The Balog-Szemerédi-Gowers Theorem

Angeliki Koutsoukou-Argyraki, Mantas Bakšys, and Chelsea Edmonds University of Cambridge {ak2110, mb2412, cle47}@cam.ac.uk

March 17, 2025

Abstract

We formalise the Balog-Szemerédi-Gowers Theorem, a profound result in additive combinatorics which played a central role in Gowers's proof deriving the first effective bounds for Szemerédi's Theorem [2]. The proof is of great mathematical interest given that it involves an interplay between different mathematical areas, namely applications of graph theory and probability theory to additive combinatorics involving algebraic objects. This interplay is what made the process of the formalisation, for which we had to develop formalisations of new background material in the aforementioned areas, more rich and technically challenging. We demonstrate how locales, Isabelle's module system, can be employed to handle such interplays. To treat the graph-theoretic aspects of the proof, we make use of a new, more general undirected graph theory library developed recently by Chelsea Edmonds, which is both flexible and extensible [1]. For the formalisation we followed a proof presented in the 2022 lecture notes by Timothy Gowers "Introduction to Additive Combinatorics" for Part III of the Mathematical Tripos taught at the University of Cambridge [3]. In addition to the main theorem, which, following our source, is formulated for difference sets, we also give an alternative version for sumsets which required a formalisation of an auxiliary triangle inequality following a proof by Yufei Zhao from his book "Graph Theory and Additive Combinatorics" [4]. We moreover formalise a few additional results in additive combinatorics that are not used in the proof of the main theorem. This is the first formalisation of the Balog-Szemerédi-Gowers Theorem in any proof assistant to our knowledge.

Contents

1	Miscellaneous technical lemmas	3
2	Background material for the graph-theoretic aspects of the main proof 2.1 On graphs with loops	4 4 5
3	Auxiliary probability space results	6
4	A triangle inequality for sumsets	8
5	Background material in additive combinatorics5.1 Additive quadruples and additive energy5.2 On sums	9 9 10 11
6	Results on lower bounds on additive energy	13
7	Towards the proof of the Balog–Szemerédi–Gowers Theorem	14
8	Supplementary results related to intermediate lemmas used in the proof of the Balog–Szemerédi–Gowers Theorem	16

Acknowledgements

Angeliki Koutsoukou-Argyraki is funded by the ERC Advanced Grant ALEXAN-DRIA (Project GA 742178) funded by the European Research Council and led by Lawrence C. Paulson (University of Cambridge, Department of Computer Science and Technology). Mantas Bakšys received funding for his internship supervised by Koutsoukou-Argyraki by the Cambridge Mathematics Placements (CMP) Programme and by the ALEXANDRIA Project. Chelsea Edmonds is jointly funded by the Cambridge Trust (Cambridge Australia Scholarship) and a Cambridge Department of Computer Science and Technology Premium Research Studentship.

1 Miscellaneous technical lemmas

```
theory Miscellaneous-Lemmas
  imports
    HOL-Library.Indicator	ext{-}Function
    HOL-Analysis.\ Convex
begin
lemma set-pairs-filter-subset: A \subseteq B \Longrightarrow \{p : p \in A \times A \land P p\} \subseteq \{p : p \in B \times A \cap P p\}
B \wedge P p
  \langle proof \rangle
{f lemma} {\it card\text{-}set\text{-}ss\text{-}indicator}:
  assumes A \subseteq B
  assumes finite B
  shows card A = (\sum p \in B. indicator A p)
\langle proof \rangle
lemma card-cartesian-prod-square: finite X \Longrightarrow card (X \times X) = (card X)^2
  \langle proof \rangle
lemma (in ordered-ab-group-add) diff-strict1-mono:
  assumes a > a' b \le b'
  shows a - b > a' - b'
  \langle proof \rangle
lemma card-cartesian-product-6: card (A \times A \times A \times A \times A \times A) = (card\ A)
\langle proof \rangle
lemma card-cartesian-product3: card (X \times Y \times Z) = card \ X * card \ Y * card \ Z
  \langle proof \rangle
lemma card-le-image-div:
  fixes A:: 'a set and B:: 'b set and f:: 'a \Rightarrow 'b set and r:: real
  assumes finite B and pairwise (\lambda s t. disjnt (f s) (f t)) A and \forall d \in A. (card
  and \forall d \in A. f d \subseteq B and r > \theta
  shows card A \leq card B / r
\langle proof \rangle
\mathbf{lemma}\ \mathit{list-middle-eq} :
  length \ xs = length \ ys \Longrightarrow hd \ xs = hd \ ys \Longrightarrow last \ xs = last \ ys
    \implies butlast (tl \ xs) = butlast (tl \ ys) \implies xs = ys
  \langle proof \rangle
lemma list2-middle-singleton:
```

```
assumes length xs = 3 shows butlast (tl|xs) = [xs!|1] \langle proof \rangle

lemma le-powr-half-mult: fixes x \ y \ z :: real assumes x \ ^2 \le y * z \ and \ 0 \le y \ and \ 0 \le z shows x \le y \ powr(1/2) * z \ powr(1/2) \langle proof \rangle

lemma Cauchy-Schwarz-ineq-sum2: fixes f \ g :: 'a \Rightarrow real \ and \ A :: 'a \ set shows (\sum d \in A, f \ d * g \ d) \le (\sum d \in A, (f \ d) \ ^2) \ powr(1/2) * (\sum d \in A, (g \ d) \ ^2) \ powr(1/2) \langle proof \rangle
```

2 Background material for the graph-theoretic aspects of the main proof

This section includes a number of lemmas on project specific definitions for graph theory, building on the general undirected graph theory library [1]

```
theory Graph-Theory-Preliminaries
imports
Miscellaneous-Lemmas
Undirected-Graph-Theory.Bipartite-Graphs
Undirected-Graph-Theory.Connectivity
Random-Graph-Subgraph-Threshold.Ugraph-Misc
begin
```

2.1 On graphs with loops

end

```
begin  \begin{aligned} &\textbf{definition} & \textit{degree-normalized:: 'a \Rightarrow 'a \ set \Rightarrow real \ \textbf{where}} \\ & \textit{degree-normalized } v \ S \equiv \textit{card (neighbors-ss } v \ S) \ / \ (\textit{card } S) \end{aligned}   \begin{aligned} &\textbf{lemma degree-normalized-le-1: degree-normalized } x \ S \leq 1 \\ & \langle \textit{proof} \rangle \end{aligned}   \end{aligned}   \end{aligned}
```

2.2 On bipartite graphs

```
context bipartite-graph
begin
```

```
definition codegree:: 'a \Rightarrow 'a \Rightarrow nat where
  codegree\ v\ u \equiv card\ \{x \in V\ .\ vert\text{-}adj\ v\ x \land vert\text{-}adj\ u\ x\}
lemma codegree-neighbors: codegree v = card (neighborhood v \cap neighborhood u)
  \langle proof \rangle
lemma codegree-sym: codegree v u = codegree u v
  \langle proof \rangle
definition codegree-normalized:: 'a \Rightarrow 'a \Rightarrow 'a \text{ set} \Rightarrow real \text{ where}
  codegree-normalized v \ u \ S \equiv codegree \ v \ u \ / \ card \ S
\mathbf{lemma}\ codegree-normalized\text{-}alt X:
  assumes x \in X and x' \in X
 shows codegree-normalized x x' Y = card (neighbors-ss x Y \cap neighbors-ss x' Y)
/ card Y
\langle proof \rangle
lemma codegree-normalized-alt Y:
  assumes y \in Y and y' \in Y
 shows codegree-normalized y \ y' \ X = card \ (neighbors-ss \ y \ X \cap neighbors-ss \ y' \ X)
/ card X
\langle proof \rangle
\mathbf{lemma}\ codegree-normalized\text{-}sym\text{:}\ codegree-normalized\ u\ v\ S=\ codegree-normalized
v u S
  \langle proof \rangle
definition bad-pair:: 'a \Rightarrow 'a \Rightarrow 'a \ set \Rightarrow real \Rightarrow bool where
  bad-pair v \ u \ S \ c \equiv codegree-normalized v \ u \ S < c
lemma bad-pair-sym:
  assumes bad-pair\ v\ u\ S\ c shows bad-pair\ u\ v\ S\ c
  \langle proof \rangle
definition bad-pair-set:: 'a set \Rightarrow 'a set \Rightarrow real \Rightarrow ('a \times 'a) set where
  bad-pair-set S \ T \ c \equiv \{(u, v) \in S \times S. \ bad-pair u \ v \ T \ c\}
lemma bad-pair-set-ss: bad-pair-set S T c \subseteq S \times S
  \langle proof \rangle
lemma bad-pair-set-filter-alt:
```

```
bad-pair-set S T c = Set.filter (\lambda p . bad-pair (fst p) (snd p) T c) (S \times S)
  \langle proof \rangle
lemma bad-pair-set-finite:
 assumes finite S
 shows finite (bad-pair-set S T c)
\langle proof \rangle
{f lemma}\ codegree-is-path-length-two:
  codegree x x' = card \{ p : connecting-path x x' p \land walk-length p = 2 \}
  \langle proof \rangle
lemma codegree-bipartite-eq:
 \forall x \in X. \ \forall x' \in X. \ codegree \ x \ x' = card \ \{y \in Y. \ vert-adj \ x \ y \land vert-adj \ x' \ y\}
 \langle proof \rangle
lemma (in fin-bipartite-graph) bipartite-deg-square-eq:
 \forall y \in Y. (\sum x' \in X. \sum x \in X. indicator \{z. vert-adj \ x \ z \land vert-adj \ x' \ z\} \ y)
= (degree\ y)^2
\langle proof \rangle
lemma (in fin-bipartite-graph) codegree-degree:
 (\sum x' \in X. \sum x \in X. (codegree \ x \ x')) = (\sum y \in Y. (degree \ y)^2)
\langle proof \rangle
lemma (in fin-bipartite-graph) sum-degree-normalized-X-density:
 (\sum x \in X. degree-normalized x Y) / card X = edge-density X Y
  \langle proof \rangle
lemma (in fin-bipartite-graph) sum-degree-normalized-Y-density:
 (\sum y \in Y. degree-normalized y X) / card Y = edge-density X Y
  \langle proof \rangle
end
end
3
      Auxiliary probability space results
theory Prob-Space-Lemmas
 imports
    Random-Graph-Subgraph-Threshold.Prob-Lemmas
begin
context prob-space
```

begin

lemma expectation-uniform-count:

```
assumes M = uniform\text{-}count\text{-}measure X and finite X
 shows expectation f = (\sum x \in X. fx) / card X
\langle proof \rangle
    A lemma to obtain a value for x where the inequality is satisfied
lemma expectation-obtains-ge:
  fixes f :: 'a \Rightarrow real
 assumes M = uniform\text{-}count\text{-}measure X and finite X
 assumes expectation f \geq c
 obtains x where x \in X and f x \ge c
\langle proof \rangle
    The following is the variation on the Cauchy-Schwarz inequality pre-
sented in Gowers's notes before Lemma 2.13 [3].
lemma cauchy-schwarz-ineq-var:
  fixes X :: 'a \Rightarrow real
 assumes integrable M (\lambda x. (X x) \hat{}2) and X \in borel-measurable M
 shows expectation (\lambda x. (X x)^2) \ge (expectation (\lambda x. (X x)))^2
\langle proof \rangle
lemma integrable-uniform-count-measure-finite:
 fixes g: 'a \Rightarrow 'b::\{banach, second-countable-topology\}
 shows finite A \Longrightarrow integrable (uniform-count-measure A) g
  \langle proof \rangle
lemma cauchy-schwarz-ineq-var-uniform:
  fixes X :: 'a \Rightarrow real
 assumes M = uniform-count-measure S
 assumes finite S
 shows expectation (\lambda x. (X x)^2) \ge (expectation (\lambda x. (X x)))^2
\langle proof \rangle
    An equation for expectation over a discrete random variables distribu-
tion:
lemma expectation-finite-uniform-space:
 assumes M = uniform-count-measure S and finite S
 fixes X :: 'a \Rightarrow real
 shows expectation X = (\sum y \in X \text{ '} S \text{ . prob } \{x \in S \text{ . } X x = y\} * y)
\langle proof \rangle
lemma expectation-finite-uniform-indicator:
 assumes M = uniform-count-measure S and finite S
 shows expectation (\lambda x. indicator (Tx) y) = prob \{x \in S : indicator (Tx) y = x\}
1} (is expectation ?X = -)
```

```
\langle proof \rangle
end
end
```

end end

```
4
     A triangle inequality for sumsets
theory Sumset-Triangle-Inequality
 imports
   Pluennecke-Ruzsa-Inequality. Pluennecke-Ruzsa-Inequality
begin
context additive-abelian-group
begin
    We show a useful triangle inequality for sumsets that does *not* follow
from the Ruzsa triangle inequality. The proof follows the exposition in
Zhao's book [4].
    The following auxiliary lemma corresponds to Lemma 7.3.4 in Zhao's
book [4].
lemma triangle-ineq-sumsets-aux:
 fixes X B Y :: 'a set
 assumes hX: finite X and hB: finite B and hXG: X \subseteq G and hBG: B \subseteq G
   hXne: X \neq \{\} and hYX: \bigwedge Y. Y \subseteq X \Longrightarrow Y \neq \{\} \Longrightarrow card (sumset Y B) /
card Y \ge
   card\ (sumset\ X\ B)\ /\ card\ X\ and\ hC:\ finite\ C\ and\ hCne:\ C\neq \{\}\ and\ hCG:
C \subseteq G
 shows card (sumset X (sumset C B)) / card (sumset X C) \leq card (sumset X
B) / card X
 \langle proof \rangle
    The following inequality is the result corresponding to Corollary 7.3.6 in
Zhao's book [4].
lemma triangle-ineq-sumsets:
 assumes hA: finite A and hB: finite B and hC: finite C and
 hAG:A\subseteq G and hBG:B\subseteq G and hCG:C\subseteq G
 shows card A * card (sumset B C) \leq card (sumset A B) * card (sumset A C)
\langle proof \rangle
```

8

5 Background material in additive combinatorics

This section outlines some background definitions and basic lemmas in additive combinatorics based on the notes by Gowers [3].

```
theory Additive-Combinatorics-Preliminaries
imports
    Pluennecke-Ruzsa-Inequality.Pluennecke-Ruzsa-Inequality
begin
```

5.1 Additive quadruples and additive energy

```
context additive-abelian-group
```

begin

```
definition additive-quadruple:: a \Rightarrow a \Rightarrow a \Rightarrow bool where
        additive\text{-}quadruple\ a\ b\ c\ d\ \equiv\ a\in\ G\ \land\ b\in\ G\ \land\ c\in\ G\ \land\ d\in\ G\ \land\ a\oplus\ b=c\oplus\ d
{f lemma}\ additive	entropy -quadruple	entropy -aux:
        assumes additive-quadruple a b c d
        shows d = a \oplus b \ominus c
         \langle proof \rangle
lemma additive-quadruple-diff:
        assumes additive-quadruple a b c d
       shows a \ominus c = d \ominus b
        \langle proof \rangle
definition additive-quadruple-set:: 'a set \Rightarrow ('a \times 'a \times 'a \times 'a) set where
         additive-quadruple-set A \equiv \{(a, b, c, d) \mid a \ b \ c \ d. \ a \in A \land b \in A \land c \in A \land d\}
\in A \land
         additive-quadruple a b c d}
lemma additive-quadruple-set-sub:
        additive-quadruple-set A \subseteq \{(a, b, c, d) \mid a \ b \ c \ d. \ d = a \oplus b \ominus c \land a \in A \land b \in a \land 
A \wedge
                c \in A \land d \in A \} \langle proof \rangle
definition additive-energy:: 'a set \Rightarrow real where
         additive\text{-}energy\ A \equiv card\ (additive\text{-}quadruple\text{-}set\ A)\ /\ (card\ A)^3
lemma card-ineq-aux-quadruples:
       assumes finite A
       shows card (additive-quadruple-set A) \le (card A)^3
\langle proof \rangle
lemma additive-energy-upper-bound: additive-energy A \leq 1
```

```
\langle proof \rangle
```

5.2 On sums

```
definition f-sum:: 'a \Rightarrow 'a \ set \Rightarrow nat \ \mathbf{where}
     f-sum d A \equiv card \{(a, b) \mid a \ b. \ a \in A \land b \in A \land a \oplus b = d\}
lemma pairwise-disjnt-sum-1:
       pairwise (\lambda s \ t. \ disjnt \ ((\lambda \ d \ .\{(a, b) \mid a \ b. \ a \in A \land b \in A \land (a \oplus b = d)\}) \ s)
              ((\lambda \ d \ .\{(a,\ b)\ |\ a\ b.\ a\in A \land b\in A \land (a\oplus b=d)\})\ t))\ (sumset\ A\ A)
        \langle proof \rangle
lemma pairwise-disjnt-sum-2:
       pairwise disjnt ((\lambda d. {(a, b) | a b. a \in A \land b \in A \land a \oplus b = d}) '(sumset A
A))
        \langle proof \rangle
lemma sum-Union-span:
      assumes A \subseteq G
      shows \bigcup ((\lambda \ d \ .\{(a, \ b) \mid a \ b. \ a \in A \land b \in A \land (a \oplus b = d)\}) '(sumset A \ A))
= A \times A
\langle proof \rangle
lemma f-sum-le-card:
       assumes finite A and A \subseteq G
      shows f-sum d A \leq card A
\langle proof \rangle
lemma f-sum-card:
      assumes A \subseteq G and hA: finite A
      shows (\sum d \in (sumset \ A \ A). (f-sum \ d \ A)) = (card \ A)^2
\langle proof \rangle
lemma f-sum-card-eq:
       assumes A \subseteq G
      shows \forall x \in sumset A A. (f-sum x A)^2 =
              card \{(a, b, c, d) \mid a \ b \ c \ d. \ a \in A \land b \in A \land c \in A \land d \in A 
              additive-quadruple a\ b\ c\ d\wedge a\oplus b=x\wedge c\oplus d=x
\langle proof \rangle
{f lemma}\ pairwise-disjoint-sum:
       pairwise (\lambda s \ t. \ disjnt \ ((\lambda \ x. \ \{(a, b, c, d) \mid a \ b \ c \ d. \ a \in A \land b \in A \land c \in A \land d
\in A \land
                 additive-quadruple a b c d \wedge a \oplus b = x \wedge c \oplus d = x}) s)
```

```
((\lambda x. \{(a, b, c, d) \mid a b c d. a \in A \land b \in A \land c \in A \land d \in 
                              additive-quadruple a\ b\ c\ d\land a\oplus b=x\land c\oplus d=x\})\ t))\ (sumset\ A\ A)
              \langle proof \rangle
lemma pairwise-disjnt-quadruple-sum:
              pairwise disjnt ((\lambda x. {(a, b, c, d) | a b c d. a \in A \wedge b \in A \wedge c \in A \wedge d \in A \wedge
 additive-quadruple a b c d \wedge a \oplus b = x \wedge c \oplus d = x) '(sumset A A))
              \langle proof \rangle
lemma quadruple-sum-Union-eq:
                 \bigcup ((\lambda x. \{(a, b, c, d) \mid a b c d. a \in A \land b \in A \land c \in A \land d \in A \land 
                             additive-quadruple a \ b \ c \ d \wedge a \oplus b = x \wedge c \oplus d = x \} ' (sumset A \ A)) =
additive-quadruple-set A
 \langle proof \rangle
lemma f-sum-card-quadruple-set:
           assumes hAG: A \subseteq G and hA: finite A
          shows (\sum d \in (sumset \ A \ A). (f-sum \ d \ A)^2) = card (additive-quadruple-set \ A)
 \langle proof \rangle
lemma f-sum-card-quadruple-set-additive-energy: assumes A \subseteq G and finite A
            shows (\sum d \in sumset \ A \ A. \ (f\text{-}sum \ d \ A)^2) = additive\text{-}energy \ A * (card \ A)^3
              \langle proof \rangle
definition popular-sum:: 'a \Rightarrow real \Rightarrow 'a \ set \Rightarrow bool \ \mathbf{where}
              popular-sum d \vartheta A \equiv f-sum d A \geq \vartheta * of-real (card A)
definition popular-sum-set:: real \Rightarrow 'a \ set \Rightarrow 'a \ set where
           popular\text{-}sum\text{-}set \ \vartheta \ A \equiv \{d \in sumset \ A \ A. \ popular\text{-}sum \ d \ \vartheta \ A\}
```

5.3 On differences

The following material is directly analogous to the material given previously on sums. All definitions and lemmas are the corresponding ones for differences. E.g. *f-diff* corresponds to *f-sum*.

```
definition f-diff:: 'a \Rightarrow 'a \text{ set} \Rightarrow nat \text{ where} f-diff d A \equiv card \{(a, b) \mid a \text{ b. } a \in A \land b \in A \land a \ominus b = d\}

lemma pairwise-disjnt-diff-1: pairwise (\lambda s \text{ t. } disjnt ((\lambda d . \{(a, b) \mid a \text{ b. } a \in A \land b \in A \land (a \ominus b = d)\}) \text{ s}) ((\lambda d . \{(a, b) \mid a \text{ b. } a \in A \land b \in A \land (a \ominus b = d)\}) \text{ t})) (differenceset A A) \land proof <math>\rangle
```

lemma pairwise-disjnt-diff-2:

```
pairwise disjnt ((\lambda \ d. \{(a, b) \mid a \ b. \ a \in A \land b \in A \land a \ominus b = d\}) '(differenceset
(A A)
      \langle proof \rangle
lemma diff-Union-span:
      assumes A \subseteq G
      shows \bigcup ((\lambda \ d \ .\{(a, b) \mid a \ b. \ a \in A \land b \in A \land (a \ominus b = d)\}) '(differenceset A)
A)) = A \times A
\langle proof \rangle
lemma f-diff-le-card:
      assumes finite A and A \subseteq G
      shows f-diff d A \leq card A
\langle proof \rangle
lemma f-diff-card:
      assumes A \subseteq G and hA: finite A
      shows (\sum d \in (differenceset A A). f-diff d A) = (card A)^2
\langle proof \rangle
lemma f-diff-card-eq:
      assumes A \subseteq G
      shows \forall x \in differenceset A A. (f-diff x A)^2 =
             card \{(a, b, c, d) \mid a \ b \ c \ d. \ a \in A \land b \in A \land c \in A \land d \in A 
            additive-quadruple a\ b\ c\ d\wedge a\ominus c=x\wedge d\ominus b=x
\langle proof \rangle
lemma pairwise-disjoint-diff:
      pairwise (\lambda s \ t. \ disjnt \ ((\lambda \ x. \ \{(a, b, c, d) \mid a \ b \ c \ d. \ a \in A \land b \in A \land c \in A \land d
\in A \, \wedge \, \textit{additive-quadruple} \, \, \textit{a} \, \, \textit{b} \, \, \textit{c} \, \, \textit{d} \, \wedge \, \textit{a} \, \ominus \, \textit{c} = \textit{x} \, \wedge \, \textit{d} \, \ominus \, \textit{b} = \textit{x} \}) \, \, \textit{s})
          ((\lambda x. \{(a, b, c, d) \mid a \ b \ c \ d. \ a \in A \land b \in A \land c \in A \land d \in A \land additive\text{-quadruple}))
a\ b\ c\ d\wedge a\ominus c=x\wedge d\ominus b=x\})\ t))\ (\textit{differenceset}\ A\ A)
       \langle proof \rangle
lemma pairwise-disjnt-quadruple-diff:
   pairwise disjnt ((\lambda x. {(a, b, c, d) | a b c d. a \in A \wedge b \in A \wedge c \in A \wedge d \in A \wedge
additive-quadruple a\ b\ c\ d\wedge a\ominus c=x\wedge d\ominus b=x\}) ' (differenceset A\ A))
      \langle proof \rangle
lemma quadruple-diff-Union-eq:
        \bigcup \ ((\lambda \ x. \ \{(a,\ b,\ c,\ d)\ |\ a\ b\ c\ d.\ a\in A\ \land\ b\in A\ \land\ c\in A\ \land\ d\in A\ \land\ ad-
ditive-quadruple a\ b\ c\ d\ \land\ a\ \ominus\ c=x\ \land\ d\ \ominus\ b=x\}) ' (differenceset A\ A)) =
            additive-quadruple-set A
```

```
\langle proof \rangle
\mathbf{lemma}\ \textit{f-diff-card-quadruple-set}\colon
 assumes hAG: A \subseteq G and hA: finite A
 shows (\sum d \in (differenceset \ A \ A). (f-diff \ d \ A)^2) = card (additive-quadruple-set
\langle proof \rangle
lemma f-diff-card-quadruple-set-additive-energy: assumes A \subseteq G and finite A
  shows (\sum d \in differenceset \ A \ A. \ (f-diff \ d \ A)^2) = additive-energy \ A * (card
A)^3
  \langle proof \rangle
definition popular-diff:: 'a \Rightarrow real \Rightarrow 'a \ set \Rightarrow bool \ \mathbf{where}
  popular-diff d \vartheta A \equiv f-diff d A \geq \vartheta * of-real (card A)
definition popular-diff-set:: real \Rightarrow 'a \ set \Rightarrow 'a \ set where
  popular-diff-set \vartheta A \equiv \{d \in differenceset A A. popular-diff d \vartheta A\}
end
end
      Results on lower bounds on additive energy
6
{\bf theory}\ Additive\hbox{-}Energy\hbox{-}Lower\hbox{-}Bounds
  imports
    Additive-Combinatorics-Preliminaries
    Miscellaneous-Lemmas
begin
context additive-abelian-group
begin
    The following corresponds to Proposition 2.11 in Gowers's notes [3].
\textbf{proposition} \ additive-energy-lower-bound-sumset: \mathbf{fixes} \ C :: real
 assumes finite A and A \subseteq G and (card\ (sumset\ A\ A)) \le C * card\ A and card
A \neq 0
  shows additive-energy A \ge 1/C
\langle proof \rangle
    An analogous version of Proposition 2.11 where the assumption is on a
difference set is given below. The proof is identical to the proof of addi-
```

tive-energy-lower-bound-sumset above (with the obvious modifications).

```
assumes finite A and A \subseteq G and (card\ (differenceset\ A\ A)) \le C* card\ A and card\ A \ne 0 shows additive\text{-}energy\ A \ge 1/C \langle proof \rangle end end
```

7 Towards the proof of the Balog–Szemerédi–Gowers Theorem

```
theory Balog-Szemeredi-Gowers-Main-Proof imports
Prob-Space-Lemmas
Graph-Theory-Preliminaries
Sumset-Triangle-Inequality
Additive-Combinatorics-Preliminaries
begin
```

 ${\bf context}\ additive-abelian\text{-}group$

begin

After having introduced all the necessary preliminaries in the imported files, we are now ready to follow the chain of the arguments for the main proof as in Gowers's notes [3].

The following lemma corresponds to Lemma 2.13 in Gowers's notes [3].

```
lemma (in fin-bipartite-graph) proportion-bad-pairs-subset-bipartite: fixes c::real assumes c>0 obtains X' where X'\subseteq X and card\ X'\geq density*card\ X \ / \ sqrt\ 2 and card\ (bad-pair-set\ X'\ Y\ c)\ /\ (card\ X')^2 \le 2*c\ /\ density^2 \ \langle proof \rangle
```

The following technical probability lemma corresponds to Lemma 2.14 in Gowers's notes [3].

```
lemma (in prob-space) expectation-condition-card-1: fixes X::'a set and f::'a \Rightarrow real and \delta::real assumes finite X and \forall x \in X. f x \leq 1 and M = uniform-count-measure X and expectation f \geq \delta shows card \{x \in X : (f x \geq \delta \ / \ 2)\} \geq \delta * card X \ / \ 2 \langle proof \rangle
```

The following technical probability lemma corresponds to Lemma 2.15 in Gowers's notes.

lemma (in prob-space) expectation-condition-card-2:

```
fixes X::'a set and \beta::real and \alpha::real and f:: 'a \Rightarrow real assumes finite X and \bigwedge x. x \in X \Longrightarrow f x \le 1 and \beta > 0 and \alpha > 0 and expectation f \ge 1 - \alpha and M = uniform\text{-}count\text{-}measure } X shows card \{x \in X. \ f \ x \ge 1 - \beta\} \ge (1 - \alpha \ / \ \beta) * card X
```

 $\langle proof \rangle$

The following lemma corresponds to Lemma 2.16 in Gowers's notes [3]. For the proof, we will apply Lemma 2.13 (proportion-bad-pairs-subset-bipartite, the technical probability Lemmas 2.14 (expectation-condition-card-1) and 2.15 (expectation-condition-card-2) as well as background material on graphs with loops and bipartite graphs that was previously presented.

```
lemma (in fin-bipartite-graph) walks-of-length-3-subsets-bipartite: obtains X' and Y' where X' \subseteq X and Y' \subseteq Y and card X' \ge (edge-density X Y)^2 * card X / 16 and card Y' \ge edge-density X Y * card Y / 4 and \forall x \in X'. \forall y \in Y'. card \{p. connecting-walk x y p \land walk-length p = 3\} \ge (edge-density X Y)^6 * card X * card Y / 2^13
```

The following lemma corresponds to Lemma 2.17 in Gowers's notes [3].

Note that here we have $\operatorname{set}(additive\text{-}energy\ A=2*c\ (instead\ of\ (additive\text{-}energy\ A=c\ as\ in\ the\ notes)$ and we are accordingly considering c-popular differences (instead of c/2-popular differences as in the notes) so that we will still have $(\vartheta=additive\text{-}energy\ A\ /\ 2$.

```
lemma popular-differences-card: fixes A::'a set and c::real assumes finite A and A \subseteq G and additive-energy A = 2 * c shows card (popular-diff-set c A) \geq c * card A
```

 $\langle proof \rangle$

The following lemma corresponds to Lemma 2.18 in Gowers's notes [3]. It includes the key argument of the main proof and its proof applies Lemmas 2.16 (walks-of-length-3-subsets-bipartite) and 2.17 (popular-differences-card). In the proof we will use an appropriately defined bipartite graph as an intermediate/auxiliary construct so as to apply lemma walks-of-length-3-subsets-bipartite. As each vertex set of the bipartite graph is constructed to be a copy of a finite subset of an Abelian group, we need flexibility regarding types, which is what prompted the introduction and use of the new graph theory library [1] (that does not impose any type restrictions e.g. by representing vertices as natural numbers).

```
lemma obtains-subsets-difference
set-card-bound: fixes A::'a set and c::real assumes finite
 A and c>0 and A\neq \{\} and A\subseteq G and additive-energy
 A=2*c
```

```
obtains B and A' where B \subseteq A and B \neq \{\} and card\ B \ge c^4 * card\ A / 16 and A' \subseteq A and A' \neq \{\} and card\ A' \ge c^2 * card\ A / 4 and card\ (differenceset\ A'\ B) \le 2^13 * card\ A / c^15 \langle proof \rangle
```

We now show the main theorem, which is a direct application of lemma obtains-subsets-differenceset-card-bound and the Ruzsa triangle inequality. (The main theorem corresponds to Corollary 2.19 in Gowers's notes [3].)

```
theorem Balog-Szemeredi-Gowers: fixes A::'a set and c::real assumes afin: finite A and A \neq \{\} and c > 0 and additive-energy A = 2 * c and ass: A \subseteq G obtains A' where A' \subseteq A and card\ A' \ge c^2 * card\ A / 4 and card\ (differenceset\ A'\ A') \le 2^30 * card\ A / c^34 \langle proof \rangle
```

The following is an analogous version of the Balog–Szemerédi–Gowers Theorem for a sumset instead of a difference set. The proof is similar to that of the original version, again using *obtains-subsets-differenceset-card-bound*, however, instead of the Ruzsa triangle inequality we will use the alternative triangle inequality for sumsets *triangle-ineq-sumsets*.

```
theorem Balog\text{-}Szemeredi\text{-}Gowers\text{-}sumset: fixes A::'a set and c::real assumes afin: finite\ A and A \neq \{\} and c>0 and additive\text{-}energy\ A = 2 * c and ass:\ A \subseteq G obtains A' where A' \subseteq A and card\ A' \ge c^2 * card\ A \ / \ 4 and card\ (sumset\ A'\ A') \le 2^30 * card\ A \ / \ c^34 \langle proof \rangle end end
```

8 Supplementary results related to intermediate lemmas used in the proof of the Balog–Szemerédi–Gowers Theorem

```
theory Balog-Szemeredi-Gowers-Supplementary
imports
Balog-Szemeredi-Gowers-Main-Proof
begin
context additive-abelian-group
begin
```

Even though it is not applied anywhere in this development, for the sake of completeness we give the following analogous version of Lemma 2.17 (pop-

ular-differences-card) but for popular sums instead of popular differences. The proof is identical to that of Lemma 2.17, with the obvious modifications.

```
lemma popular-sums-card: fixes A::'a set and c::real assumes finite A and additive-energy A=2*c and A\subseteq G shows card (popular-sum-set c A) \geq c*card A
```

The following is an analogous version of lemma obtains-subsets-differenceset-card-bound (2.18 in Gowers's notes [3]) but for a sumset instead of a difference set. It is not used anywhere in this development but we provide it for the sake of completeness. The proof is identical to that of lemma obtains-subsets-differenceset-card-bound with f-diff changed to f-sum, popular-diff changed to popular-sum, \oplus interchanged with \ominus , and instead of lemma popular-differences-card we apply its analogous version for popular sums, that is lemma popular-sums-card.

```
lemma obtains-subsets-sumset-card-bound: fixes A::'a set and c::real assumes finite A and c>0 and A \neq \{\} and A \subseteq G and additive-energy A=2*c obtains B and A' where B \subseteq A and B \neq \{\} and C an
```

References

- [1] C. Edmonds. Undirected graph theory. Archive of Formal Proofs, September 2022. https://isa-afp.org/entries/Undirected_Graph_Theory.html, Formal proof development.
- [2] W. T. Gowers. A new proof of Szemerédi's theorem. Geometric & Functional Analysis GAFA, 11(3):465-588, 2001.
- [3] W. T. Gowers. Introduction to additive combinatorics, 2022. Lecture notes for Part III of the Mathematical Tripos taught at the University of Cambridge, available at https://drive.google.com/file/d/1ut0mUqSyPMweoxoDTfhXverEONyFgcuO/view.
- [4] Y. Zhao. Graph theory and additive combinatorics. Online at https://yufeizhao.com/gtacbook/, 2022. book draft.