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imports

Main

begin
definition xor ::bool ⇒ bool ⇒ bool (infixl ‹⊕› 60 )
where xor A B ≡ (A ∧ ¬B) ∨ (¬A ∧ B)

declare xor-def [simp]

interpretation bool:semigroup (⊕)
proof
{ fix a b c show a ⊕ b ⊕ c = a ⊕ (b ⊕ c) by auto}
qed

lemma xor-distr-L [simp]:A ⊕ (B ⊕ C ) = (A∧¬B∧¬C )∨(A∧B∧C )∨(¬A∧B∧¬C )∨(¬A∧¬B∧C )
by auto

lemma xor-distr-R [simp]:(A ⊕ B) ⊕ C = A ⊕ (B ⊕ C )
by auto

end

theory axioms

imports
Main xor-cal

begin

1 Axioms

We formalize Allen’s definition of theory of time in term of intervals (Allen,
1983). Two relations, namely meets and equality, are defined between in-
tervals. Two interval meets if they are adjacent A set of 5 axioms ((M1) ∼
(M5)) are then defined based on relation meets.

We define a class interval whose assumptions are (i) properties of relations
meets and, (ii) axioms (M1) ∼ (M5).
class interval =
fixes
meets:: ′a ⇒ ′a ⇒ bool (infixl ‹‖› 60 ) and
I:: ′a ⇒ bool

assumes
meets-atrans:[[(p‖q);(q‖r)]] =⇒ ¬(p‖r) and
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meets-irrefl:I p =⇒ ¬(p‖p) and
meets-asym:(p‖q) =⇒ ¬(q‖p) and
meets-wd:p‖q =⇒ I p ∧ I q and

M1 :[[(p‖q); (p‖s); (r‖q)]] =⇒ (r‖s) and
M2 :[[(p‖q) ; (r‖s)]] =⇒ p‖s ⊕ ((∃ t. (p‖t)∧(t‖s)) ⊕ (∃ t. (r‖t)∧(t‖q))) and
M3 :I p =⇒ (∃ q r . q‖p ∧ p‖r) and
M4 :[[p‖q ; q‖s ; p‖r ; r‖s]] =⇒ q = r and
M5exist:p‖q =⇒ (∃ r s t. r‖p ∧ p‖q ∧ q‖s ∧ r‖t ∧ t‖s)

lemma (in interval) trans2 :[[p‖t; t‖r ; r‖q]] =⇒ ¬p‖q
using M1 meets-asym by blast

lemma (in interval) nontrans1 : u‖r =⇒ ¬ (∃ t. u‖t ∧ t‖r)
using meets-atrans by blast

lemma (in interval) nontrans2 :u‖r =⇒ ¬ (∃ t. r‖t ∧ t‖u)
using M1 M5exist trans2 by blast

lemma (in interval) nonmeets1 :¬ (u‖r ∧ r‖u)
using meets-asym by blast

lemma (in interval) nonmeets2 : [[I u ; I r ]] =⇒ ¬ (u‖r ∧ u = r)
using meets-irrefl by blast

lemma (in interval) nonmeets3 : ¬ (u‖r ∧ (∃ p. u‖p ∧ p‖r))
using nontrans1 by blast

lemma (in interval) nonmeets4 : ¬(u‖r ∧ (∃ p. r‖p ∧ p‖u))
using nontrans2 by blast

lemma (in interval) elimmeets: (p ‖ s ∧ (∃ t. p ‖ t ∧ t ‖ s) ∧ (∃ t. r ‖ t ∧ t ‖ q))
= False

using meets-atrans by blast

lemma (in interval) M5exist-var :
assumes x‖y y‖z z‖w
shows ∃ t. x‖t ∧ t‖w
proof −

from assms(1 ,3 ) have a:x‖w ⊕ (∃ t. x‖t ∧ t‖w) ⊕ (∃ t. z‖t ∧ t‖y) using M2 [of
x y z w] by auto

from assms have b1 :¬x‖w using trans2 by blast
from assms(2 ) have ¬ (∃ t. z‖t ∧ t‖y) by (simp add: nontrans2 )
with b1 a have (∃ t. x‖t ∧ t‖w) by simp
thus ?thesis by simp

qed

lemma (in interval) M5exist-var2 :
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assumes p‖q
shows ∃ r1 r2 r3 s t. r1‖r2 ∧ r2‖r3 ∧ r3‖p ∧ p‖q ∧ q‖s ∧ r1‖t ∧ t‖s
proof −

from assms obtain r3 k1 s where r3p:r3‖p and qs:q‖s and r3k1 :r3 ‖k1
and k1s:k1‖s using M5exist by blast

from r3p obtain r2 where r2r3 :r2‖r3 using M3 [of r3 ] meets-wd by auto
from r2r3 obtain r1 where r1r2 :r1‖r2 using M3 [of r2 ] meets-wd by auto
with assms r2r3 r3p qs obtain t where r1t1 :r1‖t and t1q:t‖s using M5ex-

ist-var by blast
with assms r1r2 r2r3 r3p qs show ?thesis by blast

qed

lemma (in interval) M5exist-var3 :
assumes k‖l and l‖q and q‖t and t‖r
shows ∃ lqt. k‖lqt ∧ lqt‖r
proof −

from assms(1−3 ) obtain lq where k‖lq and lq‖t
using M5exist-var by blast
with assms(4 ) obtain lqt where k‖lqt and lqt‖r
using M5exist-var by blast
thus ?thesis by auto

qed

end

2 Time interval relations
theory allen

imports

Main axioms
HOL−Eisbach.Eisbach-Tools

begin

3 Basic relations

We define 7 binary relations between time intervals. Relations e, m, b, ov, d,
s and f stand for equal, meets, before, overlaps, during, starts and finishes,
respectively.
class arelations = interval +
fixes
e::( ′a× ′a) set and
m::( ′a× ′a) set and
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b::( ′a× ′a) set and
ov::( ′a× ′a) set and
d::( ′a× ′a) set and
s::( ′a× ′a) set and
f ::( ′a× ′a) set

assumes
e:(p,q) ∈ e = (p = q) and
m:(p,q) ∈ m = p‖q and
b:(p,q) ∈ b = (∃ t:: ′a. p‖t ∧ t‖q) and
ov:(p,q) ∈ ov = (∃ k l u v t:: ′a.

(k‖p ∧ p‖u ∧ u‖v) ∧ (k‖l ∧ l‖q ∧ q‖v) ∧ (l‖t ∧ t‖u)) and
s:(p,q) ∈ s = (∃ k u v:: ′a. k‖p ∧ p‖u ∧ u‖v ∧ k‖q ∧ q‖v) and
f :(p,q) ∈ f = (∃ k l u :: ′a. k‖l ∧ l‖p ∧ p‖u ∧ k‖q ∧ q‖u) and
d:(p,q) ∈ d = (∃ k l u v:: ′a. k‖l ∧ l‖p ∧ p‖u ∧u‖v ∧ k‖q ∧ q‖v)

3.1 e-composition

Relation e is the identity relation for composition.
lemma cer :
assumes r ∈ {e,m,b,ov,s,f ,d,m^−1 ,b^−1 ,ov^−1 ,s^−1 ,f^−1 ,d^−1}
shows e O r = r
proof −

{ fix x y assume a:(x,y) ∈ e O r
then obtain z where (x,z) ∈ e and (z,y) ∈ r by auto
from ‹(x,z) ∈ e› have x = z using e by auto
with ‹(z,y)∈ r› have (x,y) ∈ r by simp} note c1 = this

{ fix x y assume a:(x,y) ∈ r
have (x,x) ∈ e using e by auto
with a have (x,y) ∈ e O r by blast} note c2 = this

from c1 c2 show ?thesis by auto
qed

lemma cre:
assumes r ∈ {e,m,b,ov,s,f ,d,m^−1 ,b^−1 ,ov^−1 ,s^−1 ,f^−1 ,d^−1}
shows r O e = r
proof −

{ fix x y assume a:(x,y) ∈ r O e
then obtain z where (x,z) ∈ r and (z,y) ∈ e by auto
from ‹(z,y) ∈ e› have z = y using e by auto
with ‹(x,z)∈ r› have (x,y) ∈ r by simp} note c1 = this

{ fix x y assume a:(x,y) ∈ r
have (y,y) ∈ e using e by auto
with a have (x,y) ∈ r O e by blast} note c2 = this

from c1 c2 show ?thesis by auto
qed
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lemmas ceb = cer [of b]
lemmas cebi = cer [of b^−1 ]
lemmas cem = cer [of m]
lemmas cemi = cer [of m^−1 ]
lemmas cee = cer [of e]
lemmas ces = cer [of s]
lemmas cesi = cer [of s^−1 ]
lemmas cef = cer [of f ]
lemmas cefi = cer [of f^−1 ]
lemmas ceov = cer [of ov]
lemmas ceovi = cer [of ov^−1 ]
lemmas ced = cer [of d]
lemmas cedi = cer [of d^−1 ]
lemmas cbe = cre[of b]
lemmas cbie = cre[of b^−1 ]
lemmas cme = cre[of m]
lemmas cmie = cre[of m^−1 ]
lemmas cse = cre[of s]
lemmas csie = cre[of s^−1 ]
lemmas cfe = cre[of f ]
lemmas cfie = cre[of f^−1 ]
lemmas cove = cre[of ov]
lemmas covie = cre[of ov^−1 ]
lemmas cde = cre[of d]
lemmas cdie = cre[of d^−1 ]

3.2 r-composition

We prove compositions of the form r1 ◦ r2 ⊆ r, where r is a basic relation.
method (in arelations) r-compose uses r1 r2 r3 = ((auto, (subst (asm) r1 ),
(subst (asm) r2 ), (subst r3 )) , (meson M5exist-var))

lemma (in arelations) cbb:b O b ⊆ b
by (r-compose r1 :b r2 :b r3 :b)

lemma (in arelations) cbm:b O m ⊆ b
by (r-compose r1 :b r2 :m r3 :b)

lemma cbov:b O ov ⊆ b
apply (auto simp:b ov)
using M1 M5exist-var by blast

lemma cbfi:b O f^−1 ⊆ b
apply (auto simp:b f )
by (meson M1 M5exist-var)

lemma cbdi:b O d^−1 ⊆ b
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apply (auto simp: b d)
by (meson M1 M5exist-var)

lemma cbs:b O s ⊆ b
apply (auto simp: b s)
by (meson M1 M5exist-var)

lemma cbsi:b O s^−1 ⊆ b
apply (auto simp: b s)
by (meson M1 M5exist-var)

lemma (in arelations) cmb:m O b ⊆ b
by (r-compose r1 :m r2 :b r3 :b)

lemma cmm:m O m ⊆ b
by (auto simp: b m)

lemma cmov:m O ov ⊆ b
apply (auto simp:b m ov)
using M1 M5exist-var by blast

lemma cmfi:m O f^−1 ⊆ b
apply (r-compose r1 :m r2 :f r3 :b)
by (meson M1 )

lemma cmdi:m O d^−1 ⊆ b
apply (auto simp add:m d b)
using M1 by blast

lemma cms:m O s ⊆ m
apply (auto simp add:m s)
using M1 by auto

lemma cmsi:m O s^−1 ⊆ m
apply (auto simp add:m s)
using M1 by blast

lemma covb:ov O b ⊆ b
apply (auto simp:ov b)
using M1 M5exist-var by blast

lemma covm:ov O m ⊆ b
apply (auto simp:ov m b)
using M1 by blast

lemma covs:ov O s ⊆ ov
proof

fix p:: ′a× ′a assume p ∈ ov O s then obtain x y z where p:p = (x,z) and
xyov:(x,y)∈ ov and yzs:(y,z) ∈ s by auto
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from xyov obtain r u v t k where rx:r‖x and xu:x‖u and uv:u‖v and rt:r‖t
and tk:t‖k and ty:t‖y and yv:y‖v and ku:k‖u using ov by blast

from yzs obtain l1 l2 where yl1 :y‖l1 and l1l2 :l1‖l2 and zl2 :z‖l2 using s by
blast

from uv yl1 yv have u‖l1 using M1 by blast
with xu l1l2 obtain ul1 where xul1 :x‖ul1 and ul1l2 :ul1‖l2 using M5exist-var

by blast
from ku xu xul1 l1l2 have kul1 :k‖ul1 using M1 by blast
from ty yzs have t‖z using s M1 by blast
with rx rt xul1 ul1l2 zl2 tk kul1 have (x,z) ∈ ov using ov by blast
with p show p ∈ ov by simp

qed

lemma cfib:f^−1 O b ⊆ b
apply (auto simp:f b)
using M1 by blast

lemma cfim:f^−1 O m ⊆ m
apply (auto simp:f m)
using M1 by auto

lemma cfiov:f^−1 O ov ⊆ ov
proof

fix p:: ′a× ′a assume p ∈ f^−1 O ov then obtain x y z where p:p = (x,z)
and xyfi:(x,y)∈ f^−1 and yzov:(y,z) ∈ ov by auto

from xyfi yzov obtain t ′ r u where tpr :t ′‖r and ry:r‖y and yu:y‖u and
tpx:t ′‖x and xu:x‖u using f by blast

from yzov ry obtain v k t u ′ where yup:y‖u ′ and upv:u ′‖v and rk:r‖k and
kz:k‖z and zv:z‖v and kt:k‖t and tup:t‖u ′

using ov using M1 by blast
from yu xu yup have xup:x‖u ′ using M1 by blast
from tpr rk kt obtain r ′ where tprp:t ′‖r ′ and rpt:r ′‖t using M5exist-var by

blast
from kt rpt kz have rpz:r ′‖z using M1 by blast
from tprp rpz rpt tpx xup zv upv tup have (x,z) ∈ ov using ov by blast
with p show p ∈ ov by simp

qed

lemma cfifi:f^−1 O f^−1 ⊆ f^−1
proof

fix x:: ′a× ′a assume x ∈ f^−1 O f^−1 then obtain p q z where x:x = (p, q)
and (p,z) ∈ f^−1 and (z,q) ∈ f^−1 by auto

from ‹(p,z) ∈ f^−1 › obtain k l u where kp:k‖p and kl:k‖l and lz:l‖z and
pu:p‖u and zu:z‖u using f by blast

from ‹(z,q) ∈ f^−1 › obtain k ′ u ′ l ′ where kpz:k ′‖z and kplp:k ′‖l ′ and lpq:l ′‖q
and qup:q‖u ′ and zup:z‖u ′ using f by blast

from zu zup pu have p‖u ′ using M1 by blast
from lz kpz kplp have l‖l ′ using M1 by blast
with kl lpq obtain ll where k‖ll and ll‖q using M5exist-var by blast
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with kp ‹p‖u ′› qup show x ∈ f^−1 using x f by blast
qed

lemma cfidi:f^−1 O d^−1 ⊆ d^−1
proof

fix x:: ′a× ′a assume x : f^−1 O d^−1 then obtain p q z where x:x = (p,q)
and (p,z) ∈ f^−1 and (z,q) ∈ d^−1 by auto

then obtain k l u where kp:k ‖ p and kl:k‖l and lz:l‖z and pu:p ‖u and
zu:z‖u using f by blast

obtain k ′ l ′ u ′ v ′ where kpz:k ′ ‖z and kplp:k ′ ‖l ′ and lpq:l ′ ‖q and qup:q ‖u ′

and upvp:u ′‖v ′ and zvp:z‖v ′ using d ‹(z,q)∈d^−1 › by blast
from lz kpz kplp have l‖l ′ using M1 by blast
with kl lpq obtain ll where k‖ll and ll‖q using M5exist-var by blast
moreover from zu zvp upvp have u ′ ‖ u using M1 by blast
ultimately show x ∈ d^−1 using x kp pu qup d by blast

qed

lemma cfis:f^−1 O s ⊆ ov
proof

fix x:: ′a× ′a assume x ∈ f^−1 O s then obtain p q z where x:x = (p,q) and
(p,z)∈ f^−1 and (z,q) ∈ s by auto

from ‹(p,z)∈ f^−1 › obtain k l u where kp:k‖p and kl:k‖l and lz:l‖z and
pu:p‖u and zu:z‖u using f by blast

from ‹(z,q)∈ s› obtain k ′ u ′ v ′ where kpz:k ′‖z and kpq:k ′‖q and zup:z‖u ′

and upvp:u ′‖v ′ and qvp:q‖v ′ using s M1 by blast
from pu zu zup have pup:p‖u ′ using M1 by blast
moreover from lz kpz kpq have lq:l‖q using M1 by blast
ultimately show x ∈ ov using x lz zup kp kl upvp upvp ov qvp by blast

qed

lemma cfisi:f^−1 O s^−1 ⊆ d^−1
proof

fix x:: ′a× ′a assume x ∈ f^−1 O s^−1 then obtain p q z where x:x = (p,q)
and (p,z) ∈ f^−1 and (z,q) ∈ s^−1 by auto

then obtain k l u where kp:k ‖ p and kl:k‖l and lz:l‖z and pu:p ‖u and
zu:z‖u using f by blast

obtain k ′ u ′ v ′ where kpz:k ′ ‖z and kpq:k ′ ‖q and qup:q ‖u ′ and upvp:u ′‖v ′

and zvp:z‖v ′ using s ‹(z,q): s^−1 › by blast
from zu zvp upvp have u ′‖u using M1 by blast
moreover from lz kpz kpq have l ‖q using M1 by blast
ultimately show x ∈ d^−1 using x d kl kp qup pu by blast

qed

lemma cdifi:d^−1 O f^−1 ⊆ d^−1
proof

fix x:: ′a× ′a assume x : d^−1 O f^−1 then obtain p q z where x:x = (p,q)
and (p,z) ∈ d^−1 and (z,q) ∈ f^−1 by auto

then obtain k l u v where kp:k ‖ p and kl:k‖l and lz:l‖z and zu:z ‖u and
uv:u‖v and pv:p‖v using d by blast

9



obtain k ′ l ′ u ′ where kpz:k ′ ‖z and kplp:k ′ ‖l ′ and lpq:l ′ ‖q and qup:q ‖u ′

and zup:z‖u ′ using f ‹(z,q): f^−1 › by blast
from lz kpz kplp have l‖l ′ using M1 by blast
with kl lpq obtain ll where k‖ll and ll‖q using M5exist-var by blast
moreover from zu qup zup have q ‖ u using M1 by blast
ultimately show x ∈ d^−1 using x d kp uv pv by blast

qed

lemma cdidi:d^−1 O d^−1 ⊆ d^−1
proof

fix x:: ′a× ′a assume x : d^−1 O d^−1 then obtain p q z where x:x = (p,q)
and (p,z) ∈ d^−1 and (z,q) ∈ d^−1 by auto

then obtain k l u v where kp:k ‖ p and kl:k‖l and lz:l‖z and zu:z ‖u and
uv:u‖v and pv:p‖v using d by blast

obtain k ′ l ′ u ′ v ′ where kpz:k ′ ‖z and kplp:k ′ ‖l ′ and lpq:l ′ ‖q and qup:q ‖u ′

and upvp:u ′ ‖v ′ and zvp:z ‖v ′ using d ‹(z,q): d^−1 › by blast
from lz kpz kplp have l‖l ′ using M1 by blast
with kl lpq obtain ll where k‖ll and ll‖q using M5exist-var by blast
moreover from zvp zu upvp have u ′ ‖ u using M1 by blast
moreover with qup uv obtain uu where q‖uu and uu‖v using M5exist-var

by blast
ultimately show x ∈ d^−1 using x d kp pv by blast

qed

lemma cdisi:d^−1 O s^−1 ⊆ d^−1
proof

fix x:: ′a× ′a assume x : d^−1 O s^−1 then obtain p q z where x:x = (p,q)
and (p,z) ∈ d^−1 and (z,q) ∈ s^−1 by auto

then obtain k l u v where kp:k ‖p and kl:k‖l and lz:l‖z and zu:z‖u and
uv:u‖v and pv:p‖v using d by blast

obtain k ′ u ′ v ′ where kpz:k ′ ‖z and kpq:k ′ ‖q and qup:q ‖u ′ and upvp:u ′ ‖v ′

and zvp:z ‖v ′ using s ‹(z,q): s^−1 › by blast
from upvp zvp zu have u ′‖u using M1 by blast
with qup uv obtain uu where q‖uu and uu‖v using M5exist-var by blast
moreover from kpz lz kpq have l ‖q using M1 by blast
ultimately show x ∈ d^−1 using x d kp kl pv by blast

qed

lemma csb:s O b ⊆ b
apply (auto simp:s b)
using M1 M5exist-var by blast

lemma csm:s O m ⊆ b
apply (auto simp:s m b)
using M1 by blast

lemma css:s O s ⊆ s
proof

fix x:: ′a× ′a assume x ∈ s O s then obtain p q z where x:x = (p,q) and (p,z)
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∈ s and (z,q) ∈ s by auto
from ‹(p,z) ∈ s› obtain k u v where kp:k‖p and kz:k‖z and pu:p‖u and uv:u‖v

and zv:z‖v using s by blast
from ‹(z,q) ∈ s› obtain k ′ u ′ v ′ where kpq:k ′‖q and kpz:k ′‖z and zup:z‖u ′

and upvp:u ′‖v ′ and qvp:q‖v ′ using s by blast
from kp kpz kz have k ′‖p using M1 by blast
moreover from uv zup zv have u‖u ′ using M1 by blast
moreover with pu upvp obtain uu where p‖uu and uu‖v ′ using M5exist-var

by blast
ultimately show x ∈ s using x s kpq qvp by blast

qed

lemma csifi:s^−1 O f^−1 ⊆ d^−1
proof

fix x:: ′a× ′a assume x : s^−1 O f^−1 then obtain p q z where x:x = (p,q)
and (p,z) ∈ s^−1 and (z,q) ∈ f^−1 by auto

then obtain k u v where kp:k ‖ p and kz:k‖z and zu:z ‖u and uv:u‖v and
pv:p‖v using s by blast

obtain k ′ l ′ u ′ where kpz:k ′ ‖z and kplp:k ′ ‖l ′ and lpq:l ′ ‖q and zup:z‖u ′ and
qup:q‖u ′ using f ‹(z,q): f^−1 › by blast

from kz kpz kplp have k‖l ′ using M1 by blast
moreover from qup zup zu have q ‖ u using M1 by blast
ultimately show x ∈ d^−1 using x d kp lpq pv uv by blast

qed

lemma csidi:s^−1 O d^−1 ⊆ d^−1
proof

fix x:: ′a× ′a assume x : s^−1 O d^−1 then obtain p q z where x:x = (p,q)
and (p,z) ∈ s^−1 and (z,q) ∈ d^−1 by auto

then obtain k u v where kp:k ‖ p and kz:k‖z and zu:z ‖u and uv:u‖v and
pv:p‖v using s by blast

obtain k ′ l ′ u ′ v ′ where kpz:k ′ ‖z and kplp:k ′ ‖l ′ and lpq:l ′‖q and qup:q ‖u ′

and upvp:u ′ ‖v ′ and zvp:z‖v ′ using d ‹(z,q): d^−1 › by blast
from zvp upvp zu have u ′‖u using M1 by blast
with qup uv obtain uu where q‖uu and uu‖v using M5exist-var by blast
moreover from kz kpz kplp have k ‖l ′ using M1 by blast
ultimately show x ∈ d^−1 using x d kp lpq pv by blast

qed

lemma cdb:d O b ⊆ b
apply (auto simp:d b)
using M1 M5exist-var by blast

lemma cdm:d O m ⊆ b
apply (auto simp:d m b)
using M1 by blast

lemma cfb:f O b ⊆ b
apply (auto simp:f b)
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using M1 by blast

lemma cfm:f O m ⊆ m
proof

fix x:: ′a× ′a assume x ∈ f O m then obtain p q z where x:x = (p,q) and
1 :(p,z) ∈ f and 2 :(z,q) ∈ m by auto

from 1 obtain u where pu:p‖u and zu:z‖u using f by auto
with 2 have (p,q) ∈ m using M1 m by blast
thus x∈ m using x by auto

qed

3.3 α-composition

We prove compositions of the form r1 ◦ r2 ⊆ s ∪ ov ∪ d.
lemma (in arelations) cmd:m O d ⊆ s ∪ ov ∪ d
proof

fix x:: ′a× ′a assume a:x ∈ m O d then obtain p q z where x:x =(p,q) and
1 :(p,z) ∈ m and 2 :(z,q) ∈ d by auto

then obtain k l u v where pz:p‖z and kq:k‖q and kl:k‖l and lz:l‖z and zu:z‖u
and uv:u‖v and qv:q‖v using m d by blast

obtain k ′ where kpp:k ′‖p using M3 meets-wd pz by blast
from pz zu uv obtain zu where pzu:p‖zu and zuv:zu‖v using M5exist-var by

blast
from kpp kq have k ′‖q ⊕ ((∃ t. k ′‖t ∧ t‖q) ⊕ (∃ t. k‖t ∧ t‖p)) (is ?A ⊕ (?B ⊕

?C )) using M2 by blast
then have (?A∧¬?B∧¬?C )∨(¬?A∧?B∧¬?C )∨(¬?A∧¬?B∧?C ) using local.meets-atrans

xor-distr-L[of ?A ?B ?C ] by blast
thus x ∈ s ∪ ov ∪ d
proof (elim disjE)

{assume (?A∧¬?B∧¬?C ) then have ?A by simp
then have (p,q) ∈ s using s qv kpp pzu zuv by blast
thus ?thesis using x by simp }

next
{assume (¬?A∧?B∧¬?C ) then have ?B by simp
then obtain t where kpt:k ′‖t and tq:t‖q by auto
moreover from kq kl tq have t‖l using M1 by blast
moreover from lz pz pzu have l‖zu using M1 by blast
ultimately have (p,q) ∈ ov using ov kpp qv pzu zuv by blast
thus ?thesis using x by simp}

next
{assume (¬?A∧¬?B∧?C ) then have ?C by simp
then obtain t where kt:k‖t and tp:t‖p by auto
with kq pzu zuv qv have (p,q)∈d using d by blast
thus ?thesis using x by simp}

qed
qed

lemma (in arelations) cmf :m O f ⊆ s ∪ ov ∪ d
proof
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fix x:: ′a× ′a assume a:x ∈ m O f then obtain p q z where x:x =(p,q) and
1 :(p,z) ∈ m and 2 :(z,q) ∈ f by auto

then obtain k l u where pz:p‖z and kq:k‖q and kl:k‖l and lz:l‖z and zu:z‖u
and qu:q‖u using m f by blast

obtain k ′ where kpp:k ′‖p using M3 meets-wd pz by blast
from kpp kq have k ′‖q ⊕ ((∃ t. k ′‖t ∧ t‖q) ⊕ (∃ t. k‖t ∧ t‖p)) (is ?A ⊕ (?B ⊕

?C )) using M2 by blast
then have (?A∧¬?B∧¬?C )∨(¬?A∧?B∧¬?C )∨(¬?A∧¬?B∧?C ) using local.meets-atrans

xor-distr-L[of ?A ?B ?C ] by blast
thus x ∈ s ∪ ov ∪ d
proof (elim disjE)

{assume (?A∧¬?B∧¬?C ) then have ?A by simp
then have (p,q) ∈ s using s qu kpp pz zu by blast
thus ?thesis using x by simp }

next
{assume (¬?A∧?B∧¬?C ) then have ?B by simp
then obtain t where kpt:k ′‖t and tq:t‖q by auto
moreover from kq kl tq have t‖l using M1 by blast
moreover from lz pz pz have l‖z using M1 by blast
ultimately have (p,q) ∈ ov using ov kpp qu pz zu by blast
thus ?thesis using x by simp}

next
{assume (¬?A∧¬?B∧?C ) then have ?C by simp
then obtain t where kt:k‖t and tp:t‖p by auto
with kq pz zu qu have (p,q)∈d using d by blast
thus ?thesis using x by simp}

qed
qed

lemma cmovi:m O ov^−1 ⊆ s ∪ ov ∪ d
proof

fix x:: ′a× ′a assume a:x ∈ m O ov^−1 then obtain p q z where x:x =(p,q)
and 1 :(p,z) ∈ m and 2 :(z,q) ∈ ov^−1 by auto

then obtain k l c u v where pz:p‖z and kq:k‖q and kl:k‖l and lz:l‖z and
qu:q‖u and uv:u‖v and zv:z‖v and lc:l‖c and cu:c‖u using m ov by blast

obtain k ′ where kpp:k ′‖p using M3 meets-wd pz by blast
from lz lc pz have pc:p‖c using M1 by auto
from kpp kq have k ′‖q ⊕ ((∃ t. k ′‖t ∧ t‖q) ⊕ (∃ t. k‖t ∧ t‖p)) (is ?A ⊕ (?B ⊕

?C )) using M2 by blast
then have (?A∧¬?B∧¬?C )∨(¬?A∧?B∧¬?C )∨(¬?A∧¬?B∧?C ) by (insert xor-distr-L[of

?A ?B ?C ], auto simp:elimmeets)
thus x ∈ s ∪ ov ∪ d
proof (elim disjE)

{assume (?A∧¬?B∧¬?C ) then have ?A by simp
then have (p,q) ∈ s using s kpp qu cu pc by blast
thus ?thesis using x by simp }

next
{assume (¬?A∧?B∧¬?C ) then have ?B by simp
then obtain t where kpt:k ′‖t and tq:t‖q by auto
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moreover from kq kl tq have t‖l using M1 by auto
ultimately have (p,q) ∈ ov using ov kpp qu cu lc pc by blast
thus ?thesis using x by simp}

next
{assume (¬?A∧¬?B∧?C ) then have ?C by simp
then obtain t where kt:k‖t and tp:t‖p by auto
then have (p,q)∈d using d kq cu qu pc by blast
thus ?thesis using x by simp}

qed
qed

lemma covd:ov O d ⊆ s ∪ ov ∪ d
proof

fix x:: ′a× ′a assume x ∈ ov O d then obtain p q z where x:x=(p,q) and (p,z)
∈ ov and (z,q) ∈ d by auto

from ‹(p,z) ∈ ov› obtain k u v l c where kp:k‖p and pu:p‖u and uv:u‖v and
zv:z‖v and lc:l‖c and cu:c‖u and kl:k‖l and lz:l‖z and cu:c‖u using ov by blast

from ‹(z,q) ∈ d› obtain k ′ l ′ u ′ v ′ where kpq:k ′‖q and kplp:k ′‖l ′ and lpz:l ′‖z
and qvp:q‖v ′ and zup:z‖u ′ and upvp:u ′‖v ′ using d by blast

from uv zv zup have u‖u ′ using M1 by auto
from pu upvp obtain uu where puu:p‖uu and uuvp:uu‖v ′ using ‹u‖u ′› using

M5exist-var by blast
from kp kpq have k‖q ⊕ ((∃ t. k‖t ∧ t‖q) ⊕ (∃ t. k ′‖t ∧ t‖p)) (is ?A ⊕ (?B ⊕

?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ s ∪ ov ∪ d
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
then have (p,q) ∈ s using s kp qvp puu uuvp by blast
thus ?thesis using x by blast}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where kt:k‖t and tq:t‖q by auto
from cu pu puu have c‖uu using M1 by auto
moreover from kpq tq kplp have t‖l ′ using M1 by auto
moreover from lpz lz lc have lpc:l ′‖c using M1 by auto
ultimately obtain lc where t‖lc and lc‖uu using M5exist-var by blast
then have (p,q) ∈ ov using ov kp kt tq puu uuvp qvp by blast
thus ?thesis using x by auto}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where k ′‖t and t‖p by auto
with puu uuvp qvp kpq have (p,q) ∈ d using d by blast
thus ?thesis using x by auto}

qed
qed
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lemma covf :ov O f ⊆ s ∪ ov ∪ d
proof

fix x:: ′a× ′a assume x ∈ ov O f then obtain p q z where x:x=(p,q) and (p,z)
∈ ov and (z,q) ∈ f by auto

from ‹(p,z) ∈ ov› obtain k u v l c where kp:k‖p and pu:p‖u and uv:u‖v and
zv:z‖v and lc:l‖c and cu:c‖u and kl:k‖l and lz:l‖z and cu:c‖u using ov by blast

from ‹(z,q) ∈ f › obtain k ′ l ′ u ′ where kpq:k ′‖q and kplp:k ′‖l ′ and lpz:l ′‖z
and qup:q‖u ′ and zup:z‖u ′ using f by blast

from uv zv zup have uu:u‖u ′ using M1 by auto
from kp kpq have k‖q ⊕ ((∃ t. k‖t ∧ t‖q) ⊕ (∃ t. k ′‖t ∧ t‖p)) (is ?A ⊕ (?B ⊕

?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ s ∪ ov ∪ d
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
then have (p,q) ∈ s using s kp qup uu pu by blast
thus ?thesis using x by blast}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where kt:k‖t and tq:t‖q by auto
moreover from kpq tq kplp have t‖l ′ using M1 by auto
moreover from lpz lz lc have lpc:l ′‖c using M1 by auto
ultimately obtain lc where t‖lc and lc‖u using cu M5exist-var by blast
then have (p,q) ∈ ov using ov kp kt tq pu uu qup by blast
thus ?thesis using x by auto}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where k ′‖t and t‖p by auto
with pu uu qup kpq have (p,q) ∈ d using d by blast
thus ?thesis using x by auto}

qed
qed

lemma cfid:f^−1 O d ⊆ s ∪ ov ∪ d
proof

fix x:: ′a× ′a assume x ∈ f^−1 O d then obtain p q z where x:x = (p,q) and
(p,z) ∈ f^−1 and (z,q)∈ d by auto

from ‹(p,z) ∈ f^−1 › obtain k l u where k‖l and l‖z and kp:k‖p and pu:p‖u
and zu:z‖u using f by blast

from ‹(z,q) ∈ d› obtain k ′ l ′ u ′ v where kplp:k ′‖l ′ and kpq:k ′‖q and lpz:l ′‖z
and zup:z‖u ′ and upv:u ′‖v and qv:q‖v using d by blast

from pu zu zup have pup:p‖u ′ using M1 by blast
from kp kpq have k‖q ⊕ ((∃ t. k‖t ∧ t‖q) ⊕ (∃ t. k ′‖t ∧ t‖p)) (is ?A ⊕ (?B ⊕

?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ s ∪ ov ∪ d
proof (elim disjE)
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{ assume ?A∧¬?B∧¬?C then have ?A by simp
with pup upv kp qv have (p,q) ∈ s using s by blast
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where kt:k‖t and tq:t‖q by auto
from tq kpq kplp have t‖l ′ using M1 by blast
with lpz zup obtain lpz where t‖lpz and lpz‖u ′ using M5exist-var by blast
with kp pup upv kt tq qv have (p,q)∈ov using ov by blast
thus ?thesis using x by blast}
next

{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp
then obtain t where k ′‖t and t‖p by auto
with pup upv kpq qv have (p,q) ∈ d using d by blast
thus ?thesis using x by auto}

qed
qed

lemma cfov:f O ov ⊆ ov ∪ s ∪ d
proof

fix x:: ′a× ′a assume x ∈ f O ov then obtain p q z where x:x = (p,q) and
(p,z) ∈ f and (z,q)∈ ov by auto

from ‹(p,z) ∈ f › obtain k l u where k‖l and kz:k‖z and lp:l‖p and pu:p‖u
and zu:z‖u using f by blast

from ‹(z,q) ∈ ov› obtain k ′ l ′ c u ′ v where k ′‖l ′ and kpz:k ′‖z and lpq:l ′‖ q
and zup:z‖u ′ and upv:u ′‖v and qv:q‖v and lpc:l ′‖c and cup:c‖u ′ using ov by
blast

from pu zu zup have pup:p‖u ′ using M1 by blast
from lp lpq have l‖q ⊕ ((∃ t. l‖t ∧ t‖q) ⊕ (∃ t. l ′‖t ∧ t‖p)) (is ?A ⊕ (?B ⊕

?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ ov ∪ s ∪ d
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with lp pup upv qv have (p,q) ∈ s using s by blast
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp
then obtain t where lt:l‖t and tq:t‖q by auto
from tq lpq lpc have t‖c using M1 by blast
with lp lt tq pup upv qv cup have (p,q)∈ov using ov by blast
thus ?thesis using x by blast}
next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp
then obtain t where l ′‖t and t‖p by auto
with lpq pup upv qv have (p,q) ∈ d using d by blast
thus ?thesis using x by auto}

qed

16



qed

We prove compositions of the form r1 ◦ r2 ⊆ ov ∪ f−1 ∪ d−1.
lemma covsi:ov O s^−1 ⊆ ov ∪ f^−1 ∪ d^−1
proof

fix x:: ′a× ′a assume x ∈ ov O s^−1 then obtain p q z where x:x = (p,q)
and (p,z) ∈ ov and (z,q) ∈ s^−1 by auto

from ‹(p,z) ∈ ov› obtain k l c u where kp:k‖p and pu:p‖u and kl:k‖l and
lz:l‖z and lc:l‖c and cu:c‖u using ov by blast

from ‹(z,q) ∈ s^−1 › obtain k ′ u ′ v ′ where kpz:k ′‖z and kpq:k ′‖q and kpz:k ′‖z
and zup:z‖u ′ and qvp:q‖v ′ using s by blast

from lz kpz kpq have lq:l‖q using M1 by blast
from pu qvp have p‖v ′ ⊕ ((∃ t. p‖t ∧ t‖v ′) ⊕ (∃ t. q‖t ∧ t‖u)) (is ?A ⊕ (?B

⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ ov ∪ f^−1 ∪ d^−1
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with qvp kp kl lq have (p,q) ∈ f^−1 using f by blast
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where ptp:p‖t and t‖v ′ by auto
moreover with pu cu have c‖t using M1 by blast
ultimately have (p,q)∈ ov using kp kl lc cu lq qvp ov by blast
thus ?thesis using x by auto}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where qt:q‖t and t‖u by auto
with kp kl lq pu have (p,q) ∈ d^−1 using d by blast
thus ?thesis using x by auto}

qed
qed

lemma cdim:d^−1 O m ⊆ ov ∪ d^−1 ∪ f^−1
proof

fix x:: ′a× ′a assume x ∈ d^−1 O m then obtain p q z where x:x = (p,q)
and (p,z) ∈ d^−1 and (z,q) ∈ m by auto

from ‹(p,z) ∈ d^−1 › obtain k l u v where kp:k‖p and pv:p‖v and kl:k‖l and
lz:l‖z and zu:z‖u and uv:u‖v using d by blast

from ‹(z,q) ∈ m› have zq:z‖q using m by blast
obtain v ′ where qvp:q‖v ′ using M3 meets-wd zq by blast
from kl lz zq obtain lz where klz:k‖lz and lzq:lz‖q using M5exist-var by

blast
from pv qvp have p‖v ′ ⊕ ((∃ t. p‖t ∧ t‖v ′) ⊕ (∃ t. q‖t ∧ t‖v)) (is ?A ⊕ (?B

⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert
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xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ ov ∪ d^−1 ∪ f^−1
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with qvp kp klz lzq‹?A› have (p,q) ∈ f^−1 using f by blast
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where pt:p‖t and tvp:t‖v ′ by auto
from zq lzq zu have lz‖u using M1 by auto
moreover from pt pv uv have u‖t using M1 by auto
ultimately have (p,q)∈ ov using kp klz lzq pt tvp qvp ov by blast
thus ?thesis using x by auto}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where qt:q‖t and t‖v by auto
with kp klz lzq pv have (p,q) ∈ d^−1 using d by blast
thus ?thesis using x by auto}

qed
qed

lemma cdiov:d^−1 O ov ⊆ ov ∪ f^−1 ∪ d^−1
proof

fix x:: ′a× ′a assume x ∈ d^−1 O ov then obtain p q r where x:x = (p,r)
and (p,q) ∈ d^−1 and (q,r) ∈ ov by auto

from ‹(p,q) ∈ d^−1 › obtain u v k l where kp:k‖p and pv:p‖v and kl:k‖l
and lq:l‖q and qu:q‖u and uv:u‖v using d by blast

from ‹(q,r) ∈ ov› obtain k ′ l ′ t u ′ v ′ where lpr :l ′‖r and kpq:k ′‖q and kplp:k ′‖l ′
and qup:q‖u ′ and u ′‖v ′ and rvp:r‖v ′ and lpt:l ′‖t and tup:t‖u ′ using ov by blast

from lq kplp kpq have l‖l ′ using M1 by blast
with kl lpr obtain ll where kll:k‖ll and llr :ll‖r using M5exist-var by blast
from pv rvp have p‖v ′ ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖v ′) ⊕ (∃ t ′. r‖t ′ ∧ t ′‖v)) (is ?A ⊕

(?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ ov ∪ f^−1 ∪ d^−1
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with rvp llr kp kll have (p,r) ∈ f^−1 using f by blast
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t ′ where ptp:p‖t ′ and tpvp:t ′‖v ′ by auto
moreover from lpt lpr llr have llt:ll‖t using M1 by blast
moreover from ptp uv pv have utp:u‖t ′ using M1 by blast
moreover from qu tup qup have t‖u using M1 by blast

moreover with utp llt obtain tu where ll‖tu and tu‖t ′ using M5exist-var
by blast

with kp ptp tpvp kll llr rvp have (p,r)∈ ov using ov by blast
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thus ?thesis using x by auto}
next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t ′ where rtp:r‖t ′ and t ′‖v by auto
with kll llr kp pv have (p,r) ∈ d^−1 using d by blast
thus ?thesis using x by auto}

qed
qed

lemma cdis:d^−1 O s ⊆ ov ∪ f^−1 ∪ d^−1
proof

fix x:: ′a× ′a assume x ∈ d^−1 O s then obtain p q z where x:x = (p,q) and
(p,z) ∈ d^−1 and (z,q) ∈ s by auto

from ‹(p,z)∈d^−1 › obtain k l u v where kl:k‖l and lz:l‖z and kp:k‖p and
zu:z‖u and uv:u‖v and pv:p‖v using d by blast

from ‹(z,q) ∈ s› obtain l ′ v ′ where lpz:l ′‖z and lpq:l ′‖q and qvp:q‖v ′ using
s by blast

from lz lpz lpq have lq:l‖q using M1 by blast
from pv qvp have p‖v ′ ⊕ ((∃ t. p‖t ∧ t‖v ′) ⊕ (∃ t. q‖t ∧ t‖v)) (is ?A ⊕ (?B ⊕

?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ ov ∪ f^−1 ∪ d^−1

proof (elim disjE)
{ assume ?A∧¬?B∧¬?C then have ?A by simp

with kl lq qvp kp have (p,q) ∈ f^−1 using f by blast
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where pt:p‖t and tvp:t‖v ′ by auto
from pt pv uv have u‖t using M1 by blast
with lz zu obtain zu where l‖zu and zu‖t using M5exist-var by blast
with kp pt tvp kl lq qvp have (p,q) ∈ ov using ov by blast
thus ?thesis using x by auto}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where q‖t and t‖v by auto
with kl lq kp pv have (p,q)∈d^−1 using d by blast
thus ?thesis using x by auto}

qed
qed

lemma csim:s^−1 O m ⊆ ov ∪ f^−1 ∪ d^−1
proof

fix x:: ′a× ′a assume x ∈ s^−1 O m then obtain p q z where x:x = (p,q) and
(p,z) ∈ s^−1 and (z,q) ∈ m by auto

from ‹(p,z)∈s^−1 › obtain k u v where kp:k‖p and kz:k‖z and zu:z‖u and
uv:u‖v and pv:p‖v using s by blast

from ‹(z,q) ∈ m› have zq:z‖q using m by auto
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obtain v ′ where qvp:q‖v ′ using M3 meets-wd zq by blast
from pv qvp have p‖v ′ ⊕ ((∃ t. p‖t ∧ t‖v ′) ⊕ (∃ t. q‖t ∧ t‖v)) (is ?A ⊕ (?B ⊕

?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ ov ∪ f^−1 ∪ d^−1

proof (elim disjE)
{ assume ?A∧¬?B∧¬?C then have ?A by simp

with kp kz zq qvp have (p,q) ∈ f^−1 using f by blast
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where pt:p‖t and tvp:t‖v ′ by auto
from pt pv uv have u‖t using M1 by blast
with kp pt tvp kz zq qvp zu have (p,q) ∈ ov using ov by blast
thus ?thesis using x by auto}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where q‖t and t‖v by auto
with kp kz zq pv have (p,q)∈d^−1 using d by blast
thus ?thesis using x by auto}

qed
qed

lemma csiov:s^−1 O ov ⊆ ov ∪ f^−1 ∪ d^−1
proof

fix x:: ′a× ′a assume x ∈ s^−1 O ov then obtain p q z where x:x = (p,q) and
(p,z) ∈ s^−1 and (z,q) ∈ ov by auto

from ‹(p,z)∈s^−1 › obtain k u v where kp:k‖p and kz:k‖z and zu:z‖u and
uv:u‖v and pv:p‖v using s by blast

from ‹(z,q) ∈ ov› obtain k ′ l ′ u ′ v ′ c where kpz:k ′‖z and zup:z‖u ′ and
upvp:u ′‖v ′ and kplp:k ′‖l ′ and lpq:l ′‖q and qvp:q‖v ′ and lpc:l ′‖c and cup:c‖u ′

using ov by blast
from kz kpz kplp have klp:k‖l ′ using M1 by auto
from pv qvp have p‖v ′ ⊕ ((∃ t. p‖t ∧ t‖v ′) ⊕ (∃ t. q‖t ∧ t‖v)) (is ?A ⊕ (?B ⊕

?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ ov ∪ f^−1 ∪ d^−1

proof (elim disjE)
{ assume ?A∧¬?B∧¬?C then have ?A by simp

with kp kplp lpq qvp klp have (p,q) ∈ f^−1 using f by blast
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where pt:p‖t and tvp:t‖v ′ by auto
from pt pv uv have u‖t using M1 by blast
moreover from cup zup zu have cu:c‖u using M1 by auto
ultimately obtain cu where l ′‖cu and cu‖t using lpc M5exist-var by
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blast
with kp pt tvp klp lpq qvp have (p,q) ∈ ov using ov by blast
thus ?thesis using x by auto}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where q‖t and t‖v by auto
with kp klp lpq pv have (p,q)∈d^−1 using d by blast
thus ?thesis using x by auto}

qed
qed

lemma covim:ov^−1 O m ⊆ ov ∪ f^−1 ∪ d^−1
proof

fix x:: ′a× ′a assume x ∈ ov^−1 O m then obtain p q z where x:x = (p,q)
and (p,z) ∈ ov^−1 and (z,q) ∈ m by auto

from ‹(p,z) ∈ ov^−1 › obtain k l c u v where kz:k‖z and zu:z‖u and kl:k‖l
and lp:l‖p and lc:l‖c and cu:c‖u and pv:p‖v and uv:u‖v using ov by blast

from ‹(z,q) ∈ m› have zq:z‖q using m by auto
obtain v ′ where qvp:q‖v ′ using M3 meets-wd zq by blast
from zu zq cu have cq:c‖q using M1 by blast
from pv qvp have p‖v ′ ⊕ ((∃ t. p‖t ∧ t‖v ′) ⊕ (∃ t. q‖t ∧ t‖v)) (is ?A ⊕ (?B

⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ ov ∪ f^−1 ∪ d^−1
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with lp lc cq qvp have (p,q) ∈ f^−1 using f by blast
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where ptp:p‖t and t‖v ′ by auto
moreover with pv uv have u‖t using M1 by blast
ultimately have (p,q)∈ ov using lp lc cq qvp cu ov by blast
thus ?thesis using x by auto}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where qt:q‖t and t‖v by auto
with lp lc cq pv have (p,q) ∈ d^−1 using d by blast
thus ?thesis using x by auto}

qed
qed

We prove compositions of the form r1 ◦ r2 ⊆ b ∪m ∪ ov.
lemma covov:ov O ov ⊆ b ∪ m ∪ ov
proof

fix x:: ′a× ′a assume x ∈ ov O ov then obtain p q z where x:x = (p,q) and
(p,z) ∈ ov and (z,q)∈ ov by auto

from ‹(p,z) ∈ ov› obtain k u l t v where kp:k‖p and pu:p‖u and kl:k‖l and
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lz:l‖z and l‖t and t‖u and uv:u‖v and zv:z‖v using ov by blast
from ‹(z,q) ∈ ov› obtain k ′ l ′ y u ′ v ′ where kplp:k ′‖l ′ and kpz:k ′‖z and

lpq:l ′‖q and lpy:l ′‖y and y‖u ′ and zup:z‖u ′ and upvp:u ′‖v ′ and qvp:q‖v ′ using
ov by blast

from lz kplp kpz have llp:l‖l ′ using M1 by blast
from uv zv zup have u‖u ′ using M1 by blast
with pu upvp obtain uu where puu:p‖uu and uuv:uu‖v ′ using M5exist-var

by blast
from puu lpq have p‖q ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖q) ⊕ (∃ t ′. l ′‖t ′ ∧ t ′‖uu)) (is ?A ⊕

(?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
then have (p,q) ∈ m using m by auto
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then have (p,q) ∈ b using b by auto
thus ?thesis using x by auto}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t ′ where lptp:l ′‖t ′ and t ′‖uu by auto
from kl llp lpq obtain ll where kll:k‖ll and llq:ll‖q using M5exist-var

by blast
with lpq lptp have ll‖t ′ using M1 by blast
with kp puu uuv kll llq qvp ‹t ′‖uu› have (p,q) ∈ ov using ov by blast
thus ?thesis using x by auto}

qed
qed

lemma covfi:ov O f^−1 ⊆ b ∪ m ∪ ov
proof

fix x:: ′a× ′a assume x ∈ ov O f^−1 then obtain p q z where x:x = (p,q) and
(p,z) ∈ ov and (z,q)∈ f^−1 by auto

from ‹(p,z) ∈ ov› obtain k u l c v where kp:k‖p and pu:p‖u and kl:k‖l and
lz:l‖z and l‖c and c‖u and uv:u‖v and zv:z‖v using ov by blast

from ‹(z,q) ∈ f^−1 › obtain k ′ l ′ v ′ where kplp:k ′‖l ′ and kpz:k ′‖z and lpq:l ′‖q
and qvp:q‖v ′ and zvp:z‖v ′ using f by blast

from lz kplp kpz have llp:l‖l ′ using M1 by blast
from zv qvp zvp have qv:q‖v using M1 by blast
from pu lpq have p‖q ⊕ ((∃ t. p‖t ∧ t‖q) ⊕ (∃ t. l ′‖t ∧ t‖u)) (is ?A ⊕ (?B ⊕

?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
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then have (p,q) ∈ m using m by auto
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then have (p,q) ∈ b using b by auto
thus ?thesis using x by auto}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where lptp:l ′‖t and t‖u by auto
from kl llp lpq obtain ll where kll:k‖ll and llr :ll‖q using M5exist-var

by blast
with lpq lptp have ll‖t using M1 by blast
with kp pu uv kll llr qv ‹t‖u› have (p,q) ∈ ov using ov by blast
thus ?thesis using x by auto}

qed
qed

lemma csov:s O ov ⊆ b ∪ m ∪ ov
proof

fix x:: ′a× ′a assume x ∈ s O ov then obtain p q z where x:x = (p,q) and
(p,z) ∈ s and (z,q)∈ ov by auto

from ‹(p,z) ∈ s› obtain k u v where kp:k‖p and kz:k‖z and pu:p‖u and
uv:u‖v and zv:z‖v using s by blast

from ‹(z,q) ∈ ov› obtain k ′ l ′ u ′ v ′ where kpz:k ′‖z and kplp:k ′‖l ′ and
lpq:l ′‖q and zup:z‖u ′ and qvp:q‖v ′ and upvp:u ′‖v ′ using ov by blast

from kz kpz kplp have klp:k‖l ′ using M1 by blast
from uv zv zup have uup:u‖u ′ using M1 by blast
with pu upvp obtain uu where puu:p‖uu and uuvp:uu‖v ′ using M5exist-var

by blast
from pu lpq have p‖q ⊕ ((∃ t. p‖t ∧ t‖q) ⊕ (∃ t. l ′‖t ∧ t‖u)) (is ?A ⊕ (?B ⊕

?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
then have (p,q) ∈ m using m by auto
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then have (p,q) ∈ b using b by auto
thus ?thesis using x by auto}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where lpt:l ′‖t and t‖u by auto
with pu puu have t‖uu using M1 by blast
with lpt kp puu uuvp klp lpq qvp have (p,q) ∈ ov using ov by blast
thus ?thesis using x by auto}
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qed
qed

lemma csfi:s O f^−1 ⊆ b ∪ m ∪ ov
proof

fix x:: ′a× ′a assume x ∈ s O f^−1 then obtain p q r where x:x = (p,r) and
(p,q) ∈ s and (q,r)∈ f^−1 by auto

from ‹(p,q) ∈ s› obtain k u v where kp:k‖p and kq:k‖q and pu:p‖u and
uv:u‖v and qv:q‖v using s by blast

from ‹(q,r) ∈ f^−1 › obtain k ′ l v ′ where kpq:k ′‖q and kpl:k ′‖l and lr :l‖r
and rvp:r‖v ′ and qvp:q‖v ′ using f by blast

from kpq kpl kq have kl:k‖l using M1 by blast
from qvp qv uv have uvp:u‖v ′ using M1 by blast
from pu lr have p‖r ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖r) ⊕ (∃ t ′. l‖t ′ ∧ t ′‖u)) (is ?A ⊕ (?B

⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
then have (p,r) ∈ m using m by auto
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then have (p,r) ∈ b using b by auto
thus ?thesis using x by auto}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t ′ where ltp:l‖t ′ and t ′‖u by auto
with kp pu uvp kl lr rvp have (p,r) ∈ ov using ov by blast
thus ?thesis using x by auto}

qed
qed

We prove compositions of the form r1 ◦ r2 ⊆ f ∪ f−1 ∪ e.
lemma cmmi:m O m^−1 ⊆ f ∪ f^−1 ∪ e
proof

fix x:: ′a× ′a assume a:x ∈ m O m^−1 then obtain p q z where x:x =(p,q)
and 1 :(p,z) ∈ m and 2 :(z,q) ∈ m^−1 by auto

then have pz:p‖z and qz:q‖z using m by auto
obtain k k ′ where kp:k‖p and kpq:k ′‖q using M3 meets-wd qz pz by blast
from kp kpq have k‖q ⊕ ((∃ t. k‖t ∧ t‖q) ⊕ (∃ t. k ′‖t ∧ t‖p)) (is ?A ⊕ (?B ⊕

?C )) using M2 by blast
then have (?A∧¬?B∧¬?C )∨(¬?A∧?B∧¬?C )∨(¬?A∧¬?B∧?C ) by (insert xor-distr-L[of

?A ?B ?C ], auto simp:elimmeets)
thus x ∈f ∪ f^−1 ∪ e
proof (elim disjE)

{assume (?A∧¬?B∧¬?C ) then have ?A by simp
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then have p = q using M4 kp pz qz by blast
then have (p,q) ∈ e using e by auto
thus ?thesis using x by simp }

next
{assume (¬?A∧?B∧¬?C ) then have ?B by simp
then obtain t where kt:k‖t and tq:t‖q by auto
then have (p,q) ∈ f^−1 using f qz pz kp by blast
thus ?thesis using x by simp}

next
{assume (¬?A∧¬?B∧?C ) then have ?C by simp
then obtain t where kt:k ′‖t and tp:t‖p by auto
with kpq pz qz have (p,q)∈f using f by blast
thus ?thesis using x by simp}

qed
qed

lemma cfif :f^−1 O f ⊆ e ∪ f^−1 ∪ f
proof

fix x:: ′a× ′a assume a:x ∈ f^−1 O f then obtain p q z where x:x =(p,q) and
1 :(p,z) ∈ f^−1 and 2 :(z,q) ∈ f by auto
from 1 obtain k l u where kp:k‖p and kl:k‖l and lz:l‖z and zu:z‖u and pu:p‖u

using f by blast
from 2 obtain k ′ l ′ u ′ where kpq:k ′‖q and kplp:k ′‖l ′ and lpz:l ′‖z and zup:z‖u ′

and qup:q‖u ′ using f by blast
from zu zup qup have qu:q‖u using M1 by auto
from kp kpq have k‖q ⊕ ((∃ t. k‖t ∧ t‖q) ⊕ (∃ t. k ′‖t ∧ t‖p)) (is ?A ⊕ (?B ⊕

?C )) using M2 by blast
then have (?A∧¬?B∧¬?C )∨(¬?A∧?B∧¬?C )∨(¬?A∧¬?B∧?C ) by (insert xor-distr-L[of

?A ?B ?C ], auto simp:elimmeets)
thus x ∈ e ∪ f^−1 ∪ f
proof (elim disjE)

{assume (?A∧¬?B∧¬?C ) then have ?A by simp
then have p = q using M4 kp pu qu by blast
then have (p,q) ∈ e using e by auto
thus ?thesis using x by simp }

next
{assume (¬?A∧?B∧¬?C ) then have ?B by simp
then obtain t where kt:k‖t and tq:t‖q by auto
then have (p,q) ∈ f^−1 using f qu pu kp by blast
thus ?thesis using x by simp}

next
{assume (¬?A∧¬?B∧?C ) then have ?C by simp
then obtain t where kt:k ′‖t and tp:t‖p by auto
with kpq pu qu have (p,q)∈f using f by blast
thus ?thesis using x by simp}

qed
qed
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lemma cffi:f O f^−1 ⊆ e ∪ f ∪ f^−1
proof

fix x:: ′a× ′a assume x ∈ f O f^−1 then obtain p q r where x:x = (p,r) and
(p,q)∈f and (q,r) ∈f^−1 by auto

from ‹(p,q)∈f › ‹(q,r) ∈ f^−1 › obtain k k ′ where kp:k‖p and kpr :k ′‖r using
f by blast

from ‹(p,q)∈f › ‹(q,r) ∈ f^−1 › obtain u where pu:p‖u and q‖u and ru:r‖u
using f M1 by blast

from kp kpr have k‖r ⊕ ((∃ t. k‖t ∧ t‖r) ⊕ (∃ t. k ′‖t ∧ t‖p)) (is ?A ⊕ (?B ⊕
?C )) using M2 by blast

then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert
xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)

thus x ∈ e ∪ f ∪ f^−1
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with pu ru kp have p = r using M4 by auto
thus ?thesis using x e by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where kt:k‖t and tr :t‖r by auto
with ru kp pu show ?thesis using x f by blast}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where rtp:k ′‖t and t‖p by auto
with kpr ru pu show ?thesis using x f by blast}

qed
qed

We prove compositions of the form r1 ◦ r2 ⊆ e ∪ s ∪ s−1.
lemma cssi:s O s^−1 ⊆ e ∪ s ∪ s^−1
proof

fix x:: ′a× ′a assume x ∈ s O s^−1 then obtain p q r where x:x = (p,r) and
(p,q)∈s and (q,r) ∈s^−1 by auto

from ‹(p,q)∈s› ‹(q,r) ∈ s^−1 › obtain k where kp:k‖p and kr :k‖r and kq:k‖q
using s M1 by blast

from ‹(p,q)∈s› ‹(q,r) ∈ s^−1 › obtain u u ′ where pu:p‖u and rup:r‖u ′ using
s by blast

then have p‖u ′ ⊕ ((∃ t. p‖t ∧ t‖u ′) ⊕ (∃ t. r‖t ∧ t‖u)) (is ?A ⊕ (?B ⊕ ?C ))
using M2 by blast

then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert
xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)

thus x ∈ e ∪ s ∪ s^−1
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with rup kp kr have p = r using M4 by auto
thus ?thesis using x e by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where kt:p‖t and tr :t‖u ′ by auto
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with rup kp kr show ?thesis using x s by blast}
next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where rtp:r‖t and t‖u by auto
with pu kp kr show ?thesis using x s by blast}

qed
qed

lemma csis:s^−1 O s ⊆ e ∪ s ∪ s^−1
proof

fix x:: ′a× ′a assume x ∈ s^−1 O s then obtain p q r where x:x = (p,r) and
(p,q)∈s^−1 and (q,r) ∈s by auto

from ‹(p,q)∈s^−1 › ‹(q,r) ∈ s› obtain k where kp:k‖p and kr :k‖r and kq:k‖q
using s M1 by blast

from ‹(p,q)∈s^−1 › ‹(q,r) ∈ s› obtain u u ′ where pu:p‖u and rup:r‖u ′ using
s by blast

then have p‖u ′ ⊕ ((∃ t. p‖t ∧ t‖u ′) ⊕ (∃ t. r‖t ∧ t‖u)) (is ?A ⊕ (?B ⊕ ?C ))
using M2 by blast

then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert
xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)

thus x ∈ e ∪ s ∪ s^−1
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with rup kp kr have p = r using M4 by auto
thus ?thesis using x e by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where kt:p‖t and tr :t‖u ′ by auto
with rup kp kr show ?thesis using x s by blast}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where rtp:r‖t and t‖u by auto
with pu kp kr show ?thesis using x s by blast}

qed
qed

lemma cmim:m^−1 O m ⊆ s ∪ s^−1 ∪ e
proof

fix x:: ′a× ′a assume x ∈ m^−1 O m then obtain p q r where x:x = (p,r)
and (p,q)∈m^−1 and (q,r) ∈m by auto

from ‹(p,q)∈m^−1 › ‹(q,r) ∈ m› have qp:q‖p and qr :q‖r using m by auto
obtain u u ′ where pu:p‖u and rup:r‖u ′ using M3 meets-wd qp qr by fastforce
then have p‖u ′ ⊕ ((∃ t. p‖t ∧ t‖u ′) ⊕ (∃ t. r‖t ∧ t‖u)) (is ?A ⊕ (?B ⊕ ?C ))

using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ s ∪ s^−1 ∪ e
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
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with rup qp qr have p = r using M4 by auto
thus ?thesis using x e by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where kt:p‖t and tr :t‖u ′ by auto
with rup qp qr show ?thesis using x s by blast}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where rtp:r‖t and t‖u by auto
with pu qp qr show ?thesis using x s by blast}

qed
qed

3.4 β-composition

We prove compositions of the form r1 ◦ r2 ⊆ b ∪m ∪ ov ∪ s ∪ d.
lemma cbd:b O d ⊆ b ∪ m ∪ ov ∪ s ∪ d
proof

fix x:: ′a× ′a assume x ∈ b O d then obtain p q z where x:x = (p,q) and (p,z)
∈ b and (z,q) ∈ d by auto

from ‹(p,z) ∈ b› obtain c where pc:p‖c and cz:c‖z using b by auto
obtain a where ap:a‖p using M3 meets-wd pc by blast
from ‹(z,q) ∈ d› obtain k l u v where k‖l and l‖z and kq:k‖q and zu:z‖u and

uv:u‖v and qv:q‖v using d by blast
from pc cz zu obtain cz where pcz:p‖cz and czu:cz‖u using M5exist-var by

blast
with uv obtain czu where pczu:p‖czu and czuv:czu‖v using M5exist-var by

blast
from ap kq have a‖q ⊕ ((∃ t. a‖t ∧ t‖q) ⊕ (∃ t. k‖t ∧ t‖p)) (is ?A ⊕ (?B ⊕

?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov ∪ s ∪ d
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with ap pczu czuv uv qv have (p,q) ∈ s using s by blast
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where at:a‖t and tq:t‖q by auto
from pc tq have p‖q ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖q) ⊕ (∃ t ′. t‖t ′ ∧ t ′‖c)) (is ?A ⊕

(?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov ∪ s ∪ d
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
thus ?thesis using x m by auto}

next
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{ assume ¬?A∧?B∧¬?C then have ?B by simp
thus ?thesis using x b by auto}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t ′ where t‖t ′ and t ′‖c by auto
with pc pczu have t ′‖czu using M1 by auto
with at tq ap pczu czuv qv ‹t‖t ′› have (p,q)∈ov using ov by blast
thus ?thesis using x by auto}

qed
}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where k‖t and t‖p by auto
with kq pczu czuv uv qv have (p,q) ∈ d using d by blast
thus ?thesis using x by auto}

qed
qed

lemma cbf :b O f ⊆ b ∪ m ∪ ov ∪ s ∪ d
proof

fix x:: ′a× ′a assume x ∈ b O f then obtain p q z where x:x = (p,q) and (p,z)
∈ b and (z,q) ∈ f by auto

from ‹(p,z) ∈ b› obtain c where pc:p‖c and cz:c‖z using b by auto
obtain a where ap:a‖p using M3 meets-wd pc by blast
from ‹(z,q) ∈ f › obtain k l u where k‖l and l‖z and kq:k‖q and zu:z‖u and

qu:q‖u using f by blast
from pc cz zu obtain cz where pcz:p‖cz and czu:cz‖u using M5exist-var by

blast
from ap kq have a‖q ⊕ ((∃ t. a‖t ∧ t‖q) ⊕ (∃ t. k‖t ∧ t‖p)) (is ?A ⊕ (?B ⊕

?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov ∪ s ∪ d
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with ap pcz czu qu have (p,q) ∈ s using s by blast
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where at:a‖t and tq:t‖q by auto
from pc tq have p‖q ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖q) ⊕ (∃ t ′. t‖t ′ ∧ t ′‖c)) (is ?A ⊕

(?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov ∪ s ∪ d
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
thus ?thesis using x m by auto}

next
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{ assume ¬?A∧?B∧¬?C then have ?B by simp
thus ?thesis using x b by auto}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t ′ where t‖t ′ and t ′‖c by auto
with pc pcz have t ′‖cz using M1 by auto
with at tq ap pcz czu qu ‹t‖t ′› have (p,q)∈ov using ov by blast
thus ?thesis using x by auto}

qed
}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where k‖t and t‖p by auto
with kq pcz czu qu have (p,q) ∈ d using d by blast
thus ?thesis using x by auto}

qed
qed

lemma cbovi:b O ov^−1 ⊆ b ∪ m ∪ ov ∪ s ∪ d
proof

fix x:: ′a× ′a assume x ∈ b O ov^−1 then obtain p q z where x:x = (p,q) and
(p,z) ∈ b and (z,q) ∈ ov^−1 by auto

from ‹(p,z) ∈ b› obtain c where pc:p‖c and cz:c‖z using b by auto
obtain a where ap:a‖p using M3 meets-wd pc by blast
from ‹(z,q) ∈ ov^−1 › obtain k l u v w where k‖l and lz:l‖z and kq:k‖q and

zv:z‖v and qu:q‖u and uv:u‖v and lw:l‖w and wu:w‖u using ov by blast
from cz lz lw have c‖w using M1 by auto
with pc wu obtain cw where pcw:p‖cw and cwu:cw‖u using M5exist-var by

blast
from ap kq have a‖q ⊕ ((∃ t. a‖t ∧ t‖q) ⊕ (∃ t. k‖t ∧ t‖p)) (is ?A ⊕ (?B ⊕

?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov ∪ s ∪ d
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with ap qu pcw cwu have (p,q) ∈ s using s by blast
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where at:a‖t and tq:t‖q by auto
from pc tq have p‖q ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖q) ⊕ (∃ t ′. t‖t ′ ∧ t ′‖c)) (is ?A ⊕

(?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov ∪ s ∪ d
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
thus ?thesis using x m by auto}
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next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

thus ?thesis using x b by auto}
next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t ′ where t‖t ′ and t ′‖c by auto
with pc pcw have t ′‖cw using M1 by auto
with at tq ap pcw cwu qu ‹t‖t ′› have (p,q)∈ov using ov by blast
thus ?thesis using x by auto}

qed
}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where k‖t and t‖p by auto
with kq pcw cwu qu have (p,q) ∈ d using d by blast
thus ?thesis using x by auto}

qed
qed

lemma cbmi:b O m^−1 ⊆ b ∪ m ∪ ov ∪ s ∪ d
proof

fix x:: ′a× ′a assume x ∈ b O m^−1 then obtain p q z where x:x = (p,q) and
(p,z) ∈ b and (z,q) ∈ m^−1 by auto

from ‹(p,z) ∈ b› obtain c where pc:p‖c and cz:c‖z using b by auto
obtain k where kp:k‖p using M3 meets-wd pc by blast
from ‹(z,q) ∈ m^−1 › have qz:q‖z using m by auto
obtain k ′ where kpq:k ′‖q using M3 meets-wd qz by blast
from kp kpq have k‖q ⊕ ((∃ t. k‖t ∧ t‖q) ⊕ (∃ t. k ′‖t ∧ t‖p)) (is ?A ⊕ (?B ⊕

?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov ∪ s ∪ d
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with kp pc cz qz have (p,q) ∈ s using s by blast
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where kt:k‖t and tq:t‖q by auto
from pc tq have p‖q ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖q) ⊕ (∃ t ′. t‖t ′ ∧ t ′‖c)) (is ?A ⊕

(?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov ∪ s ∪ d
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
thus ?thesis using x m by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp
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thus ?thesis using x b by auto}
next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t ′ where t‖t ′ and t ′‖c by auto
with pc cz qz kt tq kp have (p,q) ∈ ov using ov by blast
thus ?thesis using x by auto}

qed
}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where k ′‖t and t‖p by auto
with kpq pc cz qz have (p,q) ∈ d using d by blast
thus ?thesis using x by auto}

qed
qed

lemma cdov:d O ov ⊆b ∪ m ∪ ov ∪ s ∪ d
proof

fix x:: ′a× ′a assume x ∈ d O ov then obtain p q z where x:x = (p,q) and
(p,z) ∈ d and (z,q) ∈ ov by auto

from ‹(p,z) ∈ d› obtain k l u v where kl:k‖l and lp:l‖p and kz:k‖z and pu:p‖u
and uv:u‖v and zv:z‖v using d by blast

from ‹(z,q) ∈ ov› obtain k ′ l ′ u ′ v ′ c where kplp:k ′‖l ′ and kpz:k ′‖z and lpq:l ′‖q
and zup:z‖u ′ and upvp:u ′‖v ′ and qvp:q‖v ′ and l ′‖c and c‖u ′ using ov by blast

from zup zv uv have u‖u ′ using M1 by auto
with pu upvp obtain uu where puu:p‖uu and uuvp:uu‖v ′ using M5exist-var

by blast
from lp lpq have l‖q ⊕ ((∃ t. l‖t ∧ t‖q) ⊕ (∃ t. l ′‖t ∧ t‖p)) (is ?A ⊕ (?B ⊕

?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov ∪ s ∪ d
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with lp puu uuvp qvp have (p,q) ∈ s using s by blast
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where lt:l‖t and tq:t‖q by auto
from pu tq have p‖q ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖q) ⊕ (∃ t ′. t‖t ′ ∧ t ′‖u)) (is ?A ⊕

(?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov ∪ s ∪ d
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
thus ?thesis using x m by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp
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thus ?thesis using x b by auto}
next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t ′ where ttp:t‖t ′ and t ′‖u by auto
with pu puu have t ′‖uu using M1 by auto
with lp puu qvp uuvp lt tq ttp have (p,q) ∈ ov using ov by blast
thus ?thesis using x by auto}

qed
}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where l ′‖t and t‖p by auto
with lpq puu uuvp qvp have (p,q) ∈ d using d by blast

thus ?thesis using x by auto}
qed

qed

lemma cdfi:d O f^−1 ⊆ b ∪ m ∪ ov ∪ s ∪ d
proof

fix x:: ′a× ′a assume x ∈ d O f^−1 then obtain p q z where x:x = (p,q) and
(p,z) ∈ d and (z,q) ∈ f^−1 by auto

from ‹(p,z) ∈ d› obtain k l u v where kl:k‖l and lp:l‖p and kz:k‖z and pu:p‖u
and uv:u‖v and zv:z‖v using d by blast

from ‹(z,q) ∈ f^−1 › obtain k ′ l ′ u ′ where kpz:k ′‖z and kplp:k ′‖l ′ and lpq:l ′‖q
and zup:z‖u ′ and qup:q‖u ′ using f by blast

from zup zv uv have uup:u‖u ′ using M1 by auto
from lp lpq have l‖q ⊕ ((∃ t. l‖t ∧ t‖q) ⊕ (∃ t. l ′‖t ∧ t‖p)) (is ?A ⊕ (?B ⊕

?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov ∪ s ∪ d
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with lp pu uup qup have (p,q) ∈ s using s by blast
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where lt:l‖t and tq:t‖q by auto
from pu tq have p‖q ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖q) ⊕ (∃ t ′. t‖t ′ ∧ t ′‖u)) (is ?A ⊕

(?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov ∪ s ∪ d
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
thus ?thesis using x m by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

thus ?thesis using x b by auto}
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next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t ′ where ttp:t‖t ′ and tpu:t ′‖u by auto
with lt tq lp pu uup qup have (p,q) ∈ ov using ov by blast
thus ?thesis using x by auto}

qed
}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where l ′‖t and t‖p by auto
with lpq pu uup qup have (p,q) ∈ d using d by blast
thus ?thesis using x by auto}

qed
qed

We prove compositions of the form r1 ◦ r2 ⊆ b ∪m ∪ ov ∪ f−1 ∪ d−1.
lemma covdi:ov O d^−1 ⊆ b ∪ m ∪ ov ∪ f^−1 ∪ d^−1
proof

fix x:: ′a× ′a assume x ∈ ov O d^−1 then obtain p q z where (p,z) : ov and
(z,q) : d^−1 and x:x = (p,q) by auto

from ‹(p,z) : ov› obtain k l u v c where kp:k‖p and kl:k‖l and lz:l‖z and
pu:p‖u and uv:u‖v and zv:z‖v and lc:l‖c and cu:c‖u using ov by blast

from ‹(z,q) : d^−1 › obtain l ′ k ′ u ′ v ′ where lpq:l ′‖q and kplp:k ′‖l ′ and
kpz:k ′‖z and qup:q‖u ′ and upvp:u ′‖v ′ and zvp:z‖v ′ using d by blast

from lz kpz kplp have l‖l ′ using M1 by auto
with kl lpq obtain ll where kll:k‖ll and llq:ll‖q using M5exist-var by blast
from pu qup have p‖u ′ ⊕ ((∃ t. p‖t ∧ t‖u ′) ⊕ (∃ t. q‖t ∧ t‖u)) (is ?A ⊕ (?B

⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov ∪ f^−1 ∪ d^−1
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with qup kll llq kp have (p,q) ∈ f^−1 using f by blast
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where pt:p‖t and tup:t‖u ′ by auto
from pt lpq have p‖q ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖q) ⊕ (∃ t ′. l ′‖t ′ ∧ t ′‖t)) (is ?A ⊕

(?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov ∪ f^−1 ∪ d^−1
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
thus ?thesis using x m by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

thus ?thesis using x b by auto}
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next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t ′ where lptp:l ′‖t ′ and tpt:t ′‖t by auto
from lpq lptp llq have ll‖t ′ using M1 by auto
with kp kll llq pt tup qup tpt have (p,q) ∈ ov using ov by blast
thus ?thesis using x by auto}

qed
}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where q‖t and t‖u by auto
with pu kll llq kp have (p,q) ∈ d^−1 using d by blast
thus ?thesis using x by auto}

qed
qed

lemma cdib:d^−1 O b ⊆ b ∪ m ∪ ov ∪ f^−1 ∪ d^−1
proof

fix x:: ′a× ′a assume x ∈ d^−1 O b then obtain p q z where (p,z) : d^−1 and
(z,q) : b and x:x = (p,q) by auto

from ‹(p,z) : d^−1 › obtain k l u v where kp:k‖p and kl:k‖l and lz:l‖z and
pv:p‖v and uv:u‖v and zu:z‖u using d by blast

from ‹(z,q) : b› obtain c where zc:z‖c and cq:c‖q using b by blast
with kl lz obtain lzc where klzc:k‖lzc and lzcq:lzc‖q using M5exist-var by

blast
obtain v ′ where qvp:q‖v ′ using M3 meets-wd cq by blast
from pv qvp have p‖v ′ ⊕ ((∃ t. p‖t ∧ t‖v ′) ⊕ (∃ t. q‖t ∧ t‖v)) (is ?A ⊕ (?B ⊕

?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov ∪ f^−1 ∪ d^−1
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with qvp kp klzc lzcq have (p,q) ∈ f^−1 using f by blast
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where pt:p‖t and tvp:t‖v ′ by auto
from pt cq have p‖q ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖q) ⊕ (∃ t ′. c‖t ′ ∧ t ′‖t)) (is ?A ⊕

(?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov ∪ f^−1 ∪ d^−1
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
thus ?thesis using x m by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

thus ?thesis using x b by auto}
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next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t ′ where ctp:c‖t ′ and tpt:t ′‖t by auto
from lzcq cq ctp have lzc‖t ′ using M1 by auto
with pt tvp qvp kp klzc lzcq tpt have (p,q) ∈ ov using ov by blast
thus ?thesis using x by auto}

qed
}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where q‖t and t‖v by auto
with pv kp klzc lzcq have (p,q) ∈ d^−1 using d by blast
thus ?thesis using x by auto}

qed
qed

lemma csdi:s O d^−1 ⊆ b ∪ m ∪ ov ∪ f^−1 ∪ d^−1
proof

fix x:: ′a× ′a assume x ∈ s O d^−1 then obtain p q z where (p,z) : s and
(z,q) : d^−1 and x:x = (p,q) by auto

from ‹(p,z) : s› obtain k u v where kp:k‖p and kz:k‖z and pu:p‖u and
uv:u‖v and zv:z‖v using s by blast

from ‹(z,q) : d^−1 › obtain l ′ k ′ u ′ v ′ where lpq:l ′‖q and kplp:k ′‖l ′ and
kpz:k ′‖z and qup:q‖u ′ and upvp:u ′‖v ′ and zvp:z‖v ′ using d by blast

from kp kz kpz have kpp:k ′‖p using M1 by auto
from pu qup have p‖u ′ ⊕ ((∃ t. p‖t ∧ t‖u ′) ⊕ (∃ t. q‖t ∧ t‖u)) (is ?A ⊕ (?B

⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov ∪ f^−1 ∪ d^−1
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with qup kpp kplp lpq have (p,q) ∈ f^−1 using f by blast
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where pt:p‖t and tup:t‖u ′ by auto
from pt lpq have p‖q ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖q) ⊕ (∃ t ′. l ′‖t ′ ∧ t ′‖t)) (is ?A ⊕

(?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov ∪ f^−1 ∪ d^−1
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
thus ?thesis using x m by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

thus ?thesis using x b by auto}
next
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{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp
then obtain t ′ where lptp:l ′‖t ′ and tpt:t ′‖t by auto
with pt tup qup kpp kplp lpq have (p,q) ∈ ov using ov by blast
thus ?thesis using x by auto}

qed
}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where q‖t and t‖u by auto
with pu kpp kplp lpq have (p,q) ∈ d^−1 using d by blast
thus ?thesis using x by auto}

qed
qed

lemma csib:s^−1 O b ⊆ b ∪ m ∪ ov ∪ f^−1 ∪ d^−1
proof

fix x:: ′a× ′a assume x ∈ s^−1 O b then obtain p q z where (p,z) : s^−1 and
(z,q) : b and x:x = (p,q) by auto

from ‹(p,z) : s^−1 › obtain k u v where kp:k‖p and kz:k‖z and zu:z‖u and
uv:u‖v and pv:p‖v using s by blast

from ‹(z,q) : b› obtain c where zc:z‖c and cq:c‖q using b by blast
from kz zc cq obtain zc where kzc:k‖zc and zcq:zc‖q using M5exist-var by

blast
obtain v ′ where qvp:q‖v ′ using M3 meets-wd cq by blast
from pv qvp have p‖v ′ ⊕ ((∃ t. p‖t ∧ t‖v ′) ⊕ (∃ t. q‖t ∧ t‖v)) (is ?A ⊕ (?B ⊕

?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov ∪ f^−1 ∪ d^−1
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with qvp kp kzc zcq have (p,q) ∈ f^−1 using f by blast
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where pt:p‖t and tvp:t‖v ′ by auto
from pt cq have p‖q ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖q) ⊕ (∃ t ′. c‖t ′ ∧ t ′‖t)) (is ?A ⊕

(?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov ∪ f^−1 ∪ d^−1
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
thus ?thesis using x m by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

thus ?thesis using x b by auto}
next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp
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then obtain t ′ where ctp:c‖t ′ and tpt:t ′‖t by auto
from zcq cq ctp have zc‖t ′ using M1 by auto
with zcq pt tvp qvp kzc kp ctp tpt have (p,q) ∈ ov using ov by blast
thus ?thesis using x by auto}

qed
}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where q‖t and t‖v by auto
with pv kp kzc zcq have (p,q) ∈ d^−1 using d by blast
thus ?thesis using x by auto}

qed
qed

lemma covib:ov^−1 O b ⊆ b ∪ m ∪ ov ∪ f^−1 ∪ d^−1
proof

fix x:: ′a× ′a assume x ∈ ov^−1 O b then obtain p q z where (p,z) : ov^−1
and (z,q) : b and x:x = (p,q) by auto

from ‹(p,z) : ov^−1 › obtain k l u v c where kz:k‖z and kl:k‖l and lp:l‖p and
zu:z‖u and uv:u‖v and pv:p‖v and lc:l‖c and cu:c‖u using ov by blast

from ‹(z,q) : b› obtain w where zw:z‖w and wq:w‖q using b by blast
from cu zu zw have cw:c‖w using M1 by auto
with lc wq obtain cw where lcw:l‖cw and cwq:cw‖q using M5exist-var by

blast
obtain v ′ where qvp:q‖v ′ using M3 meets-wd wq by blast
from pv qvp have p‖v ′ ⊕ ((∃ t. p‖t ∧ t‖v ′) ⊕ (∃ t. q‖t ∧ t‖v)) (is ?A ⊕ (?B ⊕

?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov ∪ f^−1 ∪ d^−1
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with qvp lp lcw cwq have (p,q) ∈ f^−1 using f by blast
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where pt:p‖t and tvp:t‖v ′ by auto
from pt wq have p‖q ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖q) ⊕ (∃ t ′. w‖t ′ ∧ t ′‖t)) (is ?A ⊕

(?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov ∪ f^−1 ∪ d^−1
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
thus ?thesis using x m by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

thus ?thesis using x b by auto}
next
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{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp
then obtain t ′ where wtp:w‖t ′ and tpt:t ′‖t by auto
moreover with wq cwq have cw‖t ′ using M1 by auto
ultimately have (p,q) ∈ ov using ov cwq lp lcw pt tvp qvp by blast
thus ?thesis using x by auto}

qed
}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where q‖t and t‖v by auto
with pv lp lcw cwq have (p,q) ∈ d^−1 using d by blast
thus ?thesis using x by auto}

qed
qed

lemma cmib:m^−1 O b ⊆ b ∪ m ∪ ov ∪ f^−1 ∪ d^−1
proof

fix x:: ′a× ′a assume x ∈ m^−1 O b then obtain p q z where (p,z) : m^−1
and (z,q) : b and x:x = (p,q) by auto

from ‹(p,z) : m^−1 › have zp:z‖p using m by auto
from ‹(z,q) : b› obtain w where zw:z‖w and wq:w‖q using b by blast
obtain v where pv:p‖v using M3 meets-wd zp by blast
obtain v ′ where qvp:q‖v ′ using M3 meets-wd wq by blast

from pv qvp have p‖v ′ ⊕ ((∃ t. p‖t ∧ t‖v ′) ⊕ (∃ t. q‖t ∧ t‖v)) (is ?A ⊕ (?B ⊕
?C )) using M2 by blast

then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert
xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)

thus x ∈ b ∪ m ∪ ov ∪ f^−1 ∪ d^−1
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with zp zw wq qvp have (p,q) ∈ f^−1 using f by blast
thus ?thesis using x by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where pt:p‖t and tvp:t‖v ′ by auto
from pt wq have p‖q ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖q) ⊕ (∃ t ′. w‖t ′ ∧ t ′‖t)) (is ?A ⊕

(?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈ b ∪ m ∪ ov ∪ f^−1 ∪ d^−1
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
thus ?thesis using x m by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

thus ?thesis using x b by auto}
next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp
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then obtain t ′ where wtp:w‖t ′ and tpt:t ′‖t by auto
with zp zw wq pt tvp qvp have (p,q) ∈ ov using ov by blast
thus ?thesis using x by auto}

qed
}

next
{ assume ¬?A ∧ ¬?B ∧ ?C then have ?C by simp

then obtain t where q‖t and t‖v by auto
with zp zw wq pv have (p,q) ∈ d^−1 using d by blast
thus ?thesis using x by auto}

qed
qed

3.5 γ-composition

We prove compositions of the form r1 ◦ r2 ⊆ ov ∪ s∪ d∪ f ∪ e∪ f−1 ∪ d−1 ∪
s−1 ∪ ov−1.
lemma covovi:ov O ov^−1 ⊆ e ∪ ov ∪ ov^−1 ∪ d ∪ d^−1 ∪ s ∪ s^−1 ∪ f ∪
f^−1
proof

fix x:: ′a× ′a assume x ∈ ov O ov^−1 then obtain p q z where x:x = (p,q)
and (p,z) ∈ ov and (z, q) ∈ ov^−1 by auto

from ‹(p,z) ∈ ov› obtain k l c u where kp:k‖p and kl:k‖l and lz:l‖z and lc:l‖c
and pu:p‖u and cu:c‖u using ov by blast

from ‹(z,q) ∈ ov^−1 › obtain k ′ l ′ c ′ u ′ where kpq:k ′‖q and kplp:k ′‖l ′ and
lpz:l ′‖z and lpcp:l ′‖c ′ and qup:q‖u ′ and cpup:c ′‖u ′ using ov by blast

from kp kpq have k‖q ⊕ ((∃ t. k‖t ∧ t‖q) ⊕ (∃ t. k ′‖t ∧ t‖p)) (is ?A ⊕ (?B ⊕
?C )) using M2 by blast

then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert
xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)

thus x ∈ e ∪ ov ∪ ov^−1 ∪ d ∪ d^−1 ∪ s ∪ s^−1 ∪ f ∪ f^−1
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have kq:?A by simp
from pu qup have p‖u ′ ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖u ′) ⊕ (∃ t ′. q‖t ′ ∧ t ′‖u)) (is ?A

⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with kq kp qup have p = q using M4 by auto
thus ?thesis using x e by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

with kq kp qup show ?thesis using x s by blast}
next
{ assume ¬?A∧¬?B∧?C then have ?C by simp

with kq kp pu show ?thesis using x s by blast}
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qed}
next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where kt:k‖t and tq:t‖q by auto
from pu qup have p‖u ′ ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖u ′) ⊕ (∃ t ′. q‖t ′ ∧ t ′‖u)) (is ?A

⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with qup kp kt tq show ?thesis using x f by blast}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t ′ where ptp:p‖t ′ and tpup:t ′‖u ′ by auto
from tq kpq kplp have t‖l ′ using M1 by auto
moreover with lpz lz lc have l ′‖c using M1 by auto
moreover with cu pu ptp have c‖t ′ using M1 by auto
ultimately obtain lc where t‖lc and lc‖t ′ using M5exist-var by blast
with ptp tpup kp kt tq qup show ?thesis using x ov by blast}

next
{ assume ¬?A∧¬?B∧?C then have ?C by simp

with pu kp kt tq show ?thesis using x d by blast}

qed}
next
{assume ¬?A∧¬?B∧?C then have ?C by auto
then obtain t where kpt:k ′‖t and tp:t‖p by auto
from pu qup have p‖u ′ ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖u ′) ⊕ (∃ t ′. q‖t ′ ∧ t ′‖u)) (is ?A

⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with kpq kpt tp qup show ?thesis using x f by blast}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t ′ where p‖t ′ and t ′‖u ′ by auto
with kpq kpt tp qup show ?thesis using x d by blast}

next
{ assume ¬?A∧¬?B∧?C then have ?C by simp

then obtain t ′ where qtp:q‖t ′ and tpu:t ′‖u by auto
from tp kp kl have t‖l using M1 by auto
moreover with lpcp lpz lz have l‖c ′ using M1 by auto
moreover with cpup qup qtp have c ′‖t ′ using M1 by auto
ultimately obtain lc where t‖lc and lc‖t ′ using M5exist-var by blast
with kpt tp kpq qtp tpu pu show ?thesis using x ov by blast}

qed}
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qed
qed

lemma cdid:d^−1 O d ⊆ e ∪ ov ∪ ov^−1 ∪ d ∪ d^−1 ∪ s ∪ s^−1 ∪ f ∪ f^−1
proof

fix x:: ′a× ′a assume x ∈ d^−1 O d then obtain p q z where x:x = (p,q) and
(p,z) ∈ d^−1 and (z, q) ∈ d by auto

from ‹(p,z) ∈ d^−1 › obtain k l u v where kp:k‖p and kl:k‖l and lz:l‖z and
pv:p‖v and zu:z‖u and uv:u‖v using d by blast

from ‹(z,q) ∈ d› obtain k ′ l ′ u ′ v ′ where kpq:k ′‖q and kplp:k ′‖l ′ and lpz:l ′‖z
and qvp:q‖v ′ and zup:z‖u ′ and upvp:u ′‖v ′ using d by blast

from kp kpq have k‖q ⊕ ((∃ t. k‖t ∧ t‖q) ⊕ (∃ t. k ′‖t ∧ t‖p)) (is ?A ⊕ (?B ⊕
?C )) using M2 by blast

then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert
xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)

thus x ∈ e ∪ ov ∪ ov^−1 ∪ d ∪ d^−1 ∪ s ∪ s^−1 ∪ f ∪ f^−1
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have kq:?A by simp
from pv qvp have p‖v ′ ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖v ′) ⊕ (∃ t ′. q‖t ′ ∧ t ′‖v)) (is ?A

⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with kq kp qvp have p = q using M4 by auto
thus ?thesis using x e by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

with kq kp qvp show ?thesis using x s by blast}
next
{ assume ¬?A∧¬?B∧?C then have ?C by simp

with kq kp pv show ?thesis using x s by blast}
qed}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where kt:k‖t and tq:t‖q by auto
from pv qvp have p‖v ′ ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖v ′) ⊕ (∃ t ′. q‖t ′ ∧ t ′‖v)) (is ?A

⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with qvp kp kt tq show ?thesis using x f by blast}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp
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then obtain t ′ where ptp:p‖t ′ and tpvp:t ′‖v ′ by auto
from tq kpq kplp have t‖l ′ using M1 by auto
moreover with ptp pv uv have u‖t ′ using M1 by auto
moreover with lpz zu ‹t‖l ′› obtain lzu where t‖lzu and lzu‖t ′ using

M5exist-var by blast
ultimately show ?thesis using x ov kt tq kp ptp tpvp qvp by blast}

next
{ assume ¬?A∧¬?B∧?C then have ?C by simp

with pv kp kt tq show ?thesis using x d by blast}

qed}
next
{assume ¬?A∧¬?B∧?C then have ?C by auto
then obtain t where kpt:k ′‖t and tp:t‖p by auto
from pv qvp have p‖v ′ ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖v ′) ⊕ (∃ t ′. q‖t ′ ∧ t ′‖v)) (is ?A

⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with kpq kpt tp qvp show ?thesis using x f by blast}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t ′ where p‖t ′ and t ′‖v ′ by auto
with kpq kpt tp qvp show ?thesis using x d by blast}

next
{ assume ¬?A∧¬?B∧?C then have ?C by simp

then obtain t ′ where qtp:q‖t ′ and tpv:t ′‖v by auto
from tp kp kl have t‖l using M1 by auto
moreover with qtp qvp upvp have u ′‖t ′ using M1 by auto
moreover with lz zup ‹t‖l› obtain lzu where t‖lzu and lzu‖t ′ using

M5exist-var by blast
ultimately show ?thesis using x ov kpt tp kpq qtp tpv pv by blast}

qed}
qed

qed

lemma coviov:ov^−1 O ov ⊆ e ∪ ov ∪ ov^−1 ∪ d ∪ d^−1 ∪ s ∪ s^−1 ∪ f ∪
f^−1
proof

fix x:: ′a× ′a assume x ∈ ov^−1 O ov then obtain p q z where x:x = (p,q)
and (p,z) ∈ ov^−1 and (z, q) ∈ ov by auto

from ‹(p,z) ∈ ov^−1 › obtain k l c u v where kz:k‖z and kl:k‖l and lp:l‖p and
lc:l‖c and zu:z‖u and pv:p‖v and cu:c‖u and uv:u‖v using ov by blast

from ‹(z,q) ∈ ov› obtain k ′ l ′ c ′ u ′ v ′ where kpz:k ′‖z and kplp:k ′‖l ′ and lpq:l ′‖q
and lpcp:l ′‖c ′ and qvp:q‖v ′ and zup:z‖u ′ and cpup:c ′‖u ′ and upvp:u ′‖v ′ using
ov by blast
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from lp lpq have l‖q ⊕ ((∃ t. l‖t ∧ t‖q) ⊕ (∃ t. l ′‖t ∧ t‖p)) (is ?A ⊕ (?B ⊕
?C )) using M2 by blast

then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert
xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)

thus x ∈ e ∪ ov ∪ ov^−1 ∪ d ∪ d^−1 ∪ s ∪ s^−1 ∪ f ∪ f^−1
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have lq:?A by simp
from pv qvp have p‖v ′ ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖v ′) ⊕ (∃ t ′. q‖t ′ ∧ t ′‖v)) (is ?A

⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with lq lp qvp have p = q using M4 by auto
thus ?thesis using x e by auto}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

with lq lp qvp show ?thesis using x s by blast}
next
{ assume ¬?A∧¬?B∧?C then have ?C by simp

with lq lp pv show ?thesis using x s by blast}
qed}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where lt:l‖t and tq:t‖q by auto
from pv qvp have p‖v ′ ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖v ′) ⊕ (∃ t ′. q‖t ′ ∧ t ′‖v)) (is ?A

⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with qvp lp lt tq show ?thesis using x f by blast}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t ′ where ptp:p‖t ′ and tpvp:t ′‖v ′ by auto
from tq lpq lpcp have t‖c ′ using M1 by auto
moreover with cpup zup zu have c ′‖u using M1 by auto
moreover with ptp pv uv have u‖t ′ using M1 by auto

ultimately obtain cu where t‖cu and cu‖t ′ using M5exist-var by
blast

with lt tq lp ptp tpvp qvp show ?thesis using x ov by blast}
next
{ assume ¬?A∧¬?B∧?C then have ?C by simp

with pv lp lt tq show ?thesis using x d by blast}

qed}
next
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{assume ¬?A∧¬?B∧?C then have ?C by auto
then obtain t where lpt:l ′‖t and tp:t‖p by auto
from pv qvp have p‖v ′ ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖v ′) ⊕ (∃ t ′. q‖t ′ ∧ t ′‖v)) (is ?A

⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have ?A by simp
with qvp lpq lpt tp show ?thesis using x f by blast}

next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t ′ where p‖t ′ and t ′‖v ′ by auto
with qvp lpq lpt tp show ?thesis using x d by blast}

next
{ assume ¬?A∧¬?B∧?C then have ?C by simp

then obtain t ′ where qtp:q‖t ′ and tpv:t ′‖v by auto
from tp lp lc have t‖c using M1 by auto
moreover with cu zu zup have c‖u ′ using M1 by auto
moreover with qtp qvp upvp have u ′‖t ′ using M1 by auto

ultimately obtain cu where t‖cu and cu‖t ′ using M5exist-var by
blast

with lpt tp lpq pv qtp tpv show ?thesis using x ov by blast}
qed}

qed
qed

3.6 γ-composition

We prove compositions of the form r1 ◦ r2 ⊆ b∪m∪ ov∪ s∪d∪ f ∪ e∪ f−1∪
d−1 ∪ s−1 ∪ ov−1 ∪ b−1 ∪m−1.
lemma cbbi:b O b^−1 ⊆ b ∪ b^−1 ∪ m ∪ m^−1 ∪ e ∪ ov ∪ ov^−1 ∪ s ∪ s^−1
∪ d ∪ d^−1 ∪ f ∪ f^−1 (is b O b^−1 ⊆ ?R)
proof

fix x:: ′a× ′a assume x ∈ b O b^−1 then obtain p q z:: ′a where x:x = (p,q)
and (p,z) ∈ b and (z,q) ∈ b^−1 by auto

from ‹(p,z)∈b› obtain c where pc:p‖c and c‖z using b by blast
from ‹(z,q) ∈ b^−1 › obtain c ′ where qcp:q‖c ′ and c ′‖z using b by blast
obtain k k ′ where kp:k‖p and kpq:k ′‖q using M3 meets-wd pc qcp by fastforce
then have k‖q ⊕ ((∃ t. k‖t ∧ t‖q) ⊕ (∃ t. k ′‖t ∧ t‖p)) (is ?A ⊕ (?B ⊕ ?C ))

using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈?R
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have kq:?A by simp
from pc qcp have p‖c ′ ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖c ′) ⊕ (∃ t ′. q‖t ′ ∧ t ′‖c)) (is ?A

⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by
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(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{assume (?A∧¬?B∧¬?C ) then have ?A by simp
with kp kq qcp have p = q using M4 by auto
thus ?thesis using x e by auto}

next
{assume ¬?A∧?B∧¬?C then have ?B by simp
with kq kp qcp show ?thesis using x s by blast}

next
{assume (¬?A∧¬?B∧?C ) then have ?C by simp
with kq kp pc show ?thesis using x s by blast}

qed}
next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where kt:k‖t and tq:t‖q by auto
from pc qcp have p‖c ′ ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖c ′) ⊕ (∃ t ′. q‖t ′ ∧ t ′‖c)) (is ?A

⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{assume ?A∧¬?B∧¬?C then have ?A by simp
with kp qcp kt tq show ?thesis using f x by blast}

next
{assume ¬?A∧?B∧¬?C then have ?B by simp
then obtain t ′ where ptp:p‖t ′ and tpcp:t ′‖c ′ by auto
from pc tq have p‖q ⊕ ((∃ t ′′. p‖t ′′ ∧ t ′′‖q) ⊕ (∃ t ′′. t‖t ′′ ∧ t ′′‖c)) (is

?A ⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{assume ?A∧¬?B∧¬?C then have ?A by simp
thus ?thesis using x m by auto}

next
{assume ¬?A∧?B∧¬?C then have ?B by simp
thus ?thesis using x b by auto}

next
{ assume ¬?A∧¬?B∧?C then have ?C by simp

then obtain g where t‖g and g‖c by auto
moreover with pc ptp have g‖t ′ using M1 by blast

ultimately show ?thesis using x ov kt tq kp ptp tpcp qcp by blast}
qed}

next
{assume ¬?A∧¬?B∧?C then have ?C by simp
then obtain t ′ where q‖t ′ and t ′‖c by auto
with kp kt tq pc show ?thesis using d x by blast}

qed}
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next
{ assume ¬?A∧¬?B∧?C then have ?C by simp

then obtain t where kpt:k ′‖t and tp:t‖p by auto
from pc qcp have p‖c ′ ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖c ′) ⊕ (∃ t ′. q‖t ′ ∧ t ′‖c)) (is ?A

⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{assume ?A∧¬?B∧¬?C then have ?A by simp
with qcp kpt tp kpq show ?thesis using x f by blast}

next
{assume ¬?A∧?B∧¬?C then have ?B by simp
with qcp kpt tp kpq show ?thesis using x d by blast}

next
{assume ¬?A∧¬?B∧?C then obtain t ′ where qt ′:q‖t ′ and tpc:t ′‖c by

auto
from qcp tp have q‖p ⊕ ((∃ t ′′. q‖t ′′ ∧ t ′′‖p) ⊕ (∃ t ′′. t‖t ′′ ∧ t ′′‖c ′)) (is

?A ⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{assume ?A∧¬?B∧¬?C then have ?A by simp
thus ?thesis using x m by auto}

next
{assume ¬?A∧?B∧¬?C then have ?B by simp
thus ?thesis using x b by auto}

next
{ assume ¬?A∧¬?B∧?C then obtain g where tg:t‖g and g‖c ′ by

auto
with qcp qt ′ have g‖t ′ using M1 by blast
with qt ′ tpc pc kpq kpt tp tg show ?thesis using x ov by blast}

qed}
qed}

qed
qed

lemma cbib:b^−1 O b ⊆ b ∪ b^−1 ∪ m ∪ m^−1 ∪ e ∪ ov ∪ ov^−1 ∪ s ∪ s^−1
∪ d ∪ d^−1 ∪ f ∪ f^−1 (is b^−1 O b ⊆ ?R)
proof

fix x:: ′a× ′a assume x ∈ b^−1 O b then obtain p q z:: ′a where x:x = (p,q)
and (p,z) ∈ b^−1 and (z,q) ∈ b by auto

from ‹(p,z)∈b^−1 › obtain c where zc:z‖c and cp:c‖p using b by blast
from ‹(z,q) ∈ b› obtain c ′ where zcp:z‖c ′ and cpq:c ′‖q using b by blast
obtain u u ′ where pu:p‖u and qup:q‖u ′ using M3 meets-wd cp cpq by fastforce
from cp cpq have c‖q ⊕ ((∃ t. c‖t ∧ t‖q) ⊕ (∃ t. c ′‖t ∧ t‖p)) (is ?A ⊕ (?B ⊕
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?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈?R
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have cq:?A by simp
from pu qup have p‖u ′ ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖u ′) ⊕ (∃ t ′. q‖t ′ ∧ t ′‖u)) (is ?A

⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{assume (?A∧¬?B∧¬?C ) then have ?A by simp
with cq cp qup have p = q using M4 by auto
thus ?thesis using x e by auto}

next
{assume ¬?A∧?B∧¬?C then have ?B by simp
with cq cp qup show ?thesis using x s by blast}

next
{assume (¬?A∧¬?B∧?C ) then have ?C by simp
with pu cq cp show ?thesis using x s by blast}

qed}
next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where ct:c‖t and tq:t‖q by auto
from pu qup have p‖u ′ ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖u ′) ⊕ (∃ t ′. q‖t ′ ∧ t ′‖u)) (is ?A

⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{assume ?A∧¬?B∧¬?C then have ?A by simp
with qup ct tq cp show ?thesis using f x by blast}

next
{assume ¬?A∧?B∧¬?C then have ?B by simp
then obtain t ′ where ptp:p‖t ′ and tpup:t ′‖u ′ by auto
from pu tq have p‖q ⊕ ((∃ t ′′. p‖t ′′ ∧ t ′′‖q) ⊕ (∃ t ′′. t‖t ′′ ∧ t ′′‖u)) (is

?A ⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{assume ?A∧¬?B∧¬?C then have ?A by simp
thus ?thesis using x m by auto}

next
{assume ¬?A∧?B∧¬?C then have ?B by simp
thus ?thesis using x b by auto}

next
{ assume ¬?A∧¬?B∧?C then have ?C by simp
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then obtain g where t‖g and g‖u by auto
moreover with pu ptp have g‖t ′ using M1 by blast

ultimately show ?thesis using x ov ct tq cp ptp tpup qup by blast}
qed}

next
{assume ¬?A∧¬?B∧?C then have ?C by simp
then obtain t ′ where q‖t ′ and t ′‖u by auto
with cp ct tq pu show ?thesis using d x by blast}

qed}
next
{ assume ¬?A∧¬?B∧?C then have ?C by simp

then obtain t where cpt:c ′‖t and tp:t‖p by auto
from pu qup have p‖u ′ ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖u ′) ⊕ (∃ t ′. q‖t ′ ∧ t ′‖u)) (is ?A

⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{assume ?A∧¬?B∧¬?C then have ?A by simp
with qup cpt tp cpq show ?thesis using x f by blast}

next
{assume ¬?A∧?B∧¬?C then have ?B by simp
with qup cpt tp cpq show ?thesis using x d by blast}

next
{assume ¬?A∧¬?B∧?C then obtain t ′ where qt ′:q‖t ′ and tpc:t ′‖u by

auto
from qup tp have q‖p ⊕ ((∃ t ′′. q‖t ′′ ∧ t ′′‖p) ⊕ (∃ t ′′. t‖t ′′ ∧ t ′′‖u ′)) (is

?A ⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{assume ?A∧¬?B∧¬?C then have ?A by simp
thus ?thesis using x m by auto}

next
{assume ¬?A∧?B∧¬?C then have ?B by simp
thus ?thesis using x b by auto}

next
{ assume ¬?A∧¬?B∧?C then obtain g where tg:t‖g and g‖u ′ by

auto
with qup qt ′ have g‖t ′ using M1 by blast
with qt ′ tpc pu cpq cpt tp tg show ?thesis using x ov by blast}

qed}
qed}

qed
qed

lemma cddi:d O d^−1 ⊆ b ∪ b^−1 ∪ m ∪ m^−1 ∪ e ∪ ov ∪ ov^−1 ∪ s ∪ s^−1
∪ d ∪ d^−1 ∪ f ∪ f^−1 (is d O d^−1 ⊆ ?R)
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proof
fix x:: ′a× ′a assume x ∈ d O d^−1 then obtain p q z:: ′a where x:x = (p,q)

and (p,z) ∈ d and (z,q) ∈ d^−1 by auto
from ‹(p,z) ∈ d› obtain k l u v where lp:l‖p and kl:k‖l and kz:k‖z and pu:p‖u

and uv:u‖v and zv:z‖v using d by blast
from ‹(z,q) ∈ d^−1 › obtain k ′ l ′ u ′ v ′ where lpq:l ′‖q and kplp:k ′‖l ′ and

kpz:k ′‖z and qup:q‖u ′ and upvp:u ′‖v ′ and zv ′:z‖v ′ using d by blast
from lp lpq have l‖q ⊕ ((∃ t. l‖t ∧ t‖q) ⊕ (∃ t. l ′‖t ∧ t‖p)) (is ?A ⊕ (?B ⊕

?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert

xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus x ∈?R
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have lq:?A by simp
from pu qup have p‖u ′ ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖u ′) ⊕ (∃ t ′. q‖t ′ ∧ t ′‖u)) (is ?A

⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{assume (?A∧¬?B∧¬?C ) then have ?A by simp
with lq lp qup have p = q using M4 by auto
thus ?thesis using x e by auto}

next
{assume ¬?A∧?B∧¬?C then have ?B by simp
with lq lp qup show ?thesis using x s by blast}

next
{assume (¬?A∧¬?B∧?C ) then have ?C by simp
with pu lq lp show ?thesis using x s by blast}

qed}
next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

then obtain t where lt:l‖t and tq:t‖q by auto
from pu qup have p‖u ′ ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖u ′) ⊕ (∃ t ′. q‖t ′ ∧ t ′‖u)) (is ?A

⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{assume ?A∧¬?B∧¬?C then have ?A by simp
with qup lt tq lp show ?thesis using f x by blast}

next
{assume ¬?A∧?B∧¬?C then have ?B by simp
then obtain t ′ where ptp:p‖t ′ and tpup:t ′‖u ′ by auto
from pu tq have p‖q ⊕ ((∃ t ′′. p‖t ′′ ∧ t ′′‖q) ⊕ (∃ t ′′. t‖t ′′ ∧ t ′′‖u)) (is

?A ⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
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proof (elim disjE)
{assume ?A∧¬?B∧¬?C then have ?A by simp
thus ?thesis using x m by auto}

next
{assume ¬?A∧?B∧¬?C then have ?B by simp
thus ?thesis using x b by auto}

next
{ assume ¬?A∧¬?B∧?C then have ?C by simp

then obtain g where t‖g and g‖u by auto
moreover with pu ptp have g‖t ′ using M1 by blast
ultimately show ?thesis using x ov lt tq lp ptp tpup qup by blast}

qed}
next
{assume ¬?A∧¬?B∧?C then have ?C by simp
then obtain t ′ where q‖t ′ and t ′‖u by auto
with lp lt tq pu show ?thesis using d x by blast}

qed}
next
{ assume ¬?A∧¬?B∧?C then have ?C by simp

then obtain t where lpt:l ′‖t and tp:t‖p by auto
from pu qup have p‖u ′ ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖u ′) ⊕ (∃ t ′. q‖t ′ ∧ t ′‖u)) (is ?A

⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{assume ?A∧¬?B∧¬?C then have ?A by simp
with qup lpt tp lpq show ?thesis using x f by blast}

next
{assume ¬?A∧?B∧¬?C then have ?B by simp
with qup lpt tp lpq show ?thesis using x d by blast}

next
{assume ¬?A∧¬?B∧?C then obtain t ′ where qt ′:q‖t ′ and tpc:t ′‖u by

auto
from qup tp have q‖p ⊕ ((∃ t ′′. q‖t ′′ ∧ t ′′‖p) ⊕ (∃ t ′′. t‖t ′′ ∧ t ′′‖u ′)) (is

?A ⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{assume ?A∧¬?B∧¬?C then have ?A by simp
thus ?thesis using x m by auto}

next
{assume ¬?A∧?B∧¬?C then have ?B by simp
thus ?thesis using x b by auto}

next
{ assume ¬?A∧¬?B∧?C then obtain g where tg:t‖g and g‖u ′ by

auto
with qup qt ′ have g‖t ′ using M1 by blast
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with qt ′ tpc pu lpq lpt tp tg show ?thesis using x ov by blast}
qed}

qed}
qed

qed

3.7 The rest of the composition table

Because of the symmetry (r1◦r2)−1 = r−1
2 ◦r−1

1 , the rest of the compositions
is easily deduced.
lemma cmbi:m O b^−1 ⊆ b^−1 ∪ m^−1 ∪ s^−1 ∪ ov^−1 ∪ d^−1

using cbmi by auto

lemma covmi:ov O m^−1 ⊆ ov^−1 ∪ d^−1 ∪ s^−1
using cmovi by auto

lemma covbi:ov O b^−1 ⊆ b^−1 ∪ m^−1 ∪ s^−1 ∪ ov^−1 ∪ d^−1
using cbovi by auto

lemma cfiovi:f^−1 O ov^−1 ⊆ ov^−1 ∪ s^−1 ∪ d^−1
using covf by auto

lemma cfimi:(f^−1 O m^−1 ) ⊆ s^−1 ∪ ov^−1 ∪ d^−1
using cmf by auto

lemma cfibi:f^−1 O b^−1 ⊆ b^−1 ∪ m^−1 ∪ ov^−1 ∪ s^−1 ∪ d^−1
using cbf by auto

lemma cdif :d^−1 O f ⊆ ov^−1 ∪ s^−1 ∪ d^−1
using cfid by auto

lemma cdiovi:d^−1 O ov ^−1 ⊆ ov^−1 ∪ s^−1 ∪ d^−1
using covd by auto

lemma cdimi:d^−1 O m^−1 ⊆ s^−1 ∪ ov^−1 ∪ d^−1
using cmd by auto

lemma cdibi:d^−1 O b^−1 ⊆ b^−1 ∪ m^−1 ∪ ov^−1 ∪ s^−1 ∪ d^−1
using cbd by auto

lemma csd:s O d ⊆ d
using cdisi by auto

lemma csf :s O f ⊆ d
using cfisi by auto

lemma csovi:s O ov^−1 ⊆ ov^−1 ∪ f ∪ d
using covsi by auto
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lemma csmi:s O m^−1 ⊆ m^−1
using cmsi by auto

lemma csbi:s O b^−1 ⊆ b^−1
using cbsi by auto

lemma csisi:s^−1 O s^−1 ⊆ s^−1
using css by auto

lemma csid:s^−1 O d ⊆ ov^−1 ∪ f ∪ d
using cdis by auto

lemma csif :s^−1 O f ⊆ ov^−1
using cfis by auto

lemma csiovi:s^−1 O ov^−1 ⊆ ov^−1
using covs by auto

lemma csimi:s^−1 O m^−1 ⊆ m^−1
using cms by auto

lemma csibi:s^−1 O b^−1 ⊆ b^−1
using cbs by auto

lemma cds:d O s ⊆ d
using csidi by auto

lemma cdsi:d O s^−1 ⊆ b^−1 ∪ m^−1 ∪ ov^−1 ∪ f ∪ d
using csdi by auto

lemma cdd:d O d ⊆ d
using cdidi by auto

lemma cdf :d O f ⊆ d
using cfidi by auto

lemma cdovi:d O ov^−1 ⊆ b^−1 ∪ m^−1 ∪ ov^−1 ∪ f ∪ d
using covdi by auto

lemma cdmi:d O m^−1 ⊆ b^−1
using cmdi by auto

lemma cdbi:d O b^−1 ⊆ b^−1
using cbdi by auto

lemma cfdi:f O d^−1 ⊆ b^−1 ∪ m^−1 ∪ ov^−1 ∪ s^−1 ∪ d^−1
using cdfi by auto
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lemma cfs:f O s ⊆ d
using csifi by auto

lemma cfsi:f O s^−1 ⊆ b ^−1 ∪ m^−1 ∪ ov ^−1
using csfi by auto

lemma cfd:f O d ⊆ d
using cdifi by auto

lemma cff :f O f ⊆ f
using cfifi by auto

lemma cfovi:f O ov^−1 ⊆ b^−1 ∪ m^−1 ∪ ov^−1
using covfi by auto

lemma cfmi:f O m^−1 ⊆ b^−1
using cmfi by auto

lemma cfbi:f O b^−1 ⊆ b^−1
using cbfi by auto

lemma covifi:ov^−1 O f^−1 ⊆ ov^−1 ∪ s^−1 ∪ d^−1
using cfov by auto

lemma covidi:ov^−1 O d^−1 ⊆ b^−1 ∪ m^−1 ∪ s^−1 ∪ ov^−1 ∪ d^−1
using cdov by auto

lemma covis:ov^−1 O s ⊆ ov^−1 ∪ f ∪ d
using csiov by auto

lemma covisi:ov^−1 O s^−1 ⊆ b^−1 ∪ m^−1 ∪ ov^−1
using csov by auto

lemma covid:ov^−1 O d ⊆ ov^−1 ∪ f ∪ d
using cdiov by auto

lemma covif :ov^−1 O f ⊆ ov^−1
using cfiov by auto

lemma coviovi:ov^−1 O ov^−1 ⊆ b^−1 ∪ m^−1 ∪ ov^−1
using covov by auto

lemma covimi:ov^−1 O m^−1 ⊆ b^−1
using cmov by auto

lemma covibi:ov^−1 O b^−1 ⊆ b^−1
using cbov by auto
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lemma cmiov:m^−1 O ov ⊆ ov^−1 ∪ d ∪ f
using covim by auto

lemma cmifi:m^−1 O f^−1 ⊆ m^−1
using cfm by auto

lemma cmidi:m^−1 O d^−1 ⊆ b^−1
using cdm by auto

lemma cmis:m^−1 O s ⊆ ov^−1 ∪ d ∪ f
using csim by auto

lemma cmisi:m^−1 O s^−1 ⊆ b^−1
using csm by auto

lemma cmid:m^−1 O d ⊆ ov^−1 ∪ d ∪ f
using cdim by auto

lemma cmif :m^−1 O f ⊆ m^−1
using cfim by auto

lemma cmiovi:m^−1 O ov^−1 ⊆ b^−1
using covm by auto

lemma cmimi:m^−1 O m^−1 ⊆ b^−1
using cmm by auto

lemma cmibi:m^−1 O b^−1 ⊆ b^−1
using cbm by auto

lemma cbim:b^−1 O m ⊆ b^−1 ∪ m^−1 ∪ ov^−1 ∪ f ∪ d
using cmib by auto

lemma cbiov:b^−1 O ov ⊆ b^−1 ∪ m^−1 ∪ ov^−1 ∪ f ∪ d
using covib by auto

lemma cbifi:b^−1 O f^−1 ⊆ b^−1
using cfb by auto

lemma cbidi:b^−1 O d^−1 ⊆ b^−1
using cdb by auto

lemma cbis:b^−1 O s ⊆ b^−1 ∪ m^−1 ∪ ov^−1 ∪ f ∪ d
using csib by auto

lemma cbisi:b^−1 O s^−1 ⊆ b^−1
using csb by auto

lemma cbid:b^−1 O d ⊆ b^−1 ∪ m^−1 ∪ ov^−1 ∪ f ∪ d
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using cdib by auto

lemma cbif :b^−1 O f ⊆ b^−1
using cfib by auto

lemma cbiovi:b^−1 O ov^−1 ⊆ b^−1
using covb by auto

lemma cbimi:b^−1 O m^−1 ⊆ b^−1
using cmb by auto

lemma cbibi:b^−1 O b^−1 ⊆ b^−1
using cbb by auto

3.8 Composition rules
named-theorems ce-rules declare cem[ce-rules] and ceb[ce-rules] and ceov[ce-rules]
and ces[ce-rules] and cef [ce-rules] and ced[ce-rules] and
cemi[ce-rules] and cebi[ce-rules] and ceovi[ce-rules] and cesi[ce-rules] and cefi[ce-rules]
and cedi[ce-rules]

named-theorems cm-rules declare cme[cm-rules] and cmb[cm-rules] and cmm[cm-rules]
and cmov[cm-rules] and cms [cm-rules] and cmd[cm-rules] and cmf [cm-rules]
and
cmbi[cm-rules] and cmmi[cm-rules] and cmovi[cm-rules] and cmsi[cm-rules] and
cmdi[cm-rules] and cmfi[cm-rules]

named-theorems cb-rules declare cbe[cb-rules] and cbm[cb-rules] and cbb[cb-rules]
and cbov[cb-rules] and cbs [cb-rules] and cbd[cb-rules] and cbf [cb-rules] and
cbbi[cb-rules] and cbbi[cb-rules] and cbovi[cb-rules] and cbsi[cb-rules] and cbdi[cb-rules]
and cbfi[cb-rules]

named-theorems cov-rules declare cove[cov-rules] and covb[cov-rules] and covb[cov-rules]
and covov[cov-rules] and covs [cov-rules] and covd[cov-rules] and covf [cov-rules]
and
covbi[cov-rules] and covbi[cov-rules] and covovi[cov-rules] and covsi[cov-rules] and
covdi[cov-rules] and covfi[cov-rules]

named-theorems cs-rules declare cse[cs-rules] and csb[cs-rules] and csb[cs-rules]
and csov[cs-rules] and css [cs-rules] and csd[cs-rules] and csf [cs-rules] and
csbi[cs-rules] and csbi[cs-rules] and csovi[cs-rules] and cssi[cs-rules] and csdi[cs-rules]
and csfi[cs-rules]

named-theorems cf-rules declare cfe[cf-rules] and cfb[cf-rules] and cfb[cf-rules]
and cfov[cf-rules] and cfs [cf-rules] and cfd[cf-rules] and cff [cf-rules] and
cfbi[cf-rules] and cfbi[cf-rules] and cfovi[cf-rules] and cfsi[cf-rules] and cfdi[cf-rules]
and cffi[cf-rules]

named-theorems cd-rules declare cde[cd-rules] and cdb[cd-rules] and cdb[cd-rules]
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and cdov[cd-rules] and cds [cd-rules] and cdd[cd-rules] and cdf [cd-rules] and
cdbi[cd-rules] and cdbi[cd-rules] and cdovi[cd-rules] and cdsi[cd-rules] and cddi[cd-rules]
and cdfi[cd-rules]

named-theorems cmi-rules declare cmie[cmi-rules] and cmib[cmi-rules] and
cmib[cmi-rules] and cmiov[cmi-rules] and cmis [cmi-rules] and cmid[cmi-rules]
and cmif [cmi-rules] and
cmibi[cmi-rules] and cmibi[cmi-rules] and cmiovi[cmi-rules] and cmisi[cmi-rules]
and cmidi[cmi-rules] and cmifi[cmi-rules]

named-theorems cbi-rules declare cbie[cbi-rules] and cbim[cbi-rules] and cbib[cbi-rules]
and cbiov[cbi-rules] and cbis [cbi-rules] and cbid[cbi-rules] and cbif [cbi-rules] and
cbimi[cbi-rules] and cbibi[cbi-rules] and cbiovi[cbi-rules] and cbisi[cbi-rules] and
cbidi[cbi-rules] and cbifi[cbi-rules]

named-theorems covi-rules declare covie[covi-rules] and covib[covi-rules] and
covib[covi-rules] and coviov[covi-rules] and covis [covi-rules] and covid[covi-rules]
and covif [covi-rules] and
covibi[covi-rules] and covibi[covi-rules] and coviovi[covi-rules] and covisi[covi-rules]
and covidi[covi-rules] and covifi[covi-rules]

named-theorems csi-rules declare csie[csi-rules] and csib[csi-rules] and csib[csi-rules]
and csiov[csi-rules] and csis [csi-rules] and csid[csi-rules] and csif [csi-rules] and
csibi[csi-rules] and csibi[csi-rules] and csiovi[csi-rules] and csisi[csi-rules] and
csidi[csi-rules] and csifi[csi-rules]

named-theorems cfi-rules declare cfie[cfi-rules] and cfib[cfi-rules] and cfib[cfi-rules]
and cfiov[cfi-rules] and cfis [cfi-rules] and cfid[cfi-rules] and cfif [cfi-rules] and
cfibi[cfi-rules] and cfibi[cfi-rules] and cfiovi[cfi-rules] and cfisi[cfi-rules] and cfidi[cfi-rules]
and cfifi[cfi-rules]

named-theorems cdi-rules declare cdie[cdi-rules] and cdib[cdi-rules] and cdib[cdi-rules]
and cdiov[cdi-rules] and cdis [cdi-rules] and cdid[cdi-rules] and cdif [cdi-rules] and
cdibi[cdi-rules] and cdibi[cdi-rules] and cdiovi[cdi-rules] and cdisi[cdi-rules] and
cdidi[cdi-rules] and cdifi[cdi-rules]

named-theorems cre-rules declare cee[cre-rules] and cme[cre-rules] and cbe[cre-rules]
and cove[cre-rules] and cse[cre-rules] and cfe[cre-rules] and cde[cre-rules] and
cmie[cre-rules] and cbie[cre-rules] and covie[cre-rules] and csie[cre-rules] and
cfie[cre-rules] and cdie[cre-rules]

named-theorems crm-rules declare cem[crm-rules] and cbm[crm-rules] and
cmm[crm-rules] and covm[crm-rules] and csm[crm-rules] and cfm[crm-rules]
and cdm[crm-rules] and
cmim[crm-rules] and cbim[crm-rules] and covim[crm-rules] and csim[crm-rules]
and cfim[crm-rules] and cdim[crm-rules]

named-theorems crmi-rules declare cemi[crmi-rules] and cbmi[crmi-rules] and
cmmi[crmi-rules] and covmi[crmi-rules] and csmi[crmi-rules] and cfmi[crmi-rules]
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and cdmi[crmi-rules] and
cmimi[crmi-rules] and cbimi[crmi-rules] and covimi[crmi-rules] and csimi[crmi-rules]
and cfimi[crmi-rules] and cdimi[crmi-rules]

named-theorems crs-rules declare ces[crs-rules] and cbs[crs-rules] and cms[crs-rules]
and covs[crs-rules] and css[crs-rules] and cfs[crs-rules] and cds[crs-rules] and
cmis[crs-rules] and cbis[crs-rules] and covis[crs-rules] and csis[crs-rules] and cfis[crs-rules]
and cdis[crs-rules]

named-theorems crsi-rules declare cesi[crsi-rules] and cbsi[crsi-rules] and cmsi[crsi-rules]
and covsi[crsi-rules] and cssi[crsi-rules] and cfsi[crsi-rules] and cdsi[crsi-rules]
and
cmisi[crsi-rules] and cbisi[crsi-rules] and covisi[crsi-rules] and csisi[crsi-rules]
and cfisi[crsi-rules] and cdisi[crsi-rules]

named-theorems crb-rules declare ceb[crb-rules] and cbb[crb-rules] and cmb[crb-rules]
and covb[crb-rules] and csb[crb-rules] and cfb[crb-rules] and cdb[crb-rules] and
cmib[crb-rules] and cbib[crb-rules] and covib[crb-rules] and csib[crb-rules] and
cfib[crb-rules] and cdib[crb-rules]

named-theorems crbi-rules declare cebi[crbi-rules] and cbbi[crbi-rules] and cmbi[crbi-rules]
and covbi[crbi-rules] and csbi[crbi-rules] and cfbi[crbi-rules] and cdbi[crbi-rules]
and
cmibi[crbi-rules] and cbibi[crbi-rules] and covibi[crbi-rules] and csibi[crbi-rules]
and cfibi[crbi-rules] and cdibi[crbi-rules]

named-theorems crov-rules declare ceov[crov-rules] and cbov[crov-rules] and
cmov[crov-rules] and covov[crov-rules] and csov[crov-rules] and cfov[crov-rules]
and cdov[crov-rules] and
cmiov[crov-rules] and cbiov[crov-rules] and coviov[crov-rules] and csiov[crov-rules]
and cfiov[crov-rules] and cdiov[crov-rules]

named-theorems crovi-rules declare ceovi[crovi-rules] and cbovi[crovi-rules] and
cmovi[crovi-rules] and covovi[crovi-rules] and csovi[crovi-rules] and cfovi[crovi-rules]
and cdovi[crovi-rules] and
cmiovi[crovi-rules] and cbiovi[crovi-rules] and coviovi[crovi-rules] and csiovi[crovi-rules]
and cfiovi[crovi-rules] and cdiovi[crovi-rules]

named-theorems crf-rules declare cef [crf-rules] and cbf [crf-rules] and cmf [crf-rules]
and covf [crf-rules] and csf [crf-rules] and cff [crf-rules] and cdf [crf-rules] and
cmif [crf-rules] and cbif [crf-rules] and covif [crf-rules] and csif [crf-rules] and cfif [crf-rules]
and cdif [crf-rules]

named-theorems crfi-rules declare cefi[crfi-rules] and cbfi[crfi-rules] and cmfi[crfi-rules]
and covfi[crfi-rules] and csfi[crfi-rules] and cffi[crfi-rules] and cdfi[crfi-rules] and

cmifi[crfi-rules] and cbifi[crfi-rules] and covifi[crfi-rules] and csifi[crfi-rules] and
cfifi[crfi-rules] and cdifi[crfi-rules]
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named-theorems crd-rules declare ced[crd-rules] and cbd[crd-rules] and cmd[crd-rules]
and covd[crd-rules] and csd[crd-rules] and cfd[crd-rules] and cdd[crd-rules] and
cmid[crd-rules] and cbid[crd-rules] and covid[crd-rules] and csid[crd-rules] and
cfid[crd-rules] and cdid[crd-rules]

named-theorems crdi-rules declare cedi[crdi-rules] and cbdi[crdi-rules] and cmdi[crdi-rules]
and covdi[crdi-rules] and csdi[crdi-rules] and cfdi[crdi-rules] and cddi[crdi-rules]
and
cmidi[crdi-rules] and cbidi[crdi-rules] and covidi[crdi-rules] and csidi[crdi-rules]
and cfidi[crdi-rules] and cdidi[crdi-rules]

end

theory disjoint-relations

imports
allen

begin

4 PD property

The 13 time interval relations (i.e. e, b, m, s, f, d, ov and their inverse
relations) are pairwise disjoint.
lemma em :e ∩ m = {}
using e m meets-irrefl
by (metis ComplI disjoint-eq-subset-Compl meets-wd subrelI )

lemma eb :e ∩ b = {}
using b e meets-asym
by (metis ComplI disjoint-eq-subset-Compl subrelI )

lemma eov :e ∩ ov = {}
apply (auto simp: e ov)
using elimmeets by blast

lemma es :e ∩ s = {}
apply (auto simp:e s)
using elimmeets by blast

lemma ef :e ∩ f = {}
using e f by (metis (no-types, lifting) ComplI disjoint-eq-subset-Compl meets-atrans
subrelI )
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lemma ed :e ∩ d = {}
using e d by (metis (no-types, lifting) ComplI disjoint-eq-subset-Compl meets-atrans
subrelI )

lemma emi :e ∩ m^−1 = {}
using converseE em e
by (metis disjoint-iff-not-equal)

lemma ebi :e ∩ b^−1 = {}
using converseE eb e
by (metis disjoint-iff-not-equal)

lemma eovi :e ∩ ov^−1 = {}
using converseE eov e
by (metis disjoint-iff-not-equal)

lemma esi :e ∩ s^−1 = {}
using converseE es e
by (metis disjoint-iff-not-equal)

lemma efi :e ∩ f^−1 = {}
using converseE ef e
by (metis disjoint-iff-not-equal)

lemma edi :e ∩ d^−1 = {}
using converseE ed e
by (metis disjoint-iff-not-equal)

lemma mb :m ∩ b = {}
using m b
apply auto
using elimmeets by blast

lemma mov : m ∩ ov = {}
apply (auto simp:m ov)
by (meson M1 elimmeets)

lemma ms :m ∩ s = {}
apply (auto simp:m s)
by (meson M1 elimmeets)

lemma mf :m ∩ f = {}
apply (auto simp:m f )
using elimmeets by blast

lemma md :m ∩ d = {}
apply (auto simp: m d)
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using trans2 by blast

lemma mi :m ∩ m^−1 = {}
apply (auto simp:m)
using converseE m meets-asym by blast

lemma mbi :m ∩ b^−1 = {}
apply (auto simp:mb)
apply (auto simp: m b)
using nontrans2 by blast

lemma movi :m ∩ ov^−1 = {}
using m ov
apply auto
using trans2 by blast

lemma msi :m ∩ s^−1 = {}
apply (auto simp:m s)
by (meson M1 elimmeets)

lemma mfi :m ∩ f^−1 = {}
apply (auto simp:m f )
by (meson M1 elimmeets)

lemma mdi :m ∩ d^−1 = {}
apply (auto simp:m d)
using trans2 by blast

lemma bov :b ∩ ov = {}
apply (auto simp:b ov)
by (meson M1 trans2 )

lemma bs :b ∩ s = {}
apply (auto simp:b s)
by (meson M1 trans2 )

lemma bf :b ∩ f = {}
apply (auto simp: b f )
by (meson M1 trans2 )

lemma bd :b ∩ d = {}
apply (auto simp:b d)
by (meson M1 nonmeets4 )

lemma bmi :b ∩ m^−1 = {}
using mbi by auto

lemma bi :b ∩ b^−1 = {}
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apply (auto simp:b)
using M5exist-var3 trans2 by blast

lemma bovi :b ∩ ov^−1 = {}
apply (auto simp:bov)
apply (auto simp:b ov)
by (meson M1 nontrans2 )

lemma bsi :b ∩ s^−1 = {}
using bs apply auto using b s apply auto
using trans2 by blast

lemma bfi :b ∩ f^−1 = {}
using bf apply auto using b f apply auto
using trans2 by blast

lemma bdi :b ∩ d^−1 = {}
apply (auto simp:bd)
apply (auto simp:b d)
using trans2
using M1 nonmeets4 by blast

lemma ovs :ov ∩ s = {}
apply (auto simp:ov s)
by (meson M1 meets-atrans)

lemma ovf :ov ∩ f = {}
apply (auto simp:ov f )
by (meson M1 meets-atrans)

lemma ovd :ov∩ d = {}
apply (auto simp:ov d)
by (meson M1 trans2 )

lemma ovmi :ov ∩ m^−1 = {}
using movi by auto

lemma ovbi :ov ∩ b^−1 = {}
using bovi by blast

lemma ovi :ov ∩ ov^−1 = {}
apply (auto simp:ov)
by (meson M1 trans2 )

lemma ovsi :ov ∩ s^−1 = {}
apply (auto simp:ov s)
by (meson M1 elimmeets)

62



lemma ovfi :ov ∩ f^−1 = {}
apply (auto simp:ov f )
by (meson M1 elimmeets)

lemma ovdi :ov ∩ d^−1 = {}
apply (auto simp:ov d)
by (meson M1 trans2 )

lemma sf :s ∩ f = {}
apply (auto simp:s f )
by (metis M4 elimmeets)

lemma sd :s ∩ d = {}
apply (auto simp:s d)
by (metis M1 meets-atrans)

lemma smi :s ∩ m^−1 = {}
using msi by auto

lemma sbi :s ∩ b^−1 = {}
using bsi by blast

lemma sovi :s ∩ ov^−1 = {}
using ovsi by auto

lemma si :s ∩ s^−1 = {}
apply (auto simp:s)
by (meson M1 trans2 )

lemma sfi :s ∩ f^−1 = {}
apply (auto simp:s f )
by (metis M4 elimmeets)

lemma sdi :s∩ d^−1 = {}
apply (auto simp:s d)
by (meson M1 meets-atrans)

lemma fd :f ∩ d = {}
apply (auto simp:f d)
by (meson M1 meets-atrans)

lemma fmi :f ∩ m^−1 = {}
using mfi by auto

lemma fbi :f ∩ b^−1 = {}
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using bfi converse-Int by auto

lemma fovi :f ∩ ov^−1 = {}
using ovfi by auto

lemma fsi :f ∩ s^−1 = {}
using sfi by auto

lemma fi :f ∩ f^−1 = {}
apply (auto simp:f )
by (meson M1 trans2 )

lemma fdi :f ∩ d^−1 = {}
apply (auto simp:f d)
by (meson M1 trans2 )

lemma dmi :d ∩ m^−1 = {}
using mdi by auto

lemma dbi :d ∩ b^−1 = {}
using bdi by blast

lemma dovi :d ∩ ov^−1 = {}
using ovdi by auto

lemma dsi :d ∩ s^−1 = {}
using sdi by auto

lemma dfi :d ∩ f^−1 = {}
apply (auto simp:d f )
by (meson M1 trans2 )

lemma di :d ∩ d^−1 = {}
apply (auto simp:d)
by (meson M1 trans2 )

lemma mibi :m^−1 ∩ b^−1 = {}
using mb by auto

lemma miovi :m^−1 ∩ ov^−1 = {}
using mov by auto

lemma misi :m^−1 ∩ s^−1 = {}
using ms by auto

lemma mifi :m^−1 ∩ f^−1 = {}
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using mf by auto

lemma midi :m^−1 ∩ d^−1 = {}
using md by auto

lemma bid :b^−1 ∩ d = {}
by (simp add: dbi inf-sup-aci(1 ))

lemma bimi :b^−1 ∩ m^−1 = {}
using mibi by auto

lemma biovi :b^−1 ∩ ov^−1 = {}
using bov by blast

lemma bisi :b^−1 ∩ s^−1 = {}
using bs by blast

lemma bifi :b^−1 ∩ f^−1 = {}
using bf by blast

lemma bidi :b^−1 ∩ d^−1 = {}
using bd by blast

lemma ovisi :ov^−1 ∩ s^−1 = {}
using ovs by blast

lemma ovifi :ov^−1 ∩ f^−1 = {}
using ovf by blast

lemma ovidi :ov^−1 ∩ d^−1 = {}
using ovd by blast

lemma sifi :s^−1 ∩ f^−1 = {}
using sf by blast

lemma sidi :s^−1 ∩ d^−1 = {}
using sd by blast

lemma fidi :f^−1 ∩ d^−1 = {}
using fd by blast

lemma eei[simp]:e^−1 = e
using e
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by (metis converse-iff subrelI subset-antisym)

lemma rdisj-sym:A ∩ B = {} =⇒ B ∩ A = {}
by auto

4.1 Intersection rules
named-theorems e-rules declare em[e-rules] and eb[e-rules] and eov[e-rules]
and es[e-rules] and ef [e-rules] and ed[e-rules] and emi[e-rules] and ebi[e-rules]
and eovi[e-rules]
and esi[e-rules] and efi[e-rules] and edi[e-rules]

named-theorems m-rules declare em[THEN rdisj-sym, m-rules] and mb [m-rules]
and ms [m-rules] and mov [m-rules] and mf [m-rules] and
md[m-rules] and mi [m-rules] and mbi [m-rules] and movi [m-rules] and msi
[m-rules] and mfi [m-rules] and mdi [m-rules] and emi[m-rules]

named-theorems b-rules declare eb[THEN rdisj-sym, b-rules] and mb [THEN
rdisj-sym, b-rules] and bs [b-rules] and bov [b-rules] and bf [b-rules] and
bd[b-rules] and bmi [b-rules] and bi [b-rules] and bovi [b-rules] and bsi [b-rules]
and bfi [b-rules] and bdi [b-rules] and ebi[b-rules]

named-theorems ov-rules declare eov[THEN rdisj-sym, ov-rules] and mov [THEN
rdisj-sym, ov-rules] and ovs [ov-rules] and bov [THEN rdisj-sym,ov-rules] and
ovf [ov-rules] and
ovd[ov-rules] and ovmi [ov-rules] and ovi [ov-rules] and ovsi [ov-rules] and ovfi
[ov-rules] and ovdi [ov-rules] and eovi[ov-rules]

named-theorems s-rules declare es[THEN rdisj-sym, s-rules] and ms [THEN
rdisj-sym, s-rules] and ovs [THEN rdisj-sym, s-rules] and bs [THEN rdisj-sym,s-rules]
and sf [s-rules] and
sd[s-rules] and smi [s-rules] and sovi [s-rules] and si [s-rules] and sfi [s-rules]
and sdi [s-rules]

named-theorems d-rules declare ed[THEN rdisj-sym, d-rules] and md [THEN
rdisj-sym, d-rules] and sd [THEN rdisj-sym, d-rules] and fd[THEN rdisj-sym,
d-rules] and
ovd[THEN rdisj-sym,d-rules] and dmi [d-rules] and dovi [d-rules] and dsi [d-rules]
and dfi [d-rules] and di [d-rules]

named-theorems f-rules declare ef [THEN rdisj-sym, f-rules] and mf [THEN
rdisj-sym, f-rules] and sf [THEN rdisj-sym, f-rules] and ovf [THEN rdisj-sym,f-rules]
and fd[f-rules] and
fmi [f-rules] and fovi [f-rules] and fsi [f-rules] and fi [f-rules] and fdi [f-rules]

end
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theory jointly-exhaustive

imports
allen

begin

5 JE property

The 13 time interval relations are jointly exhaustive. For any two intervals
x and y, we can find a basic relation r such that (x, y) ∈ r.
lemma (in arelations) jointly-exhaustive:
assumes I p I q
shows (p:: ′a,q:: ′a) ∈ b ∨ (p,q) ∈ m ∨ (p,q) ∈ ov ∨ (p,q) ∈ s ∨ (p,q) ∈ d ∨ (p,q)
∈ f^−1 ∨ (p,q) ∈ e ∨

(p,q) ∈ f ∨ (p,q) ∈ s^−1 ∨ (p,q) ∈ d^−1 ∨ (p,q) ∈
ov^−1 ∨ (p,q) ∈ m^−1 ∨ (p,q) ∈ b^−1 (is ?R)
proof −

obtain k k ′ u u ′:: ′a where kp:k‖p and kpq:k ′‖q and pu:p‖u and qup:q‖u ′ using
M3 meets-wd assms(1 ,2 ) by fastforce

from kp kpq have k‖q ⊕ ((∃ t. k‖t ∧ t‖q) ⊕ (∃ t. k ′‖t ∧ t‖p)) (is ?A ⊕ (?B ⊕
?C )) using M2 by blast

then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by (insert
xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)

thus ?thesis
proof (elim disjE)

{ assume ?A∧¬?B∧¬?C then have kq:?A by simp
from pu qup have p‖u ′ ⊕ ((∃ t ′:: ′a. p‖t ′ ∧ t ′‖u ′) ⊕ (∃ t ′. q‖t ′ ∧ t ′‖u)) (is

?A ⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{assume (?A∧¬?B∧¬?C ) then have ?A by simp
with kp kq qup have p = q using M4 by auto
thus ?thesis using e by auto}

next
{assume ¬?A∧?B∧¬?C then have ?B by simp
with kq kp qup show ?thesis using s by blast}

next
{assume (¬?A∧¬?B∧?C ) then have ?C by simp
then obtain t ′ where q‖t ′ and t ′‖u by blast
with kq kp pu show ?thesis using s by blast }

qed}
next
{ assume ¬?A∧?B∧¬?C then have ?B by simp

67



then obtain t where kt:k‖t and tq:t‖q by auto
from pu qup have p‖u ′ ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖u ′) ⊕ (∃ t ′. q‖t ′ ∧ t ′‖u)) (is ?A

⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{assume ?A∧¬?B∧¬?C then have ?A by simp
with kp qup kt tq show ?thesis using f by blast}

next
{assume ¬?A∧?B∧¬?C then have ?B by simp
then obtain t ′ where ptp:p‖t ′ and tpup:t ′‖u ′ by auto
from pu tq have p‖q ⊕ ((∃ t ′′. p‖t ′′ ∧ t ′′‖q) ⊕ (∃ t ′′. t‖t ′′ ∧ t ′′‖u)) (is

?A ⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{assume ?A∧¬?B∧¬?C then have ?A by simp
thus ?thesis using m by auto}

next
{assume ¬?A∧?B∧¬?C then have ?B by simp
thus ?thesis using b by auto}

next
{ assume ¬?A∧¬?B∧?C then have ?C by simp

then obtain g where t‖g and g‖u by auto
moreover with pu ptp have g‖t ′ using M1 by blast

ultimately show ?thesis using ov kt tq kp ptp tpup qup by blast}
qed}

next
{assume ¬?A∧¬?B∧?C then have ?C by simp
then obtain t ′ where q‖t ′ and t ′‖u by auto
with kp kt tq pu show ?thesis using d by blast}

qed}
next
{ assume ¬?A∧¬?B∧?C then have ?C by simp

then obtain t where kpt:k ′‖t and tp:t‖p by auto
from pu qup have p‖u ′ ⊕ ((∃ t ′. p‖t ′ ∧ t ′‖u ′) ⊕ (∃ t ′. q‖t ′ ∧ t ′‖u)) (is ?A

⊕ (?B ⊕ ?C )) using M2 by blast
then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by

(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)

{assume ?A∧¬?B∧¬?C then have ?A by simp
with qup kpt tp kpq show ?thesis using f by blast}

next
{assume ¬?A∧?B∧¬?C then have ?B by simp
with qup kpt tp kpq show ?thesis using d by blast}

next
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{assume ¬?A∧¬?B∧?C then obtain t ′ where qt ′:q‖t ′ and tpc:t ′‖u by
auto

from qup tp have q‖p ⊕ ((∃ t ′′. q‖t ′′ ∧ t ′′‖p) ⊕ (∃ t ′′. t‖t ′′ ∧ t ′′‖u ′)) (is
?A ⊕ (?B ⊕ ?C )) using M2 by blast

then have (?A∧¬?B∧¬?C ) ∨ ((¬?A∧?B∧¬?C ) ∨ (¬?A∧¬?B∧?C )) by
(insert xor-distr-L[of ?A ?B ?C ], auto simp:elimmeets)

thus ?thesis
proof (elim disjE)

{assume ?A∧¬?B∧¬?C then have ?A by simp
thus ?thesis using m by auto}

next
{assume ¬?A∧?B∧¬?C then have ?B by simp
thus ?thesis using b by auto}

next
{ assume ¬?A∧¬?B∧?C then obtain g where tg:t‖g and g‖u ′ by

auto
with qup qt ′ have g‖t ′ using M1 by blast
with qt ′ tpc pu kpq kpt tp tg show ?thesis using ov by blast}

qed}
qed}

qed
qed

lemma (in arelations) JE :
assumes I p I q
shows (p:: ′a,q:: ′a) ∈ b ∪ m ∪ ov ∪ s ∪ d ∪ f^−1 ∪ e ∪ f ∪ s^−1 ∪ d^−1 ∪
ov^−1 ∪ m^−1 ∪ b^−1
using jointly-exhaustive UnCI assms(1 ,2 ) by blast

end

theory examples

imports

disjoint-relations

begin

6 Examples
6.1 Compositions of non-basic relations

Basic relations are the 13 time interval relations. The unions of basic rela-
tions are also relations and their compositions is the union of compositions.
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We prove few of these compositions that are required in theory nest.thy.
method (in arelations) e-compose = (match conclusion in e O b ⊆ - ⇒ ‹insert
ceb, blast›

| - ⇒ ‹match conclusion in e O m ⊆ - ⇒ ‹insert
cem, blast› | - ⇒ ‹fail››)

declare [[simp-trace-depth-limit=4 ]]

lemma eovisidifmifiOm:(e ∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪ m−1 ∪ f^−1 ) O m ⊆ m ∪
ov ∪ f^−1 ∪ d^−1 ∪ s ∪ s−1 ∪ e
apply (simp, intro conjI )

using cem apply blast
using crm-rules by auto

lemma ovsmfidiesiOmi:(ov ∪ s∪ m ∪ f^−1 ∪ d^−1 ∪ e ∪ s^−1 ) O m^−1 ⊆
d^−1 ∪ s^−1 ∪ ov^−1 ∪ m^−1 ∪ f^−1 ∪ f ∪ e
apply (simp, intro conjI )

using crmi-rules by auto

lemma ovsmfidiesiOm:(ov ∪ s ∪ m ∪ f −1 ∪ d−1 ∪ e ∪ s−1) O m ⊆ b ∪ ov ∪
f^−1 ∪ d^−1 ∪ m
apply (simp, intro conjI )

using crm-rules by auto

lemma ovsmfidiesiOssie:(ov ∪ s ∪ m ∪ f −1 ∪ d−1 ∪ e ∪ s−1) O (s ∪ s^−1 ∪ e)
⊆ ov ∪ f^−1 ∪ d^−1 ∪ s ∪ e ∪ s^−1 ∪ m
apply (simp, intro conjI )

using crs-rules apply auto[7 ]
using crsi-rules apply auto[7 ]

using cre-rules by auto[7 ]

lemma (b ∪ m ∪ ov ∪ s ∪ d) O (b ∪ m ∪ ov ∪ s ∪ d) ⊆ b ∪ m ∪ ov ∪ s ∪ d
apply (simp, intro conjI )
using crb-rules apply auto[5 ]
using crm-rules apply auto[5 ]

using crov-rules apply auto[5 ]
using crs-rules apply auto[5 ]

using crd-rules by auto[5 ]

lemma ebmovovissifsiddib:(e ∪ b ∪ m ∪ ov ∪ ov−1 ∪ s ∪ s−1 ∪ f ∪ f −1 ∪ d ∪
d−1) O b ⊆ b ∪ m ∪ ov ∪ f^−1 ∪ d^−1
apply (simp, intro conjI )

using crb-rules by auto

lemma ebmovovissiffiddibmovsd:(e ∪ b ∪ m ∪ ov ∪ ov−1 ∪ s ∪ s−1 ∪ f ∪ f −1 ∪
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d ∪ d−1) O ( b ∪ m ∪ ov ∪ s ∪ d) ⊆ (b ∪ m ∪ ov ∪ s ∪ d ∪ f^−1 ∪ d^−1 ∪
ov^−1 ∪ s−1 ∪ f ∪ e)
apply (simp, intro conjI )

using crb-rules apply auto[11 ]
using crm-rules apply auto[11 ]

using crov-rules apply auto[11 ]
using crs-rules apply auto[11 ]

using crd-rules by auto

lemma difimov:(d^−1 ∪ f^−1 ∪ ov ∪ e ∪ f ∪ m ∪ b ∪ s^−1 ∪ s) O ( m ∪ ov ∪
s ∪ d ∪ b ∪ f^−1 ∪ f ∪ e) ⊆ ( e ∪ b ∪ m ∪ ov ∪ ov^−1 ∪ s ∪ s^−1 ∪ f ∪ f −1

∪ d ∪ d−1)
apply (simp, intro conjI )

using crm-rules apply auto[9 ]
using crov-rules apply auto[9 ]

using crs-rules apply auto[9 ]
using crd-rules apply auto[9 ]

using crb-rules apply auto[9 ]
using crfi-rules apply auto[9 ]

using crf-rules apply auto[9 ]
using cre-rules by auto

lemma difibs:(d−1 ∪ f −1 ∪ ov ∪ e ∪ f ∪ m ∪ b ∪ s−1 ∪ s) O (b ∪ s ∪ m) ⊆ (b
∪ m ∪ ov ∪ f −1 ∪ d−1 ∪ d ∪ e ∪ s ∪ s−1)
apply (simp, intro conjI )

using crb-rules apply auto[9 ]
using crs-rules apply auto[9 ]

using crm-rules by auto

lemma bebmovovissiffiddi:b O (e ∪ b ∪ m ∪ ov ∪ ov−1 ∪ s ∪ s−1 ∪ f ∪ f −1 ∪ d
∪ d−1) ⊆ (b ∪ m ∪ ov ∪ s ∪ d)
apply (simp, intro conjI )

using cb-rules by auto[11 ]

lemma ovsmfidiesi:(((ov ∪ s ∪ m ∪ f −1 ∪ d−1 ∪ e ∪ s−1) O (ov^−1 ∪ s^−1 ∪
m^−1 ∪ f ∪ d ∪ e ∪ s)) ⊆ (s ∪ s^−1 ∪ f ∪ f^−1 ∪ d ∪ d^−1 ∪ e ∪ ov ∪ ov^−1
∪ m ∪ m^−1 ))
apply (simp, intro conjI )

using crovi-rules apply auto[7 ]
using crsi-rules apply auto[7 ]

using crmi-rules apply auto[7 ]
using crf-rules apply auto[7 ]

using crd-rules apply auto[7 ]
using cre-rules apply auto[7 ]

using crs-rules by auto

lemma piiq:(p,i) ∈ ov ∪ s ∪ m ∪ f −1 ∪ d−1 ∪ e ∪ s−1 =⇒ (i,q) ∈ ov^−1 ∪
s^−1 ∪ m^−1 ∪ f ∪ d ∪ e ∪ s =⇒ (p,q) ∈ s ∪ s^−1 ∪ f ∪ f^−1 ∪ d ∪ d^−1
∪ e ∪ ov ∪ ov^−1 ∪ m ∪ m^−1
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using ovsmfidiesi relcomp.relcompI subsetCE by blast

lemma ceovisidiffimi-ffie:(e ∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪ f −1 ∪ m−1) O (f ∪ f −1

∪ e) ⊆ e ∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪ f −1 ∪ m−1

apply (simp, intro conjI )
using crf-rules apply auto[7 ]

using crfi-rules apply auto[7 ]
using cre-rules by auto

lemma ceovisidiffimi-ffie-simp:(p,i) ∈ (e ∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪ f −1 ∪ m−1)
=⇒ (i, q) ∈ (f ∪ f −1 ∪ e) =⇒ (p,q) ∈ e ∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪ f −1 ∪ m−1

using ceovisidiffimi-ffie relcomp.relcompI subsetCE by blast

lemma ceovisidiffimi-fife: (e ∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪ f −1 ∪ m−1) O (f −1 ∪ f
∪ e) ⊆ e ∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪ f −1 ∪ m−1

apply (simp, intro conjI )
using cefi covifi csifi cdifi cffi cfifi cmifi covifi csifi cdifi apply auto[7 ]

using cef covif csif cdif cff cfif cmif apply auto[7 ]
using cee covie csie cdie cfe cfie cmie by auto[7 ]

lemma (x, j) ∈ e ∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪ f −1 ∪ m−1 =⇒ (j, i) ∈ f −1 ∪ f ∪
e =⇒ (x, i) ∈ e ∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪ f −1 ∪ m−1

using ceovisidiffimi-ffie-simp by blast

lemma m-ovsmfidiesi:m O (ov ∪ s ∪ m ∪ f −1 ∪ d−1 ∪ e ∪ s−1) ⊆ b ∪ s ∪ m
apply (simp, intro conjI )
using cm-rules by auto

lemma ovsmfidiesi-d:(ov ∪ s ∪ m ∪ f −1 ∪ d−1 ∪ e ∪ s−1) O d ⊆ e ∪ s ∪ d ∪
ov ∪ ov^−1 ∪ s^−1 ∪ f ∪ f^−1 ∪ d^−1
apply (simp, intro conjI )

using crd-rules by auto[7 ]

lemma cbi-esdovovisiffidi:b^−1 O (e ∪ s ∪ d ∪ ov ∪ ov−1 ∪ s−1 ∪ f ∪ f −1 ∪
d−1) ⊆ b^−1 ∪ m^−1 ∪ ov^−1 ∪ f ∪ d
apply (simp, intro conjI )

using cbi-rules by auto[9 ]

lemma cm-alpha1ialpha4mi:m O (e ∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪ f −1 ∪ m−1) ⊆
m ∪ ov ∪ s ∪ d ∪ b ∪ f^−1 ∪ f ∪ e
apply (simp, intro conjI )
using cm-rules by auto

lemma cbi-alpha1ialpha4mi:b^−1 O ( e ∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪ f −1 ∪ m−1)
⊆ b^−1
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apply (simp, intro conjI )
using cbi-rules by auto

lemma cbeta2-beta2 :( b ∪ m ∪ ov ∪ f −1 ∪ d−1) O ( b ∪ m ∪ ov ∪ f −1 ∪ d−1) ⊆
b ∪ m ∪ ov ∪ f −1 ∪ d−1

apply (simp, intro conjI )
using crb-rules apply auto[5 ]

using crm-rules apply auto[5 ]
using crov-rules apply auto[5 ]

using crfi-rules apply auto[5 ]
using crdi-rules by auto

lemma cbeta2-gammabm: (b ∪ m ∪ ov ∪ f −1 ∪ d−1) O ( e ∪ b ∪ m ∪ ov ∪ ov−1

∪ s ∪ s−1 ∪ f ∪ f −1 ∪ d ∪ d−1) ⊆ ( e ∪ b ∪ m ∪ ov ∪ ov−1 ∪ s ∪ s−1 ∪ f ∪
f −1 ∪ d ∪ d−1)
apply (simp, intro conjI )

using cre-rules apply auto[5 ]
using crb-rules apply auto[5 ]

using crm-rules apply auto[5 ]
using crov-rules apply auto[5 ]

using crovi-rules apply auto[5 ]
using crs-rules apply auto[5 ]

using crsi-rules apply auto[5 ]
using crf-rules apply auto[5 ]

using crfi-rules apply auto[5 ]
using crd-rules apply auto[5 ]

using crdi-rules by auto

lemma calpha1-alpha1 :(b ∪ m ∪ ov ∪ s ∪ d) O ( b ∪ m ∪ ov ∪ s ∪ d) ⊆ ( b ∪
m ∪ ov ∪ s ∪ d)
apply (simp, intro conjI )

using crb-rules apply auto[5 ]
using crm-rules apply auto[5 ]

using crov-rules apply auto[5 ]
using crs-rules apply auto[5 ]

using crd-rules by auto

6.2 Intersection of non-basic relations
lemma inter-ov:
assumes (i,j) ∈ (b ∪ m ∪ ov ∪ f −1 ∪ d−1) ∩ (e ∪ b^−1 ∪ m^−1 ∪ ov^−1 ∪
ov ∪ s^−1 ∪ s ∪ f^−1 ∪ f ∪ d^−1 ∪ d) ∩ (b ∪ m ∪ ov ∪ s ∪ d)
shows (i,j) ∈ ov
using assms apply auto
using b-rules apply auto[43 ]
using e-rules apply auto[9 ]
using b-rules apply auto[30 ]
using m-rules apply auto[24 ]
using b-rules apply auto[6 ]
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using m-rules apply auto[20 ]
using f-rules apply auto[14 ]
using d-rules by auto

lemma neq-beta2i-alpha2alpha5m:
assumes (q, j) ∈ b−1 ∪ d ∪ f ∪ ov−1 ∪ m−1 and (q, j) ∈ ov ∪ s ∪ m ∪ f −1

∪ d−1 ∪ e ∪ s−1

shows False
using assms apply auto

using b-rules apply auto[7 ]
using ov-rules apply auto[4 ]

using d-rules apply auto[6 ]
using s-rules apply auto[3 ]

using f-rules apply auto[5 ]
using m-rules apply auto[2 ]

using ov-rules apply auto[4 ]
using m-rules by auto

lemma neq-bi-alpha1ialpha4mi:
assumes (q,i) ∈ b^−1 and (q, i) ∈ e ∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪ f −1 ∪ m−1

shows False
using assms apply auto

using b-rules by auto

end

theory nest

imports
Main jointly-exhaustive examples
HOL−Eisbach.Eisbach-Tools

begin

7 Nests

Nests are sets of intervals that share a meeting point. We define relation
before between nests that give the ordering properties of points.

7.1 Definitions
type-synonym ′a nest = ′a set

definition (in arelations) BEGIN :: ′a ⇒ ′a nest
where BEGIN i = {j | j. (j,i) ∈ ov ∪ s ∪ m ∪ f^−1 ∪ d^−1 ∪ e ∪ s^−1}
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definition (in arelations) END :: ′a ⇒ ′a nest
where END i = {j | j. (j,i) ∈ e ∪ ov^−1 ∪ s^−1 ∪ d^−1 ∪ f ∪ f^−1 ∪ m^−1}

definition (in arelations) NEST :: ′a nest ⇒ bool
where NEST S ≡ ∃ i. I i ∧ (S = BEGIN i ∨ S = END i)

definition (in arelations) before :: ′a nest ⇒ ′a nest ⇒ bool (infix ‹�› 100 )
where before N M ≡ NEST N ∧ NEST M ∧ (∃n m. //I///m///∧//I///n///∧ n ∈ N ∧ m ∈
M ∧ (n,m) ∈ b)

7.2 Properties of Nests
lemma intv1 :
assumes I i
shows i ∈ BEGIN i
unfolding BEGIN-def
by (simp add:e assms)

lemma intv2 :
assumes I i
shows i ∈ END i
unfolding END-def
by (simp add: e assms)

lemma NEST-nonempty:
assumes NEST S
shows S 6= {}
using assms unfolding NEST-def
by (insert intv1 intv2 , auto)

lemma NEST-BEGIN :
assumes I i
shows NEST (BEGIN i)
using NEST-def assms by auto

lemma NEST-END:
assumes I i
shows NEST (END i)
using NEST-def assms by auto

lemma before:
assumes a:I i
shows BEGIN i � END i
proof −

obtain p where pi:(p,i) ∈ m
using a M3 m by blast
then have p:p ∈ BEGIN i using BEGIN-def by auto

75



obtain q where qi:(q,i) ∈ m^−1
using a M3 m by blast
then have q:q ∈ END i using END-def by auto

from pi qi have c1 :(p,q) ∈ b using b m
by blast

with c1 p q assms show ?thesis by (auto simp:NEST-def before-def )

qed

lemma meets:
fixes i j
assumes I i and I j

shows (i,j) ∈ m = ((END i) = (BEGIN j))
proof

assume ij:(i,j) ∈ m then have ibj:i ∈ (BEGIN j) unfolding BEGIN-def by
auto

from ij have ji:(j,i) ∈ m^−1 by simp
then have jeo:j ∈ (END i) unfolding END-def by simp
show ((END i) = (BEGIN j))
proof

{fix x:: ′a assume a:x ∈ (END i)
then have asimp:(x,i) ∈ e ∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪ m−1 ∪ f^−1
unfolding END-def by auto
then have x ∈ (BEGIN j) using ij eovisidifmifiOm
by (auto simp:BEGIN-def )
}
thus conc1 :END i ⊆ BEGIN j by auto

next
{fix x assume b:x ∈ (BEGIN j)
then have bsimp:(x,j) ∈ ov ∪ s∪ m ∪ f^−1 ∪ d^−1 ∪ e ∪ s^−1
unfolding BEGIN-def by auto
then have x ∈ (END i) using ij ovsmfidiesiOmi
by (auto simp:END-def )
}thus conc2 :BEGIN j ⊆ END i by auto

qed
next

assume a0 :END (i:: ′a) = BEGIN (j:: ′a) show (i,j) ∈ m
proof (rule ccontr)

assume a:(i,j) /∈ m then have ¬i‖j using m by auto
from a have (i,j) ∈ b ∪ ov ∪ s ∪ d ∪ f^−1 ∪ e ∪ f ∪ s^−1 ∪ d^−1 ∪

ov^−1 ∪ m^−1 ∪ b^−1 using assms JE by auto
thus False
proof (auto)

{assume ij:(i,j) ∈ e
obtain p where ip:i‖p using M3 assms(1 ) by auto
then have pi:(p,i)∈ m^−1 using m by auto
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then have p ∈ END i using END-def by auto
with a0 have pj:p ∈ (BEGIN j) by auto
from ij pi have (p,j) ∈ m^−1 by (simp add: e)
with pj show ?thesis
apply (auto simp:BEGIN-def )
using m-rules by auto[7 ] }

next
{assume ij: (j,i) ∈ m
obtain p where ip:i‖p using M3 assms(1 ) by auto
then have pi:(p,i)∈ m^−1 using m by auto
then have p ∈ END i using END-def by auto
with a0 have pj:p ∈ (BEGIN j) by auto
from ij have (i,j) ∈ m^−1 by simp
with pi have (p,j) ∈ b^−1 using cmimi by auto
with pj show ?thesis
apply (auto simp:BEGIN-def )

using b-rules by auto
}

next

{assume ij:(i,j)∈ b
have ii:(i,i)∈e and i ∈ END i using assms intv2 e by auto
with a0 have j:i ∈ BEGIN j by simp
with ij show ?thesis
apply (auto simp:BEGIN-def )

using b-rules by auto
}

next

{ assume ji:(j,i) ∈ b then have ij:(i,j) ∈ b^−1 by simp
have ii:(i,i)∈e and i ∈ END i using assms intv2 e by auto
with a0 have j:i ∈ BEGIN j by simp
with ij show ?thesis
apply (auto simp:BEGIN-def )

using b-rules by auto}

next

{assume ij:(i,j)∈ov
then obtain u v:: ′a where iu:i‖u and uv:u‖v and uv:u‖v using ov by

blast
from iu have u ∈ END i using m END-def by auto
with a0 have u:u ∈ BEGIN j by simp
from iu have (u,i) ∈ m^−1 using m by auto
with ij have uj:(u,j) ∈ ov^−1 ∪ d ∪ f using covim by auto
show ?thesis using u uj
apply (auto simp:BEGIN-def )
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using ov-rules eovi apply auto[9 ]
using s-rules apply auto[2 ]

using d-rules apply auto[5 ]
using f-rules by auto[5 ]

}

next

{assume (j,i) ∈ ov then have ij:(i,j)∈ov^−1 by simp let ?p = i
from ij have pi:(?p, i) ∈ e by (simp add:e)
from ij have pj:(?p,j) ∈ ov^−1 by simp
from pi have ?p ∈ END i using END-def by auto
with a0 have ?p ∈ (BEGIN j) by auto
with pj show ?thesis
apply (auto simp:BEGIN-def )

using ov-rules by auto
}
next
{assume ij:(i,j) ∈ s
then obtain p q t where ip:i‖p and pq:p‖q and jq:j‖q and ti:t‖i and

tj:t‖j using s by blast
from ip have (p,i) ∈ m^−1 using m by auto
then have p ∈ END i using END-def by auto
with a0 have p:p ∈ BEGIN j by simp
from ti ip pq tj jq have (p,j) ∈ f using f by blast
with p show ?thesis
apply (auto simp:BEGIN-def )

using f-rules by auto

}
next
{assume (j,i) ∈ s then have ij:(i,j) ∈ s^−1 by simp
then obtain u v where ju:j‖u and uv:u‖v and iv:i‖v using s by blast
from iv have (v,i) ∈ m^−1 using m by blast
then have v ∈ END i using END-def by auto
with a0 have v:v ∈ BEGIN j by simp
from ju uv have (v,j) ∈ b^−1 using b by auto
with v show ?thesis
apply (auto simp:BEGIN-def )

using b-rules by auto}
next
{assume ij:(i,j) ∈ f
have (i,i) ∈ e and i ∈ END i
by (simp add: e) (auto simp: assms intv2 )
with a0 have i ∈ BEGIN j by simp
with ij show ?thesis
apply (auto simp:BEGIN-def )
using f-rules by auto

}
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next
{assume (j,i) ∈ f then have (i,j)∈f^−1 by simp
then obtain u where ju:j‖u and iu:i‖u using f by auto
then have ui:(u,i) ∈ m^−1 and u ∈ END i
apply (simp add: converse.intros m)
using END-def iu m by auto
with a0 have ubj:u ∈ BEGIN j by simp
from ju have (u,j) ∈ m^−1 by (simp add: converse.intros m)
with ubj show ?thesis
apply (auto simp:BEGIN-def )

using m-rules by auto
}
next
{assume ij:(i,j) ∈ d then
have (i,i) ∈ e and i ∈ END i using assms e by (blast, simp add: intv2 )
with a0 have i ∈ BEGIN j by simp
with ij show ?thesis
apply (auto simp:BEGIN-def )

using d-rules by auto}
next
{assume ji:(j,i) ∈ d then have (i,j) ∈ d^−1 using d by simp
then obtain u v where ju:j‖u and uv:u‖v and iv:i‖v using d using ji

by blast
then have (v,i) ∈ m^−1 and v ∈ END i using m END-def by auto

with a0 ju uv have vj:(v,j) ∈ b^−1 and v ∈ BEGIN j using b by auto
with vj show ?thesis
apply (auto simp:BEGIN-def )

using b-rules by auto}

qed
qed

qed

lemma starts:
fixes i j
assumes I i and I j
shows ((i,j) ∈ s ∪ s^−1 ∪ e) = (BEGIN i = BEGIN j)
proof

assume a3 :(i,j) ∈ s ∪ s^−1 ∪ e show BEGIN i = BEGIN j
proof −
{ fix x assume x ∈ BEGIN i then have (x,i) ∈ ov ∪ s ∪ m ∪ f −1 ∪ d−1 ∪

e ∪ s−1 unfolding BEGIN-def by auto
hence x ∈ BEGIN j using a3 ovsmfidiesiOssie
by (auto simp:BEGIN-def )
} note c1 = this

{ fix x assume x ∈ BEGIN j then have xj:(x,j) ∈ ov ∪ s ∪ m ∪ f −1 ∪ d−1

∪ e ∪ s−1 unfolding BEGIN-def by auto
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then have x ∈ BEGIN i
apply (insert converseI [OF a3 ] xj)
apply (subst (asm) converse-Un)+
apply (subst (asm) converse-converse)
using ovsmfidiesiOssie
by (auto simp:BEGIN-def )
} note c2 = this

from c1 have BEGIN i ⊆ BEGIN j by auto
moreover with c2 have BEGIN j ⊆ BEGIN i by auto
ultimately show ?thesis by auto

qed
next

assume a4 :BEGIN i = BEGIN j
with assms have i ∈ BEGIN j and j ∈ BEGIN i using intv1 by auto
then have ij:(i,j) ∈ ov ∪ s ∪ m ∪ f^−1 ∪ d^−1 ∪ e ∪ s^−1 and ji:(j,i) ∈

ov ∪ s ∪ m ∪ f^−1 ∪ d^−1 ∪ e ∪ s^−1
unfolding BEGIN-def by auto
then have ijov:(i,j) /∈ ov
apply auto
using ov-rules by auto

from ij ji have ijm:(i,j) /∈ m
apply (simp-all, elim disjE , simp-all)
using ov-rules apply auto[13 ]

using s-rules apply auto[11 ]
using m-rules apply auto[9 ]

using f-rules apply auto[7 ]
using d-rules apply auto[5 ]

using m-rules by auto[4 ]

from ij ji have ijfi:(i,j) /∈ f^−1
apply (simp-all, elim disjE , simp-all)
using ov-rules apply auto[13 ]
using s-rules apply auto[11 ]
using m-rules apply auto[9 ]

using f-rules apply auto[7 ]
using d-rules apply auto[5 ]

using f-rules by auto[4 ]

from ij ji have ijdi:(i,j) /∈ d^−1
apply (simp-all, elim disjE , simp-all)
using ov-rules apply auto[13 ]
using s-rules apply auto[11 ]
using m-rules apply auto[9 ]

using f-rules apply auto[7 ]
using d-rules apply auto[5 ]

using d-rules by auto[4 ]
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from ij ijm ijov ijfi ijdi show (i, j) ∈ s ∪ s−1 ∪ e by auto

qed

lemma xj-set:x ∈ {a |a. (a, j) ∈ e ∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪ f −1 ∪ m−1} =
((x,j) ∈ e ∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪ f −1 ∪ m−1)
by blast

lemma ends:
fixes i j
assumes I i and I j
shows ((i,j) ∈ f ∪ f^−1 ∪ e) = (END i = END j)
proof

assume a3 :(i,j) ∈ f ∪ f^−1 ∪ e show END i = END j
proof −
{ fix x assume x ∈ END i then have (x,i) ∈ e ∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪

f −1 ∪ m−1 unfolding END-def by auto
then have x ∈ END j using a3 unfolding END-def
apply (subst xj-set)
using ceovisidiffimi-ffie-simp by simp

} note c1 =this

{ fix x assume x ∈ END j then have (x,j) ∈ e ∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪
f −1 ∪ m−1 unfolding END-def by auto

then have x ∈ END i using a3 unfolding END-def
by (metis Un-iff ceovisidiffimi-ffie-simp converse-iff eei mem-Collect-eq)

} note c2 = this

from c1 have END i ⊆ END j by auto
moreover with c2 have END j ⊆ END i by auto
ultimately show ?thesis by auto

qed
next
assume a4 :END i = END j
with assms have i ∈ END j and j ∈ END i using intv2 by auto
then have ij:(i,j) ∈ e ∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪ f −1 ∪ m−1 and ji:(j,i) ∈ e

∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪ f −1 ∪ m−1

unfolding END-def by auto
then have ijov:(i,j) /∈ ov^−1
apply (simp-all, elim disjE , simp-all)
using eov es ed efi ef em eov apply auto[13 ]
using ov-rules apply auto[11 ]
using s-rules apply auto[9 ]
using d-rules apply auto[7 ]

using f-rules apply auto[8 ]
using movi by auto

from ij ji have ijm:(i,j) /∈ m^−1
apply (simp-all, elim disjE , simp-all)
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using m-rules by auto

from ij ji have ijfi:(i,j) /∈ s^−1
apply (simp-all, elim disjE , simp-all)

using s-rules by auto

from ij ji have ijdi:(i,j) /∈ d^−1
apply (simp-all, elim disjE , simp-all)

using d-rules by auto

from ij ijm ijov ijfi ijdi show (i, j) ∈ f ∪ f −1 ∪ e by auto
qed

lemma before-irrefl:
fixes a
shows ¬ a � a
proof (rule ccontr , auto)

assume a0 :a � a
then have NEST a unfolding before-def by auto
then obtain i where i:a = BEGIN i ∨ a = END i unfolding NEST-def by

auto
from i show False
proof

assume a = BEGIN i
with a0 have BEGIN i � BEGIN i by simp
then obtain p q where p∈ BEGIN i and q ∈ BEGIN i and b:(p,q) ∈ b

unfolding before-def by auto
then have a1 :(p,i) ∈ ov ∪ s ∪ m ∪ f −1 ∪ d−1 ∪ e ∪ s−1 and a2 :(i,q) ∈

ov^−1 ∪ s^−1 ∪ m^−1 ∪ f ∪ d ∪ e ∪ s unfolding BEGIN-def
apply auto
using eei apply fastforce
by (simp add: e)+
with b show False
using piiq[of p i q]

using b-rules by safe fast+
next
assume a = END i
with a0 have END i � END i by simp

then obtain p q where p∈ END i and q ∈ END i and b:(p,q) ∈ b unfolding
before-def by auto

then have a1 :(p,i) ∈ e ∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪ f −1 ∪ m−1 and a2 :(q,i)
∈ e ∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪ f −1 ∪ m−1 unfolding END-def

by auto
with b show False
apply (subst (asm) converse-iff [THEN sym])
using cbi-alpha1ialpha4mi neq-bi-alpha1ialpha4mi relcomp.relcompI subsetCE

by blast
qed

qed
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lemma BEGIN-before:
fixes i j
assumes I i and I j
shows BEGIN i � BEGIN j = ((i,j) ∈ b ∪ m ∪ ov ∪ f −1 ∪ d−1)
proof

assume a3 :BEGIN i � BEGIN j
from a3 obtain p q where pa:p ∈ BEGIN i and qc:q ∈ BEGIN j and

pq:(p,q) ∈ b unfolding before-def by auto
then obtain r where p‖r and r‖q using b by auto
then have pr :(p,r) ∈ m and rq:(r ,q) ∈ m using m by auto
from pa have pi:(p,i) ∈ ov ∪ s ∪ m ∪ f −1 ∪ d−1 ∪ e ∪ s−1 unfolding

BEGIN-def by auto
moreover with pr have (r ,p) ∈ m^−1 by simp
ultimately have (r ,i) ∈ d ∪ f ∪ ov^−1 ∪ e ∪ f^−1 ∪ m^−1 ∪ b^−1 ∪ s ∪

s^−1
using cmiov cmis cmim cmifi cmidi cmisi
apply ( simp-all,elim disjE , auto)

by (simp add: e)

then have ir :(i,r) ∈ d^−1 ∪ f^−1 ∪ ov ∪ e ∪ f ∪ m ∪ b ∪ s^−1 ∪ s
by (metis (mono-tags, lifting) converseD converse-Un converse-converse eei)

from qc have (q,j) ∈ ov ∪ s ∪ m ∪ f −1 ∪ d−1 ∪ e ∪ s−1 unfolding
BEGIN-def by auto

with rq have rj:(r ,j) ∈ b ∪ s ∪ m
using m-ovsmfidiesi using contra-subsetD relcomp.relcompI by blast

with ir have c1 :(i,j) ∈ b ∪ m ∪ ov ∪ f −1 ∪ d−1 ∪ d ∪ e ∪ s ∪ s−1

using difibs by blast
{assume (i,j) ∈ s∨ (i,j)∈s^−1 ∨ (i,j) ∈ e then have BEGIN i = BEGIN j
using starts Un-iff assms(1 ) assms(2 ) by blast
with a3 have False by (simp add: before-irrefl)}

from c1 have c1 ′:(i,j) ∈ b ∪ m ∪ ov ∪ f −1 ∪ d−1 ∪ d
using ‹(i, j) ∈ s ∨ (i, j) ∈ s−1 ∨ (i, j) ∈ e =⇒ False› by blast

{assume (i,j) ∈ d with pi have (p,j) ∈ e ∪ s ∪ d ∪ ov ∪ ov^−1 ∪ s^−1 ∪
f ∪ f^−1 ∪ d^−1

using ovsmfidiesi-d using relcomp.relcompI subsetCE by blast
with pq have (q,j) ∈ b^−1 ∪ d ∪ f ∪ ov^−1 ∪ m^−1
apply (subst (asm) converse-iff [THEN sym])
using cbi-esdovovisiffidi by blast
with qc have False unfolding BEGIN-def
apply (subgoal-tac (q, j) ∈ ov ∪ s ∪ m ∪ f −1 ∪ d−1 ∪ e ∪ s−1)

prefer 2
apply simp
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using neq-beta2i-alpha2alpha5m by auto
}

with c1 ′ show ((i, j) ∈ b ∪ m ∪ ov ∪ f −1 ∪ d−1) by auto
next

assume (i, j) ∈ b ∪ m ∪ ov ∪ f −1 ∪ d−1

then show BEGIN i � BEGIN j
proof ( simp-all,elim disjE , simp-all)
assume (i,j) ∈ b thus ?thesis using intv1 using before-def NEST-BEGIN

assms by metis
next
assume iu:(i,j) ∈ m
obtain l where li:(l,i) ∈ m using M3 m meets-wd assms by blast
with iu have (l,j) ∈ b using cmm by auto
moreover from li have l ∈ (BEGIN i) using BEGIN-def by auto
ultimately show ?thesis using intv1 before-def NEST-BEGIN assms by

blast
next
assume iu:(i,j) ∈ ov
obtain l where li:(l,i) ∈ m using M3 m meets-wd assms by blast
with iu have (l,j) ∈ b using cmov by auto
moreover from li have l ∈ (BEGIN i) using BEGIN-def by auto
ultimately show ?thesis using intv1 before-def NEST-BEGIN assms by

blast
next
assume iu:(j,i) ∈ f
obtain l where li:(l,i) ∈ m using M3 m meets-wd assms by blast
with iu have (l,j) ∈ b using cmfi by auto
moreover from li have l ∈ (BEGIN i) using BEGIN-def by auto
ultimately show ?thesis using intv1 before-def NEST-BEGIN assms by

blast
next
assume iu:(j,i) ∈ d
obtain l where li:(l,i) ∈ m using M3 m meets-wd assms by blast
with iu have (l,j) ∈ b using cmdi by auto
moreover from li have l ∈ (BEGIN i) using BEGIN-def by auto
ultimately show ?thesis using intv1 before-def NEST-BEGIN assms by

blast

qed
qed

lemma BEGIN-END-before:
fixes i j
assumes I i and I j
shows BEGIN i � END j = ((i,j) ∈ e ∪ b ∪ m ∪ ov ∪ ov^−1 ∪ s ∪ s^−1 ∪ f
∪ f −1 ∪ d ∪ d−1)
proof

assume a3 :BEGIN i � END j
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then obtain p q where pa:p ∈ BEGIN i and qc:q ∈ END j and pq:(p,q) ∈
b unfolding before-def by auto

then obtain r where p‖r and r‖q using b by auto
then have pr :(p,r) ∈ m and rq:(r ,q) ∈ m using m by auto
from pa have pi:(p,i) ∈ ov ∪ s ∪ m ∪ f −1 ∪ d−1 ∪ e ∪ s−1 unfolding

BEGIN-def by auto
moreover with pr have (r ,p) ∈ m^−1 by simp
ultimately have (r ,i) ∈ d ∪ f ∪ ov^−1 ∪ e ∪ f^−1 ∪ m^−1 ∪ b^−1 ∪ s ∪

s^−1 using cmiov cmis cmim cmifi cmidi e cmisi
by ( simp-all,elim disjE , auto simp:e)

then have ir :(i,r) ∈ d^−1 ∪ f^−1 ∪ ov ∪ e ∪ f ∪ m ∪ b ∪ s^−1 ∪ s
by (metis (mono-tags, lifting) converseD converse-Un converse-converse eei)

from qc have (q,j) ∈ e ∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪ f −1 ∪ m−1 unfolding
END-def by auto

with rq have rj:(r ,j) ∈ m ∪ ov ∪ s ∪ d ∪ b ∪ f^−1 ∪ f ∪ e using
cm-alpha1ialpha4mi by blast

with ir show c1 :(i,j) ∈ e ∪ b ∪ m ∪ ov ∪ ov^−1 ∪ s ∪ s^−1 ∪ f ∪ f −1 ∪
d ∪ d−1

using difimov by blast
next
assume a4 :(i, j) ∈ e ∪ b ∪ m ∪ ov ∪ ov−1 ∪ s ∪ s−1 ∪ f ∪ f −1 ∪ d ∪ d−1

then show BEGIN i � END j
proof ( simp-all,elim disjE , simp-all)

assume (i,j) ∈ e
obtain l k where l:l‖i and i‖k using M3 meets-wd assms by blast
with ‹(i,j) ∈ e› have k:j‖k by (simp add: e)
from l k have (l,i) ∈ m and (k,j) ∈ m^−1 using m by auto
then have l ∈ BEGIN i and k ∈ END j using BEGIN-def END-def

by auto
moreover from l ‹i‖k› have (l,k) ∈ b using b by auto

ultimately show ?thesis using before-def assms NEST-BEGIN NEST-END
by blast

next
assume (i,j) ∈ b

then show ?thesis using before-def assms NEST-BEGIN NEST-END
intv1 [of i] intv2 [of j] by auto

next
assume (i,j) ∈ m
obtain l where l‖i using M3 assms by blast
then have l∈BEGIN i using m BEGIN-def by auto
moreover from ‹(i,j)∈m› ‹l‖i› have (l,j) ∈ b using b m by blast

ultimately show ?thesis using intv2 [of j] assms NEST-BEGIN
NEST-END before-def by blast

next
assume (i,j) ∈ ov
then obtain l k where li:l‖i and lk:l‖k and ku:k‖j using ov by blast
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from li have l ∈ BEGIN i using m BEGIN-def by auto
moreover from lk ku have (l,j) ∈ b using b by auto

ultimately show ?thesis using intv2 [of j] assms NEST-BEGIN
NEST-END before-def by blast

next
assume (j,i) ∈ ov
then obtain l k v where uv:j‖v and lk:l‖k and kv:k‖v and li:l‖i using

ov by blast
from li have l ∈ BEGIN i using m BEGIN-def by auto
moreover from uv have v ∈ END j using m END-def by auto
moreover from lk kv have (l,v) ∈ b using b by auto

ultimately show ?thesis using assms NEST-BEGIN NEST-END
before-def by blast

next
assume (i,j) ∈ s
then obtain v v ′ where iv:i‖v and vvp:v‖v ′ and j‖v ′ using s by blast
then have v ′ ∈ END j using END-def m by auto
moreover from iv vvp have (i,v ′) ∈ b using b by auto

ultimately show ?thesis using intv1 [of i] assms NEST-BEGIN
NEST-END before-def by blast

next
assume (j,i) ∈ s
then obtain l v where li:l‖i and lu:l‖j and j‖v using s by blast
then have v ∈ END j using m END-def by auto
moreover from li have l ∈ BEGIN i using m BEGIN-def by auto
moreover from lu ‹j‖v› have (l,v) ∈ b using b by auto

ultimately show ?thesis using assms NEST-BEGIN NEST-END
before-def by blast

next
assume (i,j) : f
then obtain l v where li:l‖i and iv:i‖v and j‖v using f by blast
then have v ∈ END j using m END-def by auto
moreover from li have l ∈ BEGIN i using m BEGIN-def by auto
moreover from iv li have (l,v) ∈ b using b by auto

ultimately show ?thesis using assms NEST-BEGIN NEST-END
before-def by blast

next
assume (j,i) ∈ f
then obtain l v where li:l‖i and iv:i‖v and j‖v using f by blast
then have v ∈ END j using m END-def by auto
moreover from li have l ∈ BEGIN i using m BEGIN-def by auto
moreover from iv li have (l,v) ∈ b using b by auto

ultimately show ?thesis using assms NEST-BEGIN NEST-END
before-def by blast

next
assume (i,j) : d
then obtain k v where ik:i‖k and kv:k‖v and j‖v using d by blast
then have v ∈ END j using END-def m by auto
moreover from ik kv have (i,v) ∈ b using b by auto
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ultimately show ?thesis using intv1 [of i] assms NEST-BEGIN
NEST-END before-def by blast

next
assume (j,i) ∈ d
then obtain l k where l‖i and lk:l‖k and ku:k‖j using d by blast
then have l ∈ BEGIN i using BEGIN-def m by auto
moreover from lk ku have (l,j) ∈ b using b by auto

ultimately show ?thesis using intv2 [of j] assms NEST-BEGIN
NEST-END before-def by blast

qed
qed

lemma END-BEGIN-before:
fixes i j
assumes I i and I j
shows END i � BEGIN j = ((i,j) ∈ b)
proof

assume a3 :END i � BEGIN j
from a3 obtain p q where pa:p ∈ END i and qc:q ∈ BEGIN j and pq:(p,q)

∈ b unfolding before-def by auto
then obtain r where p‖r and r‖q using b by auto
then have pr :(p,r) ∈ m and rq:(r ,q) ∈ m using m by auto
from pa have pi:(p,i) ∈ e ∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪ f −1 ∪ m−1 unfolding

END-def by auto
moreover with pr have (r ,p) ∈ m^−1 by simp
ultimately have (r ,i) ∈ m^−1 ∪ b^−1 using e cmiovi cmisi cmidi cmif

cmifi cmimi
by ( simp-all,elim disjE , auto simp:e)

then have ir :(i,r) ∈ m ∪ b by simp

from qc have (q,j) ∈ ov ∪ s ∪ m ∪ f −1 ∪ d−1 ∪ e ∪ s−1 unfolding
BEGIN-def by auto

with rq have rj:(r ,j) ∈ b ∪ m using cmov cms cmm cmfi cmdi e cmsi
by (simp-all, elim disjE , auto simp:e)

with ir show (i,j) ∈ b using cmb cmm cbm cbb by auto

next
assume (i,j) ∈ b thus END i � BEGIN j using intv1 [of j] intv2 [of i] assms

before-def NEST-END NEST-BEGIN by auto
qed

lemma END-END-before:
fixes i j
assumes I i and I j
shows END i � END j = ((i,j) ∈ b ∪ m ∪ ov ∪ s ∪ d)
proof

assume a3 :END i � END j
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from a3 obtain p q where pa:p ∈ END i and qc:q ∈ END j and pq:(p,q) ∈
b unfolding before-def by auto

then obtain r where p‖r and r‖q using b by auto
then have pr :(p,r) ∈ m and rq:(r ,q) ∈ m using m by auto
from pa have pi:(p,i) ∈ e ∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪ f −1 ∪ m−1 unfolding

END-def by auto
moreover with pr have (r ,p) ∈ m^−1 by simp
ultimately have (r ,i) ∈ m^−1 ∪ b^−1 using e cmiovi cmisi cmidi cmif

cmifi cmimi
by ( simp-all,elim disjE , auto simp:e)

then have ir :(i,r) ∈ m ∪ b by simp

from qc have (q,j) ∈ e ∪ ov−1 ∪ s−1 ∪ d−1 ∪ f ∪ f −1 ∪ m−1 unfolding
END-def by auto

with rq have rj:(r ,j) ∈ m ∪ ov ∪ s ∪ d ∪ b ∪ f^−1 ∪ e ∪ f using e cmovi
cmsi cmdi cmf cmfi cmmi

by (simp-all, elim disjE , auto simp:e)

with ir show (i,j) ∈ b ∪ m ∪ ov ∪ s ∪ d using cmm cmov cms cmd cmb
cmfi e cmf cbm cbov cbs cbd cbb cbfi cbf

by (simp-all, elim disjE , auto simp:e)
next
assume (i, j) ∈ b ∪ m ∪ ov ∪ s ∪ d
then show END i � END j
proof ( simp-all,elim disjE , simp-all)
assume (i,j) ∈ b thus ?thesis using intv2 [of i] intv2 [of j] assms NEST-END

before-def by blast
next
assume (i,j) ∈ m
obtain v where j‖v using M3 assms by blast
with ‹(i,j) ∈ m› have (i,v) ∈b using b m by blast
moreover from ‹j‖v› have v ∈ END j using m END-def by auto

ultimately show ?thesis using intv2 [of i] assms NEST-END before-def by
blast

next
assume (i,j) : ov
then obtain v v ′ where iv:i‖v and vvp:v‖v ′ and j‖v ′ using ov by blast
then have v ′ ∈ END j using m END-def by auto
moreover from iv vvp have (i,v ′) ∈ b using b by auto

ultimately show ?thesis using intv2 [of i] assms NEST-END before-def by
blast

next
assume (i,j) ∈ s
then obtain v v ′ where iv:i‖v and vvp:v‖v ′ and j‖v ′ using s by blast
then have v ′ ∈ END j using m END-def by auto
moreover from iv vvp have (i,v ′) ∈ b using b by auto

ultimately show ?thesis using intv2 [of i] assms NEST-END before-def by
blast
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next
assume (i,j) ∈ d
then obtain v v ′ where iv:i‖v and vvp:v‖v ′ and j‖v ′ using d by blast
then have v ′ ∈ END j using m END-def by auto
moreover from iv vvp have (i,v ′) ∈ b using b by auto

ultimately show ?thesis using intv2 [of i] assms NEST-END before-def by
blast

qed
qed

lemma overlaps:
assumes I i and I j
shows (i,j) ∈ ov = ((BEGIN i � BEGIN j) ∧ (BEGIN j � END i) ∧ (END i
� END j))
proof

assume a:(i,j) ∈ ov
then obtain n t q u v where nt:n‖t and tj:t‖j and tq:t‖q and qu:q‖u and

iu:i‖u and uv:u‖v and jv:j‖v and n‖i using ov by blast
then have ni:(n,i) ∈ m using m by blast
then have n:n ∈ BEGIN i unfolding BEGIN-def by auto
from nt tj have nj:(n,j) ∈ b using b by auto
have j ∈ BEGIN j using assms(2 ) by (simp add: intv1 )
with assms n nj have c1 :BEGIN i � BEGIN j unfolding before-def using

NEST-BEGIN by blast

from tj have a1 :(t,j) ∈ m and a2 :t ∈ BEGIN j using m BEGIN-def by auto
from iu have (u,i) ∈ m^−1 and u ∈ END i using m END-def by auto
with assms tq qu a2 have c2 :BEGIN j � END i unfolding before-def using

b NEST-BEGIN NEST-END by blast

have i ∈ END i by (simp add: assms intv2 )
moreover with jv have v ∈ END j using m END-def by auto
moreover with iu uv have (i,v) ∈ b using b by auto
ultimately have c3 :END i � END j using assms NEST-END before-def by

blast

show ((BEGIN i � BEGIN j) ∧ (BEGIN j � END i) ∧ (END i � END j))
using c1 c2 c3 by simp

next
assume a0 :((BEGIN i � BEGIN j) ∧ (BEGIN j � END i) ∧ (END i �

END j))
then have (i,j) ∈ b ∪ m ∪ ov ∪ f −1 ∪ d−1 ∧ (i,j) ∈ e ∪ b^−1 ∪ m^−1 ∪

ov^−1 ∪ ov ∪ s^−1 ∪ s ∪ f^−1 ∪ f ∪ d^−1 ∪ d
∧

(i,j) ∈ b ∪ m ∪ ov ∪ s ∪ d
using BEGIN-before BEGIN-END-before END-END-before assms
by (metis (no-types, lifting) converseD converse-Un converse-converse eei)
then have (i,j) ∈ (b ∪ m ∪ ov ∪ f −1 ∪ d−1) ∩ (e ∪ b^−1 ∪ m^−1 ∪ ov^−1
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∪ ov ∪ s^−1 ∪ s ∪ f^−1 ∪ f ∪ d^−1 ∪ d) ∩ (b ∪ m ∪ ov ∪ s ∪ d)
by (auto)
then show (i,j) ∈ ov
using inter-ov by blast

qed

7.3 Ordering of nests
class strict-order =
fixes ls:: ′a nest ⇒ ′a nest ⇒ bool
assumes

irrefl:¬ ls a a and
trans:ls a c =⇒ ls c g =⇒ ls a g and
asym:ls a c =⇒ ¬ ls c a

class total-strict-order = strict-order +
assumes trichotomy: a = c =⇒ (¬ (ls a c) ∧ ¬ (ls c a))

interpretation nest:total-strict-order (�)
proof
{ fix a:: ′a nest
show ¬ a � a
by (simp add: before-irrefl) } note irrefl-nest = this

{fix a c:: ′a nest
assume a = c
show ¬ a � c ∧ ¬ c � a
by (simp add: ‹a = c› irrefl-nest)} note trichotomy-nest = this

{fix a c g:: ′a nest
assume a:a � c and c: c � g
show a � g
proof −

from a c have na:NEST a and nc:NEST c and ng:NEST g unfolding be-
fore-def by auto

from na obtain i where i:a = BEGIN i ∨ a = END i and wdi:I i unfolding
NEST-def by auto

from nc obtain j where j:c = BEGIN j ∨ c = END j and wdj:I j unfolding
NEST-def by auto

from ng obtain u where u:g = BEGIN u ∨ g = END u and wdu:I u
unfolding NEST-def by auto

from i j u show ?thesis
proof (elim disjE , auto)

assume abi:a = BEGIN i and cbj:c = BEGIN j and gbu:g = BEGIN u
from abi cbj a wdi wdj have (i,j) ∈ b ∪ m ∪ ov ∪ f −1 ∪ d−1 using

BEGIN-before by auto
moreover from cbj gbu c wdj wdu have (j,u) ∈ b ∪ m ∪ ov ∪ f −1 ∪ d−1

using BEGIN-before by auto
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ultimately have c1 :(i,u) ∈ b ∪ m ∪ ov ∪ f^−1 ∪ d^−1
using cbeta2-beta2 by blast

then have a � g by (simp add: BEGIN-before abi gbu wdi wdu)

thus BEGIN i � BEGIN u using abi gbu by auto
next
assume abi:a = BEGIN i and cbj:c = BEGIN j and geu:g = END u

from abi cbj a wdi wdj have (i,j) ∈ b ∪ m ∪ ov ∪ f −1 ∪ d−1 using
BEGIN-before by auto

moreover from cbj geu c wdj wdu have (j,u) : e ∪ b ∪ m ∪ ov ∪ ov−1 ∪ s
∪ s−1 ∪ f ∪ f −1 ∪ d ∪ d−1 using BEGIN-END-before by auto

ultimately have (i,u) ∈ e ∪ b ∪ m ∪ ov ∪ ov−1 ∪ s ∪ s−1 ∪ f ∪ f −1 ∪ d ∪
d−1

using cbeta2-gammabm by blast

then have a � g
by (simp add: BEGIN-END-before abi geu wdi wdj wdu)

thus BEGIN i � END u using abi geu by auto
next
assume abi:a = BEGIN i and cej:c = END j and gbu:g = BEGIN u
from abi cej a wdi wdj have ij:(i,j) : e ∪ b ∪ m ∪ ov ∪ ov−1 ∪ s ∪ s−1 ∪ f

∪ f −1 ∪ d ∪ d−1 using BEGIN-END-before by auto
from cej gbu c wdj wdu have (j,u) ∈ b using END-BEGIN-before by auto
with ij have (i,u) ∈ b ∪ m ∪ ov ∪ f^−1 ∪ d^−1
using ebmovovissifsiddib by ( auto)

thus BEGIN i � BEGIN u
by (simp add: BEGIN-before abi gbu wdi wdu)

next
assume abi:a = BEGIN i and cej:c = END j and geu:g = END u
with a have (i,j) ∈ e ∪ b ∪ m ∪ ov ∪ ov−1 ∪ s ∪ s−1 ∪ f ∪ f −1 ∪ d ∪ d−1

using BEGIN-END-before wdi wdj by auto
moreover from cej geu c wdj wdu have (j,u) ∈ b ∪ m ∪ ov ∪ s ∪ d
using END-END-before by auto
ultimately have (i,u) ∈ b ∪ m ∪ ov ∪ s ∪ d ∪ f^−1 ∪ d^−1 ∪ ov^−1 ∪

s−1 ∪ f ∪ e
using ebmovovissiffiddibmovsd by blast

thus BEGIN i � END u using BEGIN-END-before wdi wdu by auto
next
assume aei:a = END i and cbj:c = BEGIN j and gbu:g = BEGIN u
from a aei cbj wdi wdj have (i,j) ∈ b
using END-BEGIN-before by auto
moreover from c cbj gbu wdj wdu have (j,u) ∈ b ∪ m ∪ ov ∪ f −1 ∪ d−1

using BEGIN-before by auto
ultimately have (i,u) : b using cbb cbm cbov cbfi cbdi
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by (simp-all, elim disjE , auto)
thus END i � BEGIN u using END-BEGIN-before wdi wdu by auto

next
assume aei:a = END i and cbj:c = BEGIN j and geu:g = END u
from a aei cbj wdi wdj have (i,j) ∈ b
using END-BEGIN-before by auto
moreover from c cbj geu wdj wdu have (j,u) ∈ e ∪ b ∪ m ∪ ov ∪ ov−1 ∪ s

∪ s−1 ∪ f ∪ f −1 ∪ d ∪ d−1

using BEGIN-END-before by auto
ultimately have (i,u) ∈ b ∪ m ∪ ov ∪ s ∪ d
using bebmovovissiffiddi by blast
thus END i � END u using END-END-before wdi wdu by auto

next
assume aei:a = END i and cej:c = END j and gbu:g = BEGIN u
from aei cej wdi wdj have (i,j) ∈ b ∪ m ∪ ov ∪ s ∪ d using END-END-before

a by auto
moreover from cej gbu c wdj wdu have (j,u) ∈ b using END-BEGIN-before

by auto
ultimately have (i,u) ∈ b
using cbb cmb covb csb cdb
by (simp-all, elim disjE , auto)
thus END i � BEGIN u using END-BEGIN-before wdi wdu by auto

next
assume aei:a = END i and cej:c = END j and geu:g = END u

from aei cej wdi wdj have (i,j) ∈ b ∪ m ∪ ov ∪ s ∪ d using END-END-before
a by auto

moreover from cej geu c wdj wdu have (j,u) ∈ b ∪ m ∪ ov ∪ s ∪ d using
END-END-before by auto

ultimately have (i,u) ∈ b ∪ m ∪ ov ∪ s ∪ d
using calpha1-alpha1 by auto
thus END i � END u using END-END-before wdi wdu by auto

qed
qed} note trans-nest = this

{ fix a c:: ′a nest
assume a:a � c
show ¬ c � a
apply (rule ccontr , auto)
using a irrefl-nest trans-nest by blast}

qed

end
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