A Verified Imperative Implementation of B-Trees

Niels Mundler

Abstract

In this work, we use the interactive theorem prover Isabelle/HOL
to verify an imperative implementation of the classical B-tree data
structure [1]. The implementation supports set membership, inser-
tion, deletion, iteration and range queries with efficient binary search
for intra-node navigation. This is accomplished by first specifying the
structure abstractly in the functional modeling language HOL and
proving functional correctness. Using manual refinement, we derive
an imperative implementation in Imperative/HOL. We show the va-
lidity of this refinement using the separation logic utilities from the
Isabelle Refinement Framework [2]. The code can be exported to the
programming languages SML, Scala and OCaml. This entry contains
two developments:

e B-Trees This formalisation is discussed in greater detail in the
corresponding Bachelor’s Thesis[3].

e Bt-Trees This formalisation also supports range queries and is
discussed in a paper published at ICTAC 2022.

Contents

1 Definition of the B-Tree 2
1.1 Datatype definitiono 2
1.2 Inmorderand Set 3
1.3 Height and Balancedness 3
1.4 Order 4
1.5 Auxiliary Lemmas 4

2 Maximum and minimum height 7
2.1 Definition of node/size oL 7
2.2 Maximum number of nodes for a given height 8
2.3 Maximum height for a given number of nodes 8

3 Set interpretation 10
3.1 Auxiliary functions 10
3.2 The split function locale 11
3.3 Membership 11

3.4 Imsertion e
3.5 Deletion
3.6 Proofs of functional correctness
3.7 Set specification by inorder

4 Abstract split functions
4.1 Linearsplit
4.2 Binarysplit

5 Definition of the B-Plus-Tree
5.1 Datatype definition
5.2 Imorderand Set,
5.3 Height and Balancedness
5.4 Order e
5.5 Auxiliary Lemmas 0oL
5.6 Auxiliary functionso oL
5.7 The split function locale

6 Abstract split functions
6.1 Linearsplit

7 Set interpretation
7.1 Membership L
7.2 Insertion
7.3 Proofs of functional correctness
7.4 Deletion

7.5 Set specification by inordero
theory BTree

24

24
26

27

27
28
29
29
30
36
36

37

37

imports Main HOL— Data-Structures.Sorted-Less HOL— Data-Structures. Cmp

begin

hide-const (open) Sorted-Less.sorted
abbreviation sorted-less = Sorted-Less.sorted

1 Definition of the B-Tree

1.1 Datatype definition

B-trees can be considered to have all data stored interleaved as child nodes
and separating elements (also keys or indices). We define them to either be
a Node that holds a list of pairs of children and indices or be a completely

empty Leaf.
datatype ‘a btree = Leaf | Node (‘a btree x 'a) list 'a btree

type-synonym ’a btree-list = ('a btree x 'a) list
type-synonym ‘a biree-pair = ('a biree x 'a)

abbreviation subtrees where subtrees xs = (map fst xs)
abbreviation separators where separators xs = (map snd xs)

1.2 Inorder and Set

The set of B-tree elements is defined automatically.

thm btree.set
value set-btree (Node [(Leaf, (0::nat)), (Node [(Leaf, 1), (Leaf, 10)] Leaf, 12),
(Leaf, 30), (Leaf, 100)] Leaf)

The inorder view is defined with the help of the concat function.

fun inorder :: ’a btree = 'a list where

inorder Leaf =[] |

inorder (Node ts t) = concat (map (A (sub, sep). inorder sub @ [sep]) ts) @
inorder t

abbreviation inorder-pair = A(sub,sep). inorder sub Q [sep)
abbreviation inorder-list ts = concat (map inorder-pair ts)

thm inorder.simps

value inorder (Node [(Leaf, (0::nat)), (Node [(Leaf, 1), (Leaf, 10)] Leaf, 12),
(Leaf, 30), (Leaf, 100)] Leaf)

1.3 Height and Balancedness

class height =
fixes height :: 'a = nat

instantiation btree :: (type) height
begin

fun height-btree :: 'a btree = nat where
height Leaf = 0 |
height (Node ts t) = Suc (Mazx (height ¢ (set (subtrees tsQ[t]))))

instance (proof)
end

Balancedness is defined is close accordance to the definition by Ernst

fun bal:: 'a btree = bool where
bal Leaf = True |
bal (Node ts t) = (

(Vsub € set (subtrees ts). height sub = height t) A
(Vsub € set (subtrees ts). bal sub) A bal t

)

value height (Node [(Leaf, (0::nat)), (Node [(Leaf, 1), (Leaf, 10)] Leaf, 12), (Leaf,
30), (Leaf, 100)] Leaf)

1.4 Order

The order of a B-tree is defined just as in the original paper by Bayer.

fun order:: nat = ’'a btree = bool where
order k Leaf = True |
order k (Node ts t) = (
(length ts > k) A
(length ts < 2xk) A
(Vsub € set (subtrees ts). order k sub) A order k t

)

The special condition for the root is called root order

fun root-order:: nat = 'a btree = bool where
root-order k Leaf = True |
root-order k (Node ts t) = (
(length ts > 0) A
(length ts < 2xk) A
(Vs € set (subtrees ts). order k s) A order k t

)

1.5 Auxiliary Lemmas

lemma separators-split:
set (separators (1Q(a,b)#71)) = set (separators 1) U set (separators r) U {b}
{proof)

lemma subtrees-split:
set (subtrees (1Q(a,b)#1)) = set (subtrees l) U set (subtrees r) U {a}

{proof)

lemma finite-set-ins-swap:
assumes finite A
shows max a (Max (Set.insert b A)) = maz b (Maz (Set.insert a A))

(proof)

lemma finite-set-in-idem:
assumes finite A
shows maz a (Maz (Set.insert a A)) = Max (Set.insert a A)

{proof)

lemma height-Leaf: height t = 0 «— t = Leaf
(proof)

lemma height-btree-order:
height (Node (IsQ[a]) t) = height (Node (a#ls) t)
(proof)

lemma height-btree-sub:
height (Node ((sub,z)#ls) t) = max (height (Node s t)) (Suc (height sub))
(proof)

lemma height-btree-last:
height (Node ((sub,z)#ts) t) = maz (height (Node ts sub)) (Suc (height t))
{proof)

lemma set-btree-inorder: set (inorder t) = set-btree t
{proof)

lemma child-subset: p € set t = set-btree (fst p) C set-btree (Node t n)
{proof)

lemma some-child-sub:
assumes (sub,sep) € set t
shows sub € set (subtrees t)
and sep € set (separators t)

{proof)

lemma bal-all-subtrees-equal: bal (Node ts t) = (Vs1 € set (subtrees ts). ¥V s2 €
set (subtrees ts). height s1 = height s2)

(proof)

lemma fold-mazx-set: Vo € sett. x = f = fold max t f = f
(proof)

lemma height-bal-tree: bal (Node ts t) = height (Node ts t) = Suc (height t)
(proof)

lemma bal-split-last:
assumes bal (Node (IsQ(sub,sep)#rs) t)

shows bal (Node (IsQrs) t)
and height (Node (IsQ(sub,sep)#rs) t) = height (Node (IsQrs) t)
{proof)

lemma bal-split-right:
assumes bal (Node (lsQrs) t)
shows bal (Node s t)
and height (Node rs t) = height (Node (IsQrs) t)

(proof)

lemma bal-split-left:
assumes bal (Node (IsQ(a,b)#rs) t)
shows bal (Node s a)
and height (Node ls a) = height (Node (IsQ(a,b)#rs) t)
(proof)

lemma bal-substitute: [bal (Node (IsQ(a,b)#1s) t); height t = height c; bal ¢] =
bal (Node (I1sQ(c,b)#rs) t)
{proof)

lemma bal-substitute-subtree: [bal (Node (IsQ(a,b)#7s) t); height a = height c; bal
c] = bal (Node (IsQ(c,b)#rs) t)
{proof)

lemma bal-substitute-separator: bal (Node (1sQ(a,b)#rs) t) = bal (Node (IsQ(a,c)#rs)
t)
(proof)

lemma order-impl-root-order: [k > 0; order k t] = root-order k t
(proof)

lemma sorted-inorder-list-separators: sorted-less (inorder-list ts) = sorted-less
(separators ts)

{proof)

corollary sorted-inorder-separators: sorted-less (inorder (Node ts t)) = sorted-less
(separators ts)

{proof)

lemma sorted-inorder-list-subtrees:
sorted-less (inorder-list ts) =V sub € set (subtrees ts). sorted-less (inorder sub)

{proof)

corollary sorted-inorder-subtrees: sorted-less (inorder (Node ts t)) = V sub €
set (subtrees ts). sorted-less (inorder sub)

(proof)

lemma sorted-inorder-list-induct-subtree:
sorted-less (inorder-list (IsQ(sub,sep)#rs)) = sorted-less (inorder sub)

{proof)

corollary sorted-inorder-induct-subtree:
sorted-less (inorder (Node (IsQ(sub,sep)#rs) t)) = sorted-less (inorder sub)

{proof)

lemma sorted-inorder-induct-last: sorted-less (inorder (Node ts t)) = sorted-less
(inorder t)
{proof)

end

theory BTree-Height
imports BTree

begin

2 Maximum and minimum height

Textbooks usually provide some proofs relating the maxmimum and mini-
mum height of the BTree for a given number of nodes. We therefore intro-
duce this counting and show the respective proofs.

2.1 Definition of node/size

thm BTree.biree.size

value size (Node [(Leaf, (0::nat)), (Node [(Leaf, 1), (Leaf, 10)] Leaf, 12), (Leaf,
30), (Leaf, 100)] Leaf)

The default size function does not suit our needs as it regards the length of
the list in each node. We would like to count the number of nodes in the
tree only, not regarding the number of keys.

fun nodes::’a btree = nat where
nodes Leaf = 0 |
nodes (Node ts t) = 1 + (> t<subtrees ts. nodes t) + (nodes t)

value nodes (Node [(Leaf, (0::nat)), (Node [(Leaf, 1), (Leaf, 10)] Leaf, 12), (Leaf,
30), (Leaf, 100)] Leaf)

2.2 Maximum number of nodes for a given height

lemma sum-list-replicate: sum-list (replicate n ¢) = nxc
{proof)

abbreviation bound k h = ((k+1)"h — 1)

lemma nodes-height-upper-bound:
[order k t; bal t] = nodes t * (2xk) < bound (2xk) (height t)

(proof)

To verify our lower bound is sharp, we compare it to the height of artificially
constructed full trees.

fun full-node::nat = 'a = nat = 'a biree where
full-node k ¢ 0 = Leaf|
full-node k ¢ (Suc n) = (Node (replicate (2xk) ((full-node k ¢ n),c)) (full-node k

¢ n))

value let k = (2::nat) in map (A\z. nodes © * 2xk) (map (full-node k (1::nat))
[0’172’374})
value let k = (2::nat) in map (Az. ((2xk+(1:nat)) (z)—1)) [0,1,2,3,4]

lemma compow-comp-id: ¢ > 0 = fof=f= (f " ¢c)=f
(proof)

~~

lemma compow-id-point: fr =2 = (f " ¢)z ==z

(proof)

lemma height-full-node: height (full-node k a h) = h
(proof)

lemma bal-full-node: bal (full-node k a h)
{proof)

lemma order-full-node: order k (full-node k a h)
{proof)

lemma full-btrees-sharp: nodes (full-node k a h) * (2xk) = bound (2xk) h
(proof)

lemma upper-bound-sharp-node:

t = full-node k a h => height t = h A order kt A bal t A bound (2xk) h = nodes
t x (2xk)

(proof)

2.3 Maximum height for a given number of nodes

lemma nodes-height-lower-bound:
[order k t; bal t] = bound k (height t) < nodes t * k

(proof)

To verify our upper bound is sharp, we compare it to the height of artificially
constructed minimally filled (=slim) trees.

fun slim-node::nat = ‘a = nat = 'a btree where
slim-node k ¢ 0 = Leaf|
slim-node k ¢ (Suc n) = (Node (replicate k ((slim-node k ¢ n),c)) (slim-node k c

n))

value let k = (2:nat) in map (Az. nodes x * k) (map (slim-node k (1:nat))
[07172a374})
value let k = (2:nat) in map (Mz. ((k+1::nat) (x)—1)) [0,1,2,3,4]

lemma height-slim-node: height (slim-node k a h) = h
{proof)

lemma bal-slim-node: bal (slim-node k a h)
{proof)

lemma order-slim-node: order k (slim-node k a h)
{proof)

lemma slim-nodes-sharp: nodes (slim-node k a h) * k = bound k h
{proof)

lemma lower-bound-sharp-node:
t = slim-node k a h => height t = h A order kt A bal t A\ bound k h = nodes t
x k

{proof)

Since BTrees have special roots, we need to show the overall nodes seperately

lemma nodes-root-height-lower-bound:
assumes root-order k t
and bal t
shows 2x((k+1) (height t — 1) — 1) + (of-bool (t # Leaf))xk < nodes t * k
(proof)

lemma nodes-root-height-upper-bound:
assumes root-order k t
and bal t
shows nodes t x (2xk) < (2xk+1) (height t) — 1

(proof)

lemma root-order-imp-divmuleq: root-order k t = (nodes t x k) div k = nodes ¢
(proof)

lemma nodes-root-height-lower-bound-simp:
assumes root-order k t

and bal ¢
and k£ > 0
shows (2x((k+1) (height t — 1) — 1)) div k + (of-bool (t # Leaf)) < nodes t
(proof)

lemma nodes-root-height-upper-bound-simp:
assumes root-order k t
and bal t
shows nodes t < ((2xk+1) (height t) — 1) div (2xk)
{proof)

definition full-tree = full-node

fun slim-tree where
slim-tree k ¢ 0 = Leaf |
slim-tree k ¢ (Suc h) = Node [(slim-node k ¢ h, c)] (slim-node k ¢ h)

lemma lower-bound-sharp:

k> 0 =t = slim-tree k a h = height t = h A root-order k t A\ bal t N\ nodes
tx k= 2«((k+1) (height t — 1) — 1) + (of-bool (t # Leaf))*k

(proof)

lemma upper-bound-sharp:

k>0 = t = full-tree k a h => height t = h A root-order k t N bal t A
((2xk+1)(height t) — 1) = nodes t * (2xk)

(proof)

end
theory BTree-Set
imports BTree
HOL— Data-Structures.Set-Specs
begin

3 Set interpretation

3.1 Auxiliary functions

fun split-half:: ('a btreex’a) list = (("a btreex’a) list x (‘a btreex’a) list) where
split-half s = (take (length zs div 2) zs, drop (length zs div 2) xs)

lemma drop-not-empty: zs # [| = drop (length xs div 2) zs # ||
{proof)

lemma split-half-not-empty: length xs > 1 = Jls sub sep rs. split-half xs =

(Is,(sub,sep)#rs)
{proof)

10

3.2 The split function locale

Here, we abstract away the inner workings of the split function for B-tree
operations.

locale split =
fixes split :: ('a btreex’a::linorder) list = 'a = (('a btreex'a) list x ('a btreex’a)
list)
assumes split-req:
[split zs p = (Is,rs)] = zs = Is Q rs
[split xs p = (IsQ[(sub,sep)],rs); sorted-less (separators xs)] = sep < p
[split xs p = (Is,(sub,sep)#rs); sorted-less (separators xs)] = p < sep
begin

lemmas split-conc = split-req(1)
lemmas split-sorted = split-req(2,3)

lemma [termination-simp|:(ls, (sub, sep) # rs) = split ts y =
size sub < Suc (size-list (Az. Suc (size (fst z))) ts + size l)

(proof)

fun invar-inorder where invar-inorder k t = (bal t A root-order k t)

definition empty-btree = Leaf

3.3 Membership

fun isin:: 'a btree = 'a = bool where
isin (Leaf) y = False |
isin (Node ts t) y = (
case split ts y of (-,(sub,sep)#rs) = (
if y = sep then
True
else
isin sub y
)

| (5[]) = isinty

)

3.4 Insertion

The insert function requires an auxiliary data structure and auxiliary in-
variant functions.

datatype b up; = T; 'b btree | Up; 'b btree 'b 'b btree

fun order-up; where
order-up; k (T; sub) = order k sub |

11

order-up; k (Up; lar) = (order k1 A order k r)

fun root-order-up; where
root-order-up; k (T; sub) = root-order k sub |
root-order-up; k (Up; 1 a r) = (order k1 A order k)

fun height-up; where
height-up; (T; t) = height t |
height-up; (Up; 1 a r) = mazx (height 1) (height r)

fun bal-up; where
bal-up; (T; t) = bal t |
bal-up; (Up; 1 a r) = (height I = height r A bal I A bal 1)

fun inorder-up; where
inorder-up; (T; t) = inorder t |
inorder-up; (Up; l a) = inorder | @Q [a] @Q inorder r

The following function merges two nodes and returns separately split nodes
if an overflow occurs

fun node;:: nat = ('a btree x 'a) list = 'a btree = 'a up; where

node; k ts t = (
if length ts < 2xk then T; (Node ts t)
else (

case split-half ts of (Is, (sub,sep)#rs) =

Up; (Node Is sub) sep (Node s t)

)

)

lemma nodei-ti-simp: node; ktst = T; t = x© = Node ts t
(proof)

fun ins:: nat = 'a = 'a btree = 'a up; where
ins k x Leaf = (Up; Leaf x Leaf) |
ins k x (Node ts t) = (
case split ts x of
(Is,(sub,sep)#rs) =
(if sep = x then
T; (Node ts t)
else
(case ins k x sub of
Up;i lar =
node; k (Is @Q (l,a)#(r,sep)#trs) t |
T, a =
T; (Node (Is @Q (a,sep) # 1s) t))) |
(Is, [I) =

(case ins k z t of

12

Upi lar=

node; k (1sQ[(l,a)]) r |
T, a =

T; (Node s a)

fun tree;::’a up; = 'a btree where
tree; (T, sub) = sub |
tree; (Up; 1 a r) = (Node [(I,a)] T)

fun insert::nat = ‘a = 'a btree = 'a btree where
insert k x t = tree; (ins k z t)

3.5 Deletion

The following deletion method is inspired by Bayer (70) and Fielding (80).
Rather than stealing only a single node from the neighbour, the neighbour
is fully merged with the potentially underflowing node. If the resulting node
is still larger than allowed, the merged node is split again, using the rules
known from insertion splits. If the resulting node has admissable size, it is
simply kept in the tree.

fun rebalance-middle-tree where
rebalance-middle-tree k ls Leaf sep rs Leaf = (
Node (IsQ(Leaf,sep)#rs) Leaf
) |
rebalance-middle-tree k ls (Node mts mt) sep rs (Node tts tt) = (
if length mts > k A length tts > k then
Node (Is@Q(Node mts mt,sep)#rs) (Node tts tt)
else (
case rs of [] = (
case node; k (mtsQ(mt,sep)#tts) tt of
T, u=
Node Is u |
Up; lar =
Node (1sQ[(1,a)]) 7) |
(Node rts rt,rsep)#rs = (
case node; k (mtsQ(mt,sep)#rts) rt of

T, u=
Node (1sQ(u,rsep)#rs) (Node tts tt) |
Up; lar =
Node (IsQ(l,a)#(r,rsep)#rs) (Node tts tt))
)
Deletion

All trees are merged with the right neighbour on underflow. Obviously for

13

the last tree this would not work since it has no right neighbour. Therefore
this tree, as the only exception, is merged with the left neighbour. However
since we it does not make a difference, we treat the situation as if the second
to last tree underflowed.

fun rebalance-last-tree where

rebalance-last-tree k ts t = (
case last ts of (sub,sep) =

rebalance-middle-tree k (butlast ts) sub sep || ¢
)

Rather than deleting the minimal key from the right subtree, we remove the
maximal key of the left subtree. This is due to the fact that the last tree
can easily be accessed and the left neighbour is way easier to access than
the right neighbour, it resides in the same pair as the separating element to
be removed.

fun split-maz where
split-maz k (Node ts t) = (case t of Leaf = (
let (sub,sep) = last ts in
(Node (butlast ts) sub, sep)
)|

- =
case split-maz k t of (sub, sep) =
(rebalance-last-tree k ts sub, sep)

)

fun del where
del k © Leaf = Leaf |
del k z (Node ts t) = (
case split ts x of
(Is,)) =
rebalance-last-tree k Is (del k z t)
| (Is,(sub,sep)#rs) = (
if sep # x then
rebalance-middle-tree k ls (del k x sub) sep rs t
else if sub = Leaf then
Node (IsQrs) t
else let (sub-s, maz-s) = split-max k sub in
rebalance-middle-tree k Is sub-s maz-s rs t
)
)

fun reduce-root where
reduce-root Leaf = Leaf |
reduce-root (Node ts t) = (case ts of
=]
- = (Node ts t)

)

14

fun delete where delete k x t = reduce-root (del k x t)

An invariant for intermediate states at deletion. In particular we allow for
an underflow to 0 subtrees.

fun almost-order where
almost-order k Leaf = True |
almost-order k (Node ts t) = (
(length ts < 2xk) A
(Vs € set (subtrees ts). order k s) A
order k t

)

A recursive property of the "spine" we want to walk along for splitting off
the maximum of the left subtree.

fun nonempty-lasttreebal where
nonempty-lasttreebal Leaf = True |
nonempty-lasttreebal (Node ts t) = (
(Fls tsub tsep. ts = (IsQ[(tsub,tsep)]) A height tsub = height t) A
nonempty-lasttreebal t

)

3.6 Proofs of functional correctness

lemma split-set:
assumes split ts z = (Is,(a,b)#rs)
shows (a,b) € set ts
and (z,y) € set ls = (z,y) € set ts
and (z,y) € set rs = (z,y) € set ts
and set s U set rs U {(a,b)} = set ts
and Jz € set ts. b € Basic-BNFs.snds x

(proof)

lemma split-length:
split ts x = (s, rs) = length ls + length rs = length ts
(proof)

Isin proof

thm isin-simps

lemma sorted-ConsD: sorted-less (y # xzs) = x < y = x ¢ set zs
(proof)

lemma sorted-snocD: sorted-less (zs Q [y]) = y < z = z ¢ set xs

(proof)

lemmas isin-simps2 = sorted-lems sorted-ConsD sorted-snocD

15

lemma isin-sorted: sorted-less (rsQa#ys) =
(z € set (zsQa#ys)) = (if © < a then x € set zs else x € set (a#ys))
{proof)

lemma isin-sorted-split:
assumes sorted-less (inorder (Node ts t))
and split ts x = (Is, 13)
shows z € set (inorder (Node ts t)) = (z € set (inorder-list s Q inorder t))

(proof)

lemma isin-sorted-split-right:
assumes split ts x = (Is, (sub,sep)#rs)
and sorted-less (inorder (Node ts t))
and sep # z
shows z € set (inorder-list ((sub,sep)#rs) Q inorder t) = (z € set (inorder sub))

(proof)

theorem isin-set-inorder: sorted-less (inorder t) = isin t x = (x € set (inorder

t)
(proof)

lemma node;-cases: length s < k V (3 ls sub sep rs. split-half xs = (Is,(sub,sep)#rs))

(proof)

lemma root-order-tree;: root-order-up; (Suc k) t = root-order (Suc k) (tree; t)
{proof)

lemma node;-root-order:
assumes length ts > 0
and length ts < 4xk+1
and Vz € set (subtrees ts). order k x
and order k t
shows root-order-up; k (node; k ts t)

(proof)

lemma node;-order-helper:
assumes length ts > k
and length ts < 4xk+1
and Vz € set (subtrees ts). order k «

16

and order k t
shows case (node; k tst) of T; t = order kt| - = True

(proof)

lemma node;-order:
assumes length ts > k
and length ts < 4xk+1
and YV € set (subtrees ts). order k x
and order k t
shows order-up; k (node; k ts t)

{proof)

lemma ins-order:
order k t = order-up; k (ins k x t)

(proof)

lemma ins-root-order:
assumes root-order k t
shows root-order-up; k (ins k x t)

(proof)

lemma height-list-split: height-up; (Up; (Node ls a) b (Node rs t)) = height (Node
(IsQ(a,b)#rs) t)
{proof)

lemma node;-height: height-up; (node; k ts t) = height (Node ts t)
(proof)

lemma bal-up;-tree: bal-up; t = bal (tree; t)
(proof)

lemma bal-list-split: bal (Node (IsQ(a,b)#rs) t) = bal-up; (Up; (Node Is a) b
(Node rs t))
(proof)

lemma node;-bal:
assumes bal (Node ts t)
shows bal-up; (node; k ts t)

(proof)

17

lemma height-up;-merge: height-up; (Up; | a r) = height t = height (Node
(IsQ(t,x)#7s) tt) = height (Node (IsQ(l,a)#(r,x)#rs) (t)
{proof)

lemma ins-height: height-up; (ins k x t) = height t
(proof)

lemma ins-bal: bal t = bal-up; (ins k z t)

(proof)

lemma node;-inorder: inorder-up; (node; k ts t) = inorder (Node ts t)
(proof)

corollary node;-inorder-simps:
node; ktst = T; t' = inorder t' = inorder (Node ts t)
node; ktst = Up; | a 7 => inorder | Q a # inorder r = inorder (Node ts t)

(proof)

lemma ins-sorted-inorder: sorted-less (inorder t) = (inorder-up; (ins k (z::(‘a::linorder))
t)) = ins-list x (inorder t)
{proof)

lemma ins-list-split:
assumes split ts x = (ls, 13)
and sorted-less (inorder (Node ts t))
shows ins-list ¢ (inorder (Node ts t)) = inorder-list ls Q ins-list x (inorder-list
rs @ inorder t)

(proof)

lemma ins-list-split-right-general:
assumes split ts x = (s, (sub,sep)#rs)
and sorted-less (inorder-list ts)
and sep # x
shows ins-list © (inorder-list ((sub,sep)#rs) Q zs) = ins-list x (inorder sub) @
sep F# inorder-list rs Q zs
(proof)

corollary ins-list-split-right:
assumes split ts x = (s, (sub,sep)#rs)

18

and sorted-less (inorder (Node ts t))
and sep # =
shows ins-list « (inorder-list ((sub,sep)#rs) @Q inorder t) = ins-list x (inorder
sub) Q sep # inorder-list rs Q inorder t
(proof)

lemma ins-list-idem-eg-isin: sorted-less xs = © € set xs <— (ins-list © xs = xs)
{proof)

lemma ins-list-contains-idem: [sorted-less xs; x € set xs] = (ins-list © s = xs)
{proof)

declare node;.simps [simp del]
declare node;-inorder [simp add)]

lemma ins-inorder: sorted-less (inorder t) = (inorder-up; (ins k © t)) = ins-list
z (inorder t)

(proof)

declare node;.simps [simp add]
declare node;-inorder [simp del]

thm ins.induct
thm btree.induct

lemma tree;-bal: bal-up; w => bal (tree; u)

{proof)

lemma tree;-order: [k > 0; root-order-up; k u] = root-order k (tree; u)
{proof)

lemma tree;-inorder: inorder-up; u = inorder (tree; u)
{proof)

lemma insert-bal: bal t = bal (insert k x t)
(proof)

lemma insert-order: [k > 0; root-order k t] = root-order k (insert k x t)
{proof)

lemma insert-inorder: sorted-less (inorder t) = inorder (insert k x t) = ins-list
z (inorder t)

19

{proof)

Deletion proofs

thm list.simps

lemma rebalance-middle-tree-height:
assumes height t = height sub
and case 1s of (rsub,rsep) # list = height rsub = height t | [| = True
shows height (rebalance-middle-tree k ls sub sep rs t) = height (Node (1sQ(sub,sep)#rs)
t)
(proof)

lemma rebalance-last-tree-height:
assumes height t = height sub
and ts = listQ[(sub,sep)]
shows height (rebalance-last-tree k ts t) = height (Node ts t)
{proof)

lemma split-max-height:
assumes split-maz k t = (sub,sep)
and nonempty-lasttreebal t
and t # Leaf
shows height sub = height t

{proof)

lemma order-bal-nonempty-lasttreebal: [k > 0; root-order k t; bal t] = nonempty-lasttreebal
t

(proof)

lemma bal-sub-height: bal (Node (IsQa#rs) t) = (case rs of [| = True | (sub,sep)#-
= height sub = height t)

{proof)

lemma del-height: [k > 0; root-order k t; bal t] = height (del k x t) = height t
(proof)

lemma rebalance-middle-tree-inorder:
assumes height t = height sub
and case rs of (rsub,rsep) # list = height rsub = height t | [| = True
shows inorder (rebalance-middle-tree k ls sub sep rs t) = inorder (Node (IsQ(sub,sep)#rs)
t)
{proof)

20

lemma rebalance-last-tree-inorder:
assumes height t = height sub
and ts = listQ[(sub,sep)]
shows inorder (rebalance-last-tree k ts t) = inorder (Node ts t)

(proof)

lemma butlast-inorder-app-id: xs = xs’ Q [(sub,sep)] = inorder-list zs’ Q inorder
sub Q [sep] = inorder-list zs

{proof)

lemma split-mazx-inorder:
assumes nonempty-lasttreebal t

and t # Leaf
shows inorder-pair (split-max k t) = inorder t

(proof)

lemma height-bal-subtrees-merge: [height (Node as a) = height (Node bs b); bal
(Node as a); bal (Node bs b)]
= Vi € set (subtrees as) U {a}. height © = height b

(proof)

lemma bal-list-merge:
assumes bal-up; (Up; (Node as a) x (Node bs b))
shows bal (Node (asQ(a,z)#bs) b)

(proof)

lemma node;-bal-up;:
assumes bal-up; (node; k ts t)
shows bal (Node ts t)

(proof)

lemma node;-bal-simp: bal-up; (node; k ts t) = bal (Node ts t)
{proof)

lemma rebalance-middle-tree-bal: bal (Node (IsQ(sub,sep)#rs) t) = bal (rebalance-middle-tree
k ls sub sep rs t)

(proof)

lemma rebalance-last-tree-bal: [bal (Node ts t); ts # [|]] = bal (rebalance-last-tree
kts t)

{proof)

lemma split-maz-bal:
assumes bal t
and t # Leaf
and nonempty-lasttreebal t

21

shows bal (fst (split-maz k t))
{proof)

lemma del-bal:
assumes k > 0
and root-order k t
and bal t
shows bal (del k z t)

{proof)

lemma rebalance-middle-tree-order:
assumes almost-order k sub
and Vs € set (subtrees (IsQrs)). order k s order k ¢
and case rs of (rsub,rsep) # list = height rsub = height t | [| = True
and length (IsQ(sub,sep)#rs) < 2%k
and height sub = height t
shows almost-order k (rebalance-middle-tree k ls sub sep rs t)

(proof)

lemma rebalance-middle-tree-last-order:
assumes almost-order k t
and Vs € set (subtrees (IsQ(sub,sep)#rs)). order k s
and rs = ||
and length (IsQ(sub,sep)#rs) < 2xk
and height sub = height t
shows almost-order k (rebalance-middle-tree k ls sub sep rs t)

(proof)

lemma rebalance-last-tree-order:
assumes ts = [sQ[(sub,sep)]
and Vs € set (subtrees (ts)). order k s almost-order k ¢
and length ts < 2xk
and height sub = height t
shows almost-order k (rebalance-last-tree k ts t)

(proof)

lemma split-mazx-order:
assumes order k t
and ¢ # Leaf
and nonempty-lasttreebal t
shows almost-order k (fst (split-maz k t))

{proof)

lemma del-order:
assumes k > 0
and root-order k t

22

and bal ¢
shows almost-order k (del k z t)

{proof)

thm del-list-sorted

lemma del-list-split:
assumes split ts © = (s, rs)
and sorted-less (inorder (Node ts t))
shows del-list x (inorder (Node ts t)) = inorder-list ls Q del-list = (inorder-list
rs @ inorder t)

(proof)

lemma del-list-split-right:
assumes split ts x = (s, (sub,sep)#rs)
and sorted-less (inorder (Node ts t))
and sep # x
shows del-list z (inorder-list ((sub,sep)#rs) Q inorder t) = del-list x (inorder
sub) @ sep # inorder-list rs Q inorder t

(proof)
thm del-list-idem

lemma del-inorder:
assumes k > 0
and root-order k t
and bal t
and sorted-less (inorder t)
shows inorder (del k z t) = del-list x (inorder t)

{proof)
lemma reduce-root-order: [k > 0; almost-order k t] = root-order k (reduce-root
t)

{proof)

lemma reduce-root-bal: bal (reduce-root t) = bal t
{proof)

lemma reduce-root-inorder: inorder (reduce-root t) = inorder t
{proof)

lemma delete-order: [k > 0; bal t; root-order k t] = root-order k (delete k x t)

{proof)

23

lemma delete-bal: [k > 0; bal t; root-order k t] = bal (delete k z 1)
{proof)

lemma delete-inorder: [k > 0; bal t; root-order k t; sorted-less (inorder t)] =
inorder (delete k x t) = del-list x (inorder t)

{proof)

3.7 Set specification by inorder

interpretation S-ordered: Set-by-Ordered where
empty = empty-btree and
insert = insert (Suc k) and
delete = delete (Suc k) and
isin = isin and
inorder = inorder and
inv = invar-inorder (Suc k)

(proof)

declare node;.simps[simp del]

end

end

theory BTree-Split
imports BTree-Set

begin

4 Abstract split functions

4.1 Linear split

Finally we show that the split axioms are feasible by providing an example
split function
fun linear-split-help:: (-x'a::linorder) list = - = (-x-) list = ((-x-) list x (-x-)
list) where

linear-split-help || « prev = (prev, []) |

linear-split-help ((sub, sep)#xs) x prev = (if sep < x then linear-split-help zs x
(prev @ [(sub, sep)]) else (prev, (sub,sep)#xs))

fun linear-split:: (-x'a::linorder) list = - = ((-x-) list x (-x-) list) where
linear-split xs © = linear-split-help s x ||

Linear split is similar to well known functions, therefore a quick proof can
be done.

24

lemma linear-split-alt: linear-split xs © = (takeWhile (A(-,s). s<z) xs, drop While
(A(-,8). s<z) xs)
(proof)

global-interpretation btree-linear-search: split linear-split

defines btree-ls-isin = btree-linear-search.isin
and btree-ls-ins = btree-linear-search.ins
and btree-ls-insert = btree-linear-search.insert
and btree-Is-del = btree-linear-search.del
and btree-Is-delete = btree-linear-search.delete

{proof)

Some examples follow to show that the implementation works and the above
lemmas make sense. The examples are visualized in the thesis.

abbreviation btree; = btree-ls-insert
abbreviation btreey = btree-ls-delete

value let k=2::nat; z::nat btree = (Node [(Node [(Leaf, 3),(Leaf, 5),(Leaf, 6)]
Leaf, 10)] (Node [(Leaf, 14), (Leaf, 20)] Leaf)) in

root-order k
value let k=2:nat; z::nat btree = (Node [(Node [(Leaf, 3),(Leaf, 5),(Leaf, 6)]
Leaf, 10)] (Node [(Leaf, 14), (Leaf, 20)] Leaf)) in

bal x
value let k=2::nat; z::nat btree = (Node [(Node [(Leaf, 3),(Leaf, 5),(Leaf, 6)]
Leaf, 10)] (Node [(Leaf, 14), (Leaf, 20)] Leaf)) in

sorted-less (inorder x)
value let k=2::nat; z::nat btree = (Node [(Node [(Leaf, 3),(Leaf, 5),(Leaf, 6)]
Leaf, 10)] (Node [(Leaf, 14), (Leaf, 20)] Leaf)) in

x
value let k=2::nat; z::nat btree = (Node [(Node [(Leaf, 3),(Leaf, 5),(Leaf, 6)]
Leaf, 10)] (Node [(Leaf, 14), (Leaf, 20)] Leaf)) in

btree; k 9 x
value let k=2::nat; z::nat btree = (Node [(Node [(Leaf, 3),(Leaf, 5),(Leaf, 6)]
Leaf, 10)] (Node [(Leaf, 14), (Leaf, 20)] Leaf)) in

btree; k 1 (btree; k 9 x)
value let k=2::nat; z::nat btree = (Node [(Node [(Leaf, 3),(Leaf, 5),(Leaf, 6)]
Leaf, 10)] (Node [(Leaf, 14), (Leaf, 20)] Leaf)) in

btreeq k 10 (btree; k 1 (btree; k 9 x))
value let k=2::nat; z::nat btree = (Node [(Node [(Leaf, 3),(Leaf, 5),(Leaf, 6)]
Leaf, 10)] (Node [(Leaf, 14), (Leaf, 20)] Leaf)) in

btreeq k 3 (btreeq k 10 (btree; k 1 (btree; k 9 x)))

For completeness, we also proved an explicit proof of the locale requirements.

lemma some-child-sm: linear-split-help t y xs = (Is,(sub,sep)#rs) = y < sep
(proof)

25

lemma linear-split-append: linear-split-help xs p ys = (Is,rs) = lsQrs = ysQus
(proof)

lemma linear-split-sm: [linear-split-help zs p ys = (ls,rs); sorted-less (separators
(ysQus)); Vsep € set (separators ys). p > sep] = V sep € set (separators ls). p
> sep

(proof)

value linear-split [((Leaf::nat btree), 2)] (1::nat)

lemma linear-split-gr:

[linear-split-help xs p ys = (Is,rs); sorted-less (separators (ysQuws)); V (sub,sep) €
set ys. p > sep] =
(case rs of [| = True | (-,sep)#- = p < sep)

(proof)

lemma linear-split-req:
assumes linear-split s p = (Is,(sub,sep)#rs)
and sorted-less (separators xs)
shows p < sep

{proof)

lemma linear-split-req2:
assumes linear-split s p = (IsQ[(sub,sep)],rs)
and sorted-less (separators xs)
shows sep < p

{proof)

interpretation split linear-split

{proof)

4.2 Binary split

It is possible to define a binary split predicate. However, even proving that
it terminates is uncomfortable.

function (sequential) binary-split-help:: (-x'a::linorder) list = (-x'a) list = (-x'a)
list = 'a = ((-x-) list x (-x-) list) where
binary-split-help ls [| s © = (ls,rs) |
binary-split-help ls as rs x = (let (mls, mrs) = split-half as in (
case mrs of (sub,sep)#mrrs = (
if x < sep then binary-split-help ls mls (mrsQrs)
else if © > sep then binary-split-help (IsQmlisQ[(sub,sep)]) mrrs rs ©
else (Is@Qmls, mrsQrs)

)
)
)

26

(proof)
termination

{proof)

fun binary-split where
binary-split as x = binary-split-help [] as [| =

We can show that it will return sublists that concatenate to the original list
again but will not show that it fulfils sortedness properties.

lemma binary-split-help as bs cs x = (Is,rs) = (as@QbsQcs) = (lsQrs)
(proof)

lemma [sorted-less (separators (asQbsQcs)); binary-split-help as bs cs x = (Is,r3);
Vy € set (separators as). y < z]
= Yy € set (separators ls). y < x

{proof)

end
theory BPlusTree
imports Main HOL— Data-Structures.Sorted-Less HOL— Data-Structures. Cmp
HOL- Library. Multiset
begin

hide-const (open) Sorted-Less.sorted
abbreviation sorted-less = Sorted-Less.sorted

5 Definition of the B-Plus-Tree

5.1 Datatype definition

B-Plus-Trees are basically B-Trees, that don’t have empty Leafs but Leafs
that contain the relevant data.
datatype 'a bplustree = Leaf (vals: 'a list) | Node (keyvals: ('a bplustree x 'a) list)

(lasttree: 'a bplustree)

type-synonym ’‘a bplustree-list = (’a bplustree * 'a) list
type-synonym ‘a bplustree-pair = ('a bplustree x 'a)

abbreviation subtrees where subtrees xs = (map fst xs)
abbreviation separators where separators xs = (map snd xs)

27

5.2 Inorder and Set

The set of B-Plus-tree needs to be manually defined, regarding only the
leaves. This overrides the default instantiation.

fun set-nodes :: 'a bplustree = 'a set where

set-nodes (Leaf ks) = {} |

set-nodes (Node ts t) = | (set (map set-nodes (subtrees ts))) U (set (separators
ts)) U set-nodes t

fun set-leaves :: 'a bplustree = 'a set where
set-leaves (Leaf ks) = set ks |
set-leaves (Node ts t) = |J (set (map set-leaves (subtrees ts))) U set-leaves t

The inorder is a view of only internal seperators

fun inorder :: ‘a bplustree = 'a list where

inorder (Leaf ks) =] |

inorder (Node ts t) = concat (map (A (sub, sep). inorder sub @ [sep]) ts) @
inorder t

abbreviation inorder-list ts = concat (map (X (sub, sep). inorder sub @ [sep]) ts)

The leaves view considers only its leafs.

fun leaves :: 'a bplustree = 'a list where
leaves (Leaf ks) = ks |
leaves (Node ts t) = concat (map leaves (subtrees ts)) Q leaves t

abbreviation leaves-list ts = concat (map leaves (subtrees ts))

fun leaf-nodes where
leaf-nodes (Leaf xs) = [Leaf xs] |
leaf-nodes (Node ts t) = concat (map leaf-nodes (subtrees ts)) Q leaf-nodes t

abbreviation leaf-nodes-list ts = concat (map leaf-nodes (subtrees ts))

And the elems view contains all elements of the tree

fun elems :: 'a bplustree = 'a list where
elems (Leaf ks) = ks |
elems (Node ts t) = concat (map (X (sub, sep). elems sub Q [sep]) ts) Q elems ¢

abbreviation elems-list ts = concat (map (A (sub, sep). elems sub Q [sep]) ts)
thm [eaves.simps

thm inorder.simps
thm elems.simps

value leaves (Node [(Leaf [|, (0::nat)), (Node [(Leaf [], 1), (Leaf [], 10)] (Leaf []),
12), ((Leaf 1), 30), ((Leaf []), 100)] (Leaf [1))

28

5.3 Height and Balancedness

class height =
fixes height :: 'a = nat

instantiation bplustree :: (type) height
begin

fun height-bplustree :: 'a bplustree = nat where
height (Leaf ks) = 0 |
height (Node ts t) = Suc (Max (height ¢ (set (subtrees tsQ[t]))))

instance (proof)

end

Balancedness is defined is close accordance to the definition by Ernst

fun bal:: 'a bplustree = bool where
bal (Leaf ks) = True |
bal (Node ts t) = (
(Vsub € set (subtrees ts). height sub = height t) A
(Vsub € set (subtrees ts). bal sub) A bal t

)

value height (Node [(Leaf [|, (0::nat)), (Node [(Leaf [|, 1), (Leaf [], 10)] (Leaf []),
12), ((Leaf [1), 30), ((Leaf []), 100)] (Leaf]))
value bal (Node [(Leaf [], (0::nat)), (Node [(Leaf ||, 1), (Leaf [], 10)] (Leaf []),
12), ((Leaf [1), 30), ((Leaf []), 100)] (Leaf []))

5.4 Order

The order of a B-tree is defined just as in the original paper by Bayer.

fun order:: nat = 'a bplustree = bool where
order k (Leaf ks) = ((length ks > k) A (length ks < 2xk)) |
order k (Node ts t) = (
(length ts > k) A
(length ts < 2xk) A
(Vsub € set (subtrees ts). order k sub) A order k t

)

The special condition for the root is called root_order

fun root-order:: nat = 'a bplustree = bool where
root-order k (Leaf ks) = (length ks < 2xk) |
root-order k (Node ts t) = (
(length ts > 0) A
(length ts < 2xk) A
(Vs € set (subtrees ts). order k s) A order k t

)

29

5.5 Auxiliary Lemmas

lemma separators-split:
set (separators (1Q(a,b)#r)) = set (separators 1) U set (separators r) U {b}

(proof)

lemma subtrees-split:
set (subtrees (1Q(a,b)#r)) = set (subtrees 1) U set (subtrees r) U {a}

{proof)

lemma finite-set-ins-swap:
assumes finite A
shows max a (Max (Set.insert b A)) = maz b (Max (Set.insert a A))

{proof)

lemma finite-set-in-idem:
assumes finite A
shows max a (Max (Set.insert a A)) = Max (Set.insert a A)

{proof)

lemma height-Leaf: height t = 0 <— (I ks. t = (Leaf ks))
{proof)

lemma height-bplustree-order:
height (Node (IsQ[a]) t) = height (Node (a#ls) t)
(proof)

lemma height-bplustree-sub:
height (Node ((sub,z)#ls) t) = max (height (Node s t)) (Suc (height sub))
(proof)

lemma height-bplustree-last:
height (Node ((sub,z)#ts) t) = maz (height (Node ts sub)) (Suc (height t))
(proof)

lemma set-leaves-leaves: set (leaves t) = set-leaves t
{proof)

lemma set-nodes-nodes: set (inorder t) = set-nodes t
{proof)

lemma child-subset-leaves: p € set t = set-leaves (fst p) C set-leaves (Node t n)
(proof)

lemma child-subset: p € set t = set-nodes (fst p) C set-nodes (Node t n)

30

{proof)

lemma some-child-sub:
assumes (sub,sep) € set t
shows sub € set (subtrees t)
and sep € set (separators t)

{proof)

lemma bal-all-subtrees-equal: bal (Node ts t) = (Vs1 € set (subtrees ts). ¥V s2 €
set (subtrees ts). height s1 = height s2)

{proof)

lemma fold-maz-set: Vo € sett. x = f = fold max t f = f
{proof)

lemma height-bal-tree: bal (Node ts t) = height (Node ts t) = Suc (height t)
{proof)

lemma bal-split-last:
assumes bal (Node (IsQ(sub,sep)#rs) t)
shows bal (Node (IsQrs) t)
and height (Node (IsQ(sub,sep)#rs) t) = height (Node (IsQrs) t)
(proof)

lemma bal-split-right:
assumes bal (Node (lsQrs) t)
shows bal (Node s t)
and height (Node rs t) = height (Node (IsQrs) t)

{proof)

lemma bal-split-left:
assumes bal (Node (IsQ(a,b)#rs) t)
shows bal (Node ls a)
and height (Node Is a) = height (Node (1sQ(a,b)#rs) t)
(proof)

lemma bal-substitute: [bal (Node (IsQ(a,b)#1s) t); height t = height c; bal ¢] =
bal (Node (IsQ(c,b)#rs) t)
{proof)

lemma bal-substitute-subtree: [bal (Node (IsQ(a,b)#rs) t); height a = height c¢; bal

31

c] = bal (Node (IsQ(c,b)#rs) t)
{proof)

lemma bal-substitute-separator: bal (Node (1sQ(a,b)#rs) t) = bal (Node (IsQ(a,c)#rs)
t)

{proof)

lemma order-impl-root-order: [k > 0; order k t] = root-order k t
(proof)

lemma sorted-inorder-list-separators: sorted-less (inorder-list ts) => sorted-less
(separators ts)

{proof)

corollary sorted-inorder-separators: sorted-less (inorder (Node ts t)) = sorted-less
(separators ts)

{proof)

lemma sorted-inorder-list-subtrees:
sorted-less (inorder-list ts) =V sub € set (subtrees ts). sorted-less (inorder sub)

{proof)

corollary sorted-inorder-subtrees: sorted-less (inorder (Node ts t)) = V sub €
set (subtrees ts). sorted-less (inorder sub)

(proof)

lemma sorted-inorder-list-induct-subtree:
sorted-less (inorder-list (IsQ(sub,sep)#rs)) = sorted-less (inorder sub)

{proof)

corollary sorted-inorder-induct-subtree:
sorted-less (inorder (Node (IsQ(sub,sep)#rs) t)) = sorted-less (inorder sub)

{proof)

lemma sorted-inorder-induct-last: sorted-less (inorder (Node ts t)) = sorted-less
(inorder t)

{proof)

lemma sorted-leaves-list-subtrees:
sorted-less (leaves-list ts) =V sub € set (subtrees ts). sorted-less (leaves sub)

(proof)

32

corollary sorted-leaves-subtrees: sorted-less (leaves (Node ts t)) = V sub € set
(subtrees ts). sorted-less (leaves sub)

{proof)

lemma sorted-leaves-list-induct-subtree:
sorted-less (leaves-list (1sQ(sub,sep)F#rs)) = sorted-less (leaves sub)
(proof)

corollary sorted-leaves-induct-subtree:
sorted-less (leaves (Node (IsQ(sub,sep)#rs) t)) = sorted-less (leaves sub)
(proof)

lemma sorted-leaves-induct-last: sorted-less (leaves (Node ts t)) = sorted-less
(leaves t)

(proof)

Additional lemmas on the sortedness of the whole tree, which is correct
alignment of navigation structure and leave data

fun inbetween where
inbetween fINil tu=fltu]|
inbetween f 1 ((sub,sep)#xs) t u = (f 1 sub sep A inbetween f sep xs t u)

thm fold-cong

lemma cong-inbetween|fundef-congl:
[a = b; xs = ys; NI/ v’ sub sep. (sub,sep) € set ys = f1' subu’ = g1’ sub u’; NI’
w. . fllau =gl bu

= inbetween fl zs a u = inbetween gl ys b u

(proof)

fun aligned :: 'a ::linorder = - where
aligned | (Leaf ks) u = (I < u AN (Vz € setks. | <z ANz < u)) |
aligned | (Node ts t) u = (inbetween aligned 1 ts t u)

lemma sorted-less-merge: sorted-less (as@[a]) = sorted-less (a#bs) = sorted-less
(asQa#bs)
{proof)

thm aligned.simps

lemma leaves-cases: © € set (leaves (Node ts t)) = (3 (sub,sep) € set ts. x € set
(leaves sub)) V x € set (leaves t)

{proof)

lemma align-sub: aligned | (Node ts t) u = (sub,sep) € set ts = I’ € set
(separators ts) U {l}. aligned I’ sub sep

{proof)

33

lemma align-last: aligned | (Node (tsQ[(sub,sep)]) t) v = aligned sep t u
{proof)

lemma align-last” aligned I (Node ts t) u = 31’ € set (separators ts) U {l}.
aligned ' t u

{proof)

lemma aligned-sorted-inorder: aligned | t w => sorted-less (I# (inorder t)Q[u])

{(proof)

lemma separators-in-inorder-list: set (separators ts) C set (inorder-list ts)
{proof)

lemma separators-in-inorder: set (separators ts) C set (inorder (Node ts t))

(proof)

lemma aligned-sorted-separators: aligned | (Node ts t) u = sorted-less (I#(separators
ts)@Q[u])
(proof)

lemma aligned-leaves-inbetween: aligned |t w = V' € set (leaves t). | < x AN x
<u

(proof)

lemma aligned-leaves-list-inbetween: aligned | (Node ts t) uw =V z € set (leaves-list
ts).l<zAhz<u
(proof)

lemma aligned-split-left: aligned | (Node (lsQ(sub,sep)#rs) t) u = aligned [
(Node s sub) sep
(proof)

lemma aligned-split-right: aligned | (Node (IsQ(sub,sep)#rs) t) u = aligned sep
(Node s t) u
(proof)

lemma aligned-subst: aligned | (Node (IsQ(sub’, subl)#(sub,subsep)#rs) t) u =
aligned subl subsub subsep —>
aligned | (Node (1sQ(sub’,subl)#(subsub,subsep)#rs) t) u

(proof)

lemma aligned-subst-emptyls: aligned | (Node ((sub,subsep)#rs) t) u => aligned
l subsub subsep —
aligned | (Node ((subsub,subsep)#trs) t) u

(proof)

lemma aligned-subst-last: aligned | (Node (ts'Q[(sub’, sep”)]) t) u => aligned sep’

34

tu =
aligned | (Node (ts'Q[(sub’, sep’)]) t') u
{proof)

fun Laligned :: 'a ::linorder bplustree = - where

Laligned (Leaf ks) v = (Vz € set ks. z < u) |

Laligned (Node ts t) u = (case ts of [| = (Laligned t u) |
(sub,sep)Fts’ = ((Laligned sub sep) A inbetween aligned sep ts’ t u))

lemma Laligned-nonempty-Node: Laligned (Node ((sub,sep)#ts’) t) u =
((Laligned sub sep) A inbetween aligned sep ts’ t u)
(proof)

lemma aligned-imp-Laligned: aligned | t w = Laligned t u

(proof)

lemma Laligned-split-left: Laligned (Node (IsQ(sub,sep)#rs) t) v = Laligned
(Node Is sub) sep
{proof)

lemma Laligned-split-right: Laligned (Node (IsQ(sub,sep)#rs) t) u = aligned sep
(Node rs t) u
(proof)

lemma Lalign-sub: Laligned (Node ((a,b)#ts) t) v => (sub,sep) € set ts = I’
€ set (separators ts) U {b}. aligned 1’ sub sep

{proof)

lemma Lalign-last: Laligned (Node (tsQ[(sub,sep)]) t) u = aligned sep t u
{proof)

lemma Lalign-last”. Laligned (Node ((a,b)#ts) t) v = 31’ € set (separators ts)
U {b}. aligned I’ t u
(proof)

lemma Lalign-Llast: Laligned (Node ts t) w = Laligned t u
(proof)

lemma Laligned-sorted-inorder: Laligned t u = sorted-less ((inorder ¢)@[u])
(proof)

lemma Laligned-sorted-separators: Laligned (Node ts t) u = sorted-less ((separators
ts)@lu])
{proof)

lemma Laligned-leaves-inbetween: Laligned t w = Vz € set (leaves t). z < u

(proof)

35

lemma Laligned-leaves-list-inbetween: Laligned (Node ts t) u =V x € set (leaves-list
ts). z < u
{proof)

lemma Laligned-subst-last: Laligned (Node (ts'Q[(sub’, sep”)]) t) u => aligned sep’
'y =

Laligned (Node (ts'Q[(sub’, sep’)]) t') u

(proof)

lemma Laligned-subst: Laligned (Node (IsQ(sub’, subl)#(sub,subsep)#rs) t) u =
aligned subl subsub subsep —>
Laligned (Node (1sQ(sub’,subl)# (subsub,subsep)#rs) t) u

{proof)

lemma concat-leaf-nodes-leaves: (concat (map leaves (leaf-nodes t))) = leaves t
(proof)

lemma leaf-nodes-not-empty: leaf-nodes t # ||
(proof)

end

theory BPlusTree-Split
imports BPlusTree
begin

5.6 Auxiliary functions
fun split-half:: - list = - list x - list where
split-half zs = (take ((length xs + 1) div 2) xs, drop ((length zs + 1) div 2) xs)

lemma split-half-conc: split-half zs = (Is, rs) = (zs = lsQrs A length ls = (length
zs + 1) div 2)
(proof)

lemma drop-not-empty: xs # [| = drop (length zs div 2) xs # ||
{proof)

lemma take-not-empty: xs # [| = take ((length xs + 1) div 2) zs # ||
{proof)

lemma split-half-not-empty: length xs > 1 = Jls a rs. split-half xs = (1sQ[al,rs)
(proof)

5.7 The split function locale

Here, we abstract away the inner workings of the split function for B-tree
operations.

lemma leaves-conc: leaves (Node (IsQrs) t) = leaves-list ls Q leaves-list rs Q leaves

36

13
{proof)

locale split-tree =
fixes split :: ('a bplustreex'a::{linorder,order-top}) list = 'a = (('a bplustreex’a)
list x ('a bplustreex’a) list)
assumes split-req:
[split zs p = (Is,rs)] = zs = Is Q rs
[split s p = (IsQ[(sub,sep)],rs); sorted-less (separators xs)] = sep < p
[split xs p = (Is,(sub,sep)#rs); sorted-less (separators xs)] = p < sep
begin

lemmas split-conc = split-req(1)
lemmas split-sorted = split-req(2,3)

lemma [termination-simp)|:(ls, (sub, sep) # rs) = split ts y =
size sub < Suc (size-list (Az. Suc (size (fst x))) ts + size l)
(proof)

lemma leaves-split: split ts © = (ls,rs) = leaves (Node ts t) = leaves-list s Q
leaves-list rs Q leaves t

{proof)
end

locale split-list =
fixes split-list :: (‘a:{linorder,order-top}) list = 'a = 'a list x 'a list
assumes split-list-req:
[split-list ks p = (kls,krs)] = ks = kls Q krs
[split-list ks p = (klsQ[sep],krs); sorted-less ks] = sep < p
[split-list ks p = (kls,(sep)#krs); sorted-less ks] => p < sep

locale split-full = split-tree: split-tree split + split-list split-list
for split::
("a bplustree x 'a::{linorder,order-top}) list = 'a
= ('a bplustree x 'a) list x ('a bplustree x 'a) list
and split-list::
'a::{linorder,order-top} list = 'a
= a list x 'a list

6 Abstract split functions

6.1 Linear split

Finally we show that the split axioms are feasible by providing an example
split function

37

Linear split is similar to well known functions, therefore a quick proof can
be done.

fun linear-split where linear-split zs © = (take While (A\(-,s). s<z) xs, drop While
(A(-,8). s<z) xs)

fun linear-split-list where linear-split-list vs © = (takeWhile (As. s<x) zs, drop-
While (As. s<z) xs)

end
theory BPlusTree-Set
imports
BPlusTree-Split
HOL— Data-Structures.Set-Specs
begin

7 Set interpretation

lemma insert-list-length[simp):
assumes sorted-less ks
and set (insert-list k ks) = set ks U {k}
and sorted-less ks = sorted-less (insert-list k ks)
shows length (insert-list k ks) = length ks + (if k € set ks then 0 else 1)

(proof)

lemma delete-list-length[simp]:
assumes sorted-less ks
and set (delete-list k ks) = set ks — {k}
and sorted-less ks = sorted-less (delete-list k ks)
shows length (delete-list k ks) = length ks — (if k € set ks then I else 0)

{(proof)

lemma ins-list-length[simpl:
assumes sorted-less ks
shows length (ins-list k ks) = length ks + (if k € set ks then 0 else 1)
{proof)

lemma del-list-length[simp]:
assumes sorted-less ks
shows length (del-list k ks) = length ks — (if k € set ks then 1 else 0)

{proof)

38

locale split-set = split-tree: split-tree split
for split::
("a bplustree x 'a::{linorder,order-top}) list = 'a
= ('a bplustree x 'a) list x ('a bplustree x 'a) list +
fixes isin-list :: 'a = ('a::{linorder,order-top}) list = bool
and insert-list :: 'a = ('a::{linorder,order-top}) list = 'a list
and delete-list :: 'a = (‘a::{linorder,order-top}) list = 'a list
assumes insert-list-req:

sorted-less ks = isin-list x ks = (x € set ks)

sorted-less ks = insert-list © ks = ins-list = ks

sorted-less ks = delete-list © ks = del-list x ks
begin

lemmas split-req = split-tree.split-req
lemmas split-conc = split-tree.split-req(1)
lemmas split-sorted = split-tree.split-req(2,3)

lemma insert-list-length[simp):
assumes sorted-less ks
shows length (insert-list k ks) = length ks + (if k € set ks then 0 else 1)

{proof)

lemma set-insert-list[simp]:
sorted-less ks = set (insert-list k ks) = set ks U {k}
(proof)

lemma sorted-insert-list[simp]:
sorted-less ks = sorted-less (insert-list k ks)

{proof)

lemma delete-list-length[simp]:
assumes sorted-less ks
shows length (delete-list k ks) = length ks — (if k € set ks then 1 else 0)

{proof)

lemma set-delete-list[simp]:
sorted-less ks = set (delete-list k ks) = set ks — {k}

{proof)

lemma sorted-delete-list[simp]:
sorted-less ks = sorted-less (delete-list k ks)

{proof)

definition empty-bplustree = (Leaf [])

39

7.1 Membership

fun isin:: ‘a bplustree = ’'a = bool where
isin (Leaf ks) © = (isin-list z ks) |
isin (Node ts t) x = (
case split ts © of (-,(sub,sep)F#rs) = (
isin sub x
)

| (5]) = isintx

)

Isin proof

thm isin-simps

lemma sorted-ConsD: sorted-less (y # xzs) = x < y = x ¢ set zs
(proof)

lemma sorted-snocD: sorted-less (zs @ [y]) = y < © = z ¢ set zs
{proof)

lemmas isin-simps2 = sorted-lems sorted-ConsD sorted-snocD

lemma isin-sorted: sorted-less (rsQa#ys) —
(z € set (zsQa#tys)) = (if x < a then x € set xs else x € set (a#ys))
{proof)

lemma isin-sorted-split:
assumes Laligned (Node ts t) u
and sorted-less (leaves (Node ts t))
and split ts © = (s, rs)
shows z € set (leaves (Node ts t)) = (z € set (leaves-list rs Q leaves t))

(proof)

lemma isin-sorted-split-right:
assumes split ts © = (s, (sub,sep)#rs)
and sorted-less (leaves (Node ts t))
and Laligned (Node ts t) u
shows z € set (leaves-list ((sub,sep)#rs) Q leaves t) = (z € set (leaves sub))

(proof)

theorem isin-set-inorder:
assumes sorted-less (leaves t)
and aligned [t u
shows isin t © = (z € set (leaves t))

40

{proof)

theorem isin-set-Linorder:
assumes sorted-less (leaves t)
and Laligned t u
shows isin t x = (z € set (leaves t))

{proof)

corollary isin-set-Linorder-top:
assumes sorted-less (leaves t)
and Laligned t top
shows isin t x = (z € set (leaves t))

{proof)

7.2 Insertion

The insert function requires an auxiliary data structure and auxiliary in-
variant functions.

datatype b up; = T; 'b bplustree | Up; 'b bplustree 'b 'b bplustree

fun order-up; where
order-up; k (T; sub) = order k sub |
order-up; k (Up; L a 1) = (order k1 A order k 1)

fun root-order-up; where
root-order-up; k (T; sub) = root-order k sub |
root-order-up; k (Up; 1 a r) = (order k1 A order k r)

fun height-up; where
height-up; (T; t) = height t |
height-up; (Up; 1 a r) = maz (height 1) (height r)

fun bal-up; where
bal-up; (T; t) = bal t |
bal-up; (Up; 1 a r) = (height | = height r A bal I A bal 1)

fun inorder-up; where
inorder-up; (T; t) = inorder t |
inorder-up; (Up; l a r) = inorder | Q [a] @Q inorder r

fun leaves-up; where
leaves-up; (T; t) = leaves t |
leaves-up; (Up; 1 a r) = leaves | Q leaves r

fun aligned-up; where

aligned-up; 1 (T; t) uw = aligned [t u |
aligned-up; 1 (Up; It a rt) v = (aligned [It a N aligned a 1t u)

41

fun Laligned-up; where
Laligned-up; (T; t) uw = Laligned t u |
Laligned-up; (Up; It a rt) u = (Laligned It a A aligned a 1t u)

The following function merges two nodes and returns separately split nodes
if an overflow occurs

fun node;:: nat = (‘a bplustree x 'a) list = 'a bplustree = 'a up; where

node; k ts t = (
if length ts < 2xk then T; (Node ts t)
else (

case split-half ts of (ls, rs) =

case last ls of (sub,sep) =
Upi (Node (butlast ls) sub) sep (Node rs t)
)

)

fun Lnode;:: nat = 'a list = 'a up; where

Lnode; k ts = (
if length ts < 2xk then T, (Leaf ts)
else (

case split-half ts of (Is, rs) =

Up; (Leaf ls) (last Is) (Leaf rs)

)

)

fun ins:: nat = ‘a = 'a bplustree = 'a up; where
ins k x (Leaf ks) = Lnode; k (insert-list x ks) |
ins k x (Node ts t) = (
case split ts x of
(Is,(sub,sep)#rs) =
(case ins k x sub of
Up; lar =
node; k (IsQ(l,a)#(r,sep)#rs) t |
T; a =
T; (Node (1sQ(a,sep)#rs) t)) |
(s,) =
(case ins k z t of
Upi lar =
node; k (1sQ[(l,a)]) r |
T, a =
T; (Node s a)

fun tree;::’a up; = 'a bplustree where
tree; (T sub) = sub |

42

tree; (Up; 1 a r) = (Node [(1,a)] T)

fun insert::nat = 'a = 'a bplustree = ’a bplustree where
insert k x t = tree; (ins k z t)

7.3 Proofs of functional correctness

lemma nodei-ti-simp: node; ktst = T; * = © = Node ts t

{proof)

lemma Lnodei-ti-simp: Lnode; k ts = T; ©+ = x = Leaf ts
(proof)

lemma split-set:
assumes split ts z = (Is,(a,b)#rs)
shows (a,b) € set ts
and (z,y) € set ls = (z,y) € set ts
and (z,y) € set rs = (z,y) € set ts
and set ls U set rs U {(a,b)} = set ts
and Jx € set ts. b € Basic-BNFs.snds x

{proof)

lemma split-length:
split ts x = (s, rs) = length ls + length rs = length ts
(proof)

lemma node;-cases: length zs < k Vv (3 ls sub sep rs. split-half vs = (IsQ[(sub,sep)],rs))
(proof)

lemma Lnode;-cases: length xs < k Vv (s sep rs. split-half s = (1sQ[sep],rs))

(proof)

lemma root-order-tree;: root-order-up; (Suc k) t = root-order (Suc k) (tree; t)
{proof)

lemma length-take-left: length (take ((length ts + 1) div 2) ts) = (length ts + 1)
div 2
(proof)

lemma node;-root-order:
assumes length ts > 0
and length ts < 4xk+1
and Vz € set (subtrees ts). order k x
and order k t
shows root-order-up; k (node; k ts t)

43

(proof)

lemma node;-order-helper:
assumes length ts > k
and length ts < 4xk+1
and Vz € set (subtrees ts). order k «
and order k t
shows case (node; ktst) of T; t = order kt| - = True

(proof)

lemma node;-order:
assumes length ts > k
and length ts < 4xk+1
and YV € set (subtrees ts). order k x
and order k t
shows order-up; k (node; k ts t)

{proof)

lemma Lnode;-root-order:
assumes length ts > 0
and length ts < 4x*k
shows root-order-up; k (Lnode; k ts)
(proof)

lemma Lnode;-order-helper:
assumes length ts > k
and length ts < 4xk+1
shows case (Lnode; k ts) of T; t = order k t | - = True

{(proof)

lemma Lnode;-order:
assumes length ts > k
and length ts < 4xk
shows order-up; k (Lnode; k ts)

{proof)

lemma ins-order:
k > 0 = sorted-less (leaves t) = order k t = order-up; k (ins k x t)
(proof)

lemma ins-root-order:
assumes k > 0 sorted-less (leaves t) root-order k t
shows root-order-up; k (ins k x t)

44

(proof)

lemma height-list-split: height-up; (Up; (Node ls a) b (Node rs t)) = height (Node
(IsQ(a,b)#rs) t)
(proof)

lemma node;-height: height-up; (node; k ts t) = height (Node ts t)
(proof)

lemma Lnode;-height: height-up; (Lnode; k xs) = height (Leaf xs)
(proof)

lemma bal-up;-tree: bal-up; t = bal (tree; t)
(proof)

lemma bal-list-split: bal (Node (IsQ(a,b)#rs) t) = bal-up; (Up; (Node ls a) b
(Node rs t))
{proof)

lemma node;-bal:
assumes bal (Node ts t)
shows bal-up; (node; k ts t)

(proof)

lemma node;-aligned:
assumes aligned | (Node ts t) u
shows aligned-up; | (node; k ts t) u

(proof)

lemma node;-Laligned:
assumes Laligned (Node ts t) u
shows Laligned-up; (node; k ts t) u

{proof)

lemma length-right-side: length s > 1 = length (drop ((length zs + 1) div 2)
zs) > 0
(proof)

lemma Lnode;-aligned:
assumes aligned | (Leaf ks) u
and sorted-less ks
and k£ > 0
shows aligned-up; | (Lnode; k ks) u

(proof)

45

lemma height-up;-merge: height-up; (Up; | a r) = height t = height (Node
(IsQ(t,x)#7s) tt) = height (Node (IsQ(l,a)#(r,x)#rs) (t)
{proof)

lemma ins-height: height-up; (ins k x t) = height t
(proof)

lemma ins-bal: bal t = bal-up; (ins k z t)

(proof)

lemma node;-leaves: leaves-up; (node; k ts t) = leaves (Node ts t)

(proof)

corollary node;-leaves-simps:
node; ktst = T; t' = leaves t’ = leaves (Node ts t)
node; ktst = Up; | a v = leaves | @Q leaves r = leaves (Node ts t)

(proof)

lemma Lnode;-leaves: leaves-up; (Lnode; k xs) = leaves (Leaf xs)

(proof)

corollary Lnode;-leaves-simps:
Lnode; k zs = T; t = leaves t = leaves (Leaf xs)
Lnode; k xs = Up; 1 a v => leaves | Q leqves r = leaves (Leaf zs)

(proof)

lemma ins-list-split:
assumes Laligned (Node ts t) u
and sorted-less (leaves (Node ts t))
and split ts x = (Is, r3)
shows ins-list x (leaves (Node ts t)) = leaves-list ls @ ins-list x (leaves-list s Q
leaves t)

(proof)

lemma ins-list-split-right:
assumes split ts x = (s, (sub,sep)#rs)
and sorted-less (leaves (Node ts t))
and Laligned (Node ts t) u
shows ins-list z (leaves-list ((sub,sep)#rs) Q leaves t) = ins-list © (leaves sub)
Q leaves-list rs Q leaves t

46

(proof)

lemma ins-list-idem-eg-isin: sorted-less 1s = © € set xs <— (ins-list T xs = xs)
(proof)

lemma ins-list-contains-idem: [sorted-less xs; x € set xs] = (ins-list xs = xs)
{proof)

lemma aligned-insert-list: sorted-less ks = | < x = z < u = aligned | (Leaf
ks) u = aligned | (Leaf (insert-list x ks)) u

{proof)

lemma align-subst-two: aligned | (Node (tsQ[(sub,sep)]) t) u = aligned sep It a
= aligned a rt u => aligned | (Node (tsQ[(sub,sep),(lt,a)]) rt) u
{proof)

lemma align-subst-three: aligned | (Node (IsQ(subl,sepl)#(subr,sepr)#rs) t) u =
aligned sepl It a => aligned a rt sepr = aligned | (Node (1sQ(subl,sepl)#(It,a)#(rt,sepr)#rs)
t) u

{proof)

declare node;.simps [simp del]
declare node;-leaves [simp add]

lemma ins-inorder:
assumes k > 0
and aligned [t u
and sorted-less (leaves t)
and root-order k t
and [<zz < u
shows (leaves-up; (ins k z t)) = ins-list x (leaves t) A aligned-up; 1 (ins k z t) u
(proof)

declare node;.simps [simp add)
declare node;-leaves [simp del]

lemma Laligned-insert-list: sorted-less ks = x < u = Laligned (Leaf ks) v =
Laligned (Leaf (insert-list z ks)) u

(proof)

) t) u = aligned sep It a

lemma Lalign-subst-two: Laligned (Node (tsQ[(sub,sep)]) t
lt,a)]) rt) u

= aligned a rt u => Laligned (Node (tsQ[(sub,sep),(
{proof)

lemma Lalign-subst-three: Laligned (Node (lsQ(subl,sepl)#(subr,sepr)#trs) t) u
= aligned sepl It a => aligned a 1t sepr = Laligned (Node (IsQ(subl,sepl)#(lt,a)#(rt,sepr)#rs)

47

t) u
{proof)

lemma Lnode;-Laligned:
assumes Laligned (Leaf ks) u
and sorted-less ks
and k£ > 0
shows Laligned-up; (Lnode; k ks) u

{proof)

declare node;.simps [simp del]
declare node;-leaves [simp add]

lemma ins-Linorder:
assumes k > (0
and Laligned t u
and sorted-less (leaves t)
and root-order k t
and 2z < u
shows (leaves-up; (ins k x t)) = ins-list x (leaves t) A Laligned-up; (ins k x t) u
(proof)

declare node;.simps [simp add]
declare node;-leaves [simp del]

thm ins.induct
thm bplustree.induct

lemma tree;-bal: bal-up; w => bal (tree; u)

{proof)

lemma tree;-order: [k > 0; root-order-up; k u] = root-order k (tree; u)
{proof)

lemma tree;-inorder: inorder-up; u = inorder (tree; u)
{proof)

lemma tree;-leaves: leaves-up; u = leaves (tree; u)
(proof)

lemma tree;-aligned: aligned-up; | a w = aligned | (tree; a) u
{proof)

lemma tree;-Laligned: Laligned-up; o w => Laligned (tree; a) u
(proof)

48

lemma insert-bal: bal t = bal (insert k x t)
{proof)

lemma insert-order: [k > 0; sorted-less (leaves t); root-order k t] = root-order
k (insert k x t)

{proof)

lemma insert-inorder:
assumes k > 0 root-order k t sorted-less (leaves t) aligned It ul < zz < u
shows leaves (insert k x t) = ins-list x (leaves t)
and aligned | (insert k x t) u

{proof)

lemma insert-Linorder:
assumes k > 0 root-order k t sorted-less (leaves t) Laligned t u z < u
shows leaves (insert k x t) = ins-list x (leaves t)
and Laligned (insert k x t) u

{proof)

corollary insert-Linorder-top:
assumes k > 0 root-order k t sorted-less (leaves t) Laligned t top
shows leaves (insert k x t) = ins-list © (leaves t)
and Laligned (insert k x t) top

{proof)

7.4 Deletion

The following deletion method is inspired by Bauer (70) and Fielding (77).
Rather than stealing only a single node from the neighbour, the neighbour
is fully merged with the potentially underflowing node. If the resulting node
is still larger than allowed, the merged node is split again, using the rules
known from insertion splits. If the resulting node has admissable size, it is
simply kept in the tree.

fun rebalance-middle-tree where
rebalance-middle-tree k ls (Leaf ms) sep rs (Leaf ts) = (
if length ms > k N length ts > k then
Node (IsQ(Leaf ms,sep)#rs) (Leaf ts)
else (
case rs of [] = (
case Lnode; k (msQts) of
T, u=
Node Is u |
Up; lar =
Node (IsQ[(l,a)])) |
(Leaf rrs,rsep)#rs = (
case Lnode; k (msQrrs) of
T; u=

49

Node (IsQ(u,rsep)#rs) (Leaf ts) |
Up; lar =
Node (I1sQ(l,a)#(r,rsep)#rs) (Leaf ts))
) |

rebalance-middle-tree k ls (Node mts mt) sep rs (Node tts tt) = (
if length mts > k A length tts > k then
Node (Is@Q(Node mts mt,sep)#rs) (Node tts tt)
else (
case rs of [= (
case node; k (mtsQ(mt,sep)#tts) tt of
T; uw=
Node s u |
Up; lar =
Node (1sQ[(1,a)]) 7) |
(Node rts rt,rsep)#rs = (
case node; k (mtsQ(mt,sep)#rts) rt of
T; u=
Node (IsQ(u,rsep)#rs) (Node tts tt) |
Up; lar =
Node (1sQ(l,a)#(r,rsep)#rs) (Node tts tt))

)

All trees are merged with the right neighbour on underflow. Obviously for
the last tree this would not work since it has no right neighbour. Therefore
this tree, as the only exception, is merged with the left neighbour. However
since we it does not make a difference, we treat the situation as if the second
to last tree underflowed.

fun rebalance-last-tree where
rebalance-last-tree k ts t = (
case last ts of (sub,sep) =
rebalance-middle-tree k (butlast ts) sub sep || t

)

Rather than deleting the minimal key from the right subtree, we remove the
maximal key of the left subtree. This is due to the fact that the last tree
can easily be accessed and the left neighbour is way easier to access than
the right neighbour, it resides in the same pair as the separating element to
be removed.

fun del where
del k = (Leaf xs) = (L
del k z (Node ts t) =
case split ts x of
(Is[1) =
rebalance-last-tree k Is (del k z t)
| (Is,(sub,sep)#rs) = (
rebalance-middle-tree k ls (del k x sub) sep rs t
)
)

af (delete-list x xs)) |

(

50

fun reduce-root where
reduce-root (Leaf xs) = (Leaf zs) |
reduce-root (Node ts t) = (case ts of
=t
- = (Node ts t)

)

fun delete where delete k x t = reduce-root (del k x t)

An invariant for intermediate states at deletion. In particular we allow for
an underflow to 0 subtrees.

fun almost-order where
almost-order k (Leaf xs) = (length zs < 2xk) |
almost-order k (Node ts t) = (
(length ts < 2xk) A
(Vs € set (subtrees ts). order k s) A
order k t
)

Deletion proofs

thm [ist.simps

lemma rebalance-middle-tree-height:
assumes height t = height sub
and case rs of (rsub,rsep) # list = height rsub = height t | [| = True
shows height (rebalance-middle-tree k ls sub sep rs t) = height (Node (IsQ(sub,sep)#rs)
0
(proof)

lemma rebalance-last-tree-height:
assumes height t = height sub
and ts = listQ[(sub,sep)]
shows height (rebalance-last-tree k ts t) = height (Node ts t)

(proof)

lemma bal-sub-height: bal (Node (IsQa#rs) t) = (case rs of [| = True | (sub,sep)#-
= height sub = height t)

{proof)

lemma del-height: [k > 0; root-order k t; bal t] = height (del k x t) = height t
(proof)

o1

lemma rebalance-middle-tree-inorder:
assumes height t = height sub
and case rs of (rsub,rsep) # list = height rsub = height t | [| = True
shows leaves (rebalance-middle-tree k ls sub sep rs t) = leaves (Node (IsQ(sub,sep)#rs)

f
(proof)

lemma rebalance-last-tree-inorder:
assumes height t = height sub
and ts = listQ[(sub,sep)]
shows leaves (rebalance-last-tree k ts t) = leaves (Node ts t)

{proof)

lemma butlast-inorder-app-id: xs = xs’ Q [(sub,sep)] = inorder-list zs’ Q inorder
sub @ [sep] = inorder-list xs

{proof)

lemma height-bal-subtrees-merge: [height (Node as a) = height (Node bs b); bal
(Node as a); bal (Node bs b)]
= V1 € set (subtrees as) U {a}. height © = height b

{proof)

lemma bal-list-merge:
assumes bal-up; (Up; (Node as a) x (Node bs b))
shows bal (Node (asQ(a,x)#bs) b)

(proof)

lemma node;-bal-up;:
assumes bal-up; (node; k ts t)
shows bal (Node ts t)

{proof)

lemma node;-bal-simp: bal-up; (node; k ts t) = bal (Node ts t)
(proof)

lemma rebalance-middle-tree-bal:
assumes bal (Node (IsQ(sub,sep)#rs) t)
shows bal (rebalance-middle-tree k ls sub sep rs t)

(proof)

lemma rebalance-last-tree-bal: [bal (Node ts t); ts # [|]] = bal (rebalance-last-tree
k ts t)

(proof)

lemma Leaf-merge-aligned: aligned | (Leaf ms) m = aligned m (Leaf rs) r =

52

aligned | (Leaf (msQrs)) r
{proof)

lemma Node-merge-aligned:
inbetween aligned | mts mt sep =
inbetween aligned sep tts tt w —
inbetween aligned | (mts Q (mt, sep) # tts) tt u

{proof)

lemma aligned-subst-last-merge: aligned | (Node (ts'Q[(sub’, sep”),(sub,sep)]) t) u
= aligned sep’ t' v =

aligned | (Node (ts'Q[(sub’, sep’)]) t') u

(proof)

lemma aligned-subst-last-merge-two: aligned | (Node (tsQ[(sub’,sep’),(sub,sep)]) t)
u = aligned sep’ It a = aligned a rt u = aligned | (Node (tsQ[(sub’,sep’),(It,a)])
rt) u

{proof)

lemma aligned-subst-merge: aligned | (Node (1sQ(lsub, lsep)#(sub,sep)#(rsub,rsep)#rs)
t) u = aligned lsep sub’ rsep —>

aligned 1 (Node (I1sQ(lsub, lsep)#(sub’, rsep)#rs) t) u

{proof)

lemma aligned-subst-merge-two: aligned I (Node (1sQ(lsub, lsep)#(sub,sep)#(rsub,rsep)#rs)
t) u = aligned lsep sub’ a =

aligned a rsub’ rsep => aligned | (Node (IsQ(lsub, lsep)#(sub’,a)#(rsub’, rsep)#trs)
t) u

(proof)

lemma rebalance-middle-tree-aligned:
assumes aligned | (Node (IsQ(sub,sep)#rs) t) u
and height t = height sub
and sorted-less (leaves (Node (IsQ(sub,sep)#rs) t))
and k£ > 0
and case rs of (rsub,rsep) # list = height rsub = height t | [| = True
shows aligned [(rebalance-middle-tree k ls sub sep rs t) u

(proof)

lemma Node-merge-Laligned:
Laligned (Node mts mt) sep =
inbetween aligned sep tts tt v =
Laligned (Node (mts Q (mt, sep) # tts) tt) u
(proof)

lemma Laligned-subst-last-merge: Laligned (Node (ts'Q[(sub’, sep’),(sub,sep)]) t)
u = aligned sep’ t' u =

Laligned (Node (ts'Q[(sub’, sep’)]) t') u

{proof)

93

lemma Laligned-subst-last-merge-two: Laligned (Node (tsQ[(sub’,sep’),(sub,sep)])
t) u = aligned sep’ It a = aligned a rt u => Laligned (Node (tsQ[(sub’,sep’),(It,a)])
rt) u

(proof)

lemma Laligned-subst-merge: Laligned (Node (1sQ(lsub, lsep)#(sub,sep)#(rsub,rsep)#rs)
t) u => aligned lsep sub’ rsep =
Laligned (Node (1sQ(lsub, Isep)#(sub’, rsep)#rs) t) u

(proof)

lemma Laligned-subst-merge-two: Laligned (Node (IsQ(lsub, Isep)#(sub,sep)#(rsub,rsep)#rs)
t) u = aligned lsep sub’ a =

aligned a rsub’ rsep = Laligned (Node (IsQ(lsub, lsep)# (sub’,a)#(rsub’, rsep)#rs)
t) u

(proof)

lemma zs-front: zs Q [(a,b)] = (z,y)#xs’ = x5 Q [(a,b),(c,d)] = (2,22)#xs" =
(z,y) = (2,22)
{proof)

lemma rebalance-middle-tree-Laligned:
assumes Laligned (Node (IsQ(sub,sep)#rs) t) u
and height t = height sub
and sorted-less (leaves (Node (IsQ(sub,sep)#rs) t))
and k£ > 0
and case rs of (rsub,rsep) # list = height rsub = height t | [| = True
shows Laligned (rebalance-middle-tree k ls sub sep rs t) u

(proof)

lemma rebalance-last-tree-aligned:
assumes aligned | (Node (IsQ[(sub,sep)]) t) u
and height t = height sub
and sorted-less (leaves (Node (IsQ[(sub,sep)]) t))
and k£ > 0
shows aligned [(rebalance-last-tree k (IsQ[(sub,sep)]) t) u

(proof)

lemma rebalance-last-tree- Laligned:
assumes Laligned (Node (IsQ[(sub,sep)]) t) u
and height t = height sub
and sorted-less (leaves (Node (IsQ[(sub,sep)]) t))
and k£ > 0
shows Laligned (rebalance-last-tree k (IsQ[(sub,sep)]) t) u

(proof)
lemma del-bal:

assumes k > 0
and root-order k t

54

and bal ¢
shows bal (del k z t)

{proof)

lemma rebalance-middle-tree-order:
assumes almost-order k sub
and Vs € set (subtrees (IsQrs)). order k s order k t
and case rs of (rsub,rsep) # list = height rsub = height t | [| = True
and length (IsQ(sub,sep)#rs) < 2xk
and height sub = height t
shows almost-order k (rebalance-middle-tree k ls sub sep rs t)
(proof)

lemma rebalance-middle-tree-last-order:
assumes almost-order k t
and Vs € set (subtrees (IsQ(sub,sep)#rs)). order k s
and rs = ||
and length (IsQ(sub,sep)#rs) < 2%k
and height sub = height t
shows almost-order k (rebalance-middle-tree k ls sub sep rs t)

(proof)

lemma rebalance-last-tree-order:
assumes ts = [sQ[(sub,sep)]
and Vs € set (subtrees (ts)). order k s almost-order k t
and length ts < 2xk
and height sub = height t
shows almost-order k (rebalance-last-tree k ts t)

(proof)

lemma del-order:
assumes k > 0
and root-order k t
and bal t
and sorted (leaves t)
shows almost-order k (del k z t)

{proof)

thm del-list-sorted
lemma del-list-split:

assumes Laligned (Node ts t) u
and sorted-less (leaves (Node ts t))

95

and split ts x = (Is, r3)
shows del-list © (leaves (Node ts t)) = leaves-list ls Q del-list x (leaves-list rs Q
leaves t)

(proof)

corollary del-list-split-aligned:
assumes aligned | (Node ts t) u
and sorted-less (leaves (Node ts t))
and split ts © = (Is, rs)
shows del-list x (leaves (Node ts t)) = leaves-list Is Q del-list © (leaves-list rs Q
leaves t)

{proof)

lemma del-list-split-right:
assumes Laligned (Node ts t) u
and sorted-less (leaves (Node ts t))
and split ts x = (s, (sub,sep)#rs)
shows del-list z (leaves-list ((sub,sep)#rs) Q leaves t) = del-list z (leaves sub) Q
leaves-list rs Q leaves t

(proof)

corollary del-list-split-right-aligned:
assumes aligned [(Node ts t) u
and sorted-less (leaves (Node ts t))
and split ts x = (s, (sub,sep)#rs)
shows del-list z (leaves-list ((sub,sep)#rs) Q leaves t) = del-list x (leaves sub) @
leaves-list rs Q leaves t

(proof)
thm del-list-idem

lemma del-inorder:

assumes k > 0
and root-order k t
and bal t
and sorted-less (leaves t)
and aligned [t u
and [<zz<uw

shows leaves (del k z t) = del-list z (leaves t) A aligned | (del k x t) u

(proof)

lemma del-Linorder:
assumes k > 0
and root-order k t
and bal t
and sorted-less (leaves t)
and Laligned t u

o6

and z < u
shows leaves (del k x t) = del-list © (leaves t) N\ Laligned (del k z t) u

{proof)

lemma reduce-root-order: [k > 0; almost-order k t] = root-order k (reduce-root
t)
{proof)

lemma reduce-root-bal: bal (reduce-root t) = bal t
{proof)

lemma reduce-root-inorder: leaves (reduce-root t) = leaves t
{proof)

lemma reduce-root-Laligned: Laligned (reduce-root t) u = Laligned t u
(proof)

lemma delete-order: [k > 0; bal t; root-order k t; sorted-less (leaves t)] =
root-order k (delete k x t)

(proof)

lemma delete-bal: [k > 0; bal t; root-order k t] = bal (delete k z 1)
{proof)

lemma delete-Linorder:
assumes k > 0 root-order k t sorted-less (leaves t) Laligned t uw bal t z < u
shows leaves (delete k x t) = del-list z (leaves t)
and Laligned (delete k = t) u

(proof)

corollary delete-Linorder-top:
assumes k > 0 root-order k t sorted-less (leaves t) Laligned t top bal t
shows leaves (delete k x t) = del-list (leaves t)
and Laligned (delete k x t) top

(proof)

7.5 Set specification by inorder

fun invar-leaves where invar-leaves k t = (
bal t N
root-order k t A
Laligned t top

)

interpretation S-ordered: Set-by-Ordered where
empty = empty-bplustree and
insert = insert (Suc k) and

o7

delete = delete (Suc k) and
isin = isin and

inorder = leaves and

inv = invar-leaves (Suc k)

(proof)

declare node;.simps[simp del]

end

lemma sorted-ConsD: sorted-less (y # xs) = ¢ < y = z ¢ set xs

(proof)

lemma sorted-snocD: sorted-less (zs Q [y]) = y < z = z ¢ set xs
{proof)

lemmas isin-simps2 = sorted-lems sorted-ConsD sorted-snocD

lemma isin-sorted: sorted-less (xsQa#ys) =
(z € set (zsQa#ys)) = (if x < a then © € set zs else © € set (aftys))

(proof)

context split-list
begin

fun isin-list :: 'a = 'a list = bool where
isin-list © ks = (case split-list ks x of
(Is,Nil) = False |
(Is,sep#rs) = sep = x

)

fun insert-list where
insert-list © ks = (case split-list ks © of
(Is,Nil) = IsQl[z] |
(Is,sep#rs) = if sep = x then ks else lsQu#sepFrs
)

fun delete-list where
delete-list x ks = (case split-list ks z of
(Is,Nil) = ks |
(Is,sep#rs) = if sep = x then IsQrs else ks

)

lemmas split-list-conc = split-list-req(1)

o8

lemmas split-list-sorted = split-list-req(2,3)

lemma isin-sorted-split-list:
assumes sorted-less xs
and split-list zs x = (Is, rs)
shows (z € set xs) = (x € set rs)

{(proof)

lemma isin-sorted-split-list-right:
assumes split-list ts x = (s, sepF#rs)
and sorted-less ts
shows z € set (sep#rs) = (z = sep)

(proof)

theorem isin-list-set:
assumes sorted-less s
shows isin-list x xs = (¢ € set xs)

{proof)

lemma insert-sorted-split-list:
assumes sorted-less xs
and split-list xs © = (Is, rs)
shows ins-list x s = Is Q ins-list x rs

(proof)

lemma insert-sorted-split-list-right:
assumes split-list ts x = (Is, sep#rs)
and sorted-less ts
and = # sep
shows ins-list x (sep#rs) = (x#sep#trs)
(proof)

theorem insert-list-set:
assumes sorted-less s
shows insert-list x xs = ins-list T xs

{proof)

lemma delete-sorted-split-list:
assumes sorted-less xs
and split-list zs x = (Is, rs)
shows del-list x xs = Is Q del-list x rs

{(proof)

lemma delete-sorted-split-list-right:

99

assumes split-list ts x = (s, sep#rs)
and sorted-less ts
and z # sep

shows del-list © (sep#rs) = sep#rs

(proof)

theorem delete-list-set:
assumes sorted-less s
shows delete-list © xs = del-list x xs

(proof)

end

context split-full
begin

sublocale split-set split isin-list insert-list delete-list
(proof)

end

end

theory BPlusTree-Range

imports BPlusTree
HOL— Data-Structures.Set-Specs
HOL— Library.Sublist
BPlusTree-Split

begin

Lrange describes all elements in a set that are greater or equal to 1, a lower
bounded range (with no upper bound)
definition Lrange where
Lrange | X ={z € X. z > 1}
definition lrange-filter | = filter (Ax. z > 1)

lemma lrange-filter-iff-Lrange: set (lrange-filter | xs) = Lrange 1 (set xs)
{proof)

fun lrange-list where
lrange-list 1 (z#xs) = (if © > 1 then (z#xs) else lrange-list | xs) |
lrange-list 1 [| = ||

lemma sorted-leg-lrange: sorted-wrt (<) xs = lrange-list (I::'a::linorder) xs =
lrange-filter [xs

(proof)

60

lemma sorted-less-lrange: sorted-less xs = lrange-list (I::'a::linorder) xs = lrange-filter
lxs

{proof)

lemma lrange-list-sorted: sorted-less (rsQx#tys) =
lrange-list | (zsQxHtys) =
(if | < z then (lrange-list | zs)QzHtys else lrange-list | (z#ys))
(proof)

lemma lrange-filter-sorted: sorted-less (rsQu#ys) —
lrange-filter | (xsQz#ys) =
(if | < z then (lrange-filter | xs)Qx#ys else lrange-filter | (x#ys))
(proof)

lemma lrange-suffiz: suffiz (lrange-list | zs) xs

(proof)

locale split-range = split-tree split
for split::
("a bplustree x 'a::{linorder,order-top}) list = 'a
= (‘a bplustree x 'a) list x ('a bplustree x 'a) list +
fixes Ilrange-list :: 'a = (‘a::{linorder,order-top}) list = 'a list
assumes lrange-list-req:

sorted-less ks = lrange-list | ks = lrange-filter [ks
begin

fun lrange:: 'a bplustree = 'a = 'a list where
lrange (Leaf ks) x = (lrange-list ks) |
lrange (Node ts t) = = (
case split ts x of (-,(sub,sep)#rs) = (
lrange sub x Q leaves-list rs Q leaves t
)

| (-])) = lrange t

)

Irange proof

lemma lrange-sorted-split:
assumes Laligned (Node ts t) u
and sorted-less (leaves (Node ts t))
and split ts = = (s, rs)
shows lrange-filter x (leaves (Node ts t)) = lrange-filter x (leaves-list rs Q leaves
t)
(proof)

lemma Ilrange-sorted-split-right:

61

assumes split ts x = (ls, (sub,sep)#rs)
and sorted-less (leaves (Node ts t))
and Laligned (Node ts t) u
shows lrange-filter © (leaves-list ((sub,sep)#rs) @Q leaves t) = lrange-filter x
(leaves sub)@leaves-list rsQleaves t

(proof)

theorem Irange-set:
assumes sorted-less (leaves t)
and aligned [¢t u
shows lrange t x = lrange-filter x (leaves t)

{proof)

Now the alternative explanation that first obtains the correct leaf node and
in a second step obtains the correct element from the leaf node.

fun leaf-nodes-lrange:: 'a bplustree = 'a = 'a bplustree list where
leaf-nodes-lrange (Leaf ks) = = [Leaf ks| |
leaf-nodes-lrange (Node ts t) z = (
case split ts x of (-,(sub,sep)#rs) = (
leaf-nodes-lrange sub x Q leaf-nodes-list rs @ leaf-nodes t
)

| (-]]) = leaf-nodes-lrange t

)

Irange proof

lemma concat-leaf-nodes-leaves-list: (concat (map leaves (leaf-nodes-list ts))) =
leaves-list ts

{proof)

theorem leaf-nodes-lrange-set:
assumes sorted-less (leaves t)
and aligned [t u
shows suffix (lrange-filter © (leaves t)) (concat (map leaves (leaf-nodes-lrange t

z)))

(proof)

lemma leaf-nodes-lrange-not-empty: 3 ks list. leaf-nodes-lrange t © = (Leaf ks)#list
A (Leaf ks) € set (leaf-nodes t)

(proof)
Note that, conveniently, this argument is purely syntactic, we do not need
to show that this has anything to do with linear orders

lemma leaf-nodes-lrange-pre-lrange: leaf-nodes-lrange t © = (Leaf ks)#list —
lrange-list ks @Q (concat (map leaves list)) = lrange t ©

(proof)

We finally obtain a function that is way easier to reason about in the im-
perative setting

62

fun concat-leaf-nodes-lrange where
concat-leaf-nodes-lrange t © = (case leaf-nodes-lrange t = of (Leaf ks)#list =
lrange-list x ks @Q (concat (map leaves list)))

lemma concat-leaf-nodes-lrange-lrange: concat-leaf-nodes-lrange t x = lrange t x

(proof)

end

context split-list
begin

definition lrange-split where
lrange-split | xs = (case split-list xs | of (Is,rs) = rs)

lemma lrange-filter-split:
assumes sorted-less zs
and split-list zs | = (Is,rs)
shows lrange-list | xs = rs
find-theorems split-list

(proof)

lemma lrange-split-req:
assumes sorted-less zs
shows lrange-split | xs = lrange-filter | xs

(proof)

end

context split-full
begin

sublocale split-range split lrange-split
(proof)

end

end

theory BPlusTree-SplitCE
imports
BPlusTree-Set
BPlusTree-Range

begin

global-interpretation bplustree-linear-search-list: split-list linear-split-list
defines bplustree-ls-isin-list = bplustree-linear-search-list.isin-list
and bplustree-ls-insert-list = bplustree-linear-search-list.insert-list
and bplustree-Is-delete-list = bplustree-linear-search-list.delete-list
and bplustree-ls-lrange-list = bplustree-linear-search-list.lrange-split

63

{proof)

declare bplustree-linear-search-list.isin-list.simps|code]
declare bplustree-linear-search-list.insert-list.simps|code]
declare bplustree-linear-search-list.delete-list.simps|code]

global-interpretation bplustree-linear-search:
split-full linear-split linear-split-list

defines bplustree-ls-isin = bplustree-linear-search.isin
and bplustree-ls-ins = bplustree-linear-search.ins
and bplustree-Is-insert = bplustree-linear-search.insert
and bplustree-ls-del = bplustree-linear-search.del
and bplustree-ls-delete = bplustree-linear-search.delete
and bplustree-ls-lrange = bplustree-linear-search.lrange

{proof)

lemma [code]: bplustree-ls-isin (Leaf ks) x = bplustree-ls-isin-list = ks

(proof)
declare bplustree-linear-search.isin.simps(2)[code]

lemma [code]: bplustree-ls-ins k x (Leaf ks) =
bplustree-linear-search.Lnode; k (bplustree-ls-insert-list x ks)

{proof)
declare bplustree-linear-search.ins.simps(2)[code]

lemma [code]: bplustree-ls-del k © (Leaf ks) =
Leaf (bplustree-ls-delete-list ks)

(proof)

declare bplustree-linear-search.del.simps(2)[code]

find-theorems bplustree-ls-isin

Some examples follow to show that the implementation works and the above
lemmas make sense. The examples are visualized in the thesis.

abbreviation bplustree, = bplustree-ls-isin
abbreviation bplustree; = bplustree-ls-insert
abbreviation bplustreeq = bplustree-ls-delete

definition uint8-mazx = 2°8—1::nat
declare wint8-mazx-def[simp]

typedef wint§ = {n:nat. n < uint8-maz}
{proof)

setup-lifting type-definition-uint8

64

instantiation uint8 :: linorder
begin

lift-definition less-eq-uint8 :: wint8 = uint8 = bool
is (less-eq::nat = nat = bool) (proof)

lift-definition less-uint8 :: uint8 = wint8 = bool
is (less::nat = nat = bool) (proof)

instance

(proof)
end

instantiation wint8 :: order-top
begin

lift-definition top-wint8 :: wint8 is uint8-mazx::nat
(proof)

instance

(proof)
end

instantiation uint8 :: numeral
begin

lift-definition one-uint8 :: uint8 is 1::nat
(proof)

lift-definition plus-uint8 :: uwint8 = wint§ = uint8
is Aa b. min (a + b) wint8-max
{proof)

instance (proof)
end

instantiation wint§ :: equal
begin

lift-definition equal-uint8 :: wint8 = wint8 = bool

is (=) (proof)
instance (proof)

end

value uint8-mazx

65

value let k=2::nat; z::uint8 bplustree = (Node [(Node [(Leaf [1,2], 2),(Leaf [3,4],
4),(Leaf [5,6,7], 8)] (Leaf [9,10]), 10)] (Node [(Leaf [11,12,13,14], 14), (Leaf
[15,17), 20)] (Leaf [21,22,23)))) in

root-order k x
value let k=2::nat; z::uint8 bplustree = (Node [(Node [(Leaf [1,2], 2),(Leaf [3,4],
4)(Leaf [5,6.7), 8)] (Leaf [9,10]), 10)] (Node [(Leaf [11,12,13,14], 14), (Leaf
(15,17, 20)] (Leaf [21,22,23]))) in

bal ©
value let k=2::nat; z::uint8 bplustree = (Node [(Node [(Leaf [1,2], 2),(Leaf [3,4],
4),(Leaf [5,6,7], 8)] (Leaf [9,10]), 10)] (Node [(Leaf [11,12,13,14], 14), (Leaf
(15,17, 20)] (Leaf [50,55,56]))) in

sorted-less (leaves x)
value let k=2::nat; z::uint8 bplustree = (Node [(Node [(Leaf [1,2], 2),(Leaf [3,4],
4),(Leaf [5,6,7], 8)] (Leaf [9,10]), 10)] (Node [(Leaf [11,12,158,14], 14), (Leaf
[15,17], 20)] (Leaf [50,55,56]))) in

Laligned x top
value let k=2::nat; z::uint8 bplustree = (Node [(Node [(Leaf [1,2], 2),(Leaf [3,4],
4),(Leaf [5,6,7], 8)] (Leaf [9,10]), 10)] (Node [(Leaf [11,12,13,14], 14), (Leaf
[15,17), 20)] (Leaf [50,55,56)))) in

x
value let k=2::nat; z::uint8 bplustree = (Node [(Node [(Leaf [1,2], 2),(Leaf [3,4],
4)(Leaf [5,6.7), 8)] (Leaf [9,10]), 10)] (Node [(Leaf [11,12,13,14], 14), (Leaf
(15,17, 20)] (Leaf [50,55,56]))) in

bplustree, = 4
value let k=2::nat; z::uint8 bplustree = (Node [(Node [(Leaf [1,2], 2),(Leaf [3,4],
4),(Leaf [5,6,7], 8)] (Leaf [9,10]), 10)] (Node [(Leaf [11,12,13,14], 14), (Leaf
(15,17, 20)] (Leaf [50,55,56]))) in

bplustreeq x 20
value let k=2::nat; z::uint8 bplustree = (Node [(Node [(Leaf [1,2], 2),(Leaf [3,4],
4),(Leaf [5,6,7], 8)] (Leaf [9,10]), 10)] (Node [(Leaf [11,12,158,14], 14), (Leaf
[15,17), 20)] (Leaf [50,55,56)))) in

bplustree; k 9 x
value let k=2::nat; z::uint8 bplustree = (Node [(Node [(Leaf [1,2], 2),(Leaf [3,4],
4),(Leaf [5,6,7], 8)] (Leaf [9,10]), 10)] (Node [(Leaf [11,12,13,14], 14), (Leaf
[15,17), 20)] (Leaf [50,55,56)))) in

bplustree; k 1 (bplustree; k 9 x)
value let k=2::nat; z::uint8 bplustree = (Node [(Node [(Leaf [1,2], 2),(Leaf [3,4],
4)(Leaf [5,6.7), 8)] (Leaf [9,10]), 10)] (Node [(Leaf [11,12,13,14], 14), (Leaf
(15,17, 20)] (Leaf [50,55,56]))) in

bplustreeq k 10 (bplustree; k 1 (bplustree; k 9 z))
value let k=2::nat; z::uint8 bplustree = (Node [(Node [(Leaf [1,2], 2),(Leaf [3,4],
4),(Leaf [5,6,7], 8)] (Leaf [9,10]), 10)] (Node [(Leaf [11,12,13,14], 14), (Leaf
(15,17, 20)] (Leaf [50,55,56]))) in

bplustreeq k 3 (bplustreeq k 10 (bplustree; k 1 (bplustree; k 9 x)))

end

66

References

[1] Rudolf Bayer and Edward M. McCreight. Organization and
maintenance of large ordered indices. Acta Informatica, 1:173-189,
1972. doi:10.1007/BF00288683. URL
https://doi.org/10.1007/BF00288683.

[2] Peter Lammich. The imperative refinement framework. Archive of
Formal Proofs, August 2016. ISSN 2150-914x.
https://isa-afp.org/entries/Refine Imperative HOL.html, Formal
proof development.

[3] Niels Miindler. A verified imperative implementation of b-trees.
Bachelor’s thesis, Technische Universitat Miinchen, Miinchen, 2021.
URL https://mediatum.ub.tum.de/1596550.

67

https://doi.org/10.1007/BF00288683
https://doi.org/10.1007/BF00288683
https://isa-afp.org/entries/Refine_Imperative_HOL.html
https://mediatum.ub.tum.de/1596550

	Definition of the B-Tree
	Datatype definition
	Inorder and Set
	Height and Balancedness
	Order
	Auxiliary Lemmas

	Maximum and minimum height
	Definition of node/size
	Maximum number of nodes for a given height
	Maximum height for a given number of nodes

	Set interpretation
	Auxiliary functions
	The split function locale
	Membership
	Insertion
	Deletion
	Proofs of functional correctness
	Set specification by inorder

	Abstract split functions
	Linear split
	Binary split

	Definition of the B-Plus-Tree
	Datatype definition
	Inorder and Set
	Height and Balancedness
	Order
	Auxiliary Lemmas
	Auxiliary functions
	The split function locale

	Abstract split functions
	Linear split

	Set interpretation
	Membership
	Insertion
	Proofs of functional correctness
	Deletion
	Set specification by inorder

