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Abstract

We present the first formal verifications of approximation algo-
rithms for NP-complete optimization problems: vertex cover, set cover,
independent set, center selection, load balancing, and bin packing.
The proofs correct incompletnesses in existing proofs and improve the
approximation ratio in one case. A detailed description of our work
(excluding center selection) has been published in the proceedings of
IJCAR 2020 [3].
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1 Vertex Cover

theory Approx-VC-Hoare
imports HOL— Hoare. Hoare-Logic
begin

The algorithm is classical, the proof is based on and augments the one
by Berghammer and Miiller-Olm [1].

1.1 Graph

A graph is simply a set of edges, where an edge is a 2-element set.

definition vertez-cover :: 'a set set = 'a set = bool where
vertex-cover E C = (Ve € E. e N C # {})

abbreviation matching :: 'a set set = bool where
matching M = pairwise disjnt M

lemma card-matching-vertex-cover:
[ finite C; matching M; M C E; wvertex-cover E C | = card M < card C

(proof)

1.2 The Approximation Algorithm

Formulated using a simple(!) predefined Hoare-logic. This leads to a stream-
lined proof based on standard invariant reasoning.

The nondeterministic selection of an element from a set F' is simulated
by SOME z. x € F. The SOME operator is built into HOL: SOME z. P x
denotes some z that satisfies P if such an z exists; otherwise it denotes an
arbitrary element. Note that there is no actual nondeterminism involved:
SOME x. P z is some fixed element but in general we don’t know which one.
Proofs about SOME are notoriously tedious. Typically it involves showing
first that 3z. P z. Then 3z. ?P ¢ = ?P (SOME z. ?P z) implies P
(SOME z. P z). There are a number of (more) useful related theorems: just
click on 3z. P x = ?P (SOME z. ?P z) to be taken there.

Convenient notation for choosing an arbitrary element from a set:



abbreviation some A = SOME z. z € A

locale FEdges =

fixes F :: 'a set set

assumes fink: finite £

assumes edges2: e € E = card e = 2
begin

The invariant:

definition inv-matching C F M =
(matching M ANM C EANcard C < 2xcard M AN(Nee M.VfeF.enf=

)

definition invar :: ‘a set = 'a set set = bool where
invar C F = (F C E A vertexz-cover (E—F) C A finite C A (3 M. inv-matching C

Preservation of the invariant by the loop body:

lemma invar-step:
assumes F # {} invar C F
shows invar (C U some F) (F — {e' € F. some F N e’ # {}})

(proof)

lemma approx-vertez-cover:
VARS C F
{True}
C:={h
F = F;
WHILE F # {}
INV {invar C F}
DO C .= C U some F,
F:=F —{e' € F.some Fne#/{}}
0D
{vertez-cover E C N (V C". finite C’ A vertex-cover E C' — card C < 2 x card
¢}
(proof )

end

1.3 Version for Hypergraphs

Almost the same. We assume that the degree of every edge is bounded.

locale Bounded-Hypergraph =
fixes E :: 'a set set
fixes k :: nat
assumes finFE: finite £
assumes edge-bnd: e € E = finite e A\ card e < k
assumes F1: {} ¢ E



begin

definition inv-matching C F M =
(matching M N M C EANcard C <kxcard MN Ve M.Vfe F.en f =

)

definition invar :: 'a set = 'a set set = bool where
invar C F = (F C E A vertex-cover (E—F) C A finite C A (3 M. inv-matching C
F M))

lemma invar-step:
assumes F # {} invar C F
shows invar (C' U some F) (F — {e' € F. some F N e’ # {}})

(proof)

lemma approz-vertex-cover-bnd:
VARS C F
{True}
C={}h
F = FE;
WHILE F + {}
INV {invar C F}
DO C := C U some F;
F:=F —{e'€ F.some FNne #{}}
OD
{vertex-cover E C N (Y C'. finite C' A vertex-cover E C' — card C < k x card
'}
(proof)

end

end

2 Set Cover

theory Approz-SC-Hoare
imports
HOL— Hoare.Hoare-Logic
Complex-Main
begin

This is a formalization of the set cover algorithm and proof in the book
by Kleinberg and Tardos [4].

definition harm :: nat = ‘a :: real-normed-field where
harm n = (3. k=1..n. inverse (of-nat k))

locale Set-Cover =



fixes w :: nat = real
and m :: nat
and S :: nat = 'a set
assumes S-finite: Vi € {1..m}. finite (S 7)
and w-nonneg: Vi. 0 < w i
begin

definition U :: ‘a set where

U=(Uie{1.m}. S0

lemma S-subset: Vi € {1.m}. S¢C U
{proof)

lemma U-finite: finite U
(proof )

lemma empty-cover: m = 0 = U = {}
(proof)

definition sc :: nat set = 'a set = bool where
scCX+— CC{1.m}AUieC. Si)=X

definition cost :: 'a set = nat = real where
cost Ri=wi [/ card (SiN R)

lemma cost-nonneg: 0 < cost R i
(proof)

cost R i = 01if card (S i N R) = 0! Needs to be accounted for separately
in min-arg.
fun min-arg :: 'a set = nat = nat where
min-arg R 0 = 1
| min-arg R (Suc x) =
(let j = min-arg R x
inif SN R={}V (S (Sucz)N R#{} A cost R (Suc z) < cost R j) then
(Suc z) else j)

lemma min-in-range: k > 0 = min-arg R k € {1..k}

(proof)

lemma min-empty: S (min-arg Rk) N R={} =Vie{1..k}. SinR=1{}
(proof)

lemma min-correct: [ i € {1..k}; SiN R # {} | = cost R (min-arg R k) < cost
R
(proof)

Correctness holds quite trivially for both m = 0 and m > 0 (assuming a
set cover can be found at all, otherwise algorithm would not terminate).



lemma set-cover-correct:
VARS (R :: 'a set) (C :: nat set) (i = nat)
{True}
R:=1U; C:={};
WHILE R # {} INV{R C U Asc C (U - R)} DO
1 := min-arg R m;
R:=R -S4
C:=CuU{i}
oD
{sc C U}

(proof)

definition c-exists :: nat set = 'a set = bool where
c-exists CR = (Fe. sumw C = sumc (U — R) A (Vi. 0 < ci)
ANNVEe{l.m}. sumec (SkN (U — R))
< (Olj=card (SkNR) + 1..card (S k). inverse j) * w k))

definition inv :: nat set = 'a set = bool where
inv CR— sc C(U—-R)NRCUA cexists CR

lemma inovl:
assumes sc C (U — R)RC U
Je. sumw C =sumc (U —R) AN (Vi. 0 < ci)
ANNVEke{l.m}. sumc (SknN (U — R))
< (Olj=card (SkNR)+ I..card (S k). inverse j) *x w k)
shows inv C' R (proof)

lemma invD:
assumes inv C' R
shows sc C (U — R) RC U
Je. sumw C =sumec (U —R) A (Vi. 0 <ci)
ANNVEke{l.m}. sumec (SknN (U — R))
< Olj=card (SkNR) + 1..card (S k). inverse j) * w k)
(proof)

lemma inv-init: inv {} U

(proof)

lemma inv-step:
assumes inv C R R # {}
defines [simp]: ¢ = min-arg R m
shows inv (C U {i}) (R — (S 1))
(proof )

lemma cover-sum:

fixes ¢ :: 'a = real

assumes sc C VVi. 0<ci

shows sum ¢ V < (3 i € C. sum ¢ (S 7))
{proof)



abbreviation H :: nat = real where H = harm
definition d-star :: nat (<d*») where d* = Maz (card ‘(S “ {1..m}))

lemma set-cover-bound:
assumes inv C {} sc C' U
shows sum w C < H d* * sum w C’

(proof)

theorem set-cover-approx:
VARS (R :: 'a set) (C :: nat set) (i :: nat)
{True}
R:=1U; C :={};
WHILE R # {} INV {inv C R} DO
1 := min-arg R m;

R:=R - St
C:=CuU{i}
OD

{s¢ CUNNC" s¢cC'"U— sumw C < Hd* x sum w C')}
(proof)

end

end

3 Independent Set

theory Approz-MIS-Hoare
imports
HOL— Hoare.Hoare-Logic
HOL- Library.Disjoint-Sets
begin

The algorithm is classical, the proofs are inspired by the ones by Bergham-
mer and Miiller-Olm [1]. In particular the approximation ratio is improved
from A+1 to A.

3.1 Graph

A set set is simply a set of edges, where an edge is a 2-element set.

definition independent-vertices :: 'a set set = 'a set = bool where
independent-vertices ES «— S CUE A (Vvl v2. vl € SAv2 €S — {vl, v2}

¢ E)

locale Graph-E =
fixes F :: 'a set set
assumes finite-E: finite £



assumes edges2: e € E = card e = 2
begin

fun vertices :: 'a set set = 'a set where
vertices G = |J G

abbreviation V :: ‘a set where
V = wvertices F

definition approzimation-miv :: nat = ’a set = bool where
approximation-miv n S <+— independent-vertices E S N (V.S'. independent-vertices
ES"— card S' < card S x n)

fun neighbors :: 'a = 'a set where
neighbors v = {u. {u,v} € E}

fun degree-vertex :: 'a = nat where
degree-vertex v = card (neighbors v)

abbreviation A :: nat where
A = Max{degree-verter ulu. v € V}

lemma finite-edges: e € E = finite e
(proof)

lemma finite-V: finite V
(proof)

lemma finite-neighbors: finite (neighbors u)
(proof )

lemma independent-vertices-finite: independent-vertices E S = finite S

{proof)

lemma edge-ez-vertices: e € E = Juv. u # v A e = {u, v}
(proof)

lemma A-pos [simp]: E={}V 0 < A
(proof)

lemma A-max-degree: v € V. = degree-vertex v < A

(proof)

3.2 Wei’s algorithm: (A+17)-approximation

The ’functional’ part of the invariant, used to prove that the algorithm
produces an independent set of vertices.

definition inv-iv :: ‘a set = 'a set = bool where
inv-iv S X <— independent-vertices E S



ANXCV
ANNVvl e (V—-X).Vo2els {vi,v2} ¢ E)
ANSCX

Strenghten the invariant with an approximation ratio r:

definition inv-approz :: 'a set = 'a set = nat = bool where
inv-appror S X r +— inv-iv S X A card X < card S x r

Preservation of the functional invariant:

lemma inv-preseruv:
fixes S :: ‘a set
and X :: 'a set
and z :: ‘a
assumes nv: nv-iv S X
and z-def: z € V — X
shows inv-iv (insert z S) (X U neighbors z U {z})

(proof)

lemma inv-approz-preserv:
assumes inv: inv-approx S X (A + 1)
and z-def: z € V — X
shows inv-approz (insert x S) (X U neighbors x U {z}) (A + 1)
(proof)

lemma inv-approz: independent-vertices E S = card V < card S * 1 = ap-
prozimation-miv r S

(proof)

theorem wei-approz-A-plus-1:
VARS (S :: 'a set) (X == 'a set) (z :: 'a)
{ True }
S={}
X = {}
WHILE X # V
INV { inv-approx S X (A + 1) }
DOz :=(SOMEz. z € V — X);
S := insert z S,
X := X U neighbors x U {z}
OD
{ approzimation-miv (A + 1) S }
(proof)

3.3 Wei’s algorithm: A-approximation

The previous approximation uses very little information about the optimal
solution (it has at most as many vertices as the set itself). With some extra
effort we can improve the ratio to A instead of A+1. In order to do that
we must show that among the vertices removed in each iteration, at most A



could belong to an optimal solution. This requires carrying around a set P
(via a ghost variable) which records the vertices deleted in each iteration.

definition inv-partition :: 'a set = 'a set = 'a set set = bool where
inv-partition S X P <— inv-iv S X

ANUP = X

A (Yp e P.3se V.p={s} U neighbors s)

A card P = card S

A finite P

lemma inv-partition-preserv:
assumes inv: inv-partition S X P
and z-def: z € V — X
shows inv-partition (insert x S) (X U neighbors x U {x}) (insert ({z} U
neighbors ) P)
(proof)

lemma card-Union-le-sum-card:
fixes U :: 'a set set
assumes Yu € U. finite u
shows card (JU) < sum card U

(proof)

lemma sum-card:
fixes U :: 'a set set
and n :: nat
assumes VS € U. card S < n
shows sum card U < card U * n

(proof)

lemma x-or-neighbors:
fixes P :: ‘a set set
and S :: ‘a set
assumes nv: VpeP. 3s € V. p = {s} U neighbors s
and wS: independent-vertices E S
shows Vp € P. card (S Np) < A

(proof)

lemma inv-partition-approx: inv-partition S V. P = approzimation-miv A S

(proof)

theorem wei-approz-A:
VARS (S :: 'a set) (X = 'a set) (z :: 'a)
{ True }
S={h
X = {}
WHILE X # V
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INV { 3 P. inv-partition S X P }
DOz := (SOME z. z € V — X);
S = insert z S,
X := X U neighbors U {z}
OD
{ approximation-miv A S }
(proof)

3.4 Wei’s algorithm with dynamically computed approxima-
tion ratio

In this subsection, we augment the algorithm with a variable used to com-
pute the effective approximation ratio of the solution. In addition, the vertex
of smallest degree is picked. With this heuristic, the algorithm achieves an
approximation ratio of (A+2)/3, but this is not proved here.

definition vertez-heuristic :: 'a set = 'a = bool where
vertez-heuristic X v = (Yu € V — X. card (neighbors v — X) < card (neighbors
v — X))

lemma ex-min-finite-set:
fixes S :: ‘a set
and f :: 'a = nat
shows finite S = S A {} = Jz.2 € SA Ny e S. fz < fy)
(is ?P1 = ?P2 = Juz. ?minf S x)
(proof)

lemma inv-approz-preserv:
fixes S :: ‘a set
and X :: 'a set
and s :: nat
and z :: a
assumes nv: inv-approx S X s
and z-def: z € V — X
shows inv-approz (insert z S) (X U neighbors © U {z}) (maz (card (neighbors
zU{z} — X)) s)
(proof)

theorem wei-approz-min-degree-heuristic:
VARS (S :: 'a set) (X = 'a set) (z :: 'a) (r == nat)
{ True }
S={}
X = {k
r = 0,
WHILE X # V
INV { inv-approz S X r }
DOz := (SOME z. x € V — X A vertex-heuristic X x);
S := insert © S;

11



r := maz (card (neighbors z U {z} — X)) r;
X = X U neighbors x U {z}

OD

{ approxzimation-miv r S }

(proof)

end
end

4 Load Balancing

theory Approx-LB-Hoare
imports Complex-Main HOL— Hoare. Hoare-Logic
begin
This is a formalization of the load balancing algorithms and proofs in
the book by Kleinberg and Tardos [4].

hide-const (open) sorted

lemma sum-le-card-Max: [ finite A; A #{} ] = sum fA < card A * Maz (f ¢
A4)
(proof)

lemma Maz-const[simp): [ finite A; A # {} | = Maz ((A-. ¢) “A4) = ¢
(proof)

abbreviation Max, :: nat set = nat where
Mazy N = (if N={} then 0 else Maz N)

fun f-Maz, = (nat = nat) = nat = nat where
f~Mazo fO =0
| ~Mazg f (Suc ) = maz (f (Suc z)) (f-Maxg f x)

lemma f-Mazg-equiv: f-Mazo fn = Mazg (f ‘ {1..n})
(proof )

lemma f-Mazg-correct:
Vee{l.m}. Tz < fMaxg T m
m> 0= 3z e {l.m}. Tx=fMaxg T m
(proof)

lemma f-Mazg-mono:
y < Tex= fMazo (T (z :=y)) m < f-Mazg T m
Tz <y= fMarg T m < f-Mazo (T (z :=y)) m
(proof)

lemma f-Mazxg-out-of-range [simpl:

12



z ¢ {1.k} = f-Maxg (T (x :=y)) k = f-Mazo Tk
{proof)

lemma fun-upd-f-Mazg:
assumes z € {I.m} Tz <y
shows f-Mazo (T (z :=y)) m = maz y (f~Maxo T m)
{proof )

locale LoadBalancing =
fixes t :: nat = nat
and m :: nat
and n :: nat
assumes m-gt-0: m > 0
begin

4.1 Formalization of a Correct Load Balancing
4.1.1 Definition

definition b :: (nat = nat) = (nat = nat set) = nat = bool where
WTAj=((Vee{l.m}.Vye{l.mlh.z#y— AznNAy={}) —Nojob
is assigned to more than one machine
AUz e {1.m}. Ax)={1.4} — Every job is assigned
NNz e{l.m}. (O j€ Ax tj) = Taz)— The processing times sum
up to the correct load)

abbreviation makespan :: (nat = nat) = nat where
makespan T = f-Mazg T m

lemma makespan-def’: makespan T = Maz (T ‘{1..m})
{proof)

lemma makespan-correct:
Vo e {1.m}. Tz < makespan T
Jz € {1..m}. T x = makespan T

{proof)

lemma bE:
assumes (b T A j
shows Vz € {{.m}.Vye{l.m}. s 4y — AznNnAdy=1{}
Uz e {1.m}. Az)={1.j}
Vee{l.m}. OyeAdz ty) =Tz
(proof)

lemma [bI:
assumes Vz € {I.m}.Vye{l.m}.z#y — AznNnAy={}
Uz e {1.m}. Azx)={1.5}
Vee{l.m}. O yedr ty) =Tz
shows b T A j {proof)

13



lemma A-lb-finite [simp]:
assumes b T A jz € {1..m}
shows finite (A x)
(proof )

If A z is pairwise disjoint for all z € {1..m}, then the the sum over the
sums of the individual A z is equal to the sum over the union of all A z.

lemma sum-sum-eq-sum-Un:
fixes A :: nat = nat set
assumes Vz € {I.m}.Vye{l.m}. s #y — AznAy={}
and Vz € {I..m}. finite (A x)
shows Oz e {1.m}. Oyedz. ty)=CreUye{l.m}. Ay). tx)
(proof )

If T and A are a correct load balancing for j jobs and m machines, then
the sum of the loads has to be equal to the sum of the processing times of
the jobs
lemma [b-impl-job-sum:

assumes b T A j
shows Yz e {1.m}. Tz)= Dz e {1.j}. tx)
(proof )

4.1.2 Lower Bounds for the Makespan

If T and A are a correct load balancing for j jobs and m machines, then the
processing time of any job z € {1..j} is a lower bound for the load of some
machine y € {1..m}

lemma job-lower-bound-machine:
assumes b T A jx € {1.j}
shows 3y € {I.m}. tz < Ty

(proof)

As the load of any machine is a lower bound for the makespan, the
processing time of any job z € {1..j} has to also be a lower bound for the
makespan. Follows from job-lower-bound-machine and makespan-correct.

lemma job-lower-bound-makespan:
assumes b T A jz € {1.4}
shows t © < makespan T

(proof )
The makespan over j jobs is a lower bound for the makespan of any

correct load balancing for j jobs.

lemma maz-job-lower-bound-makespan:
assumes b T A j
shows Mazo (t {1..7}) < makespan T

{proof)

14



lemma job-dist-lower-bound-makespan:
assumes (b T A j
shows (> z € {1.}. t £) / m < makespan T

(proof)

4.2 The Greedy Approximation Algorithm

This function will perform a linear scan from k£ € {I..m} and return the
index of the machine with minimum load assuming m > 0

fun min-arg :: (nat = nat) = nat = nat where
min-arg T 0 = 1
| min-arg T (Suc z) =
(let k = min-arg T x
in if T (Suc z) < Tk then (Suc z) else k)

lemma min-correct:
Ve e {1.m}. T (min-arg Tm) < Tz
(proof)

lemma min-in-range:
k> 0= (min-arg Tk) € {1..k}
(proof )

lemma add-job:
assumes b T A jz € {1..m}
shows b (T (z := Tx + t (Sucj))) (A (z:= A z U {Suc j})) (Suc j)
(is <lb ?T ?2A )
(proof)

lemma makespan-mono:
y < T o = makespan (T (z := y)) < makespan T
Tz < y = makespan T < makespan (T (z := y))

(proof)

lemma smaller-optimum:
assumes b T A (Suc j)
shows 3T’ A’ Ib T" A’ j A\ makespan T' < makespan T

(proof)

If the processing time y does not contribute to the makespan, we can
ignore it.
lemma remowve-small-job:

assumes makespan (T (z =Tz +y)) # Tz +y
shows makespan (T (z := T x + y)) = makespan T

(proof)

lemma greedy-makespan-no-jobs [simpl:
makespan (A-. 0) = 0
(proof )

15



lemma min-avg: m * T (min-arg T m) < (> i € {1.m}. T i)
(is - % 2T < 29))

(proof)

definition inv; :: (nat = nat) = (nat = nat set) = nat = bool where
invy TAj=TAjNj<nANT A IbT A" j— makespan T < 2 x
makespan T'))

lemma inv, E:
assumes invy T A j
shows b TAjj<n
Ib T" A" j = makespan T < 2 x makespan T’
(proof )

lemma inv;I:
assumes b TAjj<nVT' A IbT A" j — makespan T < 2 x makespan T’
shows invy T A j (proof)

lemma inv;-step:
assumes invy T Ajj<n
shows invy (T ((min-arg T m) := T (min-arg T m) + t (Suc j)))
(A ((min-arg T m) := A (min-arg T m) U {Suc j})) (Suc j)
(is <invy 2T 24 -)

(proof )

lemma simple-greedy-approzimation:
VARS T A ij

{True}

T := (A 0);

A= O ()

Ji=10;

WHILE j < n INV {inv; T A j} DO
i := min-arg T m;
J = (Suc j);
A= A (= AG) U (7))
T:=T (i:=T() + tj)
OD
{bTAnANNT A Ib T A" n — makespan T < 2 % makespan T')}

(proof)

definition sorted :: nat = bool where
sorted j = (Vo € {1.j}.Vye {l.a}. tz < ty)

lemma sorted-smaller [simp]: [ sorted j; j > j']| = sorted j'
(proof)

lemma j-gt-m-pigeonhole:
assumes b T Ajj>m

16



shows 3z € {1.j}. Jye{1.j}. Jze{l.m} s #yAhazcAzNyec Az
(proof)

If T and A are a correct load balancing for j jobs and m machines with j
> m, and the jobs are sorted in descending order, then there exists a machine
x € {I1..m} whose load is at least twice as large as the processing time of
job j.
lemma sorted-job-lower-bound-machine:

assumes b T' A jj > m sorted j
shows Jz € {I.m}. 2xtj < Tux
(proof)

Reasoning analogous to job-lower-bound-makespan.

lemma sorted-job-lower-bound-makespan:
assumes b T A jj > m sorted j
shows 2 x t j < makespan T

(proof)

lemma min-zero:
assumes z € {I.k} Tz =0
shows T (min-arg Tk) = 0
(proof )

lemma min-zero-indez:
assumes z € {1.k} Tz =0
shows min-arg T k < z

(proof)

definition invy = (nat = nat) = (nat = nat set) = nat = bool where
invg TAj=(WTAjFjNj<n
ANNT A b T'A"j — makespan T < 8 / 2 % makespan T
ANz >4 Tx=0)
A (j < m — makespan T = Maxzo (¢t ‘ {1..5})))

lemma invy F:
assumes invy T A j
shows b TAjj<n
Ib T A" j = makespan T < 8 / 2 * makespan T’
Ve >j. Trx=0j<m= makespan T = Maxo (¢t ‘{1..5})
(proof)

lemma invyl:
assumes b TAjj<n
VT A b T"A"j — makespan T < 8 / 2 x makespan T’
Ve>j Tae=20
j < m = makespan T = Maxzo (¢t ‘{1..j})
shows invy T A j

(proof)
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lemma invy-step:
assumes sorted n inve T A jj < n
shows invy (T (min-arg T m := T(min-arg T m) + t(Suc j)))
(A (min-arg T m := A(min-arg T m) U {Suc j})) (Suc j)
(is <invy 2T 2A =)

(proof)

lemma sorted-greedy-approzimation:
sorted n = VARS T A ij

{True}
T := (). 0);
A= (A= {})
J = 0;

WHILE j < n INV {invy T A j} DO
i := min-arg T m;

= (Suc j);

= A (i = A(0) U {j)});

=T (i:= T() + t7)

~

{bTAnANNT A Wb T A" n — makespan T < 8 / 2 x makespan T')}
(proof)

end

end

5 Bin Packing

theory Approx-BP-Hoare
imports Complez-Main HOL— Hoare. Hoare-Logic HOL— Library. Disjoint-Sets
begin

The algorithm and proofs are based on the work by Berghammer and
Reuter [2].

5.1 Formalization of a Correct Bin Packing

Definition of the unary operator [-] from the article. B will only be wrapped
into a set if it is non-empty.
definition wrap :: 'a set = 'a set set where

wrap B = (if B = {} then {} else {B})

lemma wrap-card:
card (wrap B) < 1
(proof)
If M and N are pairwise disjoint with V' and not yet contained in V,
then the union of M and N is also pairwise disjoint with V.
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lemma pairwise-disjnt-Un:
assumes pairwise disjnt ({M} U{N}U V)M ¢ VN ¢& V
shows pairwise disint ({M U N} U V)
{proof)

A Bin Packing Problem is defined like in the article:

locale BinPacking =
fixes U :: 'a set — A finite, non-empty set of objects
and w :: 'a = real — A mapping from objects to their respective weights
(positive real numbers)
and c¢ :: nat — The maximum capacity of a bin (a natural number)
and S :: ‘a set — The set of small objects (weight no larger than 1/2 of ¢)
and L :: 'a set — The set of large objects (weight larger than 1/2 of c)
assumes weight: Yu € U. 0 < w(u) A w(u) < ¢
and U-Finite: finite U
and U-NE: U # {}
and S-def: S ={ue U. w(u) <c/ 2}
and L-def: L=U — S
begin

In the article, this is defined as w as well. However, to avoid ambiguity,
we will abbreviate the weight of a bin as W.

abbreviation W :: ‘a set = real where
WB= (O uec B. wu))

P constitutes as a correct bin packing if P is a partition of U (as defined
in partition-on-def) and the weights of the bins do not exceed their maximum
capacity c.

definition bp :: ‘a set set = bool where
bp P <— partition-on UP N (VB € P. W(B) < ¢)

lemma bpFE:
assumes bp P
shows pairwise disjint P {} ¢ P JP =UVBe€ P. W(B) <c¢
(proof)

lemma bpl:
assumes pairwise disint P {} ¢ PUP = UVB e P. W(B) < ¢
shows bp P

(proof)

Although we assume the S and L sets as given, manually obtaining them
from U is trivial and can be achieved in linear time. Proposed by the article
[2].
lemma S-L-set-generation:

VARS S L Wu
{True}
S:={h L:={} W:=1U;
WHILE W # {}
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INV{IWCUANS={veU-W ww)<c/2}ANL={velU—- W. w)
>c¢/ 2}} DO
u = (SOME u. v € W);
IF 2 x w(u) < ¢
THEN S := S U {u}
ELSE L := L U {u} FI;
W:=W — {u}
OD
{S={velU whv)<c/ 2} NL={veU. wh)>c/ 2}
(proof )

5.2 The Proposed Approximation Algorithm
5.2.1 Functional Correctness

According to the article, invy holds if P U wrap By U Py U wrap By U
{{v} |v. v € V} is a correct solution for the bin packing problem [2]. How-
ever, various assumptions made in the article seem to suggest that more
information is demanded from this invariant and, indeed, mere correctness
(as defined in bp-def) does not appear to suffice. To amend this, four ad-
ditional conjuncts have been added to this invariant, whose necessity will
be explained in the following proofs. It should be noted that there may
be other (shorter) ways to amend this invariant. This approach, however,
makes for rather straight-forward proofs, as these conjuncts can be utilized
and proved in relatively few steps.

definition invy :: ‘a set set = 'a set set = 'a set = 'a set = 'a set = bool where
invy Py Py By Bo V «— bp (P1 U wrap By U Py U wrap By U {{v} |v. v €
V}) — A correct solution to the bin packing problem
AU (P1 U wrap By U Py U wrap Bs) = U — V — The partial
solution does not contain objects that have not yet been assigned
A By ¢ (P1 U Py U wrap By) — By is distinet from all the other
bins
A By ¢ (Py U wrap By U Py) — By is distinet from all the other
bins
A (Py U wrap By) N (P2 U wrap By) = {} — The first and
second partial solutions are disjoint from each other.

lemma inv, E:

assumes invy P1 Py By Bo V

shows bp (P U wrap By U Py U wrap By U {{v} |v. v € V})
and |J (Py U wrap By U Py U wrap Bs) = U — V
and By ¢ (P1 U Py U wrap Bs)
and By ¢ (P71 U wrap B; U P3)
and (P; U wrap By) N (P2 U wrap Bs) = {}

(proof )

lemma inv,I:
assumes bp (P1 U wrap By U Py U wrap Bs U {{v} |v. v € V})
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and |J (P1 U wrap By U Py U wrap Bs) = U — V
and By ¢ (P1 U Py U wrap Bs)
and By ¢ (P1 U wrap B; U P3)
and (P; U wrap By) N (P2 U wrap Bs) = {}
shows inv1 P1 P2 Bl Bg %4
(proof)

lemma wrap-Un [simp]: wrap (M U {z}) = {M U {z}} (proof)
lemma wrap-empty [simp): wrap {} = {} (proof)
lemma wrap-not-empty [simpl: M # {} +— wrap M = {M?} (proof)

If 4nvy holds for the current partial solution, and the weight of an object
u € V added to By does not exceed its capacity, then invy also holds if By
and {u} are replaced by By U {u}.
lemma inv,-stepA:
assumes inv; Py Py By Bo Vue V W(B;1) + w(u) < ¢
shows invy Py Py (By U {u}) By (V — {u})
(proof)

If 4nwvq holds for the current partial solution, and the weight of an object
u € V added to By does not exceed its capacity, then invy also holds if Bo
and {u} are replaced by Bs U {u}.
lemma inv,-stepB:
assumes invy P1 Po By B Vue VWBy, +wu<c
shows invy (P1 U wrap By) Py {} (B2 U {u}) (V — {u})
(proof)

If 4nvy holds for the current partial solution, then inv; also holds if By
and Bs are added to P1 and P» respectively, B; is emptied and By initialized
with u € V.

lemma inv,-stepC:

assumes inv; P Po By By VueV

shows invy (P71 U wrap By) (P2 U wrap Bs) {} {u} (V — {u})
(proof )

A simplified version of the bin packing algorithm proposed in the article.
It serves as an introduction into the approach taken, and, while it does not
provide the desired approximation factor, it does ensure that P is a correct
solution of the bin packing problem.

lemma simple-bp-correct:
VARSPPl P2B1 B2 Vu
{True}
Py :=A{}; Py:={}; By :={}; By :={}; V:= U,
WHILE V N S # {} INV {invy Py Py By By V} DO
w:=(SOME u. we V); V:=V — {u};
IF W(By) + w(u) < ¢
THEN B1 = Bl @] {u}
ELSE IF W (Bs) + w(u) < ¢
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THEN By := By U {u}
ELSE Py := Py U wrap By; By := {u} FI;
P1 ::P1mepBl;Bl :{}FI
OD;
P := Py U wrap By U Py U wrap By U {{v} | v. v € V}
{bp P}
(proof)

5.2.2 Lower Bounds for the Bin Packing Problem

lemma bp-bins-finite [simp]:
assumes bp P
shows VB € P. finite B

{proof)

lemma bp-sol-finite [simp]:
assumes bp P
shows finite P

{proof)

If P is a solution of the bin packing problem, then no bin in P may
contain more than one large object.
lemma only-one-L-per-bin:

assumes bp P B € P
showsVz e B Vye B os#y—a¢LVy¢glL

(proof)

If P is a solution of the bin packing problem, then the amount of large
objects is a lower bound for the amount of bins in P.

lemma L-lower-bound-card:
assumes bp P
shows card L < card P

(proof)

If P is a solution of the bin packing problem, then the amount of bins
of a subset of P in which every bin contains a large object is a lower bound
on the amount of large objects.

lemma subset-bp-card:
assumes bp PM C PYBe M. BN L # {}
shows card M < card L

(proof)

If P is a correct solution of the bin packing problem, inv; holds for the
partial solution, and every bin in P; U wrap By contains a large object, then
the amount of bins in Py U wrap By U {{v} |v. v € V N L} is a lower bound
for the amount of bins in P.

lemma L-bins-lower-bound-card:
assumes bp P invy P1 Py By Bo VVB € Py U wrap By. BN L# {}
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shows card (P U wrap By U {{v} |[v. ve V N L}) < card P
(proof)

If P is a correct solution of the bin packing problem, then the sum of
the weights of the objects is equal to the sum of the weights of the bins in
P.

lemma sum-Un-eq-sum-sum:
assumes bp P
shows (3" ue U. wu)= (>, Be P. WB)

(proof)

If P is a correct solution of the bin packing problem, then the sum of
the weights of the items is a lower bound of amount of bins in P multiplied
by their maximum capacity.

lemma sum-lower-bound-card:
assumes bp P
shows (> u e U. wu) < c¢* card P

(proof)

lemma bp-NE:
assumes bp P
shows P # {}

(proof )

lemma sum-Un-ge:
fixes f :: - = real
assumes finite M finite NVBe MUN. 0 < fB
shows sum f M < sum f (M U N)

(proof)

If bij-exists holds, one can obtain a function which is bijective between
the bins in P and the objects in V such that an object returned by the
function would cause the bin to exceed its capacity.
definition bij-exists :: 'a set set = ’a set = bool where

bij-exists PV = (3f. bij-betw f P VAN(NB € P. WB+ w(fB) > ¢))

If P is a functionally correct solution of the bin packing problem, inv;
holds for the partial solution, and such a bijective function exists between
the bins in Py and the objects in P, U wrap Bs, the following strict lower
bound can be shown:
lemma P;-lower-bound-card:

assumes bp P invy Py Py By Bs V bij-exists Py (|J (P2 U wrap Bs))
shows card P, + 1 < card P
(proof)

As card (wrap ?B) < 1 holds, it follows that the amount of bins in P;

U wrap Bi are a lower bound for the amount of bins in P.

lemma P-Bi-lower-bound-card:
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assumes bp P invy Py Py By Bs V bij-exists Py (|J (P2 U wrap Bs))
shows card (P; U wrap By) < card P
(proof)

If 4nvy holds, there are at most half as many bins in Py as there are
objects in P9, and we can again obtain a bijective function between the bins
in P and the objects of the second partial solution, then the amount of bins
in the second partial solution are a strict lower bound for half the bins of
the first partial solution.

lemma P5-Bs-lower-bound-P1:

assumes inv; Py Py By By V 2 % card Py < card (|J P2) bij-exists P1 (U (P2
U wrap Bs))

shows 2 x card (P2 U wrap Bs) < card Py + 1
(proof)

5.2.3 Proving the Approximation Factor

We define invy as it is defined in the article. These conjuncts allow us to
prove the desired approximation factor.

definition invy :: ‘a set set = 'a set set = 'a set = 'a set = 'a set = bool where
invg Py Py By By V <— invy Py Py By By V — inv; holds for the partial

solution

AN(VNL#A{} — (VBe€ Py Uwrap B1. BN L #{})) —
If there are still large objects left, then every bin of the first partial solution must
contain a large object

A bij-exists P1 (U (P2 U wrap By)) — There exists a bijective
function between the bins of the first partial solution and the objects of the second
one

A (2 % card Py < card (|J P2)) — There are at most twice as
many bins in Ps as there are objects in P9

lemma invy F:
assumes invy P1 Py By By V
shows invy P Py By B V
and VNL#{} =VBe€ Py Uwrap B;. BN L # {}
and bij-exists Py (| (P2 U wrap Bs))
and 2 x card Py < card (| P2)
(proof)

lemma inv,1:
assumes vy P Py By By V
and VNL#{}=VBe& P, Uwrap B;. BN L # {}
and bij-exists Py (|J (P2 U wrap Bs))
and 2 x card Py < card (| P2)
shows invg P1 P2 B1 Bg V
(proof )

If P is a correct solution of the bin packing problem, inwvo holds for the
partial solution, and there are no more small objects left to be distributed,
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then the amount of bins of the partial solution is no larger than 3 / 2 of
the amount of bins in P. This proof strongly follows the proof in Theorem
4.1 of the article [2].

lemma bin-packing-lower-bound-card:

assumes VN S = {} invg Py Po By Bo Vbp P

shows card (P1 U wrap By U Py U wrap Bo U {{v} |[v. v € V}) < 8 / 2 x card
P

(proof)

We define invs as it is defined in the article. This final conjunct allows
us to prove that the invariant will be maintained by the algorithm.

definition invs :: ‘a set set = 'a set set = 'a set = 'a set = 'a set = bool where
invg P1 Py By By V +— invy Py Py B B V AN By C S

lemma invsE:
assumes invy P1 Py By By V
shows invy Py Py By Bo V and By C S
(proof)

lemma invsl:
assumes invy P; Py By Bo V and By C S
shows invg Py Py B1 By V
(proof)

lemma loop-init:

invs {} {3 {3 {1 U
(proof )

If By is empty and there are no large objects left, then invs will be
maintained if By is initialized with v € V' N S.

lemma loop-stepA:
assumes invg Py Po By By VB ={} VNnL={tueVnS
shows invs Py Py {u} By (V — {u})

(proof)

If By is empty and there are large objects left, then invs will be main-
tained if Bj is initialized with v € V N L.

lemma loop-stepB:
assumes invy Py Po By Bo VB ={}tue VNL
shows invs Py Py {u} Bs (V — {u})
(proof)
If By isnot empty and u € V N S does not exceed its maximum capacity,

then snwv3 will be maintained if By and {u} are replaced with By U {u}.

lemma loop-stepC':
assumes invy P1 Po By Bo VB #{}ue VNS WDB; + wu) <c
shows invs Py Py (By U {u}) By (V — {u})

(proof)
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If By is not empty and v € V N S does exceed its maximum capacity
but not the capacity of Bs, then invg will be maintained if B; is added to
Py and emptied, and B and {u} are replaced with By U {u}.

lemma loop-stepD:

assumes invg Py Po By Bo VB #{}uve VNS WB; + wu) >cWBsy +
w(u) < ¢

shows invs (P1 U wrap By) Py {} (B2 U {u}) (V — {u})
{proof )

If the maximum capacity of Bs is exceeded by v € V N S, then By must
contain at least two objects.

lemma Bs-at-least-two-objects:
assumes invg Py Po By By Vue VNS WBy + w(u) > c¢
shows 2 < card Bo

(proof)

If By is not empty and v € V N S exceeds the maximum capacity of
both B and Bs, then invs will be maintained if By and By are added to P
and P» respectively, emptied, and Bs initialized with u.

lemma loop-stepFE:

assumes invg Py Po By Bo VB #{}ue VNS WB; + wlu)>cWBy+
w(u) > ¢

shows invs (P1 U wrap By) (P2 U wrap Ba) {} {u} (V — {u})
(proof)

The bin packing algorithm as it is proposed in the article [2]. P will not
only be a correct solution of the bin packing problem, but the amount of
bins will be a lower bound for 3 / 2 of the amount of bins of any correct
solution @, and thus guarantee an approximation factor of 3 / 2 for the
optimum.

lemma bp-approz:
VARSPP1 P2 Bl BQ Vu
{True}
Py :={}; Py:={}; B1:={}; Bo:={}; V:=U,
WHILE V 0 S # {} INV {invs P, P, By By V} DO
IF By # {}
THEN u := (SOME u. u € VN 5)
ELSEIF VN L # {}
THEN u := (SOME u. w € V N L)
ELSE v := (SOME u. w € VN S) FI FI;
V=V - {u}
IF W(By) + w(u) < ¢
THEN By := By U {u}
ELSE IF W(Bs) + w(u) < ¢
THEN By := By U {u}
ELSE Py := Py U wrap By; By := {u} FI;
Pl ::P1mepBl;Bl :{}FI
OD;
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P := Py U wrap By U Py U wrap By U {{v} | v. v € V}
{bp PANNVQ.bp Q@ — card P < 8/ 2 % card Q)}
(proof)

end

5.3 The Full Linear Time Version of the Proposed Algorithm

Finally, we prove the Algorithm proposed on page 78 of the article [2]. This
version generates the S and L sets beforehand and uses them directly to
calculate the solution, thus removing the need for intersection operations,
and ensuring linear time if we can perform insertion, removal, and selection
of an element, the union of two sets, and the emptiness test in constant time
[2].
locale BinPacking-Complete =
fixes U :: 'a set — A finite, non-empty set of objects
and w :: 'a = real — A mapping from objects to their respective weights
(positive real numbers)
and c¢ :: nat — The maximum capacity of a bin (as a natural number)
assumes weight: Vu € U. 0 < w(u) A w(u) < ¢
and U-Finite: finite U
and U-NE: U # {}
begin

The correctness proofs will be identical to the ones of the simplified
algorithm.

abbreviation W :: ‘a set = real where
WB= (> uec B. wu))

definition bp :: ‘a set set = bool where
bp P <— partition-on UP N (VB € P. W(B) < ¢)

lemma bpFE:
assumes bp P
shows pairwise disjint P {} ¢ P JP =UVBe€ P. W(B) <c¢
(proof)

lemma bpl:
assumes pairwise disint P {} ¢ P UP = UVB e P. W(B) < ¢
shows bp P
(proof )

definition inv; :: ‘a set set = 'a set set = 'a set = 'a set = 'a set = bool where
invy Py Py By Bo V «— bp (P1 U wrap By U Py U wrap By U {{v} |v. v €
V}) — A correct solution to the bin packing problem
AU (P1 U wrap By U Py U wrap By) = U — V — The partial
solution does not contain objects that have not yet been assigned
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A By ¢ (P1 U Py U wrap By) — By is distinet from all the other
bins
A Bs ¢ (P1 U wrap B1 U Py) — By is distinct from all the other
bins
A (P71 U wrap B1) N (P2 U wrap By) = {} — The first and
second partial solutions are disjoint from each other.

lemma inv, F:

assumes invy P1 Py By Bo V

shows bp (P1 U wrap By U Py U wrap By U {{v} |v. v € V})
and |J(Py U wrap By U Py Uwrap By) = U — V
andBl¢(P1UP2mepBg)
and By ¢ (Py U wrap By U P3)
and (Py U wrap By) N (P2 U wrap Bs) = {}

(proof )

lemma inviI:

assumes bp (P1 U wrap By U Py U wrap Bs U {{v} |v. v € V})
and |J(Py U wrap By U Py Uwrap Bo) = U — V
and B, ¢ (P1 U Py U wrap Bg)
and B ¢ (P1 U wrap By U P3)
and (P, U wrap By) N (P2 U wrap By) = {}

shows invy Py Py B1 By V

(proof)

lemma wrap-Un [simp]: wrap (M U {z}) = {M U {z}} (proof)
lemma wrap-empty [simp]: wrap {} = {} (proof)
lemma wrap-not-empty [simp]: M # {} «— wrap M = {M} (proof)

lemma inv;-stepA:
assumes inv; Py Po By By Vu e V W(B;y) + w(u) < ¢
shows invy Py P2 (By U {u}) By (V — {u})

(proof)

lemma inv,-stepB:
assumes invy P1 Po By By Vue VWBy, +wu<c
shows invy (P1 U wrap By) Py {} (B2 U {u}) (V — {u})
(proof)

lemma inv;-stepC:

assumes invy P P, By Bo VueV

shows invy (P1 U wrap By) (P2 U wrap Bs) {} {u} (V — {u})
(proof)

From this point onward, we will require a different approach for proving
lower bounds. Instead of fixing and assuming the definitions of the S and
L sets, we will introduce the abbreviations Sy and Ly for any occurrences
of the original S and L sets. The union of S and L can be interpreted as
V. As a result, occurrences of V' N S become (SU L) NS =S,and VNL
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become (S U L) N L = L. Occurrences of these sets will have to be replaced
appropriately.

abbreviation Sy where
Su={velU wu<c/ 2}

abbreviation Ly where
Ly={ueU.c/2<wu}

As we will remove elements from S and L, we will only be able to show
that they remain subsets of Sy and Ly respectively.

abbreviation SL where
SLSL=SCSyNLCLy

lemma bp-bins-finite [simp]:
assumes bp P
shows VB € P. finite B

{proof)

lemma bp-sol-finite [simp]:
assumes bp P
shows finite P

{proof)

lemma only-one-L-per-bin:

assumes bp P B € P

showsVz e B Vye B z#y—axz¢ LyVyé¢ Ly
(proof)

lemma L-lower-bound-card:
assumes bp P
shows card Ly < card P

(proof)

lemma subset-bp-card:
assumes bp PM C PVYB e M. BN Ly # {}
shows card M < card Ly

(proof)

lemma L-bins-lower-bound-card:
assumes prz'nvl P1 PQ Bl BQ (SUL)VBePlLmepBlBﬂLU;é{}
and SL-def: SL S L
shows card (P1 U wrap By U {{v} |v. v € L}) < card P
(proof)

lemma sum-Un-eq-sum-sum:

assumes bp P

shows Y ue U. wu)= (>, Be P. WB)
(proof)
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lemma sum-lower-bound-card:
assumes bp P
shows (> u e U. wu) < c¢* card P
(proof )

lemma bp-NE:
assumes bp P
shows P # {}

{proof)

lemma sum-Un-ge:
fixes f :: - = real
assumes finite M finite NVBe MUN. 0 < fB
shows sum f M < sum f (M U N)

(proof)

definition bij-exists :: 'a set set = ‘a set = bool where
bij-exists PV = (3f. bij-betw fP V N(NB € P. WB+ w(fB) > ¢))

lemma P1-lower-bound-card:
assumes bp P invy P1 Py By Bs (S U L) bij-exists P1 (| (P2 U wrap Bs))
shows card P1 + 1 < card P

(proof)

lemma P-B-lower-bound-card:
assumes bp P invy P1 Py By Bs (S U L) bij-exists P1 (| (P2 U wrap Bs))
shows card (P; U wrap By) < card P

(proof)

lemma P5-Bs-lower-bound-P1:

assumes invy Py Py By Bs (S U L) 2 % card Py < card (|J P2) bij-exists Py
(U (P2 U wrap B3))

shows 2 x card (P2 U wrap Bg) < card Py + 1
(proof)

We add SL S L to invs to ensure that the S and L sets only contain
objects with correct weights.

definition invs :: ‘a set set = 'a set set = ‘a set = 'a set = 'a set = 'a set =
bool where
nvo P1 PQ Bl BQ SL(—)im;l P1 P2 Bl B2 (SUL)*ZTM)l holds for the
partial solution
AN(L#{} — (VB € Py Uwrap By. BN Ly # {})) — If there
are still large objects left, then every bin of the first partial solution must contain
a large object
A bij-exists P1 (|J (P2 U wrap By)) — There exists a bijective
function between the bins of the first partial solution and the objects of the second
one
A (2 % card Py < card (|J P2)) — There are at most twice as
many bins in Py as there are objects in Po
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AN SL SL— S and L are subsets of Sy and Ly

lemma invs F:
assumes invy Py Po By Bo S L
shows invy P1 Py B1 Bs (S @] L)
and L # {} = VB € P, Uwrap B;. BN Ly # {}
and bij-exists P1 (|J (P2 U wrap Bs))
and 2 x card Py < card (| P2)
and SL S L

(proof)

lemma invyl:

assumes inv; P; Py By By (S U L)
and L # {} = VB € Py Uwrap Bi. BN Ly # {}
and bij-exists Py (|J (P2 U wrap Bs))
and 2 x card P2 < card (| P2)
and SL S L

shows invy Py Py By B S L

(proof)

lemma bin-packing-lower-bound-card:

assumes S = {} invg Py Py By B, SLbp P

shows card (P; U wrap By U Py U wrap Bo U {{v} |v.ve SUL}) <3/ 2%
card P

(proof)

definition invs :: 'a set set = ’a set set = 'a set = 'a set = 'a set = 'a set =
bool where
inv3P1P2B1 BgSL(—)inngl PQBl BQSL/\BQQSU

lemma invgE:
assumes invy P; Py By Bo S L
shows invg P1 P2 Bl B2 S L and BQ g SU
(proof)

lemma invgl:
assumes Z'Twz P1 P2 Bl BQ S L and Bg - SU
shows Z.TLU3 P1 P2 Bl Bg S L
(proof)

lemma loop-init:

invs {} {} {} {} Sv L
(proof)

lemma loop-stepA:
assumes invg Py Po By By SLBy={} L={}ues
shows invs P1 P2 {u} Bs (S — {u}) L

{proof)
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lemma loop-stepB:
assumes invy P; Po By Bo SL By ={}uel
shows invg Py Py {u} B2 S (L — {u})

(proof)

lemma loop-stepC':
assumes invy P1 Po By Bo SLBy #{}ue SWDB; + w) <c
shows invs P; Py (By U {u}) B2 (S — {u}) L

(proof)

lemma loop-stepD:

assumes invg Py Po By Bo SL B #{} ue S WB; + wlu) >c WBy +
w(u) < ¢

shows invs (P1 U wrap B1) P2 {} (B2 U {u}) (S — {u}) L
(proof)

lemma B;-at-least-two-objects:
assumes invy P1 Py By Bo SLu € S W By + w(u) > ¢
shows 2 < card Bs

(proof)

lemma loop-stepE:

assumes invg Py Po By Bo SL By #{} ue S WB; + wlu) >c WBy +
w(u) > ¢

shows invs (P1 U wrap By) (P2 U wrap Bs) {} {u} (S — {u}) L
{proof )

The bin packing algorithm as it is proposed on page 78 of the article [2].
P will not only be a correct solution of the bin packing problem, but the
amount of bins will be a lower bound for & / 2 of the amount of bins of any
correct solution ), and thus guarantee an approximation factor of & / 2 for
the optimum.

lemma bp-approz:
VARSPP1 PgBl BQ VSLu
{True}
S:={} Li={} V:=1U;
WHILE V # {} INV{VCUAS={uec U~ V.wu)<c/2 ANL={ue
U-V.c/2<ww}} DO
u = (SOME u. u € V);
IFw(u)<c/2
THEN S := S U {u}
ELSE L := L U {u} FI;
V=V - {u}
OD;
Py={}; Py :={}; B1:={}; B2 := {}
WHILE S # {} INV {invs P, Py By By S L} DO
IF By # {}
THEN u := (SOME u. u € S); S := S — {u}
ELSEIF L # {}
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THEN u := (SOMFE u. w € L); L
ELSE u := (SOME u. u € S); S :=
IF W(B1) + w(u) < ¢
THEN B, := By U {u}
ELSE IF W(Bs) + w(u) < ¢
THEN By := By U {u}
ELSE Py := Py U wrap By; By := {u} FI;
Pl ::P1mepBl;Bl :{}FI

— {u}
— {u} FIFI,

N~

OD;
P := Py Uwrap By U Py U wrap By; V := L;
WHILE V # {}
INV{S:{}/\ZTLU3P1P2B1BQSL/\ VQL/\PzPlLmepBlUPQU
wrap By U {{v}|v.v € L — V}} DO
u:= (SOME u. w € V); P:= P U {{u}}; V:=V — {u}
OD
{bp PANNVQ.bp Q@ — card P < 8/ 2 % card Q)}

(proof)

end

end

6 Center Selection

theory Center-Selection
imports Complex-Main HOL— Hoare. Hoare-Logic
begin

The Center Selection (or metric k-center) problem. Given a set of sites
S in a metric space, find a subset ¢ C § that minimizes the maximal
distance from any s € S to some ¢ € C. This theory presents a verified
2-approximation algorithm. It is based on Section 11.2 in the book by
Kleinberg and Tardos [4]. In contrast to the proof in the book, our proof is
a standard invariant proof.

locale Center-Selection =
fixes S :: (‘a :: metric-space) set
and k :: nat
assumes finite-sites: finite S
and  non-empty-sites: S # {}
and non-zero-k: k > 0
begin

definition distance :: (‘a::metric-space) set = ('a::metric-space) = real where
distance C s = Min (dist s < C)

definition radius :: ('a :: metric-space) set = real where
radius C = Max (distance C * S)
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lemma distance-mono:
assumes C; C (9 and C; # {} and finite C,
shows distance C1 s > distance Cy s

(proof)

lemma finite-distances: finite (distance C * S)
(proof)

lemma non-empty-distances: distance C *S # {}
(proof )

lemma radius-contained: radius C € distance C ¢ S
(proof )

lemma radius-def2: 3s € S. distance C' s = radius C
(proof )

lemma dist-lemmas-auz:
assumes finite C
and C # {}
shows finite (dist s * C)
and finite (dist s ¢ C') = distance C's € dist s * C
and distance C s € dist s * C = dc € C. dist s ¢ = distance C s
and dc¢ € C. dist s ¢ = distance C s = distance C s > 0

(proof)

lemma dist-lemmas:
assumes finite C
and C # {}
shows finite (dist s * C)
and distance C s € dist s < C
and Jc € C. dist s ¢ = distance C s
and distance C s > 0

{proof)

lemma radius-max-prop: (Vs € S. distance C s < r) = (radius C' < r)
(proof)

lemma dist-ins:

assumes Vc¢; € C. Vg € C. g # cg — x < dist ¢1 ¢

and distance C s > x

and finite C

and C # {}

shows Ve; € (C U {s}). Vea € (C U {s}). c1 # co — z < dist ¢1 ¢
(proof)
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6.1 A Preliminary Algorithm and Proof

This subsection verifies an auxiliary algorithm by Kleinberg and Tardos.
Our proof of the main algorithm does not does not rely on this auxiliary
algorithm at all but we do reuse part off its invariant proof later on.

definition inv :: ('a :: metric-space) set = ('a :: metric-space set) = real = bool
where
invS' Cr=
(Vs e (S — 8. distance Cs < 2xr) ANS'"CSANCCSA
Vee C.Vse S . S8"#{} —distcs>2x«r)AN(S'=5SVC#{}HA
(Ver € C.Vea € C.ey # cg —> distcg cg > 2 x 1))

lemma inv-init: inv S {} r
(proof )
lemma inv-step:
assumes S’ # {}
and [H: inv S' Cr
defines[simp|: s = (SOME s. s € S')
shows inv (S’ — {s'. s € ' A dist s s’ < 2xr}) (C U {s}) r
(proof)

lemma inv-last-1:
assumes Vs € (S — §). distance C's < 2xr

and S’ = {}
shows radius C < 2xr
(proof )

lemma inv-last-2:
assumes finite C
and card C > n
and C C S
and Ve € C.Veg € C. c1 # co —> dist ¢ co > 2xr
shows V C'. card C' < n A card C' > 0 — radius C' > r (is ?P)

(proof)

lemma inv-last:

assumes inv {} C'r

shows (card C < k — radius C < 2xr) A (card C > k — (VC'. card C' >
0 A card C' < k — radius C' > 1))

{proof)

theorem Center-Selection-r:
VARS (S':: (‘a :: metric-space) set) (C :: ('a :: metric-space) set) (r :: real) (s
!

: 'a)

{True}
S'=9;
C:={}

WHILE S’ # {} INV {inv S’ C r} DO
s:= (SOME s. s € S§');
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C:=CU{s}h
Shi=8"—{s".s"€ 8" Ndistss < 2xr}
OD
{(card C < k — radius C < 2xr) A (card C > k — (VC'. card C' > 0 A
card C' < k — radius C' > r))}

(proof)

6.2 The Main Algorithm

definition invar :: (‘a :: metric-space) set = bool where
invar C = (C #{} ANcard C <kANCCSA
(VC'. (Vey € C.Vey € C.cg # cg —> dist ¢1 ¢co > 2 % radius C)
V (Vs € S. distance C's < 2 x radius C)))

abbreviation some where some A = (SOME s. s € A)

lemma invar-init: invar {some S}

(proof)

abbreviation furthest-from where
furthest-from C = (SOME s. s € S A distance C s = Max (distance C * S))

lemma invar-step:

assumes invar C

and card C < k

shows invar (C U {furthest-from C})

(proof)

lemma invar-last:
assumes invar C and —card C < k
shows card C = k and card C' > 0 A card C' < k — radius C < 2 * radius C’

(proof)

theorem Center-Selection:
VARS (C :: ('a :: metric-space) set) (s :: (‘a :: metric-space))

{k < card S}

C = {some S};

WHILE card C < k INV {invar C} DO

C := C U {furthest-from C}

oD

{card C =k N (VC'. card C' > 0 A card C' < k — radius C < 2 x radius
N}
(proof)

end
end
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