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Abstract

In this work, we use the interactive theorem prover Isabelle/HOL
to verify an imperative implementation of the classical B-tree data
structure [1]. The implementation supports set membership, inser-
tion, deletion, iteration and range queries with efficient binary search
for intra-node navigation. This is accomplished by first specifying the
structure abstractly in the functional modeling language HOL and
proving functional correctness. Using manual refinement, we derive
an imperative implementation in Imperative/HOL. We show the va-
lidity of this refinement using the separation logic utilities from the
Isabelle Refinement Framework [2]. The code can be exported to the
programming languages SML, Scala and OCaml. This entry contains
two developments:

• B-Trees This formalisation is discussed in greater detail in the
corresponding Bachelor’s Thesis[3].

• B+-Trees This formalisation also supports range queries and is
discussed in a paper published at ICTAC 2022.
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theory BTree
imports Main HOL−Data-Structures.Sorted-Less HOL−Data-Structures.Cmp

begin

hide-const (open) Sorted-Less.sorted
abbreviation sorted-less ≡ Sorted-Less.sorted

1 Definition of the B-Tree
1.1 Datatype definition

B-trees can be considered to have all data stored interleaved as child nodes
and separating elements (also keys or indices). We define them to either be
a Node that holds a list of pairs of children and indices or be a completely
empty Leaf.
datatype ′a btree = Leaf | Node ( ′a btree ∗ ′a) list ′a btree
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type-synonym ′a btree-list = ( ′a btree ∗ ′a) list
type-synonym ′a btree-pair = ( ′a btree ∗ ′a)

abbreviation subtrees where subtrees xs ≡ (map fst xs)
abbreviation separators where separators xs ≡ (map snd xs)

1.2 Inorder and Set

The set of B-tree elements is defined automatically.
thm btree.set
value set-btree (Node [(Leaf , (0 ::nat)), (Node [(Leaf , 1 ), (Leaf , 10 )] Leaf , 12 ),
(Leaf , 30 ), (Leaf , 100 )] Leaf )

The inorder view is defined with the help of the concat function.
fun inorder :: ′a btree ⇒ ′a list where

inorder Leaf = [] |
inorder (Node ts t) = concat (map (λ (sub, sep). inorder sub @ [sep]) ts) @

inorder t

abbreviation inorder-pair ≡ λ(sub,sep). inorder sub @ [sep]
abbreviation inorder-list ts ≡ concat (map inorder-pair ts)

thm inorder .simps

value inorder (Node [(Leaf , (0 ::nat)), (Node [(Leaf , 1 ), (Leaf , 10 )] Leaf , 12 ),
(Leaf , 30 ), (Leaf , 100 )] Leaf )

1.3 Height and Balancedness
class height =

fixes height :: ′a ⇒ nat

instantiation btree :: (type) height
begin

fun height-btree :: ′a btree ⇒ nat where
height Leaf = 0 |
height (Node ts t) = Suc (Max (height ‘ (set (subtrees ts@[t]))))

instance ..

end

Balancedness is defined is close accordance to the definition by Ernst
fun bal:: ′a btree ⇒ bool where

bal Leaf = True |
bal (Node ts t) = (
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(∀ sub ∈ set (subtrees ts). height sub = height t) ∧
(∀ sub ∈ set (subtrees ts). bal sub) ∧ bal t

)

value height (Node [(Leaf , (0 ::nat)), (Node [(Leaf , 1 ), (Leaf , 10 )] Leaf , 12 ), (Leaf ,
30 ), (Leaf , 100 )] Leaf )

1.4 Order

The order of a B-tree is defined just as in the original paper by Bayer.
fun order :: nat ⇒ ′a btree ⇒ bool where

order k Leaf = True |
order k (Node ts t) = (
(length ts ≥ k) ∧
(length ts ≤ 2∗k) ∧
(∀ sub ∈ set (subtrees ts). order k sub) ∧ order k t

)

The special condition for the root is called root_order
fun root-order :: nat ⇒ ′a btree ⇒ bool where

root-order k Leaf = True |
root-order k (Node ts t) = (
(length ts > 0 ) ∧
(length ts ≤ 2∗k) ∧
(∀ s ∈ set (subtrees ts). order k s) ∧ order k t

)

1.5 Auxiliary Lemmas
lemma separators-split:

set (separators (l@(a,b)#r)) = set (separators l) ∪ set (separators r) ∪ {b}
by simp

lemma subtrees-split:
set (subtrees (l@(a,b)#r)) = set (subtrees l) ∪ set (subtrees r) ∪ {a}
by simp

lemma finite-set-ins-swap:
assumes finite A
shows max a (Max (Set.insert b A)) = max b (Max (Set.insert a A))
using Max-insert assms max.commute max.left-commute by fastforce

lemma finite-set-in-idem:
assumes finite A
shows max a (Max (Set.insert a A)) = Max (Set.insert a A)
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using Max-insert assms max.commute max.left-commute by fastforce

lemma height-Leaf : height t = 0 ←→ t = Leaf
by (induction t) (auto)

lemma height-btree-order :
height (Node (ls@[a]) t) = height (Node (a#ls) t)
by simp

lemma height-btree-sub:
height (Node ((sub,x)#ls) t) = max (height (Node ls t)) (Suc (height sub))
by simp

lemma height-btree-last:
height (Node ((sub,x)#ts) t) = max (height (Node ts sub)) (Suc (height t))
by (induction ts) auto

lemma set-btree-inorder : set (inorder t) = set-btree t
apply(induction t)
apply(auto)

done

lemma child-subset: p ∈ set t =⇒ set-btree (fst p) ⊆ set-btree (Node t n)
apply(induction p arbitrary: t n)
apply(auto)
done

lemma some-child-sub:
assumes (sub,sep) ∈ set t
shows sub ∈ set (subtrees t)

and sep ∈ set (separators t)
using assms by force+

lemma bal-all-subtrees-equal: bal (Node ts t) =⇒ (∀ s1 ∈ set (subtrees ts). ∀ s2 ∈
set (subtrees ts). height s1 = height s2 )

by (metis BTree.bal.simps(2 ))

lemma fold-max-set: ∀ x ∈ set t. x = f =⇒ fold max t f = f
apply(induction t)
apply(auto simp add: max-def-raw)

done

lemma height-bal-tree: bal (Node ts t) =⇒ height (Node ts t) = Suc (height t)
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by (induction ts) auto

lemma bal-split-last:
assumes bal (Node (ls@(sub,sep)#rs) t)
shows bal (Node (ls@rs) t)

and height (Node (ls@(sub,sep)#rs) t) = height (Node (ls@rs) t)
using assms by auto

lemma bal-split-right:
assumes bal (Node (ls@rs) t)
shows bal (Node rs t)

and height (Node rs t) = height (Node (ls@rs) t)
using assms by (auto simp add: image-constant-conv)

lemma bal-split-left:
assumes bal (Node (ls@(a,b)#rs) t)
shows bal (Node ls a)

and height (Node ls a) = height (Node (ls@(a,b)#rs) t)
using assms by (auto simp add: image-constant-conv)

lemma bal-substitute: [[bal (Node (ls@(a,b)#rs) t); height t = height c; bal c]] =⇒
bal (Node (ls@(c,b)#rs) t)

unfolding bal.simps
by auto

lemma bal-substitute-subtree: [[bal (Node (ls@(a,b)#rs) t); height a = height c; bal
c]] =⇒ bal (Node (ls@(c,b)#rs) t)

using bal-substitute
by auto

lemma bal-substitute-separator : bal (Node (ls@(a,b)#rs) t) =⇒ bal (Node (ls@(a,c)#rs)
t)

unfolding bal.simps
by auto

lemma order-impl-root-order : [[k > 0 ; order k t]] =⇒ root-order k t
apply(cases t)
apply(auto)

done
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lemma sorted-inorder-list-separators: sorted-less (inorder-list ts) =⇒ sorted-less
(separators ts)

apply(induction ts)
apply (auto simp add: sorted-lems)

done

corollary sorted-inorder-separators: sorted-less (inorder (Node ts t)) =⇒ sorted-less
(separators ts)

using sorted-inorder-list-separators sorted-wrt-append
by auto

lemma sorted-inorder-list-subtrees:
sorted-less (inorder-list ts) =⇒ ∀ sub ∈ set (subtrees ts). sorted-less (inorder sub)
apply(induction ts)
apply (auto simp add: sorted-lems)+

done

corollary sorted-inorder-subtrees: sorted-less (inorder (Node ts t)) =⇒ ∀ sub ∈
set (subtrees ts). sorted-less (inorder sub)

using sorted-inorder-list-subtrees sorted-wrt-append by auto

lemma sorted-inorder-list-induct-subtree:
sorted-less (inorder-list (ls@(sub,sep)#rs)) =⇒ sorted-less (inorder sub)
by (simp add: sorted-wrt-append)

corollary sorted-inorder-induct-subtree:
sorted-less (inorder (Node (ls@(sub,sep)#rs) t)) =⇒ sorted-less (inorder sub)
by (simp add: sorted-wrt-append)

lemma sorted-inorder-induct-last: sorted-less (inorder (Node ts t)) =⇒ sorted-less
(inorder t)

by (simp add: sorted-wrt-append)

end
theory BTree-Height

imports BTree
begin

2 Maximum and minimum height

Textbooks usually provide some proofs relating the maxmimum and mini-
mum height of the BTree for a given number of nodes. We therefore intro-
duce this counting and show the respective proofs.
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2.1 Definition of node/size
thm BTree.btree.size

value size (Node [(Leaf , (0 ::nat)), (Node [(Leaf , 1 ), (Leaf , 10 )] Leaf , 12 ), (Leaf ,
30 ), (Leaf , 100 )] Leaf )

The default size function does not suit our needs as it regards the length of
the list in each node. We would like to count the number of nodes in the
tree only, not regarding the number of keys.
fun nodes:: ′a btree ⇒ nat where

nodes Leaf = 0 |
nodes (Node ts t) = 1 + (

∑
t←subtrees ts. nodes t) + (nodes t)

value nodes (Node [(Leaf , (0 ::nat)), (Node [(Leaf , 1 ), (Leaf , 10 )] Leaf , 12 ), (Leaf ,
30 ), (Leaf , 100 )] Leaf )

2.2 Maximum number of nodes for a given height
lemma sum-list-replicate: sum-list (replicate n c) = n∗c

apply(induction n)
apply(auto simp add: ring-class.ring-distribs(2 ))

done

abbreviation bound k h ≡ ((k+1 )^h − 1 )

lemma nodes-height-upper-bound:
[[order k t; bal t]] =⇒ nodes t ∗ (2∗k) ≤ bound (2∗k) (height t)

proof(induction t rule: nodes.induct)
case (2 ts t)
let ?sub-height = ((2 ∗ k + 1 ) ^ height t − 1 )
have sum-list (map nodes (subtrees ts)) ∗ (2∗k) =

sum-list (map (λt. nodes t ∗ (2 ∗ k)) (subtrees ts))
using sum-list-mult-const by metis

also have . . . ≤ sum-list (map (λx.?sub-height) (subtrees ts))
using 2
using sum-list-mono[of subtrees ts λt. nodes t ∗ (2 ∗ k) λx. bound (2 ∗ k)

(height t)]
by (metis bal.simps(2 ) order .simps(2 ))

also have . . . = sum-list (replicate (length ts) ?sub-height)
using map-replicate-const[of ?sub-height subtrees ts] length-map
by simp

also have . . . = (length ts)∗(?sub-height)
using sum-list-replicate by simp

also have . . . ≤ (2∗k)∗(?sub-height)
using 2 .prems(1 )
by simp

finally have sum-list (map nodes (subtrees ts))∗(2∗k) ≤ ?sub-height∗(2∗k)
by simp

moreover have (nodes t)∗(2∗k) ≤ ?sub-height
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using 2 by simp
ultimately have (nodes (Node ts t))∗(2∗k) ≤

2∗k
+ ?sub-height ∗ (2∗k)
+ ?sub-height

unfolding nodes.simps add-mult-distrib
by linarith

also have . . . = 2∗k + (2∗k)∗((2 ∗ k + 1 ) ^ height t) − 2∗k + (2 ∗ k + 1 )
^ height t − 1

by (simp add: diff-mult-distrib2 mult.assoc mult.commute)
also have . . . = (2∗k)∗((2 ∗ k + 1 ) ^ height t) + (2 ∗ k + 1 ) ^ height t − 1

by simp
also have . . . = (2∗k+1 )^(Suc(height t)) − 1

by simp
finally show ?case

by (metis 2 .prems(2 ) height-bal-tree)
qed simp

To verify our lower bound is sharp, we compare it to the height of artificially
constructed full trees.
fun full-node::nat ⇒ ′a ⇒ nat ⇒ ′a btree where

full-node k c 0 = Leaf |
full-node k c (Suc n) = (Node (replicate (2∗k) ((full-node k c n),c)) (full-node k

c n))

value let k = (2 ::nat) in map (λx. nodes x ∗ 2∗k) (map (full-node k (1 ::nat))
[0 ,1 ,2 ,3 ,4 ])
value let k = (2 ::nat) in map (λx. ((2∗k+(1 ::nat))^(x)−1 )) [0 ,1 ,2 ,3 ,4 ]

lemma compow-comp-id: c > 0 =⇒ f ◦ f = f =⇒ (f ^^ c) = f
apply(induction c)
apply auto

by fastforce

lemma compow-id-point: f x = x =⇒ (f ^^ c) x = x
apply(induction c)
apply auto

done

lemma height-full-node: height (full-node k a h) = h
apply(induction k a h rule: full-node.induct)
apply (auto simp add: set-replicate-conv-if )

done

lemma bal-full-node: bal (full-node k a h)
apply(induction k a h rule: full-node.induct)
apply auto

done
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lemma order-full-node: order k (full-node k a h)
apply(induction k a h rule: full-node.induct)
apply auto

done

lemma full-btrees-sharp: nodes (full-node k a h) ∗ (2∗k) = bound (2∗k) h
apply(induction k a h rule: full-node.induct)
apply (auto simp add: height-full-node algebra-simps sum-list-replicate)

done

lemma upper-bound-sharp-node:
t = full-node k a h =⇒ height t = h ∧ order k t ∧ bal t ∧ bound (2∗k) h = nodes

t ∗ (2∗k)
by (simp add: bal-full-node height-full-node order-full-node full-btrees-sharp)

2.3 Maximum height for a given number of nodes
lemma nodes-height-lower-bound:
[[order k t; bal t]] =⇒ bound k (height t) ≤ nodes t ∗ k

proof(induction t rule: nodes.induct)
case (2 ts t)
let ?sub-height = ((k + 1 ) ^ height t − 1 )
have k∗(?sub-height) ≤ (length ts)∗(?sub-height)

using 2 .prems(1 )
by simp

also have . . . = sum-list (replicate (length ts) ?sub-height)
using sum-list-replicate by simp

also have . . . = sum-list (map (λx.?sub-height) (subtrees ts))
using map-replicate-const[of ?sub-height subtrees ts] length-map
by simp

also have . . . ≤ sum-list (map (λt. nodes t ∗ k) (subtrees ts))
using 2
using sum-list-mono[of subtrees ts λx. bound k (height t) λt. nodes t ∗ k]
by (metis bal.simps(2 ) order .simps(2 ))

also have . . . = sum-list (map nodes (subtrees ts)) ∗ k
using sum-list-mult-const[of nodes k subtrees ts] by auto

finally have sum-list (map nodes (subtrees ts))∗k ≥ ?sub-height∗k
by simp

moreover have (nodes t)∗k ≥ ?sub-height
using 2 by simp

ultimately have (nodes (Node ts t))∗k ≥
k
+ ?sub-height ∗ k
+ ?sub-height

unfolding nodes.simps add-mult-distrib
by linarith

also have
k + ?sub-height ∗ k + ?sub-height =
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k + k∗((k + 1 ) ^ height t) − k + (k + 1 ) ^ height t − 1
by (simp add: diff-mult-distrib2 mult.assoc mult.commute)

also have . . . = k∗((k + 1 ) ^ height t) + (k + 1 ) ^ height t − 1
by simp

also have . . . = (k+1 )^(Suc(height t)) − 1
by simp

finally show ?case
by (metis 2 .prems(2 ) height-bal-tree)

qed simp

To verify our upper bound is sharp, we compare it to the height of artificially
constructed minimally filled (=slim) trees.
fun slim-node::nat ⇒ ′a ⇒ nat ⇒ ′a btree where

slim-node k c 0 = Leaf |
slim-node k c (Suc n) = (Node (replicate k ((slim-node k c n),c)) (slim-node k c

n))

value let k = (2 ::nat) in map (λx. nodes x ∗ k) (map (slim-node k (1 ::nat))
[0 ,1 ,2 ,3 ,4 ])
value let k = (2 ::nat) in map (λx. ((k+1 ::nat)^(x)−1 )) [0 ,1 ,2 ,3 ,4 ]

lemma height-slim-node: height (slim-node k a h) = h
apply(induction k a h rule: full-node.induct)
apply (auto simp add: set-replicate-conv-if )

done

lemma bal-slim-node: bal (slim-node k a h)
apply(induction k a h rule: full-node.induct)
apply auto

done

lemma order-slim-node: order k (slim-node k a h)
apply(induction k a h rule: full-node.induct)
apply auto

done

lemma slim-nodes-sharp: nodes (slim-node k a h) ∗ k = bound k h
apply(induction k a h rule: slim-node.induct)

apply (auto simp add: height-slim-node algebra-simps sum-list-replicate com-
pow-id-point)

done

lemma lower-bound-sharp-node:
t = slim-node k a h =⇒ height t = h ∧ order k t ∧ bal t ∧ bound k h = nodes t
∗ k

by (simp add: bal-slim-node height-slim-node order-slim-node slim-nodes-sharp)

Since BTrees have special roots, we need to show the overall nodes seperately
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lemma nodes-root-height-lower-bound:
assumes root-order k t

and bal t
shows 2∗((k+1 )^(height t − 1 ) − 1 ) + (of-bool (t 6= Leaf ))∗k ≤ nodes t ∗ k

proof (cases t)
case (Node ts t)
let ?sub-height = ((k + 1 ) ^ height t − 1 )
from Node have ?sub-height ≤ length ts ∗ ?sub-height

using assms
by (simp add: Suc-leI )

also have . . . = sum-list (replicate (length ts) ?sub-height)
using sum-list-replicate
by simp

also have . . . = sum-list (map (λx. ?sub-height) (subtrees ts))
using map-replicate-const[of ?sub-height subtrees ts] length-map
by simp

also have . . . ≤ sum-list (map (λt. nodes t ∗ k) (subtrees ts))
using Node

sum-list-mono[of subtrees ts λx. (k+1 )^(height t) − 1 λx. nodes x ∗ k]
nodes-height-lower-bound assms

by fastforce
also have . . . = sum-list (map nodes (subtrees ts)) ∗ k

using sum-list-mult-const[of nodes k subtrees ts] by simp
finally have sum-list (map nodes (subtrees ts))∗k ≥ ?sub-height

by simp

moreover have (nodes t)∗k ≥ ?sub-height
using Node assms nodes-height-lower-bound
by auto

ultimately have (nodes (Node ts t))∗k ≥
?sub-height
+ ?sub-height + k

unfolding nodes.simps add-mult-distrib
by linarith

then show ?thesis
using Node assms(2 ) height-bal-tree by fastforce

qed simp

lemma nodes-root-height-upper-bound:
assumes root-order k t

and bal t
shows nodes t ∗ (2∗k) ≤ (2∗k+1 )^(height t) − 1

proof(cases t)
case (Node ts t)
let ?sub-height = ((2 ∗ k + 1 ) ^ height t − 1 )
have sum-list (map nodes (subtrees ts)) ∗ (2∗k) =

sum-list (map (λt. nodes t ∗ (2 ∗ k)) (subtrees ts))
using sum-list-mult-const by metis

also have . . . ≤ sum-list (map (λx.?sub-height) (subtrees ts))
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using Node
sum-list-mono[of subtrees ts λx. nodes x ∗ (2∗k) λx. (2∗k+1 )^(height t) −

1 ]
nodes-height-upper-bound assms

by fastforce
also have . . . = sum-list (replicate (length ts) ?sub-height)

using map-replicate-const[of ?sub-height subtrees ts] length-map
by simp

also have . . . = (length ts)∗(?sub-height)
using sum-list-replicate by simp

also have . . . ≤ (2∗k)∗?sub-height
using assms Node
by simp

finally have sum-list (map nodes (subtrees ts))∗(2∗k) ≤ ?sub-height∗(2∗k)
by simp

moreover have (nodes t)∗(2∗k) ≤ ?sub-height
using Node assms nodes-height-upper-bound
by auto

ultimately have (nodes (Node ts t))∗(2∗k) ≤
2∗k
+ ?sub-height ∗ (2∗k)
+ ?sub-height

unfolding nodes.simps add-mult-distrib
by linarith

also have . . . = 2∗k + (2∗k)∗((2 ∗ k + 1 ) ^ height t) − 2∗k + (2 ∗ k + 1 )
^ height t − 1

by (simp add: diff-mult-distrib2 mult.assoc mult.commute)
also have . . . = (2∗k)∗((2 ∗ k + 1 ) ^ height t) + (2 ∗ k + 1 ) ^ height t − 1

by simp
also have . . . = (2∗k+1 )^(Suc(height t)) − 1

by simp
finally show ?thesis

by (metis Node assms(2 ) height-bal-tree)
qed simp

lemma root-order-imp-divmuleq: root-order k t =⇒ (nodes t ∗ k) div k = nodes t
using root-order .elims(2 ) by fastforce

lemma nodes-root-height-lower-bound-simp:
assumes root-order k t

and bal t
and k > 0

shows (2∗((k+1 )^(height t − 1 ) − 1 )) div k + (of-bool (t 6= Leaf )) ≤ nodes t
proof (cases t)

case Node
have (2∗((k+1 )^(height t − 1 ) − 1 )) div k + (of-bool (t 6= Leaf )) =

(2∗((k+1 )^(height t − 1 ) − 1 ) + (of-bool (t 6= Leaf ))∗k) div k
using Node assms
using div-plus-div-distrib-dvd-left[of k k (2 ∗ Suc k ^ (height t − Suc 0 ) − Suc
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(Suc 0 ))]
by (auto simp add: algebra-simps simp del: height-btree.simps)

also have . . . ≤ (nodes t ∗ k) div k
using nodes-root-height-lower-bound[OF assms(1 ,2 )] div-le-mono
by blast

also have . . . = nodes t
using root-order-imp-divmuleq[OF assms(1 )]
by simp

finally show ?thesis .
qed simp

lemma nodes-root-height-upper-bound-simp:
assumes root-order k t

and bal t
shows nodes t ≤ ((2∗k+1 )^(height t) − 1 ) div (2∗k)

proof −
have nodes t = (nodes t ∗ (2∗k)) div (2∗k)

using root-order-imp-divmuleq[OF assms(1 )]
by simp

also have . . . ≤ ((2∗k+1 )^(height t) − 1 ) div (2∗k)
using div-le-mono nodes-root-height-upper-bound[OF assms] by blast

finally show ?thesis .
qed

definition full-tree = full-node

fun slim-tree where
slim-tree k c 0 = Leaf |
slim-tree k c (Suc h) = Node [(slim-node k c h, c)] (slim-node k c h)

lemma lower-bound-sharp:
k > 0 =⇒ t = slim-tree k a h =⇒ height t = h ∧ root-order k t ∧ bal t ∧ nodes

t ∗ k = 2∗((k+1 )^(height t − 1 ) − 1 ) + (of-bool (t 6= Leaf ))∗k
apply (cases h)
using slim-nodes-sharp[of k a]
apply (auto simp add: algebra-simps bal-slim-node height-slim-node order-slim-node)
done

lemma upper-bound-sharp:
k > 0 =⇒ t = full-tree k a h =⇒ height t = h ∧ root-order k t ∧ bal t ∧

((2∗k+1 )^(height t) − 1 ) = nodes t ∗ (2∗k)
unfolding full-tree-def
using order-impl-root-order [of k t]
by (simp add: bal-full-node height-full-node order-full-node full-btrees-sharp)

end
theory BTree-Set

imports BTree
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HOL−Data-Structures.Set-Specs
begin

3 Set interpretation
3.1 Auxiliary functions
fun split-half :: ( ′a btree× ′a) list ⇒ (( ′a btree× ′a) list × ( ′a btree× ′a) list) where

split-half xs = (take (length xs div 2 ) xs, drop (length xs div 2 ) xs)

lemma drop-not-empty: xs 6= [] =⇒ drop (length xs div 2 ) xs 6= []
apply(induction xs)
apply(auto split!: list.splits)

done

lemma split-half-not-empty: length xs ≥ 1 =⇒ ∃ ls sub sep rs. split-half xs =
(ls,(sub,sep)#rs)

using drop-not-empty
by (metis (no-types, opaque-lifting) drop0 drop-eq-Nil eq-snd-iff hd-Cons-tl le-trans

not-one-le-zero split-half .simps)

3.2 The split function locale

Here, we abstract away the inner workings of the split function for B-tree
operations.
locale split =

fixes split :: ( ′a btree× ′a::linorder) list ⇒ ′a ⇒ (( ′a btree× ′a) list × ( ′a btree× ′a)
list)

assumes split-req:
[[split xs p = (ls,rs)]] =⇒ xs = ls @ rs
[[split xs p = (ls@[(sub,sep)],rs); sorted-less (separators xs)]] =⇒ sep < p
[[split xs p = (ls,(sub,sep)#rs); sorted-less (separators xs)]] =⇒ p ≤ sep

begin

lemmas split-conc = split-req(1 )
lemmas split-sorted = split-req(2 ,3 )

lemma [termination-simp]:(ls, (sub, sep) # rs) = split ts y =⇒
size sub < Suc (size-list (λx. Suc (size (fst x))) ts + size l)

using split-conc[of ts y ls (sub,sep)#rs] by auto

fun invar-inorder where invar-inorder k t = (bal t ∧ root-order k t)

definition empty-btree = Leaf
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3.3 Membership
fun isin:: ′a btree ⇒ ′a ⇒ bool where

isin (Leaf ) y = False |
isin (Node ts t) y = (

case split ts y of (-,(sub,sep)#rs) ⇒ (
if y = sep then

True
else

isin sub y
)

| (-,[]) ⇒ isin t y
)

3.4 Insertion

The insert function requires an auxiliary data structure and auxiliary in-
variant functions.
datatype ′b upi = T i

′b btree | Upi
′b btree ′b ′b btree

fun order-upi where
order-upi k (T i sub) = order k sub |
order-upi k (Upi l a r) = (order k l ∧ order k r)

fun root-order-upi where
root-order-upi k (T i sub) = root-order k sub |
root-order-upi k (Upi l a r) = (order k l ∧ order k r)

fun height-upi where
height-upi (T i t) = height t |
height-upi (Upi l a r) = max (height l) (height r)

fun bal-upi where
bal-upi (T i t) = bal t |
bal-upi (Upi l a r) = (height l = height r ∧ bal l ∧ bal r)

fun inorder-upi where
inorder-upi (T i t) = inorder t |
inorder-upi (Upi l a r) = inorder l @ [a] @ inorder r

The following function merges two nodes and returns separately split nodes
if an overflow occurs
fun nodei:: nat ⇒ ( ′a btree × ′a) list ⇒ ′a btree ⇒ ′a upi where

nodei k ts t = (
if length ts ≤ 2∗k then T i (Node ts t)
else (

case split-half ts of (ls, (sub,sep)#rs) ⇒
Upi (Node ls sub) sep (Node rs t)
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)
)

lemma nodei-ti-simp: nodei k ts t = T i x =⇒ x = Node ts t
apply (cases length ts ≤ 2∗k)
apply (auto split!: list.splits)

done

fun ins:: nat ⇒ ′a ⇒ ′a btree ⇒ ′a upi where
ins k x Leaf = (Upi Leaf x Leaf ) |
ins k x (Node ts t) = (
case split ts x of
(ls,(sub,sep)#rs) ⇒
(if sep = x then

T i (Node ts t)
else
(case ins k x sub of

Upi l a r ⇒
nodei k (ls @ (l,a)#(r ,sep)#rs) t |

T i a ⇒
T i (Node (ls @ (a,sep) # rs) t))) |

(ls, []) ⇒
(case ins k x t of

Upi l a r ⇒
nodei k (ls@[(l,a)]) r |

T i a ⇒
T i (Node ls a)

)
)

fun treei:: ′a upi ⇒ ′a btree where
treei (T i sub) = sub |
treei (Upi l a r) = (Node [(l,a)] r)

fun insert::nat ⇒ ′a ⇒ ′a btree ⇒ ′a btree where
insert k x t = treei (ins k x t)

3.5 Deletion

The following deletion method is inspired by Bayer (70) and Fielding (80).
Rather than stealing only a single node from the neighbour, the neighbour
is fully merged with the potentially underflowing node. If the resulting node
is still larger than allowed, the merged node is split again, using the rules
known from insertion splits. If the resulting node has admissable size, it is
simply kept in the tree.

17



fun rebalance-middle-tree where
rebalance-middle-tree k ls Leaf sep rs Leaf = (
Node (ls@(Leaf ,sep)#rs) Leaf

) |
rebalance-middle-tree k ls (Node mts mt) sep rs (Node tts tt) = (
if length mts ≥ k ∧ length tts ≥ k then

Node (ls@(Node mts mt,sep)#rs) (Node tts tt)
else (

case rs of [] ⇒ (
case nodei k (mts@(mt,sep)#tts) tt of
T i u ⇒
Node ls u |

Upi l a r ⇒
Node (ls@[(l,a)]) r) |

(Node rts rt,rsep)#rs ⇒ (
case nodei k (mts@(mt,sep)#rts) rt of
T i u ⇒

Node (ls@(u,rsep)#rs) (Node tts tt) |
Upi l a r ⇒

Node (ls@(l,a)#(r ,rsep)#rs) (Node tts tt))
))

Deletion

All trees are merged with the right neighbour on underflow. Obviously for
the last tree this would not work since it has no right neighbour. Therefore
this tree, as the only exception, is merged with the left neighbour. However
since we it does not make a difference, we treat the situation as if the second
to last tree underflowed.
fun rebalance-last-tree where

rebalance-last-tree k ts t = (
case last ts of (sub,sep) ⇒

rebalance-middle-tree k (butlast ts) sub sep [] t
)

Rather than deleting the minimal key from the right subtree, we remove the
maximal key of the left subtree. This is due to the fact that the last tree
can easily be accessed and the left neighbour is way easier to access than
the right neighbour, it resides in the same pair as the separating element to
be removed.
fun split-max where

split-max k (Node ts t) = (case t of Leaf ⇒ (
let (sub,sep) = last ts in
(Node (butlast ts) sub, sep)

)|
- ⇒
case split-max k t of (sub, sep) ⇒
(rebalance-last-tree k ts sub, sep)
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)

fun del where
del k x Leaf = Leaf |
del k x (Node ts t) = (
case split ts x of
(ls,[]) ⇒
rebalance-last-tree k ls (del k x t)

| (ls,(sub,sep)#rs) ⇒ (
if sep 6= x then

rebalance-middle-tree k ls (del k x sub) sep rs t
else if sub = Leaf then

Node (ls@rs) t
else let (sub-s, max-s) = split-max k sub in

rebalance-middle-tree k ls sub-s max-s rs t
)

)

fun reduce-root where
reduce-root Leaf = Leaf |
reduce-root (Node ts t) = (case ts of
[] ⇒ t |
- ⇒ (Node ts t)

)

fun delete where delete k x t = reduce-root (del k x t)

An invariant for intermediate states at deletion. In particular we allow for
an underflow to 0 subtrees.
fun almost-order where

almost-order k Leaf = True |
almost-order k (Node ts t) = (
(length ts ≤ 2∗k) ∧
(∀ s ∈ set (subtrees ts). order k s) ∧
order k t

)

A recursive property of the "spine" we want to walk along for splitting off
the maximum of the left subtree.
fun nonempty-lasttreebal where

nonempty-lasttreebal Leaf = True |
nonempty-lasttreebal (Node ts t) = (
(∃ ls tsub tsep. ts = (ls@[(tsub,tsep)]) ∧ height tsub = height t) ∧
nonempty-lasttreebal t

)
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3.6 Proofs of functional correctness
lemma split-set:

assumes split ts z = (ls,(a,b)#rs)
shows (a,b) ∈ set ts

and (x,y) ∈ set ls =⇒ (x,y) ∈ set ts
and (x,y) ∈ set rs =⇒ (x,y) ∈ set ts
and set ls ∪ set rs ∪ {(a,b)} = set ts
and ∃ x ∈ set ts. b ∈ Basic-BNFs.snds x

using split-conc assms by fastforce+

lemma split-length:
split ts x = (ls, rs) =⇒ length ls + length rs = length ts
by (auto dest: split-conc)

Isin proof
thm isin-simps

lemma sorted-ConsD: sorted-less (y # xs) =⇒ x ≤ y =⇒ x /∈ set xs
by (auto simp: sorted-Cons-iff )

lemma sorted-snocD: sorted-less (xs @ [y]) =⇒ y ≤ x =⇒ x /∈ set xs
by (auto simp: sorted-snoc-iff )

lemmas isin-simps2 = sorted-lems sorted-ConsD sorted-snocD

lemma isin-sorted: sorted-less (xs@a#ys) =⇒
(x ∈ set (xs@a#ys)) = (if x < a then x ∈ set xs else x ∈ set (a#ys))
by (auto simp: isin-simps2 )

lemma isin-sorted-split:
assumes sorted-less (inorder (Node ts t))

and split ts x = (ls, rs)
shows x ∈ set (inorder (Node ts t)) = (x ∈ set (inorder-list rs @ inorder t))

proof (cases ls)
case Nil
then have ts = rs

using assms by (auto dest!: split-conc)
then show ?thesis by simp

next
case Cons
then obtain ls ′ sub sep where ls-tail-split: ls = ls ′ @ [(sub,sep)]

by (metis list.simps(3 ) rev-exhaust surj-pair)
then have sep < x

using split-req(2 )[of ts x ls ′ sub sep rs]
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using sorted-inorder-separators[OF assms(1 )]
using assms
by simp

then show ?thesis
using assms(1 ) split-conc[OF assms(2 )] ls-tail-split
using isin-sorted[of inorder-list ls ′ @ inorder sub sep inorder-list rs @ inorder

t x]
by auto

qed

lemma isin-sorted-split-right:
assumes split ts x = (ls, (sub,sep)#rs)

and sorted-less (inorder (Node ts t))
and sep 6= x

shows x ∈ set (inorder-list ((sub,sep)#rs) @ inorder t) = (x ∈ set (inorder sub))
proof −

from assms have x < sep
proof −

from assms have sorted-less (separators ts)
by (simp add: sorted-inorder-separators)

then show ?thesis
using split-req(3 )
using assms
by fastforce

qed
moreover have sorted-less (inorder-list ((sub,sep)#rs) @ inorder t)

using assms sorted-wrt-append split-conc
by fastforce

ultimately show ?thesis
using isin-sorted[of inorder sub sep inorder-list rs @ inorder t x]
by simp

qed

theorem isin-set-inorder : sorted-less (inorder t) =⇒ isin t x = (x ∈ set (inorder
t))
proof(induction t x rule: isin.induct)

case (2 ts t x)
then obtain ls rs where list-split: split ts x = (ls, rs)

by (meson surj-pair)
then have list-conc: ts = ls @ rs

using split-conc by auto
show ?case
proof (cases rs)

case Nil
then have isin (Node ts t) x = isin t x

by (simp add: list-split)
also have . . . = (x ∈ set (inorder t))

using 2 .IH (1 ) list-split Nil
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using 2 .prems sorted-inorder-induct-last by auto
also have . . . = (x ∈ set (inorder (Node ts t)))

using isin-sorted-split[of ts t x ls rs]
using 2 .prems list-split list-conc Nil
by simp

finally show ?thesis .
next

case (Cons a list)
then obtain sub sep where a-split: a = (sub,sep)

by (cases a)
then show ?thesis
proof (cases x = sep)

case True
then show ?thesis

using list-conc Cons a-split list-split
by auto

next
case False
then have isin (Node ts t) x = isin sub x

using list-split Cons a-split False
by auto

also have . . . = (x ∈ set (inorder sub))
using 2 .IH (2 )

using 2 .prems False a-split list-conc list-split local.Cons sorted-inorder-induct-subtree
by fastforce

also have . . . = (x ∈ set (inorder (Node ts t)))
using isin-sorted-split[OF 2 .prems list-split]
using isin-sorted-split-right 2 .prems list-split Cons a-split False
by simp

finally show ?thesis .
qed

qed
qed auto

lemma nodei-cases: length xs ≤ k ∨ (∃ ls sub sep rs. split-half xs = (ls,(sub,sep)#rs))
proof −

have ¬ length xs ≤ k =⇒ length xs ≥ 1
by linarith

then show ?thesis
using split-half-not-empty
by blast

qed

lemma root-order-treei: root-order-upi (Suc k) t = root-order (Suc k) (treei t)
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apply (cases t)
apply auto

done

lemma nodei-root-order :
assumes length ts > 0

and length ts ≤ 4∗k+1
and ∀ x ∈ set (subtrees ts). order k x
and order k t

shows root-order-upi k (nodei k ts t)
proof (cases length ts ≤ 2∗k)

case True
then show ?thesis

using assms
by (simp add: nodei.simps)

next
case False
then obtain ls sub sep rs where split-half-ts:

take (length ts div 2 ) ts = ls
drop (length ts div 2 ) ts = (sub,sep)#rs
using split-half-not-empty[of ts]
by auto

then have length-rs: length rs = length ts − (length ts div 2 ) − 1
using length-drop
by (metis One-nat-def add-diff-cancel-right ′ list.size(4 ))

also have . . . ≤ 4∗k − ((4∗k + 1 ) div 2 )
using assms(2 ) by simp

also have . . . = 2∗k
by auto

finally have length rs ≤ 2∗k
by simp

moreover have length rs ≥ k
using False length-rs by simp

moreover have set ((sub,sep)#rs) ⊆ set ts
by (metis split-half-ts(2 ) set-drop-subset)

ultimately have o-r : order k sub order k (Node rs t)
using split-half-ts assms by auto

moreover have length ls ≥ k
using length-take assms split-half-ts False
by auto

moreover have length ls ≤ 2∗k
using assms(2 ) split-half-ts
by auto

ultimately have o-l: order k (Node ls sub)
using set-take-subset assms split-half-ts
by fastforce

from o-r o-l show ?thesis
by (simp add: nodei.simps False split-half-ts)

qed
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lemma nodei-order-helper :
assumes length ts ≥ k

and length ts ≤ 4∗k+1
and ∀ x ∈ set (subtrees ts). order k x
and order k t

shows case (nodei k ts t) of T i t ⇒ order k t | - ⇒ True
proof (cases length ts ≤ 2∗k)

case True
then show ?thesis

using assms
by (simp add: nodei.simps)

next
case False
then obtain sub sep rs where

drop (length ts div 2 ) ts = (sub,sep)#rs
using split-half-not-empty[of ts]
by auto

then show ?thesis
using assms by (simp add: nodei.simps)

qed

lemma nodei-order :
assumes length ts ≥ k

and length ts ≤ 4∗k+1
and ∀ x ∈ set (subtrees ts). order k x
and order k t

shows order-upi k (nodei k ts t)

apply(cases nodei k ts t)
using nodei-root-order nodei-order-helper assms apply fastforce
apply (metis nodei-root-order assms(2 ,3 ,4 ) le0 length-greater-0-conv

list.size(3 ) nodei.simps order-upi.simps(2 ) root-order-upi.simps(2 ) upi.distinct(1 ))
done

lemma ins-order :
order k t =⇒ order-upi k (ins k x t)

proof(induction k x t rule: ins.induct)
case (2 k x ts t)
then obtain ls rs where split-res: split ts x = (ls, rs)

by (meson surj-pair)
then have split-app: ls@rs = ts

using split-conc
by simp

show ?case
proof (cases rs)
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case Nil
then have order-upi k (ins k x t)

using 2 split-res
by simp

then show ?thesis
using Nil 2 split-app split-res Nil nodei-order
by (auto split!: upi.splits simp del: nodei.simps)

next
case (Cons a list)
then obtain sub sep where a-prod: a = (sub, sep)

by (cases a)
then show ?thesis
proof (cases x = sep)

case True
then show ?thesis

using 2 a-prod Cons split-res
by simp

next
case False
then have order-upi k (ins k x sub)

using 2 .IH (2 ) 2 .prems a-prod local.Cons split-app split-res by auto
then show ?thesis

using 2 split-app Cons length-append nodei-order a-prod split-res
by (auto split!: upi.splits simp del: nodei.simps simp add: order-impl-root-order)

qed
qed

qed simp

lemma ins-root-order :
assumes root-order k t
shows root-order-upi k (ins k x t)

proof(cases t)
case (Node ts t)
then obtain ls rs where split-res: split ts x = (ls, rs)

by (meson surj-pair)
then have split-app: ls@rs = ts

using split-conc
by fastforce

show ?thesis
proof (cases rs)

case Nil
then have order-upi k (ins k x t) using Node assms split-res

by (simp add: ins-order)
then show ?thesis

using Nil Node split-app split-res assms nodei-root-order
by (auto split!: upi.splits simp del: nodei.simps simp add: order-impl-root-order)
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next
case (Cons a list)
then obtain sub sep where a-prod: a = (sub, sep)

by (cases a)
then show ?thesis
proof (cases x = sep)

case True
then show ?thesis using assms Node a-prod Cons split-res

by simp
next

case False
then have order-upi k (ins k x sub)

using Node a-prod assms ins-order local.Cons split-app by auto
then show ?thesis

using assms split-app Cons length-append Node nodei-root-order a-prod
split-res

by (auto split!: upi.splits simp del: nodei.simps simp add: order-impl-root-order)
qed

qed
qed simp

lemma height-list-split: height-upi (Upi (Node ls a) b (Node rs t)) = height (Node
(ls@(a,b)#rs) t)

by (induction ls) (auto simp add: max.commute)

lemma nodei-height: height-upi (nodei k ts t) = height (Node ts t)
proof(cases length ts ≤ 2∗k)

case False
then obtain ls sub sep rs where

split-half-ts: split-half ts = (ls, (sub, sep) # rs)
by (meson nodei-cases)

then have nodei k ts t = Upi (Node ls (sub)) sep (Node rs t)
using False by simp

then show ?thesis
using split-half-ts
by (metis append-take-drop-id fst-conv height-list-split snd-conv split-half .elims)

qed simp

lemma bal-upi-tree: bal-upi t = bal (treei t)
apply(cases t)
apply auto

done

lemma bal-list-split: bal (Node (ls@(a,b)#rs) t) =⇒ bal-upi (Upi (Node ls a) b
(Node rs t))
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by (auto simp add: image-constant-conv)

lemma nodei-bal:
assumes bal (Node ts t)
shows bal-upi (nodei k ts t)
using assms

proof(cases length ts ≤ 2∗k)
case False
then obtain ls sub sep rs where

split-half-ts: split-half ts = (ls, (sub, sep) # rs)
by (meson nodei-cases)

then have bal (Node (ls@(sub,sep)#rs) t)
using assms append-take-drop-id[where n=length ts div 2 and xs=ts]
by auto

then show ?thesis
using split-half-ts assms False
by (auto simp del: bal.simps bal-upi.simps dest!: bal-list-split[of ls sub sep rs t])

qed simp

lemma height-upi-merge: height-upi (Upi l a r) = height t =⇒ height (Node
(ls@(t,x)#rs) tt) = height (Node (ls@(l,a)#(r ,x)#rs) tt)

by simp

lemma ins-height: height-upi (ins k x t) = height t
proof(induction k x t rule: ins.induct)

case (2 k x ts t)
then obtain ls rs where split-list: split ts x = (ls,rs)

by (meson surj-pair)
then have split-append: ls@rs = ts

using split-conc
by auto

then show ?case
proof (cases rs)

case Nil
then have height-sub: height-upi (ins k x t) = height t

using 2 by (simp add: split-list)
then show ?thesis
proof (cases ins k x t)

case (T i a)
then have height (Node ts t) = height (Node ts a)

using height-sub
by simp

then show ?thesis
using T i Nil split-list split-append
by simp

next
case (Upi l a r)
then have height (Node ls t) = height (Node (ls@[(l,a)]) r)

using height-btree-order height-sub by (induction ls) auto
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then show ?thesis using 2 Nil split-list Upi split-append
by (simp del: nodei.simps add: nodei-height)

qed
next

case (Cons a list)
then obtain sub sep where a-split: a = (sub,sep)

by (cases a)
then show ?thesis
proof (cases x = sep)

case True
then show ?thesis

using Cons a-split 2 split-list
by (simp del: height-btree.simps)

next
case False
then have height-sub: height-upi (ins k x sub) = height sub

by (metis 2 .IH (2 ) a-split Cons split-list)
then show ?thesis
proof (cases ins k x sub)

case (T i a)
then have height a = height sub

using height-sub by auto
then have height (Node (ls@(sub,sep)#rs) t) = height (Node (ls@(a,sep)#rs)

t)
by auto

then show ?thesis
using T i height-sub False Cons 2 split-list a-split split-append
by (auto simp add: image-Un max.commute finite-set-ins-swap)

next
case (Upi l a r)

then have height (Node (ls@(sub,sep)#list) t) = height (Node (ls@(l,a)#(r ,sep)#list)
t)

using height-upi-merge height-sub
by fastforce

then show ?thesis
using Upi False Cons 2 split-list a-split split-append

by (auto simp del: nodei.simps simp add: nodei-height image-Un max.commute
finite-set-ins-swap)

qed
qed

qed
qed simp

lemma ins-bal: bal t =⇒ bal-upi (ins k x t)
proof(induction k x t rule: ins.induct)

case (2 k x ts t)
then obtain ls rs where split-res: split ts x = (ls, rs)
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by (meson surj-pair)
then have split-app: ls@rs = ts

using split-conc
by fastforce

show ?case
proof (cases rs)

case Nil
then show ?thesis
proof (cases ins k x t)

case (T i a)
then have bal (Node ls a) unfolding bal.simps

by (metis 2 .IH (1 ) 2 .prems append-Nil2 bal.simps(2 ) bal-upi.simps(1 )
height-upi.simps(1 ) ins-height local.Nil split-app split-res)

then show ?thesis
using Nil T i 2 split-res
by simp

next
case (Upi l a r)
then have
(∀ x∈set (subtrees (ls@[(l,a)])). bal x)
(∀ x∈set (subtrees ls). height r = height x)
using 2 Upi Nil split-res split-app
by simp-all (metis height-upi.simps(2 ) ins-height max-def )

then show ?thesis unfolding ins.simps
using Upi Nil 2 split-res
by (simp del: nodei.simps add: nodei-bal)

qed
next

case (Cons a list)
then obtain sub sep where a-prod: a = (sub, sep) by (cases a)
then show ?thesis
proof (cases x = sep)

case True
then show ?thesis

using a-prod 2 split-res Cons by simp
next

case False
then have bal-upi (ins k x sub) using 2 split-res

using a-prod local.Cons split-app by auto
show ?thesis
proof (cases ins k x sub)

case (T i x1 )
then have height x1 = height t
by (metis 2 .prems a-prod add-diff-cancel-left ′ bal-split-left(1 ) bal-split-left(2 )

height-bal-tree height-upi.simps(1 ) ins-height local.Cons plus-1-eq-Suc split-app)
then show ?thesis

using split-app Cons T i 2 split-res a-prod
by auto
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next
case (Upi l a r)

then have
∀ x ∈ set (subtrees (ls@(l,a)#(r ,sep)#list)). bal x
using Upi split-app Cons 2 ‹bal-upi (ins k x sub)› by auto
moreover have ∀ x ∈ set (subtrees (ls@(l,a)#(r ,sep)#list)). height x =

height t
using False Upi split-app Cons 2 ‹bal-upi (ins k x sub)› ins-height split-res

a-prod
apply auto
by (metis height-upi.simps(2 ) sup.idem sup-nat-def )

ultimately show ?thesis using Upi Cons 2 split-res a-prod
by (simp del: nodei.simps add: nodei-bal)

qed
qed

qed
qed simp

lemma nodei-inorder : inorder-upi (nodei k ts t) = inorder (Node ts t)
apply(cases length ts ≤ 2∗k)
apply (auto split!: list.splits)

supply R = sym[OF append-take-drop-id, of map - ts (length ts div 2 )]
thm R
apply(subst R)
apply (simp del: append-take-drop-id add: take-map drop-map)
done

corollary nodei-inorder-simps:
nodei k ts t = T i t ′ =⇒ inorder t ′ = inorder (Node ts t)
nodei k ts t = Upi l a r =⇒ inorder l @ a # inorder r = inorder (Node ts t)
apply (metis inorder-upi.simps(1 ) nodei-inorder)

by (metis append-Cons inorder-upi.simps(2 ) nodei-inorder self-append-conv2 )

lemma ins-sorted-inorder : sorted-less (inorder t) =⇒ (inorder-upi (ins k (x::( ′a::linorder))
t)) = ins-list x (inorder t)

apply(induction k x t rule: ins.induct)
using split-axioms apply (auto split!: prod.splits list.splits upi.splits simp del:

nodei.simps
simp add: nodei-inorder nodei-inorder-simps)

oops
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lemma ins-list-split:
assumes split ts x = (ls, rs)

and sorted-less (inorder (Node ts t))
shows ins-list x (inorder (Node ts t)) = inorder-list ls @ ins-list x (inorder-list

rs @ inorder t)
proof (cases ls)

case Nil
then show ?thesis

using assms by (auto dest!: split-conc)
next

case Cons
then obtain ls ′ sub sep where ls-tail-split: ls = ls ′ @ [(sub,sep)]

by (metis list.distinct(1 ) rev-exhaust surj-pair)
moreover have sep < x

using split-req(2 )[of ts x ls ′ sub sep rs]
using sorted-inorder-separators
using assms(1 ) assms(2 ) ls-tail-split
by auto

moreover have sorted-less (inorder-list ls)
using assms sorted-wrt-append split-conc by fastforce

ultimately show ?thesis using assms(2 ) split-conc[OF assms(1 )]
using ins-list-sorted[of inorder-list ls ′ @ inorder sub sep]
by auto

qed

lemma ins-list-split-right-general:
assumes split ts x = (ls, (sub,sep)#rs)

and sorted-less (inorder-list ts)
and sep 6= x

shows ins-list x (inorder-list ((sub,sep)#rs) @ zs) = ins-list x (inorder sub) @
sep # inorder-list rs @ zs
proof −

from assms have x < sep
proof −

from assms have sorted-less (separators ts)
by (simp add: sorted-inorder-list-separators)

then show ?thesis
using split-req(3 )
using assms
by fastforce

qed
moreover have sorted-less (inorder-pair (sub,sep))

by (metis (no-types, lifting) assms(1 ) assms(2 ) concat.simps(2 ) concat-append
list.simps(9 ) map-append sorted-wrt-append split-conc)

ultimately show ?thesis
using ins-list-sorted[of inorder sub sep]
by auto
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qed

corollary ins-list-split-right:
assumes split ts x = (ls, (sub,sep)#rs)

and sorted-less (inorder (Node ts t))
and sep 6= x

shows ins-list x (inorder-list ((sub,sep)#rs) @ inorder t) = ins-list x (inorder
sub) @ sep # inorder-list rs @ inorder t

using assms sorted-wrt-append split.ins-list-split-right-general split-axioms by
fastforce

lemma ins-list-idem-eq-isin: sorted-less xs =⇒ x ∈ set xs ←→ (ins-list x xs = xs)
apply(induction xs)
apply auto

done

lemma ins-list-contains-idem: [[sorted-less xs; x ∈ set xs]] =⇒ (ins-list x xs = xs)
using ins-list-idem-eq-isin by auto

declare nodei.simps [simp del]
declare nodei-inorder [simp add]

lemma ins-inorder : sorted-less (inorder t) =⇒ (inorder-upi (ins k x t)) = ins-list
x (inorder t)
proof(induction k x t rule: ins.induct)

case (1 k x)
then show ?case by auto

next
case (2 k x ts t)
then obtain ls rs where list-split: split ts x = (ls,rs)

by (cases split ts x)
then have list-conc: ts = ls@rs

using split.split-conc split-axioms by blast
then show ?case
proof (cases rs)

case Nil
then show ?thesis
proof (cases ins k x t)

case (T i a)
then have IH :inorder a = ins-list x (inorder t)

using 2 .IH (1 ) 2 .prems list-split local.Nil sorted-inorder-induct-last
by auto

have inorder-upi (ins k x (Node ts t)) = inorder-list ls @ inorder a
using list-split T i Nil by (auto simp add: list-conc)
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also have . . . = inorder-list ls @ (ins-list x (inorder t))
by (simp add: IH )

also have . . . = ins-list x (inorder (Node ts t))
using ins-list-split
using 2 .prems list-split Nil by auto

finally show ?thesis .
next

case (Upi l a r)
then have IH :inorder-upi (Upi l a r) = ins-list x (inorder t)
using 2 .IH (1 ) 2 .prems list-split local.Nil sorted-inorder-induct-last by auto

have inorder-upi (ins k x (Node ts t)) = inorder-list ls @ inorder-upi (Upi l
a r)

using list-split Upi Nil by (auto simp add: list-conc)
also have . . . = inorder-list ls @ ins-list x (inorder t)

using IH by simp
also have . . . = ins-list x (inorder (Node ts t))

using ins-list-split
using 2 .prems list-split local.Nil by auto

finally show ?thesis .
qed

next
case (Cons h list)
then obtain sub sep where h-split: h = (sub,sep)

by (cases h)

then have sorted-inorder-sub: sorted-less (inorder sub)
using 2 .prems list-conc local.Cons sorted-inorder-induct-subtree
by fastforce

then show ?thesis
proof(cases x = sep)

case True
then have x ∈ set (inorder (Node ts t))

using list-conc h-split Cons by simp
then have ins-list x (inorder (Node ts t)) = inorder (Node ts t)

using 2 .prems ins-list-contains-idem by blast
also have . . . = inorder-upi (ins k x (Node ts t))

using list-split h-split Cons True by auto
finally show ?thesis by simp

next
case False
then show ?thesis
proof (cases ins k x sub)

case (T i a)
then have IH :inorder a = ins-list x (inorder sub)

using 2 .IH (2 ) 2 .prems list-split Cons sorted-inorder-sub h-split False
by auto

have inorder-upi (ins k x (Node ts t)) = inorder-list ls @ inorder a @ sep
# inorder-list list @ inorder t
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using h-split False list-split T i Cons by simp
also have . . . = inorder-list ls @ ins-list x (inorder sub) @ sep # inorder-list

list @ inorder t
using IH by simp

also have . . . = ins-list x (inorder (Node ts t))
using ins-list-split ins-list-split-right
using list-split 2 .prems Cons h-split False by auto

finally show ?thesis .
next

case (Upi l a r)
then have IH :inorder-upi (Upi l a r) = ins-list x (inorder sub)

using 2 .IH (2 ) False h-split list-split local.Cons sorted-inorder-sub
by auto

have inorder-upi (ins k x (Node ts t)) = inorder-list ls @ inorder l @ a #
inorder r @ sep # inorder-list list @ inorder t

using h-split False list-split Upi Cons by simp
also have . . . = inorder-list ls @ ins-list x (inorder sub) @ sep # inorder-list

list @ inorder t
using IH by simp

also have . . . = ins-list x (inorder (Node ts t))
using ins-list-split ins-list-split-right
using list-split 2 .prems Cons h-split False by auto

finally show ?thesis .
qed

qed
qed

qed

declare nodei.simps [simp add]
declare nodei-inorder [simp del]

thm ins.induct
thm btree.induct

lemma treei-bal: bal-upi u =⇒ bal (treei u)
apply(cases u)
apply(auto)

done

lemma treei-order : [[k > 0 ; root-order-upi k u]] =⇒ root-order k (treei u)
apply(cases u)
apply(auto simp add: order-impl-root-order)

done

lemma treei-inorder : inorder-upi u = inorder (treei u)
apply (cases u)
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apply auto
done

lemma insert-bal: bal t =⇒ bal (insert k x t)
using ins-bal
by (simp add: treei-bal)

lemma insert-order : [[k > 0 ; root-order k t]] =⇒ root-order k (insert k x t)
using ins-root-order
by (simp add: treei-order)

lemma insert-inorder : sorted-less (inorder t) =⇒ inorder (insert k x t) = ins-list
x (inorder t)

using ins-inorder
by (simp add: treei-inorder)

Deletion proofs
thm list.simps

lemma rebalance-middle-tree-height:
assumes height t = height sub

and case rs of (rsub,rsep) # list ⇒ height rsub = height t | [] ⇒ True
shows height (rebalance-middle-tree k ls sub sep rs t) = height (Node (ls@(sub,sep)#rs)

t)
proof (cases height t)

case 0
then have t = Leaf sub = Leaf using height-Leaf assms by auto
then show ?thesis by simp

next
case (Suc nat)
then obtain tts tt where t-node: t = Node tts tt

using height-Leaf by (cases t) simp
then obtain mts mt where sub-node: sub = Node mts mt

using assms by (cases sub) simp
then show ?thesis
proof (cases length mts ≥ k ∧ length tts ≥ k)

case False
then show ?thesis
proof (cases rs)

case Nil
then have height-upi (nodei k (mts@(mt,sep)#tts) tt) = height (Node

(mts@(mt,sep)#tts) tt)
using nodei-height by blast

also have . . . = max (height t) (height sub)
by (metis assms(1 ) height-upi.simps(2 ) height-list-split sub-node t-node)

finally have height-max: height-upi (nodei k (mts @ (mt, sep) # tts) tt) =
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max (height t) (height sub) by simp
then show ?thesis
proof (cases nodei k (mts@(mt,sep)#tts) tt)

case (T i u)
then have height u = max (height t) (height sub) using height-max by

simp
then have height (Node ls u) = height (Node (ls@[(sub,sep)]) t)

by (induction ls) (auto simp add: max.commute)
then show ?thesis using Nil False T i

by (simp add: sub-node t-node)
next

case (Upi l a r)
then have height (Node (ls@[(sub,sep)]) t) = height (Node (ls@[(l,a)]) r)

using assms(1 ) height-max by (induction ls) auto
then show ?thesis

using Upi Nil sub-node t-node by auto
qed

next
case (Cons a list)
then obtain rsub rsep where a-split: a = (rsub, rsep)

by (cases a)
then obtain rts rt where r-node: rsub = Node rts rt

using assms(2 ) Cons height-Leaf Suc by (cases rsub) simp-all

then have height-upi (nodei k (mts@(mt,sep)#rts) rt) = height (Node
(mts@(mt,sep)#rts) rt)

using nodei-height by blast
also have . . . = max (height rsub) (height sub)
by (metis r-node height-upi.simps(2 ) height-list-split max.commute sub-node)
finally have height-max: height-upi (nodei k (mts @ (mt, sep) # rts) rt) =

max (height rsub) (height sub) by simp
then show ?thesis
proof (cases nodei k (mts@(mt,sep)#rts) rt)

case (T i u)
then have height u = max (height rsub) (height sub)

using height-max by simp
then show ?thesis

using T i False Cons r-node a-split sub-node t-node by auto
next

case (Upi l a r)
then have height-max: max (height l) (height r) = max (height rsub) (height

sub)
using height-max by auto

then show ?thesis
using Cons a-split r-node Upi sub-node t-node by auto

qed
qed

qed (simp add: sub-node t-node)
qed
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lemma rebalance-last-tree-height:
assumes height t = height sub

and ts = list@[(sub,sep)]
shows height (rebalance-last-tree k ts t) = height (Node ts t)
using rebalance-middle-tree-height assms by auto

lemma split-max-height:
assumes split-max k t = (sub,sep)

and nonempty-lasttreebal t
and t 6= Leaf

shows height sub = height t
using assms

proof(induction t arbitrary: k sub sep)
case Node1 : (Node tts tt)
then obtain ls tsub tsep where tts-split: tts = ls@[(tsub,tsep)] by auto
then show ?case
proof (cases tt)

case Leaf
then have height (Node (ls@[(tsub,tsep)]) tt) = max (height (Node ls tsub))

(Suc (height tt))
using height-btree-last height-btree-order by metis

moreover have split-max k (Node tts tt) = (Node ls tsub, tsep)
using Leaf Node1 tts-split by auto

ultimately show ?thesis
using Leaf Node1 height-Leaf max-def by auto

next
case Node2 : (Node l a)
then obtain subsub subsep where sub-split: split-max k tt = (subsub,subsep)

by (cases split-max k tt)
then have height subsub = height tt using Node1 Node2 by auto
moreover have split-max k (Node tts tt) = (rebalance-last-tree k tts subsub,

subsep)
using Node1 Node2 tts-split sub-split by auto

ultimately show ?thesis using rebalance-last-tree-height Node1 Node2 by auto
qed

qed auto

lemma order-bal-nonempty-lasttreebal: [[k > 0 ; root-order k t; bal t]] =⇒ nonempty-lasttreebal
t
proof(induction k t rule: order .induct)

case (2 k ts t)
then have length ts > 0 by auto
then obtain ls tsub tsep where ts-split: ts = (ls@[(tsub,tsep)])

by (metis eq-fst-iff length-greater-0-conv snoc-eq-iff-butlast)
moreover have height tsub = height t

using 2 .prems(3 ) ts-split by auto
moreover have nonempty-lasttreebal t using 2 order-impl-root-order by auto
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ultimately show ?case by simp
qed simp

lemma bal-sub-height: bal (Node (ls@a#rs) t) =⇒ (case rs of []⇒ True | (sub,sep)#-
⇒ height sub = height t)

by (cases rs) (auto)

lemma del-height: [[k > 0 ; root-order k t; bal t]] =⇒ height (del k x t) = height t
proof(induction k x t rule: del.induct)

case (2 k x ts t)
then obtain ls list where list-split: split ts x = (ls, list) by (cases split ts x)
then show ?case
proof(cases list)

case Nil
then have height (del k x t) = height t

using 2 list-split order-bal-nonempty-lasttreebal
by (simp add: order-impl-root-order)

moreover obtain lls sub sep where ls = lls@[(sub,sep)]
using split-conc 2 list-split Nil

by (metis append-Nil2 nonempty-lasttreebal.simps(2 ) order-bal-nonempty-lasttreebal)
moreover have Node ls t = Node ts t using split-conc Nil list-split by auto
ultimately show ?thesis

using rebalance-last-tree-height 2 list-split Nil split-conc
by (auto simp add: max.assoc sup-nat-def max-def )

next
case (Cons a rs)
then have rs-height: case rs of [] ⇒ True | (rsub,rsep)#- ⇒ height rsub =

height t
using 2 .prems(3 ) bal-sub-height list-split split-conc by blast

from Cons obtain sub sep where a-split: a = (sub,sep) by (cases a)
consider (sep-n-x) sep 6= x |
(sep-x-Leaf ) sep = x ∧ sub = Leaf |
(sep-x-Node) sep = x ∧ (∃ ts t. sub = Node ts t)
using btree.exhaust by blast

then show ?thesis
proof cases

case sep-n-x
have height-t-sub: height t = height sub

using 2 .prems(3 ) a-split list-split local.Cons split.split-set(1 ) split-axioms
by fastforce

have height-t-del: height (del k x sub) = height t
by (metis 2 .IH (2 ) 2 .prems(1 ) 2 .prems(2 ) 2 .prems(3 ) a-split bal.simps(2 )

list-split local.Cons order-impl-root-order root-order .simps(2 ) sep-n-x some-child-sub(1 )
split-set(1 ))

then have height (rebalance-middle-tree k ls (del k x sub) sep rs t) = height
(Node (ls@((del k x sub),sep)#rs) t)

using rs-height rebalance-middle-tree-height by simp
also have . . . = height (Node (ls@(sub,sep)#rs) t)

using height-t-sub 2 .prems height-t-del
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by auto
also have . . . = height (Node ts t)

using 2 a-split sep-n-x list-split Cons split-set(1 ) split-conc
by auto

finally show ?thesis
using sep-n-x Cons a-split list-split 2
by simp

next
case sep-x-Leaf
then have height (Node ts t) = height (Node (ls@rs) t)

using bal-split-last(2 ) 2 .prems(3 ) a-split list-split Cons split-conc
by metis

then show ?thesis
using a-split list-split Cons sep-x-Leaf 2 by auto

next
case sep-x-Node
then obtain sts st where sub-node: sub = Node sts st by blast
obtain sub-s max-s where sub-split: split-max k sub = (sub-s, max-s)

by (cases split-max k sub)
then have height sub-s = height t
by (metis 2 .prems(1 ) 2 .prems(2 ) 2 .prems(3 ) a-split bal.simps(2 ) btree.distinct(1 )

list-split Cons order-bal-nonempty-lasttreebal order-impl-root-order root-order .simps(2 )
some-child-sub(1 ) split-set(1 ) split-max-height sub-node)

then have height (rebalance-middle-tree k ls sub-s max-s rs t) = height (Node
(ls@(sub-s,sep)#rs) t)

using rs-height rebalance-middle-tree-height by simp
also have . . . = height (Node ts t)

using 2 a-split sep-x-Node list-split Cons split-set(1 ) ‹height sub-s = height
t›

by (auto simp add: split-conc[of ts])
finally show ?thesis using sep-x-Node Cons a-split list-split 2 sub-node

sub-split
by auto

qed
qed

qed simp

lemma rebalance-middle-tree-inorder :
assumes height t = height sub

and case rs of (rsub,rsep) # list ⇒ height rsub = height t | [] ⇒ True
shows inorder (rebalance-middle-tree k ls sub sep rs t) = inorder (Node (ls@(sub,sep)#rs)

t)
apply(cases sub; cases t)
using assms

apply (auto
split!: btree.splits upi.splits list.splits
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simp del: nodei.simps
simp add: nodei-inorder-simps
)

done

lemma rebalance-last-tree-inorder :
assumes height t = height sub

and ts = list@[(sub,sep)]
shows inorder (rebalance-last-tree k ts t) = inorder (Node ts t)
using rebalance-middle-tree-inorder assms by auto

lemma butlast-inorder-app-id: xs = xs ′ @ [(sub,sep)] =⇒ inorder-list xs ′ @ inorder
sub @ [sep] = inorder-list xs

by simp

lemma split-max-inorder :
assumes nonempty-lasttreebal t

and t 6= Leaf
shows inorder-pair (split-max k t) = inorder t
using assms

proof (induction k t rule: split-max.induct)
case (1 k ts t)
then show ?case
proof (cases t)

case Leaf
then have ts = butlast ts @ [last ts]

using 1 .prems(1 ) by auto
moreover obtain sub sep where last ts = (sub,sep)

by fastforce
ultimately show ?thesis

using Leaf
apply (auto split!: prod.splits btree.splits)
by (simp add: butlast-inorder-app-id)

next
case (Node tts tt)
then have IH : inorder-pair (split-max k t) = inorder t

using 1 .IH 1 .prems(1 ) by auto
obtain sub sep where split-sub-sep: split-max k t = (sub,sep)

by fastforce
then have height-sub: height sub = height t

by (metis 1 .prems(1 ) Node btree.distinct(1 ) nonempty-lasttreebal.simps(2 )
split-max-height)

have inorder-pair (split-max k (Node ts t)) = inorder (rebalance-last-tree k ts
sub) @ [sep]

using Node 1 split-sub-sep by auto
also have . . . = inorder-list ts @ inorder sub @ [sep]

using rebalance-last-tree-inorder height-sub 1 .prems
by (auto simp del: rebalance-last-tree.simps)

also have . . . = inorder (Node ts t)
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using IH split-sub-sep by simp
finally show ?thesis .

qed
qed simp

lemma height-bal-subtrees-merge: [[height (Node as a) = height (Node bs b); bal
(Node as a); bal (Node bs b)]]
=⇒ ∀ x ∈ set (subtrees as) ∪ {a}. height x = height b
by (metis Suc-inject Un-iff bal.simps(2 ) height-bal-tree singletonD)

lemma bal-list-merge:
assumes bal-upi (Upi (Node as a) x (Node bs b))
shows bal (Node (as@(a,x)#bs) b)

proof −
have ∀ x∈set (subtrees (as @ (a, x) # bs)). bal x

using subtrees-split assms by auto
moreover have bal b

using assms by auto
moreover have ∀ x∈set (subtrees as) ∪ {a} ∪ set (subtrees bs). height x = height

b
using assms height-bal-subtrees-merge
unfolding bal-upi.simps
by blast

ultimately show ?thesis
by auto

qed

lemma nodei-bal-upi:
assumes bal-upi (nodei k ts t)
shows bal (Node ts t)
using assms

proof(cases length ts ≤ 2∗k)
case False
then obtain ls sub sep rs where split-list: split-half ts = (ls, (sub,sep)#rs)

using nodei-cases by blast
then have nodei k ts t = Upi (Node ls sub) sep (Node rs t)

using False by auto
moreover have ts = ls@(sub,sep)#rs

by (metis append-take-drop-id fst-conv local.split-list snd-conv split-half .elims)
ultimately show ?thesis

using bal-list-merge[of ls sub sep rs t] assms
by (simp del: bal.simps bal-upi.simps)

qed simp

lemma nodei-bal-simp: bal-upi (nodei k ts t) = bal (Node ts t)
using nodei-bal nodei-bal-upi by blast

lemma rebalance-middle-tree-bal: bal (Node (ls@(sub,sep)#rs) t) =⇒ bal (rebalance-middle-tree
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k ls sub sep rs t)
proof (cases t)

case t-node: (Node tts tt)
assume assms: bal (Node (ls @ (sub, sep) # rs) t)
then obtain mts mt where sub-node: sub = Node mts mt

by (cases sub) (auto simp add: t-node)
have sub-heights: height sub = height t bal sub bal t

using assms by auto
show ?thesis
proof (cases length mts ≥ k ∧ length tts ≥ k)

case True
then show ?thesis

using t-node sub-node assms
by (auto simp del: bal.simps)

next
case False
then show ?thesis
proof (cases rs)

case Nil
have height-upi (nodei k (mts@(mt,sep)#tts) tt) = height (Node (mts@(mt,sep)#tts)

tt)
using nodei-height by blast

also have . . . = Suc (height tt)
by (metis height-bal-tree height-upi.simps(2 ) height-list-split max.idem

sub-heights(1 ) sub-heights(3 ) sub-node t-node)
also have . . . = height t

using height-bal-tree sub-heights(3 ) t-node by fastforce
finally have height-upi (nodei k (mts@(mt,sep)#tts) tt) = height t by simp
moreover have bal-upi (nodei k (mts@(mt,sep)#tts) tt)
by (metis bal-list-merge bal-upi.simps(2 ) nodei-bal sub-heights(1 ) sub-heights(2 )

sub-heights(3 ) sub-node t-node)
ultimately show ?thesis

apply (cases nodei k (mts@(mt,sep)#tts) tt)
using assms Nil sub-node t-node by auto

next
case (Cons r rs)
then obtain rsub rsep where r-split: r = (rsub,rsep) by (cases r)
then have rsub-height: height rsub = height t bal rsub

using assms Cons by auto
then obtain rts rt where r-node: rsub = (Node rts rt)

apply(cases rsub) using t-node by simp
have height-upi (nodei k (mts@(mt,sep)#rts) rt) = height (Node (mts@(mt,sep)#rts)

rt)
using nodei-height by blast

also have . . . = Suc (height rt)
by (metis Un-iff ‹height rsub = height t› assms bal.simps(2 ) bal-split-last(1 )

height-bal-tree height-upi.simps(2 ) height-list-split list.set-intros(1 ) Cons max.idem
r-node r-split set-append some-child-sub(1 ) sub-heights(1 ) sub-node)

also have . . . = height rsub
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using height-bal-tree r-node rsub-height(2 ) by fastforce
finally have 1 : height-upi (nodei k (mts@(mt,sep)#rts) rt) = height rsub .
moreover have 2 : bal-upi (nodei k (mts@(mt,sep)#rts) rt)

by (metis bal-list-merge bal-upi.simps(2 ) nodei-bal r-node rsub-height(1 )
rsub-height(2 ) sub-heights(1 ) sub-heights(2 ) sub-node)

ultimately show ?thesis
proof (cases nodei k (mts@(mt,sep)#rts) rt)

case (T i u)
then have bal (Node (ls@(u,rsep)#rs) t)

using 1 2 Cons assms t-node subtrees-split sub-heights r-split rsub-height
unfolding bal.simps by (auto simp del: height-btree.simps)

then show ?thesis
using Cons assms t-node sub-node r-split r-node False T i

by (auto simp del: nodei.simps bal.simps)
next

case (Upi l a r)
then have bal (Node (ls@(l,a)#(r ,rsep)#rs) t)

using 1 2 Cons assms t-node subtrees-split sub-heights r-split rsub-height
unfolding bal.simps by (auto simp del: height-btree.simps)

then show ?thesis
using Cons assms t-node sub-node r-split r-node False Upi

by (auto simp del: nodei.simps bal.simps)
qed

qed
qed

qed (simp add: height-Leaf )

lemma rebalance-last-tree-bal: [[bal (Node ts t); ts 6= []]] =⇒ bal (rebalance-last-tree
k ts t)

using rebalance-middle-tree-bal append-butlast-last-id[of ts]
apply(cases last ts)
apply(auto simp del: bal.simps rebalance-middle-tree.simps)
done

lemma split-max-bal:
assumes bal t

and t 6= Leaf
and nonempty-lasttreebal t

shows bal (fst (split-max k t))
using assms

proof(induction k t rule: split-max.induct)
case (1 k ts t)
then show ?case
proof (cases t)

case Leaf
then obtain sub sep where last-split: last ts = (sub,sep)

using 1 by auto
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then have height sub = height t using 1 by auto
then have bal (Node (butlast ts) sub) using 1 last-split by auto
then show ?thesis using 1 Leaf last-split by auto

next
case (Node tts tt)

then obtain sub sep where t-split: split-max k t = (sub,sep) by (cases split-max
k t)

then have height sub = height t using 1 Node
by (metis btree.distinct(1 ) nonempty-lasttreebal.simps(2 ) split-max-height)

moreover have bal sub
using 1 .IH 1 .prems(1 ) 1 .prems(3 ) Node t-split by fastforce

ultimately have bal (Node ts sub)
using 1 t-split Node by auto

then show ?thesis
using rebalance-last-tree-bal t-split Node 1
by (auto simp del: bal.simps rebalance-middle-tree.simps)

qed
qed simp

lemma del-bal:
assumes k > 0

and root-order k t
and bal t

shows bal (del k x t)
using assms

proof(induction k x t rule: del.induct)
case (2 k x ts t)
then obtain ls rs where list-split: split ts x = (ls,rs)

by (cases split ts x)
then show ?case
proof (cases rs)

case Nil
then have bal (del k x t) using 2 list-split

by (simp add: order-impl-root-order)
moreover have height (del k x t) = height t

using 2 del-height by (simp add: order-impl-root-order)
moreover have ts 6= [] using 2 by auto
ultimately have bal (rebalance-last-tree k ts (del k x t))

using 2 Nil order-bal-nonempty-lasttreebal rebalance-last-tree-bal
by simp

then have bal (rebalance-last-tree k ls (del k x t))
using list-split split-conc Nil by fastforce

then show ?thesis
using 2 list-split Nil
by auto

next
case (Cons r rs)
then obtain sub sep where r-split: r = (sub,sep) by (cases r)
then have sub-height: height sub = height t bal sub
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using 2 Cons list-split split-set(1 ) by fastforce+
consider (sep-n-x) sep 6= x |
(sep-x-Leaf ) sep = x ∧ sub = Leaf |
(sep-x-Node) sep = x ∧ (∃ ts t. sub = Node ts t)
using btree.exhaust by blast

then show ?thesis
proof cases

case sep-n-x
then have bal (del k x sub) height (del k x sub) = height sub using sub-height

apply (metis 2 .IH (2 ) 2 .prems(1 ) 2 .prems(2 ) list-split local.Cons or-
der-impl-root-order r-split root-order .simps(2 ) some-child-sub(1 ) split-set(1 ))

by (metis 2 .prems(1 ) 2 .prems(2 ) list-split Cons order-impl-root-order r-split
root-order .simps(2 ) some-child-sub(1 ) del-height split-set(1 ) sub-height(2 ))

moreover have bal (Node (ls@(sub,sep)#rs) t)
using 2 .prems(3 ) list-split Cons r-split split-conc by blast

ultimately have bal (Node (ls@(del k x sub,sep)#rs) t)
using bal-substitute-subtree[of ls sub sep rs t del k x sub] by metis

then have bal (rebalance-middle-tree k ls (del k x sub) sep rs t)
using rebalance-middle-tree-bal[of ls del k x sub sep rs t k] by metis

then show ?thesis
using 2 list-split Cons r-split sep-n-x by auto

next
case sep-x-Leaf
moreover have bal (Node (ls@rs) t)

using bal-split-last(1 ) list-split split-conc r-split
by (metis 2 .prems(3 ) Cons)

ultimately show ?thesis
using 2 list-split Cons r-split by auto

next
case sep-x-Node
then obtain sts st where sub-node: sub = Node sts st by auto
then obtain sub-s max-s where sub-split: split-max k sub = (sub-s, max-s)

by (cases split-max k sub)
then have height sub-s = height sub

using split-max-height
by (metis 2 .prems(1 ) 2 .prems(2 ) btree.distinct(1 ) list-split Cons or-

der-bal-nonempty-lasttreebal order-impl-root-order r-split root-order .simps(2 ) some-child-sub(1 )
split-set(1 ) sub-height(2 ) sub-node)

moreover have bal sub-s
using split-max-bal

by (metis 2 .prems(1 ) 2 .prems(2 ) btree.distinct(1 ) fst-conv list-split local.Cons
order-bal-nonempty-lasttreebal order-impl-root-order r-split root-order .simps(2 ) some-child-sub(1 )
split-set(1 ) sub-height(2 ) sub-node sub-split)

moreover have bal (Node (ls@(sub,sep)#rs) t)
using 2 .prems(3 ) list-split Cons r-split split-conc by blast

ultimately have bal (Node (ls@(sub-s,sep)#rs) t)
using bal-substitute-subtree[of ls sub sep rs t sub-s] by metis

then have bal (Node (ls@(sub-s,max-s)#rs) t)
using bal-substitute-separator by metis
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then have bal (rebalance-middle-tree k ls sub-s max-s rs t)
using rebalance-middle-tree-bal[of ls sub-s max-s rs t k] by metis

then show ?thesis
using 2 list-split Cons r-split sep-x-Node sub-node sub-split by auto

qed
qed

qed simp

lemma rebalance-middle-tree-order :
assumes almost-order k sub

and ∀ s ∈ set (subtrees (ls@rs)). order k s order k t
and case rs of (rsub,rsep) # list ⇒ height rsub = height t | [] ⇒ True
and length (ls@(sub,sep)#rs) ≤ 2∗k
and height sub = height t

shows almost-order k (rebalance-middle-tree k ls sub sep rs t)
proof(cases t)

case Leaf
then have sub = Leaf using height-Leaf assms by auto
then show ?thesis using Leaf assms by auto

next
case t-node: (Node tts tt)
then obtain mts mt where sub-node: sub = Node mts mt

using assms by (cases sub) (auto)
then show ?thesis
proof(cases length mts ≥ k ∧ length tts ≥ k)

case True
then have order k sub using assms

by (simp add: sub-node)
then show ?thesis

using True t-node sub-node assms by auto
next

case False
then show ?thesis
proof (cases rs)

case Nil
have order-upi k (nodei k (mts@(mt,sep)#tts) tt)

using nodei-order [of k mts@(mt,sep)#tts tt] assms(1 ,3 ) t-node sub-node
by (auto simp del: order-upi.simps nodei.simps)

then show ?thesis
apply(cases nodei k (mts@(mt,sep)#tts) tt)
using assms t-node sub-node False Nil apply (auto simp del: nodei.simps)
done

next
case (Cons r rs)
then obtain rsub rsep where r-split: r = (rsub,rsep) by (cases r)
then have rsub-height: height rsub = height t

using assms Cons by auto
then obtain rts rt where r-node: rsub = (Node rts rt)
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apply(cases rsub) using t-node by simp
have order-upi k (nodei k (mts@(mt,sep)#rts) rt)

using nodei-order [of k mts@(mt,sep)#rts rt] assms(1 ,2 ) t-node sub-node
r-node r-split Cons

by (auto simp del: order-upi.simps nodei.simps)
then show ?thesis

apply(cases nodei k (mts@(mt,sep)#rts) rt)
using assms t-node sub-node False Cons r-split r-node apply (auto simp

del: nodei.simps)
done

qed
qed

qed

lemma rebalance-middle-tree-last-order :
assumes almost-order k t

and ∀ s ∈ set (subtrees (ls@(sub,sep)#rs)). order k s
and rs = []
and length (ls@(sub,sep)#rs) ≤ 2∗k
and height sub = height t

shows almost-order k (rebalance-middle-tree k ls sub sep rs t)
proof (cases t)

case Leaf
then have sub = Leaf using height-Leaf assms by auto
then show ?thesis using Leaf assms by auto

next
case t-node: (Node tts tt)
then obtain mts mt where sub-node: sub = Node mts mt

using assms by (cases sub) (auto)
then show ?thesis
proof(cases length mts ≥ k ∧ length tts ≥ k)

case True
then have order k sub using assms

by (simp add: sub-node)
then show ?thesis

using True t-node sub-node assms by auto
next

case False
have order-upi k (nodei k (mts@(mt,sep)#tts) tt)

using nodei-order [of k mts@(mt,sep)#tts tt] assms t-node sub-node
by (auto simp del: order-upi.simps nodei.simps)

then show ?thesis
apply(cases nodei k (mts@(mt,sep)#tts) tt)
using assms t-node sub-node False Nil apply (auto simp del: nodei.simps)
done

qed
qed
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lemma rebalance-last-tree-order :
assumes ts = ls@[(sub,sep)]

and ∀ s ∈ set (subtrees (ts)). order k s almost-order k t
and length ts ≤ 2∗k
and height sub = height t

shows almost-order k (rebalance-last-tree k ts t)
using rebalance-middle-tree-last-order assms by auto

lemma split-max-order :
assumes order k t

and t 6= Leaf
and nonempty-lasttreebal t

shows almost-order k (fst (split-max k t))
using assms

proof(induction k t rule: split-max.induct)
case (1 k ts t)
then obtain ls sub sep where ts-not-empty: ts = ls@[(sub,sep)]

by auto
then show ?case
proof (cases t)

case Leaf
then show ?thesis using ts-not-empty 1 by auto

next
case (Node)
then obtain s-sub s-max where sub-split: split-max k t = (s-sub, s-max)

by (cases split-max k t)
moreover have height sub = height s-sub

by (metis 1 .prems(3 ) Node Pair-inject append1-eq-conv btree.distinct(1 )
nonempty-lasttreebal.simps(2 ) split-max-height sub-split ts-not-empty)

ultimately have almost-order k (rebalance-last-tree k ts s-sub)
using rebalance-last-tree-order [of ts ls sub sep k s-sub]

1 ts-not-empty Node sub-split
by force

then show ?thesis
using Node 1 sub-split by auto

qed
qed simp

lemma del-order :
assumes k > 0

and root-order k t
and bal t

shows almost-order k (del k x t)
using assms

proof (induction k x t rule: del.induct)
case (2 k x ts t)
then obtain ls list where list-split: split ts x = (ls, list) by (cases split ts x)
then show ?case
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proof (cases list)
case Nil
then have almost-order k (del k x t) using 2 list-split

by (simp add: order-impl-root-order)
moreover obtain lls lsub lsep where ls-split: ls = lls@[(lsub,lsep)]

using 2 Nil list-split
by (metis append-Nil2 nonempty-lasttreebal.simps(2 ) order-bal-nonempty-lasttreebal

split-conc)
moreover have height t = height (del k x t) using del-height 2

by (simp add: order-impl-root-order)
moreover have length ls = length ts

using Nil list-split
by (auto dest: split-length)

ultimately have almost-order k (rebalance-last-tree k ls (del k x t))
using rebalance-last-tree-order [of ls lls lsub lsep k del k x t]
by (metis 2 .prems(2 ) 2 .prems(3 ) Un-iff append-Nil2 bal.simps(2 ) list-split

Nil root-order .simps(2 ) singletonI split-conc subtrees-split)
then show ?thesis

using 2 list-split Nil by auto
next

case (Cons r rs)

from Cons obtain sub sep where r-split: r = (sub,sep) by (cases r)

have inductive-help:
case rs of [] ⇒ True | (rsub,rsep)#- ⇒ height rsub = height t
∀ s∈set (subtrees (ls @ rs)). order k s
Suc (length (ls @ rs)) ≤ 2 ∗ k
order k t
using Cons r-split 2 .prems list-split split-set
by (auto dest: split-conc split!: list.splits)

consider (sep-n-x) sep 6= x |
(sep-x-Leaf ) sep = x ∧ sub = Leaf |
(sep-x-Node) sep = x ∧ (∃ ts t. sub = Node ts t)
using btree.exhaust by blast

then show ?thesis
proof cases

case sep-n-x
then have almost-order k (del k x sub) using 2 list-split Cons r-split or-

der-impl-root-order
by (metis bal.simps(2 ) root-order .simps(2 ) some-child-sub(1 ) split-set(1 ))

moreover have height (del k x sub) = height t
by (metis 2 .prems(1 ) 2 .prems(2 ) 2 .prems(3 ) bal.simps(2 ) list-split Cons or-

der-impl-root-order r-split root-order .simps(2 ) some-child-sub(1 ) del-height split-set(1 ))
ultimately have almost-order k (rebalance-middle-tree k ls (del k x sub) sep

rs t)
using rebalance-middle-tree-order [of k del k x sub ls rs t sep]
using inductive-help
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using Cons r-split sep-n-x list-split by auto
then show ?thesis using 2 Cons r-split sep-n-x list-split by auto

next
case sep-x-Leaf
then have almost-order k (Node (ls@rs) t) using inductive-help by auto
then show ?thesis using 2 Cons r-split sep-x-Leaf list-split by auto

next
case sep-x-Node
then obtain sts st where sub-node: sub = Node sts st by auto
then obtain sub-s max-s where sub-split: split-max k sub = (sub-s, max-s)

by (cases split-max k sub)
then have height sub-s = height t using split-max-height
by (metis 2 .prems(1 ) 2 .prems(2 ) 2 .prems(3 ) bal.simps(2 ) btree.distinct(1 )

list-split Cons order-bal-nonempty-lasttreebal order-impl-root-order r-split root-order .simps(2 )
some-child-sub(1 ) split-set(1 ) sub-node)

moreover have almost-order k sub-s using split-max-order
by (metis 2 .prems(1 ) 2 .prems(2 ) 2 .prems(3 ) bal.simps(2 ) btree.distinct(1 )

fst-conv list-split local.Cons order-bal-nonempty-lasttreebal order-impl-root-order r-split
root-order .simps(2 ) some-child-sub(1 ) split-set(1 ) sub-node sub-split)

ultimately have almost-order k (rebalance-middle-tree k ls sub-s max-s rs t)
using rebalance-middle-tree-order [of k sub-s ls rs t max-s] inductive-help
by auto

then show ?thesis
using 2 Cons r-split list-split sep-x-Node sub-split by auto

qed
qed

qed simp

thm del-list-sorted

lemma del-list-split:
assumes split ts x = (ls, rs)

and sorted-less (inorder (Node ts t))
shows del-list x (inorder (Node ts t)) = inorder-list ls @ del-list x (inorder-list

rs @ inorder t)
proof (cases ls)

case Nil
then show ?thesis

using assms by (auto dest!: split-conc)
next

case Cons
then obtain ls ′ sub sep where ls-tail-split: ls = ls ′ @ [(sub,sep)]

by (metis list.distinct(1 ) rev-exhaust surj-pair)
moreover have sep < x

using split-req(2 )[of ts x ls ′ sub sep rs]
using assms(1 ) assms(2 ) ls-tail-split sorted-inorder-separators
by blast
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moreover have sorted-less (inorder-list ls)
using assms sorted-wrt-append split-conc by fastforce

ultimately show ?thesis using assms(2 ) split-conc[OF assms(1 )]
using del-list-sorted[of inorder-list ls ′ @ inorder sub sep]
by auto

qed

lemma del-list-split-right:
assumes split ts x = (ls, (sub,sep)#rs)

and sorted-less (inorder (Node ts t))
and sep 6= x

shows del-list x (inorder-list ((sub,sep)#rs) @ inorder t) = del-list x (inorder
sub) @ sep # inorder-list rs @ inorder t
proof −

from assms have x < sep
proof −

from assms have sorted-less (separators ts)
using sorted-inorder-separators by blast

then show ?thesis
using split-req(3 )
using assms
by fastforce

qed
moreover have sorted-less (inorder sub @ sep # inorder-list rs @ inorder t)

using assms sorted-wrt-append[where xs=inorder-list ls]
by (auto dest!: split-conc)

ultimately show ?thesis
using del-list-sorted[of inorder sub sep]
by auto

qed

thm del-list-idem

lemma del-inorder :
assumes k > 0

and root-order k t
and bal t
and sorted-less (inorder t)

shows inorder (del k x t) = del-list x (inorder t)
using assms

proof (induction k x t rule: del.induct)
case (2 k x ts t)
then obtain ls rs where list-split: split ts x = (ls, rs)

by (meson surj-pair)
then have list-conc: ts = ls @ rs

using split.split-conc split-axioms by blast
show ?case
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proof (cases rs)
case Nil
then have IH : inorder (del k x t) = del-list x (inorder t)
by (metis 2 .IH (1 ) 2 .prems bal.simps(2 ) list-split order-impl-root-order root-order .simps(2 )

sorted-inorder-induct-last)
have inorder (del k x (Node ts t)) = inorder (rebalance-last-tree k ts (del k x

t))
using list-split Nil list-conc by auto

also have . . . = inorder-list ts @ inorder (del k x t)
proof −

obtain ts ′ sub sep where ts-split: ts = ts ′ @ [(sub, sep)]
by (meson 2 .prems(1 ) 2 .prems(2 ) 2 .prems(3 ) nonempty-lasttreebal.simps(2 )

order-bal-nonempty-lasttreebal)
then have height sub = height t

using 2 .prems(3 ) by auto
moreover have height t = height (del k x t)

by (metis 2 .prems(1 ) 2 .prems(2 ) 2 .prems(3 ) bal.simps(2 ) del-height or-
der-impl-root-order root-order .simps(2 ))

ultimately show ?thesis
using rebalance-last-tree-inorder
using ts-split by auto

qed
also have . . . = inorder-list ts @ del-list x (inorder t)

using IH by blast
also have . . . = del-list x (inorder (Node ts t))

using 2 .prems(4 ) list-conc list-split Nil del-list-split
by auto

finally show ?thesis .
next

case (Cons h rs)
then obtain sub sep where h-split: h = (sub,sep)

by (cases h)
then have node-sorted-split:

sorted-less (inorder (Node (ls@(sub,sep)#rs) t))
root-order k (Node (ls@(sub,sep)#rs) t)
bal (Node (ls@(sub,sep)#rs) t)
using 2 .prems h-split list-conc Cons by blast+

consider (sep-n-x) sep 6= x | (sep-x-Leaf ) sep = x ∧ sub = Leaf | (sep-x-Node)
sep = x ∧ (∃ ts t. sub = Node ts t)

using btree.exhaust by blast
then show ?thesis
proof cases

case sep-n-x
then have IH : inorder (del k x sub) = del-list x (inorder sub)
by (metis 2 .IH (2 ) 2 .prems(1 ) 2 .prems(2 ) bal.simps(2 ) bal-split-left(1 ) h-split

list-split local.Cons node-sorted-split(1 ) node-sorted-split(3 ) order-impl-root-order
root-order .simps(2 ) some-child-sub(1 ) sorted-inorder-induct-subtree split-set(1 ))

from sep-n-x have inorder (del k x (Node ts t)) = inorder (rebalance-middle-tree
k ls (del k x sub) sep rs t)
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using list-split Cons h-split by auto
also have . . . = inorder (Node (ls@(del k x sub, sep)#rs) t)
proof −

have height t = height (del k x sub)
using del-height
using order-impl-root-order 2 .prems
by (auto simp add: order-impl-root-order Cons list-conc h-split)

moreover have case rs of [] ⇒ True | (rsub, rsep) # list ⇒ height rsub =
height t

using 2 .prems(3 ) bal-sub-height list-conc Cons by blast
ultimately show ?thesis

using rebalance-middle-tree-inorder
by simp

qed
also have . . . = inorder-list ls @ del-list x (inorder sub) @ sep # inorder-list

rs @ inorder t
using IH by simp

also have . . . = del-list x (inorder (Node ts t))
using del-list-split[of ts x ls (sub,sep)#rs t]
using del-list-split-right[of ts x ls sub sep rs t]
using list-split list-conc h-split Cons 2 .prems(4 ) sep-n-x
by auto

finally show ?thesis .
next

case sep-x-Leaf
then have del-list x (inorder (Node ts t)) = inorder (Node (ls@rs) t)

using list-conc h-split Cons
using del-list-split[OF list-split 2 .prems(4 )]
by simp

also have . . . = inorder (del k x (Node ts t))
using list-split sep-x-Leaf list-conc h-split Cons
by auto

finally show ?thesis by simp
next

case sep-x-Node
obtain ssub ssep where split-split: split-max k sub = (ssub, ssep)

by fastforce
from sep-x-Node have x = sep

by simp
then have del-list x (inorder (Node ts t)) = inorder-list ls @ inorder sub @

inorder-list rs @ inorder t
using list-split list-conc h-split Cons 2 .prems(4 )
using del-list-split[OF list-split 2 .prems(4 )]
using del-list-sorted1 [of inorder sub sep inorder-list rs @ inorder t x]

sorted-wrt-append
by auto

also have . . . = inorder-list ls @ inorder-pair (split-max k sub) @ inorder-list
rs @ inorder t

using sym[OF split-max-inorder [of sub k]]
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using order-bal-nonempty-lasttreebal[of k sub] 2 .prems
list-conc h-split Cons sep-x-Node

by (auto simp del: split-max.simps simp add: order-impl-root-order)
also have . . . = inorder-list ls @ inorder ssub @ ssep # inorder-list rs @

inorder t
using split-split by auto

also have . . . = inorder (rebalance-middle-tree k ls ssub ssep rs t)
proof −

have height t = height ssub
using split-max-height

by (metis 2 .prems(1 ,2 ,3 ) bal.simps(2 ) btree.distinct(1 ) h-split list-split lo-
cal.Cons order-bal-nonempty-lasttreebal order-impl-root-order root-order .simps(2 )
sep-x-Node some-child-sub(1 ) split-set(1 ) split-split)

moreover have case rs of [] ⇒ True | (rsub, rsep) # list ⇒ height rsub =
height t

using 2 .prems(3 ) bal-sub-height list-conc local.Cons
by blast

ultimately show ?thesis
using rebalance-middle-tree-inorder
by auto

qed
also have . . . = inorder (del k x (Node ts t))

using list-split sep-x-Node list-conc h-split Cons split-split
by auto

finally show ?thesis by simp
qed

qed
qed auto

lemma reduce-root-order : [[k > 0 ; almost-order k t]] =⇒ root-order k (reduce-root
t)

apply(cases t)
apply(auto split!: list.splits simp add: order-impl-root-order)

done

lemma reduce-root-bal: bal (reduce-root t) = bal t
apply(cases t)
apply(auto split!: list.splits)

done

lemma reduce-root-inorder : inorder (reduce-root t) = inorder t
apply (cases t)
apply (auto split!: list.splits)

done

lemma delete-order : [[k > 0 ; bal t; root-order k t]] =⇒ root-order k (delete k x t)
using del-order
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by (simp add: reduce-root-order)

lemma delete-bal: [[k > 0 ; bal t; root-order k t]] =⇒ bal (delete k x t)
using del-bal
by (simp add: reduce-root-bal)

lemma delete-inorder : [[k > 0 ; bal t; root-order k t; sorted-less (inorder t)]] =⇒
inorder (delete k x t) = del-list x (inorder t)

using del-inorder
by (simp add: reduce-root-inorder)

3.7 Set specification by inorder
interpretation S-ordered: Set-by-Ordered where

empty = empty-btree and
insert = insert (Suc k) and
delete = delete (Suc k) and
isin = isin and
inorder = inorder and
inv = invar-inorder (Suc k)

proof (standard, goal-cases)
case (2 s x)
then show ?case

by (simp add: isin-set-inorder)
next

case (3 s x)
then show ?case using insert-inorder

by simp
next

case (4 s x)
then show ?case using delete-inorder

by auto
next

case (6 s x)
then show ?case using insert-order insert-bal

by auto
next

case (7 s x)
then show ?case using delete-order delete-bal

by auto
qed (simp add: empty-btree-def )+

declare nodei.simps[simp del]

end
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end
theory BTree-Split

imports BTree-Set
begin

4 Abstract split functions
4.1 Linear split

Finally we show that the split axioms are feasible by providing an example
split function
fun linear-split-help:: (-× ′a::linorder) list ⇒ - ⇒ (-×-) list ⇒ ((-×-) list × (-×-)
list) where

linear-split-help [] x prev = (prev, []) |
linear-split-help ((sub, sep)#xs) x prev = (if sep < x then linear-split-help xs x

(prev @ [(sub, sep)]) else (prev, (sub,sep)#xs))

fun linear-split:: (-× ′a::linorder) list ⇒ - ⇒ ((-×-) list × (-×-) list) where
linear-split xs x = linear-split-help xs x []

Linear split is similar to well known functions, therefore a quick proof can
be done.
lemma linear-split-alt: linear-split xs x = (takeWhile (λ(-,s). s<x) xs, dropWhile
(λ(-,s). s<x) xs)
proof −

have linear-split-help xs x prev = (prev @ takeWhile (λ(-, s). s < x) xs, dropWhile
(λ(-, s). s < x) xs)

for prev
apply (induction xs arbitrary: prev)
apply auto

done
thus ?thesis by auto

qed

global-interpretation btree-linear-search: split linear-split

defines btree-ls-isin = btree-linear-search.isin
and btree-ls-ins = btree-linear-search.ins
and btree-ls-insert = btree-linear-search.insert
and btree-ls-del = btree-linear-search.del
and btree-ls-delete = btree-linear-search.delete

apply unfold-locales
unfolding linear-split-alt

apply (auto split: list.splits)
subgoal
by (metis (no-types, lifting) case-prodD in-set-conv-decomp takeWhile-eq-all-conv

takeWhile-idem)
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subgoal
by (metis case-prod-conv hd-dropWhile le-less-linear list.sel(1 ) list.simps(3 ))

done

Some examples follow to show that the implementation works and the above
lemmas make sense. The examples are visualized in the thesis.
abbreviation btreei ≡ btree-ls-insert
abbreviation btreed ≡ btree-ls-delete

value let k=2 ::nat; x::nat btree = (Node [(Node [(Leaf , 3 ),(Leaf , 5 ),(Leaf , 6 )]
Leaf , 10 )] (Node [(Leaf , 14 ), (Leaf , 20 )] Leaf )) in

root-order k x
value let k=2 ::nat; x::nat btree = (Node [(Node [(Leaf , 3 ),(Leaf , 5 ),(Leaf , 6 )]
Leaf , 10 )] (Node [(Leaf , 14 ), (Leaf , 20 )] Leaf )) in

bal x
value let k=2 ::nat; x::nat btree = (Node [(Node [(Leaf , 3 ),(Leaf , 5 ),(Leaf , 6 )]
Leaf , 10 )] (Node [(Leaf , 14 ), (Leaf , 20 )] Leaf )) in

sorted-less (inorder x)
value let k=2 ::nat; x::nat btree = (Node [(Node [(Leaf , 3 ),(Leaf , 5 ),(Leaf , 6 )]
Leaf , 10 )] (Node [(Leaf , 14 ), (Leaf , 20 )] Leaf )) in

x
value let k=2 ::nat; x::nat btree = (Node [(Node [(Leaf , 3 ),(Leaf , 5 ),(Leaf , 6 )]
Leaf , 10 )] (Node [(Leaf , 14 ), (Leaf , 20 )] Leaf )) in

btreei k 9 x
value let k=2 ::nat; x::nat btree = (Node [(Node [(Leaf , 3 ),(Leaf , 5 ),(Leaf , 6 )]
Leaf , 10 )] (Node [(Leaf , 14 ), (Leaf , 20 )] Leaf )) in

btreei k 1 (btreei k 9 x)
value let k=2 ::nat; x::nat btree = (Node [(Node [(Leaf , 3 ),(Leaf , 5 ),(Leaf , 6 )]
Leaf , 10 )] (Node [(Leaf , 14 ), (Leaf , 20 )] Leaf )) in

btreed k 10 (btreei k 1 (btreei k 9 x))
value let k=2 ::nat; x::nat btree = (Node [(Node [(Leaf , 3 ),(Leaf , 5 ),(Leaf , 6 )]
Leaf , 10 )] (Node [(Leaf , 14 ), (Leaf , 20 )] Leaf )) in

btreed k 3 (btreed k 10 (btreei k 1 (btreei k 9 x)))

For completeness, we also proved an explicit proof of the locale requirements.
lemma some-child-sm: linear-split-help t y xs = (ls,(sub,sep)#rs) =⇒ y ≤ sep

apply(induction t y xs rule: linear-split-help.induct)
apply(simp-all)

by (metis Pair-inject le-less-linear list.inject)

lemma linear-split-append: linear-split-help xs p ys = (ls,rs) =⇒ ls@rs = ys@xs
apply(induction xs p ys rule: linear-split-help.induct)
apply(simp-all)

by (metis Pair-inject)

lemma linear-split-sm: [[linear-split-help xs p ys = (ls,rs); sorted-less (separators
(ys@xs)); ∀ sep ∈ set (separators ys). p > sep]] =⇒ ∀ sep ∈ set (separators ls). p
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> sep
apply(induction xs p ys rule: linear-split-help.induct)
apply(simp-all)

by (metis prod.inject)+

value linear-split [((Leaf ::nat btree), 2 )] (1 ::nat)

lemma linear-split-gr :
[[linear-split-help xs p ys = (ls,rs); sorted-less (separators (ys@xs)); ∀ (sub,sep) ∈

set ys. p > sep]] =⇒
(case rs of [] ⇒ True | (-,sep)#- ⇒ p ≤ sep)

apply(cases rs)
by (auto simp add: some-child-sm)

lemma linear-split-req:
assumes linear-split xs p = (ls,(sub,sep)#rs)

and sorted-less (separators xs)
shows p ≤ sep
using assms linear-split-gr by fastforce

lemma linear-split-req2 :
assumes linear-split xs p = (ls@[(sub,sep)],rs)

and sorted-less (separators xs)
shows sep < p
using linear-split-sm[of xs p [] ls@[(sub,sep)] rs]
using assms(1 ) assms(2 )
by (metis Nil-is-map-conv Un-iff append-self-conv2 empty-iff empty-set linear-split.elims

prod-set-simps(2 ) separators-split snd-eqD snds.intros)

interpretation split linear-split
by (simp add: linear-split-req linear-split-req2 linear-split-append split-def )

4.2 Binary split

It is possible to define a binary split predicate. However, even proving that
it terminates is uncomfortable.
function (sequential) binary-split-help:: (-× ′a::linorder) list ⇒ (-× ′a) list ⇒ (-× ′a)
list ⇒ ′a ⇒ ((-×-) list × (-×-) list) where

binary-split-help ls [] rs x = (ls,rs) |
binary-split-help ls as rs x = (let (mls, mrs) = split-half as in (
case mrs of (sub,sep)#mrrs ⇒ (

if x < sep then binary-split-help ls mls (mrs@rs) x
else if x > sep then binary-split-help (ls@mls@[(sub,sep)]) mrrs rs x
else (ls@mls, mrs@rs)
)

)
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)
by pat-completeness auto

termination
apply(relation measure (λ(ls,xs,rs,x). length xs))

apply (auto)
by (metis append-take-drop-id length-Cons length-append lessI trans-less-add2 )

fun binary-split where
binary-split as x = binary-split-help [] as [] x

We can show that it will return sublists that concatenate to the original list
again but will not show that it fulfils sortedness properties.
lemma binary-split-help as bs cs x = (ls,rs) =⇒ (as@bs@cs) = (ls@rs)

apply(induction as bs cs x arbitrary: ls rs rule: binary-split-help.induct)
apply (auto simp add: drop-not-empty split!: list.splits )

subgoal for ls a b va rs x lsa rsa aa ba x22
apply(cases cmp x ba)

apply auto
apply (metis Cons-eq-appendI append-eq-appendI append-take-drop-id)

apply (metis append-take-drop-id)
by (metis Cons-eq-appendI append-eq-appendI append-take-drop-id)

done

lemma [[sorted-less (separators (as@bs@cs)); binary-split-help as bs cs x = (ls,rs);
∀ y ∈ set (separators as). y < x]]
=⇒ ∀ y ∈ set (separators ls). y < x

oops

end
theory BPlusTree

imports Main HOL−Data-Structures.Sorted-Less HOL−Data-Structures.Cmp
HOL−Library.Multiset
begin

hide-const (open) Sorted-Less.sorted
abbreviation sorted-less ≡ Sorted-Less.sorted

5 Definition of the B-Plus-Tree
5.1 Datatype definition

B-Plus-Trees are basically B-Trees, that don’t have empty Leafs but Leafs
that contain the relevant data.
datatype ′a bplustree = Leaf (vals: ′a list) | Node (keyvals: ( ′a bplustree ∗ ′a) list)
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(lasttree: ′a bplustree)

type-synonym ′a bplustree-list = ( ′a bplustree ∗ ′a) list
type-synonym ′a bplustree-pair = ( ′a bplustree ∗ ′a)

abbreviation subtrees where subtrees xs ≡ (map fst xs)
abbreviation separators where separators xs ≡ (map snd xs)

5.2 Inorder and Set

The set of B-Plus-tree needs to be manually defined, regarding only the
leaves. This overrides the default instantiation.
fun set-nodes :: ′a bplustree ⇒ ′a set where

set-nodes (Leaf ks) = {} |
set-nodes (Node ts t) =

⋃
(set (map set-nodes (subtrees ts))) ∪ (set (separators

ts)) ∪ set-nodes t

fun set-leaves :: ′a bplustree ⇒ ′a set where
set-leaves (Leaf ks) = set ks |
set-leaves (Node ts t) =

⋃
(set (map set-leaves (subtrees ts))) ∪ set-leaves t

The inorder is a view of only internal seperators
fun inorder :: ′a bplustree ⇒ ′a list where

inorder (Leaf ks) = [] |
inorder (Node ts t) = concat (map (λ (sub, sep). inorder sub @ [sep]) ts) @

inorder t

abbreviation inorder-list ts ≡ concat (map (λ (sub, sep). inorder sub @ [sep]) ts)

The leaves view considers only its leafs.
fun leaves :: ′a bplustree ⇒ ′a list where

leaves (Leaf ks) = ks |
leaves (Node ts t) = concat (map leaves (subtrees ts)) @ leaves t

abbreviation leaves-list ts ≡ concat (map leaves (subtrees ts))

fun leaf-nodes where
leaf-nodes (Leaf xs) = [Leaf xs] |
leaf-nodes (Node ts t) = concat (map leaf-nodes (subtrees ts)) @ leaf-nodes t

abbreviation leaf-nodes-list ts ≡ concat (map leaf-nodes (subtrees ts))

And the elems view contains all elements of the tree
fun elems :: ′a bplustree ⇒ ′a list where

elems (Leaf ks) = ks |
elems (Node ts t) = concat (map (λ (sub, sep). elems sub @ [sep]) ts) @ elems t

abbreviation elems-list ts ≡ concat (map (λ (sub, sep). elems sub @ [sep]) ts)
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thm leaves.simps
thm inorder .simps
thm elems.simps

value leaves (Node [(Leaf [], (0 ::nat)), (Node [(Leaf [], 1 ), (Leaf [], 10 )] (Leaf []),
12 ), ((Leaf []), 30 ), ((Leaf []), 100 )] (Leaf []))

5.3 Height and Balancedness
class height =

fixes height :: ′a ⇒ nat

instantiation bplustree :: (type) height
begin

fun height-bplustree :: ′a bplustree ⇒ nat where
height (Leaf ks) = 0 |
height (Node ts t) = Suc (Max (height ‘ (set (subtrees ts@[t]))))

instance ..

end

Balancedness is defined is close accordance to the definition by Ernst
fun bal:: ′a bplustree ⇒ bool where

bal (Leaf ks) = True |
bal (Node ts t) = (
(∀ sub ∈ set (subtrees ts). height sub = height t) ∧
(∀ sub ∈ set (subtrees ts). bal sub) ∧ bal t

)

value height (Node [(Leaf [], (0 ::nat)), (Node [(Leaf [], 1 ), (Leaf [], 10 )] (Leaf []),
12 ), ((Leaf []), 30 ), ((Leaf []), 100 )] (Leaf []))
value bal (Node [(Leaf [], (0 ::nat)), (Node [(Leaf [], 1 ), (Leaf [], 10 )] (Leaf []),
12 ), ((Leaf []), 30 ), ((Leaf []), 100 )] (Leaf []))

5.4 Order

The order of a B-tree is defined just as in the original paper by Bayer.
fun order :: nat ⇒ ′a bplustree ⇒ bool where

order k (Leaf ks) = ((length ks ≥ k) ∧ (length ks ≤ 2∗k)) |
order k (Node ts t) = (
(length ts ≥ k) ∧
(length ts ≤ 2∗k) ∧
(∀ sub ∈ set (subtrees ts). order k sub) ∧ order k t

)
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The special condition for the root is called root_order
fun root-order :: nat ⇒ ′a bplustree ⇒ bool where

root-order k (Leaf ks) = (length ks ≤ 2∗k) |
root-order k (Node ts t) = (
(length ts > 0 ) ∧
(length ts ≤ 2∗k) ∧
(∀ s ∈ set (subtrees ts). order k s) ∧ order k t

)

5.5 Auxiliary Lemmas
lemma separators-split:

set (separators (l@(a,b)#r)) = set (separators l) ∪ set (separators r) ∪ {b}
by simp

lemma subtrees-split:
set (subtrees (l@(a,b)#r)) = set (subtrees l) ∪ set (subtrees r) ∪ {a}
by simp

lemma finite-set-ins-swap:
assumes finite A
shows max a (Max (Set.insert b A)) = max b (Max (Set.insert a A))
using Max-insert assms max.commute max.left-commute by fastforce

lemma finite-set-in-idem:
assumes finite A
shows max a (Max (Set.insert a A)) = Max (Set.insert a A)
using Max-insert assms max.commute max.left-commute by fastforce

lemma height-Leaf : height t = 0 ←→ (∃ ks. t = (Leaf ks))
by (induction t) (auto)

lemma height-bplustree-order :
height (Node (ls@[a]) t) = height (Node (a#ls) t)
by simp

lemma height-bplustree-sub:
height (Node ((sub,x)#ls) t) = max (height (Node ls t)) (Suc (height sub))
by simp

lemma height-bplustree-last:
height (Node ((sub,x)#ts) t) = max (height (Node ts sub)) (Suc (height t))
by (induction ts) auto

lemma set-leaves-leaves: set (leaves t) = set-leaves t
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apply(induction t)
apply(auto)

done

lemma set-nodes-nodes: set (inorder t) = set-nodes t
apply(induction t)
apply(auto simp add: rev-image-eqI )

done

lemma child-subset-leaves: p ∈ set t =⇒ set-leaves (fst p) ⊆ set-leaves (Node t n)
apply(induction p arbitrary: t n)
apply(auto)
done

lemma child-subset: p ∈ set t =⇒ set-nodes (fst p) ⊆ set-nodes (Node t n)
apply(induction p arbitrary: t n)
apply(auto)
done

lemma some-child-sub:
assumes (sub,sep) ∈ set t
shows sub ∈ set (subtrees t)

and sep ∈ set (separators t)
using assms by force+

lemma bal-all-subtrees-equal: bal (Node ts t) =⇒ (∀ s1 ∈ set (subtrees ts). ∀ s2 ∈
set (subtrees ts). height s1 = height s2 )

by (metis BPlusTree.bal.simps(2 ))

lemma fold-max-set: ∀ x ∈ set t. x = f =⇒ fold max t f = f
apply(induction t)
apply(auto simp add: max-def-raw)

done

lemma height-bal-tree: bal (Node ts t) =⇒ height (Node ts t) = Suc (height t)
by (induction ts) auto

lemma bal-split-last:
assumes bal (Node (ls@(sub,sep)#rs) t)
shows bal (Node (ls@rs) t)

and height (Node (ls@(sub,sep)#rs) t) = height (Node (ls@rs) t)
using assms by auto
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lemma bal-split-right:
assumes bal (Node (ls@rs) t)
shows bal (Node rs t)

and height (Node rs t) = height (Node (ls@rs) t)
using assms by (auto simp add: image-constant-conv)

lemma bal-split-left:
assumes bal (Node (ls@(a,b)#rs) t)
shows bal (Node ls a)

and height (Node ls a) = height (Node (ls@(a,b)#rs) t)
using assms by (auto simp add: image-constant-conv)

lemma bal-substitute: [[bal (Node (ls@(a,b)#rs) t); height t = height c; bal c]] =⇒
bal (Node (ls@(c,b)#rs) t)

unfolding bal.simps
by auto

lemma bal-substitute-subtree: [[bal (Node (ls@(a,b)#rs) t); height a = height c; bal
c]] =⇒ bal (Node (ls@(c,b)#rs) t)

using bal-substitute
by auto

lemma bal-substitute-separator : bal (Node (ls@(a,b)#rs) t) =⇒ bal (Node (ls@(a,c)#rs)
t)

unfolding bal.simps
by auto

lemma order-impl-root-order : [[k > 0 ; order k t]] =⇒ root-order k t
apply(cases t)
apply(auto)

done

lemma sorted-inorder-list-separators: sorted-less (inorder-list ts) =⇒ sorted-less
(separators ts)

apply(induction ts)
apply (auto simp add: sorted-lems)

done

corollary sorted-inorder-separators: sorted-less (inorder (Node ts t)) =⇒ sorted-less
(separators ts)

using sorted-inorder-list-separators sorted-wrt-append
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by auto

lemma sorted-inorder-list-subtrees:
sorted-less (inorder-list ts) =⇒ ∀ sub ∈ set (subtrees ts). sorted-less (inorder sub)
apply(induction ts)
apply (auto simp add: sorted-lems)+

done

corollary sorted-inorder-subtrees: sorted-less (inorder (Node ts t)) =⇒ ∀ sub ∈
set (subtrees ts). sorted-less (inorder sub)

using sorted-inorder-list-subtrees sorted-wrt-append by auto

lemma sorted-inorder-list-induct-subtree:
sorted-less (inorder-list (ls@(sub,sep)#rs)) =⇒ sorted-less (inorder sub)
by (simp add: sorted-wrt-append)

corollary sorted-inorder-induct-subtree:
sorted-less (inorder (Node (ls@(sub,sep)#rs) t)) =⇒ sorted-less (inorder sub)
by (simp add: sorted-wrt-append)

lemma sorted-inorder-induct-last: sorted-less (inorder (Node ts t)) =⇒ sorted-less
(inorder t)

by (simp add: sorted-wrt-append)

lemma sorted-leaves-list-subtrees:
sorted-less (leaves-list ts) =⇒ ∀ sub ∈ set (subtrees ts). sorted-less (leaves sub)
apply(induction ts)
apply (auto simp add: sorted-wrt-append)+

done

corollary sorted-leaves-subtrees: sorted-less (leaves (Node ts t)) =⇒ ∀ sub ∈ set
(subtrees ts). sorted-less (leaves sub)

using sorted-leaves-list-subtrees sorted-wrt-append by auto

lemma sorted-leaves-list-induct-subtree:
sorted-less (leaves-list (ls@(sub,sep)#rs)) =⇒ sorted-less (leaves sub)
by (simp add: sorted-wrt-append)

corollary sorted-leaves-induct-subtree:
sorted-less (leaves (Node (ls@(sub,sep)#rs) t)) =⇒ sorted-less (leaves sub)
by (simp add: sorted-wrt-append)

lemma sorted-leaves-induct-last: sorted-less (leaves (Node ts t)) =⇒ sorted-less
(leaves t)

by (simp add: sorted-wrt-append)

Additional lemmas on the sortedness of the whole tree, which is correct
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alignment of navigation structure and leave data
fun inbetween where
inbetween f l Nil t u = f l t u |
inbetween f l ((sub,sep)#xs) t u = (f l sub sep ∧ inbetween f sep xs t u)

thm fold-cong

lemma cong-inbetween[fundef-cong]:
[[a = b; xs = ys;

∧
l ′ u ′ sub sep. (sub,sep) ∈ set ys =⇒ f l ′ sub u ′ = g l ′ sub u ′;

∧
l ′

u ′. f l ′ a u ′ = g l ′ b u ′]]
=⇒ inbetween f l xs a u = inbetween g l ys b u
apply(induction ys arbitrary: l a b u xs)
apply auto
apply fastforce+
done

fun aligned :: ′a ::linorder ⇒ - where
aligned l (Leaf ks) u = (l < u ∧ (∀ x ∈ set ks. l < x ∧ x ≤ u)) |
aligned l (Node ts t) u = (inbetween aligned l ts t u)

lemma sorted-less-merge: sorted-less (as@[a]) =⇒ sorted-less (a#bs) =⇒ sorted-less
(as@a#bs)

using sorted-mid-iff by blast

thm aligned.simps

lemma leaves-cases: x ∈ set (leaves (Node ts t)) =⇒ (∃ (sub,sep) ∈ set ts. x ∈ set
(leaves sub)) ∨ x ∈ set (leaves t)

apply (induction ts)
apply auto
done

lemma align-sub: aligned l (Node ts t) u =⇒ (sub,sep) ∈ set ts =⇒ ∃ l ′ ∈ set
(separators ts) ∪ {l}. aligned l ′ sub sep

apply(induction ts arbitrary: l)
apply auto
done

lemma align-last: aligned l (Node (ts@[(sub,sep)]) t) u =⇒ aligned sep t u
apply(induction ts arbitrary: l)
apply auto
done

lemma align-last ′: aligned l (Node ts t) u =⇒ ∃ l ′ ∈ set (separators ts) ∪ {l}.
aligned l ′ t u

apply(induction ts arbitrary: l)
apply auto
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done

lemma aligned-sorted-inorder : aligned l t u =⇒ sorted-less (l#(inorder t)@[u])
proof(induction l t u rule: aligned.induct)

case (2 l ts t u)
then show ?case
proof(cases ts)

case Nil
then show ?thesis

using 2 by auto
next

case Cons
then obtain ts ′ sub sep where ts-split: ts = ts ′@[(sub,sep)]

by (metis list.distinct(1 ) rev-exhaust surj-pair)
moreover from 2 have sorted-less (l#(inorder-list ts))
proof (induction ts arbitrary: l)

case (Cons a ts ′)
then show ?case
proof (cases a)

case (Pair sub sep)
then have aligned l sub sep inbetween aligned sep ts ′ t u

using Cons.prems by simp+
then have aligned sep (Node ts ′ t) u

by simp
then have sorted-less (sep#inorder-list ts ′)

using Cons
by (metis insert-iff list.set(2 ))

moreover have sorted-less (l#inorder sub@[sep])
using Cons
by (metis Pair ‹aligned l sub sep› list.set-intros(1 ))

ultimately show ?thesis
using Pair sorted-less-merge[of l#inorder sub sep inorder-list ts ′]
by simp

qed
qed simp
moreover have sorted-less (sep#inorder t@[u])
proof −

from 2 have aligned sep t u
using align-last ts-split by blast

then show ?thesis
using 2 .IH by blast

qed
ultimately show ?thesis

using sorted-less-merge[of l#inorder-list ts ′@inorder sub sep inorder t@[u]]
by simp

qed
qed simp

lemma separators-in-inorder-list: set (separators ts) ⊆ set (inorder-list ts)
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apply (induction ts)
apply auto
done

lemma separators-in-inorder : set (separators ts) ⊆ set (inorder (Node ts t))
by fastforce

lemma aligned-sorted-separators: aligned l (Node ts t) u =⇒ sorted-less (l#(separators
ts)@[u])
by (smt (verit, ccfv-threshold) aligned-sorted-inorder separators-in-inorder sorted-inorder-separators

sorted-lems(2 ) sorted-wrt.simps(2 ) sorted-wrt-append subset-eq)

lemma aligned-leaves-inbetween: aligned l t u =⇒ ∀ x ∈ set (leaves t). l < x ∧ x
≤ u
proof (induction l t u rule: aligned.induct)

case (1 l ks u)
then show ?case by auto

next
case (2 l ts t u)
have ∗: sorted-less (l#inorder (Node ts t)@[u])

using 2 .prems aligned-sorted-inorder by blast
show ?case
proof

fix x assume x ∈ set (leaves (Node ts t))
then consider (sub) ∃ (sub,sep) ∈ set ts. x ∈ set (leaves sub) | (last) x ∈ set

(leaves t)
by fastforce

then show l < x ∧ x ≤ u
proof (cases)

case sub
then obtain sub sep where (sub,sep) ∈ set ts x ∈ set (leaves sub) by auto
then obtain l ′ where aligned l ′ sub sep l ′ ∈ set (separators ts) ∪ {l}

using 2 .prems(1 ) ‹(sub, sep) ∈ set ts› align-sub by blast
then have ∀ x ∈ set (leaves sub). l ′ < x ∧ x ≤ sep

using 2 .IH (1 ) ‹(sub,sep) ∈ set ts› by auto
moreover from ∗ have l ≤ l ′

by (metis Un-insert-right ‹l ′ ∈ set (separators ts) ∪ {l}› append-Cons
boolean-algebra-cancel.sup0 dual-order .eq-iff insert-iff less-imp-le separators-in-inorder
sorted-snoc sorted-wrt.simps(2 ) subset-eq)

moreover from ∗ have sep ≤ u
by (metis ‹(sub, sep) ∈ set ts› less-imp-le list.set-intros(1 ) separators-in-inorder

some-child-sub(2 ) sorted-mid-iff2 sorted-wrt-append subset-eq)
ultimately show ?thesis

by (meson ‹x ∈ set (leaves sub)› order .strict-trans1 order .trans)
next

case last
then obtain l ′ where aligned l ′ t u l ′ ∈ set (separators ts) ∪ {l}

using align-last ′ 2 .prems by blast
then have ∀ x ∈ set (leaves t). l ′ < x ∧ x ≤ u
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using 2 .IH (2 ) by auto
moreover from ∗ have l ≤ l ′

by (metis Un-insert-right ‹l ′ ∈ set (separators ts) ∪ {l}› append-Cons
boolean-algebra-cancel.sup0 dual-order .eq-iff insert-iff less-imp-le separators-in-inorder
sorted-snoc sorted-wrt.simps(2 ) subset-eq)

ultimately show ?thesis
by (meson ‹x ∈ set (leaves t)› order .strict-trans1 order .trans)

qed
qed

qed

lemma aligned-leaves-list-inbetween: aligned l (Node ts t) u =⇒ ∀ x ∈ set (leaves-list
ts). l < x ∧ x ≤ u

by (metis Un-iff aligned-leaves-inbetween leaves.simps(2 ) set-append)

lemma aligned-split-left: aligned l (Node (ls@(sub,sep)#rs) t) u =⇒ aligned l
(Node ls sub) sep

apply(induction ls arbitrary: l)
apply auto
done

lemma aligned-split-right: aligned l (Node (ls@(sub,sep)#rs) t) u =⇒ aligned sep
(Node rs t) u

apply(induction ls arbitrary: l)
apply auto
done

lemma aligned-subst: aligned l (Node (ls@(sub ′, subl)#(sub,subsep)#rs) t) u =⇒
aligned subl subsub subsep =⇒
aligned l (Node (ls@(sub ′,subl)#(subsub,subsep)#rs) t) u

apply (induction ls arbitrary: l)
apply auto
done

lemma aligned-subst-emptyls: aligned l (Node ((sub,subsep)#rs) t) u =⇒ aligned
l subsub subsep =⇒
aligned l (Node ((subsub,subsep)#rs) t) u

by auto

lemma aligned-subst-last: aligned l (Node (ts ′@[(sub ′, sep ′)]) t) u =⇒ aligned sep ′

t ′ u =⇒
aligned l (Node (ts ′@[(sub ′, sep ′)]) t ′) u
apply (induction ts ′ arbitrary: l)
apply auto
done

fun Laligned :: ′a ::linorder bplustree ⇒ - where
Laligned (Leaf ks) u = (∀ x ∈ set ks. x ≤ u) |
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Laligned (Node ts t) u = (case ts of [] ⇒ (Laligned t u) |
(sub,sep)#ts ′⇒ ((Laligned sub sep) ∧ inbetween aligned sep ts ′ t u))

lemma Laligned-nonempty-Node: Laligned (Node ((sub,sep)#ts ′) t) u =
((Laligned sub sep) ∧ inbetween aligned sep ts ′ t u)
by simp

lemma aligned-imp-Laligned: aligned l t u =⇒ Laligned t u
apply (induction l t u rule: aligned.induct)
apply simp
subgoal for l ts t u

apply(cases ts)
apply auto

apply blast
done

done

lemma Laligned-split-left: Laligned (Node (ls@(sub,sep)#rs) t) u =⇒ Laligned
(Node ls sub) sep

apply(cases ls)
apply (auto dest!: aligned-imp-Laligned)
apply (meson aligned.simps(2 ) aligned-split-left)
done

lemma Laligned-split-right: Laligned (Node (ls@(sub,sep)#rs) t) u =⇒ aligned sep
(Node rs t) u

apply(cases ls)
apply (auto split!: list.splits dest!: aligned-imp-Laligned)
apply (meson aligned.simps(2 ) aligned-split-right)
done

lemma Lalign-sub: Laligned (Node ((a,b)#ts) t) u =⇒ (sub,sep) ∈ set ts =⇒ ∃ l ′
∈ set (separators ts) ∪ {b}. aligned l ′ sub sep

apply(induction ts arbitrary: a b)
apply (auto dest!: aligned-imp-Laligned)

done

lemma Lalign-last: Laligned (Node (ts@[(sub,sep)]) t) u =⇒ aligned sep t u
by (cases ts) (auto simp add: align-last)

lemma Lalign-last ′: Laligned (Node ((a,b)#ts) t) u =⇒ ∃ l ′ ∈ set (separators ts)
∪ {b}. aligned l ′ t u

apply(induction ts arbitrary: a b)
apply (auto dest!: aligned-imp-Laligned)
done

lemma Lalign-Llast: Laligned (Node ts t) u =⇒ Laligned t u
apply(cases ts)
apply auto
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using aligned-imp-Laligned Lalign-last ′ Laligned-nonempty-Node
by metis

lemma Laligned-sorted-inorder : Laligned t u =⇒ sorted-less ((inorder t)@[u])
proof(induction t u rule: Laligned.induct)

case (1 ks u)
then show ?case by auto

next
case (2 ts t u)
then show ?case

apply (cases ts)
apply auto

by (metis aligned.simps(2 ) aligned-sorted-inorder append-assoc inorder .simps(2 )
sorted-less-merge)
qed

lemma Laligned-sorted-separators: Laligned (Node ts t) u =⇒ sorted-less ((separators
ts)@[u])
by (smt (verit, del-insts) Laligned-sorted-inorder separators-in-inorder sorted-inorder-separators

sorted-wrt-append subset-eq)

lemma Laligned-leaves-inbetween: Laligned t u =⇒ ∀ x ∈ set (leaves t). x ≤ u
proof (induction t u rule: Laligned.induct)

case (1 ks u)
then show ?case by auto

next
case (2 ts t u)
have ∗: sorted-less (inorder (Node ts t)@[u])

using 2 .prems Laligned-sorted-inorder by blast
show ?case
proof (cases ts)

case Nil
show ?thesis
proof

fix x assume x ∈ set (leaves (Node ts t))
then have x ∈ set (leaves t)

using Nil by auto
moreover have Laligned t u

using 2 .prems Nil by auto
ultimately show x ≤ u

using 2 .IH (1 ) Nil
by simp

qed
next

case (Cons h ts ′)
then obtain a b where h-split: h = (a,b)

by (cases h)
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show ?thesis
proof
fix x assume x ∈ set (leaves (Node ts t))
then consider (first) x ∈ set (leaves a) | (sub) ∃ (sub,sep) ∈ set ts ′. x ∈ set

(leaves sub) | (last) x ∈ set (leaves t)
using Cons h-split by fastforce

then show x ≤ u
proof (cases)

case first
moreover have Laligned a b

using 2 .prems Cons h-split by auto
moreover have b ≤ u

by (metis ∗ h-split less-imp-le list.set-intros(1 ) local.Cons separators-in-inorder
some-child-sub(2 ) sorted-wrt-append subsetD)

ultimately show ?thesis
using 2 .IH (2 )[OF Cons sym[OF h-split]]
by auto

next
case sub
then obtain sub sep where (sub,sep) ∈ set ts ′ x ∈ set (leaves sub) by auto

then obtain l ′ where aligned l ′ sub sep l ′ ∈ set (separators ts ′) ∪ {b}
using 2 .prems Lalign-sub h-split local.Cons by blast

then have ∀ x ∈ set (leaves sub). l ′ < x ∧ x ≤ sep
by (meson aligned-leaves-inbetween)

moreover from ∗ have sep ≤ u
by (metis 2 .prems Laligned-sorted-separators ‹(sub, sep) ∈ set ts ′› insert-iff

less-imp-le list.set(2 ) local.Cons some-child-sub(2 ) sorted-wrt-append)
ultimately show ?thesis

by (meson ‹x ∈ set (leaves sub)› order .strict-trans1 order .trans)
next

case last
then obtain l ′ where aligned l ′ t u l ′ ∈ set (separators ts ′) ∪ {b}

using 2 .prems Lalign-last ′ h-split local.Cons by blast
then have ∀ x ∈ set (leaves t). l ′ < x ∧ x ≤ u

by (meson aligned-leaves-inbetween)
then show ?thesis

by (meson ‹x ∈ set (leaves t)› order .strict-trans1 order .trans)
qed

qed
qed

qed

lemma Laligned-leaves-list-inbetween: Laligned (Node ts t) u =⇒ ∀ x ∈ set (leaves-list
ts). x ≤ u

by (metis Un-iff Laligned-leaves-inbetween leaves.simps(2 ) set-append)

lemma Laligned-subst-last: Laligned (Node (ts ′@[(sub ′, sep ′)]) t) u =⇒ aligned sep ′

t ′ u =⇒
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Laligned (Node (ts ′@[(sub ′, sep ′)]) t ′) u
apply (cases ts ′)
apply (auto)
by (meson aligned.simps(2 ) aligned-subst-last)

lemma Laligned-subst: Laligned (Node (ls@(sub ′, subl)#(sub,subsep)#rs) t) u =⇒
aligned subl subsub subsep =⇒
Laligned (Node (ls@(sub ′,subl)#(subsub,subsep)#rs) t) u

apply (induction ls)
apply auto
apply (meson aligned.simps(2 ) aligned-subst)
done

lemma concat-leaf-nodes-leaves: (concat (map leaves (leaf-nodes t))) = leaves t
apply(induction t rule: leaf-nodes.induct)
subgoal by auto
subgoal for ts t

apply(induction ts)
apply simp
apply auto
done

done

lemma leaf-nodes-not-empty: leaf-nodes t 6= []
by (induction t) auto

end
theory BPlusTree-Split
imports BPlusTree
begin

5.6 Auxiliary functions
fun split-half :: - list ⇒ - list × - list where

split-half xs = (take ((length xs + 1 ) div 2 ) xs, drop ((length xs + 1 ) div 2 ) xs)

lemma split-half-conc: split-half xs = (ls, rs) = (xs = ls@rs ∧ length ls = (length
xs + 1 ) div 2 )

by force

lemma drop-not-empty: xs 6= [] =⇒ drop (length xs div 2 ) xs 6= []
apply(induction xs)
apply(auto split!: list.splits)

done

lemma take-not-empty: xs 6= [] =⇒ take ((length xs + 1 ) div 2 ) xs 6= []
apply(induction xs)
apply(auto split!: list.splits)

done
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lemma split-half-not-empty: length xs ≥ 1 =⇒ ∃ ls a rs. split-half xs = (ls@[a],rs)
using take-not-empty
by (metis (no-types, opaque-lifting) Ex-list-of-length One-nat-def le-trans length-Cons

list.size(4 ) nat-1-add-1 not-one-le-zero rev-exhaust split-half .simps take0 take-all-iff )

5.7 The split function locale

Here, we abstract away the inner workings of the split function for B-tree
operations.
lemma leaves-conc: leaves (Node (ls@rs) t) = leaves-list ls @ leaves-list rs @ leaves
t

apply(induction ls)
apply auto
done

locale split-tree =
fixes split :: ( ′a bplustree× ′a::{linorder ,order-top}) list ⇒ ′a ⇒ (( ′a bplustree× ′a)

list × ( ′a bplustree× ′a) list)
assumes split-req:
[[split xs p = (ls,rs)]] =⇒ xs = ls @ rs
[[split xs p = (ls@[(sub,sep)],rs); sorted-less (separators xs)]] =⇒ sep < p
[[split xs p = (ls,(sub,sep)#rs); sorted-less (separators xs)]] =⇒ p ≤ sep

begin

lemmas split-conc = split-req(1 )
lemmas split-sorted = split-req(2 ,3 )

lemma [termination-simp]:(ls, (sub, sep) # rs) = split ts y =⇒
size sub < Suc (size-list (λx. Suc (size (fst x))) ts + size l)

using split-conc[of ts y ls (sub,sep)#rs] by auto

lemma leaves-split: split ts x = (ls,rs) =⇒ leaves (Node ts t) = leaves-list ls @
leaves-list rs @ leaves t

using leaves-conc split-conc by blast

end

locale split-list =
fixes split-list :: ( ′a::{linorder ,order-top}) list ⇒ ′a ⇒ ′a list × ′a list
assumes split-list-req:
[[split-list ks p = (kls,krs)]] =⇒ ks = kls @ krs
[[split-list ks p = (kls@[sep],krs); sorted-less ks]] =⇒ sep < p
[[split-list ks p = (kls,(sep)#krs); sorted-less ks]] =⇒ p ≤ sep

locale split-full = split-tree: split-tree split + split-list split-list
for split::
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( ′a bplustree × ′a::{linorder ,order-top}) list ⇒ ′a
⇒ ( ′a bplustree × ′a) list × ( ′a bplustree × ′a) list

and split-list::
′a::{linorder ,order-top} list ⇒ ′a
⇒ ′a list × ′a list

6 Abstract split functions
6.1 Linear split

Finally we show that the split axioms are feasible by providing an example
split function

Linear split is similar to well known functions, therefore a quick proof can
be done.
fun linear-split where linear-split xs x = (takeWhile (λ(-,s). s<x) xs, dropWhile
(λ(-,s). s<x) xs)
fun linear-split-list where linear-split-list xs x = (takeWhile (λs. s<x) xs, drop-
While (λs. s<x) xs)

end
theory BPlusTree-Set

imports
BPlusTree-Split
HOL−Data-Structures.Set-Specs

begin

7 Set interpretation
lemma insert-list-length[simp]:

assumes sorted-less ks
and set (insert-list k ks) = set ks ∪ {k}
and sorted-less ks =⇒ sorted-less (insert-list k ks)

shows length (insert-list k ks) = length ks + (if k ∈ set ks then 0 else 1 )
proof −

have distinct (insert-list k ks)
using assms(1 ) assms(3 ) strict-sorted-iff by blast

then have length (insert-list k ks) = card (set (insert-list k ks))
by (simp add: distinct-card)

also have . . . = card (set ks ∪ {k})
using assms(2 ) by presburger

also have . . . = card (set ks) + (if k ∈ set ks then 0 else 1 )
by (cases k ∈ set ks) (auto simp add: insert-absorb)
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also have . . . = length ks + (if k ∈ set ks then 0 else 1 )
using assms(1 ) distinct-card strict-sorted-iff by auto

finally show ?thesis.
qed

lemma delete-list-length[simp]:
assumes sorted-less ks

and set (delete-list k ks) = set ks − {k}
and sorted-less ks =⇒ sorted-less (delete-list k ks)

shows length (delete-list k ks) = length ks − (if k ∈ set ks then 1 else 0 )
proof −

have distinct (delete-list k ks)
using assms(1 ) assms(3 ) strict-sorted-iff by blast

then have length (delete-list k ks) = card (set (delete-list k ks))
by (simp add: distinct-card)

also have . . . = card (set ks − {k})
using assms(2 ) by presburger

also have . . . = card (set ks) − (if k ∈ set ks then 1 else 0 )
by (cases k ∈ set ks) (auto)

also have . . . = length ks − (if k ∈ set ks then 1 else 0 )
by (metis assms(1 ) distinct-card strict-sorted-iff )

finally show ?thesis.
qed

lemma ins-list-length[simp]:
assumes sorted-less ks
shows length (ins-list k ks) = length ks + (if k ∈ set ks then 0 else 1 )
using insert-list-length[of ks ins-list k]
by (simp add: assms set-ins-list sorted-ins-list)

lemma del-list-length[simp]:
assumes sorted-less ks
shows length (del-list k ks) = length ks − (if k ∈ set ks then 1 else 0 )
using delete-list-length[of ks ins-list k]
by (simp add: assms set-del-list sorted-del-list)

locale split-set = split-tree: split-tree split
for split::
( ′a bplustree × ′a::{linorder ,order-top}) list ⇒ ′a
⇒ ( ′a bplustree × ′a) list × ( ′a bplustree × ′a) list +

fixes isin-list :: ′a ⇒ ( ′a::{linorder ,order-top}) list ⇒ bool
and insert-list :: ′a ⇒ ( ′a::{linorder ,order-top}) list ⇒ ′a list
and delete-list :: ′a ⇒ ( ′a::{linorder ,order-top}) list ⇒ ′a list
assumes insert-list-req:

sorted-less ks =⇒ isin-list x ks = (x ∈ set ks)
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sorted-less ks =⇒ insert-list x ks = ins-list x ks
sorted-less ks =⇒ delete-list x ks = del-list x ks

begin

lemmas split-req = split-tree.split-req
lemmas split-conc = split-tree.split-req(1 )
lemmas split-sorted = split-tree.split-req(2 ,3 )

lemma insert-list-length[simp]:
assumes sorted-less ks
shows length (insert-list k ks) = length ks + (if k ∈ set ks then 0 else 1 )
using insert-list-req
by (simp add: assms)

lemma set-insert-list[simp]:
sorted-less ks =⇒ set (insert-list k ks) = set ks ∪ {k}
by (simp add: insert-list-req set-ins-list)

lemma sorted-insert-list[simp]:
sorted-less ks =⇒ sorted-less (insert-list k ks)
by (simp add: insert-list-req sorted-ins-list)

lemma delete-list-length[simp]:
assumes sorted-less ks
shows length (delete-list k ks) = length ks − (if k ∈ set ks then 1 else 0 )
using insert-list-req
by (simp add: assms)

lemma set-delete-list[simp]:
sorted-less ks =⇒ set (delete-list k ks) = set ks − {k}
by (simp add: insert-list-req set-del-list)

lemma sorted-delete-list[simp]:
sorted-less ks =⇒ sorted-less (delete-list k ks)
by (simp add: insert-list-req sorted-del-list)

definition empty-bplustree = (Leaf [])

7.1 Membership
fun isin:: ′a bplustree ⇒ ′a ⇒ bool where

isin (Leaf ks) x = (isin-list x ks) |
isin (Node ts t) x = (

case split ts x of (-,(sub,sep)#rs) ⇒ (
isin sub x

)
| (-,[]) ⇒ isin t x
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)

Isin proof
thm isin-simps

lemma sorted-ConsD: sorted-less (y # xs) =⇒ x ≤ y =⇒ x /∈ set xs
by (auto simp: sorted-Cons-iff )

lemma sorted-snocD: sorted-less (xs @ [y]) =⇒ y ≤ x =⇒ x /∈ set xs
by (auto simp: sorted-snoc-iff )

lemmas isin-simps2 = sorted-lems sorted-ConsD sorted-snocD

lemma isin-sorted: sorted-less (xs@a#ys) =⇒
(x ∈ set (xs@a#ys)) = (if x < a then x ∈ set xs else x ∈ set (a#ys))
by (auto simp: isin-simps2 )

lemma isin-sorted-split:
assumes Laligned (Node ts t) u

and sorted-less (leaves (Node ts t))
and split ts x = (ls, rs)

shows x ∈ set (leaves (Node ts t)) = (x ∈ set (leaves-list rs @ leaves t))
proof (cases ls)

case Nil
then have ts = rs

using assms by (auto dest!: split-conc)
then show ?thesis by simp

next
case Cons
then obtain ls ′ sub sep where ls-tail-split: ls = ls ′ @ [(sub,sep)]

by (metis list.simps(3 ) rev-exhaust surj-pair)
then have x-sm-sep: sep < x

using split-req(2 )[of ts x ls ′ sub sep rs]
using Laligned-sorted-separators[OF assms(1 )]
using assms sorted-cons sorted-snoc
by blast

moreover have leaves-split: leaves (Node ts t) = leaves-list ls @ leaves-list rs @
leaves t

using assms(3 ) split-tree.leaves-split by blast
then show ?thesis
proof (cases leaves-list ls)

case Nil
then show ?thesis

using leaves-split by auto
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next
case Cons
then obtain leavesls ′ l ′ where leaves-tail-split: leaves-list ls = leavesls ′ @ [l ′]

by (metis list.simps(3 ) rev-exhaust)
then have l ′ ≤ sep
proof −

have l ′ ∈ set (leaves-list ls)
using leaves-tail-split by force

then have l ′ ∈ set (leaves (Node ls ′ sub))
using ls-tail-split
by auto

moreover have Laligned (Node ls ′ sub) sep
using assms split-conc[OF assms(3 )] Cons ls-tail-split
using Laligned-split-left[of ls ′ sub sep rs t u]
by simp

ultimately show ?thesis
using Laligned-leaves-inbetween[of Node ls ′ sub sep]
by blast

qed
then show ?thesis

using assms(2 ) ls-tail-split leaves-tail-split leaves-split x-sm-sep
using isin-sorted[of leavesls ′ l ′ leaves-list rs @ leaves t x]
by auto

qed
qed

lemma isin-sorted-split-right:
assumes split ts x = (ls, (sub,sep)#rs)

and sorted-less (leaves (Node ts t))
and Laligned (Node ts t) u

shows x ∈ set (leaves-list ((sub,sep)#rs) @ leaves t) = (x ∈ set (leaves sub))
proof −

from assms have x ≤ sep
proof −

from assms have sorted-less (separators ts)
by (meson Laligned-sorted-inorder sorted-cons sorted-inorder-separators sorted-snoc)
then show ?thesis

using split-req(3 )
using assms
by fastforce

qed
moreover have leaves-split: leaves (Node ts t) = leaves-list ls @ leaves sub @

leaves-list rs @ leaves t
using split-conc[OF assms(1 )] by auto

ultimately show ?thesis
proof (cases leaves-list rs @ leaves t)

case Nil
then show ?thesis

using leaves-split by auto
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next
case (Cons r ′ rs ′)
then have sep < r ′

by (metis Laligned-split-right aligned-leaves-inbetween assms(1 ) assms(3 )
leaves.simps(2 ) list.set-intros(1 ) split-set.split-conc split-set-axioms)

then have x < r ′

using ‹x ≤ sep› by auto
moreover have sorted-less (leaves-list ((sub,sep)#rs) @ leaves t)

using assms sorted-wrt-append split-conc
by fastforce

ultimately show ?thesis
using isin-sorted[of leaves sub r ′ rs ′ x] Cons
by auto

qed
qed

theorem isin-set-inorder :
assumes sorted-less (leaves t)

and aligned l t u
shows isin t x = (x ∈ set (leaves t))
using assms

proof(induction t x arbitrary: l u rule: isin.induct)
case (2 ts t x)
then obtain ls rs where list-split: split ts x = (ls, rs)

by (meson surj-pair)
then have list-conc: ts = ls @ rs

using split-conc by auto
show ?case
proof (cases rs)

case Nil
then have isin (Node ts t) x = isin t x

by (simp add: list-split)
also have . . . = (x ∈ set (leaves t))

using 2 .IH (1 )[of ls rs] list-split Nil
using 2 .prems sorted-leaves-induct-last align-last ′

by metis
also have . . . = (x ∈ set (leaves (Node ts t)))

using isin-sorted-split
using 2 .prems list-split list-conc Nil
by (metis aligned-imp-Laligned leaves.simps(2 ) leaves-conc same-append-eq

self-append-conv)
finally show ?thesis .

next
case (Cons a list)
then obtain sub sep where a-split: a = (sub,sep)

by (cases a)
then have isin (Node ts t) x = isin sub x

using list-split Cons a-split
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by auto
also have . . . = (x ∈ set (leaves sub))

using 2 .IH (2 )[of ls rs (sub,sep) list sub sep]
using 2 .prems a-split list-conc list-split local.Cons sorted-leaves-induct-subtree

align-sub
by (metis in-set-conv-decomp)

also have . . . = (x ∈ set (leaves (Node ts t)))
using isin-sorted-split
using isin-sorted-split-right 2 .prems list-split Cons a-split
using aligned-imp-Laligned by blast

finally show ?thesis .
qed

qed (auto simp add: insert-list-req)

theorem isin-set-Linorder :
assumes sorted-less (leaves t)

and Laligned t u
shows isin t x = (x ∈ set (leaves t))
using assms

proof(induction t x arbitrary: u rule: isin.induct)
case (2 ts t x)
then obtain ls rs where list-split: split ts x = (ls, rs)

by (meson surj-pair)
then have list-conc: ts = ls @ rs

using split-conc by auto
show ?case
proof (cases rs)

case Nil
then have isin (Node ts t) x = isin t x

by (simp add: list-split)
also have . . . = (x ∈ set (leaves t))

by (metis 2 .IH (1 ) 2 .prems(1 ) 2 .prems(2 ) Lalign-Llast list-split local.Nil
sorted-leaves-induct-last)

also have . . . = (x ∈ set (leaves (Node ts t)))
using isin-sorted-split
using 2 .prems list-split list-conc Nil
by simp

finally show ?thesis .
next

case (Cons a list)
then obtain sub sep where a-split: a = (sub,sep)

by (cases a)
then have isin (Node ts t) x = isin sub x

using list-split Cons a-split
by auto

also have . . . = (x ∈ set (leaves sub))
using 2 .IH (2 )[of ls rs (sub,sep) list sub sep]

using 2 .prems a-split list-conc list-split local.Cons sorted-leaves-induct-subtree
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align-sub
by (metis Lalign-Llast Laligned-split-left)

also have . . . = (x ∈ set (leaves (Node ts t)))
using isin-sorted-split
using isin-sorted-split-right 2 .prems list-split Cons a-split
by simp

finally show ?thesis .
qed

qed (auto simp add: insert-list-req)

corollary isin-set-Linorder-top:
assumes sorted-less (leaves t)

and Laligned t top
shows isin t x = (x ∈ set (leaves t))
using assms isin-set-Linorder
by simp

7.2 Insertion

The insert function requires an auxiliary data structure and auxiliary in-
variant functions.
datatype ′b upi = T i

′b bplustree | Upi
′b bplustree ′b ′b bplustree

fun order-upi where
order-upi k (T i sub) = order k sub |
order-upi k (Upi l a r) = (order k l ∧ order k r)

fun root-order-upi where
root-order-upi k (T i sub) = root-order k sub |
root-order-upi k (Upi l a r) = (order k l ∧ order k r)

fun height-upi where
height-upi (T i t) = height t |
height-upi (Upi l a r) = max (height l) (height r)

fun bal-upi where
bal-upi (T i t) = bal t |
bal-upi (Upi l a r) = (height l = height r ∧ bal l ∧ bal r)

fun inorder-upi where
inorder-upi (T i t) = inorder t |
inorder-upi (Upi l a r) = inorder l @ [a] @ inorder r

fun leaves-upi where
leaves-upi (T i t) = leaves t |
leaves-upi (Upi l a r) = leaves l @ leaves r

fun aligned-upi where
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aligned-upi l (T i t) u = aligned l t u |
aligned-upi l (Upi lt a rt) u = (aligned l lt a ∧ aligned a rt u)

fun Laligned-upi where
Laligned-upi (T i t) u = Laligned t u |
Laligned-upi (Upi lt a rt) u = (Laligned lt a ∧ aligned a rt u)

The following function merges two nodes and returns separately split nodes
if an overflow occurs
fun nodei:: nat ⇒ ( ′a bplustree × ′a) list ⇒ ′a bplustree ⇒ ′a upi where

nodei k ts t = (
if length ts ≤ 2∗k then T i (Node ts t)
else (

case split-half ts of (ls, rs) ⇒
case last ls of (sub,sep) ⇒

Upi (Node (butlast ls) sub) sep (Node rs t)
)

)

fun Lnodei:: nat ⇒ ′a list ⇒ ′a upi where
Lnodei k ts = (
if length ts ≤ 2∗k then T i (Leaf ts)
else (

case split-half ts of (ls, rs) ⇒
Upi (Leaf ls) (last ls) (Leaf rs)

)
)

fun ins:: nat ⇒ ′a ⇒ ′a bplustree ⇒ ′a upi where
ins k x (Leaf ks) = Lnodei k (insert-list x ks) |
ins k x (Node ts t) = (
case split ts x of
(ls,(sub,sep)#rs) ⇒

(case ins k x sub of
Upi l a r ⇒

nodei k (ls@(l,a)#(r ,sep)#rs) t |
T i a ⇒

T i (Node (ls@(a,sep)#rs) t)) |
(ls, []) ⇒
(case ins k x t of

Upi l a r ⇒
nodei k (ls@[(l,a)]) r |

T i a ⇒
T i (Node ls a)

)
)
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fun treei:: ′a upi ⇒ ′a bplustree where
treei (T i sub) = sub |
treei (Upi l a r) = (Node [(l,a)] r)

fun insert::nat ⇒ ′a ⇒ ′a bplustree ⇒ ′a bplustree where
insert k x t = treei (ins k x t)

7.3 Proofs of functional correctness
lemma nodei-ti-simp: nodei k ts t = T i x =⇒ x = Node ts t

apply (cases length ts ≤ 2∗k)
apply (auto split!: list.splits prod.splits)
done

lemma Lnodei-ti-simp: Lnodei k ts = T i x =⇒ x = Leaf ts
apply (cases length ts ≤ 2∗k)
apply (auto split!: list.splits)
done

lemma split-set:
assumes split ts z = (ls,(a,b)#rs)
shows (a,b) ∈ set ts

and (x,y) ∈ set ls =⇒ (x,y) ∈ set ts
and (x,y) ∈ set rs =⇒ (x,y) ∈ set ts
and set ls ∪ set rs ∪ {(a,b)} = set ts
and ∃ x ∈ set ts. b ∈ Basic-BNFs.snds x

using split-conc assms by fastforce+

lemma split-length:
split ts x = (ls, rs) =⇒ length ls + length rs = length ts
by (auto dest: split-conc)

lemma nodei-cases: length xs ≤ k ∨ (∃ ls sub sep rs. split-half xs = (ls@[(sub,sep)],rs))
proof −

have ¬ length xs ≤ k =⇒ length xs ≥ 1
by linarith

then show ?thesis
using split-half-not-empty
by fastforce

qed

lemma Lnodei-cases: length xs ≤ k ∨ (∃ ls sep rs. split-half xs = (ls@[sep],rs))
proof −

have ¬ length xs ≤ k =⇒ length xs ≥ 1
by linarith
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then show ?thesis
using split-half-not-empty
by fastforce

qed

lemma root-order-treei: root-order-upi (Suc k) t = root-order (Suc k) (treei t)
apply (cases t)
apply auto

done

lemma length-take-left: length (take ((length ts + 1 ) div 2 ) ts) = (length ts + 1 )
div 2

apply (cases ts)
apply auto
done

lemma nodei-root-order :
assumes length ts > 0

and length ts ≤ 4∗k+1
and ∀ x ∈ set (subtrees ts). order k x
and order k t

shows root-order-upi k (nodei k ts t)
proof (cases length ts ≤ 2∗k)

case True
then show ?thesis

using assms
by (simp add: nodei.simps)

next
case False
then obtain ls sub sep rs where split-half-ts:

take ((length ts + 1 ) div 2 ) ts = ls@[(sub,sep)]
using split-half-not-empty[of ts]
by auto

then have length-ls: length ls = (length ts + 1 ) div 2 − 1
by (metis One-nat-def add-diff-cancel-right ′ add-self-div-2 bits-1-div-2 length-append

length-take-left list.size(3 ) list.size(4 ) odd-one odd-succ-div-two)
also have . . . ≤ (4∗k + 1 ) div 2

using assms(2 ) by simp
also have . . . = 2∗k

by auto
finally have length ls ≤ 2∗k

by simp
moreover have length ls ≥ k

using False length-ls by simp
moreover have set (ls@[(sub,sep)]) ⊆ set ts

by (metis split-half-ts(1 ) set-take-subset)
ultimately have o-r : order k (Node ls sub)

using split-half-ts assms by auto
have
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butlast (take ((length ts + 1 ) div 2 ) ts) = ls
last (take ((length ts + 1 ) div 2 ) ts) = (sub,sep)
using split-half-ts by auto

then show ?thesis
using o-r assms set-drop-subset[of - ts]
by (auto simp add: False split-half-ts split!: prod.splits)

qed

lemma nodei-order-helper :
assumes length ts ≥ k

and length ts ≤ 4∗k+1
and ∀ x ∈ set (subtrees ts). order k x
and order k t

shows case (nodei k ts t) of T i t ⇒ order k t | - ⇒ True
proof (cases length ts ≤ 2∗k)

case True
then show ?thesis

using assms
by (simp add: nodei.simps)

next
case False
then obtain sub sep ls where

take ((length ts + 1 ) div 2 ) ts = ls@[(sub,sep)]
using split-half-not-empty[of ts]
by fastforce

then show ?thesis
using assms by simp

qed

lemma nodei-order :
assumes length ts ≥ k

and length ts ≤ 4∗k+1
and ∀ x ∈ set (subtrees ts). order k x
and order k t

shows order-upi k (nodei k ts t)
apply(cases nodei k ts t)
using nodei-root-order nodei-order-helper assms apply fastforce
by (metis (full-types) assms le-0-eq nat-le-linear nodei.elims nodei-root-order or-

der-upi.simps(2 ) root-order-upi.simps(2 ) upi.simps(4 ) verit-comp-simplify1 (3 ))

lemma Lnodei-root-order :
assumes length ts > 0

and length ts ≤ 4∗k
shows root-order-upi k (Lnodei k ts)

proof (cases length ts ≤ 2∗k)
case True
then show ?thesis
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using assms
by simp

next
case False
then obtain ls sep rs where split-half-ts:

take ((length ts + 1 ) div 2 ) ts = ls@[sep]
drop ((length ts + 1 ) div 2 ) ts = rs
using split-half-not-empty[of ts]
by auto

then have length-ls: length ls = ((length ts + 1 ) div 2 ) − 1
by (metis One-nat-def add-diff-cancel-right ′ add-self-div-2 bits-1-div-2 length-append

length-take-left list.size(3 ) list.size(4 ) odd-one odd-succ-div-two)
also have . . . < (4∗k + 1 ) div 2

using assms(2 )
by (smt (z3 ) Groups.add-ac(2 ) One-nat-def split-half-ts add.right-neutral diff-is-0-eq ′

div-le-mono le-add-diff-inverse le-neq-implies-less length-append length-take-left less-add-Suc1
less-imp-diff-less list.size(4 ) nat-le-linear not-less-eq plus-nat.simps(2 ))

also have . . . = 2∗k
by auto

finally have length ls < 2∗k
by simp

moreover have length ls ≥ k
using False length-ls by simp

ultimately have o-l: order k (Leaf (ls@[sep]))
using set-take-subset assms split-half-ts
by fastforce

then show ?thesis
using assms split-half-ts False
by auto

qed

lemma Lnodei-order-helper :
assumes length ts ≥ k

and length ts ≤ 4∗k+1
shows case (Lnodei k ts) of T i t ⇒ order k t | - ⇒ True

proof (cases length ts ≤ 2∗k)
case True
then show ?thesis

using assms
by (simp add: nodei.simps)

next
case False
then obtain sep ls where

take ((length ts + 1 ) div 2 ) ts = ls@[sep]
using split-half-not-empty[of ts]
by fastforce

then show ?thesis
using assms by simp

qed
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lemma Lnodei-order :
assumes length ts ≥ k

and length ts ≤ 4∗k
shows order-upi k (Lnodei k ts)
apply(cases Lnodei k ts)
apply (metis Lnodei-order-helper One-nat-def add.right-neutral add-Suc-right

assms(1 ) assms(2 ) le-imp-less-Suc less-le order-upi.simps(1 ) upi.simps(5 ))
by (metis Lnodei.elims Lnodei-root-order assms(1 ) assms(2 ) diff-is-0-eq ′ le-0-eq

le-add-diff-inverse mult-2 order-upi.simps(2 ) root-order-upi.simps(2 ) upi.simps(3 )
verit-comp-simplify1 (3 ))

lemma ins-order :
k > 0 =⇒ sorted-less (leaves t) =⇒ order k t =⇒ order-upi k (ins k x t)

proof(induction k x t rule: ins.induct)
case (1 k x ts)
then show ?case

by auto
next

case (2 k x ts t)
then obtain ls rs where split-res: split ts x = (ls, rs)

by (meson surj-pair)
then have split-app: ts = ls@rs

using split-conc
by simp

show ?case
proof (cases rs)

case Nil
then have order-upi k (ins k x t)

using 2 split-res sorted-leaves-induct-last
by auto

then show ?thesis
using Nil 2 split-app split-res Nil nodei-order
by (auto split!: upi.splits simp del: nodei.simps)

next
case (Cons a list)
then obtain sub sep where a-prod: a = (sub, sep)

by (cases a)
then have sorted-less (leaves sub)

using 2 (4 ) Cons sorted-leaves-induct-subtree split-app
by blast

then have order-upi k (ins k x sub)
using 2 .IH (2 ) 2 .prems a-prod local.Cons split-app split-res
by auto

then show ?thesis
using 2 split-app Cons length-append nodei-order [of k ls@-#-#list] a-prod
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split-res
by (auto split!: upi.splits simp del: nodei.simps simp add: order-impl-root-order)

qed
qed

lemma ins-root-order :
assumes k > 0 sorted-less (leaves t) root-order k t
shows root-order-upi k (ins k x t)

proof(cases t)
case (Leaf ks)
then show ?thesis

using assms by (auto simp add: Lnodei-order min-absorb2 )
next

case (Node ts t)
then obtain ls rs where split-res: split ts x = (ls, rs)

by (meson surj-pair)
then have split-app: ls@rs = ts

using split-conc
by fastforce

show ?thesis
proof (cases rs)

case Nil
then have order-upi k (ins k x t)

using Node assms split-res sorted-leaves-induct-last
using ins-order [of k t]
by auto

then show ?thesis
using Nil Node split-app split-res assms nodei-root-order

by (auto split!: upi.splits simp del: nodei.simps simp add: order-impl-root-order)
next

case (Cons a list)
then obtain sub sep where a-prod: a = (sub, sep)

by (cases a)
then have sorted-less (leaves sub)

using Node assms(2 ) local.Cons sorted-leaves-induct-subtree split-app
by blast

then have order-upi k (ins k x sub)
using Node a-prod assms ins-order local.Cons split-app
by auto

then show ?thesis
using assms split-app Cons length-append Node nodei-root-order a-prod split-res
by (auto split!: upi.splits simp del: nodei.simps simp add: order-impl-root-order)

qed
qed
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lemma height-list-split: height-upi (Upi (Node ls a) b (Node rs t)) = height (Node
(ls@(a,b)#rs) t)

by (induction ls) (auto simp add: max.commute)

lemma nodei-height: height-upi (nodei k ts t) = height (Node ts t)
proof(cases length ts ≤ 2∗k)

case False
then obtain ls sub sep rs where

split-half-ts: split-half ts = (ls@[(sub,sep)], rs)
by (meson nodei-cases)

then have nodei k ts t = Upi (Node ls (sub)) sep (Node rs t)
using False by simp

then have height-upi (nodei k ts t) = height (Node (ls@(sub,sep)#rs) t)
by (metis height-list-split)

also have . . . = height (Node ts t)
by (metis (no-types, lifting) Pair-inject append-Cons append-eq-append-conv2

append-take-drop-id self-append-conv split-half .simps split-half-ts)
finally show ?thesis.

qed simp

lemma Lnodei-height: height-upi (Lnodei k xs) = height (Leaf xs)
by (auto)

lemma bal-upi-tree: bal-upi t = bal (treei t)
apply(cases t)
apply auto

done

lemma bal-list-split: bal (Node (ls@(a,b)#rs) t) =⇒ bal-upi (Upi (Node ls a) b
(Node rs t))

by (auto simp add: image-constant-conv)

lemma nodei-bal:
assumes bal (Node ts t)
shows bal-upi (nodei k ts t)
using assms

proof(cases length ts ≤ 2∗k)
case False
then obtain ls sub sep rs where

split-half-ts: split-half ts = (ls@[(sub,sep)], rs)
by (meson nodei-cases)

then have bal (Node (ls@(sub,sep)#rs) t)
using assms append-take-drop-id[where n=(length ts + 1 ) div 2 and xs=ts]
by auto

then show ?thesis
using split-half-ts assms False
by (auto simp del: bal.simps bal-upi.simps dest!: bal-list-split[of ls sub sep rs t])
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qed simp

lemma nodei-aligned:
assumes aligned l (Node ts t) u
shows aligned-upi l (nodei k ts t) u
using assms

proof (cases length ts ≤ 2∗k)
case False
then obtain ls sub sep rs where

split-half-ts: split-half ts = (ls@[(sub,sep)], rs)
by (meson nodei-cases)

then have aligned l (Node ls sub) sep
by (metis aligned-split-left append.assoc append-Cons append-take-drop-id assms

prod.sel(1 ) split-half .simps)
moreover have aligned sep (Node rs t) u
by (smt (z3 ) Pair-inject aligned-split-right append.assoc append-Cons append-Nil2

append-take-drop-id assms same-append-eq split-half .simps split-half-ts)
ultimately show ?thesis

using split-half-ts False by auto
qed simp

lemma nodei-Laligned:
assumes Laligned (Node ts t) u
shows Laligned-upi (nodei k ts t) u
using assms

proof (cases length ts ≤ 2∗k)
case False
then obtain ls sub sep rs where

split-half-ts: split-half ts = (ls@[(sub,sep)], rs)
by (meson nodei-cases)

then have Laligned (Node ls sub) sep
by (metis Laligned-split-left append.assoc append-Cons assms split-half-conc)

moreover have aligned sep (Node rs t) u
by (metis Laligned-split-right append.assoc append-Cons append-Nil2 assms

same-append-eq split-half-conc split-half-ts)
ultimately show ?thesis

using split-half-ts False by auto
qed simp

lemma length-right-side: length xs > 1 =⇒ length (drop ((length xs + 1 ) div 2 )
xs) > 0

by auto

lemma Lnodei-aligned:
assumes aligned l (Leaf ks) u

and sorted-less ks
and k > 0

shows aligned-upi l (Lnodei k ks) u
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using assms
proof (cases length ks ≤ 2∗k)

case False
then obtain ls sep rs where split-half-ts:

take ((length ks + 1 ) div 2 ) ks = ls@[sep]
drop ((length ks + 1 ) div 2 ) ks = rs
using split-half-not-empty[of ks]
by auto

moreover have sorted-less (ls@[sep])
by (metis append-take-drop-id assms(2 ) sorted-wrt-append split-half-ts(1 ))

ultimately have aligned l (Leaf (ls@[sep])) sep
using split-half-conc[of ks ls@[sep] rs] assms sorted-snoc-iff [of ls sep]
by auto

moreover have aligned sep (Leaf rs) u
proof −

have length rs > 0
using False assms(3 ) split-half-ts(2 ) by fastforce

then obtain sep ′ rs ′ where rs = sep ′ # rs ′

by (cases rs) auto
moreover have sep < sep ′

by (metis append-take-drop-id assms(2 ) calculation in-set-conv-decomp sorted-mid-iff
sorted-snoc-iff split-half-ts(1 ) split-half-ts(2 ))

moreover have sorted-less rs
by (metis append-take-drop-id assms(2 ) sorted-wrt-append split-half-ts(2 ))

ultimately show ?thesis
using split-half-ts split-half-conc[of ks ls@[sep] rs] assms
by auto

qed
ultimately show ?thesis

using split-half-ts False by auto
qed simp

lemma height-upi-merge: height-upi (Upi l a r) = height t =⇒ height (Node
(ls@(t,x)#rs) tt) = height (Node (ls@(l,a)#(r ,x)#rs) tt)

by simp

lemma ins-height: height-upi (ins k x t) = height t
proof(induction k x t rule: ins.induct)

case (2 k x ts t)
then obtain ls rs where split-list: split ts x = (ls,rs)

by (meson surj-pair)
then have split-append: ts = ls@rs

using split-conc
by auto

then show ?case
proof (cases rs)

case Nil
then have height-sub: height-upi (ins k x t) = height t

using 2 by (simp add: split-list)
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then show ?thesis
proof (cases ins k x t)

case (T i a)
then have height (Node ts t) = height (Node ts a)

using height-sub
by simp

then show ?thesis
using T i Nil split-list split-append
by simp

next
case (Upi l a r)
then have height (Node ls t) = height (Node (ls@[(l,a)]) r)

using height-bplustree-order height-sub by (induction ls) auto
then show ?thesis using 2 Nil split-list Upi split-append

by (simp del: nodei.simps add: nodei-height)
qed

next
case (Cons a list)
then obtain sub sep where a-split: a = (sub,sep)

by (cases a) auto
then have height-sub: height-upi (ins k x sub) = height sub

by (metis 2 .IH (2 ) a-split Cons split-list)
then show ?thesis
proof (cases ins k x sub)

case (T i a)
then have height a = height sub

using height-sub by auto
then have height (Node (ls@(sub,sep)#rs) t) = height (Node (ls@(a,sep)#rs)

t)
by auto

then show ?thesis
using T i height-sub Cons 2 split-list a-split split-append
by (auto simp add: image-Un max.commute finite-set-ins-swap)

next
case (Upi l a r)

then have height (Node (ls@(sub,sep)#list) t) = height (Node (ls@(l,a)#(r ,sep)#list)
t)

using height-upi-merge height-sub
by fastforce

then show ?thesis
using Upi Cons 2 split-list a-split split-append

by (auto simp del: nodei.simps simp add: nodei-height image-Un max.commute
finite-set-ins-swap)

qed
qed

qed simp
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lemma ins-bal: bal t =⇒ bal-upi (ins k x t)
proof(induction k x t rule: ins.induct)

case (2 k x ts t)
then obtain ls rs where split-res: split ts x = (ls, rs)

by (meson surj-pair)
then have split-app: ts = ls@rs

using split-conc
by fastforce

show ?case
proof (cases rs)

case Nil
then show ?thesis
proof (cases ins k x t)

case (T i a)
then have bal (Node ls a) unfolding bal.simps

by (metis 2 .IH (1 ) 2 .prems append-Nil2 bal.simps(2 ) bal-upi.simps(1 )
height-upi.simps(1 ) ins-height local.Nil split-app split-res)

then show ?thesis
using Nil T i 2 split-res
by simp

next
case (Upi l a r)
then have
(∀ x∈set (subtrees (ls@[(l,a)])). bal x)
(∀ x∈set (subtrees ls). height r = height x)
using 2 Upi Nil split-res split-app
by simp-all (metis height-upi.simps(2 ) ins-height max-def )

then show ?thesis unfolding ins.simps
using Upi Nil 2 split-res
by (simp del: nodei.simps add: nodei-bal)

qed
next

case (Cons a list)
then obtain sub sep where a-prod: a = (sub, sep) by (cases a)
then have bal-upi (ins k x sub) using 2 split-res

using a-prod local.Cons split-app by auto
show ?thesis
proof (cases ins k x sub)

case (T i x1 )
then have height x1 = height t
by (metis 2 .prems a-prod add-diff-cancel-left ′ bal-split-left(1 ) bal-split-left(2 )

height-bal-tree height-upi.simps(1 ) ins-height local.Cons plus-1-eq-Suc split-app)
then show ?thesis

using split-app Cons T i 2 split-res a-prod
by auto

next
case (Upi l a r)
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then have
∀ x ∈ set (subtrees (ls@(l,a)#(r ,sep)#list)). bal x
using Upi split-app Cons 2 ‹bal-upi (ins k x sub)› by auto

moreover have ∀ x ∈ set (subtrees (ls@(l,a)#(r ,sep)#list)). height x = height
t

using Upi split-app Cons 2 ‹bal-upi (ins k x sub)› ins-height split-res a-prod
apply auto
by (metis height-upi.simps(2 ) sup.idem sup-nat-def )

ultimately show ?thesis using Upi Cons 2 split-res a-prod
by (simp del: nodei.simps add: nodei-bal)

qed
qed

qed simp

lemma nodei-leaves: leaves-upi (nodei k ts t) = leaves (Node ts t)
proof (cases length ts ≤ 2∗k)

case False
then obtain ls sub sep rs where

split-half-ts: split-half ts = (ls@[(sub,sep)], rs)
by (meson nodei-cases)

then have leaves-upi (nodei k ts t) = leaves-list ls @ leaves sub @ leaves-list rs
@ leaves t

using False by auto
also have . . . = leaves (Node ts t)

using split-half-ts split-half-conc[of ts ls@[(sub,sep)] rs] by auto
finally show ?thesis.

qed simp

corollary nodei-leaves-simps:
nodei k ts t = T i t ′ =⇒ leaves t ′ = leaves (Node ts t)
nodei k ts t = Upi l a r =⇒ leaves l @ leaves r = leaves (Node ts t)
apply (metis leaves-upi.simps(1 ) nodei-leaves)

by (metis leaves-upi.simps(2 ) nodei-leaves)

lemma Lnodei-leaves: leaves-upi (Lnodei k xs) = leaves (Leaf xs)
proof (cases length xs ≤ 2∗k)

case False
then obtain ls sub sep rs where

split-half-ts: split-half xs = (ls@[sep], rs)
by (meson Lnodei-cases)

then have leaves-upi (Lnodei k xs) = ls @ sep # rs
using False by auto

also have . . . = leaves (Leaf xs)
using split-half-ts split-half-conc[of xs ls@[sep] rs] by auto

finally show ?thesis.
qed simp
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corollary Lnodei-leaves-simps:
Lnodei k xs = T i t =⇒ leaves t = leaves (Leaf xs)
Lnodei k xs = Upi l a r =⇒ leaves l @ leaves r = leaves (Leaf xs)
apply (metis leaves-upi.simps(1 ) Lnodei-leaves)

by (metis leaves-upi.simps(2 ) Lnodei-leaves)

lemma ins-list-split:
assumes Laligned (Node ts t) u

and sorted-less (leaves (Node ts t))
and split ts x = (ls, rs)

shows ins-list x (leaves (Node ts t)) = leaves-list ls @ ins-list x (leaves-list rs @
leaves t)
proof (cases ls)

case Nil
then show ?thesis

using assms by (auto dest!: split-conc)
next

case Cons
then obtain ls ′ sub sep where ls-tail-split: ls = ls ′ @ [(sub,sep)]

by (metis list.distinct(1 ) rev-exhaust surj-pair)
have sorted-inorder : sorted-less (inorder (Node ts t))

using Laligned-sorted-inorder assms(1 ) sorted-cons sorted-snoc by blast
moreover have x-sm-sep: sep < x

using split-req(2 )[of ts x ls ′ sub sep rs]
using sorted-inorder-separators[of ts t] sorted-inorder
using assms ls-tail-split
by auto

moreover have leaves-split: leaves (Node ts t) = leaves-list ls @ leaves-list rs @
leaves t

using assms(3 ) split-tree.leaves-split by blast
then show ?thesis
proof (cases leaves-list ls)

case Nil
then show ?thesis

by (metis append-self-conv2 leaves-split)
next

case Cons
then obtain leavesls ′ l ′ where leaves-tail-split: leaves-list ls = leavesls ′ @ [l ′]

by (metis list.simps(3 ) rev-exhaust)
then have l ′ ≤ sep
proof −

have l ′ ∈ set (leaves-list ls)
using leaves-tail-split by force

then have l ′ ∈ set (leaves (Node ls ′ sub))
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using ls-tail-split
by auto

moreover have Laligned (Node ls ′ sub) sep
using assms split-conc[OF assms(3 )] Cons ls-tail-split
using Laligned-split-left[of ls ′ sub sep rs t u]
by simp

ultimately show ?thesis
using Laligned-leaves-inbetween[of Node ls ′ sub sep]
by blast

qed
moreover have sorted-less (leaves-list ls)

using assms(2 ) leaves-split sorted-wrt-append by auto
ultimately show ?thesis

using assms(2 ) ls-tail-split leaves-tail-split leaves-split x-sm-sep
using ins-list-sorted[of leavesls ′ l ′ x leaves-list rs@leaves t]
by auto

qed
qed

lemma ins-list-split-right:
assumes split ts x = (ls, (sub,sep)#rs)

and sorted-less (leaves (Node ts t))
and Laligned (Node ts t) u

shows ins-list x (leaves-list ((sub,sep)#rs) @ leaves t) = ins-list x (leaves sub)
@ leaves-list rs @ leaves t
proof −

from assms have x-sm-sep: x ≤ sep
proof −

from assms have sorted-less (separators ts)
using Laligned-sorted-separators sorted-cons sorted-snoc by blast

then show ?thesis
using split-req(3 )
using assms
by blast

qed
then show ?thesis
proof (cases leaves-list rs @ leaves t)

case Nil
moreover have leaves-list ((sub,sep)#rs) @ leaves t = leaves sub @ leaves-list

rs @ leaves t
by simp

ultimately show ?thesis
by (metis self-append-conv)

next
case (Cons r ′ rs ′)
then have sep < r ′

by (metis aligned-leaves-inbetween Laligned-split-right assms(1 ) assms(3 )
leaves.simps(2 ) list.set-intros(1 ) split-set.split-conc split-set-axioms)

then have x < r ′
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using ‹x ≤ sep› by auto
moreover have sorted-less (leaves sub @ [r ′])
proof −

have sorted-less (leaves-list ls @ leaves sub @ leaves-list rs @ leaves t)
using assms(1 ) assms(2 ) split-tree.leaves-split split-set-axioms by fastforce

then show ?thesis
using assms
by (metis Cons sorted-mid-iff sorted-wrt-append)

qed
ultimately show ?thesis

using ins-list-sorted[of leaves sub r ′ x rs ′] Cons
by auto

qed
qed

lemma ins-list-idem-eq-isin: sorted-less xs =⇒ x ∈ set xs ←→ (ins-list x xs = xs)
apply(induction xs)
apply auto

done

lemma ins-list-contains-idem: [[sorted-less xs; x ∈ set xs]] =⇒ (ins-list x xs = xs)
using ins-list-idem-eq-isin by auto

lemma aligned-insert-list: sorted-less ks =⇒ l < x =⇒ x ≤ u =⇒ aligned l (Leaf
ks) u =⇒ aligned l (Leaf (insert-list x ks)) u

using insert-list-req
by (simp add: set-ins-list)

lemma align-subst-two: aligned l (Node (ts@[(sub,sep)]) t) u =⇒ aligned sep lt a
=⇒ aligned a rt u =⇒ aligned l (Node (ts@[(sub,sep),(lt,a)]) rt) u

apply(induction ts arbitrary: l)
apply auto
done

lemma align-subst-three: aligned l (Node (ls@(subl,sepl)#(subr ,sepr)#rs) t) u =⇒
aligned sepl lt a =⇒ aligned a rt sepr =⇒ aligned l (Node (ls@(subl,sepl)#(lt,a)#(rt,sepr)#rs)
t) u

apply(induction ls arbitrary: l)
apply auto
done

declare nodei.simps [simp del]
declare nodei-leaves [simp add]

lemma ins-inorder :
assumes k > 0
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and aligned l t u
and sorted-less (leaves t)
and root-order k t
and l < x x ≤ u

shows (leaves-upi (ins k x t)) = ins-list x (leaves t) ∧ aligned-upi l (ins k x t) u
using assms

proof(induction k x t arbitrary: l u rule: ins.induct)
case (1 k x ks)
then show ?case
proof (safe, goal-cases)

case -: 1
then show ?case

using 1 insert-list-req by auto
next

case 2
from 1 have aligned l (Leaf (insert-list x ks)) u

by (metis aligned-insert-list leaves.simps(1 ))
moreover have sorted-less (insert-list x ks)

using 1 .prems(3 ) split-set.insert-list-req split-set-axioms
by auto

ultimately show ?case
using Lnodei-aligned[of l insert-list x ks u k] 1
by (auto simp del: Lnodei.simps split-half .simps)

qed
next

case (2 k x ts t)
then obtain ls rs where list-split: split ts x = (ls,rs)

by (cases split ts x)
then have list-conc: ts = ls@rs

using split-set.split-conc split-set-axioms by blast
then show ?case
proof (cases rs)

case Nil
then obtain ts ′ sub ′ sep ′ where ts = ts ′@[(sub ′,sep ′)]

apply(cases ts)
using 2 list-conc Nil apply(simp)
by (metis isin.cases list.distinct(1 ) rev-exhaust)

have IH : leaves-upi (ins k x t) = ins-list x (leaves t) ∧ aligned-upi sep ′ (ins k
x t) u

proof −

note 2 .IH (1 )[OF sym[OF list-split] Nil 2 .prems(1 ), of sep ′ u]
have sorted-less (leaves t)

using 2 .prems(3 ) sorted-leaves-induct-last by blast
moreover have sep ′ < x

using split-req[of ts x] list-split
by (metis 2 .prems(2 ) ‹ts = ts ′ @ [(sub ′, sep ′)]› aligned-sorted-separators

local.Nil self-append-conv sorted-cons sorted-snoc)
moreover have aligned sep ′ t u
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using 2 .prems(2 ) ‹ts = ts ′ @ [(sub ′, sep ′)]› align-last by blast
ultimately show ?thesis

using 2 .IH (1 )[OF sym[OF list-split] Nil 2 .prems(1 ), of sep ′ u]
using 2 .prems list-split local.Nil sorted-leaves-induct-last
using order-impl-root-order
by auto

qed
show ?thesis
proof (cases ins k x t)

case (T i a)
have IH : leaves a = ins-list x (leaves t) ∧ aligned sep ′ a u

using IH T i by force
show ?thesis
proof(safe, goal-cases)

case 1
have leaves-upi (ins k x (Node ts t)) = leaves-list ls @ leaves a

using list-split T i Nil by (auto simp add: list-conc)
also have . . . = leaves-list ls @ (ins-list x (leaves t))

by (simp add: IH )
also have . . . = ins-list x (leaves (Node ts t))

using ins-list-split
using 2 .prems list-split Nil

by (metis aligned-imp-Laligned append-self-conv2 concat.simps(1 ) list.simps(8 ))
finally show ?case .

next
case 2
have aligned-upi l (ins k x (Node ts t)) u = aligned l (Node ts a) u

using Nil T i list-split list-conc by simp
moreover have aligned l (Node ts a) u

using 2 .prems(2 )
by (metis IH ‹ts = ts ′ @ [(sub ′, sep ′)]› aligned-subst-last)

ultimately show ?case
by auto

qed
next

case (Upi lt a rt)
then have IH :leaves-upi (Upi lt a rt) = ins-list x (leaves t) ∧ aligned-upi

sep ′ (Upi lt a rt) u
using IH by auto

show ?thesis
proof (safe, goal-cases)

case 1
have leaves-upi (ins k x (Node ts t)) = leaves-list ls @ leaves-upi (Upi lt a

rt)
using list-split Upi Nil by (auto simp add: list-conc)

also have . . . = leaves-list ls @ ins-list x (leaves t)
using IH by simp

also have . . . = ins-list x (leaves (Node ts t))
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using ins-list-split
using 2 .prems list-split local.Nil

by (metis aligned-imp-Laligned append-self-conv2 concat.simps(1 ) list.simps(8 ))
finally show ?case.

next
case 2
have aligned-upi l (ins k x (Node ts t)) u = aligned-upi l (nodei k (ts @ [(lt,

a)]) rt) u
using Nil Upi list-split list-conc nodei-aligned by simp

moreover have aligned l (Node (ts@[(lt,a)]) rt) u
using 2 .prems(2 ) IH ‹ts = ts ′ @ [(sub ′, sep ′)]› align-subst-two by fastforce

ultimately show ?case
using nodei-aligned
by auto

qed
qed

next
case (Cons h list)
then obtain sub sep where h-split: h = (sub,sep)

by (cases h)

then have sorted-inorder-sub: sorted-less (leaves sub)
using 2 .prems list-conc Cons sorted-leaves-induct-subtree
by fastforce

moreover have order-sub: order k sub
using 2 .prems list-conc Cons h-split
by auto

then show ?thesis

proof (cases ls)
case Nil
then have aligned-sub: aligned l sub sep

using 2 .prems(2 ) list-conc h-split Cons
by auto

then have IH : leaves-upi (ins k x sub) = ins-list x (leaves sub) ∧ aligned-upi

l (ins k x sub) sep
proof −

have x ≤ sep
using 2 .prems(2 ) aligned-sorted-separators h-split list-split local.Cons

sorted-cons sorted-snoc split-set.split-req(3 ) split-set-axioms
by blast

then show ?thesis
using 2 .IH (2 )[OF sym[OF list-split] Cons sym[OF h-split], of l sep]

using 2 .prems list-split local.Nil aligned-sub sorted-inorder-sub order-sub
using order-impl-root-order
by auto

qed
then show ?thesis
proof (cases ins k x sub)
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case (T i a)
have IH :leaves a = ins-list x (leaves sub) ∧ aligned l a sep

using T i IH by (auto)
show ?thesis
proof (safe, goal-cases)

case 1
have leaves-upi (ins k x (Node ts t)) = leaves-list ls @ leaves a @ leaves-list

list @ leaves t
using h-split list-split T i Cons by simp

also have . . . = leaves-list ls @ ins-list x (leaves sub) @ leaves-list list @
leaves t

using IH by simp
also have . . . = ins-list x (leaves (Node ts t))

using ins-list-split ins-list-split-right
using list-split 2 .prems Cons h-split
by (metis aligned-imp-Laligned)

finally show ?case.
next

case 2
have aligned-upi l (ins k x (Node ts t)) u = aligned l (Node ((a,sep)#list)

t) u
using Nil Cons list-conc list-split h-split T i by simp

moreover have aligned l (Node ((a,sep)#list) t) u
using aligned-sub 2 .prems(2 ) IH h-split list-conc Cons Nil
by auto

ultimately show ?case
by auto

qed
next

case (Upi lt a rt)
then have IH :leaves-upi (Upi lt a rt) = ins-list x (leaves sub) ∧ aligned-upi

l (Upi lt a rt) sep
using IH h-split list-split Cons sorted-inorder-sub
by auto

show ?thesis
proof (safe, goal-cases)

case 1
have leaves-upi (ins k x (Node ts t)) = leaves-list ls @ leaves lt @ leaves

rt @ leaves-list list @ leaves t
using h-split list-split Upi Cons by simp

also have . . . = leaves-list ls @ ins-list x (leaves sub) @ leaves-list list @
leaves t

using IH by simp
also have . . . = ins-list x (leaves (Node ts t))

using ins-list-split ins-list-split-right
using list-split 2 .prems Cons h-split
by (metis aligned-imp-Laligned)

finally show ?case.
next
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case 2
have aligned-upi l (ins k x (Node ts t)) u = aligned-upi l (nodei k

((lt,a)#(rt,sep)#list) t) u
using Nil Cons list-conc list-split h-split Upi by simp

moreover have aligned l (Node ((lt,a)#(rt,sep)#list) t) u
using aligned-sub 2 .prems(2 ) IH h-split list-conc Cons Nil
by auto

ultimately show ?case
using nodei-aligned by auto

qed
qed

next
case ls-split ′: Cons
then obtain ls ′ sub ′ sep ′ where ls-split: ls = ls ′@[(sub ′,sep ′)]

by (metis list.discI old.prod.exhaust snoc-eq-iff-butlast)
then have aligned-sub: aligned sep ′ sub sep

using 2 .prems(2 ) list-conc h-split Cons
using align-last aligned-split-left by blast

then have IH : leaves-upi (ins k x sub) = ins-list x (leaves sub) ∧ aligned-upi

sep ′ (ins k x sub) sep
proof −

have x ≤ sep
using 2 .prems(2 ) aligned-sorted-separators h-split list-split local.Cons

sorted-cons sorted-snoc split-set.split-req(3 ) split-set-axioms
by blast

moreover have sep ′ < x
using 2 .prems(2 ) aligned-sorted-separators list-split ls-split sorted-cons

sorted-snoc split-set.split-req(2 ) split-set-axioms
by blast

ultimately show ?thesis
using 2 .IH (2 )[OF sym[OF list-split] Cons sym[OF h-split], of sep ′ sep]

using 2 .prems list-split ls-split aligned-sub sorted-inorder-sub order-sub
using order-impl-root-order
by auto

qed
then show ?thesis
proof (cases ins k x sub)

case (T i a)
have IH :leaves a = ins-list x (leaves sub) ∧ aligned sep ′ a sep

using T i IH by (auto)
show ?thesis
proof (safe, goal-cases)

case 1
have leaves-upi (ins k x (Node ts t)) = leaves-list ls @ leaves a @ leaves-list

list @ leaves t
using h-split list-split T i Cons by simp

also have . . . = leaves-list ls @ ins-list x (leaves sub) @ leaves-list list @
leaves t

using IH by simp
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also have . . . = ins-list x (leaves (Node ts t))
using ins-list-split ins-list-split-right
using list-split 2 .prems Cons h-split
by (metis aligned-imp-Laligned)

finally show ?case.
next

case 2
have aligned-upi l (ins k x (Node ts t)) u = aligned l (Node (ls ′@(sub ′,sep ′)#(a,sep)#list)

t) u
using Nil Cons list-conc list-split h-split T i ls-split by simp

moreover have aligned l (Node (ls ′@(sub ′,sep ′)#(a,sep)#list) t) u
using aligned-sub 2 .prems(2 ) IH h-split list-conc Cons Nil ls-split
using aligned-subst by fastforce

ultimately show ?case
by auto

qed
next

case (Upi lt a rt)
then have IH :leaves-upi (Upi lt a rt) = ins-list x (leaves sub) ∧ aligned-upi

sep ′ (Upi lt a rt) sep
using IH h-split list-split Cons sorted-inorder-sub
by auto

show ?thesis
proof (safe, goal-cases)

case 1
have leaves-upi (ins k x (Node ts t)) = leaves-list ls @ leaves lt @ leaves

rt @ leaves-list list @ leaves t
using h-split list-split Upi Cons by simp

also have . . . = leaves-list ls @ ins-list x (leaves sub) @ leaves-list list @
leaves t

using IH by simp
also have . . . = ins-list x (leaves (Node ts t))

using ins-list-split ins-list-split-right
using list-split 2 .prems Cons h-split
by (metis aligned-imp-Laligned)

finally show ?case.
next

case 2
have aligned-upi l (ins k x (Node ts t)) u = aligned-upi l (nodei k

(ls ′@(sub ′,sep ′)#(lt,a)#(rt,sep)#list) t) u
using Nil Cons list-conc list-split h-split Upi ls-split by simp

moreover have aligned l (Node (ls ′@(sub ′,sep ′)#(lt,a)#(rt,sep)#list) t)
u

using aligned-sub 2 .prems(2 ) IH h-split list-conc Cons Nil ls-split
align-subst-three

by auto
ultimately show ?case

using nodei-aligned by auto
qed
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qed
qed

qed
qed

declare nodei.simps [simp add]
declare nodei-leaves [simp del]

lemma Laligned-insert-list: sorted-less ks =⇒ x ≤ u =⇒ Laligned (Leaf ks) u =⇒
Laligned (Leaf (insert-list x ks)) u

using insert-list-req
by (simp add: set-ins-list)

lemma Lalign-subst-two: Laligned (Node (ts@[(sub,sep)]) t) u =⇒ aligned sep lt a
=⇒ aligned a rt u =⇒ Laligned (Node (ts@[(sub,sep),(lt,a)]) rt) u

apply(induction ts)
apply (auto)
by (meson align-subst-two aligned.simps(2 ))

lemma Lalign-subst-three: Laligned (Node (ls@(subl,sepl)#(subr ,sepr)#rs) t) u
=⇒ aligned sepl lt a =⇒ aligned a rt sepr =⇒ Laligned (Node (ls@(subl,sepl)#(lt,a)#(rt,sepr)#rs)
t) u

apply(induction ls)
apply auto
by (meson align-subst-three aligned.simps(2 ))

lemma Lnodei-Laligned:
assumes Laligned (Leaf ks) u

and sorted-less ks
and k > 0

shows Laligned-upi (Lnodei k ks) u
using assms

proof (cases length ks ≤ 2∗k)
case False
then obtain ls sep rs where split-half-ts:

take ((length ks + 1 ) div 2 ) ks = ls@[sep]
drop ((length ks + 1 ) div 2 ) ks = rs
using split-half-not-empty[of ks]
by auto

moreover have sorted-less (ls@[sep])
by (metis append-take-drop-id assms(2 ) sorted-wrt-append split-half-ts(1 ))

ultimately have Laligned (Leaf (ls@[sep])) sep
using split-half-conc[of ks ls@[sep] rs] assms sorted-snoc-iff [of ls sep]
by auto

moreover have aligned sep (Leaf rs) u
proof −

have length rs > 0
using False assms(3 ) split-half-ts(2 ) by fastforce

then obtain sep ′ rs ′ where rs = sep ′ # rs ′
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by (cases rs) auto
moreover have sep < sep ′

by (metis append-take-drop-id assms(2 ) calculation in-set-conv-decomp sorted-mid-iff
sorted-snoc-iff split-half-ts(1 ) split-half-ts(2 ))

moreover have sorted-less rs
by (metis append-take-drop-id assms(2 ) sorted-wrt-append split-half-ts(2 ))

ultimately show ?thesis
using split-half-ts split-half-conc[of ks ls@[sep] rs] assms
by auto

qed
ultimately show ?thesis

using split-half-ts False by auto
qed simp

declare nodei.simps [simp del]
declare nodei-leaves [simp add]

lemma ins-Linorder :
assumes k > 0

and Laligned t u
and sorted-less (leaves t)
and root-order k t
and x ≤ u

shows (leaves-upi (ins k x t)) = ins-list x (leaves t) ∧ Laligned-upi (ins k x t) u
using assms

proof(induction k x t arbitrary: u rule: ins.induct)
case (1 k x ks)
then show ?case
proof (safe, goal-cases)

case -: 1
then show ?case

using 1 insert-list-req by auto
next

case 2
from 1 have Laligned (Leaf (insert-list x ks)) u

by (metis Laligned-insert-list leaves.simps(1 ))
moreover have sorted-less (insert-list x ks)

using 1 .prems(3 ) split-set.insert-list-req split-set-axioms
by auto

ultimately show ?case
using Lnodei-Laligned[of insert-list x ks u k] 1
by (auto simp del: Lnodei.simps split-half .simps)

qed
next

case (2 k x ts t)
then obtain ls rs where list-split: split ts x = (ls,rs)

by (cases split ts x)
then have list-conc: ts = ls@rs

using split-set.split-conc split-set-axioms by blast
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then show ?case
proof (cases rs)

case Nil
then obtain ts ′ sub ′ sep ′ where ts = ts ′@[(sub ′,sep ′)]

apply(cases ts)
using 2 list-conc Nil apply(simp)
by (metis isin.cases list.distinct(1 ) rev-exhaust)

have IH : leaves-upi (ins k x t) = ins-list x (leaves t) ∧ aligned-upi sep ′ (ins k
x t) u

proof −

note ins-inorder [of k]
have sorted-less (leaves t)

using 2 .prems(3 ) sorted-leaves-induct-last by blast
moreover have sep ′ < x

using split-req[of ts x] list-split
by (metis 2 .prems(2 ) Laligned-sorted-separators ‹ts = ts ′ @ [(sub ′, sep ′)]›

local.Nil self-append-conv sorted-snoc)
moreover have aligned sep ′ t u

using 2 .prems(2 ) Lalign-last ‹ts = ts ′ @ [(sub ′, sep ′)]› by blast
ultimately show ?thesis

by (meson 2 .prems(1 ) 2 .prems(4 ) 2 .prems(5 ) ins-inorder order-impl-root-order
root-order .simps(2 ))

qed
show ?thesis
proof (cases ins k x t)

case (T i a)
have IH : leaves a = ins-list x (leaves t) ∧ aligned sep ′ a u

using IH T i by force
show ?thesis
proof(safe, goal-cases)

case 1
have leaves-upi (ins k x (Node ts t)) = leaves-list ls @ leaves a

using list-split T i Nil by (auto simp add: list-conc)
also have . . . = leaves-list ls @ (ins-list x (leaves t))

by (simp add: IH )
also have . . . = ins-list x (leaves (Node ts t))

using ins-list-split
using 2 .prems list-split Nil
by auto

finally show ?case .
next

case 2
have Laligned-upi (ins k x (Node ts t)) u = Laligned (Node ts a) u

using Nil T i list-split list-conc by simp
moreover have Laligned (Node ts a) u

using 2 .prems(2 )
by (metis IH ‹ts = ts ′ @ [(sub ′, sep ′)]› Laligned-subst-last)
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ultimately show ?case
by auto

qed
next

case (Upi lt a rt)
then have IH :leaves-upi (Upi lt a rt) = ins-list x (leaves t) ∧ aligned-upi

sep ′ (Upi lt a rt) u
using IH by auto

show ?thesis
proof (safe, goal-cases)

case 1
have leaves-upi (ins k x (Node ts t)) = leaves-list ls @ leaves-upi (Upi lt a

rt)
using list-split Upi Nil by (auto simp add: list-conc)

also have . . . = leaves-list ls @ ins-list x (leaves t)
using IH by simp

also have . . . = ins-list x (leaves (Node ts t))
using ins-list-split
using 2 .prems list-split local.Nil by auto

finally show ?case.
next

case 2
have Laligned-upi (ins k x (Node ts t)) u = Laligned-upi (nodei k (ts @ [(lt,

a)]) rt) u
using Nil Upi list-split list-conc nodei-aligned by simp

moreover have Laligned (Node (ts@[(lt,a)]) rt) u
using 2 .prems(2 ) IH ‹ts = ts ′ @ [(sub ′, sep ′)]› Lalign-subst-two by fastforce
ultimately show ?case

using nodei-Laligned
by auto

qed
qed

next
case (Cons h list)
then obtain sub sep where h-split: h = (sub,sep)

by (cases h)

then have sorted-inorder-sub: sorted-less (leaves sub)
using 2 .prems list-conc Cons sorted-leaves-induct-subtree
by fastforce

moreover have order-sub: order k sub
using 2 .prems list-conc Cons h-split
by auto

then show ?thesis

proof (cases ls)
case Nil
then have aligned-sub: Laligned sub sep
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using 2 .prems(2 ) list-conc h-split Cons
by auto

then have IH : leaves-upi (ins k x sub) = ins-list x (leaves sub) ∧ Laligned-upi

(ins k x sub) sep
proof −

have x ≤ sep
using 2 .prems(2 ) Laligned-sorted-separators h-split list-split local.Cons

sorted-snoc split-set.split-req(3 ) split-set-axioms
by blast

then show ?thesis
using 2 .IH (2 )[OF sym[OF list-split] Cons sym[OF h-split], of sep]

using 2 .prems list-split local.Nil aligned-sub sorted-inorder-sub order-sub
using order-impl-root-order
by auto

qed
then show ?thesis
proof (cases ins k x sub)

case (T i a)
have IH :leaves a = ins-list x (leaves sub) ∧ Laligned a sep

using T i IH by (auto)
show ?thesis
proof (safe, goal-cases)

case 1
have leaves-upi (ins k x (Node ts t)) = leaves-list ls @ leaves a @ leaves-list

list @ leaves t
using h-split list-split T i Cons by simp

also have . . . = leaves-list ls @ ins-list x (leaves sub) @ leaves-list list @
leaves t

using IH by simp
also have . . . = ins-list x (leaves (Node ts t))

using ins-list-split ins-list-split-right
using list-split 2 .prems Cons h-split by auto

finally show ?case.
next

case 2
have Laligned-upi (ins k x (Node ts t)) u = Laligned (Node ((a,sep)#list)

t) u
using Nil Cons list-conc list-split h-split T i by simp

moreover have Laligned (Node ((a,sep)#list) t) u
using aligned-sub 2 .prems(2 ) IH h-split list-conc Cons Nil
by auto

ultimately show ?case
by auto

qed
next

case (Upi lt a rt)
then have IH :leaves-upi (Upi lt a rt) = ins-list x (leaves sub) ∧ Laligned-upi

(Upi lt a rt) sep
using IH h-split list-split Cons sorted-inorder-sub
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by auto
show ?thesis
proof (safe, goal-cases)

case 1
have leaves-upi (ins k x (Node ts t)) = leaves-list ls @ leaves lt @ leaves

rt @ leaves-list list @ leaves t
using h-split list-split Upi Cons by simp

also have . . . = leaves-list ls @ ins-list x (leaves sub) @ leaves-list list @
leaves t

using IH by simp
also have . . . = ins-list x (leaves (Node ts t))

using ins-list-split ins-list-split-right
using list-split 2 .prems Cons h-split by auto

finally show ?case.
next

case 2
have Laligned-upi (ins k x (Node ts t)) u = Laligned-upi (nodei k

((lt,a)#(rt,sep)#list) t) u
using Nil Cons list-conc list-split h-split Upi by simp

moreover have Laligned (Node ((lt,a)#(rt,sep)#list) t) u
using aligned-sub 2 .prems(2 ) IH h-split list-conc Cons Nil
by auto

ultimately show ?case
using nodei-Laligned by auto

qed
qed

next
case ls-split ′: Cons
then obtain ls ′ sub ′ sep ′ where ls-split: ls = ls ′@[(sub ′,sep ′)]

by (metis list.discI old.prod.exhaust snoc-eq-iff-butlast)
then have aligned-sub: aligned sep ′ sub sep

using 2 .prems(2 ) list-conc h-split Cons
using Lalign-last Laligned-split-left
by blast

then have IH : leaves-upi (ins k x sub) = ins-list x (leaves sub) ∧ aligned-upi

sep ′ (ins k x sub) sep
proof −

have x ≤ sep
using 2 .prems(2 ) Laligned-sorted-separators h-split list-split local.Cons

sorted-snoc split-set.split-req(3 ) split-set-axioms
by blast

moreover have sep ′ < x
using 2 .prems(2 ) Laligned-sorted-separators list-split ls-split sorted-cons

sorted-snoc split-set.split-req(2 ) split-set-axioms
by blast

ultimately show ?thesis
using 2 .prems(1 ) aligned-sub ins-inorder order-sub sorted-inorder-sub
using order-impl-root-order
by blast
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qed
then show ?thesis
proof (cases ins k x sub)

case (T i a)
have IH :leaves a = ins-list x (leaves sub) ∧ aligned sep ′ a sep

using T i IH by (auto)
show ?thesis
proof (safe, goal-cases)

case 1
have leaves-upi (ins k x (Node ts t)) = leaves-list ls @ leaves a @ leaves-list

list @ leaves t
using h-split list-split T i Cons by simp

also have . . . = leaves-list ls @ ins-list x (leaves sub) @ leaves-list list @
leaves t

using IH by simp
also have . . . = ins-list x (leaves (Node ts t))

using ins-list-split ins-list-split-right
using list-split 2 .prems Cons h-split by auto

finally show ?case.
next

case 2
have Laligned-upi (ins k x (Node ts t)) u = Laligned (Node (ls ′@(sub ′,sep ′)#(a,sep)#list)

t) u
using Nil Cons list-conc list-split h-split T i ls-split by simp

moreover have Laligned (Node (ls ′@(sub ′,sep ′)#(a,sep)#list) t) u
using aligned-sub 2 .prems(2 ) IH h-split list-conc Cons Nil ls-split
using Laligned-subst by fastforce

ultimately show ?case
by auto

qed
next

case (Upi lt a rt)
then have IH :leaves-upi (Upi lt a rt) = ins-list x (leaves sub) ∧ aligned-upi

sep ′ (Upi lt a rt) sep
using IH h-split list-split Cons sorted-inorder-sub
by auto

show ?thesis
proof (safe, goal-cases)

case 1
have leaves-upi (ins k x (Node ts t)) = leaves-list ls @ leaves lt @ leaves

rt @ leaves-list list @ leaves t
using h-split list-split Upi Cons by simp

also have . . . = leaves-list ls @ ins-list x (leaves sub) @ leaves-list list @
leaves t

using IH by simp
also have . . . = ins-list x (leaves (Node ts t))

using ins-list-split ins-list-split-right
using list-split 2 .prems Cons h-split by auto

finally show ?case.
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next
case 2

have Laligned-upi (ins k x (Node ts t)) u = Laligned-upi (nodei k
(ls ′@(sub ′,sep ′)#(lt,a)#(rt,sep)#list) t) u

using Nil Cons list-conc list-split h-split Upi ls-split by simp
moreover have Laligned (Node (ls ′@(sub ′,sep ′)#(lt,a)#(rt,sep)#list) t)

u
using aligned-sub 2 .prems(2 ) IH h-split list-conc Cons Nil ls-split

Lalign-subst-three
by auto

ultimately show ?case
using nodei-Laligned by auto

qed
qed

qed
qed

qed

declare nodei.simps [simp add]
declare nodei-leaves [simp del]

thm ins.induct
thm bplustree.induct

lemma treei-bal: bal-upi u =⇒ bal (treei u)
apply(cases u)
apply(auto)

done

lemma treei-order : [[k > 0 ; root-order-upi k u]] =⇒ root-order k (treei u)
apply(cases u)
apply(auto simp add: order-impl-root-order)

done

lemma treei-inorder : inorder-upi u = inorder (treei u)
apply (cases u)
apply auto

done

lemma treei-leaves: leaves-upi u = leaves (treei u)
apply (cases u)
apply auto

done

lemma treei-aligned: aligned-upi l a u =⇒ aligned l (treei a) u
apply (cases a)

112



apply auto
done

lemma treei-Laligned: Laligned-upi a u =⇒ Laligned (treei a) u
apply (cases a)
apply auto

done

lemma insert-bal: bal t =⇒ bal (insert k x t)
using ins-bal
by (simp add: treei-bal)

lemma insert-order : [[k > 0 ; sorted-less (leaves t); root-order k t]] =⇒ root-order
k (insert k x t)

using ins-root-order
by (simp add: treei-order)

lemma insert-inorder :
assumes k > 0 root-order k t sorted-less (leaves t) aligned l t u l < x x ≤ u
shows leaves (insert k x t) = ins-list x (leaves t)

and aligned l (insert k x t) u
using ins-inorder assms
by (simp-all add: treei-leaves treei-aligned)

lemma insert-Linorder :
assumes k > 0 root-order k t sorted-less (leaves t) Laligned t u x ≤ u
shows leaves (insert k x t) = ins-list x (leaves t)

and Laligned (insert k x t) u
using ins-Linorder insert-inorder assms
by (simp-all add: treei-leaves treei-Laligned)

corollary insert-Linorder-top:
assumes k > 0 root-order k t sorted-less (leaves t) Laligned t top
shows leaves (insert k x t) = ins-list x (leaves t)

and Laligned (insert k x t) top
using insert-Linorder top-greatest assms by simp-all

7.4 Deletion

The following deletion method is inspired by Bauer (70) and Fielding (??).
Rather than stealing only a single node from the neighbour, the neighbour
is fully merged with the potentially underflowing node. If the resulting node
is still larger than allowed, the merged node is split again, using the rules
known from insertion splits. If the resulting node has admissable size, it is
simply kept in the tree.
fun rebalance-middle-tree where

rebalance-middle-tree k ls (Leaf ms) sep rs (Leaf ts) = (

113



if length ms ≥ k ∧ length ts ≥ k then
Node (ls@(Leaf ms,sep)#rs) (Leaf ts)

else (
case rs of [] ⇒ (

case Lnodei k (ms@ts) of
T i u ⇒
Node ls u |

Upi l a r ⇒
Node (ls@[(l,a)]) r) |

(Leaf rrs,rsep)#rs ⇒ (
case Lnodei k (ms@rrs) of
T i u ⇒

Node (ls@(u,rsep)#rs) (Leaf ts) |
Upi l a r ⇒

Node (ls@(l,a)#(r ,rsep)#rs) (Leaf ts))
)) |

rebalance-middle-tree k ls (Node mts mt) sep rs (Node tts tt) = (
if length mts ≥ k ∧ length tts ≥ k then

Node (ls@(Node mts mt,sep)#rs) (Node tts tt)
else (

case rs of [] ⇒ (
case nodei k (mts@(mt,sep)#tts) tt of
T i u ⇒
Node ls u |

Upi l a r ⇒
Node (ls@[(l,a)]) r) |

(Node rts rt,rsep)#rs ⇒ (
case nodei k (mts@(mt,sep)#rts) rt of
T i u ⇒

Node (ls@(u,rsep)#rs) (Node tts tt) |
Upi l a r ⇒

Node (ls@(l,a)#(r ,rsep)#rs) (Node tts tt))
))

All trees are merged with the right neighbour on underflow. Obviously for
the last tree this would not work since it has no right neighbour. Therefore
this tree, as the only exception, is merged with the left neighbour. However
since we it does not make a difference, we treat the situation as if the second
to last tree underflowed.
fun rebalance-last-tree where

rebalance-last-tree k ts t = (
case last ts of (sub,sep) ⇒

rebalance-middle-tree k (butlast ts) sub sep [] t
)

Rather than deleting the minimal key from the right subtree, we remove the
maximal key of the left subtree. This is due to the fact that the last tree
can easily be accessed and the left neighbour is way easier to access than
the right neighbour, it resides in the same pair as the separating element to
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be removed.
fun del where

del k x (Leaf xs) = (Leaf (delete-list x xs)) |
del k x (Node ts t) = (
case split ts x of
(ls,[]) ⇒
rebalance-last-tree k ls (del k x t)

| (ls,(sub,sep)#rs) ⇒ (
rebalance-middle-tree k ls (del k x sub) sep rs t

)
)

fun reduce-root where
reduce-root (Leaf xs) = (Leaf xs) |
reduce-root (Node ts t) = (case ts of
[] ⇒ t |
- ⇒ (Node ts t)

)

fun delete where delete k x t = reduce-root (del k x t)

An invariant for intermediate states at deletion. In particular we allow for
an underflow to 0 subtrees.
fun almost-order where

almost-order k (Leaf xs) = (length xs ≤ 2∗k) |
almost-order k (Node ts t) = (
(length ts ≤ 2∗k) ∧
(∀ s ∈ set (subtrees ts). order k s) ∧
order k t

)

Deletion proofs
thm list.simps

lemma rebalance-middle-tree-height:
assumes height t = height sub

and case rs of (rsub,rsep) # list ⇒ height rsub = height t | [] ⇒ True
shows height (rebalance-middle-tree k ls sub sep rs t) = height (Node (ls@(sub,sep)#rs)

t)
proof (cases height t)

case 0
then obtain ts subs where t = Leaf ts sub = Leaf subs using height-Leaf assms

by metis
moreover have rs = (rsub,rsep) # list =⇒ rsub = Node rts rt =⇒ False

for rsub rsep list rts rt
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proof (goal-cases)
case 1
then have height rsub = height t

using assms(2 ) by auto
then have height rsub = 0

using 0 by simp
then show ?case

using 1 (2 ) height-Leaf by blast
qed
ultimately show ?thesis

by (auto split!: list.splits bplustree.splits)
next

case (Suc nat)
then obtain tts tt where t-node: t = Node tts tt

using height-Leaf by (cases t) simp
then obtain mts mt where sub-node: sub = Node mts mt

using assms by (cases sub) simp
then show ?thesis
proof (cases length mts ≥ k ∧ length tts ≥ k)

case False
then show ?thesis
proof (cases rs)

case Nil
then have height-upi (nodei k (mts@(mt,sep)#tts) tt) = height (Node

(mts@(mt,sep)#tts) tt)
using nodei-height by blast

also have . . . = max (height t) (height sub)
by (metis assms(1 ) height-upi.simps(2 ) height-list-split sub-node t-node)

finally have height-max: height-upi (nodei k (mts @ (mt, sep) # tts) tt) =
max (height t) (height sub) by simp

then show ?thesis
proof (cases nodei k (mts@(mt,sep)#tts) tt)

case (T i u)
then have height u = max (height t) (height sub) using height-max by

simp
then have height (Node ls u) = height (Node (ls@[(sub,sep)]) t)

by (induction ls) (auto simp add: max.commute)
then show ?thesis using Nil False T i

by (simp add: sub-node t-node)
next

case (Upi l a r)
then have height (Node (ls@[(sub,sep)]) t) = height (Node (ls@[(l,a)]) r)

using assms(1 ) height-max by (induction ls) auto
then show ?thesis

using Upi Nil sub-node t-node by auto
qed

next
case (Cons a list)
then obtain rsub rsep where a-split: a = (rsub, rsep)
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by (cases a)
then obtain rts rt where r-node: rsub = Node rts rt

using assms(2 ) Cons height-Leaf Suc by (cases rsub) simp-all

then have height-upi (nodei k (mts@(mt,sep)#rts) rt) = height (Node
(mts@(mt,sep)#rts) rt)

using nodei-height by blast
also have . . . = max (height rsub) (height sub)
by (metis r-node height-upi.simps(2 ) height-list-split max.commute sub-node)
finally have height-max: height-upi (nodei k (mts @ (mt, sep) # rts) rt) =

max (height rsub) (height sub) by simp
then show ?thesis
proof (cases nodei k (mts@(mt,sep)#rts) rt)

case (T i u)
then have height u = max (height rsub) (height sub)

using height-max by simp
then show ?thesis

using T i False Cons r-node a-split sub-node t-node by auto
next

case (Upi l a r)
then have height-max: max (height l) (height r) = max (height rsub) (height

sub)
using height-max by auto

then show ?thesis
using Cons a-split r-node Upi sub-node t-node by auto

qed
qed

qed (simp add: sub-node t-node)
qed

lemma rebalance-last-tree-height:
assumes height t = height sub

and ts = list@[(sub,sep)]
shows height (rebalance-last-tree k ts t) = height (Node ts t)
using rebalance-middle-tree-height assms by auto

lemma bal-sub-height: bal (Node (ls@a#rs) t) =⇒ (case rs of []⇒ True | (sub,sep)#-
⇒ height sub = height t)

by (cases rs) (auto)

lemma del-height: [[k > 0 ; root-order k t; bal t]] =⇒ height (del k x t) = height t
proof(induction k x t rule: del.induct)

case (2 k x ts t)
then obtain ls list where list-split: split ts x = (ls, list) by (cases split ts x)
then show ?case
proof(cases list)

case Nil
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then have height (del k x t) = height t
using 2 list-split
by (simp add: order-impl-root-order)

moreover obtain lls sub sep where ls = lls@[(sub,sep)]
using split-conc 2 list-split Nil

by (metis append-Nil2 less-nat-zero-code list.size(3 ) old.prod.exhaust rev-exhaust
root-order .simps(2 ))

moreover have Node ls t = Node ts t using split-conc Nil list-split by auto
ultimately show ?thesis

using rebalance-last-tree-height 2 list-split Nil split-conc
by (auto simp add: max.assoc sup-nat-def max-def )

next
case (Cons a rs)
then have rs-height: case rs of [] ⇒ True | (rsub,rsep)#- ⇒ height rsub =

height t
using 2 .prems(3 ) bal-sub-height list-split split-conc by blast

from Cons obtain sub sep where a-split: a = (sub,sep) by (cases a)

have height-t-sub: height t = height sub
using 2 .prems(3 ) a-split list-split local.Cons split-set.split-set(1 ) split-set-axioms

by fastforce
have height-t-del: height (del k x sub) = height t

by (metis 2 .IH (2 ) 2 .prems(1 ) 2 .prems(2 ) 2 .prems(3 ) a-split bal.simps(2 )
list-split local.Cons order-impl-root-order root-order .simps(2 ) some-child-sub(1 ) split-set(1 ))

then have height (rebalance-middle-tree k ls (del k x sub) sep rs t) = height
(Node (ls@((del k x sub),sep)#rs) t)

using rs-height rebalance-middle-tree-height by simp
also have . . . = height (Node (ls@(sub,sep)#rs) t)

using height-t-sub 2 .prems height-t-del
by auto

also have . . . = height (Node ts t)
using 2 a-split list-split Cons split-set(1 ) split-conc
by auto

finally show ?thesis
using Cons a-split list-split 2
by simp

qed
qed simp

lemma rebalance-middle-tree-inorder :
assumes height t = height sub

and case rs of (rsub,rsep) # list ⇒ height rsub = height t | [] ⇒ True
shows leaves (rebalance-middle-tree k ls sub sep rs t) = leaves (Node (ls@(sub,sep)#rs)

t)
apply(cases sub; cases t)
using assms
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apply (auto
split!: bplustree.splits upi.splits list.splits
simp del: nodei.simps Lnodei.simps
simp add: nodei-leaves-simps Lnodei-leaves-simps
)

done

lemma rebalance-last-tree-inorder :
assumes height t = height sub

and ts = list@[(sub,sep)]
shows leaves (rebalance-last-tree k ts t) = leaves (Node ts t)
using rebalance-middle-tree-inorder assms by auto

lemma butlast-inorder-app-id: xs = xs ′ @ [(sub,sep)] =⇒ inorder-list xs ′ @ inorder
sub @ [sep] = inorder-list xs

by simp

lemma height-bal-subtrees-merge: [[height (Node as a) = height (Node bs b); bal
(Node as a); bal (Node bs b)]]
=⇒ ∀ x ∈ set (subtrees as) ∪ {a}. height x = height b
by (metis Suc-inject Un-iff bal.simps(2 ) height-bal-tree singletonD)

lemma bal-list-merge:
assumes bal-upi (Upi (Node as a) x (Node bs b))
shows bal (Node (as@(a,x)#bs) b)

proof −
have ∀ x∈set (subtrees (as @ (a, x) # bs)). bal x

using subtrees-split assms by auto
moreover have bal b

using assms by auto
moreover have ∀ x∈set (subtrees as) ∪ {a} ∪ set (subtrees bs). height x = height

b
using assms height-bal-subtrees-merge
unfolding bal-upi.simps
by blast

ultimately show ?thesis
by auto

qed

lemma nodei-bal-upi:
assumes bal-upi (nodei k ts t)
shows bal (Node ts t)
using assms

proof(cases length ts ≤ 2∗k)
case False
then obtain ls sub sep rs where split-list: split-half ts = (ls@[(sub,sep)], rs)

using nodei-cases by blast
then have nodei k ts t = Upi (Node ls sub) sep (Node rs t)
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using False by auto
moreover have ts = ls@(sub,sep)#rs
by (metis append-Cons append-Nil2 append-eq-append-conv2 local.split-list same-append-eq

split-half-conc)
ultimately show ?thesis

using bal-list-merge[of ls sub sep rs t] assms
by (simp del: bal.simps bal-upi.simps)

qed simp

lemma nodei-bal-simp: bal-upi (nodei k ts t) = bal (Node ts t)
using nodei-bal nodei-bal-upi by blast

lemma rebalance-middle-tree-bal:
assumes bal (Node (ls@(sub,sep)#rs) t)
shows bal (rebalance-middle-tree k ls sub sep rs t)

proof (cases t)
case t-node: (Leaf txs)
then obtain mxs where sub-node: sub = Leaf mxs

using assms by (cases sub) (auto simp add: t-node)
then have sub-heights: height sub = height t bal sub bal t

apply (metis Suc-inject assms bal-split-left(1 ) bal-split-left(2 ) height-bal-tree)
apply (meson assms bal.simps(2 ) bal-split-left(1 ))
using assms bal.simps(2 ) by blast

show ?thesis
proof (cases length mxs ≥ k ∧ length txs ≥ k)

case True
then show ?thesis

using t-node sub-node assms
by (auto simp del: bal.simps)

next
case False
then show ?thesis
proof (cases rs)

case Nil
have height-upi (Lnodei k (mxs@txs)) = height (Leaf (mxs@txs))

using Lnodei-height by blast
also have . . . = 0

by simp
also have . . . = height t

using height-bal-tree sub-heights(3 ) t-node by fastforce
finally have height-upi (Lnodei k (mxs@txs)) = height t .
moreover have bal-upi (Lnodei k (mxs@txs))
by (simp add: bal-upi.elims(3 ) height-Leaf height-upi.simps(2 ) max-nat.neutr-eq-iff )
ultimately show ?thesis

apply (cases Lnodei k (mxs@txs))
using assms Nil sub-node t-node by auto

next
case (Cons r rs)
then obtain rsub rsep where r-split: r = (rsub,rsep) by (cases r)
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then have rsub-height: height rsub = height t bal rsub
using assms Cons by auto

then obtain rxs where r-node: rsub = Leaf rxs
apply(cases rsub) using assms t-node by auto

have height-upi (Lnodei k (mxs@rxs)) = height (Leaf (mxs@rxs))
using Lnodei-height by blast

also have . . . = 0
by auto

also have . . . = height rsub
using height-bal-tree r-node rsub-height(2 ) by fastforce

finally have 1 : height-upi (Lnodei k (mxs@rxs)) = height rsub .
moreover have 2 : bal-upi (Lnodei k (mxs@rxs))

by simp
ultimately show ?thesis
proof (cases Lnodei k (mxs@rxs))

case (T i u)
then have bal (Node (ls@(u,rsep)#rs) t)

using 1 2 Cons assms t-node subtrees-split sub-heights r-split rsub-height
unfolding bal.simps by (auto simp del: height-bplustree.simps)

then show ?thesis
using Cons assms t-node sub-node r-split r-node False T i

by (auto simp del: nodei.simps bal.simps)
next

case (Upi l a r)
then have bal (Node (ls@(l,a)#(r ,rsep)#rs) t)

using 1 2 Cons assms t-node subtrees-split sub-heights r-split rsub-height
unfolding bal.simps by (auto simp del: height-bplustree.simps)

then show ?thesis
using Cons assms t-node sub-node r-split r-node False Upi

by (auto simp del: nodei.simps bal.simps)
qed

qed
qed

next
case t-node: (Node tts tt)
then obtain mts mt where sub-node: sub = Node mts mt

using assms by (cases sub) (auto simp add: t-node)
have sub-heights: height sub = height t bal sub bal t

using assms by auto
show ?thesis
proof (cases length mts ≥ k ∧ length tts ≥ k)

case True
then show ?thesis

using t-node sub-node assms
by (auto simp del: bal.simps)

next
case False
then show ?thesis
proof (cases rs)
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case Nil
have height-upi (nodei k (mts@(mt,sep)#tts) tt) = height (Node (mts@(mt,sep)#tts)

tt)
using nodei-height by blast

also have . . . = Suc (height tt)
by (metis height-bal-tree height-upi.simps(2 ) height-list-split max.idem

sub-heights(1 ) sub-heights(3 ) sub-node t-node)
also have . . . = height t

using height-bal-tree sub-heights(3 ) t-node by fastforce
finally have height-upi (nodei k (mts@(mt,sep)#tts) tt) = height t by simp
moreover have bal-upi (nodei k (mts@(mt,sep)#tts) tt)
by (metis bal-list-merge bal-upi.simps(2 ) nodei-bal sub-heights(1 ) sub-heights(2 )

sub-heights(3 ) sub-node t-node)
ultimately show ?thesis

apply (cases nodei k (mts@(mt,sep)#tts) tt)
using assms Nil sub-node t-node by auto

next
case (Cons r rs)
then obtain rsub rsep where r-split: r = (rsub,rsep) by (cases r)
then have rsub-height: height rsub = height t bal rsub

using assms Cons by auto
then obtain rts rt where r-node: rsub = (Node rts rt)

apply(cases rsub) using t-node by simp
have height-upi (nodei k (mts@(mt,sep)#rts) rt) = height (Node (mts@(mt,sep)#rts)

rt)
using nodei-height by blast

also have . . . = Suc (height rt)
by (metis Un-iff ‹height rsub = height t› assms bal.simps(2 ) bal-split-last(1 )

height-bal-tree height-upi.simps(2 ) height-list-split list.set-intros(1 ) Cons max.idem
r-node r-split set-append some-child-sub(1 ) sub-heights(1 ) sub-node)

also have . . . = height rsub
using height-bal-tree r-node rsub-height(2 ) by fastforce

finally have 1 : height-upi (nodei k (mts@(mt,sep)#rts) rt) = height rsub .
moreover have 2 : bal-upi (nodei k (mts@(mt,sep)#rts) rt)

by (metis bal-list-merge bal-upi.simps(2 ) nodei-bal r-node rsub-height(1 )
rsub-height(2 ) sub-heights(1 ) sub-heights(2 ) sub-node)

ultimately show ?thesis
proof (cases nodei k (mts@(mt,sep)#rts) rt)

case (T i u)
then have bal (Node (ls@(u,rsep)#rs) t)

using 1 2 Cons assms t-node subtrees-split sub-heights r-split rsub-height
unfolding bal.simps by (auto simp del: height-bplustree.simps)

then show ?thesis
using Cons assms t-node sub-node r-split r-node False T i

by (auto simp del: nodei.simps bal.simps)
next

case (Upi l a r)
then have bal (Node (ls@(l,a)#(r ,rsep)#rs) t)

using 1 2 Cons assms t-node subtrees-split sub-heights r-split rsub-height
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unfolding bal.simps by (auto simp del: height-bplustree.simps)
then show ?thesis

using Cons assms t-node sub-node r-split r-node False Upi

by (auto simp del: nodei.simps bal.simps)
qed

qed
qed

qed

lemma rebalance-last-tree-bal: [[bal (Node ts t); ts 6= []]] =⇒ bal (rebalance-last-tree
k ts t)

using rebalance-middle-tree-bal append-butlast-last-id[of ts]
apply(cases last ts)
apply(auto simp del: bal.simps rebalance-middle-tree.simps)
done

lemma Leaf-merge-aligned: aligned l (Leaf ms) m =⇒ aligned m (Leaf rs) r =⇒
aligned l (Leaf (ms@rs)) r

by auto

lemma Node-merge-aligned:
inbetween aligned l mts mt sep =⇒
inbetween aligned sep tts tt u =⇒
inbetween aligned l (mts @ (mt, sep) # tts) tt u

apply(induction mts arbitrary: l)
apply auto
done

lemma aligned-subst-last-merge: aligned l (Node (ts ′@[(sub ′, sep ′),(sub,sep)]) t) u
=⇒ aligned sep ′ t ′ u =⇒

aligned l (Node (ts ′@[(sub ′, sep ′)]) t ′) u
apply (induction ts ′ arbitrary: l)
apply auto
done

lemma aligned-subst-last-merge-two: aligned l (Node (ts@[(sub ′,sep ′),(sub,sep)]) t)
u =⇒ aligned sep ′ lt a =⇒ aligned a rt u =⇒ aligned l (Node (ts@[(sub ′,sep ′),(lt,a)])
rt) u

apply(induction ts arbitrary: l)
apply auto
done

lemma aligned-subst-merge: aligned l (Node (ls@(lsub, lsep)#(sub,sep)#(rsub,rsep)#rs)
t) u =⇒ aligned lsep sub ′ rsep =⇒

aligned l (Node (ls@(lsub, lsep)#(sub ′, rsep)#rs) t) u
apply (induction ls arbitrary: l)
apply auto
done
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lemma aligned-subst-merge-two: aligned l (Node (ls@(lsub, lsep)#(sub,sep)#(rsub,rsep)#rs)
t) u =⇒ aligned lsep sub ′ a =⇒
aligned a rsub ′ rsep =⇒ aligned l (Node (ls@(lsub, lsep)#(sub ′,a)#(rsub ′, rsep)#rs)

t) u
apply(induction ls arbitrary: l)
apply auto
done

lemma rebalance-middle-tree-aligned:
assumes aligned l (Node (ls@(sub,sep)#rs) t) u

and height t = height sub
and sorted-less (leaves (Node (ls@(sub,sep)#rs) t))
and k > 0
and case rs of (rsub,rsep) # list ⇒ height rsub = height t | [] ⇒ True

shows aligned l (rebalance-middle-tree k ls sub sep rs t) u
proof (cases t)

case t-node: (Leaf txs)
then obtain mxs where sub-node: sub = Leaf mxs

using assms by (cases sub) (auto simp add: t-node)
show ?thesis
proof (cases length mxs ≥ k ∧ length txs ≥ k)

case True
then show ?thesis

using t-node sub-node assms
by (auto simp del: bal.simps)

next
case False
then show ?thesis
proof (cases rs)

case rs-nil: Nil
then have sorted-leaves: sorted-less (mxs@txs)

using assms(3 ) rs-nil t-node sub-node sorted-wrt-append
by auto

then show ?thesis
proof (cases ls)

case ls-nil: Nil
then have aligned l (Leaf (mxs@txs)) u

using t-node sub-node assms rs-nil False
using assms
by auto

then have aligned-upi l (Lnodei k (mxs@txs)) u
using Lnodei-aligned sorted-leaves assms by blast

then show ?thesis
using False t-node sub-node rs-nil ls-nil
by (auto simp del: Lnodei.simps split!: upi.split)

next
case Cons
then obtain ls ′ lsub lsep where ls-Cons: ls = ls ′@[(lsub,lsep)]
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by (metis list.discI old.prod.exhaust snoc-eq-iff-butlast)
then have aligned lsep (Leaf (mxs@txs)) u

using Leaf-merge-aligned
using align-last aligned-split-left assms(1 ) t-node rs-nil sub-node
by blast

moreover have sorted-less (mxs@txs)
using assms(3 ) rs-nil t-node sub-node
by (auto simp add: sorted-wrt-append)

ultimately have aligned-upi lsep (Lnodei k (mxs@txs)) u
using Lnodei-aligned assms(4 ) by blast

then show ?thesis
using False t-node sub-node rs-nil ls-Cons assms
using aligned-subst-last-merge[of l ls ′ lsub lsep sub sep t u]
using aligned-subst-last-merge-two[of l ls ′ lsub lsep sub sep t u]
by (auto simp del: Lnodei.simps split!: upi.split)

qed
next

case rs-Cons: (Cons r rs)
then obtain rsub rsep where r-split[simp]: r = (rsub,rsep) by (cases r)
then have height rsub = 0

using ‹
∧

thesis. (
∧

mxs. sub = Leaf mxs =⇒ thesis) =⇒ thesis› assms(2 )
assms(5 ) rs-Cons

by fastforce
then obtain rxs where rs-Leaf [simp]: rsub = Leaf rxs

by (cases rsub) auto
then have sorted-leaves: sorted-less (mxs@rxs)

using assms(3 ) rs-Cons sub-node sorted-wrt-append r-split
by (auto simp add: sorted-wrt-append)

then show ?thesis
proof (cases ls)

case ls-nil: Nil
then have aligned l (Leaf (mxs@rxs)) rsep

using sub-node assms rs-Cons False
by auto

then have aligned-upi l (Lnodei k (mxs@rxs)) rsep
using Lnodei-aligned sorted-leaves assms by blast

then show ?thesis
using False t-node sub-node rs-Cons ls-nil assms
by (auto simp del: Lnodei.simps split!: upi.split)

next
case Cons
then obtain ls ′ lsub lsep where ls-Cons: ls = ls ′@[(lsub,lsep)]

by (metis list.discI old.prod.exhaust snoc-eq-iff-butlast)
then have aligned lsep (Leaf (mxs@rxs)) rsep

using Leaf-merge-aligned
using align-last aligned-split-left assms(1 ) t-node rs-Cons sub-node
by (metis aligned.elims(2 ) aligned-split-right bplustree.distinct(1 ) bplus-

tree.inject(2 ) inbetween.simps(2 ) r-split rs-Leaf )
then have aligned-upi lsep (Lnodei k (mxs@rxs)) rsep
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using Lnodei-aligned assms(4 ) sorted-leaves by blast
then show ?thesis

using False t-node sub-node rs-Cons ls-Cons assms
using aligned-subst-merge[of l ls ′ lsub lsep sub sep rsub rsep rs]
using aligned-subst-merge-two[of l ls ′ lsub lsep sub sep rsub rsep rs t u]
by (auto simp del: Lnodei.simps split!: upi.split)

qed
qed

qed
next

case t-node: (Node tts tt)
then obtain mts mt where sub-node: sub = Node mts mt

using assms by (cases sub) (auto simp add: t-node)
show ?thesis
proof (cases length tts ≥ k ∧ length mts ≥ k)

case True
then show ?thesis

using t-node sub-node assms
by (auto simp del: bal.simps)

next
case False
then show ?thesis
proof (cases rs)

case rs-nil: Nil
then have sorted-leaves: sorted-less (leaves-list mts @ leaves mt @ leaves-list

tts @ leaves tt)
using assms(3 ) rs-nil t-node sub-node
by (auto simp add: sorted-wrt-append)

then show ?thesis
proof (cases ls)

case ls-nil: Nil
then have aligned l (Node (mts@(mt,sep)#tts) tt) u

using t-node sub-node assms rs-nil False
by (auto simp add: Node-merge-aligned)

then have aligned-upi l (nodei k (mts@(mt,sep)#tts) tt) u
using nodei-aligned sorted-leaves assms by blast

then show ?thesis
using False t-node sub-node rs-nil ls-nil
by (auto simp del: nodei.simps split!: upi.split)

next
case Cons
then obtain ls ′ lsub lsep where ls-Cons: ls = ls ′@[(lsub,lsep)]

by (metis list.discI old.prod.exhaust snoc-eq-iff-butlast)
then have aligned lsep (Node (mts@(mt,sep)#tts) tt) u

using t-node sub-node assms rs-nil False ls-Cons
by (metis Node-merge-aligned align-last aligned.simps(2 ) aligned-split-left)

then have aligned-upi lsep (nodei k (mts@(mt,sep)#tts) tt) u
using nodei-aligned assms(4 ) sorted-leaves by blast

then show ?thesis
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using False t-node sub-node rs-nil ls-Cons assms
using aligned-subst-last-merge[of l ls ′ lsub lsep sub sep t u]
using aligned-subst-last-merge-two[of l ls ′ lsub lsep sub sep t u]
by (auto simp del: nodei.simps split!: upi.split)

qed
next

case rs-Cons: (Cons r rs)
then obtain rsub rsep where r-split[simp]: r = (rsub,rsep)

by (cases r)
then have height rsub 6= 0

using assms rs-Cons t-node by auto
then obtain rts rt where rs-Node: rsub = Node rts rt

by (cases rsub) auto
have sorted-less (leaves sub @ leaves rsub)

using assms(3 ) rs-Cons r-split
by (simp add: sorted-wrt-append)

then have sorted-leaves: sorted-less (leaves-list mts @ leaves mt @ leaves-list
rts @ leaves rt)

by (simp add: rs-Node sub-node)
then show ?thesis
proof (cases ls)

case ls-nil: Nil
then have aligned l (Node (mts@(mt,sep)#rts) rt) rsep

using sub-node assms rs-Cons False rs-Node
by (metis Node-merge-aligned aligned.simps(2 ) append-self-conv2 inbe-

tween.simps(2 ) r-split)
then have aligned-upi l (nodei k (mts@(mt,sep)#rts) rt) rsep

using nodei-aligned sorted-leaves assms by blast
then show ?thesis

using False t-node sub-node rs-Cons ls-nil assms rs-Node
by (auto simp del: nodei.simps split!: upi.split)

next
case Cons
then obtain ls ′ lsub lsep where ls-Cons: ls = ls ′@[(lsub,lsep)]

by (metis list.discI old.prod.exhaust snoc-eq-iff-butlast)
then have aligned lsep (Node (mts@(mt,sep)#rts) rt) rsep

using Node-merge-aligned
using align-last aligned-split-left assms(1 ) t-node rs-Cons sub-node
by (metis aligned.simps(2 ) aligned-split-right inbetween.simps(2 ) r-split

rs-Node)
then have aligned-upi lsep (nodei k (mts@(mt,sep)#rts) rt) rsep

using sorted-leaves nodei-aligned assms(4 ) by blast
then show ?thesis

using False t-node sub-node rs-Cons ls-Cons assms rs-Node
using aligned-subst-merge[of l ls ′ lsub lsep sub sep rsub rsep rs]
using aligned-subst-merge-two[of l ls ′ lsub lsep sub sep rsub rsep rs t u]
by (auto simp del: nodei.simps split!: upi.split)

qed
qed
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qed
qed

lemma Node-merge-Laligned:
Laligned (Node mts mt) sep =⇒
inbetween aligned sep tts tt u =⇒
Laligned (Node (mts @ (mt, sep) # tts) tt) u

apply(induction mts)
apply auto
using Node-merge-aligned by blast

lemma Laligned-subst-last-merge: Laligned (Node (ts ′@[(sub ′, sep ′),(sub,sep)]) t)
u =⇒ aligned sep ′ t ′ u =⇒

Laligned (Node (ts ′@[(sub ′, sep ′)]) t ′) u
apply (induction ts ′)
apply auto
by (metis (no-types, opaque-lifting) Node-merge-aligned aligned.simps(2 ) aligned-split-left

inbetween.simps(1 ))

lemma Laligned-subst-last-merge-two: Laligned (Node (ts@[(sub ′,sep ′),(sub,sep)])
t) u =⇒ aligned sep ′ lt a =⇒ aligned a rt u =⇒ Laligned (Node (ts@[(sub ′,sep ′),(lt,a)])
rt) u

apply(induction ts)
apply auto
by (meson aligned.simps(2 ) aligned-subst-last-merge-two)

lemma Laligned-subst-merge: Laligned (Node (ls@(lsub, lsep)#(sub,sep)#(rsub,rsep)#rs)
t) u =⇒ aligned lsep sub ′ rsep =⇒

Laligned (Node (ls@(lsub, lsep)#(sub ′, rsep)#rs) t) u
apply (induction ls)
apply auto
by (meson aligned.simps(2 ) aligned-subst-merge)

lemma Laligned-subst-merge-two: Laligned (Node (ls@(lsub, lsep)#(sub,sep)#(rsub,rsep)#rs)
t) u =⇒ aligned lsep sub ′ a =⇒
aligned a rsub ′ rsep =⇒ Laligned (Node (ls@(lsub, lsep)#(sub ′,a)#(rsub ′, rsep)#rs)

t) u
apply(induction ls)
apply auto
by (meson aligned.simps(2 ) aligned-subst-merge-two)

lemma xs-front: xs @ [(a,b)] = (x,y)#xs ′ =⇒ xs @ [(a,b),(c,d)] = (z,zz)#xs ′′ =⇒
(x,y) = (z,zz)

apply(induction xs)
apply auto
done

lemma rebalance-middle-tree-Laligned:
assumes Laligned (Node (ls@(sub,sep)#rs) t) u
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and height t = height sub
and sorted-less (leaves (Node (ls@(sub,sep)#rs) t))
and k > 0
and case rs of (rsub,rsep) # list ⇒ height rsub = height t | [] ⇒ True

shows Laligned (rebalance-middle-tree k ls sub sep rs t) u
proof (cases t)

case t-node: (Leaf txs)
then obtain mxs where sub-node: sub = Leaf mxs

using assms by (cases sub) (auto simp add: t-node)
show ?thesis
proof (cases length mxs ≥ k ∧ length txs ≥ k)

case True
then show ?thesis

using t-node sub-node assms
by auto

next
case False
then show ?thesis
proof (cases rs)

case rs-nil: Nil
then have sorted-leaves: sorted-less (mxs@txs)

using assms(3 ) rs-nil t-node sub-node sorted-wrt-append
by auto

then show ?thesis
proof (cases ls)

case ls-nil: Nil
then have Laligned (Leaf (mxs@txs)) u

using t-node sub-node assms rs-nil False
using assms
by auto

then have Laligned-upi (Lnodei k (mxs@txs)) u
using Lnodei-Laligned sorted-leaves assms by blast

then show ?thesis
using False t-node sub-node rs-nil ls-nil
by (auto simp del: Lnodei.simps split!: upi.split)

next
case Cons
then obtain ls ′ lsub lsep where ls-Cons: ls = ls ′@[(lsub,lsep)]

by (metis list.discI old.prod.exhaust snoc-eq-iff-butlast)
then have aligned lsep (Leaf (mxs@txs)) u

using Leaf-merge-aligned Lalign-last Laligned-split-left assms(1 ) rs-nil
sub-node t-node

by blast
moreover have sorted-less (mxs@txs)

using assms(3 ) rs-nil t-node sub-node
by (auto simp add: sorted-wrt-append)

ultimately have aligned-upi lsep (Lnodei k (mxs@txs)) u
using Lnodei-aligned assms(4 ) by blast

then show ?thesis
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using False t-node sub-node rs-nil ls-Cons assms
using Laligned-subst-last-merge[of ls ′ lsub lsep sub sep t u]
using Laligned-subst-last-merge-two[of ls ′ lsub lsep sub sep t u]
by (auto simp del: Lnodei.simps split!: upi.split)

qed
next

case rs-Cons: (Cons r rs)
then obtain rsub rsep where r-split[simp]: r = (rsub,rsep) by (cases r)
then have height rsub = 0

using ‹
∧

thesis. (
∧

mxs. sub = Leaf mxs =⇒ thesis) =⇒ thesis› assms(2 )
assms(5 ) rs-Cons

by fastforce
then obtain rxs where rs-Leaf [simp]: rsub = Leaf rxs

by (cases rsub) auto
then have sorted-leaves: sorted-less (mxs@rxs)

using assms(3 ) rs-Cons sub-node sorted-wrt-append r-split
by (auto simp add: sorted-wrt-append)

then show ?thesis
proof (cases ls)

case ls-nil: Nil
then have Laligned (Leaf (mxs@rxs)) rsep

using sub-node assms rs-Cons False
by auto

then have Laligned-upi (Lnodei k (mxs@rxs)) rsep
using Lnodei-Laligned sorted-leaves assms by blast

then show ?thesis
using False t-node sub-node rs-Cons ls-nil assms
by (auto simp del: Lnodei.simps split!: upi.split)

next
case Cons
then obtain ls ′ lsub lsep where ls-Cons: ls = ls ′@[(lsub,lsep)]

by (metis list.discI old.prod.exhaust snoc-eq-iff-butlast)
then have aligned lsep (Leaf (mxs@rxs)) rsep

using Leaf-merge-aligned
using assms(1 ) t-node rs-Cons sub-node

by (metis Lalign-last Laligned-split-left Laligned-split-right aligned.elims(2 )
bplustree.distinct(1 ) bplustree.inject(2 ) inbetween.simps(2 ) r-split rs-Leaf )

then have aligned-upi lsep (Lnodei k (mxs@rxs)) rsep
using Lnodei-aligned assms(4 ) sorted-leaves by blast

then show ?thesis
using False t-node sub-node rs-Cons ls-Cons assms
using Laligned-subst-merge[of ls ′ lsub lsep sub sep rsub rsep rs]
using Laligned-subst-merge-two[of ls ′ lsub lsep sub sep rsub rsep rs t u]
by (auto simp del: Lnodei.simps split!: upi.split)

qed
qed

qed
next

case t-node: (Node tts tt)
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then obtain mts mt where sub-node: sub = Node mts mt
using assms by (cases sub) (auto simp add: t-node)

show ?thesis
proof (cases length tts ≥ k ∧ length mts ≥ k)

case True
then show ?thesis

using t-node sub-node assms
by (auto simp del: bal.simps)

next
case False
then show ?thesis
proof (cases rs)

case rs-nil: Nil
then have sorted-leaves: sorted-less (leaves-list mts @ leaves mt @ leaves-list

tts @ leaves tt)
using assms(3 ) rs-nil t-node sub-node
by (auto simp add: sorted-wrt-append)

then show ?thesis
proof (cases ls)

case ls-nil: Nil
then have Laligned (Node (mts@(mt,sep)#tts) tt) u

using t-node sub-node assms rs-nil False
by (metis Lalign-last Laligned-nonempty-Node Node-merge-Laligned aligned.simps(2 )

append-self-conv2 )
then have Laligned-upi (nodei k (mts@(mt,sep)#tts) tt) u

using nodei-Laligned sorted-leaves assms by blast
then show ?thesis

using False t-node sub-node rs-nil ls-nil
by (auto simp del: nodei.simps split!: upi.split)

next
case Cons
then obtain ls ′ lsub lsep where ls-Cons: ls = ls ′@[(lsub,lsep)]

by (metis list.discI old.prod.exhaust snoc-eq-iff-butlast)
then have aligned lsep (Node (mts@(mt,sep)#tts) tt) u

using t-node sub-node assms rs-nil False ls-Cons
by (metis Lalign-last Laligned-split-left Node-merge-aligned aligned.simps(2 ))
then have aligned-upi lsep (nodei k (mts@(mt,sep)#tts) tt) u

using nodei-aligned assms(4 ) sorted-leaves by blast
then show ?thesis

using False t-node sub-node rs-nil ls-Cons assms
using Laligned-subst-last-merge[of ls ′ lsub lsep sub sep t u]
using Laligned-subst-last-merge-two[of ls ′ lsub lsep sub sep t u]

by (auto simp del: nodei.simps bal.simps height-bplustree.simps split!:
upi.split list.splits)

qed
next

case rs-Cons: (Cons r rs)
then obtain rsub rsep where r-split[simp]: r = (rsub,rsep)

by (cases r)
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then have height rsub 6= 0
using assms rs-Cons t-node by auto

then obtain rts rt where rs-Node: rsub = Node rts rt
by (cases rsub) auto

have sorted-less (leaves sub @ leaves rsub)
using assms(3 ) rs-Cons r-split
by (simp add: sorted-wrt-append)

then have sorted-leaves: sorted-less (leaves-list mts @ leaves mt @ leaves-list
rts @ leaves rt)

by (simp add: rs-Node sub-node)
then show ?thesis
proof (cases ls)

case ls-nil: Nil
then have Laligned (Node (mts@(mt,sep)#rts) rt) rsep

using sub-node assms rs-Cons False rs-Node
by (metis Laligned-nonempty-Node Node-merge-Laligned aligned.simps(2 )

append-self-conv2 inbetween.simps(2 ) r-split)
then have Laligned-upi (nodei k (mts@(mt,sep)#rts) rt) rsep

using nodei-Laligned by blast
then show ?thesis

using False t-node sub-node rs-Cons ls-nil assms rs-Node
by (auto simp del: nodei.simps split!: upi.split)

next
case Cons
then obtain ls ′ lsub lsep where ls-Cons: ls = ls ′@[(lsub,lsep)]

by (metis list.discI old.prod.exhaust snoc-eq-iff-butlast)
then have aligned lsep (Node (mts@(mt,sep)#rts) rt) rsep

using Node-merge-aligned
using assms(1 ) t-node rs-Cons sub-node

by (metis Lalign-last Laligned-split-left Laligned-split-right aligned.simps(2 )
inbetween.simps(2 ) r-split rs-Node)

then have aligned-upi lsep (nodei k (mts@(mt,sep)#rts) rt) rsep
using sorted-leaves nodei-aligned assms(4 ) by blast

then show ?thesis
using False t-node sub-node rs-Cons ls-Cons assms rs-Node
using Laligned-subst-merge[of ls ′ lsub lsep sub sep rsub rsep rs]
using Laligned-subst-merge-two[of ls ′ lsub lsep sub sep rsub rsep rs t u]
by (auto simp del: nodei.simps split!: upi.split)

qed
qed

qed
qed

lemma rebalance-last-tree-aligned:
assumes aligned l (Node (ls@[(sub,sep)]) t) u

and height t = height sub
and sorted-less (leaves (Node (ls@[(sub,sep)]) t))
and k > 0

shows aligned l (rebalance-last-tree k (ls@[(sub,sep)]) t) u
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using rebalance-middle-tree-aligned[of l ls sub sep [] t u k] assms
by auto

lemma rebalance-last-tree-Laligned:
assumes Laligned (Node (ls@[(sub,sep)]) t) u

and height t = height sub
and sorted-less (leaves (Node (ls@[(sub,sep)]) t))
and k > 0

shows Laligned (rebalance-last-tree k (ls@[(sub,sep)]) t) u
using rebalance-middle-tree-Laligned[of ls sub sep [] t u k] assms
by auto

lemma del-bal:
assumes k > 0

and root-order k t
and bal t

shows bal (del k x t)
using assms

proof(induction k x t rule: del.induct)
case (2 k x ts t)
then obtain ls rs where list-split: split ts x = (ls,rs)

by (cases split ts x)
then show ?case
proof (cases rs)

case Nil
then have bal (del k x t) using 2 list-split

by (simp add: order-impl-root-order)
moreover have height (del k x t) = height t

using 2 del-height by (simp add: order-impl-root-order)
moreover have ts 6= [] using 2 by auto
ultimately have bal (rebalance-last-tree k ts (del k x t))

using 2 Nil rebalance-last-tree-bal
by simp

then have bal (rebalance-last-tree k ls (del k x t))
using list-split split-conc Nil by fastforce

then show ?thesis
using 2 list-split Nil
by auto

next
case (Cons r rs)
then obtain sub sep where r-split: r = (sub,sep) by (cases r)
then have sub-height: height sub = height t bal sub

using 2 Cons list-split split-set(1 ) by fastforce+
then have bal (del k x sub) height (del k x sub) = height sub using sub-height
apply (metis 2 .IH (2 ) 2 .prems(1 ) 2 .prems(2 ) list-split local.Cons order-impl-root-order

r-split root-order .simps(2 ) some-child-sub(1 ) split-set(1 ))
by (metis 2 .prems(1 ) 2 .prems(2 ) list-split Cons order-impl-root-order r-split

root-order .simps(2 ) some-child-sub(1 ) del-height split-set(1 ) sub-height(2 ))
moreover have bal (Node (ls@(sub,sep)#rs) t)
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using 2 .prems(3 ) list-split Cons r-split split-conc by blast
ultimately have bal (Node (ls@(del k x sub,sep)#rs) t)

using bal-substitute-subtree[of ls sub sep rs t del k x sub] by metis
then have bal (rebalance-middle-tree k ls (del k x sub) sep rs t)

using rebalance-middle-tree-bal[of ls del k x sub sep rs t k] by metis
then show ?thesis

using 2 list-split Cons r-split by auto
qed

qed simp

lemma rebalance-middle-tree-order :
assumes almost-order k sub

and ∀ s ∈ set (subtrees (ls@rs)). order k s order k t
and case rs of (rsub,rsep) # list ⇒ height rsub = height t | [] ⇒ True
and length (ls@(sub,sep)#rs) ≤ 2∗k
and height sub = height t

shows almost-order k (rebalance-middle-tree k ls sub sep rs t)
proof(cases t)

case (Leaf txs)
then obtain subxs where sub = Leaf subxs

using height-Leaf assms by metis
then show ?thesis

using assms Leaf
by (auto split!: list.splits bplustree.splits)

next
case t-node: (Node tts tt)
then obtain mts mt where sub-node: sub = Node mts mt

using assms by (cases sub) (auto)
then show ?thesis
proof(cases length mts ≥ k ∧ length tts ≥ k)

case True
then have order k sub using assms

by (simp add: sub-node)
then show ?thesis

using True t-node sub-node assms by auto
next

case False
then show ?thesis
proof (cases rs)

case Nil
have order-upi k (nodei k (mts@(mt,sep)#tts) tt)

using nodei-order [of k mts@(mt,sep)#tts tt] assms(1 ,3 ) t-node sub-node
by (auto simp del: order-upi.simps nodei.simps)

then show ?thesis
apply(cases nodei k (mts@(mt,sep)#tts) tt)
using assms t-node sub-node False Nil apply (auto simp del: nodei.simps)
done

next
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case (Cons r rs)
then obtain rsub rsep where r-split: r = (rsub,rsep) by (cases r)
then have rsub-height: height rsub = height t

using assms Cons by auto
then obtain rts rt where r-node: rsub = (Node rts rt)

apply(cases rsub) using t-node by simp
have order-upi k (nodei k (mts@(mt,sep)#rts) rt)

using nodei-order [of k mts@(mt,sep)#rts rt] assms(1 ,2 ) t-node sub-node
r-node r-split Cons

by (auto simp del: order-upi.simps nodei.simps)
then show ?thesis

apply(cases nodei k (mts@(mt,sep)#rts) rt)
using assms t-node sub-node False Cons r-split r-node apply (auto simp

del: nodei.simps)
done

qed
qed

qed

lemma rebalance-middle-tree-last-order :
assumes almost-order k t

and ∀ s ∈ set (subtrees (ls@(sub,sep)#rs)). order k s
and rs = []
and length (ls@(sub,sep)#rs) ≤ 2∗k
and height sub = height t

shows almost-order k (rebalance-middle-tree k ls sub sep rs t)
proof (cases t)

case (Leaf txs)
then obtain subxs where sub = Leaf subxs

using height-Leaf assms by metis
then show ?thesis

using assms Leaf
by (auto split!: list.splits bplustree.splits)

next
case t-node: (Node tts tt)
then obtain mts mt where sub-node: sub = Node mts mt

using assms by (cases sub) (auto)
then show ?thesis
proof(cases length mts ≥ k ∧ length tts ≥ k)

case True
then have order k sub using assms

by (simp add: sub-node)
then show ?thesis

using True t-node sub-node assms by auto
next

case False
have order-upi k (nodei k (mts@(mt,sep)#tts) tt)

using nodei-order [of k mts@(mt,sep)#tts tt] assms t-node sub-node
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by (auto simp del: order-upi.simps nodei.simps)
then show ?thesis

apply(cases nodei k (mts@(mt,sep)#tts) tt)
using assms t-node sub-node False Nil apply (auto simp del: nodei.simps)
done

qed
qed

lemma rebalance-last-tree-order :
assumes ts = ls@[(sub,sep)]

and ∀ s ∈ set (subtrees (ts)). order k s almost-order k t
and length ts ≤ 2∗k
and height sub = height t

shows almost-order k (rebalance-last-tree k ts t)
using rebalance-middle-tree-last-order assms by auto

lemma del-order :
assumes k > 0

and root-order k t
and bal t
and sorted (leaves t)

shows almost-order k (del k x t)
using assms

proof (induction k x t rule: del.induct)
case (1 k x xs)
then show ?case

by auto
next

case (2 k x ts t)
then obtain ls list where list-split: split ts x = (ls, list) by (cases split ts x)
then show ?case
proof (cases list)

case Nil
then have almost-order k (del k x t) using 2 list-split

by (simp add: order-impl-root-order sorted-wrt-append)
moreover obtain lls lsub lsep where ls-split: ls = lls@[(lsub,lsep)]

using 2 Nil list-split
by (metis append-Nil length-0-conv less-nat-zero-code old.prod.exhaust rev-exhaust

root-order .simps(2 ) split-conc)
moreover have height t = height (del k x t) using del-height 2

by (simp add: order-impl-root-order)
moreover have length ls = length ts

using Nil list-split
by (auto dest: split-length)

ultimately have almost-order k (rebalance-last-tree k ls (del k x t))
using rebalance-last-tree-order [of ls lls lsub lsep k del k x t]
by (metis 2 .prems(2 ) 2 .prems(3 ) Un-iff append-Nil2 bal.simps(2 ) list-split

Nil root-order .simps(2 ) singletonI split-conc subtrees-split)
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then show ?thesis
using 2 list-split Nil by auto

next
case (Cons r rs)

from Cons obtain sub sep where r-split: r = (sub,sep) by (cases r)

have inductive-help:
case rs of [] ⇒ True | (rsub,rsep)#- ⇒ height rsub = height t
∀ s∈set (subtrees (ls @ rs)). order k s
Suc (length (ls @ rs)) ≤ 2 ∗ k
order k t
using Cons r-split 2 .prems list-split split-set
by (auto dest: split-conc split!: list.splits)
then have almost-order k (del k x sub) using 2 list-split Cons r-split or-

der-impl-root-order
by (metis bal.simps(2 ) root-order .simps(2 ) some-child-sub(1 ) sorted-leaves-induct-subtree

split-conc split-set(1 ))
moreover have height (del k x sub) = height t

by (metis 2 .prems(1 ) 2 .prems(2 ) 2 .prems(3 ) bal.simps(2 ) list-split Cons or-
der-impl-root-order r-split root-order .simps(2 ) some-child-sub(1 ) del-height split-set(1 ))

ultimately have almost-order k (rebalance-middle-tree k ls (del k x sub) sep rs
t)

using rebalance-middle-tree-order [of k del k x sub ls rs t sep]
using inductive-help
using Cons r-split list-split by auto

then show ?thesis using 2 Cons r-split list-split by auto
qed

qed

thm del-list-sorted

lemma del-list-split:
assumes Laligned (Node ts t) u

and sorted-less (leaves (Node ts t))
and split ts x = (ls, rs)

shows del-list x (leaves (Node ts t)) = leaves-list ls @ del-list x (leaves-list rs @
leaves t)
proof (cases ls)

case Nil
then show ?thesis

using assms by (auto dest!: split-conc)
next

case Cons
then obtain ls ′ sub sep where ls-tail-split: ls = ls ′ @ [(sub,sep)]

by (metis list.distinct(1 ) rev-exhaust surj-pair)
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have sorted-inorder : sorted-less (inorder (Node ts t))
using Laligned-sorted-inorder assms(1 ) sorted-cons sorted-snoc by blast

moreover have sep < x
using split-req(2 )[of ts x ls ′ sub sep rs]
using assms ls-tail-split sorted-inorder sorted-inorder-separators
by blast

moreover have leaves-split: leaves (Node ts t) = leaves-list ls @ leaves-list rs @
leaves t

using assms(3 ) split-tree.leaves-split by blast
then show ?thesis
proof (cases leaves-list ls)

case Nil
then show ?thesis

by (metis append-self-conv2 leaves-split)
next

case Cons
then obtain leavesls ′ l ′ where leaves-tail-split: leaves-list ls = leavesls ′ @ [l ′]

by (metis list.simps(3 ) rev-exhaust)
then have l ′ ≤ sep
proof −

have l ′ ∈ set (leaves-list ls)
using leaves-tail-split by force

then have l ′ ∈ set (leaves (Node ls ′ sub))
using ls-tail-split
by auto

moreover have Laligned (Node ls ′ sub) sep
using assms split-conc[OF assms(3 )] Cons ls-tail-split
using Laligned-split-left
by simp

ultimately show ?thesis
using Laligned-leaves-inbetween[of Node ls ′ sub sep]
by blast

qed
moreover have sorted-less (leaves (Node ts t))

using assms sorted-wrt-append split-conc by fastforce
ultimately show ?thesis using assms(2 ) split-conc[OF assms(3 )] leaves-tail-split

using del-list-sorted[of leavesls ′ l ′ leaves-list rs @ leaves t x] ‹sep < x›
by auto

qed
qed

corollary del-list-split-aligned:
assumes aligned l (Node ts t) u

and sorted-less (leaves (Node ts t))
and split ts x = (ls, rs)

shows del-list x (leaves (Node ts t)) = leaves-list ls @ del-list x (leaves-list rs @
leaves t)

using aligned-imp-Laligned assms(1 ) assms(2 ) assms(3 ) del-list-split by blast
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lemma del-list-split-right:
assumes Laligned (Node ts t) u

and sorted-less (leaves (Node ts t))
and split ts x = (ls, (sub,sep)#rs)

shows del-list x (leaves-list ((sub,sep)#rs) @ leaves t) = del-list x (leaves sub) @
leaves-list rs @ leaves t
proof −

have sorted-inorder : sorted-less (inorder (Node ts t))
using Laligned-sorted-inorder assms(1 ) sorted-cons sorted-snoc by blast

from assms have x ≤ sep
proof −

from assms have sorted-less (separators ts)
using sorted-inorder-separators sorted-inorder by blast

then show ?thesis
using split-req(3 )
using assms
by fastforce

qed
then show ?thesis
proof (cases leaves-list rs @ leaves t)

case Nil
moreover have leaves-list ((sub,sep)#rs) @ leaves t = leaves sub @ leaves-list

rs @ leaves t
by simp

ultimately show ?thesis
by (metis self-append-conv)

next
case (Cons r ′ rs ′)
then have sep < r ′

by (metis aligned-leaves-inbetween Laligned-split-right assms(1 ) assms(3 )
leaves.simps(2 ) list.set-intros(1 ) split-set.split-conc split-set-axioms)

then have x < r ′

using ‹x ≤ sep› by auto
moreover have sorted-less (leaves sub @ leaves-list rs @ leaves t)
proof −

have sorted-less (leaves-list ls @ leaves sub @ leaves-list rs @ leaves t)
using assms
by (auto dest!: split-conc)

then show ?thesis
using assms
by (metis Cons sorted-wrt-append)

qed
ultimately show ?thesis

using del-list-sorted[of leaves sub r ′ rs ′] Cons
by auto

qed
qed
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corollary del-list-split-right-aligned:
assumes aligned l (Node ts t) u

and sorted-less (leaves (Node ts t))
and split ts x = (ls, (sub,sep)#rs)

shows del-list x (leaves-list ((sub,sep)#rs) @ leaves t) = del-list x (leaves sub) @
leaves-list rs @ leaves t
using aligned-imp-Laligned assms(1 ) assms(2 ) assms(3 ) split-set.del-list-split-right

split-set-axioms by blast

thm del-list-idem

lemma del-inorder :
assumes k > 0

and root-order k t
and bal t
and sorted-less (leaves t)
and aligned l t u
and l < x x ≤ u

shows leaves (del k x t) = del-list x (leaves t) ∧ aligned l (del k x t) u
using assms

proof (induction k x t arbitrary: l u rule: del.induct)
case (1 k x xs)
then have leaves (del k x (Leaf xs)) = del-list x (leaves (Leaf xs))

by (simp add: insert-list-req)
moreover have aligned l (del k x (Leaf xs)) u
proof −

have l < u
using 1 .prems(6 ) 1 .prems(7 ) by auto

moreover have ∀ x ∈ set xs − {x}. l < x ∧ x ≤ u
using 1 .prems(5 ) by auto

ultimately show ?thesis
using set-del-list insert-list-req
by (metis 1 (4 ) aligned.simps(1 ) del.simps(1 ) leaves.simps(1 ))

qed
ultimately show ?case

by simp
next

case (2 k x ts t l u)
then obtain ls rs where list-split: split ts x = (ls, rs)

by (meson surj-pair)
then have list-conc: ts = ls @ rs

using split-set.split-conc split-set-axioms by blast
show ?case
proof (cases rs)

case Nil
then obtain ls ′ lsub lsep where ls-split: ls = ls ′ @ [(lsub,lsep)]

by (metis 2 .prems(2 ) append-Nil2 list.size(3 ) list-conc old.prod.exhaust
root-order .simps(2 ) snoc-eq-iff-butlast zero-less-iff-neq-zero)
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then have IH : leaves (del k x t) = del-list x (leaves t) ∧ aligned lsep (del k x
t) u

using 2 .IH (1 )[OF list-split[symmetric] Nil, of lsep u]
by (metis (no-types, lifting) 2 .prems(1 ) 2 .prems(2 ) 2 .prems(3 ) 2 .prems(4 )

2 .prems(5 ) 2 .prems(7 ) ‹ls = ls ′@ [(lsub, lsep)]› align-last aligned-sorted-separators
bal.simps(2 ) list-conc list-split local.Nil order-impl-root-order root-order .simps(2 )
self-append-conv sorted-cons sorted-leaves-induct-last sorted-snoc split-set.split-req(2 )
split-set-axioms)

have leaves (del k x (Node ts t)) = leaves (rebalance-last-tree k ts (del k x t))
using list-split Nil list-conc by auto

also have . . . = leaves-list ts @ leaves (del k x t)
proof −

obtain ts ′ sub sep where ts-split: ts = ts ′ @ [(sub, sep)]
using ‹ls = ls ′ @ [(lsub, lsep)]› list-conc local.Nil by blast

then have height sub = height t
using 2 .prems(3 ) by auto

moreover have height t = height (del k x t)
by (metis 2 .prems(1 ) 2 .prems(2 ) 2 .prems(3 ) bal.simps(2 ) del-height or-

der-impl-root-order root-order .simps(2 ))
ultimately show ?thesis

using rebalance-last-tree-inorder
using ts-split by auto

qed
also have . . . = leaves-list ts @ del-list x (leaves t)

using IH by blast
also have . . . = del-list x (leaves (Node ts t))
by (metis 2 .prems(4 ) 2 .prems(5 ) aligned-imp-Laligned append-self-conv2 con-

cat.simps(1 ) list.simps(8 ) list-conc list-split local.Nil self-append-conv split-set.del-list-split
split-set-axioms)

finally have 0 : leaves (del k x (Node ts t)) = del-list x (leaves (Node ts t)) .
moreover have aligned l (del k x (Node ts t)) u
proof −

have aligned l (Node ls (del k x t)) u
using IH list-conc Nil 2 .prems ls-split
using aligned-subst-last
by (metis self-append-conv)

moreover have sorted-less (leaves (Node ls (del k x t)))
using 2 .prems(4 ) ‹leaves-list ts @ del-list x (leaves t) = del-list x (leaves

(Node ts t))› ‹leaves-list ts @ leaves (del k x t) = leaves-list ts @ del-list x (leaves
t)› list-conc local.Nil sorted-del-list

by auto
ultimately have aligned l (rebalance-last-tree k ls (del k x t)) u

using rebalance-last-tree-aligned
by (metis (no-types, lifting) 2 .prems(1 ) 2 .prems(2 ) 2 .prems(3 ) UnCI

bal.simps(2 ) del-height list.set-intros(1 ) list-conc ls-split order-impl-root-order root-order .simps(2 )
set-append some-child-sub(1 ))

then show ?thesis using list-split ls-split 2 .prems Nil
by simp

qed
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ultimately show ?thesis
by simp

next
case (Cons h rs)
then obtain sub sep where h-split: h = (sub,sep)

by (cases h)
then have node-sorted-split:

sorted-less (leaves (Node (ls@(sub,sep)#rs) t))
root-order k (Node (ls@(sub,sep)#rs) t)
bal (Node (ls@(sub,sep)#rs) t)
using 2 .prems h-split list-conc Cons by blast+

{
assume IH : leaves (del k x sub) = del-list x (leaves sub)
have leaves (del k x (Node ts t)) = leaves (rebalance-middle-tree k ls (del k x

sub) sep rs t)
using Cons list-split h-split 2 .prems
by auto

also have . . . = leaves (Node (ls@(del k x sub, sep)#rs) t)
using rebalance-middle-tree-inorder [of t del k x sub rs]

by (smt (verit) 2 .prems(1 ) 2 .prems(2 ) 2 .prems(3 ) bal.simps(2 ) bal-sub-height
del-height h-split list-split local.Cons node-sorted-split(3 ) order-impl-root-order re-
balance-middle-tree-inorder root-order .simps(2 ) some-child-sub(1 ) split-set(1 ))

also have . . . = leaves-list ls @ leaves (del k x sub) @ leaves-list rs @ leaves t
by auto

also have . . . = leaves-list ls @ del-list x (leaves sub @ leaves-list rs @ leaves
t)

using del-list-split-right-aligned[of l ts t u x ls sub sep rs]
using list-split Cons 2 .prems(4 ,5 ) h-split IH list-conc
by auto

also have . . . = del-list x (leaves-list ls @ leaves sub @ leaves-list rs @ leaves
t)

using del-list-split-aligned[of l ts t u x ls (sub,sep)#rs]
using list-split Cons 2 .prems(4 ,5 ) h-split IH list-conc
by auto

finally have leaves (del k x (Node ts t)) = del-list x (leaves (Node ts t))
using list-conc Cons h-split
by auto

}
then show ?thesis
proof (cases ls)

case Nil
then have IH : leaves (del k x sub) = del-list x (leaves sub) ∧ aligned l (del k

x sub) sep
using 2 .IH (2 )[OF list-split[symmetric] Cons h-split[symmetric], of l sep]
by (metis 2 .prems(1 ) 2 .prems(2 ) 2 .prems(5 ) 2 .prems(6 ) aligned.simps(2 )

aligned-sorted-separators append-self-conv2 bal.simps(2 ) h-split inbetween.simps(2 )
list.set-intros(1 ) list-conc list-split local.Cons local.Nil node-sorted-split(1 ) node-sorted-split(3 )
order-impl-root-order root-order .simps(2 ) some-child-sub(1 ) sorted-cons sorted-leaves-induct-subtree
sorted-snoc split-set.split-req(3 ) split-set-axioms)
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then have leaves (del k x (Node ts t)) = del-list x (leaves (Node ts t))
using ‹leaves (del k x sub) = del-list x (leaves sub) =⇒ leaves (del k x (Node

ts t)) = del-list x (leaves (Node ts t))› by blast
then have sorted-less (leaves (del k x (Node ts t)))

using 2 .prems(4 ) sorted-del-list by auto
then have sorted-leaves: sorted-less (leaves (Node (ls@(del k x sub, sep)#rs)

t))
using list-split Cons h-split
using rebalance-middle-tree-inorder [of t del k x sub rs k ls sep]
using 2 .prems(4 ) 2 .prems(5 ) IH ‹leaves (del k x (Node ts t)) = del-list x

(leaves (Node ts t))› del-list-split-aligned del-list-split-right-aligned
by auto

from IH have aligned l (del k x (Node ts t)) u
proof −

have aligned l (Node (ls@(del k x sub, sep)#rs) t) u
using 2 .prems(5 ) IH h-split list-conc local.Cons local.Nil by auto

then have aligned l (rebalance-middle-tree k ls (del k x sub) sep rs t) u
using rebalance-middle-tree-aligned sorted-leaves

by (smt (verit, best) 2 .prems(1 ) 2 .prems(2 ) 2 .prems(3 ) append-self-conv2
bal.simps(2 ) bal-sub-height del-height h-split list.set-intros(1 ) list-conc local.Cons
local.Nil order-impl-root-order root-order .simps(2 ) some-child-sub(1 ))

then show ?thesis
using list-split Cons h-split
by auto

qed
then show ?thesis

using ‹leaves (del k x (Node ts t)) = del-list x (leaves (Node ts t))› by blast
next

case -: (Cons a list)
then obtain ls ′ lsub lsep where l-split: ls = ls ′@[(lsub,lsep)]

by (metis list.discI old.prod.exhaust snoc-eq-iff-butlast)
then have aligned lsep sub sep

using 2 .prems(5 ) align-last aligned-split-left h-split list-conc local.Cons
by blast

then have IH : leaves (del k x sub) = del-list x (leaves sub) ∧ aligned lsep (del
k x sub) sep

using 2 .IH (2 )[OF list-split[symmetric] Cons h-split[symmetric], of lsep sep]
by (metis 2 .prems(1 ) 2 .prems(2 ) 2 .prems(5 ) aligned-sorted-separators

bal.simps(2 ) bal-split-left(1 ) h-split l-split list-split local.Cons node-sorted-split(1 )
node-sorted-split(3 ) order-impl-root-order root-order .simps(2 ) some-child-sub(1 ) sorted-cons
sorted-leaves-induct-subtree sorted-snoc split-set.split-req(2 ) split-set.split-req(3 ) split-set-axioms
split-set(1 ))

then have leaves (del k x (Node ts t)) = del-list x (leaves (Node ts t))
using ‹leaves (del k x sub) = del-list x (leaves sub) =⇒ leaves (del k x (Node

ts t)) = del-list x (leaves (Node ts t))› by blast
then have sorted-less (leaves (del k x (Node ts t)))

using 2 .prems(4 ) sorted-del-list by auto
then have sorted-leaves: sorted-less (leaves (Node (ls@(del k x sub, sep)#rs)

t))
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using list-split Cons h-split
using rebalance-middle-tree-inorder [of t del k x sub rs k ls sep]
using 2 .prems(4 ) 2 .prems(5 ) IH ‹leaves (del k x (Node ts t)) = del-list x

(leaves (Node ts t))› del-list-split-aligned del-list-split-right-aligned
by auto

from IH have aligned l (del k x (Node ts t)) u
proof −

have aligned l (Node (ls@(del k x sub, sep)#rs) t) u
using 2 .prems(5 ) IH h-split list-conc local.Cons l-split
using aligned-subst by fastforce

then have aligned l (rebalance-middle-tree k ls (del k x sub) sep rs t) u
using rebalance-middle-tree-aligned sorted-leaves

by (smt (verit, best) 2 .prems(1 ) 2 .prems(2 ) 2 .prems(3 ) bal.simps(2 )
bal-sub-height del-height h-split list-split local.Cons node-sorted-split(3 ) order-impl-root-order
root-order .simps(2 ) some-child-sub(1 ) split-set(1 ))

then show ?thesis
using list-split Cons h-split
by auto

qed
then show ?thesis

using ‹leaves (del k x (Node ts t)) = del-list x (leaves (Node ts t))› by blast
qed

qed
qed

lemma del-Linorder :
assumes k > 0

and root-order k t
and bal t
and sorted-less (leaves t)
and Laligned t u
and x ≤ u

shows leaves (del k x t) = del-list x (leaves t) ∧ Laligned (del k x t) u
using assms

proof (induction k x t arbitrary: u rule: del.induct)
case (1 k x xs)
then have leaves (del k x (Leaf xs)) = del-list x (leaves (Leaf xs))

by (simp add: insert-list-req)
moreover have Laligned (del k x (Leaf xs)) u
proof −

have ∀ x ∈ set xs − {x}. x ≤ u
using 1 .prems(5 ) by auto

then show ?thesis
using set-del-list insert-list-req
by (metis 1 (4 ) Laligned.simps(1 ) del.simps(1 ) leaves.simps(1 ))

qed
ultimately show ?case

by simp
next
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case (2 k x ts t u)
then obtain ls rs where list-split: split ts x = (ls, rs)

by (meson surj-pair)
then have list-conc: ts = ls @ rs

using split-set.split-conc split-set-axioms by blast
show ?case
proof (cases rs)

case Nil
then obtain ls ′ lsub lsep where ls-split: ls = ls ′ @ [(lsub,lsep)]

by (metis 2 .prems(2 ) append-Nil2 list.size(3 ) list-conc old.prod.exhaust
root-order .simps(2 ) snoc-eq-iff-butlast zero-less-iff-neq-zero)

then have IH : leaves (del k x t) = del-list x (leaves t) ∧ aligned lsep (del k x
t) u

by (metis (no-types, lifting) 2 .prems(1 ) 2 .prems(2 ) 2 .prems(3 ) 2 .prems(4 )
2 .prems(5 ) 2 .prems(6 ) Lalign-last Laligned-sorted-separators bal.simps(2 ) del-inorder
list-conc list-split local.Nil order-impl-root-order root-order .simps(2 ) self-append-conv
sorted-leaves-induct-last sorted-snoc split-set.split-req(2 ) split-set-axioms)

have leaves (del k x (Node ts t)) = leaves (rebalance-last-tree k ts (del k x t))
using list-split Nil list-conc by auto

also have . . . = leaves-list ts @ leaves (del k x t)
proof −

obtain ts ′ sub sep where ts-split: ts = ts ′ @ [(sub, sep)]
using ‹ls = ls ′ @ [(lsub, lsep)]› list-conc local.Nil by blast

then have height sub = height t
using 2 .prems(3 ) by auto

moreover have height t = height (del k x t)
by (metis 2 .prems(1 ) 2 .prems(2 ) 2 .prems(3 ) bal.simps(2 ) del-height or-

der-impl-root-order root-order .simps(2 ))
ultimately show ?thesis

using rebalance-last-tree-inorder
using ts-split by auto

qed
also have . . . = leaves-list ts @ del-list x (leaves t)

using IH by blast
also have . . . = del-list x (leaves (Node ts t))
by (metis 2 .prems(4 ) 2 .prems(5 ) append-self-conv2 concat.simps(1 ) list.simps(8 )

list-conc list-split local.Nil self-append-conv split-set.del-list-split split-set-axioms)
finally have 0 : leaves (del k x (Node ts t)) = del-list x (leaves (Node ts t)) .
moreover have Laligned (del k x (Node ts t)) u
proof −

have Laligned (Node ls (del k x t)) u
using IH list-conc Nil 2 .prems ls-split
by (metis Laligned-subst-last self-append-conv)

moreover have sorted-less (leaves (Node ls (del k x t)))
using 2 .prems(4 ) ‹leaves-list ts @ del-list x (leaves t) = del-list x (leaves

(Node ts t))› ‹leaves-list ts @ leaves (del k x t) = leaves-list ts @ del-list x (leaves
t)› list-conc local.Nil sorted-del-list

by auto
ultimately have Laligned (rebalance-last-tree k ls (del k x t)) u
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using rebalance-last-tree-Laligned
by (metis (no-types, lifting) 2 .prems(1 ) 2 .prems(2 ) 2 .prems(3 ) UnCI

bal.simps(2 ) del-height list.set-intros(1 ) list-conc ls-split order-impl-root-order root-order .simps(2 )
set-append some-child-sub(1 ))

then show ?thesis using list-split ls-split 2 .prems Nil
by simp

qed
ultimately show ?thesis

by simp
next

case (Cons h rs)
then obtain sub sep where h-split: h = (sub,sep)

by (cases h)
then have node-sorted-split:

sorted-less (leaves (Node (ls@(sub,sep)#rs) t))
root-order k (Node (ls@(sub,sep)#rs) t)
bal (Node (ls@(sub,sep)#rs) t)
using 2 .prems h-split list-conc Cons by blast+

{
assume IH : leaves (del k x sub) = del-list x (leaves sub)
have leaves (del k x (Node ts t)) = leaves (rebalance-middle-tree k ls (del k x

sub) sep rs t)
using Cons list-split h-split 2 .prems
by auto

also have . . . = leaves (Node (ls@(del k x sub, sep)#rs) t)
using rebalance-middle-tree-inorder [of t del k x sub rs]

by (smt (verit) 2 .prems(1 ) 2 .prems(2 ) 2 .prems(3 ) bal.simps(2 ) bal-sub-height
del-height h-split list-split local.Cons node-sorted-split(3 ) order-impl-root-order re-
balance-middle-tree-inorder root-order .simps(2 ) some-child-sub(1 ) split-set(1 ))

also have . . . = leaves-list ls @ leaves (del k x sub) @ leaves-list rs @ leaves t
by auto

also have . . . = leaves-list ls @ del-list x (leaves sub @ leaves-list rs @ leaves
t)

using del-list-split-right[of ts t u x ls sub sep rs]
using list-split Cons 2 .prems(4 ,5 ) h-split IH list-conc
by auto

also have . . . = del-list x (leaves-list ls @ leaves sub @ leaves-list rs @ leaves
t)

using del-list-split[of ts t u x ls (sub,sep)#rs]
using list-split Cons 2 .prems(4 ,5 ) h-split IH list-conc
by auto

finally have leaves (del k x (Node ts t)) = del-list x (leaves (Node ts t))
using list-conc Cons h-split
by auto

}
then show ?thesis
proof (cases ls)

case Nil
then have IH : leaves (del k x sub) = del-list x (leaves sub) ∧ Laligned (del k
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x sub) sep
by (smt (verit, ccfv-threshold) 2 .IH (2 ) 2 .prems(1 ) 2 .prems(2 ) 2 .prems(5 )

Laligned-nonempty-Node Laligned-sorted-separators append-self-conv2 bal.simps(2 )
h-split list.set-intros(1 ) list-conc list-split local.Cons node-sorted-split(1 ) node-sorted-split(3 )
order-impl-root-order root-order .simps(2 ) some-child-sub(1 ) sorted-leaves-induct-subtree
sorted-wrt-append split-set.split-req(3 ) split-set-axioms)

then have leaves (del k x (Node ts t)) = del-list x (leaves (Node ts t))
using ‹leaves (del k x sub) = del-list x (leaves sub) =⇒ leaves (del k x (Node

ts t)) = del-list x (leaves (Node ts t))› by blast
then have sorted-less (leaves (del k x (Node ts t)))

using 2 .prems(4 ) sorted-del-list by auto
then have sorted-leaves: sorted-less (leaves (Node (ls@(del k x sub, sep)#rs)

t))
using list-split Cons h-split
using rebalance-middle-tree-inorder [of t del k x sub rs k ls sep]
using 2 .prems(4 ) 2 .prems(5 ) IH ‹leaves (del k x (Node ts t)) = del-list x

(leaves (Node ts t))› del-list-split del-list-split-right
by auto

from IH have Laligned (del k x (Node ts t)) u
proof −

have Laligned (Node (ls@(del k x sub, sep)#rs) t) u
using 2 .prems(5 ) IH h-split list-conc local.Cons local.Nil by auto

then have Laligned (rebalance-middle-tree k ls (del k x sub) sep rs t) u
using rebalance-middle-tree-Laligned sorted-leaves

by (smt (verit, best) 2 .prems(1 ) 2 .prems(2 ) 2 .prems(3 ) append-self-conv2
bal.simps(2 ) bal-sub-height del-height h-split list.set-intros(1 ) list-conc local.Cons
local.Nil order-impl-root-order root-order .simps(2 ) some-child-sub(1 ))

then show ?thesis
using list-split Cons h-split
by auto

qed
then show ?thesis

using ‹leaves (del k x (Node ts t)) = del-list x (leaves (Node ts t))› by blast
next

case -: (Cons a list)
then obtain ls ′ lsub lsep where l-split: ls = ls ′@[(lsub,lsep)]

by (metis list.discI old.prod.exhaust snoc-eq-iff-butlast)
then have aligned lsep sub sep

using 2 .prems(5 ) Lalign-last Laligned-split-left h-split list-conc local.Cons
by blast

then have IH : leaves (del k x sub) = del-list x (leaves sub) ∧ aligned lsep (del
k x sub) sep

by (metis 2 .prems(1 ) 2 .prems(2 ) 2 .prems(5 ) Laligned-sorted-separators
bal.simps(2 ) bal-split-left(1 ) del-inorder h-split l-split list-split local.Cons node-sorted-split(1 )
node-sorted-split(3 ) order-impl-root-order root-order .simps(2 ) some-child-sub(1 ) sorted-leaves-induct-subtree
sorted-snoc split-set.split-req(2 ) split-set.split-req(3 ) split-set-axioms split-set(1 ))

then have leaves (del k x (Node ts t)) = del-list x (leaves (Node ts t))
using ‹leaves (del k x sub) = del-list x (leaves sub) =⇒ leaves (del k x (Node

ts t)) = del-list x (leaves (Node ts t))› by blast
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then have sorted-less (leaves (del k x (Node ts t)))
using 2 .prems(4 ) sorted-del-list by auto

then have sorted-leaves: sorted-less (leaves (Node (ls@(del k x sub, sep)#rs)
t))

using list-split Cons h-split
using rebalance-middle-tree-inorder [of t del k x sub rs k ls sep]
using 2 .prems(4 ) 2 .prems(5 ) IH ‹leaves (del k x (Node ts t)) = del-list x

(leaves (Node ts t))› del-list-split del-list-split-right
by auto

from IH have Laligned (del k x (Node ts t)) u
proof −

have Laligned (Node (ls@(del k x sub, sep)#rs) t) u
using 2 .prems(5 ) IH h-split list-conc local.Cons l-split
using Laligned-subst by fastforce

then have Laligned (rebalance-middle-tree k ls (del k x sub) sep rs t) u
using rebalance-middle-tree-Laligned sorted-leaves

by (smt (verit, best) 2 .prems(1 ) 2 .prems(2 ) 2 .prems(3 ) bal.simps(2 )
bal-sub-height del-height h-split list-split local.Cons node-sorted-split(3 ) order-impl-root-order
root-order .simps(2 ) some-child-sub(1 ) split-set(1 ))

then show ?thesis
using list-split Cons h-split
by auto

qed
then show ?thesis

using ‹leaves (del k x (Node ts t)) = del-list x (leaves (Node ts t))› by blast
qed

qed
qed

lemma reduce-root-order : [[k > 0 ; almost-order k t]] =⇒ root-order k (reduce-root
t)

apply(cases t)
apply(auto split!: list.splits simp add: order-impl-root-order)

done

lemma reduce-root-bal: bal (reduce-root t) = bal t
apply(cases t)
apply(auto split!: list.splits)

done

lemma reduce-root-inorder : leaves (reduce-root t) = leaves t
apply (cases t)
apply (auto split!: list.splits)

done

lemma reduce-root-Laligned: Laligned (reduce-root t) u = Laligned t u
apply(cases t)
apply (auto split!: list.splits)
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done

lemma delete-order : [[k > 0 ; bal t; root-order k t; sorted-less (leaves t)]] =⇒
root-order k (delete k x t)

using del-order
by (simp add: reduce-root-order)

lemma delete-bal: [[k > 0 ; bal t; root-order k t]] =⇒ bal (delete k x t)
using del-bal
by (simp add: reduce-root-bal)

lemma delete-Linorder :
assumes k > 0 root-order k t sorted-less (leaves t) Laligned t u bal t x ≤ u
shows leaves (delete k x t) = del-list x (leaves t)

and Laligned (delete k x t) u
using reduce-root-Laligned[of del k x t u] reduce-root-inorder [of del k x t]
using del-Linorder [of k t u x]
using assms
by simp-all

corollary delete-Linorder-top:
assumes k > 0 root-order k t sorted-less (leaves t) Laligned t top bal t
shows leaves (delete k x t) = del-list x (leaves t)

and Laligned (delete k x t) top
using assms delete-Linorder top-greatest
by simp-all

7.5 Set specification by inorder
fun invar-leaves where invar-leaves k t = (

bal t ∧
root-order k t ∧
Laligned t top

)

interpretation S-ordered: Set-by-Ordered where
empty = empty-bplustree and
insert = insert (Suc k) and
delete = delete (Suc k) and
isin = isin and
inorder = leaves and
inv = invar-leaves (Suc k)

proof (standard, goal-cases)
case (2 s x)
then show ?case

using isin-set-Linorder-top
by simp

next
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case (3 s x)
then show ?case

using insert-Linorder-top
by simp

next
case (4 s x)
then show ?case using delete-Linorder-top

by auto
next

case (6 s x)
then show ?case using insert-order insert-bal insert-Linorder-top

by auto
next

case (7 s x)
then show ?case using delete-order delete-bal delete-Linorder-top

by auto
qed (simp add: empty-bplustree-def )+

declare nodei.simps[simp del]

end

lemma sorted-ConsD: sorted-less (y # xs) =⇒ x ≤ y =⇒ x /∈ set xs
by (auto simp: sorted-Cons-iff )

lemma sorted-snocD: sorted-less (xs @ [y]) =⇒ y ≤ x =⇒ x /∈ set xs
by (auto simp: sorted-snoc-iff )

lemmas isin-simps2 = sorted-lems sorted-ConsD sorted-snocD

lemma isin-sorted: sorted-less (xs@a#ys) =⇒
(x ∈ set (xs@a#ys)) = (if x < a then x ∈ set xs else x ∈ set (a#ys))
by (auto simp: isin-simps2 )

context split-list
begin

fun isin-list :: ′a ⇒ ′a list ⇒ bool where
isin-list x ks = (case split-list ks x of
(ls,Nil) ⇒ False |
(ls,sep#rs) ⇒ sep = x

)

fun insert-list where
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insert-list x ks = (case split-list ks x of
(ls,Nil) ⇒ ls@[x] |
(ls,sep#rs) ⇒ if sep = x then ks else ls@x#sep#rs

)

fun delete-list where
delete-list x ks = (case split-list ks x of
(ls,Nil) ⇒ ks |
(ls,sep#rs) ⇒ if sep = x then ls@rs else ks

)

lemmas split-list-conc = split-list-req(1 )
lemmas split-list-sorted = split-list-req(2 ,3 )

lemma isin-sorted-split-list:
assumes sorted-less xs

and split-list xs x = (ls, rs)
shows (x ∈ set xs) = (x ∈ set rs)

proof (cases ls)
case Nil
then have xs = rs

using assms by (auto dest!: split-list-conc)
then show ?thesis by simp

next
case Cons
then obtain ls ′ sep where ls-tail-split: ls = ls ′ @ [sep]

by (metis list.simps(3 ) rev-exhaust)
then have x-sm-sep: sep < x

using split-list-req(2 )[of xs x ls ′ sep rs]
using assms sorted-cons sorted-snoc
by blast

moreover have xs = ls@rs
using assms split-list-conc by simp

ultimately show ?thesis
using isin-sorted[of ls ′ sep rs]
using assms ls-tail-split
by auto

qed

lemma isin-sorted-split-list-right:
assumes split-list ts x = (ls, sep#rs)

and sorted-less ts
shows x ∈ set (sep#rs) = (x = sep)

proof (cases rs)
case Nil
then show ?thesis
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by simp
next

case (Cons sep ′ rs)
from assms have x < sep ′

by (metis le-less less-trans list.set-intros(1 ) local.Cons sorted-Cons-iff sorted-wrt-append
split-list-conc split-list-sorted(2 ))

moreover have ts = ls@sep#sep ′#rs
using split-list-conc[OF assms(1 )] Cons by auto

moreover have sorted-less (sep#sep ′#rs)
using Cons assms calculation(2 ) sorted-wrt-append by blast

ultimately show ?thesis
using isin-sorted[of [sep] sep ′ rs x] Cons
by simp

qed

theorem isin-list-set:
assumes sorted-less xs
shows isin-list x xs = (x ∈ set xs)
using assms
using isin-sorted-split-list[of xs x]
using isin-sorted-split-list-right[of xs x]
by (auto split!: list.splits)

lemma insert-sorted-split-list:
assumes sorted-less xs

and split-list xs x = (ls, rs)
shows ins-list x xs = ls @ ins-list x rs

proof (cases ls)
case Nil
then have xs = rs

using assms by (auto dest!: split-list-conc)
then show ?thesis

using Nil by simp
next

case Cons
then obtain ls ′ sep where ls-tail-split: ls = ls ′ @ [sep]

by (metis list.simps(3 ) rev-exhaust)
then have x-sm-sep: sep < x

using split-list-req(2 )[of xs x ls ′ sep rs]
using assms sorted-cons sorted-snoc
by blast

moreover have xs = ls@rs
using assms split-list-conc by simp

ultimately show ?thesis
using ins-list-sorted[of ls ′ sep x rs]
using assms ls-tail-split sorted-wrt-append[of (<) ls rs]
by auto

qed
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lemma insert-sorted-split-list-right:
assumes split-list ts x = (ls, sep#rs)

and sorted-less ts
and x 6= sep

shows ins-list x (sep#rs) = (x#sep#rs)
proof −

have x < sep
by (meson assms(1 ) assms(2 ) assms(3 ) le-neq-trans split-list-sorted(2 ))

then show ?thesis
using ins-list-sorted[of [] sep]
using assms
by auto

qed

theorem insert-list-set:
assumes sorted-less xs
shows insert-list x xs = ins-list x xs
using assms split-list-conc
using insert-sorted-split-list[of xs x]
using insert-sorted-split-list-right[of xs x]
by (auto split!: list.splits prod.splits)

lemma delete-sorted-split-list:
assumes sorted-less xs

and split-list xs x = (ls, rs)
shows del-list x xs = ls @ del-list x rs

proof (cases ls)
case Nil
then have xs = rs

using assms by (auto dest!: split-list-conc)
then show ?thesis

using Nil by simp
next

case Cons
then obtain ls ′ sep where ls-tail-split: ls = ls ′ @ [sep]

by (metis list.simps(3 ) rev-exhaust)
then have x-sm-sep: sep < x

using split-list-req(2 )[of xs x ls ′ sep rs]
using assms sorted-cons sorted-snoc
by blast

moreover have xs = ls@rs
using assms split-list-conc by simp

ultimately show ?thesis
using del-list-sorted[of ls ′ sep rs]
using assms ls-tail-split sorted-wrt-append[of (<) ls rs]
by auto

qed
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lemma delete-sorted-split-list-right:
assumes split-list ts x = (ls, sep#rs)

and sorted-less ts
and x 6= sep

shows del-list x (sep#rs) = sep#rs
proof −

have sorted-less (sep#rs)
by (metis assms(1 ) assms(2 ) sorted-wrt-append split-list.split-list-conc split-list-axioms)

moreover have x < sep
by (meson assms(1 ) assms(2 ) assms(3 ) le-neq-trans split-list-sorted(2 ))

ultimately show ?thesis
using del-list-sorted[of [] sep rs x]
by simp

qed

theorem delete-list-set:
assumes sorted-less xs
shows delete-list x xs = del-list x xs
using assms split-list-conc[of xs x]
using delete-sorted-split-list[of xs x]
using delete-sorted-split-list-right[of xs x]
by (auto split!: list.splits prod.splits)

end

context split-full
begin

sublocale split-set split isin-list insert-list delete-list
using isin-list-set insert-list-set delete-list-set
by unfold-locales auto

end

end
theory BPlusTree-Range
imports BPlusTree

HOL−Data-Structures.Set-Specs
HOL−Library.Sublist
BPlusTree-Split

begin

Lrange describes all elements in a set that are greater or equal to l, a lower
bounded range (with no upper bound)
definition Lrange where

Lrange l X = {x ∈ X . x ≥ l}
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definition lrange-filter l = filter (λx. x ≥ l)

lemma lrange-filter-iff-Lrange: set (lrange-filter l xs) = Lrange l (set xs)
by (auto simp add: lrange-filter-def Lrange-def )

fun lrange-list where
lrange-list l (x#xs) = (if x ≥ l then (x#xs) else lrange-list l xs) |
lrange-list l [] = []

lemma sorted-leq-lrange: sorted-wrt (≤) xs =⇒ lrange-list (l:: ′a::linorder) xs =
lrange-filter l xs

apply(induction xs)
apply(auto simp add: lrange-filter-def )
by (metis dual-order .trans filter-True)

lemma sorted-less-lrange: sorted-less xs =⇒ lrange-list (l:: ′a::linorder) xs = lrange-filter
l xs

by (simp add: sorted-leq-lrange strict-sorted-iff )

lemma lrange-list-sorted: sorted-less (xs@x#ys) =⇒
lrange-list l (xs@x#ys) =
(if l < x then (lrange-list l xs)@x#ys else lrange-list l (x#ys))
by (induction xs arbitrary: x) auto

lemma lrange-filter-sorted: sorted-less (xs@x#ys) =⇒
lrange-filter l (xs@x#ys) =
(if l < x then (lrange-filter l xs)@x#ys else lrange-filter l (x#ys))
by (metis lrange-list-sorted sorted-less-lrange sorted-wrt-append)

lemma lrange-suffix: suffix (lrange-list l xs) xs
apply(induction xs)
apply (auto dest: suffix-ConsI )
done

locale split-range = split-tree split
for split::
( ′a bplustree × ′a::{linorder ,order-top}) list ⇒ ′a
⇒ ( ′a bplustree × ′a) list × ( ′a bplustree × ′a) list +

fixes lrange-list :: ′a ⇒ ( ′a::{linorder ,order-top}) list ⇒ ′a list
assumes lrange-list-req:

sorted-less ks =⇒ lrange-list l ks = lrange-filter l ks
begin

fun lrange:: ′a bplustree ⇒ ′a ⇒ ′a list where
lrange (Leaf ks) x = (lrange-list x ks) |
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lrange (Node ts t) x = (
case split ts x of (-,(sub,sep)#rs) ⇒ (

lrange sub x @ leaves-list rs @ leaves t
)

| (-,[]) ⇒ lrange t x
)

lrange proof
lemma lrange-sorted-split:

assumes Laligned (Node ts t) u
and sorted-less (leaves (Node ts t))
and split ts x = (ls, rs)

shows lrange-filter x (leaves (Node ts t)) = lrange-filter x (leaves-list rs @ leaves
t)
proof (cases ls)

case Nil
then have ts = rs

using assms by (auto dest!: split-conc)
then show ?thesis by simp

next
case Cons
then obtain ls ′ sub sep where ls-tail-split: ls = ls ′ @ [(sub,sep)]

by (metis list.simps(3 ) rev-exhaust surj-pair)
then have x-sm-sep: sep < x

using split-req(2 )[of ts x ls ′ sub sep rs]
using Laligned-sorted-separators[OF assms(1 )]
using assms sorted-cons sorted-snoc
by blast

moreover have leaves-split: leaves (Node ts t) = leaves-list ls @ leaves-list rs @
leaves t

using assms(3 ) leaves-split by blast
then show ?thesis
proof (cases leaves-list ls)

case Nil
then show ?thesis

using leaves-split
by (metis self-append-conv2 )

next
case Cons
then obtain leavesls ′ l ′ where leaves-tail-split: leaves-list ls = leavesls ′ @ [l ′]

by (metis list.simps(3 ) rev-exhaust)
then have l ′ ≤ sep
proof −

have l ′ ∈ set (leaves-list ls)
using leaves-tail-split by force

then have l ′ ∈ set (leaves (Node ls ′ sub))
using ls-tail-split
by auto

moreover have Laligned (Node ls ′ sub) sep
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using assms split-conc[OF assms(3 )] Cons ls-tail-split
using Laligned-split-left[of ls ′ sub sep rs t u]
by simp

ultimately show ?thesis
using Laligned-leaves-inbetween[of Node ls ′ sub sep]
by blast

qed
then have l ′ < x

using le-less-trans x-sm-sep by blast
then show ?thesis

using assms(2 ) ls-tail-split leaves-tail-split leaves-split x-sm-sep
using lrange-filter-sorted[of leavesls ′ l ′ leaves-list rs @ leaves t x]
by (auto simp add: lrange-filter-def )

qed
qed

lemma lrange-sorted-split-right:
assumes split ts x = (ls, (sub,sep)#rs)

and sorted-less (leaves (Node ts t))
and Laligned (Node ts t) u

shows lrange-filter x (leaves-list ((sub,sep)#rs) @ leaves t) = lrange-filter x
(leaves sub)@leaves-list rs@leaves t
proof −

from assms have x ≤ sep
proof −

from assms have sorted-less (separators ts)
by (meson Laligned-sorted-inorder sorted-cons sorted-inorder-separators sorted-snoc)
then show ?thesis

using split-req(3 )
using assms
by fastforce

qed
moreover have leaves-split: leaves (Node ts t) = leaves-list ls @ leaves sub @

leaves-list rs @ leaves t
using split-conc[OF assms(1 )] by auto

ultimately show ?thesis
proof (cases leaves-list rs @ leaves t)

case Nil
then show ?thesis
by (metis assms(1 ) leaves-split same-append-eq self-append-conv split-tree.leaves-split

split-tree-axioms)
next

case (Cons r ′ rs ′)
then have sep < r ′

by (metis (mono-tags, lifting) Laligned-split-right aligned-leaves-inbetween
append.right-neutral append-assoc assms(1 ) assms(3 ) concat.simps(1 ) leaves-conc
list.set-intros(1 ) list.simps(8 ) split-tree.split-conc split-tree-axioms)

then have x < r ′
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using ‹x ≤ sep› by auto
moreover have sorted-less (leaves-list ((sub,sep)#rs) @ leaves t)

using assms sorted-wrt-append split-conc
by fastforce

ultimately show ?thesis
using lrange-filter-sorted[of leaves sub r ′ rs ′ x] Cons
by auto

qed
qed

theorem lrange-set:
assumes sorted-less (leaves t)

and aligned l t u
shows lrange t x = lrange-filter x (leaves t)
using assms

proof(induction t x arbitrary: l u rule: lrange.induct)
case (1 ks x)
then show ?case

using lrange-list-req
by auto

next
case (2 ts t x)
then obtain ls rs where list-split: split ts x = (ls, rs)

by (meson surj-pair)
then have list-conc: ts = ls @ rs

using split-conc by auto
show ?case
proof (cases rs)

case Nil
then have lrange (Node ts t) x = lrange t x

by (simp add: list-split)
also have . . . = lrange-filter x (leaves t)
by (metis 2 .IH (1 ) 2 .prems(1 ) 2 .prems(2 ) align-last ′ list-split local.Nil sorted-leaves-induct-last)
also have . . . = lrange-filter x (leaves (Node ts t))
by (metis 2 .prems(1 ) 2 .prems(2 ) aligned-imp-Laligned leaves.simps(2 ) list-conc

list-split local.Nil lrange-sorted-split same-append-eq self-append-conv split-tree.leaves-split
split-tree-axioms)

finally show ?thesis .
next

case (Cons a list)
then obtain sub sep where a-split: a = (sub,sep)

by (cases a)
then have lrange (Node ts t) x = lrange sub x @ leaves-list list @ leaves t

using list-split Cons a-split
by auto

also have . . . = lrange-filter x (leaves sub) @ leaves-list list @ leaves t
using 2 .IH (2 )[of ls rs (sub,sep) list sub sep]

using 2 .prems a-split list-conc list-split local.Cons sorted-leaves-induct-subtree
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align-sub
by (metis in-set-conv-decomp)

also have . . . = lrange-filter x (leaves (Node ts t))
by (metis 2 .prems(1 ) 2 .prems(2 ) a-split aligned-imp-Laligned list-split

local.Cons lrange-sorted-split lrange-sorted-split-right)
finally show ?thesis .

qed
qed

Now the alternative explanation that first obtains the correct leaf node and
in a second step obtains the correct element from the leaf node.
fun leaf-nodes-lrange:: ′a bplustree ⇒ ′a ⇒ ′a bplustree list where

leaf-nodes-lrange (Leaf ks) x = [Leaf ks] |
leaf-nodes-lrange (Node ts t) x = (

case split ts x of (-,(sub,sep)#rs) ⇒ (
leaf-nodes-lrange sub x @ leaf-nodes-list rs @ leaf-nodes t

)
| (-,[]) ⇒ leaf-nodes-lrange t x
)

lrange proof
lemma concat-leaf-nodes-leaves-list: (concat (map leaves (leaf-nodes-list ts))) =
leaves-list ts

apply(induction ts)
subgoal by auto
subgoal using concat-leaf-nodes-leaves by auto
done

theorem leaf-nodes-lrange-set:
assumes sorted-less (leaves t)

and aligned l t u
shows suffix (lrange-filter x (leaves t)) (concat (map leaves (leaf-nodes-lrange t

x)))
using assms

proof(induction t x arbitrary: l u rule: lrange.induct)
case (1 ks x)
then show ?case

apply simp
by (metis lrange-suffix sorted-less-lrange)

next
case (2 ts t x)
then obtain ls rs where list-split: split ts x = (ls, rs)

by (meson surj-pair)
then have list-conc: ts = ls @ rs

using split-conc by auto
show ?case
proof (cases rs)

case Nil
then have ∗: leaf-nodes-lrange (Node ts t) x = leaf-nodes-lrange t x
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by (simp add: list-split)
moreover have suffix (lrange-filter x (leaves t)) (concat (map leaves (leaf-nodes-lrange

t x)))
by (metis 2 .IH (1 ) 2 .prems(1 ) 2 .prems(2 ) align-last ′ list-split local.Nil sorted-leaves-induct-last)
then have suffix (lrange-filter x (leaves (Node ts t))) (concat (map leaves

(leaf-nodes-lrange t x)))
by (metis 2 .prems(1 ) 2 .prems(2 ) aligned-imp-Laligned leaves.simps(2 ) list-conc

list-split local.Nil lrange-sorted-split same-append-eq self-append-conv split-tree.leaves-split
split-tree-axioms)

ultimately show ?thesis by simp
next

case (Cons a list)
then obtain sub sep where a-split: a = (sub,sep)

by (cases a)
then have leaf-nodes-lrange (Node ts t) x = leaf-nodes-lrange sub x @

leaf-nodes-list list @ leaf-nodes t
using list-split Cons a-split
by auto
moreover have ∗: suffix (lrange-filter x (leaves sub)) (concat (map leaves

(leaf-nodes-lrange sub x)))
by (metis 2 .IH (2 ) 2 .prems(1 ) 2 .prems(2 ) a-split align-sub in-set-conv-decomp

list-conc list-split local.Cons sorted-leaves-induct-subtree)
then have suffix (lrange-filter x (leaves (Node ts t))) (concat (map leaves

(leaf-nodes-lrange sub x @ leaf-nodes-list list @ leaf-nodes t)))
proof (goal-cases)

case 1
have lrange-filter x (leaves (Node ts t)) = lrange-filter x (leaves sub @

leaves-list list @ leaves t)
by (metis (no-types, lifting) 2 .prems(1 ) 2 .prems(2 ) a-split aligned-imp-Laligned

append.assoc concat-map-maps fst-conv list.simps(9 ) list-split local.Cons lrange-sorted-split
maps-simps(1 ))

also have . . . = lrange-filter x (leaves sub) @ leaves-list list @ leaves t
by (metis 2 .prems(1 ) 2 .prems(2 ) a-split aligned-imp-Laligned calculation

list-split local.Cons lrange-sorted-split-right split-range.lrange-sorted-split split-range-axioms)
moreover have (concat (map leaves (leaf-nodes-lrange sub x @ leaf-nodes-list

list @ leaf-nodes t))) = (concat (map leaves (leaf-nodes-lrange sub x)) @ leaves-list
list @ leaves t)

using concat-leaf-nodes-leaves-list[of list] concat-leaf-nodes-leaves[of t]
by simp

ultimately show ?case
using ∗
by simp

qed
ultimately show ?thesis by simp

qed
qed

lemma leaf-nodes-lrange-not-empty: ∃ ks list. leaf-nodes-lrange t x = (Leaf ks)#list
∧ (Leaf ks) ∈ set (leaf-nodes t)
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apply(induction t x rule: leaf-nodes-lrange.induct)
apply (auto split!: prod.splits list.splits)
by (metis Cons-eq-appendI fst-conv in-set-conv-decomp split-conc)

Note that, conveniently, this argument is purely syntactic, we do not need
to show that this has anything to do with linear orders
lemma leaf-nodes-lrange-pre-lrange: leaf-nodes-lrange t x = (Leaf ks)#list =⇒
lrange-list x ks @ (concat (map leaves list)) = lrange t x
proof(induction t x arbitrary: ks list rule: leaf-nodes-lrange.induct)

case (1 ks x)
then show ?case by simp

next
case (2 ts t x ks list)
then show ?case
proof(cases split ts x)

case split: (Pair ls rs)
then show ?thesis
proof (cases rs)

case Nil
then show ?thesis

using 2 .IH (1 ) 2 .prems split by auto
next

case (Cons subsep rss)
then show ?thesis
proof(cases subsep)

case sub-sep: (Pair sub sep)
thm 2 .IH (2 ) 2 .prems
have ∃ list ′. leaf-nodes-lrange sub x = (Leaf ks)#list ′

using 2 .prems split Cons sub-sep leaf-nodes-lrange-not-empty[of sub x]
apply simp

by fastforce
then obtain list ′ where ∗: leaf-nodes-lrange sub x = (Leaf ks)#list ′

by blast
moreover have list = list ′@concat (map (leaf-nodes ◦ fst) rss) @ leaf-nodes

t
using ∗
using 2 .prems split Cons sub-sep
by simp

ultimately show ?thesis
using split 2 .IH (2 )[OF split[symmetric] Cons sub-sep[symmetric] ∗,symmetric]

Cons sub-sep concat-leaf-nodes-leaves-list[of rss] concat-leaf-nodes-leaves[of
t]

by simp
qed

qed
qed

qed

We finally obtain a function that is way easier to reason about in the im-
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perative setting
fun concat-leaf-nodes-lrange where

concat-leaf-nodes-lrange t x = (case leaf-nodes-lrange t x of (Leaf ks)#list ⇒
lrange-list x ks @ (concat (map leaves list)))

lemma concat-leaf-nodes-lrange-lrange: concat-leaf-nodes-lrange t x = lrange t x
proof −

obtain ks list where ∗: leaf-nodes-lrange t x = (Leaf ks)#list
using leaf-nodes-lrange-not-empty by blast

then have concat-leaf-nodes-lrange t x = lrange-list x ks @ (concat (map leaves
list))

by simp
also have . . . = lrange t x

using leaf-nodes-lrange-pre-lrange[OF ∗]
by simp

finally show ?thesis .
qed

end

context split-list
begin

definition lrange-split where
lrange-split l xs = (case split-list xs l of (ls,rs) ⇒ rs)

lemma lrange-filter-split:
assumes sorted-less xs

and split-list xs l = (ls,rs)
shows lrange-list l xs = rs
find-theorems split-list

proof(cases rs)
case rs-Nil: Nil
then show ?thesis
proof(cases ls)

case Nil
then show ?thesis

using assms split-list-req(1 )[of xs l ls rs] rs-Nil
by simp

next
case Cons
then obtain lss sep where snoc: ls = lss@[sep]

by (metis append-butlast-last-id list.simps(3 ))
then have sep < l

using assms(1 ) assms(2 ) split-list-req(2 ) by blast
then show ?thesis

using lrange-list-sorted[of lss sep rs l]
snoc split-list-req(1 )[OF assms(2 )]
assms rs-Nil

162



by simp
qed

next
case ls-Cons: (Cons sep rss)
then have ∗: l ≤ sep

using assms(1 ) assms(2 ) split-list-req(3 ) by auto
then show ?thesis
proof(cases ls)

case Nil
then show ?thesis
using lrange-list-sorted[of ls sep rss l]

split-list-req(1 )[OF assms(2 )] assms
ls-Cons ∗

by simp
next

case Cons
then obtain lss sep2 where snoc: ls = lss@[sep2 ]

by (metis append-butlast-last-id list.simps(3 ))
then have sep2 < l

using assms(1 ) assms(2 ) split-list-req(2 ) by blast
moreover have sorted-less (lss@[sep2 ])
using assms(1 ) assms(2 ) ls-Cons snoc sorted-mid-iff sorted-snoc split-list-req(1 )

by blast
ultimately show ?thesis

using lrange-list-sorted[of ls sep rss l]
lrange-list-sorted[of lss sep2 [] l]
split-list-req(1 )[OF assms(2 )] assms
ls-Cons ∗ snoc

by simp
qed

qed

lemma lrange-split-req:
assumes sorted-less xs
shows lrange-split l xs = lrange-filter l xs
unfolding lrange-split-def
using lrange-filter-split[of xs l] assms
using sorted-less-lrange
by (simp split!: prod.splits)

end

context split-full
begin

sublocale split-range split lrange-split
using lrange-split-req
by unfold-locales auto
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end

end
theory BPlusTree-SplitCE

imports
BPlusTree-Set
BPlusTree-Range

begin

global-interpretation bplustree-linear-search-list: split-list linear-split-list
defines bplustree-ls-isin-list = bplustree-linear-search-list.isin-list
and bplustree-ls-insert-list = bplustree-linear-search-list.insert-list
and bplustree-ls-delete-list = bplustree-linear-search-list.delete-list
and bplustree-ls-lrange-list = bplustree-linear-search-list.lrange-split
apply unfold-locales
unfolding linear-split.simps

apply (auto split: list.splits)
subgoal
by (metis (no-types, lifting) case-prodD in-set-conv-decomp takeWhile-eq-all-conv

takeWhile-idem)
subgoal

by (metis case-prod-conv hd-dropWhile le-less-linear list.sel(1 ) list.simps(3 ))
done

declare bplustree-linear-search-list.isin-list.simps[code]
declare bplustree-linear-search-list.insert-list.simps[code]
declare bplustree-linear-search-list.delete-list.simps[code]

global-interpretation bplustree-linear-search:
split-full linear-split linear-split-list

defines bplustree-ls-isin = bplustree-linear-search.isin
and bplustree-ls-ins = bplustree-linear-search.ins
and bplustree-ls-insert = bplustree-linear-search.insert
and bplustree-ls-del = bplustree-linear-search.del
and bplustree-ls-delete = bplustree-linear-search.delete
and bplustree-ls-lrange = bplustree-linear-search.lrange

apply unfold-locales
unfolding linear-split.simps
subgoal by (auto split: list.splits)
subgoal

apply (auto split: list.splits)
by (metis (no-types, lifting) case-prodD in-set-conv-decomp takeWhile-eq-all-conv

takeWhile-idem)
subgoal by (metis case-prod-conv hd-dropWhile le-less-linear list.sel(1 ) list.simps(3 ))
done
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lemma [code]: bplustree-ls-isin (Leaf ks) x = bplustree-ls-isin-list x ks
by (simp add: bplustree-ls-isin-list-def )

declare bplustree-linear-search.isin.simps(2 )[code]

lemma [code]: bplustree-ls-ins k x (Leaf ks) =
bplustree-linear-search.Lnodei k (bplustree-ls-insert-list x ks)

by (simp add: bplustree-ls-insert-list-def )
declare bplustree-linear-search.ins.simps(2 )[code]

lemma [code]: bplustree-ls-del k x (Leaf ks) =
Leaf (bplustree-ls-delete-list x ks)

by (simp add: bplustree-ls-delete-list-def )
declare bplustree-linear-search.del.simps(2 )[code]

find-theorems bplustree-ls-isin

Some examples follow to show that the implementation works and the above
lemmas make sense. The examples are visualized in the thesis.
abbreviation bplustreeq ≡ bplustree-ls-isin
abbreviation bplustreei ≡ bplustree-ls-insert
abbreviation bplustreed ≡ bplustree-ls-delete

definition uint8-max ≡ 2^8−1 ::nat
declare uint8-max-def [simp]

typedef uint8 = {n::nat. n ≤ uint8-max}
by auto

setup-lifting type-definition-uint8

instantiation uint8 :: linorder
begin

lift-definition less-eq-uint8 :: uint8 ⇒ uint8 ⇒ bool
is (less-eq::nat ⇒ nat ⇒ bool) .

lift-definition less-uint8 :: uint8 ⇒ uint8 ⇒ bool
is (less::nat ⇒ nat ⇒ bool) .

instance
by standard (transfer ; auto)+

end

instantiation uint8 :: order-top
begin

lift-definition top-uint8 :: uint8 is uint8-max::nat
by simp
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instance
by standard (transfer ; simp)

end

instantiation uint8 :: numeral
begin

lift-definition one-uint8 :: uint8 is 1 ::nat
by auto

lift-definition plus-uint8 :: uint8 ⇒ uint8 ⇒ uint8
is λa b. min (a + b) uint8-max
by simp

instance by standard (transfer ; auto)
end

instantiation uint8 :: equal
begin

lift-definition equal-uint8 :: uint8 ⇒ uint8 ⇒ bool
is (=) .

instance by standard (transfer ; auto)
end

value uint8-max

value let k=2 ::nat; x::uint8 bplustree = (Node [(Node [(Leaf [1 ,2 ], 2 ),(Leaf [3 ,4 ],
4 ),(Leaf [5 ,6 ,7 ], 8 )] (Leaf [9 ,10 ]), 10 )] (Node [(Leaf [11 ,12 ,13 ,14 ], 14 ), (Leaf
[15 ,17 ], 20 )] (Leaf [21 ,22 ,23 ]))) in

root-order k x
value let k=2 ::nat; x::uint8 bplustree = (Node [(Node [(Leaf [1 ,2 ], 2 ),(Leaf [3 ,4 ],
4 ),(Leaf [5 ,6 ,7 ], 8 )] (Leaf [9 ,10 ]), 10 )] (Node [(Leaf [11 ,12 ,13 ,14 ], 14 ), (Leaf
[15 ,17 ], 20 )] (Leaf [21 ,22 ,23 ]))) in

bal x
value let k=2 ::nat; x::uint8 bplustree = (Node [(Node [(Leaf [1 ,2 ], 2 ),(Leaf [3 ,4 ],
4 ),(Leaf [5 ,6 ,7 ], 8 )] (Leaf [9 ,10 ]), 10 )] (Node [(Leaf [11 ,12 ,13 ,14 ], 14 ), (Leaf
[15 ,17 ], 20 )] (Leaf [50 ,55 ,56 ]))) in

sorted-less (leaves x)
value let k=2 ::nat; x::uint8 bplustree = (Node [(Node [(Leaf [1 ,2 ], 2 ),(Leaf [3 ,4 ],
4 ),(Leaf [5 ,6 ,7 ], 8 )] (Leaf [9 ,10 ]), 10 )] (Node [(Leaf [11 ,12 ,13 ,14 ], 14 ), (Leaf
[15 ,17 ], 20 )] (Leaf [50 ,55 ,56 ]))) in

Laligned x top
value let k=2 ::nat; x::uint8 bplustree = (Node [(Node [(Leaf [1 ,2 ], 2 ),(Leaf [3 ,4 ],
4 ),(Leaf [5 ,6 ,7 ], 8 )] (Leaf [9 ,10 ]), 10 )] (Node [(Leaf [11 ,12 ,13 ,14 ], 14 ), (Leaf
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[15 ,17 ], 20 )] (Leaf [50 ,55 ,56 ]))) in
x

value let k=2 ::nat; x::uint8 bplustree = (Node [(Node [(Leaf [1 ,2 ], 2 ),(Leaf [3 ,4 ],
4 ),(Leaf [5 ,6 ,7 ], 8 )] (Leaf [9 ,10 ]), 10 )] (Node [(Leaf [11 ,12 ,13 ,14 ], 14 ), (Leaf
[15 ,17 ], 20 )] (Leaf [50 ,55 ,56 ]))) in

bplustreeq x 4
value let k=2 ::nat; x::uint8 bplustree = (Node [(Node [(Leaf [1 ,2 ], 2 ),(Leaf [3 ,4 ],
4 ),(Leaf [5 ,6 ,7 ], 8 )] (Leaf [9 ,10 ]), 10 )] (Node [(Leaf [11 ,12 ,13 ,14 ], 14 ), (Leaf
[15 ,17 ], 20 )] (Leaf [50 ,55 ,56 ]))) in

bplustreeq x 20
value let k=2 ::nat; x::uint8 bplustree = (Node [(Node [(Leaf [1 ,2 ], 2 ),(Leaf [3 ,4 ],
4 ),(Leaf [5 ,6 ,7 ], 8 )] (Leaf [9 ,10 ]), 10 )] (Node [(Leaf [11 ,12 ,13 ,14 ], 14 ), (Leaf
[15 ,17 ], 20 )] (Leaf [50 ,55 ,56 ]))) in

bplustreei k 9 x
value let k=2 ::nat; x::uint8 bplustree = (Node [(Node [(Leaf [1 ,2 ], 2 ),(Leaf [3 ,4 ],
4 ),(Leaf [5 ,6 ,7 ], 8 )] (Leaf [9 ,10 ]), 10 )] (Node [(Leaf [11 ,12 ,13 ,14 ], 14 ), (Leaf
[15 ,17 ], 20 )] (Leaf [50 ,55 ,56 ]))) in

bplustreei k 1 (bplustreei k 9 x)
value let k=2 ::nat; x::uint8 bplustree = (Node [(Node [(Leaf [1 ,2 ], 2 ),(Leaf [3 ,4 ],
4 ),(Leaf [5 ,6 ,7 ], 8 )] (Leaf [9 ,10 ]), 10 )] (Node [(Leaf [11 ,12 ,13 ,14 ], 14 ), (Leaf
[15 ,17 ], 20 )] (Leaf [50 ,55 ,56 ]))) in

bplustreed k 10 (bplustreei k 1 (bplustreei k 9 x))
value let k=2 ::nat; x::uint8 bplustree = (Node [(Node [(Leaf [1 ,2 ], 2 ),(Leaf [3 ,4 ],
4 ),(Leaf [5 ,6 ,7 ], 8 )] (Leaf [9 ,10 ]), 10 )] (Node [(Leaf [11 ,12 ,13 ,14 ], 14 ), (Leaf
[15 ,17 ], 20 )] (Leaf [50 ,55 ,56 ]))) in

bplustreed k 3 (bplustreed k 10 (bplustreei k 1 (bplustreei k 9 x)))

end
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