A Verified Imperative Implementation of B-Trees

Niels Mündler

Abstract

In this work, we use the interactive theorem prover Isabelle/HOL to verify an imperative implementation of the classical B-tree data structure [1]. The implementation supports set membership, insertion, deletion, iteration and range queries with efficient binary search for intra-node navigation. This is accomplished by first specifying the structure abstractly in the functional modeling language HOL and proving functional correctness. Using manual refinement, we derive an imperative implementation in Imperative/HOL. We show the validity of this refinement using the separation logic utilities from the Isabelle Refinement Framework [2]. The code can be exported to the programming languages SML, Scala and OCaml. This entry contains two developments:

- *B-Trees* This formalisation is discussed in greater detail in the corresponding Bachelor's Thesis[3].
- B^+ -Trees This formalisation also supports range queries and is discussed in a paper published at ICTAC 2022.

Contents

1	Def	inition of the B-Tree	2
	1.1	Datatype definition	2
	1.2	Inorder and Set	3
	1.3	Height and Balancedness	3
	1.4	Order	4
	1.5	Auxiliary Lemmas	4
2	Ma	ximum and minimum height	7
	2.1	Definition of node/size	7
		Maximum number of nodes for a given height	
	2.3	Maximum height for a given number of nodes	8
3	Set	interpretation 1	0
	3.1	Auxiliary functions	0
	3.2	The split function locale	. 1
	3.3	Membership	.1

	3.4	Insertion	11
	3.5	Deletion	13
	3.6	Proofs of functional correctness	15
	3.7	Set specification by inorder	24
4	Abs	stract split functions	24
	4.1	Linear split	24
	4.2	Binary split	26
5	Def	inition of the B-Plus-Tree	27
	5.1	Datatype definition	27
	5.2	Inorder and Set	28
	5.3	Height and Balancedness	29
	5.4	Order	29
	5.5		30
	5.6	Auxiliary functions	36
	5.7		36
6	Abs	stract split functions	37
	6.1	Linear split	37
7	Set	interpretation	38
	7.1	Membership	40
	7.2	Insertion	41
	7.3	Proofs of functional correctness	43
	7.4	Deletion	49
	7.5	Set specification by inorder	57
\mathbf{th}	eory	BTree	
i	mpor	$\textbf{ts} \ \textit{Main HOL-Data-Structures}. \textit{Sorted-Less HOL-Data-Structures}. \textit{Cm}_{2} \\$	p

begin

hide-const (open) Sorted-Less.sorted abbreviation sorted-less \equiv Sorted-Less.sorted

1 Definition of the B-Tree

1.1 Datatype definition

B-trees can be considered to have all data stored interleaved as child nodes and separating elements (also keys or indices). We define them to either be a Node that holds a list of pairs of children and indices or be a completely empty Leaf.

 $\mathbf{datatype}$ 'a $\mathit{btree} = \mathit{Leaf} \mid \mathit{Node}$ ('a $\mathit{btree} *$ 'a) list 'a btree

```
type-synonym 'a btree-list = ('a \ btree * 'a) \ list
type-synonym 'a btree-pair = ('a btree * 'a)
abbreviation subtrees where subtrees xs \equiv (map \ fst \ xs)
abbreviation separators where separators xs \equiv (map \ snd \ xs)
1.2
       Inorder and Set
The set of B-tree elements is defined automatically.
thm btree.set
value set-btree (Node [(Leaf, (0::nat)), (Node [(Leaf, 1), (Leaf, 10)] Leaf, 12),
(Leaf, 30), (Leaf, 100) Leaf)
The inorder view is defined with the help of the concat function.
fun inorder :: 'a \ btree \Rightarrow 'a \ list \ \mathbf{where}
 inorder\ Leaf = [] \mid
  inorder (Node ts t) = concat (map (\lambda (sub, sep). inorder sub @ [sep]) ts) @
abbreviation inorder-pair \equiv \lambda(sub, sep). inorder sub @ [sep]
abbreviation inorder-list ts \equiv concat \pmod{map \ inorder-pair \ ts}
thm inorder.simps
value inorder (Node [(Leaf, (0::nat)), (Node [(Leaf, 1), (Leaf, 10)] Leaf, 12),
(Leaf, 30), (Leaf, 100)] Leaf)
1.3
      Height and Balancedness
class height =
```

```
fixes height :: 'a \Rightarrow nat

instantiation btree :: (type) \ height
begin

fun height-btree :: 'a \ btree \Rightarrow nat \ \mathbf{where}
height \ Leaf = 0 \ |
height \ (Node \ ts \ t) = Suc \ (Max \ (height \ `(set \ (subtrees \ ts@[t]))))
instance \langle proof \rangle
```

Balancedness is defined is close accordance to the definition by Ernst

```
fun bal:: 'a btree \Rightarrow bool where bal \ Leaf = True \mid bal \ (Node \ ts \ t) = (
```

end

```
(\forall sub \in set (subtrees \ ts). \ height \ sub = height \ t) \land
    (\forall sub \in set (subtrees \ ts). \ bal \ sub) \land bal \ t
value height (Node [(Leaf, (0::nat)), (Node [(Leaf, 1), (Leaf, 10)] Leaf, 12), (Leaf,
30), (Leaf, 100) Leaf)
1.4
        Order
The order of a B-tree is defined just as in the original paper by Bayer.
fun order:: nat \Rightarrow 'a \ btree \Rightarrow bool \ \mathbf{where}
  order \ k \ Leaf = True \mid
  order\ k\ (Node\ ts\ t) = (
  (length \ ts \ge k) \land
  (length\ ts \leq 2*k) \land
  (\forall sub \in set (subtrees \ ts). \ order \ k \ sub) \land order \ k \ t
The special condition for the root is called root order
fun root\text{-}order:: nat \Rightarrow 'a \ btree \Rightarrow bool \ \mathbf{where}
  root-order k Leaf = True
  root\text{-}order\ k\ (Node\ ts\ t) = (
  (length\ ts > 0) \land
  (length\ ts \leq 2*k) \land
  (\forall s \in set (subtrees \ ts). \ order \ k \ s) \land order \ k \ t
1.5
        Auxiliary Lemmas
lemma separators-split:
  set\ (separators\ (l@(a,b)\#r)) = set\ (separators\ l)\ \cup\ set\ (separators\ r)\ \cup\ \{b\}
  \langle proof \rangle
lemma subtrees-split:
  set (subtrees (l@(a,b)\#r)) = set (subtrees l) \cup set (subtrees r) \cup \{a\}
  \langle proof \rangle
lemma finite-set-ins-swap:
  assumes finite A
 shows max\ a\ (Max\ (Set.insert\ b\ A)) = max\ b\ (Max\ (Set.insert\ a\ A))
  \langle proof \rangle
lemma finite-set-in-idem:
  assumes finite A
```

shows $max\ a\ (Max\ (Set.insert\ a\ A)) = Max\ (Set.insert\ a\ A)$

```
\langle proof \rangle
lemma height-Leaf: height t = 0 \longleftrightarrow t = Leaf
  \langle proof \rangle
lemma height-btree-order:
  height (Node (ls@[a]) t) = height (Node (a\#ls) t)
  \langle proof \rangle
\mathbf{lemma}\ \mathit{height-btree-sub} :
  height\ (Node\ ((sub,x)\#ls)\ t) = max\ (height\ (Node\ ls\ t))\ (Suc\ (height\ sub))
  \langle proof \rangle
\mathbf{lemma}\ height\text{-}btree\text{-}last:
  height\ (Node\ ((sub,x)\#ts)\ t) = max\ (height\ (Node\ ts\ sub))\ (Suc\ (height\ t))
  \langle proof \rangle
lemma set-btree-inorder: set (inorder t) = set-btree t
  \langle proof \rangle
lemma child-subset: p \in set \ t \Longrightarrow set-btree (fst p) \subseteq set-btree (Node t \ n)
  \langle proof \rangle
\mathbf{lemma}\ some\text{-}child\text{-}sub:
  assumes (sub, sep) \in set t
  shows sub \in set (subtrees t)
    and sep \in set (separators t)
  \langle proof \rangle
lemma bal-all-subtrees-equal: bal (Node ts t) \Longrightarrow (\forall s1 \in set (subtrees ts). \forall s2 \in
set (subtrees ts). height s1 = height s2)
  \langle proof \rangle
lemma fold-max-set: \forall x \in set \ t. \ x = f \Longrightarrow fold \ max \ t \ f = f
  \langle proof \rangle
lemma height-bal-tree: bal (Node ts t) \Longrightarrow height (Node ts t) = Suc (height t)
  \langle proof \rangle
\mathbf{lemma}\ \mathit{bal-split-last}:
  assumes bal (Node (ls@(sub, sep) \# rs) t)
```

```
shows bal (Node (ls@rs) t)
    and height (Node (ls@(sub,sep)\#rs) t) = height (Node (ls@rs) t)
  \langle proof \rangle
lemma bal-split-right:
  assumes bal (Node (ls@rs) t)
 shows bal (Node rs t)
    and height (Node rs\ t) = height (Node (ls@rs) t)
  \langle proof \rangle
lemma bal-split-left:
  assumes bal (Node (ls@(a,b)#rs) t)
  shows bal (Node ls a)
    and height (Node ls a) = height (Node (ls@(a,b)\#rs) t)
  \langle proof \rangle
lemma bal-substitute: \llbracket bal \ (Node \ (ls@(a,b)\#rs) \ t); \ height \ t = height \ c; \ bal \ c \rrbracket \Longrightarrow
bal (Node (ls@(c,b)\#rs) t)
  \langle proof \rangle
lemma bal-substitute-subtree: [bal\ (Node\ (ls@(a,b)\#rs)\ t);\ height\ a=height\ c;\ bal
c \implies bal \ (Node \ (ls@(c,b)\#rs) \ t)
  \langle proof \rangle
lemma bal-substitute-separator: bal (Node (ls@(a,b)#rs) t) \Longrightarrow bal (Node (ls@(a,c)#rs)
  \langle proof \rangle
lemma order-impl-root-order: [k > 0; order \ k \ t] \implies root\text{-}order \ k \ t
  \langle proof \rangle
lemma sorted-inorder-list-separators: sorted-less (inorder-list ts) \implies sorted-less
(separators ts)
  \langle proof \rangle
corollary sorted-inorder-separators: sorted-less (inorder (Node ts t)) \Longrightarrow sorted-less
(separators ts)
  \langle proof \rangle
\mathbf{lemma}\ sorted\text{-}in order\text{-}list\text{-}subtrees:
 sorted-less (inorder-list ts) \Longrightarrow \forall sub \in set (subtrees ts). sorted-less (inorder sub)
```

```
\langle proof \rangle
corollary sorted-inorder-subtrees: sorted-less (inorder (Node ts t)) \Longrightarrow \forall sub \in
set (subtrees ts). sorted-less (inorder sub)
  \langle proof \rangle
\mathbf{lemma}\ sorted\text{-}in order\text{-}list\text{-}induct\text{-}subtree:
  sorted-less (inorder-list (ls@(sub,sep)\#rs)) \Longrightarrow sorted-less (inorder\ sub)
  \langle proof \rangle
corollary sorted-inorder-induct-subtree:
  sorted-less (inorder (Node (ls@(sub,sep)#rs) t)) \Longrightarrow sorted-less (inorder sub)
  \langle proof \rangle
lemma\ sorted-inorder-induct-last:\ sorted-less\ (inorder\ (Node\ ts\ t)) \Longrightarrow sorted-less
(inorder\ t)
  \langle proof \rangle
end
theory BTree-Height
  imports BTree
begin
```

2 Maximum and minimum height

Textbooks usually provide some proofs relating the maxmimum and minimum height of the BTree for a given number of nodes. We therefore introduce this counting and show the respective proofs.

2.1 Definition of node/size

```
thm BTree.btree.size
```

```
value size (Node [(Leaf, (0::nat)), (Node [(Leaf, 1), (Leaf, 10)] Leaf, 12), (Leaf, 30), (Leaf, 100)] Leaf)
```

The default size function does not suit our needs as it regards the length of the list in each node. We would like to count the number of nodes in the tree only, not regarding the number of keys.

```
fun nodes::'a \ btree \Rightarrow nat \ \mathbf{where}
nodes \ Leaf = 0 \mid nodes \ (Node \ ts \ t) = 1 + (\sum t \leftarrow subtrees \ ts. \ nodes \ t) + (nodes \ t)
value nodes \ (Node \ [(Leaf, (0::nat)), (Node \ [(Leaf, 1), (Leaf, 10)] \ Leaf, 12), (Leaf, 30), (Leaf, 100)] \ Leaf)
```

2.2 Maximum number of nodes for a given height

```
lemma sum-list-replicate: sum-list (replicate n c) = n*c
  \langle proof \rangle
abbreviation bound k h \equiv ((k+1)\hat{k} - 1)
lemma nodes-height-upper-bound:
  [order\ k\ t;\ bal\ t] \Longrightarrow nodes\ t*(2*k) \leq bound\ (2*k)\ (height\ t)
\langle proof \rangle
To verify our lower bound is sharp, we compare it to the height of artificially
constructed full trees.
fun full-node::nat \Rightarrow 'a \Rightarrow nat \Rightarrow 'a \ btree \ \mathbf{where}
 full-node k \ c \ \theta = Leaf
 full-node k c (Suc n) = (Node (replicate (2*k) ((full-node k c n),c)) (full-node k
value let k = (2::nat) in map (\lambda x. nodes \ x * 2*k) (map (full-node k (1::nat))
[0,1,2,3,4]
value let k = (2::nat) in map (\lambda x. ((2*k+(1::nat))^{n}(x)-1)) [0,1,2,3,4]
lemma compow-comp-id: c > 0 \Longrightarrow f \circ f = f \Longrightarrow (f \frown c) = f
  \langle proof \rangle
lemma compow-id-point: f x = x \Longrightarrow (f \frown c) x = x
  \langle proof \rangle
lemma height-full-node: height (full-node k a h) = h
  \langle proof \rangle
lemma bal-full-node: bal (full-node k a h)
  \langle proof \rangle
lemma order-full-node: order \ k \ (full-node \ k \ a \ h)
  \langle proof \rangle
lemma full-btrees-sharp: nodes (full-node k a h) * (2*k) = bound (2*k) h
  \langle proof \rangle
\mathbf{lemma}\ upper	ext{-}bound	ext{-}sharp	ext{-}node:
 t = full-node k a h \Longrightarrow height t = h \land order k t \land bal t \land bound (2*k) h = nodes
t * (2*k)
  \langle proof \rangle
```

2.3 Maximum height for a given number of nodes

```
lemma nodes-height-lower-bound: [order\ k\ t;\ bal\ t] \Longrightarrow bound\ k\ (height\ t) \le nodes\ t*k
```

```
To verify our upper bound is sharp, we compare it to the height of artificially
constructed minimally filled (=slim) trees.
fun slim-node::nat \Rightarrow 'a \Rightarrow nat \Rightarrow 'a \ btree \ \mathbf{where}
  slim-node k \ c \ \theta = Leaf
  slim-node\ k\ c\ (Suc\ n)=(Node\ (replicate\ k\ ((slim-node\ k\ c\ n),c))\ (slim-node\ k\ c
value let k = (2::nat) in map (\lambda x. nodes \ x * k) (map (slim-node k (1::nat))
[0,1,2,3,4]
value let k = (2::nat) in map (\lambda x. ((k+1::nat)^{n}(x)-1)) [0,1,2,3,4]
lemma height-slim-node: height (slim-node k a h) = h
  \langle proof \rangle
lemma bal-slim-node: bal (slim-node k a h)
  \langle proof \rangle
lemma order-slim-node: order k (slim-node k a h)
  \langle proof \rangle
lemma slim-nodes-sharp: nodes (slim-node k a h) * k = bound k h
  \langle proof \rangle
lemma lower-bound-sharp-node:
  t = slim - node \ k \ a \ h \Longrightarrow height \ t = h \land order \ k \ t \land bal \ t \land bound \ k \ h = nodes \ t
* k
  \langle proof \rangle
Since BTrees have special roots, we need to show the overall nodes seperately
lemma nodes-root-height-lower-bound:
 assumes root-order k t
   and bal t
  shows 2*((k+1) \hat{\ }(height\ t-1)-1)+(of\ bool\ (t \neq Leaf))*k \leq nodes\ t*k
\langle proof \rangle
lemma nodes-root-height-upper-bound:
 assumes root-order k t
   and bal t
  shows nodes t * (2*k) \le (2*k+1) (height t) - 1
\langle proof \rangle
lemma root-order-imp-divmuleg: root-order k \ t \Longrightarrow (nodes \ t * k) \ div \ k = nodes \ t
\mathbf{lemma}\ nodes\text{-}root\text{-}height\text{-}lower\text{-}bound\text{-}simp:
  assumes root-order k t
```

 $\langle proof \rangle$

```
and k > \theta
       shows (2*((k+1))(height t - 1) - 1)) div k + (of-bool (t \neq Leaf)) \leq nodes t
\mathbf{lemma}\ nodes\text{-}root\text{-}height\text{-}upper\text{-}bound\text{-}simp:}
      assumes root-order k t
              and bal t
      shows nodes t \leq ((2*k+1))(height t) - 1) div (2*k)
\langle proof \rangle
definition full-tree = full-node
fun slim-tree where
       slim-tree k \ c \ 0 = Leaf \mid
       slim-tree k c (Suc h) = Node [(slim-node k c h, c)] <math>(slim-node k c h)
lemma lower-bound-sharp:
      k > 0 \Longrightarrow t = slim\text{-tree } k \text{ a } h \Longrightarrow height \ t = h \land root\text{-order } k \ t \land bal \ t \land nodes
t * k = 2*((k+1))(height t - 1) - 1 + (of-bool (t \neq Leaf))*k
       \langle proof \rangle
lemma upper-bound-sharp:
          k > 0 \implies t = \text{full-tree } k \text{ a } h \implies \text{height } t = h \land \text{root-order } k \text{ } t \land \text{bal } t \land k > 0 \implies t = \text{full-tree } k \text{ a } h \implies \text{height } t = h \land \text{root-order } k \text{ } t \land \text{bal } t \land k > 0 \implies t = \text{full-tree } k \text{ a } h \implies \text{height } t = h \land \text{root-order } k \text{ } t \land \text{bal } t \land k > 0 \implies t = \text{full-tree } k \text{ a } h \implies \text{height } t = h \land \text{root-order } k \text{ } t \land k = 0 \implies t = \text{full-tree } k \text{ a } h \implies \text{height } t = h \land \text{root-order } k \text{ } t \land k = 0 \implies t = 
((2*k+1)^{\hat{}}(height\ t)-1)=nodes\ t*(2*k)
        \langle proof \rangle
end
theory BTree-Set
      imports BTree
               HOL-Data-Structures.Set-Specs
begin
3
                        Set interpretation
3.1
                              Auxiliary functions
fun split-half:: ('a\ btree \times 'a)\ list \Rightarrow (('a\ btree \times 'a)\ list \times ('a\ btree \times 'a)\ list) where
       split-half\ xs = (take\ (length\ xs\ div\ 2)\ xs,\ drop\ (length\ xs\ div\ 2)\ xs)
lemma drop-not-empty: xs \neq [] \implies drop \ (length \ xs \ div \ 2) \ xs \neq []
        \langle proof \rangle
```

and bal t

(ls,(sub,sep)#rs) $\langle proof \rangle$

lemma split-half-not-empty: length $xs \geq 1 \implies \exists ls \ sub \ sep \ rs.$ split-half xs =

3.2 The split function locale

Here, we abstract away the inner workings of the split function for B-tree operations.

```
locale split =
fixes split :: ('a \ btree \times 'a :: linorder) \ list \Rightarrow 'a \Rightarrow (('a \ btree \times 'a) \ list \times ('a \ btree \times 'a) \ list)
assumes split - req :
[split \ xs \ p = (ls, rs)]] \implies xs = ls @ \ rs
[split \ xs \ p = (ls@[(sub, sep)], rs); \ sorted - less \ (separators \ xs)]] \implies sep < p
[split \ xs \ p = (ls, (sub, sep) \# rs); \ sorted - less \ (separators \ xs)]] \implies p \le sep
begin

lemmas split - conc = split - req(1)
lemmas split - sorted = split - req(2,3)

lemma [termination - simp] : (ls, \ (sub, sep) \# rs) = split \ ts \ y \implies size \ sub < Suc \ (size - list \ (\lambda x. \ Suc \ (size \ (fst \ x))) \ ts \ + size \ l)
\langle proof \rangle

fun invar - inorder \ where invar - inorder \ k \ t = (bal \ t \land root - order \ k \ t)
```

 $\mathbf{definition} \ \mathit{empty-btree} = \mathit{Leaf}$

3.3 Membership

```
fun isin:: 'a btree \Rightarrow 'a \Rightarrow bool where isin (Leaf) y = False \mid isin (Node ts t) y = ( case split ts y of (-,(sub,sep)\#rs) \Rightarrow ( if y = sep then True else isin sub y ) | (-,[]) <math>\Rightarrow isin t y
```

3.4 Insertion

The insert function requires an auxiliary data structure and auxiliary invariant functions.

```
datatype 'b up_i = T_i 'b btree \mid Up_i 'b btree 'b 'b btree

fun order\text{-}up_i where

order\text{-}up_i k (T_i sub) = order k sub \mid
```

```
order-up_i \ k \ (Up_i \ l \ a \ r) = (order \ k \ l \land order \ k \ r)
fun root-order-up_i where
  root-order-up_i \ k \ (T_i \ sub) = root-order k \ sub
  root\text{-}order\text{-}up_i \ k \ (Up_i \ l \ a \ r) = (order \ k \ l \land order \ k \ r)
fun height-up_i where
  height-up_i(T_i t) = height t
  height-up_i (Up_i \ l \ a \ r) = max (height \ l) (height \ r)
fun bal-up_i where
  bal-up_i (T_i t) = bal t \mid
  bal-up_i (Up_i \ l \ a \ r) = (height \ l = height \ r \land bal \ l \land bal \ r)
fun inorder-up_i where
  inorder-up_i (T_i t) = inorder t \mid
  inorder-up_i (Up_i \ l \ a \ r) = inorder \ l \ @ [a] \ @ inorder \ r
The following function merges two nodes and returns separately split nodes
if an overflow occurs
fun node_i:: nat \Rightarrow ('a \ btree \times 'a) \ list \Rightarrow 'a \ btree \Rightarrow 'a \ up_i \ \mathbf{where}
  node_i \ k \ ts \ t = (
  if length ts \leq 2*k then T_i (Node ts t)
  else (
    case split-half ts of (ls, (sub, sep) \# rs) \Rightarrow
       Up_i (Node ls sub) sep (Node rs t)
  )
lemma nodei-ti-simp: node<sub>i</sub> k ts t = T_i x \Longrightarrow x = Node ts t
  \langle proof \rangle
fun ins:: nat \Rightarrow 'a \Rightarrow 'a \ btree \Rightarrow 'a \ up_i \ where
  ins \ k \ x \ Leaf = (Up_i \ Leaf \ x \ Leaf) \mid
  ins \ k \ x \ (Node \ ts \ t) = (
  case split ts x of
    (ls,(sub,sep)\#rs) \Rightarrow
      (if sep = x then
         T_i (Node ts t)
      else
        (case ins k x sub of
           Up_i \ l \ a \ r \Rightarrow
              node_i \ k \ (ls \ @ \ (l,a)\#(r,sep)\#rs) \ t \ |
             T_i (Node (ls @ (a,sep) \# rs) t))) \mid
    (ls, []) \Rightarrow
      (case ins k x t of
```

```
\begin{array}{c} \textit{Up}_i \; l \; a \; r \Rightarrow \\ \quad node_i \; k \; (ls@[(l,a)]) \; r \; | \\ \quad T_i \; a \Rightarrow \\ \quad T_i \; (Node \; ls \; a) \\ ) \\ ) \\ \\ \text{fun } tree_i::'a \; up_i \Rightarrow 'a \; btree \; \textbf{where} \\ \quad tree_i \; (T_i \; sub) = sub \; | \\ \quad tree_i \; (Up_i \; l \; a \; r) = (Node \; [(l,a)] \; r) \\ \\ \text{fun } insert::nat \Rightarrow 'a \Rightarrow 'a \; btree \Rightarrow 'a \; btree \; \textbf{where} \\ \quad insert \; k \; x \; t = tree_i \; (ins \; k \; x \; t) \\ \end{array}
```

3.5 Deletion

The following deletion method is inspired by Bayer (70) and Fielding (80). Rather than stealing only a single node from the neighbour, the neighbour is fully merged with the potentially underflowing node. If the resulting node is still larger than allowed, the merged node is split again, using the rules known from insertion splits. If the resulting node has admissable size, it is simply kept in the tree.

```
{\bf fun}\ rebalance\text{-}middle\text{-}tree\ {\bf where}
  rebalance-middle-tree k ls Leaf sep rs Leaf = (
  Node (ls@(Leaf,sep)\#rs) Leaf
) |
  rebalance-middle-tree \ k \ ls \ (Node \ mts \ mt) \ sep \ rs \ (Node \ tts \ tt) = (
  if length mts \geq k \land length \ tts \geq k \ then
    Node (ls@(Node\ mts\ mt, sep) \# rs) (Node tts\ tt)
  else (
    case rs of [] \Rightarrow (
      case node_i \ k \ (mts@(mt,sep)\#tts) \ tt \ of
       T_i u \Rightarrow
        Node ls u \mid
       Up_i \ l \ a \ r \Rightarrow
        Node (ls@[(l,a)]) r)
    (Node\ rts\ rt, rsep) \# rs \Rightarrow (
      case node_i \ k \ (mts@(mt,sep)\#rts) \ rt \ of
      T_i \ u \Rightarrow
        Node (ls@(u,rsep)\#rs) (Node tts tt) |
      Up_i \ l \ a \ r \Rightarrow
        Node (ls@(l,a)\#(r,rsep)\#rs) (Node tts tt))
))
```

Deletion

All trees are merged with the right neighbour on underflow. Obviously for

the last tree this would not work since it has no right neighbour. Therefore this tree, as the only exception, is merged with the left neighbour. However since we it does not make a difference, we treat the situation as if the second to last tree underflowed.

```
fun rebalance-last-tree where rebalance-last-tree k ts t = ( case last ts of (sub, sep) \Rightarrow rebalance-middle-tree k (butlast ts) sub sep [] t)
```

Rather than deleting the minimal key from the right subtree, we remove the maximal key of the left subtree. This is due to the fact that the last tree can easily be accessed and the left neighbour is way easier to access than the right neighbour, it resides in the same pair as the separating element to be removed.

```
fun split-max where
  split-max\ k\ (Node\ ts\ t) = (case\ t\ of\ Leaf <math>\Rightarrow (
  let (sub, sep) = last ts in
   (Node (butlast ts) sub, sep)
)|
- ⇒
case \ split-max \ k \ t \ of \ (sub, \ sep) \Rightarrow
  (rebalance-last-tree\ k\ ts\ sub,\ sep)
fun del where
  del \ k \ x \ Leaf = Leaf \mid
  del \ k \ x \ (Node \ ts \ t) = (
  case split ts x of
   (ls, []) \Rightarrow
     rebalance-last-tree k ls (del k x t)
  |(ls,(sub,sep)\#rs) \Rightarrow (
      if sep \neq x then
        rebalance-middle-tree k ls (del k x sub) sep rs t
      else\ if\ sub=Leaf\ then
        Node (ls@rs) t
      else\ let\ (sub-s,\ max-s) = split-max\ k\ sub\ in
        rebalance-middle-tree k ls sub-s max-s rs t
fun reduce-root where
  reduce-root Leaf = Leaf
  reduce-root (Node ts t) = (case ts of
  ] \Rightarrow t |
   - \Rightarrow (Node \ ts \ t)
```

```
fun delete where delete k x t = reduce\text{-root} (del k x t)
```

An invariant for intermediate states at deletion. In particular we allow for an underflow to 0 subtrees.

```
fun almost-order where 

almost-order k Leaf = True | 

almost-order k (Node ts t) = ( 

(length ts \le 2*k) \land 

(\forall s \in set \ (subtrees \ ts). \ order \ k \ s) \land 

order k t
```

A recursive property of the "spine" we want to walk along for splitting off the maximum of the left subtree.

```
fun nonempty-lasttreebal where nonempty-lasttreebal Leaf = True | nonempty-lasttreebal (Node ts t) = ( (\exists ls \ tsub \ tsep. \ ts = (ls@[(tsub,tsep)]) \land height \ tsub = height \ t) \land nonempty-lasttreebal \ t )
```

3.6 Proofs of functional correctness

```
lemma split-set:
  assumes split to z = (ls,(a,b)\#rs)
  shows (a,b) \in set ts
    and (x,y) \in set \ ls \Longrightarrow (x,y) \in set \ ts
    and (x,y) \in set \ rs \Longrightarrow (x,y) \in set \ ts
    and set ls \cup set \ rs \cup \{(a,b)\} = set \ ts
    and \exists x \in set \ ts. \ b \in Basic\text{-}BNFs.snds \ x
  \langle proof \rangle
lemma split-length:
  split \ ts \ x = (ls, \ rs) \Longrightarrow length \ ls + length \ rs = length \ ts
  \langle proof \rangle
Isin proof
thm isin-simps
lemma sorted-ConsD: sorted-less (y \# xs) \Longrightarrow x \le y \Longrightarrow x \notin set xs
  \langle proof \rangle
lemma sorted-snocD: sorted-less (xs @ [y]) \Longrightarrow y \le x \Longrightarrow x \notin set xs
  \langle proof \rangle
```

 $\mathbf{lemmas}\ is in\text{-}simps2 = sorted\text{-}lems\ sorted\text{-}ConsD\ sorted\text{-}snocD$

```
lemma isin-sorted: sorted-less (xs@a\#ys) \Longrightarrow
     (x \in set (xs@a#ys)) = (if x < a then x \in set xs else x \in set (a#ys))
      \langle proof \rangle
{f lemma}\ is in	ext{-}sorted	ext{-}split:
     assumes sorted-less (inorder\ (Node\ ts\ t))
          and split ts x = (ls, rs)
     shows x \in set (inorder (Node ts t)) = (x \in set (inorder-list rs @ inorder t))
\langle proof \rangle
lemma isin-sorted-split-right:
     assumes split ts x = (ls, (sub, sep) \# rs)
          and sorted-less (inorder (Node ts t))
          and sep \neq x
    shows x \in set (inorder-list ((sub,sep)#rs) @ inorder t) = (x \in set (inorder sub))
\langle proof \rangle
theorem isin-set-inorder: sorted-less (inorder t) \implies isin t x = (x \in set \ (inorder \ t) \in set \ (inorder
t))
\langle proof \rangle
lemma node_i-cases: length \ xs \le k \lor (\exists \ ls \ sub \ sep \ rs. \ split-half \ xs = (ls,(sub,sep)\#rs))
\langle proof \rangle
lemma root-order-tree<sub>i</sub>: root-order-up<sub>i</sub> (Suc k) t = root-order (Suc k) (tree<sub>i</sub> t)
     \langle proof \rangle
lemma node_i-root-order:
     assumes length ts > 0
          and length ts \le 4*k+1
          and \forall x \in set \ (subtrees \ ts). \ order \ k \ x
          and order \ k \ t
     shows root-order-up_i k (node_i k ts t)
\langle proof \rangle
lemma node_i-order-helper:
     assumes length ts \ge k
          and length ts \le 4*k+1
          and \forall x \in set (subtrees \ ts). \ order \ k \ x
```

```
and order \ k \ t
  shows case (node<sub>i</sub> k ts t) of T_i t \Rightarrow order k t | - \Rightarrow True
\langle proof \rangle
lemma node_i-order:
  assumes length ts \ge k
     and length ts \le 4*k+1
     and \forall x \in set \ (subtrees \ ts). \ order \ k \ x
    and order \ k \ t
  shows order-up_i \ k \ (node_i \ k \ ts \ t)
  \langle proof \rangle
lemma ins-order:
   order \ k \ t \Longrightarrow order-up_i \ k \ (ins \ k \ x \ t)
\langle proof \rangle
lemma ins-root-order:
  \mathbf{assumes}\ \mathit{root\text{-}\mathit{order}}\ k\ t
  shows root-order-up_i \ k \ (ins \ k \ x \ t)
\langle proof \rangle
lemma height-list-split: height-up_i (Up_i (Node\ ls\ a) b (Node\ rs\ t)) = height (Node
(ls@(a,b)\#rs) t)
  \langle proof \rangle
lemma node_i-height: height-up_i (node_i \ k \ ts \ t) = height (Node \ ts \ t)
\langle proof \rangle
lemma bal-up_i-tree: bal-up_i t = bal (tree<sub>i</sub> t)
  \langle proof \rangle
\textbf{lemma} \ \textit{bal-list-split:} \ \textit{bal} \ (\textit{Node} \ (\textit{ls}@(a,b)\#rs) \ t) \implies \textit{bal-up}_i \ (\textit{Up}_i \ (\textit{Node} \ \textit{ls} \ a) \ b
(Node \ rs \ t))
  \langle proof \rangle
lemma node_i-bal:
  assumes bal (Node ts t)
  shows bal-up_i (node_i \ k \ ts \ t)
  \langle proof \rangle
```

```
lemma height-up<sub>i</sub>-merge: height-up<sub>i</sub> (Up<sub>i</sub> l a r) = height t \Longrightarrow height (Node
(ls@(t,x)\#rs) tt) = height (Node (ls@(l,a)\#(r,x)\#rs) tt)
  \langle proof \rangle
lemma ins-height: height-up<sub>i</sub> (ins k x t) = height t
\langle proof \rangle
lemma ins-bal: bal t \Longrightarrow bal-up<sub>i</sub> (ins k x t)
\langle proof \rangle
lemma node_i-inorder: inorder-up_i (node_i \ k \ ts \ t) = inorder \ (Node \ ts \ t)
  \langle proof \rangle
corollary node_i-inorder-simps:
  node_i \ k \ ts \ t = T_i \ t' \Longrightarrow inorder \ t' = inorder \ (Node \ ts \ t)
  node_i \ k \ ts \ t = Up_i \ l \ a \ r \Longrightarrow inorder \ l \ @ \ a \ \# \ inorder \ r = inorder \ (Node \ ts \ t)
   \langle proof \rangle
lemma ins-sorted-inorder: sorted-less (inorder t) \Longrightarrow (inorder-up<sub>i</sub> (ins k (x::('a::linorder))
t)) = ins-list \ x \ (inorder \ t)
  \langle proof \rangle
lemma ins-list-split:
  assumes split ts x = (ls, rs)
    and sorted-less (inorder (Node ts t))
  shows ins-list x (inorder (Node ts t)) = inorder-list t @ ins-list t (inorder-list
rs @ inorder t)
\langle proof \rangle
lemma ins-list-split-right-general:
  assumes split ts x = (ls, (sub, sep) \# rs)
    and sorted-less (inorder-list ts)
    and sep \neq x
  shows ins-list x (inorder-list ((sub, sep) \# rs) @ zs) = ins-list <math>x (inorder sub) @
sep \ \# \ inorder\mbox{-}list \ rs \ @ \ zs
\langle proof \rangle
corollary ins-list-split-right:
  assumes split to x = (ls, (sub, sep) \# rs)
```

```
and sorted-less (inorder (Node ts t))
    and sep \neq x
  shows ins-list x (inorder-list ((sub,sep)#rs) @ inorder t) = ins-list x (inorder
sub) @ sep \# inorder-list rs @ inorder t
  \langle proof \rangle
lemma ins-list-idem-eq-isin: sorted-less xs \Longrightarrow x \in set \ xs \longleftrightarrow (ins-list \ x \ xs = xs)
  \langle proof \rangle
lemma ins-list-contains-idem: [sorted-less\ xs;\ x\in set\ xs] \Longrightarrow (ins-list\ x\ xs=xs)
declare node_i.simps [simp del]
declare node_i-inorder [simp \ add]
lemma ins-inorder: sorted-less (inorder t) \Longrightarrow (inorder-up<sub>i</sub> (ins k x t)) = ins-list
x (inorder t)
\langle proof \rangle
declare node_i.simps [simp add]
declare node_i-inorder [simp \ del]
{f thm}\ ins.induct
thm btree.induct
lemma tree_i-bal: bal-up_i u \Longrightarrow bal (tree_i \ u)
  \langle proof \rangle
lemma tree_i-order: [k > 0; root-order-up_i \ k \ u] \implies root-order k \ (tree_i \ u)
  \langle proof \rangle
lemma tree_i-inorder: inorder-up_i u = inorder (tree_i \ u)
  \langle proof \rangle
lemma insert-bal: bal t \Longrightarrow bal (insert k \times t)
  \langle proof \rangle
lemma insert-order: [k > 0; root\text{-}order \ k \ t] \implies root\text{-}order \ k \ (insert \ k \ x \ t)
  \langle proof \rangle
lemma insert-inorder: sorted-less (inorder t) \Longrightarrow inorder (insert k \times t) = ins-list
x (inorder t)
```

```
\langle proof \rangle
Deletion proofs
{f thm}\ list.simps
{f lemma} rebalance-middle-tree-height:
  assumes height t = height sub
    and case rs of (rsub, rsep) \# list \Rightarrow height \ rsub = height \ t \mid [] \Rightarrow True
 shows height (rebalance-middle-tree k ls sub sep rs t) = height (Node (ls@(sub,sep)#rs)
\langle proof \rangle
lemma rebalance-last-tree-height:
  assumes height t = height sub
    and ts = list@[(sub, sep)]
 shows height (rebalance-last-tree k ts t) = height (Node ts t)
  \langle proof \rangle
lemma split-max-height:
  assumes split-max k t = (sub, sep)
    and nonempty-lasttreebal t
    and t \neq Leaf
  shows height sub = height t
  \langle proof \rangle
lemma order-bal-nonempty-lasttreebal: [k > 0; root\text{-}order \ k \ t; bal \ t] \implies nonempty-lasttreebal
\langle proof \rangle
lemma bal-sub-height: bal (Node (ls@a#rs) t) \Longrightarrow (case rs of [] \Rightarrow True \mid (sub, sep)#-
\Rightarrow height sub = height t)
  \langle proof \rangle
lemma del-height: [k > 0; root\text{-}order \ k \ t; bal \ t] \implies height \ (del \ k \ x \ t) = height \ t
\langle proof \rangle
{\bf lemma} rebalance-middle-tree-inorder:
 assumes height\ t=height\ sub
    and case rs of (rsub, rsep) \# list \Rightarrow height rsub = height t | [] \Rightarrow True
 shows inorder (rebalance-middle-tree k ls sub sep rs t) = inorder (Node (ls@(sub,sep)#rs)
  \langle proof \rangle
```

```
lemma rebalance-last-tree-inorder:
  assumes height\ t = height\ sub
    and ts = list@[(sub, sep)]
  shows inorder (rebalance-last-tree k ts t) = inorder (Node ts t)
  \langle proof \rangle
lemma butlast-inorder-app-id: xs = xs' \otimes [(sub, sep)] \Longrightarrow inorder-list xs' \otimes inorder
sub @ [sep] = inorder-list xs
  \langle proof \rangle
lemma split-max-inorder:
  assumes nonempty-lasttreebal t
    and t \neq Leaf
 shows inorder-pair (split-max k t) = inorder t
  \langle proof \rangle
lemma height-bal-subtrees-merge: [height (Node as a) = height (Node bs b); bal
(Node as a); bal (Node bs b) \llbracket
 \implies \forall x \in set \ (subtrees \ as) \cup \{a\}. \ height \ x = height \ b
 \langle proof \rangle
lemma bal-list-merge:
  assumes bal-up_i (Up_i (Node\ as\ a) x (Node\ bs\ b))
  shows bal (Node (as@(a,x)\#bs) b)
\langle proof \rangle
lemma node_i-bal-up_i:
  assumes bal-up_i (node_i \ k \ ts \ t)
 shows bal (Node ts t)
  \langle proof \rangle
lemma node_i-bal-simp: bal-up_i (node_i \ k \ ts \ t) = bal (Node \ ts \ t)
  \langle proof \rangle
lemma rebalance-middle-tree-bal: bal (Node (ls@(sub,sep)\#rs) t) \Longrightarrow bal (rebalance-middle-tree
k \ ls \ sub \ sep \ rs \ t)
\langle proof \rangle
lemma rebalance-last-tree-bal: [bal (Node \ ts \ t); \ ts \neq []] \Longrightarrow bal (rebalance-last-tree
k ts t
  \langle proof \rangle
\mathbf{lemma} \ \mathit{split-max-bal} \colon
  assumes bal t
    and t \neq Leaf
    and nonempty-lasttreebal t
```

```
shows bal (fst (split-max k t))
  \langle proof \rangle
lemma del-bal:
  assumes k > 0
   and root-order k t
   and bal t
  shows bal (del k x t)
  \langle proof \rangle
\mathbf{lemma}\ rebalance\text{-}middle\text{-}tree\text{-}order:
  assumes almost-order k sub
   and \forall s \in set \ (subtrees \ (ls@rs)). \ order \ k \ s \ order \ k \ t
   and case rs of (rsub, rsep) \# list \Rightarrow height \ rsub = height \ t \mid [] \Rightarrow True
   and length (ls@(sub,sep)\#rs) \leq 2*k
   and height sub = height t
  shows almost-order k (rebalance-middle-tree k ls sub sep rs t)
\langle proof \rangle
\mathbf{lemma}\ rebalance\text{-}middle\text{-}tree\text{-}last\text{-}order:
  assumes almost-order k t
   and \forall s \in set (subtrees (ls@(sub, sep) \# rs)). order k s
   and rs = []
   and length (ls@(sub, sep) # rs) \le 2*k
   and height \, sub = height \, t
 shows almost-order k (rebalance-middle-tree k ls sub sep rs t)
\langle proof \rangle
{f lemma} rebalance-last-tree-order:
 assumes ts = ls@[(sub, sep)]
   and \forall s \in set \ (subtrees \ (ts)). \ order \ k \ s \ almost-order \ k \ t
   and length ts \leq 2*k
   and height sub = height t
  shows almost-order k (rebalance-last-tree k ts t)
  \langle proof \rangle
lemma split-max-order:
  assumes order k t
   and t \neq Leaf
   and nonempty-lasttreebal t
  shows almost-order k (fst (split-max k t))
  \langle proof \rangle
lemma del-order:
  assumes k > 0
   and root-order k t
```

```
and bal t
 shows almost-order k (del k x t)
  \langle proof \rangle
thm del-list-sorted
lemma del-list-split:
 assumes split to x = (ls, rs)
   and sorted-less (inorder (Node ts t))
 shows del-list x (inorder (Node ts t)) = inorder-list ls @ del-list x (inorder-list
rs @ inorder t)
\langle proof \rangle
lemma del-list-split-right:
 assumes split ts x = (ls, (sub, sep) \# rs)
   and sorted-less (inorder\ (Node\ ts\ t))
   and sep \neq x
  shows del-list x (inorder-list ((sub,sep)\#rs) @ inorder t) = del-list x (inorder
sub) @ sep \# inorder-list rs @ inorder t
\langle proof \rangle
thm del-list-idem
lemma del-inorder:
 assumes k > 0
   and root\text{-}order\ k\ t
   and bal t
   and sorted-less (inorder t)
 shows inorder (del\ k\ x\ t) = del-list\ x\ (inorder\ t)
lemma reduce-root-order: [k > 0; almost-order \ k \ t] \implies root-order \ k \ (reduce-root \ t)
t)
 \langle proof \rangle
lemma reduce-root-bal: bal (reduce-root t) = bal t
 \langle proof \rangle
lemma reduce-root-inorder: inorder (reduce-root t) = inorder t
  \langle proof \rangle
lemma delete-order: [k > 0; bal t; root-order k t] \implies root-order k (delete k x t)
 \langle proof \rangle
```

```
lemma delete-bal: [k > 0; bal \ t; root\text{-}order \ k \ t] \implies bal \ (delete \ k \ x \ t)
\langle proof \rangle
lemma delete-inorder: [k > 0; bal \ t; root\text{-}order \ k \ t; sorted\text{-}less \ (inorder \ t)] \implies inorder \ (delete \ k \ x \ t) = del\text{-}list \ x \ (inorder \ t)
\langle proof \rangle
```

3.7 Set specification by inorder

```
interpretation S-ordered: Set-by-Ordered where empty = empty-btree and insert = insert (Suc k) and delete = delete (Suc k) and isin = isin and inorder = inorder and inv = invar-inorder (Suc k) \langle proof \rangle

declare node_i.simps[simp\ del]
end
```

theory BTree-Split imports BTree-Set begin

4 Abstract split functions

 $linear-split \ xs \ x = linear-split-help \ xs \ x$

4.1 Linear split

Finally we show that the split axioms are feasible by providing an example split function

```
fun linear-split-help:: (-\times'a::linorder) list \Rightarrow -\Rightarrow (-\times-) list \Rightarrow ((-\times-) list \times (-\times-) list) where linear-split-help [] x prev = (prev, []) | linear-split-help ((sub, sep)\#xs) x prev = (if sep < x then linear-split-help xs x (prev @ [(sub, sep)]) else (prev, (sub, sep)\#xs))

fun linear-split:: (-\times'a::linorder) list \Rightarrow -\Rightarrow ((-\times-) list \times (-\times-) list) where
```

Linear split is similar to well known functions, therefore a quick proof can be done.

```
lemma linear-split-alt: linear-split xs x = (take While (<math>\lambda(\neg,s). s < x) xs, drop While (<math>\lambda(\neg,s). s < x) xs) \langle proof \rangle
```

global-interpretation btree-linear-search: split linear-split

```
defines btree-ls-isin = btree-linear-search.isin and btree-ls-ins = btree-linear-search.ins and btree-ls-insert = btree-linear-search.insert and btree-ls-del = btree-linear-search.del and btree-ls-delete = btree-linear-search.delete \langle proof \rangle
```

Some examples follow to show that the implementation works and the above lemmas make sense. The examples are visualized in the thesis.

```
abbreviation btree_i \equiv btree-ls-insert
abbreviation btree_d \equiv btree-ls-delete
value let k=2::nat; x::nat btree = (Node [(Node [(Leaf, 3),(Leaf, 5),(Leaf, 6)])
[Leaf, 10] (Node [(Leaf, 14), (Leaf, 20)] Leaf)) in
     root-order k x
value let k=2::nat; x::nat btree = (Node\ [(Node\ [(Leaf,\ 3),(Leaf,\ 5),(Leaf,\ 6)]
Leaf, 10)] (Node [(Leaf, 14), (Leaf, 20)] Leaf)) in
     bal x
value let k=2::nat; x::nat btree = (Node [(Node [(Leaf, 3),(Leaf, 5),(Leaf, 6)])
Leaf, 10] (Node [(Leaf, 14), (Leaf, 20)] Leaf)) in
     sorted-less (inorder x)
value let k=2::nat; x::nat btree = (Node [(Node [(Leaf, 3), (Leaf, 5), (Leaf, 6)]
Leaf, 10)] (Node [(Leaf, 14), (Leaf, 20)] Leaf)) in
value let k=2::nat; x::nat btree = (Node [(Node [(Leaf, 3), (Leaf, 5), (Leaf, 6)]
Leaf, 10) (Node [(Leaf, 14), (Leaf, 20)] Leaf)) in
     btree_i \ k \ 9 \ x
value let k=2::nat; x::nat btree = (Node [(Node [(Leaf, 3), (Leaf, 5), (Leaf, 6)]
Leaf, 10)] (Node [(Leaf, 14), (Leaf, 20)] Leaf)) in
     btree_i \ k \ 1 \ (btree_i \ k \ 9 \ x)
value let k=2::nat; x::nat btree = (Node\ [(Node\ [(Leaf,\ 3),(Leaf,\ 5),(Leaf,\ 6)]
Leaf, 10)] (Node [(Leaf, 14), (Leaf, 20)] Leaf)) in
     btree_d \ k \ 10 \ (btree_i \ k \ 1 \ (btree_i \ k \ 9 \ x))
value let k=2::nat; x::nat btree = (Node [(Node [(Leaf, 3),(Leaf, 5),(Leaf, 6)])
Leaf, 10) (Node [(Leaf, 14), (Leaf, 20)] Leaf)) in
     btree_d \ k \ 3 \ (btree_d \ k \ 10 \ (btree_i \ k \ 1 \ (btree_i \ k \ 9 \ x)))
```

For completeness, we also proved an explicit proof of the locale requirements.

lemma some-child-sm: linear-split-help t y $xs = (ls,(sub,sep)\#rs) \Longrightarrow y \le sep \langle proof \rangle$

```
lemma linear-split-append: linear-split-help xs \ p \ ys = (ls,rs) \Longrightarrow ls@rs = ys@xs
  \langle proof \rangle
lemma linear-split-sm: [linear-split-help\ xs\ p\ ys=(ls,rs);\ sorted-less\ (separators
(ys@xs); \forall sep \in set (separators ys). p > sep \implies \forall sep \in set (separators ls). p
> sep
  \langle proof \rangle
value linear-split [((Leaf::nat btree), 2)] (1::nat)
lemma linear-split-gr:
  [linear-split-help\ xs\ p\ ys=(ls,rs);\ sorted-less\ (separators\ (ys@xs));\ \forall\ (sub,sep)\in
set\ ys.\ p>sep \rrbracket \Longrightarrow
(case rs of [] \Rightarrow True \mid (-,sep)\#- \Rightarrow p \leq sep)
  \langle proof \rangle
lemma linear-split-req:
 assumes linear-split xs \ p = (ls, (sub, sep) \# rs)
    and sorted-less (separators xs)
 shows p \leq sep
  \langle proof \rangle
lemma linear-split-req2:
  \mathbf{assumes} \quad linear\text{-}split \ xs \ p = (ls@[(sub,sep)],rs)
    and sorted-less (separators xs)
  shows sep < p
  \langle proof \rangle
interpretation split linear-split
  \langle proof \rangle
```

4.2 Binary split

It is possible to define a binary split predicate. However, even proving that it terminates is uncomfortable.

```
function (sequential) binary-split-help:: (-×'a::linorder) list \Rightarrow (-×'a) li
```

```
\langle proof \rangle
termination
  \langle proof \rangle
fun binary-split where
  binary-split as x = binary-split-help [] as [] x
We can show that it will return sublists that concatenate to the original list
again but will not show that it fulfils sortedness properties.
lemma binary-split-help as bs cs \ x = (ls,rs) \Longrightarrow (as@bs@cs) = (ls@rs)
  \langle proof \rangle
lemma [sorted-less (separators (as@bs@cs)); binary-split-help as bs cs \ x = (ls,rs);
\forall y \in set \ (separators \ as). \ y < x
\implies \forall y \in set \ (separators \ ls). \ y < x
  \langle proof \rangle
end
theory BPlusTree
  \mathbf{imports} \ \mathit{Main} \ \mathit{HOL-Data-Structures}. \mathit{Sorted-Less} \ \mathit{HOL-Data-Structures}. \mathit{Cmp}
HOL-Library.Multiset
begin
hide-const (open) Sorted-Less.sorted
abbreviation sorted-less \equiv Sorted-Less.sorted
```

5 Definition of the B-Plus-Tree

5.1 Datatype definition

B-Plus-Trees are basically B-Trees, that don't have empty Leafs but Leafs that contain the relevant data.

```
datatype 'a bplustree = Leaf (vals: 'a list) | Node (keyvals: ('a bplustree * 'a) list) (lasttree: 'a bplustree)

type-synonym 'a bplustree-list = ('a bplustree * 'a) list
type-synonym 'a bplustree-pair = ('a bplustree * 'a)

abbreviation subtrees where subtrees xs \equiv (map \ fst \ xs)
abbreviation separators where separators xs \equiv (map \ snd \ xs)
```

5.2 Inorder and Set

The set of B-Plus-tree needs to be manually defined, regarding only the leaves. This overrides the default instantiation.

```
fun set-nodes :: 'a bplustree \Rightarrow 'a set where
  set-nodes (Leaf ks) = {} |
  set-nodes (Node ts\ t) = \bigcup (set\ (map\ set-nodes (subtrees\ ts))) \cup (set\ (separators\ ts))
(ts)) \cup set-nodes (ts)
fun set-leaves :: 'a bplustree \Rightarrow 'a set where
  set-leaves (Leaf ks) = set ks |
  set-leaves (Node ts t) = \bigcup (set (map \ set-leaves (subtrees ts))) \cup set-leaves t
The inorder is a view of only internal seperators
fun inorder :: 'a \ bplustree \Rightarrow 'a \ list \ \mathbf{where}
  inorder (Leaf ks) = [] |
  inorder (Node ts t) = concat (map (\lambda (sub, sep). inorder sub @ [sep]) ts) @
inorder t
abbreviation inorder-list ts \equiv concat \ (map \ (\lambda \ (sub, sep). \ inorder \ sub \ @ \ [sep]) \ ts)
The leaves view considers only its leafs.
fun leaves :: 'a bplustree <math>\Rightarrow 'a list where
  leaves (Leaf ks) = ks
  leaves\ (Node\ ts\ t) = concat\ (map\ leaves\ (subtrees\ ts))\ @\ leaves\ t
abbreviation leaves-list ts \equiv concat \ (map \ leaves \ (subtrees \ ts))
fun leaf-nodes where
leaf-nodes (Leaf xs) = [Leaf xs]
leaf-nodes (Node ts t) = concat (map leaf-nodes (subtrees ts)) @ leaf-nodes t
abbreviation leaf-nodes-list ts \equiv concat \pmod{leaf-nodes (subtrees ts)}
And the elems view contains all elements of the tree
fun elems :: 'a \ bplustree \Rightarrow 'a \ list \ \mathbf{where}
  elems (Leaf ks) = ks \mid
  elems (Node ts t) = concat (map (\lambda (sub, sep). elems sub @ [sep]) ts) @ elems t
abbreviation elems-list ts \equiv concat \ (map \ (\lambda \ (sub, sep). \ elems \ sub \ @ \ [sep]) \ ts)
thm leaves.simps
thm inorder.simps
thm elems.simps
value leaves (Node [(Leaf [], (0::nat)), (Node [(Leaf [], 1), (Leaf [], 10)] (Leaf []),
12), ((Leaf []), 30), ((Leaf []), 100)] (Leaf []))
```

5.3 Height and Balancedness

```
class height =
 fixes height :: 'a \Rightarrow nat
instantiation bplustree :: (type) height
begin
fun height-bplustree :: 'a bplustree <math>\Rightarrow nat where
  height (Leaf ks) = 0
 height\ (Node\ ts\ t) = Suc\ (Max\ (height\ `(set\ (subtrees\ ts@[t]))))
instance \langle proof \rangle
end
Balancedness is defined is close accordance to the definition by Ernst
fun bal:: 'a bplustree \Rightarrow bool where
  bal (Leaf ks) = True \mid
  bal\ (Node\ ts\ t) = (
    (\forall sub \in set (subtrees \ ts). \ height \ sub = height \ t) \land
    (\forall sub \in set (subtrees \ ts). \ bal \ sub) \land bal \ t
value height (Node [(Leaf \parallel, (0::nat)), (Node \lfloor (Leaf \parallel, 1), (Leaf \parallel, 10)] (Leaf \parallel),
12), ((Leaf []), 30), ((Leaf []), 100)] (Leaf []))
value bal (Node [(Leaf [], (0::nat)), (Node [(Leaf [], 1), (Leaf [], 10)] (Leaf []),
12), ((Leaf []), 30), ((Leaf []), 100)] (Leaf []))
5.4
        Order
The order of a B-tree is defined just as in the original paper by Bayer.
fun order:: nat \Rightarrow 'a \ bplustree \Rightarrow bool \ \mathbf{where}
  order k (Leaf ks) = ((length ks \ge k) \land (length ks \le 2*k)) |
  order\ k\ (Node\ ts\ t) = (
  (length \ ts \geq k) \land
  (length\ ts \leq 2*k) \land
  (\forall sub \in set (subtrees \ ts). \ order \ k \ sub) \land order \ k \ t
The special condition for the root is called root_order
fun root-order:: nat \Rightarrow 'a \ bplustree \Rightarrow bool \ \mathbf{where}
  root\text{-}order\ k\ (Leaf\ ks) = (length\ ks \le 2*k)\ |
  root\text{-}order\ k\ (Node\ ts\ t) = (
  (length \ ts > 0) \land
  (length\ ts \leq 2*k) \land
  (\forall s \in set (subtrees \ ts). \ order \ k \ s) \land order \ k \ t
```

5.5 Auxiliary Lemmas

```
lemma separators-split:
  set\ (separators\ (l@(a,b)\#r)) = set\ (separators\ l)\ \cup\ set\ (separators\ r)\ \cup\ \{b\}
  \langle proof \rangle
\mathbf{lemma}\ subtrees\text{-}split:
  set (subtrees (l@(a,b)\#r)) = set (subtrees l) \cup set (subtrees r) \cup \{a\}
  \langle proof \rangle
lemma finite-set-ins-swap:
  assumes finite A
  shows max\ a\ (Max\ (Set.insert\ b\ A)) = max\ b\ (Max\ (Set.insert\ a\ A))
  \langle proof \rangle
lemma finite-set-in-idem:
  assumes finite A
  shows max\ a\ (Max\ (Set.insert\ a\ A)) = Max\ (Set.insert\ a\ A)
  \langle proof \rangle
lemma height-Leaf: height t = 0 \longleftrightarrow (\exists ks. \ t = (Leaf \ ks))
  \langle proof \rangle
lemma height-bplustree-order:
  height (Node (ls@[a]) t) = height (Node (a\#ls) t)
  \langle proof \rangle
lemma height-bplustree-sub:
  height\ (Node\ ((sub,x)\#ls)\ t) = max\ (height\ (Node\ ls\ t))\ (Suc\ (height\ sub))
  \langle proof \rangle
lemma height-bplustree-last:
  height\ (Node\ ((sub,x)\#ts)\ t) = max\ (height\ (Node\ ts\ sub))\ (Suc\ (height\ t))
  \langle proof \rangle
lemma set-leaves-leaves: set (leaves t) = set-leaves t
  \langle proof \rangle
lemma set-nodes-nodes: set (inorder t) = set-nodes t
  \langle proof \rangle
lemma child-subset-leaves: p \in set \ t \Longrightarrow set-leaves (fst p) \subseteq set-leaves (Node t \ n)
  \langle proof \rangle
lemma child-subset: p \in set \ t \Longrightarrow set\text{-nodes} \ (fst \ p) \subseteq set\text{-nodes} \ (Node \ t \ n)
```

```
\langle proof \rangle
\mathbf{lemma}\ some\text{-}child\text{-}sub\text{:}
  assumes (sub, sep) \in set t
 shows sub \in set (subtrees t)
    and sep \in set (separators t)
  \langle proof \rangle
lemma bal-all-subtrees-equal: bal (Node ts t) \Longrightarrow (\forall s1 \in set (subtrees ts). \forall s2 \in
set (subtrees ts). height s1 = height s2)
  \langle proof \rangle
lemma fold-max-set: \forall x \in set \ t. \ x = f \Longrightarrow fold \ max \ t \ f = f
  \langle proof \rangle
lemma height-bal-tree: bal (Node ts t) \Longrightarrow height (Node ts t) = Suc (height t)
  \langle proof \rangle
\mathbf{lemma}\ \mathit{bal-split-last}:
  assumes bal (Node (ls@(sub, sep) \# rs) t)
  shows bal (Node (ls@rs) t)
    and height (Node (ls@(sub,sep)\#rs) t) = height (Node (ls@rs) t)
  \langle proof \rangle
lemma bal-split-right:
 assumes bal (Node (ls@rs) t)
 shows bal (Node rs t)
    and height (Node \ rs \ t) = height (Node \ (ls@rs) \ t)
  \langle proof \rangle
lemma bal-split-left:
  assumes bal (Node (ls@(a,b)#rs) t)
  shows bal (Node ls a)
    and height (Node ls a) = height (Node (ls@(a,b)\#rs) t)
  \langle proof \rangle
lemma bal-substitute: [bal (Node (ls@(a,b)#rs) t); height t = height c; bal c] \Longrightarrow
bal\ (Node\ (ls@(c,b)\#rs)\ t)
  \langle proof \rangle
lemma bal-substitute-subtree: [bal (Node (ls@(a,b)\#rs) t); height a = height c; bal)
```

```
c \implies bal \ (Node \ (ls@(c,b)\#rs) \ t)
  \langle proof \rangle
lemma bal-substitute-separator: bal (Node (ls@(a,b)#rs) t) \Longrightarrow bal (Node (ls@(a,c)#rs)
  \langle proof \rangle
lemma order-impl-root-order: [k > 0; order \ k \ t] \implies root\text{-}order \ k \ t
  \langle proof \rangle
lemma sorted-inorder-list-separators: sorted-less (inorder-list ts) \implies sorted-less
(separators ts)
  \langle proof \rangle
corollary sorted-inorder-separators: sorted-less (inorder (Node ts t)) \Longrightarrow sorted-less
(separators ts)
  \langle proof \rangle
\mathbf{lemma}\ sorted\text{-}in order\text{-}list\text{-}subtrees:
 sorted-less (inorder-list ts) \Longrightarrow \forall sub \in set (subtrees ts). sorted-less (inorder sub)
  \langle proof \rangle
corollary sorted-inorder-subtrees: sorted-less (inorder (Node ts t)) \Longrightarrow \forall sub \in
set (subtrees ts). sorted-less (inorder sub)
  \langle proof \rangle
\mathbf{lemma}\ sorted\text{-}inorder\text{-}list\text{-}induct\text{-}subtree:
  sorted\text{-}less\ (inorder\text{-}list\ (ls@(sub,sep)\#rs)) \Longrightarrow sorted\text{-}less\ (inorder\ sub)
  \langle proof \rangle
{\bf corollary}\ sorted-in order-induct-subtree:
  sorted-less\ (inorder\ (Node\ (ls@(sub,sep)\#rs)\ t)) \Longrightarrow sorted-less\ (inorder\ sub)
  \langle proof \rangle
\mathbf{lemma} \ sorted\text{-}inorder\text{-}induct\text{-}last\text{:}} \ sorted\text{-}less \ (inorder \ (Node \ ts \ t)) \Longrightarrow sorted\text{-}less
(inorder\ t)
  \langle proof \rangle
{\bf lemma}\ sorted-leaves-list-subtrees:
  sorted-less (leaves-list ts) \Longrightarrow \forall sub \in set (subtrees ts). sorted-less (leaves sub)
  \langle proof \rangle
```

```
corollary sorted-leaves-subtrees: sorted-less (leaves (Node ts t)) \Longrightarrow \forall sub \in set
(subtrees ts). sorted-less (leaves sub)
  \langle proof \rangle
\mathbf{lemma}\ sorted\text{-}leaves\text{-}list\text{-}induct\text{-}subtree:
  sorted-less (leaves-list (ls@(sub,sep)#rs)) \Longrightarrow sorted-less (leaves sub)
  \langle proof \rangle
corollary sorted-leaves-induct-subtree:
  sorted-less (leaves (Node (ls@(sub,sep)#rs) t)) \Longrightarrow sorted-less (leaves sub)
  \langle proof \rangle
lemma sorted-leaves-induct-last: sorted-less (leaves (Node ts t)) \implies sorted-less
(leaves t)
  \langle proof \rangle
Additional lemmas on the sortedness of the whole tree, which is correct
alignment of navigation structure and leave data
fun inbetween where
inbetween f l Nil t u = f l t u
inbetween \ f \ l \ ((sub, sep) \# xs) \ t \ u = (f \ l \ sub \ sep \land inbetween \ f \ sep \ xs \ t \ u)
thm fold-cong
lemma conq-inbetween[fundef-conq]:
\llbracket a=b; xs=ys; \bigwedge l' \ u' \ sub \ sep. \ (sub,sep) \in set \ ys \Longrightarrow f \ l' \ sub \ u'=g \ l' \ sub \ u'; \bigwedge l'
u'. f l' a u' = g l' b u'
  \implies inbetween f \mid xs \mid a \mid u = inbetween <math>g \mid ys \mid b \mid u
  \langle proof \rangle
fun aligned :: 'a ::linorder \Rightarrow - where
aligned l (Leaf ks) u = (l < u \land (\forall x \in set \ ks. \ l < x \land x \leq u))
aligned l (Node ts t) u = (inbetween aligned <math>l ts t u)
lemma sorted-less-merge: sorted-less (as@[a]) \Longrightarrow sorted-less (a\#bs) \Longrightarrow sorted-less
(as@a\#bs)
  \langle proof \rangle
thm aligned.simps
lemma leaves-cases: x \in set (leaves (Node ts t)) \Longrightarrow (\exists (sub, sep) \in set ts. x \in set
(leaves\ sub)) \lor x \in set\ (leaves\ t)
  \langle proof \rangle
lemma align-sub: aligned l (Node ts t) u \Longrightarrow (sub, sep) \in set ts \Longrightarrow \exists l' \in set
(separators\ ts) \cup \{l\}.\ aligned\ l'\ sub\ sep
  \langle proof \rangle
```

```
lemma align-last: aligned l (Node (ts@[(sub,sep)]) t) u \Longrightarrow aligned sep t u
  \langle proof \rangle
lemma align-last': aligned l (Node ts t) u \Longrightarrow \exists l' \in set (separators ts) \cup \{l\}.
aligned l' t u
  \langle proof \rangle
lemma aligned-sorted-inorder: aligned l t u \Longrightarrow sorted-less (l\#(inorder\ t)@[u])
\langle proof \rangle
lemma separators-in-inorder-list: set (separators ts) \subseteq set (inorder-list ts)
  \langle proof \rangle
lemma separators-in-inorder: set (separators ts) \subseteq set (inorder (Node ts t))
  \langle proof \rangle
lemma aligned-sorted-separators: aligned l (Node ts t) u \Longrightarrow sorted-less (l \# (separators
ts)@[u])
  \langle proof \rangle
lemma aligned-leaves-inbetween: aligned l t u \Longrightarrow \forall x \in set (leaves t). l < x \land x
\leq u
\langle proof \rangle
lemma aligned-leaves-list-inbetween: aligned l (Node ts t) u \Longrightarrow \forall x \in set (leaves-list
ts). l < x \land x \le u
  \langle proof \rangle
lemma aligned-split-left: aligned l (Node (ls@(sub,sep)\#rs) t) u \implies aligned l
(Node ls sub) sep
  \langle proof \rangle
lemma aligned-split-right: aligned l (Node (ls@(sub,sep)#rs) t) u \Longrightarrow aligned sep
(Node \ rs \ t) \ u
  \langle proof \rangle
lemma aligned-subst: aligned l (Node (ls@(sub', subl)#(sub, subsep)#rs) t) u \Longrightarrow
aligned\ subl\ subsub\ subsep \Longrightarrow
aligned l (Node (ls@(sub',subl)#(subsub,subsep)#rs) t) u
  \langle proof \rangle
lemma aligned-subst-emptyls: aligned l (Node ((sub,subsep)\#rs) t) u \Longrightarrow aligned
l \ subsub \ subsep \Longrightarrow
aligned l (Node ((subsub,subsep)#rs) t) u
  \langle proof \rangle
lemma aligned-subst-last: aligned l (Node (ts'@[(sub', sep')]) t) u \Longrightarrow aligned sep'
```

```
t'u \Longrightarrow
  aligned l (Node (ts'@[(sub', sep')])) t') u
  \langle proof \rangle
fun Laligned :: 'a ::linorder bplustree \Rightarrow - where
Laligned (Leaf ks) u = (\forall x \in set ks. x \leq u)
Laligned (Node ts t) u = (case \ ts \ of \ [] \Rightarrow (Laligned \ t \ u) \ []
 (sub, sep) \# ts' \Rightarrow ((Laligned \ sub \ sep) \land inbetween \ aligned \ sep \ ts' \ t \ u))
lemma Laligned-nonempty-Node: Laligned (Node ((sub,sep)#ts') t) u =
  ((Laligned\ sub\ sep) \land inbetween\ aligned\ sep\ ts'\ t\ u)
  \langle proof \rangle
lemma aligned-imp-Laligned: aligned l t u \Longrightarrow Laligned t u
lemma Laliqued-split-left: Laliqued (Node (ls@(sub,sep)#rs) t) u \Longrightarrow Laliqued
(Node ls sub) sep
  \langle proof \rangle
lemma Laligned-split-right: Laligned (Node (ls@(sub,sep)\#rs) t) u \Longrightarrow aligned\ sep
(Node \ rs \ t) \ u
  \langle proof \rangle
lemma Lalign-sub: Laligned (Node ((a,b)\#ts) t) u \Longrightarrow (sub,sep) \in set \ ts \Longrightarrow \exists \ l'
\in set (separators ts) \cup {b}. aligned l' sub sep
  \langle proof \rangle
lemma Lalign-last: Laligned (Node (ts@[(sub,sep)]) t) u \Longrightarrow aligned sep t u
  \langle proof \rangle
lemma Lalign-last': Laligned (Node ((a,b)\#ts) t) u \Longrightarrow \exists l' \in set \ (separators \ ts)
\cup {b}. aligned l' t u
  \langle proof \rangle
lemma Lalign-Llast: Laligned (Node ts t) u \Longrightarrow Laligned t u
  \langle proof \rangle
lemma Laligned-sorted-inorder: Laligned t \ u \Longrightarrow sorted-less ((inorder \ t)@[u])
\langle proof \rangle
ts)@[u])
  \langle proof \rangle
lemma Laligned-leaves-inbetween: Laligned t \ u \Longrightarrow \forall x \in set \ (leaves \ t). \ x \leq u
\langle proof \rangle
```

```
lemma Laligned-leaves-list-inbetween: Laligned (Node ts t) u \Longrightarrow \forall x \in set (leaves-list
ts). x \leq u
  \langle proof \rangle
lemma Laligned-subst-last: Laligned (Node (ts'@[(sub', sep')]) t) u \Longrightarrow aligned sep'
t'u \Longrightarrow
  Laligned (Node (ts'@[(sub', sep')])) t') u
  \langle proof \rangle
lemma Laligned-subst: Laligned (Node (ls@(sub', subl) \#(sub, subsep) \# rs) t) u \Longrightarrow
aligned \ subl \ subsub \ subsep \Longrightarrow
Laligned (Node (ls@(sub',subl)\#(subsub,subsep)\#rs) t) u
  \langle proof \rangle
lemma concat-leaf-nodes-leaves: (concat (map leaves (leaf-nodes t))) = leaves t
  \langle proof \rangle
lemma leaf-nodes-not-empty: leaf-nodes t \neq []
  \langle proof \rangle
end
theory BPlusTree-Split
imports BPlusTree
begin
```

5.6 Auxiliary functions

```
fun split-half:: - list \Rightarrow - list \times - list where split-half xs = (take ((length \ xs + 1) \ div \ 2) \ xs, \ drop ((length \ xs + 1) \ div \ 2) \ xs)

lemma split-half-conc: split-half xs = (ls, \ rs) = (xs = ls@rs \land length \ ls = (length \ xs + 1) \ div \ 2)
\langle proof \rangle

lemma drop-not-empty: xs \neq [] \implies drop (length \ xs \ div \ 2) \ xs \neq []
\langle proof \rangle

lemma take-not-empty: xs \neq [] \implies take ((length \ xs + 1) \ div \ 2) \ xs \neq []
\langle proof \rangle

lemma split-half-not-empty: length \ xs \geq 1 \implies \exists \ ls \ a \ rs. \ split-half xs = (ls@[a], rs)
\langle proof \rangle
```

5.7 The split function locale

Here, we abstract away the inner workings of the split function for B-tree operations.

lemma leaves-conc: leaves (Node (ls@rs) t) = leaves-list ls @ leaves-list rs @ leaves

```
\langle proof \rangle
locale split-tree =
    fixes split :: ('a \ bplustree \times 'a :: \{linorder, order-top\}) \ list \Rightarrow 'a \Rightarrow (('a \ bplustree \times 'a)) \ list \Rightarrow 'a \Rightarrow (('a \ bplustree \times 'a)) \ list \Rightarrow 'a \Rightarrow (('a \ bplustree \times 'a)) \ list \Rightarrow 'a \Rightarrow (('a \ bplustree \times 'a)) \ list \Rightarrow 'a \Rightarrow (('a \ bplustree \times 'a)) \ list \Rightarrow 'a \Rightarrow (('a \ bplustree \times 'a)) \ list \Rightarrow 'a \Rightarrow (('a \ bplustree \times 'a)) \ list \Rightarrow 'a \Rightarrow (('a \ bplustree \times 'a)) \ list \Rightarrow 'a \Rightarrow (('a \ bplustree \times 'a)) \ list \Rightarrow 'a \Rightarrow (('a \ bplustree \times 'a)) \ list \Rightarrow ('a \ bplustree \times 'a)) \ list \Rightarrow ('a \ bplustree \times 'a) \ list \Rightarrow ('a \ bplustree \times 'a)) \ list \Rightarrow ('a \ bplustree \times 'a) \ list \Rightarrow ('a \ bplustree \times 'a)) \ 
list \times ('a \ bplustree \times 'a) \ list)
      assumes split-req:
              \llbracket split \ xs \ p = (ls,rs) \rrbracket \implies xs = ls \ @ \ rs
              [split \ xs \ p = (ls@[(sub, sep)], rs); \ sorted-less \ (separators \ xs)] \implies sep < p
              \llbracket split \ xs \ p = (ls,(sub,sep)\#rs); \ sorted-less \ (separators \ xs) \rrbracket \implies p \leq sep
begin
      lemmas split\text{-}conc = split\text{-}req(1)
      lemmas split\text{-}sorted = split\text{-}req(2,3)
      lemma [termination-simp]:(ls, (sub, sep) \# rs) = split ts y \Longrightarrow
                          size\ sub < Suc\ (size-list\ (\lambda x.\ Suc\ (size\ (fst\ x)))\ ts\ +\ size\ l)
              \langle proof \rangle
      lemma leaves-split: split ts x = (ls,rs) \Longrightarrow leaves (Node ts t) = leaves-list ls @
leaves-list rs @ leaves t
             \langle proof \rangle
end
locale split-list =
      fixes split-list :: ('a::{linorder,order-top}) list \Rightarrow 'a \Rightarrow 'a \ list \times 'a \ list
      assumes split-list-req:
              \llbracket split\text{-}list \ ks \ p = (kls,krs) \rrbracket \implies ks = kls @ krs
              [split-list \ ks \ p = (kls@[sep],krs); \ sorted-less \ ks] \implies sep < p
            [split-list\ ks\ p=(kls,(sep)\#krs);\ sorted-less\ ks]] \Longrightarrow p \leq sep
locale \ split-full = split-tree: \ split-tree \ split + \ split-list \ split-list
            for split::
                   ('a\ bplustree \times 'a::\{linorder, order-top\})\ list \Rightarrow 'a
                            \Rightarrow ('a bplustree \times 'a) list \times ('a bplustree \times 'a) list
            and split-list::
                    'a::\{linorder, order-top\}\ list \Rightarrow 'a
                            \Rightarrow 'a list \times 'a list
```

6 Abstract split functions

6.1 Linear split

Finally we show that the split axioms are feasible by providing an example split function

Linear split is similar to well known functions, therefore a quick proof can be done.

```
fun linear-split where linear-split xs \ x = (take\ While\ (\lambda(\cdot,s).\ s< x)\ xs,\ drop\ While\ (\lambda(\cdot,s).\ s< x)\ xs) fun linear-split-list where linear-split-list xs\ x = (take\ While\ (\lambda s.\ s< x)\ xs,\ drop\ While\ (\lambda s.\ s< x)\ xs)
```

```
\begin{array}{c} \textbf{end} \\ \textbf{theory} \ BPlusTree\text{-}Set \\ \textbf{imports} \\ BPlusTree\text{-}Split \\ HOL-Data\text{-}Structures.Set\text{-}Specs \\ \textbf{begin} \end{array}
```

7 Set interpretation

```
lemma insert-list-length[simp]:
 assumes sorted-less ks
   and set (insert-list k ks) = set ks \cup \{k\}
   and sorted-less ks \Longrightarrow sorted-less (insert-list k ks)
 shows length (insert-list k ks) = length ks + (if k \in set ks then 0 else 1)
lemma delete-list-length[simp]:
 assumes sorted-less ks
   and set (delete\text{-}list\ k\ ks) = set\ ks - \{k\}
   and sorted-less ks \Longrightarrow sorted-less (delete-list k ks)
 shows length (delete-list k ks) = length ks – (if k \in set ks then 1 else 0)
\langle proof \rangle
lemma ins-list-length[simp]:
 assumes sorted-less ks
 shows length (ins-list k ks) = length ks + (if k \in set ks then 0 else 1)
  \langle proof \rangle
lemma del-list-length[simp]:
 assumes sorted-less ks
 shows length (del-list k ks) = length ks – (if k \in set ks then 1 else 0)
  \langle proof \rangle
```

```
locale \ split-set = split-tree: \ split-tree \ split
  for split::
    ('a\ bplustree \times 'a::\{linorder, order-top\})\ list \Rightarrow 'a
       \Rightarrow ('a bplustree \times 'a) list \times ('a bplustree \times 'a) list +
  fixes isin-list :: 'a \Rightarrow ('a::\{linorder, order-top\}) \ list \Rightarrow bool
  and insert-list :: 'a \Rightarrow ('a::\{linorder, order-top\})\ list \Rightarrow 'a\ list
  and delete-list :: 'a \Rightarrow ('a::\{linorder, order-top\})\ list \Rightarrow 'a\ list
  assumes insert-list-req:
    sorted-less ks \implies isin-list x \ ks = (x \in set \ ks)
    sorted-less ks \implies insert-list x \ ks = ins-list x \ ks
    sorted-less ks \implies delete-list x \ ks = del-list x \ ks
begin
lemmas split-req = split-tree.split-req
lemmas split\text{-}conc = split\text{-}tree.split\text{-}reg(1)
lemmas split\text{-}sorted = split\text{-}tree.split\text{-}reg(2,3)
lemma insert-list-length[simp]:
  assumes sorted-less ks
  shows length (insert-list k ks) = length ks + (if k \in set ks then 0 else 1)
  \langle proof \rangle
lemma set-insert-list[simp]:
  sorted-less ks \Longrightarrow set (insert-list k \ ks) = set \ ks \cup \{k\}
  \langle proof \rangle
lemma sorted-insert-list[simp]:
  sorted-less ks \Longrightarrow sorted-less (insert-list k ks)
  \langle proof \rangle
lemma delete-list-length[simp]:
  assumes sorted-less ks
  shows length (delete-list k ks) = length ks – (if k \in set ks then 1 else 0)
  \langle proof \rangle
\mathbf{lemma}\ set\text{-}delete\text{-}list[simp]:
  sorted-less ks \Longrightarrow set (delete-list k ks) = set ks - \{k\}
  \langle proof \rangle
\mathbf{lemma}\ sorted\text{-}delete\text{-}list[simp]:
  sorted-less ks \Longrightarrow sorted-less (delete-list k ks)
  \langle proof \rangle
definition empty-bplustree = (Leaf [])
```

7.1 Membership

```
fun isin:: 'a \ bplustree \Rightarrow 'a \Rightarrow bool \ \mathbf{where}
  isin (Leaf ks) x = (isin-list x ks) |
  isin (Node ts t) x = (
      case split ts x of (-,(sub,sep)\#rs) \Rightarrow (
            is in\ sub\ x
 \mid \stackrel{'}{(-,[])} \Rightarrow isin \ t \ x
Isin proof
thm isin-simps
lemma sorted-ConsD: sorted-less (y \# xs) \Longrightarrow x \le y \Longrightarrow x \notin set xs
  \langle proof \rangle
lemma sorted-snocD: sorted-less (xs @ [y]) \Longrightarrow y \le x \Longrightarrow x \notin set xs
lemmas isin-simps2 = sorted-lems sorted-ConsD sorted-snocD
lemma isin-sorted: sorted-less (xs@a\#ys) \Longrightarrow
  (x \in set (xs@a#ys)) = (if x < a then x \in set xs else x \in set (a#ys))
  \langle proof \rangle
lemma isin-sorted-split:
  assumes Laligned (Node ts t) u
   and sorted-less (leaves (Node ts t))
   and split ts x = (ls, rs)
  shows x \in set (leaves (Node ts t)) = (x \in set (leaves-list rs @ leaves t))
\langle proof \rangle
lemma isin-sorted-split-right:
  assumes split ts x = (ls, (sub, sep) \# rs)
   and sorted-less (leaves (Node ts t))
   and Laligned (Node ts t) u
  shows x \in set (leaves-list ((sub,sep)#rs) @ leaves t) = (x \in set (leaves sub))
\langle proof \rangle
theorem isin-set-inorder:
  assumes sorted-less (leaves t)
   and aligned l t u
 shows isin\ t\ x = (x \in set\ (leaves\ t))
```

```
\langle proof \rangle theorem isin-set-Linorder: assumes sorted-less (leaves t) and Laligned t u shows isin t x = (x \in set \ (leaves \ t)) \ \langle proof \rangle corollary isin-set-Linorder-top: assumes sorted-less (leaves t) and Laligned t top shows isin t x = (x \in set \ (leaves \ t)) \ \langle proof \rangle
```

7.2 Insertion

The insert function requires an auxiliary data structure and auxiliary invariant functions.

```
variant functions.

\mathbf{datatype} \ 'b \ up_i = T_i \ 'b \ bplustree \mid Up_i \ 'b \ bplustree \ 'b \ 'b \ bplustree
\mathbf{fun} \ order - up_i \ \mathbf{where}
order - up_i \ k \ (T_i \ sub) = order \ k \ sub \mid
order - up_i \ k \ (Up_i \ l \ a \ r) = (order \ k \ l \land order \ k \ r)
\mathbf{fun} \ root - order - up_i \ k \ (T_i \ sub) = root - order \ k \ sub \mid
root - order - up_i \ k \ (Up_i \ l \ a \ r) = (order \ k \ l \land order \ k \ r)
\mathbf{fun} \ height - up_i \ \mathbf{where}
```

```
\begin{array}{ll} \textit{height-up}_i \ (T_i \ t) = \textit{height} \ t \mid \\ \textit{height-up}_i \ (\textit{Up}_i \ l \ a \ r) = \textit{max} \ (\textit{height} \ l) \ (\textit{height} \ r) \end{array}
```

```
fun bal-up_i where bal-up_i (T_i t) = bal t | bal-up_i (Up_i l a r) = (height l = height r \land bal l \land bal r)
```

```
fun inorder - up_i where inorder - up_i (T_i t) = inorder t | inorder - up_i (Up_i l a r) = inorder l @ [a] @ inorder r
```

```
fun leaves-up_i where leaves-up_i (T_i t) = leaves t \mid leaves-up_i (Up_i l a r) = leaves l @ leaves r
```

```
fun aligned-up_i where
aligned-up_i l (T_i t) u = aligned l t u |
aligned-up_i l (Up_i lt a rt u = (aligned l lt a \land aligned a rt u)
```

```
fun Laligned-up_i where
  Laligned-up_i (T_i t) u = Laligned t u |
  Laligned-up<sub>i</sub> (Up<sub>i</sub> lt a rt) u = (Laligned lt a \wedge aligned a rt u)
The following function merges two nodes and returns separately split nodes
if an overflow occurs
fun node_i:: nat \Rightarrow ('a \ bplustree \times 'a) \ list \Rightarrow 'a \ bplustree \Rightarrow 'a \ up_i \ where
  node_i \ k \ ts \ t = (
  if length ts \leq 2*k then T_i (Node ts t)
    case split-half ts of (ls, rs) \Rightarrow
       case\ last\ ls\ of\ (sub, sep) \Rightarrow
         Up_i (Node (butlast ls) sub) sep (Node rs t)
fun Lnode_i:: nat \Rightarrow 'a \ list \Rightarrow 'a \ up_i \ \mathbf{where}
  Lnode_i \ k \ ts = (
  if length ts \leq 2*k then T_i (Leaf ts)
  else (
    case split-half ts of (ls, rs) \Rightarrow
       Up_i (Leaf ls) (last ls) (Leaf rs)
  )
fun ins:: nat \Rightarrow 'a \Rightarrow 'a \ bplustree \Rightarrow 'a \ up_i \ \mathbf{where}
  ins \ k \ x \ (Leaf \ ks) = Lnode_i \ k \ (insert-list \ x \ ks) \ |
  ins \ k \ x \ (Node \ ts \ t) = (
  case \ split \ ts \ x \ of
    (ls,(sub,sep)\#rs) \Rightarrow
         (case ins k x sub of
           Up_i \ l \ a \ r \Rightarrow
              node_i \ k \ (ls@(l,a)\#(r,sep)\#rs) \ t \ |
            T_i \ a \Rightarrow
              T_i \ (Node \ (ls@(a,sep)\#rs) \ t)) \mid
    (ls, []) \Rightarrow
       (case ins k x t of
          Up_i \ l \ a \ r \Rightarrow
            node_i \ k \ (ls@[(l,a)]) \ r \ |
          T_i \ a \Rightarrow
            T_i (Node ls a)
)
```

fun $tree_i$::'a $up_i \Rightarrow$ 'a bplustree **where**

 $tree_i (T_i sub) = sub \mid$

```
tree_i (Up_i \ l \ a \ r) = (Node \ [(l,a)] \ r)
fun insert::nat \Rightarrow 'a \Rightarrow 'a \ bplustree \Rightarrow 'a \ bplustree \ \mathbf{where}
  insert \ k \ x \ t = tree_i \ (ins \ k \ x \ t)
7.3
         Proofs of functional correctness
lemma nodei-ti-simp: node_i \ k \ ts \ t = T_i \ x \Longrightarrow x = Node \ ts \ t
  \langle proof \rangle
lemma Lnodei-ti-simp: Lnode_i \ k \ ts = T_i \ x \Longrightarrow x = Leaf \ ts
  \langle proof \rangle
lemma split-set:
  assumes split to z = (ls,(a,b)\#rs)
  shows (a,b) \in set ts
    and (x,y) \in set \ ls \Longrightarrow (x,y) \in set \ ts
    and (x,y) \in set \ rs \Longrightarrow (x,y) \in set \ ts
    and set ls \cup set \ rs \cup \{(a,b)\} = set \ ts
    and \exists x \in set \ ts. \ b \in Basic-BNFs.snds \ x
  \langle proof \rangle
lemma split-length:
  split \ ts \ x = (ls, \ rs) \Longrightarrow length \ ls + length \ rs = length \ ts
  \langle proof \rangle
lemma node_i-cases: length \ xs \le k \lor (\exists \ ls \ sub \ sep \ rs. \ split-half \ xs = (ls@[(sub,sep)],rs))
\langle proof \rangle
lemma Lnode<sub>i</sub>-cases: length xs \leq k \vee (\exists ls \ sep \ rs. \ split-half \ xs = (ls@[sep],rs))
\langle proof \rangle
lemma root-order-tree<sub>i</sub>: root-order-up<sub>i</sub> (Suc k) t = root-order (Suc k) (tree<sub>i</sub> t)
  \langle proof \rangle
lemma length-take-left: length (take ((length ts + 1) div 2) ts) = (length ts + 1)
div 2
  \langle proof \rangle
lemma node_i-root-order:
  assumes length ts > 0
    and length ts \le 4*k+1
    and \forall x \in set (subtrees \ ts). \ order \ k \ x
    \mathbf{and}\ \mathit{order}\ k\ t
  shows root-order-up, k (node, k ts t)
```

```
\langle proof \rangle
lemma node_i-order-helper:
  assumes length ts \ge k
    and length ts \le 4*k+1
    and \forall x \in set (subtrees \ ts). \ order \ k \ x
    and order k t
  shows case (node<sub>i</sub> k ts t) of T_i t \Rightarrow order k t | - \Rightarrow True
\langle proof \rangle
lemma node_i-order:
  assumes length ts \ge k
    and length ts \le 4*k+1
    and \forall x \in set \ (subtrees \ ts). \ order \ k \ x
    and order \ k \ t
  shows order-up_i \ k \ (node_i \ k \ ts \ t)
  \langle proof \rangle
lemma Lnode_i-root-order:
  assumes length ts > 0
    and length ts \leq 4*k
  shows root-order-up_i k (Lnode_i k ts)
\langle proof \rangle
lemma Lnode_i-order-helper:
  assumes length ts \ge k
    and length ts \le 4*k+1
  shows case (Lnode<sub>i</sub> k ts) of T_i t \Rightarrow order k t | - \Rightarrow True
\langle proof \rangle
lemma Lnode_i-order:
  assumes length ts \ge k
    and length ts < 4*k
  shows order-up_i \ k \ (Lnode_i \ k \ ts)
  \langle proof \rangle
lemma ins-order:
  k > 0 \Longrightarrow sorted-less (leaves t) \Longrightarrow order k t \Longrightarrow order-up_i k (ins k x t)
\langle proof \rangle
lemma ins-root-order:
  assumes k > 0 sorted-less (leaves t) root-order k t
  shows root-order-up_i k (ins k x t)
```

```
\langle proof \rangle
lemma height-list-split: height-up; (Up_i (Node \ ls \ a) \ b (Node \ rs \ t)) = height (Node \ ls \ a)
(ls@(a,b)#rs) t)
  \langle proof \rangle
lemma node_i-height: height-up_i (node_i \ k \ ts \ t) = height (Node \ ts \ t)
\langle proof \rangle
lemma Lnode_i-height: height-up_i (Lnode_i k xs) = height (Leaf xs)
  \langle proof \rangle
lemma bal-up_i-tree: bal-up_i t = bal (tree<sub>i</sub> t)
  \langle proof \rangle
lemma bal-list-split: bal (Node (ls@(a,b)\#rs) t) \Longrightarrow bal-up<sub>i</sub> (Up<sub>i</sub> (Node ls a) b
(Node \ rs \ t))
  \langle proof \rangle
lemma node_i-bal:
  assumes bal (Node ts t)
  shows bal-up_i (node_i \ k \ ts \ t)
  \langle proof \rangle
lemma node_i-aligned:
  assumes aligned l (Node ts t) u
  shows aligned-up_i l (node_i k ts t) u
  \langle proof \rangle
lemma node_i-Laligned:
  assumes Laligned (Node ts t) u
  shows Laligned-up_i (node_i \ k \ ts \ t) \ u
  \langle proof \rangle
lemma length-right-side: length xs > 1 \implies length (drop ((length <math>xs + 1) div 2)
xs) > 0
  \langle proof \rangle
lemma Lnode_i-aligned:
  assumes aligned\ l\ (Leaf\ ks)\ u
    and sorted-less ks
    and k > \theta
  shows aligned-up<sub>i</sub> l (Lnode<sub>i</sub> k ks) u
  \langle proof \rangle
```

```
lemma height-up<sub>i</sub>-merge: height-up<sub>i</sub> (Up<sub>i</sub> l a r) = height t \Longrightarrow height (Node
(ls@(t,x)\#rs) tt) = height (Node (ls@(l,a)\#(r,x)\#rs) tt)
  \langle proof \rangle
lemma ins-height: height-up<sub>i</sub> (ins k x t) = height t
\langle proof \rangle
lemma ins-bal: bal t \Longrightarrow bal-up<sub>i</sub> (ins k x t)
\langle proof \rangle
lemma node_i-leaves: leaves-up_i (node_i k ts t) = leaves (Node ts t)
\langle proof \rangle
corollary node_i-leaves-simps:
  node_i \ k \ ts \ t = T_i \ t' \Longrightarrow leaves \ t' = leaves \ (Node \ ts \ t)
  node_i \ k \ ts \ t = Up_i \ l \ a \ r \Longrightarrow leaves \ l @ leaves \ r = leaves \ (Node \ ts \ t)
   \langle proof \rangle
lemma Lnode_i-leaves: leaves-up_i (Lnode_i \ k \ xs) = leaves (Leaf \ xs)
\langle proof \rangle
corollary Lnode_i-leaves-simps:
  Lnode_i \ k \ xs = T_i \ t \Longrightarrow leaves \ t = leaves \ (Leaf \ xs)
  Lnode_i \ k \ xs = Up_i \ l \ a \ r \Longrightarrow leaves \ l @ leaves \ r = leaves \ (Leaf \ xs)
   \langle proof \rangle
lemma ins-list-split:
  assumes Laligned (Node ts t) u
    and sorted-less (leaves (Node ts t))
    and split ts x = (ls, rs)
  shows ins-list x (leaves (Node ts t)) = leaves-list ls @ ins-list x (leaves-list rs @
leaves t)
\langle proof \rangle
lemma ins-list-split-right:
  assumes split ts x = (ls, (sub, sep) \# rs)
    and sorted-less (leaves (Node ts t))
    and Laligned (Node ts t) u
  shows ins-list x (leaves-list ((sub, sep) \# rs) @ leaves t) = ins-list x (leaves sub)
@ leaves-list rs @ leaves t
```

```
lemma ins-list-idem-eq-isin: sorted-less xs \Longrightarrow x \in set \ xs \longleftrightarrow (ins-list \ x \ xs = xs)
  \langle proof \rangle
lemma ins-list-contains-idem: [sorted-less\ xs;\ x\in set\ xs] \Longrightarrow (ins-list\ x\ xs=xs)
  \langle proof \rangle
lemma aligned-insert-list: sorted-less ks \Longrightarrow l < x \Longrightarrow x \le u \Longrightarrow aligned l (Leaf
ks) u \Longrightarrow aligned\ l\ (Leaf\ (insert-list\ x\ ks))\ u
  \langle proof \rangle
lemma align-subst-two: aligned l (Node (ts@[(sub,sep)]) t) u \Longrightarrow aligned sep lt a
\implies aligned a rt u \implies aligned l (Node (ts@[(sub,sep),(lt,a)]) rt) u
  \langle proof \rangle
lemma align-subst-three: aligned l (Node (ls@(subl,sepl)#(subr,sepr)#rs) t) u \Longrightarrow
aligned\ sepl\ lt\ a \Longrightarrow aligned\ a\ rt\ sepr \Longrightarrow aligned\ l\ (Node\ (ls@(subl,sepl)\#(lt,a)\#(rt,sepr)\#rs)
t) u
  \langle proof \rangle
declare node_i.simps [simp del]
declare node_i-leaves [simp \ add]
lemma ins-inorder:
  assumes k > 0
    and aligned l t u
    and sorted-less (leaves t)
    and root-order k t
    and l < x \ x \le u
 shows (leaves-up_i (ins k x t)) = ins-list x (leaves t) \land aligned-up_i l (ins k x t) u
  \langle proof \rangle
declare node_i.simps [simp add]
declare node_i-leaves [simp\ del]
lemma Laligned-insert-list: sorted-less ks \Longrightarrow x \le u \Longrightarrow Laligned (Leaf ks) u \Longrightarrow
Laligned (Leaf (insert-list \ x \ ks)) \ u
  \langle proof \rangle
lemma Lalign-subst-two: Laligned (Node (ts@[(sub,sep)]) t) u \Longrightarrow aligned sep \ lt \ a
\implies aligned \ a \ rt \ u \implies Laligned \ (Node \ (ts@[(sub,sep),(lt,a)]) \ rt) \ u
  \langle proof \rangle
lemma Lalign-subst-three: Laligned (Node (ls@(subl,sepl)\#(subr,sepr)\#rs) t) u
\implies aligned sepl lt a \implies aligned a rt sepr \implies Laligned (Node (ls@(subl,sepl)#(lt,a)#(rt,sepr)#rs)
```

 $\langle proof \rangle$

```
t) u
  \langle proof \rangle
lemma Lnode_i-Laligned:
  assumes Laligned (Leaf ks) u
    and sorted-less ks
    and k > \theta
  shows Laligned-up_i (Lnode_i \ k \ ks) \ u
  \langle proof \rangle
declare node_i.simps [simp del]
declare node_i-leaves [simp \ add]
{f lemma}\ ins	ext{-}Linorder:
  assumes k > 0
    and Laligned t u
    and sorted-less (leaves t)
    and root-order k t
    and x \leq u
  shows (leaves-up_i \ (ins \ k \ x \ t)) = ins-list \ x \ (leaves \ t) \land Laligned-up_i \ (ins \ k \ x \ t) \ u
  \langle proof \rangle
declare node_i.simps [simp add]
declare node_i-leaves [simp \ del]
{f thm}\ ins.induct
{f thm} bplustree.induct
lemma tree_i-bal: bal-up_i u \Longrightarrow bal (tree_i \ u)
  \langle proof \rangle
lemma tree_i-order: [k > 0; root-order-up_i \ k \ u] \implies root-order k \ (tree_i \ u)
  \langle proof \rangle
lemma tree_i-inorder: inorder-up_i u = inorder (tree_i \ u)
  \langle proof \rangle
lemma tree_i-leaves: leaves-up_i u = leaves (tree_i u)
  \langle proof \rangle
lemma tree_i-aligned: aligned-up_i l a u \Longrightarrow aligned l (tree_i a) u
lemma tree_i-Laligned: Laligned-up, a u \Longrightarrow Laligned (tree_i a) u
  \langle proof \rangle
```

```
lemma insert-bal: bal t \Longrightarrow bal (insert k \times t)
  \langle proof \rangle
lemma insert-order: [k > 0; sorted-less (leaves t); root-order k t] \implies root-order
k (insert k x t)
  \langle proof \rangle
lemma insert-inorder:
  assumes k > 0 root-order k t sorted-less (leaves t) aligned l t u l < x x \le u
 shows leaves (insert k x t) = ins-list x (leaves t)
   and aligned l (insert k \times t) u
  \langle proof \rangle
lemma insert-Linorder:
 assumes k > 0 root-order k t sorted-less (leaves t) Laligned t u x < u
 shows leaves (insert k x t) = ins-list x (leaves t)
   and Laligned (insert k x t) u
  \langle proof \rangle
corollary insert-Linorder-top:
 assumes k > 0 root-order k t sorted-less (leaves t) Laligned t top
 shows leaves (insert k x t) = ins-list x (leaves t)
   and Laligned (insert k x t) top
  \langle proof \rangle
```

7.4 Deletion

The following deletion method is inspired by Bauer (70) and Fielding (??). Rather than stealing only a single node from the neighbour, the neighbour is fully merged with the potentially underflowing node. If the resulting node is still larger than allowed, the merged node is split again, using the rules known from insertion splits. If the resulting node has admissable size, it is simply kept in the tree.

```
fun rebalance-middle-tree where rebalance-middle-tree k ls (Leaf ms) sep rs (Leaf ts) = ( if length ms \ge k \land length ts \ge k then Node (ls@(Leaf ms, sep)#rs) (Leaf ts) else ( case rs of [] \Rightarrow ( case Lnode; k (ms@ts) of T_i u \Rightarrow Node ls u | Up; l a r \Rightarrow Node (ls@[(l,a)]) r) | (Leaf rrs, rsep)#rs \Rightarrow ( case Lnode; k (ms@ts) of T_i u \Rightarrow
```

```
Node (ls@(u,rsep)\#rs) (Leaf ts)
      Up_i \ l \ a \ r \Rightarrow
        Node (ls@(l,a)\#(r,rsep)\#rs) (Leaf ts))
))|
  rebalance-middle-tree k ls (Node mts mt) sep rs (Node tts tt) = (
  if length mts \geq k \land length \ tts \geq k \ then
    Node (ls@(Node\ mts\ mt, sep) \# rs) (Node tts\ tt)
    case rs of [] \Rightarrow (
      case node_i \ k \ (mts@(mt,sep)\#tts) \ tt \ of
       T_i \ u \Rightarrow
        Node ls u \mid
       Up_i \ l \ a \ r \Rightarrow
        Node (ls@[(l,a)]) r)
    (Node\ rts\ rt, rsep) \# rs \Rightarrow (
      case node_i k (mts@(mt,sep)\#rts) rt of
      T_i \ u \Rightarrow
        Node \ (ls@(u,rsep)\#rs) \ (Node \ tts \ tt) \ |
      Up_i \ l \ a \ r \Rightarrow
        Node (ls@(l,a)\#(r,rsep)\#rs) (Node tts tt))
))
```

All trees are merged with the right neighbour on underflow. Obviously for the last tree this would not work since it has no right neighbour. Therefore this tree, as the only exception, is merged with the left neighbour. However since we it does not make a difference, we treat the situation as if the second to last tree underflowed.

```
fun rebalance-last-tree where rebalance-last-tree k ts t = ( case last ts of (sub, sep) \Rightarrow rebalance-middle-tree k (butlast ts) sub sep [] t
```

Rather than deleting the minimal key from the right subtree, we remove the maximal key of the left subtree. This is due to the fact that the last tree can easily be accessed and the left neighbour is way easier to access than the right neighbour, it resides in the same pair as the separating element to be removed.

```
fun del where
del \ k \ x \ (Leaf \ xs) = (Leaf \ (delete\text{-}list \ x \ xs)) \mid \\ del \ k \ x \ (Node \ ts \ t) = (\\ case \ split \ ts \ x \ of \\ (ls,[]) \Rightarrow \\ rebalance\text{-}last\text{-}tree \ k \ ls \ (del \ k \ x \ t) \\ \mid (ls,(sub,sep)\#rs) \Rightarrow (\\ rebalance\text{-}middle\text{-}tree \ k \ ls \ (del \ k \ x \ sub) \ sep \ rs \ t \\ )
```

```
fun reduce-root where
  reduce\text{-}root\ (Leaf\ xs) = (Leaf\ xs)\ |
  reduce\text{-}root\ (Node\ ts\ t) = (case\ ts\ of\ 
  [] \Rightarrow t \mid
  \rightarrow (Node ts t)
fun delete where delete k x t = reduce\text{-root} (del k x t)
An invariant for intermediate states at deletion. In particular we allow for
an underflow to 0 subtrees.
fun almost-order where
  almost-order k (Leaf xs) = (length xs \le 2*k) |
  almost-order k (Node ts t) = (
  (length\ ts \leq 2*k) \land
  (\forall s \in set \ (subtrees \ ts). \ order \ k \ s) \land
   order\ k\ t
Deletion proofs
thm list.simps
\mathbf{lemma}\ rebalance\text{-}middle\text{-}tree\text{-}height:
  assumes height t = height sub
    and case rs of (rsub, rsep) \# list \Rightarrow height \ rsub = height \ t \mid [] \Rightarrow True
 shows height (rebalance-middle-tree k ls sub sep rs t) = height (Node (ls@(sub,sep)#rs)
\langle proof \rangle
lemma rebalance-last-tree-height:
  assumes height\ t=height\ sub
    and ts = list@[(sub, sep)]
  shows height (rebalance-last-tree k ts t) = height (Node ts t)
  \langle proof \rangle
lemma bal-sub-height: bal (Node (ls@a#rs) t) \Longrightarrow (case rs of [] \Rightarrow True \mid (sub, sep)#-
\Rightarrow height sub = height t)
  \langle proof \rangle
lemma del-height: [k > 0; root\text{-}order \ k \ t; bal \ t] \implies height \ (del \ k \ x \ t) = height \ t
\langle proof \rangle
```

```
\mathbf{lemma}\ rebalance\text{-}middle\text{-}tree\text{-}inorder:
  assumes height\ t = height\ sub
    and case rs of (rsub, rsep) \# list \Rightarrow height rsub = height t | [] \Rightarrow True
 shows leaves (rebalance-middle-tree k ls sub sep rs t) = leaves (Node (ls@(sub,sep)#rs)
t)
  \langle proof \rangle
\mathbf{lemma}\ rebalance\text{-}last\text{-}tree\text{-}inorder:
  assumes height\ t = height\ sub
    and ts = list@[(sub, sep)]
 shows leaves (rebalance-last-tree k ts t) = leaves (Node ts t)
  \langle proof \rangle
lemma butlast-inorder-app-id: xs = xs' \otimes [(sub, sep)] \Longrightarrow inorder-list xs' \otimes inorder
sub @ [sep] = inorder-list xs
  \langle proof \rangle
lemma height-bal-subtrees-merge: [height (Node as a) = height (Node bs b); bal
(Node as a); bal (Node bs b)
 \implies \forall x \in set \ (subtrees \ as) \cup \{a\}. \ height \ x = height \ b
  \langle proof \rangle
lemma bal-list-merge:
  assumes bal-up_i (Up_i (Node as a) x (Node bs b))
 shows bal (Node (as@(a,x)#bs) b)
\langle proof \rangle
lemma node_i-bal-up_i:
  assumes bal-up_i (node_i \ k \ ts \ t)
 shows bal (Node ts t)
  \langle proof \rangle
lemma node_i-bal-simp: bal-up_i (node_i \ k \ ts \ t) = bal (Node \ ts \ t)
  \langle proof \rangle
\mathbf{lemma}\ rebalance\text{-}middle\text{-}tree\text{-}bal:
  assumes bal (Node (ls@(sub, sep) \# rs) t)
  shows bal (rebalance-middle-tree k ls sub sep rs t)
\langle proof \rangle
lemma rebalance-last-tree-bal: [bal (Node \ ts \ t); \ ts \neq []] \Longrightarrow bal (rebalance-last-tree)
k \ ts \ t)
  \langle proof \rangle
lemma Leaf-merge-aligned: aligned l (Leaf ms) m \Longrightarrow aligned m (Leaf rs) r \Longrightarrow
```

```
aligned l (Leaf (ms@rs)) r
  \langle proof \rangle
lemma Node-merge-aligned:
    inbetween aligned l mts mt sep \Longrightarrow
    inbetween \ aligned \ sep \ tts \ tt \ u \Longrightarrow
    inbetween \ aligned \ l \ (mts @ (mt, sep) \# tts) \ tt \ u
  \langle proof \rangle
lemma aligned-subst-last-merge: aligned l (Node (ts'@[(sub', sep'), (sub, sep)]) t) <math>u
\implies aligned sep' t' u \implies
  aligned l (Node (ts'@[(sub', sep')]) t') u
  \langle proof \rangle
lemma aligned-subst-last-merge-two: aligned l (Node (ts@[(sub',sep'),(sub,sep)]) t)
u \Longrightarrow aligned\ sep'\ lt\ a \Longrightarrow aligned\ a\ rt\ u \Longrightarrow aligned\ l\ (Node\ (ts@[(sub',sep'),(lt,a)])
rt) u
  \langle proof \rangle
lemma aligned-subst-merge: aligned l (Node (ls@(lsub, lsep)\#(sub, sep)\#(rsub, rsep)\#rs)
t) \ u \Longrightarrow aligned \ lsep \ sub' \ rsep \Longrightarrow
  aligned l (Node (ls@(lsub, lsep)\#(sub', rsep)\#rs) t) u
  \langle proof \rangle
lemma aliqned-subst-merge-two: aliqned l (Node (ls@(lsub, lsep) #(sub, sep) #(rsub, rsep) #rs)
t) \ u \Longrightarrow aligned \ lsep \ sub' \ a \Longrightarrow
 aligned\ a\ rsub'\ rsep \Longrightarrow aligned\ l\ (Node\ (ls@(lsub, lsep)\#(sub', a)\#(rsub', rsep)\#rs)
t) u
  \langle proof \rangle
lemma rebalance-middle-tree-aligned:
  assumes aligned l (Node (ls@(sub, sep) \# rs) t) u
    and height t = height sub
    and sorted-less (leaves (Node (ls@(sub, sep) \# rs) t))
    and k > \theta
    and case rs of (rsub, rsep) \# list \Rightarrow height rsub = height t \mid [] \Rightarrow True
  shows aligned l (rebalance-middle-tree k ls sub sep rs t) u
\langle proof \rangle
lemma Node-merge-Laligned:
    Laligned (Node mts mt) sep \Longrightarrow
    inbetween \ aligned \ sep \ tts \ tt \ u \Longrightarrow
    Laligned (Node (mts @ (mt, sep) \# tts) tt) u
  \langle proof \rangle
lemma Laligned-subst-last-merge: Laligned (Node (ts'@[(sub', sep'), (sub, sep)]) t)
u \Longrightarrow aligned sep' t' u \Longrightarrow
  Laligned (Node (ts'@[(sub', sep')])) t') u
  \langle proof \rangle
```

```
lemma Laligned-subst-last-merge-two: Laligned (Node (ts@[(sub',sep'),(sub,sep)])
t) u \Longrightarrow aligned \ sep' \ lt \ a \Longrightarrow aligned \ a \ rt \ u \Longrightarrow Laligned \ (Node \ (ts@[(sub',sep'),(lt,a)])
rt) u
  \langle proof \rangle
lemma Laliqued-subst-merge: Laliqued (Node (ls@(lsub, lsep) #(sub, sep) #(rsub, rsep) #rs)
t) \ u \Longrightarrow aligned \ lsep \ sub' \ rsep \Longrightarrow
  Laligned (Node (ls@(lsub, lsep)#(sub', rsep)#rs) t) u
  \langle proof \rangle
lemma Laligned-subst-merge-two: Laligned (Node (ls@(lsub, lsep) \#(sub, sep) \#(rsub, rsep) \#rs)
t) \ u \Longrightarrow aligned \ lsep \ sub' \ a \Longrightarrow
 aligned\ a\ rsub'\ rsep \Longrightarrow Laligned\ (Node\ (ls@(lsub,\ lsep)\#(sub',a)\#(rsub',\ rsep)\#rs)
t) u
  \langle proof \rangle
lemma xs-front: xs @ [(a,b)] = (x,y) \# xs' \Longrightarrow xs @ [(a,b),(c,d)] = (z,zz) \# xs'' \Longrightarrow
(x,y) = (z,zz)
  \langle proof \rangle
lemma rebalance-middle-tree-Laligned:
  assumes Laligned (Node (ls@(sub, sep) \# rs) t) u
   and height t = height sub
   and sorted-less (leaves (Node (ls@(sub, sep) \# rs) t))
   and k > \theta
   and case rs of (rsub, rsep) \# list \Rightarrow height rsub = height t \mid [] \Rightarrow True
 shows Laligned (rebalance-middle-tree k ls sub sep rs t) u
\langle proof \rangle
{\bf lemma}\ rebalance-last-tree-aligned:
  assumes aligned l (Node (ls@[(sub, sep)]) t) u
   and height t = height sub
   and sorted-less (leaves (Node (ls@[(sub,sep)]) t))
   and k > \theta
  shows aligned l (rebalance-last-tree k (ls@[(sub,sep)]) t) u
  \langle proof \rangle
{\bf lemma} rebalance-last-tree-Laligned:
  assumes Laligned (Node (ls@[(sub,sep)]) t) u
   and height t = height sub
   and sorted-less (leaves (Node (ls@[(sub,sep)]) t))
   and k > \theta
  shows Laligned (rebalance-last-tree k (ls@[(sub,sep)]) t) u
  \langle proof \rangle
lemma del-bal:
  assumes k > 0
   and root-order k t
```

```
and bal t
  shows bal (del k x t)
  \langle proof \rangle
{f lemma} rebalance-middle-tree-order:
  assumes almost-order k sub
   and \forall s \in set \ (subtrees \ (ls@rs)). \ order \ k \ s \ order \ k \ t
   and case rs of (rsub, rsep) \# list \Rightarrow height \ rsub = height \ t \mid [] \Rightarrow True
   and length (ls@(sub, sep) \# rs) \le 2*k
   and height sub = height t
 \mathbf{shows}\ almost\text{-}order\ k\ (rebalance\text{-}middle\text{-}tree\ k\ ls\ sub\ sep\ rs\ t)
\langle proof \rangle
lemma rebalance-middle-tree-last-order:
  assumes almost-order k t
   and \forall s \in set (subtrees (ls@(sub, sep) \# rs)). order k s
   and rs = []
   and length (ls@(sub, sep) # rs) \le 2*k
   and height sub = height t
  shows almost-order k (rebalance-middle-tree k ls sub sep rs t)
\langle proof \rangle
\mathbf{lemma}\ rebalance\text{-}last\text{-}tree\text{-}order:
  assumes ts = ls@[(sub, sep)]
   and \forall s \in set \ (subtrees \ (ts)). \ order \ k \ s \ almost-order \ k \ t
   and length ts \leq 2*k
   and height sub = height t
  shows almost-order k (rebalance-last-tree k ts t)
  \langle proof \rangle
lemma del-order:
 assumes k > 0
   and root-order k t
   and bal t
   and sorted (leaves t)
  shows almost-order k (del k \times t)
  \langle proof \rangle
thm del-list-sorted
lemma del-list-split:
 assumes Laligned (Node ts t) u
   and sorted-less (leaves (Node ts t))
```

```
and split ts x = (ls, rs)
      shows del-list x (leaves (Node ts t)) = leaves-list ls @ del-list x (leaves-list rs @ del-list 
leaves t)
\langle proof \rangle
corollary del-list-split-aligned:
      assumes aligned l (Node ts t) u
             and sorted-less (leaves (Node ts t))
             and split ts x = (ls, rs)
      shows del-list x (leaves (Node ts t)) = leaves-list ls @ del-list x (leaves-list rs @ del-list 
leaves t)
       \langle proof \rangle
lemma del-list-split-right:
      assumes Laligned (Node ts t) u
             and sorted-less (leaves (Node ts t))
             and split ts x = (ls, (sub, sep) \# rs)
     shows del-list x (leaves-list ((sub, sep) \# rs) @ leaves t) = del-list x (leaves sub) @
leaves-list rs @ leaves t
\langle proof \rangle
{\bf corollary}\ \textit{del-list-split-right-aligned}:
      assumes aligned l (Node ts t) u
             and sorted-less (leaves (Node ts t))
             and split ts x = (ls, (sub, sep) \# rs)
     shows del-list x (leaves-list ((sub,sep)\#rs) @ leaves t) = del-list x (leaves sub) @
leaves-list rs @ leaves t
       \langle proof \rangle
thm del-list-idem
lemma del-inorder:
      assumes k > 0
             and root-order k t
             and bal t
             and sorted-less (leaves t)
             and aligned l t u
             and l < x \ x \le u
      shows leaves (del\ k\ x\ t) = del\text{-list}\ x\ (leaves\ t) \land aligned\ l\ (del\ k\ x\ t)\ u
       \langle proof \rangle
lemma del-Linorder:
      assumes k > 0
             and root-order k t
             and bal t
             and sorted-less (leaves t)
             and Laligned t u
```

```
and x \leq u
 shows leaves (del\ k\ x\ t) = del\text{-list}\ x\ (leaves\ t) \land Laligned\ (del\ k\ x\ t)\ u
  \langle proof \rangle
lemma reduce-root-order: [k > 0; almost-order \ k \ t] \implies root-order \ k \ (reduce-root)
  \langle proof \rangle
lemma reduce-root-bal: bal (reduce-root t) = bal t
  \langle proof \rangle
lemma reduce-root-inorder: leaves (reduce-root t) = leaves t
  \langle proof \rangle
lemma reduce-root-Laligned: Laligned (reduce-root t) u = Laligned t u
lemma delete-order: [k > 0; bal t; root-order k t; sorted-less (leaves t)] <math>\Longrightarrow
   root-order k (delete k \times t)
  \langle proof \rangle
lemma delete-bal: [k > 0; bal t; root-order k t] \implies bal (delete k x t)
lemma delete-Linorder:
  assumes k > 0 root-order k t sorted-less (leaves t) Laligned t u bal t x \le u
  shows leaves (delete \ k \ x \ t) = del-list \ x \ (leaves \ t)
   and Laligned (delete k x t) u
  \langle proof \rangle
corollary delete-Linorder-top:
  assumes k > 0 root-order k t sorted-less (leaves t) Laligned t top bal t
  shows leaves (delete \ k \ x \ t) = del-list \ x \ (leaves \ t)
   and Laligned (delete k \times t) top
  \langle proof \rangle
        Set specification by inorder
fun invar-leaves where invar-leaves k t = 0
  bal\ t\ \land
  root\text{-}order\ k\ t\ \land
  Laligned t top
interpretation S-ordered: Set-by-Ordered where
  empty = empty-bplustree and
  insert = insert (Suc k) and
```

```
delete = delete (Suc k) and
  isin = isin and
  inorder = leaves and
  inv = invar-leaves (Suc k)
\langle proof \rangle
declare node_i.simps[simp\ del]
\mathbf{end}
lemma sorted-ConsD: sorted-less (y \# xs) \Longrightarrow x \le y \Longrightarrow x \notin set xs
  \langle proof \rangle
lemma sorted-snocD: sorted-less (xs @ [y]) \Longrightarrow y \le x \Longrightarrow x \notin set xs
  \langle proof \rangle
lemmas isin-simps2 = sorted-lems sorted-ConsD sorted-snocD
lemma isin-sorted: sorted-less (xs@a\#ys) \Longrightarrow
  (x \in set \ (xs@a\#ys)) = (if \ x < a \ then \ x \in set \ xs \ else \ x \in set \ (a\#ys))
  \langle proof \rangle
context split-list
begin
fun isin-list :: 'a \Rightarrow 'a list \Rightarrow bool where
  isin-list \ x \ ks = (case \ split-list \ ks \ x \ of
    (ls,Nil) \Rightarrow False
    (ls, sep \# rs) \Rightarrow sep = x
)
fun insert-list where
  insert-list x ks = (case split-list ks x of
    (ls,Nil) \Rightarrow ls@[x]
    (ls, sep\#rs) \Rightarrow if sep = x then ks else ls@x\#sep\#rs
)
fun delete-list where
  delete-list x ks = (case split-list ks x of
    (ls,Nil) \Rightarrow ks
    (ls, sep\#rs) \Rightarrow if sep = x then ls@rs else ks
lemmas split-list-conc = split-list-req(1)
```

```
\mathbf{lemma}\ is in\text{-}sorted\text{-}split\text{-}list:
assumes sorted-less xs
    and split-list xs \ x = (ls, rs)
  shows (x \in set \ xs) = (x \in set \ rs)
\langle proof \rangle
lemma isin-sorted-split-list-right:
  assumes split-list ts x = (ls, sep #rs)
    and sorted-less ts
  shows x \in set (sep \# rs) = (x = sep)
\langle proof \rangle
theorem isin-list-set:
  {f assumes}\ sorted{-less}\ xs
  shows isin-list x xs = (x \in set xs)
  \langle proof \rangle
\mathbf{lemma}\ insert\text{-}sorted\text{-}split\text{-}list:
assumes sorted-less xs
    and split-list xs \ x = (ls, rs)
  shows ins-list x xs = ls @ ins-list x rs
\langle proof \rangle
{\bf lemma}\ insert\text{-}sorted\text{-}split\text{-}list\text{-}right:
  assumes split-list ts x = (ls, sep \# rs)
    and sorted-less ts
    and x \neq sep
  shows ins-list x (sep\#rs) = (x\#sep\#rs)
\langle proof \rangle
theorem insert-list-set:
  assumes sorted-less xs
  shows insert-list x xs = ins-list x xs
  \langle proof \rangle
lemma delete-sorted-split-list:
\mathbf{assumes}\ sorted\text{-}less\ xs
    and split-list xs \ x = (ls, rs)
  shows del-list x xs = ls @ del-list x rs
\langle proof \rangle
```

 $\mathbf{lemma}\ \mathit{delete}\text{-}\mathit{sorted}\text{-}\mathit{split}\text{-}\mathit{list}\text{-}\mathit{right}\text{:}$

```
assumes split-list ts x = (ls, sep \# rs)
   {\bf and}\ sorted\text{-}less\ ts
   and x \neq sep
  shows del-list x (sep\#rs) = sep\#rs
\langle proof \rangle
theorem delete-list-set:
  assumes sorted-less xs
 shows delete-list x xs = del-list x xs
  \langle proof \rangle
end
context split-full
begin
{\bf sublocale}\ split\text{-}set\ split\ is in\text{-}list\ insert\text{-}list\ delete\text{-}list
  \langle proof \rangle
end
end
theory BPlusTree-Range
imports BPlusTree
    HOL-Data-Structures.Set-Specs
    HOL-Library.Sublist
   BPlus Tree\text{-}Split
begin
Lrange describes all elements in a set that are greater or equal to l, a lower
bounded range (with no upper bound)
definition Lrange where
  Lrange l X = \{x \in X. \ x \ge l\}
definition lrange-filter l = filter (\lambda x. \ x \ge l)
lemma lrange-filter-iff-Lrange: set (lrange-filter l xs) = Lrange l (set xs)
  \langle proof \rangle
fun lrange-list where
  lrange-list\ l\ (x\#xs) = (if\ x \ge l\ then\ (x\#xs)\ else\ lrange-list\ l\ xs)\ |
  lrange-list | l | = []
lemma sorted-leq-lrange: sorted-wrt (\leq) xs \Longrightarrow lrange-list (l::'a::linorder) xs =
lrange-filter l xs
  \langle proof \rangle
```

```
lemma sorted-less-lrange: sorted-less xs \Longrightarrow lrange-list (l::'a::linorder) xs = lrange-filter
  \langle proof \rangle
lemma lrange-list-sorted: sorted-less (xs@x#ys) \Longrightarrow
  lrange-list\ l\ (xs@x\#ys) =
  (if l < x then (lrange-list l xs)@x # ys else lrange-list l (x # ys))
  \langle proof \rangle
lemma lrange-filter-sorted: sorted-less (xs@x#ys) \Longrightarrow
  lrange-filter l(xs@x#ys) =
  (if l < x then (lrange-filter l xs)@x # ys else lrange-filter l (x # ys))
  \langle proof \rangle
lemma lrange-suffix: suffix (lrange-list l xs) xs
  \langle proof \rangle
locale \ split-range = split-tree \ split
  for split::
    ('a\ bplustree \times 'a::\{linorder, order-top\})\ list \Rightarrow 'a
       \Rightarrow ('a bplustree \times 'a) list \times ('a bplustree \times 'a) list +
  fixes lrange-list :: 'a \Rightarrow ('a::\{linorder, order-top\}) \ list \Rightarrow 'a \ list
  assumes lrange-list-req:
    sorted-less ks \Longrightarrow lrange-list l ks = lrange-filter l ks
begin
fun lrange:: 'a \ bplustree \Rightarrow 'a \Rightarrow 'a \ list \ \mathbf{where}
  lrange (Leaf ks) x = (lrange-list x ks) |
  lrange\ (Node\ ts\ t)\ x=(
      case split ts x of (-,(sub,sep)\#rs) \Rightarrow (
              lrange\ sub\ x\ @\ leaves-list\ rs\ @\ leaves\ t
   | (-,[]) \Rightarrow lrange \ t \ x
lrange proof
lemma lrange-sorted-split:
  assumes Laligned (Node ts t) u
    and sorted-less (leaves (Node ts t))
    and split ts x = (ls, rs)
 \mathbf{shows}\ \mathit{lrange-filter}\ x\ (\mathit{leaves}\ (\mathit{Node}\ \mathit{ts}\ t)) = \mathit{lrange-filter}\ x\ (\mathit{leaves-list}\ \mathit{rs}\ @\ \mathit{leaves}
\langle proof \rangle
```

lemma lrange-sorted-split-right:

```
assumes split ts x = (ls, (sub, sep) \# rs)

and sorted-less (leaves \ (Node \ ts \ t))

and Laligned \ (Node \ ts \ t) u

shows lrange-filter x (leaves-list ((sub, sep) \# rs) @ leaves \ t) = lrange-filter x (leaves \ sub)@ leaves-list rs@ leaves \ t \langle proof \rangle

theorem lrange-set:

assumes sorted-less (leaves \ t)

and aligned \ lt \ u

shows lrange \ tx = lrange-filter x (leaves \ t)

\langle proof \rangle
```

Now the alternative explanation that first obtains the correct leaf node and in a second step obtains the correct element from the leaf node.

```
fun leaf-nodes-lrange:: 'a bplustree \Rightarrow 'a \Rightarrow 'a bplustree list where leaf-nodes-lrange (Leaf ks) x = [Leaf ks] \mid leaf-nodes-lrange (Node ts t) x = ( case split ts x of (-,(sub,sep)\#rs) \Rightarrow ( leaf-nodes-lrange sub x @ leaf-nodes-list rs @ leaf-nodes t ) | (-,[]) \Rightarrow leaf-nodes-lrange t x )
```

lemma concat-leaf-nodes-leaves-list: (concat (map leaves (leaf-nodes-list ts))) = leaves-list ts $\langle proof \rangle$

```
theorem leaf-nodes-lrange-set:
assumes sorted-less (leaves t)
and aligned l t u
shows suffix (lrange-filter x (leaves t)) (concat (map leaves (leaf-nodes-lrange t x)))
\langle proof \rangle
```

lemma leaf-nodes-lrange-not-empty: \exists ks list. leaf-nodes-lrange t $x = (Leaf \ ks) \# list \land (Leaf \ ks) \in set \ (leaf-nodes \ t) \land (proof)$

Note that, conveniently, this argument is purely syntactic, we do not need to show that this has anything to do with linear orders

```
lemma leaf-nodes-lrange-pre-lrange: leaf-nodes-lrange t x = (Leaf \ ks)\#list \Longrightarrow lrange-list x \ ks @ (concat (map leaves list)) = lrange t x \langle proof \rangle
```

We finally obtain a function that is way easier to reason about in the imperative setting

```
fun concat-leaf-nodes-lrange where
  concat-leaf-nodes-lrange t x = (case leaf-nodes-lrange t x of (Leaf ks)#list \Rightarrow
lrange-list \ x \ ks \ @ (concat (map \ leaves \ list)))
lemma\ concat-leaf-nodes-lrange-lrange: concat-leaf-nodes-lrange\ t\ x=lrange\ t\ x
\langle proof \rangle
end
{\bf context}\ \mathit{split-list}
begin
definition lrange-split where
lrange-split l xs = (case split-list xs \ l of (ls,rs) \Rightarrow rs)
lemma lrange-filter-split:
  assumes sorted-less xs
    and split-list xs \ l = (ls, rs)
  shows lrange-list l xs = rs
  find-theorems split-list
\langle proof \rangle
lemma lrange-split-req:
  assumes sorted-less xs
  shows lrange-split l xs = lrange-filter l xs
  \langle proof \rangle
end
context split-full
begin
{\bf sublocale}\ split\text{-}range\ split\ lrange\text{-}split
  \langle proof \rangle
end
end
theory BPlusTree-SplitCE
  imports
  BPlusTree	ext{-}Set
  BPlusTree-Range
begin
{\bf global\text{-}interpretation}\ \ bplustree\text{-}linear\text{-}search\text{-}list\text{:}\ split\text{-}list\ linear\text{-}split\text{-}list
  \mathbf{defines}\ \mathit{bplustree-ls-isin-list}\ =\ \mathit{bplustree-linear-search-list.isin-list}
  and bplustree-ls-insert-list = bplustree-linear-search-list.insert-list
  {\bf and}\ bplustree\text{-}ls\text{-}delete\text{-}list = bplustree\text{-}linear\text{-}search\text{-}list.delete\text{-}list
  {\bf and} \ \ bplustree-ls-lrange-list = \ bplustree-linear-search-list.lrange-split
```

```
\langle proof \rangle
\mathbf{declare}\ bplustree-linear-search-list.isin-list.simps[code]
declare bplustree-linear-search-list.insert-list.simps[code]
\mathbf{declare}\ bplustree-linear-search-list.delete-list.simps[code]
global-interpretation bplustree-linear-search:
    split-full linear-split linear-split-list
 defines bplustree-ls-isin = bplustree-linear-search.isin
   {\bf and}\ \mathit{bplustree-ls-ins} = \mathit{bplustree-linear-search.ins}
   {\bf and} \ \ bplustree-ls-insert = bplustree-linear-search.insert
   and bplustree-ls-del = bplustree-linear-search.del
   and bplustree-ls-delete = bplustree-linear-search.delete
   and bplustree-ls-lrange = bplustree-linear-search.lrange
  \langle proof \rangle
lemma [code]: bplustree-ls-isin (Leaf ks) x = bplustree-ls-isin-list x ks
declare bplustree-linear-search.isin.simps(2)[code]
lemma [code]: bplustree-ls-ins k \times (Leaf \ ks) =
bplustree-linear-search.Lnode_i \ k \ (bplustree-ls-insert-list x \ ks)
  \langle proof \rangle
declare bplustree-linear-search.ins.simps(2)[code]
lemma [code]: bplustree-ls-del k x (Leaf ks) =
Leaf (bplustree-ls-delete-list \ x \ ks)
  \langle proof \rangle
declare bplustree-linear-search.del.simps(2)[code]
find-theorems bplustree-ls-isin
Some examples follow to show that the implementation works and the above
lemmas make sense. The examples are visualized in the thesis.
abbreviation bplustree_q \equiv bplustree-ls-isin
abbreviation bplustree_i \equiv bplustree-ls-insert
abbreviation bplustree_d \equiv bplustree-ls-delete
definition uint8-max \equiv 2^8-1::nat
declare uint8-max-def[simp]
typedef uint8 = \{n::nat. \ n \leq uint8-max\}
  \langle proof \rangle
setup-lifting type-definition-uint8
```

```
{\bf instantiation}\ uint 8\ ::\ linorder
begin
lift-definition less-eq-uint8 :: uint8 \Rightarrow uint8 \Rightarrow bool
  is (less-eq::nat \Rightarrow nat \Rightarrow bool) \langle proof \rangle
lift-definition less-uint8 :: uint8 \Rightarrow uint8 \Rightarrow bool
  is (less::nat \Rightarrow nat \Rightarrow bool) \langle proof \rangle
in stance \\
  \langle proof \rangle
end
instantiation \ uint8 :: order-top
begin
\textbf{lift-definition} \ top\text{-}uint8 \ :: \ uint8 \ \textbf{is} \ uint8\text{-}max\text{::}nat
  \langle proof \rangle
instance
  \langle proof \rangle
end
instantiation \ uint8 :: numeral
begin
lift-definition one\text{-}uint8 :: uint8 \text{ is } 1::nat
  \langle proof \rangle
lift-definition plus-uint8 :: uint8 \Rightarrow uint8 \Rightarrow uint8
  is \lambda a \ b. \ min \ (a + b) \ uint8-max
  \langle proof \rangle
instance \langle proof \rangle
end
instantiation \ uint8 :: equal
begin
lift-definition equal\text{-}uint8 :: uint8 \Rightarrow uint8 \Rightarrow bool
  is (=) \langle proof \rangle
\mathbf{instance}\ \langle \mathit{proof}\,\rangle
\quad \mathbf{end} \quad
value uint8-max
```

```
value let k=2::nat; x::uint8 bplustree = (Node [(Node [(Leaf [1,2], 2),(Leaf [3,4],
(4), (Leaf [5,6,7], 8)] (Leaf [9,10]), 10)] (Node [(Leaf [11,12,13,14], 14), (Leaf [11,12,13,14], 14))]
[15,17], 20) (Leaf [21,22,23])) in
         root-order k x
value let k=2::nat; x::uint8 bplustree = (Node [(Node [(Leaf [1,2], 2),(Leaf [3,4],
(4), (Leaf [5,6,7], 8)] (Leaf [9,10]), 10)] (Node [(Leaf [11,12,13,14], 14), (Leaf [11,12,13,14], 14))]
[15,17], 20] (Leaf [21,22,23])) in
         bal x
value let k=2::nat; x::uint8 bplustree = (Node [(Node [(Leaf [1,2], 2),(Leaf [3,4],
(4), (Leaf [5,6,7], 8)] (Leaf [9,10]), 10)] (Node [(Leaf [11,12,13,14], 14), (Leaf [11,12,13,14], 14))
[15,17], 20 (Leaf [50,55,56])) in
         sorted-less (leaves x)
value let k=2::nat; x::uint8 bplustree = (Node [(Node [(Leaf [1,2], 2),(Leaf [3,4],
4),(Leaf [5,6,7], 8)] (Leaf [9,10]), 10)] (Node [(Leaf [11,12,13,14], 14), (Leaf
[15,17], 20 (Leaf [50,55,56])) in
         Laligned x top
value let k=2::nat; x::uint8 bplustree = (Node [(Node [(Leaf [1,2], 2),(Leaf [3,4],
4),(Leaf [5,6,7], 8)] (Leaf [9,10]), 10)] (Node [(Leaf [11,12,13,14], 14), (Leaf
[15,17], 20] (Leaf [50,55,56])) in
value let k=2::nat; x::uint8 bplustree = (Node [(Node [(Leaf [1,2], 2),(Leaf [3,4],
\{4\}, (Leaf [5,6,7], 8)] (Leaf [9,10]), 10)] (Node [(Leaf [11,12,13,14], 14), (Leaf [11,12,13], 14), (Leaf [11,12,13], 14), (Leaf [11,12,13], 14), (Leaf [11,12,13], 14), (Leaf [11,12], 14
[15,17], 20)] (Leaf [50,55,56]))) in
         bplustree_q \ x \ 4
value let k=2::nat; x::uint8 bplustree = (Node [(Node [(Leaf [1,2], 2),(Leaf [3,4],
(4), (Leaf [5,6,7], 8) \ (Leaf [9,10]), 10) \ (Node [(Leaf [11,12,13,14], 14), (Leaf [11,12,13,14], 14)) \ (Leaf [11,12,13,14], 14)
[15,17], 20] (Leaf [50,55,56]))) in
         bplustree_q \ x \ 20
value let k=2::nat; x::uint8 bplustree = (Node [(Node [(Leaf [1,2], 2),(Leaf [3,4],
(4), (Leaf [5,6,7], 8)  (Leaf (9,10], (10)) (Node (Leaf [11,12,13,14], (14), (Leaf [11,12,13,14], (14)))
[15,17], 20) (Leaf [50,55,56])) in
         bplustree_i \ k \ 9 \ x
value let k=2::nat; x::uint8 bplustree = (Node [(Node [(Leaf [1,2], 2),(Leaf [3,4],
4),(Leaf [5,6,7], 8)] (Leaf [9,10]), 10)] (Node [(Leaf [11,12,13,14], 14), (Leaf
[15,17], 20] (Leaf [50,55,56]))) in
         bplustree_i \ k \ 1 \ (bplustree_i \ k \ 9 \ x)
value let k=2::nat; x::uint8 bplustree = (Node [(Node [(Leaf [1,2], 2),(Leaf [3,4],
(4), (Leaf [5,6,7], 8) (Leaf [9,10]), 10) (Node [(Leaf [11,12,13,14], 14), (Leaf [11,12,13,14], 14))
[15,17], 20 (Leaf [50,55,56])) in
         bplustree_d \ k \ 10 \ (bplustree_i \ k \ 1 \ (bplustree_i \ k \ 9 \ x))
value let k=2::nat; x::uint8 bplustree = (Node [(Node [(Leaf [1,2], 2),(Leaf [3,4],
4),(Leaf [5,6,7], 8)] (Leaf [9,10]), 10)] (Node [(Leaf [11,12,13,14], 14), (Leaf
[15,17], 20] (Leaf [50,55,56])) in
         bplustree_d \ k \ 3 \ (bplustree_d \ k \ 10 \ (bplustree_i \ k \ 1 \ (bplustree_i \ k \ 9 \ x)))
```

 \mathbf{end}

References

- [1] Rudolf Bayer and Edward M. McCreight. Organization and maintenance of large ordered indices. *Acta Informatica*, 1:173–189, 1972. doi:10.1007/BF00288683. URL https://doi.org/10.1007/BF00288683.
- [2] Peter Lammich. The imperative refinement framework. Archive of Formal Proofs, August 2016. ISSN 2150-914x. https://isa-afp.org/entries/Refine_Imperative_HOL.html, Formal proof development.
- [3] Niels Mündler. A verified imperative implementation of b-trees. Bachelor's thesis, Technische Universität München, München, 2021. URL https://mediatum.ub.tum.de/1596550.