def by auto

qed

lemma Berlekamp-subspace-fin-dim: Berlekamp-subspace.fin-dim
proof (rule linear-map.surj-fin-dim[OF linear-map-Poly-list-of-vec ′])

show (Poly ◦ list-of-vec) ‘ carrier V = carrier W
using surj-Poly-list-of-vec[OF deg-u0 ] by auto

show V .fin-dim by (rule fin-dim-kernel-berlekamp)
qed

context
fixes P
assumes finite-P: finite P
and u-desc-square-free: u = (

∏
a∈P. a)

and P: P ⊆ {q. irreducible q ∧ monic q}
begin

interpretation RV : vec-space TYPE( ′a mod-ring) card P .

lemma Berlekamp-subspace-eq-dim-vec: Berlekamp-subspace.dim = RV .dim
proof −

obtain f where lm-f : linear-map class-ring W (module-vec TYPE( ′a mod-ring)
(card P)) f

and bij-f : bij-betw f (carrier W ) (carrier-vec (card P):: ′a mod-ring vec set)
using exists-bijective-linear-map-W-vec[OF finite-P u-desc-square-free P] by

blast
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show ?thesis
proof (rule linear-map.dim-eq[OF lm-f Berlekamp-subspace-fin-dim])

show inj-on f (carrier W ) by (rule bij-betw-imp-inj-on[OF bij-f ])
show f ‘ carrier W = carrier RV .V using bij-f unfolding bij-betw-def by

auto
qed

qed

lemma Berlekamp-subspace-dim: Berlekamp-subspace.dim = card P
using Berlekamp-subspace-eq-dim-vec RV .dim-is-n by simp

corollary card-berlekamp-basis-number-factors: card (set (berlekamp-basis u)) =
card P

unfolding Berlekamp-subspace-dim[symmetric]
by (rule Berlekamp-subspace.dim-basis[symmetric], auto simp add: berlekamp-basis-basis)

lemma length-berlekamp-basis-numbers-factors: length (berlekamp-basis u) = card
P

using card-set-berlekamp-basis card-berlekamp-basis-number-factors by auto

end
end
end
end

context
assumes SORT-CONSTRAINT ( ′a :: prime-card)

begin

context
fixes f :: ′a mod-ring poly and n
assumes sf : square-free f
and n: n = length (berlekamp-basis f )
and monic-f : monic f

begin
lemma berlekamp-basis-length-factorization: assumes f : f = prod-list us

and d:
∧

u. u ∈ set us =⇒ degree u > 0
shows length us ≤ n

proof (cases degree f = 0 )
case True
have us = []
proof (rule ccontr)

assume us 6= []
from this obtain u where u: u ∈ set us by fastforce
hence deg-u: degree u > 0 using d by auto
have degree f = degree (prod-list us) unfolding f ..
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also have ... = sum-list (map degree us)
proof (rule degree-prod-list-eq)

fix p assume p: p ∈ set us
show p 6= 0 using d[OF p] degree-0 by auto

qed
also have ... ≥ degree u by (simp add: member-le-sum-list u)
finally have degree f > 0 using deg-u by auto
thus False using True by auto

qed
thus ?thesis by simp

next
case False
hence f-not-0 : f 6= 0 using degree-0 by fastforce
obtain P where fin-P: finite P and f-P: f =

∏
P and P: P ⊆ {p. irreducible

p ∧ monic p}
using monic-square-free-irreducible-factorization[OF monic-f sf ] by auto

have n-card-P: n = card P
using P False f-P fin-P length-berlekamp-basis-numbers-factors n by blast

have distinct-us: distinct us using d f sf square-free-prod-list-distinct by blast
let ?us ′=(map normalize us)
have distinct-us ′: distinct ?us ′

proof (auto simp add: distinct-map)
show distinct us by (rule distinct-us)
show inj-on normalize (set us)
proof (auto simp add: inj-on-def , rule ccontr)

fix x y assume x: x ∈ set us and y: y ∈ set us and n: normalize x =
normalize y

and x-not-y: x 6= y
from normalize-eq-imp-smult[OF n]
obtain c where c0 : c 6= 0 and y-smult: y = smult c x by blast
have sf-xy: square-free (x∗y)
proof (rule square-free-factor [OF - sf ])

have x∗y = prod-list [x,y] by simp
also have ... dvd prod-list us

by (rule prod-list-dvd-prod-list-subset, auto simp add: x y x-not-y distinct-us)
also have ... = f unfolding f ..
finally show x ∗ y dvd f .

qed
have x ∗ y = smult c (x∗x) using y-smult mult-smult-right by auto
hence sf-smult: square-free (smult c (x∗x)) using sf-xy by auto
have x∗x dvd (smult c (x∗x)) by (simp add: dvd-smult)
hence ¬ square-free (smult c (x∗x))
by (metis d square-free-def x)

thus False using sf-smult by contradiction
qed

qed
have length-us-us ′: length us = length ?us ′ by simp
have f-us ′: f = prod-list ?us ′

proof −
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have f = normalize f using monic-f f-not-0 by (simp add: normalize-monic)
also have ... = prod-list ?us ′ by (unfold f , rule prod-list-normalize[of us])
finally show ?thesis .

qed
have ∃Q. prod-list Q = prod-list ?us ′ ∧ length ?us ′ ≤ length Q

∧ (∀ u. u ∈ set Q −→ irreducible u ∧ monic u)
proof (rule exists-factorization-prod-list)

show degree (prod-list ?us ′) > 0 using False f-us ′ by auto
show square-free (prod-list ?us ′) using f-us ′ sf by auto
fix u assume u: u ∈ set ?us ′

have u-not0 : u 6= 0 using d u degree-0 by fastforce
have degree u > 0 using d u by auto
moreover have monic u using u monic-normalize[OF u-not0 ] by auto
ultimately show degree u > 0 ∧ monic u by simp

qed
from this obtain Q
where Q-us ′: prod-list Q = prod-list ?us ′

and length-us ′-Q: length ?us ′ ≤ length Q
and Q: (∀ u. u ∈ set Q −→ irreducible u ∧ monic u)
by blast
have distinct-Q: distinct Q
proof (rule square-free-prod-list-distinct)

show square-free (prod-list Q) using Q-us ′ f-us ′ sf by auto
show

∧
u. u ∈ set Q =⇒ degree u > 0 using Q irreducible-degree-field by auto

qed
have set-Q-P: set Q = P
proof (rule monic-factorization-uniqueness)

show
∏

(set Q) =
∏

P using Q-us ′

by (metis distinct-Q f-P f-us ′ list.map-ident prod.distinct-set-conv-list)
qed (insert P Q fin-P, auto)
hence length Q = card P using distinct-Q distinct-card by fastforce
have length us = length ?us ′ by (rule length-us-us ′)
also have ... ≤ length Q using length-us ′-Q by auto
also have ... = card (set Q) using distinct-card[OF distinct-Q] by simp
also have ... = card P using set-Q-P by simp
finally show ?thesis using n-card-P by simp

qed

lemma berlekamp-basis-irreducible: assumes f : f = prod-list us
and n-us: length us = n
and us:

∧
u. u ∈ set us =⇒ degree u > 0

and u: u ∈ set us
shows irreducible u

proof (fold irreducible-connect-field, intro irreducibledI [OF us[OF u]])
fix q r :: ′a mod-ring poly
assume dq: degree q > 0 and qu: degree q < degree u and dr : degree r > 0 and

uqr : u = q ∗ r
with us[OF u] have q: q 6= 0 and r : r 6= 0 by auto
from split-list[OF u] obtain xs ys where id: us = xs @ u # ys by auto
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let ?us = xs @ q # r # ys
have f : f = prod-list ?us unfolding f id uqr by simp
{

fix x
assume x ∈ set ?us
with us[unfolded id] dr dq have degree x > 0 by auto

}
from berlekamp-basis-length-factorization[OF f this]
have length ?us ≤ n by simp
also have . . . = length us unfolding n-us by simp
also have . . . < length ?us unfolding id by simp
finally show False by simp

qed
end

lemma not-irreducible-factor-yields-prime-factors:
assumes uf : u dvd (f :: ′b :: {field-gcd} poly) and fin: finite P

and fP: f =
∏

P and P: P ⊆ {q. irreducible q ∧ monic q}
and u: degree u > 0 ¬ irreducible u

shows ∃ pi pj. pi ∈ P ∧ pj ∈ P ∧ pi 6= pj ∧ pi dvd u ∧ pj dvd u
proof −

from finite-distinct-list[OF fin] obtain ps where Pps: P = set ps and dist:
distinct ps by auto

have fP: f = prod-list ps unfolding fP Pps using dist
by (simp add: prod.distinct-set-conv-list)

note P = P[unfolded Pps]
have set ps ⊆ P unfolding Pps by auto
from uf [unfolded fP] P dist this
show ?thesis
proof (induct ps)

case Nil
with u show ?case using divides-degree[of u 1 ] by auto

next
case (Cons p ps)
from Cons(3 ) have ps: set ps ⊆ {q. irreducible q ∧ monic q} by auto
from Cons(2 ) have dvd: u dvd p ∗ prod-list ps by simp
obtain k where gcd: u = gcd p u ∗ k by (meson dvd-def gcd-dvd2 )
from Cons(3 ) have ∗: monic p irreducible p p 6= 0 by auto
from monic-irreducible-gcd[OF ∗(1 ), of u] ∗(2 )
have gcd p u = 1 ∨ gcd p u = p by auto
thus ?case
proof

assume gcd p u = 1
then have Rings.coprime p u

by (rule gcd-eq-1-imp-coprime)
with dvd have u dvd prod-list ps

using coprime-dvd-mult-right-iff coprime-imp-coprime by blast
from Cons(1 )[OF this ps] Cons(4−5 ) show ?thesis by auto

next
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assume gcd p u = p
with gcd have upk: u = p ∗ k by auto
hence p: p dvd u by auto
from dvd[unfolded upk] ∗(3 ) have kps: k dvd prod-list ps by auto
from dvd u ∗ have dk: degree k > 0

by (metis gr0I irreducible-mult-unit-right is-unit-iff-degree mult-zero-right
upk)

from ps kps have ∃ q ∈ set ps. q dvd k
proof (induct ps)

case Nil
with dk show ?case using divides-degree[of k 1 ] by auto

next
case (Cons p ps)
from Cons(3 ) have dvd: k dvd p ∗ prod-list ps by simp
obtain l where gcd: k = gcd p k ∗ l by (meson dvd-def gcd-dvd2 )
from Cons(2 ) have ∗: monic p irreducible p p 6= 0 by auto
from monic-irreducible-gcd[OF ∗(1 ), of k] ∗(2 )
have gcd p k = 1 ∨ gcd p k = p by auto
thus ?case
proof

assume gcd p k = 1
with dvd have k dvd prod-list ps

by (metis dvd-triv-left gcd-greatest-mult mult.left-neutral)
from Cons(1 )[OF - this] Cons(2 ) show ?thesis by auto

next
assume gcd p k = p
with gcd have upk: k = p ∗ l by auto
hence p: p dvd k by auto
thus ?thesis by auto

qed
qed
then obtain q where q: q ∈ set ps and dvd: q dvd k by auto
from dvd upk have qu: q dvd u by auto
from Cons(4 ) q have p 6= q by auto
thus ?thesis using q p qu Cons(5 ) by auto

qed
qed

qed

lemma berlekamp-factorization-main:
fixes f :: ′a mod-ring poly
assumes sf-f : square-free f

and vs: vs = vs1 @ vs2
and vsf : vs = berlekamp-basis f
and n-bb: n = length (berlekamp-basis f )
and n: n = length us1 + n2
and us: us = us1 @ berlekamp-factorization-main d divs vs2 n2
and us1 :

∧
u. u ∈ set us1 =⇒ monic u ∧ irreducible u

and divs:
∧

d. d ∈ set divs =⇒ monic d ∧ degree d > 0
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and vs1 :
∧

u v i. v ∈ set vs1 =⇒ u ∈ set us1 ∪ set divs
=⇒ i < CARD( ′a) =⇒ gcd u (v − [:of-nat i:]) ∈ {1 ,u}

and f : f = prod-list (us1 @ divs)
and deg-f : degree f > 0
and d:

∧
g. g dvd f =⇒ degree g = d =⇒ irreducible g

shows f = prod-list us ∧ (∀ u ∈ set us. monic u ∧ irreducible u)
proof −

have mon-f : monic f unfolding f
by (rule monic-prod-list, insert divs us1 , auto)

from monic-square-free-irreducible-factorization[OF mon-f sf-f ] obtain P where
P: finite P f =

∏
P P ⊆ {q. irreducible q ∧ monic q} by auto

hence f0 : f 6= 0 by auto
show ?thesis

using vs n us divs f us1 vs1
proof (induct vs2 arbitrary: divs n2 us1 vs1 )

case (Cons v vs2 )
show ?case
proof (cases v = 1 )

case False
from Cons(2 ) vsf have v: v ∈ set (berlekamp-basis f ) by auto
from berlekamp-basis-eq-8 [OF this] have vf : [v ^ CARD( ′a) = v] (mod f ) .
let ?gcd = λ u i. gcd u (v − [:of-int i:])
let ?gcdn = λ u i. gcd u (v − [:of-nat i:])
let ?map = λ u. (map (λ i. ?gcd u i) [0 ..< CARD( ′a)])
define udivs where udivs ≡ λ u. filter (λ w. w 6= 1 ) (?map u)
{

obtain xs where xs: [0 ..<CARD( ′a)] = xs by auto
have udivs = (λ u. [w. i ← [0 ..< CARD( ′a)], w ← [?gcd u i], w 6= 1 ])

unfolding udivs-def xs
by (intro ext, auto simp: o-def , induct xs, auto)

} note udivs-def ′ = this
define facts where facts ≡ [ w . u ← divs, w ← udivs u]
{

fix u
assume u: u ∈ set divs
then obtain bef aft where divs: divs = bef @ u # aft by (meson split-list)
from Cons(5 )[OF u] have mon-u: monic u by simp
have uf : u dvd f unfolding Cons(6 ) divs by auto

from vf uf have vu: [v ^ CARD( ′a) = v] (mod u) by (rule cong-dvd-modulus-poly)
from square-free-factor [OF uf sf-f ] have sf-u: square-free u .
let ?g = ?gcd u
from mon-u have u0 : u 6= 0 by auto
have u = (

∏
c∈UNIV . gcd u (v − [:c:]))

using Berlekamp-gcd-step[OF vu mon-u sf-u] .
also have . . . = (

∏
i ∈ {0 ..< int CARD( ′a)}. ?g i)

by (rule sym, rule prod.reindex-cong[OF to-int-mod-ring-hom.inj-f range-to-int-mod-ring[symmetric]],
simp add: of-int-of-int-mod-ring)

finally have u-prod: u = (
∏

i ∈ {0 ..< int CARD( ′a)}. ?g i) .
let ?S = {0 ..<int CARD( ′a)} − {i. ?g i = 1}
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{
fix i
assume i ∈ ?S
hence ?g i 6= 1 by auto

moreover have mgi: monic (?g i) by (rule poly-gcd-monic, insert u0 ,
auto)

ultimately have degree (?g i) > 0
using monic-degree-0 by blast

note this mgi
} note gS = this

have int-set: int ‘ set [0 ..<CARD( ′a)] = {0 ..< int CARD( ′a)}
by (simp add: image-int-atLeastLessThan)

have inj: inj-on ?g ?S unfolding inj-on-def
proof (intro ballI impI )

fix i j
assume i: i ∈ ?S and j: j ∈ ?S and gij: ?g i = ?g j
show i = j
proof (rule ccontr)

define S where S = {0 ..<int CARD( ′a)} − {i,j}
have id: {0 ..<int CARD( ′a)} = (insert i (insert j S)) and S : i /∈ S j /∈

S finite S
using i j unfolding S-def by auto

assume ij: i 6= j
have u = (

∏
i ∈ {0 ..< int CARD( ′a)}. ?g i) by fact

also have . . . = ?g i ∗ ?g j ∗ (
∏

i ∈ S . ?g i)
unfolding id using S ij by auto

also have . . . = ?g i ∗ ?g i ∗ (
∏

i ∈ S . ?g i) unfolding gij by simp
finally have dvd: ?g i ∗ ?g i dvd u unfolding dvd-def by auto

with sf-u[unfolded square-free-def , THEN conjunct2 , rule-format, OF
gS(1 )[OF i]]

show False by simp
qed

qed

have u = (
∏

i ∈ {0 ..< int CARD( ′a)}. ?g i) by fact
also have . . . = (

∏
i ∈ ?S . ?g i)

by (rule sym, rule prod.setdiff-irrelevant, auto)
also have . . . =

∏
(set (udivs u)) unfolding udivs-def set-filter set-map

by (rule sym, rule prod.reindex-cong[of ?g, OF inj - refl], auto simp:
int-set[symmetric])

finally have u-udivs: u =
∏

(set (udivs u)) .
{

fix w
assume mem: w ∈ set (udivs u)
then obtain i where w: w = ?g i and i: i ∈ ?S

unfolding udivs-def set-filter set-map int-set by auto
have wu: w dvd u by (simp add: w)
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let ?v = λ j. v − [:of-nat j:]
define j where j = nat i

from i have j: of-int i = (of-nat j :: ′a mod-ring) j < CARD( ′a) unfolding
j-def by auto

from gS [OF i, folded w] have ∗: degree w > 0 monic w w 6= 0 by auto
from w have w dvd ?v j using j by simp
hence gcdj: ?gcdn w j = w by (metis gcd.commute gcd-left-idem j(1 ) w)
{

fix j ′
assume j ′: j ′ < CARD( ′a)
have ?gcdn w j ′ ∈ {1 ,w}
proof (rule ccontr)

assume not: ?gcdn w j ′ /∈ {1 ,w}
with gcdj have neq: int j ′ 6= int j by auto

let ?h = ?gcdn w j ′
from ∗(3 ) not have deg: degree ?h > 0

using monic-degree-0 poly-gcd-monic by auto
have hw: ?h dvd w by auto
have ?h dvd ?gcdn u j ′ using wu using dvd-trans by auto
also have ?gcdn u j ′ = ?g j ′ by simp
finally have hj ′: ?h dvd ?g j ′ by auto
from divides-degree[OF this] deg u0 have degj ′: degree (?g j ′) > 0 by

auto
hence j ′1 : ?g j ′ 6= 1 by auto
with j ′ have mem ′: ?g j ′ ∈ set (udivs u) unfolding udivs-def by auto
from degj ′ j ′ have j ′S : int j ′ ∈ ?S by auto
from i j have jS : int j ∈ ?S by auto
from inj-on-contraD[OF inj neq j ′S jS ]
have neq: w 6= ?g j ′ using w j by auto
have cop: ¬ coprime w (?g j ′) using hj ′ hw deg

by (metis coprime-not-unit-not-dvd poly-dvd-1 Nat.neq0-conv)
obtain w ′ where w ′: ?g j ′ = w ′ by auto
from u-udivs sf-u have square-free (

∏
(set (udivs u))) by simp

from square-free-prodD[OF this finite-set mem mem ′] cop neq
show False by simp

qed
}
from gS [OF i, folded w] i this
have degree w > 0 monic w

∧
j. j < CARD( ′a) =⇒ ?gcdn w j ∈ {1 ,w}

by auto
} note udivs = this
let ?is = filter (λ i. ?g i 6= 1 ) (map int [0 ..< CARD( ′a)])
have id: udivs u = map ?g ?is

unfolding udivs-def filter-map o-def ..
have dist: distinct (udivs u) unfolding id distinct-map
proof (rule conjI [OF distinct-filter ], unfold distinct-map)

have ?S = set ?is unfolding int-set[symmetric] by auto
thus inj-on ?g (set ?is) using inj by auto
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qed (auto simp: inj-on-def )
from u-udivs prod.distinct-set-conv-list[OF dist, of id]
have prod-list (udivs u) = u by auto
note udivs this dist

} note udivs = this
have facts: facts = concat (map udivs divs)

unfolding facts-def by auto
obtain lin nonlin where part: List.partition (λ q. degree q = d) facts =

(lin,nonlin)
by force

from Cons(6 ) have f = prod-list us1 ∗ prod-list divs by auto
also have prod-list divs = prod-list facts unfolding facts using udivs(4 )

by (induct divs, auto)
finally have f : f = prod-list us1 ∗ prod-list facts .
note facts ′ = facts
{

fix u
assume u: u ∈ set facts
from u[unfolded facts] obtain u ′ where u ′: u ′ ∈ set divs and u: u ∈ set

(udivs u ′) by auto
from u ′ udivs(1−2 )[OF u ′ u] prod-list-dvd[OF u, unfolded udivs(4 )[OF u ′]]
have degree u > 0 monic u ∃ u ′ ∈ set divs. u dvd u ′ by auto

} note facts = this
have not1 : (v = 1 ) = False using False by auto
have us = us1 @ (if length divs = n2 then divs

else let (lin, nonlin) = List.partition (λq. degree q = d) facts
in lin @ berlekamp-factorization-main d nonlin vs2 (n2 − length lin))

unfolding Cons(4 ) facts-def udivs-def ′ berlekamp-factorization-main.simps
Let-def not1 if-False

by (rule arg-cong[where f = λ x. us1 @ x], rule if-cong, simp-all)
hence res: us = us1 @ (if length divs = n2 then divs else

lin @ berlekamp-factorization-main d nonlin vs2 (n2 − length lin))
unfolding part by auto

show ?thesis
proof (cases length divs = n2 )

case False
with res have us: us = (us1 @ lin) @ berlekamp-factorization-main d nonlin

vs2 (n2 − length lin)
by auto

from Cons(2 ) have vs: vs = (vs1 @ [v]) @ vs2 by auto
have f : f = prod-list ((us1 @ lin) @ nonlin)

unfolding f using prod-list-partition[OF part] by simp
{

fix u
assume u ∈ set ((us1 @ lin) @ nonlin)
with part have u ∈ set facts ∪ set us1 by auto

with facts Cons(7 ) have degree u > 0 by (auto simp: irreducible-degree-field)
} note deg = this
from berlekamp-basis-length-factorization[OF sf-f n-bb mon-f f deg, unfolded
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Cons(3 )]
have n2 ≥ length lin by auto
hence n: n = length (us1 @ lin) + (n2 − length lin)

unfolding Cons(3 ) by auto
show ?thesis
proof (rule Cons(1 )[OF vs n us - f ])

fix u
assume u ∈ set nonlin
with part have u ∈ set facts by auto
from facts[OF this] show monic u ∧ degree u > 0 by auto

next
fix u
assume u: u ∈ set (us1 @ lin)
{

assume ∗: ¬ (monic u ∧ irreducibled u)
with Cons(7 ) u have u ∈ set lin by auto
with part have uf : u ∈ set facts and deg: degree u = d by auto
from facts[OF uf ] obtain u ′ where u ′ ∈ set divs and uu ′: u dvd u ′ by

auto
from this(1 ) have u ′ dvd f unfolding Cons(6 ) using prod-list-dvd[of

u ′] by auto
with uu ′ have u dvd f by (rule dvd-trans)
from facts[OF uf ] d[OF this deg] ∗ have False by auto

}
thus monic u ∧ irreducible u by auto

next
fix w u i
assume w: w ∈ set (vs1 @ [v])

and u: u ∈ set (us1 @ lin) ∪ set nonlin
and i: i < CARD( ′a)

from u part have u: u ∈ set us1 ∪ set facts by auto
show gcd u (w − [:of-nat i:]) ∈ {1 , u}
proof (cases u ∈ set us1 )

case True
from Cons(7 )[OF this] have monic u irreducible u by auto
thus ?thesis by (rule monic-irreducible-gcd)

next
case False
with u have u: u ∈ set facts by auto
show ?thesis
proof (cases w = v)

case True
from u[unfolded facts ′] obtain u ′ where u: u ∈ set (udivs u ′)

and u ′: u ′ ∈ set divs by auto
from udivs(3 )[OF u ′ u i] show ?thesis unfolding True .

next
case False
with w have w: w ∈ set vs1 by auto
from u obtain u ′ where u ′: u ′ ∈ set divs and dvd: u dvd u ′
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using facts(3 )[of u] dvd-refl[of u] by blast
from w have w ∈ set vs1 ∨ w = v by auto
from facts(1−2 )[OF u] have u: monic u by auto
from Cons(8 )[OF w - i] u ′

have gcd u ′ (w − [:of-nat i:]) ∈ {1 , u ′} by auto
with dvd u show ?thesis by (rule monic-gcd-dvd)

qed
qed

qed
next

case True
with res have us: us = us1 @ divs by auto
from Cons(3 ) True have n: n = length us unfolding us by auto
show ?thesis unfolding us[symmetric]
proof (intro conjI ballI )

show f : f = prod-list us unfolding us using Cons(6 ) by simp
{

fix u
assume u ∈ set us
hence degree u > 0 using Cons(5 ) Cons(7 )[unfolded irreducibled-def ]

unfolding us by (auto simp: irreducible-degree-field)
} note deg = this
fix u
assume u: u ∈ set us
thus monic u unfolding us using Cons(5 ) Cons(7 ) by auto
show irreducible u

by (rule berlekamp-basis-irreducible[OF sf-f n-bb mon-f f n[symmetric]
deg u])

qed
qed

next
case True
with Cons(4 ) have us: us = us1 @ berlekamp-factorization-main d divs vs2

n2 by simp
from Cons(2 ) True have vs: vs = (vs1 @ [1 ]) @ vs2 by auto
show ?thesis
proof (rule Cons(1 )[OF vs Cons(3 ) us Cons(5−7 )], goal-cases)

case (3 v u i)
show ?case
proof (cases v = 1 )

case False
with 3 Cons(8 )[of v u i] show ?thesis by auto

next
case True
hence deg: degree (v − [: of-nat i :]) = 0

by (metis (no-types, opaque-lifting) degree-pCons-0 diff-pCons diff-zero
pCons-one)

from 3 (2 ) Cons(5 ,7 )[of u] have monic u by auto
from gcd-monic-constant[OF this deg] show ?thesis .
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qed
qed

qed
next

case Nil
with vsf have vs1 : vs1 = berlekamp-basis f by auto
from Nil(3 ) have us: us = us1 @ divs by auto
from Nil(4 ,6 ) have md:

∧
u. u ∈ set us =⇒ monic u ∧ degree u > 0

unfolding us by (auto simp: irreducible-degree-field)
from Nil(7 )[unfolded vs1 ] us
have no-further-splitting-possible:∧

u v i. v ∈ set (berlekamp-basis f ) =⇒ u ∈ set us
=⇒ i < CARD( ′a) =⇒ gcd u (v − [:of-nat i:]) ∈ {1 , u} by auto

from Nil(5 ) us have prod: f = prod-list us by simp
show ?case
proof (intro conjI ballI )

fix u
assume u: u ∈ set us
from md[OF this] have mon-u: monic u and deg-u: degree u > 0 by auto
from prod u have uf : u dvd f by (simp add: prod-list-dvd)

from monic-square-free-irreducible-factorization[OF mon-f sf-f ] obtain P
where

P: finite P f =
∏

P P ⊆ {q. irreducible q ∧ monic q} by auto
show irreducible u
proof (rule ccontr)

assume irr-u: ¬ irreducible u
from not-irreducible-factor-yields-prime-factors[OF uf P deg-u this]
obtain pi pj where pij: pi ∈ P pj ∈ P pi 6= pj pi dvd u pj dvd u by blast
from exists-vector-in-Berlekamp-basis-dvd[OF

deg-f berlekamp-basis-basis[OF deg-f , folded vs1 ] finite-set
P pij(1−3 ) mon-f sf-f irr-u uf mon-u pij(4−5 ), unfolded vs1 ]

obtain v s where v: v ∈ set (berlekamp-basis f )
and gcd: gcd u (v − [:s:]) /∈ {1 ,u} using is-unit-gcd by auto

from surj-of-nat-mod-ring[of s] obtain i where i: i < CARD( ′a) and s: s
= of-nat i by auto

from no-further-splitting-possible[OF v u i] gcd[unfolded s]
show False by auto

qed
qed (insert prod md, auto)

qed
qed

lemma berlekamp-monic-factorization:
fixes f :: ′a mod-ring poly
assumes sf-f : square-free f

and us: berlekamp-monic-factorization d f = us
and d:

∧
g. g dvd f =⇒ degree g = d =⇒ irreducible g

and deg: degree f > 0
and mon: monic f
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shows f = prod-list us ∧ (∀ u ∈ set us. monic u ∧ irreducible u)
proof −

from us[unfolded berlekamp-monic-factorization-def Let-def ] deg
have us: us = [] @ berlekamp-factorization-main d [f ] (berlekamp-basis f ) (length

(berlekamp-basis f ))
by (auto)

have id: berlekamp-basis f = [] @ berlekamp-basis f
length (berlekamp-basis f ) = length [] + length (berlekamp-basis f )
f = prod-list ([] @ [f ])
by auto

show f = prod-list us ∧ (∀ u ∈ set us. monic u ∧ irreducible u)
by (rule berlekamp-factorization-main[OF sf-f id(1 ) refl refl id(2 ) us - - - id(3 )],
insert mon deg d, auto)

qed
end

end

7 Distinct Degree Factorization
theory Distinct-Degree-Factorization
imports

Finite-Field
Polynomial-Factorization.Square-Free-Factorization
Berlekamp-Type-Based

begin

definition factors-of-same-degree :: nat ⇒ ′a :: field poly ⇒ bool where
factors-of-same-degree i f = (i 6= 0 ∧ degree f 6= 0 ∧ monic f ∧ (∀ g. irreducible

g −→ g dvd f −→ degree g = i))

lemma factors-of-same-degreeD: assumes factors-of-same-degree i f
shows i 6= 0 degree f 6= 0 monic f g dvd f =⇒ irreducible g = (degree g = i)

proof −
note ∗ = assms[unfolded factors-of-same-degree-def ]
show i: i 6= 0 and f : degree f 6= 0 monic f using ∗ by auto
assume gf : g dvd f
with ∗ have irreducible g =⇒ degree g = i by auto
moreover
{

assume ∗∗: degree g = i ¬ irreducible g
with irreducibled-factor [of g] i obtain h1 h2 where irr : irreducible h1 and

gh: g = h1 ∗ h2
and deg-h2 : degree h2 < degree g by auto

from ∗∗ i have g0 : g 6= 0 by auto
from gf gh g0 have h1 dvd f using dvd-mult-left by blast
from ∗ f this irr have deg-h: degree h1 = i by auto
from arg-cong[OF gh, of degree] g0 have degree g = degree h1 + degree h2

by (simp add: degree-mult-eq gh)
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with ∗∗(1 ) deg-h have degree h2 = 0 by auto
from degree0-coeffs[OF this] obtain c where h2 : h2 = [:c:] by auto
with gh g0 have g: g = smult c h1 c 6= 0 by auto
with irr ∗∗(2 ) irreducible-smult-field[of c h1 ] have False by auto

}
ultimately show irreducible g = (degree g = i) by auto

qed

hide-const order
hide-const up-ring.monom

theorem (in field) finite-field-mult-group-has-gen2 :
assumes finite:finite (carrier R)
shows ∃ a ∈ carrier (mult-of R). group.ord (mult-of R) a = order (mult-of R)
∧ carrier (mult-of R) = {a[^]i | i::nat . i ∈ UNIV }

proof −
note mult-of-simps[simp]
have finite ′: finite (carrier (mult-of R)) using finite by (rule finite-mult-of )

interpret G: group mult-of R rewrites
([^]mult-of R) = (([^]) :: - ⇒ nat ⇒ -) and 1mult-of R = 1

by (rule field-mult-group) (simp-all add: fun-eq-iff nat-pow-def )

let ?N = λ x . card {a ∈ carrier (mult-of R). group.ord (mult-of R) a = x}
have 0 < order R − 1 unfolding Coset.order-def using card-mono[OF finite,

of {0, 1}] by simp
then have ∗: 0 < order (mult-of R) using assms by (simp add: order-mult-of )
have fin: finite {d. d dvd order (mult-of R) } using dvd-nat-bounds[OF ∗] by

force

have (
∑

d | d dvd order (mult-of R). ?N d)
= card (UN d:{d . d dvd order (mult-of R) }. {a ∈ carrier (mult-of R).

group.ord (mult-of R) a = d})
(is - = card ?U )

using fin finite by (subst card-UN-disjoint) auto
also have ?U = carrier (mult-of R)
proof

{ fix x assume x:x ∈ carrier (mult-of R)
hence x ′:x∈carrier (mult-of R) by simp
then have group.ord (mult-of R) x dvd order (mult-of R)

using finite ′ G.ord-dvd-group-order [OF x ′] by (simp add: order-mult-of )
hence x ∈ ?U using dvd-nat-bounds[of order (mult-of R) group.ord (mult-of

R) x] x by blast
} thus carrier (mult-of R) ⊆ ?U by blast

qed auto
also have card ... = Coset.order (mult-of R)
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using order-mult-of finite ′ by (simp add: Coset.order-def )
finally have sum-Ns-eq: (

∑
d | d dvd order (mult-of R). ?N d) = order (mult-of

R) .

{ fix d assume d:d dvd order (mult-of R)
have card {a ∈ carrier (mult-of R). group.ord (mult-of R) a = d} ≤ phi ′ d
proof cases

assume card {a ∈ carrier (mult-of R). group.ord (mult-of R) a = d} = 0
thus ?thesis by presburger

next
assume card {a ∈ carrier (mult-of R). group.ord (mult-of R) a = d} 6= 0
hence ∃ a ∈ carrier (mult-of R). group.ord (mult-of R) a = d by (auto simp:

card-eq-0-iff )
thus ?thesis using num-elems-of-ord-eq-phi ′[OF finite d] by auto

qed
}
hence all-le:

∧
i. i ∈ {d. d dvd order (mult-of R) }

=⇒ (λi. card {a ∈ carrier (mult-of R). group.ord (mult-of R) a = i}) i ≤
(λi. phi ′ i) i by fast

hence le:(
∑

i | i dvd order (mult-of R). ?N i)
≤ (

∑
i | i dvd order (mult-of R). phi ′ i)

using sum-mono[of {d . d dvd order (mult-of R)}
λi. card {a ∈ carrier (mult-of R). group.ord (mult-of R) a = i}] by

presburger
have order (mult-of R) = (

∑
d | d dvd order (mult-of R). phi ′ d) using ∗

by (simp add: sum-phi ′-factors)
hence eq:(

∑
i | i dvd order (mult-of R). ?N i)

= (
∑

i | i dvd order (mult-of R). phi ′ i) using le sum-Ns-eq by presburger
have

∧
i. i ∈ {d. d dvd order (mult-of R) } =⇒ ?N i = (λi. phi ′ i) i

proof (rule ccontr)
fix i
assume i1 :i ∈ {d. d dvd order (mult-of R)} and ?N i 6= phi ′ i
hence ?N i = 0

using num-elems-of-ord-eq-phi ′[OF finite, of i] by (auto simp: card-eq-0-iff )
moreover have 0 < i using ∗ i1 by (simp add: dvd-nat-bounds[of order

(mult-of R) i])
ultimately have ?N i < phi ′ i using phi ′-nonzero by presburger
hence (

∑
i | i dvd order (mult-of R). ?N i)

< (
∑

i | i dvd order (mult-of R). phi ′ i)
using sum-strict-mono-ex1 [OF fin, of ?N λ i . phi ′ i]

i1 all-le by auto
thus False using eq by force

qed
hence ?N (order (mult-of R)) > 0 using ∗ by (simp add: phi ′-nonzero)
then obtain a where a:a ∈ carrier (mult-of R) and a-ord:group.ord (mult-of

R) a = order (mult-of R)
by (auto simp add: card-gt-0-iff )

hence set-eq:{a[^]i | i::nat. i ∈ UNIV } = (λx. a[^]x) ‘ {0 .. group.ord (mult-of
R) a − 1}
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using G.ord-elems[OF finite ′] by auto
have card-eq:card ((λx. a[^]x) ‘ {0 .. group.ord (mult-of R) a − 1}) = card {0

.. group.ord (mult-of R) a − 1}
by (intro card-image G.ord-inj finite ′ a)

hence card ((λ x . a[^]x) ‘ {0 .. group.ord (mult-of R) a − 1}) = card {0 ..order
(mult-of R) − 1}

using assms by (simp add: card-eq a-ord)
hence card-R-minus-1 :card {a[^]i | i::nat. i ∈ UNIV } = order (mult-of R)

using ∗ by (subst set-eq) auto
have ∗∗:{a[^]i | i::nat. i ∈ UNIV } ⊆ carrier (mult-of R)

using G.nat-pow-closed[OF a] by auto
with - have carrier (mult-of R) = {a[^]i|i::nat. i ∈ UNIV }
by (rule card-seteq[symmetric]) (simp-all add: card-R-minus-1 finite Coset.order-def

del: UNIV-I )
thus ?thesis using a a-ord by blast

qed

lemma add-power-prime-poly-mod-ring[simp]:
fixes x :: ′a::{prime-card} mod-ring poly
shows (x + y) ^ CARD( ′a)^n = x ^ (CARD( ′a)^n) + y ^ CARD( ′a)^n
proof (induct n arbitrary: x y)

case 0
then show ?case by auto

next
case (Suc n)
define p where p: p = CARD( ′a)
have (x + y) ^ p ^ Suc n = (x + y) ^ (p ∗ p^n) by simp
also have ... = ((x + y) ^ p) ^ (p^n)

by (simp add: power-mult)
also have ... = (x^p + y^p)^ (p^n)

by (simp add: add-power-poly-mod-ring p)
also have ... = (x^p)^(p^n) + (y^p)^(p^n) using Suc.hyps unfolding p by

auto
also have ... = x^(p^(n+1 )) + y^(p^(n+1 )) by (simp add: power-mult)
finally show ?case by (simp add: p)

qed

lemma fermat-theorem-mod-ring2 [simp]:
fixes a:: ′a::{prime-card} mod-ring
shows a ^ (CARD( ′a)^n) = a
proof (induct n arbitrary: a)

case (Suc n)
define p where p = CARD( ′a)
have a ^ p ^ Suc n = a ^ (p ∗ (p ^ n)) by simp
also have ... = (a ^ p) ^(p ^ n) by (simp add: power-mult)
also have ... = a^(p ^ n) using fermat-theorem-mod-ring[of a^p] unfolding
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p-def by auto
also have ... = a using Suc.hyps p-def by auto
finally show ?case by (simp add: p-def )

qed auto

lemma fermat-theorem-power-poly[simp]:
fixes a:: ′a::prime-card mod-ring
shows [:a:] ^ CARD( ′a::prime-card) ^ n = [:a:]
by (auto simp add: Missing-Polynomial.poly-const-pow mod-poly-less)

lemma degree-prod-monom: degree (
∏

i = 0 ..<n. monom 1 1 ) = n
by (metis degree-monom-eq prod-pow x-pow-n zero-neq-one)

lemma degree-monom0 [simp]: degree (monom a 0 ) = 0 using degree-monom-le
by auto
lemma degree-monom0 ′[simp]: degree (monom 0 b) = 0 by auto

lemma sum-monom-mod:
assumes b < degree f
shows (

∑
i≤b. monom (g i) i) mod f = (

∑
i≤b. monom (g i) i)

using assms
proof (induct b)

case 0
then show ?case by (auto simp add: mod-poly-less)

next
case (Suc b)
have hyp: (

∑
i≤b. monom (g i) i) mod f = (

∑
i≤b. monom (g i) i)

using Suc.prems Suc.hyps by simp
have rw-monom: monom (g (Suc b)) (Suc b) mod f = monom (g (Suc b)) (Suc

b)
by (metis Suc.prems degree-monom-eq mod-0 mod-poly-less monom-hom.hom-0-iff )

have rw: (
∑

i≤Suc b. monom (g i) i) = (monom (g (Suc b)) (Suc b) + (
∑

i≤b.
monom (g i) i))

by auto
have (

∑
i≤Suc b. monom (g i) i) mod f

= (monom (g (Suc b)) (Suc b) + (
∑

i≤b. monom (g i) i)) mod f using rw by
presburger

also have ... =((monom (g (Suc b)) (Suc b)) mod f ) + ((
∑

i≤b. monom (g i)
i) mod f )

using poly-mod-add-left by auto
also have ... = monom (g (Suc b)) (Suc b) + (

∑
i≤b. monom (g i) i)

using hyp rw-monom by presburger
also have ... = (

∑
i≤Suc b. monom (g i) i) using rw by auto

finally show ?case .
qed

lemma x-power-aq-minus-1-rw:
fixes x::nat
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assumes x: x > 1
and a: a > 0
and b: b > 0

shows x ^ (a ∗ q) − 1 = ((x^a) − 1 ) ∗ sum ((^) (x^a)) {..<q}
proof −

have xa: (x ^ a) > 0 using x by auto
have int-rw1 : int (x ^ a) − 1 = int ((x ^ a) − 1 )

using xa by linarith
have int-rw2 : sum ((^) (int (x ^ a))) {..<q} = int (sum ((^) ((x ^ a))) {..<q})

unfolding int-sum by simp
have int (x ^ a) ^ q = int (Suc ((x ^ a) ^ q − 1 )) using xa by auto
hence int ((x ^ a) ^ q − 1 ) = int (x ^ a) ^ q − 1 using xa by presburger
also have ... = (int (x ^ a) − 1 ) ∗ sum ((^) (int (x ^ a))) {..<q}

by (rule power-diff-1-eq)
also have ... = (int ((x ^ a) − 1 )) ∗ int (sum ((^) ( (x ^ a))) {..<q})

unfolding int-rw1 int-rw2 by simp
also have ... = int (((x ^ a) − 1 ) ∗ (sum ((^) ( (x ^ a))) {..<q})) by auto
finally have aux: int ((x ^ a) ^ q − 1 ) = int (((x ^ a) − 1 ) ∗ sum ((^) (x ^

a)) {..<q}) .
have x ^ (a ∗ q) − 1 = (x^a)^q − 1

by (simp add: power-mult)
also have ... = ((x^a) − 1 ) ∗ sum ((^) (x^a)) {..<q}

using aux unfolding int-int-eq .
finally show ?thesis .

qed

lemma dvd-power-minus-1-conv1 :
fixes x::nat
assumes x: x > 1

and a: a > 0
and xa-dvd: x ^ a − 1 dvd x^b − 1
and b0 : b > 0

shows a dvd b
proof −

define r where r [simp]: r = b mod a
define q where q[simp]: q = b div a
have b: b = a ∗ q + r by auto
have ra: r < a by (simp add: a)
hence xr-less-xa: x ^ r − 1 < x ^ a − 1

using x power-strict-increasing-iff diff-less-mono x by simp
have dvd: x ^ a − 1 dvd x ^ (a ∗ q) − 1

using x-power-aq-minus-1-rw[OF x a b0 ] unfolding dvd-def by auto
have x^b − 1 = x^b − x^r + x^r − 1

using assms(1 ) assms(4 ) by auto
also have ... = x^r ∗ (x^(a∗q) − 1 ) + x^r − 1

by (metis (no-types, lifting) b diff-mult-distrib2 mult.commute nat-mult-1-right
power-add)

finally have x^b − 1 = x^r ∗ (x^(a∗q) − 1 ) + x^r − 1 .
hence x ^ a − 1 dvd x ^ r ∗ (x ^ (a ∗ q) − 1 ) + x ^ r − 1 using xa-dvd by
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presburger
hence x^a − 1 dvd x^r − 1

by (metis (no-types) diff-add-inverse diff-commute dvd dvd-diff-nat dvd-trans
dvd-triv-right)

hence r = 0
using xr-less-xa
by (meson nat-dvd-not-less neq0-conv one-less-power x zero-less-diff )

thus ?thesis by auto
qed

lemma dvd-power-minus-1-conv2 :
fixes x::nat
assumes x: x > 1

and a: a > 0
and a-dvd-b: a dvd b
and b0 : b > 0

shows x ^ a − 1 dvd x^b − 1
proof −

define q where q[simp]: q = b div a
have b: b = a ∗ q using a-dvd-b by auto
have x^b − 1 = ((x ^ a) − 1 ) ∗ sum ((^) (x ^ a)) {..<q}

unfolding b by (rule x-power-aq-minus-1-rw[OF x a b0 ])
thus ?thesis unfolding dvd-def by auto

qed

corollary dvd-power-minus-1-conv:
fixes x::nat
assumes x: x > 1

and a: a > 0
and b0 : b > 0

shows a dvd b = (x ^ a − 1 dvd x^b − 1 )
using assms dvd-power-minus-1-conv1 dvd-power-minus-1-conv2 by blast

locale poly-mod-type-irr = poly-mod-type m TYPE( ′a::prime-card) for m +
fixes f :: ′a::{prime-card} mod-ring poly
assumes irr-f : irreducibled f

begin

definition plus-irr :: ′a mod-ring poly ⇒ ′a mod-ring poly ⇒ ′a mod-ring poly
where plus-irr a b = (a + b) mod f

definition minus-irr :: ′a mod-ring poly ⇒ ′a mod-ring poly ⇒ ′a mod-ring poly
where minus-irr x y ≡ (x − y) mod f
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definition uminus-irr :: ′a mod-ring poly ⇒ ′a mod-ring poly
where uminus-irr x = −x

definition mult-irr :: ′a mod-ring poly ⇒ ′a mod-ring poly ⇒ ′a mod-ring poly
where mult-irr x y = ((x∗y) mod f )

definition carrier-irr :: ′a mod-ring poly set
where carrier-irr = {x. degree x < degree f }

definition power-irr :: ′a mod-ring poly ⇒ nat ⇒ ′a mod-ring poly
where power-irr p n = ((p^n) mod f )

definition R = (|carrier = carrier-irr , monoid.mult = mult-irr , one = 1 , zero =
0 , add = plus-irr |)

lemma degree-f [simp]: degree f > 0
using irr-f irreducibledD(1 ) by blast

lemma element-in-carrier : (a ∈ carrier R) = (degree a < degree f )
unfolding R-def carrier-irr-def by auto

lemma f-dvd-ab:
a = 0 ∨ b = 0 if f dvd a ∗ b

and a: degree a < degree f
and b: degree b < degree f

proof (rule ccontr)
assume ¬ (a = 0 ∨ b = 0 )
then have a 6= 0 and b 6= 0

by simp-all
with a b have ¬ f dvd a and ¬ f dvd b

by (auto simp add: mod-poly-less dvd-eq-mod-eq-0 )
moreover from ‹f dvd a ∗ b› irr-f have f dvd a ∨ f dvd b

by auto
ultimately show False

by simp
qed

lemma ab-mod-f0 :
a = 0 ∨ b = 0 if a ∗ b mod f = 0

and a: degree a < degree f
and b: degree b < degree f

using that f-dvd-ab by auto

lemma irreducibledD2 :
fixes p q :: ′b::{comm-semiring-1 ,semiring-no-zero-divisors} poly
assumes irreducibled p
and degree q < degree p and degree q 6= 0
shows ¬ q dvd p
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using assms irreducibled-dvd-smult by force

lemma times-mod-f-1-imp-0 :
assumes x: degree x < degree f

and x2 : ∀ xa. x ∗ xa mod f = 1 −→ ¬ degree xa < degree f
shows x = 0

proof (rule ccontr)
assume x3 : x 6= 0
let ?u = fst (bezout-coefficients f x)
let ?v = snd (bezout-coefficients f x)
have ?u ∗ f + ?v ∗ x = gcd f x using bezout-coefficients-fst-snd by auto
also have ... = 1
proof (rule ccontr)

assume g: gcd f x 6= 1
have degree (gcd f x) < degree f

by (metis degree-0 dvd-eq-mod-eq-0 gcd-dvd1 gcd-dvd2 irr-f
irreducibledD(1 ) mod-poly-less nat-neq-iff x x3 )

have ¬ gcd f x dvd f
proof (rule irreducibledD2 [OF irr-f ])

show degree (gcd f x) < degree f
by (metis degree-0 dvd-eq-mod-eq-0 gcd-dvd1 gcd-dvd2 irr-f

irreducibledD(1 ) mod-poly-less nat-neq-iff x x3 )
show degree (gcd f x) 6= 0
by (metis (no-types, opaque-lifting) g degree-mod-less ′ gcd.bottom-left-bottom

gcd-eq-0-iff
gcd-left-idem gcd-mod-left gr-implies-not0 x)

qed
moreover have gcd f x dvd f by auto
ultimately show False by contradiction

qed
finally have ?v∗x mod f = 1

by (metis degree-1 degree-f mod-mult-self3 mod-poly-less)
hence (x∗(?v mod f )) mod f = 1

by (simp add: mod-mult-right-eq mult.commute)
moreover have degree (?v mod f ) < degree f

by (metis degree-0 degree-f degree-mod-less ′ not-gr-zero)
ultimately show False using x2 by auto

qed

sublocale field-R: field R
proof −

have ∗: ∃ y. degree y < degree f ∧ f dvd x + y if degree x < degree f
for x :: ′a mod-ring poly

proof −
from that have degree (− x) < degree f

by simp
moreover have f dvd (x + − x)

by simp
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ultimately show ?thesis
by blast

qed
have ∗∗: degree (x ∗ y mod f ) < degree f

if degree x < degree f and degree y < degree f
for x y :: ′a mod-ring poly
using that by (cases x = 0 ∨ y = 0 )
(auto intro: degree-mod-less ′ dest: f-dvd-ab)

show field R
by standard (auto simp add: R-def carrier-irr-def plus-irr-def mult-irr-def

Units-def algebra-simps degree-add-less mod-poly-less mod-add-eq mult-poly-add-left
mod-mult-left-eq mod-mult-right-eq mod-eq-0-iff-dvd ab-mod-f0 ∗ ∗∗ dest: times-mod-f-1-imp-0 )
qed

lemma zero-in-carrier [simp]: 0 ∈ carrier-irr unfolding carrier-irr-def by auto

lemma card-carrier-irr [simp]: card carrier-irr = CARD( ′a)^(degree f )
proof −

let ?A = (carrier-vec (degree f ):: ′a mod-ring vec set)
have bij-A-carrier : bij-betw (Poly ◦ list-of-vec) ?A carrier-irr
proof (unfold bij-betw-def , rule conjI )

show inj-on (Poly ◦ list-of-vec) ?A by (rule inj-Poly-list-of-vec)
show (Poly ◦ list-of-vec) ‘ ?A = carrier-irr
proof (unfold image-def o-def carrier-irr-def , auto)

fix xa assume xa ∈ ?A thus degree (Poly (list-of-vec xa)) < degree f
using degree-Poly-list-of-vec irr-f by blast

next
fix x:: ′a mod-ring poly
assume deg-x: degree x < degree f
let ?xa = vec-of-list (coeffs x @ replicate (degree f − length (coeffs x)) 0 )
show ∃ xa∈carrier-vec (degree f ). x = Poly (list-of-vec xa)

by (rule bexI [of - ?xa], unfold carrier-vec-def , insert deg-x)
(auto simp add: degree-eq-length-coeffs)

qed
qed
have CARD( ′a)^(degree f ) = card ?A

by (simp add: card-carrier-vec)
also have ... = card carrier-irr using bij-A-carrier bij-betw-same-card by blast
finally show ?thesis ..

qed

lemma finite-carrier-irr [simp]: finite (carrier-irr)
proof −

have degree f > degree 0 using degree-0 by auto
hence carrier-irr 6= {} using degree-0 unfolding carrier-irr-def

by blast
moreover have card carrier-irr 6= 0 by auto
ultimately show ?thesis using card-eq-0-iff by metis

qed
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lemma finite-carrier-R[simp]: finite (carrier R) unfolding R-def by simp

lemma finite-carrier-mult-of [simp]: finite (carrier (mult-of R))
unfolding carrier-mult-of by auto

lemma constant-in-carrier [simp]: [:a:] ∈ carrier R
unfolding R-def carrier-irr-def by auto

lemma mod-in-carrier [simp]: a mod f ∈ carrier R
unfolding R-def carrier-irr-def
by (auto, metis degree-0 degree-f degree-mod-less ′ less-not-refl)

lemma order-irr : Coset.order (mult-of R) = CARD( ′a)^degree f − 1
by (simp add: card-Diff-singleton Coset.order-def carrier-mult-of R-def )

lemma element-power-order-eq-1 :
assumes x: x ∈ carrier (mult-of R)
shows x [^](mult-of R) Coset.order (mult-of R) = 1(mult-of R)

by (meson field-R.field-mult-group finite-carrier-mult-of group.pow-order-eq-1 x)

corollary element-power-order-eq-1 ′:
assumes x: x ∈ carrier (mult-of R)
showsx [^](mult-of R) CARD( ′a)^degree f = x
proof −

have x [^](mult-of R) CARD( ′a)^degree f
= x ⊗(mult-of R) x [^](mult-of R) (CARD( ′a)^degree f − 1 )

by (metis Diff-iff One-nat-def Suc-pred field-R.m-comm field-R.nat-pow-Suc
field-R.nat-pow-closed

mult-of-simps(1 ) mult-of-simps(2 ) nat-pow-mult-of neq0-conv power-eq-0-iff
x zero-less-card-finite)

also have x ⊗(mult-of R) x [^](mult-of R) (CARD( ′a)^degree f − 1 ) = x
by (metis carrier-mult-of element-power-order-eq-1 field-R.Units-closed field-R.field-Units

field-R.r-one monoid.simps(2 ) mult-mult-of mult-of-def order-irr x)
finally show ?thesis .

qed

lemma pow-irr [simp]: x [^](R) n= x^n mod f
by (induct n, auto simp add: mod-poly-less nat-pow-def R-def mult-of-def mult-irr-def

carrier-irr-def mod-mult-right-eq mult.commute)

lemma pow-irr-mult-of [simp]: x [^](mult-of R) n= x^n mod f
by (induct n, auto simp add: mod-poly-less nat-pow-def R-def mult-of-def mult-irr-def

carrier-irr-def mod-mult-right-eq mult.commute)
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lemma fermat-theorem-power-poly-R[simp]: [:a:] [^]R CARD( ′a) ^ n = [:a:]
by (auto simp add: Missing-Polynomial.poly-const-pow mod-poly-less)

lemma times-mod-expand:
(a ⊗(R) b) = ((a mod f ) ⊗(R) (b mod f ))
by (simp add: mod-mult-eq R-def mult-irr-def )

lemma mult-closed-power :
assumes x: x ∈ carrier R and y: y ∈ carrier R
and x [^](R) CARD( ′a) ^ m ′ = x
and y [^](R) CARD( ′a) ^ m ′ = y
shows (x ⊗(R) y) [^](R) CARD( ′a) ^ m ′ = (x ⊗(R) y)

using assms assms field-R.nat-pow-distrib by auto

lemma add-closed-power :
assumes x1 : x [^](R) CARD( ′a) ^ m ′ = x
and y1 : y [^](R) CARD( ′a) ^ m ′ = y
shows (x ⊕(R) y) [^](R) CARD( ′a) ^ m ′ = (x ⊕(R) y)
proof −

have (x + y) ^ CARD( ′a) ^ m ′ = x^(CARD( ′a) ^ m ′) + y ^ (CARD( ′a) ^ m ′)
by auto
hence (x + y) ^ CARD( ′a) ^ m ′ mod f = (x^(CARD( ′a) ^ m ′) + y ^ (CARD( ′a)

^ m ′)) mod f by auto
hence (x ⊕(R) y) [^](R) CARD( ′a) ^ m ′

= (x [^](R) CARD( ′a)^m ′) ⊕(R) (y [^](R) CARD( ′a)^m ′)

by (auto, unfold R-def plus-irr-def , auto simp add: mod-add-eq power-mod)
also have ... = x ⊕(R) y unfolding x1 y1 by simp
finally show ?thesis .

qed

lemma x-power-pm-minus-1 :
assumes x: x ∈ carrier (mult-of R)
and x [^](R) CARD( ′a) ^ m ′ = x
shows x [^](R) (CARD( ′a) ^ m ′ − 1 ) = 1(R)
by (metis (no-types, lifting) One-nat-def Suc-pred assms(2 ) carrier-mult-of field-R.Units-closed

field-R.Units-l-cancel field-R.field-Units field-R.l-one field-R.m-rcancel field-R.nat-pow-Suc

field-R.nat-pow-closed field-R.one-closed field-R.r-null field-R.r-one x zero-less-card-finite

zero-less-power)

context
begin

private lemma monom-a-1-P:
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assumes m: monom 1 1 ∈ carrier R
and eq: monom 1 1 [^](R) (CARD( ′a) ^ m ′) = monom 1 1
shows monom a 1 [^](R) (CARD( ′a) ^ m ′) = monom a 1

proof −
have monom a 1 = [:a:] ∗ (monom 1 1 )

by (metis One-nat-def monom-0 monom-Suc mult.commute pCons-0-as-mult)
also have ... = [:a:] ⊗(R) (monom 1 1 )

by (auto simp add: R-def mult-irr-def )
(metis One-nat-def assms(2 ) mod-mod-trivial mod-smult-left pow-irr)

finally have eq2 : monom a 1 = [:a:] ⊗R monom 1 1 .
show ?thesis unfolding eq2

by (rule mult-closed-power [OF - m - eq], insert fermat-theorem-power-poly-R,
auto)
qed

private lemma prod-monom-1-1 :
defines P == (λ x n. (x[^](R) (CARD( ′a) ^ n) = x))
assumes m: monom 1 1 ∈ carrier R
and eq: P (monom 1 1 ) n
shows P ((

∏
i = 0 ..<b::nat. monom 1 1 ) mod f ) n

proof (induct b)
case 0
then show ?case unfolding P-def

by (simp add: power-mod)
next

case (Suc b)
let ?N = (

∏
i = 0 ..<b. monom 1 1 )

have eq2 : (
∏

i = 0 ..<Suc b. monom 1 1 ) mod f = monom 1 1 ⊗(R) (
∏

i =

0 ..<b. monom 1 1 )
by (metis field-R.m-comm field-R.nat-pow-Suc mod-in-carrier mod-mod-trivial

pow-irr prod-pow times-mod-expand)
also have ... = (monom 1 1 mod f ) ⊗(R) ((

∏
i = 0 ..<b. monom 1 1 ) mod f )

by (rule times-mod-expand)
finally have eq2 : (

∏
i = 0 ..<Suc b. monom 1 1 ) mod f

= (monom 1 1 mod f ) ⊗(R) ((
∏

i = 0 ..<b. monom 1 1 ) mod f ) .
show ?case
unfolding eq2 P-def
proof (rule mult-closed-power)

show (monom 1 1 mod f ) [^]R CARD( ′a) ^ n = monom 1 1 mod f
using P-def element-in-carrier eq m mod-poly-less by force

show ((
∏

i = 0 ..<b. monom 1 1 ) mod f ) [^]R CARD( ′a) ^ n = (
∏

i = 0 ..<b.
monom 1 1 ) mod f

using P-def Suc.hyps by blast
qed (auto)

qed

private lemma monom-1-b:
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defines P == (λ x n. (x[^](R) (CARD( ′a) ^ n) = x))
assumes m: monom 1 1 ∈ carrier R
and monom-1-1 : P (monom 1 1 ) m ′

and b: b < degree f
shows P (monom 1 b) m ′

proof −
have monom 1 b = (

∏
i = 0 ..<b. monom 1 1 )

by (metis prod-pow x-pow-n)
also have ... = (

∏
i = 0 ..<b. monom 1 1 ) mod f

by (rule mod-poly-less[symmetric], auto)
(metis One-nat-def b degree-linear-power x-as-monom)

finally have eq2 : monom 1 b = (
∏

i = 0 ..<b. monom 1 1 ) mod f .
show ?thesis unfolding eq2 P-def

by (rule prod-monom-1-1 [OF m monom-1-1 [unfolded P-def ]])
qed

private lemma monom-a-b:
defines P == (λ x n. (x[^](R) (CARD( ′a) ^ n) = x))
assumes m: monom 1 1 ∈ carrier R
and m1 : P (monom 1 1 ) m ′

and b: b < degree f
shows P (monom a b) m ′

proof −
have monom a b = smult a (monom 1 b)

by (simp add: smult-monom)
also have ... = [:a:] ∗ (monom 1 b) by auto
also have ... = [:a:] ⊗(R) (monom 1 b)

unfolding R-def mult-irr-def
by (simp add: b degree-monom-eq mod-poly-less)

finally have eq: monom a b = [:a:] ⊗(R) (monom 1 b) .
show ?thesis unfolding eq P-def
proof (rule mult-closed-power)

show [:a:] [^]R CARD( ′a) ^ m ′ = [:a:] by (rule fermat-theorem-power-poly-R)
show monom 1 b [^]R CARD( ′a) ^ m ′ = monom 1 b

unfolding P-def by (rule monom-1-b[OF m m1 [unfolded P-def ] b])
show monom 1 b ∈ carrier R unfolding element-in-carrier using b

by (simp add: degree-monom-eq)
qed (auto)

qed

private lemma sum-monoms-P:
defines P == (λ x n. (x[^](R) (CARD( ′a) ^ n) = x))
assumes m: monom 1 1 ∈ carrier R
and monom-1-1 : P (monom 1 1 ) n
and b: b < degree f

shows P ((
∑

i≤b. monom (g i) i)) n
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using b
proof (induct b)

case 0
then show ?case unfolding P-def

by (simp add: poly-const-pow mod-poly-less monom-0 )
next

case (Suc b)
have b: b < degree f using Suc.prems by auto
have rw: (

∑
i≤b. monom (g i) i) mod f = (

∑
i≤b. monom (g i) i) by (rule

sum-monom-mod[OF b])
have rw2 : (monom (g (Suc b)) (Suc b) mod f ) = monom (g (Suc b)) (Suc b)
by (metis Suc.prems field-R.nat-pow-eone m monom-a-b pow-irr power-0 power-one-right)

have hyp: P (
∑

i≤b. monom (g i) i) n using Suc.prems Suc.hyps by auto
have (

∑
i≤Suc b. monom (g i) i) = monom (g (Suc b)) (Suc b) + (

∑
i≤b.

monom (g i) i)
by simp

also have ... = (monom (g (Suc b)) (Suc b) mod f ) + ((
∑

i≤b. monom (g i) i)
mod f )

using rw rw2 by argo
also have ... = monom (g (Suc b)) (Suc b) ⊕R (

∑
i≤b. monom (g i) i)

unfolding R-def plus-irr-def
by (simp add: poly-mod-add-left)

finally have eq: (
∑

i≤Suc b. monom (g i) i)
= monom (g (Suc b)) (Suc b) ⊕R (

∑
i≤b. monom (g i) i) .

show ?case unfolding eq P-def
proof (rule add-closed-power)

show monom (g (Suc b)) (Suc b) [^]R CARD( ′a) ^ n = monom (g (Suc b))
(Suc b)

by (rule monom-a-b[OF m monom-1-1 [unfolded P-def ] Suc.prems])
show (

∑
i≤b. monom (g i) i) [^]R CARD( ′a) ^ n = (

∑
i≤b. monom (g i) i)

using hyp unfolding P-def by simp
qed

qed

lemma element-carrier-P:
defines P ≡ (λ x n. (x[^](R) (CARD( ′a) ^ n) = x))
assumes m: monom 1 1 ∈ carrier R
and monom-1-1 : P (monom 1 1 ) m ′

and a: a ∈ carrier R
shows P a m ′

proof −
have degree-a: degree a < degree f using a element-in-carrier by simp
have P (

∑
i≤degree a. monom (poly.coeff a i) i) m ′

unfolding P-def
by (rule sum-monoms-P[OF m monom-1-1 [unfolded P-def ] degree-a])

thus ?thesis unfolding poly-as-sum-of-monoms by simp
qed
end
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end

lemma degree-divisor1 :
assumes f : irreducible (f :: ′a :: prime-card mod-ring poly)
and d: degree f = d

shows f dvd (monom 1 1 )^(CARD( ′a)^d) − monom 1 1
proof −

interpret poly-mod-type-irr CARD( ′a) f by (unfold-locales, auto simp add: f )
show ?thesis
proof (cases d = 1 )

case True
show ?thesis
proof (cases monom 1 1 mod f = 0 )

case True
then show ?thesis

by (metis Suc-pred dvd-diff dvd-mult2 mod-eq-0-iff-dvd power .simps(2 )
zero-less-card-finite zero-less-power)

next
case False note mod-f-not0 = False
have monom 1 (CARD( ′a)) mod f = monom 1 1 mod f
proof −

let ?g1 = (monom 1 (CARD( ′a))) mod f
let ?g2 = (monom 1 1 ) mod f
have deg-g1 : degree ?g1 < degree f and deg-g2 : degree ?g2 < degree f

by (metis True card-UNIV-unit d degree-0 degree-mod-less ′ zero-less-card-finite
zero-neq-one)+

have g2 : ?g2 [^](mult-of R) CARD( ′a)^degree f = ?g2 ^ (CARD( ′a)^degree
f ) mod f

by (rule pow-irr-mult-of )
have ?g2 [^](mult-of R) CARD( ′a)^degree f = ?g2

by (rule element-power-order-eq-1 ′, insert mod-f-not0 deg-g2 ,
auto simp add: carrier-mult-of R-def carrier-irr-def )

hence ?g2 ^ CARD( ′a) mod f = ?g2 mod f using True d by auto
hence ?g1 mod f = ?g2 mod f by (metis mod-mod-trivial power-mod x-pow-n)

thus ?thesis by simp
qed
thus ?thesis by (metis True mod-eq-dvd-iff-poly power-one-right x-pow-n)

qed
next

case False
have deg-f1 : 1 < degree f

using False d degree-f by linarith
have monom 1 1 [^](mult-of R) CARD( ′a)^degree f = monom 1 1

by (rule element-power-order-eq-1 ′, insert deg-f1 )
(auto simp add: carrier-mult-of R-def carrier-irr-def degree-monom-eq)

hence monom 1 1^CARD( ′a)^degree f mod f = monom 1 1 mod f
using deg-f1 by (auto, metis mod-mod-trivial)

thus ?thesis using d mod-eq-dvd-iff-poly by blast
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qed
qed

lemma degree-divisor2 :
assumes f : irreducible (f :: ′a :: prime-card mod-ring poly)
and d: degree f = d
and c-ge-1 : 1 ≤ c and cd: c < d

shows ¬ f dvd monom 1 1 ^ CARD( ′a) ^ c − monom 1 1
proof (rule ccontr)

interpret poly-mod-type-irr CARD( ′a) f by (unfold-locales, auto simp add: f )
have field-R: field R

by (simp add: field-R.field-axioms)
assume ¬ ¬ f dvd monom 1 1 ^ CARD( ′a) ^ c − monom 1 1
hence f-dvd: f dvd monom 1 1 ^ CARD( ′a) ^ c − monom 1 1 by simp
obtain a where a-R: a ∈ carrier (mult-of R)

and ord-a: group.ord (mult-of R) a = order (mult-of R)
and gen: carrier (mult-of R) = {a [^]R i |i. i ∈ (UNIV ::nat set)}
using field.finite-field-mult-group-has-gen2 [OF field-R] by auto

have d-not1 : d>1 using c-ge-1 cd by auto
have monom-in-carrier : monom 1 1 ∈ carrier (mult-of R)

using d-not1 unfolding carrier-mult-of R-def carrier-irr-def
by (simp add: d degree-monom-eq)

then have monom 1 1 /∈ {0R}
by auto

then obtain k where monom 1 1 = a ^ k mod f
using gen monom-in-carrier by auto

then have k: a [^]R k = monom 1 1
by simp

have a-m-1 : a [^]R (CARD( ′a)^c − 1 ) = 1R
proof (rule x-power-pm-minus-1 [OF a-R])

let ?x = monom 1 1 :: ′a mod-ring poly
show a [^]R CARD( ′a) ^ c = a
proof (rule element-carrier-P)

show ?x ∈ carrier R
by (metis k mod-in-carrier pow-irr)

have ?x ^ CARD( ′a)^ c mod f = ?x mod f using f-dvd
using mod-eq-dvd-iff-poly by blast

thus ?x [^]R CARD( ′a)^ c = ?x
by (metis d d-not1 degree-monom-eq mod-poly-less one-neq-zero pow-irr)

show a ∈ carrier R using a-R unfolding carrier-mult-of by auto
qed

qed
have Group.group (mult-of R)

by (simp add: field-R.field-mult-group)
moreover have finite (carrier (mult-of R)) by auto
moreover have a ∈ carrier (mult-of R) by (rule a-R )
moreover have a [^]mult-of R (CARD( ′a) ^ c − 1 ) = 1mult-of R

using a-m-1 unfolding mult-of-def
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by (auto, metis mult-of-def pow-irr-mult-of nat-pow-mult-of )
ultimately have ord-dvd: group.ord (mult-of R) a dvd (CARD( ′a)^c − 1 )

by (meson group.pow-eq-id)
have d dvd c
proof (rule dvd-power-minus-1-conv1 [OF nontriv])

show 0 < d using cd by auto
show CARD( ′a) ^ d − 1 dvd CARD( ′a) ^ c − 1

using ord-dvd by (simp add: d ord-a order-irr)
show 0 < c using c-ge-1 by auto

qed
thus False using c-ge-1 cd

using nat-dvd-not-less by auto
qed

lemma degree-divisor : assumes irreducible (f :: ′a :: prime-card mod-ring poly)
degree f = d

shows f dvd (monom 1 1 )^(CARD( ′a)^d) − monom 1 1
and 1 ≤ c =⇒ c < d =⇒ ¬ f dvd (monom 1 1 )^(CARD( ′a)^c) − monom 1 1

using assms degree-divisor1 degree-divisor2 by blast+

context
assumes SORT-CONSTRAINT ( ′a :: prime-card)

begin

function dist-degree-factorize-main ::
′a mod-ring poly ⇒ ′a mod-ring poly ⇒ nat ⇒ (nat × ′a mod-ring poly) list
⇒ (nat × ′a mod-ring poly) list where
dist-degree-factorize-main v w d res = (if v = 1 then res else if d + d > degree v

then (degree v, v) # res else let
w = w^(CARD( ′a)) mod v;
d = Suc d;
gd = gcd (w − monom 1 1 ) v
in if gd = 1 then dist-degree-factorize-main v w d res else
let v ′ = v div gd in
dist-degree-factorize-main v ′ (w mod v ′) d ((d,gd) # res))

by pat-completeness auto

termination
proof (relation measure (λ (v,w,d,res). Suc (degree v) − d), goal-cases)

case (3 v w d res x xa xb xc)
have xb dvd v unfolding 3 by auto
hence xc dvd v unfolding 3 by (metis dvd-def dvd-div-mult-self )
from divides-degree[OF this] 3
show ?case by auto

qed auto

declare dist-degree-factorize-main.simps[simp del]
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lemma dist-degree-factorize-main: assumes
dist: dist-degree-factorize-main v w d res = facts and
w: w = (monom 1 1 )^(CARD( ′a)^d) mod v and
sf : square-free u and
mon: monic u and
prod: u = v ∗ prod-list (map snd res) and
deg:

∧
f . irreducible f =⇒ f dvd v =⇒ degree f > d and

res:
∧

i f . (i,f ) ∈ set res =⇒ i 6= 0 ∧ degree f 6= 0 ∧ monic f ∧ (∀ g. irreducible
g −→ g dvd f −→ degree g = i)
shows u = prod-list (map snd facts) ∧ (∀ i f . (i,f ) ∈ set facts −→ factors-of-same-degree
i f )

using dist w prod res deg unfolding factors-of-same-degree-def
proof (induct v w d res rule: dist-degree-factorize-main.induct)

case (1 v w d res)
note IH = 1 (1−2 )
note result = 1 (3 )
note w = 1 (4 )
note u = 1 (5 )
note res = 1 (6 )
note fact = 1 (7 )
note [simp] = dist-degree-factorize-main.simps[of - - d]
let ?x = monom 1 1 :: ′a mod-ring poly
show ?case
proof (cases v = 1 )

case True
thus ?thesis using result u mon res by auto

next
case False note v = this
note IH = IH [OF this]
have mon-prod: monic (prod-list (map snd res)) by (rule monic-prod-list, insert

res, auto)
with mon[unfolded u] have mon-v: monic v by (simp add: coeff-degree-mult)
with False have deg-v: degree v 6= 0 by (simp add: monic-degree-0 )
show ?thesis
proof (cases degree v < d + d)

case True
with result False have facts: facts = (degree v, v) # res by simp
show ?thesis
proof (intro allI conjI impI )

fix i f g
assume ∗: (i,f ) ∈ set facts irreducible g g dvd f
show degree g = i
proof (cases (i,f ) ∈ set res)

case True
from res[OF this] ∗ show ?thesis by auto

next
case False
with ∗ facts have id: i = degree v f = v by auto
note ∗ = ∗(2−3 )[unfolded id]
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from fact[OF ∗] have dg: d < degree g by auto
from divides-degree[OF ∗(2 )] mon-v have deg-gv: degree g ≤ degree v by

auto
from ∗(2 ) obtain h where vgh: v = g ∗ h unfolding dvd-def by auto
from arg-cong[OF this, of degree] mon-v have dvgh: degree v = degree g

+ degree h
by (metis deg-v degree-mult-eq degree-mult-eq-0 )

with dg deg-gv dg True have deg-h: degree h < d by auto
{

assume degree h = 0
with dvgh have degree g = degree v by simp

}
moreover
{

assume deg-h0 : degree h 6= 0
hence ∃ k. irreducibled k ∧ k dvd h

using dvd-triv-left irreducibled-factor by blast
then obtain k where irr : irreducible k and k dvd h by auto
from dvd-trans[OF this(2 ), of v] vgh have k dvd v by auto
from fact[OF irr this] have dk: d < degree k .
from divides-degree[OF ‹k dvd h›] deg-h0 have degree k ≤ degree h by

auto
with deg-h have degree k < d by auto
with dk have False by auto

}
ultimately have degree g = degree v by auto
thus ?thesis unfolding id by auto

qed
qed (insert v mon-v deg-v u facts res, force+)

next
case False
note IH = IH [OF this refl refl refl]
let ?p = CARD( ′a)
let ?w = w ^ ?p mod v
let ?g = gcd (?w − ?x) v
let ?v = v div ?g
let ?d = Suc d
from result[simplified] v False
have result: (if ?g = 1 then dist-degree-factorize-main v ?w ?d res

else dist-degree-factorize-main ?v (?w mod ?v) ?d ((?d, ?g) # res))
= facts

by (auto simp: Let-def )
from mon-v have mon-g: monic ?g by (metis deg-v degree-0 poly-gcd-monic)
have ww: ?w = ?x ^ ?p ^ ?d mod v unfolding w

by simp (metis (mono-tags, opaque-lifting) One-nat-def mult.commute
power-Suc power-mod power-mult x-pow-n)

have gv: ?g dvd v by auto
hence gv ′: v div ?g dvd v

by (metis dvd-def dvd-div-mult-self )
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{
fix f
assume irr : irreducible f and fv: f dvd v and degree f = ?d
from degree-divisor(1 )[OF this(1 ,3 )]
have f dvd ?x ^ ?p ^ ?d − ?x by auto
hence f dvd (?x ^ ?p ^ ?d − ?x) mod v using fv by (rule dvd-mod)
also have (?x ^ ?p ^ ?d − ?x) mod v = ?x ^ ?p ^ ?d mod v − ?x mod v

by (rule poly-mod-diff-left)
also have ?x ^ ?p ^ ?d mod v = ?w mod v unfolding ww by auto

also have . . . − ?x mod v = (w ^ ?p mod v − ?x) mod v by (metis
poly-mod-diff-left)

finally have f dvd (w^?p mod v − ?x) using fv by (rule dvd-mod-imp-dvd)
with fv have f dvd ?g by auto

} note deg-d-dvd-g = this
show ?thesis
proof (cases ?g = 1 )

case True
with result have dist: dist-degree-factorize-main v ?w ?d res = facts by

auto
show ?thesis
proof (rule IH (1 )[OF True dist ww u res])

fix f
assume irr : irreducible f and fv: f dvd v
from fact[OF this] have d < degree f .
moreover have degree f 6= ?d
proof

assume degree f = ?d
from divides-degree[OF deg-d-dvd-g[OF irr fv this]] mon-v
have degree f ≤ degree ?g by auto
with irr have degree ?g 6= 0 unfolding irreducibled-def by auto
with True show False by auto

qed
ultimately show ?d < degree f by auto

qed
next

case False
with result
have result: dist-degree-factorize-main ?v (?w mod ?v) ?d ((?d, ?g) # res)

= facts
by auto

from False mon-g have deg-g: degree ?g 6= 0 by (simp add: monic-degree-0 )
have www: ?w mod ?v = monom 1 1 ^ ?p ^ ?d mod ?v using gv ′

by (simp add: mod-mod-cancel ww)
from square-free-factor [OF - sf , of v] u have sfv: square-free v by auto
have u: u = ?v ∗ prod-list (map snd ((?d, ?g) # res))

unfolding u by simp
show ?thesis
proof (rule IH (2 )[OF False refl result www u], goal-cases)

case (1 i f )
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show ?case
proof (cases (i,f ) ∈ set res)

case True
from res[OF this] show ?thesis by auto

next
case False
with 1 have id: i = ?d f = ?g by auto
show ?thesis unfolding id
proof (intro conjI impI allI )

fix g
assume ∗: irreducible g g dvd ?g
hence gv: g dvd v using dvd-trans[of g ?g v] by simp
from fact[OF ∗(1 ) this] have dg: d < degree g .
{

assume degree g > ?d
from degree-divisor(2 )[OF ∗(1 ) refl - this]
have ndvd: ¬ g dvd ?x ^ ?p ^ ?d − ?x by auto
from ∗(2 ) have g dvd ?w − ?x by simp
from this[unfolded ww]
have g dvd ?x ^ ?p ^ ?d mod v − ?x .

with gv have g dvd (?x ^ ?p ^ ?d mod v − ?x) mod v by (metis
dvd-mod)

also have (?x ^ ?p ^ ?d mod v − ?x) mod v = (?x ^ ?p ^ ?d − ?x)
mod v

by (metis mod-diff-left-eq)
finally have g dvd ?x ^ ?p ^ ?d − ?x using gv by (rule

dvd-mod-imp-dvd)
with ndvd have False by auto

}
with dg show degree g = ?d by presburger

qed (insert mon-g deg-g, auto)
qed

next
case (2 f )
note irr = 2 (1 )
from dvd-trans[OF 2 (2 ) gv ′] have fv: f dvd v .
from fact[OF irr fv] have df : d < degree f degree f 6= 0 by auto
{

assume degree f = ?d
from deg-d-dvd-g[OF irr fv this] have fg: f dvd ?g .
from gv have id: v = (v div ?g) ∗ ?g by simp
from sfv id have square-free (v div ?g ∗ ?g) by simp
from square-free-multD(1 )[OF this 2 (2 ) fg] have degree f = 0 .
with df have False by auto

}
with df show ?d < degree f by presburger

qed
qed

qed
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qed
qed

definition distinct-degree-factorization
:: ′a mod-ring poly ⇒ (nat × ′a mod-ring poly) list where
distinct-degree-factorization f =

(if degree f = 1 then [(1 ,f )] else dist-degree-factorize-main f (monom 1 1 ) 0
[])

lemma distinct-degree-factorization: assumes
dist: distinct-degree-factorization f = facts and
u: square-free f and
mon: monic f

shows f = prod-list (map snd facts) ∧ (∀ i f . (i,f ) ∈ set facts −→ factors-of-same-degree
i f )
proof −

note dist = dist[unfolded distinct-degree-factorization-def ]
show ?thesis
proof (cases degree f ≤ 1 )

case False
hence degree f > 1 and dist: dist-degree-factorize-main f (monom 1 1 ) 0 [] =

facts
using dist by auto

hence ∗: monom 1 (Suc 0 ) = monom 1 (Suc 0 ) mod f
by (simp add: degree-monom-eq mod-poly-less)

show ?thesis
by (rule dist-degree-factorize-main[OF dist - u mon], insert ∗, auto simp:

irreducibled-def )
next

case True
hence degree f = 0 ∨ degree f = 1 by auto
thus ?thesis
proof

assume degree f = 0
with mon have f : f = 1 using monic-degree-0 by blast
hence facts = [] using dist unfolding dist-degree-factorize-main.simps[of -

- 0 ]
by auto

thus ?thesis using f by auto
next

assume deg: degree f = 1
hence facts: facts = [(1 ,f )] using dist by auto
show ?thesis unfolding facts factors-of-same-degree-def
proof (intro conjI allI impI ; clarsimp)

fix g
assume irreducible g g dvd f

thus degree g = Suc 0 using deg divides-degree[of g f ] by (auto simp:
irreducibled-def )

qed (insert mon deg, auto)
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qed
qed

qed
end

end

8 A Combined Factorization Algorithm for Poly-
nomials over GF(p)

8.1 Type Based Version
We combine Berlekamp’s algorithm with the distinct degree factorization
to obtain an efficient factorization algorithm for square-free polynomials in
GF(p).
theory Finite-Field-Factorization
imports Berlekamp-Type-Based

Distinct-Degree-Factorization
begin

We prove soundness of the finite field factorization, indepedendent on
whether distinct-degree-factorization is applied as preprocessing or not.
consts use-distinct-degree-factorization :: bool

context
assumes SORT-CONSTRAINT ( ′a::prime-card)
begin

definition finite-field-factorization :: ′a mod-ring poly ⇒ ′a mod-ring × ′a mod-ring
poly list where

finite-field-factorization f = (if degree f = 0 then (lead-coeff f ,[]) else let
a = lead-coeff f ;
u = smult (inverse a) f ;

gs = (if use-distinct-degree-factorization then distinct-degree-factorization u else
[(1 ,u)]);

(irr ,hs) = List.partition (λ (i,f ). degree f = i) gs
in (a,map snd irr @ concat (map (λ (i,g). berlekamp-monic-factorization i g)

hs)))

lemma finite-field-factorization-explicit:
fixes f :: ′a mod-ring poly
assumes sf-f : square-free f

and us: finite-field-factorization f = (c,us)
shows f = smult c (prod-list us) ∧ (∀ u ∈ set us. monic u ∧ irreducible u)

proof (cases degree f = 0 )
case False note f = this
define g where g = smult (inverse c) f
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obtain gs where dist: (if use-distinct-degree-factorization then distinct-degree-factorization
g else [(1 ,g)]) = gs by auto

note us = us[unfolded finite-field-factorization-def Let-def ]
from us f have c: c = lead-coeff f by auto
obtain irr hs where part: List.partition (λ (i, f ). degree f = i) gs = (irr ,hs) by

force
from arg-cong[OF this, of fst] have irr : irr = filter (λ (i, f ). degree f = i) gs

by auto
from us[folded c, folded g-def , unfolded dist part split] f
have us: us = map snd irr @ concat (map (λ(x, y). berlekamp-monic-factorization

x y) hs) by auto
from f c have c0 : c 6= 0 by auto
from False c0 have deg-g: degree g 6= 0 unfolding g-def by auto
have mon-g: monic g unfolding g-def

by (metis c c0 field-class.field-inverse lead-coeff-smult)
from sf-f have sf-g: square-free g unfolding g-def by (simp add: c0 )
from c0 have f : f = smult c g unfolding g-def by auto
have g = prod-list (map snd gs) ∧ (∀ (i,f ) ∈ set gs. degree f > 0 ∧ monic f ∧

(∀ h. h dvd f −→ degree h = i −→ irreducible h))
proof (cases use-distinct-degree-factorization)

case True
with dist have distinct-degree-factorization g = gs by auto
note dist = distinct-degree-factorization[OF this sf-g mon-g]
from dist have g: g = prod-list (map snd gs) by auto
show ?thesis
proof (intro conjI [OF g] ballI , clarify)

fix i f
assume (i,f ) ∈ set gs
with dist have factors-of-same-degree i f by auto
from factors-of-same-degreeD[OF this]
show degree f > 0 ∧ monic f ∧ (∀ h. h dvd f −→ degree h = i −→ irreducible

h) by auto
qed

next
case False
with dist have gs: gs = [(1 ,g)] by auto
show ?thesis unfolding gs using deg-g mon-g linear-irreducibled[where ′a =

′a mod-ring] by auto
qed
hence g-gs: g = prod-list (map snd gs)

and mon-gs:
∧

i f . (i, f ) ∈ set gs =⇒ monic f ∧ degree f > 0
and irrI :

∧
i f h . (i, f ) ∈ set gs =⇒ h dvd f =⇒ degree h = i =⇒ irreducible

h by auto
have g: g = prod-list (map snd irr) ∗ prod-list (map snd hs) unfolding g-gs

using prod-list-map-partition[OF part] .
{

fix f
assume f ∈ snd ‘ set irr
from this[unfolded irr ] obtain i where ∗: (i,f ) ∈ set gs degree f = i by auto
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have f dvd f by auto
from irrI [OF ∗(1 ) this ∗(2 )] mon-gs[OF ∗(1 )] have monic f irreducible f by

auto
} note irr = this
let ?berl = λ hs. concat (map (λ(x, y). berlekamp-monic-factorization x y) hs)
have set hs ⊆ set gs using part by auto
hence prod-list (map snd hs) = prod-list (?berl hs)
∧ (∀ f ∈ set (?berl hs). monic f ∧ irreducibled f )

proof (induct hs)
case (Cons ih hs)
obtain i h where ih: ih = (i,h) by force
have ?berl (Cons ih hs) = berlekamp-monic-factorization i h @ ?berl hs un-

folding ih by auto
from Cons(2 )[unfolded ih] have mem: (i,h) ∈ set gs and sub: set hs ⊆ set gs

by auto
note IH = Cons(1 )[OF sub]
from mem have h ∈ set (map snd gs) by force
from square-free-factor [OF prod-list-dvd[OF this], folded g-gs, OF sf-g] have

sf : square-free h .
from mon-gs[OF mem] irrI [OF mem] have ∗: degree h > 0 monic h∧

g. g dvd h =⇒ degree g = i =⇒ irreducible g by auto
from berlekamp-monic-factorization[OF sf refl ∗(3 ) ∗(1−2 ), of i]
have berl: prod-list (berlekamp-monic-factorization i h) = h

and irr :
∧

f . f ∈ set (berlekamp-monic-factorization i h) =⇒ monic f ∧
irreducible f by auto

have prod-list (map snd (Cons ih hs)) = h ∗ prod-list (map snd hs) unfolding
ih by simp

also have prod-list (map snd hs) = prod-list (?berl hs) using IH by auto
finally have prod-list (map snd (Cons ih hs)) = prod-list (?berl (Cons ih hs))

unfolding ih using berl by auto
thus ?case using IH irr unfolding ih by auto

qed auto
with g irr have main: g = prod-list us ∧ (∀ u ∈ set us. monic u ∧ irreducibled

u) unfolding us
by auto

thus ?thesis unfolding f using sf-g by auto
next

case True
with us[unfolded finite-field-factorization-def ] have c = lead-coeff f and us: us

= [] by auto
with degree0-coeffs[OF True] have f : f = [:c:] by auto
show ?thesis unfolding us f by (auto simp: normalize-poly-def )

qed

lemma finite-field-factorization:
fixes f :: ′a mod-ring poly
assumes sf-f : square-free f

and us: finite-field-factorization f = (c,us)
shows unique-factorization Irr-Mon f (c, mset us)
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proof −
from finite-field-factorization-explicit[OF sf-f us]
have fact: factorization Irr-Mon f (c, mset us)
unfolding factorization-def split Irr-Mon-def by (auto simp: prod-mset-prod-list)

from sf-f [unfolded square-free-def ] have f 6= 0 by auto
from exactly-one-factorization[OF this] fact
show ?thesis unfolding unique-factorization-def by auto

qed
end

Experiments revealed that preprocessing via distinct-degree-factorization
slows down the factorization algorithm (statement for implementation in
AFP 2017)
overloading use-distinct-degree-factorization ≡ use-distinct-degree-factorization
begin

definition use-distinct-degree-factorization
where [code-unfold]: use-distinct-degree-factorization = False

end
end

8.2 Record Based Version
theory Finite-Field-Factorization-Record-Based
imports

Finite-Field-Factorization
Matrix-Record-Based
Poly-Mod-Finite-Field-Record-Based
HOL−Types-To-Sets.Types-To-Sets
Jordan-Normal-Form.Matrix-IArray-Impl
Jordan-Normal-Form.Gauss-Jordan-IArray-Impl
Polynomial-Interpolation.Improved-Code-Equations
Polynomial-Factorization.Missing-List

begin

hide-const(open) monom coeff

Whereas [[square-free ?f ; finite-field-factorization ?f = (?c, ?us)]] =⇒
unique-factorization Irr-Mon ?f (?c, mset ?us) provides a result for a poly-
nomials over GF(p), we now develop a theorem which speaks about integer
polynomials modulo p.
lemma (in poly-mod-prime-type) finite-field-factorization-modulo-ring:

assumes g: (g :: ′a mod-ring poly) = of-int-poly f
and sf : square-free-m f
and fact: finite-field-factorization g = (d,gs)
and c: c = to-int-mod-ring d
and fs: fs = map to-int-poly gs
shows unique-factorization-m f (c, mset fs)

proof −
have [transfer-rule]: MP-Rel f g unfolding g MP-Rel-def by (simp add: Mp-f-representative)
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have sg: square-free g by (transfer , rule sf )
have [transfer-rule]: M-Rel c d unfolding M-Rel-def c by (rule M-to-int-mod-ring)
have fs-gs[transfer-rule]: list-all2 MP-Rel fs gs

unfolding fs list-all2-map1 MP-Rel-def [abs-def ] Mp-to-int-poly by (simp add:
list.rel-refl)

have [transfer-rule]: rel-mset MP-Rel (mset fs) (mset gs)
using fs-gs using rel-mset-def by blast

have [transfer-rule]: MF-Rel (c,mset fs) (d,mset gs) unfolding MF-Rel-def by
transfer-prover

from finite-field-factorization[OF sg fact]
have uf : unique-factorization Irr-Mon g (d,mset gs) by auto
from uf [untransferred] show unique-factorization-m f (c, mset fs) .

qed

We now have to implement finite-field-factorization.
context

fixes p :: int
and ff-ops :: ′i arith-ops-record

begin

fun power-poly-f-mod-i :: ( ′i list ⇒ ′i list) ⇒ ′i list ⇒ nat ⇒ ′i list where
power-poly-f-mod-i modulus a n = (if n = 0 then modulus (one-poly-i ff-ops)

else let (d,r) = Euclidean-Rings.divmod-nat n 2 ;
rec = power-poly-f-mod-i modulus (modulus (times-poly-i ff-ops a a)) d in

if r = 0 then rec else modulus (times-poly-i ff-ops rec a))

declare power-poly-f-mod-i.simps[simp del]

fun power-polys-i :: ′i list ⇒ ′i list ⇒ ′i list ⇒ nat ⇒ ′i list list where
power-polys-i mul-p u curr-p (Suc i) = curr-p #

power-polys-i mul-p u (mod-field-poly-i ff-ops (times-poly-i ff-ops curr-p mul-p)
u) i
| power-polys-i mul-p u curr-p 0 = []

lemma length-power-polys-i[simp]: length (power-polys-i x y z n) = n
by (induct n arbitrary: x y z, auto)

definition berlekamp-mat-i :: ′i list ⇒ ′i mat where
berlekamp-mat-i u = (let n = degree-i u;

ze = arith-ops-record.zero ff-ops; on = arith-ops-record.one ff-ops;
mul-p = power-poly-f-mod-i (λ v. mod-field-poly-i ff-ops v u)
[ze, on] (nat p);

xks = power-polys-i mul-p u [on] n
in mat-of-rows-list n (map (λ cs. cs @ replicate (n − length cs) ze) xks))

definition berlekamp-resulting-mat-i :: ′i list ⇒ ′i mat where
berlekamp-resulting-mat-i u = (let Q = berlekamp-mat-i u;

n = dim-row Q;
QI = mat n n (λ (i,j). if i = j then arith-ops-record.minus ff-ops (Q $$ (i,j))
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(arith-ops-record.one ff-ops) else Q $$ (i,j))
in (gauss-jordan-single-i ff-ops (transpose-mat QI )))

definition berlekamp-basis-i :: ′i list ⇒ ′i list list where
berlekamp-basis-i u = (map (poly-of-list-i ff-ops o list-of-vec)
(find-base-vectors-i ff-ops (berlekamp-resulting-mat-i u)))

primrec berlekamp-factorization-main-i :: ′i ⇒ ′i ⇒ nat ⇒ ′i list list ⇒ ′i list list
⇒ nat ⇒ ′i list list where

berlekamp-factorization-main-i ze on d divs (v # vs) n = (
if v = [on] then berlekamp-factorization-main-i ze on d divs vs n else
if length divs = n then divs else
let of-int = arith-ops-record.of-int ff-ops;

facts = filter (λ w. w 6= [on])
[ gcd-poly-i ff-ops u (minus-poly-i ff-ops v (if s = 0 then [] else [of-int (int

s)])) .
u ← divs, s ← [0 ..< nat p]];

(lin,nonlin) = List.partition (λ q. degree-i q = d) facts
in lin @ berlekamp-factorization-main-i ze on d nonlin vs (n − length lin))

| berlekamp-factorization-main-i ze on d divs [] n = divs

definition berlekamp-monic-factorization-i :: nat ⇒ ′i list ⇒ ′i list list where
berlekamp-monic-factorization-i d f = (let

vs = berlekamp-basis-i f
in berlekamp-factorization-main-i (arith-ops-record.zero ff-ops) (arith-ops-record.one

ff-ops) d [f ] vs (length vs))

partial-function (tailrec) dist-degree-factorize-main-i ::
′i ⇒ ′i ⇒ nat ⇒ ′i list ⇒ ′i list ⇒ nat ⇒ (nat × ′i list) list
⇒ (nat × ′i list) list where
[code]: dist-degree-factorize-main-i ze on dv v w d res = (if v = [on] then res else

if d + d > dv
then (dv, v) # res else let

w = power-poly-f-mod-i (λ f . mod-field-poly-i ff-ops f v) w (nat p);
d = Suc d;
gd = gcd-poly-i ff-ops (minus-poly-i ff-ops w [ze,on]) v
in if gd = [on] then dist-degree-factorize-main-i ze on dv v w d res else
let v ′ = div-field-poly-i ff-ops v gd
in dist-degree-factorize-main-i ze on (degree-i v ′) v ′ (mod-field-poly-i ff-ops w

v ′) d ((d,gd) # res))

definition distinct-degree-factorization-i
:: ′i list ⇒ (nat × ′i list) list where
distinct-degree-factorization-i f = (let ze = arith-ops-record.zero ff-ops;

on = arith-ops-record.one ff-ops in if degree-i f = 1 then [(1 ,f )] else
dist-degree-factorize-main-i ze on (degree-i f ) f [ze,on] 0 [])

definition finite-field-factorization-i :: ′i list ⇒ ′i × ′i list list where
finite-field-factorization-i f = (if degree-i f = 0 then (lead-coeff-i ff-ops f ,[]) else
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let
a = lead-coeff-i ff-ops f ;
u = smult-i ff-ops (arith-ops-record.inverse ff-ops a) f ;
gs = (if use-distinct-degree-factorization then distinct-degree-factorization-i u

else [(1 ,u)]);
(irr ,hs) = List.partition (λ (i,f ). degree-i f = i) gs
in (a,map snd irr @ concat (map (λ (i,g). berlekamp-monic-factorization-i i g)

hs)))
end

context prime-field-gen
begin

lemma power-polys-i: assumes i: i < n and [transfer-rule]: poly-rel f f ′ poly-rel
g g ′

and h: poly-rel h h ′

shows poly-rel (power-polys-i ff-ops g f h n ! i) (power-polys g ′ f ′ h ′ n ! i)
using i h

proof (induct n arbitrary: h h ′ i)
case (Suc n h h ′ i) note ∗ = this
note [transfer-rule] = ∗(3 )
show ?case
proof (cases i)

case 0
with Suc show ?thesis by auto

next
case (Suc j)
with ∗(2−) have j < n by auto
note IH = ∗(1 )[OF this]
show ?thesis unfolding Suc by (simp, rule IH , transfer-prover)

qed
qed simp

lemma power-poly-f-mod-i: assumes m: (poly-rel ===> poly-rel) m (λ x ′. x ′ mod
m ′)
shows poly-rel f f ′=⇒ poly-rel (power-poly-f-mod-i ff-ops m f n) (power-poly-f-mod

m ′ f ′ n)
proof −

from m have m:
∧

x x ′. poly-rel x x ′ =⇒ poly-rel (m x) (x ′ mod m ′)
unfolding rel-fun-def by auto

show poly-rel f f ′ =⇒ poly-rel (power-poly-f-mod-i ff-ops m f n) (power-poly-f-mod
m ′ f ′ n)

proof (induct n arbitrary: f f ′ rule: less-induct)
case (less n f f ′)
note f [transfer-rule] = less(2 )
show ?case
proof (cases n = 0 )

case True
show ?thesis
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by (simp add: True power-poly-f-mod-i.simps power-poly-f-mod-binary,
rule m[OF poly-rel-one])

next
case False
hence n: (n = 0 ) = False by simp
obtain q r where div: Euclidean-Rings.divmod-nat n 2 = (q,r) by force
from this[unfolded Euclidean-Rings.divmod-nat-def ] n have q < n by auto
note IH = less(1 )[OF this]
have rec: poly-rel (power-poly-f-mod-i ff-ops m (m (times-poly-i ff-ops f f )) q)

(power-poly-f-mod m ′ (f ′ ∗ f ′ mod m ′) q)
by (rule IH , rule m, transfer-prover)

have other : poly-rel
(m (times-poly-i ff-ops (power-poly-f-mod-i ff-ops m (m (times-poly-i ff-ops

f f )) q) f ))
(power-poly-f-mod m ′ (f ′ ∗ f ′ mod m ′) q ∗ f ′ mod m ′)
by (rule m, rule poly-rel-times[unfolded rel-fun-def , rule-format, OF rec f ])

show ?thesis unfolding power-poly-f-mod-i.simps[of - - - n] Let-def
power-poly-f-mod-binary[of - - n] div split n if-False using rec other by auto

qed
qed

qed

lemma berlekamp-mat-i[transfer-rule]: (poly-rel ===> mat-rel R)
(berlekamp-mat-i p ff-ops) berlekamp-mat

proof (intro rel-funI )
fix f f ′

let ?ze = arith-ops-record.zero ff-ops
let ?on = arith-ops-record.one ff-ops
assume f [transfer-rule]: poly-rel f f ′

have deg: degree-i f = degree f ′ by transfer-prover
{

fix i j
assume i: i < degree f ′ and j: j < degree f ′

define cs where cs = (λcs :: ′i list. cs @ replicate (degree f ′ − length cs) ?ze)
define cs ′ where cs ′ = (λcs :: ′a mod-ring poly. coeffs cs @ replicate (degree

f ′ − length (coeffs cs)) 0 )
define poly where poly = power-polys-i ff-ops

(power-poly-f-mod-i ff-ops (λv. mod-field-poly-i ff-ops v f ) [?ze, ?on] (nat
p)) f [?on]

(degree f ′)
define poly ′ where poly ′ = (power-polys (power-poly-f-mod f ′ [:0 , 1 :] (nat p))

f ′ 1 (degree f ′))
have ∗: poly-rel (power-poly-f-mod-i ff-ops (λv. mod-field-poly-i ff-ops v f ) [?ze,

?on] (nat p))
(power-poly-f-mod f ′ [:0 , 1 :] (nat p))
by (rule power-poly-f-mod-i, transfer-prover , simp add: poly-rel-def one zero)

have [transfer-rule]: poly-rel (poly ! i) (poly ′ ! i)
unfolding poly-def poly ′-def
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by (rule power-polys-i[OF i f ∗], simp add: poly-rel-def one)
have ∗: list-all2 R (cs (poly ! i)) (cs ′ (poly ′ ! i))

unfolding cs-def cs ′-def by transfer-prover
from list-all2-nthD[OF ∗[unfolded poly-rel-def ], of j] j
have R (cs (poly ! i) ! j) (cs ′ (poly ′ ! i) ! j) unfolding cs-def by auto
hence R

(mat-of-rows-list (degree f ′)
(map (λcs. cs @ replicate (degree f ′ − length cs) ?ze)
(power-polys-i ff-ops
(power-poly-f-mod-i ff-ops (λv. mod-field-poly-i ff-ops v f ) [?ze, ?on]

(nat p)) f [?on]
(degree f ′))) $$

(i, j))
(mat-of-rows-list (degree f ′)
(map (λcs. coeffs cs @ replicate (degree f ′ − length (coeffs cs)) 0 )
(power-polys (power-poly-f-mod f ′ [:0 , 1 :] (nat p)) f ′ 1 (degree f ′))) $$

(i, j))
unfolding mat-of-rows-list-def length-map length-power-polys-i power-polys-works

length-power-polys index-mat[OF i j] split
unfolding poly-def cs-def poly ′-def cs ′-def using i
by auto

} note main = this
show mat-rel R (berlekamp-mat-i p ff-ops f ) (berlekamp-mat f ′)

unfolding berlekamp-mat-i-def berlekamp-mat-def Let-def nat-p[symmetric] deg
unfolding mat-rel-def
by (intro conjI allI impI , insert main, auto)

qed

lemma berlekamp-resulting-mat-i[transfer-rule]: (poly-rel ===> mat-rel R)
(berlekamp-resulting-mat-i p ff-ops) berlekamp-resulting-mat

proof (intro rel-funI )
fix f f ′

assume poly-rel f f ′

from berlekamp-mat-i[unfolded rel-fun-def , rule-format, OF this]
have bmi: mat-rel R (berlekamp-mat-i p ff-ops f ) (berlekamp-mat f ′) .
show mat-rel R (berlekamp-resulting-mat-i p ff-ops f ) (berlekamp-resulting-mat

f ′)
unfolding berlekamp-resulting-mat-def Let-def berlekamp-resulting-mat-i-def
by (rule gauss-jordan-i[unfolded rel-fun-def , rule-format],

insert bmi, auto simp: mat-rel-def one intro!: minus[unfolded rel-fun-def , rule-format])
qed

lemma berlekamp-basis-i[transfer-rule]: (poly-rel ===> list-all2 poly-rel)
(berlekamp-basis-i p ff-ops) berlekamp-basis
unfolding berlekamp-basis-i-def [abs-def ] berlekamp-basis-code[abs-def ] o-def
by transfer-prover

lemma berlekamp-factorization-main-i[transfer-rule]:
((=) ===> list-all2 poly-rel ===> list-all2 poly-rel ===> (=) ===> list-all2
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poly-rel)
(berlekamp-factorization-main-i p ff-ops (arith-ops-record.zero ff-ops)
(arith-ops-record.one ff-ops))

berlekamp-factorization-main
proof (intro rel-funI , clarify, goal-cases)

case (1 - d xs xs ′ ys ys ′ - n)
let ?ze = arith-ops-record.zero ff-ops
let ?on = arith-ops-record.one ff-ops
let ?of-int = arith-ops-record.of-int ff-ops
from 1 (2 ) 1 (1 ) show ?case
proof (induct ys ys ′ arbitrary: xs xs ′ n rule: list-all2-induct)

case (Cons y ys y ′ ys ′ xs xs ′ n)
note trans[transfer-rule] = Cons(1 ,2 ,4 )
obtain clar0 clar1 clar2 where clarify:

∧
s u. gcd-poly-i ff-ops u

(minus-poly-i ff-ops y
(if s = 0 then [] else [?of-int (int s)])) = clar0 s u

[0 ..<nat p] = clar1
[?on] = clar2 by auto

define facts where facts = concat (map (λu. concat
(map (λs. if gcd-poly-i ff-ops u

(minus-poly-i ff-ops y (if s = 0 then [] else [?of-int
(int s)])) 6=

[?on]
then [gcd-poly-i ff-ops u

(minus-poly-i ff-ops y (if s = 0 then [] else [?of-int
(int s)]))]

else [])
[0 ..<nat p])) xs)

define Facts where Facts = [w←concat
(map (λu. map (λs. gcd-poly-i ff-ops u

(minus-poly-i ff-ops y
(if s = 0 then [] else [?of-int (int s)])))

[0 ..<nat p])
xs) . w 6= [?on]]

have Facts: Facts = facts
unfolding Facts-def facts-def clarify

proof (induct xs)
case (Cons x xs)
show ?case by (simp add: Cons, induct clar1 , auto)

qed simp
define facts ′ where facts ′ = concat

(map (λu. concat
(map (λx. if gcd u (y ′ − [:of-nat x:]) 6= 1

then [gcd u (y ′ − [:of-int (int x):])] else [])
[0 ..<nat p]))

xs ′)
have id:

∧
x. of-int (int x) = of-nat x [?on] = one-poly-i ff-ops

by (auto simp: one-poly-i-def )
have facts[transfer-rule]: list-all2 poly-rel facts facts ′
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unfolding facts-def facts ′-def
apply (rule concat-transfer [unfolded rel-fun-def , rule-format])
apply (rule list.map-transfer [unfolded rel-fun-def , rule-format, OF - trans(3 )])
apply (rule concat-transfer [unfolded rel-fun-def , rule-format])
apply (rule list-all2-map-map)
proof (unfold id)

fix f f ′ x
assume [transfer-rule]: poly-rel f f ′ and x: x ∈ set [0 ..<nat p]
hence ∗: 0 ≤ int x int x < p by auto
from of-int[OF this] have rel[transfer-rule]: R (?of-int (int x)) (of-nat x) by

auto
{

assume 0 < x
with ∗ have ∗: 0 < int x int x < p by auto
have (of-nat x :: ′a mod-ring) = of-int (int x) by simp
also have . . . 6= 0 unfolding of-int-of-int-mod-ring using ∗ unfolding p

by (transfer ′, auto)
}
with rel have [transfer-rule]: poly-rel (if x = 0 then [] else [?of-int (int x)])

[:of-nat x:]
unfolding poly-rel-def by (auto simp add: cCons-def p)

show list-all2 poly-rel
(if gcd-poly-i ff-ops f (minus-poly-i ff-ops y (if x = 0 then [] else [?of-int

(int x)])) 6= one-poly-i ff-ops
then [gcd-poly-i ff-ops f (minus-poly-i ff-ops y (if x = 0 then [] else [?of-int

(int x)]))]
else [])
(if gcd f ′ (y ′ − [:of-nat x:]) 6= 1 then [gcd f ′ (y ′ − [:of-nat x:])] else [])

by transfer-prover
qed
have id1 : berlekamp-factorization-main-i p ff-ops ?ze ?on d xs (y # ys) n = (
if y = [?on] then berlekamp-factorization-main-i p ff-ops ?ze ?on d xs ys n else
if length xs = n then xs else
(let fac = facts;

(lin, nonlin) = List.partition (λq. degree-i q = d) fac
in lin @ berlekamp-factorization-main-i p ff-ops ?ze ?on d nonlin ys (n

− length lin)))
unfolding berlekamp-factorization-main-i.simps Facts[symmetric]
by (simp add: o-def Facts-def Let-def )

have id2 : berlekamp-factorization-main d xs ′ (y ′ # ys ′) n = (
if y ′ = 1 then berlekamp-factorization-main d xs ′ ys ′ n
else if length xs ′ = n then xs ′ else
(let fac = facts ′;

(lin, nonlin) = List.partition (λq. degree q = d) fac
in lin @ berlekamp-factorization-main d nonlin ys ′ (n − length lin)))

by (simp add: o-def facts ′-def nat-p)
have len: length xs = length xs ′ by transfer-prover
have id3 : (y = [?on]) = (y ′ = 1 )
by (transfer-prover-start, transfer-step+, simp add: one-poly-i-def finite-field-ops-int-def )
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show ?case
proof (cases y ′ = 1 )

case True
hence id4 : (y ′ = 1 ) = True by simp
show ?thesis unfolding id1 id2 id3 id4 if-True

by (rule Cons(3 ), transfer-prover)
next

case False
hence id4 : (y ′ = 1 ) = False by simp
note id1 = id1 [unfolded id3 id4 if-False]
note id2 = id2 [unfolded id4 if-False]
show ?thesis
proof (cases length xs ′ = n)

case True
thus ?thesis unfolding id1 id2 Let-def len using trans by simp

next
case False
hence id: (length xs ′ = n) = False by simp
have id ′: length [q←facts . degree-i q = d] = length [q←facts ′. degree q =

d]
by transfer-prover

have [transfer-rule]: list-all2 poly-rel (berlekamp-factorization-main-i p ff-ops
?ze ?on d [x←facts . degree-i x 6= d] ys

(n − length [q←facts . degree-i q = d]))
(berlekamp-factorization-main d [x←facts ′ . degree x 6= d] ys ′

(n − length [q←facts ′ . degree q = d]))
unfolding id ′

by (rule Cons(3 ), transfer-prover)
show ?thesis unfolding id1 id2 Let-def len id if-False

unfolding partition-filter-conv o-def split by transfer-prover
qed

qed
qed simp

qed

lemma berlekamp-monic-factorization-i[transfer-rule]:
((=) ===> poly-rel ===> list-all2 poly-rel)

(berlekamp-monic-factorization-i p ff-ops) berlekamp-monic-factorization
unfolding berlekamp-monic-factorization-i-def [abs-def ] berlekamp-monic-factorization-def [abs-def ]

Let-def
by transfer-prover

lemma dist-degree-factorize-main-i:
poly-rel F f =⇒ poly-rel G g =⇒ list-all2 (rel-prod (=) poly-rel) Res res
=⇒ list-all2 (rel-prod (=) poly-rel)

(dist-degree-factorize-main-i p ff-ops
(arith-ops-record.zero ff-ops) (arith-ops-record.one ff-ops) (degree-i F) F G

d Res)
(dist-degree-factorize-main f g d res)
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proof (induct f g d res arbitrary: F G Res rule: dist-degree-factorize-main.induct)
case (1 v w d res V W Res)
let ?ze = arith-ops-record.zero ff-ops
let ?on = arith-ops-record.one ff-ops
note simp = dist-degree-factorize-main.simps[of v w d]

dist-degree-factorize-main-i.simps[of p ff-ops ?ze ?on degree-i V V W d]
have v[transfer-rule]: poly-rel V v by (rule 1 )
have w[transfer-rule]: poly-rel W w by (rule 1 )
have res[transfer-rule]: list-all2 (rel-prod (=) poly-rel) Res res by (rule 1 )
have [transfer-rule]: poly-rel [?on] 1

by (simp add: one poly-rel-def )
have id1 : (V = [?on]) = (v = 1 ) unfolding finite-field-ops-int-def by trans-

fer-prover
have id2 : degree-i V = degree v by transfer-prover
note simp = simp[unfolded id1 id2 ]
note IH = 1 (1 ,2 )
show ?case
proof (cases v = 1 )

case True
with res show ?thesis unfolding id2 simp by simp

next
case False
with id1 have (v = 1 ) = False by auto
note simp = simp[unfolded this if-False]
note IH = IH [OF False]
show ?thesis
proof (cases degree v < d + d)

case True
thus ?thesis unfolding id2 simp using res v by auto

next
case False
hence (degree v < d + d) = False by auto
note simp = simp[unfolded this if-False]
let ?P = power-poly-f-mod-i ff-ops (λf . mod-field-poly-i ff-ops f V ) W (nat

p)
let ?G = gcd-poly-i ff-ops (minus-poly-i ff-ops ?P [?ze, ?on]) V
let ?g = gcd (w ^ CARD( ′a) mod v − monom 1 1 ) v
define G where G = ?G
define g where g = ?g
note simp = simp[unfolded Let-def , folded G-def g-def ]
note IH = IH [OF False refl refl refl]
have [transfer-rule]: poly-rel [?ze,?on] (monom 1 1 ) unfolding poly-rel-def

by (auto simp: coeffs-monom one zero)
have id: w ^ CARD( ′a) mod v = power-poly-f-mod v w (nat p)

unfolding power-poly-f-mod-def by (simp add: p)
have P[transfer-rule]: poly-rel ?P (w ^ CARD( ′a) mod v) unfolding id

by (rule power-poly-f-mod-i[OF - w], transfer-prover)
have g[transfer-rule]: poly-rel G g unfolding G-def g-def by transfer-prover
have id3 : (G = [?on]) = (g = 1 ) by transfer-prover
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note simp = simp[unfolded id3 ]
show ?thesis
proof (cases g = 1 )

case True
from IH (1 )[OF this[unfolded g-def ] v P res] True
show ?thesis unfolding id2 simp by simp

next
case False
have vg: poly-rel (div-field-poly-i ff-ops V G) (v div g) by transfer-prover
have poly-rel (mod-field-poly-i ff-ops ?P

(div-field-poly-i ff-ops V G)) (w ^ CARD( ′a) mod v mod (v div g)) by
transfer-prover

note IH = IH (2 )[OF False[unfolded g-def ] refl vg[unfolded G-def g-def ]
this[unfolded G-def g-def ],

folded g-def G-def ]
have list-all2 (rel-prod (=) poly-rel) ((Suc d, G) # Res) ((Suc d, g) # res)

using g res by auto
note IH = IH [OF this]
from False have (g = 1 ) = False by simp
note simp = simp[unfolded this if-False]
show ?thesis unfolding id2 simp using IH by simp

qed
qed

qed
qed

lemma distinct-degree-factorization-i[transfer-rule]: (poly-rel ===> list-all2 (rel-prod
(=) poly-rel))
(distinct-degree-factorization-i p ff-ops) distinct-degree-factorization

proof
fix F f
assume f [transfer-rule]: poly-rel F f
have id: (degree-i F = 1 ) = (degree f = 1 ) by transfer-prover
note d = distinct-degree-factorization-i-def distinct-degree-factorization-def
let ?ze = arith-ops-record.zero ff-ops
let ?on = arith-ops-record.one ff-ops
show list-all2 (rel-prod (=) poly-rel) (distinct-degree-factorization-i p ff-ops F)

(distinct-degree-factorization f )
proof (cases degree f = 1 )

case True
with id f show ?thesis unfolding d by auto

next
case False
from False id have ?thesis = (list-all2 (rel-prod (=) poly-rel)
(dist-degree-factorize-main-i p ff-ops ?ze ?on (degree-i F) F [?ze, ?on] 0 [])
(dist-degree-factorize-main f (monom 1 1 ) 0 [])) unfolding d Let-def by simp

also have . . .
by (rule dist-degree-factorize-main-i[OF f ], auto simp: poly-rel-def
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coeffs-monom one zero)
finally show ?thesis .

qed
qed

lemma finite-field-factorization-i[transfer-rule]:
(poly-rel ===> rel-prod R (list-all2 poly-rel))

(finite-field-factorization-i p ff-ops) finite-field-factorization
unfolding finite-field-factorization-i-def finite-field-factorization-def Let-def lead-coeff-i-def ′

by transfer-prover

Since the implementation is sound, we can now combine it with the
soundness result of the finite field factorization.
lemma finite-field-i-sound:

assumes f ′: f ′ = of-int-poly-i ff-ops (Mp f )
and berl-i: finite-field-factorization-i p ff-ops f ′ = (c ′,fs ′)
and sq: square-free-m f
and fs: fs = map (to-int-poly-i ff-ops) fs ′

and c: c = arith-ops-record.to-int ff-ops c ′

shows unique-factorization-m f (c, mset fs)
∧ c ∈ {0 ..< p}
∧ (∀ fi ∈ set fs. set (coeffs fi) ⊆ {0 ..< p})

proof −
define f ′′ :: ′a mod-ring poly where f ′′ = of-int-poly (Mp f )
have rel-f [transfer-rule]: poly-rel f ′ f ′′

by (rule poly-rel-of-int-poly[OF f ′], simp add: f ′′-def )
interpret pff : idom-ops poly-ops ff-ops poly-rel

by (rule idom-ops-poly)
obtain c ′′ fs ′′ where berl: finite-field-factorization f ′′ = (c ′′,fs ′′) by force
from rel-funD[OF finite-field-factorization-i rel-f , unfolded rel-prod-conv assms(2 )

split berl]
have rel[transfer-rule]: R c ′ c ′′ list-all2 poly-rel fs ′ fs ′′ by auto
from to-int[OF rel(1 )] have cc ′: c = to-int-mod-ring c ′′ unfolding c by simp
from m1 have ‹M c ∈ {0 ..< p}›

by (simp add: M-def cc ′)
then have c: ‹c ∈ {0 ..< p}›

by (simp add: M-to-int-mod-ring cc ′)
{

fix f
assume f ∈ set fs ′

with rel(2 ) obtain f ′ where poly-rel f f ′ unfolding list-all2-conv-all-nth
set-conv-nth

by auto
hence is-poly ff-ops f using fun-cong[OF Domainp-is-poly, of f ]

unfolding Domainp-iff [abs-def ] by auto
}
hence fs ′: Ball (set fs ′) (is-poly ff-ops) by auto
define mon :: ′a mod-ring poly ⇒ bool where mon = monic
have [transfer-rule]: (poly-rel ===> (=)) (monic-i ff-ops) mon unfolding mon-def
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by (rule poly-rel-monic)
have len: length fs ′ = length fs ′′ by transfer-prover
have fs ′: fs = map to-int-poly fs ′′ unfolding fs
proof (rule nth-map-conv[OF len], intro allI impI )

fix i
assume i: i < length fs ′

obtain f g where id: fs ′ ! i = f fs ′′ ! i = g by auto
from i rel(2 )[unfolded list-all2-conv-all-nth[of - fs ′ fs ′′]] id
have poly-rel f g by auto
from to-int-poly-i[OF this] have to-int-poly-i ff-ops f = to-int-poly g .
thus to-int-poly-i ff-ops (fs ′ ! i) = to-int-poly (fs ′′ ! i) unfolding id .

qed
have f : f ′′ = of-int-poly f unfolding poly-eq-iff f ′′-def
by (simp add: to-int-mod-ring-hom.injectivity to-int-mod-ring-of-int-M Mp-coeff )

have ∗: unique-factorization-m f (c, mset fs)
using finite-field-factorization-modulo-ring[OF f sq berl cc ′ fs ′] by auto

have fs ′: (∀fi∈set fs. set (coeffs fi) ⊆ {0 ..<p}) unfolding fs ′

using range-to-int-mod-ring[where ′a = ′a]
by (auto simp: coeffs-to-int-poly p)

with c fs ∗
show ?thesis by blast

qed
end

definition finite-field-factorization-main :: int ⇒ ′i arith-ops-record ⇒ int poly ⇒
int × int poly list where

finite-field-factorization-main p f-ops f ≡
let (c ′,fs ′) = finite-field-factorization-i p f-ops (of-int-poly-i f-ops (poly-mod.Mp

p f ))
in (arith-ops-record.to-int f-ops c ′, map (to-int-poly-i f-ops) fs ′)

lemma(in prime-field-gen) finite-field-factorization-main:
assumes res: finite-field-factorization-main p ff-ops f = (c,fs)
and sq: square-free-m f
shows unique-factorization-m f (c, mset fs)
∧ c ∈ {0 ..< p}
∧ (∀ fi ∈ set fs. set (coeffs fi) ⊆ {0 ..< p})

proof −
obtain c ′ fs ′ where

res ′: finite-field-factorization-i p ff-ops (of-int-poly-i ff-ops (Mp f )) = (c ′, fs ′)
by force

show ?thesis
by (rule finite-field-i-sound[OF refl res ′ sq],

insert res[unfolded finite-field-factorization-main-def res ′], auto)
qed

definition finite-field-factorization-int :: int ⇒ int poly ⇒ int × int poly list
where
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finite-field-factorization-int p = (
if p ≤ 65535
then finite-field-factorization-main p (finite-field-ops32 (uint32-of-int p))
else if p ≤ 4294967295
then finite-field-factorization-main p (finite-field-ops64 (uint64-of-int p))
else finite-field-factorization-main p (finite-field-ops-integer (integer-of-int p)))

context poly-mod-prime begin
lemmas finite-field-factorization-main-integer = prime-field-gen.finite-field-factorization-main
[OF prime-field.prime-field-finite-field-ops-integer , unfolded prime-field-def mod-ring-locale-def ,
unfolded poly-mod-type-simps, internalize-sort ′a :: prime-card, OF type-to-set,

unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]

lemmas finite-field-factorization-main-uint32 = prime-field-gen.finite-field-factorization-main
[OF prime-field.prime-field-finite-field-ops32 , unfolded prime-field-def mod-ring-locale-def ,
unfolded poly-mod-type-simps, internalize-sort ′a :: prime-card, OF type-to-set,

unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]

lemmas finite-field-factorization-main-uint64 = prime-field-gen.finite-field-factorization-main
[OF prime-field.prime-field-finite-field-ops64 , unfolded prime-field-def mod-ring-locale-def ,
unfolded poly-mod-type-simps, internalize-sort ′a :: prime-card, OF type-to-set,

unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]

lemma finite-field-factorization-int:
assumes sq: poly-mod.square-free-m p f
and result: finite-field-factorization-int p f = (c,fs)
shows poly-mod.unique-factorization-m p f (c, mset fs)
∧ c ∈ {0 ..< p}
∧ (∀ fi ∈ set fs. set (coeffs fi) ⊆ {0 ..< p})

using finite-field-factorization-main-integer [OF - sq, of c fs]
finite-field-factorization-main-uint32 [OF - - sq, of c fs]
finite-field-factorization-main-uint64 [OF - - sq, of c fs]
result[unfolded finite-field-factorization-int-def ]

by (auto split: if-splits)

end

end

9 Hensel Lifting
9.1 Properties about Factors
We define and prove properties of Hensel-lifting. Here, we show the result
that Hensel-lifting can lift a factorization mod p to a factorization mod
pn. For the lifting we have proofs for both versions, the original linear
Hensel-lifting or the quadratic approach from Zassenhaus. Via the linear
version, we also show a uniqueness result, however only in the binary case,
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i.e., where f = g · h. Uniqueness of the general case will later be shown in
theory Berlekamp-Hensel by incorporating the factorization algorithm for
finite fields algorithm.
theory Hensel-Lifting
imports

HOL−Computational-Algebra.Euclidean-Algorithm
Poly-Mod-Finite-Field-Record-Based
Polynomial-Factorization.Square-Free-Factorization

begin

lemma uniqueness-poly-equality:
fixes f g :: ′a :: {factorial-ring-gcd,semiring-gcd-mult-normalize} poly
assumes cop: coprime f g
and deg: B = 0 ∨ degree B < degree f B ′ = 0 ∨ degree B ′ < degree f
and f : f 6= 0 and eq: A ∗ f + B ∗ g = A ′ ∗ f + B ′ ∗ g
shows A = A ′ B = B ′

proof −
from eq have ∗: (A − A ′) ∗ f = (B ′ − B) ∗ g by (simp add: field-simps)
hence f dvd (B ′ − B) ∗ g unfolding dvd-def by (intro exI [of - A − A ′], auto

simp: field-simps)
with cop[simplified] have dvd: f dvd (B ′ − B)

by (simp add: coprime-dvd-mult-right-iff ac-simps)
from divides-degree[OF this] have degree f ≤ degree (B ′ − B) ∨ B = B ′ by auto
with degree-diff-le-max[of B ′ B] deg
show B = B ′ by auto
with ∗ f show A = A ′ by auto

qed

lemmas (in poly-mod-prime-type) uniqueness-poly-equality =
uniqueness-poly-equality[where ′a= ′a mod-ring, untransferred]

lemmas (in poly-mod-prime) uniqueness-poly-equality = poly-mod-prime-type.uniqueness-poly-equality
[unfolded poly-mod-type-simps, internalize-sort ′a :: prime-card, OF type-to-set,

unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]

lemma pseudo-divmod-main-list-1-is-divmod-poly-one-main-list:
pseudo-divmod-main-list (1 :: ′a :: comm-ring-1 ) q f g n = divmod-poly-one-main-list

q f g n
by (induct n arbitrary: q f g, auto simp: Let-def )

lemma pdivmod-monic-pseudo-divmod: assumes g: monic g shows pdivmod-monic
f g = pseudo-divmod f g
proof −

from g have id: (coeffs g = []) = False by auto
from g have mon: hd (rev (coeffs g)) = 1 by (metis coeffs-eq-Nil hd-rev id

last-coeffs-eq-coeff-degree)
show ?thesis
unfolding pseudo-divmod-impl pseudo-divmod-list-def id if-False pdivmod-monic-def

Let-def mon
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pseudo-divmod-main-list-1-is-divmod-poly-one-main-list by (auto split: prod.splits)
qed

lemma pdivmod-monic: assumes g: monic g and res: pdivmod-monic f g = (q, r)
shows f = g ∗ q + r r = 0 ∨ degree r < degree g

proof −
from g have g0 : g 6= 0 by auto
from pseudo-divmod[OF g0 res[unfolded pdivmod-monic-pseudo-divmod[OF g]],

unfolded g]
show f = g ∗ q + r r = 0 ∨ degree r < degree g by auto

qed

definition dupe-monic :: ′a :: comm-ring-1 poly ⇒ ′a poly ⇒ ′a poly ⇒ ′a poly
⇒ ′a poly ⇒

′a poly ∗ ′a poly where
dupe-monic D H S T U = (case pdivmod-monic (T ∗ U ) D of (q,r) ⇒

(S ∗ U + H ∗ q, r))

lemma dupe-monic: assumes 1 : D∗S + H∗T = 1
and mon: monic D
and dupe: dupe-monic D H S T U = (A,B)

shows A ∗ D + B ∗ H = U B = 0 ∨ degree B < degree D
proof −

obtain Q R where div: pdivmod-monic ((T ∗ U )) D = (Q,R) by force
from dupe[unfolded dupe-monic-def div split]
have A: A = (S ∗ U + H ∗ Q) and B: B = R by auto
from pdivmod-monic[OF mon div] have TU : T ∗ U = D ∗ Q + R and

deg: R = 0 ∨ degree R < degree D by auto
hence R: R = T ∗ U − D ∗ Q by simp
have A ∗ D + B ∗ H = (D ∗ S + H ∗ T ) ∗ U unfolding A B R by (simp add:

field-simps)
also have . . . = U unfolding 1 by simp
finally show eq: A ∗ D + B ∗ H = U .
show B = 0 ∨ degree B < degree D using deg unfolding B .

qed

lemma dupe-monic-unique: fixes D :: ′a :: {factorial-ring-gcd,semiring-gcd-mult-normalize}
poly

assumes 1 : D∗S + H∗T = 1
and mon: monic D
and dupe: dupe-monic D H S T U = (A,B)
and cop: coprime D H
and other : A ′ ∗ D + B ′ ∗ H = U B ′ = 0 ∨ degree B ′ < degree D

shows A ′ = A B ′ = B
proof −

from dupe-monic[OF 1 mon dupe] have one: A ∗ D + B ∗ H = U B = 0 ∨
degree B < degree D by auto

from mon have D0 : D 6= 0 by auto
from uniqueness-poly-equality[OF cop one(2 ) other(2 ) D0 , of A A ′, unfolded
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other , OF one(1 )]
show A ′ = A B ′ = B by auto

qed

context ring-ops
begin
lemma poly-rel-dupe-monic-i: assumes mon: monic D

and rel: poly-rel d D poly-rel h H poly-rel s S poly-rel t T poly-rel u U
shows rel-prod poly-rel poly-rel (dupe-monic-i ops d h s t u) (dupe-monic D H S T
U )
proof −

note defs = dupe-monic-i-def dupe-monic-def
note [transfer-rule] = rel
have [transfer-rule]: rel-prod poly-rel poly-rel
(pdivmod-monic-i ops (times-poly-i ops t u) d)
(pdivmod-monic (T ∗ U ) D)
by (rule poly-rel-pdivmod-monic[OF mon], transfer-prover+)

show ?thesis unfolding defs by transfer-prover
qed
end

context mod-ring-gen
begin

lemma monic-of-int-poly: monic D =⇒ monic (of-int-poly (Mp D) :: ′a mod-ring
poly)

using Mp-f-representative Mp-to-int-poly monic-Mp by auto

lemma dupe-monic-i: assumes dupe-i: dupe-monic-i ff-ops d h s t u = (a,b)
and 1 : D∗S + H∗T =m 1
and mon: monic D
and A: A = to-int-poly-i ff-ops a
and B: B = to-int-poly-i ff-ops b
and d: Mp-rel-i d D
and h: Mp-rel-i h H
and s: Mp-rel-i s S
and t: Mp-rel-i t T
and u: Mp-rel-i u U

shows
A ∗ D + B ∗ H =m U
B = 0 ∨ degree B < degree D
Mp-rel-i a A
Mp-rel-i b B

proof −
let ?I = λ f . of-int-poly (Mp f ) :: ′a mod-ring poly
let ?i = to-int-poly-i ff-ops
note dd = Mp-rel-iD[OF d]
note hh = Mp-rel-iD[OF h]
note ss = Mp-rel-iD[OF s]
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note tt = Mp-rel-iD[OF t]
note uu = Mp-rel-iD[OF u]
obtain A ′ B ′ where dupe: dupe-monic (?I D) (?I H ) (?I S) (?I T ) (?I U ) =

(A ′,B ′) by force
from poly-rel-dupe-monic-i[OF monic-of-int-poly[OF mon] dd(1 ) hh(1 ) ss(1 )

tt(1 ) uu(1 ), unfolded dupe-i dupe]
have a: poly-rel a A ′ and b: poly-rel b B ′ by auto
show aa: Mp-rel-i a A by (rule Mp-rel-iI ′[OF a, folded A])
show bb: Mp-rel-i b B by (rule Mp-rel-iI ′[OF b, folded B])
note Aa = Mp-rel-iD[OF aa]
note Bb = Mp-rel-iD[OF bb]
from poly-rel-inj[OF a Aa(1 )] A have A: A ′ = ?I A by simp
from poly-rel-inj[OF b Bb(1 )] B have B: B ′ = ?I B by simp
note Mp = dd(2 ) hh(2 ) ss(2 ) tt(2 ) uu(2 )
note [transfer-rule] = Mp
have (=) (D ∗ S + H ∗ T =m 1 ) (?I D ∗ ?I S + ?I H ∗ ?I T = 1 ) by

transfer-prover
with 1 have 11 : ?I D ∗ ?I S + ?I H ∗ ?I T = 1 by simp
from dupe-monic[OF 11 monic-of-int-poly[OF mon] dupe, unfolded A B]
have res: ?I A ∗ ?I D + ?I B ∗ ?I H = ?I U ?I B = 0 ∨ degree (?I B) < degree

(?I D) by auto
note [transfer-rule] = Aa(2 ) Bb(2 )
have (=) (A ∗ D + B ∗ H =m U ) (?I A ∗ ?I D + ?I B ∗ ?I H = ?I U )

(=) (B =m 0 ∨ degree-m B < degree-m D) (?I B = 0 ∨ degree (?I B) <
degree (?I D)) by transfer-prover+

with res have ∗: A ∗ D + B ∗ H =m U B =m 0 ∨ degree-m B < degree-m D
by auto

show A ∗ D + B ∗ H =m U by fact
have B: Mp B = B using Mp-rel-i-Mp-to-int-poly-i assms(5 ) bb by blast
from ∗(2 ) show B = 0 ∨ degree B < degree D unfolding B using degree-m-le[of

D] by auto
qed

lemma Mp-rel-i-of-int-poly-i: assumes Mp F = F
shows Mp-rel-i (of-int-poly-i ff-ops F) F
by (metis Mp-f-representative Mp-rel-iI ′ assms poly-rel-of-int-poly to-int-poly-i)

lemma dupe-monic-i-int: assumes dupe-i: dupe-monic-i-int ff-ops D H S T U =
(A,B)

and 1 : D∗S + H∗T =m 1
and mon: monic D
and norm: Mp D = D Mp H = H Mp S = S Mp T = T Mp U = U

shows
A ∗ D + B ∗ H =m U
B = 0 ∨ degree B < degree D
Mp A = A
Mp B = B

proof −
let ?oi = of-int-poly-i ff-ops
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let ?ti = to-int-poly-i ff-ops
note rel = norm[THEN Mp-rel-i-of-int-poly-i]
obtain a b where dupe: dupe-monic-i ff-ops (?oi D) (?oi H ) (?oi S) (?oi T )

(?oi U ) = (a,b) by force
from dupe-i[unfolded dupe-monic-i-int-def this Let-def ] have AB: A = ?ti a B

= ?ti b by auto
from dupe-monic-i[OF dupe 1 mon AB rel] Mp-rel-i-Mp-to-int-poly-i
show A ∗ D + B ∗ H =m U

B = 0 ∨ degree B < degree D
Mp A = A
Mp B = B
unfolding AB by auto

qed

end

definition dupe-monic-dynamic
:: int ⇒ int poly ⇒ int poly ⇒ int poly ⇒ int poly ⇒ int poly ⇒ int poly × int

poly where
dupe-monic-dynamic p = (

if p ≤ 65535
then dupe-monic-i-int (finite-field-ops32 (uint32-of-int p))
else if p ≤ 4294967295
then dupe-monic-i-int (finite-field-ops64 (uint64-of-int p))
else dupe-monic-i-int (finite-field-ops-integer (integer-of-int p)))

context poly-mod-2
begin

lemma dupe-monic-i-int-finite-field-ops-integer : assumes
dupe-i: dupe-monic-i-int (finite-field-ops-integer (integer-of-int m)) D H S T

U = (A,B)
and 1 : D∗S + H∗T =m 1
and mon: monic D
and norm: Mp D = D Mp H = H Mp S = S Mp T = T Mp U = U

shows
A ∗ D + B ∗ H =m U
B = 0 ∨ degree B < degree D
Mp A = A
Mp B = B
using m1 mod-ring-gen.dupe-monic-i-int[OF

mod-ring-locale.mod-ring-finite-field-ops-integer [unfolded mod-ring-locale-def ],

internalize-sort ′a :: nontriv, OF type-to-set, unfolded remove-duplicate-premise,

cancel-type-definition, OF - assms] by auto

lemma dupe-monic-i-int-finite-field-ops32 : assumes
m: m ≤ 65535
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and dupe-i: dupe-monic-i-int (finite-field-ops32 (uint32-of-int m)) D H S T U =
(A,B)

and 1 : D∗S + H∗T =m 1
and mon: monic D
and norm: Mp D = D Mp H = H Mp S = S Mp T = T Mp U = U

shows
A ∗ D + B ∗ H =m U
B = 0 ∨ degree B < degree D
Mp A = A
Mp B = B
using m1 mod-ring-gen.dupe-monic-i-int[OF

mod-ring-locale.mod-ring-finite-field-ops32 [unfolded mod-ring-locale-def ],
internalize-sort ′a :: nontriv, OF type-to-set, unfolded remove-duplicate-premise,

cancel-type-definition, OF - assms] by auto

lemma dupe-monic-i-int-finite-field-ops64 : assumes
m: m ≤ 4294967295

and dupe-i: dupe-monic-i-int (finite-field-ops64 (uint64-of-int m)) D H S T U =
(A,B)

and 1 : D∗S + H∗T =m 1
and mon: monic D
and norm: Mp D = D Mp H = H Mp S = S Mp T = T Mp U = U

shows
A ∗ D + B ∗ H =m U
B = 0 ∨ degree B < degree D
Mp A = A
Mp B = B
using m1 mod-ring-gen.dupe-monic-i-int[OF

mod-ring-locale.mod-ring-finite-field-ops64 [unfolded mod-ring-locale-def ],
internalize-sort ′a :: nontriv, OF type-to-set, unfolded remove-duplicate-premise,

cancel-type-definition, OF - assms] by auto

lemma dupe-monic-dynamic: assumes dupe: dupe-monic-dynamic m D H S T U
= (A,B)

and 1 : D∗S + H∗T =m 1
and mon: monic D
and norm: Mp D = D Mp H = H Mp S = S Mp T = T Mp U = U

shows
A ∗ D + B ∗ H =m U
B = 0 ∨ degree B < degree D
Mp A = A
Mp B = B
using dupe

dupe-monic-i-int-finite-field-ops32 [OF - - 1 mon norm, of A B]
dupe-monic-i-int-finite-field-ops64 [OF - - 1 mon norm, of A B]
dupe-monic-i-int-finite-field-ops-integer [OF - 1 mon norm, of A B]

unfolding dupe-monic-dynamic-def by (auto split: if-splits)
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end

context poly-mod
begin

definition dupe-monic-int :: int poly ⇒ int poly ⇒ int poly ⇒ int poly ⇒ int poly
⇒

int poly ∗ int poly where
dupe-monic-int D H S T U = (case pdivmod-monic (Mp (T ∗ U )) D of (q,r) ⇒

(Mp (S ∗ U + H ∗ q), Mp r))

end

declare poly-mod.dupe-monic-int-def [code]

Old direct proof on int poly. It does not permit to change implementa-
tion. This proof is still present, since we did not export the uniqueness part
from the type-based uniqueness result [[?D ∗ ?S + ?H ∗ ?T = 1 ; monic ?D;
dupe-monic ?D ?H ?S ?T ?U = (?A, ?B); comm-monoid-mult-class.coprime
?D ?H ; ?A ′ ∗ ?D + ?B ′ ∗ ?H = ?U ; ?B ′ = 0 ∨ degree ?B ′ < degree ?D]]
=⇒ ?A ′ = ?A

[[?D ∗ ?S + ?H ∗ ?T = 1 ; monic ?D; dupe-monic ?D ?H ?S ?T ?U =
(?A, ?B); comm-monoid-mult-class.coprime ?D ?H ; ?A ′ ∗ ?D + ?B ′ ∗ ?H
= ?U ; ?B ′ = 0 ∨ degree ?B ′ < degree ?D]] =⇒ ?B ′ = ?B via the various
relations.
lemma (in poly-mod-2 ) dupe-monic-int: assumes 1 : D∗S + H∗T =m 1

and mon: monic D
and dupe: dupe-monic-int D H S T U = (A,B)
shows A ∗ D + B ∗ H =m U B = 0 ∨ degree B < degree D Mp A = A Mp B

= B
coprime-m D H =⇒ A ′ ∗ D + B ′ ∗ H =m U =⇒ B ′ = 0 ∨ degree B ′ < degree

D =⇒ Mp D = D
=⇒ Mp A ′ = A ′ =⇒ Mp B ′ = B ′ =⇒ prime m
=⇒ A ′ = A ∧ B ′ = B

proof −
obtain Q R where div: pdivmod-monic (Mp (T ∗ U )) D = (Q,R) by force
from dupe[unfolded dupe-monic-int-def div split]
have A: A = Mp (S ∗ U + H ∗ Q) and B: B = Mp R by auto
from pdivmod-monic[OF mon div] have TU : Mp (T ∗ U ) = D ∗ Q + R and

deg: R = 0 ∨ degree R < degree D by auto
hence Mp R = Mp (Mp (T ∗ U ) − D ∗ Q) by simp
also have . . . = Mp (T ∗ U − Mp (Mp (Mp D ∗ Q))) unfolding Mp-Mp

unfolding minus-Mp
using minus-Mp mult-Mp by metis

also have . . . = Mp (T ∗ U − D ∗ Q) by simp
finally have r : Mp R = Mp (T ∗ U − D ∗ Q) by simp
have Mp (A ∗ D + B ∗ H ) = Mp (Mp (A ∗ D) + Mp (B ∗ H )) by simp
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also have Mp (A ∗ D) = Mp ((S ∗ U + H ∗ Q) ∗ D) unfolding A by simp
also have Mp (B ∗ H ) = Mp (Mp R ∗ Mp H ) unfolding B by simp
also have . . . = Mp ((T ∗ U − D ∗ Q) ∗ H ) unfolding r by simp
also have Mp (Mp ((S ∗ U + H ∗ Q) ∗ D) + Mp ((T ∗ U − D ∗ Q) ∗ H )) =

Mp ((S ∗ U + H ∗ Q) ∗ D + (T ∗ U − D ∗ Q) ∗ H ) by simp
also have (S ∗ U + H ∗ Q) ∗ D + (T ∗ U − D ∗ Q) ∗ H = (D ∗ S + H ∗ T )
∗ U

by (simp add: field-simps)
also have Mp . . . = Mp (Mp (D ∗ S + H ∗ T ) ∗ U ) by simp
also have Mp (D ∗ S + H ∗ T ) = 1 using 1 by simp
finally show eq: A ∗ D + B ∗ H =m U by simp
have id: degree-m (Mp R) = degree-m R by simp
have id ′: degree D = degree-m D using mon by simp
show degB: B = 0 ∨ degree B < degree D using deg unfolding B id id ′

using degree-m-le[of R] by (cases R = 0 , auto)
show Mp: Mp A = A Mp B = B unfolding A B by auto
assume another : A ′ ∗ D + B ′ ∗ H =m U and degB ′: B ′ = 0 ∨ degree B ′ <

degree D
and norm: Mp A ′ = A ′ Mp B ′ = B ′ and cop: coprime-m D H and D: Mp D

= D
and prime: prime m

from degB Mp D have degB: B =m 0 ∨ degree-m B < degree-m D by auto
from degB ′ Mp D norm have degB ′: B ′ =m 0 ∨ degree-m B ′ < degree-m D by

auto
from mon D have D0 : ¬ (D =m 0 ) by auto
from prime interpret poly-mod-prime m by unfold-locales
from another eq have A ′ ∗ D + B ′ ∗ H =m A ∗ D + B ∗ H by simp
from uniqueness-poly-equality[OF cop degB ′ degB D0 this]
show A ′ = A ∧ B ′ = B unfolding norm Mp by auto

qed

lemma coprime-bezout-coefficients:
assumes cop: coprime f g

and ext: bezout-coefficients f g = (a, b)
shows a ∗ f + b ∗ g = 1
using assms bezout-coefficients [of f g a b]
by simp

lemma (in poly-mod-prime-type) bezout-coefficients-mod-int: assumes f : (F :: ′a
mod-ring poly) = of-int-poly f

and g: (G :: ′a mod-ring poly) = of-int-poly g
and cop: coprime-m f g
and fact: bezout-coefficients F G = (A,B)
and a: a = to-int-poly A
and b: b = to-int-poly B
shows f ∗ a + g ∗ b =m 1

proof −
have f [transfer-rule]: MP-Rel f F unfolding f MP-Rel-def by (simp add: Mp-f-representative)
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have g[transfer-rule]: MP-Rel g G unfolding g MP-Rel-def by (simp add:
Mp-f-representative)
have [transfer-rule]: MP-Rel a A unfolding a MP-Rel-def by (rule Mp-to-int-poly)
have [transfer-rule]: MP-Rel b B unfolding b MP-Rel-def by (rule Mp-to-int-poly)
from cop have coprime F G using coprime-MP-Rel[unfolded rel-fun-def ] f g by

auto
from coprime-bezout-coefficients [OF this fact]
have A ∗ F + B ∗ G = 1 .
from this [untransferred]
show ?thesis by (simp add: ac-simps)

qed

definition bezout-coefficients-i :: ′i arith-ops-record ⇒ ′i list ⇒ ′i list ⇒ ′i list ×
′i list where

bezout-coefficients-i ff-ops f g = fst (euclid-ext-poly-i ff-ops f g)

definition euclid-ext-poly-mod-main :: int ⇒ ′a arith-ops-record ⇒ int poly ⇒ int
poly ⇒ int poly × int poly where
euclid-ext-poly-mod-main p ff-ops f g = (case bezout-coefficients-i ff-ops (of-int-poly-i

ff-ops f ) (of-int-poly-i ff-ops g) of
(a,b) ⇒ (to-int-poly-i ff-ops a, to-int-poly-i ff-ops b))

definition euclid-ext-poly-dynamic :: int ⇒ int poly ⇒ int poly ⇒ int poly × int
poly where

euclid-ext-poly-dynamic p = (
if p ≤ 65535
then euclid-ext-poly-mod-main p (finite-field-ops32 (uint32-of-int p))
else if p ≤ 4294967295
then euclid-ext-poly-mod-main p (finite-field-ops64 (uint64-of-int p))
else euclid-ext-poly-mod-main p (finite-field-ops-integer (integer-of-int p)))

context prime-field-gen
begin
lemma bezout-coefficients-i[transfer-rule]:
(poly-rel ===> poly-rel ===> rel-prod poly-rel poly-rel)

(bezout-coefficients-i ff-ops) bezout-coefficients
unfolding bezout-coefficients-i-def bezout-coefficients-def
by transfer-prover

lemma bezout-coefficients-i-sound: assumes f : f ′ = of-int-poly-i ff-ops f Mp f = f
and g: g ′ = of-int-poly-i ff-ops g Mp g = g
and cop: coprime-m f g
and res: bezout-coefficients-i ff-ops f ′ g ′ = (a ′,b ′)
and a: a = to-int-poly-i ff-ops a ′

and b: b = to-int-poly-i ff-ops b ′

shows f ∗ a + g ∗ b =m 1
Mp a = a Mp b = b

proof −
from f have f ′: f ′ = of-int-poly-i ff-ops (Mp f ) by simp
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define f ′′ where f ′′ ≡ of-int-poly (Mp f ) :: ′a mod-ring poly
have f ′′: f ′′ = of-int-poly f unfolding f ′′-def f by simp
have rel-f [transfer-rule]: poly-rel f ′ f ′′

by (rule poly-rel-of-int-poly[OF f ′], simp add: f ′′ f )
from g have g ′: g ′ = of-int-poly-i ff-ops (Mp g) by simp
define g ′′ where g ′′ ≡ of-int-poly (Mp g) :: ′a mod-ring poly
have g ′′: g ′′ = of-int-poly g unfolding g ′′-def g by simp
have rel-g[transfer-rule]: poly-rel g ′ g ′′

by (rule poly-rel-of-int-poly[OF g ′], simp add: g ′′ g)
obtain a ′′ b ′′ where eucl: bezout-coefficients f ′′ g ′′ = (a ′′,b ′′) by force
from bezout-coefficients-i[unfolded rel-fun-def rel-prod-conv, rule-format, OF rel-f

rel-g,
unfolded res split eucl]

have rel[transfer-rule]: poly-rel a ′ a ′′ poly-rel b ′ b ′′ by auto
with to-int-poly-i have a: a = to-int-poly a ′′

and b: b = to-int-poly b ′′ unfolding a b by auto
from bezout-coefficients-mod-int [OF f ′′ g ′′ cop eucl a b]
show f ∗ a + g ∗ b =m 1 .
show Mp a = a Mp b = b unfolding a b by (auto simp: Mp-to-int-poly)

qed

lemma euclid-ext-poly-mod-main: assumes cop: coprime-m f g
and f : Mp f = f and g: Mp g = g
and res: euclid-ext-poly-mod-main m ff-ops f g = (a,b)

shows f ∗ a + g ∗ b =m 1
Mp a = a Mp b = b

proof −
obtain a ′ b ′ where res ′: bezout-coefficients-i ff-ops (of-int-poly-i ff-ops f )
(of-int-poly-i ff-ops g) = (a ′, b ′) by force

show f ∗ a + g ∗ b =m 1
Mp a = a Mp b = b

by (insert bezout-coefficients-i-sound[OF refl f refl g cop res ′]
res [unfolded euclid-ext-poly-mod-main-def res ′], auto)

qed

end

context poly-mod-prime begin

lemmas euclid-ext-poly-mod-integer = prime-field-gen.euclid-ext-poly-mod-main
[OF prime-field.prime-field-finite-field-ops-integer ,
unfolded prime-field-def mod-ring-locale-def poly-mod-type-simps, internalize-sort

′a :: prime-card, OF type-to-set, unfolded remove-duplicate-premise, cancel-type-definition,
OF non-empty]

lemmas euclid-ext-poly-mod-uint32 = prime-field-gen.euclid-ext-poly-mod-main
[OF prime-field.prime-field-finite-field-ops32 ,
unfolded prime-field-def mod-ring-locale-def poly-mod-type-simps, internalize-sort

′a :: prime-card, OF type-to-set, unfolded remove-duplicate-premise, cancel-type-definition,
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OF non-empty]

lemmas euclid-ext-poly-mod-uint64 = prime-field-gen.euclid-ext-poly-mod-main[OF
prime-field.prime-field-finite-field-ops64 ,

unfolded prime-field-def mod-ring-locale-def poly-mod-type-simps, internalize-sort
′a :: prime-card, OF type-to-set, unfolded remove-duplicate-premise, cancel-type-definition,
OF non-empty]

lemma euclid-ext-poly-dynamic:
assumes cop: coprime-m f g and f : Mp f = f and g: Mp g = g

and res: euclid-ext-poly-dynamic p f g = (a,b)
shows f ∗ a + g ∗ b =m 1

Mp a = a Mp b = b
using euclid-ext-poly-mod-integer [OF cop f g, of p a b]

euclid-ext-poly-mod-uint32 [OF - cop f g, of p a b]
euclid-ext-poly-mod-uint64 [OF - cop f g, of p a b]
res[unfolded euclid-ext-poly-dynamic-def ] by (auto split: if-splits)

end

lemma range-sum-prod: assumes xy: x ∈ {0 ..<q} (y :: int) ∈ {0 ..<p}
shows x + q ∗ y ∈ {0 ..<p ∗ q}

proof −
{

fix x q :: int
have x ∈ {0 ..< q} ←→ 0 ≤ x ∧ x < q by auto

} note id = this
from xy have 0 : 0 ≤ x + q ∗ y by auto
have x + q ∗ y ≤ q − 1 + q ∗ y using xy by simp
also have q ∗ y ≤ q ∗ (p − 1 ) using xy by auto
finally have x + q ∗ y ≤ q − 1 + q ∗ (p − 1 ) by auto
also have . . . = p ∗ q − 1 by (simp add: field-simps)
finally show ?thesis using 0 by auto

qed

context
fixes C :: int poly

begin

context
fixes p :: int and S T D1 H1 :: int poly

begin

fun linear-hensel-main where
linear-hensel-main (Suc 0 ) = (D1 ,H1 )
| linear-hensel-main (Suc n) = (

let (D,H ) = linear-hensel-main n;
q = p ^ n;
U = poly-mod.Mp p (sdiv-poly (C − D ∗ H ) q); — H2 + H3
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(A,B) = poly-mod.dupe-monic-int p D1 H1 S T U
in (D + smult q B, H + smult q A)) — H4
| linear-hensel-main 0 = (D1 ,H1 )

lemma linear-hensel-main: assumes 1 : poly-mod.eq-m p (D1 ∗ S + H1 ∗ T ) 1
and equiv: poly-mod.eq-m p (D1 ∗ H1 ) C
and monD1 : monic D1
and normDH1 : poly-mod.Mp p D1 = D1 poly-mod.Mp p H1 = H1
and res: linear-hensel-main n = (D,H )
and n: n 6= 0
and prime: prime p — p > 1 suffices if one does not need uniqueness
and cop: poly-mod.coprime-m p D1 H1
shows poly-mod.eq-m (p^n) (D ∗ H ) C
∧ monic D
∧ poly-mod.eq-m p D D1 ∧ poly-mod.eq-m p H H1
∧ poly-mod.Mp (p^n) D = D
∧ poly-mod.Mp (p^n) H = H ∧
(poly-mod.eq-m (p^n) (D ′ ∗ H ′) C −→
poly-mod.eq-m p D ′ D1 −→
poly-mod.eq-m p H ′ H1 −→
poly-mod.Mp (p^n) D ′ = D ′ −→
poly-mod.Mp (p^n) H ′ = H ′ −→ monic D ′ −→ D ′ = D ∧ H ′ = H )

using res n
proof (induct n arbitrary: D H D ′ H ′)

case (Suc n D ′ H ′ D ′′ H ′′)
show ?case
proof (cases n = 0 )

case True
with Suc equiv monD1 normDH1 show ?thesis by auto

next
case False
hence n: n 6= 0 by auto
let ?q = p^n
let ?pq = p ∗ p^n
from prime have p: p > 1 using prime-gt-1-int by force
from n p have q: ?q > 1 by auto
from n p have pq: ?pq > 1 by (metis power-gt1-lemma)
interpret p: poly-mod-2 p using p unfolding poly-mod-2-def .
interpret q: poly-mod-2 ?q using q unfolding poly-mod-2-def .
interpret pq: poly-mod-2 ?pq using pq unfolding poly-mod-2-def .
obtain D H where rec: linear-hensel-main n = (D,H ) by force
obtain V where V : sdiv-poly (C − D ∗ H ) ?q = V by force
obtain U where U : p.Mp (sdiv-poly (C − D ∗ H ) ?q) = U by auto
obtain A B where dupe: p.dupe-monic-int D1 H1 S T U = (A,B) by force
note IH = Suc(1 )[OF rec n]
from IH
have CDH : q.eq-m (D ∗ H ) C

and monD: monic D

305



and p-eq: p.eq-m D D1 p.eq-m H H1
and norm: q.Mp D = D q.Mp H = H by auto

from n obtain k where n: n = Suc k by (cases n, auto)
have qq: ?q ∗ ?q = ?pq ∗ p^k unfolding n by simp
from Suc(2 )[unfolded n linear-hensel-main.simps, folded n, unfolded rec split

Let-def U dupe]
have D ′: D ′ = D + smult ?q B and H ′: H ′ = H + smult ?q A by auto
note dupe = p.dupe-monic-int[OF 1 monD1 dupe]
from CDH have q.Mp C − q.Mp (D ∗ H ) = 0 by simp
hence q.Mp (q.Mp C − q.Mp (D ∗ H )) = 0 by simp
hence q.Mp (C − D∗H ) = 0 by simp
from q.Mp-0-smult-sdiv-poly[OF this] have CDHq: smult ?q (sdiv-poly (C −

D ∗ H ) ?q) = C − D ∗ H .
have ADBHU : p.eq-m (A ∗ D + B ∗ H ) U using p-eq dupe(1 )

by (metis (mono-tags, lifting) p.mult-Mp(2 ) poly-mod.plus-Mp)
have pq.Mp (D ′ ∗ H ′) = pq.Mp ((D + smult ?q B) ∗ (H + smult ?q A))

unfolding D ′ H ′ by simp
also have (D + smult ?q B) ∗ (H + smult ?q A) = (D ∗ H + smult ?q (A ∗

D + B ∗ H )) + smult (?q ∗ ?q) (A ∗ B)
by (simp add: field-simps smult-distribs)

also have pq.Mp . . . = pq.Mp (D ∗ H + pq.Mp (smult ?q (A ∗ D + B ∗ H ))
+ pq.Mp (smult (?q ∗ ?q) (A ∗ B)))

using pq.plus-Mp by metis
also have pq.Mp (smult (?q ∗ ?q) (A ∗ B)) = 0 unfolding qq

by (metis pq.Mp-smult-m-0 smult-smult)
finally have DH ′: pq.Mp (D ′ ∗ H ′) = pq.Mp (D ∗ H + pq.Mp (smult ?q (A ∗

D + B ∗ H ))) by simp
also have pq.Mp (smult ?q (A ∗ D + B ∗ H )) = pq.Mp (smult ?q U )

using p.Mp-lift-modulus[OF ADBHU , of ?q] by simp
also have . . . = pq.Mp (C − D ∗ H )

unfolding arg-cong[OF CDHq, of pq.Mp, symmetric] U [symmetric] V
by (rule p.Mp-lift-modulus[of - - ?q], auto)

also have pq.Mp (D ∗ H + pq.Mp (C − D ∗ H )) = pq.Mp C by simp
finally have CDH : pq.eq-m C (D ′ ∗ H ′) by simp

have deg: degree D1 = degree D using p-eq(1 ) monD1 monD
by (metis p.monic-degree-m)

have mon: monic D ′ unfolding D ′ using dupe(2 ) monD unfolding deg by
(rule monic-smult-add-small)

have normD ′: pq.Mp D ′ = D ′

unfolding D ′ pq.Mp-ident-iff poly-mod.Mp-coeff plus-poly.rep-eq coeff-smult
proof

fix i
from norm(1 ) dupe(4 ) have coeff D i ∈ {0 ..<?q} coeff B i ∈ {0 ..<p}

unfolding p.Mp-ident-iff q.Mp-ident-iff by auto
thus coeff D i + ?q ∗ coeff B i ∈ {0 ..< ?pq} by (rule range-sum-prod)

qed
have normH ′: pq.Mp H ′ = H ′

unfolding H ′ pq.Mp-ident-iff poly-mod.Mp-coeff plus-poly.rep-eq coeff-smult
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proof
fix i
from norm(2 ) dupe(3 ) have coeff H i ∈ {0 ..<?q} coeff A i ∈ {0 ..<p}

unfolding p.Mp-ident-iff q.Mp-ident-iff by auto
thus coeff H i + ?q ∗ coeff A i ∈ {0 ..< ?pq} by (rule range-sum-prod)

qed
have eq: p.eq-m D D ′ p.eq-m H H ′ unfolding D ′ H ′ n

poly-eq-iff p.Mp-coeff p.M-def by (auto simp: field-simps)
with p-eq have eq: p.eq-m D ′ D1 p.eq-m H ′ H1 by auto
{

assume CDH ′′: pq.eq-m C (D ′′ ∗ H ′′)
and DH1 ′′: p.eq-m D1 D ′′ p.eq-m H1 H ′′

and norm ′′: pq.Mp D ′′ = D ′′ pq.Mp H ′′ = H ′′

and monD ′′: monic D ′′

from q.Dp-Mp-eq[of D ′′] obtain d B ′ where D ′′: D ′′ = q.Mp d + smult ?q
B ′ by auto

from q.Dp-Mp-eq[of H ′′] obtain h A ′ where H ′′: H ′′ = q.Mp h + smult ?q
A ′ by auto

{
fix A B
assume ∗: pq.Mp (q.Mp A + smult ?q B) = q.Mp A + smult ?q B
have p.Mp B = B unfolding p.Mp-ident-iff
proof

fix i
from arg-cong[OF ∗, of λ f . coeff f i, unfolded pq.Mp-coeff pq.M-def ]

have coeff (q.Mp A + smult ?q B) i ∈ {0 ..< ?pq} using ∗ pq.Mp-ident-iff
by blast

hence sum: coeff (q.Mp A) i + ?q ∗ coeff B i ∈ {0 ..< ?pq} by auto
have q.Mp (q.Mp A) = q.Mp A by auto

from this[unfolded q.Mp-ident-iff ] have A: coeff (q.Mp A) i ∈ {0 ..< p^n}
by auto

{
assume coeff B i < 0 hence coeff B i ≤ −1 by auto
from mult-left-mono[OF this, of ?q] q.m1 have ?q ∗ coeff B i ≤ −?q

by simp
with A sum have False by auto

} hence coeff B i ≥ 0 by force
moreover
{

assume coeff B i ≥ p
from mult-left-mono[OF this, of ?q] q.m1 have ?q ∗ coeff B i ≥ ?pq by

simp
with A sum have False by auto

} hence coeff B i < p by force
ultimately show coeff B i ∈ {0 ..< p} by auto

qed
} note norm-convert = this
from norm-convert[OF norm ′′(1 )[unfolded D ′′]] have normB ′: p.Mp B ′ = B ′

.
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from norm-convert[OF norm ′′(2 )[unfolded H ′′]] have normA ′: p.Mp A ′ = A ′

.
let ?d = q.Mp d
let ?h = q.Mp h
{

assume lt: degree ?d < degree B ′

hence eq: degree D ′′ = degree B ′ unfolding D ′′ using q.m1 p.m1
by (subst degree-add-eq-right, auto)

from lt have [simp]: coeff ?d (degree B ′) = 0 by (rule coeff-eq-0 )
from monD ′′[unfolded eq, unfolded D ′′, simplified] False q.m1 lt have False

by (metis mod-mult-self1-is-0 poly-mod.M-def q.M-1 zero-neq-one)
}
hence deg-dB ′: degree ?d ≥ degree B ′ by presburger
{

assume eq: degree ?d = degree B ′ and B ′: B ′ 6= 0
let ?B = coeff B ′ (degree B ′)
from normB ′[unfolded p.Mp-ident-iff , rule-format, of degree B ′] B ′

have ?B ∈ {0 ..<p} − {0} by simp
hence bnds: ?B > 0 ?B < p by auto
have degD ′′: degree D ′′ ≤ degree ?d unfolding D ′′ using eq by (simp add:

degree-add-le)
have ?q ∗ ?B ≥ 1 ∗ 1 by (rule mult-mono, insert q.m1 bnds, auto)
moreover have coeff D ′′ (degree ?d) = 1 + ?q ∗ ?B using monD ′′

unfolding D ′′ using eq
by (metis D ′′ coeff-smult monD ′′ plus-poly.rep-eq poly-mod.Dp-Mp-eq

poly-mod.degree-m-eq-monic poly-mod.plus-Mp(1 )
q.Mp-smult-m-0 q.m1 q.monic-Mp q.plus-Mp(2 ))

ultimately have gt: coeff D ′′ (degree ?d) > 1 by auto
hence coeff D ′′ (degree ?d) 6= 0 by auto
hence degree D ′′ ≥ degree ?d by (rule le-degree)
with degree-add-le-max[of ?d smult ?q B ′, folded D ′′] eq
have deg: degree D ′′ = degree ?d using degD ′′ by linarith
from gt[folded this] have ¬ monic D ′′ by auto
with monD ′′ have False by auto

}
with deg-dB ′ have deg-dB2 : B ′ = 0 ∨ degree B ′ < degree ?d by fastforce
have d: q.Mp D ′′ = ?d unfolding D ′′

by (metis add.right-neutral poly-mod.Mp-smult-m-0 poly-mod.plus-Mp)
have h: q.Mp H ′′ = ?h unfolding H ′′

by (metis add.right-neutral poly-mod.Mp-smult-m-0 poly-mod.plus-Mp)
from CDH ′′ have pq.Mp C = pq.Mp (D ′′ ∗ H ′′) by simp
from arg-cong[OF this, of q.Mp]
have q.Mp C = q.Mp (D ′′ ∗ H ′′)

using p.m1 q.Mp-product-modulus by auto
also have . . . = q.Mp (q.Mp D ′′ ∗ q.Mp H ′′) by simp
also have . . . = q.Mp (?d ∗ ?h) unfolding d h by simp
finally have eqC : q.eq-m (?d ∗ ?h) C by auto
have d1 : p.eq-m ?d D1 unfolding d[symmetric] using DH1 ′′

using assms(4 ) n p.Mp-product-modulus p.m1 by auto
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have h1 : p.eq-m ?h H1 unfolding h[symmetric] using DH1 ′′

using assms(5 ) n p.Mp-product-modulus p.m1 by auto
have mond: monic (q.Mp d) using monD ′′ deg-dB2 unfolding D ′′

using d q.monic-Mp[OF monD ′′] by simp
from eqC d1 h1 mond IH [of q.Mp d q.Mp h] have IH : ?d = D ?h = H by

auto
from deg-dB2 [unfolded IH ] have degB ′: B ′ = 0 ∨ degree B ′ < degree D by

auto
from IH have D ′′: D ′′ = D + smult ?q B ′ and H ′′: H ′′ = H + smult ?q A ′

unfolding D ′′ H ′′ by auto
have pq.Mp (D ′′ ∗ H ′′) = pq.Mp (D ′ ∗ H ′) using CDH ′′ CDH by simp
also have pq.Mp (D ′′ ∗ H ′′) = pq.Mp ((D + smult ?q B ′) ∗ (H + smult ?q

A ′))
unfolding D ′′ H ′′ by simp

also have (D + smult ?q B ′) ∗ (H + smult ?q A ′) = (D ∗ H + smult ?q (A ′

∗ D + B ′ ∗ H )) + smult (?q ∗ ?q) (A ′ ∗ B ′)
by (simp add: field-simps smult-distribs)

also have pq.Mp . . . = pq.Mp (D ∗ H + pq.Mp (smult ?q (A ′ ∗ D + B ′ ∗
H )) + pq.Mp (smult (?q ∗ ?q) (A ′ ∗ B ′)))

using pq.plus-Mp by metis
also have pq.Mp (smult (?q ∗ ?q) (A ′ ∗ B ′)) = 0 unfolding qq

by (metis pq.Mp-smult-m-0 smult-smult)
finally have pq.Mp (D ∗ H + pq.Mp (smult ?q (A ′ ∗ D + B ′ ∗ H )))
= pq.Mp (D ∗ H + pq.Mp (smult ?q (A ∗ D + B ∗ H ))) unfolding DH ′

by simp
hence pq.Mp (smult ?q (A ′ ∗ D + B ′ ∗ H )) = pq.Mp (smult ?q (A ∗ D + B

∗ H ))
by (metis (no-types, lifting) add-diff-cancel-left ′ poly-mod.minus-Mp(1 )

poly-mod.plus-Mp(2 ))
hence p.Mp (A ′ ∗ D + B ′ ∗ H ) = p.Mp (A ∗ D + B ∗ H ) unfolding

poly-eq-iff p.Mp-coeff pq.Mp-coeff coeff-smult
by (insert p, auto simp: p.M-def pq.M-def )

hence p.Mp (A ′ ∗ D1 + B ′ ∗ H1 ) = p.Mp (A ∗ D1 + B ∗ H1 ) using p-eq
by (metis p.mult-Mp(2 ) poly-mod.plus-Mp)

hence eq: p.eq-m (A ′ ∗ D1 + B ′ ∗ H1 ) U using dupe(1 ) by auto
have degree D = degree D1 using monD monD1

arg-cong[OF p-eq(1 ), of degree]
p.degree-m-eq-monic[OF - p.m1 ] by auto

hence B ′ = 0 ∨ degree B ′ < degree D1 using degB ′ by simp
from dupe(5 )[OF cop eq this normDH1 (1 ) normA ′ normB ′ prime] have A ′

= A B ′ = B by auto
hence D ′′ = D ′ H ′′ = H ′ unfolding D ′′ H ′′ D ′ H ′ by auto

}
thus ?thesis using normD ′ normH ′ CDH mon eq by simp

qed
qed simp
end
end
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definition linear-hensel-binary :: int ⇒ nat ⇒ int poly ⇒ int poly ⇒ int poly ⇒
int poly × int poly where

linear-hensel-binary p n C D H = (let
(S ,T ) = euclid-ext-poly-dynamic p D H
in linear-hensel-main C p S T D H n)

lemma (in poly-mod-prime) unique-hensel-binary:
assumes prime: prime p
and cop: coprime-m D H and eq: eq-m (D ∗ H ) C
and normalized-input: Mp D = D Mp H = H
and monic-input: monic D
and n: n 6= 0

shows ∃ ! (D ′,H ′). — D ′, H ′ are computed via linear-hensel-binary
poly-mod.eq-m (p^n) (D ′ ∗ H ′) C — the main result: equivalence mod p^n
∧ monic D ′ — monic output
∧ eq-m D D ′ ∧ eq-m H H ′ — apply ‘mod p‘ on D ′ and H ′ yields D and H again
∧ poly-mod.Mp (p^n) D ′ = D ′ ∧ poly-mod.Mp (p^n) H ′ = H ′ — output is

normalized
proof −

obtain D ′ H ′ where hensel-result: linear-hensel-binary p n C D H = (D ′,H ′)
by force

from m1 have p: p > 1 .
obtain S T where ext: euclid-ext-poly-dynamic p D H = (S ,T ) by force
obtain D1 H1 where main: linear-hensel-main C p S T D H n = (D1 ,H1 ) by

force
from hensel-result[unfolded linear-hensel-binary-def ext split Let-def main]
have id: D1 = D ′ H1 = H ′ by auto
note eucl = euclid-ext-poly-dynamic [OF cop normalized-input ext]
from linear-hensel-main [OF eucl(1 )

eq monic-input normalized-input main [unfolded id] n prime cop]
show ?thesis by (intro ex1I , auto)

qed

context
fixes C :: int poly

begin

lemma hensel-step-main: assumes
one-q: poly-mod.eq-m q (D ∗ S + H ∗ T ) 1

and one-p: poly-mod.eq-m p (D1 ∗ S1 + H1 ∗ T1 ) 1
and CDHq: poly-mod.eq-m q C (D ∗ H )
and D1D: poly-mod.eq-m p D1 D
and H1H : poly-mod.eq-m p H1 H
and S1S : poly-mod.eq-m p S1 S
and T1T : poly-mod.eq-m p T1 T
and mon: monic D
and mon1 : monic D1
and q: q > 1
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and p: p > 1
and D1 : poly-mod.Mp p D1 = D1
and H1 : poly-mod.Mp p H1 = H1
and S1 : poly-mod.Mp p S1 = S1
and T1 : poly-mod.Mp p T1 = T1
and D: poly-mod.Mp q D = D
and H : poly-mod.Mp q H = H
and S : poly-mod.Mp q S = S
and T : poly-mod.Mp q T = T
and U1 : U1 = poly-mod.Mp p (sdiv-poly (C − D ∗ H ) q)
and dupe1 : dupe-monic-dynamic p D1 H1 S1 T1 U1 = (A,B)
and D ′: D ′ = D + smult q B
and H ′: H ′ = H + smult q A
and U2 : U2 = poly-mod.Mp q (sdiv-poly (S∗D ′ + T∗H ′ − 1 ) p)
and dupe2 : dupe-monic-dynamic q D H S T U2 = (A ′,B ′)
and rq: r = p ∗ q
and pq: p dvd q
and S ′: S ′ = poly-mod.Mp r (S − smult p A ′)
and T ′: T ′ = poly-mod.Mp r (T − smult p B ′)

shows poly-mod.eq-m r C (D ′ ∗ H ′)
poly-mod.Mp r D ′ = D ′

poly-mod.Mp r H ′ = H ′

poly-mod.Mp r S ′ = S ′

poly-mod.Mp r T ′ = T ′

poly-mod.eq-m r (D ′ ∗ S ′ + H ′ ∗ T ′) 1
monic D ′

unfolding rq
proof −

from pq obtain k where qp: q = p ∗ k unfolding dvd-def by auto
from arg-cong[OF qp, of sgn] q p have k0 : k > 0 unfolding sgn-mult by (auto

simp: sgn-1-pos)
from qp have qq: q ∗ q = p ∗ q ∗ k by auto
let ?r = p ∗ q
interpret poly-mod-2 p by (standard, insert p, auto)
interpret q: poly-mod-2 q by (standard, insert q, auto)
from p q have r : ?r > 1 by (simp add: less-1-mult)
interpret r : poly-mod-2 ?r using r unfolding poly-mod-2-def .
have Mp-conv: Mp (q.Mp x) = Mp x for x unfolding qp

by (rule Mp-product-modulus[OF refl k0 ])
from arg-cong[OF CDHq, of Mp, unfolded Mp-conv] have Mp C = Mp (Mp D
∗ Mp H )

by simp
also have Mp D = Mp D1 using D1D by simp
also have Mp H = Mp H1 using H1H by simp
finally have CDHp: eq-m C (D1 ∗ H1 ) by simp
have Mp U1 = U1 unfolding U1 by simp
note dupe1 = dupe-monic-dynamic[OF dupe1 one-p mon1 D1 H1 S1 T1 this]
have q.Mp U2 = U2 unfolding U2 by simp
note dupe2 = q.dupe-monic-dynamic[OF dupe2 one-q mon D H S T this]
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from CDHq have q.Mp C − q.Mp (D ∗ H ) = 0 by simp
hence q.Mp (q.Mp C − q.Mp (D ∗ H )) = 0 by simp
hence q.Mp (C − D∗H ) = 0 by simp
from q.Mp-0-smult-sdiv-poly[OF this] have CDHq: smult q (sdiv-poly (C − D ∗

H ) q) = C − D ∗ H .
{

fix A B
have Mp (A ∗ D1 + B ∗ H1 ) = Mp (Mp (A ∗ D1 ) + Mp (B ∗ H1 )) by simp
also have Mp (A ∗ D1 ) = Mp (A ∗ Mp D1 ) by simp
also have . . . = Mp (A ∗ D) unfolding D1D by simp
also have Mp (B ∗ H1 ) = Mp (B ∗ Mp H1 ) by simp
also have . . . = Mp (B ∗ H ) unfolding H1H by simp
finally have Mp (A ∗ D1 + B ∗ H1 ) = Mp (A ∗ D + B ∗ H ) by simp

} note D1H1 = this
have r .Mp (D ′ ∗ H ′) = r .Mp ((D + smult q B) ∗ (H + smult q A))

unfolding D ′ H ′ by simp
also have (D + smult q B) ∗ (H + smult q A) = (D ∗ H + smult q (A ∗ D +

B ∗ H )) + smult (q ∗ q) (A ∗ B)
by (simp add: field-simps smult-distribs)

also have r .Mp . . . = r .Mp (D ∗ H + r .Mp (smult q (A ∗ D + B ∗ H )) + r .Mp
(smult (q ∗ q) (A ∗ B)))

using r .plus-Mp by metis
also have r .Mp (smult (q ∗ q) (A ∗ B)) = 0 unfolding qq

by (metis r .Mp-smult-m-0 smult-smult)
also have r .Mp (smult q (A ∗ D + B ∗ H )) = r .Mp (smult q U1 )
proof (rule Mp-lift-modulus[of - - q])

show Mp (A ∗ D + B ∗ H ) = Mp U1 using dupe1 (1 ) unfolding D1H1 by
simp

qed
also have . . . = r .Mp (C − D ∗ H )

unfolding arg-cong[OF CDHq, of r .Mp, symmetric]
using Mp-lift-modulus[of U1 sdiv-poly (C − D ∗ H ) q q] unfolding U1
by simp

also have r .Mp (D ∗ H + r .Mp (C − D ∗ H ) + 0 ) = r .Mp C by simp
finally show CDH : r .eq-m C (D ′ ∗ H ′) by simp
have degree D1 = degree (Mp D1 ) using mon1 by simp
also have . . . = degree D unfolding D1D using mon by simp
finally have deg-eq: degree D1 = degree D by simp
show mon: monic D ′ unfolding D ′ using dupe1 (2 ) mon unfolding deg-eq by

(rule monic-smult-add-small)
have Mp (S ∗ D ′ + T ∗ H ′ − 1 ) = Mp (Mp (D ∗ S + H ∗ T ) + (smult q (S ∗

B + T ∗ A) − 1 ))
unfolding D ′ H ′ plus-Mp by (simp add: field-simps smult-distribs)

also have Mp (D ∗ S + H ∗ T ) = Mp (Mp (D1 ∗ Mp S) + Mp (H1 ∗ Mp T ))
using D1H1 [of S T ] by (simp add: ac-simps)

also have . . . = 1 using one-p unfolding S1S [symmetric] T1T [symmetric] by
simp

also have Mp (1 + (smult q (S ∗ B + T ∗ A) − 1 )) = Mp (smult q (S ∗ B +
T ∗ A)) by simp
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also have . . . = 0 unfolding qp by (metis Mp-smult-m-0 smult-smult)
finally have Mp (S ∗ D ′ + T ∗ H ′ − 1 ) = 0 .
from Mp-0-smult-sdiv-poly[OF this]
have SDTH : smult p (sdiv-poly (S ∗ D ′ + T ∗ H ′ − 1 ) p) = S ∗ D ′ + T ∗ H ′

− 1 .
have swap: q ∗ p = p ∗ q by simp
have r .Mp (D ′ ∗ S ′ + H ′ ∗ T ′) =

r .Mp ((D + smult q B) ∗ (S − smult p A ′) + (H + smult q A) ∗ (T − smult
p B ′))

unfolding D ′ S ′ H ′ T ′ rq using r .plus-Mp r .mult-Mp by metis
also have . . . = r .Mp ((D ∗ S + H ∗ T +

smult q (B ∗ S + A ∗ T )) − smult p (A ′ ∗ D + B ′ ∗ H ) − smult ?r (A ∗ B ′

+ B ∗ A ′))
by (simp add: field-simps smult-distribs)

also have . . . = r .Mp ((D ∗ S + H ∗ T +
smult q (B ∗ S + A ∗ T )) − r .Mp (smult p (A ′ ∗ D + B ′ ∗ H )) − r .Mp (smult

?r (A ∗ B ′ + B ∗ A ′)))
using r .plus-Mp r .minus-Mp by metis

also have r .Mp (smult ?r (A ∗ B ′ + B ∗ A ′)) = 0 by simp
also have r .Mp (smult p (A ′ ∗ D + B ′ ∗ H )) = r .Mp (smult p U2 )

using q.Mp-lift-modulus[OF dupe2 (1 ), of p] unfolding swap .
also have . . . = r .Mp (S ∗ D ′ + T ∗ H ′ − 1 )

unfolding arg-cong[OF SDTH , of r .Mp, symmetric]
using q.Mp-lift-modulus[of U2 sdiv-poly (S ∗ D ′ + T ∗ H ′ − 1 ) p p]
unfolding U2 swap by simp

also have S ∗ D ′ + T ∗ H ′ − 1 = S ∗ D + T ∗ H + smult q (B ∗ S + A ∗
T ) − 1

unfolding D ′ H ′ by (simp add: field-simps smult-distribs)
also have r .Mp (D ∗ S + H ∗ T + smult q (B ∗ S + A ∗ T ) −

r .Mp (S ∗ D + T ∗ H + smult q (B ∗ S + A ∗ T ) − 1 ) − 0 )
= 1 by simp

finally show 1 : r .eq-m (D ′ ∗ S ′ + H ′ ∗ T ′) 1 by simp
show D ′: r .Mp D ′= D ′ unfolding D ′ r .Mp-ident-iff poly-mod.Mp-coeff plus-poly.rep-eq

coeff-smult
proof

fix n
from D dupe1 (4 ) have coeff D n ∈ {0 ..<q} coeff B n ∈ {0 ..<p}

unfolding q.Mp-ident-iff Mp-ident-iff by auto
thus coeff D n + q ∗ coeff B n ∈ {0 ..<?r} by (metis range-sum-prod)

qed
show H ′: r .Mp H ′= H ′ unfolding H ′ r .Mp-ident-iff poly-mod.Mp-coeff plus-poly.rep-eq

coeff-smult
proof

fix n
from H dupe1 (3 ) have coeff H n ∈ {0 ..<q} coeff A n ∈ {0 ..<p}

unfolding q.Mp-ident-iff Mp-ident-iff by auto
thus coeff H n + q ∗ coeff A n ∈ {0 ..<?r} by (metis range-sum-prod)

qed
show poly-mod.Mp ?r S ′ = S ′ poly-mod.Mp ?r T ′ = T ′
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unfolding S ′ T ′ rq by auto
qed

definition hensel-step where
hensel-step p q S1 T1 D1 H1 S T D H = (

let U = poly-mod.Mp p (sdiv-poly (C − D ∗ H ) q); — Z2 and Z3
(A,B) = dupe-monic-dynamic p D1 H1 S1 T1 U ;
D ′ = D + smult q B; — Z4
H ′ = H + smult q A;
U ′ = poly-mod.Mp q (sdiv-poly (S∗D ′ + T∗H ′ − 1 ) p); — Z5 + Z6
(A ′,B ′) = dupe-monic-dynamic q D H S T U ′;
q ′ = p ∗ q;
S ′ = poly-mod.Mp q ′ (S − smult p A ′); — Z7
T ′ = poly-mod.Mp q ′ (T − smult p B ′)

in (S ′,T ′,D ′,H ′))

definition quadratic-hensel-step q S T D H = hensel-step q q S T D H S T D H

lemma quadratic-hensel-step-code[code]:
quadratic-hensel-step q S T D H =
(let dupe = dupe-monic-dynamic q D H S T ; — this will share the conversions

of D H S T
U = poly-mod.Mp q (sdiv-poly (C − D ∗ H ) q);
(A, B) = dupe U ;
D ′ = D + Polynomial.smult q B;
H ′ = H + Polynomial.smult q A;
U ′ = poly-mod.Mp q (sdiv-poly (S ∗ D ′ + T ∗ H ′ − 1 ) q);
(A ′, B ′) = dupe U ′;
q ′ = q ∗ q;
S ′ = poly-mod.Mp q ′ (S − Polynomial.smult q A ′);
T ′ = poly-mod.Mp q ′ (T − Polynomial.smult q B ′)

in (S ′, T ′, D ′, H ′))
unfolding quadratic-hensel-step-def [unfolded hensel-step-def ] Let-def ..

definition simple-quadratic-hensel-step where — do not compute new values S ′

and T ′

simple-quadratic-hensel-step q S T D H = (
let U = poly-mod.Mp q (sdiv-poly (C − D ∗ H ) q); — Z2 + Z3
(A,B) = dupe-monic-dynamic q D H S T U ;
D ′ = D + smult q B; — Z4
H ′ = H + smult q A

in (D ′,H ′))

lemma hensel-step: assumes step: hensel-step p q S1 T1 D1 H1 S T D H = (S ′,
T ′, D ′, H ′)

and one-p: poly-mod.eq-m p (D1 ∗ S1 + H1 ∗ T1 ) 1
and mon1 : monic D1
and p: p > 1
and CDHq: poly-mod.eq-m q C (D ∗ H )
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and one-q: poly-mod.eq-m q (D ∗ S + H ∗ T ) 1
and D1D: poly-mod.eq-m p D1 D
and H1H : poly-mod.eq-m p H1 H
and S1S : poly-mod.eq-m p S1 S
and T1T : poly-mod.eq-m p T1 T
and mon: monic D
and q: q > 1
and D1 : poly-mod.Mp p D1 = D1
and H1 : poly-mod.Mp p H1 = H1
and S1 : poly-mod.Mp p S1 = S1
and T1 : poly-mod.Mp p T1 = T1
and D: poly-mod.Mp q D = D
and H : poly-mod.Mp q H = H
and S : poly-mod.Mp q S = S
and T : poly-mod.Mp q T = T
and rq: r = p ∗ q
and pq: p dvd q

shows
poly-mod.eq-m r C (D ′ ∗ H ′)
poly-mod.eq-m r (D ′ ∗ S ′ + H ′ ∗ T ′) 1
poly-mod.Mp r D ′ = D ′

poly-mod.Mp r H ′ = H ′

poly-mod.Mp r S ′ = S ′

poly-mod.Mp r T ′ = T ′

poly-mod.Mp p D1 = poly-mod.Mp p D ′

poly-mod.Mp p H1 = poly-mod.Mp p H ′

poly-mod.Mp p S1 = poly-mod.Mp p S ′

poly-mod.Mp p T1 = poly-mod.Mp p T ′

monic D ′

proof −
define U where U : U = poly-mod.Mp p (sdiv-poly (C − D ∗ H ) q)
note step = step[unfolded hensel-step-def Let-def , folded U ]
obtain A B where dupe1 : dupe-monic-dynamic p D1 H1 S1 T1 U = (A,B) by

force
note step = step[unfolded dupe1 split]
from step have D ′: D ′ = D + smult q B and H ′: H ′ = H + smult q A

by (auto split: prod.splits)
define U ′ where U ′: U ′ = poly-mod.Mp q (sdiv-poly (S ∗ D ′ + T ∗ H ′ − 1 )

p)
obtain A ′ B ′ where dupe2 : dupe-monic-dynamic q D H S T U ′ = (A ′,B ′) by

force
from step[folded D ′ H ′, folded U ′, unfolded dupe2 split, folded rq]
have S ′: S ′ = poly-mod.Mp r (S − Polynomial.smult p A ′) and

T ′: T ′ = poly-mod.Mp r (T − Polynomial.smult p B ′) by auto
from hensel-step-main[OF one-q one-p CDHq D1D H1H S1S T1T mon mon1 q

p D1 H1 S1 T1 D H S T U
dupe1 D ′ H ′ U ′ dupe2 rq pq S ′ T ′]

show poly-mod.eq-m r (D ′ ∗ S ′ + H ′ ∗ T ′) 1
poly-mod.eq-m r C (D ′ ∗ H ′)
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poly-mod.Mp r D ′ = D ′

poly-mod.Mp r H ′ = H ′

poly-mod.Mp r S ′ = S ′

poly-mod.Mp r T ′ = T ′

monic D ′ by auto
from pq obtain s where q: q = p ∗ s by (metis dvdE)
show poly-mod.Mp p D1 = poly-mod.Mp p D ′

poly-mod.Mp p H1 = poly-mod.Mp p H ′

unfolding q D ′ D1D H ′ H1H
by (metis add.right-neutral poly-mod.Mp-smult-m-0 poly-mod.plus-Mp(2 ) smult-smult)+

from ‹q > 1 › have q0 : q > 0 by auto
show poly-mod.Mp p S1 = poly-mod.Mp p S ′

poly-mod.Mp p T1 = poly-mod.Mp p T ′

unfolding S ′ S1S T ′ T1T poly-mod-2 .Mp-product-modulus[OF poly-mod-2 .intro[OF
‹p > 1 ›] rq q0 ]

by (metis group-add-class.diff-0-right poly-mod.Mp-smult-m-0 poly-mod.minus-Mp(2 ))+

qed

lemma quadratic-hensel-step: assumes step: quadratic-hensel-step q S T D H =
(S ′, T ′, D ′, H ′)

and CDH : poly-mod.eq-m q C (D ∗ H )
and one: poly-mod.eq-m q (D ∗ S + H ∗ T ) 1
and D: poly-mod.Mp q D = D
and H : poly-mod.Mp q H = H
and S : poly-mod.Mp q S = S
and T : poly-mod.Mp q T = T
and mon: monic D
and q: q > 1
and rq: r = q ∗ q

shows
poly-mod.eq-m r C (D ′ ∗ H ′)
poly-mod.eq-m r (D ′ ∗ S ′ + H ′ ∗ T ′) 1
poly-mod.Mp r D ′ = D ′

poly-mod.Mp r H ′ = H ′

poly-mod.Mp r S ′ = S ′

poly-mod.Mp r T ′ = T ′

poly-mod.Mp q D = poly-mod.Mp q D ′

poly-mod.Mp q H = poly-mod.Mp q H ′

poly-mod.Mp q S = poly-mod.Mp q S ′

poly-mod.Mp q T = poly-mod.Mp q T ′

monic D ′

proof (atomize(full), goal-cases)
case 1
from hensel-step[OF step[unfolded quadratic-hensel-step-def ] one mon q CDH

one refl refl refl refl mon q D H S T D H S T rq]
show ?case by auto

qed
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context
fixes p :: int and S1 T1 D1 H1 :: int poly

begin
private lemma decrease[termination-simp]: ¬ j ≤ 1 =⇒ odd j =⇒ Suc (j div 2 )
< j by presburger

fun quadratic-hensel-loop where
quadratic-hensel-loop (j :: nat) = (

if j ≤ 1 then (p, S1 , T1 , D1 , H1 ) else
if even j then

(case quadratic-hensel-loop (j div 2 ) of
(q, S , T , D, H ) ⇒

let qq = q ∗ q in
(case quadratic-hensel-step q S T D H of — quadratic step
(S ′, T ′, D ′, H ′) ⇒ (qq, S ′, T ′, D ′, H ′)))

else — odd j
(case quadratic-hensel-loop (j div 2 + 1 ) of

(q, S , T , D, H ) ⇒
(case quadratic-hensel-step q S T D H of — quadratic step
(S ′, T ′, D ′, H ′) ⇒

let qq = q ∗ q; pj = qq div p; down = poly-mod.Mp pj in
(pj, down S ′, down T ′, down D ′, down H ′))))

definition quadratic-hensel-main j = (case quadratic-hensel-loop j of
(qq, S , T , D, H ) ⇒ (D, H ))

declare quadratic-hensel-loop.simps[simp del]

— unroll the definition of hensel-loop so that in outermost iteration we can use
simple-hensel-step
lemma quadratic-hensel-main-code[code]: quadratic-hensel-main j = (

if j ≤ 1 then (D1 , H1 )
else if even j
then (case quadratic-hensel-loop (j div 2 ) of

(q, S , T , D, H ) ⇒
simple-quadratic-hensel-step q S T D H )

else (case quadratic-hensel-loop (j div 2 + 1 ) of
(q, S , T , D, H ) ⇒
(case simple-quadratic-hensel-step q S T D H of
(D ′, H ′) ⇒ let down = poly-mod.Mp (q ∗ q div p) in (down D ′, down

H ′))))
unfolding quadratic-hensel-loop.simps[of j] quadratic-hensel-main-def Let-def
by (simp split: if-splits prod.splits option.splits sum.splits

add: quadratic-hensel-step-code simple-quadratic-hensel-step-def Let-def )

context
fixes j :: nat
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assumes 1 : poly-mod.eq-m p (D1 ∗ S1 + H1 ∗ T1 ) 1
and CDH1 : poly-mod.eq-m p C (D1 ∗ H1 )
and mon1 : monic D1
and p: p > 1
and D1 : poly-mod.Mp p D1 = D1
and H1 : poly-mod.Mp p H1 = H1
and S1 : poly-mod.Mp p S1 = S1
and T1 : poly-mod.Mp p T1 = T1
and j: j ≥ 1

begin

lemma quadratic-hensel-loop:
assumes quadratic-hensel-loop j = (q, S , T , D, H )
shows (poly-mod.eq-m q C (D ∗ H ) ∧ monic D
∧ poly-mod.eq-m p D1 D ∧ poly-mod.eq-m p H1 H
∧ poly-mod.eq-m q (D ∗ S + H ∗ T ) 1
∧ poly-mod.Mp q D = D ∧ poly-mod.Mp q H = H
∧ poly-mod.Mp q S = S ∧ poly-mod.Mp q T = T
∧ q = p^j)

using j assms
proof (induct j arbitrary: q S T D H rule: less-induct)

case (less j q ′ S ′ T ′ D ′ H ′)
note res = less(3 )
interpret poly-mod-2 p using p by (rule poly-mod-2 .intro)
let ?hens = quadratic-hensel-loop
note simp[simp] = quadratic-hensel-loop.simps[of j]
show ?case
proof (cases j = 1 )

case True
show ?thesis using res simp unfolding True using CDH1 1 mon1 D1 H1 S1

T1 by auto
next

case False
with less(2 ) have False: (j ≤ 1 ) = False by auto
have mod-2 : k ≥ 1 =⇒ poly-mod-2 (p^k) for k by (intro poly-mod-2 .intro,

insert p, auto)
{

fix k D
assume ∗: k ≥ 1 k ≤ j poly-mod.Mp (p ^ k) D = D
from ∗(2 ) have {0 ..<p ^ k} ⊆ {0 ..<p ^ j} using p by auto
hence poly-mod.Mp (p ^ j) D = D

unfolding poly-mod-2 .Mp-ident-iff [OF mod-2 [OF less(2 )]]
using ∗(3 )[unfolded poly-mod-2 .Mp-ident-iff [OF mod-2 [OF ∗(1 )]]] by blast

} note lift-norm = this
show ?thesis
proof (cases even j)

case True
let ?j2 = j div 2
from False have lt: ?j2 < j 1 ≤ ?j2 by auto
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obtain q S T D H where rec: ?hens ?j2 = (q, S , T , D, H ) by (cases ?hens
?j2 , auto)

note IH = less(1 )[OF lt rec]
from IH
have ∗: poly-mod.eq-m q C (D ∗ H )

poly-mod.eq-m q (D ∗ S + H ∗ T ) 1
monic D
eq-m D1 D
eq-m H1 H
poly-mod.Mp q D = D
poly-mod.Mp q H = H
poly-mod.Mp q S = S
poly-mod.Mp q T = T
q = p ^ ?j2
by auto

hence norm: poly-mod.Mp (p ^ j) D = D poly-mod.Mp (p ^ j) H = H
poly-mod.Mp (p ^ j) S = S poly-mod.Mp (p ^ j) T = T
using lift-norm[OF lt(2 )] by auto

from lt p have q: q > 1 unfolding ∗ by simp
let ?step = quadratic-hensel-step q S T D H
obtain S2 T2 D2 H2 where step-res: ?step = (S2 , T2 , D2 , H2 ) by (cases

?step, auto)
note step = quadratic-hensel-step[OF step-res ∗(1 ,2 ,6−9 ,3 ) q refl]
let ?qq = q ∗ q
{

fix D D2
assume poly-mod.Mp q D = poly-mod.Mp q D2

from arg-cong[OF this, of Mp] Mp-Mp-pow-is-Mp[of ?j2 , OF - p, folded
∗(10 )] lt

have Mp D = Mp D2 by simp
} note shrink = this
have ∗∗: poly-mod.eq-m ?qq C (D2 ∗ H2 )

poly-mod.eq-m ?qq (D2 ∗ S2 + H2 ∗ T2 ) 1
monic D2
eq-m D1 D2
eq-m H1 H2
poly-mod.Mp ?qq D2 = D2
poly-mod.Mp ?qq H2 = H2
poly-mod.Mp ?qq S2 = S2
poly-mod.Mp ?qq T2 = T2
using step shrink[of H H2 ] shrink[of D D2 ] ∗(4−7 ) by auto

note simp = simp False if-False rec split Let-def step-res option.simps
from True have j: p ^ j = p ^ (2 ∗ ?j2 ) by auto
with ∗(10 ) have qq: q ∗ q = p ^ j

by (simp add: power-mult-distrib semiring-normalization-rules(30−))
from res[unfolded simp] True have id ′: q ′ = ?qq S ′ = S2 T ′ = T2 D ′ = D2

H ′ = H2 by auto
show ?thesis unfolding id ′ using ∗∗ by (auto simp: qq)

next
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case odd: False
hence False ′: (even j) = False by auto
let ?j2 = j div 2 + 1
from False odd have lt: ?j2 < j 1 ≤ ?j2 by presburger+
obtain q S T D H where rec: ?hens ?j2 = (q, S , T , D, H ) by (cases ?hens

?j2 , auto)
note IH = less(1 )[OF lt rec]

note simp = simp False if-False rec sum.simps split Let-def False ′ option.simps
from IH have ∗: poly-mod.eq-m q C (D ∗ H )

poly-mod.eq-m q (D ∗ S + H ∗ T ) 1
monic D
eq-m D1 D
eq-m H1 H
poly-mod.Mp q D = D
poly-mod.Mp q H = H
poly-mod.Mp q S = S
poly-mod.Mp q T = T
q = p ^ ?j2
by auto

hence norm: poly-mod.Mp (p ^ j) D = D poly-mod.Mp (p ^ j) H = H
using lift-norm[OF lt(2 )] lt by auto

from lt p have q: q > 1 unfolding ∗
using mod-2 poly-mod-2 .m1 by blast

let ?step = quadratic-hensel-step q S T D H
obtain S2 T2 D2 H2 where step-res: ?step = (S2 , T2 , D2 , H2 ) by (cases

?step, auto)
have dvd: q dvd q by auto
note step = quadratic-hensel-step[OF step-res ∗(1 ,2 ,6−9 ,3 ) q refl]
let ?qq = q ∗ q
{

fix D D2
assume poly-mod.Mp q D = poly-mod.Mp q D2

from arg-cong[OF this, of Mp] Mp-Mp-pow-is-Mp[of ?j2 , OF - p, folded
∗(10 )] lt

have Mp D = Mp D2 by simp
} note shrink = this
have ∗∗: poly-mod.eq-m ?qq C (D2 ∗ H2 )

poly-mod.eq-m ?qq (D2 ∗ S2 + H2 ∗ T2 ) 1
monic D2
eq-m D1 D2
eq-m H1 H2
poly-mod.Mp ?qq D2 = D2
poly-mod.Mp ?qq H2 = H2
poly-mod.Mp ?qq S2 = S2
poly-mod.Mp ?qq T2 = T2
using step shrink[of H H2 ] shrink[of D D2 ] ∗(4−7 ) by auto

note simp = simp False if-False rec split Let-def step-res option.simps
from odd have j: Suc j = 2 ∗ ?j2 by auto
from arg-cong[OF this, of λ j. p ^ j div p]
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have pj: p ^ j = q ∗ q div p and qq: q ∗ q = p ^ j ∗ p unfolding ∗(10 )
using p

by (simp add: power-mult-distrib semiring-normalization-rules(30−))+
let ?pj = p ^ j
from res[unfolded simp] pj
have id:

q ′ = p^j
S ′ = poly-mod.Mp ?pj S2
T ′ = poly-mod.Mp ?pj T2
D ′ = poly-mod.Mp ?pj D2
H ′ = poly-mod.Mp ?pj H2
by auto

interpret pj: poly-mod-2 ?pj by (rule mod-2 [OF ‹1 ≤ j›])
have norm: pj.Mp D ′ = D ′ pj.Mp H ′ = H ′

unfolding id by (auto simp: poly-mod.Mp-Mp)
have mon: monic D ′ using pj.monic-Mp[OF step(11 )] unfolding id .
have id ′: Mp (pj.Mp D) = Mp D for D using ‹1 ≤ j›

by (simp add: Mp-Mp-pow-is-Mp p)
have eq: eq-m D1 D2 =⇒ eq-m D1 (pj.Mp D2 ) for D1 D2

unfolding id ′ by auto
have id ′′: pj.Mp (poly-mod.Mp (q ∗ q) D) = pj.Mp D for D

unfolding qq by (rule pj.Mp-product-modulus[OF refl], insert p, auto)
{

fix D1 D2
assume poly-mod.eq-m (q ∗ q) D1 D2
hence poly-mod.Mp (q ∗ q) D1 = poly-mod.Mp (q ∗ q) D2 by simp
from arg-cong[OF this, of pj.Mp]
have pj.Mp D1 = pj.Mp D2 unfolding id ′′ .

} note eq ′ = this
from eq ′[OF step(1 )] have eq1 : pj.eq-m C (D ′ ∗ H ′) unfolding id by simp
from eq ′[OF step(2 )] have eq2 : pj.eq-m (D ′ ∗ S ′ + H ′ ∗ T ′) 1

unfolding id by (metis pj.mult-Mp pj.plus-Mp)
from ∗∗(4−5 ) have eq3 : eq-m D1 D ′ eq-m H1 H ′

unfolding id by (auto intro: eq)
from norm mon eq1 eq2 eq3
show ?thesis unfolding id by simp

qed
qed

qed

lemma quadratic-hensel-main: assumes res: quadratic-hensel-main j = (D,H )
shows poly-mod.eq-m (p^j) C (D ∗ H )
monic D
poly-mod.eq-m p D1 D
poly-mod.eq-m p H1 H
poly-mod.Mp (p^j) D = D
poly-mod.Mp (p^j) H = H

proof (atomize(full), goal-cases)
case 1
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let ?hen = quadratic-hensel-loop j
from res obtain q S T where hen: ?hen = (q, S , T , D, H )

by (cases ?hen, auto simp: quadratic-hensel-main-def )
from quadratic-hensel-loop[OF hen] show ?case by auto

qed
end
end
end

datatype ′a factor-tree = Factor-Leaf ′a int poly | Factor-Node ′a ′a factor-tree
′a factor-tree

fun factor-node-info :: ′a factor-tree ⇒ ′a where
factor-node-info (Factor-Leaf i x) = i
| factor-node-info (Factor-Node i l r) = i

fun factors-of-factor-tree :: ′a factor-tree ⇒ int poly multiset where
factors-of-factor-tree (Factor-Leaf i x) = {#x#}
| factors-of-factor-tree (Factor-Node i l r) = factors-of-factor-tree l + factors-of-factor-tree
r

fun product-factor-tree :: int ⇒ ′a factor-tree ⇒ int poly factor-tree where
product-factor-tree p (Factor-Leaf i x) = (Factor-Leaf x x)
| product-factor-tree p (Factor-Node i l r) = (let

L = product-factor-tree p l;
R = product-factor-tree p r ;
f = factor-node-info L;
g = factor-node-info R;
fg = poly-mod.Mp p (f ∗ g)

in Factor-Node fg L R)

fun sub-trees :: ′a factor-tree ⇒ ′a factor-tree set where
sub-trees (Factor-Leaf i x) = {Factor-Leaf i x}
| sub-trees (Factor-Node i l r) = insert (Factor-Node i l r) (sub-trees l ∪ sub-trees
r)

lemma sub-trees-refl[simp]: t ∈ sub-trees t by (cases t, auto)

lemma product-factor-tree: assumes
∧

x. x ∈# factors-of-factor-tree t =⇒ poly-mod.Mp
p x = x

shows u ∈ sub-trees (product-factor-tree p t) =⇒ factor-node-info u = f =⇒
poly-mod.Mp p f = f ∧ f = poly-mod.Mp p (prod-mset (factors-of-factor-tree u))
∧

factors-of-factor-tree (product-factor-tree p t) = factors-of-factor-tree t
using assms

proof (induct t arbitrary: u f )
case (Factor-Node i l r u f )
interpret poly-mod p .
let ?L = product-factor-tree p l
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let ?R = product-factor-tree p r
let ?f = factor-node-info ?L
let ?g = factor-node-info ?R
let ?fg = Mp (?f ∗ ?g)
have Mp ?f = ?f ∧ ?f = Mp (prod-mset (factors-of-factor-tree ?L)) ∧

(factors-of-factor-tree ?L) = (factors-of-factor-tree l)
by (rule Factor-Node(1 )[OF sub-trees-refl refl], insert Factor-Node(5 ), auto)

hence IH1 : ?f = Mp (prod-mset (factors-of-factor-tree ?L))
(factors-of-factor-tree ?L) = (factors-of-factor-tree l) by blast+

have Mp ?g = ?g ∧ ?g = Mp (prod-mset (factors-of-factor-tree ?R)) ∧
(factors-of-factor-tree ?R) = (factors-of-factor-tree r)
by (rule Factor-Node(2 )[OF sub-trees-refl refl], insert Factor-Node(5 ), auto)

hence IH2 : ?g = Mp (prod-mset (factors-of-factor-tree ?R))
(factors-of-factor-tree ?R) = (factors-of-factor-tree r) by blast+

have id: (factors-of-factor-tree (product-factor-tree p (Factor-Node i l r))) =
(factors-of-factor-tree (Factor-Node i l r)) by (simp add: Let-def IH1 IH2 )

from Factor-Node(3 ) consider (root) u = Factor-Node ?fg ?L ?R
| (l) u ∈ sub-trees ?L | (r) u ∈ sub-trees ?R
by (auto simp: Let-def )

thus ?case
proof cases

case root
with Factor-Node have f : f = ?fg by auto
show ?thesis unfolding f root id by (simp add: Let-def ac-simps IH1 IH2 )

next
case l
have Mp f = f ∧ f = Mp (prod-mset (factors-of-factor-tree u))

using Factor-Node(1 )[OF l Factor-Node(4 )] Factor-Node(5 ) by auto
thus ?thesis unfolding id by blast

next
case r
have Mp f = f ∧ f = Mp (prod-mset (factors-of-factor-tree u))

using Factor-Node(2 )[OF r Factor-Node(4 )] Factor-Node(5 ) by auto
thus ?thesis unfolding id by blast

qed
qed auto

fun create-factor-tree-simple :: int poly list ⇒ unit factor-tree where
create-factor-tree-simple xs = (let n = length xs in if n ≤ 1 then Factor-Leaf ()

(hd xs)
else let i = n div 2 ;

xs1 = take i xs;
xs2 = drop i xs

in Factor-Node () (create-factor-tree-simple xs1 ) (create-factor-tree-simple xs2 )
)

declare create-factor-tree-simple.simps[simp del]

lemma create-factor-tree-simple: xs 6= [] =⇒ factors-of-factor-tree (create-factor-tree-simple
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xs) = mset xs
proof (induct xs rule: wf-induct[OF wf-measure[of length]])

case (1 xs)
from 1 (2 ) have xs: length xs 6= 0 by auto
then consider (base) length xs = 1 | (step) length xs > 1 by linarith
thus ?case
proof cases

case base
then obtain x where xs: xs = [x] by (cases xs; cases tl xs; auto)
thus ?thesis by (auto simp: create-factor-tree-simple.simps)

next
case step
let ?i = length xs div 2
let ?xs1 = take ?i xs
let ?xs2 = drop ?i xs
from step have xs1 : (?xs1 , xs) ∈ measure length ?xs1 6= [] by auto
from step have xs2 : (?xs2 , xs) ∈ measure length ?xs2 6= [] by auto

from step have id: create-factor-tree-simple xs = Factor-Node () (create-factor-tree-simple
(take ?i xs))

(create-factor-tree-simple (drop ?i xs)) unfolding create-factor-tree-simple.simps[of
xs] Let-def by auto

have xs: xs = ?xs1 @ ?xs2 by auto
show ?thesis unfolding id arg-cong[OF xs, of mset] mset-append

using 1 (1 )[rule-format, OF xs1 ] 1 (1 )[rule-format, OF xs2 ]
by auto

qed
qed

We define a better factorization tree which balances the trees according
to their degree., cf. Modern Computer Algebra, Chapter 15.5 on Multifactor
Hensel lifting.
fun partition-factors-main :: nat ⇒ ( ′a × nat) list ⇒ ( ′a × nat) list × ( ′a × nat)
list where

partition-factors-main s [] = ([], [])
| partition-factors-main s ((f ,d) # xs) = (if d ≤ s then case partition-factors-main
(s − d) xs of

(l,r) ⇒ ((f ,d) # l, r) else case partition-factors-main d xs of
(l,r) ⇒ (l, (f ,d) # r))

lemma partition-factors-main: partition-factors-main s xs = (a,b) =⇒ mset xs =
mset a + mset b

by (induct s xs arbitrary: a b rule: partition-factors-main.induct, auto split:
if-splits prod.splits)

definition partition-factors :: ( ′a × nat) list ⇒ ( ′a × nat) list × ( ′a × nat) list
where

partition-factors xs = (let n = sum-list (map snd xs) div 2 in
case partition-factors-main n xs of
([], x # y # ys) ⇒ ([x], y # ys)
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| (x # y # ys, []) ⇒ ([x], y # ys)
| pair ⇒ pair)

lemma partition-factors: partition-factors xs = (a,b) =⇒ mset xs = mset a + mset
b

unfolding partition-factors-def Let-def
by (cases partition-factors-main (sum-list (map snd xs) div 2 ) xs, auto split:

list.splits
simp: partition-factors-main)

lemma partition-factors-length: assumes ¬ length xs ≤ 1 (a,b) = partition-factors
xs

shows [termination-simp]: length a < length xs length b < length xs and a 6= []
b 6= []
proof −

obtain ys zs where main: partition-factors-main (sum-list (map snd xs) div 2 )
xs = (ys,zs) by force

note res = assms(2 )[unfolded partition-factors-def Let-def main split]
from arg-cong[OF partition-factors-main[OF main], of size] have len: length xs

= length ys + length zs by auto
with assms(1 ) have len2 : length ys + length zs ≥ 2 by auto
from res len2 have length a < length xs ∧ length b < length xs ∧ a 6= [] ∧ b 6=

[] unfolding len
by (cases ys; cases zs; cases tl ys; cases tl zs; auto)

thus length a < length xs length b < length xs a 6= [] b 6= [] by blast+
qed

fun create-factor-tree-balanced :: (int poly × nat)list ⇒ unit factor-tree where
create-factor-tree-balanced xs = (if length xs ≤ 1 then Factor-Leaf () (fst (hd xs))

else
case partition-factors xs of (l,r) ⇒ Factor-Node ()
(create-factor-tree-balanced l)
(create-factor-tree-balanced r))

definition create-factor-tree :: int poly list ⇒ unit factor-tree where
create-factor-tree xs = (let ys = map (λ f . (f , degree f )) xs;

zs = rev (sort-key snd ys)
in create-factor-tree-balanced zs)

lemma create-factor-tree-balanced: xs 6= [] =⇒ factors-of-factor-tree (create-factor-tree-balanced
xs) = mset (map fst xs)
proof (induct xs rule: create-factor-tree-balanced.induct)

case (1 xs)
show ?case
proof (cases length xs ≤ 1 )

case True
with 1 (3 ) obtain x where xs: xs = [x] by (cases xs; cases tl xs, auto)
show ?thesis unfolding xs by auto

next
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case False
obtain a b where part: partition-factors xs = (a,b) by force
note abp = this[symmetric]
note nonempty = partition-factors-length(3−4 )[OF False abp]
note IH = 1 (1 )[OF False abp nonempty(1 )] 1 (2 )[OF False abp nonempty(2 )]
show ?thesis unfolding create-factor-tree-balanced.simps[of xs] part split using

False IH partition-factors[OF part] by auto
qed

qed

lemma create-factor-tree: assumes xs 6= []
shows factors-of-factor-tree (create-factor-tree xs) = mset xs

proof −
let ?xs = rev (sort-key snd (map (λf . (f , degree f )) xs))
from assms have set xs 6= {} by auto
hence set ?xs 6= {} by auto
hence xs: ?xs 6= [] by blast
show ?thesis unfolding create-factor-tree-def Let-def create-factor-tree-balanced[OF

xs]
by (auto, induct xs, auto)

qed

context
fixes p :: int and n :: nat

begin

definition quadratic-hensel-binary :: int poly ⇒ int poly ⇒ int poly ⇒ int poly ×
int poly where

quadratic-hensel-binary C D H = (
case euclid-ext-poly-dynamic p D H of
(S ,T ) ⇒ quadratic-hensel-main C p S T D H n)

fun hensel-lifting-main :: int poly ⇒ int poly factor-tree ⇒ int poly list where
hensel-lifting-main U (Factor-Leaf - -) = [U ]
| hensel-lifting-main U (Factor-Node - l r) = (let

v = factor-node-info l;
w = factor-node-info r ;
(V ,W ) = quadratic-hensel-binary U v w
in hensel-lifting-main V l @ hensel-lifting-main W r)

definition hensel-lifting-monic :: int poly ⇒ int poly list ⇒ int poly list where
hensel-lifting-monic u vs = (if vs = [] then [] else let

pn = p^n;
C = poly-mod.Mp pn u;
tree = product-factor-tree p (create-factor-tree vs)
in hensel-lifting-main C tree)

definition hensel-lifting :: int poly ⇒ int poly list ⇒ int poly list where
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hensel-lifting f gs = (let lc = lead-coeff f ;
ilc = inverse-mod lc (p^n);
g = smult ilc f
in hensel-lifting-monic g gs)

end

context poly-mod-prime begin

context
fixes n :: nat
assumes n: n 6= 0

begin

abbreviation hensel-binary ≡ quadratic-hensel-binary p n

abbreviation hensel-main ≡ hensel-lifting-main p n

lemma hensel-binary:
assumes cop: coprime-m D H and eq: eq-m C (D ∗ H )
and normalized-input: Mp D = D Mp H = H
and monic-input: monic D
and hensel-result: hensel-binary C D H = (D ′,H ′)
shows poly-mod.eq-m (p^n) C (D ′ ∗ H ′) — the main result: equivalence mod

p^n
∧ monic D ′ — monic output
∧ eq-m D D ′ ∧ eq-m H H ′ — apply ‘mod p‘ on D ′ and H ′ yields D and H again
∧ poly-mod.Mp (p^n) D ′ = D ′ ∧ poly-mod.Mp (p^n) H ′ = H ′ — output is

normalized
proof −

from m1 have p: p > 1 .
obtain S T where ext: euclid-ext-poly-dynamic p D H = (S ,T ) by force
obtain D1 H1 where main: quadratic-hensel-main C p S T D H n = (D1 ,H1 )

by force
note hen = hensel-result[unfolded quadratic-hensel-binary-def ext split Let-def

main]
from n have n: n ≥ 1 by simp
note eucl = euclid-ext-poly-dynamic[OF cop normalized-input ext]
note main = quadratic-hensel-main[OF eucl(1 ) eq monic-input p normalized-input

eucl(2−) n main]
show ?thesis using hen main by auto

qed

lemma hensel-main:
assumes eq: eq-m C (prod-mset (factors-of-factor-tree Fs))
and

∧
F . F ∈# factors-of-factor-tree Fs =⇒ Mp F = F ∧ monic F

and hensel-result: hensel-main C Fs = Gs
and C : monic C poly-mod.Mp (p^n) C = C
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and sf : square-free-m C
and

∧
f t. t ∈ sub-trees Fs =⇒ factor-node-info t = f =⇒ f = Mp (prod-mset

(factors-of-factor-tree t))
shows poly-mod.eq-m (p^n) C (prod-list Gs) — the main result: equivalence mod

p^n
∧ factors-of-factor-tree Fs = mset (map Mp Gs)
∧ (∀ G. G ∈ set Gs −→ monic G ∧ poly-mod.Mp (p^n) G = G)

using assms
proof (induct Fs arbitrary: C Gs)

case (Factor-Leaf f fs C Gs)
thus ?case by auto

next
case (Factor-Node f l r C Gs) note ∗ = this
note simps = hensel-lifting-main.simps
note IH1 = ∗(1 )[rule-format]
note IH2 = ∗(2 )[rule-format]
note res = ∗(5 )[unfolded simps Let-def ]
note eq = ∗(3 )
note Fs = ∗(4 )
note C = ∗(6 ,7 )
note sf = ∗(8 )
note inv = ∗(9 )
interpret pn: poly-mod-2 p^n apply (unfold-locales) using m1 n by auto
let ?Mp = pn.Mp
define D where D ≡ prod-mset (factors-of-factor-tree l)
define H where H ≡ prod-mset (factors-of-factor-tree r)
let ?D = Mp D
let ?H = Mp H
let ?D ′ = factor-node-info l
let ?H ′ = factor-node-info r
obtain A B where hen: hensel-binary C ?D ′ ?H ′ = (A,B) by force
note res = res[unfolded hen split]
obtain AD where AD ′: AD = hensel-main A l by auto
obtain BH where BH ′: BH = hensel-main B r by auto
from inv[of l, OF - refl] have D ′: ?D ′ = ?D unfolding D-def by auto
from inv[of r , OF - refl] have H ′: ?H ′ = ?H unfolding H-def by auto
from eq[simplified]
have eq ′: Mp C = Mp (?D ∗ ?H ) unfolding D-def H-def by simp
from square-free-m-cong[OF sf , of ?D ∗ ?H , OF eq ′]
have sf ′: square-free-m (?D ∗ ?H ) .
from poly-mod-prime.square-free-m-prod-imp-coprime-m[OF - this]
have cop ′: coprime-m ?D ?H unfolding poly-mod-prime-def using prime .
from eq ′ have eq ′: eq-m C (?D ∗ ?H ) by simp
have monD: monic D unfolding D-def by (rule monic-prod-mset, insert Fs,

auto)
from hensel-binary[OF - - - - - hen, unfolded D ′ H ′, OF cop ′ eq ′ Mp-Mp Mp-Mp

monic-Mp[OF monD]]
have step: poly-mod.eq-m (p ^ n) C (A ∗ B) ∧ monic A ∧ eq-m ?D A ∧

eq-m ?H B ∧ ?Mp A = A ∧ ?Mp B = B .
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from res have Gs: Gs = AD @ BH by (simp add: AD ′ BH ′)
have AD: eq-m A ?D ?Mp A = A eq-m A (prod-mset (factors-of-factor-tree l))

and monA: monic A
using step by (auto simp: D-def )

note sf-fact = square-free-m-factor [OF sf ′]
from square-free-m-cong[OF sf-fact(1 )] AD have sfA: square-free-m A by auto
have IH1 : poly-mod.eq-m (p ^ n) A (prod-list AD) ∧

factors-of-factor-tree l = mset (map Mp AD) ∧
(∀G. G ∈ set AD −→ monic G ∧ ?Mp G = G)
by (rule IH1 [OF AD(3 ) Fs AD ′[symmetric] monA AD(2 ) sfA inv], auto)

have BH : eq-m B ?H pn.Mp B = B eq-m B (prod-mset (factors-of-factor-tree r))
using step by (auto simp: H-def )

from step have pn.eq-m C (A ∗ B) by simp
hence ?Mp C = ?Mp (A ∗ B) by simp
with C AD(2 ) have pn.Mp C = pn.Mp (A ∗ pn.Mp B) by simp
from arg-cong[OF this, of lead-coeff ] C
have monic (pn.Mp (A ∗ B)) by simp
then have lead-coeff (pn.Mp A) ∗ lead-coeff (pn.Mp B) = 1
by (metis lead-coeff-mult leading-coeff-neq-0 local.step mult-cancel-right2 pn.degree-m-eq

pn.m1 poly-mod.M-def poly-mod.Mp-coeff )
with monA AD(2 ) BH (2 ) have monB: monic B by simp
from square-free-m-cong[OF sf-fact(2 )] BH have sfB: square-free-m B by auto
have IH2 : poly-mod.eq-m (p ^ n) B (prod-list BH ) ∧

factors-of-factor-tree r = mset (map Mp BH ) ∧
(∀G. G ∈ set BH −→ monic G ∧ ?Mp G = G)

by (rule IH2 [OF BH (3 ) Fs BH ′[symmetric] monB BH (2 ) sfB inv], auto)
from step have ?Mp C = ?Mp (?Mp A ∗ ?Mp B) by auto
also have ?Mp A = ?Mp (prod-list AD) using IH1 by auto
also have ?Mp B = ?Mp (prod-list BH ) using IH2 by auto
finally have poly-mod.eq-m (p ^ n) C (prod-list AD ∗ prod-list BH )

by (auto simp: poly-mod.mult-Mp)
thus ?case unfolding Gs using IH1 IH2 by auto

qed

lemma hensel-lifting-monic:
assumes eq: poly-mod.eq-m p C (prod-list Fs)
and Fs:

∧
F . F ∈ set Fs =⇒ poly-mod.Mp p F = F ∧ monic F

and res: hensel-lifting-monic p n C Fs = Gs
and mon: monic (poly-mod.Mp (p^n) C )
and sf : poly-mod.square-free-m p C
shows poly-mod.eq-m (p^n) C (prod-list Gs)

mset (map (poly-mod.Mp p) Gs) = mset Fs
G ∈ set Gs =⇒ monic G ∧ poly-mod.Mp (p^n) G = G

proof −
note res = res[unfolded hensel-lifting-monic-def Let-def ]
let ?Mp = poly-mod.Mp (p ^ n)
let ?C = ?Mp C
interpret poly-mod-prime p

by (unfold-locales, insert n prime, auto)
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interpret pn: poly-mod-2 p^n using m1 n poly-mod-2 .intro by auto
from eq n have eq: eq-m (?Mp C ) (prod-list Fs)

using Mp-Mp-pow-is-Mp eq m1 n by force
have poly-mod.eq-m (p^n) C (prod-list Gs) ∧ mset (map (poly-mod.Mp p) Gs)

= mset Fs
∧ (G ∈ set Gs −→ monic G ∧ poly-mod.Mp (p^n) G = G)

proof (cases Fs = [])
case True
with res have Gs: Gs = [] by auto
from eq have Mp ?C = 1 unfolding True by simp
hence degree (Mp ?C ) = 0 by simp
with degree-m-eq-monic[OF mon m1 ] have degree ?C = 0 by simp
with mon have ?C = 1 using monic-degree-0 by blast
thus ?thesis unfolding True Gs by auto

next
case False
let ?t = create-factor-tree Fs
note tree = create-factor-tree[OF False]
from False res have hen: hensel-main ?C (product-factor-tree p ?t) = Gs by

auto
have tree1 : x ∈# factors-of-factor-tree ?t =⇒ Mp x = x for x unfolding tree

using Fs by auto
from product-factor-tree[OF tree1 sub-trees-refl refl, of ?t]
have id: (factors-of-factor-tree (product-factor-tree p ?t)) =

(factors-of-factor-tree ?t) by auto
have eq: eq-m ?C (prod-mset (factors-of-factor-tree (product-factor-tree p ?t)))

unfolding id tree using eq by auto
have id ′: Mp C = Mp ?C using n by (simp add: Mp-Mp-pow-is-Mp m1 )
have pn.eq-m ?C (prod-list Gs) ∧ mset Fs = mset (map Mp Gs) ∧ (∀G. G ∈

set Gs −→ monic G ∧ pn.Mp G = G)
by (rule hensel-main[OF eq Fs hen mon pn.Mp-Mp square-free-m-cong[OF sf

id ′], unfolded id tree],
insert product-factor-tree[OF tree1 ], auto)

thus ?thesis by auto
qed
thus poly-mod.eq-m (p^n) C (prod-list Gs)

mset (map (poly-mod.Mp p) Gs) = mset Fs
G ∈ set Gs =⇒ monic G ∧ poly-mod.Mp (p^n) G = G by blast+

qed

lemma hensel-lifting:
assumes res: hensel-lifting p n f fs = gs — result of hensel is

fact. gs
and cop: coprime (lead-coeff f ) p
and sf : poly-mod.square-free-m p f
and fact: poly-mod.factorization-m p f (c, mset fs) — input is fact. fs

mod p
and c: c ∈ {0 ..<p}
and norm: (∀fi∈set fs. set (coeffs fi) ⊆ {0 ..<p})
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shows poly-mod.factorization-m (p^n) f (lead-coeff f , mset gs) — factorization
mod p^n

sort (map degree fs) = sort (map degree gs) — degrees stay the
same∧

g. g ∈ set gs =⇒ monic g ∧ poly-mod.Mp (p^n) g = g ∧ — monic and
normalized

irreducible-m g ∧ — irreducibility even mod p
degree-m g = degree g — mod p does not change degree of g

proof −
interpret poly-mod-prime p using prime by unfold-locales
interpret q: poly-mod-2 p^n using m1 n unfolding poly-mod-2-def by auto
from fact have eq: eq-m f (smult c (prod-list fs))

and mon-fs: (∀fi∈set fs. monic (Mp fi) ∧ irreducibled-m fi)
unfolding factorization-m-def by auto

{
fix f
assume f ∈ set fs
with mon-fs norm have set (coeffs f ) ⊆ {0 ..<p} and monic (Mp f ) by auto
hence monic f using Mp-ident-iff ′ by force

} note mon-fs ′ = this
have Mp-id:

∧
f . Mp (q.Mp f ) = Mp f by (simp add: Mp-Mp-pow-is-Mp m1 n)

let ?lc = lead-coeff f
let ?q = p ^ n
define ilc where ilc ≡ inverse-mod ?lc ?q
define F where F ≡ smult ilc f
from res[unfolded hensel-lifting-def Let-def ]
have hen: hensel-lifting-monic p n F fs = gs

unfolding ilc-def F-def .
from m1 n cop have inv: q.M (ilc ∗ ?lc) = 1

by (auto simp add: q.M-def inverse-mod-pow ilc-def )
hence ilc0 : ilc 6= 0 by (cases ilc = 0 , auto)
{

fix q
assume ilc ∗ ?lc = ?q ∗ q
from arg-cong[OF this, of q.M ] have q.M (ilc ∗ ?lc) = 0

unfolding q.M-def by auto
with inv have False by auto

} note not-dvd = this
have mon: monic (q.Mp F) unfolding F-def q.Mp-coeff coeff-smult

by (subst q.degree-m-eq [OF - q.m1 ]) (auto simp: inv ilc0 [symmetric] intro:
not-dvd)

have q.Mp f = q.Mp (smult (q.M (?lc ∗ ilc)) f ) using inv by (simp add:
ac-simps)

also have . . . = q.Mp (smult ?lc F) by (simp add: F-def )
finally have f : q.Mp f = q.Mp (smult ?lc F) .
from arg-cong[OF f , of Mp]
have f-p: Mp f = Mp (smult ?lc F)

by (simp add: Mp-Mp-pow-is-Mp n m1 )
from arg-cong[OF this, of square-free-m, unfolded Mp-square-free-m] sf
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have square-free-m (smult ?lc F) by simp
from square-free-m-smultD[OF this] have sf : square-free-m F .

define c ′ where c ′ ≡ M (c ∗ ilc)
from factorization-m-smult[OF fact, of ilc, folded F-def ]
have fact: factorization-m F (c ′, mset fs) unfolding c ′-def factorization-m-def

by auto
hence eq: eq-m F (smult c ′ (prod-list fs)) unfolding factorization-m-def by auto
from factorization-m-lead-coeff [OF fact] monic-Mp[OF mon, unfolded Mp-id]

have M c ′ = 1
by auto

hence c ′: c ′ = 1 unfolding c ′-def by auto
with eq have eq: eq-m F (prod-list fs) by auto
{

fix f
assume f ∈ set fs
with mon-fs ′ norm have Mp f = f ∧ monic f unfolding Mp-ident-iff ′

by auto
} note fs = this
note hen = hensel-lifting-monic[OF eq fs hen mon sf ]
from hen(2 ) have gs-fs: mset (map Mp gs) = mset fs by auto
have eq: q.eq-m f (smult ?lc (prod-list gs))

unfolding f using arg-cong[OF hen(1 ), of λ f . q.Mp (smult ?lc f )] by simp
{

fix g
assume g: g ∈ set gs
from hen(3 )[OF - g] have mon-g: monic g and Mp-g: q.Mp g = g by auto
from g have Mp g ∈# mset (map Mp gs) by auto
from this[unfolded gs-fs] obtain f where f : f ∈ set fs and fg: eq-m f g by

auto
from mon-fs f fs have irr-f : irreducibled-m f and mon-f : monic f and Mp-f :

Mp f = f by auto
have deg: degree-m g = degree g

by (rule degree-m-eq-monic[OF mon-g m1 ])
from irr-f fg have irr-g: irreducibled-m g

unfolding irreducibled-m-def dvdm-def by simp
have q.irreducibled-m g
by (rule irreducibled-lifting[OF n - irr-g], unfold deg, rule q.degree-m-eq-monic[OF

mon-g q.m1 ])
note mon-g Mp-g deg irr-g this

} note g = this
{

fix g
assume g ∈ set gs
from g[OF this]
show monic g ∧ q.Mp g = g ∧ irreducible-m g ∧ degree-m g = degree g by

auto
}
show sort (map degree fs) = sort (map degree gs)
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proof (rule sort-key-eq-sort-key)
have mset (map degree fs) = image-mset degree (mset fs) by auto
also have . . . = image-mset degree (mset (map Mp gs)) unfolding gs-fs ..
also have . . . = mset (map degree (map Mp gs)) unfolding mset-map ..
also have map degree (map Mp gs) = map degree-m gs by auto
also have . . . = map degree gs using g(3 ) by auto
finally show mset (map degree fs) = mset (map degree gs) .

qed auto
show q.factorization-m f (lead-coeff f , mset gs)

using eq g unfolding q.factorization-m-def by auto
qed

end

end
end

theory Hensel-Lifting-Type-Based
imports Hensel-Lifting
begin

9.2 Hensel Lifting in a Type-Based Setting
lemma degree-smult-eq-iff :

degree (smult a p) = degree p ←→ degree p = 0 ∨ a ∗ lead-coeff p 6= 0
by (metis (no-types, lifting) coeff-smult degree-0 degree-smult-le le-antisym

le-degree le-zero-eq leading-coeff-0-iff )

lemma degree-smult-eqI [intro!]:
assumes degree p 6= 0 =⇒ a ∗ lead-coeff p 6= 0
shows degree (smult a p) = degree p
using assms degree-smult-eq-iff by auto

lemma degree-mult-eq2 :
assumes lc: lead-coeff p ∗ lead-coeff q 6= 0
shows degree (p ∗ q) = degree p + degree q (is - = ?r)

proof(intro antisym[OF degree-mult-le] le-degree, unfold coeff-mult)
let ?f = λi. coeff p i ∗ coeff q (?r − i)
have (

∑
i≤?r . ?f i) = sum ?f {..degree p} + sum ?f {Suc (degree p)..?r}

by (rule sum-up-index-split)
also have sum ?f {Suc (degree p)..?r} = 0

proof−
{ fix x assume x > degree p

then have coeff p x = 0 by (rule coeff-eq-0 )
then have ?f x = 0 by auto

}
then show ?thesis by (intro sum.neutral, auto)

qed
also have sum ?f {..degree p} = sum ?f {..<degree p} + ?f (degree p)
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by(fold lessThan-Suc-atMost, unfold sum.lessThan-Suc, auto)
also have sum ?f {..<degree p} = 0

proof−
{fix x assume x < degree p

then have coeff q (?r − x) = 0 by (intro coeff-eq-0 , auto)
then have ?f x = 0 by auto

}
then show ?thesis by (intro sum.neutral, auto)

qed
finally show (

∑
i≤?r . ?f i) 6= 0 using assms by (auto simp:)

qed

lemma degree-mult-eq-left-unit:
fixes p q :: ′a :: comm-semiring-1 poly
assumes unit: lead-coeff p dvd 1 and q0 : q 6= 0
shows degree (p ∗ q) = degree p + degree q

proof(intro degree-mult-eq2 notI )
from unit obtain c where lead-coeff p ∗ c = 1 by (elim dvdE ,auto)
then have c ∗ lead-coeff p = 1 by (auto simp: ac-simps)
moreover assume lead-coeff p ∗ lead-coeff q = 0

then have c ∗ lead-coeff p ∗ lead-coeff q = 0 by (auto simp: ac-simps)
ultimately have lead-coeff q = 0 by auto
with q0 show False by auto

qed

context ring-hom begin
lemma monic-degree-map-poly-hom: monic p =⇒ degree (map-poly hom p) = de-
gree p

by (auto intro: degree-map-poly)

lemma monic-map-poly-hom: monic p =⇒ monic (map-poly hom p)
by (simp add: monic-degree-map-poly-hom)

end

lemma of-nat-zero:
assumes CARD( ′a::nontriv) dvd n
shows (of-nat n :: ′a mod-ring) = 0
apply (transfer fixing: n) using assms by (presburger)

abbreviation rebase :: ′a :: nontriv mod-ring ⇒ ′b :: nontriv mod-ring (‹@-›
[100 ]100 )

where @x ≡ of-int (to-int-mod-ring x)

abbreviation rebase-poly :: ′a :: nontriv mod-ring poly ⇒ ′b :: nontriv mod-ring
poly (‹#-› [100 ]100 )

where #x ≡ of-int-poly (to-int-poly x)

lemma rebase-self [simp]:
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@x = x
by (simp add: of-int-of-int-mod-ring)

lemma map-poly-rebase [simp]:
map-poly rebase p = #p
by (induct p) simp-all

lemma rebase-poly-0 : #0 = 0
by simp

lemma rebase-poly-1 : #1 = 1
by simp

lemma rebase-poly-pCons[simp]: #pCons a p = pCons (@a) (#p)
by(cases a = 0 ∧ p = 0 , simp, fold map-poly-rebase, subst map-poly-pCons, auto)

lemma rebase-poly-self [simp]: #p = p by (induct p, auto)

lemma degree-rebase-poly-le: degree (#p) ≤ degree p
by (fold map-poly-rebase, subst degree-map-poly-le, auto)

lemma(in comm-ring-hom) degree-map-poly-unit: assumes lead-coeff p dvd 1
shows degree (map-poly hom p) = degree p
using hom-dvd-1 [OF assms] by (auto intro: degree-map-poly)

lemma rebase-poly-eq-0-iff :
(#p :: ′a :: nontriv mod-ring poly) = 0 ←→ (∀ i. (@coeff p i :: ′a mod-ring) =

0 ) (is ?l ←→ ?r)
proof(intro iffI )

assume ?l
then have coeff (#p :: ′a mod-ring poly) i = 0 for i by auto
then show ?r by auto

next
assume ?r
then have coeff (#p :: ′a mod-ring poly) i = 0 for i by auto
then show ?l by (intro poly-eqI , auto)

qed

lemma mod-mod-le:
assumes ab: (a::int) ≤ b and a0 : 0 < a and c0 : c ≥ 0 shows (c mod a) mod

b = c mod a
by (meson pos-mod-bound pos-mod-sign a0 ab less-le-trans mod-pos-pos-trivial)

locale rebase-ge =
fixes ty1 :: ′a :: nontriv itself and ty2 :: ′b :: nontriv itself
assumes card: CARD( ′a) ≤ CARD( ′b)

begin

lemma ab: int CARD( ′a) ≤ CARD( ′b) using card by auto
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lemma rebase-eq-0 [simp]:
shows (@(x :: ′a mod-ring) :: ′b mod-ring) = 0 ←→ x = 0
using card by (transfer , auto)

lemma degree-rebase-poly-eq[simp]:
shows degree (#(p :: ′a mod-ring poly) :: ′b mod-ring poly) = degree p
by (subst degree-map-poly; simp)

lemma lead-coeff-rebase-poly[simp]:
lead-coeff (#(p:: ′a mod-ring poly) :: ′b mod-ring poly) = @lead-coeff p
by simp

lemma to-int-mod-ring-rebase: to-int-mod-ring(@(x :: ′a mod-ring):: ′b mod-ring)
= to-int-mod-ring x

using card by (transfer , auto)

lemma rebase-id[simp]: @(@(x:: ′a mod-ring) :: ′b mod-ring) = @x
using card by (transfer , auto)

lemma rebase-poly-id[simp]: #(#(p:: ′a mod-ring poly) :: ′b mod-ring poly) = #p
by (induct p, auto)

end

locale rebase-dvd =
fixes ty1 :: ′a :: nontriv itself and ty2 :: ′b :: nontriv itself
assumes dvd: CARD( ′b) dvd CARD( ′a)

begin

lemma ab: CARD( ′a) ≥ CARD( ′b) by (rule dvd-imp-le[OF dvd], auto)

lemma rebase-id[simp]: @(@(x:: ′b mod-ring) :: ′a mod-ring) = x using ab by
(transfer , auto)

lemma rebase-poly-id[simp]: #(#(p:: ′b mod-ring poly) :: ′a mod-ring poly) = p by
(induct p, auto)

lemma rebase-of-nat[simp]: (@(of-nat n :: ′a mod-ring) :: ′b mod-ring) = of-nat n
apply transfer apply (rule mod-mod-cancel) using dvd by presburger

lemma mod-1-lift-nat:
assumes (of-int (int x) :: ′a mod-ring) = 1
shows (of-int (int x) :: ′b mod-ring) = 1

proof −
from assms have int x mod CARD( ′a) = 1

by transfer
then have x mod CARD( ′a) = 1
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by (simp add: of-nat-mod [symmetric])
then have x mod CARD( ′b) = 1

by (metis dvd mod-mod-cancel one-mod-card)
then have int x mod CARD( ′b) = 1

by (simp add: of-nat-mod [symmetric])
then show ?thesis

by transfer
qed

sublocale comm-ring-hom rebase :: ′a mod-ring ⇒ ′b mod-ring
proof

fix x y :: ′a mod-ring
show hom-add: (@(x+y) :: ′b mod-ring) = @x + @y

by transfer (simp add: mod-simps dvd mod-mod-cancel)
show (@(x∗y) :: ′b mod-ring) = @x ∗ @y

by transfer (simp add: mod-simps dvd mod-mod-cancel)
qed auto

lemma of-nat-CARD-eq-0 [simp]: (of-nat CARD( ′a) :: ′b mod-ring) = 0
using dvd by (transfer , presburger)

interpretation map-poly-hom: map-poly-comm-ring-hom rebase :: ′a mod-ring ⇒
′b mod-ring..

sublocale poly: comm-ring-hom rebase-poly :: ′a mod-ring poly ⇒ ′b mod-ring poly
by (fold map-poly-rebase, unfold-locales)

lemma poly-rebase[simp]: @poly p x = poly (#(p :: ′a mod-ring poly) :: ′b mod-ring
poly) (@(x:: ′a mod-ring) :: ′b mod-ring)

by (fold map-poly-rebase poly-map-poly, rule)

lemma rebase-poly-smult[simp]: (#(smult a p :: ′a mod-ring poly) :: ′b mod-ring
poly) = smult (@a) (#p)

by(induct p, auto simp: hom-distribs)

end

locale rebase-mult =
fixes ty1 :: ′a :: nontriv itself

and ty2 :: ′b :: nontriv itself
and ty3 :: ′d :: nontriv itself

assumes d: CARD( ′a) = CARD( ′b) ∗ CARD( ′d)
begin

sublocale rebase-dvd ty1 ty2 using d by (unfold-locales, auto)

lemma rebase-mult-eq[simp]: (of-nat CARD( ′d) ∗ a :: ′a mod-ring) = of-nat CARD( ′d)
∗ a ′←→ (@a :: ′b mod-ring) = @a ′

proof−
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from dvd obtain d ′ where CARD( ′a) = d ′ ∗ CARD( ′b) by (elim dvdE , auto)
then show ?thesis by (transfer , auto simp:d)

qed

lemma rebase-poly-smult-eq[simp]:
fixes a a ′ :: ′a mod-ring poly
defines d ≡ of-nat CARD( ′d) :: ′a mod-ring
shows smult d a = smult d a ′ ←→ (#a :: ′b mod-ring poly) = #a ′ (is ?l ←→

?r)
proof (intro iffI )

assume l: ?l show ?r
proof (intro poly-eqI )

fix n
from l have coeff (smult d a) n = coeff (smult d a ′) n by auto
then have d ∗ coeff a n = d ∗ coeff a ′ n by auto
from this[unfolded d-def rebase-mult-eq]
show coeff (#a :: ′b mod-ring poly) n = coeff (#a ′) n by auto

qed
next

assume r : ?r show ?l
proof(intro poly-eqI )

fix n
from r have coeff (#a :: ′b mod-ring poly) n = coeff (#a ′) n by auto
then have (@coeff a n :: ′b mod-ring) = @coeff a ′ n by auto
from this[folded d-def rebase-mult-eq]
show coeff (smult d a) n = coeff (smult d a ′) n by auto

qed
qed

lemma rebase-eq-0-imp-ex-mult:
(@(a :: ′a mod-ring) :: ′b mod-ring) = 0 =⇒ (∃ c :: ′d mod-ring. a = of-nat

CARD( ′b) ∗ @c) (is ?l =⇒ ?r)
proof(cases CARD( ′a) = CARD( ′b))

case True then show ?l =⇒ ?r
by (transfer , auto)

next
case False
have [simp]: int CARD( ′b) mod int CARD( ′a) = int CARD( ′b)

by(rule mod-pos-pos-trivial, insert ab False, auto)
{

fix a
assume a: 0 ≤ a a < int CARD( ′a) and mod: a mod int CARD( ′b) = 0
from mod have int CARD( ′b) dvd a by auto
then obtain i where ∗: a = int CARD( ′b) ∗ i by (elim dvdE , auto)
from ∗ a have i < int CARD( ′d) by (simp add:d)
moreover

hence (i mod int CARD( ′a)) = i
by (metis dual-order .order-iff-strict less-le-trans not-le of-nat-less-iff ∗ a(1 )

a(2 )

338



mod-pos-pos-trivial mult-less-cancel-right1 nat-neq-iff nontriv of-nat-1 )
with ∗ a have a = int CARD( ′b) ∗ (i mod int CARD( ′a)) mod int CARD( ′a)

by (auto simp:d)
moreover from ∗ a have 0 ≤ i
using linordered-semiring-strict-class.mult-pos-neg of-nat-0-less-iff zero-less-card-finite

by (simp add: zero-le-mult-iff )
ultimately have ∃ i≥0 . i < int CARD( ′d) ∧ a = int CARD( ′b) ∗ (i mod int

CARD( ′a)) mod int CARD( ′a)
by (auto intro: exI [of - i])

}
then show ?l =⇒ ?r by (transfer , auto simp:d)

qed

lemma rebase-poly-eq-0-imp-ex-smult:
(#(p :: ′a mod-ring poly) :: ′b mod-ring poly) = 0 =⇒
(∃ p ′ :: ′d mod-ring poly. (p = 0 ←→ p ′ = 0 ) ∧ degree p ′ ≤ degree p ∧ p = smult

(of-nat CARD( ′b)) (#p ′))
(is ?l =⇒ ?r)

proof(induct p)
case 0
then show ?case by (intro exI [of - 0 ],auto)

next
case IH : (pCons a p)
from IH (3 ) have (#p :: ′b mod-ring poly) = 0 by auto
from IH (2 )[OF this] obtain p ′ :: ′d mod-ring poly
where ∗: p = 0 ←→ p ′ = 0 degree p ′ ≤ degree p p = smult (of-nat CARD( ′b))

(#p ′) by (elim exE conjE)
from IH have (@a :: ′b mod-ring) = 0 by auto
from rebase-eq-0-imp-ex-mult[OF this]
obtain a ′ :: ′d mod-ring where a ′: of-nat CARD( ′b) ∗ (@a ′) = a by auto
from IH (1 ) have pCons a p 6= 0 by auto
moreover from ∗(1 ,2 ) have degree (pCons a ′ p ′) ≤ degree (pCons a p) by auto
moreover from a ′ ∗(3 )
have pCons a p = smult (of-nat CARD( ′b)) (#pCons a ′ p ′) by auto
ultimately show ?case by (intro exI [of - pCons a ′ p ′], auto)

qed

end

lemma mod-mod-nat[simp]: a mod b mod (b ∗ c :: nat) = a mod b
by (simp add: mod-mult2-eq)

locale Knuth-ex-4-6-2-22-base =
fixes ty-p :: ′p :: nontriv itself

and ty-q :: ′q :: nontriv itself
and ty-pq :: ′pq :: nontriv itself

assumes pq: CARD( ′pq) = CARD( ′p) ∗ CARD( ′q)
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and p-dvd-q: CARD( ′p) dvd CARD( ′q)
begin

sublocale rebase-q-to-p: rebase-dvd TYPE( ′q) TYPE( ′p) using p-dvd-q by (unfold-locales,
auto)
sublocale rebase-pq-to-p: rebase-mult TYPE( ′pq) TYPE( ′p) TYPE( ′q) using pq
by (unfold-locales, auto)
sublocale rebase-pq-to-q: rebase-mult TYPE( ′pq) TYPE( ′q) TYPE( ′p) using pq
by (unfold-locales, auto)

sublocale rebase-p-to-q: rebase-ge TYPE( ′p) TYPE ( ′q) by (unfold-locales, insert
p-dvd-q, simp add: dvd-imp-le)
sublocale rebase-p-to-pq: rebase-ge TYPE( ′p) TYPE ( ′pq) by (unfold-locales, simp
add: pq)
sublocale rebase-q-to-pq: rebase-ge TYPE( ′q) TYPE ( ′pq) by (unfold-locales, simp
add: pq)

definition p ≡ if (ty-p :: ′p itself ) = ty-p then CARD( ′p) else undefined
lemma p[simp]: p ≡ CARD( ′p) unfolding p-def by auto

definition q ≡ if (ty-q :: ′q itself ) = ty-q then CARD( ′q) else undefined
lemma q[simp]: q = CARD( ′q) unfolding q-def by auto

lemma p1 : int p > 1
using nontriv [where ? ′a = ′p] p by simp

lemma q1 : int q > 1
using nontriv [where ? ′a = ′q] q by simp

lemma q0 : int q > 0
using q1 by auto

lemma pq2 [simp]: CARD( ′pq) = p ∗ q using pq by simp

lemma qq-eq-0 [simp]: (of-nat CARD( ′q) ∗ of-nat CARD( ′q) :: ′pq mod-ring) = 0
proof−
have (of-nat (q ∗ q) :: ′pq mod-ring) = 0 by (rule of-nat-zero, auto simp: p-dvd-q)
then show ?thesis by auto

qed

lemma of-nat-q[simp]: of-nat q :: ′q mod-ring ≡ 0 by (fold of-nat-card-eq-0 , auto)

lemma rebase-rebase[simp]: (@(@(x:: ′pq mod-ring) :: ′q mod-ring) :: ′p mod-ring)
= @x

using p-dvd-q by (transfer) (simp add: mod-mod-cancel)

lemma rebase-rebase-poly[simp]: (#(#(f :: ′pq mod-ring poly) :: ′q mod-ring poly) ::
′p mod-ring poly) = #f

by (induct f , auto)
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end

definition dupe-monic where
dupe-monic D H S T U = (case pdivmod-monic (T ∗ U ) D of (q,r) ⇒ (S ∗ U

+ H ∗ q, r))

lemma dupe-monic:
fixes D :: ′a :: prime-card mod-ring poly
assumes 1 : D∗S + H∗T = 1
and mon: monic D
and dupe: dupe-monic D H S T U = (A,B)
shows A ∗ D + B ∗ H = U B = 0 ∨ degree B < degree D

coprime D H =⇒ A ′ ∗ D + B ′ ∗ H = U =⇒ B ′ = 0 ∨ degree B ′ < degree D
=⇒ A ′ = A ∧ B ′ = B
proof −

obtain q r where div: pdivmod-monic (T ∗ U ) D = (q,r) by force
from dupe[unfolded dupe-monic-def div split]
have A: A = (S ∗ U + H ∗ q) and B: B = r by auto
from pdivmod-monic[OF mon div] have TU : T ∗ U = D ∗ q + r and

deg: r = 0 ∨ degree r < degree D by auto
hence r : r = T ∗ U − D ∗ q by simp
have A ∗ D + B ∗ H = (S ∗ U + H ∗ q) ∗ D + (T ∗ U − D ∗ q) ∗ H unfolding

A B r by simp
also have ... = (D ∗ S + H ∗ T ) ∗ U by (simp add: field-simps)
also have D ∗ S + H ∗ T = 1 using 1 by simp
finally show eq: A ∗ D + B ∗ H = U by simp
show degB: B = 0 ∨ degree B < degree D using deg unfolding B by (cases r

= 0 , auto)
assume another : A ′ ∗ D + B ′ ∗ H = U and degB ′: B ′ = 0 ∨ degree B ′ < degree

D
and cop: coprime D H

from degB have degB: B = 0 ∨ degree B < degree D by auto
from degB ′ have degB ′: B ′ = 0 ∨ degree B ′ < degree D by auto
from mon have D0 : D 6= 0 by auto
from another eq have A ′ ∗ D + B ′ ∗ H = A ∗ D + B ∗ H by simp
from uniqueness-poly-equality[OF cop degB ′ degB D0 this]
show A ′ = A ∧ B ′ = B by auto

qed

locale Knuth-ex-4-6-2-22-main = Knuth-ex-4-6-2-22-base p-ty q-ty pq-ty
for p-ty :: ′p::nontriv itself
and q-ty :: ′q::nontriv itself
and pq-ty :: ′pq::nontriv itself +
fixes a b :: ′p mod-ring poly and u :: ′pq mod-ring poly and v w :: ′q mod-ring

poly
assumes uvw: (#u :: ′q mod-ring poly) = v ∗ w

and degu: degree u = degree v + degree w
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and avbw: (a ∗ #v + b ∗ #w :: ′p mod-ring poly) = 1
and monic-v: monic v

and bv: degree b < degree v
begin

lemma deg-v: degree (#v :: ′p mod-ring poly) = degree v
using monic-v by (simp add: of-int-hom.monic-degree-map-poly-hom)

lemma u0 : u 6= 0 using degu bv by auto

lemma ex-f : ∃ f :: ′p mod-ring poly. u = #v ∗ #w + smult (of-nat q) (#f )
proof−
from uvw have (#(u − #v ∗ #w) :: ′q mod-ring poly) = 0 by (auto simp:hom-distribs)
from rebase-pq-to-q.rebase-poly-eq-0-imp-ex-smult[OF this]
obtain f :: ′p mod-ring poly where u − #v ∗ #w = smult (of-nat q) (#f ) by

force
then have u = #v ∗ #w + smult (of-nat q) (#f ) by (metis add-diff-cancel-left ′

add-diff-eq)
then show ?thesis by (intro exI [of - f ], auto)

qed

definition f :: ′p mod-ring poly ≡ SOME f . u = #v ∗ #w + smult (of-nat q)
(#f )

lemma u: u = #v ∗ #w + smult (of-nat q) (#f )
using ex-f [folded some-eq-ex] f-def by auto

lemma t-ex: ∃ t :: ′p mod-ring poly. degree (b ∗ f − t ∗ #v) < degree v
proof−

define v ′ where v ′ ≡ #v :: ′p mod-ring poly
from monic-v
have 1 : lead-coeff v ′ = 1 by (simp add: v ′-def deg-v)
then have 4 : v ′ 6= 0 by auto
obtain t rem :: ′p mod-ring poly
where pseudo-divmod (b ∗ f ) v ′ = (t,rem) by force
from pseudo-divmod[OF 4 this, folded, unfolded 1 ]
have b ∗ f = v ′ ∗ t + rem and deg: rem = 0 ∨ degree rem < degree v ′ by auto
then have rem = b ∗ f − t ∗ v ′ by(auto simp: ac-simps)
also have ... = b ∗ f − #(#t :: ′p mod-ring poly) ∗ v ′ (is - = - − ?t ∗ v ′) by

simp
also have ... = b ∗ f − ?t ∗ #v

by (unfold v ′-def , rule)
finally have degree rem = degree ... by auto
with deg bv have degree (b ∗ f − ?t ∗ #v :: ′p mod-ring poly) < degree v by

(auto simp: v ′-def deg-v)
then show ?thesis by (rule exI )

qed
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definition t where t ≡ SOME t :: ′p mod-ring poly. degree (b ∗ f − t ∗ #v) <
degree v

definition v ′ ≡ b ∗ f − t ∗ #v
definition w ′ ≡ a ∗ f + t ∗ #w

lemma f : w ′ ∗ #v + v ′ ∗ #w = f (is ?l = -)
proof−

have ?l = f ∗ (a ∗ #v + b ∗ #w :: ′p mod-ring poly) by (simp add: v ′-def w ′-def
ring-distribs ac-simps)

also
from avbw have (#(a ∗ #v + b ∗ #w) :: ′p mod-ring poly) = 1 by auto
then have (a ∗ #v + b ∗ #w :: ′p mod-ring poly) = 1 by auto

finally show ?thesis by auto
qed

lemma degv ′: degree v ′ < degree v by (unfold v ′-def t-def , rule someI-ex, rule t-ex)

lemma degqf [simp]: degree (smult (of-nat CARD( ′q)) (#f :: ′pq mod-ring poly))
= degree (#f :: ′pq mod-ring poly)
proof (intro degree-smult-eqI )

assume degree (#f :: ′pq mod-ring poly) 6= 0
then have f0 : degree f 6= 0 by simp
moreover define l where l ≡ lead-coeff f
ultimately have l0 : l 6= 0 by auto
then show of-nat CARD( ′q) ∗ lead-coeff (#f :: ′pq mod-ring poly) 6= 0
apply (unfold rebase-p-to-pq.lead-coeff-rebase-poly, fold l-def )
apply (transfer)
using q1 by (simp add: pq mod-mod-cancel)

qed

lemma degw ′: degree w ′ ≤ degree w
proof(rule ccontr)

let ?f = #f :: ′pq mod-ring poly
let ?qf = smult (of-nat q) (#f ) :: ′pq mod-ring poly

have degree (#w:: ′p mod-ring poly) ≤ degree w by (rule degree-rebase-poly-le)
also assume ¬ degree w ′ ≤ degree w
then have 1 : degree w < degree w ′ by auto
finally have 2 : degree (#w :: ′p mod-ring poly) < degree w ′ by auto
then have w ′0 : w ′ 6= 0 by auto

have 3 : degree (#v ∗ w ′) = degree (#v :: ′p mod-ring poly) + degree w ′

using monic-v[unfolded] by (intro degree-monic-mult[OF - w ′0 ], auto simp:
deg-v)

have degree f ≤ degree u
proof(rule ccontr)

assume ¬?thesis
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then have ∗: degree u < degree f by auto
with degu have 1 : degree v + degree w < degree f by auto
define lcf where lcf ≡ lead-coeff f
with 1 have lcf0 : lcf 6= 0 by (unfold, auto)
have degree f = degree ?qf by simp
also have ... = degree (#v ∗ #w + ?qf )
proof(rule sym, rule degree-add-eq-right)

from 1 degree-mult-le[of #v:: ′pq mod-ring poly #w]
show degree (#v ∗ #w :: ′pq mod-ring poly) < degree ?qf by simp

qed
also have ... < degree f using ∗ u by auto
finally show False by auto

qed
with degu have degree f ≤ degree v + degree w by auto
also note f [symmetric]
finally have degree (w ′ ∗ #v + v ′ ∗ #w) ≤ degree v + degree w.
moreover have degree (w ′ ∗ #v + v ′ ∗ #w) = degree (w ′ ∗ #v)
proof(rule degree-add-eq-left)

have degree (v ′ ∗ #w) ≤ degree v ′ + degree (#w :: ′p mod-ring poly)
by(rule degree-mult-le)

also have ... < degree v + degree (#w :: ′p mod-ring poly) using degv ′ by auto
also have ... < degree (#v :: ′p mod-ring poly) + degree w ′ using 2 by (auto

simp: deg-v)
also have ... = degree (#v ∗ w ′) using 3 by auto
finally show degree (v ′ ∗ #w) < degree (w ′ ∗ #v) by (auto simp: ac-simps)

qed
ultimately have degree (w ′ ∗ #v) ≤ degree v + degree w by auto
moreover

from 3 have degree (w ′ ∗ #v) = degree w ′ + degree v by (auto simp: ac-simps
deg-v)

with 1 have degree w + degree v < degree (w ′ ∗ #v) by auto
ultimately show False by auto

qed

abbreviation qv ′ ≡ smult (of-nat q) (#v ′) :: ′pq mod-ring poly
abbreviation qw ′ ≡ smult (of-nat q) (#w ′) :: ′pq mod-ring poly

abbreviation V ≡ #v + qv ′

abbreviation W ≡ #w + qw ′

lemma vV : v = #V by (auto simp: v ′-def hom-distribs)

lemma wW : w = #W by (auto simp: w ′-def hom-distribs)

lemma uVW : u = V ∗ W
by (subst u, fold f , simp add: ring-distribs add.left-cancel smult-add-right[symmetric]

hom-distribs)

lemma degV : degree V = degree v

344



and lcV : lead-coeff V = @lead-coeff v
and degW : degree W = degree w

proof−
from p1 q1 have int p < int p ∗ int q by auto
from less-trans[OF - this]
have 1 : l < int p =⇒ l < int p ∗ int q for l by auto
have degree qv ′ = degree (#v ′ :: ′pq mod-ring poly)
proof (rule degree-smult-eqI , safe, unfold rebase-p-to-pq.degree-rebase-poly-eq)

define l where l ≡ lead-coeff v ′

assume degree v ′ > 0
then have lead-coeff v ′ 6= 0 by auto
then have (@l :: ′pq mod-ring) 6= 0 by (simp add: l-def )
then have (of-nat q ∗ @l :: ′pq mod-ring) 6= 0

apply (transfer fixing:q-ty) using p-dvd-q p1 q1 1 by auto
moreover assume of-nat q ∗ coeff (#v ′) (degree v ′) = (0 :: ′pq mod-ring)
ultimately show False by (auto simp: l-def )

qed
also from degv ′ have ... < degree (#v:: ′pq mod-ring poly) by simp
finally have ∗: degree qv ′ < degree (#v :: ′pq mod-ring poly).
from degree-add-eq-left[OF ∗]
show ∗∗: degree V = degree v by (simp add: v ′-def )

from ∗ have coeff qv ′ (degree v) = 0 by (intro coeff-eq-0 , auto)
then show lead-coeff V = @lead-coeff v by (unfold ∗∗, auto simp: v ′-def )

with u0 uVW have degree (V ∗ W ) = degree V + degree W
by (intro degree-mult-eq-left-unit, auto simp: monic-v)

from this[folded uVW , unfolded degu ∗∗] show degree W = degree w by auto
qed

end

locale Knuth-ex-4-6-2-22-prime = Knuth-ex-4-6-2-22-main ty-p ty-q ty-pq a b u v
w

for ty-p :: ′p :: prime-card itself
and ty-q :: ′q :: nontriv itself
and ty-pq :: ′pq :: nontriv itself
and a b u v w +
assumes coprime: coprime (#v :: ′p mod-ring poly) (#w)

begin

lemma coprime-preserves: coprime (#V :: ′p mod-ring poly) (#W )
apply (intro coprimeI ,simp add: rebase-q-to-p.of-nat-CARD-eq-0 [simplified] hom-distribs)
using coprime by (elim coprimeE , auto)

lemma pre-unique:
assumes f2 : w ′′ ∗ #v + v ′′ ∗ #w = f

and degv ′′: degree v ′′ < degree v
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shows v ′′ = v ′ ∧ w ′′ = w ′

proof(intro conjI )
from f f2
have w ′ ∗ #v + v ′ ∗ #w = w ′′ ∗ #v + v ′′ ∗ #w by auto
also have ... − w ′′ ∗ #v = v ′′ ∗ #w by auto
also have ... − v ′ ∗ #w = (v ′′− v ′) ∗ #w by (auto simp: left-diff-distrib)
finally have ∗: (w ′ − w ′′) ∗ #v = (v ′′− v ′) ∗ #w by (auto simp: left-diff-distrib)
then have #v dvd (v ′′ − v ′) ∗ #w by (auto intro: dvdI [of - - w ′ − w ′′] simp:

ac-simps)
with coprime have #v dvd v ′′ − v ′

by (simp add: coprime-dvd-mult-left-iff )
moreover have degree (v ′′ − v ′) < degree v by (rule degree-diff-less[OF degv ′′

degv ′])
ultimately have v ′′ − v ′ = 0

by (metis deg-v degree-0 gr-implies-not-zero poly-divides-conv0 )
then show v ′′ = v ′ by auto
with ∗ have (w ′ − w ′′) ∗ #v = 0 by auto
with bv have w ′ − w ′′ = 0

by (metis deg-v degree-0 gr-implies-not-zero mult-eq-0-iff )
then show w ′′ = w ′ by auto

qed

lemma unique:
assumes vV2 : v = #V2 and wW2 : w = #W2 and uVW2 : u = V2 ∗ W2

and degV2 : degree V2 = degree v and degW2 : degree W2 = degree w
and lc: lead-coeff V2 = @lead-coeff v

shows V2 = V W2 = W
proof−
from vV2 have (#(V2 − #v) :: ′q mod-ring poly) = 0 by (auto simp: hom-distribs)
from rebase-pq-to-q.rebase-poly-eq-0-imp-ex-smult[OF this]
obtain v ′′ :: ′p mod-ring poly
where deg: degree v ′′ ≤ degree (V2 − #v)

and v ′′: V2 − #v = smult (of-nat CARD( ′q)) (#v ′′) by (elim exE conjE)
then have V2 : V2 = #v + ... by (metis add-diff-cancel-left ′ diff-add-cancel)

from lc[unfolded degV2 , unfolded V2 ]
have of-nat q ∗ (@coeff v ′′ (degree v) :: ′pq mod-ring) = of-nat q ∗ 0 by auto
from this[unfolded q rebase-pq-to-p.rebase-mult-eq]
have coeff v ′′ (degree v) = 0 by simp
moreover have degree v ′′ ≤ degree v using deg degV2
by (metis degree-diff-le le-antisym nat-le-linear rebase-q-to-pq.degree-rebase-poly-eq)

ultimately have degv ′′: degree v ′′ < degree v
using bv eq-zero-or-degree-less by fastforce

from wW2 have (#(W2 − #w) :: ′q mod-ring poly) = 0 by (auto simp:
hom-distribs)

from rebase-pq-to-q.rebase-poly-eq-0-imp-ex-smult[OF this] pq
obtain w ′′ :: ′p mod-ring poly where w ′′: W2 − #w = smult (of-nat q) (#w ′′)

by force
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then have W2 : W2 = #w + ... by (metis add-diff-cancel-left ′ diff-add-cancel)

have u = #v ∗ #w + smult (of-nat q) (#w ′′ ∗ #v + #v ′′ ∗ #w) + smult (of-nat
(q ∗ q)) (#v ′′ ∗ #w ′′)

by(simp add: uVW2 V2 W2 ring-distribs smult-add-right ac-simps)
also have smult (of-nat (q ∗ q)) (#v ′′ ∗ #w ′′ :: ′pq mod-ring poly) = 0 by simp
finally have u − #v ∗ #w = smult (of-nat q) (#w ′′ ∗ #v + #v ′′ ∗ #w) by

auto
also have u − #v ∗ #w = smult (of-nat q) (#f ) by (subst u, simp)
finally have w ′′ ∗ #v + v ′′ ∗ #w = f by (simp add: hom-distribs)
from pre-unique[OF this degv ′′]
have pre: v ′′ = v ′ w ′′ = w ′ by auto
with V2 W2 show V2 = V W2 = W by auto

qed

end

definition
hensel-1 (ty :: ′p :: prime-card itself )

(u :: ′pq :: nontriv mod-ring poly) (v :: ′q :: nontriv mod-ring poly) (w :: ′q
mod-ring poly) ≡

if v = 1 then (1 ,u) else
let (s, t) = bezout-coefficients (#v :: ′p mod-ring poly) (#w) in
let (a, b) = dupe-monic (#v:: ′p mod-ring poly) (#w) s t 1 in
(Knuth-ex-4-6-2-22-main.V TYPE( ′q) b u v w, Knuth-ex-4-6-2-22-main.W TYPE( ′q)

a b u v w)

lemma hensel-1 :
fixes u :: ′pq :: nontriv mod-ring poly

and v w :: ′q :: nontriv mod-ring poly
assumes CARD( ′pq) = CARD( ′p :: prime-card) ∗ CARD( ′q)

and CARD( ′p) dvd CARD( ′q)
and uvw: #u = v ∗ w
and degu: degree u = degree v + degree w
and monic: monic v
and coprime: coprime (#v :: ′p mod-ring poly) (#w)
and out: hensel-1 TYPE( ′p) u v w = (V ′,W ′)

shows u = V ′ ∗ W ′ ∧ v = #V ′ ∧ w = #W ′ ∧ degree V ′ = degree v ∧ degree
W ′ = degree w ∧

monic V ′ ∧ coprime (#V ′ :: ′p mod-ring poly) (#W ′) (is ?main)
and (∀V ′′ W ′′. u = V ′′ ∗ W ′′ −→ v = #V ′′ −→ w = #W ′′ −→

degree V ′′ = degree v −→ degree W ′′ = degree w −→ lead-coeff V ′′ =
@lead-coeff v −→

V ′′ = V ′ ∧ W ′′ = W ′) (is ?unique)
proof−

from monic
have degv: degree (#v :: ′p mod-ring poly) = degree v

by (simp add: of-int-hom.monic-degree-map-poly-hom)
from monic
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have monic2 : monic (#v :: ′p mod-ring poly)
by (auto simp: degv)

obtain s t where bezout: bezout-coefficients (#v :: ′p mod-ring poly) (#w) = (s,
t)

by (auto simp add: prod-eq-iff )
then have s ∗ #v + t ∗ #w = gcd (#v :: ′p mod-ring poly) (#w)

by (rule bezout-coefficients)
with coprime have vswt: #v ∗ s + #w ∗ t = 1

by (simp add: ac-simps)
obtain a b where dupe: dupe-monic (#v) (#w) s t 1 = (a, b) by force
from dupe-monic(1 ,2 )[OF vswt monic2 , where U=1 , unfolded this]
have avbw: a ∗ #v + b ∗ #w = 1 and degb: b = 0 ∨ degree b < degree (#v:: ′p

mod-ring poly) by auto
have ?main ∧ ?unique
proof (cases b = 0 )

case b0 : True
with avbw have a ∗ #v = 1 by auto
then have degree (#v :: ′p mod-ring poly) = 0

by (metis degree-1 degree-mult-eq-0 mult-zero-left one-neq-zero)
from this[unfolded degv] monic-degree-0 [OF monic[unfolded]]
have 1 : v = 1 by auto
with b0 out uvw have 2 : V ′ = 1 W ′ = u

by (unfold split hensel-1-def Let-def dupe) auto
have 3 : ?unique apply (simp add: 1 2 ) by (metis monic-degree-0 mult.left-neutral)
with uvw degu show ?thesis unfolding 1 2 by auto

next
case b0 : False
with degb degv have degb: degree b < degree v by auto
then have v1 : v 6= 1 by auto
interpret Knuth-ex-4-6-2-22-prime TYPE( ′p) TYPE( ′q) TYPE( ′pq) a b

by (unfold-locales; fact assms degb avbw)
show ?thesis
proof (intro conjI )

from out [unfolded hensel-1-def ] v1
have 1 [simp]: V ′ = V W ′ = W by (auto simp: bezout dupe)
from uVW show u = V ′ ∗ W ′ by auto
from degV show [simp]: degree V ′ = degree v by simp
from degW show [simp]: degree W ′ = degree w by simp
from lcV have lead-coeff V ′ = @lead-coeff v by simp
with monic-v show monic V ′ by (simp add:)
from vV show v = #V ′ by simp
from wW show w = #W ′ by simp
from coprime-preserves show coprime (#V ′ :: ′p mod-ring poly) (#W ′) by

simp
show 9 : ?unique by (unfold 1 , intro allI conjI impI ; rule unique)

qed
qed
then show ?main ?unique by (fact conjunct1 , fact conjunct2 )

qed

348



end

9.3 Result is Unique
We combine the finite field factorization algorithm with Hensel-lifting to ob-
tain factorizations mod pn. Moreover, we prove results on unique-factorizations
in mod pn which admit to extend the uniqueness result for binary Hensel-
lifting to the general case. As a consequence, our factorization algorithm
will produce unique factorizations mod pn.
theory Berlekamp-Hensel
imports

Finite-Field-Factorization-Record-Based
Hensel-Lifting

begin

hide-const coeff monom

definition berlekamp-hensel :: int ⇒ nat ⇒ int poly ⇒ int poly list where
berlekamp-hensel p n f = (case finite-field-factorization-int p f of
(-,fs) ⇒ hensel-lifting p n f fs)

Finite field factorization in combination with Hensel-lifting delivers fac-
torization modulo pk where factors are irreducible modulo p. Assumptions:
input polynomial is square-free modulo p.
context poly-mod-prime begin

lemma berlekamp-hensel-main:
assumes n: n 6= 0

and res: berlekamp-hensel p n f = gs
and cop: coprime (lead-coeff f ) p
and sf : square-free-m f
and berl: finite-field-factorization-int p f = (c,fs)

shows poly-mod.factorization-m (p ^ n) f (lead-coeff f , mset gs) — factorization
mod p^n

and sort (map degree fs) = sort (map degree gs)
and

∧
g. g ∈ set gs =⇒ monic g ∧ poly-mod.Mp (p^n) g = g ∧ — monic and

normalized
poly-mod.irreducible-m p g ∧ — irreducibility even mod p
poly-mod.degree-m p g = degree g — mod p does not change degree of g

proof −
from res[unfolded berlekamp-hensel-def berl split]
have hen: hensel-lifting p n f fs = gs .
note bh = finite-field-factorization-int[OF sf berl]
from bh have poly-mod.factorization-m p f (c, mset fs) c ∈ {0 ..<p} (∀fi∈set fs.

set (coeffs fi) ⊆ {0 ..<p})
by (auto simp: poly-mod.unique-factorization-m-alt-def )

note hen = hensel-lifting[OF n hen cop sf , OF this]
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show poly-mod.factorization-m (p ^ n) f (lead-coeff f , mset gs)
sort (map degree fs) = sort (map degree gs)∧

g. g ∈ set gs =⇒ monic g ∧ poly-mod.Mp (p^n) g = g ∧
poly-mod.irreducible-m p g ∧
poly-mod.degree-m p g = degree g using hen by auto

qed

theorem berlekamp-hensel:
assumes cop: coprime (lead-coeff f ) p

and sf : square-free-m f
and res: berlekamp-hensel p n f = gs
and n: n 6= 0

shows poly-mod.factorization-m (p^n) f (lead-coeff f , mset gs) — factorization
mod p^n

and
∧

g. g ∈ set gs =⇒ poly-mod.Mp (p^n) g = g ∧ poly-mod.irreducible-m p
g

— normalized and irreducible even mod p
proof −

obtain c fs where finite-field-factorization-int p f = (c,fs) by force
from berlekamp-hensel-main[OF n res cop sf this]
show poly-mod.factorization-m (p^n) f (lead-coeff f , mset gs)∧

g. g ∈ set gs =⇒ poly-mod.Mp (p^n) g = g ∧ poly-mod.irreducible-m p g by
auto
qed

lemma berlekamp-and-hensel-separated:
assumes cop: coprime (lead-coeff f ) p

and sf : square-free-m f
and res: hensel-lifting p n f fs = gs
and berl: finite-field-factorization-int p f = (c,fs)
and n: n 6= 0

shows berlekamp-hensel p n f = gs
and sort (map degree fs) = sort (map degree gs)

proof −
show berlekamp-hensel p n f = gs unfolding res[symmetric]

berlekamp-hensel-def hensel-lifting-def berl split Let-def ..
from berlekamp-hensel-main[OF n this cop sf berl] show sort (map degree fs) =

sort (map degree gs)
by auto

qed

end

lemma prime-cop-exp-poly-mod:
assumes prime: prime p and cop: coprime c p and n: n 6= 0
shows poly-mod.M (p^n) c ∈ {1 ..< p^n}

proof −
from prime have p1 : p > 1 by (simp add: prime-int-iff )
interpret poly-mod-2 p^n unfolding poly-mod-2-def using p1 n by simp
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from cop p1 m1 have M c 6= 0
by (auto simp add: M-def )

moreover have M c < p^n M c ≥ 0 unfolding M-def using m1 by auto
ultimately show ?thesis by auto

qed

context poly-mod-2
begin

context
fixes p :: int
assumes prime: prime p

begin

interpretation p: poly-mod-prime p using prime by unfold-locales

lemma coprime-lead-coeff-factor : assumes coprime (lead-coeff (f ∗ g)) p
shows coprime (lead-coeff f ) p coprime (lead-coeff g) p

proof −
{

fix f g
assume cop: coprime (lead-coeff (f ∗ g)) p
from this[unfolded lead-coeff-mult]
have coprime (lead-coeff f ) p using prime

by simp
}
from this[OF assms] this[of g f ] assms
show coprime (lead-coeff f ) p coprime (lead-coeff g) p by (auto simp: ac-simps)

qed

lemma unique-factorization-m-factor : assumes uf : unique-factorization-m (f ∗ g)
(c,hs)

and cop: coprime (lead-coeff (f ∗ g)) p
and sf : p.square-free-m (f ∗ g)
and n: n 6= 0
and m: m = p^n
shows ∃ fs gs. unique-factorization-m f (lead-coeff f ,fs)
∧ unique-factorization-m g (lead-coeff g,gs)
∧ Mf (c,hs) = Mf (lead-coeff f ∗ lead-coeff g, fs + gs)
∧ image-mset Mp fs = fs ∧ image-mset Mp gs = gs

proof −
from prime have p1 : 1 < p by (simp add: prime-int-iff )
interpret p: poly-mod-2 p by (standard, rule p1 )
note sf = p.square-free-m-factor [OF sf ]
note cop = coprime-lead-coeff-factor [OF cop]
from cop have copm: coprime (lead-coeff f ) m coprime (lead-coeff g) m

by (simp-all add: m)
have df : degree-m f = degree f

by (rule degree-m-eq[OF - m1 ], insert copm(1 ) m1 , auto)
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have dg: degree-m g = degree g
by (rule degree-m-eq[OF - m1 ], insert copm(2 ) m1 , auto)

define fs where fs ≡ mset (berlekamp-hensel p n f )
define gs where gs ≡ mset (berlekamp-hensel p n g)
from p.berlekamp-hensel[OF cop(1 ) sf (1 ) refl n, folded m]
have f : factorization-m f (lead-coeff f ,fs)

and f-id:
∧

f . f ∈# fs =⇒ Mp f = f unfolding fs-def by auto
from p.berlekamp-hensel[OF cop(2 ) sf (2 ) refl n, folded m]
have g: factorization-m g (lead-coeff g,gs)

and g-id:
∧

f . f ∈# gs =⇒ Mp f = f unfolding gs-def by auto
from factorization-m-prod[OF f g] uf [unfolded unique-factorization-m-alt-def ]
have eq: Mf (lead-coeff f ∗ lead-coeff g, fs + gs) = Mf (c,hs) by blast
have uff : unique-factorization-m f (lead-coeff f ,fs)
proof (rule unique-factorization-mI [OF f ])

fix e ks
assume factorization-m f (e,ks)

from factorization-m-prod[OF this g] uf [unfolded unique-factorization-m-alt-def ]
factorization-m-lead-coeff [OF this, unfolded degree-m-eq-lead-coeff [OF df ]]

have Mf (e ∗ lead-coeff g, ks + gs) = Mf (c,hs) and e: M (lead-coeff f ) = M
e by blast+

from this[folded eq, unfolded Mf-def split]
have ks: image-mset Mp ks = image-mset Mp fs by auto
show Mf (e, ks) = Mf (lead-coeff f , fs) unfolding Mf-def split ks e by simp

qed
have idf : image-mset Mp fs = fs using f-id by (induct fs, auto)
have idg: image-mset Mp gs = gs using g-id by (induct gs, auto)
have ufg: unique-factorization-m g (lead-coeff g,gs)
proof (rule unique-factorization-mI [OF g])

fix e ks
assume factorization-m g (e,ks)

from factorization-m-prod[OF f this] uf [unfolded unique-factorization-m-alt-def ]
factorization-m-lead-coeff [OF this, unfolded degree-m-eq-lead-coeff [OF dg]]

have Mf (lead-coeff f ∗ e, fs + ks) = Mf (c,hs) and e: M (lead-coeff g) = M
e by blast+

from this[folded eq, unfolded Mf-def split]
have ks: image-mset Mp ks = image-mset Mp gs by auto
show Mf (e, ks) = Mf (lead-coeff g, gs) unfolding Mf-def split ks e by simp

qed
from uff ufg eq[symmetric] idf idg show ?thesis by auto

qed

lemma unique-factorization-factorI :
assumes ufact: unique-factorization-m (f ∗ g) FG

and cop: coprime (lead-coeff (f ∗ g)) p
and sf : poly-mod.square-free-m p (f ∗ g)
and n: n 6= 0
and m: m = p^n

shows factorization-m f F =⇒ unique-factorization-m f F
and factorization-m g G =⇒ unique-factorization-m g G
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proof −
obtain c fg where FG: FG = (c,fg) by force
from unique-factorization-m-factor [OF ufact[unfolded FG] cop sf n m]
obtain fs gs where ufact: unique-factorization-m f (lead-coeff f , fs)

unique-factorization-m g (lead-coeff g, gs) by auto
from ufact(1 ) show factorization-m f F =⇒ unique-factorization-m f F

by (metis unique-factorization-m-alt-def )
from ufact(2 ) show factorization-m g G =⇒ unique-factorization-m g G

by (metis unique-factorization-m-alt-def )
qed

end

lemma monic-Mp-prod-mset: assumes fs:
∧

f . f ∈# fs =⇒ monic (Mp f )
shows monic (Mp (prod-mset fs))

proof −
have monic (prod-mset (image-mset Mp fs))

by (rule monic-prod-mset, insert fs, auto)
from monic-Mp[OF this] have monic (Mp (prod-mset (image-mset Mp fs))) .
also have Mp (prod-mset (image-mset Mp fs)) = Mp (prod-mset fs) by (rule

Mp-prod-mset)
finally show ?thesis .

qed

lemma degree-Mp-mult-monic: assumes monic f monic g
shows degree (Mp (f ∗ g)) = degree f + degree g
by (metis zero-neq-one assms degree-monic-mult leading-coeff-0-iff monic-degree-m

monic-mult)

lemma factorization-m-degree: assumes factorization-m f (c,fs)
and 0 : Mp f 6= 0
shows degree-m f = sum-mset (image-mset degree-m fs)

proof −
note a = assms[unfolded factorization-m-def split]
hence deg: degree-m f = degree-m (smult c (prod-mset fs))

and fs:
∧

f . f ∈# fs =⇒ monic (Mp f ) by auto
define gs where gs ≡ Mp (prod-mset fs)
from monic-Mp-prod-mset[OF fs] have mon-gs: monic gs unfolding gs-def .
have d:degree (Mp (Polynomial.smult c gs)) = degree gs
proof −

have f1 : 0 6= c by (metis 0 Mp-0 a(1 ) smult-eq-0-iff )
then have M c 6= 0 by (metis (no-types) 0 assms(1 ) factorization-m-lead-coeff

leading-coeff-0-iff )
then show degree (Mp (Polynomial.smult c gs)) = degree gs

unfolding monic-degree-m[OF mon-gs,symmetric]
using f1 by (metis coeff-smult degree-m-eq degree-smult-eq m1 mon-gs monic-degree-m

mult-cancel-left1 poly-mod.M-def )
qed
note deg
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also have degree-m (smult c (prod-mset fs)) = degree-m (smult c gs)
unfolding gs-def by simp

also have . . . = degree gs using d.
also have . . . = sum-mset (image-mset degree-m fs) unfolding gs-def

using fs
proof (induct fs)

case (add f fs)
have mon: monic (Mp f ) monic (Mp (prod-mset fs)) using monic-Mp-prod-mset[of

fs]
add(2 ) by auto
have degree (Mp (prod-mset (add-mset f fs))) = degree (Mp (Mp f ∗ Mp

(prod-mset fs)))
by (auto simp: ac-simps)

also have . . . = degree (Mp f ) + degree (Mp (prod-mset fs))
by (rule degree-Mp-mult-monic[OF mon])

also have degree (Mp (prod-mset fs)) = sum-mset (image-mset degree-m fs)
by (rule add(1 ), insert add(2 ), auto)

finally show ?case by (simp add: ac-simps)
qed simp
finally show ?thesis .

qed

lemma degree-m-mult-le: degree-m (f ∗ g) ≤ degree-m f + degree-m g
using degree-m-mult-le by auto

lemma degree-m-prod-mset-le: degree-m (prod-mset fs) ≤ sum-mset (image-mset
degree-m fs)
proof (induct fs)

case empty
show ?case by simp

next
case (add f fs)
then show ?case using degree-m-mult-le[of f prod-mset fs] by auto

qed

end

context poly-mod-prime
begin

lemma unique-factorization-m-factor-partition: assumes l0 : l 6= 0
and uf : poly-mod.unique-factorization-m (p^l) f (lead-coeff f , mset gs)
and f : f = f1 ∗ f2
and cop: coprime (lead-coeff f ) p
and sf : square-free-m f
and part: List.partition (λgi. gi dvdm f1 ) gs = (gs1 , gs2 )

shows poly-mod.unique-factorization-m (p^l) f1 (lead-coeff f1 , mset gs1 )
poly-mod.unique-factorization-m (p^l) f2 (lead-coeff f2 , mset gs2 )
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proof −
interpret pl: poly-mod-2 p^l by (standard, insert m1 l0 , auto)
let ?I = image-mset pl.Mp
note Mp-pow [simp] = Mp-Mp-pow-is-Mp[OF l0 m1 ]
have [simp]: pl.Mp x dvdm u = (x dvdm u) for x u unfolding dvdm-def using

Mp-pow[of x]
by (metis poly-mod.mult-Mp(1 ))

have gs-split: set gs = set gs1 ∪ set gs2 using part by auto
from pl.unique-factorization-m-factor [OF prime uf [unfolded f ] - - l0 refl, folded

f , OF cop sf ]
obtain hs1 hs2 where uf ′: pl.unique-factorization-m f1 (lead-coeff f1 , hs1 )

pl.unique-factorization-m f2 (lead-coeff f2 , hs2 )
and gs-hs: ?I (mset gs) = hs1 + hs2
unfolding pl.Mf-def split by auto

have gs-gs: ?I (mset gs) = ?I (mset gs1 ) + ?I (mset gs2 ) using part
by (auto, induct gs arbitrary: gs1 gs2 , auto)

with gs-hs have gs-hs12 : ?I (mset gs1 ) + ?I (mset gs2 ) = hs1 + hs2 by auto
note pl-dvdm-imp-p-dvdm = pl-dvdm-imp-p-dvdm[OF l0 ]
note fact = pl.unique-factorization-m-imp-factorization[OF uf ]
have gs1 : ?I (mset gs1 ) = {#x ∈# ?I (mset gs). x dvdm f1#}

using part by (auto, induct gs arbitrary: gs1 gs2 , auto)
also have . . . = {#x ∈# hs1 . x dvdm f1#} + {#x ∈# hs2 . x dvdm f1#}

unfolding gs-hs by simp
also have {#x ∈# hs2 . x dvdm f1#} = {#}
proof (rule ccontr)

assume ¬ ?thesis
then obtain x where x: x ∈# hs2 and dvd: x dvdm f1 by fastforce
from x gs-hs have x ∈# ?I (mset gs) by auto
with fact[unfolded pl.factorization-m-def ]
have xx: pl.irreducibled-m x monic x by auto
from square-free-m-prod-imp-coprime-m[OF sf [unfolded f ]]
have cop-h-f : coprime-m f1 f2 by auto

from pl.factorization-m-mem-dvdm[OF pl.unique-factorization-m-imp-factorization[OF
uf ′(2 )], of x] x

have pl.dvdm x f2 by auto
hence x dvdm f2 by (rule pl-dvdm-imp-p-dvdm)
from cop-h-f [unfolded coprime-m-def , rule-format, OF dvd this]
have x dvdm 1 by auto
from dvdm-imp-degree-le[OF this xx(2 ) - m1 ] have degree x = 0 by auto
with xx show False unfolding pl.irreducibled-m-def by auto

qed
also have {#x ∈# hs1 . x dvdm f1#} = hs1
proof (rule ccontr)

assume ¬ ?thesis
from filter-mset-inequality[OF this]
obtain x where x: x ∈# hs1 and dvd: ¬ x dvdm f1 by blast

from pl.factorization-m-mem-dvdm[OF pl.unique-factorization-m-imp-factorization[OF
uf ′(1 )],

of x] x dvd
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have pl.dvdm x f1 by auto
from pl-dvdm-imp-p-dvdm[OF this] dvd show False by auto

qed
finally have gs-hs1 : ?I (mset gs1 ) = hs1 by simp
with gs-hs12 have ?I (mset gs2 ) = hs2 by auto
with uf ′ gs-hs1 have pl.unique-factorization-m f1 (lead-coeff f1 , ?I (mset gs1 ))

pl.unique-factorization-m f2 (lead-coeff f2 , ?I (mset gs2 )) by auto
thus pl.unique-factorization-m f1 (lead-coeff f1 , mset gs1 )

pl.unique-factorization-m f2 (lead-coeff f2 , mset gs2 )
unfolding pl.unique-factorization-m-def
by (auto simp: pl.Mf-def image-mset.compositionality o-def )

qed

lemma factorization-pn-to-factorization-p: assumes fact: poly-mod.factorization-m
(p^n) C (c,fs)

and sf : square-free-m C
and n: n 6= 0

shows factorization-m C (c,fs)
proof −

let ?q = p^n
from n m1 have q: ?q > 1 by simp
interpret q: poly-mod-2 ?q by (standard, insert q, auto)
from fact[unfolded q.factorization-m-def ]
have eq: q.Mp C = q.Mp (Polynomial.smult c (prod-mset fs))

and irr :
∧

f . f ∈# fs =⇒ q.irreducibled-m f
and mon:

∧
f . f ∈# fs =⇒ monic (q.Mp f )

by auto
from arg-cong[OF eq, of Mp]
have eq: eq-m C (smult c (prod-mset fs))

by (simp add: Mp-Mp-pow-is-Mp m1 n)
show ?thesis unfolding factorization-m-def split
proof (rule conjI [OF eq], intro ballI conjI )

fix f
assume f : f ∈# fs
from mon[OF this] have mon-qf : monic (q.Mp f ) .
hence lc: lead-coeff (q.Mp f ) = 1 by auto
from mon-qf show mon-f : monic (Mp f )

by (metis Mp-Mp-pow-is-Mp m1 monic-Mp n)
from irr [OF f ] have irr : q.irreducibled-m f .
hence q.degree-m f 6= 0 unfolding q.irreducibled-m-def by auto
also have q.degree-m f = degree-m f using mon[OF f ]

by (metis Mp-Mp-pow-is-Mp m1 monic-degree-m n)
finally have deg: degree-m f 6= 0 by auto
from f obtain gs where fs: fs = {#f#} + gs

by (metis mset-subset-eq-single subset-mset.add-diff-inverse)
from eq[unfolded fs] have Mp C = Mp (f ∗ smult c (prod-mset gs)) by auto
from square-free-m-factor [OF square-free-m-cong[OF sf this]]
have sf-f : square-free-m f by simp
have sf-Mf : square-free-m (q.Mp f )
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by (rule square-free-m-cong[OF sf-f ], auto simp: Mp-Mp-pow-is-Mp n m1 )
have coprime (lead-coeff (q.Mp f )) p using mon[OF f ] prime by simp
from berlekamp-hensel[OF this sf-Mf refl n, unfolded lc] obtain gs where

qfact: q.factorization-m (q.Mp f ) (1 , mset gs)
and

∧
g. g ∈ set gs =⇒ irreducible-m g by blast

hence fact: q.Mp f = q.Mp (prod-list gs)
and gs:

∧
g. g∈ set gs =⇒ irreducibled-m g ∧ q.irreducibled-m g ∧ monic

(q.Mp g)
unfolding q.factorization-m-def by auto

from q.factorization-m-degree[OF qfact]
have deg: q.degree-m (q.Mp f ) = sum-mset (image-mset q.degree-m (mset gs))

using mon-qf by fastforce
from irr [unfolded q.irreducibled-m-def ]
have sum-mset (image-mset q.degree-m (mset gs)) 6= 0 by (fold deg, auto)
then obtain g gs ′ where gs1 : gs = g # gs ′ by (cases gs, auto)
{

assume gs ′ 6= []
then obtain h hs where gs2 : gs ′ = h # hs by (cases gs ′, auto)
from deg gs[unfolded q.irreducibled-m-def ]
have small: q.degree-m g < q.degree-m f

q.degree-m h + sum-mset (image-mset q.degree-m (mset hs)) < q.degree-m
f

unfolding gs1 gs2 by auto
have q.eq-m f (g ∗ (h ∗ prod-list hs))

using fact unfolding gs1 gs2 by simp
with irr [unfolded q.irreducibled-m-def , THEN conjunct2 , rule-format, of g h

∗ prod-list hs]
small(1 ) have ¬ q.degree-m (h ∗ prod-list hs) < q.degree-m f by auto

hence q.degree-m f ≤ q.degree-m (h ∗ prod-list hs) by simp
also have . . . = q.degree-m (prod-mset ({#h#} + mset hs)) by simp
also have . . . ≤ sum-mset (image-mset q.degree-m ({#h#} + mset hs))

by (rule q.degree-m-prod-mset-le)
also have . . . < q.degree-m f using small(2 ) by simp
finally have False by simp

}
hence gs1 : gs = [g] unfolding gs1 by (cases gs ′, auto)
with fact have q.Mp f = q.Mp g by auto
from arg-cong[OF this, of Mp] have eq: Mp f = Mp g

by (simp add: Mp-Mp-pow-is-Mp m1 n)
from gs[unfolded gs1 ] have g: irreducibled-m g by auto
with eq show irreducibled-m f unfolding irreducibled-m-def by auto

qed
qed

lemma unique-monic-hensel-factorization:
assumes ufact: unique-factorization-m C (1 ,Fs)
and C : monic C square-free-m C
and n: n 6= 0
shows ∃ Gs. poly-mod.unique-factorization-m (p^n) C (1 , Gs)
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using ufact C
proof (induct Fs arbitrary: C rule: wf-induct[OF wf-measure[of size]])

case (1 Fs C )
let ?q = p^n
from n m1 have q: ?q > 1 by simp
interpret q: poly-mod-2 ?q by (standard, insert q, auto)
note [simp] = Mp-Mp-pow-is-Mp[OF n m1 ]
note IH = 1 (1 )[rule-format]
note ufact = 1 (2 )
hence fact: factorization-m C (1 , Fs) unfolding unique-factorization-m-alt-def

by auto
note monC = 1 (3 )
note sf = 1 (4 )
let ?n = size Fs
{

fix d gs
assume qfact: q.factorization-m C (d,gs)
from q.factorization-m-lead-coeff [OF this] q.monic-Mp[OF monC ]
have d1 : q.M d = 1 by auto

from factorization-pn-to-factorization-p[OF qfact sf n]
have factorization-m C (d,gs) .
with ufact d1 have q.M d = 1 M d = 1 image-mset Mp gs = image-mset Mp

Fs
unfolding unique-factorization-m-alt-def Mf-def by auto

} note pre-unique = this
show ?case
proof (cases Fs)

case empty
with fact C have Mp C = 1 unfolding factorization-m-def by auto
hence degree (Mp C ) = 0 by simp
with degree-m-eq-monic[OF monC m1 ] have degree C = 0 by simp
with monC have C1 : C = 1 using monic-degree-0 by blast
with fact have fact: q.factorization-m C (1 ,{#})

by (auto simp: q.factorization-m-def )
show ?thesis
proof (rule exI , rule q.unique-factorization-mI [OF fact])

fix d gs
assume fact: q.factorization-m C (d,gs)
from pre-unique[OF this, unfolded empty]
show q.Mf (d, gs) = q.Mf (1 , {#}) by (auto simp: q.Mf-def )

qed
next

case (add D H ) note FDH = this
let ?D = Mp D
let ?H = Mp (prod-mset H )
from fact have monFs:

∧
F . F ∈# Fs =⇒ monic (Mp F)

and prod: eq-m C (prod-mset Fs) unfolding factorization-m-def by auto
hence monD: monic ?D unfolding FDH by auto
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from square-free-m-cong[OF sf , of D ∗ prod-mset H ] prod[unfolded FDH ]
have square-free-m (D ∗ prod-mset H ) by (auto simp: ac-simps)
from square-free-m-prod-imp-coprime-m[OF this]
have coprime-m D (prod-mset H ) .
hence cop ′: coprime-m ?D ?H unfolding coprime-m-def dvdm-def Mp-Mp by

simp
from fact have eq ′: eq-m (?D ∗ ?H ) C

unfolding FDH by (simp add: factorization-m-def ac-simps)
note unique-hensel-binary[OF prime cop ′ eq ′ Mp-Mp Mp-Mp monD n]
from ex1-implies-ex[OF this] this
obtain A B where CAB: q.eq-m (A ∗ B) C and monA: monic A and DA:

eq-m ?D A
and HB: eq-m ?H B and norm: q.Mp A = A q.Mp B = B
and unique:

∧
D ′ H ′. q.eq-m (D ′ ∗ H ′) C =⇒

monic D ′ =⇒
eq-m (Mp D) D ′ =⇒ eq-m (Mp (prod-mset H )) H ′ =⇒ q.Mp D ′ = D ′ =⇒

q.Mp H ′ = H ′

=⇒ D ′ = A ∧ H ′ = B by blast
note hensel-bin-wit = CAB monA DA HB norm
from monA have monA ′: monic (q.Mp A) by (rule q.monic-Mp)
from q.monic-Mp[OF monC ] CAB have monicP:monic (q.Mp (A ∗ B)) by

auto
have f4 :

∧
p. coeff (A ∗ p) (degree (A ∗ p)) = coeff p (degree p)

by (simp add: coeff-degree-mult monA)
have f2 :

∧
p n i. coeff p n mod i = coeff (poly-mod.Mp i p) n

using poly-mod.M-def poly-mod.Mp-coeff by presburger
hence coeff B (degree B) = 0 ∨ monic B

using monicP f4 by (metis (no-types) norm(2 ) q.degree-m-eq q.m1 )
hence monB: monic B

using f4 monicP by (metis norm(2 ) leading-coeff-0-iff )
from monA monB have lcAB: lead-coeff (A ∗ B) = 1 by (rule monic-mult)
hence copAB: coprime (lead-coeff (A ∗ B)) p by auto
from arg-cong[OF CAB, of Mp]
have CAB ′: eq-m C (A ∗ B) by auto
from sf CAB ′ have sfAB: square-free-m (A ∗ B) using square-free-m-cong by

blast
from CAB ′ ufact have ufact: unique-factorization-m (A ∗ B) (1 , Fs)

using unique-factorization-m-cong by blast
have (1 :: nat) 6= 0 p = p ^ 1 by auto
note u-factor = unique-factorization-factorI [OF prime ufact copAB sfAB this]

from fact DA have irreducibled-m D eq-m A D unfolding add factoriza-
tion-m-def by auto

hence irreducibled-m A using Mp-irreducibled-m by fastforce
from irreducibled-lifting[OF n - this] have irrA: q.irreducibled-m A using monA

by (simp add: m1 poly-mod.degree-m-eq-monic q.m1 )

from add have lenH : (H ,Fs) ∈ measure size by auto
from HB fact have factB: factorization-m B (1 , H )

unfolding FDH factorization-m-def by auto
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from u-factor(2 )[OF factB] have ufactB: unique-factorization-m B (1 , H ) .

from sfAB have sfB: square-free-m B by (rule square-free-m-factor)
from IH [OF lenH ufactB monB sfB] obtain Bs where

IH2 : q.unique-factorization-m B (1 , Bs) by auto

from CAB have q.Mp C = q.Mp (q.Mp A ∗ q.Mp B) by simp
also have q.Mp A ∗ q.Mp B = q.Mp A ∗ q.Mp (prod-mset Bs)

using IH2 unfolding q.unique-factorization-m-alt-def q.factorization-m-def
by auto

also have q.Mp . . . = q.Mp (A ∗ prod-mset Bs) by simp
finally have factC : q.factorization-m C (1 , {# A #} + Bs) using IH2 monA ′

irrA
by (auto simp: q.unique-factorization-m-alt-def q.factorization-m-def )

show ?thesis
proof (rule exI , rule q.unique-factorization-mI [OF factC ])

fix d gs
assume dgs: q.factorization-m C (d,gs)
from pre-unique[OF dgs, unfolded add] have d1 : q.M d = 1 and

gs-fs: image-mset Mp gs = {# Mp D #} + image-mset Mp H by (auto
simp: ac-simps)

have ∀ f m p ma. image-mset f m 6= add-mset (p::int poly) ma ∨
(∃mb pa. m = add-mset (pa::int poly) mb ∧ f pa = p ∧ image-mset f

mb = ma)
by (simp add: msed-map-invR)

then obtain g hs where gs: gs = {# g #} + hs and gD: Mp g = Mp D
and hsH : image-mset Mp hs = image-mset Mp H
using gs-fs by (metis add-mset-add-single union-commute)

from dgs[unfolded q.factorization-m-def split]
have eq: q.Mp C = q.Mp (smult d (prod-mset gs))

and irr-mon:
∧

g. g∈#gs =⇒ q.irreducibled-m g ∧ monic (q.Mp g)
using d1 by auto

note eq
also have q.Mp (smult d (prod-mset gs)) = q.Mp (smult (q.M d) (prod-mset

gs))
by simp

also have . . . = q.Mp (prod-mset gs) unfolding d1 by simp
finally have eq: q.eq-m (q.Mp g ∗ q.Mp (prod-mset hs)) C unfolding gs by

simp
from gD have Dg: eq-m (Mp D) (q.Mp g) by simp
have Mp (prod-mset H ) = Mp (prod-mset (image-mset Mp H )) by simp
also have . . . = Mp (prod-mset hs) unfolding hsH [symmetric] by simp
finally have Hhs: eq-m (Mp (prod-mset H )) (q.Mp (prod-mset hs)) by simp
from irr-mon[of g, unfolded gs] have mon-g: monic (q.Mp g) by auto
from unique[OF eq mon-g Dg Hhs q.Mp-Mp q.Mp-Mp]
have gA: q.Mp g = A and hsB: q.Mp (prod-mset hs) = B by auto
have q.factorization-m B (1 , hs) unfolding q.factorization-m-def split

by (simp add: hsB norm irr-mon[unfolded gs])
with IH2 have hsBs: q.Mf (1 ,hs) = q.Mf (1 ,Bs) unfolding q.unique-factorization-m-alt-def
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by blast
show q.Mf (d, gs) = q.Mf (1 , {# A #} + Bs)

using gA hsBs d1 unfolding gs q.Mf-def by auto
qed

qed
qed

theorem berlekamp-hensel-unique:
assumes cop: coprime (lead-coeff f ) p
and sf : poly-mod.square-free-m p f
and res: berlekamp-hensel p n f = gs
and n: n 6= 0
shows poly-mod.unique-factorization-m (p^n) f (lead-coeff f , mset gs) — unique

factorization mod p^n∧
g. g ∈ set gs =⇒ poly-mod.Mp (p^n) g = g — normalized

proof −
let ?q = p^n
interpret q: poly-mod-2 ?q unfolding poly-mod-2-def using m1 n by simp
from berlekamp-hensel[OF assms]
have bh-fact: q.factorization-m f (lead-coeff f , mset gs) by auto
from berlekamp-hensel[OF assms]
show

∧
g. g ∈ set gs =⇒ poly-mod.Mp (p^n) g = g by blast

from prime have p1 : p > 1 by (simp add: prime-int-iff )
let ?lc = coeff f (degree f )
define ilc where ilc ≡ inverse-mod ?lc (p ^ n)
from cop p1 n have inv: q.M (ilc ∗ ?lc) = 1

by (auto simp add: q.M-def ilc-def inverse-mod-pow)
hence ilc0 : ilc 6= 0 by (cases ilc = 0 , auto)
{

fix q
assume ilc ∗ ?lc = ?q ∗ q
from arg-cong[OF this, of q.M ] have q.M (ilc ∗ ?lc) = 0

unfolding q.M-def by auto
with inv have False by auto

} note not-dvd = this
let ?in = q.Mp (smult ilc f )
have mon: monic ?in unfolding q.Mp-coeff coeff-smult

by (subst q.degree-m-eq[OF - q.m1 ], insert not-dvd, auto simp: inv ilc0 )
have q.Mp f = q.Mp (smult (q.M (?lc ∗ ilc)) f ) using inv by (simp add:

ac-simps)
also have . . . = q.Mp (smult ?lc (smult ilc f )) by simp
finally have f : q.Mp f = q.Mp (smult ?lc (smult ilc f )) .
from arg-cong[OF f , of Mp]
have Mp f = Mp (smult ?lc (smult ilc f ))

by (simp add: Mp-Mp-pow-is-Mp n p1 )
from arg-cong[OF this, of square-free-m, unfolded Mp-square-free-m] sf
have square-free-m (smult (coeff f (degree f )) (smult ilc f )) by simp
from square-free-m-smultD[OF this] have sf : square-free-m (smult ilc f ) .
have Mp-in: Mp ?in = Mp (smult ilc f )
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by (simp add: Mp-Mp-pow-is-Mp n p1 )
from Mp-square-free-m[of ?in, unfolded Mp-in] sf have sf : square-free-m ?in

unfolding Mp-square-free-m by simp
obtain a b where finite-field-factorization-int p ?in = (a,b) by force
from finite-field-factorization-int[OF sf this]
have ufact: unique-factorization-m ?in (a, mset b) by auto
from unique-factorization-m-imp-factorization[OF this]
have fact: factorization-m ?in (a, mset b) .
from factorization-m-lead-coeff [OF this] monic-Mp[OF mon]
have M a = 1 by auto
with ufact have unique-factorization-m ?in (1 , mset b)

unfolding unique-factorization-m-def Mf-def by auto
from unique-monic-hensel-factorization[OF this mon sf n]
obtain hs where q.unique-factorization-m ?in (1 , hs) by auto
hence unique: q.unique-factorization-m (smult ilc f ) (1 , hs)

unfolding unique-factorization-m-def Mf-def by auto
from q.factorization-m-smult[OF q.unique-factorization-m-imp-factorization[OF

unique], of ?lc]
have q.factorization-m (smult (ilc ∗ ?lc) f ) (?lc, hs) by (simp add: ac-simps)
moreover have q.Mp (smult (q.M (ilc ∗ ?lc)) f ) = q.Mp f unfolding inv by

simp
ultimately have fact: q.factorization-m f (?lc, hs)

unfolding q.factorization-m-def by auto
have q.unique-factorization-m f (?lc, hs)
proof (rule q.unique-factorization-mI [OF fact])

fix d us
assume other-fact: q.factorization-m f (d,us)
from q.factorization-m-lead-coeff [OF this] have lc: q.M d = lead-coeff (q.Mp

f ) ..
have lc: q.M d = q.M ?lc unfolding lc

by (metis bh-fact q.factorization-m-lead-coeff )
from q.factorization-m-smult[OF other-fact, of ilc] unique

have eq: q.Mf (d ∗ ilc, us) = q.Mf (1 , hs) unfolding q.unique-factorization-m-def
by auto

thus q.Mf (d, us) = q.Mf (?lc, hs) using lc unfolding q.Mf-def by auto
qed
with bh-fact show q.unique-factorization-m f (lead-coeff f , mset gs)

unfolding q.unique-factorization-m-alt-def by metis
qed

lemma hensel-lifting-unique:
assumes n: n 6= 0
and res: hensel-lifting p n f fs = gs — result of hensel is fact. gs
and cop: coprime (lead-coeff f ) p
and sf : poly-mod.square-free-m p f
and fact: poly-mod.factorization-m p f (c, mset fs) — input is fact. fs

mod p
and c: c ∈ {0 ..<p}
and norm: (∀fi∈set fs. set (coeffs fi) ⊆ {0 ..<p})
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shows poly-mod.unique-factorization-m (p^n) f (lead-coeff f , mset gs) — unique
factorization mod p^n

sort (map degree fs) = sort (map degree gs) — degrees stay
the same∧

g. g ∈ set gs =⇒ monic g ∧ poly-mod.Mp (p^n) g = g ∧ — monic and
normalized

poly-mod.irreducible-m p g ∧ — irreducibility even mod
p

poly-mod.degree-m p g = degree g — mod p does not change degree of g
proof −

note hensel = hensel-lifting[OF assms]
show sort (map degree fs) = sort (map degree gs)∧

g. g ∈ set gs =⇒ monic g ∧ poly-mod.Mp (p^n) g = g ∧
poly-mod.irreducible-m p g ∧
poly-mod.degree-m p g = degree g using hensel by auto

from berlekamp-hensel-unique[OF cop sf refl n]
have poly-mod.unique-factorization-m (p ^ n) f (lead-coeff f , mset (berlekamp-hensel

p n f )) by auto
with hensel(1 ) show poly-mod.unique-factorization-m (p^n) f (lead-coeff f , mset

gs)
by (metis poly-mod.unique-factorization-m-alt-def )

qed

end

end

10 Reconstructing Factors of Integer Polynomials
10.1 Square-Free Polynomials over Finite Fields and Inte-

gers
theory Square-Free-Int-To-Square-Free-GFp
imports

Subresultants.Subresultant-Gcd
Polynomial-Factorization.Rational-Factorization
Finite-Field
Polynomial-Factorization.Square-Free-Factorization

begin

lemma square-free-int-rat: assumes sf : square-free f
shows square-free (map-poly rat-of-int f )

proof −
let ?r = map-poly rat-of-int
from sf [unfolded square-free-def ] have f0 : f 6= 0

∧
q. degree q 6= 0 =⇒ ¬ q ∗

q dvd f by auto
show ?thesis
proof (rule square-freeI )

show ?r f 6= 0 using f0 by auto
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fix q
assume dq: degree q > 0 and dvd: q ∗ q dvd ?r f
hence q0 : q 6= 0 by auto
obtain q ′ c where norm: rat-to-normalized-int-poly q = (c,q ′) by force
from rat-to-normalized-int-poly[OF norm] have c0 : c 6= 0 by auto
note q = rat-to-normalized-int-poly(1 )[OF norm]
from dvd obtain k where rf : ?r f = q ∗ (q ∗ k) unfolding dvd-def by (auto

simp: ac-simps)
from rat-to-int-factor-explicit[OF this norm] obtain s where

f : f = q ′ ∗ smult (content f ) s by auto
let ?s = smult (content f ) s
from arg-cong[OF f , of ?r ] c0
have ?r f = q ∗ (smult (inverse c) (?r ?s))

by (simp add: field-simps q hom-distribs)
from arg-cong[OF this[unfolded rf ], of λ f . f div q] q0
have q ∗ k = smult (inverse c) (?r ?s)

by (metis nonzero-mult-div-cancel-left)
from arg-cong[OF this, of smult c] have ?r ?s = q ∗ smult c k using c0

by (auto simp: field-simps)
from rat-to-int-factor-explicit[OF this norm] obtain t where ?s = q ′ ∗ t by

blast
from f [unfolded this] sf [unfolded square-free-def ] f0 have degree q ′ = 0 by

auto
with rat-to-normalized-int-poly(4 )[OF norm] dq show False by auto

qed
qed

lemma content-free-unit:
assumes content (p:: ′a::{idom,semiring-gcd} poly) = 1
shows p dvd 1 ←→ degree p = 0
by (insert assms, auto dest!:degree0-coeffs simp: normalize-1-iff poly-dvd-1 )

lemma square-free-imp-resultant-non-zero: assumes sf : square-free (f :: int poly)
shows resultant f (pderiv f ) 6= 0

proof (cases degree f = 0 )
case True
from degree0-coeffs[OF this] obtain c where f : f = [:c:] by auto
with sf have c: c 6= 0 unfolding square-free-def by auto
show ?thesis unfolding f by simp

next
case False note deg = this
define pp where pp = primitive-part f
define c where c = content f
from sf have f0 : f 6= 0 unfolding square-free-def by auto
hence c0 : c 6= 0 unfolding c-def by auto
have f : f = smult c pp unfolding c-def pp-def unfolding content-times-primitive-part[of

f ] ..
from sf [unfolded f ] c0 have sf ′: square-free pp by (metis dvd-smult smult-0-right

square-free-def )
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from deg[unfolded f ] c0 have deg ′:
∧

x. degree pp > 0 ∨ x by auto
from content-primitive-part[OF f0 ] have cp: content pp = 1 unfolding pp-def

.
let ?p ′ = pderiv pp
{

assume resultant pp ?p ′ = 0
from this[unfolded resultant-0-gcd] have ¬ coprime pp ?p ′ by auto
then obtain r where r : r dvd pp r dvd ?p ′ ¬ r dvd 1

by (blast elim: not-coprimeE)
from r(1 ) obtain k where pp = r ∗ k ..
from pos-zmult-eq-1-iff-lemma[OF arg-cong[OF this,

of content, unfolded content-mult cp, symmetric]] content-ge-0-int[of r ]
have cr : content r = 1 by auto
with r(3 ) content-free-unit have dr : degree r 6= 0 by auto
let ?r = map-poly rat-of-int

from r(1 ) have dvd: ?r r dvd ?r pp unfolding dvd-def by (auto simp:
hom-distribs)

from r(2 ) have ?r r dvd ?r ?p ′ apply (intro of-int-poly-hom.hom-dvd) by auto
also have ?r ?p ′ = pderiv (?r pp) unfolding of-int-hom.map-poly-pderiv ..
finally have dvd ′: ?r r dvd pderiv (?r pp) by auto
from dr have dr ′: degree (?r r) 6= 0 by simp
from square-free-imp-separable[OF square-free-int-rat[OF sf ′]]
have separable (?r pp) .
hence cop: coprime (?r pp) (pderiv (?r pp)) unfolding separable-def .
from f0 f have pp0 : pp 6= 0 by auto
from dvd dvd ′ have ?r r dvd gcd (?r pp) (pderiv (?r pp)) by auto
from divides-degree[OF this] pp0 have degree (?r r) ≤ degree (gcd (?r pp)

(pderiv (?r pp)))
by auto

with dr ′ have degree (gcd (?r pp) (pderiv (?r pp))) 6= 0 by auto
hence ¬ coprime (?r pp) (pderiv (?r pp)) by auto
with cop have False by auto

}
hence resultant pp ?p ′ 6= 0 by auto
with resultant-smult-left[OF c0 , of pp ?p ′, folded f ] c0
have resultant f ?p ′ 6= 0 by auto
with resultant-smult-right[OF c0 , of f ?p ′, folded pderiv-smult f ] c0
show resultant f (pderiv f ) 6= 0 by auto

qed

lemma large-mod-0 : assumes (n :: int) > 1 |k| < n k mod n = 0 shows k = 0
proof −

from ‹k mod n = 0 › have n dvd k
by auto

then obtain m where k = n ∗ m ..
with ‹n > 1 › ‹|k| < n› show ?thesis

by (auto simp add: abs-mult)
qed
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definition separable-bound :: int poly ⇒ int where
separable-bound f = max (abs (resultant f (pderiv f )))
(max (abs (lead-coeff f )) (abs (lead-coeff (pderiv f ))))

lemma square-free-int-imp-resultant-non-zero-mod-ring: assumes sf : square-free f

and large: int CARD( ′a) > separable-bound f
shows resultant (map-poly of-int f :: ′a :: prime-card mod-ring poly) (pderiv

(map-poly of-int f )) 6= 0
∧ map-poly of-int f 6= (0 :: ′a mod-ring poly)

proof (intro conjI , rule notI )
let ?i = of-int :: int ⇒ ′a mod-ring
let ?m = of-int-poly :: - ⇒ ′a mod-ring poly
let ?f = ?m f
from sf [unfolded square-free-def ] have f0 : f 6= 0 by auto
hence lf : lead-coeff f 6= 0 by auto
{

fix k :: int
have C1 : int CARD( ′a) > 1 using prime-card[where ′a = ′a] by (auto simp:

prime-nat-iff )
assume abs k < CARD( ′a) and ?i k = 0
hence k = 0 unfolding of-int-of-int-mod-ring

by (transfer) (rule large-mod-0 [OF C1 ])
} note of-int-0 = this
from square-free-imp-resultant-non-zero[OF sf ]
have non0 : resultant f (pderiv f ) 6= 0 .
{

fix g :: int poly
assume abs: abs (lead-coeff g) < CARD( ′a)
have degree (?m g) = degree g by (rule degree-map-poly, insert of-int-0 [OF

abs], auto)
} note deg = this
note large = large[unfolded separable-bound-def ]
from of-int-0 [of lead-coeff f ] large lf have ?i (lead-coeff f ) 6= 0 by auto
thus f0 : ?f 6= 0 unfolding poly-eq-iff by auto
assume 0 : resultant ?f (pderiv ?f ) = 0
have resultant ?f (pderiv ?f ) = ?i (resultant f (pderiv f ))

unfolding of-int-hom.map-poly-pderiv[symmetric]
by (subst of-int-hom.resultant-map-poly(1 )[OF deg deg], insert large, auto simp:

hom-distribs)
from of-int-0 [OF - this[symmetric, unfolded 0 ]] non0
show False using large by auto

qed

lemma square-free-int-imp-separable-mod-ring: assumes sf : square-free f
and large: int CARD( ′a) > separable-bound f
shows separable (map-poly of-int f :: ′a :: prime-card mod-ring poly)

proof −
define g where g = map-poly (of-int :: int ⇒ ′a mod-ring) f
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from square-free-int-imp-resultant-non-zero-mod-ring[OF sf large]
have res: resultant g (pderiv g) 6= 0 and g: g 6= 0 unfolding g-def by auto
from res[unfolded resultant-0-gcd] have degree (gcd g (pderiv g)) = 0 by auto
from degree0-coeffs[OF this]
have separable g unfolding separable-def

by (metis degree-pCons-0 g gcd-eq-0-iff is-unit-gcd is-unit-iff-degree)
thus ?thesis unfolding g-def .

qed

lemma square-free-int-imp-square-free-mod-ring: assumes sf : square-free f
and large: int CARD( ′a) > separable-bound f

shows square-free (map-poly of-int f :: ′a :: prime-card mod-ring poly)
using separable-imp-square-free[OF square-free-int-imp-separable-mod-ring[OF assms]]

.

end

10.2 Finding a Suitable Prime
The Berlekamp-Zassenhaus algorithm demands for an input polynomial f
to determine a prime p such that f is square-free mod p and such that p
and the leading coefficient of f are coprime. To this end, we first prove that
such a prime always exists, provided that f is square-free over the integers.
Second, we provide a generic algorithm which searches for primes have a
certain property P . Combining both results gives us the suitable prime for
the Berlekamp-Zassenhaus algorithm.
theory Suitable-Prime
imports

Poly-Mod
Finite-Field-Record-Based
HOL−Types-To-Sets.Types-To-Sets
Poly-Mod-Finite-Field-Record-Based
Polynomial-Record-Based
Square-Free-Int-To-Square-Free-GFp

begin

lemma square-free-separable-GFp: fixes f :: ′a :: prime-card mod-ring poly
assumes card: CARD( ′a) > degree f
and sf : square-free f
shows separable f

proof (rule ccontr)
assume ¬ separable f
with square-free-separable-main[OF sf ]
obtain g k where ∗: f = g ∗ k degree g 6= 0 and g0 : pderiv g = 0 by auto
from assms have f : f 6= 0 unfolding square-free-def by auto
have degree f = degree g + degree k using f unfolding ∗(1 )

by (subst degree-mult-eq, auto)
with card have card: degree g < CARD( ′a) by auto
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from ∗(2 ) obtain n where deg: degree g = Suc n by (cases degree g, auto)
from ∗(2 ) have cg: coeff g (degree g) 6= 0 by auto
from g0 have coeff (pderiv g) n = 0 by auto
from this[unfolded coeff-pderiv, folded deg] cg
have of-nat (degree g) = (0 :: ′a mod-ring) by auto
from of-nat-0-mod-ring-dvd[OF this] have CARD( ′a) dvd degree g .
with card show False by (simp add: deg nat-dvd-not-less)

qed

lemma square-free-iff-separable-GFp: assumes degree f < CARD( ′a)
shows square-free (f :: ′a :: prime-card mod-ring poly) = separable f
using separable-imp-square-free[of f ] square-free-separable-GFp[OF assms] by

auto

definition separable-impl-main :: int ⇒ ′i arith-ops-record ⇒ int poly ⇒ bool
where
separable-impl-main p ff-ops f = separable-i ff-ops (of-int-poly-i ff-ops (poly-mod.Mp

p f ))

lemma (in prime-field-gen) separable-impl:
shows separable-impl-main p ff-ops f =⇒ square-free-m f
p > degree-m f =⇒ p > separable-bound f =⇒ square-free f
=⇒ separable-impl-main p ff-ops f unfolding separable-impl-main-def

proof −
define F where F : (F :: ′a mod-ring poly) = of-int-poly (Mp f )
let ?f ′ = of-int-poly-i ff-ops (Mp f )
define f ′′ where f ′′ ≡ of-int-poly (Mp f ) :: ′a mod-ring poly
have rel-f [transfer-rule]: poly-rel ?f ′ f ′′

by (rule poly-rel-of-int-poly[OF refl], simp add: f ′′-def )
have separable-i ff-ops ?f ′←→ gcd f ′′ (pderiv f ′′) = 1

unfolding separable-i-def by transfer-prover
also have . . . ←→ coprime f ′′ (pderiv f ′′)

by (auto simp add: gcd-eq-1-imp-coprime)
finally have id: separable-i ff-ops ?f ′←→ separable f ′′ unfolding separable-def

coprime-iff-coprime .
have Mprel [transfer-rule]: MP-Rel (Mp f ) F unfolding F MP-Rel-def

by (simp add: Mp-f-representative)
have square-free f ′′ = square-free F unfolding f ′′-def F by simp
also have . . . = square-free-m (Mp f )

by (transfer , simp)
also have . . . = square-free-m f by simp
finally have id2 : square-free f ′′ = square-free-m f .
from separable-imp-square-free[of f ′′]
show separable-i ff-ops ?f ′ =⇒ square-free-m f

unfolding id id2 by auto
let ?m = map-poly (of-int :: int ⇒ ′a mod-ring)
let ?f = ?m f
assume p > degree-m f and bnd: p > separable-bound f and sf : square-free f
with rel-funD[OF degree-MP-Rel Mprel, folded p]
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have p > degree F by simp
hence CARD( ′a) > degree f ′′ unfolding f ′′-def F p by simp
from square-free-iff-separable-GFp[OF this]
have separable-i ff-ops ?f ′ = square-free f ′′ unfolding id id2 by simp
also have . . . = square-free F unfolding f ′′-def F by simp
also have F = ?f unfolding F

by (rule poly-eqI , (subst coeff-map-poly, force)+, unfold Mp-coeff ,
auto simp: M-def , transfer , auto simp: p)

also have square-free ?f using square-free-int-imp-square-free-mod-ring[where
′a = ′a, OF sf ] bnd m by auto

finally
show separable-i ff-ops ?f ′ .

qed

context poly-mod-prime begin

lemmas separable-impl-integer = prime-field-gen.separable-impl
[OF prime-field.prime-field-finite-field-ops-integer , unfolded prime-field-def mod-ring-locale-def ,
unfolded poly-mod-type-simps, internalize-sort ′a :: prime-card, OF type-to-set,

unfolded remove-duplicate-premise,cancel-type-definition, OF non-empty]

lemmas separable-impl-uint32 = prime-field-gen.separable-impl
[OF prime-field.prime-field-finite-field-ops32 , unfolded prime-field-def mod-ring-locale-def ,
unfolded poly-mod-type-simps, internalize-sort ′a :: prime-card, OF type-to-set,

unfolded remove-duplicate-premise,cancel-type-definition, OF non-empty]

lemmas separable-impl-uint64 = prime-field-gen.separable-impl
[OF prime-field.prime-field-finite-field-ops64 , unfolded prime-field-def mod-ring-locale-def ,
unfolded poly-mod-type-simps, internalize-sort ′a :: prime-card, OF type-to-set,

unfolded remove-duplicate-premise,cancel-type-definition, OF non-empty]

end

definition separable-impl :: int ⇒ int poly ⇒ bool where
separable-impl p = (

if p ≤ 65535
then separable-impl-main p (finite-field-ops32 (uint32-of-int p))
else if p ≤ 4294967295
then separable-impl-main p (finite-field-ops64 (uint64-of-int p))
else separable-impl-main p (finite-field-ops-integer (integer-of-int p)))

lemma square-free-mod-imp-square-free: assumes
p: prime p and sf : poly-mod.square-free-m p f
and cop: coprime (lead-coeff f ) p
shows square-free f

proof −
interpret poly-mod p .
from sf [unfolded square-free-m-def ] have f0 : Mp f 6= 0 and ndvd:

∧
g. degree-m

g > 0 =⇒ ¬ (g ∗ g) dvdm f
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by auto
from f0 have ff0 : f 6= 0 by auto
show square-free f unfolding square-free-def
proof (intro conjI [OF ff0 ] allI impI notI )

fix g
assume deg: degree g > 0 and dvd: g ∗ g dvd f
then obtain h where f : f = g ∗ g ∗ h unfolding dvd-def by auto
from arg-cong[OF this, of Mp] have (g ∗ g) dvdm f unfolding dvdm-def by

auto
with ndvd[of g] have deg0 : degree-m g = 0 by auto
hence g0 : M (lead-coeff g) = 0 unfolding Mp-def using deg

by (metis M-def deg0 p poly-mod.degree-m-eq prime-gt-1-int neq0-conv)
from p have p0 : p 6= 0 by auto
from arg-cong[OF f , of lead-coeff ] have lead-coeff f = lead-coeff g ∗ lead-coeff

g ∗ lead-coeff h
by (auto simp: lead-coeff-mult)

hence lead-coeff g dvd lead-coeff f by auto
with cop have cop: coprime (lead-coeff g) p

by (auto elim: coprime-imp-coprime intro: dvd-trans)
with p0 have coprime (lead-coeff g mod p) p by simp
also have lead-coeff g mod p = 0

using M-def g0 by simp
finally show False using p

unfolding prime-int-iff
by (simp add: prime-int-iff )

qed
qed

lemma(in poly-mod-prime) separable-impl:
shows separable-impl p f =⇒ square-free-m f

nat p > degree-m f =⇒ nat p > separable-bound f =⇒ square-free f
=⇒ separable-impl p f

using
separable-impl-integer [of f ]
separable-impl-uint32 [of f ]
separable-impl-uint64 [of f ]

unfolding separable-impl-def by (auto split: if-splits)

lemma coprime-lead-coeff-large-prime: assumes prime: prime (p :: int)
and large: p > abs (lead-coeff f )
and f : f 6= 0
shows coprime (lead-coeff f ) p

proof −
{

fix lc
assume 0 < lc lc < p
then have ¬ p dvd lc

by (simp add: zdvd-not-zless)
with ‹prime p› have coprime p lc
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by (auto intro: prime-imp-coprime)
then have coprime lc p

by (simp add: ac-simps)
} note main = this
define lc where lc = lead-coeff f
from f have lc0 : lc 6= 0 unfolding lc-def by auto
from large have large: p > abs lc unfolding lc-def by auto
have coprime lc p
proof (cases lc > 0 )

case True
from large have p > lc by auto
from main[OF True this] show ?thesis .

next
case False
let ?mlc = − lc
from large False lc0 have ?mlc > 0 p > ?mlc by auto
from main[OF this] show ?thesis by simp

qed
thus ?thesis unfolding lc-def by auto

qed

lemma prime-for-berlekamp-zassenhaus-exists: assumes sf : square-free f
shows ∃ p. prime p ∧ (coprime (lead-coeff f ) p ∧ separable-impl p f )

proof (rule ccontr)
from assms have f0 : f 6= 0 unfolding square-free-def by auto
define n where n = max (max (abs (lead-coeff f )) (degree f )) (separable-bound

f )
assume contr : ¬ ?thesis
{

fix p :: int
assume prime: prime p and n: p > n
then interpret poly-mod-prime p by unfold-locales
from n have large: p > abs (lead-coeff f ) nat p > degree f nat p > separa-

ble-bound f
unfolding n-def by auto

from coprime-lead-coeff-large-prime[OF prime large(1 ) f0 ]
have cop: coprime (lead-coeff f ) p by auto
with prime contr have nsf : ¬ separable-impl p f by auto
from large(2 ) have nat p > degree-m f using degree-m-le[of f ] by auto
from separable-impl(2 )[OF this large(3 ) sf ] nsf have False by auto

}
hence no-large-prime:

∧
p. prime p =⇒ p > n =⇒ False by auto

from bigger-prime[of nat n] obtain p where ∗: prime p p > nat n by auto
define q where q ≡ int p
from ∗ have prime q q > n unfolding q-def by auto
from no-large-prime[OF this]
show False .

qed
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definition next-primes :: nat ⇒ nat × nat list where
next-primes n = (if n = 0 then next-candidates 0 else

let (m,ps) = next-candidates n in (m,filter prime ps))

partial-function (tailrec) find-prime-main ::
(nat ⇒ bool) ⇒ nat ⇒ nat list ⇒ nat where
[code]: find-prime-main f np ps = (case ps of [] ⇒

let (np ′,ps ′) = next-primes np
in find-prime-main f np ′ ps ′

| (p # ps) ⇒ if f p then p else find-prime-main f np ps)

definition find-prime :: (nat ⇒ bool) ⇒ nat where
find-prime f = find-prime-main f 0 []

lemma next-primes: assumes res: next-primes n = (m,ps)
and n: candidate-invariant n
shows candidate-invariant m sorted ps distinct ps n < m
set ps = {i. prime i ∧ n ≤ i ∧ i < m}

proof −
have candidate-invariant m ∧ sorted ps ∧ distinct ps ∧ n < m ∧

set ps = {i. prime i ∧ n ≤ i ∧ i < m}
proof (cases n = 0 )

case True
with res[unfolded next-primes-def ] have nc: next-candidates 0 = (m,ps) by

auto
from this[unfolded next-candidates-def ] have ps: ps = primes-1000 and m: m

= 1001 by auto
have ps: set ps = {i. prime i ∧ n ≤ i ∧ i < m} unfolding m True ps

by (auto simp: primes-1000 )
with next-candidates[OF nc n[unfolded True]] True
show ?thesis by simp

next
case False

with res[unfolded next-primes-def Let-def ] obtain qs where nc: next-candidates
n = (m, qs)

and ps: ps = filter prime qs by (cases next-candidates n, auto)
have sorted qs =⇒ sorted ps unfolding ps using sorted-filter [of id qs prime]

by auto
with next-candidates[OF nc n] show ?thesis unfolding ps by auto

qed
thus candidate-invariant m sorted ps distinct ps n < m

set ps = {i. prime i ∧ n ≤ i ∧ i < m} by auto
qed

lemma find-prime: assumes ∃ n. prime n ∧ f n
shows prime (find-prime f ) ∧ f (find-prime f )

proof −
from assms obtain n where fn: prime n f n by auto
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{
fix i ps m
assume candidate-invariant i

and n ∈ set ps ∨ n ≥ i
and m = (Suc n − i, length ps)
and

∧
p. p ∈ set ps =⇒ prime p

hence prime (find-prime-main f i ps) ∧ f (find-prime-main f i ps)
proof (induct m arbitrary: i ps rule: wf-induct[OF wf-measures[of [fst, snd]]])

case (1 m i ps)
note IH = 1 (1 )[rule-format]
note can = 1 (2 )
note n = 1 (3 )
note m = 1 (4 )
note ps = 1 (5 )
note simps [simp] = find-prime-main.simps[of f i ps]
show ?case
proof (cases ps)

case Nil
with n have i-n: i ≤ n by auto
obtain j qs where np: next-primes i = (j,qs) by force
note j = next-primes[OF np can]
from j(4 ) i-n m have meas: ((Suc n − j, length qs), m) ∈ measures [fst,

snd] by auto
have n: n ∈ set qs ∨ j ≤ n unfolding j(5 ) using i-n fn by auto

show ?thesis unfolding simps using IH [OF meas j(1 ) n refl] j(5 ) by (simp
add: Nil np)

next
case (Cons p qs)
show ?thesis
proof (cases f p)

case True
thus ?thesis unfolding simps using ps unfolding Cons by simp

next
case False

have m: ((Suc n − i, length qs), m) ∈ measures [fst, snd] using m
unfolding Cons by simp

have n: n ∈ set qs ∨ i ≤ n using False n fn by (auto simp: Cons)
from IH [OF m can n refl ps]
show ?thesis unfolding simps using Cons False by simp

qed
qed

qed
} note main = this
have candidate-invariant 0 by (simp add: candidate-invariant-def )
from main[OF this - refl, of Nil] show ?thesis unfolding find-prime-def by

auto
qed

definition suitable-prime-bz :: int poly ⇒ int where
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suitable-prime-bz f ≡ let lc = lead-coeff f in int (find-prime (λ n. let p = int n
in

coprime lc p ∧ separable-impl p f ))

lemma suitable-prime-bz: assumes sf : square-free f and p: p = suitable-prime-bz
f

shows prime p coprime (lead-coeff f ) p poly-mod.square-free-m p f
proof −

let ?lc = lead-coeff f
from prime-for-berlekamp-zassenhaus-exists[OF sf , unfolded Let-def ]
obtain P where ∗: prime P ∧ coprime ?lc P ∧ separable-impl P f

by auto
hence prime (nat P) using prime-int-nat-transfer by blast
with ∗ have ∃ p. prime p ∧ coprime ?lc (int p) ∧ separable-impl p f

by (intro exI [of - nat P]) (auto dest: prime-gt-0-int)
from find-prime[OF this]
have prime: prime p and cop: coprime ?lc p and sf : separable-impl p f

unfolding p suitable-prime-bz-def Let-def by auto
then interpret poly-mod-prime p by unfold-locales
from prime cop separable-impl(1 )[OF sf ]
show prime p coprime ?lc p square-free-m f by auto

qed

definition square-free-heuristic :: int poly ⇒ int option where
square-free-heuristic f = (let lc = lead-coeff f in

find (λ p. coprime lc p ∧ separable-impl p f ) [2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 ])

lemma find-Some-D: find f xs = Some y =⇒ y ∈ set xs ∧ f y unfolding find-Some-iff
by auto

lemma square-free-heuristic: assumes square-free-heuristic f = Some p
shows coprime (lead-coeff f ) p ∧ separable-impl p f ∧ prime p

proof −
from find-Some-D[OF assms[unfolded square-free-heuristic-def Let-def ]]
show ?thesis by auto

qed

end

10.3 Maximal Degree during Reconstruction
We define a function which computes an upper bound on the degree of a
factor for which we have to reconstruct the integer values of the coefficients.
This degree will determine how large the second parameter of the factor-
bound will be.

In essence, if the Berlekamp-factorization will produce n factors with
degrees d1, . . . , dn, then our bound will be the sum of the n

2 largest degrees.
The reason is that we will combine at most n

2 factors before reconstruction.
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Soundness of the bound is proven, as well as a monotonicity property.
theory Degree-Bound

imports Containers.Set-Impl
HOL−Library.Multiset
Polynomial-Interpolation.Missing-Polynomial
Efficient−Mergesort.Efficient-Sort

begin

definition max-factor-degree :: nat list ⇒ nat where
max-factor-degree degs = (let

ds = sort degs
in sum-list (drop (length ds div 2 ) ds))

definition degree-bound where degree-bound vs = max-factor-degree (map degree
vs)

lemma insort-middle: sort (xs @ x # ys) = insort x (sort (xs @ ys))
by (metis append.assoc sort-append-Cons-swap sort-snoc)

lemma sum-list-insort[simp]:
sum-list (insort (d :: ′a :: {comm-monoid-add,linorder}) xs) = d + sum-list xs

proof (induct xs)
case (Cons x xs)
thus ?case by (cases d ≤ x, auto simp: ac-simps)

qed simp

lemma half-largest-elements-mono: sum-list (drop (length ds div 2 ) (sort ds))
≤ sum-list (drop (Suc (length ds) div 2 ) (insort (d :: nat) (sort ds)))

proof −
define n where n = length ds div 2
define m where m = Suc (length ds) div 2
define xs where xs = sort ds
have xs: sorted xs unfolding xs-def by auto
have nm: m ∈ {n, Suc n} unfolding n-def m-def by auto
show ?thesis unfolding n-def [symmetric] m-def [symmetric] xs-def [symmetric]

using nm xs
proof (induct xs arbitrary: n m d)

case (Cons x xs n m d)
show ?case
proof (cases n)

case 0
with Cons(2 ) have m: m = 0 ∨ m = 1 by auto
show ?thesis
proof (cases d ≤ x)

case True
hence ins: insort d (x # xs) = d # x # xs by auto
show ?thesis unfolding ins 0 using True m by auto

next
case False
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hence ins: insort d (x # xs) = x # insort d xs by auto
show ?thesis unfolding ins 0 using False m by auto

qed
next

case (Suc nn)
with Cons(2 ) obtain mm where m: m = Suc mm and mm: mm ∈ {nn,

Suc nn} by auto
from Cons(3 ) have sort: sorted xs by (simp)
note IH = Cons(1 )[OF mm]
show ?thesis
proof (cases d ≤ x)

case True
with Cons(3 ) have ins: insort d (x # xs) = d # insort x xs

by (cases xs, auto)
show ?thesis unfolding ins Suc m using IH [OF sort] by auto

next
case False
hence ins: insort d (x # xs) = x # insort d xs by auto
show ?thesis unfolding ins Suc m using IH [OF sort] Cons(3 ) by auto

qed
qed

qed auto
qed

lemma max-factor-degree-mono:
max-factor-degree (map degree (fold remove1 ws vs)) ≤ max-factor-degree (map

degree vs)
unfolding max-factor-degree-def Let-def length-sort length-map

proof (induct ws arbitrary: vs)
case (Cons w ws vs)
show ?case
proof (cases w ∈ set vs)

case False
hence remove1 w vs = vs by (rule remove1-idem)
thus ?thesis using Cons[of vs] by auto

next
case True
then obtain bef aft where vs: vs = bef @ w # aft and rem1 : remove1 w vs

= bef @ aft
by (metis remove1 .simps(2 ) remove1-append split-list-first)

let ?exp = λ ws vs. sum-list (drop (length (fold remove1 ws vs) div 2 )
(sort (map degree (fold remove1 ws vs))))

let ?bnd = λ vs. sum-list (drop (length vs div 2 ) (sort (map degree vs)))
let ?bd = λ vs. sum-list (drop (length vs div 2 ) (sort vs))
define ba where ba = bef @ aft
define ds where ds = map degree ba
define d where d = degree w
have ?exp (w # ws) vs = ?exp ws (bef @ aft) by (auto simp: rem1 )
also have . . . ≤ ?bnd ba unfolding ba-def by (rule Cons)
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also have . . . = ?bd ds unfolding ds-def by simp
also have . . . ≤ sum-list (drop (Suc (length ds) div 2 ) (insort d (sort ds)))

by (rule half-largest-elements-mono)
also have . . . = ?bnd vs unfolding vs ds-def d-def by (simp add: ba-def

insort-middle)
finally show ?exp (w # ws) vs ≤ ?bnd vs by simp

qed
qed auto

lemma mset-sub-decompose: mset ds ⊆# mset bs + as =⇒ length ds < length bs
=⇒ ∃ b1 b b2 .

bs = b1 @ b # b2 ∧ mset ds ⊆# mset (b1 @ b2 ) + as
proof (induct ds arbitrary: bs as)

case Nil
hence bs = [] @ hd bs # tl bs by auto
thus ?case by fastforce

next
case (Cons d ds bs as)
have d ∈# mset (d # ds) by auto
with Cons(2 ) have d: d ∈# mset bs + as by (rule mset-subset-eqD)
hence d ∈ set bs ∨ d ∈# as by auto
thus ?case
proof

assume d ∈ set bs
from this[unfolded in-set-conv-decomp] obtain b1 b2 where bs: bs = b1 @ d

# b2 by auto
from Cons(2 ) Cons(3 )
have mset ds ⊆# mset (b1 @ b2 ) + as length ds < length (b1 @ b2 ) by (auto

simp: ac-simps bs)
from Cons(1 )[OF this] obtain b1 ′ b b2 ′ where split: b1 @ b2 = b1 ′ @ b #

b2 ′

and sub: mset ds ⊆# mset (b1 ′ @ b2 ′) + as by auto
from split[unfolded append-eq-append-conv2 ]
obtain us where b1 = b1 ′ @ us ∧ us @ b2 = b # b2 ′ ∨ b1 @ us = b1 ′ ∧ b2

= us @ b # b2 ′ ..
thus ?thesis
proof

assume b1 @ us = b1 ′ ∧ b2 = us @ b # b2 ′

hence ∗: b1 @ us = b1 ′ b2 = us @ b # b2 ′ by auto
hence bs: bs = (b1 @ d # us) @ b # b2 ′ unfolding bs by auto
show ?thesis

by (intro exI conjI , rule bs, insert ∗ sub, auto simp: ac-simps)
next

assume b1 = b1 ′ @ us ∧ us @ b2 = b # b2 ′

hence ∗: b1 = b1 ′ @ us us @ b2 = b # b2 ′ by auto
show ?thesis
proof (cases us)

case Nil
with ∗ have ∗: b1 = b1 ′ b2 = b # b2 ′ by auto
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hence bs: bs = (b1 ′ @ [d]) @ b # b2 ′ unfolding bs by simp
show ?thesis

by (intro exI conjI , rule bs, insert ∗ sub, auto simp: ac-simps)
next

case (Cons u vs)
with ∗ have ∗: b1 = b1 ′ @ b # vs vs @ b2 = b2 ′ by auto
hence bs: bs = b1 ′ @ b # (vs @ d # b2 ) unfolding bs by auto
show ?thesis

by (intro exI conjI , rule bs, insert ∗ sub, auto simp: ac-simps)
qed

qed
next

define as ′ where as ′ = as − {#d#}
assume d ∈# as
hence as ′: as = {#d#} + as ′ unfolding as ′-def by auto
from Cons(2 )[unfolded as ′] Cons(3 ) have mset ds ⊆# mset bs + as ′ length ds

< length bs
by (auto simp: ac-simps)

from Cons(1 )[OF this] obtain b1 b b2 where bs: bs = b1 @ b # b2 and
sub: mset ds ⊆# mset (b1 @ b2 ) + as ′ by auto

show ?thesis
by (intro exI conjI , rule bs, insert sub, auto simp: as ′ ac-simps)

qed
qed

lemma max-factor-degree-aux: fixes es :: nat list
assumes sub: mset ds ⊆# mset es

and len: length ds + length ds ≤ length es and sort: sorted es
shows sum-list ds ≤ sum-list (drop (length es div 2 ) es)

proof −
define bef where bef = take (length es div 2 ) es
define aft where aft = drop (length es div 2 ) es
have es: es = bef @ aft unfolding bef-def aft-def by auto
from len have len: length ds ≤ length bef length ds ≤ length aft unfolding

bef-def aft-def
by auto

from sub have sub: mset ds ⊆# mset bef + mset aft unfolding es by auto
from sort have sort: sorted (bef @ aft) unfolding es .
show ?thesis unfolding aft-def [symmetric] using sub len sort
proof (induct ds arbitrary: bef aft)

case (Cons d ds bef aft)
have d ∈# mset (d # ds) by auto
with Cons(2 ) have d ∈# mset bef + mset aft by (rule mset-subset-eqD)
hence d ∈ set bef ∨ d ∈ set aft by auto
thus ?case
proof

assume d ∈ set aft
from this[unfolded in-set-conv-decomp] obtain a1 a2 where aft: aft = a1 @
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d # a2 by auto
from Cons(4 ) have len-a: length ds ≤ length (a1 @ a2 ) unfolding aft by

auto
from Cons(2 )[unfolded aft] Cons(3 )
have mset ds ⊆# mset bef + (mset (a1 @ a2 )) length ds < length bef by

auto
from mset-sub-decompose[OF this]
obtain b b1 b2

where bef : bef = b1 @ b # b2 and sub: mset ds ⊆# (mset (b1 @ b2 ) +
mset (a1 @ a2 )) by auto

from Cons(3 ) have len-b: length ds ≤ length (b1 @ b2 ) unfolding bef by
auto

from Cons(5 )[unfolded bef aft] have sort: sorted ( (b1 @ b2 ) @ (a1 @ a2 ))
unfolding sorted-append by auto

note IH = Cons(1 )[OF sub len-b len-a sort]
show ?thesis using IH unfolding aft by simp

next
assume d ∈ set bef
from this[unfolded in-set-conv-decomp] obtain b1 b2 where bef : bef = b1 @

d # b2 by auto
from Cons(3 ) have len-b: length ds ≤ length (b1 @ b2 ) unfolding bef by

auto
from Cons(2 )[unfolded bef ] Cons(4 )
have mset ds ⊆# mset aft + (mset (b1 @ b2 )) length ds < length aft by

(auto simp: ac-simps)
from mset-sub-decompose[OF this]
obtain a a1 a2

where aft: aft = a1 @ a # a2 and sub: mset ds ⊆# (mset (b1 @ b2 ) +
mset (a1 @ a2 ))

by (auto simp: ac-simps)
from Cons(4 ) have len-a: length ds ≤ length (a1 @ a2 ) unfolding aft by

auto
from Cons(5 )[unfolded bef aft] have sort: sorted ( (b1 @ b2 ) @ (a1 @ a2 ))

and ad: d ≤ a
unfolding sorted-append by auto

note IH = Cons(1 )[OF sub len-b len-a sort]
show ?thesis using IH ad unfolding aft by simp

qed
qed auto

qed

lemma max-factor-degree: assumes sub: mset ws ⊆# mset vs
and len: length ws + length ws ≤ length vs
shows degree (prod-list ws) ≤ max-factor-degree (map degree vs)

proof −
define ds where ds ≡ map degree ws
define es where es ≡ sort (map degree vs)
from sub len have sub: mset ds ⊆# mset es and len: length ds + length ds ≤

length es
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and es: sorted es
unfolding ds-def es-def
by (auto simp: image-mset-subseteq-mono)

have degree (prod-list ws) ≤ sum-list (map degree ws) by (rule degree-prod-list-le)
also have . . . ≤ max-factor-degree (map degree vs)

unfolding max-factor-degree-def Let-def ds-def [symmetric] es-def [symmetric]
using sub len es by (rule max-factor-degree-aux)

finally show ?thesis .
qed

lemma degree-bound: assumes sub: mset ws ⊆# mset vs
and len: length ws + length ws ≤ length vs

shows degree (prod-list ws) ≤ degree-bound vs
using max-factor-degree[OF sub len] unfolding degree-bound-def by auto

end

10.4 Mahler Measure
This part contains a definition of the Mahler measure, it contains Landau’s
inequality and the Graeffe-transformation. We also assemble a heuristic to
approximate the Mahler’s measure.
theory Mahler-Measure
imports

Sqrt-Babylonian.Sqrt-Babylonian
Poly-Mod-Finite-Field-Record-Based
Polynomial-Factorization.Fundamental-Theorem-Algebra-Factorized
Polynomial-Factorization.Missing-Multiset

begin

context comm-monoid-list begin
lemma induct-gen-abs:

assumes
∧

a r . a∈set lst =⇒ P (f (h a) r) (f (g a) r)∧
x y z. P x y =⇒ P y z =⇒ P x z

P (F (map g lst)) (F (map g lst))
shows P (F (map h lst)) (F (map g lst))

using assms proof(induct lst arbitrary:P)
case (Cons a as P)
have inl:a∈set (a#as) by auto
let ?uf = λ v w. P (f (g a) v) (f (g a) w)
have p-suc:?uf (F (map g as)) (F (map g as))

using Cons.prems(3 ) by auto
{ fix r aa assume aa ∈ set as hence ins:aa ∈ set (a#as) by auto

have P (f (g a) (f (h aa) r)) (f (g a) (f (g aa) r))
using Cons.prems(1 )[of aa f r (g a),OF ins]
by (auto simp: assoc commute left-commute)

} note h = this
from Cons.hyps(1 )[of ?uf , OF h Cons.prems(2 )[simplified] p-suc]
have e1 :P (f (g a) (F (map h as))) (f (g a) (F (map g as))) by simp
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have e2 :P (f (h a) (F (map h as))) (f (g a) (F (map h as)))
using Cons.prems(1 )[OF inl] by blast

from Cons(3 )[OF e2 e1 ] show ?case by auto next
qed auto

end

lemma prod-induct-gen:
assumes

∧
a r . f (h a ∗ r :: ′a :: {comm-monoid-mult}) = f (g a ∗ r)

shows f (
∏

v←lst. h v) = f (
∏

v←lst. g v)
proof − let ?P x y = f x = f y

show ?thesis using comm-monoid-mult-class.prod-list.induct-gen-abs[of - ?P,OF
assms] by auto
qed

abbreviation complex-of-int::int ⇒ complex where
complex-of-int ≡ of-int

definition l2norm-list :: int list ⇒ int where
l2norm-list lst = bsqrt (sum-list (map (λ a. a ∗ a) lst))c

abbreviation l2norm :: int poly ⇒ int where
l2norm p ≡ l2norm-list (coeffs p)

abbreviation norm2 p ≡
∑

a←coeffs p. (cmod a)2

abbreviation l2norm-complex where
l2norm-complex p ≡ sqrt (norm2 p)

abbreviation height :: int poly ⇒ int where
height p ≡ max-list (map (nat ◦ abs) (coeffs p))

definition complex-roots-complex where
complex-roots-complex (p::complex poly) = (SOME as. smult (coeff p (degree p))

(
∏

a←as. [:− a, 1 :]) = p ∧ length as = degree p)

lemma complex-roots:
smult (lead-coeff p) (

∏
a←complex-roots-complex p. [:− a, 1 :]) = p

length (complex-roots-complex p) = degree p
using someI-ex[OF fundamental-theorem-algebra-factorized]
unfolding complex-roots-complex-def by simp-all

lemma complex-roots-c [simp]:
complex-roots-complex [:c:] = []
using complex-roots(2 ) [of [:c:]] by simp

declare complex-roots(2 )[simp]

lemma complex-roots-1 [simp]:
complex-roots-complex 1 = []
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using complex-roots-c [of 1 ] by (simp add: pCons-one)

lemma linear-term-irreducibled[simp]: irreducibled [: a, 1 :]
by (rule linear-irreducibled, simp)

definition complex-roots-int where
complex-roots-int (p::int poly) = complex-roots-complex (map-poly of-int p)

lemma complex-roots-int:
smult (lead-coeff p) (

∏
a←complex-roots-int p. [:− a, 1 :]) = map-poly of-int p

length (complex-roots-int p) = degree p
proof −

show smult (lead-coeff p) (
∏

a←complex-roots-int p. [:− a, 1 :]) = map-poly of-int
p

length (complex-roots-int p) = degree p
using complex-roots[of map-poly of-int p] unfolding complex-roots-int-def by

auto
qed

The measure for polynomials, after K. Mahler
definition mahler-measure-poly where

mahler-measure-poly p = cmod (lead-coeff p) ∗ (
∏

a←complex-roots-complex p.
(max 1 (cmod a)))

definition mahler-measure where
mahler-measure p = mahler-measure-poly (map-poly complex-of-int p)

definition mahler-measure-monic where
mahler-measure-monic p = (

∏
a←complex-roots-complex p. (max 1 (cmod a)))

lemma mahler-measure-poly-via-monic :
mahler-measure-poly p = cmod (lead-coeff p) ∗ mahler-measure-monic p
unfolding mahler-measure-poly-def mahler-measure-monic-def by simp

lemma smult-inj[simp]: assumes (a:: ′a::idom) 6= 0 shows inj (smult a)
proof−

interpret map-poly-inj-zero-hom (∗) a using assms by (unfold-locales, auto)
show ?thesis unfolding smult-as-map-poly by (rule inj-f )

qed

definition reconstruct-poly:: ′a::idom ⇒ ′a list ⇒ ′a poly where
reconstruct-poly c roots = smult c (

∏
a←roots. [:− a, 1 :])

lemma reconstruct-is-original-poly:
reconstruct-poly (lead-coeff p) (complex-roots-complex p) = p
using complex-roots(1 ) by (simp add: reconstruct-poly-def )

lemma reconstruct-with-type-conversion:
smult (lead-coeff (map-poly of-int f )) (prod-list (map (λ a. [:− a, 1 :]) (complex-roots-int
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f )))
= map-poly of-int f

unfolding complex-roots-int-def complex-roots(1 ) by simp

lemma reconstruct-prod:
shows reconstruct-poly (a::complex) as ∗ reconstruct-poly b bs

= reconstruct-poly (a ∗ b) (as @ bs)
unfolding reconstruct-poly-def by auto

lemma linear-term-inj[simplified,simp]: inj (λ a. [:− a, 1 :: ′a::idom:])
unfolding inj-on-def by simp

lemma reconstruct-poly-monic-defines-mset:
assumes (

∏
a←as. [:− a, 1 :]) = (

∏
a←bs. [:− a, 1 :: ′a::field:])

shows mset as = mset bs
proof −

let ?as = mset (map (λ a. [:− a, 1 :]) as)
let ?bs = mset (map (λ a. [:− a, 1 :]) bs)
have eq-smult:prod-mset ?as = prod-mset ?bs using assms by (metis prod-mset-prod-list)
have irr :

∧
as:: ′a list. set-mset (mset (map (λ a. [:− a, 1 :]) as)) ⊆ {q. irreducible

q ∧ monic q}
by (auto intro!: linear-term-irreducibled[of −-:: ′a, simplified])

from monic-factorization-unique-mset[OF eq-smult irr irr ]
show ?thesis apply (subst inj-eq[OF multiset.inj-map,symmetric]) by auto

qed

lemma reconstruct-poly-defines-mset-of-argument:
assumes (a:: ′a::field) 6= 0

reconstruct-poly a as = reconstruct-poly a bs
shows mset as = mset bs

proof −
have eq-smult:smult a (

∏
a←as. [:− a, 1 :]) = smult a (

∏
a←bs. [:− a, 1 :])

using assms(2 ) by (auto simp:reconstruct-poly-def )
from reconstruct-poly-monic-defines-mset[OF Fun.injD[OF smult-inj[OF assms(1 )]

eq-smult]]
show ?thesis by simp

qed

lemma complex-roots-complex-prod [simp]:
assumes f 6= 0 g 6= 0
shows mset (complex-roots-complex (f ∗ g))

= mset (complex-roots-complex f ) + mset (complex-roots-complex g)
proof −

let ?p = f ∗ g
let ?lc v = (lead-coeff (v:: complex poly))
have nonzero-prod:?lc ?p 6= 0 using assms by auto
from reconstruct-prod[of ?lc f complex-roots-complex f ?lc g complex-roots-complex

g]
have reconstruct-poly (?lc ?p) (complex-roots-complex ?p)
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= reconstruct-poly (?lc ?p) (complex-roots-complex f @ complex-roots-complex
g)

unfolding lead-coeff-mult[symmetric] reconstruct-is-original-poly by auto
from reconstruct-poly-defines-mset-of-argument[OF nonzero-prod this]
show ?thesis by simp

qed

lemma mset-mult-add:
assumes mset (a:: ′a::field list) = mset b + mset c
shows prod-list a = prod-list b ∗ prod-list c
unfolding prod-mset-prod-list[symmetric]
using prod-mset-Un[of mset b mset c,unfolded assms[symmetric]].

lemma mset-mult-add-2 :
assumes mset a = mset b + mset c
shows prod-list (map i a:: ′b::field list) = prod-list (map i b) ∗ prod-list (map i c)

proof −
have r :mset (map i a) = mset (map i b) + mset (map i c) using assms

by (metis map-append mset-append mset-map)
show ?thesis using mset-mult-add[OF r ] by auto

qed

lemma measure-mono-eq-prod:
assumes f 6= 0 g 6= 0
shows mahler-measure-monic (f ∗ g) = mahler-measure-monic f ∗ mahler-measure-monic

g
unfolding mahler-measure-monic-def
using mset-mult-add-2 [OF complex-roots-complex-prod[OF assms],of λ a. max 1

(cmod a)] by simp

lemma mahler-measure-poly-0 [simp]: mahler-measure-poly 0 = 0 unfolding mahler-measure-poly-via-monic
by auto

lemma measure-eq-prod:
mahler-measure-poly (f ∗ g) = mahler-measure-poly f ∗ mahler-measure-poly g

proof −
consider f = 0 | g = 0 | (both) f 6= 0 g 6= 0 by auto
thus ?thesis proof(cases)

case both show ?thesis unfolding mahler-measure-poly-via-monic norm-mult
lead-coeff-mult

by (auto simp: measure-mono-eq-prod[OF both])
qed (simp-all)

qed

lemma prod-cmod[simp]:
cmod (

∏
a←lst. f a) = (

∏
a←lst. cmod (f a))

by(induct lst,auto simp:real-normed-div-algebra-class.norm-mult)

lemma lead-coeff-of-prod[simp]:
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lead-coeff (
∏

a←lst. f a:: ′a::idom poly) = (
∏

a←lst. lead-coeff (f a))
by(induct lst,auto simp:lead-coeff-mult)

lemma ineq-about-squares:assumes x ≤ (y::real) shows x ≤ c^2 + y using assms
by (simp add: add.commute add-increasing2 )

lemma first-coeff-le-tail:(cmod (lead-coeff g))^2 ≤ (
∑

a←coeffs g. (cmod a)^2 )
proof(induct g)

case (pCons a p)
thus ?case proof(cases p = 0 ) case False

show ?thesis using pCons unfolding lead-coeff-pCons(1 )[OF False]
by(cases a = 0 ,simp-all add:ineq-about-squares)

qed simp
qed simp

lemma square-prod-cmod[simp]:
(cmod (a ∗ b))^2 = cmod a ^ 2 ∗ cmod b ^ 2

by (simp add: norm-mult power-mult-distrib)

lemma sum-coeffs-smult-cmod:
(
∑

a←coeffs (smult v p). (cmod a)^2 ) = (cmod v)^2 ∗ (
∑

a←coeffs p. (cmod
a)^2 )
(is ?l = ?r)

proof −
have ?l = (

∑
a←coeffs p. (cmod v)^2 ∗ (cmod a)^2 ) by(cases v=0 ;induct

p,auto)
thus ?thesis by (auto simp:sum-list-const-mult)

qed

abbreviation linH a ≡ if (cmod a > 1 ) then [:− 1 ,cnj a:] else [:− a,1 :]

lemma coeffs-cong-1 [simp]: cCons a v = cCons b v ←→ a = b unfolding cCons-def
by auto

lemma strip-while-singleton[simp]:
strip-while ((=) 0 ) [v ∗ a] = cCons (v ∗ a) [] unfolding cCons-def strip-while-def

by auto

lemma coeffs-times-linterm:
shows coeffs (pCons 0 (smult a p) + smult b p) = strip-while (HOL.eq (0 :: ′a::{comm-ring-1}))

(map (λ(c,d).b∗d+c∗a) (zip (0 # coeffs p) (coeffs p @ [0 ]))) proof −
{fix v
have coeffs (smult b p + pCons (a∗ v) (smult a p)) = strip-while (HOL.eq 0 ) (map
(λ(c,d).b∗d+c∗a) (zip ([v] @ coeffs p) (coeffs p @ [0 ])))
proof(induct p arbitrary:v) case (pCons pa ps) thus ?case by auto qed auto
}
from this[of 0 ] show ?thesis by (simp add: add.commute)
qed
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lemma filter-distr-rev[simp]:
shows filter f (rev lst) = rev (filter f lst)

by(induct lst;auto)

lemma strip-while-filter :
shows filter (( 6=) 0 ) (strip-while ((=) 0 ) (lst:: ′a::zero list)) = filter (( 6=) 0 ) lst

proof − {fix lst:: ′a list
have filter (( 6=) 0 ) (dropWhile ((=) 0 ) lst) = filter (( 6=) 0 ) lst by (induct

lst;auto)
hence (filter (( 6=) 0 ) (strip-while ((=) 0 ) (rev lst))) = filter (( 6=) 0 ) (rev lst)
unfolding strip-while-def by(simp)}
from this[of rev lst] show ?thesis by simp

qed

lemma sum-stripwhile[simp]:
assumes f 0 = 0
shows (

∑
a←strip-while ((=) 0 ) lst. f a) = (

∑
a←lst. f a)

proof −
{fix lst

have (
∑

a←filter (( 6=) 0 ) lst. f a) = (
∑

a←lst. f a) by(induct lst,auto
simp:assms)}

note f=this
have sum-list (map f (filter (( 6=) 0 ) (strip-while ((=) 0 ) lst)))

= sum-list (map f (filter (( 6=) 0 ) lst))
using strip-while-filter [of lst] by(simp)
thus ?thesis unfolding f .

qed

lemma complex-split : Complex a b = c ←→ (a = Re c ∧ b = Im c)
using complex-surj by auto

lemma norm-times-const:(
∑

y←lst. (cmod (a ∗ y))2) = (cmod a)2 ∗ (
∑

y←lst.
(cmod y)2)
by(induct lst,auto simp:ring-distribs)

fun bisumTail where
bisumTail f (Cons a (Cons b bs)) = f a b + bisumTail f (Cons b bs) |
bisumTail f (Cons a Nil) = f a 0 |
bisumTail f Nil = f 1 0

fun bisum where
bisum f (Cons a as) = f 0 a + bisumTail f (Cons a as) |
bisum f Nil = f 0 0

lemma bisumTail-is-map-zip:
(
∑

x←zip (v # l1 ) (l1 @ [0 ]). f x) = bisumTail (λx y .f (x,y)) (v#l1 )
by(induct l1 arbitrary:v,auto)

lemma bisum-is-map-zip:
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(
∑

x←zip (0 # l1 ) (l1 @ [0 ]). f x) = bisum (λx y. f (x,y)) l1
using bisumTail-is-map-zip[of f hd l1 tl l1 ] by(cases l1 ,auto)
lemma map-zip-is-bisum:

bisum f l1 = (
∑

(x,y)←zip (0 # l1 ) (l1 @ [0 ]). f x y)
using bisum-is-map-zip[of λ(x,y). f x y] by auto

lemma bisum-outside :
(bisum (λ x y. f1 x − f2 x y + f3 y) lst :: ′a :: field)
= sum-list (map f1 lst) + f1 0 − bisum f2 lst + sum-list (map f3 lst) + f3 0

proof(cases lst)
case (Cons a lst) show ?thesis unfolding map-zip-is-bisum Cons by(induct lst

arbitrary:a,auto)
qed auto

lemma Landau-lemma:
(
∑

a←coeffs (
∏

a←lst. [:− a, 1 :]). (cmod a)2) = (
∑

a←coeffs (
∏

a←lst. linH
a). (cmod a)2)
(is norm2 ?l = norm2 ?r)

proof −
have a:

∧
a. (cmod a)2 = Re (a ∗ cnj a) using complex-norm-square

unfolding complex-split complex-of-real-def by simp
have b:

∧
x a y. (cmod (x − a ∗ y))^2
= (cmod x)2 − Re (a ∗ y ∗ cnj x + x ∗ cnj (a ∗ y)) + (cmod (a ∗

y))^2
unfolding left-diff-distrib right-diff-distrib a complex-cnj-diff by simp

have c:
∧

y a x. (cmod (cnj a ∗ x − y))2
= (cmod (a ∗ x))2 − Re (a ∗ y ∗ cnj x + x ∗ cnj (a ∗ y)) + (cmod

y)^2
unfolding left-diff-distrib right-diff-distrib a complex-cnj-diff
by (simp add: mult.assoc mult.left-commute)

{ fix f1 a
have norm2 ([:− a, 1 :] ∗ f1 ) = bisum (λx y. cmod (x − a ∗ y)^2 ) (coeffs f1 )

by(simp add: bisum-is-map-zip[of - coeffs f1 ] coeffs-times-linterm[of 1 -
−a,simplified])

also have . . . = norm2 f1 + cmod a^2∗norm2 f1
− bisum (λx y. Re (a ∗ y ∗ cnj x + x ∗ cnj (a ∗ y))) (coeffs f1 )

unfolding b bisum-outside norm-times-const by simp
also have . . . = bisum (λx y. cmod (cnj a ∗ x − y)^2 ) (coeffs f1 )

unfolding c bisum-outside norm-times-const by auto
also have . . . = norm2 ([:− 1 , cnj a :] ∗ f1 )

using coeffs-times-linterm[of cnj a - −1 ]
by(simp add: bisum-is-map-zip[of - coeffs f1 ] mult.commute)

finally have norm2 ([:− a, 1 :] ∗ f1 ) = . . . .}
hence h:

∧
a f1 . norm2 ([:− a, 1 :] ∗ f1 ) = norm2 (linH a ∗ f1 ) by auto

show ?thesis by(rule prod-induct-gen[OF h])
qed

lemma Landau-inequality:
mahler-measure-poly f ≤ l2norm-complex f

387



proof −
let ?f = reconstruct-poly (lead-coeff f ) (complex-roots-complex f )
let ?roots = (complex-roots-complex f )
let ?g =

∏
a←?roots. linH a

have max:
∧

a. cmod (if 1 < cmod a then cnj a else 1 ) = max 1 (cmod a)
by simp

have
∧

a. 1 < cmod a =⇒ a 6= 0 by auto
hence

∧
a. lead-coeff (linH a) = (if (cmod a > 1 ) then cnj a else 1 ) by(auto

simp:if-split)
hence lead-coeff-g:cmod (lead-coeff ?g) = (

∏
a←?roots. max 1 (cmod a)) by(auto

simp:max)

have norm2 f = (
∑

a←coeffs ?f . (cmod a)^2 ) unfolding reconstruct-is-original-poly..
also have . . . = cmod (lead-coeff f )^2 ∗ (

∑
a←coeffs (

∏
a←?roots. [:− a, 1 :]).

(cmod a)2)
unfolding reconstruct-poly-def using sum-coeffs-smult-cmod.

finally have fg-norm:norm2 f = cmod (lead-coeff f )^2 ∗ (
∑

a←coeffs ?g. (cmod
a)^2 )

unfolding Landau-lemma by auto

have (cmod (lead-coeff ?g))^2 ≤ (
∑

a←coeffs ?g. (cmod a)^2 )
using first-coeff-le-tail by blast

from ordered-comm-semiring-class.comm-mult-left-mono[OF this]
have (cmod (lead-coeff f ) ∗ cmod (lead-coeff ?g))^2 ≤ (

∑
a←coeffs f . (cmod

a)^2 )
unfolding fg-norm by (simp add:power-mult-distrib)

hence cmod (lead-coeff f ) ∗ (
∏

a←?roots. max 1 (cmod a)) ≤ sqrt (norm2 f )
using NthRoot.real-le-rsqrt lead-coeff-g by auto

thus mahler-measure-poly f ≤ sqrt (norm2 f )
using reconstruct-with-type-conversion[unfolded complex-roots-int-def ]
by (simp add: mahler-measure-poly-via-monic mahler-measure-monic-def com-

plex-roots-int-def )
qed

lemma prod-list-ge1 :
assumes Ball (set x) (λ (a::real). a ≥ 1 )
shows prod-list x ≥ 1

using assms proof(induct x)
case (Cons a as)

have ∀ a∈set as. 1 ≤ a 1 ≤ a using Cons(2 ) by auto
thus ?case using Cons.hyps mult-mono ′ by fastforce

qed auto

lemma mahler-measure-monic-ge-1 : mahler-measure-monic p ≥ 1
unfolding mahler-measure-monic-def by(rule prod-list-ge1 ,simp)

lemma mahler-measure-monic-ge-0 : mahler-measure-monic p ≥ 0
using mahler-measure-monic-ge-1 le-numeral-extra(1 ) order-trans by blast
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lemma mahler-measure-ge-0 : 0 ≤ mahler-measure h unfolding mahler-measure-def
mahler-measure-poly-via-monic

by (simp add: mahler-measure-monic-ge-0 )

lemma mahler-measure-constant[simp]: mahler-measure-poly [:c:] = cmod c
proof −

have main: complex-roots-complex [:c:] = [] unfolding complex-roots-complex-def
by (rule some-equality, auto)

show ?thesis unfolding mahler-measure-poly-def main by auto
qed

lemma mahler-measure-factor [simplified,simp]: mahler-measure-poly [:− a, 1 :] =
max 1 (cmod a)
proof −
have main: complex-roots-complex [:− a, 1 :] = [a] unfolding complex-roots-complex-def
proof (rule some-equality, auto, goal-cases)

case (1 as)
thus ?case by (cases as, auto)

qed
show ?thesis unfolding mahler-measure-poly-def main by auto

qed

lemma mahler-measure-poly-explicit: mahler-measure-poly (smult c (
∏

a←as. [:−
a, 1 :]))
= cmod c ∗ (

∏
a←as. (max 1 (cmod a)))

proof (cases c = 0 )
case True
thus ?thesis by auto

next
case False note c = this
show ?thesis
proof (induct as)

case (Cons a as)
have mahler-measure-poly (smult c (

∏
a←a # as. [:− a, 1 :]))

= mahler-measure-poly (smult c (
∏

a←as. [:− a, 1 :]) ∗ [: −a, 1 :])
by (rule arg-cong[of - - mahler-measure-poly], unfold list.simps prod-list.Cons

mult-smult-left, simp)
also have . . . = mahler-measure-poly (smult c (

∏
a←as. [:− a, 1 :])) ∗ mahler-measure-poly

([:− a, 1 :])
(is - = ?l ∗ ?r) by (rule measure-eq-prod)

also have ?l = cmod c ∗ (
∏

a←as. max 1 (cmod a)) unfolding Cons by simp
also have ?r = max 1 (cmod a) by simp
finally show ?case by simp

next
case Nil
show ?case by simp

qed
qed
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lemma mahler-measure-poly-ge-1 :
assumes h 6= 0
shows (1 ::real) ≤ mahler-measure h

proof −
have rc: |real-of-int i| = of-int |i| for i by simp
from assms have cmod (lead-coeff (map-poly complex-of-int h)) > 0 by simp
hence cmod (lead-coeff (map-poly complex-of-int h)) ≥ 1

by(cases lead-coeff h = 0 , auto simp del: leading-coeff-0-iff )
from mult-mono[OF this mahler-measure-monic-ge-1 norm-ge-zero]
show ?thesis unfolding mahler-measure-def mahler-measure-poly-via-monic

by auto
qed

lemma mahler-measure-dvd: assumes f 6= 0 and h dvd f
shows mahler-measure h ≤ mahler-measure f

proof −
from assms obtain g where f : f = g ∗ h unfolding dvd-def by auto
from f assms have g0 : g 6= 0 by auto
hence mg: mahler-measure g ≥ 1 by (rule mahler-measure-poly-ge-1 )
have 1 ∗ mahler-measure h ≤ mahler-measure f

unfolding mahler-measure-def f measure-eq-prod
of-int-poly-hom.hom-mult unfolding mahler-measure-def [symmetric]

by (rule mult-right-mono[OF mg mahler-measure-ge-0 ])
thus ?thesis by simp

qed

definition graeffe-poly :: ′a ⇒ ′a :: comm-ring-1 list ⇒ nat ⇒ ′a poly where
graeffe-poly c as m = smult (c ^ (2^m)) (

∏
a←as. [:− (a ^ (2^m)), 1 :])

context
fixes f :: complex poly and c as
assumes f : f = smult c (

∏
a←as. [:− a, 1 :])

begin
lemma mahler-graeffe: mahler-measure-poly (graeffe-poly c as m) = (mahler-measure-poly
f )^(2^m)
proof −

have graeffe: graeffe-poly c as m = smult (c ^ 2 ^ m) (
∏

a←(map (λ a. a ^ 2 ^
m) as). [:− a, 1 :])

unfolding graeffe-poly-def
by (rule arg-cong[of - - smult (c ^ 2 ^ m)], induct as, auto)

{
fix n :: nat
assume n: n > 0
have id: max 1 (cmod a ^ n) = max 1 (cmod a) ^ n for a
proof (cases cmod a ≤ 1 )

case True
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hence cmod a ^ n ≤ 1 by (simp add: power-le-one)
with True show ?thesis by (simp add: max-def )

qed (auto simp: max-def )
have (

∏
x←as. max 1 (cmod x ^ n)) = (

∏
a←as. max 1 (cmod a)) ^ n

by (induct as, auto simp: field-simps n id)
}
thus ?thesis unfolding f mahler-measure-poly-explicit graeffe

by (auto simp: o-def field-simps norm-power)
qed
end

fun drop-half :: ′a list ⇒ ′a list where
drop-half (x # y # ys) = x # drop-half ys
| drop-half xs = xs

fun alternate :: ′a list ⇒ ′a list × ′a list where
alternate (x # y # ys) = (case alternate ys of (evn, od) ⇒ (x # evn, y # od))
| alternate xs = (xs,[])

definition poly-square-subst :: ′a :: comm-ring-1 poly ⇒ ′a poly where
poly-square-subst f = poly-of-list (drop-half (coeffs f ))

definition poly-even-odd :: ′a :: comm-ring-1 poly ⇒ ′a poly × ′a poly where
poly-even-odd f = (case alternate (coeffs f ) of (evn,od) ⇒ (poly-of-list evn,

poly-of-list od))

lemma poly-square-subst-coeff : coeff (poly-square-subst f ) i = coeff f (2 ∗ i)
proof −

have id: coeff f (2 ∗ i) = coeff (Poly (coeffs f )) (2 ∗ i) by simp
obtain xs where xs: coeffs f = xs by auto
show ?thesis unfolding poly-square-subst-def poly-of-list-def coeff-Poly-eq id xs
proof (induct xs arbitrary: i rule: drop-half .induct)

case (1 x y ys i) thus ?case by (cases i, auto)
next

case (2-2 x i) thus ?case by (cases i, auto)
qed auto

qed

lemma poly-even-odd-coeff : assumes poly-even-odd f = (ev,od)
shows coeff ev i = coeff f (2 ∗ i) coeff od i = coeff f (2 ∗ i + 1 )

proof −
have id:

∧
i. coeff f i = coeff (Poly (coeffs f )) i by simp

obtain xs where xs: coeffs f = xs by auto
from assms[unfolded poly-even-odd-def ]
have ev-od: ev = Poly (fst (alternate xs)) od = Poly (snd (alternate xs))

by (auto simp: xs split: prod.splits)
have coeff ev i = coeff f (2 ∗ i) ∧ coeff od i = coeff f (2 ∗ i + 1 )

unfolding poly-of-list-def coeff-Poly-eq id xs ev-od
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proof (induct xs arbitrary: i rule: alternate.induct)
case (1 x y ys i) thus ?case by (cases alternate ys; cases i, auto)

next
case (2-2 x i) thus ?case by (cases i, auto)

qed auto
thus coeff ev i = coeff f (2 ∗ i) coeff od i = coeff f (2 ∗ i + 1 ) by auto

qed

lemma poly-square-subst: poly-square-subst (f ◦p (monom 1 2 )) = f
by (rule poly-eqI , unfold poly-square-subst-coeff , subst coeff-pcompose-x-pow-n,

auto)

lemma poly-even-odd: assumes poly-even-odd f = (g,h)
shows f = g ◦p monom 1 2 + monom 1 1 ∗ (h ◦p monom 1 2 )

proof −
note id = poly-even-odd-coeff [OF assms]
show ?thesis
proof (rule poly-eqI , unfold coeff-add coeff-monom-mult)

fix n :: nat
obtain m i where mi: m = n div 2 i = n mod 2 by auto
have nmi: n = 2 ∗ m + i i < 2 0 < (2 :: nat) 1 < (2 :: nat) unfolding mi

by auto
have (2 :: nat) 6= 0 by auto
show coeff f n = coeff (g ◦p monom 1 2 ) n + (if 1 ≤ n then 1 ∗ coeff (h ◦p

monom 1 2 ) (n − 1 ) else 0 )
proof (cases i = 1 )

case True
hence id1 : 2 ∗ m + i − 1 = 2 ∗ m + 0 by auto
show ?thesis unfolding nmi id id1 coeff-pcompose-monom[OF nmi(2 )] co-

eff-pcompose-monom[OF nmi(3 )]
unfolding True by auto

next
case False
with nmi have i0 : i = 0 by auto
show ?thesis
proof (cases m)

case (Suc k)
hence id1 : 2 ∗ m + i − 1 = 2 ∗ k + 1 using i0 by auto
show ?thesis unfolding nmi id coeff-pcompose-monom[OF nmi(2 )]

coeff-pcompose-monom[OF nmi(4 )] id1 unfolding Suc i0 by auto
next

case 0
show ?thesis unfolding nmi id coeff-pcompose-monom[OF nmi(2 )] unfold-

ing i0 0 by auto
qed

qed
qed

qed
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context
fixes f :: ′a :: idom poly

begin

lemma graeffe-0 : f = smult c (
∏

a←as. [:− a, 1 :]) =⇒ graeffe-poly c as 0 = f
unfolding graeffe-poly-def by auto

lemma graeffe-recursion: assumes graeffe-poly c as m = f
shows graeffe-poly c as (Suc m) = smult ((−1 )^(degree f )) (poly-square-subst (f
∗ f ◦p [:0 ,−1 :]))
proof −

let ?g = graeffe-poly c as m
have f ∗ f ◦p [:0 ,−1 :] = ?g ∗ ?g ◦p [:0 ,−1 :] unfolding assms by simp
also have ?g ◦p [:0 ,−1 :] = smult ((− 1 ) ^ length as) (smult (c ^ 2 ^ m) (

∏
a←as.

[:a ^ 2 ^ m, 1 :]))
unfolding graeffe-poly-def

proof (induct as)
case (Cons a as)
have ?case = ((smult (c ^ 2 ^ m) ([:− (a ^ 2 ^ m), 1 :] ◦p [:0 , − 1 :] ∗ (

∏
a←as.

[:− (a ^ 2 ^ m), 1 :]) ◦p [:0 , − 1 :]) =
smult (−1 ∗ (− 1 ) ^ length as)
(smult (c ^ 2 ^ m) ([: a ^ 2 ^ m, 1 :] ∗ (

∏
a←as. [:a ^ 2 ^ m, 1 :])))))

unfolding list.simps prod-list.Cons pcompose-smult pcompose-mult by simp
also have smult (c ^ 2 ^ m) ([:− (a ^ 2 ^ m), 1 :] ◦p [:0 , − 1 :] ∗ (

∏
a←as.

[:− (a ^ 2 ^ m), 1 :]) ◦p [:0 , − 1 :])
= smult (c ^ 2 ^ m) ((

∏
a←as. [:− (a ^ 2 ^ m), 1 :]) ◦p [:0 , − 1 :]) ∗ [:− (a

^ 2 ^ m), 1 :] ◦p [:0 , − 1 :]
unfolding mult-smult-left by simp

also have smult (c ^ 2 ^ m) ((
∏

a←as. [:− (a ^ 2 ^ m), 1 :]) ◦p [:0 , − 1 :]) =
smult ((− 1 ) ^ length as) (smult (c ^ 2 ^ m) (

∏
a←as. [:a ^ 2 ^ m, 1 :]))

unfolding pcompose-smult[symmetric] Cons ..
also have [:− (a ^ 2 ^ m), 1 :] ◦p [:0 , − 1 :] = smult (−1 ) [: a^2^m, 1 :] by

simp
finally have id: ?case = (smult ((− 1 ) ^ length as) (smult (c ^ 2 ^ m) (

∏
a←as.

[:a ^ 2 ^ m, 1 :])) ∗ smult (− 1 ) [:a ^ 2 ^ m, 1 :] =
smult (− 1 ∗ (− 1 ) ^ length as) (smult (c ^ 2 ^ m) ([:a ^ 2 ^ m, 1 :] ∗

(
∏

a←as. [:a ^ 2 ^ m, 1 :])))) by simp
obtain c d where id ′: (

∏
a←as. [:a ^ 2 ^ m, 1 :]) = c [:a ^ 2 ^ m, 1 :] = d by

auto
show ?case unfolding id unfolding id ′ by (simp add: ac-simps)

qed simp
finally have f ∗ f ◦p [:0 , − 1 :] =

smult ((− 1 ) ^ length as ∗ (c ^ 2 ^ m ∗ c ^ 2 ^ m))
((
∏

a←as. [:− (a ^ 2 ^ m), 1 :]) ∗ (
∏

a←as. [:a ^ 2 ^ m, 1 :]))
unfolding graeffe-poly-def by (simp add: ac-simps)

also have c ^ 2 ^ m ∗ c ^ 2 ^ m = c ^ 2 ^ (Suc m) by (simp add: semir-
ing-normalization-rules(36 ))

also have (
∏

a←as. [:− (a ^ 2 ^ m), 1 :]) ∗ (
∏

a←as. [:a ^ 2 ^ m, 1 :]) =
(
∏

a←as. [:− (a ^ 2 ^ (Suc m)), 1 :]) ◦p monom 1 2
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proof (induct as)
case (Cons a as)
have id: (monom 1 2 :: ′a poly) = [:0 ,0 ,1 :]

by (metis monom-altdef pCons-0-as-mult power2-eq-square smult-1-left)
have (

∏
a←a # as. [:− (a ^ 2 ^ m), 1 :]) ∗ (

∏
a←a # as. [:a ^ 2 ^ m, 1 :])

= ([:− (a ^ 2 ^ m), 1 :] ∗ [: a ^ 2 ^ m, 1 :]) ∗ ((
∏

a← as. [:− (a ^ 2 ^ m),
1 :]) ∗ (

∏
a← as. [:a ^ 2 ^ m, 1 :]))

(is - = ?a ∗ ?b)
unfolding list.simps prod-list.Cons by (simp only: ac-simps)

also have ?b = (
∏

a←as. [:− (a ^ 2 ^ Suc m), 1 :]) ◦p monom 1 2 unfolding
Cons by simp

also have ?a = [: − (a ^ 2 ^ (Suc m)), 0 , 1 :] by (simp add: semir-
ing-normalization-rules(36 ))

also have . . . = [: − (a ^ 2 ^ (Suc m)), 1 :] ◦p monom 1 2 by (simp add: id)
also have [: − (a ^ 2 ^ (Suc m)), 1 :] ◦p monom 1 2 ∗ (

∏
a←as. [:− (a ^ 2 ^

Suc m), 1 :]) ◦p monom 1 2 =
(
∏

a←a # as. [:− (a ^ 2 ^ Suc m), 1 :]) ◦p monom 1 2 unfolding pcom-
pose-mult[symmetric] by simp

finally show ?case .
qed simp
finally have f ∗ f ◦p [:0 , − 1 :] = (smult ((− 1 ) ^ length as) (graeffe-poly c as

(Suc m)) ◦p monom 1 2 )
unfolding graeffe-poly-def pcompose-smult by simp

from arg-cong[OF this, of λ f . smult ((− 1 ) ^ length as) (poly-square-subst f ),
unfolded poly-square-subst]

have graeffe-poly c as (Suc m) = smult ((− 1 ) ^ length as) (poly-square-subst (f
∗ f ◦p [:0 , − 1 :])) by simp

also have . . . = smult ((− 1 ) ^ degree f ) (poly-square-subst (f ∗ f ◦p [:0 , − 1 :]))

proof (cases f = 0 )
case True
thus ?thesis by (auto simp: poly-square-subst-def )

next
case False
with assms have c0 : c 6= 0 unfolding graeffe-poly-def by auto
from arg-cong[OF assms, of degree]
have degree f = degree (smult (c ^ 2 ^ m) (

∏
a←as. [:− (a ^ 2 ^ m), 1 :]))

unfolding graeffe-poly-def by auto
also have . . . = degree (

∏
a←as. [:− (a ^ 2 ^ m), 1 :]) unfolding de-

gree-smult-eq using c0 by auto
also have . . . = length as unfolding degree-linear-factors by simp
finally show ?thesis by simp

qed
finally show ?thesis .

qed
end

definition graeffe-one-step :: ′a ⇒ ′a :: idom poly ⇒ ′a poly where
graeffe-one-step c f = smult c (poly-square-subst (f ∗ f ◦p [:0 ,−1 :]))
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lemma graeffe-one-step-code[code]: fixes c :: ′a :: idom
shows graeffe-one-step c f = (case poly-even-odd f of (g,h)
⇒ smult c (g ∗ g − monom 1 1 ∗ h ∗ h))

proof −
obtain g h where eo: poly-even-odd f = (g,h) by force
from poly-even-odd[OF eo] have fgh: f = g ◦p monom 1 2 + monom 1 1 ∗ h ◦p

monom 1 2 by auto
have m2 : monom (1 :: ′a) 2 = [:0 ,0 ,1 :] monom (1 :: ′a) 1 = [:0 ,1 :]

unfolding coeffs-eq-iff coeffs-monom
by (auto simp add: numeral-2-eq-2 )

show ?thesis unfolding eo split graeffe-one-step-def
proof (rule arg-cong[of - - smult c])

let ?g = g ◦p monom 1 2
let ?h = h ◦p monom 1 2
let ?x = monom (1 :: ′a) 1
have 2 : 2 = Suc (Suc 0 ) by simp
have f ∗ f ◦p [:0 , − 1 :] = (g ◦p monom 1 2 + monom 1 1 ∗ h ◦p monom 1

2 ) ∗
(g ◦p monom 1 2 + monom 1 1 ∗ h ◦p monom 1 2 ) ◦p [:0 , − 1 :] unfolding

fgh by simp
also have (g ◦p monom 1 2 + monom 1 1 ∗ h ◦p monom 1 2 ) ◦p [:0 , − 1 :]
= g ◦p (monom 1 2 ◦p [:0 , − 1 :]) + monom 1 1 ◦p [:0 , − 1 :] ∗ h ◦p (monom

1 2 ◦p [:0 , − 1 :])
unfolding pcompose-add pcompose-mult pcompose-assoc by simp

also have monom (1 :: ′a) 2 ◦p [:0 , − 1 :] = monom 1 2 unfolding m2 by
auto

also have ?x ◦p [:0 , − 1 :] = [:0 , −1 :] unfolding m2 by auto
also have [:0 , − 1 :] ∗ h ◦p monom 1 2 = (−?x) ∗ ?h unfolding m2 by simp
also have (?g + ?x ∗ ?h) ∗ (?g + (− ?x) ∗ ?h) = (?g ∗ ?g − (?x ∗ ?x) ∗ ?h

∗ ?h)
by (auto simp: field-simps)

also have ?x ∗ ?x = ?x ◦p monom 1 2 unfolding mult-monom by (insert m2 ,
simp add: 2 )

also have (?g ∗ ?g − . . . ∗ ?h ∗ ?h) = (g ∗ g − ?x ∗ h ∗ h) ◦p monom 1 2
unfolding pcompose-diff pcompose-mult by auto

finally have poly-square-subst (f ∗ f ◦p [:0 , − 1 :])
= poly-square-subst ((g ∗ g − ?x ∗ h ∗ h) ◦p monom 1 2 ) by simp

also have . . . = g ∗ g − ?x ∗ h ∗ h unfolding poly-square-subst by simp
finally show poly-square-subst (f ∗ f ◦p [:0 , − 1 :]) = g ∗ g − ?x ∗ h ∗ h .

qed
qed

fun graeffe-poly-impl-main :: ′a ⇒ ′a :: idom poly ⇒ nat ⇒ ′a poly where
graeffe-poly-impl-main c f 0 = f
| graeffe-poly-impl-main c f (Suc m) = graeffe-one-step c (graeffe-poly-impl-main
c f m)

lemma graeffe-poly-impl-main: assumes f = smult c (
∏

a←as. [:− a, 1 :])
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shows graeffe-poly-impl-main ((−1 )^degree f ) f m = graeffe-poly c as m
proof (induct m)

case 0
show ?case using graeffe-0 [OF assms] by simp

next
case (Suc m)
have [simp]: degree (graeffe-poly c as m) = degree f unfolding graeffe-poly-def

degree-smult-eq assms
degree-linear-factors by auto

from arg-cong[OF Suc, of degree]
show ?case unfolding graeffe-recursion[OF Suc[symmetric]]

by (simp add: graeffe-one-step-def )
qed

definition graeffe-poly-impl :: ′a :: idom poly ⇒ nat ⇒ ′a poly where
graeffe-poly-impl f = graeffe-poly-impl-main ((−1 )^(degree f )) f

lemma graeffe-poly-impl: assumes f = smult c (
∏

a←as. [:− a, 1 :])
shows graeffe-poly-impl f m = graeffe-poly c as m
using graeffe-poly-impl-main[OF assms] unfolding graeffe-poly-impl-def .

lemma drop-half-map: drop-half (map f xs) = map f (drop-half xs)
by (induct xs rule: drop-half .induct, auto)

lemma (in inj-comm-ring-hom) map-poly-poly-square-subst:
map-poly hom (poly-square-subst f ) = poly-square-subst (map-poly hom f )
unfolding poly-square-subst-def coeffs-map-poly-hom drop-half-map poly-of-list-def
by (rule poly-eqI , auto simp: nth-default-map-eq)

context inj-idom-hom
begin

lemma graeffe-poly-impl-hom:
map-poly hom (graeffe-poly-impl f m) = graeffe-poly-impl (map-poly hom f ) m

proof −
interpret mh: map-poly-inj-idom-hom..
obtain c where c: (((− 1 ) ^ degree f ) :: ′a) = c by auto
have c ′: (((− 1 ) ^ degree f ) :: ′b) = hom c unfolding c[symmetric] by (simp

add:hom-distribs)
show ?thesis unfolding graeffe-poly-impl-def degree-map-poly-hom c c ′

apply (induct m arbitrary: f ; simp)
by (unfold graeffe-one-step-def hom-distribs map-poly-poly-square-subst map-poly-pcompose,simp)

qed
end

lemma graeffe-poly-impl-mahler : mahler-measure (graeffe-poly-impl f m) = mahler-measure
f ^ 2 ^ m
proof −

let ?c = complex-of-int
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let ?cc = map-poly ?c
let ?f = ?cc f
note eq = complex-roots(1 )[of ?f ]
interpret inj-idom-hom complex-of-int by (standard, auto)
show ?thesis

unfolding mahler-measure-def mahler-graeffe[OF eq[symmetric], symmetric]
graeffe-poly-impl[OF eq[symmetric], symmetric] by (simp add: of-int-hom.graeffe-poly-impl-hom)

qed

definition mahler-landau-graeffe-approximation :: nat ⇒ nat ⇒ int poly ⇒ int
where

mahler-landau-graeffe-approximation kk dd f = (let
no = sum-list (map (λ a. a ∗ a) (coeffs f ))

in root-int-floor kk (dd ∗ no))

lemma mahler-landau-graeffe-approximation-core:
assumes g: g = graeffe-poly-impl f k
shows mahler-measure f ≤ root (2 ^ Suc k) (real-of-int (

∑
a←coeffs g. a ∗ a))

proof −
have mahler-measure f = root (2^k) (mahler-measure f ^ (2^k))

by (simp add: real-root-power-cancel mahler-measure-ge-0 )
also have . . . = root (2^k) (mahler-measure g)

unfolding graeffe-poly-impl-mahler g by simp
also have . . . = root (2^k) (root 2 (((mahler-measure g)^2 )))

by (simp add: real-root-power-cancel mahler-measure-ge-0 )
also have . . . = root (2^Suc k) (((mahler-measure g)^2 ))

by (metis power-Suc2 real-root-mult-exp)
also have . . . ≤ root (2 ^ Suc k) (real-of-int (

∑
a←coeffs g. a ∗ a))

proof (rule real-root-le-mono, force)
have square-mono: 0 ≤ (x :: real) =⇒ x ≤ y =⇒ x ∗ x ≤ y ∗ y for x y

by (simp add: mult-mono ′)
obtain gs where gs: coeffs g = gs by auto
have (mahler-measure g)2 ≤ real-of-int |

∑
a←coeffs g. a ∗ a|

using square-mono[OF mahler-measure-ge-0 Landau-inequality[of of-int-poly
g, folded mahler-measure-def ]]

by (auto simp: power2-eq-square coeffs-map-poly o-def of-int-hom.hom-sum-list)
also have |

∑
a←coeffs g. a ∗ a| = (

∑
a←coeffs g. a ∗ a) unfolding gs

by (induct gs, auto)
finally show (mahler-measure g)2 ≤ real-of-int (

∑
a←coeffs g. a ∗ a) .

qed
finally show mahler-measure f ≤ root (2 ^ Suc k) (real-of-int (

∑
a←coeffs g. a

∗ a)) .
qed

lemma Landau-inequality-mahler-measure: mahler-measure f ≤ sqrt (real-of-int
(
∑

a←coeffs f . a ∗ a))
by (rule order .trans[OF mahler-landau-graeffe-approximation-core[OF refl, of -

0 ]],
auto simp: graeffe-poly-impl-def sqrt-def )
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lemma mahler-landau-graeffe-approximation:
assumes g: g = graeffe-poly-impl f k dd = d^(2^(Suc k)) kk = 2^(Suc k)
shows breal d ∗ mahler-measure f c ≤ mahler-landau-graeffe-approximation kk dd

g
proof −

have id1 : real-of-int (int (d ^ 2 ^ Suc k)) = (real d) ^ 2 ^ Suc k by simp
have id2 : root (2 ^ Suc k) (real d ^ 2 ^ Suc k) = real d

by (simp add: real-root-power-cancel)
show ?thesis unfolding mahler-landau-graeffe-approximation-def Let-def root-int-floor

of-int-mult g(2−3 )
by (rule floor-mono, unfold real-root-mult id1 id2 , rule mult-left-mono,
rule mahler-landau-graeffe-approximation-core[OF g(1 )], auto)

qed

context
fixes bnd :: nat

begin

function mahler-approximation-main :: nat ⇒ int ⇒ int poly ⇒ int ⇒ nat ⇒ nat
⇒ int where
mahler-approximation-main dd c g mm k kk = (let mmm = mahler-landau-graeffe-approximation

kk dd g;
new-mm = (if k = 0 then mmm else min mm mmm)
in (if k ≥ bnd then new-mm else
— abort after bnd iterations of Graeffe transformation
mahler-approximation-main (dd ∗ dd) c (graeffe-one-step c g) new-mm (Suc

k) (2 ∗ kk)))
by pat-completeness auto

termination by (relation measure (λ (dd,c,f ,mm,k,kk). Suc bnd − k), auto)
declare mahler-approximation-main.simps[simp del]

lemma mahler-approximation-main: assumes k 6= 0 =⇒ breal d ∗ mahler-measure
f c ≤ mm

and c = (−1 )^(degree f )
and g = graeffe-poly-impl-main c f k dd = d^(2^(Suc k)) kk = 2^(Suc k)

shows breal d ∗ mahler-measure f c ≤ mahler-approximation-main dd c g mm k
kk

using assms
proof (induct c g mm k kk rule: mahler-approximation-main.induct)

case (1 dd c g mm k kk)
let ?df = breal d ∗ mahler-measure f c
note dd = 1 (5 )
note kk = 1 (6 )
note g = 1 (4 )
note c = 1 (3 )
note mm = 1 (2 )
note IH = 1 (1 )
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note mahl = mahler-approximation-main.simps[of dd c g mm k kk]
define mmm where mmm = mahler-landau-graeffe-approximation kk dd g
define new-mm where new-mm = (if k = 0 then mmm else min mm mmm)
let ?cond = bnd ≤ k
have id: mahler-approximation-main dd c g mm k kk = (if ?cond then new-mm

else mahler-approximation-main (dd ∗ dd) c (graeffe-one-step c g) new-mm
(Suc k) (2 ∗ kk))

unfolding mahl mmm-def [symmetric] Let-def new-mm-def [symmetric] by simp
have gg: g = (graeffe-poly-impl f k) unfolding g graeffe-poly-impl-def c ..
from mahler-landau-graeffe-approximation[OF gg dd kk, folded mmm-def ]
have mmm: ?df ≤ mmm .
with mm have new-mm: ?df ≤ new-mm unfolding new-mm-def by auto
show ?case
proof (cases ?cond)

case True
show ?thesis unfolding id using True new-mm by auto

next
case False
hence id: mahler-approximation-main dd c g mm k kk =

mahler-approximation-main (dd ∗ dd) c (graeffe-one-step c g) new-mm (Suc
k) (2 ∗ kk)

unfolding id by auto
have id ′: graeffe-one-step c g = graeffe-poly-impl-main c f (Suc k)

unfolding g by simp
have dd ∗ dd = d ^ 2 ^ Suc (Suc k) 2 ∗ kk = 2 ^ Suc (Suc k) unfolding dd

kk
semiring-normalization-rules(26 ) by auto

from IH [OF mmm-def new-mm-def False new-mm c id ′ this]
show ?thesis unfolding id .

qed
qed

definition mahler-approximation :: nat ⇒ int poly ⇒ int where
mahler-approximation d f = mahler-approximation-main (d ∗ d) ((−1 )^(degree

f )) f (−1 ) 0 2

lemma mahler-approximation: breal d ∗ mahler-measure f c ≤ mahler-approximation
d f

unfolding mahler-approximation-def
by (rule mahler-approximation-main, auto simp: semiring-normalization-rules(29 ))

end

end

10.5 The Mignotte Bound
theory Factor-Bound
imports
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Mahler-Measure
Polynomial-Factorization.Gauss-Lemma
Subresultants.Coeff-Int

begin

lemma binomial-mono-left: n ≤ N =⇒ n choose k ≤ N choose k
proof (induct n arbitrary: k N )

case (0 k N )
thus ?case by (cases k, auto)

next
case (Suc n k N ) note IH = this
show ?case
proof (cases k)

case (Suc kk)
from IH obtain NN where N : N = Suc NN and le: n ≤ NN by (cases N ,

auto)
show ?thesis unfolding N Suc using IH (1 )[OF le]

by (simp add: add-le-mono)
qed auto

qed

definition choose-int where choose-int m n = (if n < 0 then 0 else m choose (nat
n))

lemma choose-int-suc[simp]:
choose-int (Suc n) i = choose-int n (i−1 ) + choose-int n i

proof(cases nat i)
case 0 thus ?thesis by (simp add:choose-int-def ) next
case (Suc v) hence nat (i − 1 ) = v i 6=0 by simp-all

thus ?thesis unfolding choose-int-def Suc by simp
qed

lemma sum-le-1-prod: assumes d: 1 ≤ d and c: 1 ≤ c
shows c + d ≤ 1 + c ∗ (d :: real)

proof −
from d c have (c − 1 ) ∗ (d − 1 ) ≥ 0 by auto
thus ?thesis by (auto simp: field-simps)

qed

lemma mignotte-helper-coeff-int: cmod (coeff-int (
∏

a←lst. [:− a, 1 :]) i)
≤ choose-int (length lst − 1 ) i ∗ (

∏
a←lst. (max 1 (cmod a)))

+ choose-int (length lst − 1 ) (i − 1 )
proof(induct lst arbitrary:i)

case Nil thus ?case by (auto simp:coeff-int-def choose-int-def )
case (Cons v xs i)
show ?case
proof (cases xs = [])

case True
show ?thesis unfolding True
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by (cases nat i, cases nat (i − 1 ), auto simp: coeff-int-def choose-int-def )
next

case False
hence id: length (v # xs) − 1 = Suc (length xs − 1 ) by auto
have id ′: choose-int (length xs) i = choose-int (Suc (length xs − 1 )) i for i

using False by (cases xs, auto)
let ?r = (

∏
a←xs. [:− a, 1 :])

let ?mv = (
∏

a←xs. (max 1 (cmod a)))
let ?c1 = real (choose-int (length xs − 1 ) (i − 1 − 1 ))
let ?c2 = real (choose-int (length (v # xs) − 1 ) i − choose-int (length xs −

1 ) i)
let ?m xs n = choose-int (length xs − 1 ) n ∗ (

∏
a←xs. (max 1 (cmod a)))

have le1 :1 ≤ max 1 (cmod v) by auto
have le2 :cmod v ≤ max 1 (cmod v) by auto
have mv-ge-1 :1 ≤ ?mv by (rule prod-list-ge1 , auto)
obtain a b c d where abcd :

a = real (choose-int (length xs − 1 ) i)
b = real (choose-int (length xs − 1 ) (i − 1 ))
c = (

∏
a←xs. max 1 (cmod a))

d = cmod v by auto
{

have c1 : c ≥ 1 unfolding abcd by (rule mv-ge-1 )
have b: b = 0 ∨ b ≥ 1 unfolding abcd by auto
have a: a = 0 ∨ a ≥ 1 unfolding abcd by auto
hence a0 : a ≥ 0 by auto
have acd: a ∗ (c ∗ d) ≤ a ∗ (c ∗ max 1 d) using a0 c1

by (simp add: mult-left-mono)
from b have b ∗ (c + d) ≤ b ∗ (1 + (c ∗ max 1 d))
proof

assume b ≥ 1
hence ?thesis = (c + d ≤ 1 + c ∗ max 1 d) by simp
also have . . .
proof (cases d ≥ 1 )

case False
hence id: max 1 d = 1 by simp
show ?thesis using False unfolding id by simp

next
case True
hence id: max 1 d = d by simp
show ?thesis using True c1 unfolding id by (rule sum-le-1-prod)

qed
finally show ?thesis .

qed auto
with acd have b ∗ c + (b ∗ d + a ∗ (c ∗ d)) ≤ b + (a ∗ (c ∗ max 1 d) + b

∗ (c ∗ max 1 d))
by (auto simp: field-simps)

} note abcd-main = this
have cmod (coeff-int ([:− v, 1 :] ∗ ?r) i) ≤ cmod (coeff-int ?r (i − 1 )) + cmod

(coeff-int (smult v ?r) i)
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using norm-triangle-ineq4 by auto
also have . . . ≤ ?m xs (i − 1 ) + (choose-int (length xs − 1 ) (i − 1 − 1 )) +

cmod (coeff-int (smult v ?r) i)
using Cons[of i−1 ] by auto

also have choose-int (length xs − 1 ) (i − 1 ) = choose-int (length (v # xs) −
1 ) i − choose-int (length xs − 1 ) i

unfolding id choose-int-suc by auto
also have ?c2 ∗ (

∏
a←xs. max 1 (cmod a)) + ?c1 +

cmod (coeff-int (smult v (
∏

a←xs. [:− a, 1 :])) i) ≤
?c2 ∗ (

∏
a←xs. max 1 (cmod a)) + ?c1 + cmod v ∗ (

real (choose-int (length xs − 1 ) i) ∗ (
∏

a←xs. max 1 (cmod a)) +
real (choose-int (length xs − 1 ) (i − 1 )))

using mult-mono ′[OF order-refl Cons, of cmod v i, simplified] by (auto simp:
norm-mult)

also have . . . ≤ ?m (v # xs) i + (choose-int (length xs) (i − 1 )) using
abcd-main[unfolded abcd]

by (simp add: field-simps id ′)
finally show ?thesis by simp

qed
qed

lemma mignotte-helper-coeff-int ′: cmod (coeff-int (
∏

a←lst. [:− a, 1 :]) i)
≤ ((length lst − 1 ) choose i) ∗ (

∏
a←lst. (max 1 (cmod a)))

+ min i 1 ∗ ((length lst − 1 ) choose (nat (i − 1 )))
by (rule order .trans[OF mignotte-helper-coeff-int], auto simp: choose-int-def min-def )

lemma mignotte-helper-coeff :
cmod (coeff h i) ≤ (degree h − 1 choose i) ∗ mahler-measure-poly h

+ min i 1 ∗ (degree h − 1 choose (i − 1 )) ∗ cmod (lead-coeff h)
proof −

let ?r = complex-roots-complex h
have cmod (coeff h i) = cmod (coeff (smult (lead-coeff h) (

∏
a←?r . [:− a, 1 :]))

i)
unfolding complex-roots by auto

also have . . . = cmod (lead-coeff h) ∗ cmod (coeff (
∏

a←?r . [:− a, 1 :]) i)
by(simp add:norm-mult)
also have . . . ≤ cmod (lead-coeff h) ∗ ((degree h − 1 choose i) ∗ mahler-measure-monic

h +
(min i 1 ∗ ((degree h − 1 ) choose nat (int i − 1 ))))
unfolding mahler-measure-monic-def
by (rule mult-left-mono, insert mignotte-helper-coeff-int ′[of ?r i], auto)

also have . . . = (degree h − 1 choose i) ∗ mahler-measure-poly h + cmod
(lead-coeff h) ∗ (

min i 1 ∗ ((degree h − 1 ) choose nat (int i − 1 )))
unfolding mahler-measure-poly-via-monic by (simp add: field-simps)

also have nat (int i − 1 ) = i − 1 by (cases i, auto)
finally show ?thesis by (simp add: ac-simps split: if-splits)

qed
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lemma mignotte-coeff-helper :
abs (coeff h i) ≤
(degree h − 1 choose i) ∗ mahler-measure h +
(min i 1 ∗ (degree h − 1 choose (i − 1 )) ∗ abs (lead-coeff h))

unfolding mahler-measure-def
using mignotte-helper-coeff [of of-int-poly h i]
by auto

lemma cmod-through-lead-coeff [simp]:
cmod (lead-coeff (of-int-poly h)) = abs (lead-coeff h)
by simp

lemma choose-approx: n ≤ N =⇒ n choose k ≤ N choose (N div 2 )
by (rule order .trans[OF binomial-mono-left binomial-maximum])

For Mignotte’s factor bound, we currently do not support queries for
individual coefficients, as we do not have a combined factor bound algorithm.
definition mignotte-bound :: int poly ⇒ nat ⇒ int where

mignotte-bound f d = (let d ′ = d − 1 ; d2 = d ′ div 2 ; binom = (d ′ choose d2 ) in
(mahler-approximation 2 binom f + binom ∗ abs (lead-coeff f )))

lemma mignotte-bound-main:
assumes f 6= 0 g dvd f degree g ≤ n
shows |coeff g k| ≤ breal (n − 1 choose k) ∗ mahler-measure f c +

int (min k 1 ∗ (n − 1 choose (k − 1 ))) ∗ |lead-coeff f |
proof−

let ?bnd = 2
let ?n = (n − 1 ) choose k
let ?n ′ = min k 1 ∗ ((n − 1 ) choose (k − 1 ))
let ?approx = mahler-approximation ?bnd ?n f
obtain h where gh:g ∗ h = f using assms by (metis dvdE)
have nz:g 6=0 h 6=0 using gh assms(1 ) by auto
have g1 :(1 ::real) ≤ mahler-measure h using mahler-measure-poly-ge-1 gh assms(1 )

by auto
note g0 = mahler-measure-ge-0
have to-n: (degree g − 1 choose k) ≤ real ?n

using binomial-mono-left[of degree g − 1 n − 1 k] assms(3 ) by auto
have to-n ′: min k 1 ∗ (degree g − 1 choose (k − 1 )) ≤ real ?n ′

using binomial-mono-left[of degree g − 1 n − 1 k − 1 ] assms(3 )
by (simp add: min-def )

have |coeff g k| ≤ (degree g − 1 choose k) ∗ mahler-measure g
+ (real (min k 1 ∗ (degree g − 1 choose (k − 1 ))) ∗ |lead-coeff g|)
using mignotte-coeff-helper [of g k] by simp

also have . . . ≤ ?n ∗ mahler-measure f + real ?n ′ ∗ |lead-coeff f |
proof (rule add-mono[OF mult-mono[OF to-n] mult-mono[OF to-n ′]])

have mahler-measure g ≤ mahler-measure g ∗ mahler-measure h using g1
g0 [of g]

using mahler-measure-poly-ge-1 nz(1 ) by force
thus mahler-measure g ≤ mahler-measure f
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using measure-eq-prod[of of-int-poly g of-int-poly h]
unfolding mahler-measure-def gh[symmetric] by (auto simp: hom-distribs)

have ∗: lead-coeff f = lead-coeff g ∗ lead-coeff h
unfolding arg-cong[OF gh, of lead-coeff , symmetric] by (rule lead-coeff-mult)

have |lead-coeff h| 6= 0 using nz(2 ) by auto
hence lh: |lead-coeff h| ≥ 1 by linarith

have |lead-coeff f | = |lead-coeff g| ∗ |lead-coeff h| unfolding ∗ by (rule abs-mult)
also have . . . ≥ |lead-coeff g| ∗ 1

by (rule mult-mono, insert lh, auto)
finally have |lead-coeff g| ≤ |lead-coeff f | by simp
thus real-of-int |lead-coeff g| ≤ real-of-int |lead-coeff f | by simp

qed (auto simp: g0 )
finally have |coeff g k| ≤ ?n ∗ mahler-measure f + real-of-int (?n ′ ∗ |lead-coeff

f |) by simp
from floor-mono[OF this, folded floor-add-int]
have |coeff g k| ≤ floor (?n ∗ mahler-measure f ) + ?n ′ ∗ |lead-coeff f | by linarith
thus ?thesis unfolding mignotte-bound-def Let-def using mahler-approximation[of

?n f ?bnd] by auto
qed

lemma Mignotte-bound:
shows of-int |coeff g k| ≤ (degree g choose k) ∗ mahler-measure g

proof (cases k ≤ degree g ∧ g 6= 0 )
case False
hence coeff g k = 0 using le-degree by (cases g = 0 , auto)
thus ?thesis using mahler-measure-ge-0 [of g] by auto

next
case kg: True
hence g: g 6= 0 g dvd g by auto
from mignotte-bound-main[OF g le-refl, of k]
have real-of-int |coeff g k|
≤ of-int breal (degree g − 1 choose k) ∗ mahler-measure gc +

of-int (int (min k 1 ∗ (degree g − 1 choose (k − 1 ))) ∗ |lead-coeff g|) by
linarith

also have . . . ≤ real (degree g − 1 choose k) ∗ mahler-measure g
+ real (min k 1 ∗ (degree g − 1 choose (k − 1 ))) ∗ (of-int |lead-coeff g| ∗ 1 )

by (rule add-mono, force, auto)
also have . . . ≤ real (degree g − 1 choose k) ∗ mahler-measure g

+ real (min k 1 ∗ (degree g − 1 choose (k − 1 ))) ∗ mahler-measure g
by (rule add-left-mono[OF mult-left-mono],
unfold mahler-measure-def mahler-measure-poly-def ,
rule mult-mono, auto intro!: prod-list-ge1 )

also have . . . =
(real ((degree g − 1 choose k) + (min k 1 ∗ (degree g − 1 choose (k − 1 )))))

∗ mahler-measure g
by (auto simp: field-simps)

also have (degree g − 1 choose k) + (min k 1 ∗ (degree g − 1 choose (k − 1 )))
= degree g choose k

proof (cases k = 0 )
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case False
then obtain kk where k: k = Suc kk by (cases k, auto)
with kg obtain gg where g: degree g = Suc gg by (cases degree g, auto)
show ?thesis unfolding k g by auto

qed auto
finally show ?thesis .

qed

lemma mignotte-bound:
assumes f 6= 0 g dvd f degree g ≤ n
shows |coeff g k| ≤ mignotte-bound f n

proof −
let ?bnd = 2
let ?n = (n − 1 ) choose ((n − 1 ) div 2 )
have to-n: (n − 1 choose k) ≤ real ?n for k

using choose-approx[OF le-refl] by auto
from mignotte-bound-main[OF assms, of k]
have |coeff g k| ≤
breal (n − 1 choose k) ∗ mahler-measure f c +
int (min k 1 ∗ (n − 1 choose (k − 1 ))) ∗ |lead-coeff f | .

also have . . . ≤ breal (n − 1 choose k) ∗ mahler-measure f c +
int ((n − 1 choose (k − 1 ))) ∗ |lead-coeff f |
by (rule add-left-mono[OF mult-right-mono], cases k, auto)

also have . . . ≤ mignotte-bound f n
unfolding mignotte-bound-def Let-def
by (rule add-mono[OF order .trans[OF floor-mono[OF mult-right-mono]

mahler-approximation[of ?n f ?bnd]] mult-right-mono], insert to-n mahler-measure-ge-0 ,
auto)

finally show ?thesis .
qed

As indicated before, at the moment the only available factor bound is
Mignotte’s one. As future work one might use a combined bound.
definition factor-bound :: int poly ⇒ nat ⇒ int where

factor-bound = mignotte-bound

lemma factor-bound: assumes f 6= 0 g dvd f degree g ≤ n
shows |coeff g k| ≤ factor-bound f n
unfolding factor-bound-def by (rule mignotte-bound[OF assms])

We further prove a result for factor bounds and scalar multiplication.
lemma factor-bound-ge-0 : f 6= 0 =⇒ factor-bound f n ≥ 0

using factor-bound[of f 1 n 0 ] by auto

lemma factor-bound-smult: assumes f : f 6= 0 and d: d 6= 0
and dvd: g dvd smult d f and deg: degree g ≤ n
shows |coeff g k| ≤ |d| ∗ factor-bound f n

proof −
let ?nf = primitive-part f let ?cf = content f
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let ?ng = primitive-part g let ?cg = content g
from content-dvd-contentI [OF dvd] have ?cg dvd abs d ∗ ?cf

unfolding content-smult-int .
hence dvd-c: ?cg dvd d ∗ ?cf using d

by (metis abs-content-int abs-mult dvd-abs-iff )
from primitive-part-dvd-primitive-partI [OF dvd] have ?ng dvd smult (sgn d) ?nf

unfolding primitive-part-smult-int .
hence dvd-n: ?ng dvd ?nf using d
by (metis content-eq-zero-iff dvd dvd-smult-int f mult-eq-0-iff content-times-primitive-part

smult-smult)
define gc where gc = gcd ?cf ?cg
define cg where cg = ?cg div gc
from dvd d f have g: g 6= 0 by auto
from f have cf : ?cf 6= 0 by auto
from g have cg: ?cg 6= 0 by auto
hence gc: gc 6= 0 unfolding gc-def by auto
have cg-dvd: cg dvd ?cg unfolding cg-def gc-def using g by (simp add: div-dvd-iff-mult)
have cg-id: ?cg = cg ∗ gc unfolding gc-def cg-def using g cf by simp
from dvd-smult-int[OF d dvd] have ngf : ?ng dvd f .
have gcf : |gc| dvd content f unfolding gc-def by auto
have dvd-f : smult gc ?ng dvd f
proof (rule dvd-content-dvd,

unfold content-smult-int content-primitive-part[OF g]
primitive-part-smult-int primitive-part-idemp)

show |gc| ∗ 1 dvd content f using gcf by auto
show smult (sgn gc) (primitive-part g) dvd primitive-part f

using dvd-n cf gc using zsgn-def by force
qed
have cg dvd d using dvd-c unfolding gc-def cg-def using cf cg d

by (simp add: div-dvd-iff-mult dvd-gcd-mult)
then obtain h where dcg: d = cg ∗ h unfolding dvd-def by auto
with d have h 6= 0 by auto
hence h1 : |h| ≥ 1 by simp
have degree (smult gc (primitive-part g)) = degree g

using gc by auto
from factor-bound[OF f dvd-f , unfolded this, OF deg, of k, unfolded coeff-smult]
have le: |gc ∗ coeff ?ng k| ≤ factor-bound f n .
note f0 = factor-bound-ge-0 [OF f , of n]
from mult-left-mono[OF le, of abs cg]
have |cg ∗ gc ∗ coeff ?ng k| ≤ |cg| ∗ factor-bound f n

unfolding abs-mult[symmetric] by simp
also have cg ∗ gc ∗ coeff ?ng k = coeff (smult ?cg ?ng) k unfolding cg-id by

simp
also have . . . = coeff g k unfolding content-times-primitive-part by simp
finally have |coeff g k| ≤ 1 ∗ (|cg| ∗ factor-bound f n) by simp
also have . . . ≤ |h| ∗ (|cg| ∗ factor-bound f n)

by (rule mult-right-mono[OF h1 ], insert f0 , auto)
also have . . . = (|cg ∗ h|) ∗ factor-bound f n by (simp add: abs-mult)
finally show ?thesis unfolding dcg .
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qed

end

10.6 Iteration of Subsets of Factors
theory Sublist-Iteration
imports

Polynomial-Factorization.Missing-Multiset
Polynomial-Factorization.Missing-List
HOL−Library.IArray

begin

Misc lemmas lemma mem-snd-map: (∃ x. (x, y) ∈ S) ←→ y ∈ snd ‘ S by
force

lemma filter-upt: assumes l ≤ m m < n shows filter ((≤) m) [l..<n] = [m..<n]
proof(insert assms, induct n)

case 0 then show ?case by auto
next

case (Suc n) then show ?case by (cases m = n, auto)
qed

lemma upt-append: i < j =⇒ j < k =⇒ [i..<j]@[j..<k] = [i..<k]
proof(induct k arbitrary: j)

case 0 then show ?case by auto
next

case (Suc k) then show ?case by (cases j = k, auto)
qed

lemma IArray-sub[simp]: (!!) as = (!) (IArray.list-of as) by auto
declare IArray.sub-def [simp del]

Following lemmas in this section are for subseqs
lemma subseqs-Cons[simp]: subseqs (x#xs) = map (Cons x) (subseqs xs) @ subseqs
xs

by (simp add: Let-def )

declare subseqs.simps(2 ) [simp del]

lemma singleton-mem-set-subseqs [simp]: [x] ∈ set (subseqs xs) ←→ x ∈ set xs by
(induct xs, auto)

lemma Cons-mem-set-subseqsD: y#ys ∈ set (subseqs xs) =⇒ y ∈ set xs by (induct
xs, auto)

lemma subseqs-subset: ys ∈ set (subseqs xs) =⇒ set ys ⊆ set xs
by (metis Pow-iff image-eqI subseqs-powset)
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lemma Cons-mem-set-subseqs-Cons:
y#ys ∈ set (subseqs (x#xs)) ←→ (y = x ∧ ys ∈ set (subseqs xs)) ∨ y#ys ∈ set

(subseqs xs)
by auto

lemma sorted-subseqs-sorted:
sorted xs =⇒ ys ∈ set (subseqs xs) =⇒ sorted ys

proof(induct xs arbitrary: ys)
case Nil thus ?case by simp

next
case Cons thus ?case using subseqs-subset by fastforce

qed

lemma subseqs-of-subseq: ys ∈ set (subseqs xs) =⇒ set (subseqs ys) ⊆ set (subseqs
xs)
proof(induct xs arbitrary: ys)

case Nil then show ?case by auto
next

case IHx: (Cons x xs)
from IHx.prems show ?case
proof(induct ys)

case Nil then show ?case by auto
next

case IHy: (Cons y ys)
from IHy.prems[unfolded subseqs-Cons]
consider y = x ys ∈ set (subseqs xs) | y # ys ∈ set (subseqs xs) by auto
then show ?case
proof(cases)

case 1 with IHx.hyps show ?thesis by auto
next

case 2 from IHx.hyps[OF this] show ?thesis by auto
qed

qed
qed

lemma mem-set-subseqs-append: xs ∈ set (subseqs ys) =⇒ xs ∈ set (subseqs (zs @
ys))

by (induct zs, auto)

lemma Cons-mem-set-subseqs-append:
x ∈ set ys =⇒ xs ∈ set (subseqs zs) =⇒ x#xs ∈ set (subseqs (ys@zs))

proof(induct ys)
case Nil then show ?case by auto

next
case IH : (Cons y ys)
then consider x = y | x ∈ set ys by auto
then show ?case
proof(cases)
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case 1 with IH show ?thesis by (auto intro: mem-set-subseqs-append)
next

case 2 from IH .hyps[OF this IH .prems(2 )] show ?thesis by auto
qed

qed

lemma Cons-mem-set-subseqs-sorted:
sorted xs =⇒ y#ys ∈ set (subseqs xs) =⇒ y#ys ∈ set (subseqs (filter (λx. y ≤

x) xs))
by (induct xs) (auto simp: Let-def )

lemma subseqs-map[simp]: subseqs (map f xs) = map (map f ) (subseqs xs) by
(induct xs, auto)

lemma subseqs-of-indices: map (map (nth xs)) (subseqs [0 ..<length xs]) = subseqs
xs
proof (induct xs)

case Nil then show ?case by auto
next

case (Cons x xs)
from this[symmetric]
have subseqs xs = map (map ((!) (x#xs))) (subseqs [Suc 0 ..<Suc (length xs)])

by (fold map-Suc-upt, simp)
then show ?case by (unfold length-Cons upt-conv-Cons[OF zero-less-Suc], simp)

qed

Specification definition subseq-of-length n xs ys ≡ ys ∈ set (subseqs xs) ∧
length ys = n

lemma subseq-of-lengthI [intro]:
assumes ys ∈ set (subseqs xs) length ys = n
shows subseq-of-length n xs ys

by (insert assms, unfold subseq-of-length-def , auto)

lemma subseq-of-lengthD[dest]:
assumes subseq-of-length n xs ys
shows ys ∈ set (subseqs xs) length ys = n
by (insert assms, unfold subseq-of-length-def , auto)

lemma subseq-of-length0 [simp]: subseq-of-length 0 xs ys ←→ ys = [] by auto

lemma subseq-of-length-Nil[simp]: subseq-of-length n [] ys ←→ n = 0 ∧ ys = []
by (auto simp: subseq-of-length-def )

lemma subseq-of-length-Suc-upt:
subseq-of-length (Suc n) [0 ..<m] xs ←→
(if n = 0 then length xs = Suc 0 ∧ hd xs < m
else hd xs < hd (tl xs) ∧ subseq-of-length n [0 ..<m] (tl xs)) (is ?l ←→ ?r)

proof(cases n)
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case 0
show ?thesis
proof(intro iffI )

assume l: ?l
with 0 have 1 : length xs = Suc 0 by auto
then have xs: xs = [hd xs] by (metis length-0-conv length-Suc-conv list.sel(1 ))
with l have [hd xs] ∈ set (subseqs [0 ..<m]) by auto
with 1 show ?r by (unfold 0 , auto)

next
assume ?r
with 0 have 1 : length xs = Suc 0 and 2 : hd xs < m by auto
then have xs: xs = [hd xs] by (metis length-0-conv length-Suc-conv list.sel(1 ))
from 2 show ?l by (subst xs, auto simp: 0 )

qed
next

case n: (Suc n ′)
show ?thesis
proof (intro iffI )

assume ?l
with n have 1 : length xs = Suc (Suc n ′) and 2 : xs ∈ set (subseqs [0 ..<m])

by auto
from 1 [unfolded length-Suc-conv]
obtain x y ys where xs: xs = x#y#ys and n ′: length ys = n ′ by auto
have sorted xs by(rule sorted-subseqs-sorted[OF - 2 ], auto)
from this[unfolded xs] have x ≤ y by auto
moreover

from 2 have distinct xs by (rule subseqs-distinctD, auto)
from this[unfolded xs] have x 6= y by auto

ultimately have x < y by auto
moreover

from 2 have y#ys ∈ set (subseqs [0 ..<m]) by (unfold xs, auto dest:
Cons-in-subseqsD)

with n n ′ have subseq-of-length n [0 ..<m] (y#ys) by auto
ultimately show ?r by (auto simp: xs)

next
assume r : ?r
with n have len: length xs = Suc (Suc n ′)
and ∗: hd xs < hd (tl xs) tl xs ∈ set (subseqs [0 ..<m]) by auto

from len[unfolded length-Suc-conv] obtain x y ys
where xs: xs = x#y#ys and n ′: length ys = n ′ by auto
with ∗ have xy: x < y and yys: y#ys ∈ set (subseqs [0 ..<m]) by auto
from Cons-mem-set-subseqs-sorted[OF - yys]
have y#ys ∈ set (subseqs (filter ((≤) y) [0 ..<m])) by auto
also from Cons-mem-set-subseqsD[OF yys] have ym: y < m by auto

then have filter ((≤) y) [0 ..<m] = [y..<m] by (auto intro: filter-upt)
finally have y#ys ∈ set (subseqs [y..<m]) by auto
with xy have x#y#ys ∈ set (subseqs (x#[y..<m])) by auto
also from xy have ... ⊆ set (subseqs ([0 ..<y] @ [y..<m]))

by (intro subseqs-of-subseq Cons-mem-set-subseqs-append, auto intro: sub-
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seqs-refl)
also from xy ym have [0 ..<y] @ [y..<m] = [0 ..<m] by (auto intro: upt-append)
finally have xs ∈ set (subseqs [0 ..<m]) by (unfold xs)
with len[folded n] show ?l by auto

qed
qed

lemma subseqs-of-length-of-indices:
{ ys. subseq-of-length n xs ys } = { map (nth xs) is | is. subseq-of-length n

[0 ..<length xs] is }
by(unfold subseq-of-length-def , subst subseqs-of-indices[symmetric], auto)

lemma subseqs-of-length-Suc-Cons:
{ ys. subseq-of-length (Suc n) (x#xs) ys } =
Cons x ‘ { ys. subseq-of-length n xs ys } ∪ { ys. subseq-of-length (Suc n) xs ys }

by (unfold subseq-of-length-def , auto)

datatype ( ′a, ′b, ′state)subseqs-impl = Sublists-Impl
(create-subseqs: ′b ⇒ ′a list ⇒ nat ⇒ ( ′b × ′a list)list × ′state)
(next-subseqs: ′state ⇒ ( ′b × ′a list)list × ′state)

locale subseqs-impl =
fixes f :: ′a ⇒ ′b ⇒ ′b
and sl-impl :: ( ′a, ′b, ′state)subseqs-impl

begin

definition S :: ′b ⇒ ′a list ⇒ nat ⇒ ( ′b × ′a list)set where
S base elements n = { (foldr f ys base, ys) | ys. subseq-of-length n elements ys }

end

locale correct-subseqs-impl = subseqs-impl f sl-impl
for f :: ′a ⇒ ′b ⇒ ′b
and sl-impl :: ( ′a, ′b, ′state)subseqs-impl +
fixes invariant :: ′b ⇒ ′a list ⇒ nat ⇒ ′state ⇒ bool
assumes create-subseqs: create-subseqs sl-impl base elements n = (out, state) =⇒

invariant base elements n state ∧ set out = S base elements n
and next-subseqs:

invariant base elements n state =⇒
next-subseqs sl-impl state = (out, state ′) =⇒
invariant base elements (Suc n) state ′ ∧ set out = S base elements (Suc n)

Basic Implementation fun subseqs-i-n-main :: ( ′a ⇒ ′b ⇒ ′b) ⇒ ′b ⇒ ′a
list ⇒ nat ⇒ nat ⇒ ( ′b × ′a list) list where

subseqs-i-n-main f b xs i n = (if i = 0 then [(b,[])] else if i = n then [(foldr f xs
b, xs)]

else case xs of
(y # ys) ⇒ map (λ (c,zs) ⇒ (c,y # zs)) (subseqs-i-n-main f (f y b) ys (i −
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1 ) (n − 1 ))
@ subseqs-i-n-main f b ys i (n − 1 ))

declare subseqs-i-n-main.simps[simp del]

definition subseqs-length :: ( ′a ⇒ ′b ⇒ ′b) ⇒ ′b ⇒ nat ⇒ ′a list ⇒ ( ′b × ′a list)
list where

subseqs-length f b i xs = (
let n = length xs in if i > n then [] else subseqs-i-n-main f b xs i n)

lemma subseqs-length: assumes f-ac:
∧

x y z. f x (f y z) = f y (f x z)
shows set (subseqs-length f a n xs) =
{ (foldr f ys a, ys) | ys. ys ∈ set (subseqs xs) ∧ length ys = n}

proof −
show ?thesis
proof (cases length xs < n)

case True
thus ?thesis unfolding subseqs-length-def Let-def

using length-subseqs[of xs] subseqs-length-simple-False by auto
next

case False
hence id: (length xs < n) = False and n ≤ length xs by auto
from this(2 ) show ?thesis unfolding subseqs-length-def Let-def id if-False
proof (induct xs arbitrary: n a rule: length-induct[rule-format])

case (1 xs n a)
note n = 1 (2 )
note IH = 1 (1 )
note simp[simp] = subseqs-i-n-main.simps[of f - xs n]
show ?case
proof (cases n = 0 )

case True
thus ?thesis unfolding simp by simp

next
case False note 0 = this
show ?thesis
proof (cases n = length xs)

case True
have ?thesis = ({(foldr f xs a, xs)} = (λ ys. (foldr f ys a, ys)) ‘ {ys. ys ∈

set (subseqs xs) ∧ length ys = length xs})
unfolding simp using 0 True by auto

from this[unfolded full-list-subseqs] show ?thesis by auto
next

case False
with n have n: n < length xs by auto
from 0 obtain m where m: n = Suc m by (cases n, auto)
from n 0 obtain y ys where xs: xs = y # ys by (cases xs, auto)
from n m xs have le: m ≤ length ys n ≤ length ys by auto
from xs have lt: length ys < length xs by auto
have sub: set (subseqs-i-n-main f a xs n (length xs)) =
(λ(c, zs). (c, y # zs)) ‘ set (subseqs-i-n-main f (f y a) ys m (length ys))
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∪
set (subseqs-i-n-main f a ys n (length ys))
unfolding simp using 0 False by (simp add: xs m)

have fold:
∧

ys. foldr f ys (f y a) = f y (foldr f ys a)
by (induct-tac ys, auto simp: f-ac)

show ?thesis unfolding sub IH [OF lt le(1 )] IH [OF lt le(2 )]
unfolding m xs by (auto simp: Let-def fold)

qed
qed

qed
qed

qed

definition basic-subseqs-impl :: ( ′a⇒ ′b⇒ ′b)⇒ ( ′a, ′b, ′b × ′a list × nat)subseqs-impl
where

basic-subseqs-impl f = Sublists-Impl
(λ a xs n. (subseqs-length f a n xs, (a,xs,n)))
(λ (a,xs,n). (subseqs-length f a (Suc n) xs, (a,xs,Suc n)))

lemma basic-subseqs-impl: assumes f-ac:
∧

x y z. f x (f y z) = f y (f x z)
shows correct-subseqs-impl f (basic-subseqs-impl f )
(λ a xs n triple. (a,xs,n) = triple)

by (unfold-locales; unfold subseqs-impl.S-def basic-subseqs-impl-def subseq-of-length-def ,
insert subseqs-length[of f , OF f-ac], auto)

Improved Implementation datatype ( ′a, ′b, ′state) subseqs-foldr-impl = Sub-
lists-Foldr-Impl
(subseqs-foldr : ′b ⇒ ′a list ⇒ nat ⇒ ′b list × ′state)
(next-subseqs-foldr : ′state ⇒ ′b list × ′state)

locale subseqs-foldr-impl =
fixes f :: ′a ⇒ ′b ⇒ ′b
and impl :: ( ′a, ′b, ′state) subseqs-foldr-impl

begin
definition S where S base elements n ≡ { foldr f ys base | ys. subseq-of-length n
elements ys }
end

locale correct-subseqs-foldr-impl = subseqs-foldr-impl f impl
for f and impl :: ( ′a, ′b, ′state) subseqs-foldr-impl +
fixes invariant :: ′b ⇒ ′a list ⇒ nat ⇒ ′state ⇒ bool
assumes subseqs-foldr :

subseqs-foldr impl base elements n = (out, state) =⇒
invariant base elements n state ∧ set out = S base elements n

and next-subseqs-foldr :
next-subseqs-foldr impl state = (out, state ′) =⇒ invariant base elements n state

=⇒
invariant base elements (Suc n) state ′ ∧ set out = S base elements (Suc n)
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locale my-subseqs =
fixes f :: ′a ⇒ ′b ⇒ ′b

begin

context fixes head :: ′a and tail :: ′a iarray
begin

fun next-subseqs1 and next-subseqs2
where next-subseqs1 ret0 ret1 [] = (ret0 , (head, tail, ret1 ))
| next-subseqs1 ret0 ret1 ((i,v)#prevs) = next-subseqs2 (f head v # ret0 ) ret1

prevs v [0 ..<i]
| next-subseqs2 ret0 ret1 prevs v [] = next-subseqs1 ret0 ret1 prevs
| next-subseqs2 ret0 ret1 prevs v (j#js) =

(let v ′ = f (tail !! j) v in next-subseqs2 (v ′ # ret0 ) ((j,v ′) # ret1 ) prevs v js)

definition next-subseqs2-set v js ≡ { (j, f (tail !! j) v) | j. j ∈ set js }

definition out-subseqs2-set v js ≡ { f (tail !! j) v | j. j ∈ set js }

definition next-subseqs1-set prevs ≡
⋃
{ next-subseqs2-set v [0 ..<i] | v i. (i,v) ∈

set prevs }

definition out-subseqs1-set prevs ≡
(f head ◦ snd) ‘ set prevs ∪ (

⋃
{ out-subseqs2-set v [0 ..<i] | v i. (i,v) ∈ set prevs

})

fun next-subseqs1-spec where
next-subseqs1-spec out nexts prevs (out ′, (head ′,tail ′,nexts ′)) ←→
set nexts ′ = set nexts ∪ next-subseqs1-set prevs ∧
set out ′ = set out ∪ out-subseqs1-set prevs

fun next-subseqs2-spec where
next-subseqs2-spec out nexts prevs v js (out ′, (head ′,tail ′,nexts ′)) ←→
set nexts ′ = set nexts ∪ next-subseqs1-set prevs ∪ next-subseqs2-set v js ∧
set out ′ = set out ∪ out-subseqs1-set prevs ∪ out-subseqs2-set v js

lemma next-subseqs2-Cons:
next-subseqs2-set v (j#js) = insert (j, f (tail!!j) v) (next-subseqs2-set v js)
by (auto simp: next-subseqs2-set-def )

lemma out-subseqs2-Cons:
out-subseqs2-set v (j#js) = insert (f (tail!!j) v) (out-subseqs2-set v js)
by (auto simp: out-subseqs2-set-def )

lemma next-subseqs1-set-as-next-subseqs2-set:
next-subseqs1-set ((i,v) # prevs) = next-subseqs1-set prevs ∪ next-subseqs2-set v

[0 ..<i]
by (auto simp: next-subseqs1-set-def )
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lemma out-subseqs1-set-as-out-subseqs2-set:
out-subseqs1-set ((i,v) # prevs) =
{ f head v } ∪ out-subseqs1-set prevs ∪ out-subseqs2-set v [0 ..<i]

by (auto simp: out-subseqs1-set-def )

lemma next-subseqs1-spec:
shows

∧
out nexts. next-subseqs1-spec out nexts prevs (next-subseqs1 out nexts

prevs)
and

∧
out nexts. next-subseqs2-spec out nexts prevs v js (next-subseqs2 out nexts

prevs v js)
proof(induct rule: next-subseqs1-next-subseqs2 .induct)

case (1 ret0 ret1 )
then show ?case by (simp add: next-subseqs1-set-def out-subseqs1-set-def )

next
case (2 ret0 ret1 i v prevs)
show ?case
proof(cases next-subseqs1 out nexts ((i, v) # prevs))

case split: (fields out ′ head ′ tail ′ nexts ′)
have next-subseqs2-spec (f head v # out) nexts prevs v [0 ..<i] (out ′, (head ′,tail ′,nexts ′))

by (fold split, unfold next-subseqs1 .simps, rule 2 )
then show ?thesis

apply (unfold next-subseqs2-spec.simps split)
by (auto simp: next-subseqs1-set-as-next-subseqs2-set out-subseqs1-set-as-out-subseqs2-set)

qed
next

case (3 ret0 ret1 prevs v)
show ?case
proof (cases next-subseqs1 out nexts prevs)

case split: (fields out ′ head ′ tail ′ nexts ′)
from 3 [of out nexts] show ?thesis by(simp add: split next-subseqs2-set-def

out-subseqs2-set-def )
qed

next
case (4 ret0 ret1 prevs v j js)
define tj where tj = tail !! j
define nexts ′′ where nexts ′′ = (j, f tj v) # nexts
define out ′′ where out ′′ = (f tj v) # out
let ?n = next-subseqs2 out ′′ nexts ′′ prevs v js
show ?case
proof (cases ?n)

case split: (fields out ′ head ′ tail ′ nexts ′)
show ?thesis

apply (unfold next-subseqs2 .simps Let-def )
apply (fold tj-def )
apply (fold out ′′-def nexts ′′-def )

apply (unfold split next-subseqs2-spec.simps next-subseqs2-Cons out-subseqs2-Cons)
using 4 [OF refl, of out ′′ nexts ′′, unfolded split]
apply (auto simp: tj-def nexts ′′-def out ′′-def )
done
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qed
qed

end

fun next-subseqs where next-subseqs (head,tail,prevs) = next-subseqs1 head tail []
[] prevs

fun create-subseqs
where create-subseqs base elements 0 = (

if elements = [] then ([base],(undefined, IArray [], []))
else let head = hd elements; tail = IArray (tl elements) in
([base], (head, tail, [(IArray.length tail, base)])))

| create-subseqs base elements (Suc n) =
next-subseqs (snd (create-subseqs base elements n))

definition impl where impl = Sublists-Foldr-Impl create-subseqs next-subseqs

sublocale subseqs-foldr-impl f impl .

definition set-prevs where set-prevs base tail n ≡
{ (i, foldr f (map ((!) tail) is) base) | i is.
subseq-of-length n [0 ..<length tail] is ∧ i = (if n = 0 then length tail else hd is)

}

lemma snd-set-prevs:
snd ‘ (set-prevs base tail n) = (λas. foldr f as base) ‘ { as. subseq-of-length n tail

as }
by (subst subseqs-of-length-of-indices, auto simp: set-prevs-def image-Collect)

fun invariant where invariant base elements n (head,tail,prevs) =
(if elements = [] then prevs = []
else head = hd elements ∧ tail = IArray (tl elements) ∧ set prevs = set-prevs

base (tl elements) n)

lemma next-subseq-preserve:
assumes next-subseqs (head,tail,prevs) = (out, (head ′,tail ′,prevs ′))
shows head ′ = head tail ′ = tail

proof−
define P :: ′b list × - × - × (nat × ′b) list ⇒ bool
where P ≡ λ (out, (head ′,tail ′,prevs ′)). head ′ = head ∧ tail ′ = tail
{ fix ret0 ret1 v js

have ∗: P (next-subseqs1 head tail ret0 ret1 prevs)
and P (next-subseqs2 head tail ret0 ret1 prevs v js)

by(induct rule: next-subseqs1-next-subseqs2 .induct, simp add: P-def , auto simp:
Let-def )

}
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from this(1 )[unfolded P-def , of [] [], folded next-subseqs.simps] assms
show head ′ = head tail ′ = tail by auto

qed

lemma next-subseqs-spec:
assumes nxt: next-subseqs (head,tail,prevs) = (out, (head ′,tail ′,prevs ′))
shows set prevs ′ = { (j, f (tail !! j) v) | v i j. (i,v) ∈ set prevs ∧ j < i } (is ?g1 )

and set out = (f head ◦ snd) ‘ set prevs ∪ snd ‘ set prevs ′ (is ?g2 )
proof−

note next-subseqs1-spec(1 )[of head tail Nil Nil prevs]
note this[unfolded nxt[simplified]]
note this[unfolded next-subseqs1-spec.simps]
note this[unfolded next-subseqs1-set-def out-subseqs1-set-def ]
note ∗ = this[unfolded next-subseqs2-set-def out-subseqs2-set-def ]
then show g1 : ?g1 by auto
also have snd ‘ ... = (

⋃
{{(f (tail !! j) v) | j. j < i} | v i. (i, v) ∈ set prevs})

by (unfold image-Collect, auto)
finally have ∗∗: snd ‘ set prevs ′ = ....
with conjunct2 [OF ∗] show ?g2 by simp

qed

lemma next-subseq-prevs:
assumes nxt: next-subseqs (head,tail,prevs) = (out, (head ′,tail ′,prevs ′))

and inv-prevs: set prevs = set-prevs base (IArray.list-of tail) n
shows set prevs ′ = set-prevs base (IArray.list-of tail) (Suc n) (is ?l = ?r)

proof(intro equalityI subsetI )
fix t
assume r : t ∈ ?r
from this[unfolded set-prevs-def ] obtain iis
where t: t = (hd iis, foldr f (map ((!!) tail) iis) base)

and sl: subseq-of-length (Suc n) [0 ..<IArray.length tail] iis by auto
from sl have length iis > 0 by auto
then obtain i is where iis: iis = i#is by (meson list.set-cases nth-mem)
define v where v = foldr f (map ((!!) tail) is) base
note sl[unfolded subseq-of-length-Suc-upt]
note nxt = next-subseqs-spec[OF nxt]
show t ∈ ?l
proof(cases n = 0 )

case True
from sl[unfolded subseq-of-length-Suc-upt] t

show ?thesis by (unfold nxt[unfolded inv-prevs] True set-prevs-def length-Suc-conv,
auto)

next
case [simp]: False
from sl[unfolded subseq-of-length-Suc-upt iis,simplified]
have i: i < hd is and is: subseq-of-length n [0 ..<IArray.length tail] is by auto
then have ∗: (hd is, v) ∈ set-prevs base (IArray.list-of tail) n

by (unfold set-prevs-def , auto intro!: exI [of - is] simp: v-def )
with i have (i, f (tail !! i) v) ∈ {(j, f (tail !! j) v) | j. j < hd is} by auto
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with t[unfolded iis] have t ∈ ... by (auto simp: v-def )
with ∗ show ?thesis by (unfold nxt[unfolded inv-prevs], auto)

qed
next

fix t
assume l: t ∈ ?l
from l[unfolded next-subseqs-spec(1 )[OF nxt]]
obtain j v i
where t: t = (j, f (tail!!j) v)

and j: j < i
and iv: (i,v) ∈ set prevs by auto

from iv[unfolded inv-prevs set-prevs-def , simplified]
obtain is
where v: v = foldr f (map ((!!) tail) is) base

and is: subseq-of-length n [0 ..<IArray.length tail] is
and i: if n = 0 then i = IArray.length tail else i = hd is by auto

from is j i have jis: subseq-of-length (Suc n) [0 ..<IArray.length tail] (j#is)
by (unfold subseq-of-length-Suc-upt, auto)

then show t ∈ ?r by (auto intro!: exI [of - j#is] simp: set-prevs-def t v)
qed

lemma invariant-next-subseqs:
assumes inv: invariant base elements n state

and nxt: next-subseqs state = (out, state ′)
shows invariant base elements (Suc n) state ′

proof(cases elements = [])
case True with inv nxt show ?thesis by(cases state, auto)

next
case False with inv nxt show ?thesis
proof (cases state)

case state: (fields head tail prevs)
note inv = inv[unfolded state]
show ?thesis
proof (cases state ′)

case state ′: (fields head ′ tail ′ prevs ′)
note nxt = nxt[unfolded state state ′]
note [simp] = next-subseq-preserve[OF nxt]
from False inv
have set prevs = set-prevs base (IArray.list-of tail) n by auto
from False next-subseq-prevs[OF nxt this] inv
show ?thesis by(auto simp: state ′)

qed
qed

qed

lemma out-next-subseqs:
assumes inv: invariant base elements n state

and nxt: next-subseqs state = (out, state ′)
shows set out = S base elements (Suc n)
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proof (cases state)
case state: (fields head tail prevs)
show ?thesis
proof(cases elements = [])

case True
with inv nxt show ?thesis by (auto simp: state S-def )

next
case elements: False
show ?thesis
proof(cases state ′)

case state ′: (fields head ′ tail ′ prevs ′)
from elements inv[unfolded state,simplified]
have head = hd elements
and tail = IArray (tl elements)
and prevs: set prevs = set-prevs base (tl elements) n by auto
with elements have elements2 : elements = head # IArray.list-of tail by

auto
let ?f = λas. (foldr f as base)
have set out = ?f ‘ {ys. subseq-of-length (Suc n) elements ys}
proof−

from invariant-next-subseqs[OF inv nxt, unfolded state ′ invariant.simps
if-not-P[OF elements]]

have tail ′: tail ′ = IArray (tl elements)
and prevs ′: set prevs ′ = set-prevs base (tl elements) (Suc n) by auto

note next-subseqs-spec(2 )[OF nxt[unfolded state state ′], unfolded this]
note this[folded image-comp, unfolded snd-set-prevs]
also note prevs
also note snd-set-prevs
also have f head ‘ ?f ‘ { as. subseq-of-length n (tl elements) as } =

?f ‘ Cons head ‘ { as. subseq-of-length n (tl elements) as } by (auto simp:
image-def )

also note image-Un[symmetric]
also have
((#) head ‘ {as. subseq-of-length n (tl elements) as} ∪
{as. subseq-of-length (Suc n) (tl elements) as}) =
{as. subseq-of-length (Suc n) elements as}

by (unfold subseqs-of-length-Suc-Cons elements2 , auto)
finally show ?thesis.

qed
then show ?thesis by (auto simp: S-def )

qed
qed

qed

lemma create-subseqs:
create-subseqs base elements n = (out, state) =⇒
invariant base elements n state ∧ set out = S base elements n

proof(induct n arbitrary: out state)
case 0 then show ?case by (cases elements, cases state, auto simp: S-def Let-def
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set-prevs-def )
next

case (Suc n) show ?case
proof (cases create-subseqs base elements n)

case 1 : (fields out ′′ head tail prevs)
show ?thesis
proof (cases next-subseqs (head, tail, prevs))

case (fields out ′ head ′ tail ′ prevs ′)
note 2 = this[unfolded next-subseq-preserve[OF this]]
from Suc(2 )[unfolded create-subseqs.simps 1 snd-conv 2 ]
have 3 : out ′ = out state = (head,tail,prevs ′) by auto
from Suc(1 )[OF 1 ]
have inv: invariant base elements n (head, tail, prevs) by auto
from out-next-subseqs[OF inv 2 ] invariant-next-subseqs[OF inv 2 ]
show ?thesis by (auto simp: 3 )

qed
qed

qed

sublocale correct-subseqs-foldr-impl f impl invariant
by (unfold-locales; auto simp: impl-def invariant-next-subseqs out-next-subseqs

create-subseqs)

lemma impl-correct: correct-subseqs-foldr-impl f impl invariant ..
end

lemmas [code] =
my-subseqs.next-subseqs.simps
my-subseqs.next-subseqs1 .simps
my-subseqs.next-subseqs2 .simps
my-subseqs.create-subseqs.simps
my-subseqs.impl-def

end

10.7 Reconstruction of Integer Factorization
We implemented Zassenhaus reconstruction-algorithm, i.e., given a factor-
ization of f mod pn, the aim is to reconstruct a factorization of f over the
integers.
theory Reconstruction
imports

Berlekamp-Hensel
Polynomial-Factorization.Gauss-Lemma
Polynomial-Factorization.Dvd-Int-Poly
Polynomial-Factorization.Gcd-Rat-Poly
Degree-Bound
Factor-Bound
Sublist-Iteration
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Poly-Mod
begin

hide-const coeff monom

Misc lemmas lemma foldr-of-Cons[simp]: foldr Cons xs ys = xs @ ys by
(induct xs, auto)

lemma foldr-map-prod[simp]:
foldr (λx. map-prod (f x) (g x)) xs base = (foldr f xs (fst base), foldr g xs (snd

base))
by (induct xs, auto)

The main part context poly-mod
begin

definition inv-Mp :: int poly ⇒ int poly where
inv-Mp = map-poly inv-M

definition mul-const :: int poly ⇒ int ⇒ int where
mul-const p c = (coeff p 0 ∗ c) mod m

fun prod-list-m :: int poly list ⇒ int poly where
prod-list-m (f # fs) = Mp (f ∗ prod-list-m fs)
| prod-list-m [] = 1

context
fixes sl-impl :: (int poly, int × int poly list, ′state)subseqs-foldr-impl
and m2 :: int

begin
definition inv-M2 :: int ⇒ int where

inv-M2 = (λ x. if x ≤ m2 then x else x − m)

definition inv-Mp2 :: int poly ⇒ int poly where
inv-Mp2 = map-poly inv-M2

partial-function (tailrec) reconstruction :: ′state ⇒ int poly ⇒ int poly
⇒ int ⇒ nat ⇒ nat ⇒ int poly list ⇒ int poly list
⇒ (int × (int poly list)) list ⇒ int poly list where
reconstruction state u luu lu d r vs res cands = (case cands of Nil
⇒ let d ′ = Suc d

in if d ′ + d ′ > r then (u # res) else
(case next-subseqs-foldr sl-impl state of (cands,state ′) ⇒

reconstruction state ′ u luu lu d ′ r vs res cands)
| (lv ′,ws) # cands ′⇒ let

lv = inv-M2 lv ′ — lv is last coefficient of vb below
in if lv dvd coeff luu 0 then let

vb = inv-Mp2 (Mp (smult lu (prod-list-m ws)))
in if vb dvd luu then
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let pp-vb = primitive-part vb;
u ′ = u div pp-vb;
r ′ = r − length ws;
res ′ = pp-vb # res

in if d + d > r ′

then u ′ # res ′

else let
lu ′ = lead-coeff u ′;
vs ′ = fold remove1 ws vs;
(cands ′′, state ′) = subseqs-foldr sl-impl (lu ′,[]) vs ′ d

in reconstruction state ′ u ′ (smult lu ′ u ′) lu ′ d r ′ vs ′ res ′ cands ′′

else reconstruction state u luu lu d r vs res cands ′

else reconstruction state u luu lu d r vs res cands ′)
end

end

declare poly-mod.reconstruction.simps[code]
declare poly-mod.prod-list-m.simps[code]
declare poly-mod.mul-const-def [code]
declare poly-mod.inv-M2-def [code]
declare poly-mod.inv-Mp2-def [code-unfold]
declare poly-mod.inv-Mp-def [code-unfold]

definition zassenhaus-reconstruction-generic ::
(int poly, int × int poly list, ′state) subseqs-foldr-impl
⇒ int poly list ⇒ int ⇒ nat ⇒ int poly ⇒ int poly list where
zassenhaus-reconstruction-generic sl-impl vs p n f = (let

lf = lead-coeff f ;
pn = p^n;
(-, state) = subseqs-foldr sl-impl (lf ,[]) vs 0

in
poly-mod.reconstruction pn sl-impl (pn div 2 ) state f (smult lf f ) lf 0 (length

vs) vs [] [])

lemma coeff-mult-0 : coeff (f ∗ g) 0 = coeff f 0 ∗ coeff g 0
by (metis poly-0-coeff-0 poly-mult)

lemma lead-coeff-factor : assumes u: u = v ∗ (w :: ′a ::idom poly)
shows smult (lead-coeff u) u = (smult (lead-coeff w) v) ∗ (smult (lead-coeff v)

w)
lead-coeff (smult (lead-coeff w) v) = lead-coeff u lead-coeff (smult (lead-coeff v)

w) = lead-coeff u
unfolding u by (auto simp: lead-coeff-mult lead-coeff-smult)

lemma not-irreducibled-lead-coeff-factors: assumes ¬ irreducibled (u :: ′a :: idom
poly) degree u 6= 0

shows ∃ f g. smult (lead-coeff u) u = f ∗ g ∧ lead-coeff f = lead-coeff u ∧
lead-coeff g = lead-coeff u
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∧ degree f < degree u ∧ degree g < degree u
proof −

from assms[unfolded irreducibled-def , simplified]
obtain v w where deg: degree v < degree u degree w < degree u and u: u = v
∗ w by auto

define f where f = smult (lead-coeff w) v
define g where g = smult (lead-coeff v) w
note lf = lead-coeff-factor [OF u, folded f-def g-def ]
show ?thesis
proof (intro exI conjI , (rule lf )+)

show degree f < degree u degree g < degree u unfolding f-def g-def using deg
u by auto

qed
qed

lemma mset-subseqs-size: mset ‘ {ys. ys ∈ set (subseqs xs) ∧ length ys = n} =
{ws. ws ⊆# mset xs ∧ size ws = n}

proof (induct xs arbitrary: n)
case (Cons x xs n)
show ?case (is ?l = ?r)
proof (cases n)

case 0
thus ?thesis by (auto simp: Let-def )

next
case (Suc m)
have ?r = {ws. ws ⊆# mset (x # xs)} ∩ {ps. size ps = n} by auto
also have {ws. ws ⊆# mset (x # xs)} = {ps. ps ⊆# mset xs} ∪ ((λ ps. ps +

{#x#}) ‘ {ps. ps ⊆# mset xs})
by (simp add: multiset-subset-insert)

also have . . . ∩ {ps. size ps = n} = {ps. ps ⊆# mset xs ∧ size ps = n}
∪ ((λ ps. ps + {#x#}) ‘ {ps. ps ⊆# mset xs ∧ size ps = m}) unfolding Suc

by auto
finally have id: ?r =
{ps. ps ⊆# mset xs ∧ size ps = n} ∪ (λps. ps + {#x#}) ‘ {ps. ps ⊆# mset

xs ∧ size ps = m} .
have ?l = mset ‘ {ys ∈ set (subseqs xs). length ys = Suc m}
∪ mset ‘ {ys ∈ (#) x ‘ set (subseqs xs). length ys = Suc m}
unfolding Suc by (auto simp: Let-def )

also have mset ‘ {ys ∈ (#) x ‘ set (subseqs xs). length ys = Suc m}
= (λps. ps + {#x#}) ‘ mset ‘ {ys ∈ set (subseqs xs). length ys = m} by force

finally have id ′: ?l = mset ‘ {ys ∈ set (subseqs xs). length ys = Suc m} ∪
(λps. ps + {#x#}) ‘ mset ‘ {ys ∈ set (subseqs xs). length ys = m} .

show ?thesis unfolding id id ′ Cons[symmetric] unfolding Suc by simp
qed

qed auto

context poly-mod-2
begin
lemma prod-list-m[simp]: prod-list-m fs = Mp (prod-list fs)
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by (induct fs, auto)

lemma inv-Mp-coeff : coeff (inv-Mp f ) n = inv-M (coeff f n)
unfolding inv-Mp-def
by (rule coeff-map-poly, insert m1 , auto simp: inv-M-def )

lemma Mp-inv-Mp-id[simp]: Mp (inv-Mp f ) = Mp f
unfolding poly-eq-iff Mp-coeff inv-Mp-coeff by simp

lemma inv-Mp-rev: assumes bnd:
∧

n. 2 ∗ abs (coeff f n) < m
shows inv-Mp (Mp f ) = f

proof (rule poly-eqI )
fix n
define c where c = coeff f n
from bnd[of n, folded c-def ] have bnd: 2 ∗ abs c < m by auto
show coeff (inv-Mp (Mp f )) n = coeff f n unfolding inv-Mp-coeff Mp-coeff

c-def [symmetric]
using inv-M-rev[OF bnd] .

qed

lemma mul-const-commute-below: mul-const x (mul-const y z) = mul-const y (mul-const
x z)

unfolding mul-const-def by (metis mod-mult-right-eq mult.left-commute)

context
fixes p n

and sl-impl :: (int poly, int × int poly list, ′state)subseqs-foldr-impl
and sli :: int × int poly list ⇒ int poly list ⇒ nat ⇒ ′state ⇒ bool

assumes prime: prime p
and m: m = p^n
and n: n 6= 0
and sl-impl: correct-subseqs-foldr-impl (λx. map-prod (mul-const x) (Cons x))

sl-impl sli
begin
private definition test-dvd-exec lu u ws = (¬ inv-Mp (Mp (smult lu (prod-mset
ws))) dvd smult lu u)

private definition test-dvd u ws = (∀ v l. v dvd u −→ 0 < degree v −→ degree
v < degree u
−→ ¬ v =m smult l (prod-mset ws))

private definition large-m u vs = (∀ v n. v dvd u −→ degree v ≤ degree-bound
vs −→ 2 ∗ abs (coeff v n) < m)

lemma large-m-factor : large-m u vs =⇒ v dvd u =⇒ large-m v vs
unfolding large-m-def using dvd-trans by auto

lemma test-dvd-factor : assumes u: u 6= 0 and test: test-dvd u ws and vu: v dvd
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u
shows test-dvd v ws

proof −
from vu obtain w where uv: u = v ∗ w unfolding dvd-def by auto
from u have deg: degree u = degree v + degree w unfolding uv

by (subst degree-mult-eq, auto)
show ?thesis unfolding test-dvd-def
proof (intro allI impI , goal-cases)

case (1 f l)
from 1 (1 ) have fu: f dvd u unfolding uv by auto
from 1 (3 ) have deg: degree f < degree u unfolding deg by auto
from test[unfolded test-dvd-def , rule-format, OF fu 1 (2 ) deg]
show ?case .

qed
qed

lemma coprime-exp-mod: coprime lu p =⇒ prime p =⇒ n 6= 0 =⇒ lu mod p ^ n
6= 0

by (auto simp add: abs-of-pos prime-gt-0-int)

interpretation correct-subseqs-foldr-impl λx. map-prod (mul-const x) (Cons x)
sl-impl sli by fact

lemma reconstruction: assumes
res: reconstruction sl-impl m2 state u (smult lu u) lu d r vs res cands = fs

and f : f = u ∗ prod-list res
and meas: meas = (r − d, cands)
and dr : d + d ≤ r
and r : r = length vs
and cands: set cands ⊆ S (lu,[]) vs d
and d0 : d = 0 =⇒ cands = []
and lu: lu = lead-coeff u
and factors: unique-factorization-m u (lu,mset vs)
and sf : poly-mod.square-free-m p u
and cop: coprime lu p
and norm:

∧
v. v ∈ set vs =⇒ Mp v = v

and tests:
∧

ws. ws ⊆# mset vs =⇒ ws 6= {#} =⇒
size ws < d ∨ size ws = d ∧ ws /∈ (mset o snd) ‘ set cands
=⇒ test-dvd u ws

and irr :
∧

f . f ∈ set res =⇒ irreducibled f
and deg: degree u > 0
and cands-ne: cands 6= [] =⇒ d < r
and large: ∀ v n. v dvd smult lu u −→ degree v ≤ degree-bound vs
−→ 2 ∗ abs (coeff v n) < m

and f0 : f 6= 0
and state: sli (lu,[]) vs d state
and m2 : m2 = m div 2
shows f = prod-list fs ∧ (∀ fi ∈ set fs. irreducibled fi)

proof −
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from large have large: large-m (smult lu u) vs unfolding large-m-def by auto
interpret p: poly-mod-prime p using prime by unfold-locales
define R where R ≡ measures [
λ (n :: nat,cds :: (int × int poly list) list). n,
λ (n,cds). length cds]

have wf : wf R unfolding R-def by simp
have mset-snd-S :

∧
vs lu d. (mset ◦ snd) ‘ S (lu,[]) vs d =

{ ws. ws ⊆# mset vs ∧ size ws = d}
by (fold mset-subseqs-size image-comp, unfold S-def image-Collect, auto)

have inv-M2 [simp]: inv-M2 m2 = inv-M unfolding inv-M2-def m2 inv-M-def
by (intro ext, auto)

have inv-Mp2 [simp]: inv-Mp2 m2 = inv-Mp unfolding inv-Mp2-def inv-Mp-def
by simp
have p-Mp[simp]:

∧
f . p.Mp (Mp f ) = p.Mp f using m p.m1 n Mp-Mp-pow-is-Mp

by blast
{

fix u lu vs
assume eq: Mp u = Mp (smult lu (prod-mset vs)) and cop: coprime lu p and

size: size vs 6= 0
and mi:

∧
v. v ∈# vs =⇒ irreducibled-m v ∧ monic v

from cop p.m1 have lu0 : lu 6= 0 by auto
from size have vs 6= {#} by auto
then obtain v vs ′ where vs-v: vs = vs ′ + {#v#} by (cases vs, auto)
have mon: monic (prod-mset vs)

by (rule monic-prod-mset, insert mi, auto)
hence vs0 : prod-mset vs 6= 0 by (metis coeff-0 zero-neq-one)
from mon have l-vs: lead-coeff (prod-mset vs) = 1 .
have deg-ws: degree-m (smult lu (prod-mset vs)) = degree (smult lu (prod-mset

vs))
by (rule degree-m-eq[OF - m1 ], unfold lead-coeff-smult,
insert cop n p.m1 l-vs, auto simp: m)

with eq have degree-m u = degree (smult lu (prod-mset vs)) by auto
also have . . . = degree (prod-mset vs ′ ∗ v) unfolding degree-smult-eq vs-v

using lu0 by (simp add:ac-simps)
also have . . . = degree (prod-mset vs ′) + degree v

by (rule degree-mult-eq, insert vs0 [unfolded vs-v], auto)
also have . . . ≥ degree v by simp
finally have deg-v: degree v ≤ degree-m u .
from mi[unfolded vs-v, of v] have irreducibled-m v by auto
hence 0 < degree-m v unfolding irreducibled-m-def by auto
also have . . . ≤ degree v by (rule degree-m-le)
also have . . . ≤ degree-m u by (rule deg-v)
also have . . . ≤ degree u by (rule degree-m-le)
finally have degree u > 0 by auto

} note deg-non-zero = this
{

fix u :: int poly and vs :: int poly list and d :: nat
assume deg-u: degree u > 0
and cop: coprime (lead-coeff u) p
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and uf : unique-factorization-m u (lead-coeff u, mset vs)
and sf : p.square-free-m u
and norm:

∧
v. v ∈ set vs =⇒ Mp v = v

and d: size (mset vs) < d + d
and tests:

∧
ws. ws ⊆# mset vs =⇒ ws 6= {#} =⇒ size ws < d =⇒ test-dvd

u ws
from deg-u have u0 : u 6= 0 by auto
have irreducibled u
proof (rule irreducibledI [OF deg-u])

fix q q ′ :: int poly
assume deg: degree q > 0 degree q < degree u degree q ′ > 0 degree q ′ < degree

u
and uq: u = q ∗ q ′

then have qu: q dvd u and q ′u: q ′ dvd u by auto
from u0 have deg-u: degree u = degree q + degree q ′ unfolding uq

by (subst degree-mult-eq, auto)
from coprime-lead-coeff-factor [OF prime cop[unfolded uq]]
have cop-q: coprime (lead-coeff q) p coprime (lead-coeff q ′) p by auto
from unique-factorization-m-factor [OF prime uf [unfolded uq] - - n m, folded

uq,
OF cop sf ]

obtain fs gs l where uf-q: unique-factorization-m q (lead-coeff q, fs)
and uf-q ′: unique-factorization-m q ′ (lead-coeff q ′, gs)
and Mf-eq: Mf (l, mset vs) = Mf (lead-coeff q ∗ lead-coeff q ′, fs + gs)
and fs-id: image-mset Mp fs = fs
and gs-id: image-mset Mp gs = gs by auto

from Mf-eq fs-id gs-id have image-mset Mp (mset vs) = fs + gs
unfolding Mf-def by auto

also have image-mset Mp (mset vs) = mset vs using norm by (induct vs,
auto)

finally have eq: mset vs = fs + gs by simp
from uf-q[unfolded unique-factorization-m-alt-def factorization-m-def split]
have q-eq: q =m smult (lead-coeff q) (prod-mset fs) by auto
have degree-m q = degree q

by (rule degree-m-eq[OF - m1 ], insert cop-q(1 ) n p.m1 , unfold m,
auto simp:)

with q-eq have degm-q: degree q = degree (Mp (smult (lead-coeff q) (prod-mset
fs))) by auto

with deg have fs-nempty: fs 6= {#}
by (cases fs; cases lead-coeff q = 0 ; auto simp: Mp-def )

from uf-q ′[unfolded unique-factorization-m-alt-def factorization-m-def split]
have q ′-eq: q ′ =m smult (lead-coeff q ′) (prod-mset gs) by auto
have degree-m q ′ = degree q ′

by (rule degree-m-eq[OF - m1 ], insert cop-q(2 ) n p.m1 , unfold m,
auto simp:)

with q ′-eq have degm-q ′: degree q ′ = degree (Mp (smult (lead-coeff q ′)
(prod-mset gs))) by auto

with deg have gs-nempty: gs 6= {#}
by (cases gs; cases lead-coeff q ′ = 0 ; auto simp: Mp-def )

427



from eq have size: size fs + size gs = size (mset vs) by auto
with d have choice: size fs < d ∨ size gs < d by auto
from choice show False
proof

assume fs: size fs < d
from eq have sub: fs ⊆# mset vs using mset-subset-eq-add-left[of fs gs] by

auto
have test-dvd u fs

by (rule tests[OF sub fs-nempty, unfolded Nil], insert fs, auto)
from this[unfolded test-dvd-def ] uq deg q-eq show False by auto

next
assume gs: size gs < d
from eq have sub: gs ⊆# mset vs using mset-subset-eq-add-left[of fs gs] by

auto
have test-dvd u gs

by (rule tests[OF sub gs-nempty, unfolded Nil], insert gs, auto)
from this[unfolded test-dvd-def ] uq deg q ′-eq show False unfolding uq by

auto
qed

qed
} note irreducibled-via-tests = this
show ?thesis using assms(1−16 ) large state
proof (induct meas arbitrary: u lu d r vs res cands state rule: wf-induct[OF wf ])

case (1 meas u lu d r vs res cands state)
note IH = 1 (1 )[rule-format]
note res = 1 (2 )[unfolded reconstruction.simps[where cands = cands]]
note f = 1 (3 )
note meas = 1 (4 )
note dr = 1 (5 )
note r = 1 (6 )
note cands = 1 (7 )
note d0 = 1 (8 )
note lu = 1 (9 )
note factors = 1 (10 )
note sf = 1 (11 )
note cop = 1 (12 )
note norm = 1 (13 )
note tests = 1 (14 )
note irr = 1 (15 )
note deg-u = 1 (16 )
note cands-empty = 1 (17 )
note large = 1 (18 )
note state = 1 (19 )
from unique-factorization-m-zero[OF factors]
have Mlu0 : M lu 6= 0 by auto
from Mlu0 have lu0 : lu 6= 0 by auto
from this[unfolded lu] have u0 : u 6= 0 by auto
from unique-factorization-m-imp-factorization[OF factors]
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have fact: factorization-m u (lu,mset vs) by auto
from this[unfolded factorization-m-def split] norm
have vs: u =m smult lu (prod-list vs) and

vs-mi:
∧

f . f∈#mset vs =⇒ irreducibled-m f ∧ monic f by auto
let ?luu = smult lu u
show ?case
proof (cases cands)

case Nil
note res = res[unfolded this]
let ?d ′ = Suc d
show ?thesis
proof (cases r < ?d ′ + ?d ′)

case True
with res have fs: fs = u # res by (simp add: Let-def )
from True[unfolded r ] have size: size (mset vs) < ?d ′ + ?d ′ by auto
have irreducibled u
by (rule irreducibled-via-tests[OF deg-u cop[unfolded lu] factors(1 )[unfolded

lu]
sf norm size tests], auto simp: Nil)

with fs f irr show ?thesis by simp
next

case False
with dr have dr : ?d ′ + ?d ′ ≤ r and dr ′: ?d ′ < r by auto

obtain state ′ cands ′ where sln: next-subseqs-foldr sl-impl state = (cands ′,state ′)
by force

from next-subseqs-foldr [OF sln state] have state ′: sli (lu,[]) vs (Suc d) state ′

and cands ′: set cands ′ = S (lu,[]) vs (Suc d) by auto
let ?new = subseqs-length mul-const lu ?d ′ vs
have R: ((r − Suc d, cands ′), meas) ∈ R unfolding meas R-def using

False by auto
from res False sln
have fact: reconstruction sl-impl m2 state ′ u ?luu lu ?d ′ r vs res cands ′ = fs

by auto
show ?thesis
proof (rule IH [OF R fact f refl dr r - - lu factors sf cop norm - irr deg-u

dr ′ large state ′], goal-cases)
case (4 ws)
show ?case
proof (cases size ws = Suc d)

case False
with 4 have size ws < Suc d by auto
thus ?thesis by (intro tests[OF 4 (1−2 )], unfold Nil, auto)

next
case True
from 4 (3 )[unfolded cands ′ mset-snd-S ] True 4 (1 ) show ?thesis by auto

qed
qed (auto simp: cands ′)

qed
next
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case (Cons c cds)
with d0 have d0 : d > 0 by auto
obtain lv ′ ws where c: c = (lv ′,ws) by force
let ?lv = inv-M lv ′

define vb where vb ≡ inv-Mp (Mp (smult lu (prod-list ws)))
note res = res[unfolded Cons c list.simps split]
from cands[unfolded Cons c S-def ] have ws: ws ∈ set (subseqs vs) length ws

= d
and lv ′′: lv ′ = foldr mul-const ws lu by auto

from subseqs-sub-mset[OF ws(1 )] have ws-vs: mset ws ⊆# mset vs set ws ⊆
set vs

using set-mset-mono subseqs-length-simple-False by auto fastforce
have mon-ws: monic (prod-mset (mset ws))

by (rule monic-prod-mset, insert ws-vs vs-mi, auto)
have l-ws: lead-coeff (prod-mset (mset ws)) = 1 using mon-ws .
have lv ′: M lv ′ = M (coeff (smult lu (prod-list ws)) 0 )

unfolding lv ′′ coeff-smult
by (induct ws arbitrary: lu, auto simp: mul-const-def M-def coeff-mult-0 )

(metis mod-mult-right-eq mult.left-commute)
show ?thesis
proof (cases ?lv dvd coeff ?luu 0 ∧ vb dvd ?luu)

case False
have ndvd: ¬ vb dvd ?luu
proof

assume dvd: vb dvd ?luu
hence coeff vb 0 dvd coeff ?luu 0 by (metis coeff-mult-0 dvd-def )
with dvd False have ?lv 6= coeff vb 0 by auto
also have lv ′ = M lv ′ using ws(2 ) d0 unfolding lv ′′

by (cases ws, force, simp add: M-def mul-const-def )
also have inv-M (M lv ′) = coeff vb 0 unfolding vb-def inv-Mp-coeff

Mp-coeff lv ′ by simp
finally show False by simp

qed
from False res
have res: reconstruction sl-impl m2 state u ?luu lu d r vs res cds = fs

unfolding vb-def Let-def by auto
have R: ((r − d, cds), meas) ∈ R unfolding meas Cons R-def by auto
from cands have cands: set cds ⊆ S (lu,[]) vs d

unfolding Cons by auto
show ?thesis
proof (rule IH [OF R res f refl dr r cands - lu factors sf cop norm - irr deg-u

- large state], goal-cases)
case (3 ws ′)
show ?case
proof (cases ws ′ = mset ws)

case False
show ?thesis

by (rule tests[OF 3 (1−2 )], insert 3 (3 ) False, force simp: Cons c)
next
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case True
have test: test-dvd-exec lu u ws ′

unfolding True test-dvd-exec-def using ndvd unfolding vb-def by
simp

show ?thesis unfolding test-dvd-def
proof (intro allI impI notI , goal-cases)

case (1 v l)
note deg-v = 1 (2−3 )
from 1 (1 ) obtain w where u: u = v ∗ w unfolding dvd-def by auto
from u0 have deg: degree u = degree v + degree w unfolding u

by (subst degree-mult-eq, auto)
define v ′ where v ′ = smult (lead-coeff w) v
define w ′ where w ′ = smult (lead-coeff v) w
let ?ws = smult (lead-coeff w ∗ l) (prod-mset ws ′)
from arg-cong[OF 1 (4 ), of λ f . Mp (smult (lead-coeff w) f )]
have v ′-ws ′: Mp v ′ = Mp ?ws unfolding v ′-def

by simp
from lead-coeff-factor [OF u, folded v ′-def w ′-def ]
have prod: ?luu = v ′ ∗ w ′ and lc: lead-coeff v ′ = lu and lead-coeff w ′

= lu
unfolding lu by auto

with lu0 have lc0 : lead-coeff v 6= 0 lead-coeff w 6= 0 unfolding v ′-def
w ′-def by auto

from deg-v have deg-w: 0 < degree w degree w < degree u unfolding
deg by auto

from deg-v deg-w lc0
have deg: 0 < degree v ′ degree v ′ < degree u 0 < degree w ′ degree w ′

< degree u
unfolding v ′-def w ′-def by auto

from prod have v-dvd: v ′ dvd ?luu by auto
with test[unfolded test-dvd-exec-def ]
have neq: v ′ 6= inv-Mp (Mp (smult lu (prod-mset ws ′))) by auto
have deg-m-v ′: degree-m v ′ = degree v ′

by (rule degree-m-eq[OF - m1 ], unfold lc m,
insert cop prime n coprime-exp-mod, auto)

with v ′-ws ′ have degree v ′ = degree-m ?ws by simp
also have . . . ≤ degree-m (prod-mset ws ′) by (rule degree-m-smult-le)
also have . . . = degree-m (prod-list ws) unfolding True by simp
also have . . . ≤ degree (prod-list ws) by (rule degree-m-le)
also have . . . ≤ degree-bound vs

using ws-vs(1 ) ws(2 ) dr [unfolded r ] degree-bound by auto
finally have degree v ′ ≤ degree-bound vs .
from inv-Mp-rev[OF large[unfolded large-m-def , rule-format, OF v-dvd

this]]
have inv: inv-Mp (Mp v ′) = v ′ by simp
from arg-cong[OF v ′-ws ′, of inv-Mp, unfolded inv]
have v ′: v ′ = inv-Mp (Mp ?ws) by auto
have deg-ws: degree-m ?ws = degree ?ws
proof (rule degree-m-eq[OF - m1 ],
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unfold lead-coeff-smult True l-ws, rule)
assume lead-coeff w ∗ l ∗ 1 mod m = 0
hence 0 : M (lead-coeff w ∗ l) = 0 unfolding M-def by simp
have Mp ?ws = Mp (smult (M (lead-coeff w ∗ l)) (prod-mset ws ′))

by simp
also have . . . = 0 unfolding 0 by simp
finally have Mp ?ws = 0 by simp
hence v ′ = 0 unfolding v ′ by (simp add: inv-Mp-def )
with deg show False by auto

qed
from arg-cong[OF v ′, of λ f . lead-coeff (Mp f ), simplified]
have M lu = M (lead-coeff v ′) using lc by simp
also have . . . = lead-coeff (Mp v ′)

by (rule degree-m-eq-lead-coeff [OF deg-m-v ′, symmetric])
also have . . . = lead-coeff (Mp ?ws)

using arg-cong[OF v ′, of λ f . lead-coeff (Mp f )] by simp
also have . . . = M (lead-coeff ?ws)

by (rule degree-m-eq-lead-coeff [OF deg-ws])
also have . . . = M (lead-coeff w ∗ l) unfolding lead-coeff-smult True

l-ws by simp
finally have id: M lu = M (lead-coeff w ∗ l) .
note v ′

also have Mp ?ws = Mp (smult (M (lead-coeff w ∗ l)) (prod-mset ws ′))
by simp

also have . . . = Mp (smult lu (prod-mset ws ′)) unfolding id[symmetric]
by simp

finally show False using neq by simp
qed

qed
qed (insert d0 Cons cands-empty, auto)

next
case True
define pp-vb where pp-vb ≡ primitive-part vb
define u ′ where u ′ ≡ u div pp-vb
define lu ′ where lu ′ ≡ lead-coeff u ′

let ?luu ′ = smult lu ′ u ′

define vs ′ where vs ′ ≡ fold remove1 ws vs
obtain state ′ cands ′ where slc: subseqs-foldr sl-impl (lu ′,[]) vs ′ d = (cands ′,

state ′) by force
from subseqs-foldr [OF slc] have state ′: sli (lu ′,[]) vs ′ d state ′

and cands ′: set cands ′ = S (lu ′,[]) vs ′ d by auto
let ?res ′ = pp-vb # res
let ?r ′ = r − length ws
note defs = vb-def pp-vb-def u ′-def lu ′-def vs ′-def slc
from fold-remove1-mset[OF subseqs-sub-mset[OF ws(1 )]]
have vs-split: mset vs = mset vs ′ + mset ws unfolding vs ′-def by auto
hence vs ′-diff : mset vs ′ = mset vs − mset ws and ws-sub: mset ws ⊆#

mset vs by auto
from arg-cong[OF vs-split, of size]
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have r ′: ?r ′ = length vs ′ unfolding defs r by simp
from arg-cong[OF vs-split, of prod-mset]
have prod-vs: prod-list vs = prod-list vs ′ ∗ prod-list ws by simp
from arg-cong[OF vs-split, of set-mset] have set-vs: set vs = set vs ′ ∪ set

ws by auto
note inv = inverse-mod-coprime-exp[OF m prime n]
note p-inv = p.inverse-mod-coprime[OF prime]
from True res slc
have res: (if ?r ′ < d + d then u ′ # ?res ′ else reconstruction sl-impl m2

state ′

u ′ ?luu ′ lu ′ d ?r ′ vs ′ ?res ′ cands ′) = fs
unfolding Let-def defs by auto

from True have dvd: vb dvd ?luu by simp
from dvd-smult-int[OF lu0 this] have ppu: pp-vb dvd u unfolding defs by

simp
hence u: u = pp-vb ∗ u ′ unfolding u ′-def

by (metis dvdE mult-eq-0-iff nonzero-mult-div-cancel-left)
hence uu ′: u ′ dvd u unfolding dvd-def by auto
have f : f = u ′ ∗ prod-list ?res ′ using f u by auto
let ?fact = smult lu (prod-mset (mset ws))
have Mp-vb: Mp vb = Mp (smult lu (prod-list ws)) unfolding vb-def by

simp
have pp-vb-vb: smult (content vb) pp-vb = vb unfolding pp-vb-def by (rule

content-times-primitive-part)
{

have smult (content vb) u = (smult (content vb) pp-vb) ∗ u ′ unfolding u
by simp

also have smult (content vb) pp-vb = vb by fact
finally have smult (content vb) u = vb ∗ u ′ by simp
from arg-cong[OF this, of Mp]
have Mp (Mp vb ∗ u ′) = Mp (smult (content vb) u) by simp
hence Mp (smult (content vb) u) = Mp (?fact ∗ u ′) unfolding Mp-vb by

simp
} note prod = this
from arg-cong[OF this, of p.Mp]
have prod ′: p.Mp (smult (content vb) u) = p.Mp (?fact ∗ u ′) by simp
from dvd have lead-coeff vb dvd lead-coeff (smult lu u)

by (metis dvd-def lead-coeff-mult)
hence ldvd: lead-coeff vb dvd lu ∗ lu unfolding lead-coeff-smult lu by simp
from cop have cop-lu: coprime (lu ∗ lu) p

by simp
from coprime-divisors [OF ldvd dvd-refl] cop-lu
have cop-lvb: coprime (lead-coeff vb) p by simp
then have cop-vb: coprime (content vb) p

by (auto intro: coprime-divisors[OF content-dvd-coeff dvd-refl])
from u have u ′ dvd u unfolding dvd-def by auto
hence lead-coeff u ′ dvd lu unfolding lu by (metis dvd-def lead-coeff-mult)
from coprime-divisors[OF this dvd-refl] cop
have coprime (lead-coeff u ′) p by simp
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hence coprime (lu ∗ lead-coeff u ′) p and cop-lu ′: coprime lu ′ p
using cop by (auto simp: lu ′-def )

hence cop ′: coprime (lead-coeff (?fact ∗ u ′)) p
unfolding lead-coeff-mult lead-coeff-smult l-ws by simp

have p.square-free-m (smult (content vb) u) using cop-vb sf p-inv
by (auto intro!: p.square-free-m-smultI )

from p.square-free-m-cong[OF this prod ′]
have sf ′: p.square-free-m (?fact ∗ u ′) by simp
from p.square-free-m-factor [OF this]
have sf-u ′: p.square-free-m u ′ by simp
have unique-factorization-m (smult (content vb) u) (lu ∗ content vb, mset

vs)
using cop-vb factors inv by (auto intro: unique-factorization-m-smult)

from unique-factorization-m-cong[OF this prod]
have uf : unique-factorization-m (?fact ∗ u ′) (lu ∗ content vb, mset vs) .
{

from unique-factorization-m-factor [OF prime uf cop ′ sf ′ n m]
obtain fs gs where uf1 : unique-factorization-m ?fact (lu, fs)

and uf2 : unique-factorization-m u ′ (lu ′, gs)
and eq: Mf (lu ∗ content vb, mset vs) = Mf (lu ∗ lead-coeff u ′, fs + gs)
unfolding lead-coeff-smult l-ws lu ′-def
by auto

have factorization-m ?fact (lu, mset ws)
unfolding factorization-m-def split using set-vs vs-mi norm by auto

with uf1 [unfolded unique-factorization-m-alt-def ] have Mf (lu,mset ws)
= Mf (lu, fs)

by blast
hence fs-ws: image-mset Mp fs = image-mset Mp (mset ws) unfolding

Mf-def split by auto
from eq[unfolded Mf-def split]
have image-mset Mp (mset vs) = image-mset Mp fs + image-mset Mp gs

by auto
from this[unfolded fs-ws vs-split] have gs: image-mset Mp gs = image-mset

Mp (mset vs ′)
by (simp add: ac-simps)

from uf1 have uf1 : unique-factorization-m ?fact (lu, mset ws)
unfolding unique-factorization-m-def Mf-def split fs-ws by simp

from uf2 have uf2 : unique-factorization-m u ′ (lu ′, mset vs ′)
unfolding unique-factorization-m-def Mf-def split gs by simp

note uf1 uf2
}
hence factors: unique-factorization-m u ′ (lu ′, mset vs ′)

unique-factorization-m ?fact (lu, mset ws) by auto
have lu ′: lu ′ = lead-coeff u ′ unfolding lu ′-def by simp
have vb0 : vb 6= 0 using dvd lu0 u0 by auto
from ws(2 ) have size-ws: size (mset ws) = d by auto
with d0 have size-ws0 : size (mset ws) 6= 0 by auto
then obtain w ws ′ where ws-w: ws = w # ws ′ by (cases ws, auto)
from Mp-vb have Mp-vb ′: Mp vb = Mp (smult lu (prod-mset (mset ws)))
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by auto
have deg-vb: degree vb > 0
by (rule deg-non-zero[OF Mp-vb ′ cop size-ws0 vs-mi], insert vs-split, auto)

also have degree vb = degree pp-vb using arg-cong[OF pp-vb-vb, of degree]
unfolding degree-smult-eq using vb0 by auto

finally have deg-pp: degree pp-vb > 0 by auto
hence pp-vb0 : pp-vb 6= 0 by auto
from factors(1 )[unfolded unique-factorization-m-alt-def factorization-m-def ]
have eq-u ′: Mp u ′ = Mp (smult lu ′ (prod-mset (mset vs ′))) by auto
from r ′[unfolded ws(2 )] dr have length vs ′ + d = r by auto
from this cands-empty[unfolded Cons] have size (mset vs ′) 6= 0 by auto
from deg-non-zero[OF eq-u ′ cop-lu ′ this vs-mi]
have deg-u ′: degree u ′ > 0 unfolding vs-split by auto
have irr-pp: irreducibled pp-vb
proof (rule irreducibledI [OF deg-pp])

fix q r :: int poly
assume deg-q: degree q > 0 degree q < degree pp-vb

and deg-r : degree r > 0 degree r < degree pp-vb
and pp-qr : pp-vb = q ∗ r

then have qvb: q dvd pp-vb by auto
from dvd-trans[OF qvb ppu] have qu: q dvd u .
have degree pp-vb = degree q + degree r unfolding pp-qr

by (subst degree-mult-eq, insert pp-qr pp-vb0 , auto)
have uf : unique-factorization-m (smult (content vb) pp-vb) (lu, mset ws)

unfolding pp-vb-vb
by (rule unique-factorization-m-cong[OF factors(2 )], insert Mp-vb, auto)

from unique-factorization-m-smultD[OF uf inv] cop-vb
have uf : unique-factorization-m pp-vb (lu ∗ inverse-mod (content vb) m,

mset ws) by auto
from ppu have lead-coeff pp-vb dvd lu unfolding lu by (metis dvd-def

lead-coeff-mult)
from coprime-divisors[OF this dvd-refl] cop
have cop-pp: coprime (lead-coeff pp-vb) p by simp
from coprime-lead-coeff-factor [OF prime cop-pp[unfolded pp-qr ]]
have cop-qr : coprime (lead-coeff q) p coprime (lead-coeff r) p by auto
from p.square-free-m-factor [OF sf [unfolded u]]
have sf-pp: p.square-free-m pp-vb by simp
from unique-factorization-m-factor [OF prime uf [unfolded pp-qr ] - - n m,

folded pp-qr , OF cop-pp sf-pp]
obtain fs gs l where uf-q: unique-factorization-m q (lead-coeff q, fs)

and uf-r : unique-factorization-m r (lead-coeff r , gs)
and Mf-eq: Mf (l, mset ws) = Mf (lead-coeff q ∗ lead-coeff r , fs + gs)
and fs-id: image-mset Mp fs = fs
and gs-id: image-mset Mp gs = gs by auto
from Mf-eq have image-mset Mp (mset ws) = image-mset Mp fs +

image-mset Mp gs
unfolding Mf-def by auto

also have image-mset Mp (mset ws) = mset ws using norm ws-vs(2 ) by
(induct ws, auto)
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finally have eq: mset ws = image-mset Mp fs + image-mset Mp gs by
simp

from arg-cong[OF this, of size, unfolded size-ws] have size: size fs + size
gs = d by auto

from uf-q[unfolded unique-factorization-m-alt-def factorization-m-def split]
have q-eq: q =m smult (lead-coeff q) (prod-mset fs) by auto
have degree-m q = degree q

by (rule degree-m-eq[OF - m1 ], insert cop-qr(1 ) n p.m1 , unfold m,
auto simp:)

with q-eq have degm-q: degree q = degree (Mp (smult (lead-coeff q)
(prod-mset fs))) by auto

with deg-q have fs-nempty: fs 6= {#}
by (cases fs; cases lead-coeff q = 0 ; auto simp: Mp-def )

from uf-r [unfolded unique-factorization-m-alt-def factorization-m-def split]
have r-eq: r =m smult (lead-coeff r) (prod-mset gs) by auto
have degree-m r = degree r

by (rule degree-m-eq[OF - m1 ], insert cop-qr(2 ) n p.m1 , unfold m,
auto simp:)
with r-eq have degm-r : degree r = degree (Mp (smult (lead-coeff r)

(prod-mset gs))) by auto
with deg-r have gs-nempty: gs 6= {#}

by (cases gs; cases lead-coeff r = 0 ; auto simp: Mp-def )
from gs-nempty have size gs 6= 0 by auto
with size have size-fs: size fs < d by linarith
note ∗ = tests[unfolded test-dvd-def , rule-format, OF - fs-nempty - qu, of

lead-coeff q]
from ppu have degree pp-vb ≤ degree u

using dvd-imp-degree-le u0 by blast
with deg-q q-eq size-fs
have ¬ fs ⊆# mset vs by (auto dest!:∗)

thus False unfolding vs-split eq fs-id gs-id using mset-subset-eq-add-left[of
fs mset vs ′ + gs]

by (auto simp: ac-simps)
qed
{

fix ws ′

assume ∗: ws ′ ⊆# mset vs ′ ws ′ 6= {#}
size ws ′ < d ∨ size ws ′ = d ∧ ws ′ /∈ (mset ◦ snd) ‘ set cands ′

from ∗(1 ) have ws ′ ⊆# mset vs unfolding vs-split
by (simp add: subset-mset.add-increasing2 )

from tests[OF this ∗(2 )] ∗(3 )[unfolded cands ′ mset-snd-S ] ∗(1 )
have test-dvd u ws ′ by auto
from test-dvd-factor [OF u0 this[unfolded lu] uu ′]
have test-dvd u ′ ws ′ .

} note tests ′ = this
show ?thesis
proof (cases ?r ′ < d + d)

case True
with res have res: fs = u ′ # ?res ′ by auto

436



from True r ′ have size: size (mset vs ′) < d + d by auto
have irreducibled u ′

by (rule irreducibled-via-tests[OF deg-u ′ cop-lu ′[unfolded lu ′] fac-
tors(1 )[unfolded lu ′]

sf-u ′ norm size tests ′], insert set-vs, auto)
with f res irr irr-pp show ?thesis by auto

next
case False

have res: reconstruction sl-impl m2 state ′ u ′ ?luu ′ lu ′ d ?r ′ vs ′ ?res ′ cands ′

= fs
using False res by auto

from False have dr : d + d ≤ ?r ′ by auto
from False dr r r ′ d0 ws Cons have le: ?r ′ − d < r − d by (cases ws,

auto)
hence R: ((?r ′ − d, cands ′), meas) ∈ R unfolding meas R-def by simp
have dr ′: d < ?r ′ using le False ws(2 ) by linarith
have luu ′: lu ′ dvd lu using ‹lead-coeff u ′ dvd lu› unfolding lu ′ .
have large-m (smult lu ′ u ′) vs

by (rule large-m-factor [OF large dvd-dvd-smult], insert uu ′ luu ′)
moreover have degree-bound vs ′ ≤ degree-bound vs

unfolding vs ′-def degree-bound-def by (rule max-factor-degree-mono)
ultimately have large ′: large-m (smult lu ′ u ′) vs ′ unfolding large-m-def

by auto
show ?thesis

by (rule IH [OF R res f refl dr r ′ - - lu ′ factors(1 ) sf-u ′ cop-lu ′ norm
tests ′ - deg-u ′

dr ′ large ′ state ′], insert irr irr-pp d0 Cons set-vs, auto simp: cands ′)
qed

qed
qed

qed
qed
end
end

definition zassenhaus-reconstruction ::
int poly list ⇒ int ⇒ nat ⇒ int poly ⇒ int poly list where
zassenhaus-reconstruction vs p n f = (let

mul = poly-mod.mul-const (p^n);
sl-impl = my-subseqs.impl (λx. map-prod (mul x) (Cons x))
in zassenhaus-reconstruction-generic sl-impl vs p n f )

context
fixes p n f hs
assumes prime: prime p
and cop: coprime (lead-coeff f ) p
and sf : poly-mod.square-free-m p f
and deg: degree f > 0
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and bh: berlekamp-hensel p n f = hs
and bnd: 2 ∗ |lead-coeff f | ∗ factor-bound f (degree-bound hs) < p ^ n

begin

private lemma n: n 6= 0
proof

assume n: n = 0
hence pn: p^n = 1 by auto
let ?f = smult (lead-coeff f ) f
let ?d = degree-bound hs
have f : f 6= 0 using deg by auto
hence lead-coeff f 6= 0 by auto
hence lf : abs (lead-coeff f ) > 0 by auto
obtain c d where c: factor-bound f (degree-bound hs) = c abs (lead-coeff f ) = d

by auto
{

assume ∗: 1 ≤ c 2 ∗ d ∗ c < 1 0 < d
hence 1 ≤ d by auto
from mult-mono[OF this ∗(1 )] ∗ have 1 ≤ d ∗ c by auto
hence 2 ∗ d ∗ c ≥ 2 by auto
with ∗ have False by auto

} note tedious = this
have 1 ≤ factor-bound f ?d

using factor-bound[OF f , of 1 ?d 0 ] by auto
also have . . . = 0 using bnd unfolding pn

using factor-bound-ge-0 [of f degree-bound hs, OF f ] lf unfolding c
by (cases c ≥ 1 ; insert tedious, auto)

finally show False by simp
qed

interpretation p: poly-mod-prime p using prime by unfold-locales

lemma zassenhaus-reconstruction-generic:
assumes sl-impl: correct-subseqs-foldr-impl (λv. map-prod (poly-mod.mul-const

(p^n) v) (Cons v)) sl-impl sli
and res: zassenhaus-reconstruction-generic sl-impl hs p n f = fs
shows f = prod-list fs ∧ (∀ fi ∈ set fs. irreducibled fi)

proof −
let ?lc = lead-coeff f
let ?ff = smult ?lc f
let ?q = p^n
have p1 : p > 1 using prime unfolding prime-int-iff by simp
interpret poly-mod-2 p^n using p1 n unfolding poly-mod-2-def by simp
obtain cands state where slc: subseqs-foldr sl-impl (lead-coeff f , []) hs 0 = (cands,

state) by force
interpret correct-subseqs-foldr-impl λx. map-prod (mul-const x) (Cons x) sl-impl

sli by fact
from subseqs-foldr [OF slc] have state: sli (lead-coeff f , []) hs 0 state by auto
from res[unfolded zassenhaus-reconstruction-generic-def bh split Let-def slc fst-conv]
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have res: reconstruction sl-impl (?q div 2 ) state f ?ff ?lc 0 (length hs) hs [] [] =
fs by auto

from p.berlekamp-hensel-unique[OF cop sf bh n]
have ufact: unique-factorization-m f (?lc, mset hs) by simp
note bh = p.berlekamp-hensel[OF cop sf bh n]
from deg have f0 : f 6= 0 and lf0 : ?lc 6= 0 by auto
hence ff0 : ?ff 6= 0 by auto
have bnd: ∀ g k. g dvd ?ff −→ degree g ≤ degree-bound hs −→ 2 ∗ |coeff g k| <

p ^ n
proof (intro allI impI , goal-cases)

case (1 g k)
from factor-bound-smult[OF f0 lf0 1 , of k]
have |coeff g k| ≤ |?lc| ∗ factor-bound f (degree-bound hs) .
hence 2 ∗ |coeff g k| ≤ 2 ∗ |?lc| ∗ factor-bound f (degree-bound hs) by auto
also have . . . < p^n using bnd .
finally show ?case .

qed
note bh ′ = bh[unfolded factorization-m-def split]
have deg-f : degree-m f = degree f

using cop unique-factorization-m-zero [OF ufact] n
by (auto simp add: M-def intro: degree-m-eq [OF - m1 ])

have mon-hs: monic (prod-list hs) using bh ′ by (auto intro: monic-prod-list)
have Mlc: M ?lc ∈ {1 ..< p^n}

by (rule prime-cop-exp-poly-mod[OF prime cop n])
hence ?lc 6= 0 by auto
hence f0 : f 6= 0 by auto
have degm: degree-m (smult ?lc (prod-list hs)) = degree (smult ?lc (prod-list hs))

by (rule degree-m-eq[OF - m1 ], insert n bh mon-hs Mlc, auto simp: M-def )
from reconstruction[OF prime refl n sl-impl res - refl - refl - refl refl ufact sf

cop - - - deg - bnd f0 ] bh(2 ) state
show ?thesis by simp

qed

lemma zassenhaus-reconstruction-irreducibled:
assumes res: zassenhaus-reconstruction hs p n f = fs
shows f = prod-list fs ∧ (∀ fi ∈ set fs. irreducibled fi)
by (rule zassenhaus-reconstruction-generic[OF my-subseqs.impl-correct

res[unfolded zassenhaus-reconstruction-def Let-def ]])

corollary zassenhaus-reconstruction:
assumes pr : primitive f
assumes res: zassenhaus-reconstruction hs p n f = fs
shows f = prod-list fs ∧ (∀ fi ∈ set fs. irreducible fi)
using zassenhaus-reconstruction-irreducibled[OF res] pr

irreducible-primitive-connect[OF primitive-prod-list]
by auto

end
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end

theory Code-Abort-Gcd
imports

HOL−Computational-Algebra.Polynomial-Factorial
begin

Dummy code-setup for Gcd and Lcm in the presence of Container.
definition dummy-Gcd where dummy-Gcd x = Gcd x
definition dummy-Lcm where dummy-Lcm x = Lcm x
declare [[code abort: dummy-Gcd]]

lemma dummy-Gcd-Lcm: Gcd x = dummy-Gcd x Lcm x = dummy-Lcm x
unfolding dummy-Gcd-def dummy-Lcm-def by auto

lemmas dummy-Gcd-Lcm-poly [code] = dummy-Gcd-Lcm
[where ? ′a = ′a :: {factorial-ring-gcd,semiring-gcd-mult-normalize} poly]

lemmas dummy-Gcd-Lcm-int [code] = dummy-Gcd-Lcm [where ? ′a = int]
lemmas dummy-Gcd-Lcm-nat [code] = dummy-Gcd-Lcm [where ? ′a = nat]

declare [[code abort: Euclidean-Algorithm.Gcd Euclidean-Algorithm.Lcm]]

end

11 The Polynomial Factorization Algorithm
11.1 Factoring Square-Free Integer Polynomials
We combine all previous results, i.e., Berlekamp’s algorithm, Hensel-lifting,
the reconstruction of Zassenhaus, Mignotte-bounds, etc., to eventually as-
semble the factorization algorithm for integer polynomials.
theory Berlekamp-Zassenhaus
imports

Berlekamp-Hensel
Polynomial-Factorization.Gauss-Lemma
Polynomial-Factorization.Dvd-Int-Poly
Reconstruction
Suitable-Prime
Degree-Bound
Code-Abort-Gcd

begin

context
begin
private partial-function (tailrec) find-exponent-main :: int ⇒ int ⇒ nat ⇒ int
⇒ nat where
[code]: find-exponent-main p pm m bnd = (if pm > bnd then m

else find-exponent-main p (pm ∗ p) (Suc m) bnd)
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definition find-exponent :: int ⇒ int ⇒ nat where
find-exponent p bnd = find-exponent-main p p 1 bnd

lemma find-exponent: assumes p: p > 1
shows p ^ find-exponent p bnd > bnd find-exponent p bnd 6= 0

proof −
{

fix m and n
assume n = nat (1 + bnd − p^m) and m ≥ 1
hence bnd < p ^ find-exponent-main p (p^m) m bnd ∧ find-exponent-main p

(p^m) m bnd ≥ 1
proof (induct n arbitrary: m rule: less-induct)

case (less n m)
note simp = find-exponent-main.simps[of p p^m]
show ?case
proof (cases bnd < p ^ m)

case True
thus ?thesis using less unfolding simp by simp

next
case False
hence id: find-exponent-main p (p ^ m) m bnd = find-exponent-main p (p

^ Suc m) (Suc m) bnd
unfolding simp by (simp add: ac-simps)

show ?thesis unfolding id
by (rule less(1 )[OF - refl], unfold less(2 ), insert False p, auto)

qed
qed

}
from this[OF refl, of 1 ]
show p ^ find-exponent p bnd > bnd find-exponent p bnd 6= 0

unfolding find-exponent-def by auto
qed

end

definition berlekamp-zassenhaus-factorization :: int poly ⇒ int poly list where
berlekamp-zassenhaus-factorization f = (let

— find suitable prime
p = suitable-prime-bz f ;
— compute finite field factorization
(-, fs) = finite-field-factorization-int p f ;
— determine maximal degree that we can build by multiplying at most half of

the factors
max-deg = degree-bound fs;
— determine a number large enough to represent all coefficients of every
— factor of lc ∗ f that has at most degree most max-deg
bnd = 2 ∗ |lead-coeff f | ∗ factor-bound f max-deg;
— determine k such that p^k > bnd
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k = find-exponent p bnd;
— perform hensel lifting to lift factorization to mod p^k
vs = hensel-lifting p k f fs
— reconstruct integer factors

in zassenhaus-reconstruction vs p k f )

theorem berlekamp-zassenhaus-factorization-irreducibled:
assumes res: berlekamp-zassenhaus-factorization f = fs
and sf : square-free f
and deg: degree f > 0
shows f = prod-list fs ∧ (∀ fi ∈ set fs. irreducibled fi)

proof −
let ?lc = lead-coeff f
define p where p ≡ suitable-prime-bz f
obtain c gs where berl: finite-field-factorization-int p f = (c,gs) by force
let ?degs = map degree gs
note res = res[unfolded berlekamp-zassenhaus-factorization-def Let-def , folded

p-def ,
unfolded berl split, folded]

from suitable-prime-bz[OF sf refl]
have prime: prime p and cop: coprime ?lc p and sf : poly-mod.square-free-m p f

unfolding p-def by auto
from prime interpret poly-mod-prime p by unfold-locales
define n where n = find-exponent p (2 ∗ abs ?lc ∗ factor-bound f (degree-bound

gs))
note n = find-exponent[OF m1 , of 2 ∗ abs ?lc ∗ factor-bound f (degree-bound

gs),
folded n-def ]

note bh = berlekamp-and-hensel-separated[OF cop sf refl berl n(2 )]
have db: degree-bound (berlekamp-hensel p n f ) = degree-bound gs unfolding bh

degree-bound-def max-factor-degree-def by simp
note res = res[folded n-def bh(1 )]
show ?thesis

by (rule zassenhaus-reconstruction-irreducibled[OF prime cop sf deg refl - res],
insert n db, auto)
qed

corollary berlekamp-zassenhaus-factorization-irreducible:
assumes res: berlekamp-zassenhaus-factorization f = fs

and sf : square-free f
and pr : primitive f
and deg: degree f > 0

shows f = prod-list fs ∧ (∀ fi ∈ set fs. irreducible fi)
using pr irreducible-primitive-connect[OF primitive-prod-list]

berlekamp-zassenhaus-factorization-irreducibled[OF res sf deg] by auto

end
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11.2 A fast coprimality approximation
We adapt the integer polynomial gcd algorithm so that it first tests whether
f and g are coprime modulo a few primes. If so, we are immediately done.
theory Gcd-Finite-Field-Impl
imports

Suitable-Prime
Code-Abort-Gcd
HOL−Library.Code-Target-Int

begin

definition coprime-approx-main :: int ⇒ ′i arith-ops-record ⇒ int poly ⇒ int poly
⇒ bool where
coprime-approx-main p ff-ops f g = (gcd-poly-i ff-ops (of-int-poly-i ff-ops (poly-mod.Mp

p f ))
(of-int-poly-i ff-ops (poly-mod.Mp p g)) = one-poly-i ff-ops)

lemma (in prime-field-gen) coprime-approx-main:
shows coprime-approx-main p ff-ops f g =⇒ coprime-m f g

proof −
define F where F : (F :: ′a mod-ring poly) = of-int-poly (Mp f )
define G where G: (G :: ′a mod-ring poly) = of-int-poly (Mp g) let ?f ′ =

of-int-poly-i ff-ops (Mp f )
let ?g ′ = of-int-poly-i ff-ops (Mp g)
define f ′′ where f ′′ ≡ of-int-poly (Mp f ) :: ′a mod-ring poly
define g ′′ where g ′′ ≡ of-int-poly (Mp g) :: ′a mod-ring poly
have rel-f [transfer-rule]: poly-rel ?f ′ f ′′

by (rule poly-rel-of-int-poly[OF refl], simp add: f ′′-def )
have rel-f [transfer-rule]: poly-rel ?g ′ g ′′

by (rule poly-rel-of-int-poly[OF refl], simp add: g ′′-def )
have id: (gcd-poly-i ff-ops (of-int-poly-i ff-ops (Mp f )) (of-int-poly-i ff-ops (Mp

g)) = one-poly-i ff-ops)
= coprime f ′′ g ′′ (is ?P ←→ ?Q)

proof −
have ?P ←→ gcd f ′′ g ′′ = 1

unfolding separable-i-def by transfer-prover
also have . . . ←→ ?Q

by (simp add: coprime-iff-gcd-eq-1 )
finally show ?thesis .

qed
have fF : MP-Rel (Mp f ) F unfolding F MP-Rel-def

by (simp add: Mp-f-representative)
have gG: MP-Rel (Mp g) G unfolding G MP-Rel-def

by (simp add: Mp-f-representative)
have coprime f ′′ g ′′ = coprime F G unfolding f ′′-def F g ′′-def G by simp
also have . . . = coprime-m (Mp f ) (Mp g)

using coprime-MP-Rel[unfolded rel-fun-def , rule-format, OF fF gG] by simp
also have . . . = coprime-m f g unfolding coprime-m-def dvdm-def by simp
finally have id2 : coprime f ′′ g ′′ = coprime-m f g .
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show coprime-approx-main p ff-ops f g =⇒ coprime-m f g unfolding coprime-approx-main-def
id id2 by auto

qed

context poly-mod-prime begin

lemmas coprime-approx-main-uint32 = prime-field-gen.coprime-approx-main[OF

prime-field.prime-field-finite-field-ops32 , unfolded prime-field-def mod-ring-locale-def
poly-mod-type-simps, internalize-sort ′a :: prime-card, OF type-to-set, unfolded

remove-duplicate-premise, cancel-type-definition, OF non-empty]

lemmas coprime-approx-main-uint64 = prime-field-gen.coprime-approx-main[OF

prime-field.prime-field-finite-field-ops64 , unfolded prime-field-def mod-ring-locale-def
poly-mod-type-simps, internalize-sort ′a :: prime-card, OF type-to-set, unfolded

remove-duplicate-premise, cancel-type-definition, OF non-empty]

end

lemma coprime-mod-imp-coprime: assumes
p: prime p and
cop-m: poly-mod.coprime-m p f g and
cop: coprime (lead-coeff f ) p ∨ coprime (lead-coeff g) p and
cnt: content f = 1 ∨ content g = 1
shows coprime f g

proof −
interpret poly-mod-prime p by (standard, rule p)
from cop-m[unfolded coprime-m-def ] have cop-m:

∧
h. h dvdm f =⇒ h dvdm g

=⇒ h dvdm 1 by auto
show ?thesis
proof (rule coprimeI )

fix h
assume dvd: h dvd f h dvd g
hence h dvdm f h dvdm g unfolding dvdm-def dvd-def by auto
from cop-m[OF this] obtain k where unit: Mp (h ∗ Mp k) = 1 unfolding

dvdm-def by auto
from content-dvd-contentI [OF dvd(1 )] content-dvd-contentI [OF dvd(2 )] cnt
have cnt: content h = 1 by auto
let ?k = Mp k
from unit have h0 : h 6= 0 by auto
from unit have k0 : ?k 6= 0 by fastforce
from p have p0 : p 6= 0 by auto
from dvd have lead-coeff h dvd lead-coeff f lead-coeff h dvd lead-coeff g

by (metis dvd-def lead-coeff-mult)+
with cop have coph: coprime (lead-coeff h) p

by (meson dvd-trans not-coprime-iff-common-factor)
let ?k = Mp k
from arg-cong[OF unit, of degree] have degm0 : degree-m (h ∗ ?k) = 0 by simp
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have lead-coeff ?k ∈ {0 ..< p} unfolding Mp-coeff M-def using m1 by simp
with k0 have lk: lead-coeff ?k ≥ 1 lead-coeff ?k < p

by (auto simp add: int-one-le-iff-zero-less order .not-eq-order-implies-strict)
have id: lead-coeff (h ∗ ?k) = lead-coeff h ∗ lead-coeff ?k unfolding lead-coeff-mult

..
from coph prime lk have coprime (lead-coeff h ∗ lead-coeff ?k) p

by (simp add: ac-simps prime-imp-coprime zdvd-not-zless)
with id have cop-prod: coprime (lead-coeff (h ∗ ?k)) p by simp
from h0 k0 have lc0 : lead-coeff (h ∗ ?k) 6= 0

unfolding lead-coeff-mult by auto
from p have lcp: lead-coeff (h ∗ ?k) mod p 6= 0

using M-1 M-def cop-prod by auto
have deg-eq: degree-m (h ∗ ?k) = degree (h ∗ Mp k)

by (rule degree-m-eq[OF - m1 ], insert lcp)
from this[unfolded degm0 ] have degree (h ∗ Mp k) = 0 by simp
with degree-mult-eq[OF h0 k0 ] have deg0 : degree h = 0 by auto
from degree0-coeffs[OF this] obtain h0 where h: h = [:h0 :] by auto
have content h = abs h0 unfolding content-def h by (cases h0 = 0 , auto)
hence abs h0 = 1 using cnt by auto
hence h0 ∈ {−1 ,1} by auto
hence h = 1 ∨ h = −1 unfolding h by (auto)
thus is-unit h by auto

qed
qed

We did not try to optimize the set of chosen primes. They have just
been picked randomly from a list of primes.
definition gcd-primes32 :: int list where

gcd-primes32 = [383 , 1409 , 19213 , 22003 , 41999 ]

lemma gcd-primes32 : p ∈ set gcd-primes32 =⇒ prime p ∧ p ≤ 65535
proof −

have list-all (λ p. prime p ∧ p ≤ 65535 ) gcd-primes32 by eval
thus p ∈ set gcd-primes32 =⇒ prime p ∧ p ≤ 65535 by (auto simp: list-all-iff )

qed

definition gcd-primes64 :: int list where
gcd-primes64 = [383 , 21984191 , 50329901 , 80329901 , 219849193 ]

lemma gcd-primes64 : p ∈ set gcd-primes64 =⇒ prime p ∧ p ≤ 4294967295
proof −

have list-all (λ p. prime p ∧ p ≤ 4294967295 ) gcd-primes64 by eval
thus p ∈ set gcd-primes64 =⇒ prime p ∧ p ≤ 4294967295 by (auto simp:

list-all-iff )
qed

definition coprime-heuristic :: int poly ⇒ int poly ⇒ bool where
coprime-heuristic f g = (let lcf = lead-coeff f ; lcg = lead-coeff g in
find (λ p. (coprime lcf p ∨ coprime lcg p) ∧ coprime-approx-main p (finite-field-ops64
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(uint64-of-int p)) f g)
gcd-primes64 6= None)

lemma coprime-heuristic: assumes coprime-heuristic f g
and content f = 1 ∨ content g = 1
shows coprime f g

proof (cases find (λp. (coprime (lead-coeff f ) p ∨ coprime (lead-coeff g) p) ∧
coprime-approx-main p (finite-field-ops64 (uint64-of-int p)) f g)

gcd-primes64 )
case (Some p)
from find-Some-D[OF Some] gcd-primes64 have p: prime p and small: p ≤

4294967295
and cop: coprime (lead-coeff f ) p ∨ coprime (lead-coeff g) p
and copp: coprime-approx-main p (finite-field-ops64 (uint64-of-int p)) f g by

auto
interpret poly-mod-prime p using p by unfold-locales
from coprime-approx-main-uint64 [OF small copp] have poly-mod.coprime-m p f

g by auto
from coprime-mod-imp-coprime[OF p this cop assms(2 )] show coprime f g .

qed (insert assms(1 )[unfolded coprime-heuristic-def ], auto simp: Let-def )

definition gcd-int-poly :: int poly ⇒ int poly ⇒ int poly where
gcd-int-poly f g =
(if f = 0 then normalize g
else if g = 0 then normalize f

else let
cf = Polynomial.content f ;
cg = Polynomial.content g;
ct = gcd cf cg;
ff = map-poly (λ x. x div cf ) f ;
gg = map-poly (λ x. x div cg) g

in if coprime-heuristic ff gg then [:ct:] else smult ct (gcd-poly-code-aux ff
gg))

lemma gcd-int-poly-code[code-unfold]: gcd = gcd-int-poly
proof (intro ext)

fix f g :: int poly
let ?ff = primitive-part f
let ?gg = primitive-part g
note d = gcd-int-poly-def gcd-poly-code gcd-poly-code-def
show gcd f g = gcd-int-poly f g
proof (cases f = 0 ∨ g = 0 ∨ ¬ coprime-heuristic ?ff ?gg)

case True
thus ?thesis unfolding d by (auto simp: Let-def primitive-part-def )

next
case False
hence cop: coprime-heuristic ?ff ?gg by simp
from False have f 6= 0 by auto
from content-primitive-part[OF this] coprime-heuristic[OF cop]
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have id: gcd ?ff ?gg = 1 by auto
show ?thesis unfolding gcd-poly-decompose[of f g] unfolding gcd-int-poly-def

Let-def id
using False by (auto simp: primitive-part-def )

qed
qed

end

theory Square-Free-Factorization-Int
imports

Square-Free-Int-To-Square-Free-GFp
Suitable-Prime
Code-Abort-Gcd
Gcd-Finite-Field-Impl

begin

definition yun-wrel :: int poly ⇒ rat ⇒ rat poly ⇒ bool where
yun-wrel F c f = (map-poly rat-of-int F = smult c f )

definition yun-rel :: int poly ⇒ rat ⇒ rat poly ⇒ bool where
yun-rel F c f = (yun-wrel F c f
∧ content F = 1 ∧ lead-coeff F > 0 ∧ monic f )

definition yun-erel :: int poly ⇒ rat poly ⇒ bool where
yun-erel F f = (∃ c. yun-rel F c f )

lemma yun-wrelD: assumes yun-wrel F c f
shows map-poly rat-of-int F = smult c f
using assms unfolding yun-wrel-def by auto

lemma yun-relD: assumes yun-rel F c f
shows yun-wrel F c f map-poly rat-of-int F = smult c f

degree F = degree f F 6= 0 lead-coeff F > 0 monic f
f = 1 ←→ F = 1 content F = 1

proof −
note ∗ = assms[unfolded yun-rel-def yun-wrel-def , simplified]
then have degree (map-poly rat-of-int F) = degree f by auto
then show deg: degree F = degree f by simp
show F 6= 0 lead-coeff F > 0 monic f content F = 1

map-poly rat-of-int F = smult c f
yun-wrel F c f using ∗ by (auto simp: yun-wrel-def )

{
assume f = 1
with deg have degree F = 0 by auto
from degree0-coeffs[OF this] obtain c where F : F = [:c:] and c: c = lead-coeff

F by auto
from c ∗ have c0 : c > 0 by auto
hence cF : content F = c unfolding F content-def by auto
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with ∗ have c = 1 by auto
with F have F = 1 by simp

}
moreover
{

assume F = 1
with deg have degree f = 0 by auto
with ‹monic f › have f = 1

using monic-degree-0 by blast
}
ultimately show (f = 1 ) ←→ (F = 1 ) by auto

qed

lemma yun-erel-1-eq: assumes yun-erel F f
shows (F = 1 ) ←→ (f = 1 )

proof −
from assms[unfolded yun-erel-def ] obtain c where yun-rel F c f by auto
from yun-relD[OF this] show ?thesis by simp

qed

lemma yun-rel-1 [simp]: yun-rel 1 1 1
by (auto simp: yun-rel-def yun-wrel-def content-def )

lemma yun-erel-1 [simp]: yun-erel 1 1 unfolding yun-erel-def using yun-rel-1 by
blast

lemma yun-rel-mult: yun-rel F c f =⇒ yun-rel G d g =⇒ yun-rel (F ∗ G) (c ∗ d)
(f ∗ g)

unfolding yun-rel-def yun-wrel-def content-mult lead-coeff-mult
by (auto simp: monic-mult hom-distribs)

lemma yun-erel-mult: yun-erel F f =⇒ yun-erel G g =⇒ yun-erel (F ∗ G) (f ∗ g)

unfolding yun-erel-def using yun-rel-mult[of F - f G - g] by blast

lemma yun-rel-pow: assumes yun-rel F c f
shows yun-rel (F^n) (c^n) (f^n)
by (induct n, insert assms yun-rel-mult, auto)

lemma yun-erel-pow: yun-erel F f =⇒ yun-erel (F^n) (f^n)
using yun-rel-pow unfolding yun-erel-def by blast

lemma yun-wrel-pderiv: assumes yun-wrel F c f
shows yun-wrel (pderiv F) c (pderiv f )
by (unfold yun-wrel-def , simp add: yun-wrelD[OF assms] pderiv-smult hom-distribs)

lemma yun-wrel-minus: assumes yun-wrel F c f yun-wrel G c g
shows yun-wrel (F − G) c (f − g)
using assms unfolding yun-wrel-def by (auto simp: smult-diff-right hom-distribs)
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lemma yun-wrel-div: assumes f : yun-wrel F c f and g: yun-wrel G d g
and dvd: G dvd F g dvd f
and G0 : G 6= 0
shows yun-wrel (F div G) (c / d) (f div g)

proof −
let ?r = rat-of-int
let ?rp = map-poly ?r
from dvd obtain H h where fgh: F = G ∗ H f = g ∗ h unfolding dvd-def by

auto
from G0 yun-wrelD[OF g] have g0 : g 6= 0 and d0 : d 6= 0 by auto
from arg-cong[OF fgh(1 ), of λ x. x div G] have H : H = F div G using G0 by

simp
from arg-cong[OF fgh(1 ), of ?rp] have ?rp F = ?rp G ∗ ?rp H by (auto simp:

hom-distribs)
from arg-cong[OF this, of λ x. x div ?rp G] G0 have id: ?rp H = ?rp F div ?rp

G by auto
have ?rp (F div G) = ?rp F div ?rp G unfolding H [symmetric] id by simp
also have . . . = smult c f div smult d g using f g unfolding yun-wrel-def by

auto
also have . . . = smult (c / d) (f div g) unfolding div-smult-right div-smult-left

by (simp add: field-simps)
finally show ?thesis unfolding yun-wrel-def by simp

qed

lemma yun-rel-div: assumes f : yun-rel F c f and g: yun-rel G d g
and dvd: G dvd F g dvd f

shows yun-rel (F div G) (c / d) (f div g)
proof −

note ff = yun-relD[OF f ]
note gg = yun-relD[OF g]
show ?thesis unfolding yun-rel-def
proof (intro conjI )

from yun-wrel-div[OF ff (1 ) gg(1 ) dvd gg(4 )]
show yun-wrel (F div G) (c / d) (f div g) by auto
from dvd have fg: f = g ∗ (f div g) by auto
from arg-cong[OF fg, of monic] ff (6 ) gg(6 )
show monic (f div g) using monic-factor by blast
from dvd have FG: F = G ∗ (F div G) by auto
from arg-cong[OF FG, of content, unfolded content-mult] ff (8 ) gg(8 )
show content (F div G) = 1 by simp
from arg-cong[OF FG, of lead-coeff , unfolded lead-coeff-mult] ff (5 ) gg(5 )
show lead-coeff (F div G) > 0 by (simp add: zero-less-mult-iff )

qed
qed

lemma yun-wrel-gcd: assumes yun-wrel F c ′ f yun-wrel G c g and c: c ′ 6= 0 c 6=
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0
and d: d = rat-of-int (lead-coeff (gcd F G)) d 6= 0
shows yun-wrel (gcd F G) d (gcd f g)

proof −
let ?r = rat-of-int
let ?rp = map-poly ?r
have smult d (gcd f g) = smult d (gcd (smult c ′ f ) (smult c g))

by (simp add: c gcd-smult-left gcd-smult-right)
also have . . . = smult d (gcd (?rp F) (?rp G)) using assms(1−2 )[unfolded

yun-wrel-def ] by simp
also have . . . = smult (d ∗ inverse d) (?rp (gcd F G))

unfolding gcd-rat-to-gcd-int d by simp
also have d ∗ inverse d = 1 using d by auto
finally show ?thesis unfolding yun-wrel-def by simp

qed

lemma yun-rel-gcd: assumes f : yun-rel F c f and g: yun-wrel G c ′ g and c ′: c ′

6= 0
and d: d = rat-of-int (lead-coeff (gcd F G))

shows yun-rel (gcd F G) d (gcd f g)
unfolding yun-rel-def

proof (intro conjI )
note ff = yun-relD[OF f ]
from ff have c0 : c 6= 0 by auto
from ff d have d0 : d 6= 0 by auto
from yun-wrel-gcd[OF ff (1 ) g c0 c ′ d d0 ]
show yun-wrel (gcd F G) d (gcd f g) by auto
from ff have gcd f g 6= 0 by auto
thus monic (gcd f g) by (simp add: poly-gcd-monic)
obtain H where H : gcd F G = H by auto
obtain lc where lc: coeff H (degree H ) = lc by auto
from ff have gcd F G 6= 0 by auto
hence H 6= 0 lc 6= 0 unfolding H [symmetric] lc[symmetric] by auto
thus 0 < lead-coeff (gcd F G) unfolding

arg-cong[OF normalize-gcd[of F G], of lead-coeff , symmetric]
unfolding normalize-poly-eq-map-poly H
by (auto, subst Polynomial.coeff-map-poly, auto,
subst Polynomial.degree-map-poly, auto simp: sgn-if )

have H dvd F unfolding H [symmetric] by auto
then obtain K where F : F = H ∗ K unfolding dvd-def by auto
from arg-cong[OF this, of content, unfolded content-mult ff (8 )]

content-ge-0-int[of H ] have content H = 1
by (auto simp add: zmult-eq-1-iff )

thus content (gcd F G) = 1 unfolding H .
qed

lemma yun-factorization-main-int: assumes f : f = p div gcd p (pderiv p)
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and g = pderiv p div gcd p (pderiv p) monic p
and yun-gcd.yun-factorization-main gcd f g i hs = res
and yun-gcd.yun-factorization-main gcd F G i Hs = Res
and yun-rel F c f yun-wrel G c g list-all2 (rel-prod yun-erel (=)) Hs hs

shows list-all2 (rel-prod yun-erel (=)) Res res
proof −

let ?P = λ f g. ∀ i hs res F G Hs Res c.
yun-gcd.yun-factorization-main gcd f g i hs = res
−→ yun-gcd.yun-factorization-main gcd F G i Hs = Res
−→ yun-rel F c f −→ yun-wrel G c g −→ list-all2 (rel-prod yun-erel (=)) Hs hs
−→ list-all2 (rel-prod yun-erel (=)) Res res

note simps = yun-gcd.yun-factorization-main.simps
note rel = yun-relD
let ?rel = λ F f . map-poly rat-of-int F = smult (rat-of-int (lead-coeff F)) f
show ?thesis
proof (induct rule: yun-factorization-induct[of ?P, rule-format, OF - - assms])

case (1 f g i hs res F G Hs Res c)
from rel[OF 1 (4 )] 1 (1 ) have f = 1 F = 1 by auto
from 1 (2−3 )[unfolded simps[of - 1 ] this] have res = hs Res = Hs by auto
with 1 (6 ) show ?case by simp

next
case (2 f g i hs res F G Hs Res c)
define d where d = g − pderiv f
define a where a = gcd f d
define D where D = G − pderiv F
define A where A = gcd F D
note f = 2 (5 )
note g = 2 (6 )
note hs = 2 (7 )
note f1 = 2 (1 )
from f1 rel[OF f ] have ∗: (f = 1 ) = False (F = 1 ) = False and c: c 6= 0 by

auto
note res = 2 (3 )[unfolded simps[of - f ] ∗ if-False Let-def , folded d-def a-def ]
note Res = 2 (4 )[unfolded simps[of - F ] ∗ if-False Let-def , folded D-def A-def ]
note IH = 2 (2 )[folded d-def a-def , OF res Res]
obtain c ′ where c ′: c ′ = rat-of-int (lead-coeff (gcd F D)) by auto
show ?case
proof (rule IH )

from yun-wrel-minus[OF g yun-wrel-pderiv[OF rel(1 )[OF f ]]]
have d: yun-wrel D c d unfolding D-def d-def .
have a: yun-rel A c ′ a unfolding A-def a-def

by (rule yun-rel-gcd[OF f d c c ′])
hence yun-erel A a unfolding yun-erel-def by auto
thus list-all2 (rel-prod yun-erel (=)) ((A, Suc i) # Hs) ((a, Suc i) # hs)

using hs by auto
have A0 : A 6= 0 by (rule rel(4 )[OF a])
have A dvd D a dvd d unfolding A-def a-def by auto
from yun-wrel-div[OF d rel(1 )[OF a] this A0 ]
show yun-wrel (D div A) (c / c ′) (d div a) .
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have A dvd F a dvd f unfolding A-def a-def by auto
from yun-rel-div[OF f a this]
show yun-rel (F div A) (c / c ′) (f div a) .

qed
qed

qed

lemma yun-monic-factorization-int-yun-rel: assumes
res: yun-gcd.yun-monic-factorization gcd f = res
and Res: yun-gcd.yun-monic-factorization gcd F = Res
and f : yun-rel F c f

shows list-all2 (rel-prod yun-erel (=)) Res res
proof −

note ff = yun-relD[OF f ]
let ?g = gcd f (pderiv f )
let ?yf = yun-gcd.yun-factorization-main gcd (f div ?g) (pderiv f div ?g) 0 []
let ?G = gcd F (pderiv F)
let ?yF = yun-gcd.yun-factorization-main gcd (F div ?G) (pderiv F div ?G) 0 []

obtain r R where r : ?yf = r and R: ?yF = R by blast
from res[unfolded yun-gcd.yun-monic-factorization-def Let-def r ]
have res: res = [(a, i)←r . a 6= 1 ] by simp
from Res[unfolded yun-gcd.yun-monic-factorization-def Let-def R]
have Res: Res = [(A, i)←R . A 6= 1 ] by simp
from yun-wrel-pderiv[OF ff (1 )] have f ′: yun-wrel (pderiv F) c (pderiv f ) .
from ff have c: c 6= 0 by auto
from yun-rel-gcd[OF f f ′ c refl] obtain d where g: yun-rel ?G d ?g ..
from yun-rel-div[OF f g] have 1 : yun-rel (F div ?G) (c / d) (f div ?g) by auto
from yun-wrel-div[OF f ′ yun-relD(1 )[OF g] - - yun-relD(4 )[OF g]]
have 2 : yun-wrel (pderiv F div ?G) (c / d) (pderiv f div ?g) by auto
from yun-factorization-main-int[OF refl refl ff (6 ) r R 1 2 ]
have list-all2 (rel-prod yun-erel (=)) R r by simp
thus ?thesis unfolding res Res

by (induct R r rule: list-all2-induct, auto dest: yun-erel-1-eq)
qed

lemma yun-rel-same-right: assumes yun-rel f c G yun-rel g d G
shows f = g

proof −
note f = yun-relD[OF assms(1 )]
note g = yun-relD[OF assms(2 )]
let ?r = rat-of-int
let ?rp = map-poly ?r
from g have d: d 6= 0 by auto
obtain a b where quot: quotient-of (c / d) = (a,b) by force
from quotient-of-nonzero[of c/d, unfolded quot] have b: b 6= 0 by simp
note f (2 )
also have smult c G = smult (c / d) (smult d G) using d by (auto simp:

field-simps)
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also have smult d G = ?rp g using g(2 ) by simp
also have cd: c / d = (?r a / ?r b) using quotient-of-div[OF quot] .
finally have fg: ?rp f = smult (?r a / ?r b) (?rp g) by simp
from f have c 6= 0 by auto
with cd d have a: a 6= 0 by auto
from arg-cong[OF fg, of λ x. smult (?r b) x]
have smult (?r b) (?rp f ) = smult (?r a) (?rp g) using b by auto
hence ?rp (smult b f ) = ?rp (smult a g) by (auto simp: hom-distribs)
then have fg: [:b:] ∗ f = [:a:] ∗ g by auto
from arg-cong[OF this, of content, unfolded content-mult f (8 ) g(8 )]
have content [: b :] = content [: a :] by simp
hence abs: abs a = abs b unfolding content-def using b a by auto
from arg-cong[OF fg, of λ x. lead-coeff x > 0 , unfolded lead-coeff-mult] f (5 ) g(5 )

a b
have (a > 0 ) = (b > 0 ) by (simp add: zero-less-mult-iff )
with a b abs have a = b by auto
with arg-cong[OF fg, of λ x. x div [:b:]] b show ?thesis

by (metis nonzero-mult-div-cancel-left pCons-eq-0-iff )
qed

definition square-free-factorization-int-main :: int poly ⇒ (int poly × nat) list
where

square-free-factorization-int-main f = (case square-free-heuristic f of None ⇒
yun-gcd.yun-monic-factorization gcd f | Some p ⇒ [(f ,1 )])

lemma square-free-factorization-int-main: assumes res: square-free-factorization-int-main
f = fs

and ct: content f = 1 and lc: lead-coeff f > 0
and deg: degree f 6= 0

shows square-free-factorization f (1 ,fs) ∧ (∀ fi i. (fi, i) ∈ set fs −→ content fi =
1 ∧ lead-coeff fi > 0 ) ∧

distinct (map snd fs)
proof (cases square-free-heuristic f )

case None
from lc have f0 : f 6= 0 by auto
from res None have fs: yun-gcd.yun-monic-factorization gcd f = fs

unfolding square-free-factorization-int-main-def by auto
let ?r = rat-of-int
let ?rp = map-poly ?r
define G where G = smult (inverse (lead-coeff (?rp f ))) (?rp f )
have ?rp f 6= 0 using f0 by auto
hence mon: monic G unfolding G-def coeff-smult by simp
obtain Fs where Fs: yun-gcd.yun-monic-factorization gcd G = Fs by blast
from lc have lg: lead-coeff (?rp f ) 6= 0 by auto
let ?c = lead-coeff (?rp f )
define c where c = ?c
have rp: ?rp f = smult c G unfolding G-def c-def by (simp add: field-simps)
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have in-rel: yun-rel f c G unfolding yun-rel-def yun-wrel-def
using rp mon lc ct by auto

from yun-monic-factorization-int-yun-rel[OF Fs fs in-rel]
have out-rel: list-all2 (rel-prod yun-erel (=)) fs Fs by auto
from yun-monic-factorization[OF Fs mon]
have square-free-factorization G (1 , Fs) and dist: distinct (map snd Fs) by auto
note sff = square-free-factorizationD[OF this(1 )]
from out-rel have map snd fs = map snd Fs by (induct fs Fs rule: list-all2-induct,

auto)
with dist have dist ′: distinct (map snd fs) by auto
have main: square-free-factorization f (1 , fs) ∧ (∀ fi i. (fi, i) ∈ set fs −→ content

fi = 1 ∧ lead-coeff fi > 0 )
unfolding square-free-factorization-def split

proof (intro conjI allI impI )
from ct have f 6= 0 by auto
thus f = 0 =⇒ 1 = 0 f = 0 =⇒ fs = [] by auto
from dist ′ show distinct fs by (simp add: distinct-map)
{

fix a i
assume a: (a,i) ∈ set fs
with out-rel obtain bj where bj ∈ set Fs and rel-prod yun-erel (=) (a,i) bj

unfolding list-all2-conv-all-nth set-conv-nth by fastforce
then obtain b where b: (b,i) ∈ set Fs and ab: yun-erel a b by (cases bj,

auto simp: rel-prod.simps)
from sff (2 )[OF b] have b ′: square-free b degree b 6= 0 and i: i > 0 by auto
from ab obtain c where rel: yun-rel a c b unfolding yun-erel-def by auto
note aa = yun-relD[OF this]
from aa have c0 : c 6= 0 by auto
from b ′ aa(3 ) show degree a > 0 by simp
from square-free-smult[OF c0 b ′(1 ), folded aa(2 )]

show square-free a unfolding square-free-def by (force simp: dvd-def hom-distribs)
show i > 0 by fact
show cnt: content a = 1 and lc: lead-coeff a > 0 using aa by auto
fix A I
assume A: (A,I ) ∈ set fs and diff : (a,i) 6= (A,I )
from a[unfolded set-conv-nth] obtain k where k: fs ! k = (a,i) k < length fs

by auto
from A[unfolded set-conv-nth] obtain K where K : fs ! K = (A,I ) K <

length fs by auto
from diff k K have kK : k 6= K by auto
from dist ′[unfolded distinct-conv-nth length-map, rule-format, OF k(2 ) K (2 )

kK ]
have iI : i 6= I using k K by simp

from A out-rel obtain Bj where Bj ∈ set Fs and rel-prod yun-erel (=) (A,I )
Bj

unfolding list-all2-conv-all-nth set-conv-nth by fastforce
then obtain B where B: (B,I ) ∈ set Fs and AB: yun-erel A B by (cases

Bj, auto simp: rel-prod.simps)
then obtain C where Rel: yun-rel A C B unfolding yun-erel-def by auto
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note AA = yun-relD[OF this]
from iI have (b,i) 6= (B,I ) by auto
from sff (3 )[OF b B this] have cop: coprime b B by simp
from AA have C : C 6= 0 by auto
from yun-rel-gcd[OF rel AA(1 ) C refl] obtain c where yun-rel (gcd a A) c

(gcd b B) by auto
note rel = yun-relD[OF this]
from rel(2 ) cop have ?rp (gcd a A) = [: c :] by simp
from arg-cong[OF this, of degree] have degree (gcd a A) = 0 by simp
from degree0-coeffs[OF this] obtain c where gcd: gcd a A = [: c :] by auto
from rel(8 ) rel(5 ) show Rings.coprime a A

by (auto intro!: gcd-eq-1-imp-coprime simp add: gcd)
}
let ?prod = λ fs. (

∏
(a, i)∈set fs. a ^ i)

let ?pr = λ fs. (
∏

(a, i)←fs. a ^ i)
define pr where pr = ?prod fs

from ‹distinct fs› have pfs: ?prod fs = ?pr fs by (rule prod.distinct-set-conv-list)
from ‹distinct Fs› have pFs: ?prod Fs = ?pr Fs by (rule prod.distinct-set-conv-list)
from out-rel have yun-erel (?prod fs) (?prod Fs) unfolding pfs pFs
proof (induct fs Fs rule: list-all2-induct)

case (Cons ai fs Ai Fs)
obtain a i where ai: ai = (a,i) by force
from Cons(1 ) ai obtain A where Ai: Ai = (A,i)

and rel: yun-erel a A by (cases Ai, auto simp: rel-prod.simps)
show ?case unfolding ai Ai using yun-erel-mult[OF yun-erel-pow[OF rel, of

i] Cons(3 )]
by auto

qed simp
also have ?prod Fs = G using sff (1 ) by simp
finally obtain d where rel: yun-rel pr d G unfolding yun-erel-def pr-def by

auto
with in-rel have f = pr by (rule yun-rel-same-right)
thus f = smult 1 (?prod fs) unfolding pr-def by simp

qed
from main dist ′ show ?thesis by auto

next
case (Some p)
from res[unfolded square-free-factorization-int-main-def Some] have fs: fs =

[(f ,1 )] by auto
from lc have f0 : f 6= 0 by auto
from square-free-heuristic[OF Some] poly-mod-prime.separable-impl(1 )[of p f ]

square-free-mod-imp-square-free[of p f ] deg
show ?thesis unfolding fs

by (auto simp: ct lc square-free-factorization-def f0 poly-mod-prime-def )
qed

definition square-free-factorization-int ′ :: int poly ⇒ int × (int poly × nat)list
where

square-free-factorization-int ′ f = (if degree f = 0
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then (lead-coeff f ,[]) else (let — content factorization
c = content f ;
d = (sgn (lead-coeff f ) ∗ c);
g = sdiv-poly f d
— and square-free factorization

in (d, square-free-factorization-int-main g)))

lemma square-free-factorization-int ′: assumes res: square-free-factorization-int ′ f
= (d, fs)

shows square-free-factorization f (d,fs)
(fi, i) ∈ set fs =⇒ content fi = 1 ∧ lead-coeff fi > 0
distinct (map snd fs)

proof −
note res = res[unfolded square-free-factorization-int ′-def Let-def ]
have square-free-factorization f (d,fs)
∧ ((fi, i) ∈ set fs −→ content fi = 1 ∧ lead-coeff fi > 0 )
∧ distinct (map snd fs)

proof (cases degree f = 0 )
case True
from degree0-coeffs[OF True] obtain c where f : f = [: c :] by auto
thus ?thesis using res by (simp add: square-free-factorization-def )

next
case False
let ?s = sgn (lead-coeff f )
have s: ?s ∈ {−1 ,1} using False unfolding sgn-if by auto
define g where g = smult ?s f
let ?d = ?s ∗ content f
have content g = content ([:?s:] ∗ f ) unfolding g-def by simp
also have . . . = content [:?s:] ∗ content f unfolding content-mult by simp
also have content [:?s:] = 1 using s by (auto simp: content-def )
finally have cg: content g = content f by simp
from False res
have d: d = ?d and fs: fs = square-free-factorization-int-main (sdiv-poly f ?d)

by auto
let ?g = primitive-part g
define ng where ng = primitive-part g
note fs
also have sdiv-poly f ?d = sdiv-poly g (content g) unfolding cg unfolding

g-def
by (rule poly-eqI , unfold coeff-sdiv-poly coeff-smult, insert s, auto simp:

div-minus-right)
finally have fs: square-free-factorization-int-main ng = fs

unfolding primitive-part-alt-def ng-def by simp
have lead-coeff f 6= 0 using False by auto
hence lg: lead-coeff g > 0 unfolding g-def lead-coeff-smult
by (meson linorder-neqE-linordered-idom sgn-greater sgn-less zero-less-mult-iff )
hence g0 : g 6= 0 by auto
from g0 have content g 6= 0 by simp
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from arg-cong[OF content-times-primitive-part[of g], of lead-coeff , unfolded
lead-coeff-smult]

lg content-ge-0-int[of g] have lg ′: lead-coeff ng > 0 unfolding ng-def
by (metis ‹content g 6= 0 › dual-order .antisym dual-order .strict-implies-order

zero-less-mult-iff )
from content-primitive-part[OF g0 ] have c-ng: content ng = 1 unfolding

ng-def .
have degree ng = degree f using ‹content [:sgn (lead-coeff f ):] = 1 › g-def ng-def

by (auto simp add: sgn-eq-0-iff )
with False have degree ng 6= 0 by auto
note main = square-free-factorization-int-main[OF fs c-ng lg ′ this]
show ?thesis
proof (intro conjI impI )

{
assume (fi, i) ∈ set fs
with main show content fi = 1 0 < lead-coeff fi by auto

}
have d0 : d 6= 0 using ‹content [:?s:] = 1 › d by (auto simp:sgn-eq-0-iff )
have smult d ng = smult ?s (smult (content g) (primitive-part g))

unfolding ng-def d cg by simp
also have smult (content g) (primitive-part g) = g using content-times-primitive-part

.
also have smult ?s g = f unfolding g-def using s by auto
finally have id: smult d ng = f .
from main have square-free-factorization ng (1 , fs) by auto
from square-free-factorization-smult[OF d0 this]
show square-free-factorization f (d,fs) unfolding id by simp
show distinct (map snd fs) using main by auto

qed
qed
thus square-free-factorization f (d,fs)
(fi, i) ∈ set fs =⇒ content fi = 1 ∧ lead-coeff fi > 0 distinct (map snd fs) by

auto
qed

definition x-split :: ′a :: semiring-0 poly ⇒ nat × ′a poly where
x-split f = (let fs = coeffs f ; zs = takeWhile ((=) 0 ) fs

in case zs of [] ⇒ (0 ,f ) | - ⇒ (length zs, poly-of-list (dropWhile ((=) 0 ) fs)))

lemma x-split: assumes x-split f = (n, g)
shows f = monom 1 n ∗ g n 6= 0 ∨ f 6= 0 =⇒ ¬ monom 1 1 dvd g

proof −
define zs where zs = takeWhile ((=) 0 ) (coeffs f )
note res = assms[unfolded zs-def [symmetric] x-split-def Let-def ]
have f = monom 1 n ∗ g ∧ ((n 6= 0 ∨ f 6= 0 ) −→ ¬ (monom 1 1 dvd g)) (is -
∧ (- −→ ¬ (?x dvd -)))

proof (cases f = 0 )
case True
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with res have n = 0 g = 0 unfolding zs-def by auto
thus ?thesis using True by auto

next
case False note f = this
show ?thesis
proof (cases zs = [])

case True
hence choice: coeff f 0 6= 0 using f unfolding zs-def coeff-f-0-code poly-compare-0-code

by (cases coeffs f , auto)
have dvd: ?x dvd h ←→ coeff h 0 = 0 for h by (simp add: monom-1-dvd-iff ′)
from True choice res f show ?thesis unfolding dvd by auto

next
case False
define ys where ys = dropWhile ((=) 0 ) (coeffs f )
have dvd: ?x dvd h ←→ coeff h 0 = 0 for h by (simp add: monom-1-dvd-iff ′)
from res False have n: n = length zs and g: g = poly-of-list ys unfolding

ys-def
by (cases zs, auto)+

obtain xx where xx: coeffs f = xx by auto
have coeffs f = zs @ ys unfolding zs-def ys-def by auto
also have zs = replicate n 0 unfolding zs-def n xx by (induct xx, auto)
finally have ff : coeffs f = replicate n 0 @ ys by auto
from f have lead-coeff f 6= 0 by auto
then have nz: coeffs f 6= [] last (coeffs f ) 6= 0

by (simp-all add: last-coeffs-eq-coeff-degree)
have ys: ys 6= [] using nz[unfolded ff ] by auto
with ys-def have hd: hd ys 6= 0 by (metis (full-types) hd-dropWhile)

hence coeff (poly-of-list ys) 0 6= 0 unfolding poly-of-list-def coeff-Poly using
ys by (cases ys, auto)

moreover have coeffs (Poly ys) = ys
by (simp add: ys-def strip-while-dropWhile-commute)

then have coeffs (monom-mult n (Poly ys)) = replicate n 0 @ ys
by (simp add: coeffs-eq-iff monom-mult-def [symmetric] ff ys monom-mult-code)
ultimately show ?thesis unfolding dvd g

by (auto simp add: coeffs-eq-iff monom-mult-def [symmetric] ff )
qed

qed
thus f = monom 1 n ∗ g n 6= 0 ∨ f 6= 0 =⇒ ¬ monom 1 1 dvd g by auto

qed

definition square-free-factorization-int :: int poly ⇒ int × (int poly × nat)list
where

square-free-factorization-int f = (case x-split f of (n,g) — extract x^n
⇒ case square-free-factorization-int ′ g of (d,fs)
⇒ if n = 0 then (d,fs) else (d, (monom 1 1 , n) # fs))

lemma square-free-factorization-int: assumes res: square-free-factorization-int f
= (d, fs)
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shows square-free-factorization f (d,fs)
(fi, i) ∈ set fs =⇒ primitive fi ∧ lead-coeff fi > 0

proof −
obtain n g where xs: x-split f = (n,g) by force
obtain c hs where sf : square-free-factorization-int ′ g = (c,hs) by force
from res[unfolded square-free-factorization-int-def xs sf split]
have d: d = c and fs: fs = (if n = 0 then hs else (monom 1 1 , n) # hs) by

(cases n, auto)
note sff = square-free-factorization-int ′(1−2 )[OF sf ]
note xs = x-split[OF xs]
let ?x = monom 1 1 :: int poly
have x: primitive ?x ∧ lead-coeff ?x = 1 ∧ degree ?x = 1

by (auto simp add: degree-monom-eq content-def monom-Suc)
thus (fi, i) ∈ set fs =⇒ primitive fi ∧ lead-coeff fi > 0 using sff (2 ) unfolding

fs
by (cases n, auto)

show square-free-factorization f (d,fs)
proof (cases n)

case 0
with d fs sff xs show ?thesis by auto

next
case (Suc m)
with xs have fg: f = monom 1 (Suc m) ∗ g and dvd: ¬ ?x dvd g by auto
from Suc have fs: fs = (?x,Suc m) # hs unfolding fs by auto
have degx: degree ?x = 1 by code-simp

from irreducibled-square-free[OF linear-irreducibled[OF this]] have sfx: square-free
?x by auto

have fg: f = ?x ^ n ∗ g unfolding fg Suc by (metis x-pow-n)
have eq0 : ?x ^ n ∗ g = 0 ←→ g = 0 by simp
note sf = square-free-factorizationD[OF sff (1 )]
{

fix a i
assume ai: (a,i) ∈ set hs
with sf (4 ) sf (2 ) have g0 : g 6= 0 and i > 0 by auto
from split-list[OF ai] obtain ys zs where hs: hs = ys @ (a,i) # zs by auto
have a dvd g unfolding square-free-factorization-prod-list[OF sff (1 )] hs

by (rule dvd-smult, insert ‹i > 0 ›, cases i, auto simp add: ac-simps)
moreover have ¬ ?x dvd g using xs[unfolded Suc] by auto
ultimately have dvd: ¬ ?x dvd a using dvd-trans by blast
from sf (2 )[OF ai] have a 6= 0 by auto
have 1 = gcd ?x a
proof (rule gcdI )

fix d
assume d: d dvd ?x d dvd a

from content-dvd-contentI [OF d(1 )] x have cnt: is-unit (content d) by auto
show is-unit d
proof (cases degree d = 1 )

case False
with divides-degree[OF d(1 ), unfolded degx] have degree d = 0 by auto
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from degree0-coeffs[OF this] obtain c where dc: d = [:c:] by auto
from cnt[unfolded dc] have is-unit c by (auto simp: content-def , cases c

= 0 , auto)
hence d ∗ d = 1 unfolding dc by (cases c = −1 ; cases c = 1 , auto)
thus is-unit d by (metis dvd-triv-right)

next
case True
from d(1 ) obtain e where xde: ?x = d ∗ e unfolding dvd-def by auto
from arg-cong[OF this, of degree] degx have degree d + degree e = 1

by (metis True add.right-neutral degree-0 degree-mult-eq one-neq-zero)
with True have degree e = 0 by auto
from degree0-coeffs[OF this] xde obtain e where xde: ?x = [:e:] ∗ d by

auto
from arg-cong[OF this, of content, unfolded content-mult] x
have content [:e:] ∗ content d = 1 by auto
also have content [:e :] = abs e by (auto simp: content-def , cases e = 0 ,

auto)
finally have |e| ∗ content d = 1 .
from pos-zmult-eq-1-iff-lemma[OF this] have e ∗ e = 1 by (cases e = 1 ;

cases e = −1 , auto)
with arg-cong[OF xde, of smult e] have d = ?x ∗ [:e:] by auto
hence ?x dvd d unfolding dvd-def by blast
with d(2 ) have ?x dvd a by (metis dvd-trans)
with dvd show ?thesis by auto

qed
qed auto
hence coprime ?x a

by (simp add: gcd-eq-1-imp-coprime)
note this dvd

} note hs-dvd-x = this
from hs-dvd-x[of ?x Suc m]
have nmem: (?x,Suc m) /∈ set hs by auto
hence eq: ?x ^ n ∗ g = smult c (

∏
(a, i)∈set fs. a ^ i)

unfolding sf (1 ) unfolding fs Suc by simp
show ?thesis unfolding fg d unfolding square-free-factorization-def split eq0

unfolding eq
proof (intro conjI allI impI , rule refl)

fix a i
assume ai: (a,i) ∈ set fs
thus square-free a degree a > 0 i > 0 using sf (2 ) sfx degx unfolding fs by

auto
fix b j
assume bj: (b,j) ∈ set fs and diff : (a,i) 6= (b,j)
consider (hs-hs) (a,i) ∈ set hs (b,j) ∈ set hs
| (hs-x) (a,i) ∈ set hs b = ?x
| (x-hs) (b,j) ∈ set hs a = ?x
using ai bj diff unfolding fs by auto

then show Rings.coprime a b
proof cases
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case hs-hs
from sf (3 )[OF this diff ] show ?thesis .

next
case hs-x
from hs-dvd-x(1 )[OF hs-x(1 )] show ?thesis unfolding hs-x(2 ) by (simp

add: ac-simps)
next

case x-hs
from hs-dvd-x(1 )[OF x-hs(1 )] show ?thesis unfolding x-hs(2 ) by simp

qed
next

show g = 0 =⇒ c = 0 using sf (4 ) by auto
show g = 0 =⇒ fs = [] using sf (4 ) xs Suc by auto
show distinct fs using sf (5 ) nmem unfolding fs by auto

qed
qed

qed

end

11.3 Factoring Arbitrary Integer Polynomials
We combine the factorization algorithm for square-free integer polynomials
with a square-free factorization algorithm to a factorization algorithm for
integer polynomials which does not make any assumptions.
theory Factorize-Int-Poly
imports

Berlekamp-Zassenhaus
Square-Free-Factorization-Int

begin

hide-const coeff monom
lifting-forget poly.lifting

typedef int-poly-factorization-algorithm = {alg.
∀ (f :: int poly) fs. square-free f −→ degree f > 0 −→ alg f = fs −→
(f = prod-list fs ∧ (∀ fi ∈ set fs. irreducibled fi))}
by (rule exI [of - berlekamp-zassenhaus-factorization],

insert berlekamp-zassenhaus-factorization-irreducibled, auto)

setup-lifting type-definition-int-poly-factorization-algorithm

lift-definition int-poly-factorization-algorithm :: int-poly-factorization-algorithm
⇒
(int poly ⇒ int poly list) is λ x. x .

lemma int-poly-factorization-algorithm-irreducibled:
assumes int-poly-factorization-algorithm alg f = fs
and square-free f
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and degree f > 0
shows f = prod-list fs ∧ (∀ fi ∈ set fs. irreducibled fi)

using assms by (transfer , auto)

corollary int-poly-factorization-algorithm-irreducible:
assumes res: int-poly-factorization-algorithm alg f = fs
and sf : square-free f
and deg: degree f > 0
and pr : primitive f
shows f = prod-list fs ∧ (∀ fi ∈ set fs. irreducible fi ∧ degree fi > 0 ∧ primitive

fi)
proof (intro conjI ballI )

note ∗ = int-poly-factorization-algorithm-irreducibled[OF res sf deg]
from ∗ show f : f = prod-list fs by auto
fix fi assume fi: fi ∈ set fs
with primitive-prod-list[OF pr [unfolded f ]] show primitive fi by auto
from irreducible-primitive-connect[OF this] ∗ pr [unfolded f ] fi
show irreducible fi by auto
from ∗ fi show degree fi > 0 by (auto)

qed

lemma irreducible-imp-square-free:
assumes irr : irreducible (p:: ′a::idom poly) shows square-free p

proof(intro square-freeI )
from irr show p0 : p 6= 0 by auto
fix a assume a ∗ a dvd p
then obtain b where paab: p = a ∗ (a ∗ b) by (elim dvdE , auto)
assume degree a > 0
then have a1 : ¬ a dvd 1 by (auto simp: poly-dvd-1 )
then have ab1 : ¬ a ∗ b dvd 1 using dvd-mult-left by auto
from paab irr a1 ab1 show False by force

qed

lemma not-mem-set-dropWhileD: x /∈ set (dropWhile P xs) =⇒ x ∈ set xs =⇒ P
x

by (metis dropWhile-append3 in-set-conv-decomp)

lemma primitive-reflect-poly:
fixes f :: ′a :: comm-semiring-1 poly
shows primitive (reflect-poly f ) = primitive f

proof−
have (∀ a ∈ set (coeffs f ). x dvd a) ←→ (∀ a ∈ set (dropWhile ((=) 0 ) (coeffs

f )). x dvd a) for x
by (auto dest: not-mem-set-dropWhileD set-dropWhileD)

then show ?thesis by (auto simp: primitive-def coeffs-reflect-poly)
qed
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lemma gcd-list-sub:
assumes set xs ⊆ set ys shows gcd-list ys dvd gcd-list xs
by (metis Gcd-fin.subset assms semiring-gcd-class.gcd-dvd1 )

lemma content-reflect-poly:
content (reflect-poly f ) = content f (is ?l = ?r)

proof−
have l: ?l = gcd-list (dropWhile ((=) 0 ) (coeffs f )) (is - = gcd-list ?xs)

by (simp add: content-def reflect-poly-def )
have set ?xs ⊆ set (coeffs f ) by (auto dest: set-dropWhileD)
from gcd-list-sub[OF this]
have ?r dvd gcd-list ?xs by (simp add: content-def )
with l have rl: ?r dvd ?l by auto
have set (coeffs f ) ⊆ set (0 # ?xs) by (auto dest: not-mem-set-dropWhileD)
from gcd-list-sub[OF this]
have gcd-list ?xs dvd ?r by (simp add: content-def )
with l have lr : ?l dvd ?r by auto
from rl lr show ?l = ?r by (simp add: associated-eqI )

qed

lemma coeff-primitive-part: content f ∗ coeff (primitive-part f ) i = coeff f i
using arg-cong[OF content-times-primitive-part[of f ], of λf . coeff f -, unfolded

coeff-smult].

lemma smult-cancel[simp]:
fixes c :: ′a :: idom
shows smult c f = smult c g ←→ c = 0 ∨ f = g

proof−
have l: smult c f = [:c:] ∗ f by simp
have r : smult c g = [:c:] ∗ g by simp
show ?thesis unfolding l r mult-cancel-left by simp

qed

lemma primitive-part-reflect-poly:
fixes f :: ′a :: {semiring-gcd,idom} poly
shows primitive-part (reflect-poly f ) = reflect-poly (primitive-part f ) (is ?l = ?r)
using content-times-primitive-part[of reflect-poly f ]

proof−
note content-reflect-poly[of f , symmetric]
also have smult (content (reflect-poly f )) ?l = reflect-poly f by simp
also have ... = reflect-poly (smult (content f ) (primitive-part f )) by simp
finally show ?thesis unfolding reflect-poly-smult smult-cancel by auto

qed

lemma reflect-poly-eq-zero[simp]:
reflect-poly f = 0 ←→ f = 0

proof
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assume reflect-poly f = 0
then have coeff (reflect-poly f ) 0 = 0 by simp
then have lead-coeff f = 0 by simp
then show f = 0 by simp

qed simp

lemma irreducibled-reflect-poly-main:
fixes f :: ′a :: {idom, semiring-gcd} poly
assumes nz: coeff f 0 6= 0

and irr : irreducibled (reflect-poly f )
shows irreducibled f

proof
let ?r = reflect-poly
from irr degree-reflect-poly-eq[OF nz] show degree f > 0 by auto
fix g h
assume deg: degree g < degree f degree h < degree f and fgh: f = g ∗ h
from arg-cong[OF fgh, of λ f . coeff f 0 ] nz
have nz ′: coeff g 0 6= 0 by (auto simp: coeff-mult-0 )
note rfgh = arg-cong[OF fgh, of reflect-poly, unfolded reflect-poly-mult[of g h]]
from deg degree-reflect-poly-le[of g] degree-reflect-poly-le[of h] degree-reflect-poly-eq[OF

nz]
have degree (?r h) < degree (?r f ) degree (?r g) < degree (?r f ) by auto
with irr rfgh show False by auto

qed

lemma irreducibled-reflect-poly:
fixes f :: ′a :: {idom, semiring-gcd} poly
assumes nz: coeff f 0 6= 0
shows irreducibled (reflect-poly f ) = irreducibled f

proof
assume irreducibled (reflect-poly f )
from irreducibled-reflect-poly-main[OF nz this] show irreducibled f .

next
from nz have nzr : coeff (reflect-poly f ) 0 6= 0 by auto
assume irreducibled f
with nz have irreducibled (reflect-poly (reflect-poly f )) by simp
from irreducibled-reflect-poly-main[OF nzr this]
show irreducibled (reflect-poly f ) .

qed

lemma irreducible-reflect-poly:
fixes f :: ′a :: {idom,semiring-gcd} poly
assumes nz: coeff f 0 6= 0
shows irreducible (reflect-poly f ) = irreducible f (is ?l = ?r)

proof (cases degree f = 0 )
case True then obtain f0 where f = [:f0 :] by (auto dest: degree0-coeffs)
then show ?thesis by simp

next
case deg: False
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show ?thesis
proof (cases primitive f )

case False
with deg irreducible-imp-primitive[of f ] irreducible-imp-primitive[of reflect-poly

f ] nz
show ?thesis unfolding primitive-reflect-poly by auto

next
case cf : True
let ?r = reflect-poly
from nz have nz ′: coeff (?r f ) 0 6= 0 by auto
let ?ir = irreducibled
from irreducibled-reflect-poly[OF nz] irreducibled-reflect-poly[OF nz ′] nz
have ?ir f ←→ ?ir (reflect-poly f ) by auto
also have ... ←→ irreducible (reflect-poly f )

by (rule irreducible-primitive-connect, unfold primitive-reflect-poly, fact cf )
finally show ?thesis

by (unfold irreducible-primitive-connect[OF cf ], auto)
qed

qed

lemma reflect-poly-dvd: (f :: ′a :: idom poly) dvd g =⇒ reflect-poly f dvd reflect-poly
g

unfolding dvd-def by (auto simp: reflect-poly-mult)

lemma square-free-reflect-poly: fixes f :: ′a :: idom poly
assumes sf : square-free f
and nz: coeff f 0 6= 0

shows square-free (reflect-poly f ) unfolding square-free-def
proof (intro allI conjI impI notI )

let ?r = reflect-poly
from sf [unfolded square-free-def ]
have f0 : f 6= 0 and sf :

∧
q. 0 < degree q =⇒ q ∗ q dvd f =⇒ False by auto

from f0 nz show ?r f = 0 =⇒ False by auto
fix q
assume 0 : 0 < degree q and dvd: q ∗ q dvd ?r f
from dvd have q dvd ?r f by auto
then obtain x where id: ?r f = q ∗ x by fastforce
{

assume coeff q 0 = 0
hence coeff (?r f ) 0 = 0 using id by (auto simp: coeff-mult)
with nz have False by auto

}
hence nzq: coeff q 0 6= 0 by auto
from dvd have ?r (q ∗ q) dvd ?r (?r f ) by (rule reflect-poly-dvd)
also have ?r (?r f ) = f using nz by auto
also have ?r (q ∗ q) = ?r q ∗ ?r q by (rule reflect-poly-mult)
finally have ?r q ∗ ?r q dvd f .
from sf [OF - this] 0 nzq show False by simp
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qed

lemma gcd-reflect-poly: fixes f :: ′a :: {factorial-ring-gcd, semiring-gcd-mult-normalize}
poly

assumes nz: coeff f 0 6= 0 coeff g 0 6= 0
shows gcd (reflect-poly f ) (reflect-poly g) = normalize (reflect-poly (gcd f g))

proof (rule sym, rule gcdI )
have gcd f g dvd f by auto
from reflect-poly-dvd[OF this]
show normalize (reflect-poly (gcd f g)) dvd reflect-poly f by simp
have gcd f g dvd g by auto
from reflect-poly-dvd[OF this]
show normalize (reflect-poly (gcd f g)) dvd reflect-poly g by simp
show normalize (normalize (reflect-poly (gcd f g))) = normalize (reflect-poly (gcd

f g)) by auto
fix h
assume hf : h dvd reflect-poly f and hg: h dvd reflect-poly g
from hf obtain k where reflect-poly f = h ∗ k unfolding dvd-def by auto
from arg-cong[OF this, of λ f . coeff f 0 , unfolded coeff-mult-0 ] nz(1 ) have h:

coeff h 0 6= 0 by auto
from reflect-poly-dvd[OF hf ] reflect-poly-dvd[OF hg]
have reflect-poly h dvd f reflect-poly h dvd g using nz by auto
hence reflect-poly h dvd gcd f g by auto
from reflect-poly-dvd[OF this] h have h dvd reflect-poly (gcd f g) by auto
thus h dvd normalize (reflect-poly (gcd f g)) by auto

qed

lemma linear-primitive-irreducible:
fixes f :: ′a :: {comm-semiring-1 ,semiring-no-zero-divisors} poly
assumes deg: degree f = 1 and cf : primitive f
shows irreducible f

proof (intro irreducibleI )
fix a b assume fab: f = a ∗ b
with deg have a0 : a 6= 0 and b0 : b 6= 0 by auto
from deg[unfolded fab] degree-mult-eq[OF this] have degree a = 0 ∨ degree b =

0 by auto
then show a dvd 1 ∨ b dvd 1
proof

assume degree a = 0
then obtain a0 where a: a = [:a0 :] by (auto dest:degree0-coeffs)
with fab have c ∈ set (coeffs f ) =⇒ a0 dvd c for c by (cases a0 = 0 , auto

simp: coeffs-smult)
with cf show ?thesis by (auto dest: primitiveD simp: a)

next
assume degree b = 0
then obtain b0 where b: b = [:b0 :] by (auto dest:degree0-coeffs)
with fab have c ∈ set (coeffs f ) =⇒ b0 dvd c for c by (cases b0 = 0 , auto

simp: coeffs-smult)
with cf show ?thesis by (auto dest: primitiveD simp: b)
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qed
qed (insert deg, auto simp: poly-dvd-1 )

lemma square-free-factorization-last-coeff-nz:
assumes sff : square-free-factorization f (a, fs)
and mem: (fi,i) ∈ set fs
and nz: coeff f 0 6= 0

shows coeff fi 0 6= 0
proof

assume fi: coeff fi 0 = 0
note sff-list = square-free-factorization-prod-list[OF sff ]
note sff = square-free-factorizationD[OF sff ]
from sff-list have coeff f 0 = a ∗ coeff (

∏
(a, i)←fs. a ^ i) 0 by simp

with split-list[OF mem] fi sff (2 )[OF mem] have coeff f 0 = 0
by (cases i, auto simp: coeff-mult)

with nz show False by simp
qed

context
fixes alg :: int-poly-factorization-algorithm

begin

definition main-int-poly-factorization :: int poly ⇒ int poly list where
main-int-poly-factorization f = (let df = degree f

in if df = 1 then [f ] else
if abs (coeff f 0 ) < abs (coeff f df ) — take reciprocal polynomial, if f (0 ) < lc(f )
then map reflect-poly (int-poly-factorization-algorithm alg (reflect-poly f ))
else int-poly-factorization-algorithm alg f )

definition internal-int-poly-factorization :: int poly ⇒ int × (int poly × nat) list
where

internal-int-poly-factorization f = (
case square-free-factorization-int f of
(a,gis) ⇒ (a, [ (h,i) . (g,i) ← gis, h ← main-int-poly-factorization g ])

)

lemma internal-int-poly-factorization-code[code]: internal-int-poly-factorization f =
(

case square-free-factorization-int f of (a,gis) ⇒
(a, concat (map (λ (g,i). (map (λ f . (f ,i)) (main-int-poly-factorization g))) gis)))
unfolding internal-int-poly-factorization-def by auto

definition factorize-int-last-nz-poly :: int poly ⇒ int × (int poly × nat) list where
factorize-int-last-nz-poly f = (let df = degree f

in if df = 0 then (coeff f 0 , []) else if df = 1 then (content f ,[(primitive-part
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f ,1 )]) else
internal-int-poly-factorization f )

definition factorize-int-poly-generic :: int poly ⇒ int × (int poly × nat) list where
factorize-int-poly-generic f = (case x-split f of (n,g) — extract x^n
⇒ if g = 0 then (0 ,[]) else case factorize-int-last-nz-poly g of (a,fs)
⇒ if n = 0 then (a,fs) else (a, (monom 1 1 , n) # fs))

lemma factorize-int-poly-0 [simp]: factorize-int-poly-generic 0 = (0 ,[])
unfolding factorize-int-poly-generic-def x-split-def by simp

lemma main-int-poly-factorization:
assumes res: main-int-poly-factorization f = fs
and sf : square-free f
and df : degree f > 0
and nz: coeff f 0 6= 0

shows f = prod-list fs ∧ (∀ fi ∈ set fs. irreducibled fi)
proof (cases degree f = 1 )

case True
with res[unfolded main-int-poly-factorization-def Let-def ]
have fs = [f ] by auto
with True show ?thesis by auto

next
case False
hence ∗: (if degree f = 1 then t :: int poly list else e) = e for t e by auto
note res = res[unfolded main-int-poly-factorization-def Let-def ∗]
show ?thesis
proof (cases abs (coeff f 0 ) < abs (coeff f (degree f )))

case False
with res have int-poly-factorization-algorithm alg f = fs by auto
from int-poly-factorization-algorithm-irreducibled[OF this sf df ] show ?thesis .

next
case True
let ?f = reflect-poly f
from square-free-reflect-poly[OF sf nz] have sf : square-free ?f .
from nz df have df : degree ?f > 0 by simp
from True res obtain gs where fs: fs = map reflect-poly gs

and gs: int-poly-factorization-algorithm alg (reflect-poly f ) = gs
by auto

from int-poly-factorization-algorithm-irreducibled[OF gs sf df ]
have id: reflect-poly ?f = reflect-poly (prod-list gs) ?f = prod-list gs

and irr :
∧

gi. gi ∈ set gs =⇒ irreducibled gi by auto
from id(1 ) have f-fs: f = prod-list fs unfolding fs using nz

by (simp add: reflect-poly-prod-list)
{

fix fi
assume fi ∈ set fs
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from this[unfolded fs] obtain gi where gi: gi ∈ set gs and fi: fi = reflect-poly
gi by auto

{
assume coeff gi 0 = 0
with id(2 ) split-list[OF gi] have coeff ?f 0 = 0

by (auto simp: coeff-mult)
with nz have False by auto

}
hence nzg: coeff gi 0 6= 0 by auto
from irreducibled-reflect-poly[OF nzg] irr [OF gi] have irreducibled fi unfold-

ing fi by simp
}
with f-fs show ?thesis by auto

qed
qed

lemma internal-int-poly-factorization-mem:
assumes f : coeff f 0 6= 0
and res: internal-int-poly-factorization f = (c,fs)
and mem: (fi,i) ∈ set fs
shows irreducible fi irreducibled fi and primitive fi and degree fi 6= 0 i 6= 0

proof −
obtain a psi where a-psi: square-free-factorization-int f = (a, psi)

by force
from square-free-factorization-int[OF this]
have sff : square-free-factorization f (a, psi)

and cnt:
∧

fi i. (fi, i) ∈ set psi =⇒ primitive fi by blast+
from square-free-factorization-last-coeff-nz[OF sff - f ]
have nz-fi:

∧
fi i. (fi, i) ∈ set psi =⇒ coeff fi 0 6= 0 by auto

note res = res[unfolded internal-int-poly-factorization-def a-psi Let-def split]
obtain fact where fact: fact = (λ (q,i :: nat). (map (λ f . (f ,i)) (main-int-poly-factorization

q))) by auto
from res[unfolded split Let-def ]
have c: c = a and fs: fs = concat (map fact psi)

unfolding fact by auto
note sff ′ = square-free-factorizationD[OF sff ]
from mem[unfolded fs, simplified] obtain d j where psi: (d,j) ∈ set psi

and fi: (fi, i) ∈ set (fact (d,j)) by auto
from square-free-factorizationD(2 )[OF sff psi] have j > 0 by auto
obtain hs where d: main-int-poly-factorization d = hs by force
from fi[unfolded split fact] have j = i by auto
with ‹j > 0 › show i 6= 0 by auto
from fi[unfolded d split fact] have fi: fi ∈ set hs by auto
from main-int-poly-factorization[OF d - - nz-fi[OF psi]] sff ′(2 )[OF psi] cnt[OF

psi]
have main: d = prod-list hs

∧
fi. fi ∈ set hs =⇒ irreducibled fi by auto

from main split-list[OF fi] have content fi dvd content d by auto
with cnt[OF psi] show cnt: primitive fi by simp
from main(2 )[OF fi] show irr : irreducibled fi .
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show irreducible fi
using irreducible-primitive-connect[OF cnt] irr by blast

from irr show degree fi 6= 0 by auto
qed

lemma internal-int-poly-factorization:
assumes f : coeff f 0 6= 0
and res: internal-int-poly-factorization f = (c,fs)
shows square-free-factorization f (c,fs)

proof −
obtain a psi where a-psi: square-free-factorization-int f = (a, psi)

by force
from square-free-factorization-int[OF this]
have sff : square-free-factorization f (a, psi)

and pr :
∧

fi i. (fi, i) ∈ set psi =⇒ primitive fi by blast+
obtain fact where fact: fact = (λ (q,i :: nat). (map (λ f . (f ,i)) (main-int-poly-factorization

q))) by auto
from res[unfolded split Let-def ]
have c: c = a and fs: fs = concat (map fact psi)

unfolding fact internal-int-poly-factorization-def a-psi by auto
note sff ′ = square-free-factorizationD[OF sff ]
show ?thesis unfolding square-free-factorization-def split
proof (intro conjI impI allI )

show f = 0 =⇒ c = 0 f = 0 =⇒ fs = [] using sff ′(4 ) unfolding c fs by auto
{

fix a i
assume (a,i) ∈ set fs
from irreducible-imp-square-free internal-int-poly-factorization-mem[OF f res

this]
show square-free a degree a > 0 i > 0 by auto

}
from square-free-factorization-last-coeff-nz[OF sff - f ]
have nz:

∧
fi i. (fi, i) ∈ set psi =⇒ coeff fi 0 6= 0 by auto

have eq: f = smult c (
∏

(a, i)←fs. a ^ i) unfolding
prod.distinct-set-conv-list[OF sff ′(5 )]
sff ′(1 ) c

proof (rule arg-cong[where f = smult a], unfold fs, insert sff ′(2 ) nz, induct
psi)

case (Cons pi psi)
obtain p i where pi: pi = (p,i) by force
obtain gs where gs: main-int-poly-factorization p = gs by auto
from Cons(2 )[of p i] have p: square-free p degree p > 0 unfolding pi by

auto
from Cons(3 )[of p i] have nz: coeff p 0 6= 0 unfolding pi by auto
from main-int-poly-factorization[OF gs p nz] have pgs: p = prod-list gs by

auto
have fact: fact (p,i) = map (λ g. (g,i)) gs unfolding fact split gs by auto
have cong:

∧
x y X Y . x = X =⇒ y = Y =⇒ x ∗ y = X ∗ Y by auto

show ?case unfolding pi list.simps prod-list.Cons split fact concat.simps
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prod-list.append
map-append

proof (rule cong)
show p ^ i = (

∏
(a, i)←map (λg. (g, i)) gs. a ^ i) unfolding pgs

by (induct gs, auto simp: ac-simps power-mult-distrib)
show (

∏
(a, i)←psi. a ^ i) = (

∏
(a, i)←concat (map fact psi). a ^ i)

by (rule Cons(1 ), insert Cons(2−3 ), auto)
qed

qed simp
{

fix i j l fi
assume ∗: j < length psi l < length (fact (psi ! j)) fact (psi ! j) ! l = (fi, i)
from ∗ have psi: psi ! j ∈ set psi by auto
obtain d k where dk: psi ! j = (d,k) by force
with ∗ have psij: psi ! j = (d,i) unfolding fact split by auto
from sff ′(2 )[OF psi[unfolded psij]] have d: square-free d degree d > 0 by

auto
from nz[OF psi[unfolded psij]] have d0 : coeff d 0 6= 0 .
from ∗ psij fact
have bz: main-int-poly-factorization d = map fst (fact (psi ! j)) by (auto

simp: o-def )
from main-int-poly-factorization[OF bz d d0 ] pr [OF psi[unfolded dk]]
have dhs: d = prod-list (map fst (fact (psi ! j))) by auto
from ∗ have mem: fi ∈ set (map fst (fact (psi ! j)))

by (metis fst-conv image-eqI nth-mem set-map)
from mem dhs psij d have ∃ d. fi ∈ set (map fst (fact (psi ! j))) ∧

d = prod-list (map fst (fact (psi ! j))) ∧
psi ! j = (d, i) ∧
square-free d by blast

} note deconstruct = this
{

fix k K fi i Fi I
assume k: k < length fs K < length fs and f : fs ! k = (fi, i) fs ! K = (Fi, I )
and diff : k 6= K
from nth-concat-diff [OF k[unfolded fs] diff , folded fs, unfolded length-map]

obtain j l J L where diff : (j, l) 6= (J , L)
and j: j < length psi J < length psi
and l: l < length (map fact psi ! j) L < length (map fact psi ! J )

and fs: fs ! k = map fact psi ! j ! l fs ! K = map fact psi ! J ! L by blast+
hence psij: psi ! j ∈ set psi by auto
from j have id: map fact psi ! j = fact (psi ! j) map fact psi ! J = fact (psi

! J ) by auto
note l = l[unfolded id] note fs = fs[unfolded id]
from j have psi: psi ! j ∈ set psi psi ! J ∈ set psi by auto
from deconstruct[OF j(1 ) l(1 ) fs(1 )[unfolded f , symmetric]]
obtain d where mem: fi ∈ set (map fst (fact (psi ! j)))

and d: d = prod-list (map fst (fact (psi ! j))) psi ! j = (d, i) square-free d
by blast

from deconstruct[OF j(2 ) l(2 ) fs(2 )[unfolded f , symmetric]]
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obtain D where Mem: Fi ∈ set (map fst (fact (psi ! J )))
and D: D = prod-list (map fst (fact (psi ! J ))) psi ! J = (D, I ) square-free

D by blast
from pr [OF psij[unfolded d(2 )]] have cnt: primitive d .
have coprime fi Fi
proof (cases J = j)

case False
from sff ′(5 ) False j have (d,i) 6= (D,I )

unfolding distinct-conv-nth d(2 )[symmetric] D(2 )[symmetric] by auto
from sff ′(3 )[OF psi[unfolded d(2 ) D(2 )] this]
have cop: coprime d D by auto
from prod-list-dvd[OF mem, folded d(1 )] have fid: fi dvd d by auto
from prod-list-dvd[OF Mem, folded D(1 )] have FiD: Fi dvd D by auto
from coprime-divisors[OF fid FiD] cop show ?thesis by simp

next
case True note id = this
from id diff have diff : l 6= L by auto
obtain bz where bz: bz = map fst (fact (psi ! j)) by auto
from fs[unfolded f ] l
have fi: fi = bz ! l Fi = bz ! L

unfolding id bz by (metis fst-conv nth-map)+
from d[folded bz] have sf : square-free (prod-list bz) by auto
from d[folded bz] cnt have cnt: content (prod-list bz) = 1 by auto
from l have l: l < length bz L < length bz unfolding bz id by auto
from l fi have fi ∈ set bz by auto
from content-dvd-1 [OF cnt prod-list-dvd[OF this]] have cnt: content fi = 1

.
obtain g where g: g = gcd fi Fi by auto
have g ′: g dvd fi g dvd Fi unfolding g by auto
define bef where bef = take l bz
define aft where aft = drop (Suc l) bz
from id-take-nth-drop[OF l(1 )] l have bz: bz = bef @ fi # aft and bef :

length bef = l
unfolding bef-def aft-def fi by auto

with l diff have mem: Fi ∈ set (bef @ aft) unfolding fi(2 ) by (auto simp:
nth-append)

from split-list[OF this] obtain Bef Aft where ba: bef @ aft = Bef @ Fi #
Aft by auto

have prod-list bz = fi ∗ prod-list (bef @ aft) unfolding bz by simp
also have prod-list (bef @ aft) = Fi ∗ prod-list (Bef @ Aft) unfolding ba

by auto
finally have fi ∗ Fi dvd prod-list bz by auto
with g ′ have g ∗ g dvd prod-list bz by (meson dvd-trans mult-dvd-mono)
with sf [unfolded square-free-def ] have deg: degree g = 0 by auto
from content-dvd-1 [OF cnt g ′(1 )] have cnt: content g = 1 .
from degree0-coeffs[OF deg] obtain c where gc: g = [: c :] by auto
from cnt[unfolded gc content-def , simplified] have abs c = 1

by (cases c = 0 , auto)
with g gc have gcd fi Fi ∈ {1 ,−1} by fastforce
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thus coprime fi Fi
by (auto intro!: gcd-eq-1-imp-coprime)
(metis dvd-minus-iff dvd-refl is-unit-gcd-iff one-neq-neg-one)

qed
} note cop = this
show dist: distinct fs unfolding distinct-conv-nth
proof (intro impI allI )

fix k K
assume k: k < length fs K < length fs and diff : k 6= K
obtain fi i Fi I where f : fs ! k = (fi,i) fs ! K = (Fi,I ) by force+
from cop[OF k f diff ] have cop: coprime fi Fi .
from k(1 ) f (1 ) have (fi,i) ∈ set fs unfolding set-conv-nth by force
from internal-int-poly-factorization-mem[OF assms(1 ) res this] have degree

fi > 0 by auto
hence ¬ is-unit fi by (simp add: poly-dvd-1 )
with cop coprime-id-is-unit[of fi] have fi 6= Fi by auto
thus fs ! k 6= fs ! K unfolding f by auto

qed
show f = smult c (

∏
(a, i)∈set fs. a ^ i) unfolding eq

prod.distinct-set-conv-list[OF dist] by simp
fix fi i Fi I
assume mem: (fi, i) ∈ set fs (Fi,I ) ∈ set fs and diff : (fi, i) 6= (Fi, I )
then obtain k K where k: k < length fs K < length fs

and f : fs ! k = (fi, i) fs ! K = (Fi, I ) unfolding set-conv-nth by auto
with diff have diff : k 6= K by auto
from cop[OF k f diff ] show Rings.coprime fi Fi by auto

qed
qed

lemma factorize-int-last-nz-poly: assumes res: factorize-int-last-nz-poly f = (c,fs)
and nz: coeff f 0 6= 0

shows square-free-factorization f (c,fs)
(fi,i) ∈ set fs =⇒ irreducible fi
(fi,i) ∈ set fs =⇒ degree fi 6= 0

proof (atomize(full))
from nz have lz: lead-coeff f 6= 0 by auto
note res = res[unfolded factorize-int-last-nz-poly-def Let-def ]
consider (0 ) degree f = 0
| (1 ) degree f = 1
| (2 ) degree f > 1 by linarith

then show square-free-factorization f (c,fs) ∧ ((fi,i) ∈ set fs −→ irreducible fi)
∧ ((fi,i) ∈ set fs −→ degree fi 6= 0 )

proof cases
case 0
from degree0-coeffs[OF 0 ] obtain a where f : f = [:a:] by auto
from res show ?thesis unfolding square-free-factorization-def f by auto

next
case 1
then have irr : irreducible (primitive-part f )
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by (auto intro!: linear-primitive-irreducible content-primitive-part)
from irreducible-imp-square-free[OF irr ] have sf : square-free (primitive-part f )

.
from 1 have f0 : f 6= 0 by auto
from res irr sf f0 show ?thesis unfolding square-free-factorization-def by

(auto simp: 1 )
next

case 2
with res have internal-int-poly-factorization f = (c,fs) by auto

from internal-int-poly-factorization[OF nz this] internal-int-poly-factorization-mem[OF
nz this]

show ?thesis by auto
qed

qed

lemma factorize-int-poly: assumes res: factorize-int-poly-generic f = (c,fs)
shows square-free-factorization f (c,fs)
(fi,i) ∈ set fs =⇒ irreducible fi
(fi,i) ∈ set fs =⇒ degree fi 6= 0

proof (atomize(full))
obtain n g where xs: x-split f = (n,g) by force
obtain d hs where fact: factorize-int-last-nz-poly g = (d,hs) by force
from res[unfolded factorize-int-poly-generic-def xs split fact]
have res: (if g = 0 then (0 , []) else if n = 0 then (d, hs) else (d, (monom 1 1 ,

n) # hs)) = (c, fs) .
note xs = x-split[OF xs]
show square-free-factorization f (c,fs) ∧ ((fi,i) ∈ set fs −→ irreducible fi) ∧ ((fi,i)
∈ set fs −→ degree fi 6= 0 )

proof (cases g = 0 )
case True
hence f = 0 c = 0 fs = [] using res xs by auto
thus ?thesis unfolding square-free-factorization-def by auto

next
case False
with xs have ¬ monom 1 1 dvd g by auto
hence coeff g 0 6= 0 by (simp add: monom-1-dvd-iff ′)
note fact = factorize-int-last-nz-poly[OF fact this]
let ?x = monom 1 1 :: int poly
have x: content ?x = 1 ∧ lead-coeff ?x = 1 ∧ degree ?x = 1

by (auto simp add: degree-monom-eq monom-Suc content-def )
from res False have res: (if n = 0 then (d, hs) else (d, (?x, n) # hs)) = (c,

fs) by auto
show ?thesis
proof (cases n)

case 0
with res xs have id: fs = hs c = d f = g by auto
from fact show ?thesis unfolding id by auto

next
case (Suc m)

474



with res have id: c = d fs = (?x,Suc m) # hs by auto
from Suc xs have fg: f = monom 1 (Suc m) ∗ g and dvd: ¬ ?x dvd g by

auto
from x linear-primitive-irreducible[of ?x] have irr : irreducible ?x by auto
from irreducible-imp-square-free[OF this] have sfx: square-free ?x .
from irr fact have one: (fi, i) ∈ set fs −→ irreducible fi ∧ degree fi 6= 0

unfolding id by (auto simp: degree-monom-eq)
have fg: f = ?x ^ n ∗ g unfolding fg Suc by (metis x-pow-n)
from x have degx: degree ?x = 1 by simp
note sf = square-free-factorizationD[OF fact(1 )]
{

fix a i
assume ai: (a,i) ∈ set hs
with sf (4 ) have g0 : g 6= 0 by auto
from sf (2 )[OF ai] have i: i 6= 0 by auto
from split-list[OF ai] obtain ys zs where hs: hs = ys @ (a,i) # zs by auto
have a dvd g unfolding square-free-factorization-prod-list[OF fact(1 )] hs

by (rule dvd-smult, insert i, cases i, auto simp add: ac-simps)
moreover have ¬ ?x dvd g using xs[unfolded Suc] by auto
ultimately have dvd: ¬ ?x dvd a using dvd-trans by blast
from sf (2 )[OF ai] have a 6= 0 by auto
have 1 = gcd ?x a
proof (rule gcdI )

fix d
assume d: d dvd ?x d dvd a
from content-dvd-contentI [OF d(1 )] x have cnt: is-unit (content d) by

auto
show is-unit d
proof (cases degree d = 1 )

case False
with divides-degree[OF d(1 ), unfolded degx] have degree d = 0 by auto
from degree0-coeffs[OF this] obtain c where dc: d = [:c:] by auto
from cnt[unfolded dc] have is-unit c by (auto simp: content-def , cases

c = 0 , auto)
hence d ∗ d = 1 unfolding dc by (auto, cases c = −1 ; cases c = 1 ,

auto)
thus is-unit d by (metis dvd-triv-right)

next
case True
from d(1 ) obtain e where xde: ?x = d ∗ e unfolding dvd-def by auto
from arg-cong[OF this, of degree] degx have degree d + degree e = 1

by (metis True add.right-neutral degree-0 degree-mult-eq one-neq-zero)
with True have degree e = 0 by auto
from degree0-coeffs[OF this] xde obtain e where xde: ?x = [:e:] ∗ d by

auto
from arg-cong[OF this, of content, unfolded content-mult] x
have content [:e:] ∗ content d = 1 by auto
also have content [:e :] = abs e by (auto simp: content-def , cases e =

0 , auto)
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finally have |e| ∗ content d = 1 .
from pos-zmult-eq-1-iff-lemma[OF this] have e ∗ e = 1 by (cases e =

1 ; cases e = −1 , auto)
with arg-cong[OF xde, of smult e] have d = ?x ∗ [:e:] by auto
hence ?x dvd d unfolding dvd-def by blast
with d(2 ) have ?x dvd a by (metis dvd-trans)
with dvd show ?thesis by auto

qed
qed auto
hence coprime ?x a

by (simp add: gcd-eq-1-imp-coprime)
note this dvd

} note hs-dvd-x = this
from hs-dvd-x[of ?x Suc m]
have nmem: (?x,Suc m) /∈ set hs by auto
hence eq: ?x ^ n ∗ g = smult d (

∏
(a, i)∈set fs. a ^ i)

unfolding sf (1 ) unfolding id Suc by simp
have eq0 : ?x ^ n ∗ g = 0 ←→ g = 0 by simp

have square-free-factorization f (d,fs) unfolding fg id(1 ) square-free-factorization-def
split eq0 unfolding eq

proof (intro conjI allI impI , rule refl)
fix a i
assume ai: (a,i) ∈ set fs
thus square-free a degree a > 0 i > 0 using sf (2 ) sfx degx unfolding id

by auto
fix b j
assume bj: (b,j) ∈ set fs and diff : (a,i) 6= (b,j)
consider (hs-hs) (a,i) ∈ set hs (b,j) ∈ set hs
| (hs-x) (a,i) ∈ set hs b = ?x
| (x-hs) (b,j) ∈ set hs a = ?x
using ai bj diff unfolding id by auto

thus Rings.coprime a b
proof cases

case hs-hs
from sf (3 )[OF this diff ] show ?thesis .

next
case hs-x
from hs-dvd-x(1 )[OF hs-x(1 )] show ?thesis unfolding hs-x(2 )

by (simp add: ac-simps)
next

case x-hs
from hs-dvd-x(1 )[OF x-hs(1 )] show ?thesis unfolding x-hs(2 )

by simp
qed

next
show g = 0 =⇒ d = 0 using sf (4 ) by auto
show g = 0 =⇒ fs = [] using sf (4 ) xs Suc by auto
show distinct fs using sf (5 ) nmem unfolding id by auto

qed
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thus ?thesis using one unfolding id by auto
qed

qed
qed
end

lift-definition berlekamp-zassenhaus-factorization-algorithm :: int-poly-factorization-algorithm
is berlekamp-zassenhaus-factorization
using berlekamp-zassenhaus-factorization-irreducibled by blast

abbreviation factorize-int-poly where
factorize-int-poly ≡ factorize-int-poly-generic berlekamp-zassenhaus-factorization-algorithm

end

11.4 Factoring Rational Polynomials
We combine the factorization algorithm for integer polynomials with Gauss
Lemma to a factorization algorithm for rational polynomials.
theory Factorize-Rat-Poly
imports

Factorize-Int-Poly
begin

interpretation content-hom: monoid-mult-hom
content:: ′a::{factorial-semiring, semiring-gcd, normalization-semidom-multiplicative}

poly ⇒ -
by (unfold-locales, auto simp: content-mult)

lemma prod-dvd-1-imp-all-dvd-1 :
assumes finite X and prod f X dvd 1 and x ∈ X shows f x dvd 1

proof (insert assms, induct rule:finite-induct)
case IH : (insert x ′ X)
show ?case
proof (cases x = x ′)

case True
with IH show ?thesis using dvd-trans[of f x ′ f x ′ ∗ - 1 ]

by (metis dvd-triv-left prod.insert)
next

case False
then show ?thesis using IH by (auto intro!: IH (3 ) dvd-trans[of prod f X - ∗

prod f X 1 ])
qed

qed simp

context
fixes alg :: int-poly-factorization-algorithm

begin
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definition factorize-rat-poly-generic :: rat poly ⇒ rat × (rat poly × nat) list where
factorize-rat-poly-generic f = (case rat-to-normalized-int-poly f of

(c,g) ⇒ case factorize-int-poly-generic alg g of (d,fs) ⇒ (c ∗ rat-of-int d,
map (λ (fi,i). (map-poly rat-of-int fi, i)) fs))

lemma factorize-rat-poly-0 [simp]: factorize-rat-poly-generic 0 = (0 ,[])
unfolding factorize-rat-poly-generic-def rat-to-normalized-int-poly-def by simp

lemma factorize-rat-poly:
assumes res: factorize-rat-poly-generic f = (c,fs)
shows square-free-factorization f (c,fs)

and (fi,i) ∈ set fs =⇒ irreducible fi
proof(atomize(full), cases f=0 , goal-cases)

case 1 with res show ?case by (auto simp: square-free-factorization-def )
next

case 2 show ?case
proof (unfold square-free-factorization-def split, intro conjI impI allI )

let ?r = rat-of-int
let ?rp = map-poly ?r
obtain d g where ri: rat-to-normalized-int-poly f = (d,g) by force
obtain e gs where fi: factorize-int-poly-generic alg g = (e,gs) by force
from res[unfolded factorize-rat-poly-generic-def ri fi split]
have c: c = d ∗ ?r e and fs: fs = map (λ (fi,i). (?rp fi, i)) gs by auto
from factorize-int-poly[OF fi]
have irr : (fi, i) ∈ set gs =⇒ irreducible fi ∧ content fi = 1 for fi i

using irreducible-imp-primitive[of fi] by auto
note sff = factorize-int-poly(1 )[OF fi]
note sff ′ = square-free-factorizationD[OF sff ]
{

fix n f
have ?rp (f ^ n) = (?rp f ) ^ n

by (induct n, auto simp: hom-distribs)
} note exp = this
show dist: distinct fs using sff ′(5 ) unfolding fs distinct-map inj-on-def by

auto
interpret mh: map-poly-inj-idom-hom rat-of-int..
have f = smult d (?rp g) using rat-to-normalized-int-poly[OF ri] by auto
also have . . . = smult d (?rp (smult e (

∏
(a, i)∈set gs. a ^ i))) using sff ′(1 )

by simp
also have . . . = smult c (?rp (

∏
(a, i)∈set gs. a ^ i)) unfolding c by (simp

add: hom-distribs)
also have ?rp (

∏
(a, i)∈set gs. a ^ i) = (

∏
(a, i)∈set fs. a ^ i)

unfolding prod.distinct-set-conv-list[OF sff ′(5 )] prod.distinct-set-conv-list[OF
dist]

unfolding fs
by (insert exp, auto intro!: arg-cong[of - - λx. prod-list (map x gs)] simp:

hom-distribs of-int-poly-hom.hom-prod-list)
finally show f : f = smult c (

∏
(a, i)∈set fs. a ^ i) by auto

{
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fix a i
assume ai: (a,i) ∈ set fs
from ai obtain A where a: a = ?rp A and A: (A,i) ∈ set gs unfolding fs

by auto
fix b j
assume (b,j) ∈ set fs and diff : (a,i) 6= (b,j)
from this(1 ) obtain B where b: b = ?rp B and B: (B,j) ∈ set gs unfolding

fs by auto
from diff [unfolded a b] have (A,i) 6= (B,j) by auto
from sff ′(3 )[OF A B this]
show Rings.coprime a b

by (auto simp add: coprime-iff-gcd-eq-1 gcd-rat-to-gcd-int a b)
}
{

fix fi i
assume (fi,i) ∈ set fs
then obtain gi where fi: fi = ?rp gi and gi: (gi,i) ∈ set gs unfolding fs

by auto
from sff ′(2 )[OF gi] show 0 < i by auto
from irr [OF gi] have cf-gi: primitive gi by auto
then have primitive (?rp gi) by (auto simp: content-field-poly)

note [simp] = irreducible-primitive-connect[OF cf-gi] irreducible-primitive-connect[OF
this]

show irreducible fi
using irr [OF gi] fi irreducibled-int-rat[of gi,simplified] by auto
then show degree fi > 0 square-free fi unfolding fi

by (auto intro: irreducible-imp-square-free)
}
{
assume f = 0 with ri have ∗: d = 1 g = 0 unfolding rat-to-normalized-int-poly-def

by auto
with sff ′(4 )[OF ∗(2 )] show c = 0 fs = [] unfolding c fs by auto

}
qed

qed

end

abbreviation factorize-rat-poly where
factorize-rat-poly ≡ factorize-rat-poly-generic berlekamp-zassenhaus-factorization-algorithm

end

12 External Interface
We provide two functions for external usage that work on lists and integers
only, so that they can easily be accessed via these primitive datatypes.
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theory Factorization-External-Interface
imports

Factorize-Rat-Poly
Factorize-Int-Poly

begin

declare Lcm-fin.set-eq-fold[code-unfold]

definition factor-int-poly :: integer list ⇒ integer × (integer list × integer) list
where

factor-int-poly p = map-prod integer-of-int (map (map-prod (map integer-of-int
o coeffs) integer-of-nat))

(factorize-int-poly (poly-of-list (map int-of-integer p)))

Just for clarifying the representation, we present a part of the soundness
statement of the factorization algorithm with conversions included
lemma factor-int-poly: assumes factor-int-poly p = (c, qes)

shows poly-of-list (map int-of-integer p) = smult (int-of-integer c)
(
∏

(q, e)←qes. poly-of-list (map int-of-integer q) ^ nat-of-integer e)
(is ?p = ?prod)

proof −
obtain C Qes where fact: factorize-int-poly ?p = (C ,Qes) by force
from square-free-factorization-prod-list[OF factorize-int-poly(1 )[OF this]]
have ?p = smult C (

∏
(x, y)←Qes. x ^ y) .

also have . . . = ?prod using assms[unfolded factor-int-poly-def fact, symmetric]
by (intro arg-cong2 [of - - - - λ x y. smult x (prod-list y)], auto simp: o-def )

finally show ?thesis .
qed

Note that coefficients are listed with lowest coefficient as head of list
value coeffs (monom 1 3 ) :: int list
value factor-int-poly [0 ,0 ,0 ,5 ]
value factor-int-poly [0 ,1 ,−2 ,1 ]

definition integers-of-rat where integers-of-rat x = map-prod integer-of-int inte-
ger-of-int (quotient-of x)
fun rat-of-integers where rat-of-integers (n,d) = (rat-of-int (int-of-integer n) /
rat-of-int (int-of-integer d))

definition integer-of-rat where integer-of-rat x = integer-of-int (fst (quotient-of
x))
definition rat-of-integer where rat-of-integer x = rat-of-int (int-of-integer x)

lemma integers-of-rat[simp]: rat-of-integers (integers-of-rat x) = x
proof −

obtain n d where id: quotient-of x = (n,d) by force
from quotient-of-div[OF id]
show ?thesis unfolding integers-of-rat-def id by auto
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qed

lemma integer-of-rat[simp]: assumes x ∈ �
shows rat-of-integer (integer-of-rat x) = x

proof −
from assms obtain y where x: x = of-int y unfolding Ints-def by auto
hence id: quotient-of x = (y,1 ) by simp
from quotient-of-div[OF id]
show ?thesis unfolding integer-of-rat-def rat-of-integer-def id by auto

qed

definition factor-rat-poly :: (integer × integer) list ⇒ (integer × integer) ×
(integer list × integer) list where

factor-rat-poly p = map-prod integers-of-rat (map (map-prod (map integer-of-rat
o coeffs) integer-of-nat))

(factorize-rat-poly (poly-of-list (map rat-of-integers p)))

lemma factor-rat-poly: assumes factor-rat-poly p = (c, qes)
shows poly-of-list (map rat-of-integers p) = smult (rat-of-integers c)
(
∏

(q, e)←qes. poly-of-list (map rat-of-integer q) ^ nat-of-integer e)
(is ?p = ?prod)

proof −
obtain C Qes where fact: factorize-rat-poly ?p = (C ,Qes) by force
{

fix a b
assume ab: (a,b) ∈ set Qes
with fact[unfolded factorize-rat-poly-generic-def ] have a: a ∈ range of-int-poly

by (auto split: prod.splits)
have map (λx. rat-of-integer (integer-of-rat x)) (coeffs a) = map (λ x. x) (coeffs

a)
by (intro map-cong[OF refl integer-of-rat], insert a, force)

hence Poly (map (λx. rat-of-integer (integer-of-rat x)) (coeffs a)) = a by simp

} note eq = this
from square-free-factorization-prod-list[OF factorize-rat-poly(1 )[OF fact]]
have ?p = smult C (

∏
(x, y)←Qes. x ^ y) .

also have . . . = ?prod using assms[unfolded factor-rat-poly-def fact, symmetric]
apply (intro arg-cong2 [of - - - - λ x y. smult x (prod-list y)])
subgoal by simp
subgoal using eq by (auto simp add: o-def intro!: arg-cong[of - - λ x. x ^ -])
done

finally show ?thesis .
qed

Note that rational numbers in the input are encoded as pairs, whereas
the polynomials in the output are just integer polynomials, i.e., only the
constant factor is a rational number
value factor-rat-poly [(1 ,6 ),(−1 ,3 ),(1 ,6 )]
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end
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