
Verified Approximation Algorithms

Robin Eßmann, Tobias Nipkow, Simon Robillard, Ujkan Sulejmani

March 17, 2025

Abstract

We present the first formal verifications of approximation algo-
rithms for NP-complete optimization problems: vertex cover, set cover,
independent set, center selection, load balancing, and bin packing.
The proofs correct incompletnesses in existing proofs and improve the
approximation ratio in one case. A detailed description of our work
(excluding center selection) has been published in the proceedings of
IJCAR 2020 [3].

Contents
1 Vertex Cover 2

1.1 Graph . 2
1.2 The Approximation Algorithm 2
1.3 Version for Hypergraphs . 4

2 Set Cover 6

3 Independent Set 14
3.1 Graph . 14
3.2 Wei’s algorithm: (∆+1)-approximation 16
3.3 Wei’s algorithm: ∆-approximation 19
3.4 Wei’s algorithm with dynamically computed approximation

ratio . 24

4 Load Balancing 26
4.1 Formalization of a Correct Load Balancing 28

4.1.1 Definition . 28
4.1.2 Lower Bounds for the Makespan 29

4.2 The Greedy Approximation Algorithm 30

5 Bin Packing 39
5.1 Formalization of a Correct Bin Packing 39
5.2 The Proposed Approximation Algorithm 40

1

5.2.1 Functional Correctness 40
5.2.2 Lower Bounds for the Bin Packing Problem 47
5.2.3 Proving the Approximation Factor 53

5.3 The Full Linear Time Version of the Proposed Algorithm . . 60

6 Center Selection 78
6.1 A Preliminary Algorithm and Proof 81
6.2 The Main Algorithm . 85

1 Vertex Cover
theory Approx-VC-Hoare
imports HOL−Hoare.Hoare-Logic
begin

The algorithm is classical, the proof is based on and augments the one
by Berghammer and Müller-Olm [1].

1.1 Graph
A graph is simply a set of edges, where an edge is a 2-element set.
definition vertex-cover :: ′a set set ⇒ ′a set ⇒ bool where
vertex-cover E C = (∀ e ∈ E . e ∩ C 6= {})

abbreviation matching :: ′a set set ⇒ bool where
matching M ≡ pairwise disjnt M

lemma card-matching-vertex-cover :
[[finite C ; matching M ; M ⊆ E ; vertex-cover E C]] =⇒ card M ≤ card C

apply(erule card-le-if-inj-on-rel[where r = λe v. v ∈ e])
apply (meson disjnt-def disjnt-iff vertex-cover-def subsetCE)

by (meson disjnt-iff pairwise-def)

1.2 The Approximation Algorithm
Formulated using a simple(!) predefined Hoare-logic. This leads to a stream-
lined proof based on standard invariant reasoning.

The nondeterministic selection of an element from a set F is simulated
by SOME x . x ∈ F. The SOME operator is built into HOL: SOME x . P x
denotes some x that satisfies P if such an x exists; otherwise it denotes an
arbitrary element. Note that there is no actual nondeterminism involved:
SOME x. P x is some fixed element but in general we don’t know which one.
Proofs about SOME are notoriously tedious. Typically it involves showing
first that ∃ x. P x. Then ∃ x. ?P x =⇒ ?P (SOME x. ?P x) implies P
(SOME x. P x). There are a number of (more) useful related theorems: just
click on ∃ x. ?P x =⇒ ?P (SOME x. ?P x) to be taken there.

2

Convenient notation for choosing an arbitrary element from a set:
abbreviation some A ≡ SOME x. x ∈ A

locale Edges =
fixes E :: ′a set set
assumes finE : finite E
assumes edges2 : e ∈ E =⇒ card e = 2

begin

The invariant:
definition inv-matching C F M =
(matching M ∧ M ⊆ E ∧ card C ≤ 2 ∗ card M ∧ (∀ e ∈ M . ∀ f ∈ F . e ∩ f =
{}))

definition invar :: ′a set ⇒ ′a set set ⇒ bool where
invar C F = (F ⊆ E ∧ vertex-cover (E−F) C ∧ finite C ∧ (∃M . inv-matching C
F M))

Preservation of the invariant by the loop body:
lemma invar-step:

assumes F 6= {} invar C F
shows invar (C ∪ some F) (F − {e ′ ∈ F . some F ∩ e ′ 6= {}})

proof −
from assms(2) obtain M where F ⊆ E and vc: vertex-cover (E−F) C and

fC : finite C
and m: matching M M ⊆ E and card: card C ≤ 2 ∗ card M
and disj: ∀ e ∈ M . ∀ f ∈ F . e ∩ f = {}

by (auto simp: invar-def inv-matching-def)
let ?e = SOME e. e ∈ F
have ?e ∈ F using ‹F 6= {}› by (simp add: some-in-eq)
hence fe ′: finite ?e using ‹F ⊆ E› edges2 by(intro card-ge-0-finite) auto
have ?e /∈ M using edges2 ‹?e ∈ F› disj ‹F ⊆ E› by fastforce
have card ′: card (C ∪ ?e) ≤ 2 ∗ card (insert ?e M)

using ‹?e ∈ F› ‹?e /∈ M › card-Un-le[of C ?e] ‹F ⊆ E› edges2 card fi-
nite-subset[OF m(2) finE]

by fastforce
let ?M = M ∪ {?e}
have vc ′: vertex-cover (E − (F − {e ′ ∈ F . ?e ∩ e ′ 6= {}})) (C ∪ ?e)

using vc by(auto simp: vertex-cover-def)
have m ′: inv-matching (C ∪ ?e) (F − {e ′ ∈ F . ?e ∩ e ′ 6= {}}) ?M

using m card ′ ‹F ⊆ E› ‹?e ∈ F› disj
by(auto simp: inv-matching-def Int-commute disjnt-def pairwise-insert)

show ?thesis using ‹F ⊆ E› vc ′ fC fe ′ m ′ by(auto simp add: invar-def Let-def)
qed

lemma approx-vertex-cover :
VARS C F
{True}

3

C := {};
F := E ;
WHILE F 6= {}
INV {invar C F}
DO C := C ∪ some F ;

F := F − {e ′ ∈ F . some F ∩ e ′ 6= {}}
OD
{vertex-cover E C ∧ (∀C ′. finite C ′ ∧ vertex-cover E C ′ −→ card C ≤ 2 ∗ card

C ′)}
proof (vcg, goal-cases)

case (1 C F)
have inv-matching {} E {} by (auto simp add: inv-matching-def)
with 1 show ?case by (auto simp add: invar-def vertex-cover-def)

next
case (2 C F)
thus ?case using invar-step[of F C] by(auto simp: Let-def)

next
case (3 C F)
then obtain M :: ′a set set where

post: vertex-cover E C matching M M ⊆ E card C ≤ 2 ∗ card M
by(auto simp: invar-def inv-matching-def)

have opt: card C ≤ 2 ∗ card C ′ if C ′: finite C ′ vertex-cover E C ′ for C ′

proof −
note post(4)
also have 2 ∗ card M ≤ 2 ∗ card C ′

using card-matching-vertex-cover [OF C ′(1) post(2 ,3) C ′(2)] by simp
finally show card C ≤ 2 ∗ card C ′ .

qed

show ?case using post(1) opt by auto
qed

end

1.3 Version for Hypergraphs
Almost the same. We assume that the degree of every edge is bounded.
locale Bounded-Hypergraph =

fixes E :: ′a set set
fixes k :: nat
assumes finE : finite E
assumes edge-bnd: e ∈ E =⇒ finite e ∧ card e ≤ k
assumes E1 : {} /∈ E

begin

definition inv-matching C F M =
(matching M ∧ M ⊆ E ∧ card C ≤ k ∗ card M ∧ (∀ e ∈ M . ∀ f ∈ F . e ∩ f =
{}))

4

definition invar :: ′a set ⇒ ′a set set ⇒ bool where
invar C F = (F ⊆ E ∧ vertex-cover (E−F) C ∧ finite C ∧ (∃M . inv-matching C
F M))

lemma invar-step:
assumes F 6= {} invar C F
shows invar (C ∪ some F) (F − {e ′ ∈ F . some F ∩ e ′ 6= {}})

proof −
from assms(2) obtain M where F ⊆ E and vc: vertex-cover (E−F) C and

fC : finite C
and m: matching M M ⊆ E and card: card C ≤ k ∗ card M
and disj: ∀ e ∈ M . ∀ f ∈ F . e ∩ f = {}

by (auto simp: invar-def inv-matching-def)
let ?e = SOME e. e ∈ F
have ?e ∈ F using ‹F 6= {}› by (simp add: some-in-eq)
hence fe ′: finite ?e using ‹F ⊆ E› assms(2) edge-bnd by blast
have ?e /∈ M using E1 ‹?e ∈ F› disj ‹F ⊆ E› by fastforce
have card ′: card (C ∪ ?e) ≤ k ∗ card (insert ?e M)

using ‹?e ∈ F› ‹?e /∈ M › card-Un-le[of C ?e] ‹F ⊆ E› edge-bnd card fi-
nite-subset[OF m(2) finE]

by fastforce
let ?M = M ∪ {?e}
have vc ′: vertex-cover (E − (F − {e ′ ∈ F . ?e ∩ e ′ 6= {}})) (C ∪ ?e)

using vc by(auto simp: vertex-cover-def)
have m ′: inv-matching (C ∪ ?e) (F − {e ′ ∈ F . ?e ∩ e ′ 6= {}}) ?M

using m card ′ ‹F ⊆ E› ‹?e ∈ F› disj
by(auto simp: inv-matching-def Int-commute disjnt-def pairwise-insert)

show ?thesis using ‹F ⊆ E› vc ′ fC fe ′ m ′ by(auto simp add: invar-def Let-def)
qed

lemma approx-vertex-cover-bnd:
VARS C F
{True}
C := {};
F := E ;
WHILE F 6= {}
INV {invar C F}
DO C := C ∪ some F ;

F := F − {e ′ ∈ F . some F ∩ e ′ 6= {}}
OD
{vertex-cover E C ∧ (∀C ′. finite C ′ ∧ vertex-cover E C ′ −→ card C ≤ k ∗ card

C ′)}
proof (vcg, goal-cases)

case (1 C F)
have inv-matching {} E {} by (auto simp add: inv-matching-def)
with 1 show ?case by (auto simp add: invar-def vertex-cover-def)

next

5

case (2 C F)
thus ?case using invar-step[of F C] by(auto simp: Let-def)

next
case (3 C F)
then obtain M :: ′a set set where

post: vertex-cover E C matching M M ⊆ E card C ≤ k ∗ card M
by(auto simp: invar-def inv-matching-def)

have opt: card C ≤ k ∗ card C ′ if C ′: finite C ′ vertex-cover E C ′ for C ′

proof −
note post(4)
also have k ∗ card M ≤ k ∗ card C ′

using card-matching-vertex-cover [OF C ′(1) post(2 ,3) C ′(2)] by simp
finally show card C ≤ k ∗ card C ′ .

qed

show ?case using post(1) opt by auto
qed

end

end

2 Set Cover
theory Approx-SC-Hoare
imports

HOL−Hoare.Hoare-Logic
Complex-Main

begin

This is a formalization of the set cover algorithm and proof in the book
by Kleinberg and Tardos [4].
definition harm :: nat ⇒ ′a :: real-normed-field where

harm n = (
∑

k=1 ..n. inverse (of-nat k))

locale Set-Cover =
fixes w :: nat ⇒ real

and m :: nat
and S :: nat ⇒ ′a set

assumes S-finite: ∀ i ∈ {1 ..m}. finite (S i)
and w-nonneg: ∀ i. 0 ≤ w i

begin

definition U :: ′a set where
U = (

⋃
i ∈ {1 ..m}. S i)

lemma S-subset: ∀ i ∈ {1 ..m}. S i ⊆ U

6

using U-def by blast

lemma U-finite: finite U
unfolding U-def using S-finite by blast

lemma empty-cover : m = 0 =⇒ U = {}
using U-def by simp

definition sc :: nat set ⇒ ′a set ⇒ bool where
sc C X ←→ C ⊆ {1 ..m} ∧ (

⋃
i ∈ C . S i) = X

definition cost :: ′a set ⇒ nat ⇒ real where
cost R i = w i / card (S i ∩ R)

lemma cost-nonneg: 0 ≤ cost R i
using w-nonneg by (simp add: cost-def)

cost R i = 0 if card (S i ∩ R) = 0 ! Needs to be accounted for separately
in min-arg.
fun min-arg :: ′a set ⇒ nat ⇒ nat where

min-arg R 0 = 1
| min-arg R (Suc x) =

(let j = min-arg R x
in if S j ∩ R = {} ∨ (S (Suc x) ∩ R 6= {} ∧ cost R (Suc x) < cost R j) then

(Suc x) else j)

lemma min-in-range: k > 0 =⇒ min-arg R k ∈ {1 ..k}
by (induction k) (force simp: Let-def)+

lemma min-empty: S (min-arg R k) ∩ R = {} =⇒ ∀ i ∈ {1 ..k}. S i ∩ R = {}
proof (induction k)

case (Suc k)
from Suc.prems have prem: S (min-arg R k) ∩ R = {} by (auto simp: Let-def

split: if-splits)
with Suc.IH have IH : ∀ i ∈ {1 ..k}. S i ∩ R = {} .
show ?case proof fix i assume i ∈ {1 ..Suc k} show S i ∩ R = {}

proof (cases ‹i = Suc k›)
case True with Suc.prems prem show ?thesis by simp

next
case False with IH ‹i ∈ {1 ..Suc k}› show ?thesis by simp

qed
qed

qed simp

lemma min-correct: [[i ∈ {1 ..k}; S i ∩ R 6= {}]] =⇒ cost R (min-arg R k) ≤ cost
R i
proof (induction k)

case (Suc k)
show ?case proof (cases ‹i = Suc k›)

7

case True with Suc.prems show ?thesis by (auto simp: Let-def)
next

case False with Suc.prems Suc.IH have IH : cost R (min-arg R k) ≤ cost R i
by simp

from Suc.prems False min-empty[of R k] have S (min-arg R k) ∩ R 6= {} by
force

with IH show ?thesis by (auto simp: Let-def)
qed

qed simp

Correctness holds quite trivially for both m = 0 and m > 0 (assuming a
set cover can be found at all, otherwise algorithm would not terminate).
lemma set-cover-correct:
VARS (R :: ′a set) (C :: nat set) (i :: nat)
{True}
R := U ; C := {};
WHILE R 6= {} INV {R ⊆ U ∧ sc C (U − R)} DO
i := min-arg R m;
R := R − S i;
C := C ∪ {i}
OD
{sc C U}

proof (vcg, goal-cases)
case 2 show ?case proof (cases m)

case 0
from empty-cover [OF this] 2 show ?thesis by (auto simp: sc-def)

next
case Suc then have m > 0 by simp
from min-in-range[OF this] 2 show ?thesis using S-subset by (auto simp:

sc-def)
qed

qed (auto simp: sc-def)

definition c-exists :: nat set ⇒ ′a set ⇒ bool where
c-exists C R = (∃ c. sum w C = sum c (U − R) ∧ (∀ i. 0 ≤ c i)

∧ (∀ k ∈ {1 ..m}. sum c (S k ∩ (U − R))
≤ (

∑
j = card (S k ∩ R) + 1 ..card (S k). inverse j) ∗ w k))

definition inv :: nat set ⇒ ′a set ⇒ bool where
inv C R ←→ sc C (U − R) ∧ R ⊆ U ∧ c-exists C R

lemma invI :
assumes sc C (U − R) R ⊆ U

∃ c. sum w C = sum c (U − R) ∧ (∀ i. 0 ≤ c i)
∧ (∀ k ∈ {1 ..m}. sum c (S k ∩ (U − R))

≤ (
∑

j = card (S k ∩ R) + 1 ..card (S k). inverse j) ∗ w k)
shows inv C R using assms by (auto simp: inv-def c-exists-def)

lemma invD:

8

assumes inv C R
shows sc C (U − R) R ⊆ U

∃ c. sum w C = sum c (U − R) ∧ (∀ i. 0 ≤ c i)
∧ (∀ k ∈ {1 ..m}. sum c (S k ∩ (U − R))

≤ (
∑

j = card (S k ∩ R) + 1 ..card (S k). inverse j) ∗ w k)
using assms by (auto simp: inv-def c-exists-def)

lemma inv-init: inv {} U
proof (rule invI , goal-cases)

case 3
let ?c = (λ-. 0) :: ′a ⇒ real
have sum w {} = sum ?c (U − U) by simp
moreover {

have ∀ k ∈ {1 ..m}. 0 ≤ (
∑

j = card (S k ∩ U) + 1 ..card (S k). inverse j) ∗
w k

by (simp add: sum-nonneg w-nonneg)
then have (∀ k∈{1 ..m}. sum ?c (S k ∩ (U − U))

≤ (
∑

j = card (S k ∩ U) + 1 ..card (S k). inverse j) ∗ w k) by simp
}
ultimately show ?case by blast

qed (simp-all add: sc-def)

lemma inv-step:
assumes inv C R R 6= {}
defines [simp]: i ≡ min-arg R m
shows inv (C ∪ {i}) (R − (S i))

proof (cases m)
case 0
from empty-cover [OF this] invD(2)[OF assms(1)] have R = {} by blast
then show ?thesis using assms(2) by simp

next
case Suc then have 0 < m by simp
note hyp = invD[OF assms(1)]
show ?thesis proof (rule invI , goal-cases)

— Correctness
case 1 have i ∈ {1 ..m} using min-in-range[OF ‹0 < m›] by simp
with hyp(1) S-subset show ?case by (auto simp: sc-def)

next
case 2 from hyp(2) show ?case by auto

next
case 3

— Set Cover grows
have ∃ i ∈ {1 ..m}. S i ∩ R 6= {}

using assms(2) U-def hyp(2) by blast
then have S i ∩ R 6= {} using min-empty by auto
then have 0 < card (S i ∩ R)

using S-finite min-in-range[OF ‹0 < m›] by auto

— Proving properties of cost function

9

from hyp(3) obtain c where sum w C = sum c (U − R) ∀ i. 0 ≤ c i and
SUM : ∀ k∈{1 ..m}. sum c (S k ∩ (U − R))
≤ (

∑
j = card (S k ∩ R) + 1 ..card (S k). inverse j) ∗ w k by blast

let ?c = (λx. if x ∈ S i ∩ R then cost R i else c x)

— Proof of Lemma 11.9
have finite (U − R) finite (S i ∩ R) (U − R) ∩ (S i ∩ R) = {}

using U-finite S-finite min-in-range[OF ‹0 < m›] by auto
then have sum ?c (U − R ∪ (S i ∩ R)) = sum ?c (U − R) + sum ?c (S i ∩

R)
by (rule sum.union-disjoint)

moreover have U-split: U − (R − S i) = U − R ∪ (S i ∩ R) using hyp(2)
by blast

moreover {
have sum ?c (S i ∩ R) = card (S i ∩ R) ∗ cost R i by simp
also have ... = w i unfolding cost-def using ‹0 < card (S i ∩ R)› by simp
finally have sum ?c (S i ∩ R) = w i .

}
ultimately have sum ?c (U − (R − S i)) = sum ?c (U − R) + w i by simp
moreover {

have C ∩ {i} = {} using hyp(1) ‹S i ∩ R 6= {}› by (auto simp: sc-def)
from sum.union-disjoint[OF - - this] have sum w (C ∪ {i}) = sum w C +

w i
using hyp(1) by (auto simp: sc-def intro: finite-subset)

}
ultimately have 1 : sum w (C ∪ {i}) = sum ?c (U − (R − S i)) — Lemma

11.9
using ‹sum w C = sum c (U − R)› by simp

have 2 : ∀ i. 0 ≤ ?c i using ‹∀ i. 0 ≤ c i› cost-nonneg by simp

— Proof of Lemma 11.10
have 3 : ∀ k∈{1 ..m}. sum ?c (S k ∩ (U − (R − S i)))

≤ (
∑

j = card (S k ∩ (R − S i)) + 1 ..card (S k). inverse j) ∗ w k
proof

fix k assume k ∈ {1 ..m}
let ?rem = S k ∩ R — Remaining elements to be covered
let ?add = S k ∩ S i ∩ R — Elements that will be covered in this step
let ?cov = S k ∩ (U − R) — Covered elements

— Transforming left and right sides
have sum ?c (S k ∩ (U − (R − S i))) = sum ?c (S k ∩ (U − R ∪ (S i ∩

R)))
unfolding U-split ..

also have ... = sum ?c (?cov ∪ ?add)
by (simp add: Int-Un-distrib Int-assoc)

also have ... = sum ?c ?cov + sum ?c ?add
by (rule sum.union-disjoint) (insert S-finite ‹k ∈ -›, auto)

finally have lhs:

10

sum ?c (S k ∩ (U − (R − S i))) = sum ?c ?cov + sum ?c ?add .
have S k ∩ (R − S i) = ?rem − ?add by blast
then have card (S k ∩ (R − S i)) = card (?rem − ?add) by simp
also have ... = card ?rem − card ?add

using S-finite ‹k ∈ -› by (auto intro: card-Diff-subset)
finally have rhs:

card (S k ∩ (R − S i)) + 1 = card ?rem − card ?add + 1 by simp

— The apparent complexity of the remaining proof is deceiving. Much of this
is just about convincing Isabelle that these sum transformations are allowed.

have sum ?c ?add = card ?add ∗ cost R i by simp
also have ... ≤ card ?add ∗ cost R k

proof (cases ?rem = {})
case True
then have card ?add = 0 by (auto simp: card-eq-0-iff)
then show ?thesis by simp

next
case False
from min-correct[OF ‹k ∈ -› this] have cost R i ≤ cost R k by simp
then show ?thesis by (simp add: mult-left-mono)

qed
also have ... = card ?add ∗ inverse (card ?rem) ∗ w k

by (simp add: cost-def divide-inverse-commute)
also have ... = (

∑
j ∈ {card ?rem − card ?add + 1 .. card ?rem}. inverse

(card ?rem)) ∗ w k
proof −

have card ?add ≤ card ?rem
using S-finite ‹k ∈ -› by (blast intro: card-mono)

then show ?thesis by (simp add: sum-distrib-left)
qed

also have ... ≤ (
∑

j ∈ {card ?rem − card ?add + 1 .. card ?rem}. inverse j)
∗ w k

proof −
have ∀ j ∈ {card ?rem − card ?add + 1 .. card ?rem}. inverse (card ?rem)

≤ inverse j
by force
then have (

∑
j ∈ {card ?rem − card ?add + 1 .. card ?rem}. inverse

(card ?rem))
≤ (

∑
j ∈ {card ?rem − card ?add + 1 .. card ?rem}. inverse j)

by (blast intro: sum-mono)
with w-nonneg show ?thesis by (blast intro: mult-right-mono)

qed
finally have sum ?c ?add

≤ (
∑

j ∈ {card ?rem − card ?add + 1 .. card ?rem}. inverse j) ∗ w
k .

moreover from SUM have sum ?c ?cov
≤ (

∑
j ∈ {card ?rem + 1 .. card (S k)}. inverse j) ∗ w k

using ‹k ∈ {1 ..m}› by simp
ultimately have sum ?c (S k ∩ (U − (R − S i)))

11

≤ ((
∑

j ∈ {card ?rem − card ?add + 1 .. card ?rem}. inverse j) +
(
∑

j ∈ {card ?rem + 1 .. card (S k)}. inverse j)) ∗ w k
unfolding lhs by argo

also have ... = (
∑

j ∈ {card ?rem − card ?add + 1 .. card (S k)}. inverse
j) ∗ w k

proof −
have sum-split: b ∈ {a .. c} =⇒ sum f {a .. c} = sum f {a .. b} + sum f

{Suc b .. c}
for f :: nat ⇒ real and a b c :: nat

proof −
assume b ∈ {a .. c}
then have {a .. b} ∪ {Suc b .. c} = {a .. c} by force
moreover have {a .. b} ∩ {Suc b .. c} = {}

using ‹b ∈ {a .. c}› by auto
ultimately show ?thesis by (metis finite-atLeastAtMost sum.union-disjoint)
qed

have (
∑

j ∈ {card ?rem − card ?add + 1 .. card (S k)}. inverse j)
= (

∑
j ∈ {card ?rem − card ?add + 1 .. card ?rem}. inverse j)

+ (
∑

j ∈ {card ?rem + 1 .. card (S k)}. inverse j)
proof (cases ‹?add = {}›)

case False
then have 0 < card ?add 0 < card ?rem

using S-finite ‹k ∈ -› by fastforce+
then have Suc (card ?rem − card ?add) ≤ card ?rem by simp
moreover have card ?rem ≤ card (S k)

using S-finite ‹k ∈ -› by (simp add: card-mono)
ultimately show ?thesis by (auto intro: sum-split)

qed simp
then show ?thesis by algebra

qed
finally show sum ?c (S k ∩ (U − (R − S i)))

≤ (
∑

j ∈ {card (S k ∩ (R − S i)) + 1 .. card (S k)}. inverse j) ∗ w k
unfolding rhs .

qed

from 1 2 3 show ?case by blast
qed

qed

lemma cover-sum:
fixes c :: ′a ⇒ real
assumes sc C V ∀ i. 0 ≤ c i
shows sum c V ≤ (

∑
i ∈ C . sum c (S i))

proof −
from assms(1) have finite C by (auto simp: sc-def finite-subset)
then show ?thesis using assms(1)
proof (induction C arbitrary: V rule: finite-induct)

case (insert i C)

12

have V-split: (
⋃

(S ‘ insert i C)) = (
⋃

(S ‘ C)) ∪ S i by auto
have finite: finite (

⋃
(S ‘ C)) finite (S i)

using insert S-finite by (auto simp: sc-def)

have sum c (S i) − sum c (
⋃

(S ‘ C) ∩ S i) ≤ sum c (S i)
using assms(2) by (simp add: sum-nonneg)

then have sum c (
⋃

(S ‘ insert i C)) ≤ sum c (
⋃

(S ‘ C)) + sum c (S i)
unfolding V-split using sum-Un[OF finite, of c] by linarith

moreover have (
∑

i∈insert i C . sum c (S i)) = (
∑

i ∈ C . sum c (S i)) +
sum c (S i)

by (simp add: insert.hyps)
ultimately show ?case using insert by (fastforce simp: sc-def)

qed (simp add: sc-def)
qed

abbreviation H :: nat ⇒ real where H ≡ harm

definition d-star :: nat (‹d∗›) where d∗ ≡ Max (card ‘ (S ‘ {1 ..m}))

lemma set-cover-bound:
assumes inv C {} sc C ′ U
shows sum w C ≤ H d∗ ∗ sum w C ′

proof −
from invD(3)[OF assms(1)] obtain c where

sum w C = sum c U ∀ i. 0 ≤ c i and H-bound:
∀ k ∈ {1 ..m}. sum c (S k) ≤ H (card (S k)) ∗ w k — Lemma 11.10
by (auto simp: harm-def Int-absorb2 S-subset)

have ∀ k ∈ {1 ..m}. card (S k) ≤ d∗ by (auto simp: d-star-def)
then have ∀ k ∈ {1 ..m}. H (card (S k)) ≤ H d∗ by (auto simp: harm-def intro!:

sum-mono2)
with H-bound have ∀ k ∈ {1 ..m}. sum c (S k) ≤ H d∗ ∗ w k

by (metis atLeastAtMost-iff atLeastatMost-empty-iff empty-iff mult-right-mono
w-nonneg)

moreover have C ′ ⊆ {1 ..m} using assms(2) by (simp add: sc-def)
ultimately have ∀ i ∈ C ′. sum c (S i) ≤ H d∗ ∗ w i by blast
then have (

∑
i ∈ C ′. sum c (S i)) ≤ H d∗ ∗ sum w C ′

by (auto simp: sum-distrib-left intro: sum-mono)

have sum w C = sum c U by fact — Lemma 11.9
also have ... ≤ (

∑
i ∈ C ′. sum c (S i)) by (rule cover-sum[OF assms(2)]) fact

also have ... ≤ H d∗ ∗ sum w C ′ by fact
finally show ?thesis .

qed

theorem set-cover-approx:
VARS (R :: ′a set) (C :: nat set) (i :: nat)
{True}
R := U ; C := {};

13

WHILE R 6= {} INV {inv C R} DO
i := min-arg R m;
R := R − S i;
C := C ∪ {i}
OD
{sc C U ∧ (∀C ′. sc C ′ U −→ sum w C ≤ H d∗ ∗ sum w C ′)}

proof (vcg, goal-cases)
case 1 show ?case by (rule inv-init)

next
case 2 thus ?case using inv-step ..

next
case (3 R C i)
then have sc C U unfolding inv-def by auto
with 3 show ?case by (auto intro: set-cover-bound)

qed

end

end

3 Independent Set
theory Approx-MIS-Hoare
imports

HOL−Hoare.Hoare-Logic
HOL−Library.Disjoint-Sets

begin

The algorithm is classical, the proofs are inspired by the ones by Bergham-
mer and Müller-Olm [1]. In particular the approximation ratio is improved
from ∆+1 to ∆.

3.1 Graph
A set set is simply a set of edges, where an edge is a 2-element set.
definition independent-vertices :: ′a set set ⇒ ′a set ⇒ bool where
independent-vertices E S ←→ S ⊆

⋃
E ∧ (∀ v1 v2 . v1 ∈ S ∧ v2 ∈ S −→ {v1 , v2}

/∈ E)

locale Graph-E =
fixes E :: ′a set set
assumes finite-E : finite E
assumes edges2 : e ∈ E =⇒ card e = 2

begin

fun vertices :: ′a set set ⇒ ′a set where
vertices G =

⋃
G

14

abbreviation V :: ′a set where
V ≡ vertices E

definition approximation-miv :: nat ⇒ ′a set ⇒ bool where
approximation-miv n S ←→ independent-vertices E S ∧ (∀S ′. independent-vertices
E S ′ −→ card S ′ ≤ card S ∗ n)

fun neighbors :: ′a ⇒ ′a set where
neighbors v = {u. {u,v} ∈ E}

fun degree-vertex :: ′a ⇒ nat where
degree-vertex v = card (neighbors v)

abbreviation ∆ :: nat where
∆ ≡ Max{degree-vertex u|u. u ∈ V }

lemma finite-edges: e ∈ E =⇒ finite e
using card-ge-0-finite and edges2 by force

lemma finite-V : finite V
using finite-edges and finite-E by auto

lemma finite-neighbors: finite (neighbors u)
using finite-V and rev-finite-subset [of V neighbors u] by auto

lemma independent-vertices-finite: independent-vertices E S =⇒ finite S
by (metis rev-finite-subset independent-vertices-def vertices.simps finite-V)

lemma edge-ex-vertices: e ∈ E =⇒ ∃ u v. u 6= v ∧ e = {u, v}
proof −

assume e ∈ E
then have card e = Suc (Suc 0) using edges2 by auto
then show ∃ u v. u 6= v ∧ e = {u, v}

by (metis card-eq-SucD insertI1)
qed

lemma ∆-pos [simp]: E = {} ∨ 0 < ∆
proof cases

assume E = {}
then show E = {} ∨ 0 < ∆ by auto

next
assume 1 : E 6= {}
then have V 6= {} using edges2 by fastforce
moreover have finite {degree-vertex u |u. u ∈ V }

by (metis finite-V finite-imageI Setcompr-eq-image)
ultimately have 2 : ∆ ∈ {degree-vertex u |u. u ∈ V } using Max-in by auto
have ∆ 6= 0
proof

assume ∆ = 0

15

with 2 obtain u where 3 : u ∈ V and 4 : degree-vertex u = 0 by auto
from 3 obtain e where 5 : e ∈ E and u ∈ e by auto
moreover with 4 have ∀ v. {u, v} 6= e using finite-neighbors insert-absorb

by fastforce
ultimately show False using edge-ex-vertices by auto

qed
then show E = {} ∨ 0 < ∆ by auto

qed

lemma ∆-max-degree: u ∈ V =⇒ degree-vertex u ≤ ∆
proof −

assume H : u ∈ V
have finite {degree-vertex u |u. u ∈ V }

by (metis finite-V finite-imageI Setcompr-eq-image)
with H show degree-vertex u ≤ ∆ using Max-ge by auto

qed

3.2 Wei’s algorithm: (∆+1)-approximation
The ’functional’ part of the invariant, used to prove that the algorithm
produces an independent set of vertices.
definition inv-iv :: ′a set ⇒ ′a set ⇒ bool where
inv-iv S X ←→ independent-vertices E S

∧ X ⊆ V
∧ (∀ v1 ∈ (V − X). ∀ v2 ∈ S . {v1 , v2} /∈ E)
∧ S ⊆ X

Strenghten the invariant with an approximation ratio r :
definition inv-approx :: ′a set ⇒ ′a set ⇒ nat ⇒ bool where
inv-approx S X r ←→ inv-iv S X ∧ card X ≤ card S ∗ r

Preservation of the functional invariant:
lemma inv-preserv:

fixes S :: ′a set
and X :: ′a set
and x :: ′a

assumes inv: inv-iv S X
and x-def : x ∈ V − X

shows inv-iv (insert x S) (X ∪ neighbors x ∪ {x})
proof −

have inv1 : independent-vertices E S
and inv2 : X ⊆ V
and inv3 : S ⊆ X
and inv4 : ∀ v1 v2 . v1 ∈ (V − X) ∧ v2 ∈ S −→ {v1 , v2} /∈ E
using inv unfolding inv-iv-def by auto

have finite-S : finite S using inv1 and independent-vertices-finite by auto
have S1 : ∀ y ∈ S . {x, y} /∈ E using inv4 and x-def by blast
have S2 : ∀ x ∈ S . ∀ y ∈ S . {x, y} /∈ E using inv1 unfolding independent-vertices-def

by metis

16

have S3 : v1 ∈ insert x S =⇒ v2 ∈ insert x S =⇒ {v1 , v2} /∈ E for v1 v2
proof −

assume v1 ∈ insert x S and v2 ∈ insert x S
then consider

(a) v1 = x and v2 = x
| (b) v1 = x and v2 ∈ S
| (c) v1 ∈ S and v2 = x
| (d) v1 ∈ S and v2 ∈ S
by auto

then show {v1 , v2} /∈ E
proof cases

case a then show ?thesis using edges2 by force
next

case b then show ?thesis using S1 by auto
next

case c then show ?thesis using S1 by (metis doubleton-eq-iff)
next

case d then show ?thesis using S2 by auto
qed

qed

have independent-vertices E (insert x S)
using S3 and inv1 and x-def unfolding independent-vertices-def by auto

moreover have X ∪ neighbors x ∪ {x} ⊆ V
proof

fix xa
assume xa ∈ X ∪ neighbors x ∪ {x}
then consider (a) xa ∈ X | (b) xa ∈ neighbors x | (c) xa = x by auto
then show xa ∈ V
proof cases

case a
then show ?thesis using inv2 by blast

next
case b
then show ?thesis by auto

next
case c
then show ?thesis using x-def by blast

qed
qed

moreover have insert x S ⊆ X ∪ neighbors x ∪ {x} using inv3 by auto

moreover have v1 ∈ V − (X ∪ neighbors x ∪ {x}) =⇒ v2 ∈ insert x S =⇒
{v1 , v2} /∈ E for v1 v2

proof −
assume H : v1 ∈ V − (X ∪ neighbors x ∪ {x}) and v2 ∈ insert x S
then consider (a) v2 = x | (b) v2 ∈ S by auto

17

then show {v1 , v2} /∈ E
proof cases

case a
with H have v1 /∈ neighbors v2 by blast
then show ?thesis by auto

next
case b
from H have v1 ∈ V − X by blast
with b and inv4 show ?thesis by blast

qed
qed

ultimately show inv-iv (insert x S) (X ∪ neighbors x ∪ {x}) unfolding
inv-iv-def by blast
qed

lemma inv-approx-preserv:
assumes inv: inv-approx S X (∆ + 1)

and x-def : x ∈ V − X
shows inv-approx (insert x S) (X ∪ neighbors x ∪ {x}) (∆ + 1)

proof −
have finite-S : finite S using inv and independent-vertices-finite

unfolding inv-approx-def inv-iv-def by auto
have Sx: x /∈ S using inv and x-def unfolding inv-approx-def inv-iv-def by

blast

from inv have inv-iv S X unfolding inv-approx-def by auto
with x-def have inv-iv (insert x S) (X ∪ neighbors x ∪ {x})
proof (intro inv-preserv, auto) qed

moreover have card (X ∪ neighbors x ∪ {x}) ≤ card (insert x S) ∗ (∆ + 1)
proof −

have degree-vertex x ≤ ∆ using ∆-max-degree and x-def by auto
then have card (neighbors x ∪ {x}) ≤ ∆ + 1 using card-Un-le [of neighbors

x {x}] by auto
then have card (X ∪ neighbors x ∪ {x}) ≤ card X + ∆ + 1 using card-Un-le

[of X neighbors x ∪ {x}] by auto
also have ... ≤ card S ∗ (∆ + 1) + ∆ + 1 using inv unfolding inv-approx-def

by auto
also have ... = card (insert x S) ∗ (∆ + 1) using finite-S and Sx by auto
finally show ?thesis .

qed

ultimately show inv-approx (insert x S) (X ∪ neighbors x ∪ {x}) (∆ + 1)
unfolding inv-approx-def by auto

qed

lemma inv-approx: independent-vertices E S =⇒ card V ≤ card S ∗ r =⇒ ap-

18

proximation-miv r S
proof −

assume 1 : independent-vertices E S and 2 : card V ≤ card S ∗ r
have independent-vertices E S ′ =⇒ card S ′ ≤ card S ∗ r for S ′

proof −
assume independent-vertices E S ′

then have S ′ ⊆ V unfolding independent-vertices-def by auto
then have card S ′ ≤ card V using finite-V and card-mono by auto
also have ... ≤ card S ∗ r using 2 by auto
finally show card S ′ ≤ card S ∗ r .

qed
with 1 show approximation-miv r S unfolding approximation-miv-def by auto

qed

theorem wei-approx-∆-plus-1 :
VARS (S :: ′a set) (X :: ′a set) (x :: ′a)
{ True }
S := {};
X := {};
WHILE X 6= V
INV { inv-approx S X (∆ + 1) }
DO x := (SOME x. x ∈ V − X);

S := insert x S ;
X := X ∪ neighbors x ∪ {x}

OD
{ approximation-miv (∆ + 1) S }

proof (vcg, goal-cases)
case (1 S X x)
then show ?case unfolding inv-approx-def inv-iv-def independent-vertices-def

by auto
next

case (2 S X x)

let ?x = (SOME x. x ∈ V − X)
have V − X 6= {} using 2 unfolding inv-approx-def inv-iv-def by blast
then have ?x ∈ V − X using some-in-eq by metis
with 2 show ?case using inv-approx-preserv by auto

next
case (3 S X x)
then show ?case using inv-approx unfolding inv-approx-def inv-iv-def by auto

qed

3.3 Wei’s algorithm: ∆-approximation
The previous approximation uses very little information about the optimal
solution (it has at most as many vertices as the set itself). With some extra
effort we can improve the ratio to ∆ instead of ∆+1. In order to do that
we must show that among the vertices removed in each iteration, at most ∆
could belong to an optimal solution. This requires carrying around a set P

19

(via a ghost variable) which records the vertices deleted in each iteration.
definition inv-partition :: ′a set ⇒ ′a set ⇒ ′a set set ⇒ bool where
inv-partition S X P ←→ inv-iv S X

∧
⋃

P = X
∧ (∀ p ∈ P. ∃ s ∈ V . p = {s} ∪ neighbors s)
∧ card P = card S
∧ finite P

lemma inv-partition-preserv:
assumes inv: inv-partition S X P

and x-def : x ∈ V − X
shows inv-partition (insert x S) (X ∪ neighbors x ∪ {x}) (insert ({x} ∪

neighbors x) P)
proof −

have finite-S : finite S using inv and independent-vertices-finite
unfolding inv-partition-def inv-iv-def by auto

have Sx: x /∈ S using inv and x-def unfolding inv-partition-def inv-iv-def by
blast

from inv have inv-iv S X unfolding inv-partition-def by auto
with x-def have inv-iv (insert x S) (X ∪ neighbors x ∪ {x})
proof (intro inv-preserv, auto) qed

moreover have
⋃
(insert ({x} ∪ neighbors x) P) = X ∪ neighbors x ∪ {x}

using inv unfolding inv-partition-def by auto

moreover have (∀ p∈insert ({x} ∪ neighbors x) P. ∃ s ∈ V . p = {s} ∪ neighbors
s)

using inv and x-def unfolding inv-partition-def by auto

moreover have card (insert ({x} ∪ neighbors x) P) = card (insert x S)
proof −

from x-def and inv have x /∈
⋃

P unfolding inv-partition-def by auto
then have {x} ∪ neighbors x /∈ P by auto
then have card (insert ({x} ∪ neighbors x) P) = card P + 1 using inv

unfolding inv-partition-def by auto
moreover have card (insert x S) = card S + 1 using Sx and finite-S by auto
ultimately show ?thesis using inv unfolding inv-partition-def by auto

qed

moreover have finite (insert ({x} ∪ neighbors x) P)
using inv unfolding inv-partition-def by auto

ultimately show inv-partition (insert x S) (X ∪ neighbors x ∪ {x}) (insert ({x}
∪ neighbors x) P)

unfolding inv-partition-def by auto
qed

lemma card-Union-le-sum-card:

20

fixes U :: ′a set set
assumes ∀ u ∈ U . finite u
shows card (

⋃
U) ≤ sum card U

proof (cases finite U)
case False
then show card (

⋃
U) ≤ sum card U

using card-eq-0-iff finite-UnionD by auto
next

case True
then show card (

⋃
U) ≤ sum card U

proof (induct U rule: finite-induct)
case empty
then show ?case by auto

next
case (insert x F)
then have card(

⋃
(insert x F)) ≤ card(x) + card (

⋃
F) using card-Un-le by

auto
also have ... ≤ card(x) + sum card F using insert.hyps by auto
also have ... = sum card (insert x F) using sum.insert-if and insert.hyps by

auto
finally show ?case .

qed
qed

lemma sum-card:
fixes U :: ′a set set

and n :: nat
assumes ∀S ∈ U . card S ≤ n
shows sum card U ≤ card U ∗ n

proof cases
assume infinite U ∨ U = {}
then have sum card U = 0 using sum.infinite by auto
then show sum card U ≤ card U ∗ n by auto

next
assume ¬(infinite U ∨ U = {})
with assms have finite U and U 6= {}and ∀S ∈ U . card S ≤ n by auto
then show sum card U ≤ card U ∗ n
proof (induct U rule: finite-ne-induct)

case (singleton x)
then show ?case by auto

next
case (insert x F)
assume ∀S∈insert x F . card S ≤ n
then have 1 :card x ≤ n and 2 :sum card F ≤ card F ∗ n using insert.hyps

by auto
then have sum card (insert x F) = card x + sum card F using sum.insert-if

and insert.hyps by auto
also have ... ≤ n + card F ∗ n using 1 and 2 by auto

21

also have ... = card (insert x F) ∗ n using card-insert-if and insert.hyps by
auto

finally show ?case .
qed

qed

lemma x-or-neighbors:
fixes P :: ′a set set

and S :: ′a set
assumes inv: ∀ p∈P. ∃ s ∈ V . p = {s} ∪ neighbors s

and ivS : independent-vertices E S
shows ∀ p ∈ P. card (S ∩ p) ≤ ∆

proof
fix p
assume p ∈ P
then obtain s where 1 : s ∈ V ∧ p = {s} ∪ neighbors s using inv by blast
then show card (S ∩ p) ≤ ∆
proof cases

assume s ∈ S
then have S ∩ neighbors s = {} using ivS unfolding independent-vertices-def

by auto
then have S ∩ p ⊆ {s} using 1 by auto
then have 2 : card (S ∩ p) ≤ 1 using subset-singletonD by fastforce
consider (a) E = {} | (b) 0 < ∆ using ∆-pos by auto
then show card (S ∩ p) ≤ ∆
proof cases

case a
then have S = {} using ivS unfolding independent-vertices-def by auto
then show ?thesis by auto

next
case b
then show ?thesis using 2 by auto

qed
next

assume s /∈ S
with 1 have S ∩ p ⊆ neighbors s by auto

then have card (S ∩ p) ≤ degree-vertex s using card-mono and finite-neighbors
by auto

then show card (S ∩ p) ≤ ∆ using 1 and ∆-max-degree [of s] by auto
qed

qed

lemma inv-partition-approx: inv-partition S V P =⇒ approximation-miv ∆ S
proof −

assume H1 : inv-partition S V P
then have independent-vertices E S unfolding inv-partition-def inv-iv-def by

auto

22

moreover have independent-vertices E S ′ =⇒ card S ′ ≤ card S ∗ ∆ for S ′

proof −
let ?I = {S ′ ∩ p | p. p ∈ P}

assume H2 : independent-vertices E S ′

then have S ′ ⊆ V unfolding independent-vertices-def using vertices.simps
by blast

with H1 have S ′ = S ′ ∩
⋃

P unfolding inv-partition-def by auto
then have S ′ = (

⋃
p ∈ P. S ′ ∩ p) using Int-Union by auto

then have S ′ =
⋃

?I by blast
moreover have finite S ′ using H2 and independent-vertices-finite by auto
then have p ∈ P =⇒ finite (S ′ ∩ p) for p by auto
ultimately have card S ′ ≤ sum card ?I using card-Union-le-sum-card [of ?I]

by auto
also have ... ≤ card ?I ∗ ∆

using x-or-neighbors [of P S ′]
and sum-card [of ?I ∆]
and H1 and H2 unfolding inv-partition-def by auto

also have ... ≤ card P ∗ ∆
proof −

have finite P using H1 unfolding inv-partition-def by auto
then have card ?I ≤ card P

using Setcompr-eq-image [of λp. S ′ ∩ p P]
and card-image-le unfolding inv-partition-def by auto

then show ?thesis by auto
qed
also have ... = card S ∗ ∆ using H1 unfolding inv-partition-def by auto
ultimately show card S ′ ≤ card S ∗ ∆ by auto

qed
ultimately show approximation-miv ∆ S unfolding approximation-miv-def by

auto
qed

theorem wei-approx-∆:
VARS (S :: ′a set) (X :: ′a set) (x :: ′a)
{ True }
S := {};
X := {};
WHILE X 6= V
INV { ∃P. inv-partition S X P }
DO x := (SOME x. x ∈ V − X);

S := insert x S ;
X := X ∪ neighbors x ∪ {x}

OD
{ approximation-miv ∆ S }

proof (vcg, goal-cases)
case (1 S X x)

have inv-partition {} {} {} unfolding inv-partition-def inv-iv-def independent-vertices-def

23

by auto
then show ?case by auto

next
case (2 S X x)

let ?x = (SOME x. x ∈ V − X)
from 2 obtain P where I : inv-partition S X P by auto
then have V − X 6= {} using 2 unfolding inv-partition-def by auto
then have ?x ∈ V − X using some-in-eq by metis

with I have inv-partition (insert ?x S) (X ∪ neighbors ?x ∪ {?x}) (insert ({?x}
∪ neighbors ?x) P)

using inv-partition-preserv by blast
then show ?case by auto

next
case (3 S X x)
then show ?case using inv-partition-approx unfolding inv-approx-def by auto

qed

3.4 Wei’s algorithm with dynamically computed approxima-
tion ratio

In this subsection, we augment the algorithm with a variable used to com-
pute the effective approximation ratio of the solution. In addition, the vertex
of smallest degree is picked. With this heuristic, the algorithm achieves an
approximation ratio of (∆+2)/3, but this is not proved here.
definition vertex-heuristic :: ′a set ⇒ ′a ⇒ bool where
vertex-heuristic X v = (∀ u ∈ V − X . card (neighbors v − X) ≤ card (neighbors
u − X))

lemma ex-min-finite-set:
fixes S :: ′a set

and f :: ′a ⇒ nat
shows finite S =⇒ S 6= {} =⇒ ∃ x. x ∈ S ∧ (∀ y ∈ S . f x ≤ f y)

(is ?P1 =⇒ ?P2 =⇒ ∃ x. ?minf S x)
proof (induct S rule: finite-ne-induct)

case (singleton x)
have ?minf {x} x by auto
then show ?case by auto

next
case (insert x F)
from insert(4) obtain y where Py: ?minf F y by auto
show ∃ z. ?minf (insert x F) z
proof cases

assume f x < f y
then have ?minf (insert x F) x using Py by auto
then show ?case by auto

24

next
assume ¬f x < f y
then have ?minf (insert x F) y using Py by auto
then show ?case by auto

qed
qed

lemma inv-approx-preserv2 :
fixes S :: ′a set

and X :: ′a set
and s :: nat
and x :: ′a

assumes inv: inv-approx S X s
and x-def : x ∈ V − X

shows inv-approx (insert x S) (X ∪ neighbors x ∪ {x}) (max (card (neighbors
x ∪ {x} − X)) s)
proof −

have finite-S : finite S using inv and independent-vertices-finite unfolding
inv-approx-def inv-iv-def by auto

have Sx: x /∈ S using inv and x-def unfolding inv-approx-def inv-iv-def by
blast

from inv have inv-iv S X unfolding inv-approx-def by auto
with x-def have inv-iv (insert x S) (X ∪ neighbors x ∪ {x})
proof (intro inv-preserv, auto) qed

moreover have card (X ∪ neighbors x ∪ {x}) ≤ card (insert x S) ∗ max (card
(neighbors x ∪ {x} − X)) s

proof −
let ?N = neighbors x ∪ {x} − X
have card (X ∪ ?N) ≤ card X + card ?N using card-Un-le [of X ?N] by auto
also have ... ≤ card S ∗ s + card ?N using inv unfolding inv-approx-def by

auto
also have ... ≤ card S ∗ max (card ?N) s + card ?N by auto
also have ... ≤ card S ∗ max (card ?N) s + max (card ?N) s by auto
also have ... = card (insert x S) ∗ max (card ?N) s using Sx and finite-S by

auto
finally show ?thesis by auto

qed

ultimately show inv-approx (insert x S) (X ∪ neighbors x ∪ {x}) (max (card
(neighbors x ∪ {x} − X)) s)

unfolding inv-approx-def by auto
qed

theorem wei-approx-min-degree-heuristic:
VARS (S :: ′a set) (X :: ′a set) (x :: ′a) (r :: nat)
{ True }
S := {};

25

X := {};
r := 0 ;
WHILE X 6= V
INV { inv-approx S X r }
DO x := (SOME x. x ∈ V − X ∧ vertex-heuristic X x);

S := insert x S ;
r := max (card (neighbors x ∪ {x} − X)) r ;
X := X ∪ neighbors x ∪ {x}

OD
{ approximation-miv r S }

proof (vcg, goal-cases)
case (1 S X x r)
then show ?case unfolding inv-approx-def inv-iv-def independent-vertices-def

by auto
next

case (2 S X x r)

let ?x = (SOME x. x ∈ V − X ∧ vertex-heuristic X x)
have V − X 6= {} using 2 unfolding inv-approx-def inv-iv-def by blast
moreover have finite (V − X) using 2 and finite-V by auto
ultimately have ∃ x. x ∈ V − X ∧ vertex-heuristic X x

using ex-min-finite-set [where ?f = λx. card (neighbors x − X)]
unfolding vertex-heuristic-def by auto

then have x-def : ?x ∈ V − X ∧ vertex-heuristic X ?x
using someI-ex [where ?P = λx. x ∈ V − X ∧ vertex-heuristic X x] by auto

with 2 show ?case using inv-approx-preserv2 by auto
next

case (3 S X x r)
then show ?case using inv-approx unfolding inv-approx-def inv-iv-def by auto

qed

end
end

4 Load Balancing
theory Approx-LB-Hoare

imports Complex-Main HOL−Hoare.Hoare-Logic
begin

This is a formalization of the load balancing algorithms and proofs in
the book by Kleinberg and Tardos [4].
hide-const (open) sorted

lemma sum-le-card-Max: [[finite A; A 6= {}]] =⇒ sum f A ≤ card A ∗ Max (f ‘
A)
proof(induction A rule: finite-ne-induct)

26

case (singleton x)
then show ?case by simp

next
case (insert x F)
then show ?case by (auto simp: max-def order .trans[of sum f F card F ∗ Max

(f ‘ F)])
qed

lemma Max-const[simp]: [[finite A; A 6= {}]] =⇒ Max ((λ-. c) ‘ A) = c
using Max-in image-is-empty by blast

abbreviation Max0 :: nat set ⇒ nat where
Max0 N ≡ (if N={} then 0 else Max N)

fun f-Max0 :: (nat ⇒ nat) ⇒ nat ⇒ nat where
f-Max0 f 0 = 0
| f-Max0 f (Suc x) = max (f (Suc x)) (f-Max0 f x)

lemma f-Max0-equiv: f-Max0 f n = Max0 (f ‘ {1 ..n})
by (induction n) (auto simp: not-le atLeastAtMostSuc-conv)

lemma f-Max0-correct:
∀ x ∈ {1 ..m}. T x ≤ f-Max0 T m
m > 0 =⇒ ∃ x ∈ {1 ..m}. T x = f-Max0 T m
apply (induction m)

apply simp-all
apply (metis atLeastAtMost-iff le-Suc-eq max .cobounded1 max.coboundedI2)

subgoal for m by (cases ‹m = 0 ›) (auto simp: max-def)
done

lemma f-Max0-mono:
y ≤ T x =⇒ f-Max0 (T (x := y)) m ≤ f-Max0 T m
T x ≤ y =⇒ f-Max0 T m ≤ f-Max0 (T (x := y)) m
by (induction m) auto

lemma f-Max0-out-of-range [simp]:
x /∈ {1 ..k} =⇒ f-Max0 (T (x := y)) k = f-Max0 T k
by (induction k) auto

lemma fun-upd-f-Max0:
assumes x ∈ {1 ..m} T x ≤ y
shows f-Max0 (T (x := y)) m = max y (f-Max0 T m)
using assms by (induction m) auto

locale LoadBalancing =
fixes t :: nat ⇒ nat

and m :: nat
and n :: nat

assumes m-gt-0 : m > 0

27

begin

4.1 Formalization of a Correct Load Balancing
4.1.1 Definition
definition lb :: (nat ⇒ nat) ⇒ (nat ⇒ nat set) ⇒ nat ⇒ bool where

lb T A j = ((∀ x ∈ {1 ..m}. ∀ y ∈ {1 ..m}. x 6= y −→ A x ∩ A y = {}) — No job
is assigned to more than one machine

∧ (
⋃

x ∈ {1 ..m}. A x) = {1 ..j} — Every job is assigned
∧ (∀ x ∈ {1 ..m}. (

∑
j ∈ A x. t j) = T x) — The processing times sum

up to the correct load)

abbreviation makespan :: (nat ⇒ nat) ⇒ nat where
makespan T ≡ f-Max0 T m

lemma makespan-def ′: makespan T = Max (T ‘ {1 ..m})
using m-gt-0 by (simp add: f-Max0-equiv)

lemma makespan-correct:
∀ x ∈ {1 ..m}. T x ≤ makespan T
∃ x ∈ {1 ..m}. T x = makespan T
using f-Max0-correct m-gt-0 by auto

lemma lbE :
assumes lb T A j
shows ∀ x ∈ {1 ..m}. ∀ y ∈ {1 ..m}. x 6= y −→ A x ∩ A y = {}

(
⋃

x ∈ {1 ..m}. A x) = {1 ..j}
∀ x ∈ {1 ..m}. (

∑
y ∈ A x . t y) = T x

using assms unfolding lb-def by blast+

lemma lbI :
assumes ∀ x ∈ {1 ..m}. ∀ y ∈ {1 ..m}. x 6= y −→ A x ∩ A y = {}

(
⋃

x ∈ {1 ..m}. A x) = {1 ..j}
∀ x ∈ {1 ..m}. (

∑
y ∈ A x . t y) = T x

shows lb T A j using assms unfolding lb-def by blast

lemma A-lb-finite [simp]:
assumes lb T A j x ∈ {1 ..m}
shows finite (A x)
by (metis lbE(2) assms finite-UN finite-atLeastAtMost)

If A x is pairwise disjoint for all x ∈ {1 ..m}, then the the sum over the
sums of the individual A x is equal to the sum over the union of all A x.
lemma sum-sum-eq-sum-Un:

fixes A :: nat ⇒ nat set
assumes ∀ x ∈ {1 ..m}. ∀ y ∈ {1 ..m}. x 6= y −→ A x ∩ A y = {}

and ∀ x ∈ {1 ..m}. finite (A x)
shows (

∑
x ∈ {1 ..m}. (

∑
y ∈ A x. t y)) = (

∑
x ∈ (

⋃
y ∈ {1 ..m}. A y). t x)

28

using assms
proof (induction m)

case (Suc m)
have FINITE : finite (

⋃
x ∈ {1 ..m}. A x) finite (A (Suc m))

using Suc.prems(2) by auto
have ∀ x ∈ {1 ..m}. A x ∩ A (Suc m) = {}

using Suc.prems(1) by simp
then have DISJNT : (

⋃
x ∈ {1 ..m}. A x) ∩ (A (Suc m)) = {} using Union-disjoint

by blast
have (

∑
x ∈ (

⋃
y ∈ {1 ..m}. A y). t x) + (

∑
x ∈ A (Suc m). t x)

= (
∑

x ∈ ((
⋃

y ∈ {1 ..m}. A y) ∪ A (Suc m)). t x)
using sum.union-disjoint[OF FINITE DISJNT , symmetric] .

also have ... = (
∑

x ∈ (
⋃

y ∈ {1 ..Suc m}. A y). t x)
by (metis UN-insert image-Suc-lessThan image-insert inf-sup-aci(5) lessThan-Suc)

finally show ?case using Suc by auto
qed simp

If T and A are a correct load balancing for j jobs and m machines, then
the sum of the loads has to be equal to the sum of the processing times of
the jobs
lemma lb-impl-job-sum:

assumes lb T A j
shows (

∑
x ∈ {1 ..m}. T x) = (

∑
x ∈ {1 ..j}. t x)

proof −
note lbrules = lbE [OF assms]
from assms have FINITE : ∀ x ∈ {1 ..m}. finite (A x) by simp
have (

∑
x ∈ {1 ..m}. T x) = (

∑
x ∈ {1 ..m}. (

∑
y ∈ A x . t y))

using lbrules(3) by simp
also have ... = (

∑
x ∈ {1 ..j}. t x)

using sum-sum-eq-sum-Un[OF lbrules(1) FINITE]
unfolding lbrules(2) .

finally show ?thesis .
qed

4.1.2 Lower Bounds for the Makespan

If T and A are a correct load balancing for j jobs and m machines, then the
processing time of any job x ∈ {1 ..j} is a lower bound for the load of some
machine y ∈ {1 ..m}
lemma job-lower-bound-machine:

assumes lb T A j x ∈ {1 ..j}
shows ∃ y ∈ {1 ..m}. t x ≤ T y

proof −
note lbrules = lbE [OF assms(1)]
have ∃ y ∈ {1 ..m}. x ∈ A y using lbrules(2) assms(2) by blast
then obtain y where y-def : y ∈ {1 ..m} x ∈ A y ..
moreover have finite (A y) using assms(1) y-def (1) by simp
ultimately have t x ≤ (

∑
x ∈ A y. t x) using lbrules(1) member-le-sum by

fast

29

also have ... = T y using lbrules(3) y-def (1) by blast
finally show ?thesis using y-def (1) by blast

qed

As the load of any machine is a lower bound for the makespan, the
processing time of any job x ∈ {1 ..j} has to also be a lower bound for the
makespan. Follows from job-lower-bound-machine and makespan-correct.
lemma job-lower-bound-makespan:

assumes lb T A j x ∈ {1 ..j}
shows t x ≤ makespan T
by (meson job-lower-bound-machine[OF assms] makespan-correct(1) le-trans)

The makespan over j jobs is a lower bound for the makespan of any
correct load balancing for j jobs.
lemma max-job-lower-bound-makespan:

assumes lb T A j
shows Max0 (t ‘ {1 ..j}) ≤ makespan T
using job-lower-bound-makespan[OF assms] by fastforce

lemma job-dist-lower-bound-makespan:
assumes lb T A j
shows (

∑
x ∈ {1 ..j}. t x) / m ≤ makespan T

proof −
have (

∑
x ∈ {1 ..j}. t x) ≤ m ∗ makespan T

using assms lb-impl-job-sum[symmetric]
and sum-le-card-Max[of {1 ..m}] m-gt-0 by (simp add: makespan-def ′)

then have real (
∑

x ∈ {1 ..j}. t x) ≤ real m ∗ real (makespan T)
using of-nat-mono by fastforce

then show ?thesis by (simp add: field-simps m-gt-0)
qed

4.2 The Greedy Approximation Algorithm
This function will perform a linear scan from k ∈ {1 ..m} and return the
index of the machine with minimum load assuming m > 0
fun min-arg :: (nat ⇒ nat) ⇒ nat ⇒ nat where

min-arg T 0 = 1
| min-arg T (Suc x) =

(let k = min-arg T x
in if T (Suc x) < T k then (Suc x) else k)

lemma min-correct:
∀ x ∈ {1 ..m}. T (min-arg T m) ≤ T x
by (induction m) (auto simp: Let-def le-Suc-eq, force)

lemma min-in-range:
k > 0 =⇒ (min-arg T k) ∈ {1 ..k}
by (induction k) (auto simp: Let-def , force+)

30

lemma add-job:
assumes lb T A j x ∈ {1 ..m}
shows lb (T (x := T x + t (Suc j))) (A (x := A x ∪ {Suc j})) (Suc j)
(is ‹lb ?T ?A -›)

proof −
note lbrules = lbE [OF assms(1)]

— Rule 1: A(x := A x ∪ {Suc j}) pairwise disjoint
have NOTIN : ∀ i ∈ {1 ..m}. Suc j /∈ A i using lbrules(2) assms(2) by force
with lbrules(1) have ∀ i ∈ {1 ..m}. i 6= x −→ A i ∩ (A x ∪ {Suc j}) = {}

using assms(2) by blast
then have 1 : ∀ x ∈ {1 ..m}. ∀ y ∈ {1 ..m}. x 6= y −→ ?A x ∩ ?A y = {}

using lbrules(1) by simp

— Rule 2: A(x := A x ∪ {Suc j}) contains all jobs
have (

⋃
y ∈ {1 ..m}. ?A y) = (

⋃
y ∈ {1 ..m}. A y) ∪ {Suc j}

using UNION-fun-upd assms(2) by auto
also have ... = {1 ..Suc j} unfolding lbrules(2) by auto
finally have 2 : (

⋃
y ∈ {1 ..m}. ?A y) = {1 ..Suc j} .

— Rule 3: A(x := A x ∪ {Suc j}) sums to T (x := T x + t (Suc j))
have (

∑
i ∈ ?A x . t i) = (

∑
i ∈ A x ∪ {Suc j}. t i) by simp

moreover have A x ∩ {Suc j} = {} using NOTIN assms(2) by blast
moreover have finite (A x) finite {Suc j} using assms by simp+
ultimately have (

∑
i ∈ ?A x . t i) = (

∑
i ∈ A x . t i) + (

∑
i ∈ {Suc j}. t i)

using sum.union-disjoint by simp
also have ... = T x + t (Suc j) using lbrules(3) assms(2) by simp
finally have (

∑
i ∈ ?A x. t i) = ?T x by simp

then have 3 : ∀ i ∈ {1 ..m}. (
∑

j ∈ ?A i. t j) = ?T i
using lbrules(3) assms(2) by simp

from lbI [OF 1 2 3] show ?thesis .
qed

lemma makespan-mono:
y ≤ T x =⇒ makespan (T (x := y)) ≤ makespan T
T x ≤ y =⇒ makespan T ≤ makespan (T (x := y))
using f-Max0-mono by auto

lemma smaller-optimum:
assumes lb T A (Suc j)
shows ∃T ′ A ′. lb T ′ A ′ j ∧ makespan T ′ ≤ makespan T

proof −
note lbrules = lbE [OF assms]
have ∃ x ∈ {1 ..m}. Suc j ∈ A x using lbrules(2) by auto
then obtain x where x-def : x ∈ {1 ..m} Suc j ∈ A x ..
let ?T = T (x := T x − t (Suc j))
let ?A = A (x := A x − {Suc j})

31

— Rule 1: A(x := A x − {Suc j}) pairwise disjoint
from lbrules(1) have ∀ i ∈ {1 ..m}. i 6= x −→ A i ∩ (A x − {Suc j}) = {}

using x-def (1) by blast
then have 1 : ∀ x ∈ {1 ..m}. ∀ y ∈ {1 ..m}. x 6= y −→ ?A x ∩ ?A y = {}

using lbrules(1) by auto

— Rule 2: A(x := A x − {Suc j}) contains all jobs
have NOTIN : ∀ i ∈ {1 ..m}. i 6= x −→ Suc j /∈ A i using lbrules(1) x-def by

blast
then have (

⋃
y ∈ {1 ..m}. ?A y) = (

⋃
y ∈ {1 ..m}. A y) − {Suc j}

using UNION-fun-upd x-def by auto
also have ... = {1 ..j} unfolding lbrules(2) by auto
finally have 2 : (

⋃
y ∈ {1 ..m}. ?A y) = {1 ..j} .

— Rule 3: A(x := A x − {Suc j}) sums to T (x := T x − t (Suc j))
have (

∑
i ∈ A x − {Suc j}. t i) = (

∑
i ∈ A x. t i) − t (Suc j)

by (simp add: sum-diff1-nat x-def (2))
also have ... = T x − t (Suc j) using lbrules(3) x-def (1) by simp
finally have (

∑
i ∈ ?A x. t i) = ?T x by simp

then have 3 : ∀ i ∈ {1 ..m}. (
∑

j ∈ ?A i. t j) = ?T i
using lbrules(3) x-def (1) by simp

— makespan is not larger
have lb ?T ?A j ∧ makespan ?T ≤ makespan T

using lbI [OF 1 2 3] makespan-mono(1) by force
then show ?thesis by blast

qed

If the processing time y does not contribute to the makespan, we can
ignore it.
lemma remove-small-job:

assumes makespan (T (x := T x + y)) 6= T x + y
shows makespan (T (x := T x + y)) = makespan T

proof −
let ?T = T (x := T x + y)
have NOT-X : makespan ?T 6= ?T x using assms(1) by simp
then have ∃ i ∈ {1 ..m}. makespan ?T = ?T i ∧ i 6= x

using makespan-correct(2) by metis
then obtain i where i-def : i ∈ {1 ..m} makespan ?T = ?T i i 6= x by blast
then have ?T i = T i using NOT-X by simp
moreover from this have makespan T = T i
by (metis i-def (1 ,2) antisym-conv le-add1 makespan-mono(2) makespan-correct(1))

ultimately show ?thesis using i-def (2) by simp
qed

lemma greedy-makespan-no-jobs [simp]:
makespan (λ-. 0) = 0
using m-gt-0 by (simp add: makespan-def ′)

32

lemma min-avg: m ∗ T (min-arg T m) ≤ (
∑

i ∈ {1 ..m}. T i)
(is ‹- ∗ ?T ≤ ?S›)

proof −
have (

∑
- ∈ {1 ..m}. ?T) ≤ ?S

using sum-mono[of ‹{1 ..m}› ‹λ-. ?T › T]
and min-correct by blast

then show ?thesis by simp
qed

definition inv1 :: (nat ⇒ nat) ⇒ (nat ⇒ nat set) ⇒ nat ⇒ bool where
inv1 T A j = (lb T A j ∧ j ≤ n ∧ (∀T ′ A ′. lb T ′ A ′ j −→ makespan T ≤ 2 ∗

makespan T ′))

lemma inv1E :
assumes inv1 T A j
shows lb T A j j ≤ n

lb T ′ A ′ j =⇒ makespan T ≤ 2 ∗ makespan T ′

using assms unfolding inv1-def by blast+

lemma inv1I :
assumes lb T A j j ≤ n ∀T ′ A ′. lb T ′ A ′ j −→ makespan T ≤ 2 ∗ makespan T ′

shows inv1 T A j using assms unfolding inv1-def by blast

lemma inv1-step:
assumes inv1 T A j j < n
shows inv1 (T ((min-arg T m) := T (min-arg T m) + t (Suc j)))

(A ((min-arg T m) := A (min-arg T m) ∪ {Suc j})) (Suc j)
(is ‹inv1 ?T ?A -›)

proof −
note invrules = inv1E [OF assms(1)]
— Greedy is correct
have LB: lb ?T ?A (Suc j)

using add-job[OF invrules(1) min-in-range[OF m-gt-0]] by blast
— Greedy maintains approximation factor
have MK : ∀T ′ A ′. lb T ′ A ′ (Suc j) −→ makespan ?T ≤ 2 ∗ makespan T ′

proof rule+
fix T1 A1 assume lb T1 A1 (Suc j)
from smaller-optimum[OF this]
obtain T0 A0 where lb T0 A0 j makespan T0 ≤ makespan T1 by blast
then have IH : makespan T ≤ 2 ∗ makespan T1

using invrules(3) by force
show makespan ?T ≤ 2 ∗ makespan T1

proof (cases ‹makespan ?T = T (min-arg T m) + t (Suc j)›)
case True
have m ∗ T (min-arg T m) ≤ (

∑
i ∈ {1 ..m}. T i) by (rule min-avg)

also have ... = (
∑

i ∈ {1 ..j}. t i) by (rule lb-impl-job-sum[OF invrules(1)])
finally have real m ∗ T (min-arg T m) ≤ (

∑
i ∈ {1 ..j}. t i)

by (auto dest: of-nat-mono)

33

with m-gt-0 have T (min-arg T m) ≤ (
∑

i ∈ {1 ..j}. t i) / m
by (simp add: field-simps)

then have T (min-arg T m) ≤ makespan T1

using job-dist-lower-bound-makespan[OF ‹lb T0 A0 j›]
and ‹makespan T0 ≤ makespan T1› by linarith

moreover have t (Suc j) ≤ makespan T1

using job-lower-bound-makespan[OF ‹lb T1 A1 (Suc j)›] by simp
ultimately show ?thesis unfolding True by simp

next
case False show ?thesis using remove-small-job[OF False] IH by simp

qed
qed
from inv1I [OF LB - MK] show ?thesis using assms(2) by simp

qed

lemma simple-greedy-approximation:
VARS T A i j
{True}
T := (λ-. 0);
A := (λ-. {});
j := 0 ;
WHILE j < n INV {inv1 T A j} DO

i := min-arg T m;
j := (Suc j);
A := A (i := A(i) ∪ {j});
T := T (i := T (i) + t j)

OD
{lb T A n ∧ (∀T ′ A ′. lb T ′ A ′ n −→ makespan T ≤ 2 ∗ makespan T ′)}
proof (vcg, goal-cases)

case (1 T A i j)
then show ?case by (simp add: lb-def inv1-def)

next
case (2 T A i j)
then show ?case using inv1-step by simp

next
case (3 T A i j)
then show ?case unfolding inv1-def by force

qed

definition sorted :: nat ⇒ bool where
sorted j = (∀ x ∈ {1 ..j}. ∀ y ∈ {1 ..x}. t x ≤ t y)

lemma sorted-smaller [simp]: [[sorted j; j ≥ j ′]] =⇒ sorted j ′
unfolding sorted-def by simp

lemma j-gt-m-pigeonhole:
assumes lb T A j j > m
shows ∃ x ∈ {1 ..j}. ∃ y ∈ {1 ..j}. ∃ z ∈ {1 ..m}. x 6= y ∧ x ∈ A z ∧ y ∈ A z

proof −

34

have ∀ x ∈ {1 ..j}. ∃ y ∈ {1 ..m}. x ∈ A y
using lbE(2)[OF assms(1)] by blast

then have ∃ f . ∀ x ∈ {1 ..j}. x ∈ A (f x) ∧ f x ∈ {1 ..m} by metis
then obtain f where f-def : ∀ x ∈ {1 ..j}. x ∈ A (f x) ∧ f x ∈ {1 ..m} ..
then have card (f ‘ {1 ..j}) ≤ card {1 ..m}

by (meson card-mono finite-atLeastAtMost image-subset-iff)
also have ... < card {1 ..j} using assms(2) by simp
finally have card (f ‘ {1 ..j}) < card {1 ..j} .
then have ¬ inj-on f {1 ..j} using pigeonhole by blast
then have ∃ x ∈ {1 ..j}. ∃ y ∈ {1 ..j}. x 6= y ∧ f x = f y

unfolding inj-on-def by blast
then show ?thesis using f-def by metis

qed

If T and A are a correct load balancing for j jobs and m machines with j
> m, and the jobs are sorted in descending order, then there exists a machine
x ∈ {1 ..m} whose load is at least twice as large as the processing time of
job j.
lemma sorted-job-lower-bound-machine:

assumes lb T A j j > m sorted j
shows ∃ x ∈ {1 ..m}. 2 ∗ t j ≤ T x

proof −
— Step 1: Obtaining the jobs
note lbrules = lbE [OF assms(1)]
obtain j1 j2 x where ∗:

j1 ∈ {1 ..j} j2 ∈ {1 ..j} x ∈ {1 ..m} j1 6= j2 j1 ∈ A x j2 ∈ A x
using j-gt-m-pigeonhole[OF assms(1 ,2)] by blast

— Step 2: Jobs contained in sum
have finite (A x) using assms(1) ∗(3) by simp
then have SUM : (

∑
i ∈ A x. t i) = t j1 + t j2 + (

∑
i ∈ A x − {j1} − {j2}. t

i)
using ∗(4−6) by (simp add: sum.remove)

— Step 3: Proof of lower bound
have t j ≤ t j1 t j ≤ t j2

using assms(3) ∗(1−2) unfolding sorted-def by auto
then have 2 ∗ t j ≤ t j1 + t j2 by simp
also have ... ≤ (

∑
i ∈ A x . t i) unfolding SUM by simp

finally have 2 ∗ t j ≤ T x using lbrules(3) ∗(3) by simp
then show ?thesis using ∗(3) by blast

qed

Reasoning analogous to job-lower-bound-makespan.
lemma sorted-job-lower-bound-makespan:

assumes lb T A j j > m sorted j
shows 2 ∗ t j ≤ makespan T

proof −
obtain x where x-def : x ∈ {1 ..m} 2 ∗ t j ≤ T x

35

using sorted-job-lower-bound-machine[OF assms] ..
with makespan-correct(1) have T x ≤ makespan T by blast
with x-def (2) show ?thesis by simp

qed

lemma min-zero:
assumes x ∈ {1 ..k} T x = 0
shows T (min-arg T k) = 0
using assms(1)

proof (induction k)
case (Suc k)
show ?case proof (cases ‹x = Suc k›)

case True
then show ?thesis using assms(2) by (simp add: Let-def)

next
case False
with Suc have T (min-arg T k) = 0 by simp
then show ?thesis by simp

qed
qed simp

lemma min-zero-index:
assumes x ∈ {1 ..k} T x = 0
shows min-arg T k ≤ x
using assms(1)

proof (induction k)
case (Suc k)
show ?case proof (cases ‹x = Suc k›)

case True
then show ?thesis using min-in-range[of Suc k] by simp

next
case False
with Suc.prems have x ∈ {1 ..k} by simp
from min-zero[OF this, of T] assms(2) Suc.IH [OF this]
show ?thesis by simp

qed
qed simp

definition inv2 :: (nat ⇒ nat) ⇒ (nat ⇒ nat set) ⇒ nat ⇒ bool where
inv2 T A j = (lb T A j ∧ j ≤ n

∧ (∀T ′ A ′. lb T ′ A ′ j −→ makespan T ≤ 3 / 2 ∗ makespan T ′)
∧ (∀ x > j. T x = 0)
∧ (j ≤ m −→ makespan T = Max0 (t ‘ {1 ..j})))

lemma inv2E :
assumes inv2 T A j
shows lb T A j j ≤ n

lb T ′ A ′ j =⇒ makespan T ≤ 3 / 2 ∗ makespan T ′

∀ x > j. T x = 0 j ≤ m =⇒ makespan T = Max0 (t ‘ {1 ..j})

36

using assms unfolding inv2-def by blast+

lemma inv2I :
assumes lb T A j j ≤ n

∀T ′ A ′. lb T ′ A ′ j −→ makespan T ≤ 3 / 2 ∗ makespan T ′

∀ x > j. T x = 0
j ≤ m =⇒ makespan T = Max0 (t ‘ {1 ..j})

shows inv2 T A j
unfolding inv2-def using assms by blast

lemma inv2-step:
assumes sorted n inv2 T A j j < n
shows inv2 (T (min-arg T m := T (min-arg T m) + t(Suc j)))

(A (min-arg T m := A(min-arg T m) ∪ {Suc j})) (Suc j)
(is ‹inv2 ?T ?A -›)

proof (cases ‹Suc j > m›)
case True note invrules = inv2E [OF assms(2)]
— Greedy is correct
have LB: lb ?T ?A (Suc j)

using add-job[OF invrules(1) min-in-range[OF m-gt-0]] by blast
— Greedy maintains approximation factor
have MK : ∀T ′ A ′. lb T ′ A ′ (Suc j) −→ makespan ?T ≤ 3 / 2 ∗ makespan T ′

proof rule+
fix T1 A1 assume lb T1 A1 (Suc j)
from smaller-optimum[OF this]
obtain T0 A0 where lb T0 A0 j makespan T0 ≤ makespan T1 by blast
then have IH : makespan T ≤ 3 / 2 ∗ makespan T1

using invrules(3) by force
show makespan ?T ≤ 3 / 2 ∗ makespan T1

proof (cases ‹makespan ?T = T (min-arg T m) + t (Suc j)›)
case True
have m ∗ T (min-arg T m) ≤ (

∑
i ∈ {1 ..m}. T i) by (rule min-avg)

also have ... = (
∑

i ∈ {1 ..j}. t i) by (rule lb-impl-job-sum[OF invrules(1)])
finally have real m ∗ T (min-arg T m) ≤ (

∑
i ∈ {1 ..j}. t i)

by (auto dest: of-nat-mono)
with m-gt-0 have T (min-arg T m) ≤ (

∑
i ∈ {1 ..j}. t i) / m

by (simp add: field-simps)
then have T (min-arg T m) ≤ makespan T1

using job-dist-lower-bound-makespan[OF ‹lb T0 A0 j›]
and ‹makespan T0 ≤ makespan T1› by linarith

moreover have 2 ∗ t (Suc j) ≤ makespan T1

using sorted-job-lower-bound-makespan[OF ‹lb T1 A1 (Suc j)› ‹Suc j > m›]
and assms(1 ,3) by simp

ultimately show ?thesis unfolding True by simp
next

case False show ?thesis using remove-small-job[OF False] IH by simp
qed

qed
have ∀ x > Suc j. ?T x = 0

37

using invrules(4) min-in-range[OF m-gt-0 , of T] True by simp
with inv2I [OF LB - MK] show ?thesis using assms(3) True by simp

next
case False
then have IN-RANGE : Suc j ∈ {1 ..m} by simp
note invrules = inv2E [OF assms(2)]
then have T (Suc j) = 0 by blast

— Greedy is correct
have LB: lb ?T ?A (Suc j)

using add-job[OF invrules(1) min-in-range[OF m-gt-0]] by blast

— Greedy is trivially optimal
from IN-RANGE ‹T (Suc j) = 0 › have min-arg T m ≤ Suc j

using min-zero-index by blast
with invrules(4) have EMPTY : ∀ x > Suc j. ?T x = 0 by simp
from IN-RANGE ‹T (Suc j) = 0 › have T (min-arg T m) = 0

using min-zero by blast
with fun-upd-f-Max0[OF min-in-range[OF m-gt-0]] invrules(5) False
have TRIV : makespan ?T = Max0 (t ‘ {1 ..Suc j}) unfolding f-Max0-equiv[symmetric]

by simp
have MK : ∀T ′ A ′. lb T ′ A ′ (Suc j) −→ makespan ?T ≤ 3 / 2 ∗ makespan T ′

by (auto simp: TRIV [folded f-Max0-equiv]
dest!: max-job-lower-bound-makespan[folded f-Max0-equiv])

from inv2I [OF LB - MK EMPTY TRIV] show ?thesis using assms(3) by simp
qed

lemma sorted-greedy-approximation:
sorted n =⇒ VARS T A i j
{True}
T := (λ-. 0);
A := (λ-. {});
j := 0 ;
WHILE j < n INV {inv2 T A j} DO

i := min-arg T m;
j := (Suc j);
A := A (i := A(i) ∪ {j});
T := T (i := T (i) + t j)

OD
{lb T A n ∧ (∀T ′ A ′. lb T ′ A ′ n −→ makespan T ≤ 3 / 2 ∗ makespan T ′)}
proof (vcg, goal-cases)

case (1 T A i j)
then show ?case by (simp add: lb-def inv2-def)

next
case (2 T A i j)
then show ?case using inv2-step by simp

next
case (3 T A i j)

38

then show ?case unfolding inv2-def by force
qed

end

end

5 Bin Packing
theory Approx-BP-Hoare

imports Complex-Main HOL−Hoare.Hoare-Logic HOL−Library.Disjoint-Sets
begin

The algorithm and proofs are based on the work by Berghammer and
Reuter [2].

5.1 Formalization of a Correct Bin Packing
Definition of the unary operator [[·]] from the article. B will only be wrapped
into a set if it is non-empty.
definition wrap :: ′a set ⇒ ′a set set where

wrap B = (if B = {} then {} else {B})

lemma wrap-card:
card (wrap B) ≤ 1
unfolding wrap-def by auto

If M and N are pairwise disjoint with V and not yet contained in V,
then the union of M and N is also pairwise disjoint with V.
lemma pairwise-disjnt-Un:

assumes pairwise disjnt ({M} ∪ {N} ∪ V) M /∈ V N /∈ V
shows pairwise disjnt ({M ∪ N} ∪ V)
using assms unfolding pairwise-def by auto

A Bin Packing Problem is defined like in the article:
locale BinPacking =

fixes U :: ′a set — A finite, non-empty set of objects
and w :: ′a ⇒ real — A mapping from objects to their respective weights

(positive real numbers)
and c :: nat — The maximum capacity of a bin (a natural number)
and S :: ′a set — The set of small objects (weight no larger than 1/2 of c)
and L :: ′a set — The set of large objects (weight larger than 1/2 of c)

assumes weight: ∀ u ∈ U . 0 < w(u) ∧ w(u) ≤ c
and U-Finite: finite U
and U-NE : U 6= {}
and S-def : S = {u ∈ U . w(u) ≤ c / 2}
and L-def : L = U − S

begin

39

In the article, this is defined as w as well. However, to avoid ambiguity,
we will abbreviate the weight of a bin as W.
abbreviation W :: ′a set ⇒ real where

W B ≡ (
∑

u ∈ B. w(u))

P constitutes as a correct bin packing if P is a partition of U (as defined
in partition-on-def) and the weights of the bins do not exceed their maximum
capacity c.
definition bp :: ′a set set ⇒ bool where

bp P ←→ partition-on U P ∧ (∀B ∈ P. W (B) ≤ c)

lemma bpE :
assumes bp P
shows pairwise disjnt P {} /∈ P

⋃
P = U ∀B ∈ P. W (B) ≤ c

using assms unfolding bp-def partition-on-def by blast+

lemma bpI :
assumes pairwise disjnt P {} /∈ P

⋃
P = U ∀B ∈ P. W (B) ≤ c

shows bp P
using assms unfolding bp-def partition-on-def by blast

Although we assume the S and L sets as given, manually obtaining them
from U is trivial and can be achieved in linear time. Proposed by the article
[2].
lemma S-L-set-generation:
VARS S L W u
{True}
S := {}; L := {}; W := U ;
WHILE W 6= {}
INV {W ⊆ U ∧ S = {v ∈ U − W . w(v) ≤ c / 2} ∧ L = {v ∈ U − W . w(v)

> c / 2}} DO
u := (SOME u. u ∈ W);
IF 2 ∗ w(u) ≤ c
THEN S := S ∪ {u}
ELSE L := L ∪ {u} FI ;
W := W − {u}

OD
{S = {v ∈ U . w(v) ≤ c / 2} ∧ L = {v ∈ U . w(v) > c / 2}}
by vcg (auto simp: some-in-eq)

5.2 The Proposed Approximation Algorithm
5.2.1 Functional Correctness

According to the article, inv1 holds if P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪
{{v} |v. v ∈ V } is a correct solution for the bin packing problem [2]. How-
ever, various assumptions made in the article seem to suggest that more
information is demanded from this invariant and, indeed, mere correctness

40

(as defined in bp-def) does not appear to suffice. To amend this, four ad-
ditional conjuncts have been added to this invariant, whose necessity will
be explained in the following proofs. It should be noted that there may
be other (shorter) ways to amend this invariant. This approach, however,
makes for rather straight-forward proofs, as these conjuncts can be utilized
and proved in relatively few steps.
definition inv1 :: ′a set set ⇒ ′a set set ⇒ ′a set ⇒ ′a set ⇒ ′a set ⇒ bool where

inv1 P1 P2 B1 B2 V ←→ bp (P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈
V }) — A correct solution to the bin packing problem

∧
⋃
(P1 ∪ wrap B1 ∪ P2 ∪ wrap B2) = U − V — The partial

solution does not contain objects that have not yet been assigned
∧ B1 /∈ (P1 ∪ P2 ∪ wrap B2) — B1 is distinct from all the other

bins
∧ B2 /∈ (P1 ∪ wrap B1 ∪ P2) — B2 is distinct from all the other

bins
∧ (P1 ∪ wrap B1) ∩ (P2 ∪ wrap B2) = {} — The first and

second partial solutions are disjoint from each other.

lemma inv1E :
assumes inv1 P1 P2 B1 B2 V
shows bp (P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V })

and
⋃
(P1 ∪ wrap B1 ∪ P2 ∪ wrap B2) = U − V

and B1 /∈ (P1 ∪ P2 ∪ wrap B2)
and B2 /∈ (P1 ∪ wrap B1 ∪ P2)
and (P1 ∪ wrap B1) ∩ (P2 ∪ wrap B2) = {}

using assms unfolding inv1-def by auto

lemma inv1I :
assumes bp (P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V })

and
⋃
(P1 ∪ wrap B1 ∪ P2 ∪ wrap B2) = U − V

and B1 /∈ (P1 ∪ P2 ∪ wrap B2)
and B2 /∈ (P1 ∪ wrap B1 ∪ P2)
and (P1 ∪ wrap B1) ∩ (P2 ∪ wrap B2) = {}

shows inv1 P1 P2 B1 B2 V
using assms unfolding inv1-def by blast

lemma wrap-Un [simp]: wrap (M ∪ {x}) = {M ∪ {x}} unfolding wrap-def by
simp
lemma wrap-empty [simp]: wrap {} = {} unfolding wrap-def by simp
lemma wrap-not-empty [simp]: M 6= {} ←→ wrap M = {M} unfolding wrap-def
by simp

If inv1 holds for the current partial solution, and the weight of an object
u ∈ V added to B1 does not exceed its capacity, then inv1 also holds if B1

and {u} are replaced by B1 ∪ {u}.
lemma inv1-stepA:

assumes inv1 P1 P2 B1 B2 V u ∈ V W (B1) + w(u) ≤ c
shows inv1 P1 P2 (B1 ∪ {u}) B2 (V − {u})

41

proof −
note invrules = inv1E [OF assms(1)] and bprules = bpE [OF invrules(1)]

In the proof for Theorem 3 .2 of the article it is erroneously argued that
if P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V } is a partition of
U, then the same holds if B1 is replaced by B1 ∪ {u}. This is, however,
not necessarily the case if B1 or {u} are already contained in the partial
solution. Suppose P1 contains the non-empty bin B1, then P1 ∪ wrap B1

would still be pairwise disjoint, provided P1 was pairwise disjoint before, as
the union simply ignores the duplicate B1. Now, if the algorithm modifies
B1 by adding an element from V such that B1 becomes some non-empty
B1

′ with B1 ∩ B1
′ 6= ∅ and B1

′ /∈ P1, one can see that this property would
no longer be preserved. To avoid such a situation, we will use the first
additional conjunct in inv1 to ensure that {u} is not yet contained in the
partial solution, and the second additional conjunct to ensure that B1 is not
yet contained in the partial solution.

have NOTIN : ∀M ∈ P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V − {u}}.
u /∈ M

using invrules(2) assms(2) by blast
have {{v} |v. v ∈ V } = {{u}} ∪ {{v} |v. v ∈ V − {u}}

using assms(2) by blast
then have pairwise disjnt (P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ ({{u}} ∪ {{v} |v.

v ∈ V − {u}}))
using bprules(1) assms(2) by simp

then have pairwise disjnt (wrap B1 ∪ {{u}} ∪ P1 ∪ P2 ∪ wrap B2 ∪ {{v} |v.
v ∈ V − {u}}) by (simp add: Un-commute)

then have assm: pairwise disjnt (wrap B1 ∪ {{u}} ∪ (P1 ∪ P2 ∪ wrap B2 ∪
{{v} |v. v ∈ V − {u}})) by (simp add: Un-assoc)

have pairwise disjnt ({B1 ∪ {u}} ∪ (P1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V −
{u}}))

proof (cases ‹B1 = {}›)
case True with assm show ?thesis by simp

next
case False
with assm have assm: pairwise disjnt ({B1} ∪ {{u}} ∪ (P1 ∪ P2 ∪ wrap B2

∪ {{v} |v. v ∈ V − {u}})) by simp
from NOTIN have {u} /∈ P1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V − {u}} by

blast
from pairwise-disjnt-Un[OF assm - this] invrules(2 ,3) show ?thesis

using False by auto
qed
then have 1 : pairwise disjnt (P1 ∪ wrap (B1 ∪ {u}) ∪ P2 ∪ wrap B2 ∪ {{v}
|v. v ∈ V − {u}})

unfolding wrap-Un by simp

— Rule 2: No empty sets
from bprules(2) have 2 : {} /∈ P1 ∪ wrap (B1 ∪ {u}) ∪ P2 ∪ wrap B2 ∪ {{v}
|v. v ∈ V − {u}}

42

unfolding wrap-def by simp

— Rule 3: Union preserved
from bprules(3) have

⋃
(P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{u}} ∪ {{v} |v. v

∈ V − {u}}) = U
using assms(2) by blast

then have 3 :
⋃

(P1 ∪ wrap (B1 ∪ {u}) ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V −
{u}}) = U

unfolding wrap-def by force

— Rule 4: Weights below capacity
have 0 < w u using weight assms(2) bprules(3) by blast
have finite B1 using bprules(3) U-Finite by (cases ‹B1 = {}›) auto
then have W (B1 ∪ {u}) ≤ W B1 + w u using ‹0 < w u› by (cases ‹u ∈ B1›)

(auto simp: insert-absorb)
also have ... ≤ c using assms(3) .
finally have W (B1 ∪ {u}) ≤ c .
then have ∀B ∈ wrap (B1 ∪ {u}). W B ≤ c unfolding wrap-Un by blast
moreover have ∀B∈P1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V − {u}}. W B ≤ c

using bprules(4) by blast
ultimately have 4 : ∀B∈P1 ∪ wrap (B1 ∪ {u}) ∪ P2 ∪ wrap B2 ∪ {{v} |v. v
∈ V − {u}}. W B ≤ c by blast

from bpI [OF 1 2 3 4] have 1 : bp (P1 ∪ wrap (B1 ∪ {u}) ∪ P2 ∪ wrap B2 ∪
{{v} |v. v ∈ V − {u}}) .

— Auxiliary information is preserved
have u ∈ U using assms(2) bprules(3) by blast
then have R: U − (V − {u}) = U − V ∪ {u} by blast
have L:

⋃
(P1 ∪ wrap (B1 ∪ {u}) ∪ P2 ∪ wrap B2) =

⋃
(P1 ∪ wrap B1 ∪ P2

∪ wrap B2) ∪ {u}
unfolding wrap-def using NOTIN by auto

have 2 :
⋃

(P1 ∪ wrap (B1 ∪ {u}) ∪ P2 ∪ wrap B2) = U − (V − {u})
unfolding L R invrules(2) ..

have 3 : B1 ∪ {u} /∈ P1 ∪ P2 ∪ wrap B2

using NOTIN by auto
have 4 : B2 /∈ P1 ∪ wrap (B1 ∪ {u}) ∪ P2

using invrules(4) NOTIN unfolding wrap-def by fastforce
have 5 : (P1 ∪ wrap (B1 ∪ {u})) ∩ (P2 ∪ wrap B2) = {}

using invrules(5) NOTIN unfolding wrap-Un by auto

from inv1I [OF 1 2 3 4 5] show ?thesis .
qed

If inv1 holds for the current partial solution, and the weight of an object
u ∈ V added to B2 does not exceed its capacity, then inv1 also holds if B2

and {u} are replaced by B2 ∪ {u}.
lemma inv1-stepB:

assumes inv1 P1 P2 B1 B2 V u ∈ V W B2 + w u ≤ c
shows inv1 (P1 ∪ wrap B1) P2 {} (B2 ∪ {u}) (V − {u})

43

proof −
note invrules = inv1E [OF assms(1)] and bprules = bpE [OF invrules(1)]

The argumentation here is similar to the one in inv1-stepA with B1

replaced with B2 and using the first and third additional conjuncts of inv1
to amend the issue, instead of the first and second.

have NOTIN : ∀M ∈ P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V − {u}}.
u /∈ M

using invrules(2) assms(2) by blast
have {{v} |v. v ∈ V } = {{u}} ∪ {{v} |v. v ∈ V − {u}}

using assms(2) by blast
then have pairwise disjnt (P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{u}} ∪ {{v} |v.

v ∈ V − {u}})
using bprules(1) assms(2) by simp

then have assm: pairwise disjnt (wrap B2 ∪ {{u}} ∪ (P1 ∪ wrap B1 ∪ P2 ∪
{{v} |v. v ∈ V − {u}}))

by (simp add: Un-assoc Un-commute)
have pairwise disjnt ({B2 ∪ {u}} ∪ (P1 ∪ wrap B1 ∪ P2 ∪ {{v} |v. v ∈ V −
{u}}))

proof (cases ‹B2 = {}›)
case True with assm show ?thesis by simp

next
case False
with assm have assm: pairwise disjnt ({B2} ∪ {{u}} ∪ (P1 ∪ wrap B1 ∪ P2

∪ {{v} |v. v ∈ V − {u}})) by simp
from NOTIN have {u} /∈ P1 ∪ wrap B1 ∪ P2 ∪ {{v} |v. v ∈ V − {u}} by

blast
from pairwise-disjnt-Un[OF assm - this] invrules(2 ,4) show ?thesis

using False by auto
qed
then have 1 : pairwise disjnt (P1 ∪ wrap B1 ∪ wrap {} ∪ P2 ∪ wrap (B2 ∪ {u})
∪ {{v} |v. v ∈ V − {u}})

unfolding wrap-Un by simp

— Rule 2: No empty sets
from bprules(2) have 2 : {} /∈ P1 ∪ wrap B1 ∪ wrap {} ∪ P2 ∪ wrap (B2 ∪
{u}) ∪ {{v} |v. v ∈ V − {u}}

unfolding wrap-def by simp

— Rule 3: Union preserved
from bprules(3) have

⋃
(P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{u}} ∪ {{v} |v. v

∈ V − {u}}) = U
using assms(2) by blast

then have 3 :
⋃

(P1 ∪ wrap B1 ∪ wrap {} ∪ P2 ∪ wrap (B2 ∪ {u}) ∪ {{v} |v.
v ∈ V − {u}}) = U

unfolding wrap-def by force

— Rule 4: Weights below capacity
have 0 < w u using weight assms(2) bprules(3) by blast

44

have finite B2 using bprules(3) U-Finite by (cases ‹B2 = {}›) auto
then have W (B2 ∪ {u}) ≤ W B2 + w u using ‹0 < w u› by (cases ‹u ∈ B2›)

(auto simp: insert-absorb)
also have ... ≤ c using assms(3) .
finally have W (B2 ∪ {u}) ≤ c .
then have ∀B ∈ wrap (B2 ∪ {u}). W B ≤ c unfolding wrap-Un by blast
moreover have ∀B∈P1 ∪ wrap B1 ∪ P2 ∪ {{v} |v. v ∈ V − {u}}. W B ≤ c

using bprules(4) by blast
ultimately have 4 : ∀B∈P1 ∪ wrap B1 ∪ wrap {} ∪ P2 ∪ wrap (B2 ∪ {u}) ∪
{{v} |v. v ∈ V − {u}}. W B ≤ c

by auto
from bpI [OF 1 2 3 4] have 1 : bp (P1 ∪ wrap B1 ∪ wrap {} ∪ P2 ∪ wrap (B2

∪ {u}) ∪ {{v} |v. v ∈ V − {u}}) .

— Auxiliary information is preserved
have u ∈ U using assms(2) bprules(3) by blast
then have R: U − (V − {u}) = U − V ∪ {u} by blast
have L:

⋃
(P1 ∪ wrap B1 ∪ wrap {} ∪ P2 ∪ wrap (B2 ∪ {u})) =

⋃
(P1 ∪

wrap B1 ∪ wrap {} ∪ P2 ∪ wrap B2) ∪ {u}
unfolding wrap-def using NOTIN by auto

have 2 :
⋃

(P1 ∪ wrap B1 ∪ wrap {} ∪ P2 ∪ wrap (B2 ∪ {u})) = U − (V −
{u})

unfolding L R using invrules(2) by simp
have 3 : {} /∈ P1 ∪ wrap B1 ∪ P2 ∪ wrap (B2 ∪ {u})

using bpE(2)[OF 1] by simp
have 4 : B2 ∪ {u} /∈ P1 ∪ wrap B1 ∪ wrap {} ∪ P2

using NOTIN by auto
have 5 : (P1 ∪ wrap B1 ∪ wrap {}) ∩ (P2 ∪ wrap (B2 ∪ {u})) = {}

using invrules(5) NOTIN unfolding wrap-empty wrap-Un by auto

from inv1I [OF 1 2 3 4 5] show ?thesis .
qed

If inv1 holds for the current partial solution, then inv1 also holds if B1

and B2 are added to P1 and P2 respectively, B1 is emptied and B2 initialized
with u ∈ V.
lemma inv1-stepC :

assumes inv1 P1 P2 B1 B2 V u ∈ V
shows inv1 (P1 ∪ wrap B1) (P2 ∪ wrap B2) {} {u} (V − {u})

proof −
note invrules = inv1E [OF assms(1)]
— Rule 1-4: Correct Bin Packing
have P1 ∪ wrap B1 ∪ wrap {} ∪ (P2 ∪ wrap B2) ∪ wrap {u} ∪ {{v} |v. v ∈ V
− {u}}

= P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{u}} ∪ {{v} |v. v ∈ V − {u}}
by (metis (no-types, lifting) Un-assoc Un-empty-right insert-not-empty wrap-empty

wrap-not-empty)
also have ... = P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V }

using assms(2) by auto

45

finally have EQ: P1 ∪ wrap B1 ∪ wrap {} ∪ (P2 ∪ wrap B2) ∪ wrap {u} ∪
{{v} |v. v ∈ V − {u}}

= P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V } .
from invrules(1) have 1 : bp (P1 ∪ wrap B1 ∪ wrap {} ∪ (P2 ∪ wrap B2) ∪

wrap {u} ∪ {{v} |v. v ∈ V − {u}})
unfolding EQ .

— Auxiliary information is preserved
have NOTIN : ∀M ∈ P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V − {u}}.

u /∈ M
using invrules(2) assms(2) by blast

have u ∈ U using assms(2) bpE(3)[OF invrules(1)] by blast
then have R: U − (V − {u}) = U − V ∪ {u} by blast
have L:

⋃
(P1 ∪ wrap B1 ∪ wrap {} ∪ (P2 ∪ wrap B2) ∪ wrap {u}) =

⋃
(P1

∪ wrap B1 ∪ wrap {} ∪ (P2 ∪ wrap B2)) ∪ {u}
unfolding wrap-def using NOTIN by auto

have 2 :
⋃

(P1 ∪ wrap B1 ∪ wrap {} ∪ (P2 ∪ wrap B2) ∪ wrap {u}) = U − (V
− {u})

unfolding L R using invrules(2) by auto
have 3 : {} /∈ P1 ∪ wrap B1 ∪ (P2 ∪ wrap B2) ∪ wrap {u}

using bpE(2)[OF 1] by simp
have 4 : {u} /∈ P1 ∪ wrap B1 ∪ wrap {} ∪ (P2 ∪ wrap B2)

using NOTIN by auto
have 5 : (P1 ∪ wrap B1 ∪ wrap {}) ∩ (P2 ∪ wrap B2 ∪ wrap {u}) = {}

using invrules(5) NOTIN unfolding wrap-def by force

from inv1I [OF 1 2 3 4 5] show ?thesis .
qed

A simplified version of the bin packing algorithm proposed in the article.
It serves as an introduction into the approach taken, and, while it does not
provide the desired approximation factor, it does ensure that P is a correct
solution of the bin packing problem.
lemma simple-bp-correct:
VARS P P1 P2 B1 B2 V u
{True}
P1 := {}; P2 := {}; B1 := {}; B2 := {}; V := U ;
WHILE V ∩ S 6= {} INV {inv1 P1 P2 B1 B2 V } DO

u := (SOME u. u ∈ V); V := V − {u};
IF W (B1) + w(u) ≤ c
THEN B1 := B1 ∪ {u}
ELSE IF W (B2) + w(u) ≤ c

THEN B2 := B2 ∪ {u}
ELSE P2 := P2 ∪ wrap B2; B2 := {u} FI ;
P1 := P1 ∪ wrap B1; B1 := {} FI

OD;
P := P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} | v. v ∈ V }
{bp P}

proof (vcg, goal-cases)

46

case (1 P P1 P2 B1 B2 V u)
show ?case

unfolding bp-def partition-on-def pairwise-def wrap-def inv1-def
using weight by auto

next
case (2 P P1 P2 B1 B2 V u)
then have INV : inv1 P1 P2 B1 B2 V ..
from 2 have V 6= {} by blast
then have IN : (SOME u. u ∈ V) ∈ V by (simp add: some-in-eq)
from inv1-stepA[OF INV IN] inv1-stepB[OF INV IN] inv1-stepC [OF INV IN]
show ?case by blast

next
case (3 P P1 P2 B1 B2 V u)
then show ?case unfolding inv1-def by blast

qed

5.2.2 Lower Bounds for the Bin Packing Problem
lemma bp-bins-finite [simp]:

assumes bp P
shows ∀B ∈ P. finite B
using bpE(3)[OF assms] U-Finite by (meson Sup-upper finite-subset)

lemma bp-sol-finite [simp]:
assumes bp P
shows finite P
using bpE(3)[OF assms] U-Finite by (simp add: finite-UnionD)

If P is a solution of the bin packing problem, then no bin in P may
contain more than one large object.
lemma only-one-L-per-bin:

assumes bp P B ∈ P
shows ∀ x ∈ B. ∀ y ∈ B. x 6= y −→ x /∈ L ∨ y /∈ L

proof (rule ccontr , simp)
assume ∃ x∈B. ∃ y∈B. x 6= y ∧ x ∈ L ∧ y ∈ L
then obtain x y where ∗: x ∈ B y ∈ B x 6= y x ∈ L y ∈ L by blast
then have c < w x + w y using L-def S-def by force
have finite B using assms by simp
have y ∈ B − {x} using ∗(2 ,3) by blast
have W B = W (B − {x}) + w x

using ∗(1) ‹finite B› by (simp add: sum.remove)
also have ... = W (B − {x} − {y}) + w x + w y

using ‹y ∈ B − {x}› ‹finite B› by (simp add: sum.remove)
finally have ∗: W B = W (B − {x} − {y}) + w x + w y .
have ∀ u ∈ B. 0 < w u using bpE(3)[OF assms(1)] assms(2) weight by blast
then have 0 ≤ W (B − {x} − {y}) by (smt (verit) DiffD1 sum-nonneg)
with ∗ have c < W B using ‹c < w x + w y› by simp
then show False using bpE(4)[OF assms(1)] assms(2) by fastforce

qed

47

If P is a solution of the bin packing problem, then the amount of large
objects is a lower bound for the amount of bins in P.
lemma L-lower-bound-card:

assumes bp P
shows card L ≤ card P

proof −
have ∀ x ∈ L. ∃B ∈ P. x ∈ B

using bpE(3)[OF assms] L-def by blast
then obtain f where f-def : ∀ u ∈ L. u ∈ f u ∧ f u ∈ P by metis
then have inj-on f L

unfolding inj-on-def using only-one-L-per-bin[OF assms] by blast
then have card-eq: card L = card (f ‘ L) by (simp add: card-image)
have f ‘ L ⊆ P using f-def by blast
moreover have finite P using assms by simp
ultimately have card (f ‘ L) ≤ card P by (simp add: card-mono)
then show ?thesis unfolding card-eq .

qed

If P is a solution of the bin packing problem, then the amount of bins
of a subset of P in which every bin contains a large object is a lower bound
on the amount of large objects.
lemma subset-bp-card:

assumes bp P M ⊆ P ∀B ∈ M . B ∩ L 6= {}
shows card M ≤ card L

proof −
have ∀B ∈ M . ∃ u ∈ L. u ∈ B using assms(3) by fast
then have ∃ f . ∀B ∈ M . f B ∈ L ∧ f B ∈ B by metis
then obtain f where f-def : ∀B ∈ M . f B ∈ L ∧ f B ∈ B ..
have inj-on f M
proof (rule ccontr)

assume ¬ inj-on f M
then have ∃ x ∈ M . ∃ y ∈ M . x 6= y ∧ f x = f y unfolding inj-on-def by blast
then obtain x y where ∗: x ∈ M y ∈ M x 6= y f x = f y by blast
then have ∃ u. u ∈ x ∧ u ∈ y using f-def by metis
then have x ∩ y 6= {} by blast

moreover have pairwise disjnt M using pairwise-subset[OF bpE(1)[OF assms(1)]
assms(2)] .

ultimately show False using ∗ unfolding pairwise-def disjnt-def by simp
qed
moreover have finite L using L-def U-Finite by blast
moreover have f ‘ M ⊆ L using f-def by blast
ultimately show ?thesis using card-inj-on-le by blast

qed

If P is a correct solution of the bin packing problem, inv1 holds for the
partial solution, and every bin in P1 ∪ wrap B1 contains a large object, then
the amount of bins in P1 ∪ wrap B1 ∪ {{v} |v. v ∈ V ∩ L} is a lower bound
for the amount of bins in P.
lemma L-bins-lower-bound-card:

48

assumes bp P inv1 P1 P2 B1 B2 V ∀B ∈ P1 ∪ wrap B1. B ∩ L 6= {}
shows card (P1 ∪ wrap B1 ∪ {{v} |v. v ∈ V ∩ L}) ≤ card P

proof −
note invrules = inv1E [OF assms(2)]
have ∀B ∈ {{v} |v. v ∈ V ∩ L}. B ∩ L 6= {} by blast
with assms(3) have

P1 ∪ wrap B1 ∪ {{v} |v. v ∈ V ∩ L} ⊆ P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v}
|v. v ∈ V }
∀B ∈ P1 ∪ wrap B1 ∪ {{v} |v. v ∈ V ∩ L}. B ∩ L 6= {} by blast+

from subset-bp-card[OF invrules(1) this] show ?thesis
using L-lower-bound-card[OF assms(1)] by linarith

qed

If P is a correct solution of the bin packing problem, then the sum of
the weights of the objects is equal to the sum of the weights of the bins in
P.
lemma sum-Un-eq-sum-sum:

assumes bp P
shows (

∑
u ∈ U . w u) = (

∑
B ∈ P. W B)

proof −
have FINITE : ∀B ∈ P. finite B using assms by simp
have DISJNT : ∀A ∈ P. ∀B ∈ P. A 6= B −→ A ∩ B = {}

using bpE(1)[OF assms] unfolding pairwise-def disjnt-def .
have (

∑
u ∈ (

⋃
P). w u) = (

∑
B ∈ P. W B)

using sum.Union-disjoint[OF FINITE DISJNT] by auto
then show ?thesis unfolding bpE(3)[OF assms] .

qed

If P is a correct solution of the bin packing problem, then the sum of
the weights of the items is a lower bound of amount of bins in P multiplied
by their maximum capacity.
lemma sum-lower-bound-card:

assumes bp P
shows (

∑
u ∈ U . w u) ≤ c ∗ card P

proof −
have ∗: ∀B ∈ P. 0 < W B ∧ W B ≤ c

using bpE(2−4)[OF assms] weight by (metis UnionI assms bp-bins-finite
sum-pos)

have (
∑

u ∈ U . w u) = (
∑

B ∈ P. W B)
using sum-Un-eq-sum-sum[OF assms] .

also have ... ≤ (
∑

B ∈ P. c) using sum-mono ∗ by fastforce
also have ... = c ∗ card P by simp
finally show ?thesis .

qed

lemma bp-NE :
assumes bp P
shows P 6= {}
using U-NE bpE(3)[OF assms] by blast

49

lemma sum-Un-ge:
fixes f :: - ⇒ real
assumes finite M finite N ∀B ∈ M ∪ N . 0 < f B
shows sum f M ≤ sum f (M ∪ N)

proof −
have 0 ≤ sum f N − sum f (M ∩ N)

using assms by (smt (verit) DiffD1 inf .cobounded2 UnCI sum-mono2)
then have sum f M ≤ sum f M + sum f N − sum f (M ∩ N)

by simp
also have ... = sum f (M ∪ N)

using sum-Un[OF assms(1 ,2), symmetric] .
finally show ?thesis .

qed

If bij-exists holds, one can obtain a function which is bijective between
the bins in P and the objects in V such that an object returned by the
function would cause the bin to exceed its capacity.
definition bij-exists :: ′a set set ⇒ ′a set ⇒ bool where

bij-exists P V = (∃ f . bij-betw f P V ∧ (∀B ∈ P. W B + w (f B) > c))

If P is a functionally correct solution of the bin packing problem, inv1
holds for the partial solution, and such a bijective function exists between
the bins in P1 and the objects in P2 ∪ wrap B2, the following strict lower
bound can be shown:
lemma P1-lower-bound-card:

assumes bp P inv1 P1 P2 B1 B2 V bij-exists P1 (
⋃

(P2 ∪ wrap B2))
shows card P1 + 1 ≤ card P

proof (cases ‹P1 = {}›)
case True
have finite P using assms(1) by simp
then have 1 ≤ card P using bp-NE [OF assms(1)]
by (metis Nat.add-0-right Suc-diff-1 Suc-le-mono card-gt-0-iff le0 mult-Suc-right

nat-mult-1)
then show ?thesis unfolding True by simp

next
note invrules = inv1E [OF assms(2)]
case False
obtain f where f-def : bij-betw f P1 (

⋃
(P2 ∪ wrap B2)) ∀B ∈ P1. W B + w (f

B) > c
using assms(3) unfolding bij-exists-def by blast

have FINITE : finite P1 finite (P2 ∪ wrap B2) finite (P1 ∪ P2 ∪ wrap B2) finite
(wrap B1 ∪ {{v} |v. v ∈ V })

using inv1E(1)[OF assms(2)] bp-sol-finite by blast+

have F : ∀B ∈ P2 ∪ wrap B2. finite B using invrules(1) by simp
have D: ∀A ∈ P2 ∪ wrap B2. ∀B ∈ P2 ∪ wrap B2. A 6= B −→ A ∩ B = {}

using bpE(1)[OF invrules(1)] unfolding pairwise-def disjnt-def by auto
have sum-eq: W (

⋃
(P2 ∪ wrap B2)) = (

∑
B ∈ P2 ∪ wrap B2. W B)

50

using sum.Union-disjoint[OF F D] by auto

have ∀B∈P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V }. 0 < W B
using bpE(2 ,3)[OF invrules(1)] weight by (metis (no-types, lifting) UnionI

bp-bins-finite invrules(1) sum-pos)
then have (

∑
B ∈ P1 ∪ P2 ∪ wrap B2. W B) ≤ (

∑
B ∈ P1 ∪ P2 ∪ wrap B2

∪ (wrap B1 ∪ {{v} |v. v ∈ V }). W B)
using sum-Un-ge[OF FINITE(3 ,4), of W] by blast

also have ... = (
∑

B ∈ P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V }. W
B) by (smt (verit) Un-assoc Un-commute)

also have ... = W U using sum-Un-eq-sum-sum[OF invrules(1), symmetric] .
finally have ∗: (

∑
B ∈ P1 ∪ P2 ∪ wrap B2. W B) ≤ W U .

— This follows from the fourth and final additional conjunct of inv1 and is
necessary to combine the sums of the bins of the two partial solutions. This does
not inherently follow from the union being a correct solution, as this need not be
the case if P1 and P2 ∪ wrap B2 happened to be equal.

have DISJNT : P1 ∩ (P2 ∪ wrap B2) = {} using invrules(5) by blast

— This part of the proof is based on the proof on page 72 of the article [2].
have c ∗ card P1 = (

∑
B ∈ P1. c) by simp

also have ... < (
∑

B ∈ P1. W B + w (f B))
using f-def (2) sum-strict-mono[OF FINITE(1) False] by fastforce

also have ... = (
∑

B ∈ P1. W B) + (
∑

B ∈ P1. w (f B))
by (simp add: Groups-Big.comm-monoid-add-class.sum.distrib)

also have ... = (
∑

B ∈ P1. W B) + W (
⋃

(P2 ∪ wrap B2)) unfolding
sum.reindex-bij-betw[OF f-def (1), of w] ..

also have ... = (
∑

B ∈ P1. W B) + (
∑

B ∈ P2 ∪ wrap B2. W B) unfolding
sum-eq ..

also have ... = (
∑

B ∈ P1 ∪ P2 ∪ wrap B2. W B) using sum.union-disjoint[OF
FINITE(1 ,2) DISJNT , of W] by (simp add: Un-assoc)

also have ... ≤ (
∑

u ∈ U . w u) using ∗ .
also have ... ≤ c ∗ card P using sum-lower-bound-card[OF assms(1)] .
finally show ?thesis

by (simp flip: of-nat-mult)
qed

As card (wrap ?B) ≤ 1 holds, it follows that the amount of bins in P1

∪ wrap B1 are a lower bound for the amount of bins in P.
lemma P1-B1-lower-bound-card:

assumes bp P inv1 P1 P2 B1 B2 V bij-exists P1 (
⋃

(P2 ∪ wrap B2))
shows card (P1 ∪ wrap B1) ≤ card P

proof −
have card (P1 ∪ wrap B1) ≤ card P1 + card (wrap B1)

using card-Un-le by blast
also have ... ≤ card P1 + 1 using wrap-card by simp
also have ... ≤ card P using P1-lower-bound-card[OF assms] .
finally show ?thesis .

qed

51

If inv1 holds, there are at most half as many bins in P2 as there are
objects in P2, and we can again obtain a bijective function between the bins
in P1 and the objects of the second partial solution, then the amount of bins
in the second partial solution are a strict lower bound for half the bins of
the first partial solution.
lemma P2-B2-lower-bound-P1:

assumes inv1 P1 P2 B1 B2 V 2 ∗ card P2 ≤ card (
⋃

P2) bij-exists P1 (
⋃

(P2

∪ wrap B2))
shows 2 ∗ card (P2 ∪ wrap B2) ≤ card P1 + 1

proof −
note invrules = inv1E [OF assms(1)] and bprules = bpE [OF invrules(1)]

have pairwise disjnt (P2 ∪ wrap B2)
using bprules(1) pairwise-subset by blast

moreover have B2 /∈ P2 using invrules(4) by simp
ultimately have DISJNT :

⋃
P2 ∩ B2 = {}

by (auto, metis (no-types, opaque-lifting) sup-bot.right-neutral Un-insert-right
disjnt-iff mk-disjoint-insert pairwise-insert wrap-Un)

have finite (
⋃

P2) using U-Finite bprules(3) by auto
have finite B2 using bp-bins-finite[OF invrules(1)] wrap-not-empty by blast
have finite P2 finite (wrap B2) using bp-sol-finite[OF invrules(1)] by blast+
have DISJNT2 : P2 ∩ wrap B2 = {} unfolding wrap-def using ‹B2 /∈ P2› by

auto
have card (wrap B2) ≤ card B2

proof (cases ‹B2 = {}›)
case False
then have 1 ≤ card B2 by (simp add: leI ‹finite B2›)
then show ?thesis using wrap-card[of B2] by linarith

qed simp

— This part of the proof is based on the proof on page 73 of the article [2].
from assms(2) have 2 ∗ card P2 + 2 ∗ card (wrap B2) ≤ card (

⋃
P2) + card

(wrap B2) + 1
using wrap-card[of B2] by linarith

then have 2 ∗ (card P2 + card (wrap B2)) ≤ card (
⋃

P2) + card B2 + 1
using ‹card (wrap B2) ≤ card B2› by simp

then have 2 ∗ (card (P2 ∪ wrap B2)) ≤ card (
⋃

P2 ∪ B2) + 1
using card-Un-disjoint[OF ‹finite (

⋃
P2)› ‹finite B2› DISJNT]

and card-Un-disjoint[OF ‹finite P2› ‹finite (wrap B2)› DISJNT2] by argo
then have 2 ∗ (card (P2 ∪ wrap B2)) ≤ card (

⋃
(P2 ∪ wrap B2)) + 1

by (cases ‹B2 = {}›) (auto simp: Un-commute)
then show 2 ∗ (card (P2 ∪ wrap B2)) ≤ card P1 + 1

using assms(3) bij-betw-same-card unfolding bij-exists-def by metis
qed

52

5.2.3 Proving the Approximation Factor

We define inv2 as it is defined in the article. These conjuncts allow us to
prove the desired approximation factor.
definition inv2 :: ′a set set ⇒ ′a set set ⇒ ′a set ⇒ ′a set ⇒ ′a set ⇒ bool where

inv2 P1 P2 B1 B2 V ←→ inv1 P1 P2 B1 B2 V — inv1 holds for the partial
solution

∧ (V ∩ L 6= {} −→ (∀B ∈ P1 ∪ wrap B1. B ∩ L 6= {})) —
If there are still large objects left, then every bin of the first partial solution must
contain a large object

∧ bij-exists P1 (
⋃
(P2 ∪ wrap B2)) — There exists a bijective

function between the bins of the first partial solution and the objects of the second
one

∧ (2 ∗ card P2 ≤ card (
⋃

P2)) — There are at most twice as
many bins in P2 as there are objects in P2

lemma inv2E :
assumes inv2 P1 P2 B1 B2 V
shows inv1 P1 P2 B1 B2 V

and V ∩ L 6= {} =⇒ ∀B ∈ P1 ∪ wrap B1. B ∩ L 6= {}
and bij-exists P1 (

⋃
(P2 ∪ wrap B2))

and 2 ∗ card P2 ≤ card (
⋃

P2)
using assms unfolding inv2-def by blast+

lemma inv2I :
assumes inv1 P1 P2 B1 B2 V

and V ∩ L 6= {} =⇒ ∀B ∈ P1 ∪ wrap B1. B ∩ L 6= {}
and bij-exists P1 (

⋃
(P2 ∪ wrap B2))

and 2 ∗ card P2 ≤ card (
⋃

P2)
shows inv2 P1 P2 B1 B2 V
using assms unfolding inv2-def by blast

If P is a correct solution of the bin packing problem, inv2 holds for the
partial solution, and there are no more small objects left to be distributed,
then the amount of bins of the partial solution is no larger than 3 / 2 of
the amount of bins in P. This proof strongly follows the proof in Theorem
4 .1 of the article [2].
lemma bin-packing-lower-bound-card:

assumes V ∩ S = {} inv2 P1 P2 B1 B2 V bp P
shows card (P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V }) ≤ 3 / 2 ∗ card

P
proof (cases ‹V = {}›)

note invrules = inv2E [OF assms(2)]
case True
then have card (P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V })

= card (P1 ∪ wrap B1 ∪ P2 ∪ wrap B2) by simp
also have ... ≤ card (P1 ∪ wrap B1) + card (P2 ∪ wrap B2)

using card-Un-le[of ‹P1 ∪ wrap B1›] by (simp add: Un-assoc)
also have ... ≤ card P + card (P2 ∪ wrap B2)

53

using P1-B1-lower-bound-card[OF assms(3) invrules(1 ,3)] by simp
also have ... ≤ card P + card P / 2

using P2-B2-lower-bound-P1[OF invrules(1 ,4 ,3)]
and P1-lower-bound-card[OF assms(3) invrules(1 ,3)] by linarith

finally show ?thesis by linarith
next

note invrules = inv2E [OF assms(2)]
case False
have U = S ∪ L using S-def L-def by blast
then have ∗: V = V ∩ L

using bpE(3)[OF inv1E(1)[OF invrules(1)]]
and assms(1) by blast

with False have NE : V ∩ L 6= {} by simp
have card (P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V })

= card (P1 ∪ wrap B1 ∪ {{v} |v. v ∈ V ∩ L} ∪ P2 ∪ wrap B2)
using ∗ by (simp add: Un-commute Un-assoc)

also have ... ≤ card (P1 ∪ wrap B1 ∪ {{v} |v. v ∈ V ∩ L}) + card (P2 ∪ wrap
B2)

using card-Un-le[of ‹P1 ∪ wrap B1 ∪ {{v} |v. v ∈ V ∩ L}›] by (simp add:
Un-assoc)

also have ... ≤ card P + card (P2 ∪ wrap B2)
using L-bins-lower-bound-card[OF assms(3) invrules(1) invrules(2)[OF NE]]

by linarith
also have ... ≤ card P + card P / 2

using P2-B2-lower-bound-P1[OF invrules(1 ,4 ,3)]
and P1-lower-bound-card[OF assms(3) invrules(1 ,3)] by linarith

finally show ?thesis by linarith
qed

We define inv3 as it is defined in the article. This final conjunct allows
us to prove that the invariant will be maintained by the algorithm.
definition inv3 :: ′a set set ⇒ ′a set set ⇒ ′a set ⇒ ′a set ⇒ ′a set ⇒ bool where

inv3 P1 P2 B1 B2 V ←→ inv2 P1 P2 B1 B2 V ∧ B2 ⊆ S

lemma inv3E :
assumes inv3 P1 P2 B1 B2 V
shows inv2 P1 P2 B1 B2 V and B2 ⊆ S
using assms unfolding inv3-def by blast+

lemma inv3I :
assumes inv2 P1 P2 B1 B2 V and B2 ⊆ S
shows inv3 P1 P2 B1 B2 V
using assms unfolding inv3-def by blast

lemma loop-init:
inv3 {} {} {} {} U

proof −
have ∗: inv1 {} {} {} {} U

unfolding bp-def partition-on-def pairwise-def wrap-def inv1-def

54

using weight by auto
have bij-exists {} (

⋃
({} ∪ wrap {}))

using bij-betwI ′ unfolding bij-exists-def by fastforce
from inv2I [OF ∗ - this] have inv2 {} {} {} {} U by auto
from inv3I [OF this] show ?thesis by blast

qed

If B1 is empty and there are no large objects left, then inv3 will be
maintained if B1 is initialized with u ∈ V ∩ S.
lemma loop-stepA:

assumes inv3 P1 P2 B1 B2 V B1 = {} V ∩ L = {} u ∈ V ∩ S
shows inv3 P1 P2 {u} B2 (V − {u})

proof −
note invrules = inv2E [OF inv3E(1)[OF assms(1)]]
have WEIGHT : W B1 + w u ≤ c using S-def assms(2 ,4) by simp
from assms(4) have u ∈ V by blast
from inv1-stepA[OF invrules(1) this WEIGHT] assms(2) have 1 : inv1 P1 P2

{u} B2 (V − {u}) by simp
have 2 : (V − {u}) ∩ L 6= {} =⇒ ∀B∈P1 ∪ wrap {u}. B ∩ L 6= {} using

assms(3) by blast
from inv2I [OF 1 2] invrules have inv2 P1 P2 {u} B2 (V − {u}) by blast
from inv3I [OF this] show ?thesis using inv3E(2)[OF assms(1)] .

qed

If B1 is empty and there are large objects left, then inv3 will be main-
tained if B1 is initialized with u ∈ V ∩ L.
lemma loop-stepB:

assumes inv3 P1 P2 B1 B2 V B1 = {} u ∈ V ∩ L
shows inv3 P1 P2 {u} B2 (V − {u})

proof −
note invrules = inv2E [OF inv3E(1)[OF assms(1)]]
have WEIGHT : W B1 + w u ≤ c using L-def weight assms(2 ,3) by simp
from assms(3) have u ∈ V by blast
from inv1-stepA[OF invrules(1) this WEIGHT] assms(2) have 1 : inv1 P1 P2

{u} B2 (V − {u}) by simp
have ∀B∈P1. B ∩ L 6= {} using assms(3) invrules(2) by blast
then have 2 : (V − {u}) ∩ L 6= {} =⇒ ∀B∈P1 ∪ wrap {u}. B ∩ L 6= {}
using assms(3) by (metis Int-iff UnE empty-iff insertE singletonI wrap-not-empty)

from inv2I [OF 1 2] invrules have inv2 P1 P2 {u} B2 (V − {u}) by blast
from inv3I [OF this] show ?thesis using inv3E(2)[OF assms(1)] .

qed

If B1 is not empty and u ∈ V ∩ S does not exceed its maximum capacity,
then inv3 will be maintained if B1 and {u} are replaced with B1 ∪ {u}.
lemma loop-stepC :

assumes inv3 P1 P2 B1 B2 V B1 6= {} u ∈ V ∩ S W B1 + w(u) ≤ c
shows inv3 P1 P2 (B1 ∪ {u}) B2 (V − {u})

proof −
note invrules = inv2E [OF inv3E(1)[OF assms(1)]]

55

from assms(3) have u ∈ V by blast
from inv1-stepA[OF invrules(1) this assms(4)] have 1 : inv1 P1 P2 (B1 ∪ {u})

B2 (V − {u}) .
have (V − {u}) ∩ L 6= {} =⇒ ∀B∈P1 ∪ wrap B1. B ∩ L 6= {} using invrules(2)

by blast
then have 2 : (V − {u}) ∩ L 6= {} =⇒ ∀B∈P1 ∪ wrap (B1 ∪ {u}). B ∩ L 6=
{}

by (metis Int-commute Un-empty-right Un-insert-right assms(2) disjoint-insert(2)
insert-iff wrap-not-empty)

from inv2I [OF 1 2] invrules have inv2 P1 P2 (B1 ∪ {u}) B2 (V − {u}) by
blast

from inv3I [OF this] show ?thesis using inv3E(2)[OF assms(1)] .
qed

If B1 is not empty and u ∈ V ∩ S does exceed its maximum capacity
but not the capacity of B2, then inv3 will be maintained if B1 is added to
P1 and emptied, and B2 and {u} are replaced with B2 ∪ {u}.
lemma loop-stepD:

assumes inv3 P1 P2 B1 B2 V B1 6= {} u ∈ V ∩ S W B1 + w(u) > c W B2 +
w(u) ≤ c

shows inv3 (P1 ∪ wrap B1) P2 {} (B2 ∪ {u}) (V − {u})
proof −

note invrules = inv2E [OF inv3E(1)[OF assms(1)]]
from assms(3) have u ∈ V by blast
from inv1-stepB[OF invrules(1) this assms(5)] have 1 : inv1 (P1 ∪ wrap B1) P2

{} (B2 ∪ {u}) (V − {u}) .

have 2 : (V − {u}) ∩ L 6= {} =⇒ ∀B∈P1 ∪ wrap B1 ∪ wrap {}. B ∩ L 6= {}
using invrules(2) unfolding wrap-empty by blast

from invrules(3) obtain f where f-def : bij-betw f P1 (
⋃

(P2 ∪ wrap B2))
∀B∈P1. c < W B + w (f B) unfolding bij-exists-def by blast

have B1 /∈ P1 using inv1E(3)[OF invrules(1)] by blast
have u /∈ (

⋃
(P2 ∪ wrap B2)) using inv1E(2)[OF invrules(1)] assms(3) by

blast
then have (

⋃
(P2 ∪ wrap (B2 ∪ {u}))) = (

⋃
(P2 ∪ wrap B2 ∪ {{u}}))

by (metis Sup-empty Un-assoc Union-Un-distrib ccpo-Sup-singleton wrap-empty
wrap-not-empty)

also have ... = (
⋃

(P2 ∪ wrap B2)) ∪ {u} by simp
finally have UN : (

⋃
(P2 ∪ wrap (B2 ∪ {u}))) = (

⋃
(P2 ∪ wrap B2)) ∪ {u} .

have wrap B1 = {B1} using wrap-not-empty[of B1] assms(2) by simp
let ?f = f (B1 := u)
have BIJ : bij-betw ?f (P1 ∪ wrap B1) (

⋃
(P2 ∪ wrap (B2 ∪ {u})))

unfolding wrap-empty ‹wrap B1 = {B1}› UN using f-def (1) ‹B1 /∈ P1› ‹u /∈
(
⋃

(P2 ∪ wrap B2))›
by (metis (no-types, lifting) bij-betw-cong fun-upd-other fun-upd-same notIn-Un-bij-betw3)

have c < W B1 + w (?f B1) using assms(4) by simp
then have (∀B∈P1 ∪ wrap B1. c < W B + w (?f B))

unfolding ‹wrap B1 = {B1}› using f-def (2) by simp

56

with BIJ have bij-betw ?f (P1 ∪ wrap B1) (
⋃

(P2 ∪ wrap (B2 ∪ {u})))
∧ (∀B∈P1 ∪ wrap B1. c < W B + w (?f B)) by blast

then have 3 : bij-exists (P1 ∪ wrap B1) (
⋃

(P2 ∪ wrap (B2 ∪ {u})))
unfolding bij-exists-def by blast

from inv2I [OF 1 2 3] have inv2 (P1 ∪ wrap B1) P2 {} (B2 ∪ {u}) (V − {u})
using invrules(4) by blast

from inv3I [OF this] show ?thesis using inv3E(2)[OF assms(1)] assms(3) by
blast
qed

If the maximum capacity of B2 is exceeded by u ∈ V ∩ S, then B2 must
contain at least two objects.
lemma B2-at-least-two-objects:

assumes inv3 P1 P2 B1 B2 V u ∈ V ∩ S W B2 + w(u) > c
shows 2 ≤ card B2

proof (rule ccontr , simp add: not-le)
have FINITE : finite B2 using inv1E(1)[OF inv2E(1)[OF inv3E(1)[OF assms(1)]]]

by (metis (no-types, lifting) Finite-Set.finite.simps U-Finite Union-Un-distrib
bpE(3) ccpo-Sup-singleton finite-Un wrap-not-empty)

assume card B2 < 2
then consider (0) card B2 = 0 | (1) card B2 = 1 by linarith
then show False proof cases

case 0 then have B2 = {} using FINITE by simp
then show ?thesis using assms(2 ,3) S-def by simp

next
case 1 then obtain v where B2 = {v}

using card-1-singletonE by auto
with inv3E(2)[OF assms(1)] have 2 ∗ w v ≤ c using S-def by simp
moreover from ‹B2 = {v}› have W B2 = w v by simp
ultimately show ?thesis using assms(2 ,3) S-def by simp

qed
qed

If B1 is not empty and u ∈ V ∩ S exceeds the maximum capacity of
both B1 and B2, then inv3 will be maintained if B1 and B2 are added to P1

and P2 respectively, emptied, and B2 initialized with u.
lemma loop-stepE :

assumes inv3 P1 P2 B1 B2 V B1 6= {} u ∈ V ∩ S W B1 + w(u) > c W B2 +
w(u) > c

shows inv3 (P1 ∪ wrap B1) (P2 ∪ wrap B2) {} {u} (V − {u})
proof −

note invrules = inv2E [OF inv3E(1)[OF assms(1)]]
from assms(3) have u ∈ V by blast
from inv1-stepC [OF invrules(1) this] have 1 : inv1 (P1 ∪ wrap B1) (P2 ∪ wrap

B2) {} {u} (V − {u}) .

have 2 : (V − {u}) ∩ L 6= {} =⇒ ∀B∈P1 ∪ wrap B1 ∪ wrap {}. B ∩ L 6= {}
using invrules(2) unfolding wrap-empty by blast

57

from invrules(3) obtain f where f-def : bij-betw f P1 (
⋃

(P2 ∪ wrap B2))
∀B∈P1. c < W B + w (f B) unfolding bij-exists-def by blast

have B1 /∈ P1 using inv1E(3)[OF invrules(1)] by blast
have u /∈ (

⋃
(P2 ∪ wrap B2)) using inv1E(2)[OF invrules(1)] assms(3) by

blast
have (

⋃
(P2 ∪ wrap B2 ∪ wrap {u})) = (

⋃
(P2 ∪ wrap B2 ∪ {{u}})) unfolding

wrap-def by simp
also have ... = (

⋃
(P2 ∪ wrap B2)) ∪ {u} by simp

finally have UN : (
⋃

(P2 ∪ wrap B2 ∪ wrap {u})) = (
⋃

(P2 ∪ wrap B2)) ∪
{u} .

have wrap B1 = {B1} using wrap-not-empty[of B1] assms(2) by simp
let ?f = f (B1 := u)
have BIJ : bij-betw ?f (P1 ∪ wrap B1) (

⋃
(P2 ∪ wrap B2 ∪ wrap {u}))

unfolding wrap-empty ‹wrap B1 = {B1}› UN using f-def (1) ‹B1 /∈ P1› ‹u /∈
(
⋃

(P2 ∪ wrap B2))›
by (metis (no-types, lifting) bij-betw-cong fun-upd-other fun-upd-same notIn-Un-bij-betw3)

have c < W B1 + w (?f B1) using assms(4) by simp
then have (∀B∈P1 ∪ wrap B1. c < W B + w (?f B))

unfolding ‹wrap B1 = {B1}› using f-def (2) by simp
with BIJ have bij-betw ?f (P1 ∪ wrap B1) (

⋃
(P2 ∪ wrap B2 ∪ wrap {u}))

∧ (∀B∈P1 ∪ wrap B1. c < W B + w (?f B)) by blast
then have 3 : bij-exists (P1 ∪ wrap B1) (

⋃
(P2 ∪ wrap B2 ∪ wrap {u}))

unfolding bij-exists-def by blast

have 4 : 2 ∗ card (P2 ∪ wrap B2) ≤ card (
⋃

(P2 ∪ wrap B2))
proof −

note bprules = bpE [OF inv1E(1)[OF invrules(1)]]
have pairwise disjnt (P2 ∪ wrap B2)

using bprules(1) pairwise-subset by blast
moreover have B2 /∈ P2 using inv1E(4)[OF invrules(1)] by simp
ultimately have DISJNT :

⋃
P2 ∩ B2 = {}

by (auto, metis (no-types, opaque-lifting) sup-bot.right-neutral Un-insert-right
disjnt-iff mk-disjoint-insert pairwise-insert wrap-Un)

have finite (
⋃

P2) using U-Finite bprules(3) by auto
have finite B2 using inv1E(1)[OF invrules(1)] bp-bins-finite wrap-not-empty

by blast

have 2 ∗ card (P2 ∪ wrap B2) ≤ 2 ∗ (card P2 + card (wrap B2))
using card-Un-le[of P2 ‹wrap B2›] by simp

also have ... ≤ 2 ∗ card P2 + 2 using wrap-card by auto
also have ... ≤ card (

⋃
P2) + 2 using invrules(4) by simp

also have ... ≤ card (
⋃

P2) + card B2 using B2-at-least-two-objects[OF
assms(1 ,3 ,5)] by simp

also have ... = card (
⋃

(P2 ∪ {B2})) using DISJNT card-Un-disjoint[OF
‹finite (

⋃
P2)› ‹finite B2›] by (simp add: Un-commute)

also have ... = card (
⋃

(P2 ∪ wrap B2)) by (cases ‹B2 = {}›) auto
finally show ?thesis .

qed

58

from inv2I [OF 1 2 3 4] have inv2 (P1 ∪ wrap B1) (P2 ∪ wrap B2) {} {u} (V
− {u}) .

from inv3I [OF this] show ?thesis using assms(3) by blast
qed

The bin packing algorithm as it is proposed in the article [2]. P will not
only be a correct solution of the bin packing problem, but the amount of
bins will be a lower bound for 3 / 2 of the amount of bins of any correct
solution Q, and thus guarantee an approximation factor of 3 / 2 for the
optimum.
lemma bp-approx:
VARS P P1 P2 B1 B2 V u
{True}
P1 := {}; P2 := {}; B1 := {}; B2 := {}; V := U ;
WHILE V ∩ S 6= {} INV {inv3 P1 P2 B1 B2 V } DO

IF B1 6= {}
THEN u := (SOME u. u ∈ V ∩ S)
ELSE IF V ∩ L 6= {}

THEN u := (SOME u. u ∈ V ∩ L)
ELSE u := (SOME u. u ∈ V ∩ S) FI FI ;

V := V − {u};
IF W (B1) + w(u) ≤ c
THEN B1 := B1 ∪ {u}
ELSE IF W (B2) + w(u) ≤ c

THEN B2 := B2 ∪ {u}
ELSE P2 := P2 ∪ wrap B2; B2 := {u} FI ;
P1 := P1 ∪ wrap B1; B1 := {} FI

OD;
P := P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} | v. v ∈ V }
{bp P ∧ (∀Q. bp Q −→ card P ≤ 3 / 2 ∗ card Q)}

proof (vcg, goal-cases)
case (1 P P1 P2 B1 B2 V u)

then show ?case by (simp add: loop-init)
next

case (2 P P1 P2 B1 B2 V u)
then have INV : inv3 P1 P2 B1 B2 V ..
let ?s = SOME u. u ∈ V ∩ S
let ?l = SOME u. u ∈ V ∩ L
have LIN : V ∩ L 6= {} =⇒ ?l ∈ V ∩ L using some-in-eq by metis
then have LWEIGHT : V ∩ L 6= {} =⇒ w ?l ≤ c using L-def weight by blast
from 2 have V ∩ S 6= {} ..
then have IN : ?s ∈ V ∩ S using some-in-eq by metis
then have w ?s ≤ c using S-def by simp

then show ?case
using LWEIGHT loop-stepA[OF INV - - IN] loop-stepB[OF INV - LIN]

loop-stepC [OF INV - IN]
and loop-stepD[OF INV - IN] loop-stepE [OF INV - IN] by (cases ‹B1 = {}›,

59

cases ‹V ∩ L = {}›) auto
next

case (3 P P1 P2 B1 B2 V u)
then have INV : inv3 P1 P2 B1 B2 V and EMPTY : V ∩ S = {} by blast+
from inv1E(1)[OF inv2E(1)[OF inv3E(1)[OF INV]]] and bin-packing-lower-bound-card[OF

EMPTY inv3E(1)[OF INV]]
show ?case by blast

qed

end

5.3 The Full Linear Time Version of the Proposed Algorithm
Finally, we prove the Algorithm proposed on page 78 of the article [2]. This
version generates the S and L sets beforehand and uses them directly to
calculate the solution, thus removing the need for intersection operations,
and ensuring linear time if we can perform insertion, removal, and selection
of an element, the union of two sets, and the emptiness test in constant time
[2].
locale BinPacking-Complete =

fixes U :: ′a set — A finite, non-empty set of objects
and w :: ′a ⇒ real — A mapping from objects to their respective weights

(positive real numbers)
and c :: nat — The maximum capacity of a bin (as a natural number)

assumes weight: ∀ u ∈ U . 0 < w(u) ∧ w(u) ≤ c
and U-Finite: finite U
and U-NE : U 6= {}

begin

The correctness proofs will be identical to the ones of the simplified
algorithm.
abbreviation W :: ′a set ⇒ real where

W B ≡ (
∑

u ∈ B. w(u))

definition bp :: ′a set set ⇒ bool where
bp P ←→ partition-on U P ∧ (∀B ∈ P. W (B) ≤ c)

lemma bpE :
assumes bp P
shows pairwise disjnt P {} /∈ P

⋃
P = U ∀B ∈ P. W (B) ≤ c

using assms unfolding bp-def partition-on-def by blast+

lemma bpI :
assumes pairwise disjnt P {} /∈ P

⋃
P = U ∀B ∈ P. W (B) ≤ c

shows bp P
using assms unfolding bp-def partition-on-def by blast

definition inv1 :: ′a set set ⇒ ′a set set ⇒ ′a set ⇒ ′a set ⇒ ′a set ⇒ bool where

60

inv1 P1 P2 B1 B2 V ←→ bp (P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈
V }) — A correct solution to the bin packing problem

∧
⋃
(P1 ∪ wrap B1 ∪ P2 ∪ wrap B2) = U − V — The partial

solution does not contain objects that have not yet been assigned
∧ B1 /∈ (P1 ∪ P2 ∪ wrap B2) — B1 is distinct from all the other

bins
∧ B2 /∈ (P1 ∪ wrap B1 ∪ P2) — B2 is distinct from all the other

bins
∧ (P1 ∪ wrap B1) ∩ (P2 ∪ wrap B2) = {} — The first and

second partial solutions are disjoint from each other.

lemma inv1E :
assumes inv1 P1 P2 B1 B2 V
shows bp (P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V })

and
⋃
(P1 ∪ wrap B1 ∪ P2 ∪ wrap B2) = U − V

and B1 /∈ (P1 ∪ P2 ∪ wrap B2)
and B2 /∈ (P1 ∪ wrap B1 ∪ P2)
and (P1 ∪ wrap B1) ∩ (P2 ∪ wrap B2) = {}

using assms unfolding inv1-def by auto

lemma inv1I :
assumes bp (P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V })

and
⋃
(P1 ∪ wrap B1 ∪ P2 ∪ wrap B2) = U − V

and B1 /∈ (P1 ∪ P2 ∪ wrap B2)
and B2 /∈ (P1 ∪ wrap B1 ∪ P2)
and (P1 ∪ wrap B1) ∩ (P2 ∪ wrap B2) = {}

shows inv1 P1 P2 B1 B2 V
using assms unfolding inv1-def by blast

lemma wrap-Un [simp]: wrap (M ∪ {x}) = {M ∪ {x}} unfolding wrap-def by
simp
lemma wrap-empty [simp]: wrap {} = {} unfolding wrap-def by simp
lemma wrap-not-empty [simp]: M 6= {} ←→ wrap M = {M} unfolding wrap-def
by simp

lemma inv1-stepA:
assumes inv1 P1 P2 B1 B2 V u ∈ V W (B1) + w(u) ≤ c
shows inv1 P1 P2 (B1 ∪ {u}) B2 (V − {u})

proof −
note invrules = inv1E [OF assms(1)] and bprules = bpE [OF invrules(1)]

— Rule 1: Pairwise Disjoint
have NOTIN : ∀M ∈ P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V − {u}}.

u /∈ M
using invrules(2) assms(2) by blast

have {{v} |v. v ∈ V } = {{u}} ∪ {{v} |v. v ∈ V − {u}}
using assms(2) by blast

then have pairwise disjnt (P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ ({{u}} ∪ {{v} |v.
v ∈ V − {u}}))

61

using bprules(1) assms(2) by simp
then have pairwise disjnt (wrap B1 ∪ {{u}} ∪ P1 ∪ P2 ∪ wrap B2 ∪ {{v} |v.

v ∈ V − {u}}) by (simp add: Un-commute)
then have assm: pairwise disjnt (wrap B1 ∪ {{u}} ∪ (P1 ∪ P2 ∪ wrap B2 ∪
{{v} |v. v ∈ V − {u}})) by (simp add: Un-assoc)

have pairwise disjnt ({B1 ∪ {u}} ∪ (P1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V −
{u}}))

proof (cases ‹B1 = {}›)
case True with assm show ?thesis by simp

next
case False
with assm have assm: pairwise disjnt ({B1} ∪ {{u}} ∪ (P1 ∪ P2 ∪ wrap B2

∪ {{v} |v. v ∈ V − {u}})) by simp
from NOTIN have {u} /∈ P1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V − {u}} by

blast
from pairwise-disjnt-Un[OF assm - this] invrules(2 ,3) show ?thesis

using False by auto
qed
then have 1 : pairwise disjnt (P1 ∪ wrap (B1 ∪ {u}) ∪ P2 ∪ wrap B2 ∪ {{v}
|v. v ∈ V − {u}})

unfolding wrap-Un by simp

— Rule 2: No empty sets
from bprules(2) have 2 : {} /∈ P1 ∪ wrap (B1 ∪ {u}) ∪ P2 ∪ wrap B2 ∪ {{v}
|v. v ∈ V − {u}}

unfolding wrap-def by simp

— Rule 3: Union preserved
from bprules(3) have

⋃
(P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{u}} ∪ {{v} |v. v

∈ V − {u}}) = U
using assms(2) by blast

then have 3 :
⋃

(P1 ∪ wrap (B1 ∪ {u}) ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V −
{u}}) = U

unfolding wrap-def by force

— Rule 4: Weights below capacity
have 0 < w u using weight assms(2) bprules(3) by blast
have finite B1 using bprules(3) U-Finite by (cases ‹B1 = {}›) auto
then have W (B1 ∪ {u}) ≤ W B1 + w u using ‹0 < w u› by (cases ‹u ∈ B1›)

(auto simp: insert-absorb)
also have ... ≤ c using assms(3) .
finally have W (B1 ∪ {u}) ≤ c .
then have ∀B ∈ wrap (B1 ∪ {u}). W B ≤ c unfolding wrap-Un by blast
moreover have ∀B∈P1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V − {u}}. W B ≤ c

using bprules(4) by blast
ultimately have 4 : ∀B∈P1 ∪ wrap (B1 ∪ {u}) ∪ P2 ∪ wrap B2 ∪ {{v} |v. v
∈ V − {u}}. W B ≤ c by blast

from bpI [OF 1 2 3 4] have 1 : bp (P1 ∪ wrap (B1 ∪ {u}) ∪ P2 ∪ wrap B2 ∪
{{v} |v. v ∈ V − {u}}) .

62

— Auxiliary information is preserved
have u ∈ U using assms(2) bprules(3) by blast
then have R: U − (V − {u}) = U − V ∪ {u} by blast
have L:

⋃
(P1 ∪ wrap (B1 ∪ {u}) ∪ P2 ∪ wrap B2) =

⋃
(P1 ∪ wrap B1 ∪ P2

∪ wrap B2) ∪ {u}
unfolding wrap-def using NOTIN by auto

have 2 :
⋃

(P1 ∪ wrap (B1 ∪ {u}) ∪ P2 ∪ wrap B2) = U − (V − {u})
unfolding L R invrules(2) ..

have 3 : B1 ∪ {u} /∈ P1 ∪ P2 ∪ wrap B2

using NOTIN by auto
have 4 : B2 /∈ P1 ∪ wrap (B1 ∪ {u}) ∪ P2

using invrules(4) NOTIN unfolding wrap-def by fastforce
have 5 : (P1 ∪ wrap (B1 ∪ {u})) ∩ (P2 ∪ wrap B2) = {}

using invrules(5) NOTIN unfolding wrap-Un by auto

from inv1I [OF 1 2 3 4 5] show ?thesis .
qed

lemma inv1-stepB:
assumes inv1 P1 P2 B1 B2 V u ∈ V W B2 + w u ≤ c
shows inv1 (P1 ∪ wrap B1) P2 {} (B2 ∪ {u}) (V − {u})

proof −
note invrules = inv1E [OF assms(1)] and bprules = bpE [OF invrules(1)]

have NOTIN : ∀M ∈ P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V − {u}}.
u /∈ M

using invrules(2) assms(2) by blast
have {{v} |v. v ∈ V } = {{u}} ∪ {{v} |v. v ∈ V − {u}}

using assms(2) by blast
then have pairwise disjnt (P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{u}} ∪ {{v} |v.

v ∈ V − {u}})
using bprules(1) assms(2) by simp

then have assm: pairwise disjnt (wrap B2 ∪ {{u}} ∪ (P1 ∪ wrap B1 ∪ P2 ∪
{{v} |v. v ∈ V − {u}}))

by (simp add: Un-assoc Un-commute)
have pairwise disjnt ({B2 ∪ {u}} ∪ (P1 ∪ wrap B1 ∪ P2 ∪ {{v} |v. v ∈ V −
{u}}))

proof (cases ‹B2 = {}›)
case True with assm show ?thesis by simp

next
case False
with assm have assm: pairwise disjnt ({B2} ∪ {{u}} ∪ (P1 ∪ wrap B1 ∪ P2

∪ {{v} |v. v ∈ V − {u}})) by simp
from NOTIN have {u} /∈ P1 ∪ wrap B1 ∪ P2 ∪ {{v} |v. v ∈ V − {u}} by

blast
from pairwise-disjnt-Un[OF assm - this] invrules(2 ,4) show ?thesis

using False by auto
qed

63

then have 1 : pairwise disjnt (P1 ∪ wrap B1 ∪ wrap {} ∪ P2 ∪ wrap (B2 ∪ {u})
∪ {{v} |v. v ∈ V − {u}})

unfolding wrap-Un by simp

— Rule 2: No empty sets
from bprules(2) have 2 : {} /∈ P1 ∪ wrap B1 ∪ wrap {} ∪ P2 ∪ wrap (B2 ∪
{u}) ∪ {{v} |v. v ∈ V − {u}}

unfolding wrap-def by simp

— Rule 3: Union preserved
from bprules(3) have

⋃
(P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{u}} ∪ {{v} |v. v

∈ V − {u}}) = U
using assms(2) by blast

then have 3 :
⋃

(P1 ∪ wrap B1 ∪ wrap {} ∪ P2 ∪ wrap (B2 ∪ {u}) ∪ {{v} |v.
v ∈ V − {u}}) = U

unfolding wrap-def by force

— Rule 4: Weights below capacity
have 0 < w u using weight assms(2) bprules(3) by blast
have finite B2 using bprules(3) U-Finite by (cases ‹B2 = {}›) auto
then have W (B2 ∪ {u}) ≤ W B2 + w u using ‹0 < w u› by (cases ‹u ∈ B2›)

(auto simp: insert-absorb)
also have ... ≤ c using assms(3) .
finally have W (B2 ∪ {u}) ≤ c .
then have ∀B ∈ wrap (B2 ∪ {u}). W B ≤ c unfolding wrap-Un by blast
moreover have ∀B∈P1 ∪ wrap B1 ∪ P2 ∪ {{v} |v. v ∈ V − {u}}. W B ≤ c

using bprules(4) by blast
ultimately have 4 : ∀B∈P1 ∪ wrap B1 ∪ wrap {} ∪ P2 ∪ wrap (B2 ∪ {u}) ∪
{{v} |v. v ∈ V − {u}}. W B ≤ c

by auto
from bpI [OF 1 2 3 4] have 1 : bp (P1 ∪ wrap B1 ∪ wrap {} ∪ P2 ∪ wrap (B2

∪ {u}) ∪ {{v} |v. v ∈ V − {u}}) .

— Auxiliary information is preserved
have u ∈ U using assms(2) bprules(3) by blast
then have R: U − (V − {u}) = U − V ∪ {u} by blast
have L:

⋃
(P1 ∪ wrap B1 ∪ wrap {} ∪ P2 ∪ wrap (B2 ∪ {u})) =

⋃
(P1 ∪

wrap B1 ∪ wrap {} ∪ P2 ∪ wrap B2) ∪ {u}
unfolding wrap-def using NOTIN by auto

have 2 :
⋃

(P1 ∪ wrap B1 ∪ wrap {} ∪ P2 ∪ wrap (B2 ∪ {u})) = U − (V −
{u})

unfolding L R using invrules(2) by simp
have 3 : {} /∈ P1 ∪ wrap B1 ∪ P2 ∪ wrap (B2 ∪ {u})

using bpE(2)[OF 1] by simp
have 4 : B2 ∪ {u} /∈ P1 ∪ wrap B1 ∪ wrap {} ∪ P2

using NOTIN by auto
have 5 : (P1 ∪ wrap B1 ∪ wrap {}) ∩ (P2 ∪ wrap (B2 ∪ {u})) = {}

using invrules(5) NOTIN unfolding wrap-empty wrap-Un by auto

64

from inv1I [OF 1 2 3 4 5] show ?thesis .
qed

lemma inv1-stepC :
assumes inv1 P1 P2 B1 B2 V u ∈ V
shows inv1 (P1 ∪ wrap B1) (P2 ∪ wrap B2) {} {u} (V − {u})

proof −
note invrules = inv1E [OF assms(1)]
— Rule 1-4: Correct Bin Packing
have P1 ∪ wrap B1 ∪ wrap {} ∪ (P2 ∪ wrap B2) ∪ wrap {u} ∪ {{v} |v. v ∈ V
− {u}}

= P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{u}} ∪ {{v} |v. v ∈ V − {u}}
by (metis (no-types, lifting) Un-assoc Un-empty-right insert-not-empty wrap-empty

wrap-not-empty)
also have ... = P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V }

using assms(2) by auto
finally have EQ: P1 ∪ wrap B1 ∪ wrap {} ∪ (P2 ∪ wrap B2) ∪ wrap {u} ∪
{{v} |v. v ∈ V − {u}}

= P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V } .
from invrules(1) have 1 : bp (P1 ∪ wrap B1 ∪ wrap {} ∪ (P2 ∪ wrap B2) ∪

wrap {u} ∪ {{v} |v. v ∈ V − {u}})
unfolding EQ .

— Auxiliary information is preserved
have NOTIN : ∀M ∈ P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ V − {u}}.

u /∈ M
using invrules(2) assms(2) by blast

have u ∈ U using assms(2) bpE(3)[OF invrules(1)] by blast
then have R: U − (V − {u}) = U − V ∪ {u} by blast
have L:

⋃
(P1 ∪ wrap B1 ∪ wrap {} ∪ (P2 ∪ wrap B2) ∪ wrap {u}) =

⋃
(P1

∪ wrap B1 ∪ wrap {} ∪ (P2 ∪ wrap B2)) ∪ {u}
unfolding wrap-def using NOTIN by auto

have 2 :
⋃

(P1 ∪ wrap B1 ∪ wrap {} ∪ (P2 ∪ wrap B2) ∪ wrap {u}) = U − (V
− {u})

unfolding L R using invrules(2) by auto
have 3 : {} /∈ P1 ∪ wrap B1 ∪ (P2 ∪ wrap B2) ∪ wrap {u}

using bpE(2)[OF 1] by simp
have 4 : {u} /∈ P1 ∪ wrap B1 ∪ wrap {} ∪ (P2 ∪ wrap B2)

using NOTIN by auto
have 5 : (P1 ∪ wrap B1 ∪ wrap {}) ∩ (P2 ∪ wrap B2 ∪ wrap {u}) = {}

using invrules(5) NOTIN unfolding wrap-def by force

from inv1I [OF 1 2 3 4 5] show ?thesis .
qed

From this point onward, we will require a different approach for proving
lower bounds. Instead of fixing and assuming the definitions of the S and
L sets, we will introduce the abbreviations SU and LU for any occurrences
of the original S and L sets. The union of S and L can be interpreted as

65

V. As a result, occurrences of V ∩ S become (S ∪ L) ∩ S = S, and V ∩ L
become (S ∪ L) ∩ L = L. Occurrences of these sets will have to be replaced
appropriately.
abbreviation SU where

SU ≡ {u ∈ U . w u ≤ c / 2}

abbreviation LU where
LU ≡ {u ∈ U . c / 2 < w u}

As we will remove elements from S and L, we will only be able to show
that they remain subsets of SU and LU respectively.
abbreviation SL where

SL S L ≡ S ⊆ SU ∧ L ⊆ LU

lemma bp-bins-finite [simp]:
assumes bp P
shows ∀B ∈ P. finite B
using bpE(3)[OF assms] U-Finite by (meson Sup-upper finite-subset)

lemma bp-sol-finite [simp]:
assumes bp P
shows finite P
using bpE(3)[OF assms] U-Finite by (simp add: finite-UnionD)

lemma only-one-L-per-bin:
assumes bp P B ∈ P
shows ∀ x ∈ B. ∀ y ∈ B. x 6= y −→ x /∈ LU ∨ y /∈ LU

proof (rule ccontr , simp)
assume ∃ x∈B. ∃ y∈B. x 6= y ∧ y ∈ U ∧ x ∈ U ∧ real c < w x ∗ 2 ∧ real c <

w y ∗ 2
then obtain x y where ∗: x ∈ B y ∈ B x 6= y x ∈ LU y ∈ LU by auto
then have c < w x + w y by force
have finite B using assms by simp
have y ∈ B − {x} using ∗(2 ,3) by blast
have W B = W (B − {x}) + w x

using ∗(1) ‹finite B› by (simp add: sum.remove)
also have ... = W (B − {x} − {y}) + w x + w y

using ‹y ∈ B − {x}› ‹finite B› by (simp add: sum.remove)
finally have ∗: W B = W (B − {x} − {y}) + w x + w y .
have ∀ u ∈ B. 0 < w u using bpE(3)[OF assms(1)] assms(2) weight by blast
then have 0 ≤ W (B − {x} − {y}) by (smt (verit) DiffD1 sum-nonneg)
with ∗ have c < W B using ‹c < w x + w y› by simp
then show False using bpE(4)[OF assms(1)] assms(2) by fastforce

qed

lemma L-lower-bound-card:
assumes bp P
shows card LU ≤ card P

proof −

66

have ∀ x ∈ LU . ∃B ∈ P. x ∈ B
using bpE(3)[OF assms] by blast

then obtain f where f-def : ∀ u ∈ LU . u ∈ f u ∧ f u ∈ P by metis
then have inj-on f LU

unfolding inj-on-def using only-one-L-per-bin[OF assms] by blast
then have card-eq: card LU = card (f ‘ LU) by (simp add: card-image)
have f ‘ LU ⊆ P using f-def by blast
moreover have finite P using assms by simp
ultimately have card (f ‘ LU) ≤ card P by (simp add: card-mono)
then show ?thesis unfolding card-eq .

qed

lemma subset-bp-card:
assumes bp P M ⊆ P ∀B ∈ M . B ∩ LU 6= {}
shows card M ≤ card LU

proof −
have ∀B ∈ M . ∃ u ∈ LU . u ∈ B using assms(3) by fast
then have ∃ f . ∀B ∈ M . f B ∈ LU ∧ f B ∈ B by metis
then obtain f where f-def : ∀B ∈ M . f B ∈ LU ∧ f B ∈ B ..
have inj-on f M
proof (rule ccontr)

assume ¬ inj-on f M
then have ∃ x ∈ M . ∃ y ∈ M . x 6= y ∧ f x = f y unfolding inj-on-def by blast
then obtain x y where ∗: x ∈ M y ∈ M x 6= y f x = f y by blast
then have ∃ u. u ∈ x ∧ u ∈ y using f-def by metis
then have x ∩ y 6= {} by blast

moreover have pairwise disjnt M using pairwise-subset[OF bpE(1)[OF assms(1)]
assms(2)] .

ultimately show False using ∗ unfolding pairwise-def disjnt-def by simp
qed
moreover have finite LU using U-Finite by auto
moreover have f ‘ M ⊆ LU using f-def by blast
ultimately show ?thesis using card-inj-on-le by blast

qed

lemma L-bins-lower-bound-card:
assumes bp P inv1 P1 P2 B1 B2 (S ∪ L) ∀B ∈ P1 ∪ wrap B1. B ∩ LU 6= {}

and SL-def : SL S L
shows card (P1 ∪ wrap B1 ∪ {{v} |v. v ∈ L}) ≤ card P

proof −
note invrules = inv1E [OF assms(2)]
have ∀B ∈ {{v} |v. v ∈ L}. B ∩ LU 6= {} using SL-def by blast
with assms(3) have

P1 ∪ wrap B1 ∪ {{v} |v. v ∈ L} ⊆ P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v.
v ∈ S ∪ L}
∀B ∈ P1 ∪ wrap B1 ∪ {{v} |v. v ∈ L}. B ∩ LU 6= {} by blast+

from subset-bp-card[OF invrules(1) this] show ?thesis
using L-lower-bound-card[OF assms(1)] by linarith

qed

67

lemma sum-Un-eq-sum-sum:
assumes bp P
shows (

∑
u ∈ U . w u) = (

∑
B ∈ P. W B)

proof −
have FINITE : ∀B ∈ P. finite B using assms by simp
have DISJNT : ∀A ∈ P. ∀B ∈ P. A 6= B −→ A ∩ B = {}

using bpE(1)[OF assms] unfolding pairwise-def disjnt-def .
have (

∑
u ∈ (

⋃
P). w u) = (

∑
B ∈ P. W B)

using sum.Union-disjoint[OF FINITE DISJNT] by auto
then show ?thesis unfolding bpE(3)[OF assms] .

qed

lemma sum-lower-bound-card:
assumes bp P
shows (

∑
u ∈ U . w u) ≤ c ∗ card P

proof −
have ∗: ∀B ∈ P. 0 < W B ∧ W B ≤ c

using bpE(2−4)[OF assms] weight by (metis UnionI assms bp-bins-finite
sum-pos)

have (
∑

u ∈ U . w u) = (
∑

B ∈ P. W B)
using sum-Un-eq-sum-sum[OF assms] .

also have ... ≤ (
∑

B ∈ P. c) using sum-mono ∗ by fastforce
also have ... = c ∗ card P by simp
finally show ?thesis .

qed

lemma bp-NE :
assumes bp P
shows P 6= {}
using U-NE bpE(3)[OF assms] by blast

lemma sum-Un-ge:
fixes f :: - ⇒ real
assumes finite M finite N ∀B ∈ M ∪ N . 0 < f B
shows sum f M ≤ sum f (M ∪ N)

proof −
have 0 ≤ sum f N − sum f (M ∩ N)

using assms by (smt (verit) DiffD1 inf .cobounded2 UnCI sum-mono2)
then have sum f M ≤ sum f M + sum f N − sum f (M ∩ N)

by simp
also have ... = sum f (M ∪ N)

using sum-Un[OF assms(1 ,2), symmetric] .
finally show ?thesis .

qed

definition bij-exists :: ′a set set ⇒ ′a set ⇒ bool where
bij-exists P V = (∃ f . bij-betw f P V ∧ (∀B ∈ P. W B + w (f B) > c))

68

lemma P1-lower-bound-card:
assumes bp P inv1 P1 P2 B1 B2 (S ∪ L) bij-exists P1 (

⋃
(P2 ∪ wrap B2))

shows card P1 + 1 ≤ card P
proof (cases ‹P1 = {}›)

case True
have finite P using assms(1) by simp
then have 1 ≤ card P using bp-NE [OF assms(1)]
by (metis Nat.add-0-right Suc-diff-1 Suc-le-mono card-gt-0-iff le0 mult-Suc-right

nat-mult-1)
then show ?thesis unfolding True by simp

next
note invrules = inv1E [OF assms(2)]
case False
obtain f where f-def : bij-betw f P1 (

⋃
(P2 ∪ wrap B2)) ∀B ∈ P1. W B + w (f

B) > c
using assms(3) unfolding bij-exists-def by blast

have FINITE : finite P1 finite (P2 ∪ wrap B2) finite (P1 ∪ P2 ∪ wrap B2) finite
(wrap B1 ∪ {{v} |v. v ∈ S ∪ L})

using inv1E(1)[OF assms(2)] bp-sol-finite by blast+

have F : ∀B ∈ P2 ∪ wrap B2. finite B using invrules(1) by simp
have D: ∀A ∈ P2 ∪ wrap B2. ∀B ∈ P2 ∪ wrap B2. A 6= B −→ A ∩ B = {}

using bpE(1)[OF invrules(1)] unfolding pairwise-def disjnt-def by auto
have sum-eq: W (

⋃
(P2 ∪ wrap B2)) = (

∑
B ∈ P2 ∪ wrap B2. W B)

using sum.Union-disjoint[OF F D] by auto

have ∀B∈P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ S ∪ L}. 0 < W B
using bpE(2 ,3)[OF invrules(1)] weight by (metis (no-types, lifting) UnionI

bp-bins-finite invrules(1) sum-pos)
then have (

∑
B ∈ P1 ∪ P2 ∪ wrap B2. W B) ≤ (

∑
B ∈ P1 ∪ P2 ∪ wrap B2

∪ (wrap B1 ∪ {{v} |v. v ∈ S ∪ L}). W B)
using sum-Un-ge[OF FINITE(3 ,4), of W] by blast

also have ... = (
∑

B ∈ P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ S ∪ L}.
W B) by (smt (verit) Un-assoc Un-commute)

also have ... = W U using sum-Un-eq-sum-sum[OF invrules(1), symmetric] .
finally have ∗: (

∑
B ∈ P1 ∪ P2 ∪ wrap B2. W B) ≤ W U .

have DISJNT : P1 ∩ (P2 ∪ wrap B2) = {} using invrules(5) by blast

— This part of the proof is based on the proof on page 72 of the article [2].
have c ∗ card P1 = (

∑
B ∈ P1. c) by simp

also have ... < (
∑

B ∈ P1. W B + w (f B))
using f-def (2) sum-strict-mono[OF FINITE(1) False] by fastforce

also have ... = (
∑

B ∈ P1. W B) + (
∑

B ∈ P1. w (f B))
by (simp add: Groups-Big.comm-monoid-add-class.sum.distrib)

also have ... = (
∑

B ∈ P1. W B) + W (
⋃

(P2 ∪ wrap B2)) unfolding
sum.reindex-bij-betw[OF f-def (1), of w] ..

also have ... = (
∑

B ∈ P1. W B) + (
∑

B ∈ P2 ∪ wrap B2. W B) unfolding
sum-eq ..

also have ... = (
∑

B ∈ P1 ∪ P2 ∪ wrap B2. W B) using sum.union-disjoint[OF

69

FINITE(1 ,2) DISJNT , of W] by (simp add: Un-assoc)
also have ... ≤ (

∑
u ∈ U . w u) using ∗ .

also have ... ≤ c ∗ card P using sum-lower-bound-card[OF assms(1)] .
finally show ?thesis

by (simp flip: of-nat-mult)
qed

lemma P1-B1-lower-bound-card:
assumes bp P inv1 P1 P2 B1 B2 (S ∪ L) bij-exists P1 (

⋃
(P2 ∪ wrap B2))

shows card (P1 ∪ wrap B1) ≤ card P
proof −

have card (P1 ∪ wrap B1) ≤ card P1 + card (wrap B1)
using card-Un-le by blast

also have ... ≤ card P1 + 1 using wrap-card by simp
also have ... ≤ card P using P1-lower-bound-card[OF assms] .
finally show ?thesis .

qed

lemma P2-B2-lower-bound-P1:
assumes inv1 P1 P2 B1 B2 (S ∪ L) 2 ∗ card P2 ≤ card (

⋃
P2) bij-exists P1

(
⋃
(P2 ∪ wrap B2))

shows 2 ∗ card (P2 ∪ wrap B2) ≤ card P1 + 1
proof −

note invrules = inv1E [OF assms(1)] and bprules = bpE [OF invrules(1)]

have pairwise disjnt (P2 ∪ wrap B2)
using bprules(1) pairwise-subset by blast

moreover have B2 /∈ P2 using invrules(4) by simp
ultimately have DISJNT :

⋃
P2 ∩ B2 = {}

by (auto, metis (no-types, opaque-lifting) sup-bot.right-neutral Un-insert-right
disjnt-iff mk-disjoint-insert pairwise-insert wrap-Un)

have finite (
⋃

P2) using U-Finite bprules(3) by auto
have finite B2 using bp-bins-finite[OF invrules(1)] wrap-not-empty by blast
have finite P2 finite (wrap B2) using bp-sol-finite[OF invrules(1)] by blast+
have DISJNT2 : P2 ∩ wrap B2 = {} unfolding wrap-def using ‹B2 /∈ P2› by

auto
have card (wrap B2) ≤ card B2

proof (cases ‹B2 = {}›)
case False
then have 1 ≤ card B2 by (simp add: leI ‹finite B2›)
then show ?thesis using wrap-card[of B2] by linarith

qed simp

— This part of the proof is based on the proof on page 73 of the article [2].
from assms(2) have 2 ∗ card P2 + 2 ∗ card (wrap B2) ≤ card (

⋃
P2) + card

(wrap B2) + 1
using wrap-card[of B2] by linarith

then have 2 ∗ (card P2 + card (wrap B2)) ≤ card (
⋃

P2) + card B2 + 1

70

using ‹card (wrap B2) ≤ card B2› by simp
then have 2 ∗ (card (P2 ∪ wrap B2)) ≤ card (

⋃
P2 ∪ B2) + 1

using card-Un-disjoint[OF ‹finite (
⋃

P2)› ‹finite B2› DISJNT]
and card-Un-disjoint[OF ‹finite P2› ‹finite (wrap B2)› DISJNT2] by argo

then have 2 ∗ (card (P2 ∪ wrap B2)) ≤ card (
⋃

(P2 ∪ wrap B2)) + 1
by (cases ‹B2 = {}›) (auto simp: Un-commute)

then show 2 ∗ (card (P2 ∪ wrap B2)) ≤ card P1 + 1
using assms(3) bij-betw-same-card unfolding bij-exists-def by metis

qed

We add SL S L to inv2 to ensure that the S and L sets only contain
objects with correct weights.
definition inv2 :: ′a set set ⇒ ′a set set ⇒ ′a set ⇒ ′a set ⇒ ′a set ⇒ ′a set ⇒
bool where

inv2 P1 P2 B1 B2 S L ←→ inv1 P1 P2 B1 B2 (S ∪ L) — inv1 holds for the
partial solution

∧ (L 6= {} −→ (∀B ∈ P1 ∪ wrap B1. B ∩ LU 6= {})) — If there
are still large objects left, then every bin of the first partial solution must contain
a large object

∧ bij-exists P1 (
⋃
(P2 ∪ wrap B2)) — There exists a bijective

function between the bins of the first partial solution and the objects of the second
one

∧ (2 ∗ card P2 ≤ card (
⋃

P2)) — There are at most twice as
many bins in P2 as there are objects in P2

∧ SL S L — S and L are subsets of SU and LU

lemma inv2E :
assumes inv2 P1 P2 B1 B2 S L
shows inv1 P1 P2 B1 B2 (S ∪ L)

and L 6= {} =⇒ ∀B ∈ P1 ∪ wrap B1. B ∩ LU 6= {}
and bij-exists P1 (

⋃
(P2 ∪ wrap B2))

and 2 ∗ card P2 ≤ card (
⋃

P2)
and SL S L

using assms unfolding inv2-def by blast+

lemma inv2I :
assumes inv1 P1 P2 B1 B2 (S ∪ L)

and L 6= {} =⇒ ∀B ∈ P1 ∪ wrap B1. B ∩ LU 6= {}
and bij-exists P1 (

⋃
(P2 ∪ wrap B2))

and 2 ∗ card P2 ≤ card (
⋃

P2)
and SL S L

shows inv2 P1 P2 B1 B2 S L
using assms unfolding inv2-def by blast

lemma bin-packing-lower-bound-card:
assumes S = {} inv2 P1 P2 B1 B2 S L bp P
shows card (P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ S ∪ L}) ≤ 3 / 2 ∗

card P
proof (cases ‹L = {}›)

71

note invrules = inv2E [OF assms(2)]
case True
then have card (P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ S ∪ L})

= card (P1 ∪ wrap B1 ∪ P2 ∪ wrap B2) using assms(1) by simp
also have ... ≤ card (P1 ∪ wrap B1) + card (P2 ∪ wrap B2)

using card-Un-le[of ‹P1 ∪ wrap B1›] by (simp add: Un-assoc)
also have ... ≤ card P + card (P2 ∪ wrap B2)

using P1-B1-lower-bound-card[OF assms(3) invrules(1 ,3)] by simp
also have ... ≤ card P + card P / 2

using P2-B2-lower-bound-P1[OF invrules(1 ,4 ,3)]
and P1-lower-bound-card[OF assms(3) invrules(1 ,3)] by linarith

finally show ?thesis by linarith
next

note invrules = inv2E [OF assms(2)]
case False
have card (P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ S ∪ L})

= card (P1 ∪ wrap B1 ∪ {{v} |v. v ∈ L} ∪ P2 ∪ wrap B2)
using assms(1) by (simp add: Un-commute Un-assoc)

also have ... ≤ card (P1 ∪ wrap B1 ∪ {{v} |v. v ∈ L}) + card (P2 ∪ wrap B2)
using card-Un-le[of ‹P1 ∪ wrap B1 ∪ {{v} |v. v ∈ L}›] by (simp add: Un-assoc)

also have ... ≤ card P + card (P2 ∪ wrap B2)
using L-bins-lower-bound-card[OF assms(3) invrules(1) invrules(2)[OF False]

invrules(5)] by linarith
also have ... ≤ card P + card P / 2

using P2-B2-lower-bound-P1[OF invrules(1 ,4 ,3)]
and P1-lower-bound-card[OF assms(3) invrules(1 ,3)] by linarith

finally show ?thesis by linarith
qed

definition inv3 :: ′a set set ⇒ ′a set set ⇒ ′a set ⇒ ′a set ⇒ ′a set ⇒ ′a set ⇒
bool where

inv3 P1 P2 B1 B2 S L ←→ inv2 P1 P2 B1 B2 S L ∧ B2 ⊆ SU

lemma inv3E :
assumes inv3 P1 P2 B1 B2 S L
shows inv2 P1 P2 B1 B2 S L and B2 ⊆ SU

using assms unfolding inv3-def by blast+

lemma inv3I :
assumes inv2 P1 P2 B1 B2 S L and B2 ⊆ SU

shows inv3 P1 P2 B1 B2 S L
using assms unfolding inv3-def by blast

lemma loop-init:
inv3 {} {} {} {} SU LU

proof −
have SU ∪ LU = U by auto
then have ∗: inv1 {} {} {} {} (SU ∪ LU)

unfolding bp-def partition-on-def pairwise-def wrap-def inv1-def

72

using weight by auto
have bij-exists {} (

⋃
({} ∪ wrap {}))

using bij-betwI ′ unfolding bij-exists-def by fastforce
from inv2I [OF ∗ - this] have inv2 {} {} {} {} SU LU by auto
from inv3I [OF this] show ?thesis by blast

qed

lemma loop-stepA:
assumes inv3 P1 P2 B1 B2 S L B1 = {} L = {} u ∈ S
shows inv3 P1 P2 {u} B2 (S − {u}) L

proof −
note invrules = inv2E [OF inv3E(1)[OF assms(1)]]
have WEIGHT : W B1 + w u ≤ c using invrules(5) assms(2 ,4) by fastforce
from assms(4) have u ∈ S ∪ L by blast
from inv1-stepA[OF invrules(1) this WEIGHT] assms(2 ,3) have 1 : inv1 P1 P2

{u} B2 (S − {u} ∪ L) by simp
have 2 : L 6= {} =⇒ ∀B∈P1 ∪ wrap {u}. B ∩ LU 6= {} using assms(3) by blast
from inv2I [OF 1 2] invrules have inv2 P1 P2 {u} B2 (S − {u}) L by blast
from inv3I [OF this] show ?thesis using inv3E(2)[OF assms(1)] .

qed

lemma loop-stepB:
assumes inv3 P1 P2 B1 B2 S L B1 = {} u ∈ L
shows inv3 P1 P2 {u} B2 S (L − {u})

proof −
note invrules = inv2E [OF inv3E(1)[OF assms(1)]]
have WEIGHT : W B1 + w u ≤ c using weight invrules(5) assms(2 ,3) by

fastforce

— This observation follows from the fact that the S and L sets have to be disjoint
from each other, and allows us to reuse our proofs of the preservation of inv1 by
simply replacing V with S ∪ L

have ∗: S ∪ L − {u} = S ∪ (L − {u}) using invrules(5) assms(3) by force
from assms(3) have u ∈ S ∪ L by blast
from inv1-stepA[OF invrules(1) this WEIGHT] assms(2) ∗ have 1 : inv1 P1 P2

{u} B2 (S ∪ (L − {u})) by simp
have ∀B∈P1. B ∩ LU 6= {} {u} ∩ LU 6= {} using assms(3) invrules(2 ,5) by

blast+
then have 2 : L 6= {} =⇒ ∀B∈P1 ∪ wrap {u}. B ∩ LU 6= {}
using assms(3) by (metis (full-types) Un-iff empty-iff insert-iff wrap-not-empty)

from inv2I [OF 1 2] invrules have inv2 P1 P2 {u} B2 S (L − {u}) by blast
from inv3I [OF this] show ?thesis using inv3E(2)[OF assms(1)] .

qed

lemma loop-stepC :
assumes inv3 P1 P2 B1 B2 S L B1 6= {} u ∈ S W B1 + w(u) ≤ c
shows inv3 P1 P2 (B1 ∪ {u}) B2 (S − {u}) L

proof −
note invrules = inv2E [OF inv3E(1)[OF assms(1)]]

73

— Same approach, but removing {u} from S instead of L
have ∗: S ∪ L − {u} = (S − {u}) ∪ L using invrules(5) assms(3) by force
from assms(3) have u ∈ S ∪ L by blast
from inv1-stepA[OF invrules(1) this assms(4)] ∗ have 1 : inv1 P1 P2 (B1 ∪
{u}) B2 (S − {u} ∪ L) by simp

have L 6= {} =⇒ ∀B∈P1 ∪ wrap B1. B ∩ LU 6= {} using invrules(2) by blast
then have 2 : L 6= {} =⇒ ∀B∈P1 ∪ wrap (B1 ∪ {u}). B ∩ LU 6= {}

by (smt (verit) Int-insert-left Un-empty-right Un-iff Un-insert-right assms(2)
insert-not-empty singletonD singletonI wrap-def)

from inv2I [OF 1 2] invrules have inv2 P1 P2 (B1 ∪ {u}) B2 (S − {u}) L by
blast

from inv3I [OF this] show ?thesis using inv3E(2)[OF assms(1)] .
qed

lemma loop-stepD:
assumes inv3 P1 P2 B1 B2 S L B1 6= {} u ∈ S W B1 + w(u) > c W B2 +

w(u) ≤ c
shows inv3 (P1 ∪ wrap B1) P2 {} (B2 ∪ {u}) (S − {u}) L

proof −
note invrules = inv2E [OF inv3E(1)[OF assms(1)]]
have ∗: S ∪ L − {u} = (S − {u}) ∪ L using invrules(5) assms(3) by force
from assms(3) have u ∈ S ∪ L by blast
from inv1-stepB[OF invrules(1) this assms(5)] ∗ have 1 : inv1 (P1 ∪ wrap B1)

P2 {} (B2 ∪ {u}) (S − {u} ∪ L) by simp

have 2 : L 6= {} =⇒ ∀B∈P1 ∪ wrap B1 ∪ wrap {}. B ∩ LU 6= {}
using invrules(2) unfolding wrap-empty by blast

from invrules(3) obtain f where f-def : bij-betw f P1 (
⋃

(P2 ∪ wrap B2))
∀B∈P1. c < W B + w (f B) unfolding bij-exists-def by blast

have B1 /∈ P1 using inv1E(3)[OF invrules(1)] by blast
have u /∈ (

⋃
(P2 ∪ wrap B2)) using inv1E(2)[OF invrules(1)] assms(3) by

blast
then have (

⋃
(P2 ∪ wrap (B2 ∪ {u}))) = (

⋃
(P2 ∪ wrap B2 ∪ {{u}}))

by (metis Sup-empty Un-assoc Union-Un-distrib ccpo-Sup-singleton wrap-empty
wrap-not-empty)

also have ... = (
⋃

(P2 ∪ wrap B2)) ∪ {u} by simp
finally have UN : (

⋃
(P2 ∪ wrap (B2 ∪ {u}))) = (

⋃
(P2 ∪ wrap B2)) ∪ {u} .

have wrap B1 = {B1} using wrap-not-empty[of B1] assms(2) by simp
let ?f = f (B1 := u)
have BIJ : bij-betw ?f (P1 ∪ wrap B1) (

⋃
(P2 ∪ wrap (B2 ∪ {u})))

unfolding wrap-empty ‹wrap B1 = {B1}› UN using f-def (1) ‹B1 /∈ P1› ‹u /∈
(
⋃

(P2 ∪ wrap B2))›
by (metis (no-types, lifting) bij-betw-cong fun-upd-other fun-upd-same notIn-Un-bij-betw3)

have c < W B1 + w (?f B1) using assms(4) by simp
then have (∀B∈P1 ∪ wrap B1. c < W B + w (?f B))

unfolding ‹wrap B1 = {B1}› using f-def (2) by simp
with BIJ have bij-betw ?f (P1 ∪ wrap B1) (

⋃
(P2 ∪ wrap (B2 ∪ {u})))

74

∧ (∀B∈P1 ∪ wrap B1. c < W B + w (?f B)) by blast
then have 3 : bij-exists (P1 ∪ wrap B1) (

⋃
(P2 ∪ wrap (B2 ∪ {u})))

unfolding bij-exists-def by blast
from inv2I [OF 1 2 3] have inv2 (P1 ∪ wrap B1) P2 {} (B2 ∪ {u}) (S − {u})

L using invrules(4 ,5) by blast

from inv3I [OF this] show ?thesis using inv3E(2)[OF assms(1)] assms(3) in-
vrules(5) by blast
qed

lemma B2-at-least-two-objects:
assumes inv3 P1 P2 B1 B2 S L u ∈ S W B2 + w(u) > c
shows 2 ≤ card B2

proof (rule ccontr , simp add: not-le)
have FINITE : finite B2 using inv1E(1)[OF inv2E(1)[OF inv3E(1)[OF assms(1)]]]

by (metis (no-types, lifting) Finite-Set.finite.simps U-Finite Union-Un-distrib
bpE(3) ccpo-Sup-singleton finite-Un wrap-not-empty)

assume card B2 < 2
then consider (0) card B2 = 0 | (1) card B2 = 1 by linarith
then show False proof cases

case 0 then have B2 = {} using FINITE by simp
then show ?thesis using assms(2 ,3) inv2E(5)[OF inv3E(1)[OF assms(1)]]

by force
next

case 1 then obtain v where B2 = {v}
using card-1-singletonE by auto

with inv3E(2)[OF assms(1)] have 2 ∗ w v ≤ c using inv2E(5)[OF inv3E(1)[OF
assms(1)]] by simp

moreover from ‹B2 = {v}› have W B2 = w v by simp
ultimately show ?thesis using assms(2 ,3) inv2E(5)[OF inv3E(1)[OF assms(1)]]

by force
qed

qed

lemma loop-stepE :
assumes inv3 P1 P2 B1 B2 S L B1 6= {} u ∈ S W B1 + w(u) > c W B2 +

w(u) > c
shows inv3 (P1 ∪ wrap B1) (P2 ∪ wrap B2) {} {u} (S − {u}) L

proof −
note invrules = inv2E [OF inv3E(1)[OF assms(1)]]
have ∗: S ∪ L − {u} = (S − {u}) ∪ L using invrules(5) assms(3) by force
from assms(3) have u ∈ S ∪ L by blast
from inv1-stepC [OF invrules(1) this] ∗ have 1 : inv1 (P1 ∪ wrap B1) (P2 ∪

wrap B2) {} {u} (S − {u} ∪ L) by simp

have 2 : L 6= {} =⇒ ∀B∈P1 ∪ wrap B1 ∪ wrap {}. B ∩ LU 6= {}
using invrules(2) unfolding wrap-empty by blast

from invrules(3) obtain f where f-def : bij-betw f P1 (
⋃

(P2 ∪ wrap B2))

75

∀B∈P1. c < W B + w (f B) unfolding bij-exists-def by blast
have B1 /∈ P1 using inv1E(3)[OF invrules(1)] by blast
have u /∈ (

⋃
(P2 ∪ wrap B2)) using inv1E(2)[OF invrules(1)] assms(3) by

blast
have (

⋃
(P2 ∪ wrap B2 ∪ wrap {u})) = (

⋃
(P2 ∪ wrap B2 ∪ {{u}})) unfolding

wrap-def by simp
also have ... = (

⋃
(P2 ∪ wrap B2)) ∪ {u} by simp

finally have UN : (
⋃

(P2 ∪ wrap B2 ∪ wrap {u})) = (
⋃

(P2 ∪ wrap B2)) ∪
{u} .

have wrap B1 = {B1} using wrap-not-empty[of B1] assms(2) by simp
let ?f = f (B1 := u)
have BIJ : bij-betw ?f (P1 ∪ wrap B1) (

⋃
(P2 ∪ wrap B2 ∪ wrap {u}))

unfolding wrap-empty ‹wrap B1 = {B1}› UN using f-def (1) ‹B1 /∈ P1› ‹u /∈
(
⋃

(P2 ∪ wrap B2))›
by (metis (no-types, lifting) bij-betw-cong fun-upd-other fun-upd-same notIn-Un-bij-betw3)

have c < W B1 + w (?f B1) using assms(4) by simp
then have (∀B∈P1 ∪ wrap B1. c < W B + w (?f B))

unfolding ‹wrap B1 = {B1}› using f-def (2) by simp
with BIJ have bij-betw ?f (P1 ∪ wrap B1) (

⋃
(P2 ∪ wrap B2 ∪ wrap {u}))

∧ (∀B∈P1 ∪ wrap B1. c < W B + w (?f B)) by blast
then have 3 : bij-exists (P1 ∪ wrap B1) (

⋃
(P2 ∪ wrap B2 ∪ wrap {u}))

unfolding bij-exists-def by blast

have 4 : 2 ∗ card (P2 ∪ wrap B2) ≤ card (
⋃

(P2 ∪ wrap B2))
proof −

note bprules = bpE [OF inv1E(1)[OF invrules(1)]]
have pairwise disjnt (P2 ∪ wrap B2)

using bprules(1) pairwise-subset by blast
moreover have B2 /∈ P2 using inv1E(4)[OF invrules(1)] by simp
ultimately have DISJNT :

⋃
P2 ∩ B2 = {}

by (auto, metis (no-types, opaque-lifting) sup-bot.right-neutral Un-insert-right
disjnt-iff mk-disjoint-insert pairwise-insert wrap-Un)

have finite (
⋃

P2) using U-Finite bprules(3) by auto
have finite B2 using inv1E(1)[OF invrules(1)] bp-bins-finite wrap-not-empty

by blast

have 2 ∗ card (P2 ∪ wrap B2) ≤ 2 ∗ (card P2 + card (wrap B2))
using card-Un-le[of P2 ‹wrap B2›] by simp

also have ... ≤ 2 ∗ card P2 + 2 using wrap-card by auto
also have ... ≤ card (

⋃
P2) + 2 using invrules(4) by simp

also have ... ≤ card (
⋃

P2) + card B2 using B2-at-least-two-objects[OF
assms(1 ,3 ,5)] by simp

also have ... = card (
⋃

(P2 ∪ {B2})) using DISJNT card-Un-disjoint[OF
‹finite (

⋃
P2)› ‹finite B2›] by (simp add: Un-commute)

also have ... = card (
⋃

(P2 ∪ wrap B2)) by (cases ‹B2 = {}›) auto
finally show ?thesis .

qed
from inv2I [OF 1 2 3 4] have inv2 (P1 ∪ wrap B1) (P2 ∪ wrap B2) {} {u} (S
− {u}) L

76

using invrules(5) by blast

from inv3I [OF this] show ?thesis using assms(3) invrules(5) by blast
qed

The bin packing algorithm as it is proposed on page 78 of the article [2].
P will not only be a correct solution of the bin packing problem, but the
amount of bins will be a lower bound for 3 / 2 of the amount of bins of any
correct solution Q, and thus guarantee an approximation factor of 3 / 2 for
the optimum.
lemma bp-approx:
VARS P P1 P2 B1 B2 V S L u
{True}
S := {}; L:= {}; V := U ;
WHILE V 6= {} INV {V ⊆ U ∧ S = {u ∈ U − V . w(u) ≤ c / 2} ∧ L = {u ∈

U − V . c / 2 < w(u)}} DO
u := (SOME u. u ∈ V);
IF w(u) ≤ c / 2
THEN S := S ∪ {u}
ELSE L := L ∪ {u} FI ;
V := V − {u}

OD;
P1 := {}; P2 := {}; B1 := {}; B2 := {};
WHILE S 6= {} INV {inv3 P1 P2 B1 B2 S L} DO

IF B1 6= {}
THEN u := (SOME u. u ∈ S); S := S − {u}
ELSE IF L 6= {}

THEN u := (SOME u. u ∈ L); L := L − {u}
ELSE u := (SOME u. u ∈ S); S := S − {u} FI FI ;

IF W (B1) + w(u) ≤ c
THEN B1 := B1 ∪ {u}
ELSE IF W (B2) + w(u) ≤ c

THEN B2 := B2 ∪ {u}
ELSE P2 := P2 ∪ wrap B2; B2 := {u} FI ;
P1 := P1 ∪ wrap B1; B1 := {} FI

OD;
P := P1 ∪ wrap B1 ∪ P2 ∪ wrap B2; V := L;
WHILE V 6= {}
INV {S = {} ∧ inv3 P1 P2 B1 B2 S L ∧ V ⊆ L ∧ P = P1 ∪ wrap B1 ∪ P2 ∪

wrap B2 ∪ {{v}|v. v ∈ L − V }} DO
u := (SOME u. u ∈ V); P := P ∪ {{u}}; V := V − {u}

OD
{bp P ∧ (∀Q. bp Q −→ card P ≤ 3 / 2 ∗ card Q)}

proof (vcg, goal-cases)
case (1 P P1 P2 B1 B2 V S L u)
then show ?case by blast

next
case (2 P P1 P2 B1 B2 V S L u)
then show ?case by (auto simp: some-in-eq)

77

next
case (3 P P1 P2 B1 B2 V S L u)
then show ?case using loop-init by force

next
case (4 P P1 P2 B1 B2 V S L u)
then have INV : inv3 P1 P2 B1 B2 S L ..
let ?s = SOME u. u ∈ S
let ?l = SOME u. u ∈ L
note SL-def = inv2E(5)[OF inv3E(1)[OF INV]]
have LIN : L 6= {} =⇒ ?l ∈ L using some-in-eq by metis
then have LWEIGHT : L 6= {} =⇒ w ?l ≤ c using weight SL-def by blast
from 4 have S 6= {} ..
then have IN : ?s ∈ S using some-in-eq by metis
then have w ?s ≤ c using SL-def by auto
then show ?case

using LWEIGHT loop-stepA[OF INV - - IN] loop-stepB[OF INV - LIN]
loop-stepC [OF INV - IN]

and loop-stepD[OF INV - IN] loop-stepE [OF INV - IN] by (cases ‹B1 = {}›,
cases ‹L = {}›) auto
next

case (5 P P1 P2 B1 B2 V S L u)
then show ?case by blast

next
case (6 P P1 P2 B1 B2 V S L u)
then have ∗: (SOME u. u ∈ V) ∈ V (SOME u. u ∈ V) ∈ L by (auto simp add:

some-in-eq)
then have P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ L − (V − {SOME u.

u ∈ V })}
= P1 ∪ wrap B1 ∪ P2 ∪ wrap B2 ∪ {{v} |v. v ∈ L − V ∪ {SOME u. u

∈ V }}
by blast

with 6 ∗ show ?case by blast
next

case (7 P P1 P2 B1 B2 V S L u)
then have ∗: inv2 P1 P2 B1 B2 S L

using inv3E(1) by blast
from inv1E(1)[OF inv2E(1)[OF ∗]] 7
have bp P by fastforce
with bin-packing-lower-bound-card[OF - ∗] 7
show ?case by fastforce

qed

end

end

6 Center Selection
theory Center-Selection

78

imports Complex-Main HOL−Hoare.Hoare-Logic
begin

The Center Selection (or metric k-center) problem. Given a set of sites
S in a metric space, find a subset C ⊆ S that minimizes the maximal
distance from any s ∈ S to some c ∈ C. This theory presents a verified
2-approximation algorithm. It is based on Section 11.2 in the book by
Kleinberg and Tardos [4]. In contrast to the proof in the book, our proof is
a standard invariant proof.
locale Center-Selection =

fixes S :: (′a :: metric-space) set
and k :: nat

assumes finite-sites: finite S
and non-empty-sites: S 6= {}

and non-zero-k: k > 0
begin

definition distance :: (′a::metric-space) set ⇒ (′a::metric-space) ⇒ real where
distance C s = Min (dist s ‘ C)

definition radius :: (′a :: metric-space) set ⇒ real where
radius C = Max (distance C ‘ S)

lemma distance-mono:
assumes C 1 ⊆ C 2 and C 1 6= {} and finite C 2

shows distance C 1 s ≥ distance C 2 s
by (simp add: Min.subset-imp assms distance-def image-mono)

lemma finite-distances: finite (distance C ‘ S)
using finite-sites by simp

lemma non-empty-distances: distance C ‘ S 6= {}
using non-empty-sites by simp

lemma radius-contained: radius C ∈ distance C ‘ S
using finite-distances non-empty-distances Max-in radius-def by simp

lemma radius-def2 : ∃ s ∈ S . distance C s = radius C
using radius-contained image-iff by metis

lemma dist-lemmas-aux:
assumes finite C

and C 6= {}
shows finite (dist s ‘ C)

and finite (dist s ‘ C) =⇒ distance C s ∈ dist s ‘ C
and distance C s ∈ dist s ‘ C =⇒ ∃ c ∈ C . dist s c = distance C s

and ∃ c ∈ C . dist s c = distance C s =⇒ distance C s ≥ 0
proof

show finite C using assms(1) by simp

79

next
assume finite (dist s ‘ C)
then show distance C s ∈ dist s ‘ C using distance-def eq-Min-iff assms(2) by

blast
next

assume distance C s ∈ dist s ‘ C
then show ∃ c ∈ C . dist s c = distance C s by auto

next
assume ∃ c ∈ C . dist s c = distance C s
then show distance C s ≥ 0 by (metis zero-le-dist)

qed

lemma dist-lemmas:
assumes finite C

and C 6= {}
shows finite (dist s ‘ C)

and distance C s ∈ dist s ‘ C
and ∃ c ∈ C . dist s c = distance C s
and distance C s ≥ 0

using dist-lemmas-aux assms by auto

lemma radius-max-prop: (∀ s ∈ S . distance C s ≤ r) =⇒ (radius C ≤ r)
by (metis image-iff radius-contained)

lemma dist-ins:
assumes ∀ c1 ∈ C . ∀ c2 ∈ C . c1 6= c2 −→ x < dist c1 c2
and distance C s > x
and finite C
and C 6= {}
shows ∀ c1 ∈ (C ∪ {s}). ∀ c2 ∈ (C ∪ {s}). c1 6= c2 −→ x < dist c1 c2
proof (rule+)

fix c1 c2
assume local-assms: c1∈C ∪ {s} c2∈C ∪ {s} c1 6= c2
then have c1 ∈ C ∧ c2 ∈ C ∨ c1 ∈C ∧ c2∈ {s} ∨ c2∈C ∧ c1 ∈ {s} ∨ c1 ∈
{s} ∧ c2∈ {s} by auto

then show x < dist c1 c2
proof (elim disjE)

assume c1 ∈C ∧ c2∈C
then show ?thesis using assms(1) local-assms(3) by simp

next
assume case-assm: c1 ∈ C ∧ c2 ∈ {s}
have x < distance C c2 using assms(2) case-assm by simp
also have ... ≤ dist c2 c1

using Min.coboundedI distance-def assms(3 ,4) dist-lemmas(1 , 2) case-assm
by simp

also have ... = dist c1 c2 using dist-commute by metis
finally show ?thesis .

next
assume case-assm: c2 ∈ C ∧ c1 ∈ {s}

80

have x < distance C c1 using assms(2) case-assm by simp
also have ... ≤ dist c1 c2

using Min.coboundedI distance-def assms(3 ,4) dist-lemmas(1 , 2) case-assm
by simp

finally show ?thesis .
next

assume c1 ∈ {s} ∧ c2 ∈ {s}
then have False using local-assms by simp
then show ?thesis by simp

qed
qed

6.1 A Preliminary Algorithm and Proof
This subsection verifies an auxiliary algorithm by Kleinberg and Tardos.
Our proof of the main algorithm does not does not rely on this auxiliary
algorithm at all but we do reuse part off its invariant proof later on.
definition inv :: (′a :: metric-space) set ⇒ (′a :: metric-space set) ⇒ real ⇒ bool
where
inv S ′ C r =
((∀ s ∈ (S − S ′). distance C s ≤ 2∗r) ∧ S ′ ⊆ S ∧ C ⊆ S ∧
(∀ c ∈ C . ∀ s ∈ S ′. S ′ 6= {} −→ dist c s > 2 ∗ r) ∧ (S ′ = S ∨ C 6= {}) ∧
(∀ c1 ∈ C . ∀ c2 ∈ C . c1 6= c2 −→ dist c1 c2 > 2 ∗ r))

lemma inv-init: inv S {} r
unfolding inv-def non-empty-sites by simp

lemma inv-step:
assumes S ′ 6= {}

and IH : inv S ′ C r
defines[simp]: s ≡ (SOME s. s ∈ S ′)
shows inv (S ′ − {s ′ . s ′ ∈ S ′ ∧ dist s s ′ ≤ 2∗r}) (C ∪ {s}) r
proof −

have s-def : s ∈ S ′ using assms(1) some-in-eq by auto

have finite (C ∪ {s}) using IH finite-subset[OF - finite-sites] by (simp add:
inv-def)

moreover

have (∀ s ′ ∈ (S − (S ′ − {s ′ . s ′ ∈ S ′ ∧ dist s s ′ ≤ 2∗r})). distance (C ∪ {s})
s ′ ≤ 2∗r)

proof
fix s ′′

assume s ′′ ∈ S − (S ′ − {s ′ . s ′ ∈ S ′ ∧ dist s s ′ ≤ 2∗r})
then have s ′′ ∈ S − S ′ ∨ s ′′ ∈ {s ′ . s ′ ∈ S ′ ∧ dist s s ′ ≤ 2∗r} by simp
then show distance (C ∪ {s}) s ′′ ≤ 2 ∗ r
proof (elim disjE)

assume local-assm: s ′′ ∈ S − S ′

have S ′ = S ∨ C 6= {} using IH by (simp add: inv-def)

81

then show ?thesis
proof (elim disjE)

assume S ′ = S
then have s ′′ ∈ {} using local-assm by simp
then show ?thesis by simp

next
assume C-not-empty: C 6= {}

have finite C using IH finite-subset[OF - finite-sites] by (simp add: inv-def)
then have distance (C ∪ {s}) s ′′ ≤ distance C s ′′

using distance-mono C-not-empty by (meson Un-upper1 calculation)
also have ... ≤ 2 ∗ r using IH local-assm inv-def by simp
finally show ?thesis .

qed
next

assume local-assm: s ′′ ∈ {s ′ . s ′ ∈ S ′ ∧ dist s s ′ ≤ 2∗r}
then have distance (C ∪ {s}) s ′′ ≤ dist s ′′ s

using Min.coboundedI distance-def dist-lemmas calculation by auto
also have ... ≤ 2 ∗ r using local-assm by (smt (verit) dist-self dist-triangle2

mem-Collect-eq)
finally show ?thesis .

qed
qed

moreover

have S ′ − {s ′ . s ′ ∈ S ′ ∧ dist s s ′ ≤ 2∗r} ⊆ S using IH by (auto simp: inv-def)

moreover
{

have s ∈ S using IH inv-def s-def by auto
then have C ∪ {s} ⊆ S using IH by (simp add: inv-def)

}
moreover

have (∀ c∈C ∪ {s}. ∀ c2∈C ∪ {s}. c 6= c2 −→ 2 ∗ r < dist c c2)
proof (rule+)

fix c1 c2
assume local-assms: c1 ∈ C ∪ {s} c2 ∈ C ∪ {s} c1 6= c2
then have (c1 ∈ C ∧ c2 ∈ C) ∨ (c1 = s ∧ c2 ∈ C) ∨ (c1 ∈ C ∧ c2 = s) ∨

(c1 = s ∧ c2 = s)
using assms by auto

then show 2 ∗ r < dist c1 c2
proof (elim disjE)

assume c1 ∈ C ∧ c2 ∈ C
then show 2 ∗ r < dist c1 c2 using IH inv-def local-assms by simp

next
assume case-assm: c1 = s ∧ c2 ∈ C
have (∀ c ∈ C . ∀ s∈S ′. S ′ 6= {} −→ 2 ∗ r < dist c s) using IH inv-def by

simp

82

then show ?thesis by (smt (verit) case-assm s-def assms(1) dist-self dist-triangle3
singletonD)

next
assume case-assm: c1 ∈ C ∧ c2 = s
have (∀ c ∈ C . ∀ s∈S ′. S ′ 6= {} −→ 2 ∗ r < dist c s) using IH inv-def by

simp
then show ?thesis by (smt (verit) case-assm s-def assms(1) dist-self dist-triangle3

singletonD)
next

assume c1 = s ∧ c2 = s
then have False using local-assms(3) by simp
then show ?thesis by simp

qed
qed

moreover

have (∀ c∈C ∪ {s}. ∀ s ′′ ∈ S ′ − {s ′ ∈ S ′. dist s s ′ ≤ 2 ∗ r}.
S ′ − {s ′ ∈ S ′. dist s s ′ ≤ 2 ∗ r} 6= {} −→ 2 ∗ r < dist c s ′′)

using IH inv-def by fastforce

moreover

have (S ′ − {s ′ ∈ S ′. dist s s ′ ≤ 2 ∗ r} = S ∨ C ∪ {s} 6= {}) by simp

ultimately show ?thesis unfolding inv-def by blast
qed

lemma inv-last-1 :
assumes ∀ s ∈ (S − S ′). distance C s ≤ 2∗r

and S ′ = {}
shows radius C ≤ 2∗r
by (metis Diff-empty assms image-iff radius-contained)

lemma inv-last-2 :
assumes finite C
and card C > n
and C ⊆ S
and ∀ c1 ∈ C . ∀ c2 ∈ C . c1 6= c2 −→ dist c1 c2 > 2∗r
shows ∀C ′. card C ′ ≤ n ∧ card C ′ > 0 −→ radius C ′ > r (is ?P)

proof (rule ccontr)
assume ¬ ?P
then obtain C ′ where card-C ′: card C ′ ≤ n ∧ card C ′ > 0 and radius-C ′:

radius C ′ ≤ r by auto
have ∀ c ∈ C . (∃ c ′. c ′ ∈ C ′ ∧ dist c c ′ ≤ r)
proof

fix c
assume c ∈ C
then have c ∈ S using assms(3) by blast

83

then have distance C ′ c ≤ radius C ′ using finite-distances by (simp add:
radius-def)

then have distance C ′ c ≤ r using radius-C ′ by simp
then show ∃ c ′. c ′ ∈ C ′ ∧ dist c c ′ ≤ r using dist-lemmas

by (metis card-C ′ card-gt-0-iff)
qed
then obtain f where f : ∀ c∈C . f c ∈ C ′ ∧ dist c (f c) ≤ r by metis
have ¬inj-on f C
proof

assume inj-on f C
then have card C ′ ≥ card C using ‹inj-on f C › card-inj-on-le card-ge-0-finite

card-C ′ f by blast
then show False using card-C ′ ‹n < card C › by linarith

qed
then obtain c1 c2 where defs: c1 ∈ C ∧ c2 ∈ C ∧ c1 6= c2 ∧ f c1 = f c2

using inj-on-def by blast
then have ∗: dist c1 (f c1) ≤ r ∧ dist c2 (f c1) ≤ r using f by auto

have 2 ∗ r < dist c1 c2 using assms defs by simp
also have ... ≤ dist c1 (f c1) + dist (f c1) c2 by(rule dist-triangle)
also have ... = dist c1 (f c1) + dist c2 (f c1) using dist-commute by simp
also have ... ≤ 2 ∗ r using ∗ by simp
finally show False by simp

qed

lemma inv-last:
assumes inv {} C r
shows (card C ≤ k −→ radius C ≤ 2∗r) ∧ (card C > k −→ (∀C ′. card C ′ >

0 ∧ card C ′ ≤ k −→ radius C ′ > r))
using assms inv-def inv-last-1 inv-last-2 finite-subset[OF - finite-sites] by auto

theorem Center-Selection-r :
VARS (S ′ :: (′a :: metric-space) set) (C :: (′a :: metric-space) set) (r :: real) (s

:: ′a)
{True}
S ′ := S ;
C := {};
WHILE S ′ 6= {} INV {inv S ′ C r} DO

s := (SOME s. s ∈ S ′);
C := C ∪ {s};
S ′ := S ′ − {s ′ . s ′ ∈ S ′ ∧ dist s s ′ ≤ 2∗r}
OD
{(card C ≤ k −→ radius C ≤ 2∗r) ∧ (card C > k −→ (∀C ′. card C ′ > 0 ∧

card C ′ ≤ k −→ radius C ′ > r))}
proof (vcg, goal-cases)

case (1 S ′ C r)
then show ?case using inv-init by simp

next
case (2 S ′ C r)

84

then show ?case using inv-step by simp
next

case (3 S ′ C r)
then show ?case using inv-last by blast

qed

6.2 The Main Algorithm
definition invar :: (′a :: metric-space) set ⇒ bool where
invar C = (C 6= {} ∧ card C ≤ k ∧ C ⊆ S ∧
(∀C ′. (∀ c1 ∈ C . ∀ c2 ∈ C . c1 6= c2 −→ dist c1 c2 > 2 ∗ radius C ′)

∨ (∀ s ∈ S . distance C s ≤ 2 ∗ radius C ′)))

abbreviation some where some A ≡ (SOME s. s ∈ A)

lemma invar-init: invar {some S}
proof −

let ?s = some S
have s-in-S : ?s ∈ S using some-in-eq non-empty-sites by blast

have {?s} 6= {} by simp

moreover

have {SOME s. s ∈ S} ⊆ S using s-in-S by simp

moreover

have card {SOME s. s ∈ S} ≤ k using non-zero-k by simp

ultimately show ?thesis by (auto simp: invar-def)
qed

abbreviation furthest-from where
furthest-from C ≡ (SOME s. s ∈ S ∧ distance C s = Max (distance C ‘ S))

lemma invar-step:
assumes invar C
and card C < k
shows invar (C ∪ {furthest-from C})
proof −

have furthest-from-C-props: furthest-from C ∈ S ∧ distance C (furthest-from C)
= radius C

using someI-ex[of λx. x ∈ S ∧ distance C x = radius C] radius-def2 radius-def
by auto

have C-props: finite C ∧ C 6= {}
using finite-subset[OF - finite-sites] assms(1) unfolding invar-def by blast

{
have card (C ∪ {furthest-from C}) ≤ card C + 1

85

using assms(1) C-props unfolding invar-def by (simp add: card-insert-if)
then have card (C ∪ {furthest-from C}) < k + 1 using assms(2) by simp
then have card (C ∪ {furthest-from C}) ≤ k by simp

}
moreover

have C ∪ {furthest-from C} 6= {} by simp

moreover

have (C ∪ {furthest-from C}) ⊆ S using assms(1) furthest-from-C-props un-
folding invar-def by simp

moreover

have ∀C ′. (∀ s ∈ S . distance (C ∪ {furthest-from C}) s ≤ 2 ∗ radius C ′)
∨ (∀ c1 ∈ C ∪ {furthest-from C}. ∀ c2 ∈ C ∪ {furthest-from C}. c1 6= c2

−→ 2 ∗ radius C ′ < dist c1 c2)
proof

fix C ′

have distance C (furthest-from C) > 2 ∗ radius C ′ ∨ distance C (furthest-from
C) ≤ 2 ∗ radius C ′ by auto

then show (∀ s ∈ S . distance (C ∪ {furthest-from C}) s ≤ 2 ∗ radius C ′)
∨ (∀ c1 ∈ C ∪ {furthest-from C}. ∀ c2 ∈ C ∪ {furthest-from C}. c1 6=

c2 −→ 2 ∗ radius C ′ < dist c1 c2)
proof (elim disjE)

assume asm: distance C (furthest-from C) > 2 ∗ radius C ′

then have ¬(∀ s ∈ S . distance C s ≤ 2 ∗ radius C ′) using furthest-from-C-props
by force

then have IH : ∀ c1 ∈ C . ∀ c2 ∈ C . c1 6= c2 −→ 2 ∗ radius C ′ < dist c1 c2
using assms(1) unfolding invar-def by blast

have (∀ c1 ∈ C ∪ {furthest-from C}. (∀ c2 ∈ C ∪ {furthest-from C}. c1 6= c2
−→ 2 ∗ radius C ′ < dist c1 c2))

using dist-ins[of C 2 ∗ radius C ′ furthest-from C] IH C-props asm by simp
then show ?thesis by simp

next
assume main-assm: 2 ∗ radius C ′ ≥ distance C (furthest-from C)
have (∀ s ∈ S . distance (C ∪ {furthest-from C}) s ≤ 2 ∗ radius C ′)
proof

fix s
assume local-assm: s ∈ S
then show distance (C ∪ {furthest-from C}) s ≤ 2 ∗ radius C ′

proof −
have distance (C ∪ {furthest-from C}) s ≤ distance C s

using distance-mono[of C C ∪ {furthest-from C}] C-props by auto
also have ... ≤ distance C (furthest-from C)

using Max.coboundedI local-assm finite-distances radius-def furthest-from-C-props
by auto

also have ... ≤ 2 ∗ radius C ′ using main-assm by simp

86

finally show ?thesis .
qed

qed
then show ?thesis by blast

qed
qed

ultimately show ?thesis unfolding invar-def by blast
qed

lemma invar-last:
assumes invar C and ¬card C < k
shows card C = k and card C ′ > 0 ∧ card C ′ ≤ k −→ radius C ≤ 2 ∗ radius C ′

proof −
show card C = k using assms(1 , 2) unfolding invar-def by simp

next
have C-props: finite C ∧ C 6= {} using finite-sites assms(1) unfolding invar-def

by (meson finite-subset)
show card C ′ > 0 ∧ card C ′ ≤ k −→ radius C ≤ 2 ∗ radius C ′

proof (rule impI)
assume C ′-assms: 0 < card (C ′ :: ′a set) ∧ card C ′ ≤ k
let ?r = radius C ′

have (∀ c1 ∈ C . ∀ c2 ∈ C . c1 6= c2 −→ 2 ∗ ?r < dist c1 c2) ∨ (∀ s ∈ S . distance
C s ≤ 2 ∗ ?r)

using assms(1) unfolding invar-def by simp
then show radius C ≤ 2 ∗ ?r
proof

assume case-assm: ∀ c1∈C . ∀ c2∈C . c1 6= c2 −→ 2 ∗ ?r < dist c1 c2
obtain s where s-def : radius C = distance C s ∧ s ∈ S using radius-def2

by metis
show ?thesis
proof (rule ccontr)

assume contr-assm: ¬ radius C ≤ 2 ∗ ?r
then have s-prop: distance C s > 2 ∗ ?r using s-def by simp
then have ‹∀ c1 ∈ C ∪ {s}. ∀ c2 ∈ C ∪ {s}. c1 6= c2 −→ dist c1 c2 > 2 ∗

?r›
using C-props dist-ins[of C 2∗?r s] case-assm by blast

moreover
{

have s /∈ C
proof

assume s ∈ C
then have distance C s ≤ dist s s using Min.coboundedI [of distance C

‘ S dist s s]
by (simp add: distance-def C-props)

also have ... = 0 by simp
finally have distance C s = 0 using dist-lemmas(4) by (smt (verit)

C-props)
then have radius-le-zero: 2 ∗ ?r < 0 using contr-assm s-def by simp

87

obtain x where x-def : ?r = distance C ′ x using radius-def2 by metis
obtain l where l-def : distance C ′ x = dist x l using dist-lemmas(3) by

(metis C ′-assms card-gt-0-iff)
then have dist x l = ?r by (simp add: x-def)
also have ... < 0 using C ′-assms radius-le-zero by simp
finally show False by simp

qed
then have card (C ∪ {s}) > k using assms(1 ,2) C-props unfolding

invar-def by simp
}
moreover

have C ∪ {s} ⊆ S using assms(1) s-def unfolding invar-def by simp
moreover

have finite (C ∪ {s}) using calculation(3) finite-subset finite-sites by
auto

ultimately have ∀C . card C ≤ k ∧ card C > 0 −→ radius C > ?r using
inv-last-2 by metis

then have ?r > ?r using C ′-assms by blast
then show False by simp

qed
next

assume ∀ s∈S . distance C s ≤ 2 ∗ radius C ′

then show ?thesis by (metis image-iff radius-contained)
qed

qed
qed

theorem Center-Selection:
VARS (C :: (′a :: metric-space) set) (s :: (′a :: metric-space))
{k ≤ card S}
C := {some S};
WHILE card C < k INV {invar C} DO

C := C ∪ {furthest-from C}
OD
{card C = k ∧ (∀C ′. card C ′ > 0 ∧ card C ′ ≤ k −→ radius C ≤ 2 ∗ radius

C ′)}
proof (vcg, goal-cases)

case (1 C s)
show ?case using invar-init by simp

next
case (2 C s)
then show ?case using invar-step by blast

next
case (3 C s)
then show ?case using invar-last by blast

qed

end
end

88

References
[1] R. Berghammer and M. Müller-Olm. Formal development and ver-

ification of approximation algorithms using auxiliary variables. In
M. Bruynooghe, editor, Logic Based Program Synthesis and Transfor-
mation, LOPSTR 2003, volume 3018 of LNCS, pages 59–74. Springer,
2003.

[2] R. Berghammer and F. Reuter. A linear approximation algorithm for bin
packing with absolute approximation factor 3/2. Sci. Comput. Program.,
48(1):67–80, 2003.

[3] R. Eßmann, T. Nipkow, and S. Robillard. Verified approximation algo-
rithms. In N. Peltier and V. Sofronie-Stokkermans, editors, Automated
Reasoning (IJCAR 2020), volume 12167 of LNCS, page 12167. Springer,
2020. https://doi.org/10.1007/978-3-030-51054-1_17.

[4] J. M. Kleinberg and É. Tardos. Algorithm Design. Addison-Wesley, 2006.

89

https://doi.org/10.1007/978-3-030-51054-1_17

	Vertex Cover
	Graph
	The Approximation Algorithm
	Version for Hypergraphs

	Set Cover
	Independent Set
	Graph
	Wei's algorithm: 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (+1)-approximation
	Wei's algorithm: 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -approximation
	Wei's algorithm with dynamically computed approximation ratio

	Load Balancing
	Formalization of a Correct Load Balancing
	Definition
	Lower Bounds for the Makespan

	The Greedy Approximation Algorithm

	Bin Packing
	Formalization of a Correct Bin Packing
	The Proposed Approximation Algorithm
	Functional Correctness
	Lower Bounds for the Bin Packing Problem
	Proving the Approximation Factor

	The Full Linear Time Version of the Proposed Algorithm

	Center Selection
	A Preliminary Algorithm and Proof
	The Main Algorithm

