Spivey’s Generalized Recurrence for Bell Numbers

Lukas Bulwahn

August 16, 2018

Abstract

This entry defines the Bell numbers [1] as the cardinality of set partitions for a carrier set of given size, and derives Spivey’s generalized recurrence relation for Bell numbers [2] following his elegant and intuitive combinatorial proof.

As the set construction for the combinatorial proof requires construction of three intermediate structures, the main difficulty of the formalization is handling the overall combinatorial argument in a structured way. The introduced proof structure allows us to compose the combinatorial argument from its subparts, and supports to keep track how the detailed proof steps are related to the overall argument. To obtain this structure, this entry uses set monad notation for the set construction’s definition, introduces suitable predicates and rules, and follows a repeating structure in its Isar proof.

Contents

1 Bell Numbers and Spivey’s Generalized Recurrence 1
 1.1 Preliminaries . 2
 1.1.1 Additions to FuncSet . 2
 1.1.2 Additions for Injectivity Proofs 2
 1.2 Definition of Bell Numbers 3
 1.3 Construction of the Partitions 4
 1.4 Injectivity of the Set Construction 8
 1.5 The Generalized Bell Recurrence Relation 9
 1.6 Corollaries of the Generalized Bell Recurrence 12

1 Bell Numbers and Spivey’s Generalized Recurrence

theory Bell-Numbers
imports
 HOL-Library.FuncSet
 HOL-Library.Monad-Syntax
1.1 Preliminaries

1.1.1 Additions to FuncSet

lemma extensional-funcset-ext:
assumes \(f \in A \to E \) \(B \) \(g \in A \to E \) \(B \)
assumes \(\forall x. \ x \in A \implies f x = g x \)
shows \(f = g \)
using assms by (metis PiE-iff extensionalityI)

1.1.2 Additions for Injectivity Proofs

lemma inj-on-impl-inj-on-image:
assumes \(\text{inj-on } f A \)
assumes \(\forall x. \ x \in X \implies x \subseteq A \)
shows \(\text{inj-on } (('f) X) \)
using assms by (meson inj-onI inj-on-image-eq-iff)

lemma injectivity-union:
assumes \(A \cup B = C \cup D \)
assumes \(P \ A \ P \ C \)
assumes \(Q \ B \ Q \ D \)
\(\forall S \ T. \ P \ S \implies Q \ T \implies S \cap T = \{} \)
shows \(A = C \land B = D \)
using assms Int-Un-distrib Int-commute inf-sup-absorb by blast+

lemma injectivity-image:
assumes \(f ' A = g ' A \)
assumes \(\forall x \in A. \ \text{invert } (f x) = x \land \text{invert } (g x) = x \)
shows \(\forall x \in A. \ f x = g x \)
using assms by (metis (no-types, lifting) image-iff)

lemma injectivity-image-union:
assumes \((\lambda X. \ X \cup F X) \ ' P = (\lambda X. \ X \cup G X) \ ' P' \)
assumes \(\forall X \in P. \ X \subseteq A \land X \in P'. \ X \subseteq A \)
assumes \(\forall y \in F X. \ y \notin A \land X \in P'. \ \forall y \in G X. \ y \notin A \)
shows \(P = P' \)
proof
show \(P \subseteq P' \)
proof
fix \(X \)
assume \(X \in P \)
from assms(1) this obtain \(X' \) where \(X' \in P' \) and \(X \cup F X = X' \cup G X' \)
by (metis imageE image-eqI)
moreover from assms(2,4) \(:X \in P' \) have \(X: (X \cup F X) \cap A = X \) by auto
moreover from \(\text{assms}(3,5) \) \(X' \in P \) have \(X' \cap (X' \cup G X') \cap A = X' \) by auto ultimately have \(X = X' \) by simp from this \(X' \in P \) show \(X \in P' \) by auto qed

next show \(P' \subseteq P \)
proof
fix \(X' \)
assume \(X' \in P' \)
from \(\text{assms}(1) \) this obtain \(X \) where \(X \in P \) and \(X \cup F X = X' \cup G X' \)
by (metis \(\text{imageE \ image-eqI} \))
moreover from \(\text{assms}(2,4) \) \(X \in P \) have \(X : (X \cup F X) \cap A = X \) by auto
moreover from \(\text{assms}(3,5) \) \(X' \in P' \) have \(X' : (X' \cup G X') \cap A = X' \) by auto ultimately have \(X = X' \) by simp from this \(X \in P \) show \(X' \in P \) by auto qed

qed

1.2 Definition of Bell Numbers

definition\(\text{Bell} :: \mathbb{N} \Rightarrow \mathbb{N}\)
where
\(\text{Bell} \; n = \text{card} \{ P. \text{partition-on} \{0..<n\} \; P \}\)

lemma\(\text{Bell-altdef} : \)
assumes \(\text{finite } A\)
shows \(\text{Bell} \; (\text{card} \; A) = \text{card} \{ P. \text{partition-on} \; A \; P \}\)
proof –
from \(\text{finite } A\) obtain \(f \) where \(\text{bij} : \text{bij-betw} \; \{0..<\text{card} \; A\} \; A \)
using \(\text{ex-bij-betw-nat-finite} \) by blast
from this have \(\text{inj} : \text{inj-on} \; f \; \{0..<\text{card} \; A\} \)
using \(\text{bij-betw-imp-inj-on} \) by blast
from \(\text{bij} \) have \(\text{image-f-eq} : A = f \; \{0..<\text{card} \; A\} \)
using \(\text{bij-betw-imp-surj-on} \) by blast
have \(\forall x \in \{ P. \text{partition-on} \; \{0..<\text{card} \; A\} \; P \}. x \subseteq \text{Pow} \; \{0..<\text{card} \; A\} \)
by (auto elim: \(\text{partition-onE} \))
from this \(\text{inj} \) have \(\text{inj-on} \; (('\) \; ((') \; f)) \; \{ P. \text{partition-on} \; \{0..<\text{card} \; A\} \; P \} \)
by (intro \(\text{inj-on-impl-inj-on-image[of - Pow \; \{0..<\text{card} \; A\}] \}
\text{inj-on-impl-inj-on-image[of - \{0..<\text{card} \; A\}]} \) blast+
moreover from \(\text{inj} \) have \(\text{bij-betw} \; ((') \; ((') \; f)) \; \{ P. \text{partition-on} \; \{0..<\text{card} \; A\} \; P \} = \{ P. \text{partition-on} \; A \; P \} \)
by (subst \(\text{image-f-eq, auto elim!: \text{set-of-partition-on-map} }\))
ultimately have \(\text{bij-betw} \; ((') \; ((') \; f)) \; \{ P. \text{partition-on} \; \{0..<\text{card} \; A\} \; P \} \; \{ P. \text{partition-on} \; A \; P \} \)
by (auto intro: \(\text{bij-betw-imageI} \))
from this \(\text{finite } A\) show \(?\text{thesis} \)
unfolding \(\text{Bell-def} \)
by (subst bij-betw-iff-card[symmetric]) (auto intro: finitely-many-partition-on)
qed

lemma Bell-0:
 Bell 0 = 1
by (auto simp add: Bell-def partition-on-empty)

1.3 Construction of the Partitions

definition construct-partition-on :: 'a set ⇒ 'a set ⇒ 'a set set set
where
 construct-partition-on B C =
 do
 k ← {0..card B};
 j ← {0..card C};
 P ← {P. partition-on C P ∧ card P = j};
 B' ← {B'. B' ⊆ B ∧ card B' = k};
 Q ← {Q. partition-on B' Q};
 f ← (B - B') → E P;
 P' ← {λ X. X ∪ {x ∈ B - B'. f x = X} ' P};
 {P' ∪ Q}
)

lemma construct-partition-on:
 assumes finite B finite C
 assumes B ∩ C = {}
 shows construct-partition-on B C = {P. partition-on (B ∪ C) P}
proof (rule set-eqI)
 fix Q'
 assume Q' ∈ construct-partition-on B C
 from this obtain j k P P' Q B' f
 where j ≤ card C
 and k ≤ card B
 and P: partition-on C P ∧ card P = j
 and B': B' ⊆ B ∧ card B' = k
 and Q: partition-on B' Q
 and f: f ∈ B - B' → E P
 and P': P' = (λX. X ∪ {x ∈ B - B'. f x = X}) ' P
 and Q': Q' = P' ∪ Q
 unfolding construct-partition-on-def by auto
 from P f have partition-on (B - B' ∪ C) P'
 unfolding P' using (B ∩ C = {});
 by (intro partition-on-insert-elements) auto
 from this Q have partition-on ((B - B' ∪ C) ∪ B') Q'
 unfolding Q' using B' (∧ B ∩ C = {}); by (auto intro: partition-on-union)
 from this have partition-on (B ∪ C) Q'
 using B' by (metis Diff-partition sup.assoc sup.commute)
 from this show Q' ∈ {P. partition-on (B ∪ C) P} by auto
next
fix Q'

assume $Q': Q' \in \{ Q', \text{partition-on (} B \cup C \text{)} \}$

from Q' have $\{ \} \notin Q'$ by (auto elim!: partition-onE)

obtain Q where $Q: Q = ((\lambda X. \text{if } X \subseteq B \text{ then } X \text{ else } \{ \}) \cdot Q') - \{ \} \text{ by blast}$

obtain P' where $P': P' = ((\lambda X. \text{if } X \subseteq B \text{ then } \{ \text{ else } X \}) \cdot Q') - \{ \} \text{ by blast}$

from $P' Q \{ \} \notin Q'$ have Q'-prop: $Q' = P' \cup Q$ by auto

have P'-nosubset: $\forall X \in P'. \neg X \subseteq B$

unfolding P' by auto

moreover have $\forall X \in P'. X \subseteq B \cup C$

using $Q' P'$ by (auto elim: partition-onE)

ultimately have P'-witness: $\forall X \in P'. \exists x. x \in X \cap C$

using $(B \cap C = \{ \})$ by fastforce

obtain B' where $B': B' = \bigcup Q$ by blast

have Q-prop: partition-on B' Q

using $B' Q$ Q'-prop partition-on-split2 mem-Collect-eq by blast

have $\bigcup P' = B - B' \cup C$

proof

have $\bigcup Q' = B \cup C \forall X \in Q', \forall X' \in Q', X \neq X' \rightarrow X \cap X' = \{ \}$

using Q' unfolding partition-on-def disjoint-def by auto

from this show $\bigcup P' \subseteq B - B' \cup C$

unfolding $P' B' Q$ by auto blast

next

show $B - B' \cup C \subseteq \bigcup P'$

proof

fix x

assume $x \in B - B' \cup C$

from this obtain X where $X: x \in X X \in Q'$

using Q' by (metis Diff_iff Un_iff mem-Collect-eq partition-on-partition-on-unique)

have $\forall X \in Q', X \subseteq B \rightarrow X \subseteq B'$

unfolding $B' Q$ by auto

from this $X (x \in B - B' \cup C)$ have $\neg X \subseteq B$

using $(B \cap C = \{ \})$ by auto

from this $X \in Q'$ have $X \in P'$ using P' by auto

from this $x \in X$ show $x \in \bigcup P'$ by auto

qed

qed

from this have partition-on-P': partition-on (B - B' \cup C) P'

using partition-on-split1 Q'-prop Q' mem-Collect-eq by fastforce

obtain P where $P: P = (\lambda X. X \cap C) \cdot P'$ by blast

from P partition-on-P' P'-witness have partition-on $C P$

using partition-on-intersect-on-elements by auto

obtain f where $f: f = (\lambda x. \text{if } x \in B - B' \text{ then } (THE X. x \in X \land X \in P') \cap C \text{ else undefined})$ by blast

have P'-prop: $P' = (\lambda X. X \cup \{ x \in B - B', f x = X \}) \cdot P$

proof

{ fix X

assume $X \in P'$

have X-subset: \(X \subseteq (B - B') \cup C \)

using partition-on-P'. \(\forall X \in P' \) by (auto elim: partition-onE)

have \(X = X \cap C \cup \{ x \in B - B'. f x = X \cap C \} \)

proof

{
 fix \(x \)
 assume \(x \in X \)
 from this X-subset have \(x \in (B - B') \cup C \) by auto
 from this have \(x \in X \cap C \cup \{ xa \in B - B'. f xa = X \cap C \} \)
 proof
 assume \(x \in C \)
 from this \(\langle x \in X \rangle \) show \(\langle \text{thesis} \rangle \) by simp
 next
 assume \(x \in B - B' \)
 from partition-on-P'. \(\langle x \in X \rangle \) \(\langle X \in P' \rangle \) have (THE \(X, x \in X \land X \in P' \))
 by (simp add: partition-on-the-part-eq)
 from \(\langle x \in B - B' \rangle \) this show \(\langle \text{thesis} \rangle \) unfolding \(f \) by auto
 qed
}

from this show \(X \subseteq X \cap C \cup \{ x \in B - B'. f x = X \cap C \} \) by auto

next

show \(X \cap C \cup \{ xa \in B - B'. f xa = X \cap C \} \subseteq X \)

proof

 fix \(x \)
 assume \(x \in X \cap C \cup \{ xa \in B - B'. f xa = X \cap C \} \)
 from this have \(x \in X \)
 proof
 assume \(x \in X \cap C \)
 from this show \(\langle \text{thesis} \rangle \) by simp
 next
 assume \(x \in B - B' \)
 from x-in X-subset have eq: (THE \(X, x \in X \land X \in P' \)) \(\cap C = X \cap C \)
 unfolding \(f \) by auto
 from P'-nosubset :\(\langle X \in P' \rangle \) have \(\neg X \subseteq B \) by simp
 from this have \(X \cap C \neq \{ \} \)
 using X-subset assms(3) by blast
 from this obtain \(y \) where \(y \in X \cap C \) by auto
 from this eq have y-in: \(y \in (THE X, x \in X \land X \in P') \cap C \) by simp
 from y y-in have \(y \in X \) \(y \in (THE X, x \in X \land X \in P') \) by auto
 moreover from y have \(\exists! X. y \in X \land X \in P' \)
 using partition-on-P' by (simp add: partition-on-partition-on-unique)
 moreover have (THE \(X, x \in X \land X \in P' \)) \(\in P' \)
 using ext1 by (rule the1I2) auto
 ultimately have (THE \(X, x \in X \land X \in P' \)) = \(X \) using \(\langle X \in P' \rangle \) by auto
 from this ext1 show \(\langle \text{thesis} \rangle \) by (auto intro: the1I2)

from this ext1 show \(\langle \text{thesis} \rangle \) by (auto intro: the1I2)
qed
qed

from $\langle X \in P \rangle$ this have $X \in (\forall X. \ X \cup \{x \in B - B'. \ f x = X\}) \ \wedge P$
unfolding P by simp

} from this show $P \subseteq (\forall X. \ X \cup \{x \in B - B'. \ f x = X\}) \ \wedge P$..

next

{ fix x
assumes x-in-image: $x \in (\forall X. \ X \cup \{x \in B - B'. \ f x = X\}) \ \wedge P$

{ fix X
assumes $X \in P$

have $\{x \in B - B'. \ f x = X \cap C\} = \{x \in B - B'. \ x \in X\}$

proof -

{ fix x
assumes $x \in B - B'$
from this have $ex1: \exists! X. \ x \in X \wedge X \in P$

using partition-on-P' by (auto intro!: partition-on-partition-on-unique)

from this have in-p: $(\forall X. \ x \in X \wedge X \in P') \ \wedge x-in: \ x \in (\forall X. \ x \in X \wedge X \in P')$
by (metis (mono-tags, lifting) theI)+

have $f x = X \cap C \iff (\forall X. \ x \in X \wedge X \in P') \cap C = X \cap C$
using $\{x \in B - B'\}$ unfolding f by auto

also have ... $\iff (\forall X. \ x \in X \wedge X \in P') = X$

proof
assumes $(\forall X. \ x \in X \wedge X \in P') = X$
from this show $(\forall X. \ x \in X \wedge X \in P') \cap C = X \cap C$ by auto

next
assumes $(\forall X. \ x \in X \wedge X \in P') \cap C = X \cap C$

have $(\forall X. \ x \in X \wedge X \in P') \cap X = \{\}$
using $\{\}$-witness $(\forall X. \ x \in X \wedge X \in P') \cap C = X \cap C \cap X \in P'$ by fastforce

from this show $(\forall X. \ x \in X \wedge X \in P') = X$

using partition-on-P'[unfolded partition-on-def disjoint-def] in-p $\langle X \in P \rangle$ by metis

qed
also have ... $\iff x \in X$

using $ex1 (X \in P)$ x-in by (auto; metis (no-types, lifting) the-equality)
finally have $f x = X \cap C \iff x \in X$.

} from this show $\forall \ the\ thesis$ by auto

qed

moreover have $X \subseteq B - B' \cup C$

using partition-on-P' $\langle X \in P \rangle$ by (blast elim: partition-onE)
ultimately have $X \cap C \cup \{x \in B. \ x \notin B' \wedge f x = X \cap C\} = X$ by auto

}
from this x-in-image have $x \in P'$ unfolding P by auto

qed

from partition-on-P' have f-prop: $f \in (B - B') \rightarrow_E P$
unfolding f P by (auto simp add: partition-on-the-part-mem)

from $Q B'$ have $B' \subseteq B$ by auto
obtain k where $k: k = \text{card } B'$ by blast
from (finite B) ($B' \subseteq B$) k have k-prop: $k \in \{0 \ldots \text{card } B\}$ by (simp add: card-mono)

obtain j where $j: j = \text{card } P$ by blast
from j (partition-on $C P$) have j-prop: $j \in \{0 \ldots \text{card } C\}$
by (simp add: assms(2) partition-on-le-set-elements)

from (partition-on $C P$) j have P-prop: partition-on $C P \land \text{card } P = j$ by auto
from k ($B' \subseteq B$) have B'-prop: $B' \subseteq B \land \text{card } B' = k$ by auto

show $Q' \in \text{construct-partition-on } B \ C$
using j-prop k-prop P-prop B'-prop Q-prop P'-prop Q'-prop
unfolding construct-partition-on-def
by (auto simp del: atLeastAtMost-iff) blast

qed

1.4 Injectivity of the Set Construction

lemma injectivity:
assumes $B \cap C = \{\}$
assumes P: (partition-on $C P \land \text{card } P = j$) \land (partition-on $C P' \land \text{card } P' = j'$)
assumes B': ($B' \subseteq B \land \text{card } B' = k$) \land ($B'' \subseteq B \land \text{card } B'' = k'$)
assumes Q: partition-on B' Q \land partition-on B'' Q'
assumes f: $f \in B - B' \rightarrow_E P \land g \in B - B'' \rightarrow_E P'$
assumes P': $P'' = (\lambda X. X \cup \{x \in B - B'. f x = X\}) \cdot P \land$
$P''' = (\lambda X. X \cup \{x \in B - B''. g x = X\}) \cdot P'$
assumes eq-result: $P'' \cup Q = P''' \cup Q'$
shows $f = g$ and $Q = Q'$ and $B' = B''$
and $P = P'$ and $j = j'$ and $k = k'$

proof –
have P-nonempty-sets: $\forall X \in P, \exists c \in C. c \in X \forall X \in P', \exists c \in C. c \in X$
using P by (force elim: partition-on$E)$

have 1: $\forall X \in P''. \exists c \in C. c \in X \forall X \in P'''. \exists c \in C. c \in X$
using P' P-nonempty-sets by fastforce

have 2: $\forall X \in Q. \forall x \in X, x \notin C \forall X \in Q'. \forall x \in X, x \notin C$
using $(B \cap C = \{\}) \cdot Q B'$ by (auto elim: partition-onE)

from eq-result have $P'' = P'''$ and $Q = Q'$
by (auto dest: injectivity-union[OF 1 2])

from this Q show $Q = Q'$ and $B' = B''$
by (auto intro!: partition-on-eq-implies-eq-carrier)

have subset-C: $\forall X \in P. X \subseteq C \forall X \in P'. X \subseteq C$
using P by (auto elim: partition-onE)

have eq-image: $\langle \lambda X. X \cup \{x \in B - B'. f x = X\} \cdot P \rangle = (\lambda X. X \cup \{x \in B -$
B', g x = X\}) \cdot P'

 using P' \cdot P'' = P''' \ by \ auto

 from \ this \ (B \cap C = \{\}) \ show \ P = P'

 by \ (auto \ dest: \ injectivity-image-union[of \ subset-C])

have eq2: \((\lambda X \cdot X \cup \{x \in B - B', f x = X\}) \cdot P = (\lambda X \cdot X \cup \{x \in B - B', g x = X\}) \cdot P\)

 using \ (P = P') \cdot B' = B'' \ eq-image \ by \ simp

 from \ P \ have \ P-props: \forall X \in P. X \subseteq C \forall X \in P. X \neq \{\} \ by \ (auto \ elim: partition-onE)

 have invert: \forall X \in P. (X \cup \{x \in B - B', f x = X\}) \cap C = X \wedge (X \cup \{x \in B - B', g x = X\}) \cap C = X

 using \ (B \cap C = \{\}) \ P-props \ by \ auto

 have eq3: \forall X \in P. (X \cup \{x \in B - B', f x = X\}) = (X \cup \{x \in B - B', g x = X\})

 using \ injectivity-image[of \ eq2 \ invert] \ by \ blast

 have eq4: \forall X \in P. \{x \in B - B', f x = X\} = \{x \in B - B', g x = X\}

 proof

 fix \ X

 assume \ X \in P

 from \ this \ P \ have \ X \subseteq C \ by \ (auto \ elim: partition-onE)

 have disjoint: \ X \cap \{x \in B - B', f x = X\} = \{\} \ X \cap \{x \in B - B', g x = X\} = \{\}

 using \ (B \cap C = \{\}) \ \cdot \ X \subseteq C \ by \ auto

 from \ eq3 \ X \in P \ have \ X \cup \{x \in B - B', f x = X\} = X \cup \{x \in B - B', g x = X\}

 by \ (auto \ intro: injectivity-anion)

qed

from \ eq4 \ f \ have \ eq5: \forall b \in B - B'. f b = g b \ by \ blast

from \ eq5 \ (\ b' = B''' \ \cdot \ P = P'') \ show \ eq6: f = g \ by \ (auto \ intro: extensional-funcset-ext)

from \ P \ \cdot \ P'' \ show \ j = j' \ by \ simp

from \ B' (\ b' = B''' \ \cdot \ show \ k = k' \ by \ simp

qed

1.5 The Generalized Bell Recurrence Relation

Theorem Bell-eq:

\[Bell \ (n + m) = (\sum k \leq n. \sum j \leq m. \ j \cdot (n - k) \cdot Stirling \ m j \cdot (n \ choose \ k) \cdot Bell \ k) \]

Proof

- define \(A \) where \(A = \{0..<n + m\} \)
- define \(B \) where \(B = \{0..<n\} \)
- define \(C \) where \(C = \{n..<n + m\} \)
- have \(A = B \cup C \ B \cap C = \{\} \) finite \(B \) card \(B = n \) finite \(C \) card \(C = m \)
- unfolding \(A-def \ B-def \ C-def \ by \ auto \)
- have step1: Bell \ (n + m) = card \ (\ P. \ partition-on A \ P) \)
- unfolding \(Bell-def A-def .. \)
- from \(A = B \cup C \) \(B \cap C = \{\} \) (finite \(B \) \ finite \(C \) \)
- have step2: card \ (\ P. \ partition-on A \ P) = card \ (\ construct-partition-on B \ C) \)
by (simp add: construct-partition-on)

note injectivity = injectivity[OF "B ∩ C = {}"]

let ?expr = do
 k ← {0..card B};
 j ← {0..card C};
 P ← {P. partition-on C P ∧ card P = j};
 B′ ← {B’. B′ ⊆ B ∧ card B′ = k};
 Q ← {Q. partition-on B′ Q};
 f ← (B − B′) → E P;
 P′ ← {λX. X ∪ {x ∈ B − B′. f x = X}} ' P;
 {P′ ∪ Q}

let ?S ≝ ?comp = ?expr
{
 fix k
 assume k: k ∈ {..card B}
 let ?expr = ?comp k
 let ?S ≝ ?comp = ?expr
 {
 fix j
 assume j ∈ {.. card C}
 let ?expr = ?comp j
 let ?S ≝ ?comp = ?expr
 from (finite C) have finite ?S
 by (intro finite-Collect-conj disjI1 finitely-many-partition-on)
 {
 fix P
 assume P: P ∈ {P. partition-on C P ∧ card P = j}
 from this have partition-on C P by simp
 let ?expr = ?comp P
 let ?S ≝ ?comp = ?expr
 have finite P
 using P (finite C) by (auto intro: finite-elements)
 from (finite B) have finite ?S by (auto simp add: finite-subset)
 }
 moreover
 {
 fix B′
 assume B′: B′ ∈ {B’. B′ ⊆ B ∧ card B′ = k}
 from this have B′ ⊆ B by simp
 let ?expr = ?comp B′
 let ?S ≝ ?comp = ?expr
 from (finite B) have finite B′
 using B′ by (auto simp add: finite-subset)
 from (finite B') have finite {Q. partition-on B' Q}
 by (rule finitely-many-partition-on)
 moreover
 {
 fix Q
 assume Q: Q ∈ {Q. partition-on B' Q}
 }
 }
}

10
let ?expr = ?comp Q
let ?S ≫? comp = ?expr
{
 fix f
 assume f ∈ B − B’ →E P
 let ?expr = ?comp f
 let ?S ≫? comp = ?expr
 have disjoint-family-on ?comp ?S
 by (auto intro: disjoint-family-onI)
 from this have card ?expr = 1
 by (simp add: card-bind-constant)
 moreover have finite ?expr
 by (simp add: finite-bind)
 ultimately have finite ?expr ∧ card ?expr = 1 by blast
}
moreover have finite ?S
 using ⟨finite B⟩ ⟨finite P⟩ by (auto intro: finite-PiE)
moreover have disjoint-family-on ?comp ?S
 using P B’ Q
 by (injectivity-solver rule: local.injectivity(1))
moreover have card ?S = j * (n − k)
proof −
 have card (B − B’) = n − k
 using B’ ⟨finite B’⟩ ⟨card B = n⟩
 by (subst card-Diff-subset) auto
 from this show ?thesis
 using ⟨finite ?S⟩ P
 by (subst card-PiE) (simp add: prod-constant)+
qed
ultimately have finite ?expr
 using ⟨finite ?S⟩ ⟨finite {P. partition-on C P ∧ card P = j}⟩
 by (auto intro!: finite-bind)
ultimately have finite ?expr ∧ card ?expr = j * (n − k) by blast
} note inner = this
moreover have card ?S = Bell k
 using B’ ⟨finite B’⟩ by (auto simp add: Bell-altdef[symmetric])
moreover have disjoint-family-on ?comp ?S
 using P B’
 by (injectivity-solver rule: local.injectivity(2))
ultimately have card ?expr = j * (n − k) * Bell k
 by (subst card-bind-constant) auto
moreover have finite ?expr
 using inner ⟨finite ?S⟩ by (auto intro: finite-bind)
ultimately have finite ?expr ∧ card ?expr = j * (n − k) * Bell k by blast
} note inner = this
moreover have card ?S = n choose k

11
using \(\langle \text{card } B = n \rangle \langle \text{finite } B \rangle \) by (simp add: n-subsets)
moreover have disjoint-family-on \(?comp \ ?S\)
using \(P \)
by (injectivity-solver rule: local.injectivity(3))
ultimately have \(\text{card } \?expr = j \cdot (n - k) \ast (n \text{ choose } k) \ast \text{Bell } k \)
by (subst card-bind-constant) auto
moreover have finite \(\?expr \)
using inner \(\langle \text{finite } \?S \rangle \)
by (auto intro: finite-bind)
ultimately have finite \(\?expr \wedge \text{card } \?expr = j \cdot (n - k) \ast (n \text{ choose } k) \ast \text{Bell } k \)
by blast

1.6 Corollaries of the Generalized Bell Recurrence

corollary Bell-Stirling-eq:
\(\text{Bell } m = (\sum_{j \leq m} \text{Stirling } m \ j) \)
proof –
have $\text{Bell } m = \text{Bell } (0 + m)$ by simp
also have ... $= \left(\sum j \leq m. \text{Stirling } m \ j \right)$
unfolding Bell-eq[of 0] by (simp add: Bell-0)
finally show $?\ thesis$.
qed

corollary Bell-recursive-eq:
$\text{Bell } (n + 1) = \left(\sum k \leq n. \binom{n}{k} \ast \text{Bell } k \right)$
unfolding Bell-eq[of - 1] by simp

end

References
