
Spivey’s Generalized Recurrence for Bell Numbers

Lukas Bulwahn

March 17, 2025

Abstract

This entry defines the Bell numbers [1] as the cardinality of set
partitions for a carrier set of given size, and derives Spivey’s general-
ized recurrence relation for Bell numbers [2] following his elegant and
intuitive combinatorial proof.

As the set construction for the combinatorial proof requires con-
struction of three intermediate structures, the main difficulty of the
formalization is handling the overall combinatorial argument in a struc-
tured way. The introduced proof structure allows us to compose the
combinatorial argument from its subparts, and supports to keep track
how the detailed proof steps are related to the overall argument. To
obtain this structure, this entry uses set monad notation for the set
construction’s definition, introduces suitable predicates and rules, and
follows a repeating structure in its Isar proof.

Contents
1 Bell Numbers and Spivey’s Generalized Recurrence 1

1.1 Preliminaries . 2
1.1.1 Additions to FuncSet 2
1.1.2 Additions for Injectivity Proofs 2

1.2 Definition of Bell Numbers 3
1.3 Construction of the Partitions 4
1.4 Injectivity of the Set Construction 8
1.5 The Generalized Bell Recurrence Relation 9
1.6 Corollaries of the Generalized Bell Recurrence 12
1.7 Code equations for the computation of Bell numbers 13

1 Bell Numbers and Spivey’s Generalized Recur-
rence

theory Bell-Numbers
imports

HOL−Library.FuncSet

1

HOL−Library.Monad-Syntax
HOL−Library.Code-Target-Nat
HOL−Combinatorics.Stirling
Card-Partitions.Injectivity-Solver
Card-Partitions.Card-Partitions

begin

1.1 Preliminaries
1.1.1 Additions to FuncSet
lemma extensional-funcset-ext:

assumes f ∈ A →E B g ∈ A →E B
assumes

∧
x. x ∈ A =⇒ f x = g x

shows f = g
using assms by (metis PiE-iff extensionalityI)

1.1.2 Additions for Injectivity Proofs
lemma inj-on-impl-inj-on-image:

assumes inj-on f A
assumes

∧
x. x ∈ X =⇒ x ⊆ A

shows inj-on ((‘) f) X
using assms by (meson inj-onI inj-on-image-eq-iff)

lemma injectivity-union:
assumes A ∪ B = C ∪ D
assumes P A P C
assumes Q B Q D∧

S T . P S =⇒ Q T =⇒ S ∩ T = {}
shows A = C ∧ B = D

using assms Int-Un-distrib Int-commute inf-sup-absorb by blast+

lemma injectivity-image:
assumes f ‘ A = g ‘ A
assumes ∀ x∈A. invert (f x) = x ∧ invert (g x) = x
shows ∀ x∈A. f x = g x

using assms by (metis (no-types, lifting) image-iff)

lemma injectivity-image-union:
assumes (λX . X ∪ F X) ‘ P = (λX . X ∪ G X) ‘ P ′

assumes ∀X ∈ P. X ⊆ A ∀X ∈ P ′. X ⊆ A
assumes ∀X ∈ P. ∀ y∈F X . y /∈ A ∀X ∈ P ′. ∀ y∈G X . y /∈ A
shows P = P ′

proof
show P ⊆ P ′

proof
fix X
assume X ∈ P
from assms(1) this obtain X ′ where X ′ ∈ P ′ and X ∪ F X = X ′ ∪ G X ′

2

by (metis imageE image-eqI)
moreover from assms(2 ,4) ‹X ∈ P› have X : (X ∪ F X) ∩ A = X by auto
moreover from assms(3 ,5) ‹X ′ ∈ P ′› have X ′: (X ′ ∪ G X ′) ∩ A = X ′ by

auto
ultimately have X = X ′ by simp
from this ‹X ′ ∈ P ′› show X ∈ P ′ by auto

qed
next

show P ′ ⊆ P
proof

fix X ′

assume X ′ ∈ P ′

from assms(1) this obtain X where X ∈ P and X ∪ F X = X ′ ∪ G X ′

by (metis imageE image-eqI)
moreover from assms(2 ,4) ‹X ∈ P› have X : (X ∪ F X) ∩ A = X by auto
moreover from assms(3 ,5) ‹X ′ ∈ P ′› have X ′: (X ′ ∪ G X ′) ∩ A = X ′ by

auto
ultimately have X = X ′ by simp
from this ‹X ∈ P› show X ′ ∈ P by auto

qed
qed

1.2 Definition of Bell Numbers
definition Bell :: nat ⇒ nat
where

Bell n = card {P. partition-on {0 ..<n} P}

lemma Bell-altdef :
assumes finite A
shows Bell (card A) = card {P. partition-on A P}

proof −
from ‹finite A› obtain f where bij: bij-betw f {0 ..<card A} A

using ex-bij-betw-nat-finite by blast
from this have inj: inj-on f {0 ..<card A}

using bij-betw-imp-inj-on by blast
from bij have image-f-eq: A = f ‘ {0 ..<card A}

using bij-betw-imp-surj-on by blast
have ∀ x ∈ {P. partition-on {0 ..<card A} P}. x ⊆ Pow {0 ..<card A}

by (auto elim: partition-onE)
from this inj have inj-on ((‘) ((‘) f)) {P. partition-on {0 ..<card A} P}

by (intro inj-on-impl-inj-on-image[of - Pow {0 ..<card A}]
inj-on-impl-inj-on-image[of - {0 ..<card A}]) blast+

moreover from inj have (‘) ((‘) f) ‘ {P. partition-on {0 ..<card A} P} = {P.
partition-on A P}

by (subst image-f-eq, auto elim!: set-of-partition-on-map)
ultimately have bij-betw ((‘) ((‘) f)) {P. partition-on {0 ..<card A} P} {P.

partition-on A P}
by (auto intro: bij-betw-imageI)

3

from this ‹finite A› show ?thesis
unfolding Bell-def
by (subst bij-betw-iff-card[symmetric]) (auto intro: finitely-many-partition-on)

qed

lemma Bell-0 :
Bell 0 = 1

by (auto simp add: Bell-def partition-on-empty)

1.3 Construction of the Partitions
definition construct-partition-on :: ′a set ⇒ ′a set ⇒ ′a set set set
where

construct-partition-on B C =
do {

k ← {0 ..card B};
j ← {0 ..card C};
P ← {P. partition-on C P ∧ card P = j};
B ′← {B ′. B ′ ⊆ B ∧ card B ′ = k};
Q ← {Q. partition-on B ′ Q};
f ← (B − B ′) →E P;
P ′ ← {(λX . X ∪ {x ∈ B − B ′. f x = X}) ‘ P};
{P ′ ∪ Q}

}

lemma construct-partition-on:
assumes finite B finite C
assumes B ∩ C = {}
shows construct-partition-on B C = {P. partition-on (B ∪ C) P}

proof (rule set-eqI ′)
fix Q ′

assume Q ′ ∈ construct-partition-on B C
from this obtain j k P P ′ Q B ′ f

where j ≤ card C
and k ≤ card B
and P: partition-on C P ∧ card P = j
and B ′: B ′ ⊆ B ∧ card B ′ = k
and Q: partition-on B ′ Q
and f : f ∈ B − B ′→E P
and P ′: P ′ = (λX . X ∪ {x ∈ B − B ′. f x = X}) ‘ P
and Q ′: Q ′ = P ′ ∪ Q
unfolding construct-partition-on-def by auto

from P f have partition-on (B − B ′ ∪ C) P ′

unfolding P ′ using ‹B ∩ C = {}›
by (intro partition-on-insert-elements) auto

from this Q have partition-on ((B − B ′ ∪ C) ∪ B ′) Q ′

unfolding Q ′ using B ′ ‹B ∩ C = {}› by (auto intro: partition-on-union)
from this have partition-on (B ∪ C) Q ′

using B ′ by (metis Diff-partition sup.assoc sup.commute)

4

from this show Q ′ ∈ {P. partition-on (B ∪ C) P} by auto
next

fix Q ′

assume Q ′: Q ′ ∈ {Q ′. partition-on (B ∪ C) Q ′}
from Q ′ have {} /∈ Q ′ by (auto elim!: partition-onE)
obtain Q where Q: Q = ((λX . if X ⊆ B then X else {}) ‘ Q ′) − {{}} by blast
obtain P ′ where P ′: P ′ = ((λX . if X ⊆ B then {} else X) ‘ Q ′) − {{}} by

blast
from P ′ Q ‹{} /∈ Q ′› have Q ′-prop: Q ′ = P ′ ∪ Q by auto
have P ′-nosubset: ∀X ∈ P ′. ¬ X ⊆ B

unfolding P ′ by auto
moreover have ∀X ∈ P ′. X ⊆ B ∪ C

using Q ′ P ′ by (auto elim: partition-onE)
ultimately have P ′-witness: ∀X ∈ P ′. ∃ x. x ∈ X ∩ C

using ‹B ∩ C = {}› by fastforce
obtain B ′ where B ′: B ′ =

⋃
Q by blast

have Q-prop: partition-on B ′ Q
using B ′ Q ′ Q ′-prop partition-on-split2 mem-Collect-eq by blast

have
⋃

P ′ = B − B ′ ∪ C
proof

have
⋃

Q ′ = B ∪ C ∀X∈Q ′. ∀X ′∈Q ′. X 6= X ′ −→ X ∩ X ′ = {}
using Q ′ unfolding partition-on-def disjoint-def by auto

from this show
⋃

P ′ ⊆ B − B ′ ∪ C
unfolding P ′ B ′ Q by auto blast

next
show B − B ′ ∪ C ⊆

⋃
P ′

proof
fix x
assume x ∈ B − B ′ ∪ C
from this obtain X where X : x ∈ X X ∈ Q ′

using Q ′ by (metis Diff-iff Un-iff mem-Collect-eq partition-on-partition-on-unique)
have ∀X ∈ Q ′. X ⊆ B −→ X ⊆ B ′

unfolding B ′ Q by auto
from this X ‹x ∈ B − B ′ ∪ C › have ¬ X ⊆ B

using ‹B ∩ C = {}› by auto
from this ‹X ∈ Q ′› have X ∈ P ′ using P ′ by auto
from this ‹x ∈ X› show x ∈

⋃
P ′ by auto

qed
qed
from this have partition-on-P ′: partition-on (B − B ′ ∪ C) P ′

using partition-on-split1 Q ′-prop Q ′ mem-Collect-eq by fastforce
obtain P where P: P = (λX . X ∩ C) ‘ P ′ by blast
from P partition-on-P ′ P ′-witness have partition-on C P

using partition-on-intersect-on-elements by auto
obtain f where f : f = (λx. if x ∈ B − B ′ then (THE X . x ∈ X ∧ X ∈ P ′) ∩

C else undefined) by blast
have P ′-prop: P ′ = (λX . X ∪ {x ∈ B − B ′. f x = X}) ‘ P
proof

{

5

fix X
assume X ∈ P ′

have X-subset: X ⊆ (B − B ′) ∪ C
using partition-on-P ′ ‹X ∈ P ′› by (auto elim: partition-onE)

have X = X ∩ C ∪ {x ∈ B − B ′. f x = X ∩ C}
proof

{
fix x
assume x ∈ X
from this X-subset have x ∈ (B − B ′) ∪ C by auto
from this have x ∈ X ∩ C ∪ {xa ∈ B − B ′. f xa = X ∩ C}
proof

assume x ∈ C
from this ‹x ∈ X› show ?thesis by simp

next
assume x ∈ B − B ′

from partition-on-P ′ ‹x ∈ X› ‹X ∈ P ′› have (THE X . x ∈ X ∧ X ∈
P ′) = X

by (simp add: partition-on-the-part-eq)
from ‹x ∈ B − B ′› this show ?thesis unfolding f by auto

qed
}
from this show X ⊆ X ∩ C ∪ {x ∈ B − B ′. f x = X ∩ C} by auto

next
show X ∩ C ∪ {xa ∈ B − B ′. f xa = X ∩ C} ⊆ X
proof

fix x
assume x ∈ X ∩ C ∪ {x ∈ B − B ′. f x = X ∩ C}
from this show x ∈ X
proof

assume x ∈ X ∩ C
from this show ?thesis by simp

next
assume x-in: x ∈ {x ∈ B − B ′. f x = X ∩ C}
from this have ex1 : ∃ !X . x ∈ X ∧ X ∈ P ′

using partition-on-P ′ by (auto intro!: partition-on-partition-on-unique)
from x-in X-subset have eq: (THE X . x ∈ X ∧ X ∈ P ′) ∩ C = X ∩ C

unfolding f by auto
from P ′-nosubset ‹X ∈ P ′› have ¬ X ⊆ B by simp
from this have X ∩ C 6= {}

using X-subset assms(3) by blast
from this obtain y where y: y ∈ X ∩ C by auto
from this eq have y-in: y ∈ (THE X . x ∈ X ∧ X ∈ P ′) ∩ C by simp
from y y-in have y ∈ X y ∈ (THE X . x ∈ X ∧ X ∈ P ′) by auto
moreover from y have ∃ !X . y ∈ X ∧ X ∈ P ′

using partition-on-P ′ by (simp add: partition-on-partition-on-unique)
moreover have (THE X . x ∈ X ∧ X ∈ P ′) ∈ P ′

using ex1 by (rule the1I2) auto
ultimately have (THE X . x ∈ X ∧ X ∈ P ′) = X using ‹X ∈ P ′› by

6

auto
from this ex1 show ?thesis by (auto intro: the1I2)

qed
qed

qed
from ‹X ∈ P ′› this have X ∈ (λX . X ∪ {x ∈ B − B ′. f x = X}) ‘ P

unfolding P by simp
}
from this show P ′ ⊆ (λX . X ∪ {x ∈ B − B ′. f x = X}) ‘ P ..

next
{

fix x
assume x-in-image: x ∈ (λX . X ∪ {x ∈ B − B ′. f x = X}) ‘ P
{

fix X
assume X ∈ P ′

have {x ∈ B − B ′. f x = X ∩ C} = {x ∈ B − B ′. x ∈ X}
proof −

{
fix x
assume x ∈ B − B ′

from this have ex1 : ∃ !X . x ∈ X ∧ X ∈ P ′

using partition-on-P ′ by (auto intro!: partition-on-partition-on-unique)
from this have in-p: (THE X . x ∈ X ∧ X ∈ P ′) ∈ P ′

and x-in: x ∈ (THE X . x ∈ X ∧ X ∈ P ′)
by (metis (mono-tags, lifting) theI)+

have f x = X ∩ C ←→ (THE X . x ∈ X ∧ X ∈ P ′) ∩ C = X ∩ C
using ‹x ∈ B − B ′› unfolding f by auto

also have ... ←→ (THE X . x ∈ X ∧ X ∈ P ′) = X
proof

assume (THE X . x ∈ X ∧ X ∈ P ′) = X
from this show (THE X . x ∈ X ∧ X ∈ P ′) ∩ C = X ∩ C by auto

next
assume (THE X . x ∈ X ∧ X ∈ P ′) ∩ C = X ∩ C
have (THE X . x ∈ X ∧ X ∈ P ′) ∩ X 6= {}

using P ′-witness ‹(THE X . x ∈ X ∧ X ∈ P ′) ∩ C = X ∩ C › ‹X ∈
P ′› by fastforce

from this show (THE X . x ∈ X ∧ X ∈ P ′) = X
using partition-on-P ′[unfolded partition-on-def disjoint-def] in-p ‹X

∈ P ′› by metis
qed
also have ... ←→ x ∈ X
using ex1 ‹X ∈ P ′› x-in by (auto; metis (no-types, lifting) the-equality)
finally have f x = X ∩ C ←→ x ∈ X .

}
from this show ?thesis by auto

qed
moreover have X ⊆ B − B ′ ∪ C

using partition-on-P ′ ‹X ∈ P ′› by (blast elim: partition-onE)

7

ultimately have X ∩ C ∪ {x ∈ B. x /∈ B ′ ∧ f x = X ∩ C} = X by auto
}
from this x-in-image have x ∈ P ′ unfolding P by auto

}
from this show (λX . X ∪ {x ∈ B − B ′. f x = X}) ‘ P ⊆ P ′ ..

qed
from partition-on-P ′ have f-prop: f ∈ (B − B ′) →E P

unfolding f P by (auto simp add: partition-on-the-part-mem)
from Q B ′ have B ′ ⊆ B by auto
obtain k where k: k = card B ′ by blast
from ‹finite B› ‹B ′ ⊆ B› k have k-prop: k ∈ {0 ..card B} by (simp add:

card-mono)
obtain j where j: j = card P by blast
from j ‹partition-on C P› have j-prop: j ∈ {0 ..card C}

by (simp add: assms(2) partition-on-le-set-elements)
from ‹partition-on C P› j have P-prop: partition-on C P ∧ card P = j by auto
from k ‹B ′ ⊆ B› have B ′-prop: B ′ ⊆ B ∧ card B ′ = k by auto
show Q ′ ∈ construct-partition-on B C

using j-prop k-prop P-prop B ′-prop Q-prop P ′-prop f-prop Q ′-prop
unfolding construct-partition-on-def
by (auto simp del: atLeastAtMost-iff) blast

qed

1.4 Injectivity of the Set Construction
lemma injectivity:

assumes B ∩ C = {}
assumes P: (partition-on C P ∧ card P = j) ∧ (partition-on C P ′ ∧ card P ′ =

j ′)
assumes B ′: (B ′ ⊆ B ∧ card B ′ = k) ∧ (B ′′ ⊆ B ∧ card B ′′ = k ′)
assumes Q: partition-on B ′ Q ∧ partition-on B ′′ Q ′

assumes f : f ∈ B − B ′→E P ∧ g ∈ B − B ′′→E P ′

assumes P ′: P ′′ = (λX . X ∪ {x ∈ B − B ′. f x = X}) ‘ P ∧
P ′′′ = (λX . X ∪ {x ∈ B − B ′′. g x = X}) ‘ P ′

assumes eq-result: P ′′ ∪ Q = P ′′′ ∪ Q ′

shows f = g and Q = Q ′ and B ′ = B ′′

and P = P ′ and j = j ′ and k = k ′

proof −
have P-nonempty-sets: ∀X∈P. ∃ c∈C . c ∈ X ∀X∈P ′. ∃ c∈C . c ∈ X

using P by (force elim: partition-onE)+
have 1 : ∀X∈P ′′. ∃ c∈C . c ∈ X ∀X∈P ′′′. ∃ c∈C . c ∈ X

using P ′ P-nonempty-sets by fastforce+
have 2 : ∀X∈Q. ∀ x∈X . x /∈ C ∀X∈Q ′. ∀ x∈X . x /∈ C

using ‹B ∩ C = {}› Q B ′ by (auto elim: partition-onE)
from eq-result have P ′′ = P ′′′ and Q = Q ′

by (auto dest: injectivity-union[OF - 1 2])
from this Q show Q = Q ′ and B ′ = B ′′

by (auto intro!: partition-on-eq-implies-eq-carrier)
have subset-C : ∀X∈P. X ⊆ C ∀X∈P ′. X ⊆ C

8

using P by (auto elim: partition-onE)
have eq-image: (λX . X ∪ {x ∈ B − B ′. f x = X}) ‘ P = (λX . X ∪ {x ∈ B −

B ′′. g x = X}) ‘ P ′

using P ′ ‹P ′′ = P ′′′› by auto
from this ‹B ∩ C = {}› show P = P ′

by (auto dest: injectivity-image-union[OF - subset-C])
have eq2 : (λX . X ∪ {x ∈ B − B ′. f x = X}) ‘ P = (λX . X ∪ {x ∈ B − B ′. g

x = X}) ‘ P
using ‹P = P ′› ‹B ′ = B ′′› eq-image by simp

from P have P-props: ∀X ∈ P. X ⊆ C ∀X ∈ P. X 6= {} by (auto elim:
partition-onE)

have invert: ∀X∈P. (X ∪ {x ∈ B − B ′. f x = X}) ∩ C = X ∧ (X ∪ {x ∈ B
− B ′. g x = X}) ∩ C = X

using ‹B ∩ C = {}› P-props by auto
have eq3 : ∀X ∈ P. (X ∪ {x ∈ B − B ′. f x = X}) = (X ∪ {x ∈ B − B ′. g x =

X})
using injectivity-image[OF eq2 invert] by blast

have eq4 : ∀X ∈ P. {x ∈ B − B ′. f x = X} = {x ∈ B − B ′. g x = X}
proof

fix X
assume X ∈ P
from this P have X ⊆ C by (auto elim: partition-onE)
have disjoint: X ∩ {x ∈ B − B ′. f x = X} = {} X ∩ {x ∈ B − B ′. g x = X}

= {}
using ‹B ∩ C = {}› ‹X ⊆ C › by auto

from eq3 ‹X ∈ P› have X ∪ {x ∈ B − B ′. f x = X} = X ∪ {x ∈ B − B ′. g
x = X} by auto

from this disjoint show {x ∈ B − B ′. f x = X} = {x ∈ B − B ′. g x = X}
by (auto intro: injectivity-union)

qed
from eq4 f have eq5 : ∀ b∈B − B ′. f b = g b by blast
from eq5 f ‹B ′ = B ′′› ‹P = P ′› show eq6 : f = g by (auto intro: exten-

sional-funcset-ext)
from P ‹P = P ′› show j = j ′ by simp
from B ′ ‹B ′ = B ′′› show k = k ′ by simp

qed

1.5 The Generalized Bell Recurrence Relation
theorem Bell-eq:

Bell (n + m) = (
∑

k≤n.
∑

j≤m. j ^ (n − k) ∗ Stirling m j ∗ (n choose k) ∗
Bell k)
proof −

define A where A = {0 ..<n + m}
define B where B = {0 ..<n}
define C where C = {n..<n + m}
have A = B ∪ C B ∩ C = {} finite B card B = n finite C card C = m

unfolding A-def B-def C-def by auto
have step1 : Bell (n + m) = card {P. partition-on A P}

9

unfolding Bell-def A-def ..
from ‹A = B ∪ C › ‹B ∩ C = {}› ‹finite B› ‹finite C ›
have step2 : card {P. partition-on A P} = card (construct-partition-on B C)

by (simp add: construct-partition-on)
note injectivity = injectivity[OF ‹B ∩ C = {}›]
let ?expr = do {

k ← {0 ..card B};
j ← {0 ..card C};
P ← {P. partition-on C P ∧ card P = j};
B ′← {B ′. B ′ ⊆ B ∧ card B ′ = k};
Q ← {Q. partition-on B ′ Q};
f ← (B − B ′) →E P;
P ′ ← {(λX . X ∪ {x ∈ B − B ′. f x = X}) ‘ P};
{P ′ ∪ Q}
}
let ?S >>= ?comp = ?expr
{

fix k
assume k: k ∈ {..card B}
let ?expr = ?comp k
let ?S >>= ?comp = ?expr
{

fix j
assume j ∈ {.. card C}
let ?expr = ?comp j
let ?S >>= ?comp = ?expr
from ‹finite C › have finite ?S

by (intro finite-Collect-conjI disjI1 finitely-many-partition-on)
{

fix P
assume P: P ∈ {P. partition-on C P ∧ card P = j}
from this have partition-on C P by simp
let ?expr = ?comp P
let ?S >>= ?comp = ?expr
have finite P
using P ‹finite C › by (auto intro: finite-elements)

from ‹finite B› have finite ?S by (auto simp add: finite-subset)
moreover
{

fix B ′

assume B ′: B ′ ∈ {B ′. B ′ ⊆ B ∧ card B ′ = k}
from this have B ′ ⊆ B by simp
let ?expr = ?comp B ′

let ?S >>= ?comp = ?expr
from ‹finite B› have finite B ′

using B ′ by (auto simp add: finite-subset)
from ‹finite B ′› have finite {Q. partition-on B ′ Q}

by (rule finitely-many-partition-on)
moreover

10

{
fix Q
assume Q: Q ∈ {Q. partition-on B ′ Q}
let ?expr = ?comp Q
let ?S >>= ?comp = ?expr
{

fix f
assume f ∈ B − B ′→E P
let ?expr = ?comp f
let ?S >>= ?comp = ?expr
have disjoint-family-on ?comp ?S

by (auto intro: disjoint-family-onI)
from this have card ?expr = 1

by (simp add: card-bind-constant)
moreover have finite ?expr

by (simp add: finite-bind)
ultimately have finite ?expr ∧ card ?expr = 1 by blast

}
moreover have finite ?S

using ‹finite B› ‹finite P› by (auto intro: finite-PiE)
moreover have disjoint-family-on ?comp ?S

using P B ′ Q
by (injectivity-solver rule: local.injectivity(1))

moreover have card ?S = j ^ (n − k)
proof −

have card (B − B ′) = n − k
using B ′ ‹finite B ′› ‹card B = n›
by (subst card-Diff-subset) auto

from this show ?thesis
using ‹finite B› P
by (subst card-PiE) (simp add: prod-constant)+

qed
ultimately have card ?expr = j ^ (n − k)

by (simp add: card-bind-constant)
moreover have finite ?expr

using ‹finite ?S› ‹finite {P. partition-on C P ∧ card P = j}›
by (auto intro!: finite-bind)

ultimately have finite ?expr ∧ card ?expr = j ^ (n − k) by blast
} note inner = this
moreover have card ?S = Bell k

using B ′ ‹finite B ′› by (auto simp add: Bell-altdef [symmetric])
moreover have disjoint-family-on ?comp ?S

using P B ′

by (injectivity-solver rule: local.injectivity(2))
ultimately have card ?expr = j ^ (n − k) ∗ Bell k

by (subst card-bind-constant) auto
moreover have finite ?expr

using inner ‹finite ?S› by (auto intro: finite-bind)
ultimately have finite ?expr ∧ card ?expr = j ^ (n − k) ∗ Bell k by blast

11

} note inner = this
moreover have card ?S = n choose k

using ‹card B = n› ‹finite B› by (simp add: n-subsets)
moreover have disjoint-family-on ?comp ?S

using P
by (injectivity-solver rule: local.injectivity(3))

ultimately have card ?expr = j ^ (n − k) ∗ (n choose k) ∗ Bell k
by (subst card-bind-constant) auto

moreover have finite ?expr
using inner ‹finite ?S› by (auto intro: finite-bind)

ultimately have finite ?expr ∧ card ?expr = j ^ (n − k) ∗ (n choose k) ∗
Bell k by blast

} note inner = this
moreover note ‹finite ?S›
moreover have card ?S = Stirling m j

using ‹finite C › ‹card C = m› by (simp add: card-partition-on)
moreover have disjoint-family-on ?comp ?S

by (injectivity-solver rule: local.injectivity(4))
ultimately have card ?expr = j ^ (n − k) ∗ Stirling m j ∗ (n choose k) ∗

Bell k
by (subst card-bind-constant) auto

moreover have finite ?expr
using inner ‹finite ?S› by (auto intro: finite-bind)

ultimately have finite ?expr ∧ card ?expr = j ^ (n − k) ∗ Stirling m j ∗ (n
choose k) ∗ Bell k by blast

} note inner = this
moreover have finite ?S by simp
moreover have disjoint-family-on ?comp ?S

by (injectivity-solver rule: local.injectivity(5))
ultimately have card ?expr = (

∑
j≤m. j ^ (n − k) ∗ Stirling m j ∗ (n choose

k) ∗ Bell k) (is - = ?formula)
using ‹card C = m› by (subst card-bind) (auto intro: sum.cong)

moreover have finite ?expr
using inner ‹finite ?S› by (auto intro: finite-bind)

ultimately have finite ?expr ∧ card ?expr = ?formula by blast
}
moreover have finite ?S by simp
moreover have disjoint-family-on ?comp ?S

by (injectivity-solver rule: local.injectivity(6))
ultimately have step3 : card (construct-partition-on B C) = (

∑
k≤n.

∑
j≤m.

j ^ (n − k) ∗ Stirling m j ∗ (n choose k) ∗ Bell k)
unfolding construct-partition-on-def
using ‹card B = n› by (subst card-bind) (auto intro: sum.cong)

from step1 step2 step3 show ?thesis by auto
qed

1.6 Corollaries of the Generalized Bell Recurrence
corollary Bell-Stirling-eq:

12

Bell m = (
∑

j≤m. Stirling m j)
proof −

have Bell m = Bell (0 + m) by simp
also have ... = (

∑
j≤m. Stirling m j)

unfolding Bell-eq[of 0] by (simp add: Bell-0)
finally show ?thesis .

qed

corollary Bell-recursive-eq:
Bell (n + 1) = (

∑
k≤n. (n choose k) ∗ Bell k)

unfolding Bell-eq[of - 1] by simp

1.7 Code equations for the computation of Bell numbers

It is slow to compute Bell numbers without dynamic programming (DP).
The following is a DP algorithm derived from the previous recursion formula
Bell-recursive-eq.
fun Bell-list-aux :: nat ⇒ nat list

where
Bell-list-aux 0 = [1] |
Bell-list-aux (Suc n) = (

let prev-list = Bell-list-aux n;
next-val = (

∑
(k,z) ← List.enumerate 0 prev-list. z ∗ (n choose (n−k)))

in next-val#prev-list)

definition Bell-list :: nat ⇒ nat list
where Bell-list n = rev (Bell-list-aux n)

lemma bell-list-eq: Bell-list n = map Bell [0 ..<n+1]
proof −

have Bell-list-aux n = rev (map Bell [0 ..<Suc n])
proof (induction n)

case 0
then show ?case by (simp add:Bell-0)

next
case (Suc n)
define x where x = Bell-list-aux n
define y where y = (

∑
(k,z) ← List.enumerate 0 x. z ∗ (n choose (n−k)))

define sn where sn = n+1
have b:x = rev (map Bell [0 ..<sn])

using Suc x-def sn-def by simp
have c: length x = sn

unfolding b by simp

have snd i = Bell (n − fst i) if i ∈ set (List.enumerate 0 x) for i
proof −

have fst i < length x snd i = x ! fst i
using iffD1 [OF in-set-enumerate-eq that] by auto

hence snd i = Bell (sn − Suc (fst i))

13

unfolding b by (simp add:rev-nth)
thus ?thesis

unfolding sn-def by simp
qed

hence y = (
∑

i←enumerate 0 x. Bell (n − fst i) ∗ (n choose (n − fst i)))
unfolding y-def by (intro arg-cong[where f=sum-list] map-cong refl)
(simp add:case-prod-beta)

also have ... = (
∑

i←map fst (enumerate 0 x). Bell (n − i) ∗ (n choose (n −
i)))

by (subst map-map) (simp add:comp-def)
also have ... = (

∑
i = 0 ..<length x. Bell (n−i) ∗ (n choose (n−i)))

by (simp add:interv-sum-list-conv-sum-set-nat)
also have ... = (

∑
i≤n. Bell (n−i) ∗ (n choose (n−i)))

using c sn-def by (intro sum.cong) auto
also have ... = (

∑
i ∈ (λk. n− k) ‘ {..n}. Bell i ∗ (n choose i))

by (subst sum.reindex, auto simp add:inj-on-def)
also have ... = (

∑
i ≤ n. Bell i ∗ (n choose i))

by (intro sum.cong refl iffD2 [OF set-eq-iff] allI)
(simp add:image-iff atMost-def , presburger)

also have ... = Bell (Suc n)
using Bell-recursive-eq by (simp add:mult.commute)

finally have a: y = Bell (Suc n) by simp

have Bell-list-aux (Suc n) = y#x
unfolding x-def y-def by (simp add:Let-def)

also have ... = Bell (Suc n)#(rev (map Bell [0 ..<Suc n]))
unfolding a b sn-def by simp

also have ... = rev (map Bell [0 ..<Suc (Suc n)])
by simp

finally show ?case by simp
qed
thus Bell-list n = map Bell [0 ..<n+1]

by (simp add:Bell-list-def)
qed

lemma Bell-eval[code]: Bell n = last (Bell-list n)
unfolding bell-list-eq by simp

end

References

[1] N. J. A. Sloane. A000110: Bell or exponential numbers: number of ways
to partition a set of n labeled elements. In The On-Line Encyclopedia of
Integer Sequences. https://oeis.org/A000110.

[2] M. Z. Spivey. A generalized recurrence for Bell numbers. Journal of

14

Integer Sequences, 11, 2008. Electronic copy available at https://cs.uwa-
terloo.ca/journals/JIS/VOL11/Spivey/spivey25.pdf.

15

	Bell Numbers and Spivey's Generalized Recurrence
	Preliminaries
	Additions to FuncSet
	Additions for Injectivity Proofs

	Definition of Bell Numbers
	Construction of the Partitions
	Injectivity of the Set Construction
	The Generalized Bell Recurrence Relation
	Corollaries of the Generalized Bell Recurrence
	Code equations for the computation of Bell numbers

