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Abstract

This entry defines the Bell numbers [1] as the cardinality of set
partitions for a carrier set of given size, and derives Spivey’s general-
ized recurrence relation for Bell numbers [2] following his elegant and
intuitive combinatorial proof.

As the set construction for the combinatorial proof requires con-
struction of three intermediate structures, the main difficulty of the
formalization is handling the overall combinatorial argument in a struc-
tured way. The introduced proof structure allows us to compose the
combinatorial argument from its subparts, and supports to keep track
how the detailed proof steps are related to the overall argument. To
obtain this structure, this entry uses set monad notation for the set
construction’s definition, introduces suitable predicates and rules, and
follows a repeating structure in its Isar proof.
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1 Bell Numbers and Spivey’s Generalized Recur-
rence

theory Bell-Numbers
imports

HOL−Library.FuncSet
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HOL−Library.Monad-Syntax
HOL−Library.Code-Target-Nat
HOL−Combinatorics.Stirling
Card-Partitions.Injectivity-Solver
Card-Partitions.Card-Partitions

begin

1.1 Preliminaries
1.1.1 Additions to FuncSet
lemma extensional-funcset-ext:

assumes f ∈ A →E B g ∈ A →E B
assumes

∧
x. x ∈ A =⇒ f x = g x

shows f = g
〈proof 〉

1.1.2 Additions for Injectivity Proofs
lemma inj-on-impl-inj-on-image:

assumes inj-on f A
assumes

∧
x. x ∈ X =⇒ x ⊆ A

shows inj-on ((‘) f ) X
〈proof 〉

lemma injectivity-union:
assumes A ∪ B = C ∪ D
assumes P A P C
assumes Q B Q D∧

S T . P S =⇒ Q T =⇒ S ∩ T = {}
shows A = C ∧ B = D
〈proof 〉

lemma injectivity-image:
assumes f ‘ A = g ‘ A
assumes ∀ x∈A. invert (f x) = x ∧ invert (g x) = x
shows ∀ x∈A. f x = g x
〈proof 〉

lemma injectivity-image-union:
assumes (λX . X ∪ F X) ‘ P = (λX . X ∪ G X) ‘ P ′

assumes ∀X ∈ P. X ⊆ A ∀X ∈ P ′. X ⊆ A
assumes ∀X ∈ P. ∀ y∈F X . y /∈ A ∀X ∈ P ′. ∀ y∈G X . y /∈ A
shows P = P ′

〈proof 〉

1.2 Definition of Bell Numbers
definition Bell :: nat ⇒ nat
where
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Bell n = card {P. partition-on {0 ..<n} P}

lemma Bell-altdef :
assumes finite A
shows Bell (card A) = card {P. partition-on A P}
〈proof 〉

lemma Bell-0 :
Bell 0 = 1
〈proof 〉

1.3 Construction of the Partitions
definition construct-partition-on :: ′a set ⇒ ′a set ⇒ ′a set set set
where

construct-partition-on B C =
do {

k ← {0 ..card B};
j ← {0 ..card C};
P ← {P. partition-on C P ∧ card P = j};
B ′← {B ′. B ′ ⊆ B ∧ card B ′ = k};
Q ← {Q. partition-on B ′ Q};
f ← (B − B ′) →E P;
P ′ ← {(λX . X ∪ {x ∈ B − B ′. f x = X}) ‘ P};
{P ′ ∪ Q}

}

lemma construct-partition-on:
assumes finite B finite C
assumes B ∩ C = {}
shows construct-partition-on B C = {P. partition-on (B ∪ C ) P}
〈proof 〉

1.4 Injectivity of the Set Construction
lemma injectivity:

assumes B ∩ C = {}
assumes P: (partition-on C P ∧ card P = j) ∧ (partition-on C P ′ ∧ card P ′ =

j ′)
assumes B ′: (B ′ ⊆ B ∧ card B ′ = k) ∧ (B ′′ ⊆ B ∧ card B ′′ = k ′)
assumes Q: partition-on B ′ Q ∧ partition-on B ′′ Q ′

assumes f : f ∈ B − B ′→E P ∧ g ∈ B − B ′′→E P ′

assumes P ′: P ′′ = (λX . X ∪ {x ∈ B − B ′. f x = X}) ‘ P ∧
P ′′′ = (λX . X ∪ {x ∈ B − B ′′. g x = X}) ‘ P ′

assumes eq-result: P ′′ ∪ Q = P ′′′ ∪ Q ′

shows f = g and Q = Q ′ and B ′ = B ′′

and P = P ′ and j = j ′ and k = k ′

〈proof 〉
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1.5 The Generalized Bell Recurrence Relation
theorem Bell-eq:

Bell (n + m) = (
∑

k≤n.
∑

j≤m. j ^ (n − k) ∗ Stirling m j ∗ (n choose k) ∗
Bell k)
〈proof 〉

1.6 Corollaries of the Generalized Bell Recurrence
corollary Bell-Stirling-eq:

Bell m = (
∑

j≤m. Stirling m j)
〈proof 〉

corollary Bell-recursive-eq:
Bell (n + 1 ) = (

∑
k≤n. (n choose k) ∗ Bell k)

〈proof 〉

1.7 Code equations for the computation of Bell numbers

It is slow to compute Bell numbers without dynamic programming (DP).
The following is a DP algorithm derived from the previous recursion formula
Bell-recursive-eq.
fun Bell-list-aux :: nat ⇒ nat list

where
Bell-list-aux 0 = [1 ] |
Bell-list-aux (Suc n) = (

let prev-list = Bell-list-aux n;
next-val = (

∑
(k,z) ← List.enumerate 0 prev-list. z ∗ (n choose (n−k)))

in next-val#prev-list)

definition Bell-list :: nat ⇒ nat list
where Bell-list n = rev (Bell-list-aux n)

lemma bell-list-eq: Bell-list n = map Bell [0 ..<n+1 ]
〈proof 〉

lemma Bell-eval[code]: Bell n = last (Bell-list n)
〈proof 〉

end
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