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Abstract

The 1985 paper by Carlos Alchourrón, Peter Gärdenfors, and David
Makinson (AGM), “On the Logic of Theory Change: Partial Meet Con-
traction and Revision Functions” launches a large and rapidly growing
literature that employs formal models and logics to handle changing
beliefs of a rational agent and to take into account new piece of infor-
mation observed by this agent. In 2011, a review book titled ”AGM
25 Years: Twenty-Five Years of Research in Belief Change” was edited
to summarize the first twenty five years of works based on AGM.

This HOL-based AFP entry is a faithful formalization of the AGM
operators (e.g. contraction, revision, remainder ...) axiomatized in the
original paper. It also contains the proofs of all the theorems stated
in the paper that show how these operators combine. Both proofs of
Harper and Levi identities are established.
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1 Introduction

The 1985 paper by Carlos Alchourrón, Peter Gärdenfors, and David Makin-
son (AGM), “On the Logic of Theory Change: Partial Meet Contraction and
Revision Functions” [1] launches a large and rapidly growing literature that
employs formal models and logics to handle changing beliefs of a rational
agent and to take into account new piece of information observed by this
agent. In 2011, a review book titled ”AGM 25 Years: Twenty-Five Years of
Research in Belief Change” was edited to summarize the first twenty five
years of works based on AGM [2].
According to Google Scholar, the original AGM paper was cited 4000 times!
This AFP entry is HOL-based and it is a faithful formalization of the logic
operators (e.g. contraction, revision, remainder …) axiomatized in the AGM
paper. It also contains the proofs of all the theorems stated in the paper
that show how these operators combine. Both proofs of Harper and Levi
identities are established.

A belief state can be considered as a consistent set of beliefs (logical proposi-
tions) closed under logical reasoning. Belief changes represent the operations
that apply on a belief state to remove some of it and/or to add new beliefs
(propositions). In the latter case, it is possible that other beliefs are affected
by these changes (to preserve consistency for example). AGM define several
postulates to guarantee that such operations preserve consistency meaning
that the agent keeps rational. Three kinds of operators are defined :

• The contraction ÷ : where a proposition is removed from a belief set

• The expansion ⊕ : where a proposition is added to a belief set

• The revision ∗ : where a proposition is added to a belief set such that
the belief set remains consistent

In this AFP entry, there are three theory files:

1. The AGM Logic file contains a classification of logics used in the AGM
framework.

2. The AGM Remainder defines a important operator used in the AGM
framework.

3. The AGM Contraction file contains the postulates of the AGM con-
traction and its relation with the meet contraction.

4. The AGM Revision file contains the postulates of the AGM revision
and its relation with the meet revision.
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2 Logics

The AGM framework depends on the underlying logic used to express beliefs.
AGM requires at least a Tarskian propositional calculus. If this logic is also
supra-classical and/or compact, new properties are established and the main
theorems of AGM are strengthened. To model AGM it is therefore important
to start by formalizing this underlying logic and its various extensions. We
opted for a deep embedding in HOL which required the redefinition of all
the logical operators and an axiomatization of their rules. This is certainly
not efficient in terms of proof but it gives a total control of our formalization
and an assurance that the logic used has no hidden properties depending on
the Isabelle/HOL implementation. We use the Isabelle locales feature and
we take advantage of the inheritance/extension mechanisms between locales.

2.1 Tarskian Logic

The first locale formalizes a Tarskian logic based on the famous Tarski’s
consequence operator: Cn A which gives the set of all propositions (closure)
that can be inferred from the set of propositions A, Exactly as it is classically
axiomatized in the literature, three assumptions of the locale define the
consequence operator.
locale Tarskian-logic =
fixes Cn::‹ ′a set ⇒ ′a set›
assumes monotonicity-L: ‹A ⊆ B =⇒ Cn(A) ⊆ Cn(B)›

and inclusion-L: ‹A ⊆ Cn(A)›
and transitivity-L: ‹Cn(Cn(A)) ⊆ Cn(A)›

— Short notation for “ϕ can be inferred from the propositions in A”.
fixes infer ::‹ ′a set ⇒ ′a ⇒ bool› (infix ‹`› 50)
defines ‹A ` ϕ ≡ ϕ ∈ Cn(A)›

— ϕ is valid (a tautology) if it can be inferred from nothing.
fixes valid::‹ ′a ⇒ bool› (‹`̀›)
defines ‹`̀ ϕ ≡ {} ` ϕ›

— A ⊕ ϕ is all that can be infered from A and ϕ.
fixes expansion::‹ ′a set ⇒ ′a ⇒ ′a set› (infix ‹⊕› 57 )
defines ‹A ⊕ ϕ ≡ Cn(A ∪ {ϕ})›

begin

lemma idempotency-L: ‹Cn(Cn(A)) = Cn(A)›
〈proof 〉

lemma assumption-L: ‹ϕ ∈ A =⇒ A ` ϕ›
〈proof 〉
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lemma validD-L: ‹`̀ ϕ =⇒ ϕ ∈ Cn(A)›
〈proof 〉

lemma valid-expansion: ‹K = Cn(A) =⇒ `̀ ϕ =⇒ K ⊕ ϕ = K›
〈proof 〉

lemma transitivity2-L:
assumes ‹∀ϕ ∈ B. A ` ϕ›

and ‹B ` ψ›
shows ‹A ` ψ›

〈proof 〉

lemma Cn-same: ‹(Cn(A) = Cn(B)) ←→ (∀C . A ⊆ Cn(C) ←→ B ⊆ Cn(C))›
〈proof 〉
lemma Cn-union: ‹Cn(Cn(A) ∪ Cn(B)) = Cn(A ∪ B)›
〈proof 〉
lemma Cn-Union: ‹Cn(

⋃
{Cn(B)|B. P B}) = Cn(

⋃
{B. P B})› (is ‹?A = ?B›)

〈proof 〉
lemma Cn-inter : ‹K = Cn(A) ∩ Cn(B) =⇒ K = Cn(K)›
〈proof 〉
lemma Cn-Inter : ‹K =

⋂
{Cn(B)|B. P B} =⇒ K = Cn(K)›

〈proof 〉

end

2.2 Supraclassical Logic

A Tarskian logic has only one abstract operator catching the notion of con-
sequence. A basic case of such a logic is a Supraclassical logic that is a
logic with all classical propositional operators (e.g. conjunction (∧), impli-
cation(−→), negation (¬) …) together with their classical semantics.
We define a new locale. In order to distinguish the propositional operators
of our supraclassical logic from those of Isabelle/HOL, we use dots (e.g. .∧.
stands for conjunction). We axiomatize the introduction and elimination
rules of each operator as it is commonly established in the classical literature.
As explained before, we give priority to a complete control of our logic
instead of an efficient shallow embedding in Isabelle/HOL.
locale Supraclassical-logic = Tarskian-logic +

fixes true-PL:: ‹ ′a› (‹>›)
and false-PL:: ‹ ′a› (‹⊥›)
and imp-PL:: ‹ ′a ⇒ ′a ⇒ ′a› (infix ‹.−→.› 55)
and not-PL:: ‹ ′a ⇒ ′a› (‹.¬›)
and conj-PL:: ‹ ′a ⇒ ′a ⇒ ′a› (infix ‹.∧.› 55)
and disj-PL:: ‹ ′a ⇒ ′a ⇒ ′a› (infix ‹.∨.› 55)
and equiv-PL:: ‹ ′a ⇒ ′a ⇒ ′a› (infix ‹.←→.› 55)
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assumes true-PL: ‹A ` >›

and false-PL: ‹{⊥} ` p›

and impI-PL: ‹A ∪ {p} ` q =⇒ A ` (p .−→. q)›
and mp-PL: ‹A ` p .−→. q =⇒ A ` p =⇒ A ` q›

and notI-PL: ‹A ` p .−→. ⊥ =⇒ A ` .¬ p›
and notE-PL: ‹A ` .¬ p =⇒ A ` (p .−→. ⊥)›

and conjI-PL: ‹A ` p =⇒ A ` q =⇒ A ` (p .∧. q)›
and conjE1-PL: ‹A ` p .∧. q =⇒ A ` p›
and conjE2-PL: ‹A ` p .∧. q =⇒ A ` q›

and disjI1-PL: ‹A ` p =⇒ A ` (p .∨. q)›
and disjI2-PL: ‹A ` q =⇒ A ` (p .∨. q)›
and disjE-PL: ‹A ` p .∨. q =⇒ A ` p .−→. r =⇒ A ` q.−→. r =⇒ A ` r›

and equivI-PL: ‹A ` p .−→. q =⇒ A ` q .−→. p =⇒ A ` (p .←→. q)›
and equivE1-PL: ‹A ` p .←→. q =⇒ A ` p .−→. q›
and equivE2-PL: ‹A ` p .←→. q =⇒ A ` q .−→. p›

— non intuitionistic rules
and absurd-PL: ‹A ` .¬ (.¬ p) =⇒ A ` p›
and ex-mid-PL: ‹A ` p .∨. (.¬ p)›

begin

In the following, we will first retrieve the classical logic operators semantics
coming from previous introduction and elimination rules
lemma non-consistency:

assumes ‹A ` .¬ p›
and ‹A ` p›

shows ‹A ` q›
〈proof 〉

lemma imp-PL: ‹A ` p .−→. q ←→ A ∪ {p} ` q›
〈proof 〉

lemma not-PL: ‹A ` .¬ p ←→ A ∪ {p} ` ⊥›
〈proof 〉

lemma notnot-PL: ‹A ` .¬ (.¬ p) ←→ A ` p›
〈proof 〉

lemma conj-PL: ‹A ` p .∧. q ←→ (A ` p ∧ A ` q)›
〈proof 〉

lemma disj-PL: ‹A ` p .∨. q ←→ A ∪ {.¬ p} ` q›
〈proof 〉
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lemma equiv-PL:‹A ` p .←→. q ←→ (A ∪ {p} ` q ∧ A ∪ {q} ` p)›
〈proof 〉

corollary valid-imp-PL: ‹`̀ (p .−→. q) = ({p} ` q)›
and valid-not-PL: ‹`̀ (.¬ p) = ({p} ` ⊥)›
and valid-conj-PL: ‹`̀ (p .∧. q) = (`̀ p ∧ `̀ q)›
and valid-disj-PL: ‹`̀ (p .∨. q) = ({.¬ p} ` q)›
and valid-equiv-PL:‹`̀ (p .←→. q) = ({p} ` q ∧ {q} ` p)›

〈proof 〉

Second, we will combine each logical operator with the consequence operator
Cn: it is a trick to profit from set theory to get many essential lemmas
without complex inferences
declare infer-def [simp]

lemma nonemptyCn: ‹Cn(A) 6= {}›
〈proof 〉

lemma Cn-true: ‹Cn({>}) = Cn({})›
〈proof 〉

lemma Cn-false: ‹Cn({⊥}) = UNIV ›
〈proof 〉

lemma Cn-imp: ‹A ` (p .−→. q) ←→ Cn({q}) ⊆ Cn(A ∪ {p})›
and Cn-imp-bis: ‹A ` (p .−→. q) ←→ Cn(A ∪ {q}) ⊆ Cn(A ∪ {p})›
〈proof 〉

lemma Cn-not: ‹A ` .¬ p ←→ Cn(A ∪ {p}) = UNIV ›
〈proof 〉

lemma Cn-conj: ‹A ` (p .∧. q) ←→ Cn({p}) ∪ Cn({q}) ⊆ Cn(A)›
〈proof 〉

lemma Cn-conj-bis: ‹Cn({p .∧. q}) = Cn({p, q})›
〈proof 〉

lemma Cn-disj: ‹A ` (p .∨. q) ←→ Cn({q}) ⊆ Cn(A ∪ {.¬ p})›
and Cn-disj-bis: ‹A ` (p .∨. q) ←→ Cn(A ∪ {q}) ⊆ Cn(A ∪ {.¬ p})›
〈proof 〉

lemma Cn-equiv: ‹A ` (p .←→. q) ←→ Cn(A ∪ {p}) = Cn(A ∪ {q})›
〈proof 〉

corollary valid-nonemptyCn: ‹Cn({}) 6= {}›
and valid-Cn-imp: ‹`̀ (p .−→. q) ←→ Cn({q}) ⊆ Cn({p})›
and valid-Cn-not: ‹`̀ (.¬ p) ←→ Cn({p}) = UNIV ›
and valid-Cn-conj: ‹`̀ (p .∧. q) ←→ Cn({p}) ∪ Cn({q}) ⊆ Cn({})›
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and valid-Cn-disj: ‹`̀ (p .∨. q) ←→ Cn({q}) ⊆ Cn({.¬ p})›
and valid-Cn-equiv: ‹`̀ (p .←→. q) ←→ Cn({p}) = Cn({q})›

〈proof 〉
lemma consistency: ‹Cn({p}) ∩ Cn({.¬ p}) = Cn({})›
〈proof 〉

lemma Cn-notnot: ‹Cn({.¬ (.¬ ϕ)}) = Cn({ϕ})›
〈proof 〉

lemma conj-com: ‹A ` p .∧. q ←→ A ` q .∧. p›
〈proof 〉

lemma conj-com-Cn: ‹Cn({p .∧. q}) = Cn({q .∧. p})›
〈proof 〉

lemma disj-com: ‹A ` p .∨. q ←→ A ` q .∨. p›
〈proof 〉

lemma disj-com-Cn: ‹Cn({p .∨. q}) = Cn({q .∨. p})›
〈proof 〉

lemma imp-contrapos: ‹A ` p .−→. q ←→ A ` .¬ q .−→. .¬ p›
〈proof 〉

lemma equiv-negation: ‹A ` p .←→. q ←→ A ` .¬ p .←→. .¬ q›
〈proof 〉

lemma imp-trans: ‹A ` p .−→.q =⇒ A ` q .−→.r =⇒ A ` p .−→.r›
〈proof 〉

lemma imp-recovery0: ‹A ` p .∨. (p .−→. q)›
〈proof 〉

lemma imp-recovery1: ‹A ∪ {p .−→. q} ` p =⇒ A ` p›
〈proof 〉

lemma imp-recovery2: ‹A ` p .−→. q =⇒ A ` (q .−→. p) .−→. p =⇒ A ` q›
〈proof 〉

lemma impI2: ‹A ` q =⇒ A ` p .−→. q›
〈proof 〉

lemma conj-equiv: ‹A ` p =⇒ A ` ((p .∧. q) .←→. q)›
〈proof 〉

lemma conj-imp: ‹A ` (p .∧. q) .−→. r ←→ A ` p .−→. (q .−→. r)›
〈proof 〉

lemma conj-not-impE-PL: ‹A ` (p .∧. q) .−→. r =⇒ A ` (p .∧. .¬ q) .−→. r =⇒
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A ` p .−→. r›
〈proof 〉

lemma disj-notE-PL: ‹A ` q =⇒ A ` p .∨. .¬ q =⇒ A ` p›
〈proof 〉

lemma disj-not-impE-PL: ‹A ` (p .∨. q) .−→. r =⇒ A ` (p .∨. .¬ q) .−→. r =⇒
A ` r›
〈proof 〉

lemma imp-conj: ‹A ` p .−→. q =⇒ A ` r .−→. s =⇒ A ` (p .∧. r) .−→. (q .∧.
s)›
〈proof 〉

lemma conj-overlap: ‹A ` (p .∧. q) ←→ A ` (p .∧. ((.¬ p) .∨. q))›
〈proof 〉

lemma morgan: ‹A ` .¬ (p .∧. q) ←→ A ` (.¬ p) .∨. (.¬ q)›
〈proof 〉

lemma conj-superexpansion1: ‹A ` .¬ (p .∧. q) .∧. .¬ p ←→ A ` .¬ p›
〈proof 〉

lemma conj-superexpansion2: ‹A ` (p .∨. q) .∧. p ←→ A ` p›
〈proof 〉

end

2.3 Compact Logic

If the logic is compact, which means that any result is based on a finite set
of hypothesis
locale Compact-logic = Tarskian-logic +

assumes compactness-L: ‹A ` ϕ =⇒ (∃A ′. A ′⊆ A ∧ finite A ′ ∧ A ′̀ ϕ)›

begin

Very important lemma preparing the application of the Zorn’s lemma. It
states that in a compact logic, we can not deduce ϕ if we accumulate an
infinity of hypothesis groups which locally do not deduce phi
lemma chain-closure: ‹¬ `̀ ϕ =⇒ subset.chain {B. ¬ B ` ϕ} C =⇒ ¬

⋃
C ` ϕ›

〈proof 〉

end

end
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3 Remainders

In AGM, one important feature is to eliminate some proposition from a set of
propositions by ensuring that the set of retained clauses is maximal and that
nothing among these clauses allows to retrieve the eliminated proposition

3.1 Remainders in a Tarskian logic

In a general context of a Tarskian logic, we consider a descriptive definition
(by comprehension)
context Tarskian-logic

begin
definition remainder ::‹ ′a set ⇒ ′a ⇒ ′a set set› (infix ‹.⊥.› 55)

where rem: ‹A .⊥. ϕ ≡ {B. B ⊆ A ∧ ¬ B ` ϕ ∧ (∀B ′⊆ A. B ⊂ B ′ −→ B ′ `
ϕ)}›

lemma rem-inclusion: ‹B ∈ A .⊥. ϕ =⇒ B ⊆ A›
〈proof 〉

lemma rem-closure: K = Cn(A) =⇒ B ∈ K .⊥. ϕ =⇒ B = Cn(B)
〈proof 〉

lemma remainder-extensionality: ‹Cn({ϕ}) = Cn({ψ}) =⇒ A .⊥. ϕ = A .⊥. ψ›
〈proof 〉

lemma nonconsequence-remainder : ‹A .⊥. ϕ = {A} ←→ ¬ A ` ϕ›
〈proof 〉

lemma taut2emptyrem: ‹`̀ ϕ =⇒ A .⊥. ϕ = {}›
〈proof 〉

end

3.2 Remainders in a supraclassical logic

In case of a supraclassical logic, remainders get impressive properties
context Supraclassical-logic

begin

— As an effect of being maximal, a remainder keeps the eliminated proposition in
its propositions hypothesis
lemma remainder-recovery: ‹K = Cn(A) =⇒ K ` ψ =⇒ B ∈ K .⊥. ϕ =⇒ B `
ϕ .−→. ψ›
〈proof 〉
lemma remainder-recovery-bis: ‹K = Cn(A) =⇒ K ` ψ =⇒ ¬ B ` ψ =⇒ B ∈ K
.⊥. ϕ =⇒ B ∈ K .⊥. ψ›
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〈proof 〉

corollary remainder-recovery-imp: ‹K = Cn(A) =⇒ K ` ψ =⇒ `̀ (ψ .−→. ϕ)
=⇒ B ∈ K .⊥. ϕ =⇒ B ∈ K .⊥. ψ›
〈proof 〉

lemma remainder-expansion: ‹K = Cn(A) =⇒ K ` ψ =⇒ ¬ B ` ψ =⇒ B ∈ K
.⊥. ϕ =⇒ B ⊕ ψ = K›
〈proof 〉

To eliminate a conjunction, we only need to remove one side
lemma remainder-conj: ‹K = Cn(A) =⇒ K ` ϕ .∧. ψ =⇒ K .⊥. (ϕ .∧. ψ) = (K
.⊥. ϕ) ∪ (K .⊥. ψ)›
〈proof 〉

end

3.3 Remainders in a compact logic

In case of a supraclassical logic, remainders get impressive properties
context Compact-logic
begin

The following lemma is the Lindembaum’s lemma requiring the Zorn’s lemma
(already available in standard Isabelle/HOL). For more details, please re-
fer to the book ”Theory of logical calculi” [5]. This very important lemma
states that we can get a maximal set (remainder B ′) starting from any set
B if this latter does not infer the proposition ϕ we want to eliminate
lemma upper-remainder : ‹B ⊆ A =⇒ ¬ B ` ϕ =⇒ ∃B ′. B ⊆ B ′ ∧ B ′ ∈ A .⊥.
ϕ›
〈proof 〉
corollary emptyrem2taut: ‹A .⊥. ϕ = {} =⇒ `̀ ϕ›
〈proof 〉

end

end

4 Contractions

The first operator of belief change of the AGM framework is contraction.
This operator consist to remove a sentence ϕ from a belief set K in such a
way that K no longer imply ϕ.
In the following we will first axiomatize such operators at different lev-
els of logics (Tarskian, supraclassical and compact) and then we will give
constructions satisfying these axioms. The following graph summarizes all
equivalences we established:
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We will use the extension feature of locales in Isabelle/HOL to incrementally
define the contraction operator as shown by blue arrows in the previous
figure. Then, using the interpretation feature of locales, we will prove the
equivalence between descriptive and constructive approaches at each level
depending on the adopted logics (black arrows).
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4.1 AGM contraction postulates

The operator of contraction is denoted by the symbol ÷ and respects the
six following conditions :

• contract-closure : a belief set K contracted by ϕ should be logically
closed

• contract-inclusion : a contracted set K should be a subset of the orig-
inal one

• contract-vacuity : if ϕ is not included in a set K then the contraction
of K by ϕ involves no change at all

• contract-success : if a set K is contracted by ϕ then K does not imply
ϕ

• contract-recovery: all propositions removed in a set K by contraction
of ϕ will be recovered by expansion of ϕ

• contract-extensionality : Extensionality guarantees that the logic of
contraction is extensional in the sense of allowing logically quivalent
sentences to be freely substituted for each other

locale AGM-Contraction = Tarskian-logic +
fixes contraction::‹ ′a set ⇒ ′a ⇒ ′a set› (infix ‹÷› 55)
assumes contract-closure: ‹K = Cn(A) =⇒ K ÷ ϕ = Cn(K ÷ ϕ)›

and contract-inclusion: ‹K = Cn(A) =⇒ K ÷ ϕ ⊆ K›
and contract-vacuity: ‹K = Cn(A) =⇒ ϕ /∈ K =⇒ K ÷ ϕ = K›
and contract-success: ‹K = Cn(A) =⇒ ϕ /∈ Cn({}) =⇒ ϕ /∈ K ÷ ϕ›
and contract-recovery: ‹K = Cn(A) =⇒ K ⊆ ((K ÷ ϕ) ⊕ ϕ)›
and contract-extensionality: ‹K = Cn(A) =⇒ Cn({ϕ}) = Cn({ψ}) =⇒ K ÷ ϕ

= K ÷ ψ›

A full contraction is defined by two more postulates to rule the conjunction.
We base on a supraclassical logic.

• contract-conj-overlap : An element in both K ÷ ϕ and K ÷ ψ is also
an element of K ÷ (ϕ ∧ ψ)

• contract-conj-inclusion : If ϕ not in K ÷ (ϕ ∧ ψ) then all elements
removed by this contraction are also removed from K ÷ ϕ

locale AGM-FullContraction = AGM-Contraction + Supraclassical-logic +
assumes contract-conj-overlap: ‹K = Cn(A) =⇒ (K ÷ ϕ) ∩ (K ÷ ψ) ⊆ (K ÷

(ϕ .∧. ψ))›
and contract-conj-inclusion: ‹K = Cn(A) =⇒ ϕ /∈ (K ÷ (ϕ .∧. ψ)) =⇒ ((K

÷ (ϕ .∧. ψ) ⊆ (K ÷ ϕ)))›
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begin
— two important lemmas/corollaries that can replace the two assumptions con-
tract-conj-overlap and contract-conj-inclusion

contract-conj-overlap-variant does not need ψ to occur in the left side!
corollary contract-conj-overlap-variant: ‹K = Cn(A) =⇒ (K ÷ ϕ) ∩ Cn({ϕ}) ⊆
(K ÷ (ϕ .∧. ψ))›
〈proof 〉

contract-conj-inclusion-variant: Everything retained in K ÷ (ϕ ∧ ψ) is re-
tained in K ÷ ψ

corollary contract-conj-inclusion-variant : ‹K = Cn(A) =⇒ (K ÷ (ϕ .∧. ψ) ⊆ (K
÷ ϕ)) ∨ (K ÷ (ϕ .∧. ψ) ⊆ (K ÷ ψ))›
〈proof 〉

end

4.2 Partial meet contraction definition

A partial meet contraction of K by ϕ is the intersection of some sets that not
imply ϕ. We define these sets as the ”remainders” (K .⊥. ϕ. The function
of selection γ select the best set of the remainders that do not imply ϕ. This
function respect these postulates :

• is-selection : if there exist some set that do not imply ϕ then the
function selection γ is a subset of these sets

• tautology-selection : if there is no set that do not imply ϕ then the
result of the selection function is K

• nonempty-selection : An empty selection function do not exist

• extensional-selection : Two proposition with the same closure have the
same selection function

locale PartialMeetContraction = Tarskian-logic +

fixes selection::‹ ′a set ⇒ ′a ⇒ ′a set set› (‹γ›)
assumes is-selection: ‹K = Cn(A) =⇒ (K .⊥. ϕ) 6= {} =⇒ γ K ϕ ⊆ (K
.⊥. ϕ)›
assumes tautology-selection: ‹K = Cn(A) =⇒ (K .⊥. ϕ) = {} =⇒ γ K ϕ =
{K}›
assumes nonempty-selection: ‹K = Cn(A) =⇒ γ K ϕ 6= {}›
assumes extensional-selection: ‹K = Cn(A) =⇒ Cn({ϕ}) = Cn({ψ}) =⇒ γ K ϕ
= γ K ψ›
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— extensionality seems very hard to implement for a constructive approach, one
basic implementation will be to ignore A and ϕ and only base on A .⊥. ϕ that is
already proved as extensional (lemma remainder-extensionality)

begin

A partial meet is the intersection of set of selected element.
definition (in Tarskian-logic) meet-contraction::‹ ′a set ⇒ ( ′a set ⇒ ′a ⇒ ′a set
set) ⇒ ′a ⇒ ′a set› (‹- ÷- -› [60,50,60]55)

where mc: ‹(A ÷γ ϕ) ≡
⋂
(γ A ϕ)›

Following this definition 4 postulates of AGM can be proved on a partial
meet contraction:

• contract-inclusion

• contract-vacuity

• contract-closure

• contract-extensionality

pmc-inclusion :a partial meet contraction is a subset of the contracted set
lemma pmc-inclusion: ‹K = Cn(A) =⇒ K ÷γ ϕ ⊆ K›
〈proof 〉

pmc-vacuity : if ϕ is not included in a set K then the partial meet contraction
of K by ϕ involves not change at all
lemma pmc-vacuity: ‹K = Cn(A) =⇒ ¬ K ` ϕ =⇒ K ÷γ ϕ = K›
〈proof 〉

pmc-closure : a partial meet contraction is logically closed
lemma pmc-closure: ‹K = Cn(A) =⇒ (K ÷γ ϕ) = Cn(K ÷γ ϕ)›
〈proof 〉

pmc-extensionality : Extensionality guarantees that the logic of contraction
is extensional in the sense of allowing logically equivalent sentences to be
freely substituted for each other
lemma pmc-extensionality: ‹K = Cn(A) =⇒ Cn({ϕ}) = Cn({ψ}) =⇒ K ÷γ ϕ =
K ÷γ ψ›
〈proof 〉

pmc-tautology : if ϕ is a tautology then the partial meet contraction of K
by ϕ is K
lemma pmc-tautology: ‹K = Cn(A) =⇒ `̀ ϕ =⇒ K ÷γ ϕ = K›
〈proof 〉
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completion is a an operator that can build an equivalent selection from an
existing one
definition (in Tarskian-logic) completion::‹( ′a set ⇒ ′a ⇒ ′a set set) ⇒ ′a set
⇒ ′a ⇒ ′a set set› (‹∗›)

where ‹∗ γ A ϕ ≡ if (A .⊥. ϕ) = {} then {A} else {B. B ∈ A .⊥. ϕ ∧
⋂

(γ A
ϕ) ⊆ B}›

lemma selection-completion: K = Cn(A) =⇒ γ K ϕ ⊆ ∗ γ K ϕ
〈proof 〉

lemma (in Tarskian-logic) completion-completion: K = Cn(A) =⇒ ∗ (∗ γ) K ϕ
= ∗ γ K ϕ
〈proof 〉

lemma pmc-completion: ‹K = Cn(A) =⇒ K ÷∗γ ϕ = K ÷γ ϕ›
〈proof 〉

end

A transitively relational meet contraction is a partial meet contraction using
a binary relation between the elements of the selection function

A relation is :

• transitive (trans-rel)

• non empty (there is always an element preferred to the others (nonempty-rel))

A selection function γTR is transitively relational rel-sel with the following
condition :

• If the the remainders K .⊥. ϕ is empty then the selection function
return K

• Else the selection function return a non empty transitive relation on
the remainders

locale TransitivelyRelationalMeetContraction = Tarskian-logic +

fixes relation::‹ ′a set ⇒ ′a set ⇒ ′a set ⇒ bool› (‹- �- -› [60,50,60]55)
assumes trans-rel: ‹K = Cn(A) =⇒ B �K C =⇒ C �K D =⇒ B �K D›
assumes nonempty-rel: ‹K = Cn(A) =⇒ (K .⊥. ϕ) 6= {} =⇒ ∃B∈(K .⊥. ϕ).
(∀C∈(K .⊥. ϕ). C �K B)› — pas clair dans la litterrature

fixes rel-sel::‹ ′a set ⇒ ′a ⇒ ′a set set› (‹γTR›)
defines rel-sel: ‹γTR K ϕ ≡ if (K .⊥. ϕ) = {} then {K}
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else {B. B∈(K .⊥. ϕ) ∧ (∀C∈(K .⊥. ϕ). C
�K B)}›

begin

A transitively relational selection function respect the partial meet contrac-
tion postulates.
sublocale PartialMeetContraction where selection = γTR

〈proof 〉

end

A full meet contraction is a limiting case of the partial meet contraction
where if the remainders are not empty then the selection function return all
the remainders (as defined by full-sel
locale FullMeetContraction = Tarskian-logic +

fixes full-sel::‹ ′a set ⇒ ′a ⇒ ′a set set› (‹γFC›)
defines full-sel: ‹γFC K ϕ ≡ if K .⊥. ϕ = {} then {K} else K .⊥. ϕ›

begin

A full selection and a relation ? is a transitively relational meet contraction
postulates.
sublocale TransitivelyRelationalMeetContraction where relation = ‹λ K A B.
True› and rel-sel=γFC

〈proof 〉

end

4.3 Equivalence of partial meet contraction and AGM con-
traction

locale PMC-SC = PartialMeetContraction + Supraclassical-logic + Compact-logic

begin

In a context of a supraclassical and a compact logic the two remaining
postulates of AGM contraction :

• contract-recovery

• contract-success can be proved on a partial meet contraction.

pmc-recovery : all proposition removed by a partial meet contraction of ϕ
will be recovered by the expansion of ϕ

19



lemma pmc-recovery: ‹K = Cn(A) =⇒ K ⊆ ((K ÷γ ϕ) ⊕ ϕ)›
〈proof 〉

pmc-success : a partial meet contraction of K by ϕ not imply ϕ
lemma pmc-success: ‹K = Cn(A) =⇒ ϕ /∈ Cn({}) =⇒ ϕ /∈ K ÷γ ϕ›
〈proof 〉

As a partial meet contraction has been proven to respect all postulates of
AGM contraction the equivalence between the both are straightforward
sublocale AGM-Contraction where contraction = ‹λA ϕ. A ÷γ ϕ›
〈proof 〉

end

locale AGMC-SC = AGM-Contraction + Supraclassical-logic + Compact-logic

begin

obs 2.5 page 514
definition AGM-selection::‹ ′a set ⇒ ′a ⇒ ′a set set› (‹γAGM ›)

where AGM-sel: ‹γAGM A ϕ ≡ if A .⊥. ϕ = {} then {A} else {B. B ∈ A .⊥.
ϕ ∧ A ÷ ϕ ⊆ B}›

The selection function γAGM respect the partial meet contraction postulates
sublocale PartialMeetContraction where selection = γAGM

〈proof 〉

contraction-is-pmc : an AGM contraction is equivalent to a partial met con-
traction using the selection function γAGM

lemma contraction-is-pmc: ‹K = Cn(A) =⇒ K ÷ ϕ = K ÷γAGM ϕ› — requires
a supraclassical logic
〈proof 〉

lemma contraction-with-completion: ‹K = Cn(A) =⇒ K ÷ ϕ = K ÷∗ γAGM ϕ›
〈proof 〉

end

locale TRMC-SC = TransitivelyRelationalMeetContraction + PMC-SC where
selection = γTR

begin

A transitively relational selection function respect conjuctive overlap.
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lemma rel-sel-conj-overlap: ‹K = Cn(A) =⇒ γTR K (ϕ .∧. ψ) ⊆ γTR K ϕ ∪ γTR

K ψ›
〈proof 〉

A transitively relational meet contraction respect conjuctive overlap.
lemma trmc-conj-overlap: ‹K = Cn(A) =⇒ (K ÷γTR ϕ) ∩ (K ÷γTR ψ) ⊆ (K
÷γTR (ϕ .∧. ψ))›
〈proof 〉

A transitively relational selection function respect conjuctive inclusion
lemma rel-sel-conj-inclusion: ‹K = Cn(A) =⇒ γTR K (ϕ .∧. ψ) ∩ (K .⊥. ϕ) 6=
{} =⇒ γTR K ϕ ⊆ γTR K (ϕ .∧. ψ)›
〈proof 〉

A transitively relational meet contraction respect conjuctive inclusion
lemma trmc-conj-inclusion: ‹K = Cn(A) =⇒ ϕ /∈ (K ÷γTR (ϕ .∧. ψ)) =⇒ ((K
÷γTR (ϕ .∧. ψ) ⊆ (K ÷γTR ϕ)))›
〈proof 〉

As a transitively relational meet contraction has been proven to respect all
postulates of AGM full contraction the equivalence between the both are
straightforward
sublocale AGM-FullContraction where contraction = ‹λA ϕ. A ÷γTR ϕ›
〈proof 〉

end

locale AGMFC-SC = AGM-FullContraction + AGMC-SC

begin

An AGM relation is defined as ?
definition AGM-relation::‹ ′a set ⇒ ′a set ⇒ ′a set ⇒ bool›

where AGM-rel: ‹AGM-relation C K B ≡ (C = K ∧ B = K) ∨ ( (∃ϕ. K ` ϕ
∧ C ∈ K .⊥. ϕ)

∧ (∃ϕ. K ` ϕ ∧ B ∈ K .⊥. ϕ ∧ K
÷ ϕ ⊆ B)

∧ (∀ϕ. (K ` ϕ ∧ C ∈ K .⊥. ϕ ∧ B
∈ K .⊥. ϕ ∧ K ÷ ϕ ⊆ C) −→ K ÷ ϕ ⊆ B))›

An AGM relational selection is defined as a function that return K if the
remainders of K .⊥. ϕ is empty and the best element of the remainders
according to an AGM relation
definition AGM-relational-selection::‹ ′a set ⇒ ′a ⇒ ′a set set› (‹γAGMTR›)

where AGM-rel-sel: ‹γAGMTR K ϕ ≡ if (K .⊥. ϕ) = {}
then {K}
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else {B. B∈(K .⊥. ϕ) ∧ (∀C∈(K .⊥. ϕ). AGM-relation
C K B)}›

lemma AGM-rel-sel-completion: ‹K = Cn(A) =⇒ γAGMTR K ϕ = ∗ γAGM K
ϕ›
〈proof 〉

A transitively relational selection and an AGM relation is a transitively
relational meet contraction
sublocale TransitivelyRelationalMeetContraction where relation = AGM-relation
and rel-sel = ‹γAGMTR›
〈proof 〉
lemmas fullcontraction-is-pmc = contraction-is-pmc
lemmas fullcontraction-is-trmc = contraction-with-completion

end

locale FMC-SC = FullMeetContraction + TRMC-SC

begin

lemma full-meet-weak1: ‹K = Cn(A) =⇒ K ` ϕ =⇒ (K ÷γFC ϕ) = K ∩ Cn({.¬
ϕ})›
〈proof 〉

lemma full-meet-weak2:‹K = Cn(A) =⇒ K ` ϕ =⇒ Cn((K ÷γFC ϕ) ∪ {.¬ ϕ})
= Cn({.¬ ϕ})›
〈proof 〉

end

end

5 Revisions

The third operator of belief change introduce by the AGM framework is the
revision. In revision a sentence ϕ is added to the belief set K in such a way
that other sentences of K are removed if needed so that K is consistent

5.1 AGM revision postulates

The revision operator is denoted by the symbol ∗ and respect the following
conditions :

• revis-closure : a belief set K revised by ϕ should be logically closed
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• revis-inclusion : a belief set K revised by ϕ should be a subset of K
expanded by ϕ

• revis-vacuity : if ¬ϕ is not in K then the revision of K by ϕ is equivalent
of the expansion of K by ϕ

• revis-success : a belief set K revised by ϕ should contain ϕ

• revis-extensionality : Extensionality guarantees that the logic of con-
traction is extensional in the sense of allowing logically equivalent sen-
tences to be freely substituted for each other

• revis-consistency : a belief set K revised by ϕ is consistent if ϕ is
consistent

locale AGM-Revision = Supraclassical-logic +

fixes revision:: ‹ ′a set ⇒ ′a ⇒ ′a set› (infix ‹∗› 55)

assumes revis-closure: ‹K = Cn(A) =⇒ K ∗ ϕ = Cn(K ∗ ϕ)›
and revis-inclusion: ‹K = Cn(A) =⇒ K ∗ ϕ ⊆ K ⊕ ϕ›
and revis-vacuity: ‹K = Cn(A) =⇒ .¬ ϕ /∈ K =⇒ K ⊕ ϕ ⊆ K ∗ ϕ›
and revis-success: ‹K = Cn(A) =⇒ ϕ ∈ K ∗ ϕ›
and revis-extensionality: ‹K = Cn(A) =⇒ Cn({ϕ}) = Cn({ψ}) =⇒ K ∗ ϕ =

K ∗ ψ›
and revis-consistency: ‹K = Cn(A) =⇒ .¬ ϕ /∈ Cn({}) =⇒ ⊥ /∈ K ∗ ϕ›

A full revision is defined by two more postulates :

• revis-superexpansion : An element of K ∗ (ϕ .∧. ψ) is also an element
of K revised by ϕ and expanded by ψ

• revis-subexpansion : An element of (K ∗ ϕ) ⊕ ψ is also an element of
K revised by ϕ .∧. ψ if (K ∗ ϕ) do not imply ¬ ψ

locale AGM-FullRevision = AGM-Revision +
assumes revis-superexpansion: ‹K = Cn(A) =⇒ K ∗ (ϕ .∧. ψ) ⊆ (K ∗ ϕ) ⊕ ψ›

and revis-subexpansion: ‹K = Cn(A) =⇒ .¬ ψ /∈ (K ∗ ϕ) =⇒ (K ∗ ϕ) ⊕ ψ
⊆ K ∗ (ϕ .∧. ψ)›

begin

— important lemmas/corollaries that can replace the previous assumptions
corollary revis-superexpansion-ext : ‹K = Cn(A) =⇒ (K ∗ ϕ) ∩ (K ∗ ψ) ⊆ (K ∗
(ϕ .∨. ψ))›
〈proof 〉

end
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5.2 Relation of AGM revision and AGM contraction

The AGM contraction of K by ϕ can be defined as the AGM revision of K
by ¬ϕ intersect with K (to remove ¬ϕ from K revised). This definition is
known as Harper identity [3]
sublocale AGM-Revision ⊆ AGM-Contraction where contraction = ‹λK ϕ. K ∩
(K ∗ .¬ ϕ)›
〈proof 〉

locale AGMC-S = AGM-Contraction + Supraclassical-logic

The AGM revision of K by ϕ can be defined as the AGM contraction of
K by ¬ϕ followed by an expansion by ϕ. This definition is known as Levi
identity [4].
sublocale AGMC-S ⊆ AGM-Revision where revision = ‹λK ϕ. (K ÷ .¬ ϕ) ⊕
ϕ›
〈proof 〉

The relationship between AGM full revision and AGM full contraction is
the same as the relation between AGM revison and AGM contraction
sublocale AGM-FullRevision ⊆ AGM-FullContraction where contraction = ‹λK
ϕ. K ∩ (K ∗ .¬ ϕ)›
〈proof 〉

locale AGMFC-S = AGM-FullContraction + AGMC-S

sublocale AGMFC-S ⊆ AGM-FullRevision where revision = ‹λK ϕ. (K ÷ .¬ ϕ)
⊕ ϕ›
〈proof 〉

end
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