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Abstract

We formalize in Isabelle/HOL a result [2] due to S. Banach and H.
Steinhaus [1] known as Banach-Steinhaus theorem or Uniform bound-
edness principle: a pointwise-bounded family of continuous linear op-
erators from a Banach space to a normed space is uniformly bounded.
Our approach is an adaptation to Isabelle/HOL of a proof due to A.
Sokal [3].
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1 Missing results for the proof of Banach-Steinhaus
theorem

theory Banach-Steinhaus-Missing
imports

HOL−Analysis.Bounded-Linear-Function
HOL−Analysis.Line-Segment

begin
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1.1 Results missing for the proof of Banach-Steinhaus theo-
rem

The results proved here are preliminaries for the proof of Banach-Steinhaus
theorem using Sokal’s approach, but they do not explicitly appear in Sokal’s
paper [3].

Notation for the norm
open-bundle norm-syntax begin
notation norm (‹‖-‖›)
end

Notation for apply bilinear function
open-bundle blinfun-apply-syntax begin
notation blinfun-apply (infixr ‹∗v› 70 )
end

lemma bdd-above-plus:
fixes f ::‹ ′a ⇒ real›
assumes ‹bdd-above (f ‘ S)› and ‹bdd-above (g ‘ S)›
shows ‹bdd-above ((λ x. f x + g x) ‘ S)›

Explanation: If the images of two real-valued functions f,g are bounded
above on a set S, then the image of their sum is bounded on S.
〈proof 〉

The maximum of two functions
definition pointwise-max:: ( ′a ⇒ ′b::ord) ⇒ ( ′a ⇒ ′b) ⇒ ( ′a ⇒ ′b) where

‹pointwise-max f g = (λx. max (f x) (g x))›

lemma max-Sup-absorb-left:
fixes f g::‹ ′a ⇒ real›
assumes ‹X 6= {}› and ‹bdd-above (f ‘ X)› and ‹bdd-above (g ‘ X)› and ‹Sup

(f ‘ X) ≥ Sup (g ‘ X)›
shows ‹Sup ((pointwise-max f g) ‘ X) = Sup (f ‘ X)›

Explanation: For real-valued functions f and g, if the supremum of f is
greater-equal the supremum of g, then the supremum of max f g equals the
supremum of f. (Under some technical conditions.)
〈proof 〉

lemma max-Sup-absorb-right:
fixes f g::‹ ′a ⇒ real›
assumes ‹X 6= {}› and ‹bdd-above (f ‘ X)› and ‹bdd-above (g ‘ X)› and ‹Sup

(f ‘ X) ≤ Sup (g ‘ X)›
shows ‹Sup ((pointwise-max f g) ‘ X) = Sup (g ‘ X)›

Explanation: For real-valued functions f and g and a nonempty set X,
such that the f and g are bounded above on X, if the supremum of f on
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X is lower-equal the supremum of g on X, then the supremum of point-
wise-max f g on X equals the supremum of g. This is the right analog of
max-Sup-absorb-left.
〈proof 〉

lemma max-Sup:
fixes f g::‹ ′a ⇒ real›
assumes ‹X 6= {}› and ‹bdd-above (f ‘ X)› and ‹bdd-above (g ‘ X)›
shows ‹Sup ((pointwise-max f g) ‘ X) = max (Sup (f ‘ X)) (Sup (g ‘ X))›

Explanation: Let X be a nonempty set. Two supremum over X of the
maximum of two real-value functions is equal to the maximum of their
suprema over X, provided that the functions are bounded above on X.
〈proof 〉

lemma identity-telescopic:
fixes x :: ‹- ⇒ ′a::real-normed-vector›
assumes ‹x −−−−→ l›
shows ‹(λ N . sum (λ k. x (Suc k) − x k) {n..N}) −−−−→ l − x n›

Expression of a limit as a telescopic series. Explanation: If x converges
to l then the sum

∑
k = n..N . x (Suc k) − x k converges to l − x n as N

goes to infinity.
〈proof 〉

lemma bound-Cauchy-to-lim:
assumes ‹y −−−−→ x› and ‹

∧
n. ‖y (Suc n) − y n‖ ≤ c^n› and ‹y 0 = 0 › and

‹c < 1 ›
shows ‹‖x − y (Suc n)‖ ≤ (c / (1 − c)) ∗ c ^ n›

Inequality about a sequence of approximations assuming that the se-
quence of differences is bounded by a geometric progression. Explanation:
Let y be a sequence converging to x. If y satisfies the inequality ‖y (Suc n)
− y n‖ ≤ c ^ n for some c < 1 and assuming y 0 = 0 then the inequality
‖x − y (Suc n)‖ ≤ (c / (1 − c)) ∗ c ^ n holds.
〈proof 〉

lemma onorm-open-ball:
includes norm-syntax
shows ‹‖f ‖ = Sup { ‖f ∗v x‖ | x. ‖x‖ < 1 }›

Explanation: Let f be a bounded linear operator. The operator norm of
f is the supremum of ‖f ∗v x‖ for x such that ‖x‖ < 1.
〈proof 〉

lemma onorm-r :
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includes norm-syntax
assumes ‹r > 0 ›
shows ‹‖f ‖ = Sup ((λx. ‖f ∗v x‖) ‘ (ball 0 r)) / r›

Explanation: The norm of f is 1 / r of the supremum of the norm of f
∗v x for x in the ball of radius r centered at the origin.
〈proof 〉

Pointwise convergence
definition pointwise-convergent-to ::

‹( nat ⇒ ( ′a ⇒ ′b::topological-space) ) ⇒ ( ′a ⇒ ′b) ⇒ bool›
(‹((-)/ −pointwise→ (-))› [60 , 60 ] 60 ) where
‹pointwise-convergent-to x l = (∀ t:: ′a. (λ n. (x n) t) −−−−→ l t)›

lemma linear-limit-linear :
fixes f :: ‹- ⇒ ( ′a::real-vector ⇒ ′b::real-normed-vector)›
assumes ‹

∧
n. linear (f n)› and ‹f −pointwise→ F›

shows ‹linear F›

Explanation: If a family of linear operators converges pointwise, then the
limit is also a linear operator.
〈proof 〉

lemma non-Cauchy-unbounded:
fixes a ::‹- ⇒ real›
assumes ‹

∧
n. a n ≥ 0 › and ‹e > 0 ›

and ‹∀M . ∃m. ∃n. m ≥ M ∧ n ≥ M ∧ m > n ∧ sum a {Suc n..m} ≥ e›
shows ‹(λn. (sum a {0 ..n})) −−−−→ ∞›

Explanation: If the sequence of partial sums of nonnegative terms is not
Cauchy, then it converges to infinite.
〈proof 〉

lemma sum-Cauchy-positive:
fixes a ::‹- ⇒ real›
assumes ‹

∧
n. a n ≥ 0 › and ‹∃K . ∀n. (sum a {0 ..n}) ≤ K ›

shows ‹Cauchy (λn. sum a {0 ..n})›

Explanation: If a series of nonnegative reals is bounded, then the series
is Cauchy.
〈proof 〉

lemma convergent-series-Cauchy:
fixes a::‹nat ⇒ real› and ϕ::‹nat ⇒ ′a::metric-space›
assumes ‹∃M . ∀n. sum a {0 ..n} ≤ M › and ‹

∧
n. dist (ϕ (Suc n)) (ϕ n) ≤ a

n›
shows ‹Cauchy ϕ›
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Explanation: Let a be a real-valued sequence and let ϕ be sequence in
a metric space. If the partial sums of a are uniformly bounded and the
distance between consecutive terms of ϕ are bounded by the sequence a,
then ϕ is Cauchy.
〈proof 〉

unbundle blinfun-apply-syntax

unbundle no norm-syntax

end

2 Banach-Steinhaus theorem
theory Banach-Steinhaus

imports Banach-Steinhaus-Missing
begin

We formalize Banach-Steinhaus theorem as theorem banach-steinhaus.
This theorem was originally proved in Banach-Steinhaus’s paper [1]. For the
proof, we follow Sokal’s approach [3]. Furthermore, we prove as a corollary
a result about pointwise convergent sequences of bounded operators whose
domain is a Banach space.

2.1 Preliminaries for Sokal’s proof of Banach-Steinhaus the-
orem

lemma linear-plus-norm:
includes norm-syntax
assumes ‹linear f ›
shows ‹‖f ξ‖ ≤ max ‖f (x + ξ)‖ ‖f (x − ξ)‖›

Explanation: For arbitrary x and a linear operator f, ‖f ξ‖ is upper
bounded by the maximum of the norms of the shifts of f (i.e., f (x + ξ) and
f (x − ξ)).
〈proof 〉

lemma onorm-Sup-on-ball:
includes norm-syntax
assumes ‹r > 0 ›
shows ‖f ‖ ≤ Sup ( (λx. ‖f ∗v x‖) ‘ (ball x r) ) / r

Explanation: Let f be a bounded operator and let x be a point. For
any 0 < r, the operator norm of f is bounded above by the supremum of f
applied to the open ball of radius r around x, divided by r.
〈proof 〉
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lemma onorm-Sup-on-ball ′:
includes norm-syntax
assumes ‹r > 0 › and ‹τ < 1 ›
shows ‹∃ ξ∈ball x r . τ ∗ r ∗ ‖f ‖ ≤ ‖f ∗v ξ‖›

In the proof of Banach-Steinhaus theorem, we will use this variation of
the lemma onorm-Sup-on-ball.

Explanation: Let f be a bounded operator, let x be a point and let r be
a positive real number. For any real number τ < 1, there is a point ξ in the
open ball of radius r around x such that τ ∗ r ∗ ‖f ‖ ≤ ‖f ∗v ξ‖.
〈proof 〉

2.2 Banach-Steinhaus theorem
theorem banach-steinhaus:

fixes f ::‹ ′c ⇒ ( ′a::banach ⇒L
′b::real-normed-vector)›

assumes ‹
∧

x. bounded (range (λn. (f n) ∗v x))›
shows ‹bounded (range f )›

This is Banach-Steinhaus Theorem.
Explanation: If a family of bounded operators on a Banach space is

pointwise bounded, then it is uniformly bounded.
〈proof 〉

2.3 A consequence of Banach-Steinhaus theorem
corollary bounded-linear-limit-bounded-linear :

fixes f ::‹nat ⇒ ( ′a::banach ⇒L
′b::real-normed-vector)›

assumes ‹
∧

x. convergent (λn. (f n) ∗v x)›
shows ‹∃ g. (λn. (∗v) (f n)) −pointwise→ (∗v) g›

Explanation: If a sequence of bounded operators on a Banach space
converges pointwise, then the limit is also a bounded operator.
〈proof 〉

end
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