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Abstract

We formalise the Balog–Szemerédi–Gowers Theorem, a profound
result in additive combinatorics which played a central role in Gow-
ers’s proof deriving the first effective bounds for Szemerédi’s Theorem
[2]. The proof is of great mathematical interest given that it involves
an interplay between different mathematical areas, namely applica-
tions of graph theory and probability theory to additive combinatorics
involving algebraic objects. This interplay is what made the process
of the formalisation, for which we had to develop formalisations of
new background material in the aforementioned areas, more rich and
technically challenging. We demonstrate how locales, Isabelle’s mod-
ule system, can be employed to handle such interplays. To treat the
graph-theoretic aspects of the proof, we make use of a new, more gen-
eral undirected graph theory library developed recently by Chelsea Ed-
monds, which is both flexible and extensible [1]. For the formalisation
we followed a proof presented in the 2022 lecture notes by Timothy
Gowers "Introduction to Additive Combinatorics" for Part III of the
Mathematical Tripos taught at the University of Cambridge [3]. In ad-
dition to the main theorem, which, following our source, is formulated
for difference sets, we also give an alternative version for sumsets which
required a formalisation of an auxiliary triangle inequality following a
proof by Yufei Zhao from his book "Graph Theory and Additive Combi-
natorics" [4]. We moreover formalise a few additional results in additive
combinatorics that are not used in the proof of the main theorem. This
is the first formalisation of the Balog–Szemerédi–Gowers Theorem in
any proof assistant to our knowledge.
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1 Miscellaneous technical lemmas
theory Miscellaneous-Lemmas

imports
HOL−Library.Indicator-Function
HOL−Analysis.Convex

begin

lemma set-pairs-filter-subset: A ⊆ B =⇒ {p . p ∈ A × A ∧ P p} ⊆ {p. p ∈ B ×
B ∧ P p}
〈proof 〉

lemma card-set-ss-indicator :
assumes A ⊆ B
assumes finite B
shows card A = (

∑
p ∈ B. indicator A p)

〈proof 〉

lemma card-cartesian-prod-square: finite X =⇒ card (X × X) = (card X)^2
〈proof 〉

lemma (in ordered-ab-group-add) diff-strict1-mono:
assumes a > a ′ b ≤ b ′

shows a − b > a ′ − b ′

〈proof 〉

lemma card-cartesian-product-6 : card (A × A × A × A × A × A) = (card A) ^
6
〈proof 〉

lemma card-cartesian-product3 : card (X × Y × Z ) = card X ∗ card Y ∗ card Z
〈proof 〉

lemma card-le-image-div:
fixes A:: ′a set and B:: ′b set and f :: ′a ⇒ ′b set and r :: real
assumes finite B and pairwise (λ s t. disjnt (f s) (f t)) A and ∀ d ∈ A. (card

(f d)) ≥ r
and ∀ d ∈ A. f d ⊆ B and r > 0
shows card A ≤ card B / r

〈proof 〉

lemma list-middle-eq:
length xs = length ys =⇒ hd xs = hd ys =⇒ last xs = last ys
=⇒ butlast (tl xs) = butlast (tl ys) =⇒ xs = ys

〈proof 〉

lemma list2-middle-singleton:
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assumes length xs = 3
shows butlast (tl xs) = [xs ! 1 ]

〈proof 〉

lemma le-powr-half-mult:
fixes x y z:: real
assumes x ^ 2 ≤ y ∗ z and 0 ≤ y and 0 ≤ z
shows x ≤ y powr(1/2 ) ∗ z powr (1/2 )
〈proof 〉

lemma Cauchy-Schwarz-ineq-sum2 :
fixes f g:: ′a ⇒ real and A:: ′a set
shows (

∑
d ∈ A. f d ∗ g d) ≤

(
∑

d ∈ A. (f d)^2 ) powr (1/2 ) ∗ (
∑

d ∈ A. (g d)^2 ) powr (1/2 )
〈proof 〉

end

2 Background material for the graph-theoretic as-
pects of the main proof

This section includes a number of lemmas on project specific definitions for
graph theory, building on the general undirected graph theory library [1]
theory Graph-Theory-Preliminaries

imports
Miscellaneous-Lemmas
Undirected-Graph-Theory.Bipartite-Graphs
Undirected-Graph-Theory.Connectivity
Random-Graph-Subgraph-Threshold.Ugraph-Misc

begin

2.1 On graphs with loops
context ulgraph

begin

definition degree-normalized:: ′a ⇒ ′a set ⇒ real where
degree-normalized v S ≡ card (neighbors-ss v S) / (card S)

lemma degree-normalized-le-1 : degree-normalized x S ≤ 1

〈proof 〉

end
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2.2 On bipartite graphs
context bipartite-graph
begin

definition codegree:: ′a ⇒ ′a ⇒ nat where
codegree v u ≡ card {x ∈ V . vert-adj v x ∧ vert-adj u x}

lemma codegree-neighbors: codegree v u = card (neighborhood v ∩ neighborhood u)
〈proof 〉

lemma codegree-sym: codegree v u = codegree u v
〈proof 〉

definition codegree-normalized:: ′a ⇒ ′a ⇒ ′a set ⇒ real where
codegree-normalized v u S ≡ codegree v u / card S

lemma codegree-normalized-altX :
assumes x ∈ X and x ′ ∈ X
shows codegree-normalized x x ′ Y = card (neighbors-ss x Y ∩ neighbors-ss x ′ Y )

/ card Y

〈proof 〉

lemma codegree-normalized-altY :
assumes y ∈ Y and y ′ ∈ Y
shows codegree-normalized y y ′ X = card (neighbors-ss y X ∩ neighbors-ss y ′ X)

/ card X

〈proof 〉

lemma codegree-normalized-sym: codegree-normalized u v S = codegree-normalized
v u S
〈proof 〉

definition bad-pair :: ′a ⇒ ′a ⇒ ′a set ⇒ real ⇒ bool where
bad-pair v u S c ≡ codegree-normalized v u S < c

lemma bad-pair-sym:
assumes bad-pair v u S c shows bad-pair u v S c
〈proof 〉

definition bad-pair-set:: ′a set ⇒ ′a set ⇒ real ⇒ ( ′a × ′a) set where
bad-pair-set S T c ≡ {(u, v) ∈ S × S . bad-pair u v T c}

lemma bad-pair-set-ss: bad-pair-set S T c ⊆ S × S
〈proof 〉

lemma bad-pair-set-filter-alt:

5



bad-pair-set S T c = Set.filter (λ p . bad-pair (fst p) (snd p) T c) (S × S)
〈proof 〉

lemma bad-pair-set-finite:
assumes finite S
shows finite (bad-pair-set S T c)

〈proof 〉

lemma codegree-is-path-length-two:
codegree x x ′ = card {p . connecting-path x x ′ p ∧ walk-length p = 2}
〈proof 〉

lemma codegree-bipartite-eq:
∀ x ∈ X . ∀ x ′ ∈ X . codegree x x ′ = card {y ∈ Y . vert-adj x y ∧ vert-adj x ′ y}
〈proof 〉

lemma (in fin-bipartite-graph) bipartite-deg-square-eq:
∀ y ∈ Y . (

∑
x ′ ∈ X .

∑
x ∈ X . indicator {z. vert-adj x z ∧ vert-adj x ′ z} y)

= (degree y)^2
〈proof 〉

lemma (in fin-bipartite-graph) codegree-degree:
(
∑

x ′ ∈ X .
∑

x ∈ X . (codegree x x ′)) = (
∑

y ∈ Y . (degree y)^2 )

〈proof 〉

lemma (in fin-bipartite-graph) sum-degree-normalized-X-density:
(
∑

x ∈ X . degree-normalized x Y ) / card X = edge-density X Y
〈proof 〉

lemma (in fin-bipartite-graph) sum-degree-normalized-Y-density:
(
∑

y ∈ Y . degree-normalized y X) / card Y = edge-density X Y
〈proof 〉

end
end

3 Auxiliary probability space results
theory Prob-Space-Lemmas

imports
Random-Graph-Subgraph-Threshold.Prob-Lemmas

begin

context prob-space

begin

lemma expectation-uniform-count:
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assumes M = uniform-count-measure X and finite X
shows expectation f = (

∑
x ∈ X . f x) / card X

〈proof 〉

A lemma to obtain a value for x where the inequality is satisfied
lemma expectation-obtains-ge:

fixes f :: ′a ⇒ real
assumes M = uniform-count-measure X and finite X
assumes expectation f ≥ c
obtains x where x ∈ X and f x ≥ c

〈proof 〉

The following is the variation on the Cauchy-Schwarz inequality pre-
sented in Gowers’s notes before Lemma 2.13 [3].
lemma cauchy-schwarz-ineq-var :

fixes X :: ′a ⇒ real
assumes integrable M (λx. (X x)^2 ) and X ∈ borel-measurable M
shows expectation (λ x. (X x)^2 ) ≥ (expectation (λ x . (X x)))^2

〈proof 〉

lemma integrable-uniform-count-measure-finite:
fixes g :: ′a ⇒ ′b::{banach, second-countable-topology}
shows finite A =⇒ integrable (uniform-count-measure A) g
〈proof 〉

lemma cauchy-schwarz-ineq-var-uniform:
fixes X :: ′a ⇒ real
assumes M = uniform-count-measure S
assumes finite S
shows expectation (λ x. (X x)^2 ) ≥ (expectation (λ x . (X x)))^2

〈proof 〉

An equation for expectation over a discrete random variables distribu-
tion:
lemma expectation-finite-uniform-space:

assumes M = uniform-count-measure S and finite S
fixes X :: ′a ⇒ real
shows expectation X = (

∑
y ∈ X ‘ S . prob {x ∈ S . X x = y} ∗ y)

〈proof 〉

lemma expectation-finite-uniform-indicator :
assumes M = uniform-count-measure S and finite S
shows expectation (λ x. indicator (T x) y) = prob {x ∈ S . indicator (T x) y =

1} (is expectation ?X = -)
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〈proof 〉

end
end

4 A triangle inequality for sumsets
theory Sumset-Triangle-Inequality

imports
Pluennecke-Ruzsa-Inequality.Pluennecke-Ruzsa-Inequality

begin

context additive-abelian-group

begin

We show a useful triangle inequality for sumsets that does *not* follow
from the Ruzsa triangle inequality. The proof follows the exposition in
Zhao’s book [4].

The following auxiliary lemma corresponds to Lemma 7.3.4 in Zhao’s
book [4].
lemma triangle-ineq-sumsets-aux:

fixes X B Y :: ′a set
assumes hX : finite X and hB: finite B and hXG: X ⊆ G and hBG: B ⊆ G

and
hXne: X 6= {} and hYX :

∧
Y . Y ⊆ X =⇒ Y 6= {} =⇒ card (sumset Y B) /

card Y ≥
card (sumset X B) / card X and hC : finite C and hCne: C 6= {} and hCG:

C ⊆ G
shows card (sumset X (sumset C B)) / card (sumset X C ) ≤ card (sumset X

B) / card X
〈proof 〉

The following inequality is the result corresponding to Corollary 7.3.6 in
Zhao’s book [4].
lemma triangle-ineq-sumsets:

assumes hA: finite A and hB: finite B and hC : finite C and
hAG : A ⊆ G and hBG: B ⊆ G and hCG: C ⊆ G
shows card A ∗ card (sumset B C ) ≤ card (sumset A B) ∗ card (sumset A C )

〈proof 〉

end
end
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5 Background material in additive combinatorics
This section outlines some background definitions and basic lemmas in ad-
ditive combinatorics based on the notes by Gowers [3].
theory Additive-Combinatorics-Preliminaries

imports
Pluennecke-Ruzsa-Inequality.Pluennecke-Ruzsa-Inequality

begin

5.1 Additive quadruples and additive energy
context additive-abelian-group

begin

definition additive-quadruple:: ′a ⇒ ′a ⇒ ′a ⇒ ′a ⇒ bool where
additive-quadruple a b c d ≡ a ∈ G ∧ b ∈ G ∧ c ∈ G ∧ d ∈ G ∧ a ⊕ b = c ⊕ d

lemma additive-quadruple-aux:
assumes additive-quadruple a b c d
shows d = a ⊕ b 	 c
〈proof 〉

lemma additive-quadruple-diff :
assumes additive-quadruple a b c d
shows a 	 c = d 	 b
〈proof 〉

definition additive-quadruple-set:: ′a set ⇒ ( ′a × ′a × ′a × ′a) set where
additive-quadruple-set A ≡ {(a, b, c, d) | a b c d. a ∈ A ∧ b ∈ A ∧ c ∈ A ∧ d

∈ A ∧
additive-quadruple a b c d}

lemma additive-quadruple-set-sub:
additive-quadruple-set A ⊆ {(a, b, c, d) | a b c d. d = a ⊕ b 	 c ∧ a ∈ A ∧ b ∈

A ∧
c ∈ A ∧ d ∈ A} 〈proof 〉

definition additive-energy:: ′a set ⇒ real where
additive-energy A ≡ card (additive-quadruple-set A) / (card A)^3

lemma card-ineq-aux-quadruples:
assumes finite A
shows card (additive-quadruple-set A) ≤ (card A)^3

〈proof 〉

lemma additive-energy-upper-bound: additive-energy A ≤ 1

9



〈proof 〉

5.2 On sums
definition f-sum:: ′a ⇒ ′a set ⇒ nat where

f-sum d A ≡ card {(a, b) | a b. a ∈ A ∧ b ∈ A ∧ a ⊕ b = d}

lemma pairwise-disjnt-sum-1 :
pairwise (λs t. disjnt ((λ d .{(a, b) | a b. a ∈ A ∧ b ∈ A ∧ (a ⊕ b = d)}) s)
((λ d .{(a, b) | a b. a ∈ A ∧ b ∈ A ∧ (a ⊕ b = d)}) t)) (sumset A A)

〈proof 〉

lemma pairwise-disjnt-sum-2 :
pairwise disjnt ((λ d. {(a, b) | a b. a ∈ A ∧ b ∈ A ∧ a ⊕ b = d}) ‘ (sumset A

A))
〈proof 〉

lemma sum-Union-span:
assumes A ⊆ G
shows

⋃
((λ d .{(a, b) | a b. a ∈ A ∧ b ∈ A ∧ (a ⊕ b = d)}) ‘ (sumset A A))

= A × A

〈proof 〉

lemma f-sum-le-card:
assumes finite A and A ⊆ G
shows f-sum d A ≤ card A

〈proof 〉

lemma f-sum-card:
assumes A ⊆ G and hA: finite A
shows (

∑
d ∈ (sumset A A). (f-sum d A)) = (card A)^2

〈proof 〉

lemma f-sum-card-eq:
assumes A ⊆ G
shows ∀ x ∈ sumset A A. (f-sum x A)^2 =

card {(a, b, c, d) | a b c d. a ∈ A ∧ b ∈ A ∧ c ∈ A ∧ d ∈ A ∧
additive-quadruple a b c d ∧ a ⊕ b = x ∧ c ⊕ d = x}

〈proof 〉

lemma pairwise-disjoint-sum:
pairwise (λs t. disjnt ((λ x. {(a, b, c, d) | a b c d. a ∈ A ∧ b ∈ A ∧ c ∈ A ∧ d

∈ A ∧
additive-quadruple a b c d ∧ a ⊕ b = x ∧ c ⊕ d = x}) s)
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((λ x. {(a, b, c, d) | a b c d. a ∈ A ∧ b ∈ A ∧ c ∈ A ∧ d ∈ A ∧
additive-quadruple a b c d ∧ a ⊕ b = x ∧ c ⊕ d = x}) t)) (sumset A A)

〈proof 〉

lemma pairwise-disjnt-quadruple-sum:
pairwise disjnt ((λ x. {(a, b, c, d) | a b c d. a ∈ A ∧ b ∈ A ∧ c ∈ A ∧ d ∈ A ∧

additive-quadruple a b c d ∧ a ⊕ b = x ∧ c ⊕ d = x}) ‘ (sumset A A))
〈proof 〉

lemma quadruple-sum-Union-eq:⋃
((λ x. {(a, b, c, d) | a b c d. a ∈ A ∧ b ∈ A ∧ c ∈ A ∧ d ∈ A ∧

additive-quadruple a b c d ∧ a ⊕ b = x ∧ c ⊕ d = x}) ‘ (sumset A A)) =
additive-quadruple-set A

〈proof 〉

lemma f-sum-card-quadruple-set:
assumes hAG: A ⊆ G and hA: finite A
shows (

∑
d ∈ (sumset A A). (f-sum d A)^2 ) = card (additive-quadruple-set A)

〈proof 〉

lemma f-sum-card-quadruple-set-additive-energy: assumes A ⊆ G and finite A
shows (

∑
d ∈ sumset A A. (f-sum d A)^2 ) = additive-energy A ∗ (card A)^3

〈proof 〉

definition popular-sum:: ′a ⇒ real ⇒ ′a set ⇒ bool where
popular-sum d ϑ A ≡ f-sum d A ≥ ϑ ∗ of-real (card A)

definition popular-sum-set:: real ⇒ ′a set ⇒ ′a set where
popular-sum-set ϑ A ≡ {d ∈ sumset A A. popular-sum d ϑ A}

5.3 On differences
The following material is directly analogous to the material given previ-
ously on sums. All definitions and lemmas are the corresponding ones for
differences. E.g. f-diff corresponds to f-sum.
definition f-diff :: ′a ⇒ ′a set ⇒ nat where

f-diff d A ≡ card {(a, b) | a b. a ∈ A ∧ b ∈ A ∧ a 	 b = d}

lemma pairwise-disjnt-diff-1 :
pairwise (λs t. disjnt ((λ d .{(a, b) | a b. a ∈ A ∧ b ∈ A ∧ (a 	 b = d)}) s)
((λ d. {(a, b) | a b. a ∈ A ∧ b ∈ A ∧ (a 	 b = d)}) t)) (differenceset A A)

〈proof 〉

lemma pairwise-disjnt-diff-2 :
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pairwise disjnt ((λ d. {(a, b) | a b. a ∈ A ∧ b ∈ A ∧ a 	 b = d}) ‘ (differenceset
A A))
〈proof 〉

lemma diff-Union-span:
assumes A ⊆ G
shows

⋃
((λ d .{(a, b) | a b. a ∈ A ∧ b ∈ A ∧ (a 	 b = d)}) ‘ (differenceset A

A)) = A × A

〈proof 〉

lemma f-diff-le-card:
assumes finite A and A ⊆ G
shows f-diff d A ≤ card A

〈proof 〉

lemma f-diff-card:
assumes A ⊆ G and hA: finite A
shows (

∑
d ∈ (differenceset A A). f-diff d A) = (card A)^2

〈proof 〉

lemma f-diff-card-eq:
assumes A ⊆ G
shows ∀ x ∈ differenceset A A. (f-diff x A)^2 =

card {(a, b, c, d) | a b c d. a ∈ A ∧ b ∈ A ∧ c ∈ A ∧ d ∈ A ∧
additive-quadruple a b c d ∧ a 	 c = x ∧ d 	 b = x}

〈proof 〉

lemma pairwise-disjoint-diff :
pairwise (λs t. disjnt ((λ x. {(a, b, c, d) | a b c d. a ∈ A ∧ b ∈ A ∧ c ∈ A ∧ d

∈ A ∧ additive-quadruple a b c d ∧ a 	 c = x ∧ d 	 b = x}) s)
((λ x. {(a, b, c, d) | a b c d. a ∈ A ∧ b ∈ A ∧ c ∈ A ∧ d ∈ A ∧ additive-quadruple

a b c d ∧ a 	 c = x ∧ d 	 b = x}) t)) (differenceset A A)
〈proof 〉

lemma pairwise-disjnt-quadruple-diff :
pairwise disjnt ((λ x. {(a, b, c, d) | a b c d. a ∈ A ∧ b ∈ A ∧ c ∈ A ∧ d ∈ A ∧

additive-quadruple a b c d ∧ a 	 c = x ∧ d 	 b = x}) ‘ (differenceset A A))
〈proof 〉

lemma quadruple-diff-Union-eq:⋃
((λ x. {(a, b, c, d) | a b c d. a ∈ A ∧ b ∈ A ∧ c ∈ A ∧ d ∈ A ∧ ad-

ditive-quadruple a b c d ∧ a 	 c = x ∧ d 	 b = x}) ‘ (differenceset A A)) =

additive-quadruple-set A
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〈proof 〉

lemma f-diff-card-quadruple-set:
assumes hAG: A ⊆ G and hA: finite A
shows (

∑
d ∈ (differenceset A A). (f-diff d A)^2 ) = card (additive-quadruple-set

A)

〈proof 〉

lemma f-diff-card-quadruple-set-additive-energy: assumes A ⊆ G and finite A
shows (

∑
d ∈ differenceset A A. (f-diff d A)^2 ) = additive-energy A ∗ (card

A)^3
〈proof 〉

definition popular-diff :: ′a ⇒ real ⇒ ′a set ⇒ bool where
popular-diff d ϑ A ≡ f-diff d A ≥ ϑ ∗ of-real (card A)

definition popular-diff-set:: real ⇒ ′a set ⇒ ′a set where
popular-diff-set ϑ A ≡ {d ∈ differenceset A A. popular-diff d ϑ A}

end
end

6 Results on lower bounds on additive energy
theory Additive-Energy-Lower-Bounds

imports
Additive-Combinatorics-Preliminaries
Miscellaneous-Lemmas

begin

context additive-abelian-group

begin

The following corresponds to Proposition 2.11 in Gowers’s notes [3].
proposition additive-energy-lower-bound-sumset: fixes C ::real

assumes finite A and A ⊆ G and (card (sumset A A)) ≤ C ∗ card A and card
A 6= 0

shows additive-energy A ≥ 1/C

〈proof 〉

An analogous version of Proposition 2.11 where the assumption is on a
difference set is given below. The proof is identical to the proof of addi-
tive-energy-lower-bound-sumset above (with the obvious modifications).
proposition additive-energy-lower-bound-differenceset: fixes C ::real
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assumes finite A and A ⊆ G and (card (differenceset A A)) ≤ C ∗ card A and
card A 6= 0

shows additive-energy A ≥ 1/C

〈proof 〉

end
end

7 Towards the proof of the Balog–Szemerédi–Gowers
Theorem

theory Balog-Szemeredi-Gowers-Main-Proof
imports

Prob-Space-Lemmas
Graph-Theory-Preliminaries
Sumset-Triangle-Inequality
Additive-Combinatorics-Preliminaries

begin

context additive-abelian-group

begin

After having introduced all the necessary preliminaries in the imported
files, we are now ready to follow the chain of the arguments for the main
proof as in Gowers’s notes [3].

The following lemma corresponds to Lemma 2.13 in Gowers’s notes [3].
lemma (in fin-bipartite-graph) proportion-bad-pairs-subset-bipartite:

fixes c::real
assumes c > 0
obtains X ′ where X ′ ⊆ X and card X ′ ≥ density ∗ card X / sqrt 2 and
card (bad-pair-set X ′ Y c) / (card X ′)^2 ≤ 2 ∗ c / density^2

〈proof 〉

The following technical probability lemma corresponds to Lemma 2.14
in Gowers’s notes [3].
lemma (in prob-space) expectation-condition-card-1 :

fixes X :: ′a set and f :: ′a ⇒ real and δ::real
assumes finite X and ∀ x ∈ X . f x ≤ 1 and M = uniform-count-measure X

and expectation f ≥ δ
shows card {x ∈ X . (f x ≥ δ / 2 )} ≥ δ ∗ card X / 2

〈proof 〉

The following technical probability lemma corresponds to Lemma 2.15
in Gowers’s notes.
lemma (in prob-space) expectation-condition-card-2 :
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fixes X :: ′a set and β::real and α::real and f :: ′a ⇒ real
assumes finite X and

∧
x. x ∈ X =⇒ f x ≤ 1 and β > 0 and α > 0

and expectation f ≥ 1 − α and M = uniform-count-measure X
shows card {x ∈ X . f x ≥ 1 − β} ≥ (1− α / β) ∗ card X

〈proof 〉

The following lemma corresponds to Lemma 2.16 in Gowers’s notes [3].
For the proof, we will apply Lemma 2.13 (proportion-bad-pairs-subset-bipartite,
the technical probability Lemmas 2.14 (expectation-condition-card-1 ) and
2.15 (expectation-condition-card-2 ) as well as background material on graphs
with loops and bipartite graphs that was previously presented.
lemma (in fin-bipartite-graph) walks-of-length-3-subsets-bipartite:

obtains X ′ and Y ′ where X ′ ⊆ X and Y ′ ⊆ Y and
card X ′ ≥ (edge-density X Y )^2 ∗ card X / 16 and
card Y ′ ≥ edge-density X Y ∗ card Y / 4 and
∀ x ∈ X ′. ∀ y ∈ Y ′. card {p. connecting-walk x y p ∧ walk-length p = 3} ≥
(edge-density X Y )^6 ∗ card X ∗ card Y / 2^13

〈proof 〉

The following lemma corresponds to Lemma 2.17 in Gowers’s notes [3].
Note that here we have set(additive-energy A = 2 ∗ c (instead of (ad-

ditive-energy A = c as in the notes) and we are accordingly considering
c-popular differences (instead of c/2-popular differences as in the notes) so
that we will still have (ϑ = additive-energy A / 2.
lemma popular-differences-card: fixes A:: ′a set and c::real

assumes finite A and A ⊆ G and additive-energy A = 2 ∗ c
shows card (popular-diff-set c A) ≥ c ∗ card A

〈proof 〉

The following lemma corresponds to Lemma 2.18 in Gowers’s notes [3].
It includes the key argument of the main proof and its proof applies Lemmas
2.16 (walks-of-length-3-subsets-bipartite) and 2.17 (popular-differences-card).
In the proof we will use an appropriately defined bipartite graph as an inter-
mediate/auxiliary construct so as to apply lemma walks-of-length-3-subsets-bipartite.
As each vertex set of the bipartite graph is constructed to be a copy of a
finite subset of an Abelian group, we need flexibility regarding types, which
is what prompted the introduction and use of the new graph theory library
[1] (that does not impose any type restrictions e.g. by representing vertices
as natural numbers).
lemma obtains-subsets-differenceset-card-bound:

fixes A:: ′a set and c::real
assumes finite A and c>0 and A 6= {} and A ⊆ G and additive-energy A =

2 ∗ c
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obtains B and A ′ where B ⊆ A and B 6= {} and card B ≥ c^4 ∗ card A / 16
and A ′ ⊆ A and A ′ 6= {} and card A ′ ≥ c^2 ∗ card A / 4
and card (differenceset A ′ B) ≤ 2^13 ∗ card A / c^15

〈proof 〉

We now show the main theorem, which is a direct application of lemma
obtains-subsets-differenceset-card-bound and the Ruzsa triangle inequality.
(The main theorem corresponds to Corollary 2.19 in Gowers’s notes [3].)
theorem Balog-Szemeredi-Gowers: fixes A:: ′a set and c::real

assumes afin: finite A and A 6= {} and c>0 and additive-energy A = 2 ∗ c
and ass: A ⊆ G

obtains A ′ where A ′ ⊆ A and card A ′ ≥ c^2 ∗ card A / 4 and
card (differenceset A ′ A ′) ≤ 2^30 ∗ card A / c^34

〈proof 〉

The following is an analogous version of the Balog–Szemerédi–Gowers
Theorem for a sumset instead of a difference set. The proof is similar to that
of the original version, again using obtains-subsets-differenceset-card-bound,
however, instead of the Ruzsa triangle inequality we will use the alternative
triangle inequality for sumsets triangle-ineq-sumsets.
theorem Balog-Szemeredi-Gowers-sumset: fixes A:: ′a set and c::real

assumes afin: finite A and A 6= {} and c>0 and additive-energy A = 2 ∗ c
and ass: A ⊆ G

obtains A ′ where A ′ ⊆ A and card A ′ ≥ c^2 ∗ card A / 4 and
card (sumset A ′ A ′) ≤ 2^30 ∗ card A / c^34

〈proof 〉

end
end

8 Supplementary results related to intermediate
lemmas used in the proof of the Balog–Szemerédi–Gowers
Theorem

theory Balog-Szemeredi-Gowers-Supplementary
imports

Balog-Szemeredi-Gowers-Main-Proof
begin

context additive-abelian-group

begin

Even though it is not applied anywhere in this development, for the sake
of completeness we give the following analogous version of Lemma 2.17 (pop-
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ular-differences-card) but for popular sums instead of popular differences.
The proof is identical to that of Lemma 2.17, with the obvious modifications.
lemma popular-sums-card:

fixes A:: ′a set and c::real
assumes finite A and additive-energy A = 2 ∗ c and A ⊆ G
shows card (popular-sum-set c A) ≥ c ∗ card A

〈proof 〉

The following is an analogous version of lemma obtains-subsets-differenceset-card-bound
(2.18 in Gowers’s notes [3]) but for a sumset instead of a difference set. It is
not used anywhere in this development but we provide it for the sake of com-
pleteness. The proof is identical to that of lemma obtains-subsets-differenceset-card-bound
with f-diff changed to f-sum, popular-diff changed to popular-sum, ⊕inter-
changed with 	, and instead of lemma popular-differences-card we apply its
analogous version for popular sums, that is lemma popular-sums-card.
lemma obtains-subsets-sumset-card-bound: fixes A:: ′a set and c::real

assumes finite A and c>0 and A 6= {} and A ⊆ G and additive-energy A =
2 ∗ c

obtains B and A ′ where B ⊆ A and B 6= {} and card B ≥ c^4 ∗ card A / 16
and A ′ ⊆ A and A ′ 6= {} and card A ′ ≥ c^2 ∗ card A / 4
and card (sumset A ′ B) ≤ 2^13 ∗ card A / c^15

〈proof 〉

end
end
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