Applicative Lifting

Andreas Lochbihler Joshua Schneider

March 17, 2025

Abstract

Applicative functors augment computations with effects by lifting
function application to types which model the effects [5]. As the struc-
ture of the computation cannot depend on the effects, applicative ex-
pressions can be analysed statically. This allows us to lift universally
quantified equations to the effectful types, as observed by Hinze [3].
Thus, equational reasoning over effectful computations can be reduced
to pure types.

This entry provides a package for registering applicative functors
and two proof methods for lifting of equations over applicative functors.
The first method applicative-nf normalises applicative expressions ac-
cording to the laws of applicative functors. This way, equations whose
two sides contain the same list of variables can be lifted to every ap-
plicative functor.

To lift larger classes of equations, the second method applicative-
lifting exploits a number of additional properties (e.g., commutativity
of effects) provided the properties have been declared for the concrete
applicative functor at hand upon registration.

We declare several types from the Isabelle library as applicative
functors and illustrate the use of the methods with two examples: the
lifting of the arithmetic type class hierarchy to streams and the verifi-
cation of a relabelling function on binary trees. We also formalise and
verify the normalisation algorithm used by the first proof method, as
well as the general approach of the second method, which is based on
bracket abstraction.

Contents

1 Lifting with applicative functors
1.1 Equality restricted toaset
1.2 Proof automation
1.3 Overloaded applicative operators

2 Common applicative functors
2.1 Environment functor
2.2 Option e

ot W w W

(R

2.3 Sumtypes
2.4 Set with Cartesian product
2.5 Listso

Distinct, non-empty list

3.1 Monoid
3.2 Filters
3.3 Statemonad
3.4 Streams as an applicative functor
3.5 Openstatemonad
3.6 Probability mass functions

20

3.7 Probability mass functions implemented as lists with duplicates 22

3.8 Ultrafilter

Examples of applicative lifting

4.1 Algebraic operations for the environment functor

4.2 Pointwise arithmetic on streams

4.3 Treerelabellingo
4.3.1 Pure correctness statement
4.3.2 Correctness via monadic traversals
4.3.3 Applicative correctness statement
4.3.4 Probabilistic tree relabelling

Formalisation of idiomatic terms and lifting

5.1 Immediate joinability under a relation
5.1.1 Definition and basic properties
5.1.2 Confluence
5.1.3 Relation to reflexive transitive symmetric closure . . .
5.1.4 Predicate version

5.2 Combined beta and eta reduction of lambda terms
5.2.1 Auxiliary lemmas
5.2.2 Reduction
5.2.3 Equivalence L.

5.3 Combinators defined as closed lambda terms

5.4 Idiomatic terms — Properties and operations
5.4.1 Basic definitions L.
5.4.2 Syntactic unlifting o000
5.4.3 Canonical forms
5.4.4 Normalisation of idiomatic terms
5.4.5 Lifting with normal forms
5.4.6 Bracket abstraction, twice 0L
5.4.7 Lifting with bracket abstraction.

23

24
24
25
29
30
31
36
37

38
38
39
40
41

1 Lifting with applicative functors

theory Applicative

imports Main

keywords applicative :: thy-goal and print-applicative :: diag
begin

1.1 Equality restricted to a set

definition eq-on :: ‘a set = ‘a = 'a = bool
where [simp]: eg-on A = Az y. 2 € ANz =1y)

lemma rel-fun-eg-onl: (Az. © € A = R (fz) (g x)) = rel-fun (eg-on A) R fy¢
by auto

lemma rel-fun-map-fun2: rel-fun (eg-on (range h)) A f g = rel-fun (BNF-Def.Grp
UNIV h)=1=1 A f (map-fun h id g)
by (auto simp add: rel-fun-def Grp-def eq-onp-def)

lemma rel-fun-refi-eq-onp:
(Nz. z€ ‘X = A z2) = rel-fun (eq-on X) A f f
by (auto simp add: rel-fun-def eq-onp-def)

lemma eg-onE: [eg-on X a b; [b € X; a = b]| = thesis | = thesis by auto

lemma Domainp-eg-on [simp]: Domainp (eg-on X) = (Az. z € X)
by auto

1.2 Proof automation

lemma argl-cong: v =y = frxz=fy=z
by (rule arg-cong)

lemma UNIV-E: ¢z € UNIV = P = P .
context begin

private named-theorems combinator-unfold
private named-theorems combinator-repr

private definition B g fz = ¢ (f z)
private definition C fzy = fy
private definition [z = z

private definition K z y = =z

private definition S fgz = (fz) (g)
private definition Tz f = fx
private definition W fz = fz z

lemmas [abs-def, combinator-unfold] = B-def C-def I-def K-def S-def T-def W-def
lemmas [combinator-repr] = combinator-unfold

private definition cpair = Pair
private definition cuncurry = case-prod

private lemma uncurry-pair: cuncurry f (cpair x y) = fx y
unfolding cpair-def cuncurry-def by simp

ML-file applicative. ML

local-setup («Applicative.setup-combinators
[(B, @Q{thm B-def}),

(C, @{thm C-def}),

(I, @{thm I-def}),

(K, Q{thm K-def}),

(S, @{thm S-def}),

(T, @{thm T-def}),

(W, @{thm W-def})]

private attribute-setup combinator-eq =
«Scan.lift (Scan.option (Args.$$$ weak |——
Scan.optional (Args.colon |—— Scan.repeat! Args.name) []) >>
Applicative.combinator-rule-attrib)»

lemma [combinator-eq]: B
lemma [combinator-eq): C
nator-unfold .

lemma [combinator-eq]: T
lemma [combinator-eq): I
lemma [combinator-eq]: S
lemma [combinator-eq]: T
lemma [combinator-eq]: W

S (K S) K unfolding combinator-unfold .
S (S (K (S (KS)K))S) (K K) unfolding combi-

W K unfolding combinator-unfold .

C K () unfolding combinator-unfold .

B (B W) (B B () unfolding combinator-unfold .
C' I unfolding combinator-unfold .

S S (S K) unfolding combinator-unfold .

lemma [combinator-eq weak: CJ:
C=C(BB(BB(BW(C(BC(B(BB)(CB (cuncurry (K I))))) (cuncurry

K)))) cpair

unfolding combinator-unfold uncurry-pair .

end

method-setup applicative-unfold =
<Applicative.parse-opt-afun >> (fn opt-af => fn ctat =>
SIMPLE-METHOD' (Applicative.unfold-wrapper-tac ctxt opt-af))»
unfold into an applicative expression

method-setup applicative-fold =
<Applicative.parse-opt-afun >> (fn opt-af => fn ctat =>
SIMPLE-METHOD' (Applicative.fold-wrapper-tac ctxt opt-af))s
fold an applicative expression

method-setup applicative-nf =
<Applicative.parse-opt-afun >> (fn opt-af => fn ctzt =>
SIMPLE-METHOD' (Applicative.normalize-wrapper-tac ctzt opt-af))»
prove an equation that has been lifted to an applicative functor, using normal
forms

method-setup applicative-lifting =
<Applicative.parse-opt-afun >> (fn opt-af => fn ctat =>
SIMPLE-METHOD' (Applicative.lifting-wrapper-tac ctat opt-af))»
prove an equation that has been lifted to an applicative functor

ML ¢ Outer-Syntaz.local-theory-to-proof Q{command-keyword applicative}
register applicative functors
(Parse.binding ——
Scan.optional (Q{keyword (} |—— Parse.list Parse.short-ident ——| Q{keyword
D0 -
(@{keyword for} |—— Parse.reserved pure |—— Q{keyword :} |—— Parse.term)
(Parse.reserved ap |—— Q{keyword :} |—— Parse.term) ——
Scan.option (Parse.reserved rel |—— Q{keyword :} |—— Parse.term) ——
Scan.option (Parse.reserved set |—— Q{keyword :} |—— Parse.term) >>
Applicative.applicative-cmd)»

ML «OQuter-Syntaz.command @Q{command-keyword print-applicative}
print registered applicative functors
(Scan.succeed (Toplevel.keep (Applicative.print-afuns o Toplevel.context-of)))s

attribute-setup applicative-unfold =
<Scan.lift (Scan.option Parse.name >> Applicative.add-unfold-attrib)»
register rules for unfolding into applicative expressions

attribute-setup applicative-lifted =
<Scan.lift (Parse.name >> Applicative.forward-lift-attrib)
lift an equation to an applicative functor

1.3 Overloaded applicative operators

consts
pure :: 'a = 'b
ap :: 'a = b= 'c

bundle applicative-syntax
begin

notation ap (infixl «o» 70)
end

hide-const (open) ap

end

2 Common applicative functors

2.1 Environment functor

theory Applicative- Environment imports
Applicative
begin

definition const x = (\-. 1)
definition apfz y = (Az. z 2z (y 2))

adhoc-overloading Applicative.pure = const
adhoc-overloading Applicative.ap = apf

The declaration below demonstrates that applicative functors which lift the
reductions for combinators K and W also lift C. However, the interchange
law must be supplied in this case.

applicative env (K, W)
for
pure: const
ap: apf
rel: rel-fun (=)
set: range
by (simp-all add: const-def apf-def rel-fun-def)

lemma

includes applicative-syntax

shows const (M zy. fyz)ofoxzoy=foyozu
by applicative-lifting simp

end

2.2 Option

theory Applicative-Option imports
Applicative
begin

fun ap-option :: ('a = 'b) option = 'a option = 'b option

where
ap-option (Some f) (Some z) = Some (f)
| ap-option - - = None

abbreviation (input) pure-option :: 'a = 'a option
where pure-option = Some

adhoc-overloading Applicative.pure = pure-option

adhoc-overloading Applicative.ap = ap-option

lemma some-ap-option: ap-option (Some f) x = map-option f z
by (cases x) simp-all

lemma ap-some-option: ap-option f (Some x) = map-option (Ag. g z) f
by (cases f) simp-all

lemma ap-option-transfer|transfer-rulel:

rel-fun (rel-option (rel-fun A B)) (rel-fun (rel-option A) (rel-option B)) ap-option
ap-option
by (auto elim!: option.rel-cases simp add: rel-fun-def)

applicative option (C, W)
for
pure: Some
ap: ap-option
rel: rel-option
set: set-option
proof —
include applicative-syntax
{ fix z :: 'a option
show pure (Az.) ¢ © = z by (cases z) simp-all
next
fix g :: ('b = 'c) option and f :: ('a = 'b) option and x
show pure (Ag fz. g (fz))ogofoxz=go(for)
by (cases g f x rule: option.ezhaust|case-product option.exhaust, case-product
option.ezhaust]) simp-all
next
fix f:: ('b= 'a = 'c) option and z y
show pure Mz y. fyz)oforzoy=foyoux
by (cases f x y rule: option.exhaust|case-product option.ezhaust, case-product
option.ezhaust]) simp-all
next
fix f : ('la = 'a='b) option and x
show pure (AMfxz. frz)ofoxz=foxox
by (cases f z rule: option.exhaust|case-product option.exhaust]) simp-all
next
fix R :: 'a = b = bool
show rel-fun R (rel-option R) pure pure by transfer-prover
next
fix R and f :: ('a = 'b) option and g :: ('a = 'c) option and z
assume [transfer-rule]: rel-option (rel-fun (eg-on (set-option x)) R) f g
have [transfer-rule]: rel-option (eg-on (set-option z)) z x by (auto intro: op-
tion.rel-refl-strong)
show rel-option R (f ¢ z) (g ¢ x) by transfer-prover

}

qed (simp add: some-ap-option ap-some-option)

lemma map-option-ap-conv]applicative-unfold): map-option fx = ap-option (pure

f)x

by (cases x rule: option.exhaust) simp-all

no-adhoc-overloading Applicative.pure = pure-option — We do not want to
print all occurrences of Some as pure

end

2.3 Sum types

theory Applicative-Sum imports
Applicative
begin

There are several ways to define an applicative functor based on sum types.
First, we can choose whether the left or the right type is fixed. Both cases
are isomorphic, of course. Next, what should happen if two values of the
fixed type are combined? The corresponding operator must be associative,
or the idiom laws don’t hold true.

We focus on the cases where the right type is fixed. We define two concrete
functors: One based on Haskell’s Either datatype, which prefers the value of
the left operand, and a generic one using the semigroup-add class. Only the
former lifts the W combinator, though.

fun ap-sum :: ('e=>'e="e) = (la= ")+ 'e="a+'e= "o+ e

where

ap-sum - (Inl f) (Inl) = Inl (f z)
| ap-sum - (Inl -) (Inr e) = Inr e
| ap-sum - (Inr e) (Inl -) = Inr e
| ap-sum ¢ (Inr el) (Inr e2) = Inr (c el e2)

abbreviation ap-either = ap-sum (Az -. x)
abbreviation ap-plus = ap-sum (plus :: 'a :: semigroup-add = -)

abbreviation (input) pure-sum where pure-sum = Inl
adhoc-overloading Applicative.pure = pure-sum
adhoc-overloading Applicative.ap = ap-either

lemma ap-sum-id: ap-sum c (Inl id) © = z
by (cases x) simp-all

lemma ap-sum-ichng: ap-sum c f (Inl x) = ap-sum ¢ (Inl (Af. fz)) f
by (cases f) simp-all

lemma (in semigroup) ap-sum-comp:
ap-sum f (ap-sum f (ap-sum f (Inl (0)) h) g) x = ap-sum f h (ap-sum f g z)

by (cases h g © rule: sum.ezhaust]case-product sum.ezhaust, case-product sum.exhaust])
(simp-all add: local.assoc)

lemma semigroup-const: semigroup (A\z y. x)
by unfold-locales simp

locale either-af =
fixes B :: 'b = 'b = bool
assumes B-refl: reflp B
begin

applicative either (W)
for
pure: Inl
ap: ap-either
rel: AA. rel-sum A B
proof —
include applicative-syntax
{fixf:('c='c="'d) + 'aand zx
show pure (\fz. fzz)ofox=fozoz
by (cases f z rule: sum.ezhaust|case-product sum.ezhaust]) simp-all
next
interpret semigroup Az y. x by(rule semigroup-const)
fixg:("d="e)+'aand f :: ('c = 'd) + 'a and =
show pure (Ag fz. g (fz)) ogofoxz=go (fox)
by (rule ap-sum-comp[simplified comp-def|abs-def]])
next
fix Rand f :: ('c= 'd) + 'band g :: ('c = 'e) + 'band =
assume rel-sum (rel-fun (eq-on UNIV) R) B fg
then show rel-sum R B (f ¢ z) (g ¢ x)
by (cases f g x rule: sum.ezhaust[case-product sum.ezhaust, case-product
sum.exhaust))
(auto intro: B-refl{ THEN reflpD] elim: rel-funFE)
}

qed (auto intro: ap-sum-id[simplified id-def] ap-sum-ichng)
end
interpretation either-af (=) by unfold-locales simp

applicative semigroup-sum
for
pure: Inl
ap: ap-plus
using
ap-sum-id[simplified id-def]
ap-sum-ichng
add.ap-sum-comp[simplified comp-def|abs-def]]
by auto

no-adhoc-overloading Applicative.pure = pure-sum

end

2.4 Set with Cartesian product

theory Applicative-Set imports
Applicative
begin

definition ap-set :: (‘a = 'b) set = 'a set = b set
where ap-set F X ={fz | fz. f € F ANz € X}

adhoc-overloading Applicative.ap = ap-set

lemma ap-set-transfer|transfer-rulel:

rel-fun (rel-set (rel-fun A B)) (rel-fun (rel-set A) (rel-set B)) ap-set ap-set
unfolding ap-set-def[abs-def] rel-set-def
by (fastforce elim: rel-funFE)

applicative set (C)
for
pure: Az. {z}
ap: ap-set
rel: rel-set
set: A\x.
proof —
fix R :: 'a = 'b = bool
show rel-fun R (rel-set R) (Az. {z}) (Az. {z}) by (auto intro: rel-setl)
next
fix Rand f :: ('la = 'b) set and ¢ :: (Ya = 'c) set and z
assume [transfer-rule]: rel-set (rel-fun (eq-on x) R) fg
have [transfer-rule]: rel-set (eg-on z) x z by (auto intro: rel-setl)
show rel-set R (ap-set f x) (ap-set g x) by transfer-prover
qed (unfold ap-set-def, fast+)

end

2.5 Lists
theory Applicative-List imports
Applicative
begin
definition ap-list fs xs = List.bind fs (Af. List.bind xs (A\z. [f z]))

adhoc-overloading Applicative.ap = ap-list

lemma Nil-ap[simp]: ap-list || xs = ||
unfolding ap-list-def by simp

10

lemma ap-Nil[simp]: ap-list fs [| = |]
unfolding ap-list-def by (induction fs) simp-all

lemma ap-list-transfer[transfer-rule]:

rel-fun (list-all2 (rel-fun A B)) (rel-fun (list-all2 A) (list-all2 B)) ap-list ap-list
unfolding ap-list-def[abs-def] List.bind-def
by transfer-prover

context includes applicative-syntaz
begin

lemma cons-ap-list: (f # fs) © xs = map fxs Q fs o xs
unfolding ap-list-def by (induction zs) simp-all

lemma append-ap-distrib: (fs Q gs) o xs = fs o s Q gs o s
unfolding ap-list-def by (induction fs) simp-all

applicative list
for
pure: Az. [x]
ap: ap-list
rel: list-all2
set: set
proof —
fix z :: 'a list
show [Az. z] ¢ = z unfolding ap-list-def by (induction x) simp-all
next
fix g : ('b="c) listand f :: ("a = 'b) list and z
let VB = MXg fz. g (fz)
show [?Blogofoxz=go(fox)
proof (induction g)
case Nil show ?case by simp
next
case (Cons g gs)
have g-comp: [?B gl o foxz=[g] o (f ¢ z)
proof (induction f)
case Nil show ?case by simp
next
case (Cons f fs)
have [?B gl o (f # fs) o = [g] o ([fl o 2) @ [?B gl o fs o x
by (simp add: cons-ap-list)

also have ... = [g] ¢ ([f] ¢ 2) @ [g] ¢ (fs © z) using Cons.IH ..
also have ... = [g] o ((f # fs) ¢ z) by (simp add: cons-ap-list)
finally show ?case .

qed

have [?Bl o (g # gs) o fox=[?BglofozQ[?Blogsofoux

by (simp add: cons-ap-list append-ap-distrib)
also have ... = [g] ¢ (f ¢) @Q gs o (f ¢ z) using g-comp Cons.IH by simp
also have ... = (g # gs) o (f © =) by (simp add: cons-ap-list)

11

finally show ?case .
qed
next
fix f :: ("la = 'b) list and x
show f o [z] = [Af. fz] ¢ f unfolding ap-list-def by simp
next
fix R :: 'a = 'b = bool
show rel-fun R (list-all2 R) (Az. [z]) (Az. [z]) by transfer-prover
next
fix Rand f :: ('la = 'b) list and ¢ :: ('a = 'c) list and z
assume [transfer-rule]: list-all2 (rel-fun (eg-on (set z)) R) f g
have [transfer-rule]: list-all2 (eg-on (set x)) x x by (simp add: list-all2-same)
show list-all2 R (f ¢ z) (g © x) by transfer-prover
qed (simp add: cons-ap-list)

lemma map-ap-conv[applicative-unfold]: map fx = [f] o =
unfolding ap-list-def List.bind-def
by simp

end

end

3 Distinct, non-empty list

theory Applicative-DNEList imports
Applicative-List
HOL— Library.Dlist

begin

lemma bind-eq-Nil-iff [simp]: List.bind zs f =[] «+— (Va€set zs. fz = [])
by (simp add: List.bind-def)

lemma zip-eq-Nil-iff [simp]: zip zs ys =[] «— as =[] V ys = ||
by(cases zs ys rule: list.exhaust|case-product list.exhaust]) simp-all

lemma remdups-appendl: remdups (remdups s Q ys) = remdups (zs Q ys)
by (induction zs) simp-all

lemma remdups-append?2: remdups (zs @ remdups ys) = remdups (zs Q ys)
by (induction xs) simp-all

lemma remdups-append1-drop: set xs C set ys => remdups (zs Q ys) = remdups
ys
by (induction xs) auto

lemma remdups-concat-map: remdups (concat (map remdups xss)) = remdups

(concat xss)
by (induction xss)(simp-all add: remdups-appendl, metis remdups-append?2)

12

lemma remdups-concat-remdups: remdups (concat (remdups xss)) = remdups (concat
xss)

apply (induction zss)

apply(auto simp add: remdups-append1-drop)

apply(subst remdups-appendl-drop; auto)

apply(metis remdups-append?)

done

lemma remdups-replicate: remdups (replicate n z) = (if n = 0 then [| else [z])
by (induction n) simp-all

typedef ‘a dnelist = {xs::'a list. distinct xs N\ zs # [|}
morphisms list-of-dnelist Abs-dnelist

proof
show [z] € ?dnelist for z by simp

qed

setup-lifting type-definition-dnelist

lemma dnelist-subtype-dlist:
type-definition (Az. Dlist (list-of-dnelist x)) (Ax. Abs-dnelist (list-of-dlist z)) {zs.
xs # Dlist.empty}
apply unfold-locales
subgoal by(transfer; auto simp add: dlist-eq-iff)
subgoal by (simp add: distinct-remdups-id dnelist.list-of-dnelist[simplified] list-of-dnelist-inverse)
subgoal by(simp add: dlist-eq-iff Abs-dnelist-inverse)
done

lift-bnf (no-warn-transfer, no-warn-wits) ’'a dnelist via dnelist-subtype-dlist for
map: map

by (auto simp: dlist-eg-iff)
hide-const (open) map

context begin

qualified lemma map-def: Applicative-DNEList.map = map-fun id (map-fun list-of-dnelist
Abs-dnelist) (M zs. remdups (list. map f xs))

unfolding map-def by (simp add: fun-eq-iff distinct-remdups-id list-of-dnelist[simplified])

qualified lemma map-transfer [transfer-rule]:

rel-fun (=) (rel-fun (per-dnelist (=)) (per-dnelist (=))) (Af xs. remdups (map f
xs)) Applicative-DNEList.map
by (simp add: map-def rel-fun-def dnelist.pcr-cr-eq cr-dnelist-def list-of-dnelist] simplified]
Abs-dnelist-inverse)

qualified lift-definition single :: ‘a = ’a dnelist is Ax. [z] by simp

qualified lift-definition insert :: ‘a = ’a dnelist = 'a dnelist is \z xs. if © € set
zs then s else x # s by auto

13

qualified lift-definition append :: 'a dnelist = 'a dnelist = 'a dnelist is \zs ys.
remdups (zs @ ys) by auto

qualified lift-definition bind :: ‘a dnelist = (‘a = b dnelist) = 'b dnelist is \xs
f. remdups (List.bind zs f) by auto

abbreviation (input) pure-dnelist :: 'a = 'a dnelist
where pure-dnelist = single

end

lift-definition ap-dnelist :: ('a = 'b) dnelist = 'a dnelist = 'b dnelist
is Af z. remdups (ap-list f x)
by (auto simp add: ap-list-def)

adhoc-overloading Applicative.ap = ap-dnelist

lemma ap-pure-list [simpl: ap-list [f] ©s = map f xs
by (simp add: ap-list-def List.bind-def)

context includes applicative-syntaz
begin

lemma ap-pure-dlist: pure-dnelist f o x = Applicative-DNEList.map f x
by transfer simp

applicative dnelist (K)
for pure: pure-dnelist
ap: ap-dnelist
proof —
show pure-dnelist (Az. z) ¢ x = z for = :: 'a dnelist
by transfer simp

have *: remdups (remdups (remdups ([A\g fz. g (fz)] © g) ¢ f) o) = remdups
(g © remdups (f © x))
(is 2lhs = ?rhs) for g :: ('b = 'c) list and f :: (‘a = 'b) list and z
proof —
have ?lhs = remdups (concat (map (Af. map f) (remdups (concat (map (Ax.
map (M y- = (fy)) f) 9)))))
unfolding ap-list-def List.bind-def
by (subst (2) remdups-concat-remdups|symmetric])(simp add: o-def remdups-map-remdups
remdups-concat-remdups)
also have ... = remdups (concat (map (Nf. map f x) (concat (map (Az. map
My (fy) f) 9)
by (subst (1) remdups-concat-remdups|symmetric])(simp add: remdups-map-remdups
remdups-concat-remdups)
also have ... = remdups (concat (map remdups (map (Ag. map g (concat (map
(- map £) 1)) 9)))
using list.pure-B-conv|of g f z] unfolding remdups-concat-map
by (simp add: ap-list-def List.bind-def o-def)

14

also have ... = ?rhs unfolding ap-list-def List.bind-def
by (subst (2) remdups-concat-map|symmetric])(simp add: o-def remdups-map-remdups)
finally show ?thesis .
qed
show pure-dnelist (A\g fz. g (fz))ogofoxz=go(foux)
for g :: ('b = ’¢) dnelist and [:: ('a = 'b) dnelist and x
by transfer(rule x)
show pure-dnelist f ¢ pure-dnelist © = pure-dnelist (f z) for f :: 'a = 'b and z
by transfer simp
show f o pure-dnelist x = pure-dnelist (\f. fz) o f for f :: (Ya = 'b) dnelist
and z
by transfer(simp add: list.interchange)

have x: remdups (remdups ([Az y. z] ¢ z) ¢ y) = z if z: distinct x and y: distinct
yy #]
for z :: 'b list and y :: 'a list
proof —
have remdups (map (A(z :: 'b) (y = 'a). z)) = map (M(z = 'b) (y :: 'a). z) =
using that by(simp add: distinct-map inj-on-def fun-eq-iff)
hence remdups (remdups ([A\x y. z] © z) © y) = remdups (concat (map (\f.
map f y) (map (Az y. z) z)))
by (simp add: ap-list-def List.bind-def del: remdups-id-iff-distinct)
also have ... = x using that
by (simp add: o-def map-replicate-const)(subst remdups-concat-map|symmetric],
simp add: o-def remdups-replicate)
finally show ?thesis .
qed
show pure-dnelist (Az y. x) ox oy ==z
for z :: 'b dnelist and y :: 'a dnelist
by transfer(rule *; simp)
qed

- dnelist does not have combinator C, so it cannot have W either.

context begin
private lift-definition z :: int dnelist is [2,3] by simp
private lift-definition y :: int dnelist is [5,7] by simp
private lemma pure-dnelist (\fz y. fy x) o pure-dnelist ((x)) o x ¢ y # pure-dnelist
(1) oyos
by transfer(simp add: ap-list-def fun-eq-iff)
end

end

end

3.1 Monoid

theory Applicative-Monoid imports
Applicative

15

begin
datatype (‘a, 'b) monoid-ap = Monoid-ap 'a 'b

definition (in zero) pure-monoid-add :: 'b = ('a, 'b) monoid-ap
where pure-monoid-add = Monoid-ap 0

fun (in plus) ap-monoid-add :: ('a, 'b = ’'¢) monoid-ap = ('a, 'b) monoid-ap =
("a, 'c) monoid-ap

where ap-monoid-add (Monoid-ap al f) (Monoid-ap a2 x) = Monoid-ap (al +
a2) (f x)

setup <«
fold Sign.add-const-constraint
[(@{const-name pure-monoid-add}, SOME (Q{typ 'b = ('a :: monoid-add, 'b)
monoid-ap})),
(@{const-name ap-monoid-add}, SOME (Q{typ ('a :: monoid-add, 'b = 'c)
monoid-ap = ('a, 'b) monoid-ap = ('a, 'c) monoid-ap}))]
)

adhoc-overloading Applicative.pure = pure-monoid-add
adhoc-overloading Applicative.ap = ap-monoid-add

applicative monoid-add

for pure: pure-monoid-add

ap: ap-monoid-add

subgoal by(simp add: pure-monoid-add-def)
subgoal for g f z by(cases g f z rule: monoid-ap.exhaust|case-product monoid-ap.exhaust,
case-product monoid-ap.exhaust])(simp add: pure-monoid-add-def add.assoc)
subgoal for z by(cases z)(simp add: pure-monoid-add-def)
subgoal for f z by(cases f)(simp add: pure-monoid-add-def)
done

applicative comm-monoid-add (C)

for pure: pure-monoid-add :: - = (- :: comm-monoid-add, -) monoid-ap

ap: ap-monoid-add :: (- :: comm-monoid-add, -) monoid-ap = -

apply (rule monoid-add.homomorphism monoid-add.pure-B-conv monoid-add.interchange)+
subgoal for fz y by(cases f z y rule: monoid-ap. exhaust|case-product monoid-ap. exhaust,
case-product monoid-ap.exhaust])(simp add: pure-monoid-add-def add-ac)
apply(rule monoid-add.pure-I-conv)
done

class idemp-monoid-add = monoid-add +
assumes add-idemp: © + © =

applicative idemp-monoid-add (W)
for pure: pure-monoid-add :: - = (- :: idemp-monoid-add, -) monoid-ap
ap: ap-monoid-add :: (- :: idemp-monoid-add, -) monoid-ap = -
apply (rule monoid-add.homomorphism monoid-add.pure- B-conv monoid-add.pure-I-conv)+

16

subgoal for fz by(cases f x rule: monoid-ap.exhaust|case-product monoid-ap.exhaust])(simp
add: pure-monoid-add-def add.assoc add-idemp)

apply(rule monoid-add.interchange)

done

Test case

lemma

includes applicative-syntax

shows pure-monoid-add (+) ¢ (z :: (nat, int) monoid-ap) ¢ y = pure (+) o y ©
x
by (applicative-lifting comm-monoid-add) simp

end

3.2 Filters

theory Applicative-Filter imports
Complex-Main
Applicative
HOL- Library. Conditional-Parametricity
begin

definition pure-filter :: 'a = 'a filter where
pure-filter © = principal {z}

definition ap-filter :: (‘a = 'b) filter = 'a filter = 'b filter where
ap-filter F X = filtermap (A(f, z). f x) (prod-filter F X)

lemma eg-on-UNIV: eq-on UNIV = (=)
by auto

declare filtermap-parametric[transfer-rule]

parametric-constant pure-filter-parametric[transfer-rule]: pure-filter-def
parametric-constant ap-filter-parametric [transfer-rule]: ap-filter-def

applicative filter (C)
— K is available for not-bot filters and W isholds not available
for
pure: pure-filter
ap: ap-filter
rel: rel-filter
proof —
show ap-filter (pure-filter f) (pure-filter x) = pure-filter (f z) for f :: 'a = 'b
and z
by (simp add: ap-filter-def pure-filter-def principal-prod-principal)
show ap-filter (ap-filter (ap-filter (pure-filter (A\g fz. g (f2))) g) f) © =
ap-filter g (ap-filter f z) for f :: ('a = 'b) filter and g :: ('b = 'c) filter and z
by(simp add: ap-filter-def pure-filter-def filtermap-filtermap prod-filtermap1

17

prod-filtermap?2 apfst-def case-prod-map-prod prod-filter-assoc prod-filter-principal-singleton
split-beta)
show ap-filter (pure-filter (A\z. x)) z = z for z :: 'a filter
by (simp add: ap-filter-def pure-filter-def prod-filter-principal-singleton filtermap-filtermap)
show ap-filter (ap-filter (ap-filter (pure-filter Mz y. fyx)) f)) y =
ap-filter (ap-filter fy) x for f :: ('b = 'a = 'c¢) filter and z y
apply(simp add: ap-filter-def pure-filter-def filtermap-filtermap prod-filter-principal-singleton2
prod-filter-principal-singleton prod-filtermap1 prod-filtermap2 prod-filter-assoc split-beta)
apply (subst (2) prod-filter-commute)
apply(simp add: filtermap-filtermap prod-filtermapl1 prod-filtermap2)
done
show rel-fun R (rel-filter R) pure-filter pure-filter for R :: 'a = 'b = bool
by (rule pure-filter-parametric)
show rel-filter R (ap-filter f x) (ap-filter g z) if rel-filter (rel-fun (eg-on UNIV)
R)fg
for R and f :: ('a = 'b) filter and g :: ('a = '¢) filter and z
supply that[unfolded eq-on-UNIV, transfer-rule] by transfer-prover
qed

end

3.3 State monad

theory Applicative-State
imports

Applicative

HOL— Library.State-Monad
begin

applicative state for

pure: State-Monad.return

ap: State-Monad.ap
unfolding State-Monad.return-def State-Monad.ap-def
by (auto split: prod.splits)

end

3.4 Streams as an applicative functor

theory Applicative-Stream imports

Applicative

HOL— Library.Stream
begin
primcorec (transfer) ap-stream :: (‘a = 'b) stream = 'a stream = 'b stream
where

shd (ap-stream f x) = shd f (shd x)
| stl (ap-stream f z) = ap-stream (stl f) (stl z)

adhoc-overloading Applicative.pure = sconst

18

adhoc-overloading Applicative.ap = ap-stream

context includes lifting-syntaz and applicative-syntax
begin

lemma ap-stream-id: pure (Az.) ¢ z = x
by (coinduction arbitrary: z) simp

lemma ap-stream-homo: pure f ¢ pure x = pure (f x)
by coinduction simp

lemma ap-stream-interchange: f o pure x = pure (\f. fz) o f
by (coinduction arbitrary: f) auto

lemma ap-stream-composition: pure (Ag fz. g (fz))ogofox=go (fox)
by (coinduction arbitrary: g f z) auto

applicative stream (5, K)
for
pure: sconst
ap: ap-stream
rel: stream-all2
set: sset
proof —
fix g = (/b= 'a = 'c) stream and fx
show pure (A\g fz. gz (fx))ogofoarx=goxzo(fonrx)
by (coinduction arbitrary: g f z) auto
next
fix = :: 'b stream and y :: 'a stream
show pure (Azy. z) oz oy ==z
by (coinduction arbitrary: x y) auto

next
fix R :: 'a = 'b = bool
show (R ===> stream-all2 R) pure pure
proof
fix z y

assume R z y
then show stream-all2 R (pure z) (pure y)
by coinduction simp

qed

next
fix R and f :: ('a = 'b) stream and g :: (Ya = 'c) stream and z
assume [transfer-rule]: stream-all2 (eg-on (sset) ===> R) f g

have [transfer-rule]: stream-all2 (eq-on (sset x)) x x by(simp add: stream.rel-refl-strong)
show stream-all2 R (f © z) (g ¢ z) by transfer-prover
qed (rule ap-stream-homo)

lemma smap-applicative|applicative-unfold): smap fz = pure f o x
unfolding ap-stream-def by (coinduction arbitrary: x) auto

19

lemma smap2-applicative[applicative-unfold): smap2 fzy = pure f oz o y
unfolding ap-stream-def by (coinduction arbitrary: z y) auto

end

end

3.5 Open state monad

theory Applicative-Open-State imports
Applicative
begin

type-synonym (‘a, 's) state = 's = ‘a x 's

definition ap-state f z = (As. case f s of (g, s') = case z s’ of (y, s") = (g v,

SN))
abbreviation (input) pure-state = Pair
adhoc-overloading Applicative.ap = ap-state

applicative state
for
pure: pure-state
ap: ap-state :: (Ya = 'b, 's) state = ('a, 's) state = ('b, 's) state
unfolding ap-state-def
by (auto split: prod.split)

end

3.6 Probability mass functions

theory Applicative-PMF imports
Applicative
HOL— Probability. Probability
begin

abbreviation (input) pure-pmf :: '‘a = 'a pmf
where pure-pmf = return-pmf

definition ap-pmf :: ('a = 'b) pmf = 'a pmf = b pmf
where ap-pmf f x = map-pmf (\(f, z). f z) (pair-pmf f x)

adhoc-overloading Applicative.ap = ap-pmf

context includes applicative-syntaz
begin

20

lemma ap-pmf-id: pure-pmf (A\z. z) o z =z
by (simp add: ap-pmf-def pair-return-pmfl pmf.map-comp o-def)

lemma ap-pmf-comp: pure-pmf (o) o uo vo w=uo (vo w)
by (simp add: ap-pmf-def pair-return-pmf1 pair-map-pmf1 pair-map-pmf2 pmf.map-comp
o-def split-def pair-pair-pmf)

lemma ap-pmf-homo: pure-pmf f o pure-pmf & = pure-pmf (f)
by (simp add: ap-pmf-def pair-return-pmf1)

lemma ap-pmf-interchange: u ¢ pure-pmf x = pure-pmf (Af. fz) o u
by (simp add: ap-pmf-def pair-return-pmf1 pair-return-pmf2 pmf.map-comp o-def)

lemma ap-pmf-K: return-pmf Az -.) oz 0y =z
by (simp add: ap-pmf-def pair-map-pmf1 pmf.map-comp pair-return-pmf1 o-def split-def
map-fst-pair-pmf)

lemma ap-pmf-C: return-pmf (AMfzy. fyz)ofozoy=foyoux

apply(simp add: ap-pmf-def pair-map-pmf1 pmf.map-comp pair-return-pmf1 pair-pair-pmf
o-def split-def)

apply (subst (2) pair-commute-pmf)

apply(simp add: pair-map-pmf2 pmf.map-comp o-def split-def)

done

lemma ap-pmf-transfer(transfer-rulel:

rel-fun (rel-pmf (rel-fun A B)) (rel-fun (rel-pmf A) (rel-pmf B)) ap-pmf ap-pmf
unfolding ap-pmf-def[abs-def] pair-pmf-def
by transfer-prover

applicative pmf (C, K)
for
pure: pure-pmf
ap: ap-pmf
rel: rel-pmf
set: set-pmf
proof —
fix R: 'a = 'b= bool
show rel-fun R (rel-pmf R) pure-pmf pure-pmf by transfer-prover
next
fix Rand f :: ('la = ’b) pmf and g :: ('a = 'c¢) pmf and =
assume [transfer-rule]: rel-pmf (rel-fun (eg-on (set-pmf x)) R) fg
have [transfer-rule]: rel-pmf (eq-on (set-pmfx)) z x by (simp add: pmf.rel-refl-strong)
show rel-pmf R (ap-pmf f x) (ap-pmf g x) by transfer-prover
qed(rule ap-pmf-complunfolded o-def[abs-def]] ap-pmf-homo ap-pmf-C ap-pmf-K)+

end

end

21

3.7 Probability mass functions implemented as lists with du-
plicates

theory Applicative- Probability-List imports
Applicative-List
Complex-Main

begin

lemma sum-list-concat-map: sum-list (concat (map f xs)) = sum-list (map (A\z.
sum-list (f z)) xs)
by (induction xs) simp-all

context includes applicative-syntar begin

lemma set-ap-list [simp]: set (f o) = (A(f, z). fz) ‘(set f x set x)
by (auto simp add: ap-list-def List.bind-def)

We call the implementation type pfp because it is the basis for the Haskell li-
brary Probability by Martin Erwig and Steve Kollmansberger (Probabilistic
Functional Programming).

typedef ‘a pfp = {xs :: ("a x real) list. (V (-, p) € set xzs. p > 0) N sum-list (map

snd zs) = 1}
proof

show [(z, 1)] € ?pfp for z by simp
qed

setup-lifting type-definition-pfp
lift-definition pure-pfp :: 'a = ’a pfp is A\z. [(z, 1)] by simp

lift-definition ap-pfp :: (Ya = 'b) pfp = 'a pfp = b pfp
is AMfs zs. [A(f, p) (z, q). (fz, p*x q)] o fsoas
proof safe
fix zs :: (("la = 'b) x real) list and ys :: (‘a X real) list
assume zs: V (z, y) € set zs. 0 < y sum-list (map snd xs) = 1
and ys: V(z, y) € set ys. 0 < y sum-list (map snd ys) = 1
let Zap = [\(f, p) (7, @) (fz, p* @) o x50 ys
show 0 < b if (a, b) € set ?ap for a b using that xs ys
by (auto introl: mult-pos-pos)
show sum-list (map snd ?ap) = 1 using zs ys
by (simp add: ap-list-def List.bind-def map-concat o-def split-beta sum-list-concat-map
sum-list-const-mult)
qed

adhoc-overloading Applicative.ap = ap-pfp
applicative pfp

for pure: pure-pfp
ap: ap-pfp

22

proof —
show pure-pfp (A\z. z) o z = z for z :: 'a pfp
by transfer(simp add: ap-list-def List.bind-def)
show pure-pfp f o pure-pfp x = pure-pfp (f z) for f :: 'a = ’b and =
by transfer (applicative-lifting; simp)
show pure-pfp (\g fz. g (fz))ogofoz=go(foux)
for g : ('b = "c) pfpand f :: ('la = 'b) pfp and ¢
by transfer(applicative-lifting; clarsimp)
show [o pure-pfp x = pure-pfp (Af. fz) o f for f :: (‘a = 'b) pfp and z
by transfer(applicative-lifting; clarsimp)
qged

end

end

3.8 Ultrafilter

theory Applicative-Star imports
Applicative
HOL— Nonstandard-Analysis.StarDef
begin

applicative star (C, K, W)
for
pure: star-of
ap: Ifun
proof —
show star-of f * star-of x = star-of (f z) for f z by(fact Ifun-star-of)
qed(transfer; rule refl)+

end

theory Applicative- Vector imports
Applicative
HOL— Analysis. Finite- Cartesian- Product
begin

definition pure-vec :: 'a = ('a, 'b :: finite) vec
where pure-vec x = (x - . z)

definition ap-vec :: (‘a = 'b, 'c :: finite) vec = ('a, 'c¢) vec = ('b, 'c) vec

where ap-vec fz = (x i. (f $4) (z $9))
adhoc-overloading Applicative.ap = ap-vec

applicative vec (K, W)
for

23

pure: pure-vec
ap: ap-vec
by (auto simp add: pure-vec-def ap-vec-def vec-nth-inverse)

lemma pure-vec-nth [simp]: pure-vec © $ i = z
by (simp add: pure-vec-def)

lemma ap-vec-nth [simp]: ap-vec fz $i = (f $4) (z § 9)
by (simp add: ap-vec-def)

end

theory Applicative-Functor imports
Applicative- Environment
Applicative-Option
Applicative-Sum
Applicative-Set
Applicative-List
Applicative-DNEList
Applicative-Monoid
Applicative-Filter
Applicative-State
Applicative-Stream
Applicative-Open-State
Applicative-PMF
Applicative- Probability- List
Applicative-Star
Applicative- Vector

begin

print-applicative

end

4 Examples of applicative lifting

4.1 Algebraic operations for the environment functor

theory Applicative- Environment-Algebra imports
Applicative- Environment
HOL— Library. Function-Division

begin

Link between applicative instance of the environment functor with the point-
wise operations for the algebraic type classes

context includes applicative-syntaz
begin

24

lemma plus-fun-af [applicative-unfold): f + g = pure (+) o f o g
unfolding plus-fun-def const-def apf-def ..

lemma zero-fun-af [applicative-unfold): 0 = pure 0
unfolding zero-fun-def const-def ..

lemma times-fun-af [applicative-unfold]: f * g = pure (x) o f o g
unfolding times-fun-def const-def apf-def ..

lemma one-fun-af [applicative-unfold]: 1 = pure 1
unfolding one-fun-def const-def ..

lemma of-nat-fun-af [applicative-unfold): of-nat n = pure (of-nat n)
unfolding of-nat-fun const-def ..

lemma inverse-fun-af [applicative-unfold]: inverse f = pure inverse o f
unfolding inverse-fun-def o-def const-def apf-def ..

lemma divide-fun-af [applicative-unfold]: divide f g = pure divide o f © g
unfolding divide-fun-def const-def apf-def ..

end

end

4.2 Pointwise arithmetic on streams

theory Stream-Algebra
imports Applicative-Stream
begin

instantiation stream :: (zero) zero begin
definition [applicative-unfold]: 0 = sconst 0
instance ..

end

instantiation stream :: (one) one begin
definition [applicative-unfold]: 1 = sconst 1
instance ..

end

instantiation stream :: (plus) plus begin

context includes applicative-syntar begin

definition [applicative-unfold]: z + y = pure (+) ¢ z ¢ (y == 'a stream)
end

instance ..

end

instantiation stream :: (minus) minus begin

25

context includes applicative-syntar begin

definition [applicative-unfold]: z — y = pure (=) ¢ z < (y :: 'a stream)
end

instance ..

end

instantiation stream :: (uminus) uminus begin

context includes applicative-syntar begin

definition [applicative-unfold stream|: uminus = ((¢) (pure uminus) :: 'a stream
= 'a stream)

end

instance ..

end

instantiation stream :: (times) times begin

context includes applicative-syntaxr begin

definition [applicative-unfold]: © x y = pure (x) o z o (y :: 'a stream)
end

instance ..

end

instance stream :: (Rings.dvd) Rings.dvd ..

instantiation stream :: (modulo) modulo begin

context includes applicative-syntar begin

definition [applicative-unfold]: z div y = pure (div) o x o (y :: 'a stream)
definition [applicative-unfold]: © mod y = pure (mod) ¢ z o (y :: 'a stream)
end

instance ..

end

instance stream :: (semigroup-add) semigroup-add
using add.assoc by intro-classes applicative-lifting

instance stream :: (ab-semigroup-add) ab-semigroup-add
using add.commute by intro-classes applicative-lifting

instance stream :: (semigroup-mult) semigroup-mult
using mult.assoc by intro-classes applicative-lifting

instance stream :: (ab-semigroup-mult) ab-semigroup-mult
using mult.commute by intro-classes applicative-lifting

instance stream :: (monoid-add) monoid-add
by intro-classes (applicative-lifting, simp)+

instance stream :: (comm-monoid-add) comm-monoid-add
by intro-classes (applicative-lifting, simp)

26

instance stream :: (comm-monoid-diff) comm-monoid-diff
by intro-classes (applicative-lifting, simp add: diff-diff-add)+

instance stream :: (monoid-mult) monoid-mult
by intro-classes (applicative-lifting, simp)+

instance stream :: (comm-monoid-mult) comm-monoid-mult
by intro-classes (applicative-lifting, simp)

lemma plus-stream-shd: shd (z + y) = shd © + shd y
unfolding plus-stream-def by simp

lemma plus-stream-stl: stl (z + y) = stl x + stl y
unfolding plus-stream-def by simp

instance stream :: (cancel-semigroup-add) cancel-semigroup-add
proof
fix a b c:: 'a stream
assume a + b=a + ¢
thus b = ¢ proof (coinduction arbitrary: a b ¢)
case (FEg-stream a b c)
hence shd (a + b) = shd (a + ¢) stl (a + b) = stl (a + ¢) by simp-all
thus ?case by (auto simp add: plus-stream-shd plus-stream-stl)
qged
next
fix a b ¢ :: 'a stream
assume b+ a=c + a
thus b = ¢ proof (coinduction arbitrary: a b c)
case (Eg-stream a b c)
hence shd (b + a) = shd (¢ + a) stl (b + a) = stl (¢ + a) by simp-all
thus ?case by (auto simp add: plus-stream-shd plus-stream-stl)
qed
qed

instance stream :: (cancel-ab-semigroup-add) cancel-ab-semigroup-add
by intro-classes (applicative-lifting, simp add: diff-diff-eq)+

instance stream :: (cancel-comm-monoid-add) cancel-comm-monoid-add ..

instance stream :: (group-add) group-add
by intro-classes (applicative-lifting, simp)+

instance stream :: (ab-group-add) ab-group-add
by intro-classes simp-all

instance stream :: (semiring) semiring
by intro-classes (applicative-lifting, simp add: ring-distribs)+

27

instance stream :: (mult-zero) mult-zero
by intro-classes (applicative-lifting, simp)+

instance stream :: (semiring-0) semiring-0 ..
instance stream :: (semiring-0-cancel) semiring-0-cancel ..

instance stream :: (comm-semiring) comm-semiring
by intro-classes(rule distrib-right)

instance stream :: (comm-semiring-0) comm-semiring-0 ..
instance stream :: (comm-semiring-0-cancel) comm-semiring-0-cancel .
lemma pure-stream-inject [simp|: sconst x = sconst y «— x =y
proof

assume sconst x = sconst y

hence shd (sconst x) = shd (sconst y) by simp

thus z = y by simp
qed auto

instance stream :: (zero-neq-one) zero-neq-one
by intro-classes (applicative-unfold stream)

instance stream :: (semiring-1) semiring-1 ..
instance stream :: (comm-semiring-1) comm-semiring-1 ..
instance stream :: (semiring-1-cancel) semiring-1-cancel ..

instance stream :: (comm-semiring-1-cancel) comm-semiring-1-cancel
by (intro-classes; applicative-lifting, rule right-diff-distrib’)

instance stream :: (ring) ring ..

instance stream :: (comm-ring) comm-ring ..

instance stream :: (ring-1) ring-1 ..

instance stream :: (comm-ring-1) comm-ring-1 .
instance stream :: (numeral) numeral ..

instance stream :: (neg-numeral) neg-numeral ..

instance stream :: (semiring-numeral) semiring-numeral ..

lemma of-nat-stream [applicative-unfold]: of-nat n = sconst (of-nat n)

28

proof (induction n)
case 0 show %case by (simp add: zero-stream-def del: id-apply)
next
case (Suc n)
have 1 + pure (of-nat n) = pure (1 + of-nat n) by applicative-nf rule
with Suc.IH show ?case by (simp del: id-apply)
qed

instance stream :: (semiring-char-0) semiring-char-0
by intro-classes (simp add: inj-on-def of-nat-stream)

lemma pure-stream-numeral [applicative-unfold]: numeral n = pure (numeral n)
by (induction n)(simp-all only: numeral.simps one-stream-def plus-stream-def ap-stream-homo)

instance stream :: (ring-char-0) ring-char-0 ..

end

4.3 Tree relabelling

theory Tree-Relabelling imports
Applicative-State
Applicative-Option
Applicative-PMF
HOL— Library.Stream

begin

unbundle applicative-syntax

adhoc-overloading Applicative.pure = pure-option
adhoc-overloading Applicative.pure = State-Monad.return
adhoc-overloading Applicative.ap = State-Monad.ap

Hutton and Fulger [4] suggested the following tree relabelling problem as an
example for reasoning about effects. Given a binary tree with labels at the
leaves, the relabelling assigns a unique number to every leaf. Their correct-
ness property states that the list of labels in the obtained tree is distinct. As
observed by Gibbons and Bird [1], this breaks the abstraction of the state
monad, because the relabeling function must be run. Although Hutton and
Fulger are careful to reason in point-free style, they nevertheless unfold the
implementation of the state monad operations. Gibbons and Hinze [2] sug-
gest to state the correctness in an effectful way using an exception-state
monad. Thereby, they lose the applicative structure and have to resort to a
full monad.

Here, we model the tree relabelling function three times. First, we state
correctness in pure terms following Hutton and Fulger. Second, we take
Gibbons’ and Bird’s approach of considering traversals. Third, we state
correctness effectfully, but only using the applicative functors.

29

datatype ‘a tree = Leaf 'a | Node 'a tree 'a tree

primrec fold-tree :: (‘'a = 'b) = ('b = b= 'b) = ‘a tree = b
where

fold-tree f g (Leaf a) = f a
| fold-tree f g (Node I r) = g (fold-tree f g) (fold-tree f g 1)

definition leaves :: 'a tree = nat
where leaves = fold-tree (A-. 1) (+)

lemma leaves-simps [simp]:

leaves (Leaf ©) = Suc 0

leaves (Node I r) = leaves | + leaves r
by (simp-all add: leaves-def)

4.3.1 Pure correctness statement

definition labels :: ‘a tree = ’a list
where labels = fold-tree (Az. [z]) append

lemma labels-simps [simp]:

labels (Leaf x) = [1]

labels (Node 1 r) = labels | @ labels r
by (simp-all add: labels-def)

locale labelling =
fixes fresh :: ('s, 'z) state
begin

declare [[show-variants)

definition label-tree :: 'a tree = (s, 'z tree) state
where label-tree = fold-tree (\- :: 'a. pure Leaf ¢ fresh) (Al r. pure Node ¢ 1 o)

lemma label-tree-simps [simp):

label-tree (Leaf x) = pure Leaf o fresh

label-tree (Node | r) = pure Node o label-tree | o label-tree r
by (simp-all add: label-tree-def)

primrec label-list :: 'a list = ('s, 'z list) state
where
label-list || = pure []
| label-list (x # xs) = pure (#) o fresh o label-list xs

lemma label-append: label-list (a @ b) = pure (Q) o label-list a © label-list b
— The proof lifts the defining equations of (@) to the state monad.

proof (induction a)
case Nil
show ?Zcase

30

unfolding append.simps label-list.simps
by applicative-nf simp
next
case (Cons al a2)
show ?Zcase
unfolding append.simps label-list.simps Cons.IH
by applicative-nf simp
qed

lemma label-tree-list: pure labels o label-tree t = label-list (labels t)
proof (induction t)
case Leaf show ?Zcase unfolding label-tree-simps labels-simps label-list.simps
by applicative-nf simp
next
case Node show ?case unfolding label-tree-simps labels-simps label-append Node.IH [symmetric)
by applicative-nf simp
qed

We directly show correctness without going via streams like Hutton and
Fulger [4].
lemma correctness-pure:

fixes t :: 'a tree

assumes distinct: N\xs 2 'a list. distinct (fst (run-state (label-list xs) s))

shows distinct (labels (fst (run-state (label-tree t) s)))
using label-tree-list|of t, THEN arg-cong, of Af. run-state f s| assms|of labels t]
by (cases run-state (label-list (labels t)) s)(simp add: State-Monad.ap-def split-beta)

end

4.3.2 Correctness via monadic traversals

Dual version of an applicative functor with effects composed in the opposite
order

typedef ‘a dual = UNIV :: 'a set morphisms un-B B by blast
setup-lifting type-definition-dual

lift-definition pure-dual :: ('a = 'b) = 'a = 'b dual
is Apure. pure .

lift-definition ap-dual :: ((‘a = (‘a = 'b) = 'b) = ‘afl) = ('afl = 'af3 =
'af18) = ('af13 = 'af2 = 'of) = 'af2 dual = 'af3 dual = 'af dual
is Apure ap1 ap2 f z. ap2 (apl (pure Az f. fx)) z) f .

/

type-synonym (’s, 'a) state-rev = (s, 'a) state dual

definition pure-state-rev :: 'a = (s, 'a) state-rev
where pure-state-rev = pure-dual State-Monad.return

31

definition ap-state-rev :: ('s, 'a = 'b) state-rev = (’s, 'a) state-rev = ('s, 'b)
state-rev
where ap-state-rev = ap-dual State-Monad.return State-Monad.ap State-Monad.ap

adhoc-overloading Applicative.pure = pure-state-rev
adhoc-overloading Applicative.ap = ap-state-rev

applicative state-rev
for
pure: pure-state-rev
ap: ap-state-rev
unfolding pure-state-rev-def ap-state-rev-def by (transfer, applicative-nf, rule refl)+

's, 'a) state-rev dual

type-synonym (’s, 'a) state-rev-rev = (
definition pure-state-rev-rev :: 'a = (’s, 'a) state-rev-rev
where pure-state-rev-rev = pure-dual pure-state-rev

definition ap-state-rev-rev :: ('s, 'a = 'b) state-rev-rev = ('s, 'a) state-rev-rev =
('s, 'b) state-rev-rev
where ap-state-rev-rev = ap-dual pure-state-rev ap-state-rev ap-state-rev

adhoc-overloading Applicative.pure = pure-state-rev-rev
adhoc-overloading Applicative.ap = ap-state-rev-rev

applicative state-rev-rev
for
pure: pure-state-rev-rev
ap: ap-state-rev-rev
unfolding pure-state-rev-rev-def ap-state-rev-rev-def by(transfer, applicative-nf,
rule refl)+

lemma ap-state-rev-B: B f o B x = B (State-Monad.return (Ax f. fz) o z o f)
unfolding ap-state-rev-def by(fact ap-dual.abs-eq)

lemma ap-state-rev-pure-B: pure f o B x = B (State-Monad.return f o x)
unfolding ap-state-rev-def pure-state-rev-def
by transfer(applicative-nf, rule refl)

lemma ap-state-rev-rev-B: B f © B x = B (pure-state-rev (Az f. fz) o z ¢ f)
unfolding ap-state-rev-rev-def by(fact ap-dual.abs-eq)

lemma ap-state-rev-rev-pure-B: pure f o B x = B (pure-state-rev f ¢ 1)
unfolding ap-state-rev-rev-def pure-state-rev-rev-def
by transfer(applicative-nf, rule refl)

The formulation by Gibbons and Bird [1] crucially depends on Kleisli com-
position, so we need the state monad rather than the applicative functor

32

only.

lemma ap-conv-bind-state: State-Monad.ap fx = State-Monad.bind f (\f. State-Monad.bind
z (State-Monad.return o f))
by (simp add: State-Monad.ap-def State-Monad.bind-def Let-def split-def o-def fun-eq-iff)

lemma ap-pure-bind-state: pure © o State-Monad.bind y f = State-Monad.bind y

((¢) (pure z) o f)
by (simp add: ap-conv-bind-state o-def)

definition kleisli-state :: ('b = ('s, 'c) state) = (‘a = (’s, 'b) state) = 'a = (s,
‘c) state (infixl <> 55)
where [simp)|: kleisli-state g f a = State-Monad.bind (f a) g

definition fetch :: (‘a stream, 'a) state
where fetch = State-Monad.bind State-Monad.get (As. State-Monad.bind (State-Monad.set
(stl s)) (A-. State-Monad.return (shd s)))

primrec traverse :: (‘a = (’s, 'b) state) = 'a tree = ('s, 'b tree) state
where

traverse f (Leaf x) = pure Leaf o fx
| traverse f (Node I r) = pure Node o traverse f 1 o traverse f r

As we cannot abstract over the applicative functor in definitions, we define
traversal on the transformed applicative function once again.

primrec traverse-rev :: (‘a = ('s, 'b) state-rev) = 'a tree = ('s, 'b tree) state-rev
where

traverse-rev f (Leaf x) = pure Leaf o f
| traverse-rev f (Node | r) = pure Node ¢ traverse-rev f | o traverse-rev f r

definition recurse :: (‘a = (’s, 'b) state) = 'a tree = (s, 'b tree) state
where recurse f = un-B o traverse-rev (B o f)

lemma recurse-Leaf: recurse f (Leaf) = pure Leaf o fx
unfolding recurse-def traverse-rev.simps o-def ap-state-rev-pure-B
by (simp add: B-inverse)

lemma recurse-Node:
recurse [(Node [r) = pure (Ar 1. Node [1) o recurse f r o recurse f 1
proof —
have recurse f (Node | r) = un-B (pure Node © traverse-rev (B o f) | o traverse-rev
(Bof)r)
by (simp add: recurse-def)

also have ... = un-B (B (pure Node) ¢ B (recurse f1) o B (recurse f r))
by(simp add: un-B-inverse recurse-def pure-state-rev-def pure-dual-def)
also have ... = pure (Az f. f z) o recurse f r o (pure (A\z f. fz) © recurse f1 o
pure Node)
by(simp add: ap-state-rev-B B-inverse)
also have ... = pure (Ar l. Node I 1) o recurse f r o recurse f 1

— This step expands to 13 steps in [1]

33

by (applicative-nf) simp
finally show ?thesis .
qed

lemma traverse-pure: traverse pure t = pure t
proof (induction t)
{ case Leaf show ?case unfolding traverse.simps by applicative-nf simp }
{ case Node show ?case unfolding traverse.simps Node.IH by applicative-nf
simp }
qed

B o B is an idiom morphism

lemma B-pure: pure x = B (State-Monad.return x)
unfolding pure-state-rev-def by transfer simp

lemma BB-pure: pure x = B (B (pure x))
unfolding pure-state-rev-rev-def B-pure[symmetric] by transfer(rule refl)

lemma BB-ap: B (Bf) o B(Bz) =B (B (f o))
proof —
have B (B f) o B(Bz) = B (B (pure Az f. fz) o f o (pure Az f. fz) oz o
pure (Aa f. £ 1))
(is - = B (B ?exp))
unfolding ap-state-rev-rev-B B-pure ap-state-rev-B ..
also have ?exp = f o x — This step takes 15 steps in [1].
by (applicative-nf)(rule refl)
finally show ?thesis .
qed

primrec traverse-rev-rev :: (‘a = (s, 'b) state-rev-rev) = ‘a tree = (s, 'b tree)
state-rev-rev
where
traverse-rev-rev f (Leaf) = pure Leaf o fx
| traverse-rev-rev f (Node |) = pure Node © traverse-rev-rev f | © traverse-rev-rev

fr

definition recurse-rev :: (‘a = (s, 'b) state-rev) = 'a tree = (’

where recurse-rev f = un-B o traverse-rev-rev (B o f)

s, 'b tree) state-rev

lemma traverse-B-B: traverse-rev-rev (B o B o f) = B o B o traverse [(is ?lhs
= %rhs)
proof
fix t
show ?lhs t = ?rhs t by(induction t)(simp-all add: BB-pure BB-ap)
qed

lemma traverse-recurse: traverse f = un-B o recurse-rev (B o f) (is ?lhs = ?rhs)

proof —
have ?lhs = un-B o un-B o B o B o traverse f by(simp add: o-def B-inverse)

34

also have ... = un-B o un-B o traverse-rev-rev (B o B o f) unfolding tra-
verse-B-B by(simp add: o-assoc)

also have ... = %rhs by(simp add: recurse-rev-def o-assoc)
finally show ?thesis .
qed

lemma recurse-traverse:
assumes [- g = pure
shows recurse f - traverse g = pure
— Gibbons and Bird impose this as an additional requirement on traversals, but
they write that they have not found a way to derive this fact from other axioms.
So we prove it directly.
proof
fix ¢
from assms have x: Az. State-Monad.bind (g x) f = State-Monad.return x
by (simp add: fun-eg-iff)
hence xx: Az h. State-Monad.bind (g z) (Az. State-Monad.bind (f z) h) = h «
by (fold State-Monad.bind-assoc)(simp)
show (recurse f « traverse g) t = pure ¢t unfolding kleisli-state-def
proof (induction t)
case (Leaf x)
show ?case
by (simp add: ap-conv-bind-state recurse-Leaf *x)
next
case (Node I 1)
show ?Zcase
by (simp add: ap-conv-bind-state recurse-Node)(simp add: State-Monad.bind-assoc[symmetric]
Node.IH)
qed
qed

Apply traversals to labelling

definition strip :: ‘a x 'b = ('b stream, 'a) state
where strip = (A(a, b). State-Monad.bind (State-Monad.update (SCons b)) (A-.
State-Monad.return a))

definition adorn :: 'a = ('b stream, 'a x 'b) state
where adorn a = pure (Pair a) ¢ fetch

abbreviation label :: 'a tree = ('b stream, ('a x 'b) tree) state
where label = traverse adorn

abbreviation unlabel :: (‘a x 'b) tree = ('b stream, 'a tree) state
where unlabel = recurse strip

lemma strip-adorn: strip - adorn = pure
by (simp add: strip-def adorn-def fun-eq-iff fetch-def[abs-def] ap-conv-bind-state)

lemma correctness-monadic: unlabel - label = pure

35

by (rule recurse-traverse)(rule strip-adorn)

4.3.3 Applicative correctness statement

Repeating an effect

primrec repeatM :: nat = (s, 'z) state = (s, 'z list) state
where

repeatM 0 f = State-Monad.return ||
| repeatM (Suc n) f = pure (#) o f © repeatM n f

lemma repeatM-plus: repeatM (n + m) f = pure append o repeatM n f o repeatM

m f
by (induction n)(simp; applicative-nf; simp)+

abbreviation (input) fail :: 'a option where fail = None

definition lift-state :: ('s, 'a) state = (s, 'a option) state
where [applicative-unfold]: lift-state x = pure pure © x

definition lift-option :: 'a option = ('s, ‘a option) state
where [applicative-unfold): lift-option © = pure x

fun assert :: ('a = bool) = 'a option = 'a option
where
assert-fail: assert P fail = fail
| assert-pure: assert P (pure x) = (if P x then pure z else fail)

context labelling begin

abbreviation symbols :: nat = ('s, 'z list option) state
where symbols n = lift-state (repeatM n fresh)

abbreviation (input) disjoint :: 'z list = "z list = bool
where disjoint xs ys = set xs N set ys = {}

definition dlabels :: 'z tree = 'z list option
where dlabels = fold-tree (Ax. pure [z])
(AL r. pure (case-prod append) ¢ (assert (case-prod disjoint) (pure Pair o | o

7))

lemma dlabels-simps [simp]:

dlabels (Leaf x) = pure [z

dlabels (Node |) = pure (case-prod append) ¢ (assert (case-prod disjoint) (pure
Pair o dlabels | o dlabels r))
by (simp-all add: dlabels-def)

lemma correctness-applicative:
assumes distinct: \n. pure (assert distinct) ¢ symbols n = symbols n

36

shows State-Monad.return dlabels < label-tree t = symbols (leaves t)
proof (induction t)
show pure dlabels ¢ label-tree (Leaf x) = symbols (leaves (Leaf z)) for z :: 'a
unfolding label-tree-simps leaves-simps repeatM .simps by applicative-nf simp
next
fix [r:: 'a tree
assume [H: pure dlabels ¢ label-tree | = symbols (leaves 1) pure dlabels o label-tree
r = symbols (leaves 1)
let ?cat = case-prod append and ?disj = case-prod disjoint
let 2f = Al r. pure ?cat o (assert ?disj (pure Pair o 1 o 1))
have State-Monad.return dlabels o label-tree (Node | 1) =
pure ?f o (pure dlabels ¢ label-tree 1) o (pure dlabels ¢ label-tree)
unfolding label-tree-simps by applicative-nf simp
also have ... = pure ?f o (pure (assert distinct) ¢ symbols (leaves 1)) ¢ (pure
(assert distinct) o symbols (leaves r))
unfolding IH distinct ..

also have ... = pure (assert distinct) ¢ symbols (leaves (Node I 1))
unfolding leaves-simps repeatM-plus by applicative-nf simp
also have ... = symbols (leaves (Node [1)) by(rule distinct)

finally show pure dlabels © label-tree (Node | r) = symbols (leaves (Node I 1)) .
qed

end

4.3.4 Probabilistic tree relabelling

primrec mirror :: 'a tree = 'a tree
where
mirror (Leaf) = Leaf x
| mirror (Node I r) = Node (mirror r) (mirror [)

datatype dir = Left | Right
hide-const (open) path
function (sequential) subtree :: dir list = 'a tree = 'a tree
where

subtree (Left # path) (Node l 1) = subtree path |
| subtree (Right # path) (Node | 1) = subtree path r
| subtree - (Leaf) = Leafz
| subtree [] t =t
by pat-completeness auto
termination by lexicographic-order
adhoc-overloading Applicative.pure = pure-pmf

context fixes p :: 'a = 'b pmf begin

primrec plabel :: 'a tree = 'b tree pmf

37

where
plabel (Leaf) = pure Leaf © p x
| plabel (Node | r) = pure Node ¢ plabel | o plabel r

lemma plabel-mirror: plabel (mirror t) = pure mirror ¢ plabel t
proof (induction t)

case (Leaf 1)

show ?case unfolding plabel.simps mirror.simps by (applicative-lifting) simp
next

case (Node t1 t2)

show ?case unfolding plabel.simps mirror.simps Node.IH by (applicative-lifting)
stmp
qed

lemma plabel-subtree: plabel (subtree path t) = pure (subtree path) o plabel t
proof (induction path t rule: subtree.induct)

case Left: (1 path I r)

show ?case unfolding plabel.simps subtree.simps Left.IH by (applicative-lifting)
stmp
next

case Right: (2 path | 1)

show ?case unfolding plabel.simps subtree.simps Right.IH by (applicative-lifting)
stmp
next

case (3 uu)

show ?case unfolding plabel.simps subtree.simps by (applicative-lifting) simp
next

case (4 v va)

show ?case unfolding plabel.simps subtree.simps by (applicative-lifting) simp
qed

end

end

theory Applicative-Examples imports
Applicative- Environment-Algebra
Stream-Algebra
Tree-Relabelling

begin

end

5 Formalisation of idiomatic terms and lifting

5.1 Immediate joinability under a relation

theory Joinable

38

imports Main
begin

5.1.1 Definition and basic properties

definition joinable :: (‘a x 'b) set = ('a x 'a) set
where joinable R = {(z, y). 3z. (z, 2) € R A (y, z) € R}

lemma joinable-simp: (z, y) € joinable R +— (3 2. (z, 2) € R A (y, z) € R)
unfolding joinable-def by simp

lemma joinablel: (z, z) € R = (y, 2) € R = (x, y) € joinable R
unfolding joinable-simp by blast

lemma joinableD: (z, y) € joinable R = Jz. (z, 2) € RA (y, z) € R
unfolding joinable-simp .

lemma joinableE:

assumes (z, y) € joinable R

obtains z where (z, z) € R and (y, z) € R
using assms unfolding joinable-simp by blast

lemma refl-on-joinable: refl-on {z. Jy. (z, y) € R} (joinable R)
by (auto introl: refl-onl simp only: joinable-simp)

lemma refl-joinable-iff: (Vz. Jy. (z, y) € R) = refl (joinable R)
by (auto intro!: refl-onl dest: refl-onD simp add: joinable-simp)

lemma refl-joinable: refl R = refl (joinable R)
using refl-joinable-iff by (blast dest: refl-onD)

lemma joinable-refi: refl R = (z, x) € joinable R
using refl-joinable by (blast dest: refl-onD)

lemma sym-joinable: sym (joinable R)
by (auto introl: syml simp only: joinable-simp)

lemma joinable-sym: (x, y) € joinable R = (y, =) € joinable R
using sym-joinable by (rule symD)

lemma joinable-mono: R C S = joinable R C joinable S
by (rule subrell) (auto simp only: joinable-simp)

lemma refi-le-joinable:
assumes refl R
shows R C joinable R
proof (rule subrell)
fix zy
assume (z, y) € R

39

moreover from <refl Ry have (y, y) € R by (blast dest: refl-onD)
ultimately show (z, y) € joinable R by (rule joinablel)
qed

lemma joinable-subst:
assumes R-subst: Az y. (¢, y) € R=— (Pxz, Py) € R
assumes joinable: (z, y) € joinable R
shows (P z, P y) € joinable R
proof —
from joinable obtain z where zz: (z, 2) € R and yz: (y, 2) € R by (rule
joinableE)
from R-subst zz have (P z, Pz) € R .
moreover from R-subst yz have (P y, Pz) € R .
ultimately show ?thesis by (rule joinablel)
qed

5.1.2 Confluence

definition confluent :: ‘a rel = bool
where confluent R +— (Vz y y'. (z, y) € R A (z, y') € R — (y, y’) € joinable
R)

lemma confluentl:

ANyy. (z,y) € R= (z,y) € R= 3z (y,2) € RA (y, 2) € R) =
confluent R
unfolding confluent-def by (blast intro: joinablel)

lemma confluentD:
confluent R = (z, y) € R = (z,y) € R = (y, y') € joinable R
unfolding confluent-def by blast

lemma confluentE:
assumes confluent R and (z, y) € R and (z, y') € R
obtains z where (y, z) € R and (y', z) € R

using assms unfolding confluent-def by (blast elim: joinableFE)

lemma trans-joinable:
assumes trans R and confluent R
shows trans (joinable R)
proof (rule transI)
fixzyz
assume (z, y) € joinable R
then obtain u where zu: (z,) € R and yu: (y, u) € R by (rule joinableF)
assume (y, z) € joinable R
then obtain v where yv: (y, v) € R and zv: (z, v) € R by (rule joinableE)
from yu yv <confluent Ry obtain w where vw: (u, w) € R and vw: (v, w) € R
by (blast elim: confluentE)
from zu uw <trans Ry have (z, w) € R by (blast elim: transE)
moreover from zv vw <trans R» have (z, w) € R by (blast elim: transE)

40

ultimately show (z, z) € joinable R by (rule joinablel)
qed

5.1.3 Relation to reflexive transitive symmetric closure

lemma joinable-le-rtscl: joinable (R*) C (R U R™1)*
proof (rule subrell)
fix zy
assume (z, y) € joinable (R*)
then obtain z where zz: (z, z) € R* and yz: (y,2) € R* by (rule joinableE)
from zz have (z, z) € (R U R™')* by (blast intro: in-rtrancl-Unl)
moreover from yz have (z, y) € (R U R™Y)* by (blast intro: in-rtrancl-Unl
rtrancl-conversel)
ultimately show (z, y) € (R U R™1)* by (rule rtrancl-trans)
qed

theorem joinable-eq-rtscl:
assumes confluent (R*)
shows joinable (R*) = (R U R~1)*
proof
show joinable (R*) C (R U R™1)* using joinable-le-rtscl .
next
show joinable (R*) D (R U R~1)* proof (rule subrell)
fix zy
assume (z, y) € (R U R71)*
thus (z, y) € joinable (R*) proof (induction set: rtrancl)
case base
show (z, z) € joinable (R*) using joinable-refl refl-rtrancl .
next
case (step y 2)
have R C joinable (R*) using refl-le-joinable refl-rtrancl by fast
with «(y, z) € R U R™1 have (y, z) € joinable (R*) using joinable-sym by
fast
with «(z, y) € joinable (R*)> show (z, z) € joinable (R*)
using trans-joinable trans-rtrancl <confluent (R*)> by (blast dest: transD)
qed
qed
qed

5.1.4 Predicate version
definition joinablep :: (‘a = 'b = bool) = 'a = 'a = bool
where joinablep Pxy +— (32. Px 2 A Py 2)

lemma joinablep-joinable[pred-set-conv:
joinablep (A\x y. (z, y) € R) = (A\z y. (z, y) € joinable R)
by (fastforce simp only: joinablep-def joinable-simp)

lemma reflp-joinablep: reflp P = reflp (joinablep P)
by (blast intro: reflpl joinable-refi[to-pred| refl-onl|[to-pred] dest: refipD)

41

lemma joinablep-refl: reflp P = joinablep P = x
using reflp-joinablep by (rule reflpD)

lemma refip-le-joinablep: reflp P = P < joinablep P
by (blast introl: refl-le-joinable[to-pred] refl-onl[to-pred] dest: reflpD)

end

5.2 Combined beta and eta reduction of lambda terms

theory Beta-Eta
imports HOL— Proofs— Lambda.Eta Joinable
begin

5.2.1 Auxiliary lemmas

lemma liftn-lift-swap: liftn n (lift t k) k = lift (liftn n t k) k
by (induction n) simp-all

lemma subst-liftn:
i<n+4+kAk<i= (liftn (Sucn) s k)[t/i] = liftnn sk
by (induction s arbitrary: i k t) auto

lemma subst-lift2[simp]: (lift (lift t 0) 0)[z/Suc 0] = lift t 0

proof —
have lift (lift t 0) 0 = lift (lift t 0) (Suc 0) using lLift-lift by simp
thus %thesis by simp

qed

lemma free-liftn:

free (liftnntk)i=G<kAfreetiVvVk+n<iAfret(i— n))
by (induction t arbitrary: k i) (auto simp add: Suc-diff-le)
5.2.2 Reduction

abbreviation beta-eta :: dB = dB = bool (infixl <—g,» 50)
where beta-eta = sup beta eta

abbreviation beta-eta-reds :: dB = dB = bool (infixl <—4,*» 50)
where s —3,* t = (beta-eta)** st

lemma beta-into-beta-eta-reds: s —g t = s —gy* t
by auto

lemma eta-into-beta-eta-reds: s —, t => s —g,* t
by auto

lemma beta-reds-into-beta-eta-reds: s —g* t => s —pgy* ¢
by (auto intro: rtranclp-mono| THEN predicate2D))

42

lemma eta-reds-into-beta-eta-reds: s —,* t = s —g,"
by (auto intro: rtranclp-mono|THEN predicate2D])

lemma beta-eta-appLlintro]: s —pgn,* s' = s°t —pg," s'° t
by (induction set: rtranclp) (auto intro: rtranclp.rtrancl-into-rtrancl)

lemma beta-eta-appRlintrol: t —pg,* t' = s°t —p," s°t’
by (induction set: rtranclp) (auto intro: rtranclp.rtrancl-into-rtrancl)

lemma beta-eta-abs[introl: t —g,* t' = Abs t —pg,* Abs t’
by (induction set: rtranclp) (auto intro: rtranclp.rtrancl-into-rtrancl)

lemma beta-eta-lift: s —g,* t = lift s k —p,* lift t k
proof (induction pred: rtranclp)
case base show ?case ..
next
case (step y 2)
hence lift y k — g3, lift 2 k using lift-preserves-beta eta-lift by blast
with step.IH show lift s k —g,* lift z k by iprover
qed

lemma confluent-beta-eta-reds: Joinable.confluent {(s, t). s —pg,* t}
using confluent-beta-eta

unfolding diamond-def commute-def square-def

by (blast intro!: confluentl)

5.2.3 Equivalence

Terms are equivalent iff they can be reduced to a common term.

definition term-equiv :: dB = dB = bool (infixl <) 50)
where term-equiv = joinablep beta-eta-reds

lemma term-equivl:
assumes s —g,* v and t —g," u
shows s < ¢
using assms unfolding term-equiv-def by (rule joinablel[to-pred))

lemma term-equivE:
assumes s <> 1
obtains u where s —3," v and ¢t —g,* u
using assms unfolding term-equiv-def by (rule joinableE[to-pred])

*

lemma reds-into-equiv[elim]: s —g,* t = s <> ¢
by (blast intro: term-equivl)

lemma beta-into-equiv(elim]: s =g t = s <> ¢
by (rule reds-into-equiv) (rule beta-into-beta-eta-reds)

43

lemma eta-into-equiv(elim]: s —, t => s <> t
by (rule reds-into-equiv) (rule eta-into-beta-eta-reds)

lemma beta-reds-into-equiv[elim]: s —g* t => s <> t
by (rule reds-into-equiv) (rule beta-reds-into-beta-eta-reds)

lemma eta-reds-into-equivielim]: s —,* t = s <> ¢
by (rule reds-into-equiv) (rule eta-reds-into-beta-eta-reds)

lemma term-refl[iff]: t < ¢
unfolding term-equiv-def by (blast intro: joinablep-refl refipl)

lemma term-sym[sym]: (s <> t) = (t <>)
unfolding term-equiv-def by (rule joinable-sym[to-pred)])

lemma conversep-term [simpl: conversep (+3) = ()
by (auto simp add: fun-eq-iff intro: term-sym,)

lemma term-trans[trans]: s <> t = t < u = s < u

unfolding term-equiv-def

using trans-joinable[to-pred] trans-rtrancl[to-pred] confluent-beta-eta-reds
by (blast elim: transpE)

lemma term-beta-trans(trans]: s <> t = t —p u = 5 <> u
by (fast dest!: beta-into-beta-eta-reds intro: term-trans)

lemma term-eta-trans(trans): s <+ t =t —, u = s <> u
by (fast dest!: eta-into-beta-eta-reds intro: term-trans)

lemma equiv-appLlintro]: s <> ' = s°t «> s'° ¢t
unfolding term-equiv-def using beta-eta-appL
by (iprover intro: joinable-subst[to-pred))

lemma equiv-appRlintro]: t > t' = s° t <> s ° ¢’
unfolding term-equiv-def using beta-eta-appR
by (iprover intro: joinable-subst[to-pred))

lemma equiv-app: s <> s' = t < t' = s°t < s’ °t’
by (blast intro: term-trans)

lemma equiv-abs[intro]: t <> t' = Abs t <> Abs t’
unfolding term-equiv-def using beta-eta-abs

by (iprover intro: joinable-subst[to-pred))

lemma equiv-lift: s < t = lift sk +< lift t k
by (auto intro: term-equivl beta-eta-lift elim: term-equivE)

lemma equiv-liftn: s <> t = liftn n s k < liftn n t k
by (induction n) (auto intro: equiv-lift)

44

Our definition is equivalent to the the symmetric and transitive closure of
the reduction relation.

lemma equiv-eq-rtscl-reds: term-equiv = (sup beta-eta beta-eta=1=1)**
unfolding term-equiv-def

using confluent-beta-eta-reds

by (rule joinable-eq-rtscl[to-pred))

end

5.3 Combinators defined as closed lambda terms

theory Combinators
imports Beta-Fta
begin

definition I-def: T = Abs (Var 0)
definition B-def: B = Abs (Abs (Abs (Var 2 ° (Var 1 ° Var 0))))
definition T-def: T = Abs (Abs (Var 0 ° Var 1)) — reverse application

lemma l-eval: T ° z =g x

proof —
have Z ° ¢ —3 Var 0[z/0] unfolding I-def ..
then show ?thesis by simp

qed

lemma I-equiv[iff]: T ° = +> «
using I-eval ..

lemma I-closed[simp]: liftn n T k=1
unfolding I-def by simp

lemma B-evall: B ° g —5 Abs (Abs (lift (lift g 0) 0 ° (Var 1 ° Var 0)))

proof —
have B ° g —g Abs (Abs (Var 2 ° (Var 1 ° Var 0))) [¢/0] unfolding B-def ..
then show %thesis by (simp add: numerals)

qed

lemma B-eval2: B° g ° f —g* Abs (lift g 0 ° (lift f 0 ° Var 0))
proof —
have B ° g ° f —g* Abs (Abs (lift (lift g 0) 0 ° (Var 1 ° Var 0))) ° f
using B-evall by blast
also have ... —g Abs (lift (lift g 0) 0 ° (Var 1 ° Var 0)) [f/0] ..
also have ... = Abs (lift g 0 ° (lift f 0 ° Var 0)) by simp
finally show ?thesis .
qed

lemma B-eval: B°g° f°x —5*g° (f°x)

proof —
have B° g° f°x —g* Abs (lift g 0 ° (lift f 0 ° Var 0)) °

45

using B-eval2 by blast
also have ... =3 (lift ¢ 0 ° (lift f 0 ° Var 0)) [z/0] ..

also have ... = g ° (f ° z) by simp
finally show ?thesis .
qed

lemma B-equiv[iff]: B° g°f°z+ g° (f ° x)
using B-eval ..

lemma B-closed[simp]: liftn n B k = B
unfolding B-def by simp

lemma T-evall: T ° z —p Abs (Var 0 ° lift 0)

proof —
have T ° z —g Abs (Var 0 ° Var 1) [z/0] unfolding T-def ..
then show ?thesis by simp

qed

lemma T-eval: T ° 2 ° f =g* f°x
proof —
have T °z ° f —g* Abs (Var 0 ° lift z 0) ° f
using T-evall by blast
also have ... =g (Var 0 ° lift z 0) [f/0] ..

also have ... = f ° z by simp
finally show ?thesis .
qed

lemma T-equiv|[iff]: Tz °f+ f°x
using T-eval ..

lemma T-closed[simp): liftn n T k=T
unfolding T-def by simp

end

5.4 Idiomatic terms — Properties and operations

theory Idiomatic-Terms
imports Combinators
begin

This theory proves the correctness of the normalisation algorithm for arbi-
trary applicative functors. We generalise the normal form using a framework
for bracket abstraction algorithms. Both approaches justify lifting certain
classes of equations. We model this as implications of term equivalences,
where unlifting of idiomatic terms is expressed syntactically.

46

5.4.1 Basic definitions

datatype ‘a itrm =
Opaque 'a | Pure dB
| IAp 'a itrm 'a itrm (infix] o> 150)

primrec opaque :: 'a itrm = 'a list
where
opaque (Opaque x) = [z
| opaque (Pure -) = |]
| opague (f © x) = opaque f @ opaque x

abbreviation iorder x = length (opaque)

inductive itrm-cong :: ('a itrm = 'a itrm = bool) = 'a itrm = 'a itrm = bool
for R
where
into-itrm-cong: R © y = itrm-cong R z y

| pure-conglintro]: x <» y = itrm-cong R (Pure z) (Pure y)

| ap-cong: itrm-cong R f f' = dtrm-cong R x ©' = itrm-cong R (f ¢ z) (f' ¢
z’)

| itrm-refl[iff]: itrm-cong R x x

| itrm-sym[sym]: itrm-cong R © y = itrm-cong R y x

| itrm-trans|[trans]: itrm-cong R x y = itrm-cong R y z = dtrm-cong R z z

lemma ap-congL[intro): itrm-cong R f f' = itrm-cong R (f ¢ z) (f' ¢ z)
by (blast intro: ap-cong)

lemma ap-congR|[intro]: itrm-cong R © ©’ = itrm-cong R (f o z) (f ¢ z')
by (blast intro: ap-cong)

Idiomatic terms are similar iff they have the same structure, and all con-
tained lambda terms are equivalent.

abbreviation similar :: 'a itrm = 'a itrm = bool (infix] (= 50)
where z = y = itrm-cong (M- -. False) z y

lemma pure-similarE:
assumes Pure z’ = y
obtains y’ where y = Pure y’ and z’ < vy’
proof —
define z :: 'a itrm where z = Pure z’
from assms have z = y unfolding z-def .
then have (Vz'. = Pure 2/ — (3y’. y = Pure y’ A 2" < y')) A
(Va". y = Pure 2" — (3y’. 2 = Pure y' A 2" < y"))
proof (induction)
case pure-cong thus ?case by (auto intro: term-sym)
next
case itrm-trans thus ?case by (fastforce intro: term-trans)
qed simp-all
with that show thesis unfolding z-def by blast

47

qed

lemma opaque-similark:
assumes Opaque z’ = y
obtains y’ where y = Opaque y' and z’ = y’
proof —
define z :: ‘a itrm where z = Opaque z’
from assms have z = y unfolding z-def .
then have (Vz'. x = Opaque 2" — (Jy’. y = Opaque y' Az’ = y')) A
(Vz'". y = Opaque z'" — (Fy’. £ = Opaque y’' A 2" = y’))
by induction fast+
with that show thesis unfolding x-def by blast
qed

lemma ap-similarkE:
assumes 21 ¢ 22 = y
obtains y! y2 where y = yI ¢ y2 and z! = y1 and 22 & y2
proof —
from assms
have (Vz1’ 22" 21 o 22 = z1' o 22" — Byl y2. y =yl o y2 AN zl’' = yl A
22" =2 y2)) A
Vo1’ 22" y =zl o 22’ — (Jyl y2. 21 o 22 =yl o y2 N z1’' = yl A 22’
= y2))
proof (induction)
case ap-cong thus ?case by (blast intro: itrm-sym)
next
case trans: itrm-trans thus ?case by (fastforce intro: itrm-trans)
qed simp-all
with that show thesis by blast
qed

The following relations define semantic equivalence of idiomatic terms. We
consider equivalences that hold universally in all idioms, as well as arbitrary
specialisations using additional laws.

inductive idiom-rule :: 'a itrm = 'a itrm = bool
where
idiom-id: idiom-rule (Pure T ¢)
| idiom-comp: idiom-rule (Pure Bo go fox) (go (f o 1))
| idiom-hom: idiom-rule (Pure f ¢ Pure x) (Pure (f ° z))
| idiom-zchng: idiom-rule (f o Pure x) (Pure (T ° z) o f)

abbreviation itrm-equiv :: 'a itrm = 'a itrm = bool (infixl (~) 50)
where = ~ y = itrm-cong idiom-rule = y

lemma idiom-rule-into-equiv: idiom-rule x y — = ~ y ..
lemmas itrm-id = idiom-id[THEN idiom-rule-into-equiv)

lemmas itrm-comp = idiom-comp[THEN idiom-rule-into-equiv]
lemmas itrm-hom = idiom-hom|THEN idiom-rule-into-equiv]

48

lemmas itrm-zchng = idiom-xchng| THEN idiom-rule-into-equiv)

lemma similar-into-equiv: © = y = z >~ y
by (induction pred: itrm-cong) (auto intro: ap-cong itrm-sym itrm-trans)

lemma opaque-equiv: x ~ y => opaque T = opaque y
proof (induction pred: itrm-cong)

case (into-itrm-cong x y)

thus ?case by induction auto
qed simp-all

lemma iorder-equiv: x ~ y — iorder x = iorder y
by (auto dest: opaque-equiv)

locale special-idiom =
fixes extra-rule :: 'a itrm = 'a itrm = bool
begin

definition idiom-ext-rule = sup idiom-rule extra-rule

abbreviation itrm-ext-equiv :: 'a itrm = a itrm = bool (infixl «<~1) 50)
where z ~* y = itrm-cong idiom-ext-rule T y

lemma equiv-into-ext-equiv: z ~ y = z ~T y
unfolding idiom-ext-rule-def
by (induction pred: itrm-cong)

(auto intro: into-itrm-cong ap-cong itrm-sym itrm-trans)

lemmas itrm-ext-id = itrm-id[THEN equiv-into-ext-equiv]
lemmas itrm-ext-comp = itrm-comp| THEN equiv-into-ext-equiv)
lemmas itrm-ext-hom = itrm-hom|[THEN equiv-into-ext-equiv)
lemmas itrm-ext-zchng = itrm-zchng[THEN equiv-into-ext-equiv]

end

5.4.2 Syntactic unlifting

With generalisation of variables primrec unlift’ :: nat = 'a itrm = nat
= dB
where
unlift’ n (Opaque -) i = Var i
| unlift’ n (Pure z) ¢ = liftn n z 0
| unlift’ n (f o x) ¢ = unlift’ n f ({ + iorder x) ° unlift’ n x4

abbreviation unlift x = (Abs™ iorder z) (unlift’ (iorder x) x 0)

lemma funpow-Suc-inside: (f = Suc n) x = (f ~ " n) (f z)
using funpow-Suc-right unfolding comp-def by metis

49

lemma absn-cong[intro]: s <> t => (Abs™ n) s <> (Abs" n) t
by (induction n) auto

lemma free-unlift: free (unlift’ nzi)j = j>nV (j =i Aj< i+ iorderx)
proof (induction © arbitrary: i)

case (Opaque)

thus ?case by simp
next

case (Pure x)

thus ?case using free-liftn by simp
next

case (IAp z y)

thus ?case by fastforce
qed

lemma unlift-subst: j < i A j < n = (unlift’ (Suc n) t (Suc i))[s/j] = unlift’ n
ti
proof (induction t arbitrary: 7)
case (Opaque)
thus ?case by simp
next
case (Pure x)
thus ?case using subst-liftn by simp
next
case (IAp z y)
hence j < i + iorder y by simp
with IAp show ?case by auto
qed

lemma unlift’-equiv: z ~ y = unlift’ n x i < unlift’ n y ¢
proof (induction arbitrary: n i pred: itrm-cong)
case (into-itrm-cong z y) thus ?case
proof induction
case (idiom-id x)
show ?case using I-equiv[symmetric] by simp
next
case (idiom-comp g f x)
let ?G = unlift’ n g (i + iorder f + iorder x)
let 2F = unlift’ n f (i + iorder x)
let X = unlift' n z i
have unlift' n (g o (f o x)) i = ?G ° (?F ° ?X)
by (simp add: add.assoc)
moreover have unlift’ n (Pure Bo go fox)i=B°%G° 2F° ?2X
by (simp add: add.commute add.left-commute)
moreover have ?G ° (?F ° ?X) <> B° ?G ° ?F ° ?X using B-equiv[symmetric|

ultimately show ?case by simp

next
case (idiom-hom f x)

50

show ?case by auto
next
case (idiom-zchng f x)
let ?F = unlift’ n f i
let ?X = liftnnz 0
have unlift’ n (f © Pure x) i = ?2F ° ?X by simp
moreover have unlift’ n (Pure (T °z)o f)i=T ° ?X ° ¢F by simp
moreover have ?F ° ?X «— T ° ?2X ° ?F using T-equiv[symmetric] .
ultimately show ?case by simp
qged
next
case pure-cong
thus ?case by (auto intro: equiv-liftn)
next
case (ap-cong f ' z z')
from <z ~ z'y have iorder-eq: iorder x = iorder z' by (rule iorder-equiv)
have unlift’ n (f o z) ¢ = unlift’ n f (i + dorder x) ° unlift’ n z i by simp
moreover have unlift’ n (f' ¢ z’) i = unlift’ n f' (i + iorder z) ° unlift’ n z’ i
using iorder-eq by simp
ultimately show ?case using ap-cong.TH by (auto intro: equiv-app)
next
case itrm-refl
thus ?case by simp
next
case itrm-sym
thus ?case using term-sym by simp
next
case itrm-trans
thus ?case using term-trans by blast
qed

lemma unlift-equiv: © ~ y = unlift x < unlift y

proof —
assume z >~ y
then have unlift’ (iorder y) z 0 + unlift’ (iorder y) y 0 by (rule unlift’-equiv)
moreover from <z ~ y> have iorder z = iorder y by (rule iorder-equiv)
ultimately show ?thesis by auto

qed

Preserving variables primrec unlift-vars :: nat = nat itrm = dB
where
unlift-vars n (Opaque i) = Var i
| unlift-vars n (Pure x) = liftn n z 0
| unlift-vars n (z o y) = unlift-vars n x ° unlift-vars n y

lemma all-pure-unlift-vars: opaque © = [| = x ~ Pure (unlift-vars 0 x)
proof (induction x)

case (Opaque) then show ?Zcase by simp
next

o1

case (Pure x) then show Zcase by simp
next
case (IAp z y)
then have no-opaque: opaque © = [| opaque y = [| by simp+
then have unlift-ap: unlift-vars 0 (z ¢ y) = unlift-vars 0 x ° unlift-vars 0y
by simp
from no-opaque IAp.IH have x ¢ y ~ Pure (unlift-vars 0) o Pure (unlift-vars
0y)
by (blast intro: ap-cong)
also have ... ~ Pure (unlift-vars 0 x ° unlift-vars 0 y) by (rule itrm-hom)

also have ... = Pure (unlift-vars 0 (z o y)) by (simp only: unlift-ap)
finally show ?Zcase .
qed

5.4.3 Canonical forms

inductive-set CF : ‘a itrm set
where
pure-cf[iff]: Pure z € CF
| ap-cflintro]: f € CF = f ¢ Opaque z € CF

primrec CF-pure :: 'a itrm = dB
where
CF-pure (Opaque -) = undefined
| CF-pure (Pure z) = x
| CF-pure (z o -) = CF-pure

lemma ap-cfD1]dest]: f o x € CF = f € CF
by (rule CF'.cases) auto

lemma ap-cfD2[dest]: f ¢ x € CF = 3z’. = Opaque z’
by (rule CF.cases) auto

lemma opaque-not-cf[simp]: Opaque & € CF —> False
by (rule CF.cases) auto

lemma cf-unlift:
assumes ¢ € CF
shows CF-pure x <> unlift ©
using assms proof (induction set: CF')
case (pure-cf x)
show ?Zcase by simp
next
case (ap-cf f)
let ?n = dorder f + 1
have unlift (f o Opaque z) = (Abs™"?n) (unlift’ n f 1 ° Var 0)
by simp
also have ... = (Abs™ iorder f) (Abs (unlift’ %n f 1 ° Var 0))
using funpow-Suc-inside by simp

52

also have ... & unlift f proof —
have — free (unlift’ ?n f 1) 0 using free-unlift by fastforce
hence Abs (unlift’ ?n f 1 ° Var 0) —, (unlift’ ?n f 1)[Var 0/0] ..
also have ... = unlift’ (iorder f) f 0
using unlift-subst by (metis One-nat-def Suc-eq-plus1 le0)
finally show ?%thesis
by (simp add: r-into-rtranclp absn-cong eta-into-equiv)
qed
finally show ?case
using ap-cf.IH by (auto intro: term-sym term-trans)
qed

lemma cf-similarl:
assumes z € CF y € CF
and opaque © = opaque y
and CF-pure x <> CF-pure y
shows z = y
using assms proof (induction arbitrary: y)
case (pure-cf x)
hence opaque y = [] by auto
with <y € CF» obtain y’ where y = Pure y’ by cases auto
with pure-cf.prems show ?case by auto
next
case (ap-cf f)
from <opaque (f © Opaque z) = opaque y»
obtain y! y2 where opaque y = yI Q y2
and opaque f = y1 and [z] = y2 by fastforce
from «([z] = y2> obtain y’ where y2 = [y] and = = y’
by auto
with <y € CF» and <opaque y = y1 Q y2) obtain g
where opaque g = y1 and y-split: y = g o Opaque y' g € CF by cases auto
with ap-cf.prems <opaque f = y1»
have opaque f = opaque g CF-pure f <+ CF-pure g by auto
with ap-cf.IH «g € CF) have f = g by simp
with ap-cf.prems y-split <z = y"» show ?case by (auto intro: ap-cong)
qed

lemma cf-similarD:
assumes in-cf: v € CF y € CF
and similar: ¢ =y
shows CF-pure x < CF-pure y N\ opaque T = opaque y
using assms
by (blast introl: similar-into-equiv opaque-equiv cf-unlift unlift-equiv
intro: term-trans term-sym)

Equivalent idiomatic terms in canonical form are similar. This justifies
speaking of a normal form.

lemma cf-unique:
assumes in-cf: x € CF y € CF

93

and equiv: T >~ y
shows z = y
using in-cf proof (rule cf-similarl)
from equiv show opaque x = opaque y by (rule opaque-equiv)
next
from equiv have unlift x + unlift y by (rule unlift-equiv)
thus CF-pure z <+ CF-pure y
using cf-unlift|OF in-cf(1)] cf~unlift[OF in-cf(2)]
by (auto intro: term-sym term-trans)
qed

5.4.4 Normalisation of idiomatic terms

primrec norm-pn :: dB = 'a itrm = 'a itrm
where
norm-pn [(Opaque x) = undefined
| norm-pn f (Pure) = Pure (f ° x)
| norm-pn f (n o) = norm-pn (B° f) noz

primrec norm-nn :: ‘a itrm = 'a itrm = 'a itrm
where
norm-nn n (Opaque z) = undefined
| norm-nn n (Pure) = norm-pn (T ° z) n
| norm-nn n (n’ ¢) = norm-nn (norm-pn B n) n’ o x

primrec norm :: 'a itrm = 'a itrm
where
norm (Opaque) = Pure T ¢ Opaque x
| norm (Pure ©) = Pure x
| norm (f ¢) = norm-nn (norm f) (norm x)

lemma norm-pn-in-cf:
assumes z € CF
shows norm-pn fz € CF
using assms
by (induction z arbitrary: f) auto

lemma norm-nn-in-cf:
assumes n € CF n’ € CF
shows norm-nn n n' € CF
using assms(2,1)
by (induction n’ arbitrary: n) (auto intro: norm-pn-in-cf)

lemma norm-in-cf: norm z € CF

by (induction x) (auto intro: norm-nn-in-cf)

lemma norm-pn-equiv:

54

assumes ¢ € CF
shows norm-pn fr ~ Pure f ¢ «
using assms proof (induction x arbitrary: f)
case (pure-cf x)
have Pure (f ° x) ~ Pure f o Pure x using itrm-hom[symmetric] .
then show ?case by simp
next
case (ap-cf n z)
from ap-cf.IH have norm-pn (B ° f) n ~ Pure (B° f) o n .
then have norm-pn (B ° f) n o Opaque x ~ Pure (B ° f) o n o Opaque z ..
also have ... ~ Pure B ¢ Pure f © n ¢ Opaque x
using itrm-hom|[symmetric] by blast
also have ... ~ Pure f ¢ (n ¢ Opaque z) using itrm-comp .
finally show ?Zcase by simp
qed

lemma norm-nn-equiv:
assumes n € CF'n’ € CF
shows norm-nnnn’ ~non’
using assms(2,1) proof (induction n’ arbitrary: n)
case (pure-cf)
then have norm-pn (T °) n ~ Pure (T ° z) ¢ n by (rule norm-pn-equiv)
also have ... ~ n ¢ Pure z using itrm-zchng[symmetric| .
finally show ?case by simp
next
case (ap-cf n' z)
have norm-nn (norm-pn B n) n’ ¢ Opaque © ~ Pure B ¢ n ¢ n’ ¢ Opaque z
proof
from <n € CF» have norm-pn B n € CF by (rule norm-pn-in-cf)
with ap-c¢f TH have norm-nn (norm-pn B n) n’ ~ norm-pn B n o n’.
also have ... ~ Pure B ¢ n ¢ n’ using norm-pn-equiv <n € CF» by blast
finally show norm-nn (norm-pn B n) n’ ~ Pure Bon o n'.
qed
also have ... ~ n ¢ (n’ o Opaque) using itrm-comp .
finally show ?Zcase by simp
qed

lemma norm-equiv: norm & ~ x
proof (induction)
case (Opaque)
have Pure T ¢ Opaque x ~ Opaque z using itrm-id .
then show ?case by simp
next
case (Pure x)
show ?case by simp
next
case (IAp f x)
have norm f € CF and norm x € CF by (rule norm-in-cf)+
then have norm-nn (norm f) (norm x) ~ norm f ¢ norm x

95

by (rule norm-nn-equiv)
also have ... ~ f ¢ z using [Ap.IH ..
finally show ?Zcase by simp
qed

lemma normal-form: obtains n where n ~ z and n € CF
using norm-equiv norm-in-cf ..

5.4.5 Lifting with normal forms

lemma nf-unlift:
assumes equiv: n ~ z and cf: n € CF
shows CF-pure n < unlift x
proof —
from cf have CF-pure n < unlift n by (rule cf-unlift)
also from equiv have unlift n < unlift = by (rule unlift-equiv)
finally show ?thesis .
qed

theorem nf-lifting:
assumes opaque: opaque T = 0paque Y
and base-eq: unlift x < unlift y
shows z ~ y
proof —
obtain n where nf-z: n ~ z n € CF by (rule normal-form)
obtain n’ where nf-y: n’ ~ y n’ € CF by (rule normal-form)

from nf-z have CF-pure n <> unlift x by (rule nf-unlift)

also note base-eq

also from nf-y have unlift y <> CF-pure n’ by (rule nf-unlift{ THEN term-sym])
finally have pure-eq: CF-pure n <+ CF-pure n' .

from nf-z(1) have opaque n = opaque x by (rule opaque-equiv)

also note opaque

also from nf-y(1) have opaque y = opaque n’ by (rule opaque-equiv| THEN
sym])

finally have opaque-eq: opaque n = opaque n’ .

from nf-z(1) have z ~ n ..
also have n ~ n’
using nf-r nf-y pure-eq opaque-eq
by (blast intro: similar-into-equiv cf-similarl)
also from nf-y(1) have n’ ~ y .
finally show z ~ vy .
qed

5.4.6 Bracket abstraction, twice

Preliminaries: Sequential application of variables definition frees :
dB = nat set

o6

where [simp]: frees t = {i. free t i}

definition var-dist :: nat list = dB = dB
where var-dist = fold (Ait. t ° Var q)

lemma var-dist-Nil[simp]: var-dist [| t = ¢
unfolding var-dist-def by simp

lemma var-dist-Cons[simp|: var-dist (v # vs) t = var-dist vs (t ° Var v)
unfolding var-dist-def by simp

lemma var-dist-append!: var-dist (vs Q [v]) t = var-dist vs t ° Var v
unfolding var-dist-def by simp

lemma var-dist-frees: frees (var-dist vs t) = frees t U set vs
by (induction vs arbitrary: t) auto

lemma var-dist-subst-lt:
Voeset vs. i < v = (var-dist vs s)[t/i] = var-dist (map (A\v. v — 1) vs) (s[t/7])
by (induction vs arbitrary: s) simp-all

lemma var-dist-subst-gt:
Voeset vs. v < i = (var-dist vs s)[t/i] = var-dist vs (s[t/1])
by (induction vs arbitrary: s) simp-all

definition vsubst :: nat = nat = nat = nat
where vsubst u v w = (if u < w then u else if u = w then v else u — 1)

lemma vsubst-subst[simpl: (Var u)[Var v/w] = Var (vsubst u v w)
unfolding vsubst-def by simp

lemma vsubst-subst-lt[simp]: u < w = vsubst u v W = u
unfolding vsubst-def by simp

lemma var-dist-subst- Var:
(var-dist vs s)[Var i/j] = var-dist (map (Av. vsubst v i j) vs) (s[Var i/j])
by (induction vs arbitrary: s) simp-all

lemma var-dist-cong: s <> t = var-dist vs s <> var-dist vs t
by (induction vs arbitrary: s t) auto

Preliminaries: Eta reductions with permuted variables lemma absn-subst:
((Abs™ ") s)[t/k] = (Abs™"n) (s[liftn n t 0/k+n])
by (induction n arbitrary: t k) (simp-all add: liftn-lift-swap)

lemma absn-beta-equiv: (Abs™ Suc n) s ° ¢ <> (Abs™ n) (s[liftn n t 0/n])
proof —

have (Abs™"Suc n) s ° t = Abs ((Abs™n) s) ° t by simp

also have ... & ((Abs™n) s)[t/0] by (rule beta-into-equiv) (rule beta.beta)

o7

also have ... = (Abs™ n) (s[liftn n t 0/n]) by (simp add: absn-subst)
finally show ?thesis .
qed

lemma absn-dist-eta: (Abs™ n) (var-dist (rev [0..<n]) (liftn n t 0)) <> ¢
proof (induction n)
case 0 show Zcase by simp
next
case (Suc n)
let ?dist-range = Aa k. var-dist (rev [a..<k]) (liftn k t 0)
have append: rev [0..<Suc n] = rev [1..<Suc n] @ [0] by (simp add: upt-rec)
have dist-last: ?dist-range 0 (Suc n) = ?dist-range 1 (Suc n) ° Var 0
unfolding append var-dist-append1 ..

have — free (?dist-range 1 (Suc n)) 0 proof —
have frees (?dist-range 1 (Suc n)) = frees (liftn (Suc n) t 0) U {1..n}
unfolding var-dist-frees by fastforce

then have 0 ¢ frees (?dist-range 1 (Suc n)) by simp

then show ?thesis by simp

qed

then have Abs (?dist-range 0 (Suc n)) —, (?dist-range 1 (Suc n))[Var 0/0]
unfolding dist-last by (rule eta)

also have ... = var-dist (rev [0..<n]) ((liftn (Suc n) t 0)[Var 0/0]) proof —
have Vveset (rev [1..<Suc n]). 0 < v by auto

moreover have rev [0..<n] = map (Av. v — 1) (rev [1..<Suc n]) by (induction

n) simp-all

ultimately show ?thesis by (simp only: var-dist-subst-It)

qed

also have ... = ?dist-range 0 n using subst-liftn[of 0 n 0 t Var 0] by simp

finally have Abs (?dist-range 0 (Suc n)) <> ?dist-range 0 n ..

then have (Abs™ " Suc n) (?dist-range 0 (Suc n)) < (Abs™ n) (?dist-range 0 n)
unfolding funpow-Suc-inside by (rule absn-cong)

also from Suc.IH have ... <> t .

finally show ?Zcase .

qed

primrec strip-context :: nat = dB = nat = dB
where
strip-context n (Var i) k = (if © < k then Var { else Var (i — n))
| strip-context n (Abs t) k = Abs (strip-context n t (Suc k))
| strip-context n (s ° t) k = strip-context n s k ° strip-context n t k

lemma strip-context-liftn: strip-context n (liftn (m + n) t k) k = liftn m ¢t k
by (induction t arbitrary: k) simp-all

lemma [iftn-strip-context:
assumes Vicfreest. i < kVk+n <1
shows liftn n (strip-context n t k) k = ¢
using assms proof (induction t arbitrary: k)

o8

case (Abs t)
have Vicfrees t. i < Suc k V Suc k + n < i proof
fix 7 assume free: i € frees t
show ¢ < Suc k V Suc k + n < i proof (cases i > 0)
assume ¢ > (
with free Abs.prems have i—1 < kV k + n < i—1 by simp
then show ?thesis by arith
qed simp
qed
with Abs.IH show ?case by simp
qed auto

lemma absn-dist-eta-free:

assumes Vi€frees t. n < i

shows (Abs™ n) (var-dist (rev [0..<n]) t) <> strip-context n ¢t 0 (is ?lhs t <
2rhs)
proof —

have ?lhs (liftn n ?rhs 0) <+ ?rhs by (rule absn-dist-eta)

moreover have liftn n 9rhs 0 = t

using assms by (auto intro: liftn-strip-context)

ultimately show %thesis by simp

qed

definition perm-vars :: nat = nat list = bool
where perm-vars n vs «— distinct vs A set vs = {0..<n}

lemma perm-vars-distinct: perm-vars n vs = distinct vs
unfolding perm-vars-def by simp

lemma perm-vars-length: perm-vars n vs = length vs = n
unfolding perm-vars-def using distinct-card by force

lemma perm-vars-lt: perm-vars n vs = Vi€set vs. i < n
unfolding perm-vars-def by simp

lemma perm-vars-nth-lt: perm-vars nvs = i < n = vs ! i < n
using perm-vars-length perm-vars-lt by simp

lemma perm-vars-inj-on-nth:
assumes perm-vars n vs
shows inj-on (nth vs) {0..<n}
proof (rule inj-onl)
fix ij
assume i € {0..<n} and j € {0..<n}
with assms have i < length vs and j < length vs
using perm-vars-length by simp-+
moreover from assms have distinct vs by (rule perm-vars-distinct)
moreover assume vs ! i = vs ! j
ultimately show ¢ = j using nth-eg-iff-indez-eq by blast

99

qed

abbreviation perm-vars-inv :: nat = nat list = nat = nat
where perm-vars-inv n vs i = the-inv-into {0..<n} ((!) vs) @

lemma perm-vars-inv-nth:
assumes perm-vars n vs
and i < n
shows perm-vars-inv n vs (vs ! i) = 14
using assms by (auto intro: the-inv-into-f-f perm-vars-inj-on-nth)

lemma dist-perm-eta:
assumes perm-vars: Perm-vars n vs
obtains vs’ where At. Vi€frees t. n < i =
(Abs™n) (var-dist vs' ((Abs™ n) (var-dist vs (liftn n t 0)))) > strip-context n
to
proof —
define vsubsts where vsubsts n vs’ vs =
map (Av.
if v < n — length vs’ then v
else if v < n thenvs’! (n — v — 1) + (n — length vs’)
else v — length vs’) vs for n vs’ vs

let Zapp-vars = At n vs' vs. var-dist vs' ((Abs™ n) (var-dist vs (liftn n t 0)))
{

fix t :: dB and vs’ :: nat list

assume partial: length vs’ < n

let ?m = n — length vs’
have ?Zapp-vars t n vs’ vs <> (Abs™"?m) (var-dist (vsubsts n vs’ vs) (liftn ?m t
0))

using partial proof (induction vs' arbitrary: vs n)
case Nil

then have vsubsts n [| vs = vs unfolding vsubsts-def by (auto intro: map-idI)
then show ?Zcase by simp

next
case (Cons v vs')
define n’ where n’ = n — 1
have Suc-n’: Suc n’ = n unfolding n’-def using Cons.prems by simp
have vs’-length: length vs’ < n’ unfolding n’-def using Cons.prems by simp
let ?m’ = n’ — length vs’
have m’-conv: ?m’ = n — length (v # vs’) unfolding n’-def by simp

have Zapp-vars t n (v # vs’) vs = Zapp-vars t (Suc n’) (v # vs') vs
unfolding Suc-n’ ..
also have ... > var-dist vs' ((Abs™ Suc n') (var-dist vs (liftn (Suc n') t 0))
° Var v)
unfolding var-dist-Cons ..
also have ... <> Zapp-vars t n’ vs’ (vsubsts n [v] vs) proof (rule var-dist-cong)

60

have map (Avv. vsubst vv (v + n') n') vs = vsubsts n [v] vs
unfolding Suc-n'[symmetric| vsubsts-def vsubst-def
by (auto cong: if-cong)
then have (var-dist vs (liftn (Suc n') t 0))[liftn n' (Var v) 0/n’]
= var-dist (vsubsts n [v] vs) (liftn n' t 0)
using var-dist-subst- Var subst-liftn by simp
then show (Abs™ Suc n') (var-dist vs (liftn (Suc n') t 0)) ° Var v
< (Abs™n') (var-dist (vsubsts n [v] vs) (liftn n' ¢ 0))
by (fastforce intro: absn-beta-equiv| THEN term-trans))

qed
also have ... <3 (Abs™"?m’) (var-dist (vsubsts n' vs' (vsubsts n [v] vs)) (liftn
m’t0))
using vs’-length Cons.IH by blast
also have ... = (4bs™"?m/) (var-dist (vsubsts n (v # vs’) vs) (liftn 2m’ ¢ 0))
proof —

have vsubsts n’ vs’ (vsubsts (Suc n') [v] vs) = vsubsts (Suc n’) (v # vs') vs
unfolding vsubsts-def
using vs'-length [[linarith-split-limit=10]]
by auto
then show ?thesis unfolding Suc-n’ by simp
qed
finally show ?case unfolding m’-conv .
qed

}

note partial-appd = this

define vs’ where vs’ = map (\i. n — perm-vars-inv n vs (n — i — 1) — 1)
[0..<n]

from perm-vars have vs-length: length vs = n by (rule perm-vars-length)
have vs’-length: length vs’ = n unfolding vs’-def by simp

have map (A\v. vs’! (n — v — 1)) vs = rev [0..<n] proof —
have length vs = length (rev [0..<n])
unfolding vs-length by simp
then have list-all2 (Av v’ vs’! (n — v — 1) = v’) vs (rev [0..<n]) proof
fix 7 assume i < length vs
then have i < n unfolding vs-length .
then have vs | i < n using perm-vars perm-vars-nth-lt by simp
with ¢ < n)> have vs’! (n — vs! i — 1) = n — perm-vars-inv n vs (vs ! i)
-1
unfolding vs’-def by simp

also from i < n» have ... = n — ¢ — 1 using perm-vars perm-vars-inv-nth
by simp
also from «i < n» have ... = rev [0..<n] ! ¢ by (simp add: rev-nth)
finally show vs'! (n —ws! i — 1) =rev [0.<n]! .
qed

then show ?thesis
unfolding list.rel-eq[symmetric]

61

using list.rel-map
by auto
qed
then have vs’-vs: vsubsts n vs’ vs = rev [0..<n]
unfolding vsubsts-def vs’-length
using perm-vars perm-vars-lt
by (auto intro: map-ext| THEN trans])

let Zappd-vars = At n. var-dist (rev [0..<n]) ¢
{
fix ¢
assume not-free: Vicfrees t. n < ¢
have Zapp-vars t n vs’ vs <+ 2appd-vars t n for t
using partial-appd|of vs'] vs'-length vs'-vs by simp
then have (Abs™ n) (Zapp-vars t n vs’ vs) «> (Abs™ n) (Zappd-vars t n)
by (rule absn-cong)
also have ... < strip-context n t 0
using not-free by (rule absn-dist-eta-free)
finally have (Abs™ n) (Zapp-vars t n vs' vs) <> strip-context n ¢ 0 .

with that show ?thesis .
qged

lemma liftn-absn: liftn n ((Abs™"m) t) k = (Abs™ m) (liftn n t (k + m))
by (induction m arbitrary: k) auto

lemma liftn-var-dist-lt:
Vieset vs. i < k = liftn n (var-dist vs t) k = var-dist vs (liftn n t k)
by (induction vs arbitrary: t) auto

lemma liftn-context-conv: k < k' = Vi€freest. i < kV k' <i=liftnntk =
liftn n t k'
proof (induction t arbitrary: k k')
case (Abs t)
have Vicfrees t. i < Suc k V Suc k' < { proof
fix ¢ assume i € frees t
show i < Suc k V Suc k' < i proof (cases i = 0)
assume 7 = (then show ?thesis by simp
next
assume ¢ # 0
from Abs.prems(2) have Vi. free t (Suc i) — i < k V k' < i by auto
then have Vi. 0 < i A freeti — i — 1 <kV k'<i— 1Dby simp
then have Vi. 0 < i A freeti — i < Suc k V Suc k' < i by auto
with < £ 0) i € frees ty show ?thesis by simp
qed
qed
with Abs.IH Abs.prems(1) show ?case by auto
qed auto

62

lemma liftn-liftn0: Vicfrees t. k < i = liftn n t k = liftn n t 0
using liftn-context-conv by auto

lemma dist-perm-eta-equiv:
assumes perm-vars: perm-vars n vs
and not-free: Vicfrees s. n < i Vicfrees t. n < 4
and perm-equiv: (Abs™n) (var-dist vs s) <> (Abs™ n) (var-dist vs t)
shows strip-context n s 0 <+ strip-context n t 0
proof —
from perm-vars have vs-lt-n: Vi€set vs. i < n using perm-vars-lit by simp
obtain vs’ where
etas: \t. Vi€frees t. n < i =
(Abs™™n) (var-dist vs’ ((Abs™n) (var-dist vs (liftn n t 0)))) <> strip-context
nto
using perm-vars dist-perm-eta by blast

have strip-context n s 0 <» (Abs™ n) (var-dist vs’ ((Abs™ n) (var-dist vs (liftn n
5.0))))
using etas| THEN term-sym) not-free(1) .
also have ... & (Abs™) (var-dist vs’ ((Abs™"n) (var-dist vs (liftn n t 0))))
proof (rule absn-cong, rule var-dist-cong)
have (Abs™ n) (var-dist vs (liftn n s 0)) = (Abs™ n) (var-dist vs (liftn n s n))
using not-free(1) liftn-liftn0]of s n] by simp

also have ... = (4bs™ n) (liftn n (var-dist vs s) n)
using vs-lt-n liftn-var-dist-It by simp
also have ... = liftn n ((Abs™"n) (var-dist vs s)) 0

using liftn-absn by simp
also have ... < liftn n ((Abs™ n) (var-dist vs t)) 0
using perm-equiv by (rule equiv-liftn)
also have ... = (4bs™ n) (liftn n (var-dist vs t) n)
using liftn-absn by simp
also have ... = (Abs™ n) (var-dist vs (liftn n t n))
using vs-lt-n liftn-var-dist-lt by simp
also have ... = (Abs™ n) (var-dist vs (liftn n t 0))
using not-free(2) liftn-liftn0[of t n] by simp
finally show (Abs™ n) (var-dist vs (liftn n s 0)) <>
qged
also have ... «> strip-context n t 0
using etas not-free(2) .
finally show ?thesis .
qed

General notion of bracket abstraction for lambda terms definition
foldr-option :: ('a = 'b = 'b option) = 'a list = 'b = 'b option
where foldr-option f zs e = foldr (Aa b. Option.bind b (f a)) xs (Some €)

lemma bind-eq-Somek:

assumes Option.bind x f = Some y
obtains z’ where r = Some z’ and [z’ = Some y

63

using assms by (auto iff: bind-eq-Some-conv)

lemma foldr-option-Nil[simp|: foldr-option f [] e = Some e
unfolding foldr-option-def by simp

lemma foldr-option-Cons-SomekE:

assumes foldr-option [(z#xs) e = Some y

obtains y’ where foldr-option f xs e = Some y’ and fz y' = Some y
using assms unfolding foldr-option-def by (auto elim: bind-eq-SomeFE)

locale bracket-abstraction =
fixes term-bracket :: nat = dB = dB option
assumes bracket-app: term-bracket i s = Some s’ => s’ ° Vari <> s
assumes bracket-frees: term-bracket i s = Some s' = frees s’ = frees s — {i}
begin

definition term-brackets :: nat list = dB = dB option
where term-brackets = foldr-option term-bracket

lemma term-brackets-Nil[simp]: term-brackets [| t = Some t
unfolding term-brackets-def by simp

lemma term-brackets-Cons-SomekE:

assumes term-brackets (v#vs) t = Some t’

obtains s’ where term-brackets vs t = Some s’ and term-bracket v s’ = Some
t/
using assms unfolding term-brackets-def by (elim foldr-option-Cons-SomeFE)

lemma term-brackets-Consl:
assumes term-brackets vs t = Some t’
and term-bracket v t' = Some t'’
shows term-brackets (v#tvs) t = Some t"
using assms unfolding term-brackets-def foldr-option-def by simp

lemma term-brackets-dist:
assumes term-brackets vs t = Some t’
shows var-dist vs t' <> 1
proof —
from assms have Vt'. t' <+ t"" — var-dist vs t"" <> t
proof (induction vs arbitrary: t’)
case Nil then show ?case by (simp add: term-sym)
next
case (Cons v vs)
from Cons.prems obtain u where
inner: term-brackets vs t = Some u and
step: term-bracket v u = Some t’
by (auto elim: term-brackets-Cons-SomekE)
from step have redl: t' ° Var v + u by (rule bracket-app)
show ?case proof rule+

64

fix t' assume t’' <> t”’
with red! have red: t"' ° Var v < u
using term-sym term-trans by blast
have var-dist (v # vs) t'" = var-dist vs (t"' ° Var v) by simp
also have ... +» t using Cons.IH[OF inner] red[symmetric] by blast
finally show var-dist (v # vs) t" < t .
qed
qed
then show “thesis by blast
qed

end

Bracket abstraction for idiomatic terms We consider idiomatic terms
with explicitly assigned variables.

lemma strip-unlift-vars:
assumes opaque T = []
shows strip-context n (unlift-vars n z) 0 = unlift-vars 0 x
using assms by (induction) (simp-all add: strip-context-liftn|where m=0, sim-

plified])

lemma unlift-vars-frees: ¥ i€frees (unlift-vars n x). i € set (opaque) V n < ¢
by (induction z) (auto simp add: free-liftn)

locale itrm-abstraction = special-idiom extra-rule for extra-rule :: nat itrm = - +
fixes itrm-bracket :: nat = nat itrm = nat itrm option
assumes itrm-bracket-ap: itrm-bracket i x = Some ' = z' o Opaque i ~* x
assumes itrm-bracket-opaque:
itrm-bracket i © = Some ©' => set (opaque x') = set (opaque x) — {i}
begin

definition itrm-brackets = foldr-option itrm-bracket

lemma itrm-brackets-Nil[simp): itrm-brackets || z = Some x
unfolding itrm-brackets-def by simp

lemma itrm-brackets-Cons-SomekFE:
assumes itrm-brackets (v#vs) © = Some x’
obtains y’ where itrm-brackets vs x = Some y' and itrm-bracket v y' = Some
!/

x

using assms unfolding itrm-brackets-def by (elim foldr-option-Cons-SomeE)
definition opaque-dist = fold (\i y. y o Opaque i)
lemma opaque-dist-cong: © ~* y = opaque-dist vs T ~T opaque-dist vs y

unfolding opaque-dist-def
by (induction vs arbitrary: x y) (simp-all add: ap-congL)

65

lemma itrm-brackets-dist:
assumes defined: itrm-brackets vs x = Some z’
shows opaque-dist vs ' ~T z
proof —
define 2" where 2" = 1’
have z’ ~T z'’ unfolding z'-def ..
with defined show opaque-dist vs z"' ~* x
unfolding opaque-dist-def
proof (induction vs arbitrary: z’ ")
case Nil then show ?case unfolding itrm-brackets-def by (simp add:
itrm-sym)
next
case (Cons v vs)
from Cons.prems(1) obtain y’
where defined’: itrm-brackets vs © = Some y’
and itrm-bracket v y' = Some z’
by (rule itrm-brackets-Cons-SomeE)
then have z’ ¢ Opaque v ~T y' by (elim itrm-bracket-ap)
then have z'' ¢ Opaque v ~T y’
using Cons.prems(2) by (blast intro: itrm-sym itrm-trans)
note this[symmetric]
with defined’ have fold (\i y. y o Opaque i) vs (z'' o Opaque v) ~T x
using Cons.IH by blast
then show ?Zcase by simp
qed
qged

lemma itrm-brackets-opaque:
assumes itrm-brackets vs x = Some z’
shows set (opaque z") = set (opaque x) — set vs
using assms proof (induction vs arbitrary: ©’)
case Nil
then show ?case unfolding itrm-brackets-def by simp
next
case (Cons v vs)
then show ?case
by (auto elim: itrm-brackets-Cons-SomeE dest!: itrm-bracket-opaque)
qged

lemma itrm-brackets-all:
assumes all-opaque: set (opaque z) C set vs
and defined: itrm-brackets vs © = Some x’
shows opaque z’ = |]
proof —
from defined have set (opaque z') = set (opaque z) — set vs
by (rule itrm-brackets-opaque)
with all-opaque have set (opaque z') = {} by simp
then show ?thesis by simp
qed

66

lemma itrm-brackets-all-unlift-vars:

assumes all-opaque: set (opaque) C set vs

and defined: itrm-brackets vs © = Some z’
shows z’ ~T Pure (unlift-vars 0 z’)

proof (rule equiv-into-ext-equiv)

from assms have opaque x’ = [| by (rule itrm-brackets-all)

then show 2’ ~ Pure (unlift-vars 0 z') by (rule all-pure-unlift-vars)
qed

end

5.4.7 Lifting with bracket abstraction

locale lifted-bracket = bracket-abstraction + itrm-abstraction +
assumes bracket-compat:
set (opaque r) C {0.<n} = i < n =
term-bracket ¢ (unlift-vars n) = map-option (unlift-vars n) (itrm-bracket i
z)
begin

lemma brackets-unlift-vars-swap:
assumes all-opaque: set (opaque z) C {0..<n}
and vs-bound: set vs C {0..<n}
and defined: itrm-brackets vs © = Some z’
shows term-brackets vs (unlift-vars n x) = Some (unlift-vars n z')
using vs-bound defined proof (induction vs arbitrary: z’)
case Nil
then show ?case by simp
next
case (Cons v vs)
then obtain g’
where ivs: itrm-brackets vs x = Some y’
and iv: itrm-bracket v y' = Some z’
by (elim itrm-brackets-Cons-SomeFE)
with Cons have term-brackets vs (unlift-vars n z) = Some (unlift-vars n y’)
by auto
moreover {
have Some (unlift-vars n &) = map-option (unlift-vars n) (itrm-bracket v y’)
unfolding v by simp
moreover have set (opaque y') C {0..<n}
using all-opaque ivs by (auto dest: itrm-brackets-opaque)
moreover have v < n using Cons.prems by simp
ultimately have term-bracket v (unlift-vars n y') = Some (unlift-vars n z')
using bracket-compat by auto
}

ultimately show ?case by (rule term-brackets-Consl)
qged

67

theorem bracket-lifting:
assumes all-vars: set (opaque x) U set (opaque y) C {0..<n}
and perm-vars: perm-vars n vs
and defined: itrm-brackets vs x = Some x' itrm-brackets vs y = Some y’
and base-eq: (Abs™ n) (unlift-vars n z) < (Abs™ n) (unlift-vars n y)
shows z ~* y
proof —
from perm-vars have set-vs: set vs = {0..<n}
unfolding perm-vars-def by simp

have z-swap: term-brackets vs (unlift-vars n) = Some (unlift-vars n z”)
using all-vars set-vs defined(1) by (auto intro: brackets-unlift-vars-swap)

have y-swap: term-brackets vs (unlift-vars n y) = Some (unlift-vars n y’)
using all-vars set-vs defined(2) by (auto intro: brackets-unlift-vars-swap)

from all-vars have set (opaque z) C set vs unfolding set-vs by simp
then have complete-z: opaque z’ = ||

using defined(1) itrm-brackets-all by blast
then have uz-frees: Vi€frees (unlift-vars n z’). n < i

using unlift-vars-frees by fastforce

from all-vars have set (opaque y) C set vs unfolding set-vs by simp
then have complete-y: opaque y' = ||

using defined(2) itrm-brackets-all by blast
then have uy-frees: Vi€frees (unlift-vars n y’). n < i

using unlift-vars-frees by fastforce

have z ~T opaque-dist vs z’
using defined(1) by (rule itrm-brackets-dist[symmetric])
also have ... ~T opaque-dist vs (Pure (unlift-vars 0 z”))
using all-vars set-vs defined(1)
by (auto intro: opaque-dist-cong itrm-brackets-all-unlift-vars)
also have ... ~T opaque-dist vs (Pure (unlift-vars 0 y’))
proof (rule opaque-dist-cong, rule pure-cong)
have (Abs™n) (var-dist vs (unlift-vars n z’)) + (Abs™ n) (unlift-vars n z)
using z-swap term-brackets-dist by auto
also have ... & (Abs™ n) (unlift-vars n y) using base-eq .
also have ... <+ (Abs™n) (var-dist vs (unlift-vars n y'))
using y-swap term-brackets-dist{ THEN term-sym| by auto
finally have strip-context n (unlift-vars n z’) 0 > strip-context n (unlift-vars
ny') 0
using perm-vars uz-frees uy-frees
by (intro dist-perm-eta-equiv)
then show unlift-vars 0 z’ <+ unlift-vars 0 y’
using strip-unlift-vars complete-z complete-y by simp
qed
also have ... ~1 opaque-dist vs y' proof (rule opaque-dist-cong)
show Pure (unlift-vars 0 y") ~* y’
using all-vars set-vs defined(2) itrm-brackets-all-unlift-vars| THEN itrm-sym]

68

by blast
qed
also have ... ~* y using defined(2) by (rule itrm-brackets-dist)
finally show ?thesis .
qed

end

end

References

[1] J. Gibbons and R. Bird. Be kind, rewind: A modest proposal about
traversal. May 2012.

[2] J. Gibbons and R. Hinze. Just do it: Simple monadic equational reason-
ing. In Proceedings of the 16th ACM SIGPLAN International Conference
on Functional Programming (ICFP 2011), pages 2-14. ACM, 2011.

[3] R. Hinze. Lifting operators and laws. 2010.

[4] G. Hutton and D. Fulger. Reasoning about effects: Seeing the wood
through the trees. In Trends in Functional Programming (TFP 2008),
2008.

[5] C. McBride and R. Paterson. Applicative programming with effects.
Journal of Functional Programming, 18(01):1-13, 2008.

69

	Lifting with applicative functors
	Equality restricted to a set
	Proof automation
	Overloaded applicative operators

	Common applicative functors
	Environment functor
	Option
	Sum types
	Set with Cartesian product
	Lists

	Distinct, non-empty list
	Monoid
	Filters
	State monad
	Streams as an applicative functor
	Open state monad
	Probability mass functions
	Probability mass functions implemented as lists with duplicates
	Ultrafilter

	Examples of applicative lifting
	Algebraic operations for the environment functor
	Pointwise arithmetic on streams
	Tree relabelling
	Pure correctness statement
	Correctness via monadic traversals
	Applicative correctness statement
	Probabilistic tree relabelling

	Formalisation of idiomatic terms and lifting
	Immediate joinability under a relation
	Definition and basic properties
	Confluence
	Relation to reflexive transitive symmetric closure
	Predicate version

	Combined beta and eta reduction of lambda terms
	Auxiliary lemmas
	Reduction
	Equivalence

	Combinators defined as closed lambda terms
	Idiomatic terms – Properties and operations
	Basic definitions
	Syntactic unlifting
	Canonical forms
	Normalisation of idiomatic terms
	Lifting with normal forms
	Bracket abstraction, twice
	Lifting with bracket abstraction

