
Algebraic Numbers in Isabelle/HOL∗

René Thiemann, Akihisa Yamada, and Sebastiaan Joosten

September 13, 2023

Abstract

Based on existing libraries for matrices, factorization of integer
polynomials, and Sturm’s theorem, we formalized algebraic numbers in
Isabelle/HOL. Our development serves as an implementation for real
and complex numbers, and it admits to compute roots and completely
factorize real and complex polynomials, provided that all coefficients
are rational numbers. Moreover, we provide two implementations to
display algebraic numbers, an injective one that reveals the represent-
ing polynomial, or an approximative one that only displays a fixed
amount of digits.

To this end, we mechanized several results on resultants.

Contents
1 Introduction 3

2 Auxiliary Algorithms 5

3 Algebraic Numbers – Excluding Addition and Multiplica-
tion 5
3.1 Polynomial Evaluation of Integer and Rational Polynomials

in Fields. 8
3.2 Algebraic Numbers – Definition, Inverse, and Roots 8

4 Resultants 28
4.1 Bivariate Polynomials . 28

4.1.1 Evaluation of Bivariate Polynomials 29
4.1.2 Swapping the Order of Variables 31

4.2 Resultant . 39
4.2.1 Sylvester matrices and vector representation of poly-

nomials . 39
4.2.2 Homomorphism and Resultant 47

∗Supported by FWF (Austrian Science Fund) project Y757.

1

4.2.3 Resultant as Polynomial Expression 47
4.2.4 Resultant as Nonzero Polynomial Expression 56

5 Algebraic Numbers: Addition and Multiplication 61
5.1 Addition of Algebraic Numbers 61

5.1.1 poly-add has desired root 62
5.1.2 poly-add is nonzero . 64
5.1.3 Summary for addition 69

5.2 Division of Algebraic Numbers 72
5.2.1 Summary for division 76

5.3 Multiplication of Algebraic Numbers 77
5.4 Summary: Closure Properties of Algebraic Numbers 77
5.5 More on algebraic integers . 78

6 Separation of Roots: Sturm 89
6.1 Interface for Separating Roots 90
6.2 Implementing Sturm on Rational Polynomials 93

7 Getting Small Representative Polynomials via Factorization 96

8 The minimal polynomial of an algebraic number 103

9 Algebraic Numbers – Preliminary Implementation 106

10 Cauchy’s Root Bound 114

11 Real Algebraic Numbers 118
11.1 Real Algebraic Numbers – Innermost Layer 120

11.1.1 Basic Definitions . 120
11.2 Real Algebraic Numbers = Rational + Irrational Real Alge-

braic Numbers . 124
11.2.1 Definitions and Algorithms on Raw Type 124
11.2.2 Definitions and Algorithms on Quotient Type 125
11.2.3 Sign . 125
11.2.4 Normalization: Bounds Close Together 126
11.2.5 Comparisons . 137
11.2.6 Negation . 138
11.2.7 Inverse . 140
11.2.8 Floor . 141
11.2.9 Generic Factorization and Bisection Framework 144
11.2.10 Addition . 153
11.2.11 Multiplication . 159
11.2.12 Root . 165
11.2.13 Embedding of Rational Numbers 173
11.2.14 Definitions and Algorithms on Type with Invariant . . 181

2

11.3 Real Algebraic Numbers as Implementation for Real Numbers 191

12 Real Roots 192

13 Complex Roots of Real Valued Polynomials 201
13.1 Compare Instance for Complex Numbers 211

14 Interval Arithmetic 212
14.1 Syntactic Class Instantiations 213
14.2 Class Instantiations . 214
14.3 Membership . 215
14.4 Convergence . 217
14.5 Complex Intervals . 219

15 Complex Algebraic Numbers 223
15.1 Complex Roots . 224

16 Show for Real Algebraic Numbers – Interface 245

17 Show for Real (Algebraic) Numbers – Approximate Repre-
sentation 246

18 Show for Real (Algebraic) Numbers – Unique Representa-
tion 247

19 Algebraic Number Tests 250
19.1 Stand-Alone Examples . 250
19.2 Example Application: Compute Norms of Eigenvalues 251

20 Explicit Constants for External Code 251
20.1 Operations on Real Algebraic Numbers 251
20.2 Operations on Complex Algebraic Numbers 252
20.3 Export Constants in Haskell 253

1 Introduction
Isabelle’s previous implementation of irrational numbers was limited: it only
admitted numbers expressed in the form “a+ b

√
c” for a, b, c ∈ Q, and even

computations like
√
2 ·
√
3 led to a runtime error [3].

In this work, we provide full support for the real algebraic numbers, i.e.,
the real numbers that are expressed as roots of non-zero integer polynomials,
and we also partially support complex algebraic numbers.

Most of the results on algebraic numbers have been taken from a text-
book by Bhubaneswar Mishra [2]. Also Wikipedia provided valuable help.

3

Concerning the real algebraic numbers, we first had to prove that they
form a field. To show that the addition and multiplication of real alge-
braic numbers are also real algebraic numbers, we formalize the theory of
resultants, which are the determinants of specific matrices, where the size
of these matrices depend on the degree of the polynomials. To this end, we
utilized the matrix library provided in the Jordan-Normal-Form AFP-entry
[4] where the matrix dimension can arbitrarily be chosen at runtime.

Given real algebraic numbers x and y expressed as the roots of polynomi-
als, we compute a polynomial that has x+y or x ·y as its root via resultants.
In order to guarantee that the resulting polynomial is non-zero, we needed
the result that multivariate polynomials over fields form a unique factoriza-
tion domain (UFD). To this end, we initially proved that polynomials over
some UFD are again a UFD, relying upon results in HOL-algebra.

When performing actual computations with algebraic numbers, it is im-
portant to reduce the degree of the representing polynomials. To this end,
we use the existing Berlekamp-Zassenhaus factorization algorithm. This is
crucial for the default show-function for real algebraic numbers which re-
quires the unique minimal polynomial representing the algebraic number –
but an alternative which displays only an approximative value is also avail-
able.

In order to support tests on whether a given algebraic number is a ra-
tional number, we also make use of the fact that we compute the minimal
polynomial.

The formalization of Sturm’s method [1] was crucial to separate the
different roots of a fixed polynomial. We could nearly use it as it is, and
just copied some function definition so that Sturm’s method now is available
to separate the real roots of rational polynomial, where all computations are
now performed over Q.

With all the mentioned ingredients we implemented all arithmetic oper-
ations on real algebraic numbers, i.e., addition, subtraction, multiplication,
division, comparison, n-th root, floor- and ceiling, and testing on member-
ship in Q. Moreover, we provide a method to create real algebraic numbers
from a given rational polynomial, a method which computes precisely the
set of real roots of a rational polynomial.

The absence of an equivalent to Sturm’s method for the complex num-
bers in Isabelle/HOL prevented us from having native support for complex
algebraic numbers. Instead, we represent complex algebraic numbers as
their real and imaginary part: note that a complex number is algebraic if
and only if both the real and the imaginary part are real algebraic numbers.
This equivalence also admitted us to design an algorithm which computes
all complex roots of a rational polynomial. It first constructs a set of poly-
nomials which represent all real and imaginary parts of all complex roots,
yielding a superset of all roots, and afterwards the set just is just filtered.

4

By the fundamental theorem of algebra, we then also have a factorization
algorithm for polynomials over C with rational coefficients.

Finally, for factorizing a rational polynomial over R, we first factorize it
over C, and then combine each pair of complex conjugate roots.

As future it would be interesting to include the result that the set of
complex algebraic numbers is algebraically closed, i.e., at the momemnt
we are limited to determine the complex roots of a polynomial over Q,
and cannot determine the real or complex roots of an polynomial having
arbitrary algebraic coefficients.

Finally, an analog to Sturm’s method for the complex numbers would be
welcome, in order to have a smaller representation: for instance, currently
the complex roots of 1 + x + x3 are computed as “root #1 of 1 + x + x3”,
“(root #1 of −1

8 + 1
4x + x3)+(root #1 of −31

64 + 9
16x

2 − 3
2x

4 + x6)i”, and
“(root #1 of −1

8 + 1
4x+ x3)+(root #2 of −31

64 + 9
16x

2 − 3
2x

4 + x6)i”.

2 Auxiliary Algorithms

3 Algebraic Numbers – Excluding Addition and
Multiplication

This theory contains basic definition and results on algebraic numbers,
namely that algebraic numbers are closed under negation, inversion, n-th
roots, and that every rational number is algebraic. For all of these closure
properties, corresponding polynomial witnesses are available.

Moreover, this theory contains the uniqueness result, that for every alge-
braic number there is exactly one content-free irreducible polynomial with
positive leading coefficient for it. This result is stronger than similar ones
which you find in many textbooks. The reason is that here we do not require
a least degree construction.

This is essential, since given some content-free irreducible polynomial for
x, how should we check whether the degree is optimal. In the formalized
result, this is not required. The result is proven via GCDs, and that the
GCD does not change when executed on the rational numbers or on the
reals or complex numbers, and that the GCD of a rational polynomial can
be expressed via the GCD of integer polynomials.

Many results are taken from the textbook [2, pages 317ff].
theory Algebraic-Numbers-Prelim
imports

HOL−Computational-Algebra.Fundamental-Theorem-Algebra
Polynomial-Interpolation.Newton-Interpolation
Polynomial-Factorization.Gauss-Lemma
Berlekamp-Zassenhaus.Unique-Factorization-Poly
Polynomial-Factorization.Square-Free-Factorization

5

begin

lemma primitive-imp-unit-iff :
fixes p :: ′a :: {comm-semiring-1 ,semiring-no-zero-divisors} poly
assumes pr : primitive p
shows p dvd 1 ←→ degree p = 0

proof
assume degree p = 0
from degree0-coeffs[OF this] obtain p0 where p: p = [:p0 :] by auto
then have ∀ c ∈ set (coeffs p). p0 dvd c by (simp add: cCons-def)
with pr have p0 dvd 1 by (auto dest: primitiveD)
with p show p dvd 1 by auto

next
assume p dvd 1
then show degree p = 0 by (auto simp: poly-dvd-1)

qed

lemma dvd-all-coeffs-imp-dvd:
assumes ∀ a ∈ set (coeffs p). c dvd a shows [:c:] dvd p

proof (insert assms, induct p)
case 0
then show ?case by simp

next
case (pCons a p)
have pCons a p = [:a:] + pCons 0 p by simp
also have [:c:] dvd ...
proof (rule dvd-add)

from pCons show [:c:] dvd [:a:] by (auto simp: cCons-def)
from pCons have [:c:] dvd p by auto
from Rings.dvd-mult[OF this]
show [:c:] dvd pCons 0 p by (subst pCons-0-as-mult)

qed
finally show ?case.

qed

lemma irreducible-content:
fixes p :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors} poly
assumes irreducible p shows degree p = 0 ∨ primitive p

proof(rule ccontr)
assume not: ¬?thesis
then obtain c where c1 : ¬c dvd 1 and ∀ a ∈ set (coeffs p). c dvd a by (auto

elim: not-primitiveE)
from dvd-all-coeffs-imp-dvd[OF this(2)]
obtain r where p: p = r ∗ [:c:] by (elim dvdE , auto)
from irreducibleD[OF assms this] have r dvd 1 ∨ [:c:] dvd 1 by auto
with c1 have r dvd 1 unfolding const-poly-dvd-1 by auto
then have degree r = 0 unfolding poly-dvd-1 by auto
with p have degree p = 0 by auto
with not show False by auto

6

qed

lemma linear-irreducible-field:
fixes p :: ′a :: field poly
assumes deg: degree p = 1 shows irreducible p

proof (intro irreducibleI)
from deg show p0 : p 6= 0 by auto
from deg show ¬ p dvd 1 by (auto simp: poly-dvd-1)
fix a b assume p: p = a ∗ b
with p0 have a0 : a 6= 0 and b0 : b 6= 0 by auto
from degree-mult-eq[OF this, folded p] assms
consider degree a = 1 degree b = 0 | degree a = 0 degree b = 1 by force
then show a dvd 1 ∨ b dvd 1

by (cases; insert a0 b0 , auto simp: primitive-imp-unit-iff)
qed

lemma linear-irreducible-int:
fixes p :: int poly
assumes deg: degree p = 1 and cp: content p dvd 1
shows irreducible p

proof (intro irreducibleI)
from deg show p0 : p 6= 0 by auto
from deg show ¬ p dvd 1 by (auto simp: poly-dvd-1)
fix a b assume p: p = a ∗ b
note ∗ = cp[unfolded p is-unit-content-iff , unfolded content-mult]
have a1 : content a dvd 1 and b1 : content b dvd 1

using content-ge-0-int[of a] pos-zmult-eq-1-iff-lemma[OF ∗] ∗ by (auto simp:
abs-mult)

with p0 have a0 : a 6= 0 and b0 : b 6= 0 by auto
from degree-mult-eq[OF this, folded p] assms
consider degree a = 1 degree b = 0 | degree a = 0 degree b = 1 by force
then show a dvd 1 ∨ b dvd 1

by (cases; insert a1 b1 , auto simp: primitive-imp-unit-iff)
qed

lemma irreducible-connect-rev:
fixes p :: ′a :: {comm-semiring-1 ,semiring-no-zero-divisors} poly
assumes irr : irreducible p and deg: degree p > 0
shows irreducibled p

proof(intro irreducibledI deg)
fix q r
assume degq: degree q > 0 and diff : degree q < degree p and p: p = q ∗ r
from degq have nu: ¬ q dvd 1 by (auto simp: poly-dvd-1)
from irreducibleD[OF irr p] nu have r dvd 1 by auto
then have degree r = 0 by (auto simp: poly-dvd-1)
with degq diff show False unfolding p using degree-mult-le[of q r] by auto

qed

7

3.1 Polynomial Evaluation of Integer and Rational Polyno-
mials in Fields.

abbreviation ipoly where ipoly f x ≡ poly (of-int-poly f) x

lemma poly-map-poly-code[code-unfold]: poly (map-poly h p) x = fold-coeffs (λ a
b. h a + x ∗ b) p 0

by (induct p, auto)

abbreviation real-of-int-poly :: int poly ⇒ real poly where
real-of-int-poly ≡ of-int-poly

abbreviation real-of-rat-poly :: rat poly ⇒ real poly where
real-of-rat-poly ≡ map-poly of-rat

lemma of-rat-of-int[simp]: of-rat ◦ of-int = of-int by auto

lemma ipoly-of-rat[simp]: ipoly p (of-rat y) = of-rat (ipoly p y)
proof−

have id: of-int = of-rat o of-int unfolding comp-def by auto
show ?thesis by (subst id, subst map-poly-map-poly[symmetric], auto)

qed

lemma ipoly-of-real[simp]:
ipoly p (of-real x :: ′a :: {field,real-algebra-1}) = of-real (ipoly p x)

proof −
have id: of-int = of-real o of-int unfolding comp-def by auto
show ?thesis by (subst id, subst map-poly-map-poly[symmetric], auto)

qed

lemma finite-ipoly-roots: assumes p 6= 0
shows finite {x :: real. ipoly p x = 0}

proof −
let ?p = real-of-int-poly p
from assms have ?p 6= 0 by auto
thus ?thesis by (rule poly-roots-finite)

qed

3.2 Algebraic Numbers – Definition, Inverse, and Roots
A number x is algebraic iff it is the root of an integer polynomial. Whereas
the Isabelle distribution this is defined via the embedding of integers in an
field via �, we work with integer polynomials of type int and then use ipoly
for evaluating the polynomial at a real or complex point.
lemma algebraic-altdef-ipoly:

shows algebraic x ←→ (∃ p. ipoly p x = 0 ∧ p 6= 0)
unfolding algebraic-def
proof (safe, goal-cases)

case (1 p)

8

define the-int where the-int = (λx:: ′a. THE r . x = of-int r)
define p ′ where p ′ = map-poly the-int p
have of-int-the-int: of-int (the-int x) = x if x ∈ � for x
unfolding the-int-def by (rule sym, rule theI ′) (insert that, auto simp: Ints-def)

have the-int-0-iff : the-int x = 0 ←→ x = 0 if x ∈ �
using of-int-the-int[OF that] by auto

have map-poly of-int p ′ = map-poly (of-int ◦ the-int) p
by (simp add: p ′-def map-poly-map-poly)

also from 1 of-int-the-int have . . . = p
by (subst poly-eq-iff) (auto simp: coeff-map-poly)

finally have p-p ′: map-poly of-int p ′ = p .
show ?case
proof (intro exI conjI notI)

from 1 show ipoly p ′ x = 0 by (simp add: p-p ′)
next

assume p ′ = 0
hence p = 0 by (simp add: p-p ′ [symmetric])
with ‹p 6= 0 › show False by contradiction

qed
next

case (2 p)
thus ?case by (intro exI [of - map-poly of-int p], auto)

qed

Definition of being algebraic with explicit witness polynomial.
definition represents :: int poly ⇒ ′a :: field-char-0 ⇒ bool (infix represents 51)

where p represents x = (ipoly p x = 0 ∧ p 6= 0)

lemma representsI [intro]: ipoly p x = 0 =⇒ p 6= 0 =⇒ p represents x
unfolding represents-def by auto

lemma representsD:
assumes p represents x shows p 6= 0 and ipoly p x = 0 using assms unfolding

represents-def by auto

lemma representsE :
assumes p represents x and p 6= 0 =⇒ ipoly p x = 0 =⇒ thesis
shows thesis using assms unfolding represents-def by auto

lemma represents-imp-degree:
fixes x :: ′a :: field-char-0
assumes p represents x shows degree p 6= 0

proof−
from assms have p 6= 0 and px: ipoly p x = 0 by (auto dest:representsD)
then have (of-int-poly p :: ′a poly) 6= 0 by auto
then have degree (of-int-poly p :: ′a poly) 6= 0 by (fold poly-zero[OF px])
then show ?thesis by auto

qed

9

lemma representsE-full[elim]:
assumes rep: p represents x

and main: p 6= 0 =⇒ ipoly p x = 0 =⇒ degree p 6= 0 =⇒ thesis
shows thesis
by (rule main, insert represents-imp-degree[OF rep] rep, auto elim: representsE)

lemma represents-of-rat[simp]: p represents (of-rat x) = p represents x by (auto
elim!:representsE)
lemma represents-of-real[simp]: p represents (of-real x) = p represents x by (auto
elim!:representsE)

lemma algebraic-iff-represents: algebraic x ←→ (∃ p. p represents x)
unfolding algebraic-altdef-ipoly represents-def ..

lemma represents-irr-non-0 :
assumes irr : irreducible p and ap: p represents x and x0 : x 6= 0
shows poly p 0 6= 0

proof
have nu: ¬ [:0 ,1 ::int:] dvd 1 by (auto simp: poly-dvd-1)
assume poly p 0 = 0
hence dvd: [: 0 , 1 :] dvd p by (unfold dvd-iff-poly-eq-0 , simp)
then obtain q where pq: p = [:0 ,1 :] ∗ q by (elim dvdE)
from irreducibleD[OF irr this] nu have q dvd 1 by auto
from this obtain r where q = [:r :] r dvd 1 by (auto simp add: poly-dvd-1 dest:

degree0-coeffs)
with pq have p = [:0 ,r :] by auto
with ap have x = 0 by (auto simp: of-int-hom.map-poly-pCons-hom)
with x0 show False by auto

qed

The polynomial encoding a rational number.
definition poly-rat :: rat ⇒ int poly where

poly-rat x = (case quotient-of x of (n,d) ⇒ [:−n,d:])

definition abs-int-poly:: int poly ⇒ int poly where
abs-int-poly p ≡ if lead-coeff p < 0 then −p else p

lemma pos-poly-abs-poly[simp]:
shows lead-coeff (abs-int-poly p) > 0 ←→ p 6= 0

proof−
have p 6= 0 ←→ lead-coeff p ∗ sgn (lead-coeff p) > 0 by (fold abs-sgn, auto)
then show ?thesis by (auto simp: abs-int-poly-def mult.commute)

qed

lemma abs-int-poly-0 [simp]: abs-int-poly 0 = 0
by (auto simp: abs-int-poly-def)

lemma abs-int-poly-eq-0-iff [simp]: abs-int-poly p = 0 ←→ p = 0
by (auto simp: abs-int-poly-def sgn-eq-0-iff)

10

lemma degree-abs-int-poly[simp]: degree (abs-int-poly p) = degree p
by (auto simp: abs-int-poly-def sgn-eq-0-iff)

lemma abs-int-poly-dvd[simp]: abs-int-poly p dvd q ←→ p dvd q
by (unfold abs-int-poly-def , auto)

lemma (in idom) irreducible-uminus[simp]: irreducible (−x) ←→ irreducible x
proof−

have −x = −1 ∗ x by simp
also have irreducible ... ←→ irreducible x by (rule irreducible-mult-unit-left,

auto)
finally show ?thesis.

qed

lemma irreducible-abs-int-poly[simp]:
irreducible (abs-int-poly p) ←→ irreducible p
by (unfold abs-int-poly-def , auto)

lemma coeff-abs-int-poly[simp]:
coeff (abs-int-poly p) n = (if lead-coeff p < 0 then − coeff p n else coeff p n)
by (simp add: abs-int-poly-def)

lemma lead-coeff-abs-int-poly[simp]:
lead-coeff (abs-int-poly p) = abs (lead-coeff p)
by auto

lemma ipoly-abs-int-poly-eq-zero-iff [simp]:
ipoly (abs-int-poly p) (x :: ′a :: comm-ring-1) = 0 ←→ ipoly p x = 0
by (auto simp: abs-int-poly-def sgn-eq-0-iff of-int-poly-hom.hom-uminus)

lemma abs-int-poly-represents[simp]:
abs-int-poly p represents x ←→ p represents x by (auto elim!:representsE)

lemma content-pCons[simp]: content (pCons a p) = gcd a (content p)
by (unfold content-def coeffs-pCons-eq-cCons cCons-def , auto)

lemma content-uminus[simp]:
fixes p :: ′a :: ring-gcd poly shows content (−p) = content p
by (induct p, auto)

lemma primitive-abs-int-poly[simp]:
primitive (abs-int-poly p) ←→ primitive p
by (auto simp: abs-int-poly-def)

lemma abs-int-poly-inv[simp]: smult (sgn (lead-coeff p)) (abs-int-poly p) = p

11

by (cases lead-coeff p > 0 , auto simp: abs-int-poly-def)

definition cf-pos :: int poly ⇒ bool where
cf-pos p = (content p = 1 ∧ lead-coeff p > 0)

definition cf-pos-poly :: int poly ⇒ int poly where
cf-pos-poly f = (let

c = content f ;
d = (sgn (lead-coeff f) ∗ c)

in sdiv-poly f d)

lemma sgn-is-unit[intro!]:
fixes x :: ′a :: linordered-idom
assumes x 6= 0
shows sgn x dvd 1 using assms by(cases x 0 :: ′a rule:linorder-cases, auto)

lemma cf-pos-poly-0 [simp]: cf-pos-poly 0 = 0 by (unfold cf-pos-poly-def sdiv-poly-def ,
auto)

lemma cf-pos-poly-eq-0 [simp]: cf-pos-poly f = 0 ←→ f = 0
proof(cases f = 0)

case True
thus ?thesis unfolding cf-pos-poly-def Let-def by (simp add: sdiv-poly-def)

next
case False
then have lc0 : lead-coeff f 6= 0 by auto
then have s0 : sgn (lead-coeff f) 6= 0 (is ?s 6= 0) and content f 6= 0 (is ?c 6=

0) by (auto simp: sgn-0-0)
then have sc0 : ?s ∗ ?c 6= 0 by auto
{ fix i

from content-dvd-coeff sgn-is-unit[OF lc0]
have ?s ∗ ?c dvd coeff f i by (auto simp: unit-dvd-iff)

then have coeff f i div (?s ∗ ?c) = 0 ←→ coeff f i = 0 by (auto simp:dvd-div-eq-0-iff)
} note ∗ = this
show ?thesis unfolding cf-pos-poly-def Let-def sdiv-poly-def poly-eq-iff by (auto

simp: coeff-map-poly ∗)
qed

lemma
shows cf-pos-poly-main: smult (sgn (lead-coeff f) ∗ content f) (cf-pos-poly f) =

f (is ?g1)
and content-cf-pos-poly[simp]: content (cf-pos-poly f) = (if f = 0 then 0 else

1) (is ?g2)
and lead-coeff-cf-pos-poly[simp]: lead-coeff (cf-pos-poly f) > 0 ←→ f 6= 0 (is

?g3)
and cf-pos-poly-dvd[simp]: cf-pos-poly f dvd f (is ?g4)

proof(atomize(full), (cases f = 0 ; intro conjI))

12

case True
then show ?g1 ?g2 ?g3 ?g4 by simp-all

next
case f0 : False
let ?s = sgn (lead-coeff f)
have s: ?s ∈ {−1 ,1} using f0 unfolding sgn-if by auto
define g where g ≡ smult ?s f
define d where d ≡ ?s ∗ content f
have content g = content ([:?s:] ∗ f) unfolding g-def by simp
also have . . . = content [:?s:] ∗ content f unfolding content-mult by simp
also have content [:?s:] = 1 using s by (auto simp: content-def)
finally have cg: content g = content f by simp
from f0
have d: cf-pos-poly f = sdiv-poly f d by (auto simp: cf-pos-poly-def Let-def d-def)
let ?g = primitive-part g
define ng where ng = primitive-part g
note d
also have sdiv-poly f d = sdiv-poly g (content g) unfolding cg unfolding g-def

d-def
by (rule poly-eqI , unfold coeff-sdiv-poly coeff-smult, insert s, auto simp: div-minus-right)

finally have fg: cf-pos-poly f = primitive-part g unfolding primitive-part-alt-def
.

have lead-coeff f 6= 0 using f0 by auto
hence lg: lead-coeff g > 0 unfolding g-def lead-coeff-smult
by (meson linorder-neqE-linordered-idom sgn-greater sgn-less zero-less-mult-iff)

hence g0 : g 6= 0 by auto
from f0 content-primitive-part[OF this]
show ?g2 unfolding fg by auto
from g0 have content g 6= 0 by simp
with arg-cong[OF content-times-primitive-part[of g], of lead-coeff , unfolded lead-coeff-smult]

lg content-ge-0-int[of g] have lg ′: lead-coeff ng > 0 unfolding ng-def
by (metis dual-order .antisym dual-order .strict-implies-order zero-less-mult-iff)

with f0 show ?g3 unfolding fg ng-def by auto

have d0 : d 6= 0 using s f0 by (force simp add: d-def)
have smult d (cf-pos-poly f) = smult ?s (smult (content f) (sdiv-poly (smult ?s

f) (content f)))
unfolding fg primitive-part-alt-def cg by (simp add: g-def d-def)

also have sdiv-poly (smult ?s f) (content f) = smult ?s (sdiv-poly f (content f))
using s by (metis cg g-def primitive-part-alt-def primitive-part-smult-int sgn-sgn)

finally have smult d (cf-pos-poly f) = smult (content f) (primitive-part f)
unfolding primitive-part-alt-def using s by auto

also have . . . = f by (rule content-times-primitive-part)
finally have df : smult d (cf-pos-poly f) = f .
with d0 show ?g1 by (auto simp: d-def)
from df have ∗: f = cf-pos-poly f ∗ [:d:] by simp
from dvdI [OF this] show ?g4 .

qed

13

lemma irreducible-connect-int:
fixes p :: int poly
assumes ir : irreducibled p and c: content p = 1
shows irreducible p
using c primitive-iff-content-eq-1 ir irreducible-primitive-connect by blast

lemma
fixes x :: ′a :: {idom,ring-char-0}
shows ipoly-cf-pos-poly-eq-0 [simp]: ipoly (cf-pos-poly p) x = 0 ←→ ipoly p x = 0

and degree-cf-pos-poly[simp]: degree (cf-pos-poly p) = degree p
and cf-pos-cf-pos-poly[intro]: p 6= 0 =⇒ cf-pos (cf-pos-poly p)

proof−
show degree (cf-pos-poly p) = degree p

by (subst(3) cf-pos-poly-main[symmetric], auto simp:sgn-eq-0-iff)
{

assume p: p 6= 0
show cf-pos (cf-pos-poly p) using cf-pos-poly-main p by (auto simp: cf-pos-def)
have (ipoly (cf-pos-poly p) x = 0) = (ipoly p x = 0)

apply (subst(3) cf-pos-poly-main[symmetric]) by (auto simp: sgn-eq-0-iff
hom-distribs)

}
then show (ipoly (cf-pos-poly p) x = 0) = (ipoly p x = 0) by (cases p = 0 ,

auto)
qed

lemma cf-pos-poly-eq-1 : cf-pos-poly f = 1 ←→ degree f = 0 ∧ f 6= 0 (is ?l ←→
?r)
proof(intro iffI conjI)

assume ?r
then have df0 : degree f = 0 and f0 : f 6= 0 by auto
from degree0-coeffs[OF df0] obtain f0 where f : f = [:f0 :] by auto
show cf-pos-poly f = 1 using f0 unfolding f cf-pos-poly-def Let-def sdiv-poly-def

by (auto simp: content-def mult-sgn-abs)
next

assume l: ?l
then have degree (cf-pos-poly f) = 0 by auto
then show degree f = 0 by simp
from l have cf-pos-poly f 6= 0 by auto
then show f 6= 0 by simp

qed

lemma irr-cf-poly-rat[simp]: irreducible (poly-rat x)
lead-coeff (poly-rat x) > 0 primitive (poly-rat x)

proof −
obtain n d where x: quotient-of x = (n,d) by force

14

hence id: poly-rat x = [:−n,d:] by (auto simp: poly-rat-def)
from quotient-of-denom-pos[OF x] have d: d > 0 by auto
show lead-coeff (poly-rat x) > 0 primitive (poly-rat x)

unfolding id cf-pos-def using d quotient-of-coprime[OF x] by (auto simp:
content-def)

from this[unfolded cf-pos-def]
show irr : irreducible (poly-rat x) unfolding id using d by (auto intro!: lin-

ear-irreducible-int)
qed

lemma poly-rat[simp]: ipoly (poly-rat x) (of-rat x :: ′a :: field-char-0) = 0 ipoly
(poly-rat x) x = 0

poly-rat x 6= 0 ipoly (poly-rat x) y = 0 ←→ y = (of-rat x :: ′a)
proof −

from irr-cf-poly-rat(1)[of x] show poly-rat x 6= 0
unfolding Factorial-Ring.irreducible-def by auto

obtain n d where x: quotient-of x = (n,d) by force
hence id: poly-rat x = [:−n,d:] by (auto simp: poly-rat-def)
from quotient-of-denom-pos[OF x] have d: d 6= 0 by auto
have y ∗ of-int d = of-int n =⇒ y = of-int n / of-int d using d

by (simp add: eq-divide-imp)
with d id show ipoly (poly-rat x) (of-rat x) = 0 ipoly (poly-rat x) x = 0

ipoly (poly-rat x) y = 0 ←→ y = (of-rat x :: ′a)
by (auto simp: of-rat-minus of-rat-divide simp: quotient-of-div[OF x])

qed

lemma poly-rat-represents-of-rat: (poly-rat x) represents (of-rat x) by auto

lemma ipoly-smult-0-iff : assumes c: c 6= 0
shows (ipoly (smult c p) x = (0 :: real)) = (ipoly p x = 0)
using c by (simp add: hom-distribs)

lemma not-irreducibleD:
assumes ¬ irreducible x and x 6= 0 and ¬ x dvd 1
shows ∃ y z. x = y ∗ z ∧ ¬ y dvd 1 ∧ ¬ z dvd 1 using assms
apply (unfold Factorial-Ring.irreducible-def) by auto

lemma cf-pos-poly-represents[simp]: (cf-pos-poly p) represents x ←→ p represents
x

unfolding represents-def by auto

lemma coprime-prod:
a 6= 0 =⇒ c 6= 0 =⇒ coprime (a ∗ b) (c ∗ d) =⇒ coprime b (d:: ′a::{semiring-gcd})
by auto

lemma smult-prod:

15

smult a b = monom a 0 ∗ b
by (simp add: monom-0)

lemma degree-map-poly-2 :
assumes f (lead-coeff p) 6= 0
shows degree (map-poly f p) = degree p

proof (cases p=0)
case False thus ?thesis

unfolding degree-eq-length-coeffs Polynomial.coeffs-map-poly
using assms by (simp add:coeffs-def)

qed auto

lemma irreducible-cf-pos-poly:
assumes irr : irreducible p and deg: degree p 6= 0
shows irreducible (cf-pos-poly p) (is irreducible ?p)

proof (unfold irreducible-altdef , intro conjI allI impI)
from irr show ?p 6= 0 by auto
from deg have degree ?p 6= 0 by simp
then show ¬ ?p dvd 1 unfolding poly-dvd-1 by auto
fix b assume b dvd cf-pos-poly p
also note cf-pos-poly-dvd
finally have b dvd p.
with irr [unfolded irreducible-altdef] have p dvd b ∨ b dvd 1 by auto
then show ?p dvd b ∨ b dvd 1 by (auto dest: dvd-trans[OF cf-pos-poly-dvd])

qed

locale dvd-preserving-hom = comm-semiring-1-hom +
assumes hom-eq-mult-hom-imp: hom x = hom y ∗ hz =⇒ ∃ z. hz = hom z ∧ x

= y ∗ z
begin

lemma hom-dvd-hom-iff [simp]: hom x dvd hom y ←→ x dvd y
proof

assume hom x dvd hom y
then obtain hz where hom y = hom x ∗ hz by (elim dvdE)
from hom-eq-mult-hom-imp[OF this] obtain z
where hz = hom z and mult: y = x ∗ z by auto
then show x dvd y by auto

qed auto

sublocale unit-preserving-hom
proof unfold-locales

fix x assume hom x dvd 1 then have hom x dvd hom 1 by simp
then show x dvd 1 by (unfold hom-dvd-hom-iff)

qed

sublocale zero-hom-0
proof (unfold-locales)

fix a :: ′a

16

assume hom a = 0
then have hom 0 dvd hom a by auto
then have 0 dvd a by (unfold hom-dvd-hom-iff)
then show a = 0 by auto

qed

end

lemma smult-inverse-monom:p 6= 0 =⇒ smult (inverse c) (p::rat poly) = 1 ←→
p = [: c :]

proof (cases c=0)
case True thus p 6= 0 =⇒ ?thesis by auto

next
case False thus ?thesis by (metis left-inverse right-inverse smult-1 smult-1-left

smult-smult)
qed

lemma of-int-monom:of-int-poly p = [:rat-of-int c:] ←→ p = [: c :] by (induct p,
auto)

lemma degree-0-content:
fixes p :: int poly
assumes deg: degree p = 0 shows content p = abs (coeff p 0)

proof−
from deg obtain a where p: p = [:a:] by (auto dest: degree0-coeffs)
show ?thesis by (auto simp: p)

qed

lemma prime-elem-imp-gcd-eq:
fixes x:: ′a:: ring-gcd
shows prime-elem x =⇒ gcd x y = normalize x ∨ gcd x y = 1
using prime-elem-imp-coprime [of x y]
by (auto simp add: gcd-proj1-iff intro: coprime-imp-gcd-eq-1)

lemma irreducible-pos-gcd:
fixes p :: int poly
assumes ir : irreducible p and pos: lead-coeff p > 0 shows gcd p q ∈ {1 ,p}

proof−
from pos have [:sgn (lead-coeff p):] = 1 by auto
with prime-elem-imp-gcd-eq[of p, unfolded prime-elem-iff-irreducible, OF ir , of

q]
show ?thesis by (auto simp: normalize-poly-def)

qed

lemma irreducible-pos-gcd-twice:
fixes p q :: int poly
assumes p: irreducible p lead-coeff p > 0
and q: irreducible q lead-coeff q > 0
shows gcd p q = 1 ∨ p = q

17

proof (cases gcd p q = 1)
case False note pq = this
have p = gcd p q using irreducible-pos-gcd [OF p, of q] pq

by auto
also have . . . = q using irreducible-pos-gcd [OF q, of p] pq

by (auto simp add: ac-simps)
finally show ?thesis by auto

qed simp

interpretation of-rat-hom: field-hom-0 ′ of-rat..

lemma poly-zero-imp-not-unit:
assumes poly p x = 0 shows ¬ p dvd 1

proof (rule notI)
assume p dvd 1
from poly-hom.hom-dvd-1 [OF this] have poly p x dvd 1 by auto
with assms show False by auto

qed

lemma poly-prod-mset-zero-iff :
fixes x :: ′a :: idom
shows poly (prod-mset F) x = 0 ←→ (∃ f ∈# F . poly f x = 0)
by (induct F , auto simp: poly-mult-zero-iff)

lemma algebraic-imp-represents-irreducible:
fixes x :: ′a :: field-char-0
assumes algebraic x
shows ∃ p. p represents x ∧ irreducible p

proof −
from assms obtain p
where px0 : ipoly p x = 0 and p0 : p 6= 0 unfolding algebraic-altdef-ipoly by

auto
from poly-zero-imp-not-unit[OF px0]
have ¬ p dvd 1 by (auto dest: of-int-poly-hom.hom-dvd-1 [where ′a = ′a])
from mset-factors-exist[OF p0 this]
obtain F where F : mset-factors F p by auto
then have p = prod-mset F by auto
also have (of-int-poly ... :: ′a poly) = prod-mset (image-mset of-int-poly F) by

simp
finally have poly ... x = 0 using px0 by auto
from this[unfolded poly-prod-mset-zero-iff]
obtain f where f ∈# F and fx0 : ipoly f x = 0 by auto
with F have irreducible f by auto
with fx0 show ?thesis by auto

qed

lemma algebraic-imp-represents-irreducible-cf-pos:
assumes algebraic (x:: ′a::field-char-0)
shows ∃ p. p represents x ∧ irreducible p ∧ lead-coeff p > 0 ∧ primitive p

18

proof −
from algebraic-imp-represents-irreducible[OF assms(1)]
obtain p where px: p represents x and irr : irreducible p by auto
let ?p = cf-pos-poly p
from px irr represents-imp-degree
have 1 : ?p represents x and 2 : irreducible ?p and 3 : cf-pos ?p

by (auto intro: irreducible-cf-pos-poly)
then show ?thesis by (auto intro: exI [of - ?p] simp: cf-pos-def)

qed

lemma gcd-of-int-poly: gcd (of-int-poly f) (of-int-poly g :: ′a :: {field-char-0 ,field-gcd}
poly) =

smult (inverse (of-int (lead-coeff (gcd f g)))) (of-int-poly (gcd f g))
proof −

let ?ia = of-int-poly :: - ⇒ ′a poly
let ?ir = of-int-poly :: - ⇒ rat poly
let ?ra = map-poly of-rat :: - ⇒ ′a poly
have id: ?ia x = ?ra (?ir x) for x by (subst map-poly-map-poly, auto)
show ?thesis

unfolding id
unfolding of-rat-hom.map-poly-gcd[symmetric]
unfolding gcd-rat-to-gcd-int by (auto simp: hom-distribs)

qed

lemma algebraic-imp-represents-unique:
fixes x :: ′a :: {field-char-0 ,field-gcd}
assumes algebraic x
shows ∃ ! p. p represents x ∧ irreducible p ∧ lead-coeff p > 0 (is Ex1 ?p)

proof −
from assms obtain p
where p: ?p p and cfp: cf-pos p

by (auto simp: cf-pos-def dest: algebraic-imp-represents-irreducible-cf-pos)
show ?thesis
proof (rule ex1I)

show ?p p by fact
fix q
assume q: ?p q
then have q represents x by auto
from represents-imp-degree[OF this] q irreducible-content[of q]
have cfq: cf-pos q by (auto simp: cf-pos-def)
show q = p
proof (rule ccontr)

let ?ia = map-poly of-int :: int poly ⇒ ′a poly
assume q 6= p
with irreducible-pos-gcd-twice[of p q] p q cfp cfq have gcd: gcd p q = 1 by

auto
from p q have rt: ipoly p x = 0 ipoly q x = 0 unfolding represents-def by

auto
define c :: ′a where c = inverse (of-int (lead-coeff (gcd p q)))

19

have rt: poly (?ia p) x = 0 poly (?ia q) x = 0 using rt by auto
hence [:−x,1 :] dvd ?ia p [:−x,1 :] dvd ?ia q

unfolding poly-eq-0-iff-dvd by auto
hence [:−x,1 :] dvd gcd (?ia p) (?ia q) by (rule gcd-greatest)
also have . . . = smult c (?ia (gcd p q)) unfolding gcd-of-int-poly c-def ..
also have ?ia (gcd p q) = 1 by (simp add: gcd)
also have smult c 1 = [: c :] by simp
finally show False using c-def gcd by (simp add: dvd-iff-poly-eq-0)

qed
qed

qed

lemma ipoly-poly-compose:
fixes x :: ′a :: idom
shows ipoly (p ◦p q) x = ipoly p (ipoly q x)

proof (induct p)
case (pCons a p)
have ipoly ((pCons a p) ◦p q) x = of-int a + ipoly (q ∗ p ◦p q) x by (simp add:

hom-distribs)
also have ipoly (q ∗ p ◦p q) x = ipoly q x ∗ ipoly (p ◦p q) x by (simp add:

hom-distribs)
also have ipoly (p ◦p q) x = ipoly p (ipoly q x) unfolding pCons(2) ..
also have of-int a + ipoly q x ∗ . . . = ipoly (pCons a p) (ipoly q x)

unfolding map-poly-pCons[OF pCons(1)] by simp
finally show ?case .

qed simp

lemma algebraic-0 [simp]: algebraic 0
unfolding algebraic-altdef-ipoly
by (intro exI [of - [:0 ,1 :]], auto)

lemma algebraic-1 [simp]: algebraic 1
unfolding algebraic-altdef-ipoly
by (intro exI [of - [:−1 ,1 :]], auto)

Polynomial for unary minus.
definition poly-uminus :: ′a :: ring-1 poly ⇒ ′a poly where [code del]:

poly-uminus p ≡
∑

i≤degree p. monom ((−1)^i ∗ coeff p i) i

lemma poly-uminus-pCons-pCons[simp]:
poly-uminus (pCons a (pCons b p)) = pCons a (pCons (−b) (poly-uminus p)) (is

?l = ?r)
proof(cases p = 0)

case False
then have deg: degree (pCons a (pCons b p)) = Suc (Suc (degree p)) by simp
show ?thesis
by (unfold poly-uminus-def deg sum.atMost-Suc-shift monom-Suc monom-0 sum-pCons-0-commute,

simp)
next

20

case True
then show ?thesis by (auto simp add: poly-uminus-def monom-0 monom-Suc)

qed

fun poly-uminus-inner :: ′a :: ring-1 list ⇒ ′a poly
where poly-uminus-inner [] = 0
| poly-uminus-inner [a] = [:a:]
| poly-uminus-inner (a#b#cs) = pCons a (pCons (−b) (poly-uminus-inner cs))

lemma poly-uminus-code[code,simp]: poly-uminus p = poly-uminus-inner (coeffs
p)
proof−

have poly-uminus (Poly as) = poly-uminus-inner as for as :: ′a list
proof (induct length as arbitrary:as rule: less-induct)

case less
show ?case
proof(cases as)

case Nil
then show ?thesis by (simp add: poly-uminus-def)

next
case [simp]: (Cons a bs)
show ?thesis
proof (cases bs)

case Nil
then show ?thesis by (simp add: poly-uminus-def monom-0)

next
case [simp]: (Cons b cs)
show ?thesis by (simp add: less)

qed
qed

qed
from this[of coeffs p]
show ?thesis by simp

qed

lemma poly-uminus-inner-0 [simp]: poly-uminus-inner as = 0 ←→ Poly as = 0
by (induct as rule: poly-uminus-inner .induct, auto)

lemma degree-poly-uminus-inner [simp]: degree (poly-uminus-inner as) = degree
(Poly as)

by (induct as rule: poly-uminus-inner .induct, auto)

lemma ipoly-uminus-inner [simp]:
ipoly (poly-uminus-inner as) (x:: ′a::comm-ring-1) = ipoly (Poly as) (−x)
by (induct as rule: poly-uminus-inner .induct, auto simp: hom-distribs ring-distribs)

lemma represents-uminus: assumes alg: p represents x
shows (poly-uminus p) represents (−x)

proof −

21

from representsD[OF alg] have p 6= 0 and rp: ipoly p x = 0 by auto
hence 0 : poly-uminus p 6= 0 by simp
show ?thesis

by (rule representsI [OF - 0], insert rp, auto)
qed

lemma content-poly-uminus-inner [simp]:
fixes as :: ′a :: ring-gcd list
shows content (poly-uminus-inner as) = content (Poly as)
by (induct as rule: poly-uminus-inner .induct, auto)

Multiplicative inverse is represented by reflect-poly.
lemma inverse-pow-minus: assumes x 6= (0 :: ′a :: field)

and i ≤ n
shows inverse x ^ n ∗ x ^ i = inverse x ^ (n − i)
using assms by (simp add: field-class.field-divide-inverse power-diff power-inverse)

lemma (in inj-idom-hom) reflect-poly-hom:
reflect-poly (map-poly hom p) = map-poly hom (reflect-poly p)

proof −
obtain xs where xs: rev (coeffs p) = xs by auto
show ?thesis unfolding reflect-poly-def coeffs-map-poly-hom rev-map

xs by (induct xs, auto simp: hom-distribs)
qed

lemma ipoly-reflect-poly: assumes x: (x :: ′a :: field-char-0) 6= 0
shows ipoly (reflect-poly p) x = x ^ (degree p) ∗ ipoly p (inverse x) (is ?l = ?r)

proof −
let ?or = of-int :: int ⇒ ′a
have hom: inj-idom-hom ?or ..
show ?thesis
using poly-reflect-poly-nz[OF x, of map-poly ?or p] by (simp add: inj-idom-hom.reflect-poly-hom[OF

hom])
qed

lemma represents-inverse: assumes x: x 6= 0
and alg: p represents x
shows (reflect-poly p) represents (inverse x)

proof (intro representsI)
from representsD[OF alg] have p 6= 0 and rp: ipoly p x = 0 by auto
then show reflect-poly p 6= 0 by (metis reflect-poly-0 reflect-poly-at-0-eq-0-iff)
show ipoly (reflect-poly p) (inverse x) = 0 by (subst ipoly-reflect-poly, insert x,

auto simp:rp)
qed

lemma inverse-roots: assumes x: (x :: ′a :: field-char-0) 6= 0
shows ipoly (reflect-poly p) x = 0 ←→ ipoly p (inverse x) = 0
using x by (auto simp: ipoly-reflect-poly)

22

context
fixes n :: nat

begin

Polynomial for n-th root.
definition poly-nth-root :: ′a :: idom poly ⇒ ′a poly where

poly-nth-root p = p ◦p monom 1 n

lemma ipoly-nth-root:
fixes x :: ′a :: idom
shows ipoly (poly-nth-root p) x = ipoly p (x ^ n)
unfolding poly-nth-root-def ipoly-poly-compose by (simp add: map-poly-monom

poly-monom)

context
assumes n: n 6= 0

begin
lemma poly-nth-root-0 [simp]: poly-nth-root p = 0 ←→ p = 0

unfolding poly-nth-root-def
by (rule pcompose-eq-0 , insert n, auto simp: degree-monom-eq)

lemma represents-nth-root:
assumes y: y^n = x and alg: p represents x
shows (poly-nth-root p) represents y

proof −
from representsD[OF alg] have p 6= 0 and rp: ipoly p x = 0 by auto
hence 0 : poly-nth-root p 6= 0 by simp
show ?thesis

by (rule representsI [OF - 0], unfold ipoly-nth-root y rp, simp)
qed

lemma represents-nth-root-odd-real:
assumes alg: p represents x and odd: odd n
shows (poly-nth-root p) represents (root n x)
by (rule represents-nth-root[OF odd-real-root-pow[OF odd] alg])

lemma represents-nth-root-pos-real:
assumes alg: p represents x and pos: x > 0
shows (poly-nth-root p) represents (root n x)

proof −
from n have id: Suc (n − 1) = n by auto
show ?thesis
proof (rule represents-nth-root[OF - alg])

show root n x ^ n = x using id pos by auto
qed

qed

lemma represents-nth-root-neg-real:

23

assumes alg: p represents x and neg: x < 0
shows (poly-uminus (poly-nth-root (poly-uminus p))) represents (root n x)

proof −
have rt: root n x = − root n (−x) unfolding real-root-minus by simp
show ?thesis unfolding rt
by (rule represents-uminus[OF represents-nth-root-pos-real[OF represents-uminus[OF

alg]]], insert neg, auto)
qed
end
end

lemma represents-csqrt:
assumes alg: p represents x shows (poly-nth-root 2 p) represents (csqrt x)
by (rule represents-nth-root[OF - - alg], auto)

lemma represents-sqrt:
assumes alg: p represents x and pos: x ≥ 0
shows (poly-nth-root 2 p) represents (sqrt x)
by (rule represents-nth-root[OF - - alg], insert pos, auto)

lemma represents-degree:
assumes p represents x shows degree p 6= 0

proof
assume degree p = 0
from degree0-coeffs[OF this] obtain c where p: p = [:c:] by auto
from assms[unfolded represents-def p]
show False by auto

qed

Polynomial for multiplying a rational number with an algebraic number.
definition poly-mult-rat-main where

poly-mult-rat-main n d (f :: ′a :: idom poly) = (let fs = coeffs f ; k = length fs in
poly-of-list (map (λ (fi, i). fi ∗ d ^ i ∗ n ^ (k − Suc i)) (zip fs [0 ..< k])))

definition poly-mult-rat :: rat ⇒ int poly ⇒ int poly where
poly-mult-rat r p ≡ case quotient-of r of (n,d) ⇒ poly-mult-rat-main n d p

lemma coeff-poly-mult-rat-main: coeff (poly-mult-rat-main n d f) i = coeff f i ∗ n
^ (degree f − i) ∗ d ^ i
proof −

have id: coeff (poly-mult-rat-main n d f) i = (coeff f i ∗ d ^ i) ∗ n ^ (length
(coeffs f) − Suc i)

unfolding poly-mult-rat-main-def Let-def poly-of-list-def coeff-Poly
unfolding nth-default-coeffs-eq[symmetric]
unfolding nth-default-def by auto

show ?thesis unfolding id by (simp add: degree-eq-length-coeffs)
qed

lemma degree-poly-mult-rat-main: n 6= 0 =⇒ degree (poly-mult-rat-main n d f) =

24

(if d = 0 then 0 else degree f)
proof (cases d = 0)

case True
thus ?thesis unfolding degree-def unfolding coeff-poly-mult-rat-main by simp

next
case False
hence id: (d = 0) = False by simp
show n 6= 0 =⇒ ?thesis unfolding degree-def coeff-poly-mult-rat-main id

by (simp add: id)
qed

lemma ipoly-mult-rat-main:
fixes x :: ′a :: {field,ring-char-0}
assumes d 6= 0 and n 6= 0
shows ipoly (poly-mult-rat-main n d p) x = of-int n ^ degree p ∗ ipoly p (x ∗

of-int d / of-int n)
proof −

from assms have d: (if d = 0 then t else f) = f for t f :: ′b by simp
show ?thesis
unfolding poly-altdef of-int-hom.coeff-map-poly-hom mult.assoc[symmetric] of-int-mult[symmetric]

sum-distrib-left
unfolding of-int-hom.degree-map-poly-hom degree-poly-mult-rat-main[OF assms(2)]

d
proof (rule sum.cong[OF refl])

fix i
assume i ∈ {..degree p}
hence i: i ≤ degree p by auto
hence id: of-int n ^ (degree p − i) = (of-int n ^ degree p / of-int n ^ i :: ′a)

by (simp add: assms(2) power-diff)
thus of-int (coeff (poly-mult-rat-main n d p) i) ∗ x ^ i = of-int n ^ degree p ∗

of-int (coeff p i) ∗ (x ∗ of-int d / of-int n) ^ i
unfolding coeff-poly-mult-rat-main
by (simp add: field-simps)

qed
qed

lemma degree-poly-mult-rat[simp]: assumes r 6= 0 shows degree (poly-mult-rat r
p) = degree p
proof −

obtain n d where quot: quotient-of r = (n,d) by force
from quotient-of-div[OF quot] have r : r = of-int n / of-int d by auto
from quotient-of-denom-pos[OF quot] have d: d 6= 0 by auto
with assms r have n0 : n 6= 0 by simp
from quot have id: poly-mult-rat r p = poly-mult-rat-main n d p unfolding

poly-mult-rat-def by simp
show ?thesis unfolding id degree-poly-mult-rat-main[OF n0] using d by simp

qed

lemma ipoly-mult-rat:

25

assumes r0 : r 6= 0
shows ipoly (poly-mult-rat r p) x = of-int (fst (quotient-of r)) ^ degree p ∗ ipoly

p (x ∗ inverse (of-rat r))
proof −

obtain n d where quot: quotient-of r = (n,d) by force
from quotient-of-div[OF quot] have r : r = of-int n / of-int d by auto
from quotient-of-denom-pos[OF quot] have d: d 6= 0 by auto
from r r0 have n: n 6= 0 by simp
from r d n have inv: of-int d / of-int n = inverse r by simp
from quot have id: poly-mult-rat r p = poly-mult-rat-main n d p unfolding

poly-mult-rat-def by simp
show ?thesis unfolding id ipoly-mult-rat-main[OF d n] quot fst-conv of-rat-inverse[symmetric]

inv[symmetric]
by (simp add: of-rat-divide)

qed

lemma poly-mult-rat-main-0 [simp]:
assumes n 6= 0 d 6= 0 shows poly-mult-rat-main n d p = 0 ←→ p = 0

proof
assume p = 0 thus poly-mult-rat-main n d p = 0

by (simp add: poly-mult-rat-main-def)
next

assume 0 : poly-mult-rat-main n d p = 0
{

fix i
from 0 have coeff (poly-mult-rat-main n d p) i = 0 by simp
hence coeff p i = 0 unfolding coeff-poly-mult-rat-main using assms by simp

}
thus p = 0 by (intro poly-eqI , auto)

qed

lemma poly-mult-rat-0 [simp]: assumes r0 : r 6= 0 shows poly-mult-rat r p = 0
←→ p = 0
proof −

obtain n d where quot: quotient-of r = (n,d) by force
from quotient-of-div[OF quot] have r : r = of-int n / of-int d by auto
from quotient-of-denom-pos[OF quot] have d: d 6= 0 by auto
from r r0 have n: n 6= 0 by simp
from quot have id: poly-mult-rat r p = poly-mult-rat-main n d p unfolding

poly-mult-rat-def by simp
show ?thesis unfolding id using n d by simp

qed

lemma represents-mult-rat:
assumes r : r 6= 0 and p represents x shows (poly-mult-rat r p) represents (of-rat

r ∗ x)
using assms
unfolding represents-def ipoly-mult-rat[OF r] by (simp add: field-simps)

26

Polynomial for adding a rational number on an algebraic number. Again,
we do not have to factor afterwards.
definition poly-add-rat :: rat ⇒ int poly ⇒ int poly where

poly-add-rat r p ≡ case quotient-of r of (n,d) ⇒
(poly-mult-rat-main d 1 p ◦p [:−n,d:])

lemma poly-add-rat-code[code]: poly-add-rat r p ≡ case quotient-of r of (n,d) ⇒
let p ′ = (let fs = coeffs p; k = length fs in poly-of-list (map (λ(fi, i). fi ∗ d ^

(k − Suc i)) (zip fs [0 ..<k])));
p ′′ = p ′ ◦p [:−n,d:]

in p ′′

unfolding poly-add-rat-def poly-mult-rat-main-def Let-def by simp

lemma degree-poly-add-rat[simp]: degree (poly-add-rat r p) = degree p
proof −

obtain n d where quot: quotient-of r = (n,d) by force
from quotient-of-div[OF quot] have r : r = of-int n / of-int d by auto
from quotient-of-denom-pos[OF quot] have d: d 6= 0 d > 0 by auto
show ?thesis unfolding poly-add-rat-def quot split

by (simp add: degree-poly-mult-rat-main d)
qed

lemma ipoly-add-rat: ipoly (poly-add-rat r p) x = (of-int (snd (quotient-of r)) ^
degree p) ∗ ipoly p (x − of-rat r)
proof −

obtain n d where quot: quotient-of r = (n,d) by force
from quotient-of-div[OF quot] have r : r = of-int n / of-int d by auto
from quotient-of-denom-pos[OF quot] have d: d 6= 0 d > 0 by auto
have id: ipoly [:− n, 1 :] (x / of-int d :: ′a) = − of-int n + x / of-int d by simp
show ?thesis unfolding poly-add-rat-def quot split
by (simp add: ipoly-mult-rat-main ipoly-poly-compose d r degree-poly-mult-rat-main

field-simps id of-rat-divide)
qed

lemma poly-add-rat-0 [simp]: poly-add-rat r p = 0 ←→ p = 0
proof −

obtain n d where quot: quotient-of r = (n,d) by force
from quotient-of-div[OF quot] have r : r = of-int n / of-int d by auto
from quotient-of-denom-pos[OF quot] have d: d 6= 0 d > 0 by auto
show ?thesis unfolding poly-add-rat-def quot split

by (simp add: d pcompose-eq-0)
qed

lemma add-rat-roots: ipoly (poly-add-rat r p) x = 0 ←→ ipoly p (x − of-rat r) =
0

unfolding ipoly-add-rat using quotient-of-nonzero by auto

lemma represents-add-rat:
assumes p represents x shows (poly-add-rat r p) represents (of-rat r + x)

27

using assms unfolding represents-def ipoly-add-rat by simp

lemmas pos-mult[simplified,simp] = mult-less-cancel-left-pos[of - 0] mult-less-cancel-left-pos[of
- - 0]

lemma ipoly-add-rat-pos-neg:
ipoly (poly-add-rat r p) (x:: ′a::linordered-field) < 0 ←→ ipoly p (x − of-rat r) <

0
ipoly (poly-add-rat r p) (x:: ′a::linordered-field) > 0 ←→ ipoly p (x − of-rat r) >

0
using quotient-of-nonzero unfolding ipoly-add-rat by auto

lemma sgn-ipoly-add-rat[simp]:
sgn (ipoly (poly-add-rat r p) (x:: ′a::linordered-field)) = sgn (ipoly p (x − of-rat

r)) (is sgn ?l = sgn ?r)
using ipoly-add-rat-pos-neg[of r p x]
by (cases ?r 0 :: ′a rule: linorder-cases,auto simp: sgn-1-pos sgn-1-neg sgn-eq-0-iff)

lemma deg-nonzero-represents:
assumes deg: degree p 6= 0 shows ∃ x :: complex. p represents x

proof −
let ?p = of-int-poly p :: complex poly
from fundamental-theorem-algebra-factorized[of ?p]
obtain as c where id: smult c (

∏
a←as. [:− a, 1 :]) = ?p

and len: length as = degree ?p by blast
have degree ?p = degree p by simp
with deg len obtain b bs where as: as = b # bs by (cases as, auto)
have p represents b unfolding represents-def id[symmetric] as using deg by

auto
thus ?thesis by blast

qed

end

4 Resultants
We need some results on resultants to show that a suitable prime for Berlekamp’s
algorithm always exists if the input is square free. Most of this theory has
been developed for algebraic numbers, though. We moved this theory here,
so that algebraic numbers can already use the factorization algorithm of this
entry.

4.1 Bivariate Polynomials
theory Bivariate-Polynomials
imports

Polynomial-Interpolation.Ring-Hom-Poly

28

Subresultants.More-Homomorphisms
Berlekamp-Zassenhaus.Unique-Factorization-Poly

begin

4.1.1 Evaluation of Bivariate Polynomials
definition poly2 :: ′a::comm-semiring-1 poly poly ⇒ ′a ⇒ ′a ⇒ ′a

where poly2 p x y = poly (poly p [: y :]) x

lemma poly2-by-map: poly2 p x = poly (map-poly (λc. poly c x) p)
apply (rule ext) unfolding poly2-def by (induct p; simp)

lemma poly2-const[simp]: poly2 [:[:a:]:] x y = a by (simp add: poly2-def)
lemma poly2-smult[simp,hom-distribs]: poly2 (smult a p) x y = poly a x ∗ poly2 p
x y by (simp add: poly2-def)

interpretation poly2-hom: comm-semiring-hom λp. poly2 p x y by (unfold-locales;
simp add: poly2-def)
interpretation poly2-hom: comm-ring-hom λp. poly2 p x y..
interpretation poly2-hom: idom-hom λp. poly2 p x y..

lemma poly2-pCons[simp,hom-distribs]: poly2 (pCons a p) x y = poly a x + y ∗
poly2 p x y by (simp add: poly2-def)
lemma poly2-monom: poly2 (monom a n) x y = poly a x ∗ y ^ n by (auto simp:
poly-monom poly2-def)

lemma poly-poly-as-poly2 : poly2 p x (poly q x) = poly (poly p q) x by (induct p;
simp add:poly2-def)

The following lemma is an extension rule for bivariate polynomials.
lemma poly2-ext:

fixes p q :: ′a :: {ring-char-0 ,idom} poly poly
assumes

∧
x y. poly2 p x y = poly2 q x y shows p = q

proof(intro poly-ext)
fix r x
show poly (poly p r) x = poly (poly q r) x

unfolding poly-poly-as-poly2 [symmetric] using assms by auto
qed

abbreviation (input) coeff-lift2 == λa. [:[: a :]:]

lemma coeff-lift2-lift: coeff-lift2 = coeff-lift ◦ coeff-lift by auto

definition poly-lift = map-poly coeff-lift
definition poly-lift2 = map-poly coeff-lift2

lemma degree-poly-lift[simp]: degree (poly-lift p) = degree p
unfolding poly-lift-def by(rule degree-map-poly; auto)

29

lemma poly-lift-0 [simp]: poly-lift 0 = 0 unfolding poly-lift-def by simp

lemma poly-lift-0-iff [simp]: poly-lift p = 0 ←→ p = 0
unfolding poly-lift-def by(induct p;simp)

lemma poly-lift-pCons[simp]:
poly-lift (pCons a p) = pCons [:a:] (poly-lift p)
unfolding poly-lift-def map-poly-simps by simp

lemma coeff-poly-lift[simp]:
fixes p:: ′a :: comm-monoid-add poly
shows coeff (poly-lift p) i = coeff-lift (coeff p i)
unfolding poly-lift-def by simp

lemma pcompose-conv-poly: pcompose p q = poly (poly-lift p) q
by (induction p) auto

interpretation poly-lift-hom: inj-comm-monoid-add-hom poly-lift
proof−

interpret map-poly-inj-comm-monoid-add-hom coeff-lift..
show inj-comm-monoid-add-hom poly-lift by (unfold-locales, auto simp: poly-lift-def

hom-distribs)
qed
interpretation poly-lift-hom: inj-comm-semiring-hom poly-lift
proof−

interpret map-poly-inj-comm-semiring-hom coeff-lift..
show inj-comm-semiring-hom poly-lift by (unfold-locales, auto simp add: poly-lift-def

hom-distribs)
qed
interpretation poly-lift-hom: inj-comm-ring-hom poly-lift..
interpretation poly-lift-hom: inj-idom-hom poly-lift..

lemma (in comm-monoid-add-hom) map-poly-hom-coeff-lift[simp, hom-distribs]:
map-poly hom (coeff-lift a) = coeff-lift (hom a) by (cases a=0 ;simp)

lemma (in comm-ring-hom) map-poly-coeff-lift-hom:
map-poly (coeff-lift ◦ hom) p = map-poly (map-poly hom) (map-poly coeff-lift p)

proof (induct p)
case (pCons a p) show ?case

proof(cases a = 0)
case True

hence poly-lift p 6= 0 using pCons(1) by simp
thus ?thesis

unfolding map-poly-pCons[OF pCons(1)]
unfolding pCons(2) True by simp

next case False
hence coeff-lift a 6= 0 by simp
thus ?thesis
unfolding map-poly-pCons[OF pCons(1)]

30

unfolding pCons(2) by simp
qed

qed auto

lemma poly-poly-lift[simp]:
fixes p :: ′a :: comm-semiring-0 poly
shows poly (poly-lift p) [:x:] = [: poly p x :]

proof (induct p)
case 0 show ?case by simp
next case (pCons a p) show ?case

unfolding poly-lift-pCons
unfolding poly-pCons
unfolding pCons apply (subst mult.commute) by auto

qed

lemma degree-poly-lift2 [simp]:
degree (poly-lift2 p) = degree p unfolding poly-lift2-def by (induct p; auto)

lemma poly-lift2-0 [simp]: poly-lift2 0 = 0 unfolding poly-lift2-def by simp

lemma poly-lift2-0-iff [simp]: poly-lift2 p = 0 ←→ p = 0
unfolding poly-lift2-def by(induct p;simp)

lemma poly-lift2-pCons[simp]:
poly-lift2 (pCons a p) = pCons [:[:a:]:] (poly-lift2 p)
unfolding poly-lift2-def map-poly-simps by simp

lemma poly-lift2-lift: poly-lift2 = poly-lift ◦ poly-lift (is ?l = ?r)
proof

fix p show ?l p = ?r p
unfolding poly-lift2-def coeff-lift2-lift poly-lift-def by (induct p; auto)

qed

lemma poly2-poly-lift[simp]: poly2 (poly-lift p) x y = poly p y by (induct p;simp)

lemma poly-lift2-nonzero:
assumes p 6= 0 shows poly-lift2 p 6= 0
unfolding poly-lift2-def
apply (subst map-poly-zero)
using assms by auto

4.1.2 Swapping the Order of Variables
definition

poly-y-x p ≡
∑

i≤degree p.
∑

j≤degree (coeff p i). monom (monom (coeff (coeff
p i) j) i) j

lemma poly-y-x-fix-y-deg:
assumes ydeg: ∀ i≤degree p. degree (coeff p i) ≤ d

31

shows poly-y-x p = (
∑

i≤degree p.
∑

j≤d. monom (monom (coeff (coeff p i) j)
i) j)

(is - = sum (λi. sum (?f i) -) -)
unfolding poly-y-x-def
apply (rule sum.cong,simp)
unfolding atMost-iff

proof −
fix i assume i: i ≤ degree p
let ?d = degree (coeff p i)
have {..d} = {..?d} ∪ {Suc ?d .. d} using ydeg[rule-format, OF i] by auto
also have sum (?f i) ... = sum (?f i) {..?d} + sum (?f i) {Suc ?d .. d}

by(rule sum.union-disjoint,auto)
also { fix j

assume j: j ∈ { Suc ?d .. d }
have coeff (coeff p i) j = 0 apply (rule coeff-eq-0) using j by auto
hence ?f i j = 0 by auto

} hence sum (?f i) {Suc ?d .. d} = 0 by auto
finally show sum (?f i) {..?d} = sum (?f i) {..d} by auto

qed

lemma poly-y-x-fixed-deg:
fixes p :: ′a :: comm-monoid-add poly poly
defines d ≡ Max { degree (coeff p i) | i. i ≤ degree p }
shows poly-y-x p = (

∑
i≤degree p.

∑
j≤d. monom (monom (coeff (coeff p i) j)

i) j)
apply (rule poly-y-x-fix-y-deg, intro allI impI)
unfolding d-def
by (subst Max-ge,auto)

lemma poly-y-x-swapped:
fixes p :: ′a :: comm-monoid-add poly poly
defines d ≡ Max { degree (coeff p i) | i. i ≤ degree p }
shows poly-y-x p = (

∑
j≤d.

∑
i≤degree p. monom (monom (coeff (coeff p i) j)

i) j)
using poly-y-x-fixed-deg[of p, folded d-def] sum.swap by auto

lemma poly2-poly-y-x[simp]: poly2 (poly-y-x p) x y = poly2 p y x
using [[unfold-abs-def = false]]
apply(subst(3) poly-as-sum-of-monoms[symmetric])
apply(subst poly-as-sum-of-monoms[symmetric,of coeff p -])
unfolding poly-y-x-def
unfolding coeff-sum monom-sum
unfolding poly2-hom.hom-sum
apply(rule sum.cong, simp)
apply(rule sum.cong, simp)
unfolding poly2-monom poly-monom
unfolding mult.assoc
unfolding mult.commute..

32

context begin
private lemma poly-monom-mult:

fixes p :: ′a :: comm-semiring-1
shows poly (monom p i ∗ q ^ j) y = poly (monom p j ∗ [:y:] ^ i) (poly q y)
unfolding poly-hom.hom-mult
unfolding poly-monom
apply(subst mult.assoc)
apply(subst(2) mult.commute)
by (auto simp: mult.assoc)

lemma poly-poly-y-x:
fixes p :: ′a :: comm-semiring-1 poly poly
shows poly (poly (poly-y-x p) q) y = poly (poly p [:y:]) (poly q y)
apply(subst(5) poly-as-sum-of-monoms[symmetric])
apply(subst poly-as-sum-of-monoms[symmetric,of coeff p -])
unfolding poly-y-x-def
unfolding coeff-sum monom-sum
unfolding poly-hom.hom-sum
apply(rule sum.cong, simp)
apply(rule sum.cong, simp)
unfolding atMost-iff
unfolding poly2-monom poly-monom
apply(subst poly-monom-mult)..

end

interpretation poly-y-x-hom: zero-hom poly-y-x by (unfold-locales, auto simp:
poly-y-x-def)
interpretation poly-y-x-hom: one-hom poly-y-x by (unfold-locales, auto simp: poly-y-x-def
monom-0)

lemma map-poly-sum-commute:
assumes h 0 = 0 ∀ p q. h (p + q) = h p + h q
shows sum (λi. map-poly h (f i)) S = map-poly h (sum f S)
apply(induct S rule: infinite-finite-induct)
using map-poly-add[OF assms] by auto

lemma poly-y-x-const: poly-y-x [:p:] = poly-lift p (is ?l = ?r)
proof −

have ?l = (
∑

j≤degree p. monom [:coeff p j:] j)
unfolding poly-y-x-def by (simp add: monom-0)

also have ... = poly-lift (
∑

x≤degree p. monom (coeff p x) x)
unfolding poly-lift-hom.hom-sum unfolding poly-lift-def by simp

also have ... = poly-lift p unfolding poly-as-sum-of-monoms..
finally show ?thesis.

qed

lemma poly-y-x-pCons:

33

shows poly-y-x (pCons a p) = poly-lift a + map-poly (pCons 0) (poly-y-x p)
proof(cases p = 0)

interpret ml: map-poly-comm-monoid-add-hom coeff-lift..
interpret mc: map-poly-comm-monoid-add-hom pCons 0 ..
interpret mm: map-poly-comm-monoid-add-hom λx. monom x i for i..
{ case False show ?thesis

apply(subst(1) poly-y-x-fixed-deg)
apply(unfold degree-pCons-eq[OF False])
apply(subst(2) atLeast0AtMost[symmetric])
apply(subst atLeastAtMost-insertL[OF le0 ,symmetric])
apply(subst sum.insert,simp,simp)
apply(unfold coeff-pCons-0)
apply(unfold monom-0)
apply(fold coeff-lift-hom.map-poly-hom-monom poly-lift-def)
apply(fold poly-lift-hom.hom-sum)
apply(subst poly-as-sum-of-monoms ′, subst Max-ge,simp,simp,force,simp)
apply(rule cong[of λx. poly-lift a + x, OF refl])
apply(simp only: image-Suc-atLeastAtMost [symmetric])
apply(unfold atLeast0AtMost)
apply(subst sum.reindex,simp)
apply(unfold o-def)
apply(unfold coeff-pCons-Suc)
apply(unfold monom-Suc)
apply (subst poly-y-x-fix-y-deg[of - Max {degree (coeff (pCons a p) i) | i. i ≤

Suc (degree p)}])
apply (intro allI impI)
apply (rule Max.coboundedI)

by (auto simp: hom-distribs intro: exI [of - Suc -])
}
case True show ?thesis by (simp add: True poly-y-x-const)

qed

lemma poly-y-x-pCons-0 : poly-y-x (pCons 0 p) = map-poly (pCons 0) (poly-y-x p)
proof(cases p=0)

case False
interpret mc: map-poly-comm-monoid-add-hom pCons 0 ..
interpret mm: map-poly-comm-monoid-add-hom λx. monom x i for i..
from False show ?thesis

apply (unfold poly-y-x-def degree-pCons-eq)
apply (unfold sum.atMost-Suc-shift)
by (simp add: hom-distribs monom-Suc)

qed simp

lemma poly-y-x-map-poly-pCons-0 : poly-y-x (map-poly (pCons 0) p) = pCons 0
(poly-y-x p)
proof−

let ?l = λi j. monom (monom (coeff (pCons 0 (coeff p i)) j) i) j
let ?r = λi j. pCons 0 (monom (monom (coeff (coeff p i) j) i) j)
have ∗: (

∑
j≤degree (pCons 0 (coeff p i)). ?l i j) = (

∑
j≤degree (coeff p i). ?r

34

i j) for i
proof(cases coeff p i = 0)

case True then show ?thesis by simp
next

case False
show ?thesis

apply (unfold degree-pCons-eq[OF False])
apply (unfold sum.atMost-Suc-shift,simp)
apply (fold monom-Suc)..

qed
show ?thesis

apply (unfold poly-y-x-def)
apply (unfold hom-distribs pCons-0-hom.degree-map-poly-hom pCons-0-hom.coeff-map-poly-hom)
unfolding ∗..

qed

interpretation poly-y-x-hom: comm-monoid-add-hom poly-y-x :: ′a :: comm-monoid-add
poly poly ⇒ -
proof (unfold-locales)

fix p q :: ′a poly poly
show poly-y-x (p + q) = poly-y-x p + poly-y-x q
proof (induct p arbitrary:q)

case 0 show ?case by simp
next

case p: (pCons a p)
show ?case
proof (induct q)

case q: (pCons b q)
show ?case
apply (unfold add-pCons)
apply (unfold poly-y-x-pCons)
apply (unfold p)
by (simp add: poly-y-x-const ac-simps hom-distribs)

qed auto
qed

qed

poly-y-x is bijective.
lemma poly-y-x-poly-lift:

fixes p :: ′a :: comm-monoid-add poly
shows poly-y-x (poly-lift p) = [:p:]
apply(subst poly-y-x-fix-y-deg[of - 0],force)
apply(subst(10) poly-as-sum-of-monoms[symmetric])
by (auto simp add: monom-sum monom-0 hom-distribs)

lemma poly-y-x-id[simp]:
fixes p:: ′a :: comm-monoid-add poly poly
shows poly-y-x (poly-y-x p) = p

proof (induct p)

35

case 0
then show ?case by simp

next
case (pCons a p)
interpret mm: map-poly-comm-monoid-add-hom λx. monom x i for i..
interpret mc: map-poly-comm-monoid-add-hom pCons 0 ..
have pCons-as-add: pCons a p = [:a:] + pCons 0 p by simp
from pCons show ?case

apply (unfold pCons-as-add)
by (simp add: poly-y-x-pCons poly-y-x-poly-lift poly-y-x-map-poly-pCons-0 hom-distribs)

qed

interpretation poly-y-x-hom:
bijective poly-y-x :: ′a :: comm-monoid-add poly poly ⇒ -
by(unfold bijective-eq-bij, auto intro!:o-bij[of poly-y-x])

lemma inv-poly-y-x[simp]: Hilbert-Choice.inv poly-y-x = poly-y-x by auto

interpretation poly-y-x-hom: comm-monoid-add-isom poly-y-x
by (unfold-locales, auto)

lemma pCons-as-add:
fixes p :: ′a :: comm-semiring-1 poly
shows pCons a p = [:a:] + monom 1 1 ∗ p by (auto simp: monom-Suc)

lemma mult-pCons-0 : (∗) (pCons 0 1) = pCons 0 by auto

lemma pCons-0-as-mult:
shows pCons (0 :: ′a :: comm-semiring-1) = (λp. pCons 0 1 ∗ p) by auto

lemma map-poly-pCons-0-as-mult:
fixes p :: ′a :: comm-semiring-1 poly poly
shows map-poly (pCons 0) p = [:pCons 0 1 :] ∗ p
apply (subst(1) pCons-0-as-mult)
apply (fold smult-as-map-poly) by simp

lemma poly-y-x-monom:
fixes a :: ′a :: comm-semiring-1 poly
shows poly-y-x (monom a n) = smult (monom 1 n) (poly-lift a)

proof (cases a = 0)
case True then show ?thesis by simp

next
case False
interpret map-poly-comm-monoid-add-hom λx. c ∗ x for c :: ′a poly..
from False show ?thesis

apply (unfold poly-y-x-def)
apply (unfold degree-monom-eq)
apply (subst(2) lessThan-Suc-atMost[symmetric])
apply (unfold sum.lessThan-Suc)

36

apply (subst sum.neutral,force)
apply (subst(14) poly-as-sum-of-monoms[symmetric])
apply (unfold smult-as-map-poly)

by (auto simp: monom-altdef [unfolded x-as-monom x-pow-n,symmetric] hom-distribs)
qed

lemma poly-y-x-smult:
fixes c :: ′a :: comm-semiring-1 poly
shows poly-y-x (smult c p) = poly-lift c ∗ poly-y-x p (is ?l = ?r)

proof−
have smult c p = (

∑
i≤degree p. monom (coeff (smult c p) i) i)

by (metis (no-types, lifting) degree-smult-le poly-as-sum-of-monoms ′ sum.cong)
also have ... = (

∑
i≤degree p. monom (c ∗ coeff p i) i)

by auto
also have poly-y-x ... = poly-lift c ∗ (

∑
i≤degree p. smult (monom 1 i) (poly-lift

(coeff p i)))
by (simp add: poly-y-x-monom hom-distribs)

also have ... = poly-lift c ∗ poly-y-x (
∑

i≤degree p. monom (coeff p i) i)
by (simp add: poly-y-x-monom hom-distribs)

finally show ?thesis by (simp add: poly-as-sum-of-monoms)
qed

interpretation poly-y-x-hom:
comm-semiring-isom poly-y-x :: ′a :: comm-semiring-1 poly poly ⇒ -

proof
fix p q :: ′a poly poly
show poly-y-x (p ∗ q) = poly-y-x p ∗ poly-y-x q
proof (induct p)

case (pCons a p)
show ?case

apply (unfold mult-pCons-left)
apply (unfold hom-distribs)
apply (unfold poly-y-x-smult)
apply (unfold poly-y-x-pCons-0)
apply (unfold pCons)
by (simp add: poly-y-x-pCons map-poly-pCons-0-as-mult field-simps)

qed simp
qed

interpretation poly-y-x-hom: comm-ring-isom poly-y-x..
interpretation poly-y-x-hom: idom-isom poly-y-x..

lemma Max-degree-coeff-pCons:
Max { degree (coeff (pCons a p) i) | i. i ≤ degree (pCons a p)} =
max (degree a) (Max {degree (coeff p x) |x. x ≤ degree p})

proof (cases p = 0)
case False show ?thesis

unfolding degree-pCons-eq[OF False]
unfolding image-Collect[symmetric]

37

unfolding atMost-def [symmetric]
apply(subst(1) atLeast0AtMost[symmetric])
unfolding atLeastAtMost-insertL[OF le0 ,symmetric]
unfolding image-insert
apply(subst Max-insert,simp,simp)
unfolding image-Suc-atLeastAtMost [symmetric]
unfolding image-image
unfolding atLeast0AtMost by simp

qed simp

lemma degree-poly-y-x:
fixes p :: ′a :: comm-ring-1 poly poly
assumes p 6= 0
shows degree (poly-y-x p) = Max { degree (coeff p i) | i. i ≤ degree p }
(is - = ?d p)

using assms
proof(induct p)

interpret rhm: map-poly-comm-ring-hom coeff-lift ..
let ?f = λp i j. monom (monom (coeff (coeff p i) j) i) j
case (pCons a p)

show ?case
proof(cases p=0)

case True show ?thesis unfolding True unfolding poly-y-x-pCons by auto
next case False

note IH = pCons(2)[OF False]
let ?a = poly-lift a
let ?p = map-poly (pCons 0) (poly-y-x p)
show ?thesis
proof(cases rule:linorder-cases[of degree ?a degree ?p])

case less
have dle: degree a ≤ degree (poly-y-x p)

apply(rule le-trans[OF less-imp-le[OF less[simplified]]])
using degree-map-poly-le by auto

show ?thesis
unfolding poly-y-x-pCons
unfolding degree-add-eq-right[OF less]
unfolding Max-degree-coeff-pCons
unfolding IH [symmetric]
unfolding max-absorb2 [OF dle]
apply (rule degree-map-poly) by auto

next case equal
have dega: degree ?a = degree a by auto
have degp: degree (poly-y-x p) = degree a

using equal[unfolded dega]
using degree-map-poly[of pCons 0 poly-y-x p] by auto

have ∗: degree (?a + ?p) = degree a
proof(cases a = 0)

case True show ?thesis using equal unfolding True by auto

38

next case False show ?thesis
apply(rule antisym)

apply(rule degree-add-le, simp, fold equal, simp)
apply(rule le-degree)
unfolding coeff-add
using False
by auto

qed
show ?thesis unfolding poly-y-x-pCons

unfolding ∗
unfolding Max-degree-coeff-pCons
unfolding IH [symmetric]
unfolding degp by auto

next case greater
have dge: degree a ≥ degree (poly-y-x p)

apply(rule le-trans[OF - less-imp-le[OF greater [simplified]]])
by auto

show ?thesis
unfolding poly-y-x-pCons
unfolding degree-add-eq-left[OF greater]
unfolding Max-degree-coeff-pCons
unfolding IH [symmetric]
unfolding max-absorb1 [OF dge] by simp

qed
qed

qed auto

end

4.2 Resultant
This theory contains facts about resultants which are required for addition
and multiplication of algebraic numbers.

The results are taken from the textbook [2, pages 227ff and 235ff].
theory Resultant
imports

HOL−Computational-Algebra.Fundamental-Theorem-Algebra
Subresultants.Resultant-Prelim
Berlekamp-Zassenhaus.Unique-Factorization-Poly
Bivariate-Polynomials

begin

4.2.1 Sylvester matrices and vector representation of polynomi-
als

definition vec-of-poly-rev-shifted where
vec-of-poly-rev-shifted p n j ≡
vec n (λi. if i ≤ j ∧ j ≤ degree p + i then coeff p (degree p + i − j) else 0)

39

lemma vec-of-poly-rev-shifted-dim[simp]: dim-vec (vec-of-poly-rev-shifted p n j) =
n

unfolding vec-of-poly-rev-shifted-def by auto

lemma col-sylvester :
fixes p q
defines m ≡ degree p and n ≡ degree q
assumes j: j < m+n
shows col (sylvester-mat p q) j =

vec-of-poly-rev-shifted p n j @v vec-of-poly-rev-shifted q m j (is ?l = ?r)
proof

note [simp] = m-def [symmetric] n-def [symmetric]
show dim-vec ?l = dim-vec ?r by simp
fix i assume i < dim-vec ?r hence i: i < m+n by auto
show ?l $ i = ?r $ i

unfolding vec-of-poly-rev-shifted-def
apply (subst index-col) using i apply simp using j apply simp
apply (subst sylvester-index-mat) using i apply simp using j apply simp
apply (cases i < n) apply force using i by simp

qed

lemma inj-on-diff-nat2 : inj-on (λi. (n::nat) − i) {..n} by (rule inj-onI , auto)

lemma image-diff-atMost: (λi. (n::nat) − i) ‘ {..n} = {..n} (is ?l = ?r)
unfolding set-eq-iff

proof (intro allI iffI)
fix x assume x: x ∈ ?r

thus x ∈ ?l unfolding image-def mem-Collect-eq
by(intro bexI [of - n−x],auto)

qed auto

lemma sylvester-sum-mat-upper :
fixes p q :: ′a :: comm-semiring-1 poly
defines m ≡ degree p and n ≡ degree q
assumes i: i < n
shows (

∑
j<m+n. monom (sylvester-mat p q $$ (i,j)) (m + n − Suc j)) =

monom 1 (n − Suc i) ∗ p (is sum ?f - = ?r)
proof −

have n1 : n ≥ 1 using i by auto
define ni1 where ni1 = n−Suc i
hence ni1 : n−i = Suc ni1 using i by auto
define l where l = m+n−1
hence l: Suc l = m+n using n1 by auto
let ?g = λj. monom (coeff (monom 1 (n−Suc i) ∗ p) j) j
let ?p = λj. l−j
have sum ?f {..<m+n} = sum ?f {..l}

unfolding l[symmetric] unfolding lessThan-Suc-atMost..
also {

fix j assume j: j≤l

40

have ?f j = ((λj. monom (coeff (monom 1 (n−i) ∗ p) (Suc j)) j) ◦ ?p) j
apply(subst sylvester-index-mat2)
using i j unfolding l-def m-def [symmetric] n-def [symmetric]
by (auto simp add: Suc-diff-Suc)

also have ... = (?g ◦ ?p) j
unfolding ni1
unfolding coeff-monom-Suc
unfolding ni1-def
using i by auto

finally have ?f j = (?g ◦ ?p) j.
}
hence (

∑
j≤l. ?f j) = (

∑
j≤l. (?g◦?p) j) using l by auto

also have ... = (
∑

j≤l. ?g j)
unfolding l-def
using sum.reindex[OF inj-on-diff-nat2 ,symmetric,unfolded image-diff-atMost].

also have degree ?r ≤ l
using degree-mult-le[of monom 1 (n−Suc i) p]
unfolding l-def m-def
unfolding degree-monom-eq[OF one-neq-zero] using i by auto

from poly-as-sum-of-monoms ′[OF this]
have (

∑
j≤l. ?g j) = ?r.

finally show ?thesis.
qed

lemma sylvester-sum-mat-lower :
fixes p q :: ′a :: comm-semiring-1 poly
defines m ≡ degree p and n ≡ degree q
assumes ni: n ≤ i and imn: i < m+n
shows (

∑
j<m+n. monom (sylvester-mat p q $$ (i,j)) (m + n − Suc j)) =

monom 1 (m + n − Suc i) ∗ q (is sum ?f - = ?r)
proof −

define l where l = m+n−1
hence l: Suc l = m+n using imn by auto
define mni1 where mni1 = m + n − Suc i
hence mni1 : m+n−i = Suc mni1 using imn by auto
let ?g = λj. monom (coeff (monom 1 (m + n − Suc i) ∗ q) j) j
let ?p = λj. l−j
have sum ?f {..<m+n} = sum ?f {..l}

unfolding l[symmetric] unfolding lessThan-Suc-atMost..
also {

fix j assume j: j≤l
have ?f j = ((λj. monom (coeff (monom 1 (m+n−i) ∗ q) (Suc j)) j) ◦ ?p) j

apply(subst sylvester-index-mat2)
using ni imn j unfolding l-def m-def [symmetric] n-def [symmetric]
by (auto simp add: Suc-diff-Suc)

also have ... = (?g ◦ ?p) j
unfolding mni1
unfolding coeff-monom-Suc
unfolding mni1-def ..

41

finally have ?f j =
}
hence (

∑
j≤l. ?f j) = (

∑
j≤l. (?g◦?p) j) by auto

also have ... = (
∑

j≤l. ?g j)
using sum.reindex[OF inj-on-diff-nat2 ,symmetric,unfolded image-diff-atMost].

also have degree ?r ≤ l
using degree-mult-le[of monom 1 (m+n−1−i) q]
unfolding l-def n-def [symmetric]
unfolding degree-monom-eq[OF one-neq-zero] using ni imn by auto

from poly-as-sum-of-monoms ′[OF this]
have (

∑
j≤l. ?g j) = ?r.

finally show ?thesis.
qed

definition vec-of-poly p ≡ let m = degree p in vec (Suc m) (λi. coeff p (m−i))

definition poly-of-vec v ≡ let d = dim-vec v in
∑

i<d. monom (v $ (d − Suc i))
i

lemma poly-of-vec-of-poly[simp]:
fixes p :: ′a :: comm-monoid-add poly
shows poly-of-vec (vec-of-poly p) = p
unfolding poly-of-vec-def vec-of-poly-def Let-def
unfolding dim-vec
unfolding lessThan-Suc-atMost
using poly-as-sum-of-monoms[of p] by auto

lemma poly-of-vec-0 [simp]: poly-of-vec (0 v n) = 0 unfolding poly-of-vec-def Let-def
by auto

lemma poly-of-vec-0-iff [simp]:
fixes v :: ′a :: comm-monoid-add vec
shows poly-of-vec v = 0 ←→ v = 0 v (dim-vec v) (is ?v = - ←→ - = ?z)

proof
assume ?v = 0
hence ∀ i∈{..<dim-vec v}. v $ (dim-vec v − Suc i) = 0

unfolding poly-of-vec-def Let-def
by (subst sum-monom-0-iff [symmetric],auto)

hence a:
∧

i. i < dim-vec v =⇒ v $ (dim-vec v − Suc i) = 0 by auto
{ fix i assume i < dim-vec v

hence v $ i = 0 using a[of dim-vec v − Suc i] by auto
}
thus v = ?z by auto
next assume r : v = ?z
show ?v = 0 apply (subst r) by auto

qed

lemma degree-sum-smaller :

42

assumes n > 0 finite A
shows (

∧
x. x ∈A =⇒ degree (f x) < n) =⇒ degree (

∑
x∈A. f x) < n

using ‹finite A›
by(induct rule: finite-induct)
(simp-all add: degree-add-less assms)

lemma degree-poly-of-vec-less:
fixes v :: ′a :: comm-monoid-add vec
assumes dim: dim-vec v > 0
shows degree (poly-of-vec v) < dim-vec v
unfolding poly-of-vec-def Let-def
apply(rule degree-sum-smaller)

using dim apply force
apply force

unfolding lessThan-iff
by (metis degree-0 degree-monom-eq dim monom-eq-0-iff)

lemma coeff-poly-of-vec:
coeff (poly-of-vec v) i = (if i < dim-vec v then v $ (dim-vec v − Suc i) else 0)
(is ?l = ?r)

proof −
have ?l = (

∑
x<dim-vec v. if x = i then v $ (dim-vec v − Suc x) else 0) (is -

= ?m)
unfolding poly-of-vec-def Let-def coeff-sum coeff-monom ..

also have . . . = ?r
proof (cases i < dim-vec v)

case False
show ?thesis

by (subst sum.neutral, insert False, auto)
next

case True
show ?thesis
by (subst sum.remove[of - i], force, force simp: True, subst sum.neutral, insert

True, auto)
qed
finally show ?thesis .

qed

lemma vec-of-poly-rev-shifted-scalar-prod:
fixes p v
defines q ≡ poly-of-vec v
assumes m[simp]: degree p = m and n: dim-vec v = n
assumes j: j < m+n
shows vec-of-poly-rev-shifted p n (n+m−Suc j) · v = coeff (p ∗ q) j (is ?l = ?r)

proof −
have id1 :

∧
i. m + i − (n + m − Suc j) = i + Suc j − n

using j by auto
let ?g = λ i. if i ≤ n + m − Suc j ∧ n − Suc j ≤ i then coeff p (i + Suc j −

n) ∗ v $ i else 0

43

have ?thesis = ((
∑

i = 0 ..<n. ?g i) =
(
∑

i≤j. coeff p i ∗ (if j − i < n then v $ (n − Suc (j − i)) else 0))) (is -
= (?l = ?r))

unfolding vec-of-poly-rev-shifted-def coeff-mult m scalar-prod-def n q-def
coeff-poly-of-vec

by (subst sum.cong, insert id1 , auto)
also have ...
proof −

have ?r = (
∑

i≤j. (if j − i < n then coeff p i ∗ v $ (n − Suc (j − i)) else 0))
(is - = sum ?f -)

by (rule sum.cong, auto)
also have sum ?f {..j} = sum ?f ({i. i ≤ j ∧ j − i < n} ∪ {i. i ≤ j ∧ ¬ j −

i < n})
(is - = sum - (?R1 ∪ ?R2))
by (rule sum.cong, auto)

also have . . . = sum ?f ?R1 + sum ?f ?R2
by (subst sum.union-disjoint, auto)

also have sum ?f ?R2 = 0
by (rule sum.neutral, auto)

also have sum ?f ?R1 + 0 = sum (λ i. coeff p i ∗ v $ (i + n − Suc j)) ?R1
(is - = sum ?F -)
by (subst sum.cong, auto simp: ac-simps)

also have . . . = sum ?F ((?R1 ∩ {..m}) ∪ (?R1 − {..m}))
(is - = sum - (?R ∪ ?R ′))
by (rule sum.cong, auto)

also have . . . = sum ?F ?R + sum ?F ?R ′

by (subst sum.union-disjoint, auto)
also have sum ?F ?R ′ = 0
proof −

{
fix x
assume x > m
from coeff-eq-0 [OF this[folded m]]
have ?F x = 0 by simp

}
thus ?thesis

by (subst sum.neutral, auto)
qed
finally have r : ?r = sum ?F ?R by simp

have ?l = sum ?g ({i. i < n ∧ i ≤ n + m − Suc j ∧ n − Suc j ≤ i}
∪ {i. i < n ∧ ¬ (i ≤ n + m − Suc j ∧ n − Suc j ≤ i)})
(is - = sum - (?L1 ∪ ?L2))
by (rule sum.cong, auto)

also have . . . = sum ?g ?L1 + sum ?g ?L2
by (subst sum.union-disjoint, auto)

also have sum ?g ?L2 = 0
by (rule sum.neutral, auto)

also have sum ?g ?L1 + 0 = sum (λ i. coeff p (i + Suc j − n) ∗ v $ i) ?L1

44

(is - = sum ?G -)
by (subst sum.cong, auto)

also have . . . = sum ?G (?L1 ∩ {i. i + Suc j − n ≤ m} ∪ (?L1 − {i. i +
Suc j − n ≤ m}))

(is - = sum - (?L ∪ ?L ′))
by (subst sum.cong, auto)

also have . . . = sum ?G ?L + sum ?G ?L ′

by (subst sum.union-disjoint, auto)
also have sum ?G ?L ′ = 0
proof −

{
fix x
assume x + Suc j − n > m
from coeff-eq-0 [OF this[folded m]]
have ?G x = 0 by simp

}
thus ?thesis

by (subst sum.neutral, auto)
qed
finally have l: ?l = sum ?G ?L by simp

let ?bij = λ i. i + n − Suc j
{

fix x
assume x: j < m + n Suc (x + j) − n ≤ m x < n n − Suc j ≤ x
define y where y = x + Suc j − n
from x have x + Suc j ≥ n by auto
with x have xy: x = ?bij y unfolding y-def by auto
from x have y: y ∈ ?R unfolding y-def by auto
have x ∈ ?bij ‘ ?R unfolding xy using y by blast

} note tedious = this
show ?thesis unfolding l r

by (rule sum.reindex-cong[of ?bij], insert j, auto simp: inj-on-def tedious)
qed
finally show ?thesis by simp

qed

lemma sylvester-vec-poly:
fixes p q :: ′a :: comm-semiring-0 poly
defines m ≡ degree p

and n ≡ degree q
assumes v: v ∈ carrier-vec (m+n)
shows poly-of-vec (transpose-mat (sylvester-mat p q) ∗v v) =

poly-of-vec (vec-first v n) ∗ p + poly-of-vec (vec-last v m) ∗ q (is ?l = ?r)
proof (rule poly-eqI)

fix i
note mn[simp] = m-def [symmetric] n-def [symmetric]
let ?Tv = transpose-mat (sylvester-mat p q) ∗v v
have dim: dim-vec (vec-first v n) = n dim-vec (vec-last v m) = m dim-vec ?Tv

45

= n + m
using v by auto

have if-distrib:
∧

x y z. (if x then y else (0 :: ′a)) ∗ z = (if x then y ∗ z else 0)
by auto

show coeff ?l i = coeff ?r i
proof (cases i < m+n)

case False
hence i-mn: i ≥ m+n

and i-n:
∧

x. x ≤ i ∧ x < n ←→ x < n
and i-m:

∧
x. x ≤ i ∧ x < m ←→ x < m by auto

have coeff ?r i =
(
∑

x < n. vec-first v n $ (n − Suc x) ∗ coeff p (i − x)) +
(
∑

x < m. vec-last v m $ (m − Suc x) ∗ coeff q (i − x))
(is - = sum ?f - + sum ?g -)
unfolding coeff-add coeff-mult Let-def
unfolding coeff-poly-of-vec dim if-distrib
unfolding atMost-def
apply(subst sum.inter-filter [symmetric],simp)
apply(subst sum.inter-filter [symmetric],simp)
unfolding mem-Collect-eq
unfolding i-n i-m
unfolding lessThan-def by simp

also { fix x assume x: x < n
have coeff p (i−x) = 0

apply(rule coeff-eq-0) using i-mn x unfolding m-def by auto
hence ?f x = 0 by auto

} hence sum ?f {..<n} = 0 by auto
also { fix x assume x: x < m

have coeff q (i−x) = 0
apply(rule coeff-eq-0) using i-mn x unfolding n-def by auto

hence ?g x = 0 by auto
} hence sum ?g {..<m} = 0 by auto
finally have coeff ?r i = 0 by auto
also from False have 0 = coeff ?l i

unfolding coeff-poly-of-vec dim sum.distrib[symmetric] by auto
finally show ?thesis by auto

next case True
hence coeff ?l i = (transpose-mat (sylvester-mat p q) ∗v v) $ (n + m − Suc

i)
unfolding coeff-poly-of-vec dim sum.distrib[symmetric] by auto

also have ... = coeff (p ∗ poly-of-vec (vec-first v n) + q ∗ poly-of-vec (vec-last
v m)) i

apply(subst index-mult-mat-vec) using True apply simp
apply(subst row-transpose) using True apply simp
apply(subst col-sylvester)
unfolding mn using True apply simp
apply(subst vec-first-last-append[of v n m,symmetric]) using v apply(simp

add: add.commute)
apply(subst scalar-prod-append)

46

apply (rule carrier-vecI ,simp)+
apply (subst vec-of-poly-rev-shifted-scalar-prod,simp,simp) using True apply

simp
apply (subst add.commute[of n m])

apply (subst vec-of-poly-rev-shifted-scalar-prod,simp,simp) using True apply
simp

by simp
also have ... =
(
∑

x≤i. (if x < n then vec-first v n $ (n − Suc x) else 0) ∗ coeff p (i − x))
+

(
∑

x≤i. (if x < m then vec-last v m $ (m − Suc x) else 0) ∗ coeff q (i − x))
unfolding coeff-poly-of-vec[of vec-first v n,unfolded dim-vec-first,symmetric]
unfolding coeff-poly-of-vec[of vec-last v m,unfolded dim-vec-last,symmetric]
unfolding coeff-mult[symmetric] by (simp add: mult.commute)

also have ... = coeff ?r i
unfolding coeff-add coeff-mult Let-def
unfolding coeff-poly-of-vec dim..

finally show ?thesis.
qed

qed

4.2.2 Homomorphism and Resultant

Here we prove Lemma 7.3.1 of the textbook.
lemma(in comm-ring-hom) resultant-sub-map-poly:

fixes p q :: ′a poly
shows hom (resultant-sub m n p q) = resultant-sub m n (map-poly hom p)

(map-poly hom q)
(is ?l = ?r ′)

proof −
let ?mh = map-poly hom
have ?l = det (sylvester-mat-sub m n (?mh p) (?mh q))

unfolding resultant-sub-def
apply(subst sylvester-mat-sub-map[symmetric]) by auto

thus ?thesis unfolding resultant-sub-def .
qed

4.2.3 Resultant as Polynomial Expression
context begin

This context provides notions for proving Lemma 7.2.1 of the textbook.
private fun mk-poly-sub where

mk-poly-sub A l 0 = A
| mk-poly-sub A l (Suc j) = mat-addcol (monom 1 (Suc j)) l (l−Suc j) (mk-poly-sub
A l j)

definition mk-poly A = mk-poly-sub (map-mat coeff-lift A) (dim-col A − 1)
(dim-col A − 1)

47

private lemma mk-poly-sub-dim[simp]:
dim-row (mk-poly-sub A l j) = dim-row A
dim-col (mk-poly-sub A l j) = dim-col A
by (induct j,auto)

private lemma mk-poly-sub-carrier :
assumes A ∈ carrier-mat nr nc shows mk-poly-sub A l j ∈ carrier-mat nr nc
apply (rule carrier-matI) using assms by auto

private lemma mk-poly-dim[simp]:
dim-col (mk-poly A) = dim-col A
dim-row (mk-poly A) = dim-row A
unfolding mk-poly-def by auto

private lemma mk-poly-sub-others[simp]:
assumes l 6= j ′ and i < dim-row A and j ′ < dim-col A
shows mk-poly-sub A l j $$ (i,j ′) = A $$ (i,j ′)
using assms by (induct j; simp)

private lemma mk-poly-others[simp]:
assumes i: i < dim-row A and j: j < dim-col A − 1
shows mk-poly A $$ (i,j) = [: A $$ (i,j) :]
unfolding mk-poly-def
apply(subst mk-poly-sub-others)
using i j by auto

private lemma mk-poly-delete[simp]:
assumes i: i < dim-row A
shows mat-delete (mk-poly A) i (dim-col A − 1) = map-mat coeff-lift (mat-delete

A i (dim-col A − 1))
apply(rule eq-matI) unfolding mat-delete-def by auto

private lemma col-mk-poly-sub[simp]:
assumes l 6= j ′ and j ′ < dim-col A
shows col (mk-poly-sub A l j) j ′ = col A j ′
by(rule eq-vecI ; insert assms; simp)

private lemma det-mk-poly-sub:
assumes A: (A :: ′a :: comm-ring-1 poly mat) ∈ carrier-mat n n and i: i < n
shows det (mk-poly-sub A (n−1) i) = det A
using i

proof (induct i)
case (Suc i)

show ?case unfolding mk-poly-sub.simps
apply(subst det-addcol[of - n])

using Suc apply simp
using Suc apply simp
apply (rule mk-poly-sub-carrier [OF A])

48

using Suc by auto
qed simp

private lemma det-mk-poly:
fixes A :: ′a :: comm-ring-1 mat
shows det (mk-poly A) = [: det A :]

proof (cases dim-row A = dim-col A)
case True

define n where n = dim-col A
have map-mat coeff-lift A ∈ carrier-mat (dim-row A) (dim-col A) by simp

hence sq: map-mat coeff-lift A ∈ carrier-mat (dim-col A) (dim-col A) unfolding
True.

show ?thesis
proof(cases dim-col A = 0)

case True thus ?thesis unfolding det-def by simp
next case False thus ?thesis
unfolding mk-poly-def
by (subst det-mk-poly-sub[OF sq]; simp)

qed
next case False

hence f2 : dim-row A = dim-col A ←→ False by simp
hence f3 : dim-row (mk-poly A) = dim-col (mk-poly A) ←→ False

unfolding mk-poly-dim by auto
show ?thesis unfolding det-def unfolding f2 f3 if-False by simp

qed

private fun mk-poly2-row where
mk-poly2-row A d j pv 0 = pv
| mk-poly2-row A d j pv (Suc n) =

mk-poly2-row A d j pv n |v n 7→ pv $ n + monom (A$$(n,j)) d

private fun mk-poly2-col where
mk-poly2-col A pv 0 = pv
| mk-poly2-col A pv (Suc m) =

mk-poly2-row A m (dim-col A − Suc m) (mk-poly2-col A pv m) (dim-row A)

private definition mk-poly2 A ≡ mk-poly2-col A (0 v (dim-row A)) (dim-col A)

private lemma mk-poly2-row-dim[simp]: dim-vec (mk-poly2-row A d j pv i) =
dim-vec pv

by(induct i arbitrary: pv, auto)

private lemma mk-poly2-col-dim[simp]: dim-vec (mk-poly2-col A pv j) = dim-vec
pv

by (induct j arbitrary: pv, auto)

private lemma mk-poly2-row:
assumes n: n ≤ dim-vec pv
shows mk-poly2-row A d j pv n $ i =

49

(if i < n then pv $ i + monom (A $$ (i,j)) d else pv $ i)
using n

proof (induct n arbitrary: pv)
case (Suc n) thus ?case

unfolding mk-poly2-row.simps by (cases rule: linorder-cases[of i n],auto)
qed simp

private lemma mk-poly2-row-col:
assumes dim[simp]: dim-vec pv = n dim-row A = n and j: j < dim-col A
shows mk-poly2-row A d j pv n = pv + map-vec (λa. monom a d) (col A j)
apply rule using mk-poly2-row[of - pv] j by auto

private lemma mk-poly2-col:
fixes pv :: ′a :: comm-semiring-1 poly vec and A :: ′a mat
assumes i: i < dim-row A and dim: dim-row A = dim-vec pv
shows mk-poly2-col A pv j $ i = pv $ i + (

∑
j ′<j. monom (A $$ (i, dim-col A

− Suc j ′)) j ′)
using dim

proof (induct j arbitrary: pv)
case (Suc j) show ?case

unfolding mk-poly2-col.simps
apply (subst mk-poly2-row)

using Suc apply simp
unfolding Suc(1)[OF Suc(2)]
using i by (simp add: add.assoc)

qed simp

private lemma mk-poly2-pre:
fixes A :: ′a :: comm-semiring-1 mat
assumes i: i < dim-row A
shows mk-poly2 A $ i = (

∑
j ′<dim-col A. monom (A $$ (i, dim-col A − Suc

j ′)) j ′)
unfolding mk-poly2-def
apply(subst mk-poly2-col) using i by auto

private lemma mk-poly2 :
fixes A :: ′a :: comm-semiring-1 mat
assumes i: i < dim-row A

and c: dim-col A > 0
shows mk-poly2 A $ i = (

∑
j ′<dim-col A. monom (A $$ (i,j ′)) (dim-col A −

Suc j ′))
(is ?l = sum ?f ?S)

proof −
define l where l = dim-col A − 1
have dim: dim-col A = Suc l unfolding l-def using i c by auto
let ?g = λj. l − j
have ?l = sum (?f ◦ ?g) ?S unfolding l-def mk-poly2-pre[OF i] by auto
also have ... = sum ?f ?S

unfolding dim

50

unfolding lessThan-Suc-atMost
using sum.reindex[OF inj-on-diff-nat2 ,symmetric,unfolded image-diff-atMost].

finally show ?thesis.
qed

private lemma mk-poly2-sylvester-upper :
fixes p q :: ′a :: comm-semiring-1 poly
assumes i: i < degree q
shows mk-poly2 (sylvester-mat p q) $ i = monom 1 (degree q − Suc i) ∗ p
apply (subst mk-poly2)

using i apply simp using i apply simp
apply (subst sylvester-sum-mat-upper [OF i,symmetric])
apply (rule sum.cong)

unfolding sylvester-mat-dim lessThan-Suc-atMost apply simp
by auto

private lemma mk-poly2-sylvester-lower :
fixes p q :: ′a :: comm-semiring-1 poly
assumes mi: i ≥ degree q and imn: i < degree p + degree q
shows mk-poly2 (sylvester-mat p q) $ i = monom 1 (degree p + degree q − Suc

i) ∗ q
apply (subst mk-poly2)

using imn apply simp using mi imn apply simp
unfolding sylvester-mat-dim
using sylvester-sum-mat-lower [OF mi imn]
apply (subst sylvester-sum-mat-lower) using mi imn by auto

private lemma foo:
fixes v :: ′a :: comm-semiring-1 vec
shows monom 1 d ·v map-vec coeff-lift v = map-vec (λa. monom a d) v
apply (rule eq-vecI)
unfolding index-map-vec index-col
by (auto simp add: Polynomial.smult-monom)

private lemma mk-poly-sub-corresp:
assumes dimA[simp]: dim-col A = Suc l and dimpv[simp]: dim-vec pv = dim-row

A
and j: j < dim-col A

shows pv + col (mk-poly-sub (map-mat coeff-lift A) l j) l =
mk-poly2-col A pv (Suc j)

proof(insert j, induct j)
have le: dim-row A ≤ dim-vec pv using dimpv by simp
have l: l < dim-col A using dimA by simp
{ case 0 show ?case

apply (rule eq-vecI)
using mk-poly2-row[OF le]
by (auto simp add: monom-0)

}
{ case (Suc j)

51

hence j: j < dim-col A by simp
show ?case

unfolding mk-poly-sub.simps
apply(subst col-addcol)

apply simp
apply simp

apply(subst(2) comm-add-vec)
apply(rule carrier-vecI , simp)

apply(rule carrier-vecI , simp)
apply(subst assoc-add-vec[symmetric])

apply(rule carrier-vecI , rule refl)
apply(rule carrier-vecI , simp)

apply(rule carrier-vecI , simp)
unfolding Suc(1)[OF j]
apply(subst(2) mk-poly2-col.simps)
apply(subst mk-poly2-row-col)

apply simp
apply simp

using Suc apply simp
apply(subst col-mk-poly-sub)
using Suc apply simp
using Suc apply simp
apply(subst col-map-mat)
using dimA apply simp
unfolding foo dimA by simp

}
qed

private lemma col-mk-poly-mk-poly2 :
fixes A :: ′a :: comm-semiring-1 mat
assumes dim: dim-col A > 0
shows col (mk-poly A) (dim-col A − 1) = mk-poly2 A

proof −
define l where l = dim-col A − 1
have dim: dim-col A = Suc l unfolding l-def using dim by auto
show ?thesis

unfolding mk-poly-def mk-poly2-def dim
apply(subst mk-poly-sub-corresp[symmetric])

apply(rule dim)
apply simp
using dim apply simp

apply(subst left-zero-vec)
apply(rule carrier-vecI) using dim apply simp

apply simp
done

qed

private lemma mk-poly-mk-poly2 :
fixes A :: ′a :: comm-semiring-1 mat

52

assumes dim: dim-col A > 0 and i: i < dim-row A
shows mk-poly A $$ (i,dim-col A − 1) = mk-poly2 A $ i

proof −
have mk-poly A $$ (i,dim-col A − 1) = col (mk-poly A) (dim-col A − 1) $ i

apply (subst index-col(1)) using dim i by auto
also note col-mk-poly-mk-poly2 [OF dim]
finally show ?thesis.

qed

lemma mk-poly-sylvester-upper :
fixes p q :: ′a :: comm-ring-1 poly
defines m ≡ degree p and n ≡ degree q
assumes i: i < n
shows mk-poly (sylvester-mat p q) $$ (i, m + n − 1) = monom 1 (n − Suc i)
∗ p (is ?l = ?r)
proof −

let ?S = sylvester-mat p q
have c: m+n = dim-col ?S and r : m+n = dim-row ?S unfolding m-def n-def

by auto
hence dim-col ?S > 0 i < dim-row ?S using i by auto
from mk-poly-mk-poly2 [OF this]
have ?l = mk-poly2 (sylvester-mat p q) $ i unfolding m-def n-def by auto
also have ... = ?r

apply(subst mk-poly2-sylvester-upper)
using i unfolding n-def m-def by auto

finally show ?thesis.
qed

lemma mk-poly-sylvester-lower :
fixes p q :: ′a :: comm-ring-1 poly
defines m ≡ degree p and n ≡ degree q
assumes ni: n ≤ i and imn: i < m+n
shows mk-poly (sylvester-mat p q) $$ (i, m + n − 1) = monom 1 (m + n −

Suc i) ∗ q (is ?l = ?r)
proof −

let ?S = sylvester-mat p q
have c: m+n = dim-col ?S and r : m+n = dim-row ?S unfolding m-def n-def

by auto
hence dim-col ?S > 0 i < dim-row ?S using imn by auto
from mk-poly-mk-poly2 [OF this]
have ?l = mk-poly2 (sylvester-mat p q) $ i unfolding m-def n-def by auto
also have ... = ?r

apply(subst mk-poly2-sylvester-lower)
using ni imn unfolding n-def m-def by auto

finally show ?thesis.
qed

The next lemma corresponds to Lemma 7.2.1.
lemma resultant-as-poly:

53

fixes p q :: ′a :: comm-ring-1 poly
assumes degp: degree p > 0 and degq: degree q > 0
shows ∃ p ′ q ′. degree p ′ < degree q ∧ degree q ′ < degree p ∧

[: resultant p q :] = p ′ ∗ p + q ′ ∗ q
proof (intro exI conjI)

define m where m = degree p
define n where n = degree q
define d where d = dim-row (mk-poly (sylvester-mat p q))
define c where c = (λi. coeff-lift (cofactor (sylvester-mat p q) i (m+n−1)))
define p ′ where p ′ = (

∑
i<n. monom 1 (n − Suc i) ∗ c i)

define q ′ where q ′ = (
∑

i<m. monom 1 (m − Suc i) ∗ c (n+i))

have degc:
∧

i. degree (c i) = 0 unfolding c-def by auto

have dmn: d = m+n and mnd: m + n = d unfolding d-def m-def n-def by
auto

have [: resultant p q :] =
(
∑

i<d. mk-poly (sylvester-mat p q) $$ (i,m+n−1) ∗
cofactor (mk-poly (sylvester-mat p q)) i (m+n−1))

unfolding resultant-def
unfolding det-mk-poly[symmetric]
unfolding m-def n-def d-def
apply(rule laplace-expansion-column[of - - degree p + degree q − 1])
apply(rule carrier-matI) using degp by auto

also { fix i assume i: i<d
have d2 : d = dim-row (sylvester-mat p q) unfolding d-def by auto
have cofactor (mk-poly (sylvester-mat p q)) i (m+n−1) =

(− 1) ^ (i + (m+n−1)) ∗ det (mat-delete (mk-poly (sylvester-mat p q)) i
(m+n−1))

using cofactor-def .
also have ... =

(− 1) ^ (i+m+n−1) ∗ coeff-lift (det (mat-delete (sylvester-mat p q) i
(m+n−1)))

using mk-poly-delete[OF i[unfolded d2]] degp degq
unfolding m-def n-def by (auto simp add: add.assoc)

also have i+m+n−1 = i+(m+n−1) using i[folded mnd] by auto
finally have cofactor (mk-poly (sylvester-mat p q)) i (m+n−1) = c i

unfolding c-def cofactor-def hom-distribs by simp
}
hence ... = (

∑
i<d. mk-poly (sylvester-mat p q) $$ (i, m+n−1) ∗ c i)

(is - = sum ?f -) by auto
also have ... = sum ?f ({..<n} ∪ {n ..<d}) unfolding dmn apply(subst

ivl-disj-un(8)) by auto
also have ... = sum ?f {..<n} + sum ?f {n..<d} apply(subst sum.union-disjoint)

by auto
also { fix i assume i: i < n

have ?f i = monom 1 (n − Suc i) ∗ c i ∗ p
unfolding m-def n-def
apply(subst mk-poly-sylvester-upper)

54

using i unfolding n-def by auto
}
hence sum ?f {..<n} = p ′ ∗ p unfolding p ′-def sum-distrib-right by auto
also { fix i assume i: i ∈ {n..<d}

have ?f i = monom 1 (m + n − Suc i) ∗ c i ∗ q
unfolding m-def n-def
apply(subst mk-poly-sylvester-lower)
using i unfolding dmn n-def m-def by auto

}
hence sum ?f {n..<d} = (

∑
i=n..<d. monom 1 (m + n − Suc i) ∗ c i) ∗ q

(is - = sum ?h - ∗ -) unfolding sum-distrib-right by auto
also have {n..<d} = (λi. i+n) ‘ {0 ..<m}

by (simp add: dmn)
also have sum ?h ... = sum (?h ◦ (λi. i+n)) {0 ..<m}

apply(subst sum.reindex[symmetric])
apply (rule inj-onI) by auto

also have ... = q ′ unfolding q ′-def apply(rule sum.cong) by (auto simp add:
add.commute)

finally show main: [:resultant p q:] = p ′ ∗ p + q ′ ∗ q.
show degree p ′ < n

unfolding p ′-def
apply(rule degree-sum-smaller)
using degq[folded n-def] apply force+

proof −
fix i assume i: i ∈ {..<n}
show degree (monom 1 (n − Suc i) ∗ c i) < n

apply (rule order .strict-trans1)
apply (rule degree-mult-le)

unfolding add.right-neutral degc
apply (rule order .strict-trans1)
apply (rule degree-monom-le) using i by auto

qed
show degree q ′ < m

unfolding q ′-def
apply (rule degree-sum-smaller)
using degp[folded m-def] apply force+

proof −
fix i assume i: i ∈ {..<m}
show degree (monom 1 (m−Suc i) ∗ c (n+i)) < m

apply (rule order .strict-trans1)
apply (rule degree-mult-le)

unfolding add.right-neutral degc
apply (rule order .strict-trans1)
apply (rule degree-monom-le) using i by auto

qed
qed

end

55

4.2.4 Resultant as Nonzero Polynomial Expression
lemma resultant-zero:

fixes p q :: ′a :: comm-ring-1 poly
assumes deg: degree p > 0 ∨ degree q > 0

and xp: poly p x = 0 and xq: poly q x = 0
shows resultant p q = 0

proof −
{ assume degp: degree p > 0 and degq: degree q > 0

obtain p ′ q ′ where [: resultant p q :] = p ′ ∗ p + q ′ ∗ q
using resultant-as-poly[OF degp degq] by force

hence resultant p q = poly (p ′ ∗ p + q ′ ∗ q) x
using mpoly-base-conv(2)[of resultant p q] by auto

also have ... = poly p x ∗ poly p ′ x + poly q x ∗ poly q ′ x
unfolding poly2-def by simp

finally have ?thesis using xp xq by simp
} moreover
{ assume degp: degree p = 0
have p: p = [:0 :] using xp degree-0-id[OF degp,symmetric] by (metis mpoly-base-conv(2))
have ?thesis unfolding p using degp deg by simp

} moreover
{ assume degq: degree q = 0
have q: q = [:0 :] using xq degree-0-id[OF degq,symmetric] by (metis mpoly-base-conv(2))
have ?thesis unfolding q using degq deg by simp

}
ultimately show ?thesis by auto

qed

lemma poly-resultant-zero:
fixes p q :: ′a :: comm-ring-1 poly poly
assumes deg: degree p > 0 ∨ degree q > 0
assumes p0 : poly2 p x y = 0 and q0 : poly2 q x y = 0
shows poly (resultant p q) x = 0

proof −
{ assume degree p > 0 degree q > 0

from resultant-as-poly[OF this]
obtain p ′ q ′ where [: resultant p q :] = p ′ ∗ p + q ′ ∗ q by force
hence resultant p q = poly (p ′ ∗ p + q ′ ∗ q) [:y:]

using mpoly-base-conv(2)[of resultant p q] by auto
also have poly ... x = poly2 p x y ∗ poly2 p ′ x y + poly2 q x y ∗ poly2 q ′ x y

unfolding poly2-def by simp
finally have ?thesis unfolding p0 q0 by simp

} moreover {
assume degp: degree p = 0
hence p: p = [: coeff p 0 :] by(subst degree-0-id[OF degp,symmetric],simp)
hence resultant p q = coeff p 0 ^ degree q using resultant-const(1) by metis
also have poly ... x = poly (coeff p 0) x ^ degree q by auto
also have ... = poly2 p x y ^ degree q unfolding poly2-def by(subst p, auto)
finally have ?thesis unfolding p0 using deg degp zero-power by auto

} moreover {

56

assume degq: degree q = 0
hence q: q = [: coeff q 0 :] by(subst degree-0-id[OF degq,symmetric],simp)
hence resultant p q = coeff q 0 ^ degree p using resultant-const(2) by metis
also have poly ... x = poly (coeff q 0) x ^ degree p by auto
also have ... = poly2 q x y ^ degree p unfolding poly2-def by(subst q, auto)
finally have ?thesis unfolding q0 using deg degq zero-power by auto

}
ultimately show ?thesis by auto

qed

lemma resultant-as-nonzero-poly-weak:
fixes p q :: ′a :: idom poly
assumes degp: degree p > 0 and degq: degree q > 0

and r0 : resultant p q 6= 0
shows ∃ p ′ q ′. degree p ′ < degree q ∧ degree q ′ < degree p ∧

[: resultant p q :] = p ′ ∗ p + q ′ ∗ q ∧ p ′ 6= 0 ∧ q ′ 6= 0
proof −

obtain p ′ q ′

where deg: degree p ′ < degree q degree q ′ < degree p
and main: [: resultant p q :] = p ′ ∗ p + q ′ ∗ q
using resultant-as-poly[OF degp degq] by auto

have p0 : p 6= 0 using degp by auto
have q0 : q 6= 0 using degq by auto
show ?thesis
proof (intro exI conjI notI)

assume p ′ = 0
hence [: resultant p q :] = q ′ ∗ q using main by auto
also hence d0 : 0 = degree (q ′ ∗ q) by (metis degree-pCons-0)

{ assume q ′ 6= 0
hence degree (q ′ ∗ q) = degree q ′ + degree q

apply(rule degree-mult-eq) using q0 by auto
hence False using d0 degq by auto

} hence q ′ = 0 by auto
finally show False using r0 by auto

next
assume q ′ = 0
hence [: resultant p q :] = p ′ ∗ p using main by auto
also

hence d0 : 0 = degree (p ′ ∗ p) by (metis degree-pCons-0)
{ assume p ′ 6= 0

hence degree (p ′ ∗ p) = degree p ′ + degree p
apply(rule degree-mult-eq) using p0 by auto

hence False using d0 degp by auto
} hence p ′ = 0 by auto

finally show False using r0 by auto
qed fact+

qed

Next lemma corresponds to Lemma 7.2.2 of the textbook

57

lemma resultant-as-nonzero-poly:
fixes p q :: ′a :: idom poly
defines m ≡ degree p and n ≡ degree q
assumes degp: m > 0 and degq: n > 0
shows ∃ p ′ q ′. degree p ′ < n ∧ degree q ′ < m ∧

[: resultant p q :] = p ′ ∗ p + q ′ ∗ q ∧ p ′ 6= 0 ∧ q ′ 6= 0
proof (cases resultant p q = 0)

case False
thus ?thesis

using resultant-as-nonzero-poly-weak degp degq
unfolding m-def n-def by auto

next case True
define S where S = transpose-mat (sylvester-mat p q)
have S : S ∈ carrier-mat (m+n) (m+n) unfolding S-def m-def n-def by auto
have det S = 0 using True

unfolding resultant-def S-def apply (subst det-transpose) by auto
then obtain v

where v: v ∈ carrier-vec (m+n) and v0 : v 6= 0 v (m+n) and S ∗v v = 0 v

(m+n)
using det-0-iff-vec-prod-zero[OF S] by auto

hence poly-of-vec (S ∗v v) = 0 by auto
hence main: poly-of-vec (vec-first v n) ∗ p + poly-of-vec (vec-last v m) ∗ q = 0
(is ?p ∗ - + ?q ∗ - = -)
using sylvester-vec-poly[OF v[unfolded m-def n-def], folded m-def n-def S-def]
by auto

have split: vec-first v n @v vec-last v m = v
using vec-first-last-append[simplified add.commute] v by auto

show ?thesis
proof(intro exI conjI)

show [: resultant p q :] = ?p ∗ p + ?q ∗ q unfolding True using main by
auto

show ?p 6= 0
proof

assume p ′0 : ?p = 0
hence ?q ∗ q = 0 using main by auto
hence ?q = 0 using degq n-def by auto
hence vec-last v m = 0 v m unfolding poly-of-vec-0-iff by auto

also have vec-first v n @v ... = 0 v (m+n) using p ′0 unfolding poly-of-vec-0-iff
by auto

finally have v = 0 v (m+n) using split by auto
thus False using v0 by auto

qed
show ?q 6= 0
proof

assume q ′0 : ?q = 0
hence ?p ∗ p = 0 using main by auto
hence ?p = 0 using degp m-def by auto
hence vec-first v n = 0 v n unfolding poly-of-vec-0-iff by auto

also have ... @v vec-last v m = 0 v (m+n) using q ′0 unfolding poly-of-vec-0-iff

58

by auto
finally have v = 0 v (m+n) using split by auto
thus False using v0 by auto

qed
show degree ?p < n using degree-poly-of-vec-less[of vec-first v n] using degq

by auto
show degree ?q < m using degree-poly-of-vec-less[of vec-last v m] using degp

by auto
qed

qed

Corresponds to Lemma 7.2.3 of the textbook
lemma resultant-zero-imp-common-factor :

fixes p q :: ′a :: ufd poly
assumes deg: degree p > 0 ∨ degree q > 0 and r0 : resultant p q = 0
shows ¬ coprime p q
unfolding neq0-conv[symmetric]

proof −
{ assume degp: degree p > 0 and degq: degree q > 0

assume cop: coprime p q
obtain p ′ q ′ where p ′ ∗ p + q ′ ∗ q = 0

and p ′: degree p ′ < degree q and q ′: degree q ′ < degree p
and p ′0 : p ′ 6= 0 and q ′0 : q ′ 6= 0
using resultant-as-nonzero-poly[OF degp degq] r0 by auto

hence p ′ ∗ p = − q ′ ∗ q by (simp add: eq-neg-iff-add-eq-0)

from some-gcd.coprime-mult-cross-dvd[OF cop this]
have p dvd q ′ by auto
from dvd-imp-degree-le[OF this q ′0]
have degree p ≤ degree q ′ by auto
hence False using q ′ by auto

}
moreover
{ assume degp: degree p = 0

then obtain x where p = [:x:] by (elim degree-eq-zeroE)
moreover hence resultant p q = x ^ degree q using resultant-const by auto

hence x = 0 using r0 by auto
ultimately have p = 0 by auto
hence ?thesis unfolding not-coprime-iff-common-factor

by (metis deg degp dvd-0-right dvd-refl less-numeral-extra(3) poly-dvd-1)
}
moreover
{ assume degq: degree q = 0

then obtain x where q = [:x:] by (elim degree-eq-zeroE)
moreover hence resultant p q = x ^ degree p using resultant-const by auto

hence x = 0 using r0 by auto
ultimately have q = 0 by auto
hence ?thesis unfolding not-coprime-iff-common-factor

by (metis deg degq dvd-0-right dvd-refl less-numeral-extra(3) poly-dvd-1)

59

}
ultimately show ?thesis by auto

qed

lemma resultant-non-zero-imp-coprime:
assumes nz: resultant (f :: ′a :: field poly) g 6= 0
and nz ′: f 6= 0 ∨ g 6= 0

shows coprime f g
proof (cases degree f = 0 ∨ degree g = 0)

case False
define r where r = [:resultant f g:]
from nz have r : r 6= 0 unfolding r-def by auto
from False have degree f > 0 degree g > 0 by auto
from resultant-as-nonzero-poly-weak[OF this nz]
obtain p q where degree p < degree g degree q < degree f

and id: r = p ∗ f + q ∗ g
and p 6= 0 q 6= 0 unfolding r-def by auto

define h where h = some-gcd f g
have h dvd f h dvd g unfolding h-def by auto
then obtain j k where f : f = h ∗ j and g: g = h ∗ k unfolding dvd-def by

auto
from id[unfolded f g] have id: h ∗ (p ∗ j + q ∗ k) = r by (auto simp: field-simps)
from arg-cong[OF id, of degree] have degree (h ∗ (p ∗ j + q ∗ k)) = 0

unfolding r-def by auto
also have degree (h ∗ (p ∗ j + q ∗ k)) = degree h + degree (p ∗ j + q ∗ k)

by (subst degree-mult-eq, insert id r , auto)
finally have h: degree h = 0 h 6= 0 using r id by auto
thus ?thesis unfolding h-def using is-unit-iff-degree some-gcd.gcd-dvd-1 by

blast
next

case True
thus ?thesis
proof

assume deg-g: degree g = 0
show ?thesis
proof (cases g = 0)

case False
then show ?thesis using divides-degree[of - g, unfolded deg-g]

by (simp add: is-unit-right-imp-coprime)
next

case g: True
then have g = [:0 :] by auto
from nz[unfolded this resultant-const] have degree f = 0 by auto
with nz ′ show ?thesis unfolding g by auto

qed
next

assume deg-f : degree f = 0
show ?thesis
proof (cases f = 0)

60

case False
then show ?thesis using divides-degree[of - f , unfolded deg-f]

by (simp add: is-unit-left-imp-coprime)
next

case f : True
then have f = [:0 :] by auto
from nz[unfolded this resultant-const] have degree g = 0 by auto
with nz ′ show ?thesis unfolding f by auto

qed
qed

qed

end

5 Algebraic Numbers: Addition and Multiplica-
tion

This theory contains the remaining field operations for algebraic numbers,
namely addition and multiplication.
theory Algebraic-Numbers

imports
Algebraic-Numbers-Prelim
Resultant
Polynomial-Factorization.Polynomial-Divisibility

begin

interpretation coeff-hom: monoid-add-hom λp. coeff p i by (unfold-locales, auto)
interpretation coeff-hom: comm-monoid-add-hom λp. coeff p i..
interpretation coeff-hom: group-add-hom λp. coeff p i..
interpretation coeff-hom: ab-group-add-hom λp. coeff p i..
interpretation coeff-0-hom: monoid-mult-hom λp. coeff p 0 by (unfold-locales,
auto simp: coeff-mult)
interpretation coeff-0-hom: semiring-hom λp. coeff p 0 ..
interpretation coeff-0-hom: comm-monoid-mult-hom λp. coeff p 0 ..
interpretation coeff-0-hom: comm-semiring-hom λp. coeff p 0 ..

5.1 Addition of Algebraic Numbers
definition x-y ≡ [: [: 0 , 1 :], −1 :]

definition poly-x-minus-y p = poly-lift p ◦p x-y

lemma coeff-xy-power :
assumes k ≤ n
shows coeff (x-y ^ n :: ′a :: comm-ring-1 poly poly) k =

monom (of-nat (n choose (n − k)) ∗ (− 1) ^ k) (n − k)
proof −

define X :: ′a poly poly where X = monom (monom 1 1) 0

61

define Y :: ′a poly poly where Y = monom (−1) 1

have [simp]: monom 1 b ∗ (−1) ^ k = monom ((−1)^k :: ′a) b for b k
by (auto simp: monom-altdef minus-one-power-iff)

have (X + Y) ^ n = (
∑

i≤n. of-nat (n choose i) ∗ X ^ i ∗ Y ^ (n − i))
by (subst binomial-ring) auto

also have . . . = (
∑

i≤n. of-nat (n choose i) ∗ monom (monom ((−1) ^ (n −
i)) i) (n − i))

by (simp add: X-def Y-def monom-power mult-monom mult.assoc)
also have . . . = (

∑
i≤n. monom (monom (of-nat (n choose i) ∗ (−1) ^ (n −

i)) i) (n − i))
by (simp add: of-nat-poly smult-monom)

also have coeff . . . k =
(
∑

i≤n. if n − i = k then monom (of-nat (n choose i) ∗ (− 1) ^ (n − i)) i
else 0)

by (simp add: of-nat-poly coeff-sum)
also have . . . = (

∑
i∈{n−k}. monom (of-nat (n choose i) ∗ (− 1) ^ (n − i))

i)
using ‹k ≤ n› by (intro sum.mono-neutral-cong-right) auto

also have X + Y = x-y
by (simp add: X-def Y-def x-y-def monom-altdef)

finally show ?thesis
using ‹k ≤ n› by simp

qed

The following polynomial represents the sum of two algebraic numbers.
definition poly-add :: ′a :: comm-ring-1 poly ⇒ ′a poly ⇒ ′a poly where

poly-add p q = resultant (poly-x-minus-y p) (poly-lift q)

5.1.1 poly-add has desired root
interpretation poly-x-minus-y-hom:

comm-ring-hom poly-x-minus-y by (unfold-locales; simp add: poly-x-minus-y-def
hom-distribs)

lemma poly2-x-y[simp]:
fixes x :: ′a :: comm-ring-1
shows poly2 x-y x y = x − y unfolding poly2-def by (simp add: x-y-def)

lemma degree-poly-x-minus-y[simp]:
fixes p :: ′a::idom poly
shows degree (poly-x-minus-y p) = degree p unfolding poly-x-minus-y-def x-y-def

by auto

lemma poly-x-minus-y-pCons[simp]:
poly-x-minus-y (pCons a p) = [:[: a :]:] + poly-x-minus-y p ∗ x-y
unfolding poly-x-minus-y-def x-y-def by simp

lemma poly-poly-poly-x-minus-y[simp]:

62

fixes p :: ′a :: comm-ring-1 poly
shows poly (poly (poly-x-minus-y p) q) x = poly p (x − poly q x)
by (induct p; simp add: ring-distribs x-y-def)

lemma poly2-poly-x-minus-y[simp]:
fixes p :: ′a :: comm-ring-1 poly
shows poly2 (poly-x-minus-y p) x y = poly p (x−y) unfolding poly2-def by simp

interpretation x-y-mult-hom: zero-hom-0 λp :: ′a :: comm-ring-1 poly poly. x-y ∗
p
proof (unfold-locales)

fix p :: ′a poly poly
assume x-y ∗ p = 0
then show p = 0 apply (simp add: x-y-def)
by (metis eq-neg-iff-add-eq-0 minus-equation-iff minus-pCons synthetic-div-unique-lemma)

qed

lemma x-y-nonzero[simp]: x-y 6= 0 by (simp add: x-y-def)

lemma degree-x-y[simp]: degree x-y = 1 by (simp add: x-y-def)

interpretation x-y-mult-hom: inj-comm-monoid-add-hom λp :: ′a :: idom poly
poly. x-y ∗ p
proof (unfold-locales)

show x-y ∗ p = x-y ∗ q =⇒ p = q for p q :: ′a poly poly
proof (induct p arbitrary:q)

case 0
then show ?case by simp

next
case p: (pCons a p)
from p(3)[unfolded mult-pCons-right]
have x-y ∗ (monom a 0 + pCons 0 1 ∗ p) = x-y ∗ q

apply (subst(asm) pCons-0-as-mult)
apply (subst(asm) smult-prod) by (simp only: field-simps distrib-left)

then have monom a 0 + pCons 0 1 ∗ p = q by simp
then show pCons a p = q using pCons-as-add by (simp add: monom-0

monom-Suc)
qed

qed

interpretation poly-x-minus-y-hom: inj-idom-hom poly-x-minus-y
proof

fix p :: ′a poly
assume 0 : poly-x-minus-y p = 0
then have poly-lift p ◦p x-y = 0 by (simp add: poly-x-minus-y-def)
then show p = 0
proof (induct p)

case 0
then show ?case by simp

63

next
case (pCons a p)
note p = this[unfolded poly-lift-pCons pcompose-pCons]
show ?case
proof (cases a=0)

case a0 : True
with p have x-y ∗ poly-lift p ◦p x-y = 0 by simp
then have poly-lift p ◦p x-y = 0 by simp
then show ?thesis using p by simp

next
case a0 : False
with p have p0 : p 6= 0 by auto

from p have [:[:a:]:] = − x-y ∗ poly-lift p ◦p x-y by (simp add: eq-neg-iff-add-eq-0)
then have degree [:[:a:]:] = degree (x-y ∗ poly-lift p ◦p x-y) by simp
also have ... = degree (x-y:: ′a poly poly) + degree (poly-lift p ◦p x-y)

apply (subst degree-mult-eq)
apply simp

apply (subst pcompose-eq-0)
apply (simp add: x-y-def)

apply (simp add: p0)
apply simp

done
finally have False by simp
then show ?thesis..

qed
qed

qed

lemma poly-add:
fixes p q :: ′a ::comm-ring-1 poly
assumes q0 : q 6= 0 and x: poly p x = 0 and y: poly q y = 0
shows poly (poly-add p q) (x+y) = 0

proof (unfold poly-add-def , rule poly-resultant-zero[OF disjI2])
have degree q > 0 using poly-zero q0 y by auto
thus degq: degree (poly-lift q) > 0 by auto

qed (insert x y, simp-all)

5.1.2 poly-add is nonzero

We first prove that poly-lift preserves factorization. The result will be es-
sential also in the next section for division of algebraic numbers.
interpretation poly-lift-hom:

unit-preserving-hom poly-lift :: ′a :: {comm-semiring-1 ,semiring-no-zero-divisors}
poly ⇒ -
proof

fix x :: ′a poly
assume poly-lift x dvd 1
then have poly-y-x (poly-lift x) dvd poly-y-x 1

by simp

64

then show x dvd 1
by (auto simp add: poly-y-x-poly-lift)

qed

interpretation poly-lift-hom:
factor-preserving-hom poly-lift:: ′a::idom poly ⇒ ′a poly poly

proof unfold-locales
fix p :: ′a poly
assume p: irreducible p
show irreducible (poly-lift p)
proof(rule ccontr)

from p have p0 : p 6= 0 and ¬ p dvd 1 by (auto dest: irreducible-not-unit)
with poly-lift-hom.hom-dvd[of p 1] have p1 : ¬ poly-lift p dvd 1 by auto
assume ¬ irreducible (poly-lift p)
from this[unfolded irreducible-altdef ,simplified] p0 p1
obtain q where q dvd poly-lift p and pq: ¬ poly-lift p dvd q and q: ¬ q dvd 1

by auto
then obtain r where q ∗ r = poly-lift p by (elim dvdE , auto)
then have poly-y-x (q ∗ r) = poly-y-x (poly-lift p) by auto
also have ... = [:p:] by (auto simp: poly-y-x-poly-lift monom-0)

also have poly-y-x (q ∗ r) = poly-y-x q ∗ poly-y-x r by (auto simp: hom-distribs)
finally have ... = [:p:] by auto
then have qp: poly-y-x q dvd [:p:] by (metis dvdI)
from dvd-const[OF this] p0 have degree (poly-y-x q) = 0 by auto
from degree-0-id[OF this,symmetric] obtain s

where qs: poly-y-x q = [:s:] by auto
have poly-lift s = poly-y-x (poly-y-x (poly-lift s)) by auto

also have ... = poly-y-x [:s:] by (auto simp: poly-y-x-poly-lift monom-0)
also have ... = q by (auto simp: qs[symmetric])

finally have sq: poly-lift s = q by auto
from qp[unfolded qs] have sp: s dvd p by (auto simp: const-poly-dvd)
from irreducibleD ′[OF p this] sq q pq show False by auto

qed
qed

We now show that poly-x-minus-y is a factor-preserving homomorphism.
This is essential for this section. This is easy since poly-x-minus-y can be
represented as the composition of two factor-preserving homomorphisms.
lemma poly-x-minus-y-as-comp: poly-x-minus-y = (λp. p ◦p x-y) ◦ poly-lift

by (intro ext, unfold poly-x-minus-y-def , auto)
context idom-isom begin

sublocale comm-semiring-isom..
end

interpretation poly-x-minus-y-hom:
factor-preserving-hom poly-x-minus-y :: ′a :: idom poly ⇒ ′a poly poly

proof −
have ‹p ◦p x-y ◦p x-y = p› for p :: ‹ ′a poly poly›
proof (induction p)

65

case 0
show ?case

by simp
next

case (pCons a p)
then show ?case

by (unfold x-y-def hom-distribs pcompose-pCons) simp
qed
then interpret x-y-hom: bijective λp :: ′a poly poly. p ◦p x-y

by (unfold bijective-eq-bij) (rule involuntory-imp-bij)
interpret x-y-hom: idom-isom λp :: ′a poly poly. p ◦p x-y

by standard simp-all
have ‹factor-preserving-hom (λp :: ′a poly poly. p ◦p x-y)›

and ‹factor-preserving-hom (poly-lift :: ′a poly ⇒ ′a poly poly)›
..

then show factor-preserving-hom (poly-x-minus-y :: ′a poly ⇒ -)
by (unfold poly-x-minus-y-as-comp) (rule factor-preserving-hom-comp)

qed

Now we show that results of poly-x-minus-y and poly-lift are coprime.
lemma poly-y-x-const[simp]: poly-y-x [:[:a:]:] = [:[:a:]:] by (simp add: poly-y-x-def
monom-0)

context begin

private abbreviation y-x == [: [: 0 , −1 :], 1 :]

lemma poly-y-x-x-y[simp]: poly-y-x x-y = y-x by (simp add: x-y-def poly-y-x-def
monom-Suc monom-0)

private lemma y-x[simp]: fixes x :: ′a :: comm-ring-1 shows poly2 y-x x y = y
− x

unfolding poly2-def by simp

private definition poly-y-minus-x p ≡ poly-lift p ◦p y-x

private lemma poly-y-minus-x-0 [simp]: poly-y-minus-x 0 = 0 by (simp add:
poly-y-minus-x-def)

private lemma poly-y-minus-x-pCons[simp]:
poly-y-minus-x (pCons a p) = [:[: a :]:] + poly-y-minus-x p ∗ y-x by (simp add:

poly-y-minus-x-def)

private lemma poly-y-x-poly-x-minus-y:
fixes p :: ′a :: idom poly
shows poly-y-x (poly-x-minus-y p) = poly-y-minus-x p
apply (induct p, simp)
apply (unfold poly-x-minus-y-pCons hom-distribs) by simp

66

lemma degree-poly-y-minus-x[simp]:
fixes p :: ′a :: idom poly
shows degree (poly-y-x (poly-x-minus-y p)) = degree p
by (simp add: poly-y-minus-x-def poly-y-x-poly-x-minus-y)

end

lemma dvd-all-coeffs-iff :
fixes x :: ′a :: comm-semiring-1
shows (∀ pi ∈ set (coeffs p). x dvd pi) ←→ (∀ i. x dvd coeff p i) (is ?l = ?r)

proof−
have ?r = (∀ i∈{..degree p} ∪ {Suc (degree p)..}. x dvd coeff p i) by auto
also have ... = (∀ i≤degree p. x dvd coeff p i) by (auto simp add: ball-Un co-

eff-eq-0)
also have ... = ?l by (auto simp: coeffs-def)
finally show ?thesis..

qed

lemma primitive-imp-no-constant-factor :
fixes p :: ′a :: {comm-semiring-1 , semiring-no-zero-divisors} poly
assumes pr : primitive p and F : mset-factors F p and fF : f ∈# F
shows degree f 6= 0

proof
from F fF have irr : irreducible f and fp: f dvd p by (auto dest: mset-factors-imp-dvd)
assume deg: degree f = 0
then obtain f0 where f0 : f = [:f0 :] by (auto dest: degree0-coeffs)
with fp have [:f0 :] dvd p by simp
then have f0 dvd coeff p i for i by (simp add: const-poly-dvd-iff)
with primitiveD[OF pr] dvd-all-coeffs-iff have f0 dvd 1 by (auto simp: coeffs-def)
with f0 irr show False by auto

qed

lemma coprime-poly-x-minus-y-poly-lift:
fixes p q :: ′a :: ufd poly
assumes degp: degree p > 0 and degq: degree q > 0

and pr : primitive p
shows coprime (poly-x-minus-y p) (poly-lift q)

proof(rule ccontr)
from degp have p: ¬ p dvd 1 by (auto simp: dvd-const)
from degp have p0 : p 6= 0 by auto
from mset-factors-exist[of p, OF p0 p]
obtain F where F : mset-factors F p by auto
with poly-x-minus-y-hom.hom-mset-factors
have pF : mset-factors (image-mset poly-x-minus-y F) (poly-x-minus-y p) by auto

from degq have q: ¬ q dvd 1 by (auto simp: dvd-const)
from degq have q0 : q 6= 0 by auto
from mset-factors-exist[OF q0 q]
obtain G where G: mset-factors G q by auto

67

with poly-lift-hom.hom-mset-factors
have pG: mset-factors (image-mset poly-lift G) (poly-lift q) by auto

assume ¬ coprime (poly-x-minus-y p) (poly-lift q)
from this[unfolded not-coprime-iff-common-factor]
obtain r
where rp: r dvd (poly-x-minus-y p)

and rq: r dvd (poly-lift q)
and rU : ¬ r dvd 1 by auto note poly-lift-hom.hom-dvd

from rp p0 have r0 : r 6= 0 by auto
from mset-factors-exist[OF r0 rU]
obtain H where H : mset-factors H r by auto
then have H 6= {#} by auto
then obtain h where hH : h ∈# H by fastforce
with H mset-factors-imp-dvd have hr : h dvd r and h: irreducible h by auto
from irreducible-not-unit[OF h] have hU : ¬ h dvd 1 by auto
from hr rp have h dvd (poly-x-minus-y p) by (rule dvd-trans)
from irreducible-dvd-imp-factor [OF this h pF] p0
obtain f where f : f ∈# F and fh: poly-x-minus-y f ddvd h by auto
from hr rq have h dvd (poly-lift q) by (rule dvd-trans)
from irreducible-dvd-imp-factor [OF this h pG] q0
obtain g where g: g ∈# G and gh: poly-lift g ddvd h by auto
from fh gh have poly-x-minus-y f ddvd poly-lift g using ddvd-trans by auto
then have poly-y-x (poly-x-minus-y f) ddvd poly-y-x (poly-lift g) by simp
also have poly-y-x (poly-lift g) = [:g:] unfolding poly-y-x-poly-lift monom-0 by

auto
finally have ddvd: poly-y-x (poly-x-minus-y f) ddvd [:g:] by auto
then have degree (poly-y-x (poly-x-minus-y f)) = 0 by (metis degree-pCons-0

dvd-0-left-iff dvd-const)
then have degree f = 0 by simp
with primitive-imp-no-constant-factor [OF pr F f] show False by auto

qed

lemma poly-add-nonzero:
fixes p q :: ′a :: ufd poly
assumes p0 : p 6= 0 and q0 : q 6= 0 and x: poly p x = 0 and y: poly q y = 0

and pr : primitive p
shows poly-add p q 6= 0

proof
have degp: degree p > 0 using le-0-eq order-degree order-root p0 x by (metis

gr0I)
have degq: degree q > 0 using le-0-eq order-degree order-root q0 y by (metis

gr0I)
assume 0 : poly-add p q = 0
from resultant-zero-imp-common-factor [OF - this[unfolded poly-add-def]] degp
and coprime-poly-x-minus-y-poly-lift[OF degp degq pr]

show False by auto
qed

68

5.1.3 Summary for addition

Now we lift the results to one that uses ipoly, by showing some homomor-
phism lemmas.
lemma (in comm-ring-hom) map-poly-x-minus-y:

map-poly (map-poly hom) (poly-x-minus-y p) = poly-x-minus-y (map-poly hom p)
proof−

interpret mp: map-poly-comm-ring-hom hom..
interpret mmp: map-poly-comm-ring-hom map-poly hom..
show ?thesis

apply (induct p, simp)
apply(unfold x-y-def hom-distribs poly-x-minus-y-pCons, simp) done

qed

lemma (in comm-ring-hom) hom-poly-lift[simp]:
map-poly (map-poly hom) (poly-lift q) = poly-lift (map-poly hom q)

proof −
show ?thesis

unfolding poly-lift-def
unfolding map-poly-map-poly[of coeff-lift,OF coeff-lift-hom.hom-zero]
unfolding map-poly-coeff-lift-hom by simp

qed

lemma lead-coeff-poly-x-minus-y:
fixes p :: ′a::idom poly
shows lead-coeff (poly-x-minus-y p) = [:lead-coeff p ∗ ((− 1) ^ degree p):] (is ?l

= ?r)
proof−

have ?l = Polynomial.smult (lead-coeff p) ((− 1) ^ degree p)
by (unfold poly-x-minus-y-def , subst lead-coeff-comp; simp add: x-y-def)

also have ... = ?r by (unfold hom-distribs, simp add: smult-as-map-poly[symmetric])
finally show ?thesis.

qed

lemma degree-coeff-poly-x-minus-y:
fixes p q :: ′a :: {idom, semiring-char-0} poly
shows degree (coeff (poly-x-minus-y p) i) = degree p − i

proof −
consider i = degree p | i > degree p | i < degree p

by force
thus ?thesis
proof cases

assume i > degree p
thus ?thesis by (subst coeff-eq-0) auto

next
assume i = degree p
thus ?thesis using lead-coeff-poly-x-minus-y[of p]

by (simp add: lead-coeff-poly-x-minus-y)

69

next
assume i < degree p
define n where n = degree p
have degree (coeff (poly-x-minus-y p) i) =

degree (
∑

j≤n. [:coeff p j:] ∗ coeff (x-y ^ j) i) (is - = degree (sum ?f -))
by (simp add: poly-x-minus-y-def pcompose-conv-poly poly-altdef coeff-sum

n-def)
also have {..n} = insert n {..<n}

by auto
also have sum ?f . . . = ?f n + sum ?f {..<n}

by (subst sum.insert) auto
also have degree . . . = n − i
proof −

have degree (?f n) = n − i
using ‹i < degree p› by (simp add: n-def coeff-xy-power degree-monom-eq)

moreover have degree (sum ?f {..<n}) < n − i
proof (intro degree-sum-smaller)

fix j assume j ∈ {..<n}
have degree ([:coeff p j:] ∗ coeff (x-y ^ j) i) ≤ j − i
proof (cases i ≤ j)

case True
thus ?thesis

by (auto simp: n-def coeff-xy-power degree-monom-eq)
next

case False
hence coeff (x-y ^ j :: ′a poly poly) i = 0

by (subst coeff-eq-0) (auto simp: degree-power-eq)
thus ?thesis by simp

qed
also have . . . < n − i

using ‹j ∈ {..<n}› ‹i < degree p› by (auto simp: n-def)
finally show degree ([:coeff p j:] ∗ coeff (x-y ^ j) i) < n − i .

qed (use ‹i < degree p› in ‹auto simp: n-def ›)
ultimately show ?thesis

by (subst degree-add-eq-left) auto
qed
finally show ?thesis

by (simp add: n-def)
qed

qed

lemma coeff-0-poly-x-minus-y [simp]: coeff (poly-x-minus-y p) 0 = p
by (induction p) (auto simp: poly-x-minus-y-def x-y-def)

lemma (in idom-hom) poly-add-hom:
assumes p0 : hom (lead-coeff p) 6= 0 and q0 : hom (lead-coeff q) 6= 0
shows map-poly hom (poly-add p q) = poly-add (map-poly hom p) (map-poly hom

q)
proof −

70

interpret mh: map-poly-idom-hom..
show ?thesis unfolding poly-add-def

apply (subst mh.resultant-map-poly(1)[symmetric])
apply (subst degree-map-poly-2)
apply (unfold lead-coeff-poly-x-minus-y, unfold hom-distribs, simp add: p0)

apply simp
apply (subst degree-map-poly-2)
apply (simp-all add: q0 map-poly-x-minus-y)

done
qed

lemma(in zero-hom) hom-lead-coeff-nonzero-imp-map-poly-hom:
assumes hom (lead-coeff p) 6= 0
shows map-poly hom p 6= 0

proof
assume map-poly hom p = 0
then have coeff (map-poly hom p) (degree p) = 0 by simp
with assms show False by simp

qed

lemma ipoly-poly-add:
fixes x y :: ′a :: idom
assumes p0 : (of-int (lead-coeff p) :: ′a) 6= 0 and q0 : (of-int (lead-coeff q) :: ′a)
6= 0

and x: ipoly p x = 0 and y: ipoly q y = 0
shows ipoly (poly-add p q) (x+y) = 0
using assms of-int-hom.hom-lead-coeff-nonzero-imp-map-poly-hom[OF q0]
by (auto intro: poly-add simp: of-int-hom.poly-add-hom[OF p0 q0])

lemma (in comm-monoid-gcd) gcd-list-eq-0-iff [simp]: listgcd xs = 0 ←→ (∀ x ∈
set xs. x = 0)

by (induct xs, auto)

lemma primitive-field-poly[simp]: primitive (p :: ′a :: field poly) ←→ p 6= 0
by (unfold primitive-iff-some-content-dvd-1 ,auto simp: dvd-field-iff coeffs-def)

lemma ipoly-poly-add-nonzero:
fixes x y :: ′a :: field
assumes p 6= 0 and q 6= 0 and ipoly p x = 0 and ipoly q y = 0

and (of-int (lead-coeff p) :: ′a) 6= 0 and (of-int (lead-coeff q) :: ′a) 6= 0
shows poly-add p q 6= 0

proof−
from assms have (of-int-poly (poly-add p q) :: ′a poly) 6= 0

apply (subst of-int-hom.poly-add-hom,simp,simp)
by (rule poly-add-nonzero, auto dest:of-int-hom.hom-lead-coeff-nonzero-imp-map-poly-hom)

then show ?thesis by auto
qed

lemma represents-add:

71

assumes x: p represents x and y: q represents y
shows (poly-add p q) represents (x + y)
using assms by (intro representsI ipoly-poly-add ipoly-poly-add-nonzero, auto)

5.2 Division of Algebraic Numbers
definition poly-x-mult-y where
[code del]: poly-x-mult-y p ≡ (

∑
i ≤ degree p. monom (monom (coeff p i) i) i)

lemma coeff-poly-x-mult-y:
shows coeff (poly-x-mult-y p) i = monom (coeff p i) i (is ?l = ?r)

proof(cases degree p < i)
case i: False
have ?l = sum (λj. if j = i then (monom (coeff p j) j) else 0) {..degree p}
(is - = sum ?f ?A) by (simp add: poly-x-mult-y-def coeff-sum)

also have ... = sum ?f {i} using i by (intro sum.mono-neutral-right, auto)
also have ... = ?f i by simp
also have ... = ?r by auto
finally show ?thesis.

next
case True then show ?thesis by (auto simp: poly-x-mult-y-def coeff-eq-0 co-

eff-sum)
qed

lemma poly-x-mult-y-code[code]: poly-x-mult-y p = (let cs = coeffs p
in poly-of-list (map (λ (i, ai). monom ai i) (zip [0 ..< length cs] cs)))
unfolding Let-def poly-of-list-def

proof (rule poly-eqI , unfold coeff-poly-x-mult-y)
fix n
let ?xs = zip [0 ..<length (coeffs p)] (coeffs p)
let ?f = (λ(i, ai). monom ai i)
show monom (coeff p n) n = coeff (Poly (map ?f ?xs)) n
proof (cases n < length (coeffs p))

case True
hence n: n < length (map ?f ?xs) and nn: n < length ?xs

unfolding degree-eq-length-coeffs by auto
show ?thesis unfolding coeff-Poly nth-default-nth[OF n] nth-map[OF nn]

using True by (simp add: nth-coeffs-coeff)
next

case False
hence id: coeff (Poly (map ?f ?xs)) n = 0 unfolding coeff-Poly

by (subst nth-default-beyond, auto)
from False have n > degree p ∨ p = 0 unfolding degree-eq-length-coeffs by

(cases n, auto)
hence monom (coeff p n) n = 0 using coeff-eq-0 [of p n] by auto
thus ?thesis unfolding id by simp

qed
qed

72

definition poly-div :: ′a :: comm-ring-1 poly ⇒ ′a poly ⇒ ′a poly where
poly-div p q = resultant (poly-x-mult-y p) (poly-lift q)

poly-div has desired roots.
lemma poly2-poly-x-mult-y:

fixes p :: ′a :: comm-ring-1 poly
shows poly2 (poly-x-mult-y p) x y = poly p (x ∗ y)
apply (subst(3) poly-as-sum-of-monoms[symmetric])
apply (unfold poly-x-mult-y-def hom-distribs)
by (auto simp: poly2-monom poly-monom power-mult-distrib ac-simps)

lemma poly-div:
fixes p q :: ′a ::field poly
assumes q0 : q 6= 0 and x: poly p x = 0 and y: poly q y = 0 and y0 : y 6= 0
shows poly (poly-div p q) (x/y) = 0

proof (unfold poly-div-def , rule poly-resultant-zero[OF disjI2])
have degree q > 0 using poly-zero q0 y by auto
thus degq: degree (poly-lift q) > 0 by auto

qed (insert x y y0 , simp-all add: poly2-poly-x-mult-y)

poly-div is nonzero.
interpretation poly-x-mult-y-hom: ring-hom poly-x-mult-y :: ′a :: {idom,ring-char-0}
poly ⇒ -

by (unfold-locales, auto intro: poly2-ext simp: poly2-poly-x-mult-y hom-distribs)

interpretation poly-x-mult-y-hom: inj-ring-hom poly-x-mult-y :: ′a :: {idom,ring-char-0}
poly ⇒ -
proof

let ?h = poly-x-mult-y
fix f :: ′a poly
assume ?h f = 0
then have poly2 (?h f) x 1 = 0 for x by simp
from this[unfolded poly2-poly-x-mult-y]
show f = 0 by auto

qed

lemma degree-poly-x-mult-y[simp]:
fixes p :: ′a :: {idom, ring-char-0} poly
shows degree (poly-x-mult-y p) = degree p (is ?l = ?r)

proof(rule antisym)
show ?r ≤ ?l by (cases p=0 , auto intro: le-degree simp: coeff-poly-x-mult-y)
show ?l ≤ ?r unfolding poly-x-mult-y-def

by (auto intro: degree-sum-le le-trans[OF degree-monom-le])
qed

interpretation poly-x-mult-y-hom: unit-preserving-hom poly-x-mult-y :: ′a :: field-char-0
poly ⇒ -
proof(unfold-locales)

let ?h = poly-x-mult-y :: ′a poly ⇒ -

73

fix f :: ′a poly
assume unit: ?h f dvd 1
then have degree (?h f) = 0 and coeff (?h f) 0 dvd 1 unfolding poly-dvd-1 by

auto
then have deg: degree f = 0 by (auto simp add: degree-monom-eq)
with unit show f dvd 1 by(cases f = 0 , auto)

qed

lemmas poly-y-x-o-poly-lift = o-def [of poly-y-x poly-lift, unfolded poly-y-x-poly-lift]

lemma irreducible-dvd-degree: assumes (f :: ′a::field poly) dvd g
irreducible g
degree f > 0
shows degree f = degree g
using assms
by (metis irreducible-altdef degree-0 dvd-refl is-unit-field-poly linorder-neqE-nat

poly-divides-conv0)

lemma coprime-poly-x-mult-y-poly-lift:
fixes p q :: ′a :: field-char-0 poly
assumes degp: degree p > 0 and degq: degree q > 0

and nz: poly p 0 6= 0 ∨ poly q 0 6= 0
shows coprime (poly-x-mult-y p) (poly-lift q)

proof(rule ccontr)
from degp have p: ¬ p dvd 1 by (auto simp: dvd-const)
from degp have p0 : p 6= 0 by auto
from mset-factors-exist[of p, OF p0 p]
obtain F where F : mset-factors F p by auto
then have pF : prod-mset (image-mset poly-x-mult-y F) = poly-x-mult-y p

by (auto simp: hom-distribs)

from degq have q: ¬ is-unit q by (auto simp: dvd-const)
from degq have q0 : q 6= 0 by auto
from mset-factors-exist[OF q0 q]
obtain G where G: mset-factors G q by auto
with poly-lift-hom.hom-mset-factors
have pG: mset-factors (image-mset poly-lift G) (poly-lift q) by auto
from poly-y-x-hom.hom-mset-factors[OF this]
have pG: mset-factors (image-mset coeff-lift G) [:q:]
by (auto simp: poly-y-x-poly-lift monom-0 image-mset.compositionality poly-y-x-o-poly-lift)

assume ¬ coprime (poly-x-mult-y p) (poly-lift q)
then have ¬ coprime (poly-y-x (poly-x-mult-y p)) (poly-y-x (poly-lift q))

by (simp del: coprime-iff-coprime)
from this[unfolded not-coprime-iff-common-factor]
obtain r
where rp: r dvd poly-y-x (poly-x-mult-y p)

and rq: r dvd poly-y-x (poly-lift q)
and rU : ¬ r dvd 1 by auto

74

from rp p0 have r0 : r 6= 0 by auto
from mset-factors-exist[OF r0 rU]
obtain H where H : mset-factors H r by auto
then have H 6= {#} by auto
then obtain h where hH : h ∈# H by fastforce
with H mset-factors-imp-dvd have hr : h dvd r and h: irreducible h by auto
from irreducible-not-unit[OF h] have hU : ¬ h dvd 1 by auto
from hr rp have h dvd poly-y-x (poly-x-mult-y p) by (rule dvd-trans)
note this[folded pF ,unfolded poly-y-x-hom.hom-prod-mset image-mset.compositionality]
from prime-elem-dvd-prod-mset[OF h[folded prime-elem-iff-irreducible] this]
obtain f where f : f ∈# F and hf : h dvd poly-y-x (poly-x-mult-y f) by auto
have irrF : irreducible f using f F by blast

from dvd-trans[OF hr rq] have h dvd [:q:] by (simp add: poly-y-x-poly-lift
monom-0)

from irreducible-dvd-imp-factor [OF this h pG] q0
obtain g where g: g ∈# G and gh: [:g:] dvd h by auto
from dvd-trans[OF gh hf] have ∗: [:g:] dvd poly-y-x (poly-x-mult-y f) using

dvd-trans by auto
show False
proof (cases poly f 0 = 0)

case f-0 : False
from poly-hom.hom-dvd[OF ∗]
have g dvd poly (poly-y-x (poly-x-mult-y f)) [:0 :] by simp

also have ... = [:poly f 0 :] by (intro poly-ext, fold poly2-def , simp add:
poly2-poly-x-mult-y)

also have ... dvd 1 using f-0 by auto
finally have g dvd 1 .
with g G show False by (auto elim!: mset-factorsE dest!: irreducible-not-unit)

next
case True
hence [:0 ,1 :] dvd f by (unfold dvd-iff-poly-eq-0 , simp)
from irreducible-dvd-degree[OF this irrF]
have degree f = 1 by auto
from degree1-coeffs[OF this] True obtain c where c: c 6= 0 and f : f = [:0 ,c:]

by auto
from g G have irrG: irreducible g by auto
from poly-hom.hom-dvd[OF ∗]
have g dvd poly (poly-y-x (poly-x-mult-y f)) 1 by simp
also have . . . = f by (auto simp: f poly-x-mult-y-code Let-def c poly-y-x-pCons

map-poly-monom poly-monom poly-lift-def)
also have . . . dvd [:0 ,1 :] unfolding f dvd-def using c

by (intro exI [of - [: inverse c :]], auto)
finally have g01 : g dvd [:0 ,1 :] .
from divides-degree[OF this] irrG have degree g = 1 by auto
from degree1-coeffs[OF this] obtain a b where g: g = [:b,a:] and a: a 6= 0 by

auto
from g01 [unfolded dvd-def] g obtain k where id: [:0 ,1 :] = g ∗ k by auto
from id have 0 : g 6= 0 k 6= 0 by auto

from arg-cong[OF id, of degree] have degree k = 0 unfolding degree-mult-eq[OF

75

0]
unfolding g using a by auto

from degree0-coeffs[OF this] obtain kk where k: k = [:kk:] by auto
from id[unfolded g k] a have b = 0 by auto
hence poly g 0 = 0 by (auto simp: g)
from True this nz ‹f ∈# F› ‹g ∈# G› F G
show False by (auto dest!:mset-factors-imp-dvd elim:dvdE)

qed
qed

lemma poly-div-nonzero:
fixes p q :: ′a :: field-char-0 poly
assumes p0 : p 6= 0 and q0 : q 6= 0 and x: poly p x = 0 and y: poly q y = 0

and p-0 : poly p 0 6= 0 ∨ poly q 0 6= 0
shows poly-div p q 6= 0

proof
have degp: degree p > 0 using le-0-eq order-degree order-root p0 x by (metis

gr0I)
have degq: degree q > 0 using le-0-eq order-degree order-root q0 y by (metis

gr0I)
assume 0 : poly-div p q = 0
from resultant-zero-imp-common-factor [OF - this[unfolded poly-div-def]] degp
and coprime-poly-x-mult-y-poly-lift[OF degp degq] p-0

show False by auto
qed

5.2.1 Summary for division

Now we lift the results to one that uses ipoly, by showing some homomor-
phism lemmas.
lemma (in inj-comm-ring-hom) poly-x-mult-y-hom:

poly-x-mult-y (map-poly hom p) = map-poly (map-poly hom) (poly-x-mult-y p)
proof −

interpret mh: map-poly-inj-comm-ring-hom..
interpret mmh: map-poly-inj-comm-ring-hom map-poly hom..
show ?thesis unfolding poly-x-mult-y-def by (simp add: hom-distribs)

qed

lemma (in inj-comm-ring-hom) poly-div-hom:
map-poly hom (poly-div p q) = poly-div (map-poly hom p) (map-poly hom q)

proof −
have zero: ∀ x. hom x = 0 −→ x = 0 by simp
interpret mh: map-poly-inj-comm-ring-hom..
show ?thesis unfolding poly-div-def mh.resultant-hom[symmetric]

by (simp add: poly-x-mult-y-hom)
qed

lemma ipoly-poly-div:
fixes x y :: ′a :: field-char-0

76

assumes q 6= 0 and ipoly p x = 0 and ipoly q y = 0 and y 6= 0
shows ipoly (poly-div p q) (x/y) = 0
by (unfold of-int-hom.poly-div-hom, rule poly-div, insert assms, auto)

lemma ipoly-poly-div-nonzero:
fixes x y :: ′a :: field-char-0
assumes p 6= 0 and q 6= 0 and ipoly p x = 0 and ipoly q y = 0 and poly p 0
6= 0 ∨ poly q 0 6= 0

shows poly-div p q 6= 0
proof−
from assms have (of-int-poly (poly-div p q) :: ′a poly) 6= 0 using of-int-hom.poly-map-poly[of

p]
by (subst of-int-hom.poly-div-hom, subst poly-div-nonzero, auto)

then show ?thesis by auto
qed

lemma represents-div:
fixes x y :: ′a :: field-char-0
assumes p represents x and q represents y and poly q 0 6= 0
shows (poly-div p q) represents (x / y)
using assms by (intro representsI ipoly-poly-div ipoly-poly-div-nonzero, auto)

5.3 Multiplication of Algebraic Numbers
definition poly-mult where poly-mult p q ≡ poly-div p (reflect-poly q)

lemma represents-mult:
assumes px: p represents x and qy: q represents y and q-0 : poly q 0 6= 0
shows (poly-mult p q) represents (x ∗ y)

proof−
from q-0 qy have y0 : y 6= 0 by auto
from represents-inverse[OF y0 qy] y0 px q-0
have poly-mult p q represents x / (inverse y)

unfolding poly-mult-def by (intro represents-div, auto)
with y0 show ?thesis by (simp add: field-simps)

qed

5.4 Summary: Closure Properties of Algebraic Numbers
lemma algebraic-representsI : p represents x =⇒ algebraic x

unfolding represents-def algebraic-altdef-ipoly by auto

lemma algebraic-of-rat: algebraic (of-rat x)
by (rule algebraic-representsI [OF poly-rat-represents-of-rat])

lemma algebraic-uminus: algebraic x =⇒ algebraic (−x)
by (auto dest: algebraic-imp-represents-irreducible intro: algebraic-representsI rep-

resents-uminus)

lemma algebraic-inverse: algebraic x =⇒ algebraic (inverse x)

77

using algebraic-of-rat[of 0]
by (cases x = 0 , auto dest: algebraic-imp-represents-irreducible intro: algebraic-representsI

represents-inverse)

lemma algebraic-plus: algebraic x =⇒ algebraic y =⇒ algebraic (x + y)
by (auto dest!: algebraic-imp-represents-irreducible-cf-pos intro!: algebraic-representsI [OF

represents-add])

lemma algebraic-div:
assumes x: algebraic x and y: algebraic y shows algebraic (x/y)

proof(cases y = 0 ∨ x = 0)
case True
then show ?thesis using algebraic-of-rat[of 0] by auto

next
case False
then have x0 : x 6= 0 and y0 : y 6= 0 by auto
from x y obtain p q
where px: p represents x and irr : irreducible q and qy: q represents y

by (auto dest!: algebraic-imp-represents-irreducible)
show ?thesis

using False px represents-irr-non-0 [OF irr qy]
by (auto intro!: algebraic-representsI [OF represents-div] qy)

qed

lemma algebraic-times: algebraic x =⇒ algebraic y =⇒ algebraic (x ∗ y)
using algebraic-div[OF - algebraic-inverse, of x y] by (simp add: field-simps)

lemma algebraic-root: algebraic x =⇒ algebraic (root n x)
proof −

assume algebraic x
then obtain p where p: p represents x by (auto dest: algebraic-imp-represents-irreducible-cf-pos)
from

algebraic-representsI [OF represents-nth-root-neg-real[OF - this, of n]]
algebraic-representsI [OF represents-nth-root-pos-real[OF - this, of n]]
algebraic-of-rat[of 0]

show ?thesis by (cases n = 0 , force, cases n > 0 , force, cases n < 0 , auto)
qed

lemma algebraic-nth-root: n 6= 0 =⇒ algebraic x =⇒ y^n = x =⇒ algebraic y
by (auto dest: algebraic-imp-represents-irreducible-cf-pos intro: algebraic-representsI

represents-nth-root)

5.5 More on algebraic integers
definition poly-add-sign :: nat ⇒ nat ⇒ ′a :: comm-ring-1 where

poly-add-sign m n = signof (λi. if i < n then m + i else if i < m + n then i −
n else i)

lemma lead-coeff-poly-add:

78

fixes p q :: ′a :: {idom, semiring-char-0} poly
defines m ≡ degree p and n ≡ degree q
assumes lead-coeff p = 1 lead-coeff q = 1 m > 0 n > 0
shows lead-coeff (poly-add p q :: ′a poly) = poly-add-sign m n

proof −
from assms have [simp]: p 6= 0 q 6= 0

by auto
define M where M = sylvester-mat (poly-x-minus-y p) (poly-lift q)
define π :: nat ⇒ nat where
π = (λi. if i < n then m + i else if i < m + n then i − n else i)

have π: π permutes {0 ..<m+n}
by (rule inj-on-nat-permutes) (auto simp: π-def inj-on-def)

have nz: M $$ (i, π i) 6= 0 if i < m + n for i
using that by (auto simp: M-def π-def sylvester-index-mat m-def n-def)

have indices-eq: {0 ..<m+n} = {..<n} ∪ (+) n ‘ {..<m}
by (auto simp flip: atLeast0LessThan)

define f where f = (λ σ. signof σ ∗ (
∏

i=0 ..<m+n. M $$ (i, σ i)))
have degree (f π) = degree (

∏
i=0 ..<m + n. M $$ (i, π i))

using nz by (auto simp: f-def degree-mult-eq sign-def)
also have . . . = (

∑
i=0 ..<m+n. degree (M $$ (i, π i)))

using nz by (subst degree-prod-eq-sum-degree) auto
also have . . . = (

∑
i<n. degree (M $$ (i, π i))) + (

∑
i<m. degree (M $$ (n

+ i, π (n + i))))
by (subst indices-eq, subst sum.union-disjoint) (auto simp: sum.reindex)

also have (
∑

i<n. degree (M $$ (i, π i))) = (
∑

i<n. m)
by (intro sum.cong) (auto simp: M-def sylvester-index-mat π-def m-def n-def)

also have (
∑

i<m. degree (M $$ (n + i, π (n + i)))) = (
∑

i<m. 0)
by (intro sum.cong) (auto simp: M-def sylvester-index-mat π-def m-def n-def)

finally have deg-f1 : degree (f π) = m ∗ n
by simp

have deg-f2 : degree (f σ) < m ∗ n if σ permutes {0 ..<m+n} σ 6= π for σ
proof (cases ∃ i∈{0 ..<m+n}. M $$ (i, σ i) = 0)

case True
hence ∗: (

∏
i = 0 ..<m + n. M $$ (i, σ i)) = 0

by auto
show ?thesis using ‹m > 0 › ‹n > 0 ›

by (simp add: f-def ∗)
next

case False
note nz = this
from that have σ-less: σ i < m + n if i < m + n for i

using permutes-in-image[OF ‹σ permutes -›] that by auto
have degree (f σ) = degree (

∏
i=0 ..<m + n. M $$ (i, σ i))

using nz by (auto simp: f-def degree-mult-eq sign-def)

79

also have . . . = (
∑

i=0 ..<m+n. degree (M $$ (i, σ i)))
using nz by (subst degree-prod-eq-sum-degree) auto

also have . . . = (
∑

i<n. degree (M $$ (i, σ i))) + (
∑

i<m. degree (M $$ (n
+ i, σ (n + i))))

by (subst indices-eq, subst sum.union-disjoint) (auto simp: sum.reindex)
also have (

∑
i<m. degree (M $$ (n + i, σ (n + i)))) = (

∑
i<m. 0)

using σ-less by (intro sum.cong) (auto simp: M-def sylvester-index-mat π-def
m-def n-def)

also have (
∑

i<n. degree (M $$ (i, σ i))) < (
∑

i<n. m)
proof (rule sum-strict-mono-ex1)

show ∀ x∈{..<n}. degree (M $$ (x, σ x)) ≤ m using σ-less
by (auto simp: M-def sylvester-index-mat π-def m-def n-def degree-coeff-poly-x-minus-y)

next

have ∃ i<n. σ i 6= π i
proof (rule ccontr)

assume nex: ∼(∃ i<n. σ i 6= π i)
have ∀ i≥m+n−k. σ i = π i if k ≤ m for k

using that
proof (induction k)

case 0
thus ?case using ‹π permutes -› ‹σ permutes -›

by (fastforce simp: permutes-def)
next

case (Suc k)
have IH : σ i = π i if i ≥ m+n−k for i

using Suc.prems Suc.IH that by auto
from nz have M $$ (m + n − Suc k, σ (m + n − Suc k)) 6= 0

using Suc.prems by auto
moreover have m + n − Suc k ≥ n

using Suc.prems by auto
ultimately have σ (m+n−Suc k) ≥ m−Suc k

using assms σ-less[of m+n−Suc k] Suc.prems
by (auto simp: M-def sylvester-index-mat m-def n-def split: if-splits)

have ¬(σ (m+n−Suc k) > m − Suc k)
proof

assume ∗: σ (m+n−Suc k) > m − Suc k
have less: σ (m+n−Suc k) < m
proof (rule ccontr)

assume ∗: ¬σ (m + n − Suc k) < m
define j where j = σ (m + n − Suc k) − m
have σ (m + n − Suc k) = m + j

using ∗ by (simp add: j-def)
moreover {

have j < n
using σ-less[of m+n−Suc k] ‹m > 0 › ‹n > 0 › by (simp add: j-def)

hence σ j = π j
using nex by auto

with ‹j < n› have σ j = m + j

80

by (auto simp: π-def)
}
ultimately have σ (m + n − Suc k) = σ j

by simp
hence m + n − Suc k = j

using permutes-inj[OF ‹σ permutes -›] unfolding inj-def by blast
thus False using ‹n ≤ m + n − Suc k› σ-less[of m+n−Suc k] ‹n >

0 ›
unfolding j-def by linarith

qed

define j where j = σ (m+n−Suc k) − (m − Suc k)
from ∗ have j: σ (m+n−Suc k) = m − Suc k + j j > 0

by (auto simp: j-def)
have σ (m+n−Suc k + j) = π (m+n − Suc k + j)

using ∗ by (intro IH) (auto simp: j-def)
also {

have j < Suc k
using less by (auto simp: j-def algebra-simps)

hence m + n − Suc k + j < m + n
using ‹m > 0 › ‹n > 0 › Suc.prems by linarith

hence π (m +n − Suc k + j) = m − Suc k + j
unfolding π-def using Suc.prems by (simp add: π-def)

}
finally have σ (m + n − Suc k + j) = σ (m + n − Suc k)

using j by simp
hence m + n − Suc k + j = m + n − Suc k

using permutes-inj[OF ‹σ permutes -›] unfolding inj-def by blast
thus False using ‹j > 0 › by simp

qed
with ‹σ (m+n−Suc k) ≥ m−Suc k› have eq: σ (m+n−Suc k) = m −

Suc k
by linarith

show ?case
proof safe

fix i :: nat
assume i: i ≥ m + n − Suc k
show σ i = π i

using eq Suc.prems ‹m > 0 › IH i
proof (cases i = m + n − Suc k)

case True
thus ?thesis using eq Suc.prems ‹m > 0 ›

by (auto simp: π-def)
qed (use IH i in auto)

qed
qed
from this[of m] and nex have σ i = π i for i

by (cases i ≥ n) auto

81

hence σ = π by force
thus False using ‹σ 6= π› by contradiction

qed

then obtain i where i: i < n σ i 6= π i
by auto

have σ i < m + n
using i by (intro σ-less) auto

moreover have π i = m + i
using i by (auto simp: π-def)

ultimately have degree (M $$ (i, σ i)) < m using i ‹m > 0 ›
by (auto simp: M-def m-def n-def sylvester-index-mat degree-coeff-poly-x-minus-y)
thus ∃ i∈{..<n}. degree (M $$ (i, σ i)) < m

using i by blast
qed auto
finally show degree (f σ) < m ∗ n

by (simp add: mult-ac)
qed

have lead-coeff (f π) = poly-add-sign m n
proof −

have lead-coeff (f π) = signof π ∗ (
∏

i=0 ..<m + n. lead-coeff (M $$ (i, π
i)))

by (simp add: f-def sign-def lead-coeff-prod)
also have (

∏
i=0 ..<m + n. lead-coeff (M $$ (i, π i))) =

(
∏

i<n. lead-coeff (M $$ (i, π i))) ∗ (
∏

i<m. lead-coeff (M $$ (n +
i, π (n + i))))

by (subst indices-eq, subst prod.union-disjoint) (auto simp: prod.reindex)
also have (

∏
i<n. lead-coeff (M $$ (i, π i))) = (

∏
i<n. lead-coeff p)

by (intro prod.cong) (auto simp: M-def m-def n-def π-def sylvester-index-mat)
also have (

∏
i<m. lead-coeff (M $$ (n + i, π (n + i)))) = (

∏
i<m. lead-coeff

q)
by (intro prod.cong) (auto simp: M-def m-def n-def π-def sylvester-index-mat)

also have signof π = poly-add-sign m n
by (simp add: π-def poly-add-sign-def m-def n-def cong: if-cong)

finally show ?thesis
using assms by simp

qed

have lead-coeff (poly-add p q) =
lead-coeff (det (sylvester-mat (poly-x-minus-y p) (poly-lift q)))

by (simp add: poly-add-def resultant-def)
also have det (sylvester-mat (poly-x-minus-y p) (poly-lift q)) =

(
∑

π | π permutes {0 ..<m+n}. f π)
by (simp add: det-def m-def n-def M-def f-def)

also have {π. π permutes {0 ..<m+n}} = insert π ({π. π permutes {0 ..<m+n}}
− {π})

using π by auto
also have (

∑
σ∈. . . . f σ) = (

∑
σ∈{σ. σ permutes {0 ..<m+n}}−{π}. f σ) + f

82

π
by (subst sum.insert) (auto simp: finite-permutations)

also have lead-coeff . . . = lead-coeff (f π)
proof −

have degree (
∑

σ∈{σ. σ permutes {0 ..<m+n}}−{π}. f σ) < m ∗ n using
assms

by (intro degree-sum-smaller deg-f2) (auto simp: m-def n-def finite-permutations)
with deg-f1 show ?thesis

by (subst lead-coeff-add-le) auto
qed
finally show ?thesis

using ‹lead-coeff (f π) = -› by simp
qed

lemma lead-coeff-poly-mult:
fixes p q :: ′a :: {idom, ring-char-0} poly
defines m ≡ degree p and n ≡ degree q
assumes lead-coeff p = 1 lead-coeff q = 1 m > 0 n > 0
assumes coeff q 0 6= 0
shows lead-coeff (poly-mult p q :: ′a poly) = 1

proof −
from assms have [simp]: p 6= 0 q 6= 0

by auto
have [simp]: degree (reflect-poly q) = n

using assms by (subst degree-reflect-poly-eq) (auto simp: n-def)

define M where M = sylvester-mat (poly-x-mult-y p) (poly-lift (reflect-poly q))
have nz: M $$ (i, i) 6= 0 if i < m + n for i
using that by (auto simp: M-def sylvester-index-mat m-def n-def coeff-poly-x-mult-y)

have indices-eq: {0 ..<m+n} = {..<n} ∪ (+) n ‘ {..<m}
by (auto simp flip: atLeast0LessThan)

define f where f = (λ σ. signof σ ∗ (
∏

i=0 ..<m+n. M $$ (i, σ i)))
have degree (f id) = degree (

∏
i=0 ..<m + n. M $$ (i, i))

using nz by (auto simp: f-def degree-mult-eq sign-def)
also have . . . = (

∑
i=0 ..<m+n. degree (M $$ (i, i)))

using nz by (subst degree-prod-eq-sum-degree) auto
also have . . . = (

∑
i<n. degree (M $$ (i, i))) + (

∑
i<m. degree (M $$ (n +

i, n + i)))
by (subst indices-eq, subst sum.union-disjoint) (auto simp: sum.reindex)

also have (
∑

i<n. degree (M $$ (i, i))) = (
∑

i<n. m)
by (intro sum.cong)

(auto simp: M-def sylvester-index-mat m-def n-def coeff-poly-x-mult-y de-
gree-monom-eq)

also have (
∑

i<m. degree (M $$ (n + i, n + i))) = (
∑

i<m. 0)
by (intro sum.cong) (auto simp: M-def sylvester-index-mat m-def n-def)

finally have deg-f1 : degree (f id) = m ∗ n
by (simp add: mult-ac id-def)

83

have deg-f2 : degree (f σ) < m ∗ n if σ permutes {0 ..<m+n} σ 6= id for σ
proof (cases ∃ i∈{0 ..<m+n}. M $$ (i, σ i) = 0)

case True
hence ∗: (

∏
i = 0 ..<m + n. M $$ (i, σ i)) = 0

by auto
show ?thesis using ‹m > 0 › ‹n > 0 ›

by (simp add: f-def ∗)
next

case False
note nz = this
from that have σ-less: σ i < m + n if i < m + n for i

using permutes-in-image[OF ‹σ permutes -›] that by auto
have degree (f σ) = degree (

∏
i=0 ..<m + n. M $$ (i, σ i))

using nz by (auto simp: f-def degree-mult-eq sign-def)
also have . . . = (

∑
i=0 ..<m+n. degree (M $$ (i, σ i)))

using nz by (subst degree-prod-eq-sum-degree) auto
also have . . . = (

∑
i<n. degree (M $$ (i, σ i))) + (

∑
i<m. degree (M $$ (n

+ i, σ (n + i))))
by (subst indices-eq, subst sum.union-disjoint) (auto simp: sum.reindex)

also have (
∑

i<m. degree (M $$ (n + i, σ (n + i)))) = (
∑

i<m. 0)
using σ-less by (intro sum.cong) (auto simp: M-def sylvester-index-mat m-def

n-def)
also have (

∑
i<n. degree (M $$ (i, σ i))) < (

∑
i<n. m)

proof (rule sum-strict-mono-ex1)
show ∀ x∈{..<n}. degree (M $$ (x, σ x)) ≤ m using σ-less
by (auto simp: M-def sylvester-index-mat m-def n-def degree-coeff-poly-x-minus-y

coeff-poly-x-mult-y
intro: order .trans[OF degree-monom-le])

next
have ∃ i<n. σ i 6= i
proof (rule ccontr)

assume nex: ¬(∃ i<n. σ i 6= i)
have σ i = i for i

using that
proof (induction i rule: less-induct)

case (less i)
consider i < n | i ∈ {n..<m+n} | i ≥ m + n

by force
thus ?case
proof cases

assume i < n
thus ?thesis using nex by auto

next
assume i ≥ m + n
thus ?thesis using ‹σ permutes -›

by (auto simp: permutes-def)
next

assume i: i ∈ {n..<m+n}

84

have IH : σ j = j if j < i for j
using that less.prems by (intro less.IH) auto

from nz have M $$ (i, σ i) 6= 0
using i by auto

hence σ i ≤ i
using i σ-less[of i] by (auto simp: M-def sylvester-index-mat m-def

n-def)
moreover have σ i ≥ i
proof (rule ccontr)

assume ∗: ¬σ i ≥ i
from ∗ have σ (σ i) = σ i

by (subst IH) auto
hence σ i = i

using permutes-inj[OF ‹σ permutes -›] unfolding inj-def by blast
with ∗ show False by simp

qed
ultimately show ?case by simp

qed
qed
hence σ = id

by force
with ‹σ 6= id› show False

by contradiction
qed

then obtain i where i: i < n σ i 6= i
by auto

have σ i < m + n
using i by (intro σ-less) auto

hence degree (M $$ (i, σ i)) < m using i ‹m > 0 ›
by (auto simp: M-def m-def n-def sylvester-index-mat degree-coeff-poly-x-minus-y

coeff-poly-x-mult-y intro: le-less-trans[OF degree-monom-le])
thus ∃ i∈{..<n}. degree (M $$ (i, σ i)) < m

using i by blast
qed auto
finally show degree (f σ) < m ∗ n

by (simp add: mult-ac)
qed

have lead-coeff (f id) = 1
proof −

have lead-coeff (f id) = (
∏

i=0 ..<m + n. lead-coeff (M $$ (i, i)))
by (simp add: f-def lead-coeff-prod)

also have (
∏

i=0 ..<m + n. lead-coeff (M $$ (i, i))) =
(
∏

i<n. lead-coeff (M $$ (i, i))) ∗ (
∏

i<m. lead-coeff (M $$ (n + i,
n + i)))

by (subst indices-eq, subst prod.union-disjoint) (auto simp: prod.reindex)
also have (

∏
i<n. lead-coeff (M $$ (i, i))) = (

∏
i<n. lead-coeff p) using

85

assms
by (intro prod.cong) (auto simp: M-def m-def n-def sylvester-index-mat

coeff-poly-x-mult-y degree-monom-eq)
also have (

∏
i<m. lead-coeff (M $$ (n + i, n + i))) = (

∏
i<m. lead-coeff q)

by (intro prod.cong) (auto simp: M-def m-def n-def sylvester-index-mat)
finally show ?thesis

using assms by (simp add: id-def)
qed

have lead-coeff (poly-mult p q) = lead-coeff (det M)
by (simp add: poly-mult-def resultant-def M-def poly-div-def)

also have det M = (
∑

π | π permutes {0 ..<m+n}. f π)
by (simp add: det-def m-def n-def M-def f-def)

also have {π. π permutes {0 ..<m+n}} = insert id ({π. π permutes {0 ..<m+n}}
− {id})

by (auto simp: permutes-id)
also have (

∑
σ∈. . . . f σ) = (

∑
σ∈{σ. σ permutes {0 ..<m+n}}−{id}. f σ) +

f id
by (subst sum.insert) (auto simp: finite-permutations)

also have lead-coeff . . . = lead-coeff (f id)
proof −

have degree (
∑

σ∈{σ. σ permutes {0 ..<m+n}}−{id}. f σ) < m ∗ n using
assms

by (intro degree-sum-smaller deg-f2) (auto simp: m-def n-def finite-permutations)
with deg-f1 show ?thesis

by (subst lead-coeff-add-le) auto
qed
finally show ?thesis

using ‹lead-coeff (f id) = 1 › by simp
qed

lemma algebraic-int-plus [intro]:
fixes x y :: ′a :: field-char-0
assumes algebraic-int x algebraic-int y
shows algebraic-int (x + y)

proof −
from assms(1) obtain p where p: lead-coeff p = 1 ipoly p x = 0

by (auto simp: algebraic-int-altdef-ipoly)
from assms(2) obtain q where q: lead-coeff q = 1 ipoly q y = 0

by (auto simp: algebraic-int-altdef-ipoly)
have deg-pos: degree p > 0 degree q > 0

using p q by (auto intro!: Nat.gr0I elim!: degree-eq-zeroE)
define r where r = poly-add-sign (degree p) (degree q) ∗ poly-add p q

have lead-coeff r = 1 using p q deg-pos
by (simp add: r-def lead-coeff-mult poly-add-sign-def sign-def lead-coeff-poly-add)

moreover have ipoly r (x + y) = 0
using p q by (simp add: ipoly-poly-add r-def of-int-poly-hom.hom-mult)

ultimately show ?thesis

86

by (auto simp: algebraic-int-altdef-ipoly)
qed

lemma algebraic-int-times [intro]:
fixes x y :: ′a :: field-char-0
assumes algebraic-int x algebraic-int y
shows algebraic-int (x ∗ y)

proof (cases y = 0)
case [simp]: False
from assms(1) obtain p where p: lead-coeff p = 1 ipoly p x = 0

by (auto simp: algebraic-int-altdef-ipoly)
from assms(2) obtain q where q: lead-coeff q = 1 ipoly q y = 0

by (auto simp: algebraic-int-altdef-ipoly)
have deg-pos: degree p > 0 degree q > 0

using p q by (auto intro!: Nat.gr0I elim!: degree-eq-zeroE)
have [simp]: q 6= 0

using q by auto

define n where n = Polynomial.order 0 q
have monom 1 n dvd q

by (simp add: n-def monom-1-dvd-iff)
then obtain q ′ where q-split: q = q ′ ∗ monom 1 n

by auto
have Polynomial.order 0 q = Polynomial.order 0 q ′ + n

using ‹q 6= 0 › unfolding q-split by (subst order-mult) auto
hence poly q ′ 0 6= 0

unfolding n-def using ‹q 6= 0 › by (simp add: q-split order-root)

have q ′: ipoly q ′ y = 0 lead-coeff q ′ = 1 using q-split q
by (auto simp: of-int-poly-hom.hom-mult poly-monom lead-coeff-mult degree-monom-eq)

from this have deg-pos ′: degree q ′ > 0
by (intro Nat.gr0I) (auto elim!: degree-eq-zeroE)

from ‹poly q ′ 0 6= 0 › have [simp]: coeff q ′ 0 6= 0
by (auto simp: monom-1-dvd-iff ′ poly-0-coeff-0)

have p represents x q ′ represents y
using p q ′ by (auto simp: represents-def)

hence poly-mult p q ′ represents x ∗ y
by (rule represents-mult) (simp add: poly-0-coeff-0)

moreover have lead-coeff (poly-mult p q ′) = 1 using p deg-pos q ′ deg-pos ′

by (simp add: lead-coeff-mult lead-coeff-poly-mult)
ultimately show ?thesis

by (auto simp: algebraic-int-altdef-ipoly represents-def)
qed auto

lemma algebraic-int-power [intro]:
algebraic-int (x :: ′a :: field-char-0) =⇒ algebraic-int (x ^ n)
by (induction n) auto

87

lemma algebraic-int-diff [intro]:
fixes x y :: ′a :: field-char-0
assumes algebraic-int x algebraic-int y
shows algebraic-int (x − y)
using algebraic-int-plus[OF assms(1) algebraic-int-minus[OF assms(2)]] by simp

lemma algebraic-int-sum [intro]:
(
∧

x. x ∈ A =⇒ algebraic-int (f x :: ′a :: field-char-0))
=⇒ algebraic-int (sum f A)

by (induction A rule: infinite-finite-induct) auto

lemma algebraic-int-prod [intro]:
(
∧

x. x ∈ A =⇒ algebraic-int (f x :: ′a :: field-char-0))
=⇒ algebraic-int (prod f A)

by (induction A rule: infinite-finite-induct) auto

lemma algebraic-int-nth-root-real-iff :
algebraic-int (root n x) ←→ n = 0 ∨ algebraic-int x

proof −
have algebraic-int x if algebraic-int (root n x) n 6= 0
proof −

from that(1) have algebraic-int (root n x ^ n)
by auto

also have root n x ^ n = (if even n then |x| else x)
using sgn-power-root[of n x] that(2) by (auto simp: sgn-if split: if-splits)

finally show ?thesis
by (auto split: if-splits)

qed
thus ?thesis by auto

qed

lemma algebraic-int-power-iff :
algebraic-int (x ^ n :: ′a :: field-char-0) ←→ n = 0 ∨ algebraic-int x

proof −
have algebraic-int x if algebraic-int (x ^ n) n > 0
proof (rule algebraic-int-root)

show poly (monom 1 n) x = x ^ n
by (auto simp: poly-monom)

qed (use that in ‹auto simp: degree-monom-eq›)
thus ?thesis by auto

qed

lemma algebraic-int-power-iff ′ [simp]:
n > 0 =⇒ algebraic-int (x ^ n :: ′a :: field-char-0) ←→ algebraic-int x
by (subst algebraic-int-power-iff) auto

lemma algebraic-int-sqrt-iff [simp]: algebraic-int (sqrt x) ←→ algebraic-int x
by (simp add: sqrt-def algebraic-int-nth-root-real-iff)

88

lemma algebraic-int-csqrt-iff [simp]: algebraic-int (csqrt x) ←→ algebraic-int x
proof

assume algebraic-int (csqrt x)
hence algebraic-int (csqrt x ^ 2)

by (rule algebraic-int-power)
thus algebraic-int x

by simp
qed auto

lemma algebraic-int-norm-complex [intro]:
assumes algebraic-int (z :: complex)
shows algebraic-int (norm z)

proof −
from assms have algebraic-int (z ∗ cnj z)

by auto
also have z ∗ cnj z = of-real (norm z ^ 2)

by (rule complex-norm-square [symmetric])
finally show ?thesis

by simp
qed

hide-const (open) x-y

end

6 Separation of Roots: Sturm
We adapt the existing theory on Sturm’s theorem to work on rational num-
bers instead of real numbers. The reason is that we want to implement
real numbers as real algebraic numbers with the help of Sturm’s theorem
to separate the roots. To this end, we just copy the definitions of of the
algorithms w.r.t. Sturm and let them be executed on rational numbers. We
then prove that corresponds to a homomorphism and therefore can transfer
the existing soundness results.
theory Sturm-Rat
imports

Sturm-Sequences.Sturm-Theorem
Algebraic-Numbers-Prelim
Berlekamp-Zassenhaus.Square-Free-Int-To-Square-Free-GFp

begin

hide-const (open) UnivPoly.coeff

lemma root-primitive-part [simp]:
fixes p :: ′a :: {semiring-gcd, semiring-no-zero-divisors} poly
shows poly (primitive-part p) x = 0 ←→ poly p x = 0

89

proof(cases p = 0)
case True
then show ?thesis by auto

next
case False
have poly p x = content p ∗ poly (primitive-part p) x

by (metis content-times-primitive-part poly-smult)
also have . . . = 0 ←→ poly (primitive-part p) x = 0 by (simp add: False)
finally show ?thesis by auto

qed

lemma irreducible-primitive-part:
assumes irreducible p and degree p > 0
shows primitive-part p = p
using irreducible-content[OF assms(1), unfolded primitive-iff-content-eq-1] assms(2)
by (auto simp: primitive-part-def abs-poly-def)

6.1 Interface for Separating Roots
For a given rational polynomial, we need to know how many real roots are in
a given closed interval, and how many real roots are in an interval (−∞, r].
datatype root-info = Root-Info (l-r : rat ⇒ rat ⇒ nat) (number-root: rat ⇒ nat)
hide-const (open) l-r
hide-const (open) number-root

definition count-roots-interval-sf :: real poly ⇒ (real ⇒ real ⇒ nat) × (real ⇒
nat) where

count-roots-interval-sf p = (let ps = sturm-squarefree p
in ((λ a b. sign-changes ps a − sign-changes ps b + (if poly p a = 0 then 1 else

0)),
(λ a. sign-changes-neg-inf ps − sign-changes ps a)))

definition count-roots-interval :: real poly ⇒ (real ⇒ real ⇒ nat) × (real ⇒ nat)
where

count-roots-interval p = (let ps = sturm p
in ((λ a b. sign-changes ps a − sign-changes ps b + (if poly p a = 0 then 1 else

0)),
(λ a. sign-changes-neg-inf ps − sign-changes ps a)))

lemma count-roots-interval-iff : square-free p =⇒ count-roots-interval p = count-roots-interval-sf
p
unfolding count-roots-interval-def count-roots-interval-sf-def sturm-squarefree-def

square-free-iff-separable separable-def by (cases p = 0 , auto)

lemma count-roots-interval-sf : assumes p: p 6= 0
and cr : count-roots-interval-sf p = (cr ,nr)
shows a ≤ b =⇒ cr a b = (card {x. a ≤ x ∧ x ≤ b ∧ poly p x = 0})

nr a = card {x. x ≤ a ∧ poly p x = 0}

90

proof −
have id: a ≤ b =⇒ { x. a ≤ x ∧ x ≤ b ∧ poly p x = 0} =
{ x. a < x ∧ x ≤ b ∧ poly p x = 0} ∪ (if poly p a = 0 then {a} else {})
(is - =⇒ - = ?R ∪ ?S) using not-less by force

have RS : finite ?R finite ?S ?R ∩ ?S = {} using p by (auto simp: poly-roots-finite)

show a ≤ b =⇒ cr a b = (card {x. a ≤ x ∧ x ≤ b ∧ poly p x = 0})
nr a = card {x. x ≤ a ∧ poly p x = 0} using cr unfolding arg-cong[OF id,

of card] card-Un-disjoint[OF RS]
count-roots-interval-sf-def count-roots-between-correct[symmetric]
count-roots-below-correct[symmetric] count-roots-below-def
count-roots-between-def Let-def using p by auto

qed

lemma count-roots-interval: assumes cr : count-roots-interval p = (cr ,nr)
and sf : square-free p
shows a ≤ b =⇒ cr a b = (card {x. a ≤ x ∧ x ≤ b ∧ poly p x = 0})

nr a = card {x. x ≤ a ∧ poly p x = 0}
using count-roots-interval-sf [OF - cr [unfolded count-roots-interval-iff [OF sf]]]

sf [unfolded square-free-def] by blast+

definition root-cond :: int poly × rat × rat ⇒ real ⇒ bool where
root-cond plr x = (case plr of (p,l,r) ⇒ of-rat l ≤ x ∧ x ≤ of-rat r ∧ ipoly p x

= 0)

definition root-info-cond :: root-info ⇒ int poly ⇒ bool where
root-info-cond ri p ≡ (∀ a b. a ≤ b −→ root-info.l-r ri a b = card {x. root-cond

(p,a,b) x})
∧ (∀ a. root-info.number-root ri a = card {x. x ≤ real-of-rat a ∧ ipoly p x =

0})

lemma root-info-condD: root-info-cond ri p =⇒ a ≤ b =⇒ root-info.l-r ri a b =
card {x. root-cond (p,a,b) x}

root-info-cond ri p =⇒ root-info.number-root ri a = card {x. x ≤ real-of-rat a ∧
ipoly p x = 0}

unfolding root-info-cond-def by auto

definition count-roots-interval-sf-rat :: int poly ⇒ root-info where
count-roots-interval-sf-rat p = (let pp = real-of-int-poly p;
(cr ,nr) = count-roots-interval-sf pp

in Root-Info (λ a b. cr (of-rat a) (of-rat b)) (λ a. nr (of-rat a)))

definition count-roots-interval-rat :: int poly ⇒ root-info where
[code del]: count-roots-interval-rat p = (let pp = real-of-int-poly p;
(cr ,nr) = count-roots-interval pp

in Root-Info (λ a b. cr (of-rat a) (of-rat b)) (λ a. nr (of-rat a)))

definition count-roots-rat :: int poly ⇒ nat where

91

[code del]: count-roots-rat p = (count-roots (real-of-int-poly p))

lemma count-roots-interval-sf-rat: assumes p: p 6= 0
shows root-info-cond (count-roots-interval-sf-rat p) p

proof −
let ?p = real-of-int-poly p
let ?r = real-of-rat
let ?ri = count-roots-interval-sf-rat p
from p have p: ?p 6= 0 by auto
obtain cr nr where cr : count-roots-interval-sf ?p = (cr ,nr) by force
have ?ri = Root-Info (λa b. cr (?r a) (?r b)) (λa. nr (?r a))

unfolding count-roots-interval-sf-rat-def Let-def cr by auto
hence id: root-info.l-r ?ri = (λa b. cr (?r a) (?r b)) root-info.number-root ?ri =

(λa. nr (?r a))
by auto

note cr = count-roots-interval-sf [OF p cr]
show ?thesis unfolding root-info-cond-def id
proof (intro conjI impI allI)

fix a
show nr (?r a) = card {x. x ≤ (?r a) ∧ ipoly p x = 0}

using cr(2)[of ?r a] by simp
next

fix a b :: rat
assume ab: a ≤ b
from ab have ab: ?r a ≤ ?r b by (simp add: of-rat-less-eq)
from cr(1)[OF this] show cr (?r a) (?r b) = card (Collect (root-cond (p, a,

b)))
unfolding root-cond-def [abs-def] split by simp

qed
qed

lemma of-rat-of-int-poly: map-poly of-rat (of-int-poly p) = of-int-poly p
by (subst map-poly-map-poly, auto simp: o-def)

lemma square-free-of-int-poly: assumes square-free p
shows square-free (of-int-poly p :: ′a :: {field-gcd, field-char-0} poly)

proof −
have square-free (map-poly of-rat (of-int-poly p) :: ′a poly)
unfolding of-rat-hom.square-free-map-poly by (rule square-free-int-rat[OF assms])

thus ?thesis unfolding of-rat-of-int-poly .
qed

lemma count-roots-interval-rat: assumes sf : square-free p
shows root-info-cond (count-roots-interval-rat p) p

proof −
from sf have sf : square-free (real-of-int-poly p) by (rule square-free-of-int-poly)
from sf have p: p 6= 0 unfolding square-free-def by auto
show ?thesis
using count-roots-interval-sf-rat[OF p]

92

unfolding count-roots-interval-rat-def count-roots-interval-sf-rat-def
Let-def count-roots-interval-iff [OF sf] .

qed

lemma count-roots-rat: count-roots-rat p = card {x. ipoly p x = (0 :: real)}
unfolding count-roots-rat-def count-roots-correct ..

6.2 Implementing Sturm on Rational Polynomials
function sturm-aux-rat where
sturm-aux-rat (p :: rat poly) q =

(if degree q = 0 then [p,q] else p # sturm-aux-rat q (−(p mod q)))
by (pat-completeness, simp-all)

termination by (relation measure (degree ◦ snd),
simp-all add: o-def degree-mod-less ′)

lemma sturm-aux-rat: sturm-aux (real-of-rat-poly p) (real-of-rat-poly q) =
map real-of-rat-poly (sturm-aux-rat p q)

proof (induct p q rule: sturm-aux-rat.induct)
case (1 p q)
interpret map-poly-inj-idom-hom of-rat..
note deg = of-int-hom.degree-map-poly-hom
show ?case

unfolding sturm-aux.simps[of real-of-rat-poly p] sturm-aux-rat.simps[of p]
using 1 by (cases degree q = 0 ; simp add: hom-distribs)

qed

definition sturm-rat where sturm-rat p = sturm-aux-rat p (pderiv p)

lemma sturm-rat: sturm (real-of-rat-poly p) = map real-of-rat-poly (sturm-rat p)
unfolding sturm-rat-def sturm-def
apply (fold of-rat-hom.map-poly-pderiv)
unfolding sturm-aux-rat..

definition poly-number-rootat :: rat poly ⇒ rat where
poly-number-rootat p ≡ sgn (coeff p (degree p))

definition poly-neg-number-rootat :: rat poly ⇒ rat where
poly-neg-number-rootat p ≡ if even (degree p) then sgn (coeff p (degree p))

else −sgn (coeff p (degree p))

lemma poly-number-rootat: poly-inf (real-of-rat-poly p) = real-of-rat (poly-number-rootat
p)

unfolding poly-inf-def poly-number-rootat-def of-int-hom.degree-map-poly-hom
of-rat-hom.coeff-map-poly-hom

real-of-rat-sgn by simp

lemma poly-neg-number-rootat: poly-neg-inf (real-of-rat-poly p) = real-of-rat (poly-neg-number-rootat

93

p)
unfolding poly-neg-inf-def poly-neg-number-rootat-def of-int-hom.degree-map-poly-hom

of-rat-hom.coeff-map-poly-hom
real-of-rat-sgn by (simp add:hom-distribs)

definition sign-changes-rat where
sign-changes-rat ps (x::rat) =

length (remdups-adj (filter (λx. x 6= 0) (map (λp. sgn (poly p x)) ps))) − 1

definition sign-changes-number-rootat where
sign-changes-number-rootat ps =

length (remdups-adj (filter (λx. x 6= 0) (map poly-number-rootat ps))) − 1

definition sign-changes-neg-number-rootat where
sign-changes-neg-number-rootat ps =

length (remdups-adj (filter (λx. x 6= 0) (map poly-neg-number-rootat ps))) −
1

lemma real-of-rat-list-neq: list-neq (map real-of-rat xs) 0
= map real-of-rat (list-neq xs 0)
by (induct xs, auto)

lemma real-of-rat-remdups-adj: remdups-adj (map real-of-rat xs) = map real-of-rat
(remdups-adj xs)

by (induct xs rule: remdups-adj.induct, auto)

lemma sign-changes-rat: sign-changes (map real-of-rat-poly ps) (real-of-rat x)
= sign-changes-rat ps x (is ?l = ?r)

proof −
define xs where xs = list-neq (map (λp. sgn (poly p x)) ps) 0
have ?l = length (remdups-adj (list-neq (map real-of-rat (map (λxa. (sgn (poly

xa x))) ps)) 0)) − 1
by (simp add: sign-changes-def real-of-rat-sgn o-def)

also have . . . = ?r unfolding sign-changes-rat-def real-of-rat-list-neq
unfolding real-of-rat-remdups-adj by simp

finally show ?thesis .
qed

lemma sign-changes-neg-number-rootat: sign-changes-neg-inf (map real-of-rat-poly
ps)
= sign-changes-neg-number-rootat ps (is ?l = ?r)

proof −
have ?l = length (remdups-adj (list-neq (map real-of-rat (map poly-neg-number-rootat

ps)) 0)) − 1
by (simp add: sign-changes-neg-inf-def o-def real-of-rat-sgn poly-neg-number-rootat)

also have . . . = ?r unfolding sign-changes-neg-number-rootat-def real-of-rat-list-neq

unfolding real-of-rat-remdups-adj by simp
finally show ?thesis .

94

qed

lemma sign-changes-number-rootat: sign-changes-inf (map real-of-rat-poly ps)
= sign-changes-number-rootat ps (is ?l = ?r)

proof −
have ?l = length (remdups-adj (list-neq (map real-of-rat (map poly-number-rootat

ps)) 0)) − 1
unfolding sign-changes-inf-def
unfolding map-map o-def real-of-rat-sgn poly-number-rootat ..

also have . . . = ?r unfolding sign-changes-number-rootat-def real-of-rat-list-neq

unfolding real-of-rat-remdups-adj by simp
finally show ?thesis .

qed

lemma count-roots-interval-rat-code[code]:
count-roots-interval-rat p = (let rp = map-poly rat-of-int p; ps = sturm-rat rp

in Root-Info
(λ a b. sign-changes-rat ps a − sign-changes-rat ps b + (if poly rp a = 0 then

1 else 0))
(λ a. sign-changes-neg-number-rootat ps − sign-changes-rat ps a))

unfolding count-roots-interval-rat-def Let-def count-roots-interval-def split of-rat-of-int-poly[symmetric,
where ′a = real]

sturm-rat sign-changes-rat
by (simp add: sign-changes-neg-number-rootat)

lemma count-roots-rat-code[code]:
count-roots-rat p = (let rp = map-poly rat-of-int p in if p = 0 then 0 else let ps

= sturm-rat rp
in sign-changes-neg-number-rootat ps − sign-changes-number-rootat ps)

unfolding count-roots-rat-def Let-def sturm-rat count-roots-code of-rat-of-int-poly[symmetric,
where ′a = real]

sign-changes-neg-number-rootat sign-changes-number-rootat
by simp

hide-const (open) count-roots-interval-sf-rat

Finally we provide an even more efficient implementation which avoids
the "poly p x = 0" test, but it is restricted to irreducible polynomials.
definition root-info :: int poly ⇒ root-info where

root-info p = (if degree p = 1 then
(let x = Rat.Fract (− coeff p 0) (coeff p 1)
in Root-Info (λ l r . if l ≤ x ∧ x ≤ r then 1 else 0) (λ b. if x ≤ b then 1 else

0)) else
(let rp = map-poly rat-of-int p; ps = sturm-rat rp in

Root-Info (λ a b. sign-changes-rat ps a − sign-changes-rat ps b)
(λ a. sign-changes-neg-number-rootat ps − sign-changes-rat ps a)))

lemma root-info:

95

assumes irr : irreducible p and deg: degree p > 0
shows root-info-cond (root-info p) p

proof (cases degree p = 1)
case deg: True
from degree1-coeffs[OF this] obtain a b where p: p = [:b,a:] and a 6= 0 by auto
from deg have degree (real-of-int-poly p) = 1 by simp
from roots1 [OF this, unfolded roots1-def] p
have id: (ipoly p x = 0) = ((x :: real) = − b / a) for x by auto
have idd: {x. real-of-rat aa ≤ x ∧

x ≤ real-of-rat ba ∧ x = real-of-int (− b) / real-of-int a}
= (if real-of-rat aa ≤ real-of-int (− b) / real-of-int a ∧

real-of-int (− b) / real-of-int a ≤ real-of-rat ba then {real-of-int (−
b) / real-of-int a} else {})

for aa ba by auto
have iddd: {x. x ≤ real-of-rat aa ∧ x = real-of-int (− b) / real-of-int a}
= (if real-of-int (− b) / real-of-int a ≤ real-of-rat aa then {real-of-int (− b) /

real-of-int a} else {}) for aa
by auto

have id4 : real-of-int x = real-of-rat (rat-of-int x) for x by simp
show ?thesis unfolding root-info-def deg unfolding root-info-cond-def id root-cond-def

split
unfolding p Fract-of-int-quotient Let-def idd iddd
unfolding id4 of-rat-divide[symmetric] of-rat-less-eq by auto

next
case False
have irr-d: irreducibled p by (simp add: deg irr irreducible-connect-rev)
from irreducibled-int-rat[OF this]
have irreducible (of-int-poly p :: rat poly) by auto
from irreducible-root-free[OF this]
have idd: (poly (of-int-poly p) a = 0) = False for a :: rat

unfolding root-free-def using False by auto
have id: root-info p = count-roots-interval-rat p

unfolding root-info-def if-False count-roots-interval-rat-code Let-def idd using
False by auto

show ?thesis unfolding id
by (rule count-roots-interval-rat[OF irreducibled-square-free[OF irr-d]])

qed

end

7 Getting Small Representative Polynomials via
Factorization

In this theory we import a factorization algorithm for integer polynomials
to turn a representing polynomial of some algebraic number into a list of
irreducible polynomials where exactly one list element represents the same
number. Moreover, we prove that the certain polynomial operations preserve
irreducibility, so that no factorization is required.

96

theory Factors-of-Int-Poly
imports
Berlekamp-Zassenhaus.Factorize-Int-Poly
Algebraic-Numbers-Prelim

begin

lemma degree-of-gcd: degree (gcd q r) 6= 0 ←→
degree (gcd (of-int-poly q :: ′a :: {field-char-0 , field-gcd} poly) (of-int-poly r)) 6= 0

proof −
let ?r = of-rat :: rat ⇒ ′a
interpret rpoly: field-hom ′ ?r

by (unfold-locales, auto simp: of-rat-add of-rat-mult)
{

fix p
have of-int-poly p = map-poly (?r o of-int) p unfolding o-def

by auto
also have . . . = map-poly ?r (map-poly of-int p)

by (subst map-poly-map-poly, auto)
finally have of-int-poly p = map-poly ?r (map-poly of-int p) .

} note id = this
show ?thesis unfolding id by (fold hom-distribs, simp add: gcd-rat-to-gcd-int)

qed

definition factors-of-int-poly :: int poly ⇒ int poly list where
factors-of-int-poly p = map (abs-int-poly o fst) (snd (factorize-int-poly p))

lemma factors-of-int-poly-const: assumes degree p = 0
shows factors-of-int-poly p = []

proof −
from degree0-coeffs[OF assms] obtain a where p: p = [: a :] by auto
show ?thesis unfolding p factors-of-int-poly-def

factorize-int-poly-generic-def x-split-def
by (cases a = 0 , auto simp add: Let-def factorize-int-last-nz-poly-def)

qed

lemma factors-of-int-poly:
defines rp ≡ ipoly :: int poly ⇒ ′a :: {field-gcd,field-char-0} ⇒ ′a
assumes factors-of-int-poly p = qs
shows

∧
q. q ∈ set qs =⇒ irreducible q ∧ lead-coeff q > 0 ∧ degree q ≤ degree

p ∧ degree q 6= 0
p 6= 0 =⇒ rp p x = 0 ←→ (∃ q ∈ set qs. rp q x = 0)
p 6= 0 =⇒ rp p x = 0 =⇒ ∃ ! q ∈ set qs. rp q x = 0
distinct qs

proof −
obtain c qis where factt: factorize-int-poly p = (c,qis) by force
from assms[unfolded factors-of-int-poly-def factt]
have qs: qs = map (abs-int-poly ◦ fst) (snd (c, qis)) by auto
note fact = factorize-int-poly(1)[OF factt]
note fact-mem = factorize-int-poly(2 ,3)[OF factt]

97

have sqf : square-free-factorization p (c, qis) by (rule fact(1))
note sff = square-free-factorizationD[OF sqf]
have sff ′: p = Polynomial.smult c (

∏
(a, i)← qis. a ^ Suc i)

unfolding sff (1) prod.distinct-set-conv-list[OF sff (5)] ..
{

fix q
assume q: q ∈ set qs
then obtain r i where qi: (r ,i) ∈ set qis and qr : q = abs-int-poly r unfolding

qs by auto
from split-list[OF qi] obtain qis1 qis2 where qis: qis = qis1 @ (r ,i) # qis2

by auto
have dvd: r dvd p unfolding sff ′ qis dvd-def

by (intro exI [of - smult c (r ^ i ∗ (
∏

(a, i)←qis1 @ qis2 . a ^ Suc i))], auto)
from fact-mem[OF qi] have r0 : r 6= 0 by auto
from qi factt have p: p 6= 0 by (cases p, auto)
with dvd have deg: degree r ≤ degree p by (metis dvd-imp-degree-le)
with fact-mem[OF qi] r0
show irreducible q ∧ lead-coeff q > 0 ∧ degree q ≤ degree p ∧ degree q 6= 0

unfolding qr lead-coeff-abs-int-poly by auto
} note ∗ = this
show distinct qs unfolding distinct-conv-nth
proof (intro allI impI)

fix i j
assume i < length qs j < length qs and diff : i 6= j
hence ij: i < length qis j < length qis

and id: qs ! i = abs-int-poly (fst (qis ! i)) qs ! j = abs-int-poly (fst (qis ! j))
unfolding qs by auto

obtain qi I where qi: qis ! i = (qi, I) by force
obtain qj J where qj: qis ! j = (qj, J) by force
from sff (5)[unfolded distinct-conv-nth, rule-format, OF ij diff] qi qj
have diff : (qi, I) 6= (qj, J) by auto
from ij qi qj have (qi, I) ∈ set qis (qj, J) ∈ set qis unfolding set-conv-nth

by force+
from sff (3)[OF this diff] sff (2) this
have cop: coprime qi qj degree qi 6= 0 degree qj 6= 0 by auto
note i = cf-pos-poly-main[of qi, unfolded smult-prod monom-0]
note j = cf-pos-poly-main[of qj, unfolded smult-prod monom-0]
from cop(2) i have deg: degree (qs ! i) 6= 0 by (auto simp: id qi)
have cop: coprime (qs ! i) (qs ! j)

unfolding id qi qj fst-conv
apply (rule coprime-prod[of [:sgn (lead-coeff qi):] [:sgn (lead-coeff qj):]])
using cop
unfolding i j by (auto simp: sgn-eq-0-iff)

show qs ! i 6= qs ! j
proof

assume id: qs ! i = qs ! j
have degree (gcd (qs ! i) (qs ! j)) = degree (qs ! i) unfolding id by simp
also have . . . 6= 0 using deg by simp
finally show False using cop by simp

98

qed
qed
assume p: p 6= 0
from fact(1) p have c: c 6= 0 using sff (1) by auto
let ?r = of-int :: int ⇒ ′a
let ?rp = map-poly ?r
have rp:

∧
x p. rp p x = 0 ←→ poly (?rp p) x = 0 unfolding rp-def ..

have rp p x = 0 ←→ rp (
∏

(x, y)←qis. x ^ Suc y) x = 0 unfolding sff ′(1)
unfolding rp hom-distribs using c by simp

also have . . . = (∃ (q,i) ∈set qis. poly (?rp (q ^ Suc i)) x = 0)
unfolding qs rp of-int-poly-hom.hom-prod-list poly-prod-list-zero-iff set-map by

fastforce
also have . . . = (∃ (q,i) ∈set qis. poly (?rp q) x = 0)

unfolding of-int-poly-hom.hom-power poly-power-zero-iff by auto
also have . . . = (∃ q ∈ fst ‘ set qis. poly (?rp q) x = 0) by force
also have . . . = (∃ q ∈ set qs. rp q x = 0) unfolding rp qs snd-conv o-def

bex-simps set-map
by simp

finally show iff : rp p x = 0 ←→ (∃ q ∈ set qs. rp q x = 0) by auto
assume rp p x = 0
with iff obtain q where q: q ∈ set qs and rtq: rp q x = 0 by auto
then obtain i q ′ where qi: (q ′,i) ∈ set qis and qq ′: q = abs-int-poly q ′ unfolding

qs by auto
show ∃ ! q ∈ set qs. rp q x = 0
proof (intro ex1I , intro conjI , rule q, rule rtq, clarify)

fix r
assume r ∈ set qs and rtr : rp r x = 0

then obtain j r ′ where rj: (r ′,j) ∈ set qis and rr ′: r = abs-int-poly r ′

unfolding qs by auto
from rtr rtq have rtr : rp r ′ x = 0 and rtq: rp q ′ x = 0

unfolding rp rr ′ qq ′ by auto
from rtr rtq have [:−x,1 :] dvd ?rp q ′ [:−x,1 :] dvd ?rp r ′ unfolding rp

by (auto simp: poly-eq-0-iff-dvd)
hence [:−x,1 :] dvd gcd (?rp q ′) (?rp r ′) by simp
hence gcd (?rp q ′) (?rp r ′) = 0 ∨ degree (gcd (?rp q ′) (?rp r ′)) 6= 0
by (metis is-unit-gcd-iff is-unit-iff-degree is-unit-pCons-iff one-poly-eq-simps(1))
hence gcd q ′ r ′ = 0 ∨ degree (gcd q ′ r ′) 6= 0

unfolding gcd-eq-0-iff degree-of-gcd[of q ′ r ′,symmetric] by auto
hence ¬ coprime q ′ r ′ by auto
with sff (3)[OF qi rj] have q ′ = r ′ by auto
thus r = q unfolding rr ′ qq ′ by simp

qed
qed

lemma factors-int-poly-represents:
fixes x :: ′a :: {field-char-0 ,field-gcd}
assumes p: p represents x
shows ∃ q ∈ set (factors-of-int-poly p).

q represents x ∧ irreducible q ∧ lead-coeff q > 0 ∧ degree q ≤ degree p

99

proof −
from representsD[OF p] have p: p 6= 0 and rt: ipoly p x = 0 by auto
note fact = factors-of-int-poly[OF refl]
from fact(2)[OF p, of x] rt obtain q where q: q ∈ set (factors-of-int-poly p)

and
rt: ipoly q x = 0 by auto

from fact(1)[OF q] rt show ?thesis
by (intro bexI [OF - q], auto simp: represents-def irreducible-def)

qed

corollary irreducible-represents-imp-degree:
fixes x :: ′a :: {field-char-0 ,field-gcd}
assumes irreducible f and f represents x and g represents x
shows degree f ≤ degree g

proof −
from factors-of-int-poly(1)[OF refl, of - g] factors-of-int-poly(3)[OF refl, of g x]

assms(3) obtain h where ∗: h represents x degree h ≤ degree g irreducible h
by blast

let ?af = abs-int-poly f
let ?ah = abs-int-poly h
from assms have af : irreducible ?af ?af represents x lead-coeff ?af > 0 by

fastforce+
from ∗ have ah: irreducible ?ah ?ah represents x lead-coeff ?ah > 0 by fastforce+
from algebraic-imp-represents-unique[of x] af ah have id: ?af = ?ah

unfolding algebraic-iff-represents by blast
show ?thesis using arg-cong[OF id, of degree] ‹degree h ≤ degree g› by simp

qed

lemma irreducible-preservation:
fixes x :: ′a :: {field-char-0 ,field-gcd}
assumes irr : irreducible p
and x: p represents x
and y: q represents y
and deg: degree p ≥ degree q
and f :

∧
q. q represents y =⇒ (f q) represents x ∧ degree (f q) ≤ degree q

and pr : primitive q
shows irreducible q

proof (rule ccontr)
define pp where pp = abs-int-poly p
have dp: degree p 6= 0 using x by (rule represents-degree)
have dq: degree q 6= 0 using y by (rule represents-degree)
from dp have p0 : p 6= 0 by auto
from x deg irr p0
have irr : irreducible pp and x: pp represents x and

deg: degree pp ≥ degree q and cf-pos: lead-coeff pp > 0
unfolding pp-def lead-coeff-abs-int-poly by (auto intro!: representsI)

from x have ax: algebraic x unfolding algebraic-altdef-ipoly represents-def by
blast

assume ¬ ?thesis

100

from this irreducible-connect-int[of q] pr have ¬ irreducibled q by auto
from this dq obtain r where

r : degree r 6= 0 degree r < degree q and r dvd q by auto
then obtain rr where q: q = r ∗ rr unfolding dvd-def by auto
have degree q = degree r + degree rr using dq unfolding q

by (subst degree-mult-eq, auto)
with r have rr : degree rr 6= 0 degree rr < degree q by auto
from representsD(2)[OF y, unfolded q hom-distribs]
have ipoly r y = 0 ∨ ipoly rr y = 0 by auto
with r rr have r represents y ∨ rr represents y unfolding represents-def by

auto
with r rr obtain r where r : r represents y degree r < degree q by blast
from f [OF r(1)] deg r(2) obtain r where r : r represents x degree r < degree

pp by auto
from factors-int-poly-represents[OF r(1)] r(2) obtain r where

r : r represents x irreducible r lead-coeff r > 0 and deg: degree r < degree pp
by force

from algebraic-imp-represents-unique[OF ax] r irr cf-pos x have r = pp by auto
with deg show False by auto

qed

declare irreducible-const-poly-iff [simp]

lemma poly-uminus-irreducible:
assumes p: irreducible (p :: int poly) and deg: degree p 6= 0
shows irreducible (poly-uminus p)

proof−
from deg-nonzero-represents[OF deg] obtain x :: complex where x: p represents

x by auto
from represents-uminus[OF x]
have y: poly-uminus p represents (− x) .
show ?thesis
proof (rule irreducible-preservation[OF p x y], force)

from deg irreducible-imp-primitive[OF p] have primitive p by auto
then show primitive (poly-uminus p) by simp
fix q
assume q represents (− x)
from represents-uminus[OF this] have (poly-uminus q) represents x by simp
thus (poly-uminus q) represents x ∧ degree (poly-uminus q) ≤ degree q by auto

qed
qed

lemma reflect-poly-irreducible:
fixes x :: ′a :: {field-char-0 ,field-gcd}
assumes p: irreducible p and x: p represents x and x0 : x 6= 0
shows irreducible (reflect-poly p)

proof −
from represents-inverse[OF x0 x]
have y: (reflect-poly p) represents (inverse x) by simp

101

from x0 have ix0 : inverse x 6= 0 by auto
show ?thesis
proof (rule irreducible-preservation[OF p x y])

from x irreducible-imp-primitive[OF p]
show primitive (reflect-poly p) by (auto simp: content-reflect-poly)
fix q
assume q represents (inverse x)
from represents-inverse[OF ix0 this] have (reflect-poly q) represents x by simp
with degree-reflect-poly-le
show (reflect-poly q) represents x ∧ degree (reflect-poly q) ≤ degree q by auto

qed (insert p, auto simp: degree-reflect-poly-le)
qed

lemma poly-add-rat-irreducible:
assumes p: irreducible p and deg: degree p 6= 0
shows irreducible (cf-pos-poly (poly-add-rat r p))

proof −
from deg-nonzero-represents[OF deg] obtain x :: complex where x: p represents

x by auto
from represents-add-rat[OF x]
have y: cf-pos-poly (poly-add-rat r p) represents (of-rat r + x) by simp
show ?thesis
proof (rule irreducible-preservation[OF p x y], force)

fix q
assume q represents (of-rat r + x)
from represents-add-rat[OF this, of − r] have (poly-add-rat (− r) q) represents

x by (simp add: of-rat-minus)
thus (poly-add-rat (− r) q) represents x ∧ degree (poly-add-rat (− r) q) ≤

degree q by auto
qed (insert p, auto)

qed

lemma poly-mult-rat-irreducible:
assumes p: irreducible p and deg: degree p 6= 0 and r : r 6= 0
shows irreducible (cf-pos-poly (poly-mult-rat r p))

proof −
from deg-nonzero-represents[OF deg] obtain x :: complex where x: p represents

x by auto
from represents-mult-rat[OF r x]
have y: cf-pos-poly (poly-mult-rat r p) represents (of-rat r ∗ x) by simp
show ?thesis
proof (rule irreducible-preservation[OF p x y], force simp: r)

fix q
from r have r ′: inverse r 6= 0 by simp
assume q represents (of-rat r ∗ x)
from represents-mult-rat[OF r ′ this] have (poly-mult-rat (inverse r) q) repre-

sents x using r
by (simp add: of-rat-divide field-simps)

thus (poly-mult-rat (inverse r) q) represents x ∧ degree (poly-mult-rat (inverse

102

r) q) ≤ degree q
using r by auto

qed (insert p r , auto)
qed

interpretation coeff-lift-hom:
factor-preserving-hom coeff-lift :: ′a :: {comm-semiring-1 ,semiring-no-zero-divisors}
⇒ -

by (unfold-locales, auto)

end

8 The minimal polynomial of an algebraic number
theory Min-Int-Poly
imports

Algebraic-Numbers-Prelim
begin

Given an algebraic number x in a field, the minimal polynomial is the
unique irreducible integer polynomial with positive leading coefficient that
has x as a root.

Note that we assume characteristic 0 since the material upon which all
of this builds also assumes it.
definition min-int-poly :: ′a :: field-char-0 ⇒ int poly where

min-int-poly x =
(if algebraic x then THE p. p represents x ∧ irreducible p ∧ lead-coeff p > 0
else [:0 , 1 :])

lemma
fixes x :: ′a :: {field-char-0 , field-gcd}
shows min-int-poly-represents [intro]: algebraic x =⇒ min-int-poly x represents x
and min-int-poly-irreducible [intro]: irreducible (min-int-poly x)
and lead-coeff-min-int-poly-pos: lead-coeff (min-int-poly x) > 0

proof −
note ∗ = theI ′[OF algebraic-imp-represents-unique, of x]
show min-int-poly x represents x if algebraic x

using ∗[OF that] by (simp add: that min-int-poly-def)
have irreducible [:0 , 1 ::int:]

by (rule irreducible-linear-poly) auto
thus irreducible (min-int-poly x)

using ∗ by (auto simp: min-int-poly-def)
show lead-coeff (min-int-poly x) > 0

using ∗ by (auto simp: min-int-poly-def)
qed

103

lemma
fixes x :: ′a :: {field-char-0 , field-gcd}
shows degree-min-int-poly-pos [intro]: degree (min-int-poly x) > 0

and degree-min-int-poly-nonzero [simp]: degree (min-int-poly x) 6= 0
proof −

show degree (min-int-poly x) > 0
proof (cases algebraic x)

case True
hence min-int-poly x represents x

by auto
thus ?thesis by blast

qed (auto simp: min-int-poly-def)
thus degree (min-int-poly x) 6= 0

by blast
qed

lemma min-int-poly-primitive [intro]:
fixes x :: ′a :: {field-char-0 , field-gcd}
shows primitive (min-int-poly x)
by (rule irreducible-imp-primitive) auto

lemma min-int-poly-content [simp]:
fixes x :: ′a :: {field-char-0 , field-gcd}
shows content (min-int-poly x) = 1
using min-int-poly-primitive[of x] by (simp add: primitive-def)

lemma ipoly-min-int-poly [simp]:
algebraic x =⇒ ipoly (min-int-poly x) (x :: ′a :: {field-gcd, field-char-0}) = 0
using min-int-poly-represents[of x] by (auto simp: represents-def)

lemma min-int-poly-nonzero [simp]:
fixes x :: ′a :: {field-char-0 , field-gcd}
shows min-int-poly x 6= 0
using lead-coeff-min-int-poly-pos[of x] by auto

lemma min-int-poly-normalize [simp]:
fixes x :: ′a :: {field-char-0 , field-gcd}
shows normalize (min-int-poly x) = min-int-poly x
unfolding normalize-poly-def using lead-coeff-min-int-poly-pos[of x] by simp

lemma min-int-poly-prime-elem [intro]:
fixes x :: ′a :: {field-char-0 , field-gcd}
shows prime-elem (min-int-poly x)
using min-int-poly-irreducible[of x] by blast

lemma min-int-poly-prime [intro]:
fixes x :: ′a :: {field-char-0 , field-gcd}
shows prime (min-int-poly x)
using min-int-poly-prime-elem[of x]

104

by (simp only: prime-normalize-iff [symmetric] min-int-poly-normalize)

lemma min-int-poly-unique:
fixes x :: ′a :: {field-char-0 , field-gcd}
assumes p represents x irreducible p lead-coeff p > 0
shows min-int-poly x = p

proof −
from assms(1) have x: algebraic x

using algebraic-iff-represents by blast
thus ?thesis

using the1-equality[OF algebraic-imp-represents-unique[OF x], of p] assms
unfolding min-int-poly-def by auto

qed

lemma min-int-poly-of-int [simp]:
min-int-poly (of-int n :: ′a :: {field-char-0 , field-gcd}) = [:−of-int n, 1 :]
by (intro min-int-poly-unique irreducible-linear-poly) auto

lemma min-int-poly-of-nat [simp]:
min-int-poly (of-nat n :: ′a :: {field-char-0 , field-gcd}) = [:−of-nat n, 1 :]
using min-int-poly-of-int[of int n] by (simp del: min-int-poly-of-int)

lemma min-int-poly-0 [simp]: min-int-poly (0 :: ′a :: {field-char-0 , field-gcd}) =
[:0 , 1 :]

using min-int-poly-of-int[of 0] unfolding of-int-0 by simp

lemma min-int-poly-1 [simp]: min-int-poly (1 :: ′a :: {field-char-0 , field-gcd}) =
[:−1 , 1 :]

using min-int-poly-of-int[of 1] unfolding of-int-1 by simp

lemma poly-min-int-poly-0-eq-0-iff [simp]:
fixes x :: ′a :: {field-char-0 , field-gcd}
assumes algebraic x
shows poly (min-int-poly x) 0 = 0 ←→ x = 0

proof
assume ∗: poly (min-int-poly x) 0 = 0
show x = 0
proof (rule ccontr)

assume x 6= 0
hence poly (min-int-poly x) 0 6= 0

using assms by (intro represents-irr-non-0) auto
with ∗ show False by contradiction

qed
qed auto

lemma min-int-poly-eqI :
fixes x :: ′a :: {field-char-0 , field-gcd}
assumes p represents x irreducible p lead-coeff p ≥ 0
shows min-int-poly x = p

105

proof −
from assms have [simp]: p 6= 0

by auto
have lead-coeff p 6= 0

by auto
with assms(3) have lead-coeff p > 0

by linarith
moreover have algebraic x

using ‹p represents x› by (meson algebraic-iff-represents)
ultimately show ?thesis

unfolding min-int-poly-def
using the1-equality[OF algebraic-imp-represents-unique[OF ‹algebraic x›], of p]

assms by auto
qed

Implementation for real and rational numbers
lemma min-int-poly-of-rat: min-int-poly (of-rat r :: ′a :: {field-char-0 , field-gcd})
= poly-rat r

by (intro min-int-poly-unique, auto)

definition min-int-poly-real :: real ⇒ int poly where
[simp]: min-int-poly-real = min-int-poly

lemma min-int-poly-real-code-unfold [code-unfold]: min-int-poly = min-int-poly-real
by simp

lemma min-int-poly-real-basic-impl[code]: min-int-poly-real (real-of-rat x) = poly-rat
x

unfolding min-int-poly-real-def by (rule min-int-poly-of-rat)

lemma min-int-poly-rat-code-unfold [code-unfold]: min-int-poly = poly-rat
by (intro ext, insert min-int-poly-of-rat[where ? ′a = rat], auto)

end

9 Algebraic Numbers – Preliminary Implementa-
tion

This theory gathers some preliminary results to implement algebraic num-
bers, e.g., it defines an invariant to have unique representing polynomials
and shows that polynomials for unary minus and inversion preserve this
invariant.
theory Algebraic-Numbers-Pre-Impl
imports

Abstract−Rewriting.SN-Order-Carrier
Deriving.Compare-Rat
Deriving.Compare-Real

106

Jordan-Normal-Form.Gauss-Jordan-IArray-Impl
Algebraic-Numbers
Sturm-Rat
Factors-of-Int-Poly
Min-Int-Poly

begin

For algebraic numbers, it turned out that gcd-int-poly is not preferable to
the default implementation of gcd, which just implements Collin’s primitive
remainder sequence.
declare gcd-int-poly-code[code-unfold del]

lemma ex1-imp-Collect-singleton: (∃ !x. P x) ∧ P x ←→ Collect P = {x}
proof(intro iffI conjI , unfold conj-imp-eq-imp-imp)

assume Ex1 P P x then show Collect P = {x} by blast
next

assume Px: Collect P = {x}
then have P y ←→ x = y for y by auto
then show Ex1 P by auto
from Px show P x by auto

qed

lemma ex1-Collect-singleton[consumes 2]:
assumes ∃ !x. P x and P x and Collect P = {x} =⇒ thesis shows thesis
by (rule assms(3), subst ex1-imp-Collect-singleton[symmetric], insert assms(1 ,2),

auto)

lemma ex1-iff-Collect-singleton: P x =⇒ (∃ !x. P x) ←→ Collect P = {x}
by (subst ex1-imp-Collect-singleton[symmetric], auto)

context
fixes f
assumes bij: bij f

begin
lemma bij-imp-ex1-iff : (∃ !x. P (f x)) ←→ (∃ !y. P y) (is ?l = ?r)
proof (intro iffI)

assume l: ?l
then obtain x where P (f x) by auto
with l have ∗: {x} = Collect (P o f) by auto
also have f ‘ . . . = {y. P (f (Hilbert-Choice.inv f y))} using bij-image-Collect-eq[OF

bij] by auto
also have . . . = {y. P y}
proof−

have f (Hilbert-Choice.inv f y) = y for y by (meson bij bij-inv-eq-iff)
then show ?thesis by simp

qed
finally have Collect P = {f x} by auto
then show ?r by (fold ex1-imp-Collect-singleton, auto)

107

next
assume r : ?r
then obtain y where P y by auto
with r have {y} = Collect P by auto
also have Hilbert-Choice.inv f ‘ . . . = Collect (P ◦ f)
using bij-image-Collect-eq[OF bij-imp-bij-inv[OF bij]] bij by (auto simp: inv-inv-eq)

finally have Collect (P o f) = {Hilbert-Choice.inv f y} by (simp add: o-def)
then show ?l by (fold ex1-imp-Collect-singleton, auto)

qed

lemma bij-ex1-imp-the-shift:
assumes ex1 : ∃ !y. P y shows (THE x. P (f x)) = Hilbert-Choice.inv f (THE

y. P y) (is ?l = ?r)
proof−

from ex1 have P (THE y. P y) by (rule the1I2)
moreover from ex1 [folded bij-imp-ex1-iff] have P (f (THE x . P (f x))) by (rule

the1I2)
ultimately have (THE y. P y) = f (THE x . P (f x)) using ex1 by auto
also have Hilbert-Choice.inv f . . . = (THE x. P (f x)) using bij by (simp add:

bij-is-inj)
finally show ?l = ?r by auto

qed

lemma bij-imp-Collect-image: {x. P (f x)} = Hilbert-Choice.inv f ‘ {y. P y} (is ?l
= ?g ‘ -)
proof−

have ?l = ?g ‘ f ‘ ?l by (simp add: image-comp inv-o-cancel[OF bij-is-inj[OF
bij]])

also have f ‘ ?l = {f x | x. P (f x)} by auto
also have . . . = {y. P y} by (metis bij bij-iff)
finally show ?thesis.

qed

lemma bij-imp-card-image: card (f ‘ X) = card X
by (metis bij bij-iff card.infinite finite-imageD inj-onI inj-on-iff-eq-card)

end

definition poly-cond :: int poly ⇒ bool where
poly-cond p = (lead-coeff p > 0 ∧ irreducible p)

lemma poly-condI [intro]:
assumes lead-coeff p > 0 and irreducible p shows poly-cond p using assms by

(auto simp: poly-cond-def)

lemma poly-condD:
assumes poly-cond p
shows irreducible p and lead-coeff p > 0 and root-free p and square-free p and

p 6= 0

108

using assms unfolding poly-cond-def using irreducible-root-free irreducible-imp-square-free
cf-pos-def by auto

lemma poly-condE [elim]:
assumes poly-cond p

and irreducible p =⇒ lead-coeff p > 0 =⇒ root-free p =⇒ square-free p =⇒
p 6= 0 =⇒ thesis

shows thesis
using assms by (auto dest:poly-condD)

lemma poly-cond-abs-int-poly[simp]: irreducible p =⇒ poly-cond (abs-int-poly p)
unfolding poly-cond-def by (cases p = 0 , auto)

definition poly-uminus-abs :: int poly ⇒ int poly where
poly-uminus-abs p = abs-int-poly (poly-uminus p)

lemma irreducible-poly-uminus[simp]: irreducible p =⇒ irreducible (poly-uminus
(p :: int poly))
proof (cases degree p = 0)

case True
from degree0-coeffs[OF this]
obtain a where p: p = [:a:] by auto
have poly-uminus p = p unfolding p by (cases a = 0 , auto)
thus irreducible p =⇒ irreducible (poly-uminus p) by auto

next
case False
from poly-uminus-irreducible[OF - this]
show irreducible p =⇒ irreducible (poly-uminus p) .

qed

lemma irreducible-poly-uminus-abs[simp]: irreducible p =⇒ irreducible (poly-uminus-abs
p)

unfolding poly-uminus-abs-def using irreducible-poly-uminus[of p] by auto

lemma poly-cond-poly-uminus-abs[simp]: poly-cond p =⇒ poly-cond (poly-uminus-abs
p)

by (auto simp: poly-cond-def , unfold poly-uminus-abs-def , subst pos-poly-abs-poly,
auto)

lemma ipoly-poly-uminus-abs-zero[simp]: ipoly (poly-uminus-abs p) (x :: ′a :: idom)
= 0 ←→ ipoly p (−x) = 0

unfolding poly-uminus-abs-def by simp

lemma degree-poly-uminus-abs[simp]: degree (poly-uminus-abs p) = degree p
unfolding poly-uminus-abs-def by auto

definition poly-inverse :: int poly ⇒ int poly where
poly-inverse p = abs-int-poly (reflect-poly p)

109

lemma irreducible-poly-inverse[simp]: coeff p 0 6= 0 =⇒ irreducible p =⇒ irre-
ducible (poly-inverse p)

unfolding poly-inverse-def by (auto simp: irreducible-reflect-poly)

lemma degree-poly-inverse[simp]: coeff p 0 6= 0 =⇒ degree (poly-inverse p) =
degree p

unfolding poly-inverse-def by auto

lemma ipoly-poly-inverse[simp]: assumes coeff p 0 6= 0
shows ipoly (poly-inverse p) (x :: ′a :: field-char-0) = 0 ←→ ipoly p (inverse x)

= 0
unfolding poly-inverse-def ipoly-abs-int-poly-eq-zero-iff

proof (cases x = 0)
case False
thus (ipoly (reflect-poly p) x = 0) = (ipoly p (inverse x) = 0)

by (subst ipoly-reflect-poly, auto)
next

case True
show (ipoly (reflect-poly p) x = 0) = (ipoly p (inverse x) = 0) unfolding True

using assms by (auto simp: poly-0-coeff-0)
qed

lemma ipoly-roots-finite: p 6= 0 =⇒ finite {x :: ′a :: {idom, ring-char-0}. ipoly p
x = 0}

by (rule poly-roots-finite, simp)

lemma root-sign-change: assumes
p0 : poly (p::real poly) x = 0 and
pd-ne0 : poly (pderiv p) x 6= 0

obtains d where
0 < d
sgn (poly p (x − d)) 6= sgn (poly p (x + d))
sgn (poly p (x − d)) 6= 0
0 6= sgn (poly p (x + d))
∀ d ′ > 0 . d ′ ≤ d −→ sgn (poly p (x + d ′)) = sgn (poly p (x + d)) ∧ sgn (poly

p (x − d ′)) = sgn (poly p (x − d))
proof −

assume a:(
∧

d. 0 < d =⇒
sgn (poly p (x − d)) 6= sgn (poly p (x + d)) =⇒
sgn (poly p (x − d)) 6= 0 =⇒
0 6= sgn (poly p (x + d)) =⇒
∀ d ′>0 . d ′ ≤ d −→

sgn (poly p (x + d ′)) = sgn (poly p (x + d)) ∧ sgn (poly p (x − d ′))
= sgn (poly p (x − d)) =⇒

thesis)
from pd-ne0 consider poly (pderiv p) x > 0 | poly (pderiv p) x < 0 by linarith
thus ?thesis proof(cases)

case 1

110

obtain d1 where d1 :
∧

h. 0<h =⇒ h < d1 =⇒ poly p (x − h) < 0 d1 > 0
using DERIV-pos-inc-left[OF poly-DERIV 1] p0 by auto

obtain d2 where d2 :
∧

h. 0<h =⇒ h < d2 =⇒ poly p (x + h) > 0 d2 > 0
using DERIV-pos-inc-right[OF poly-DERIV 1] p0 by auto

have g0 :0 < (min d1 d2) / 2 using d1 d2 by auto
hence m1 :min d1 d2 / 2 < d1 and m2 :min d1 d2 / 2 < d2 by auto
{ fix d

assume a1 :0 < d and a2 :d < min d1 d2
have sgn (poly p (x − d)) = −1 sgn (poly p (x + d)) = 1

using d1 (1)[OF a1] d2 (1)[OF a1] a2 by auto
} note d=this
show ?thesis by(rule a[OF g0];insert d g0 m1 m2 , simp)

next
case 2
obtain d1 where d1 :

∧
h. 0<h =⇒ h < d1 =⇒ poly p (x − h) > 0 d1 > 0

using DERIV-neg-dec-left[OF poly-DERIV 2] p0 by auto
obtain d2 where d2 :

∧
h. 0<h =⇒ h < d2 =⇒ poly p (x + h) < 0 d2 > 0

using DERIV-neg-dec-right[OF poly-DERIV 2] p0 by auto
have g0 :0 < (min d1 d2) / 2 using d1 d2 by auto
hence m1 :min d1 d2 / 2 < d1 and m2 :min d1 d2 / 2 < d2 by auto
{ fix d

assume a1 :0 < d and a2 :d < min d1 d2
have sgn (poly p (x − d)) = 1 sgn (poly p (x + d)) = −1

using d1 (1)[OF a1] d2 (1)[OF a1] a2 by auto
} note d=this
show ?thesis by(rule a[OF g0];insert d g0 m1 m2 , simp)

qed
qed

lemma gt-rat-sign-change-square-free:
assumes ur : ∃ ! x. root-cond plr x

and plr [simp]: plr = (p,l,r)
and sf : square-free p and in-interval: l ≤ y y ≤ r
and py0 : ipoly p y 6= 0 and pr0 : ipoly p r 6= 0

shows (sgn (ipoly p y) = sgn (ipoly p r)) = (of-rat y > (THE x . root-cond plr
x)) (is ?gt = -)
proof (rule ccontr)

define ur where ur = (THE x . root-cond plr x)
assume ¬ ?thesis
hence ?gt 6= (real-of-rat y > ur) unfolding ur-def by auto
note a = this[unfolded plr]
from py0 have p 6= 0 unfolding irreducible-def by auto
hence p0-real: real-of-int-poly p 6= (0 ::real poly) by auto
let ?p = real-of-int-poly p
let ?r = real-of-rat
from in-interval have in ′:?r l ≤ ?r y ?r y ≤ ?r r unfolding of-rat-less-eq by

auto
from sf square-free-of-int-poly[of p] square-free-rsquarefree

111

have rsf :rsquarefree ?p by auto
from ur have root-cond plr ur by (metis ur-def theI ′)
note urD = this[unfolded root-cond-def plr split] this[unfolded plr]
have ur3 :poly ?p ur = 0 using urD by auto
from urD have ur ≤ of-rat r by auto
moreover
from pr0 have ipoly p (real-of-rat r) 6= 0 by auto
with ur3 have real-of-rat r 6= ur by force
ultimately have ur < ?r r by auto
hence ur2 : 0 < ?r r − ur by linarith
from rsquarefree-roots rsf ur3
have pd-nonz:poly (pderiv ?p) ur 6= 0 by auto
obtain d where d ′:

∧
d ′. d ′>0 =⇒ d ′ ≤ d =⇒

sgn (poly ?p (ur + d ′)) = sgn (poly ?p (ur + d)) ∧
sgn (poly ?p (ur − d ′)) = sgn (poly ?p (ur − d))

sgn (poly ?p (ur − d)) 6= sgn (poly ?p (ur + d))
sgn (poly ?p (ur + d)) 6= 0
and d-ge-0 :d > 0
by (metis root-sign-change[OF ur3 pd-nonz])

have sr :sgn (poly ?p (ur + d)) = sgn (poly ?p (?r r))
proof (cases ?r r − ur ≤ d)

case True show ?thesis using d ′(1)[OF ur2 True] by auto
next

case False hence less:ur + d < ?r r by auto
show ?thesis
proof(rule no-roots-inbetween-imp-same-sign[OF less,rule-format],goal-cases)

case (1 x)
from ur 1 d-ge-0 have ran: real-of-rat l ≤ x x ≤ real-of-rat r using urD by

auto
from 1 d-ge-0 have ur 6= x by auto
with ur urD have ¬ root-cond (p,l,r) x by (auto simp: root-cond-def)
with ran show ?case by (auto simp: root-cond-def)

qed
qed
consider ?r l < ur − d ?r l < ur | 0 < ur − ?r l ur − ?r l ≤ d | ur = ?r l

using urD by argo
hence sl:sgn (poly ?p (ur − d)) = sgn (poly ?p (?r l)) ∨ 0 = sgn (poly ?p (?r

l))
proof (cases)

case 1
have sgn (poly ?p (?r l)) = sgn (poly ?p (ur − d))
proof(rule no-roots-inbetween-imp-same-sign[OF 1 (1),rule-format],goal-cases)

case (1 x)
from ur 1 d-ge-0 urD have ran: real-of-rat l ≤ x x ≤ real-of-rat r by auto
from 1 d-ge-0 have ur 6= x by auto
with ur urD have ¬ root-cond (p,l,r) x by (auto simp: root-cond-def)
with ran show ?case by (auto simp: root-cond-def)

qed
thus ?thesis by auto

112

next
case 2 show ?thesis using d ′(1)[OF 2] by simp

qed (insert ur3 ,simp)
have diff-sign: sgn (ipoly p l) 6= sgn (ipoly p r)

using d ′(2−) sr sl real-of-rat-sgn by auto
have ur ′:

∧
x. real-of-rat l ≤ x ∧ x ≤ real-of-rat y =⇒ ipoly p x = 0 =⇒ ¬ (?r y

≤ ur)
proof(standard+,goal-cases)

case (1 x)
{

assume id: ur = ?r y
with urD ur py0 have False by auto

} note neq = this
have x: root-cond (p, l, r) x unfolding root-cond-def

using 1 a ur urD by auto
from ur urD x have ur-eqI : ur = x

by auto
with 1 have ur = of-rat y by auto
with urD(1) py0 show False by auto

qed
hence ur ′′:∀ x. real-of-rat y ≤ x ∧ x ≤ real-of-rat r −→ poly (real-of-int-poly p)

x 6= 0 =⇒ ¬ (?r y ≤ ur)
using urD by auto

have (sgn (ipoly p y) = sgn (ipoly p r)) = (?r y > ur)
proof(cases sgn (ipoly p r) = sgn (ipoly p y))

case True
have sgn:sgn (poly ?p (real-of-rat l)) 6= sgn (poly ?p (real-of-rat y)) using True

diff-sign
by (simp add: real-of-rat-sgn)

have ly:of-rat l < (of-rat y::real) using in-interval True diff-sign less-eq-rat-def
of-rat-less by auto

with no-roots-inbetween-imp-same-sign[OF ly,of ?p] sgn ur ′ True
show ?thesis by force

next
case False
hence ne:sgn (ipoly p (real-of-rat y)) 6= sgn (ipoly p (real-of-rat r)) by (simp

add: real-of-rat-sgn)
have ry:of-rat y < (of-rat r ::real) using in-interval False diff-sign less-eq-rat-def

of-rat-less by auto
obtain x where x:real-of-rat y ≤ x x ≤ real-of-rat r ipoly p x = 0

using no-roots-inbetween-imp-same-sign[OF ry,of ?p] ne by auto
hence lx:real-of-rat l ≤ x using in-interval

using False a urD by auto
with x have root-cond (p,l,r) x by (auto simp: root-cond-def)
with urD ur
have ur = x by auto
then show ?thesis using False x by auto

qed
thus False using diff-sign(1) a py0 by(cases ipoly p r = 0 ;auto simp:sgn-0-0)

113

qed

definition algebraic-real :: real ⇒ bool where
[simp]: algebraic-real = algebraic

lemma algebraic-real-iff [code-unfold]: algebraic = algebraic-real by simp

end

10 Cauchy’s Root Bound
This theory contains a formalization of Cauchy’s root bound, i.e., given an
integer polynomial it determines a bound b such that all real or complex
roots of the polynomials have a norm below b.
theory Cauchy-Root-Bound
imports

Algebraic-Numbers-Pre-Impl
begin

hide-const (open) UnivPoly.coeff
hide-const (open) Module.smult

Division of integers, rounding to the upper value.
definition div-ceiling :: int ⇒ int ⇒ int where

div-ceiling x y = (let q = x div y in if q ∗ y = x then q else q + 1)

definition root-bound :: int poly ⇒ rat where
root-bound p ≡ let

n = degree p;
m = 1 + div-ceiling (max-list-non-empty (map (λi. abs (coeff p i)) [0 ..<n]))

(abs (lead-coeff p))
— round to the next higher number 2^n, so that bisection will
— stay on integers for as long as possible

in of-int (2 ^ (log-ceiling 2 m))

lemma root-imp-deg-nonzero: assumes p 6= 0 poly p x = 0
shows degree p 6= 0

proof
assume degree p = 0
from degree0-coeffs[OF this] assms show False by auto

qed

lemma cauchy-root-bound: fixes x :: ′a :: real-normed-field
assumes x: poly p x = 0 and p: p 6= 0
shows norm x ≤ 1 + max-list-non-empty (map (λ i. norm (coeff p i)) [0 ..<

degree p])
/ norm (lead-coeff p) (is - ≤ - + ?max / ?nlc)

114

proof −
let ?n = degree p
let ?p = coeff p
let ?lc = lead-coeff p
define ml where ml = ?max / ?nlc
from p have lc: ?lc 6= 0 by auto
hence nlc: norm ?lc > 0 by auto
from root-imp-deg-nonzero[OF p x] have ∗: 0 ∈ set [0 ..< degree p] by auto
have 0 ≤ norm (?p 0) by simp
also have . . . ≤ ?max

by (rule max-list-non-empty, insert ∗, auto)
finally have max0 : ?max ≥ 0 .
with nlc have ml0 : ml ≥ 0 unfolding ml-def by auto
hence easy: norm x ≤ 1 =⇒ ?thesis unfolding ml-def [symmetric] by auto
show ?thesis
proof (cases norm x ≤ 1)

case True
thus ?thesis using easy by auto

next
case False
hence nx: norm x > 1 by simp
hence x0 : x 6= 0 by auto
hence xn0 : 0 < norm x ^ ?n by auto
from x[unfolded poly-altdef] have x ^ ?n ∗ ?lc = x ^ ?n ∗ ?lc − (

∑
i≤?n. x

^ i ∗ ?p i)
unfolding poly-altdef by (simp add: ac-simps)

also have (
∑

i≤?n. x ^ i ∗ ?p i) = x ^ ?n ∗ ?lc + (
∑

i < ?n. x ^ i ∗ ?p i)
by (subst sum.remove[of - ?n], auto intro: sum.cong)

finally have x ^ ?n ∗ ?lc = − (
∑

i < ?n. x ^ i ∗ ?p i) by simp
with lc have x ^ ?n = − (

∑
i < ?n. x ^ i ∗ ?p i) / ?lc by (simp add:

field-simps)
from arg-cong[OF this, of norm]

have norm x ^ ?n = norm ((
∑

i < ?n. x ^ i ∗ ?p i) / ?lc) unfolding
norm-power by simp

also have (
∑

i < ?n. x ^ i ∗ ?p i) / ?lc = (
∑

i < ?n. x ^ i ∗ ?p i / ?lc)
by (rule sum-divide-distrib)

also have norm . . . ≤ (
∑

i < ?n. norm (x ^ i ∗ (?p i / ?lc)))
by (simp add: field-simps, rule norm-sum)

also have . . . = (
∑

i < ?n. norm x ^ i ∗ norm (?p i / ?lc))
unfolding norm-mult norm-power ..

also have . . . ≤ (
∑

i < ?n. norm x ^ i ∗ ml)
proof (rule sum-mono)

fix i
assume i ∈ {..<?n}
hence i: i < ?n by simp
show norm x ^ i ∗ norm (?p i / ?lc) ≤ norm x ^ i ∗ ml
proof (rule mult-left-mono)

show 0 ≤ norm x ^ i using nx by auto
show norm (?p i / ?lc) ≤ ml unfolding norm-divide ml-def

115

by (rule divide-right-mono[OF max-list-non-empty], insert nlc i, auto)
qed

qed
also have . . . = ml ∗ (

∑
i < ?n. norm x ^ i)

unfolding sum-distrib-right[symmetric] by simp
also have (

∑
i < ?n. norm x ^ i) = (norm x ^ ?n − 1) / (norm x − 1)

by (rule geometric-sum, insert nx, auto)
finally have norm x ^ ?n ≤ ml ∗ (norm x ^ ?n − 1) / (norm x − 1) by simp

from mult-left-mono[OF this, of norm x − 1]
have (norm x − 1) ∗ (norm x ^ ?n) ≤ ml ∗ (norm x ^ ?n − 1) using nx by

auto
also have . . . = (ml ∗ (1 − 1 / (norm x ^ ?n))) ∗ norm x ^ ?n

using nx False x0 by (simp add: field-simps)
finally have (norm x − 1) ∗ (norm x ^ ?n) ≤ (ml ∗ (1 − 1 / (norm x ^ ?n)))

∗ norm x ^ ?n .
from mult-right-le-imp-le[OF this xn0]
have norm x − 1 ≤ ml ∗ (1 − 1 / (norm x ^ ?n)) by simp
hence norm x ≤ 1 + ml − ml / (norm x ^ ?n) by (simp add: field-simps)
also have . . . ≤ 1 + ml using ml0 xn0 by auto
finally show ?thesis unfolding ml-def .

qed
qed

lemma div-le-div-ceiling: x div y ≤ div-ceiling x y
unfolding div-ceiling-def Let-def by auto

lemma div-ceiling: assumes q: q 6= 0
shows (of-int x :: ′a :: floor-ceiling) / of-int q ≤ of-int (div-ceiling x q)

proof (cases q dvd x)
case True
then obtain k where xqk: x = q ∗ k unfolding dvd-def by auto
hence id: div-ceiling x q = k unfolding div-ceiling-def Let-def using q by auto
show ?thesis unfolding id unfolding xqk using q by simp

next
case False
{

assume x div q ∗ q = x
hence x = q ∗ (x div q) by (simp add: ac-simps)
hence q dvd x unfolding dvd-def by auto
with False have False by simp

}
hence id: div-ceiling x q = x div q + 1

unfolding div-ceiling-def Let-def using q by auto
show ?thesis unfolding id

by (metis floor-divide-of-int-eq le-less add1-zle-eq floor-less-iff)
qed

lemma max-list-non-empty-map: assumes hom:
∧

x y. max (f x) (f y) = f (max

116

x y)
shows xs 6= [] =⇒ max-list-non-empty (map f xs) = f (max-list-non-empty xs)
by (induct xs rule: max-list-non-empty.induct, auto simp: hom)

lemma root-bound: assumes root-bound p = B and deg: degree p > 0
shows ipoly p (x :: ′a :: real-normed-field) = 0 =⇒ norm x ≤ of-rat B B ≥ 0

proof −
let ?r = of-rat :: - ⇒ ′a
let ?i = of-int :: - ⇒ ′a
let ?p = map-poly ?i p
define n where n = degree p
let ?lc = coeff p n
let ?list = map (λi. abs (coeff p i)) [0 ..<n]
let ?list ′ = (map (λi. real-of-int (abs ((coeff p i)))) [0 ..<n])
define m where m = max-list-non-empty ?list
define m-up where m-up = 1 + div-ceiling m (abs ?lc)
define C where C = rat-of-int (2^(log-ceiling 2 m-up))
from deg have p0 : p 6= 0 by auto
from p0 have alc0 : abs ?lc 6= 0 unfolding n-def by auto
from deg have mem: abs (coeff p 0) ∈ set ?list unfolding n-def by auto
from max-list-non-empty[OF this, folded m-def]
have m0 : m ≥ 0 by auto
have div-ceiling m (abs ?lc) ≥ 0

by (rule order-trans[OF - div-le-div-ceiling[of m abs ?lc]], subst
pos-imp-zdiv-nonneg-iff , insert p0 m0 , auto simp: n-def)

hence mup: m-up ≥ 1 unfolding m-up-def by auto
have m-up ≤ 2 ^ (log-ceiling 2 m-up) using mup log-ceiling-sound(1) by auto
hence Cmup: C ≥ of-int m-up unfolding C-def by linarith
with mup have C : C ≥ 1 by auto
from assms(1)[unfolded root-bound-def Let-def]
have B: C = B unfolding C-def m-up-def n-def m-def by auto
note dc = div-le-div-ceiling[of m abs ?lc]
with C show B ≥ 0 unfolding B by auto
assume ipoly p x = 0
hence rt: poly ?p x = 0 by simp
from root-imp-deg-nonzero[OF - this] p0 have n0 : n 6= 0 unfolding n-def by

auto
from cauchy-root-bound[OF rt] p0
have norm x ≤ 1 + max-list-non-empty ?list ′ / real-of-int (abs ?lc)

by (simp add: n-def)
also have ?list ′ = map real-of-int ?list by simp
also have max-list-non-empty . . . = real-of-int m unfolding m-def

by (rule max-list-non-empty-map, insert mem, auto)
also have 1 + m / real-of-int (abs ?lc) ≤ real-of-int m-up

unfolding m-up-def using div-ceiling[OF alc0 , of m] by auto
also have . . . ≤ real-of-rat C using Cmup using of-rat-less-eq by force
finally have norm x ≤ real-of-rat C .
thus norm x ≤ real-of-rat B unfolding B by simp

qed

117

end

11 Real Algebraic Numbers
Whereas we previously only proved the closure properties of algebraic num-
bers, this theory adds the numeric computations that are required to sepa-
rate the roots, and to pick unique representatives of algebraic numbers.

The development is split into three major parts. First, an ambiguous rep-
resentation of algebraic numbers is used, afterwards another layer is used
with special treatment of rational numbers which still does not admit unique
representatives, and finally, a quotient type is created modulo the equiva-
lence.

The theory also contains a code-setup to implement real numbers via
real algebraic numbers.

The results are taken from the textbook [2, pages 329ff].
theory Real-Algebraic-Numbers
imports

Algebraic-Numbers-Pre-Impl
begin

lemma ex1-imp-Collect-singleton: (∃ !x. P x) ∧ P x ←→ Collect P = {x}
proof(intro iffI conjI , unfold conj-imp-eq-imp-imp)

assume Ex1 P P x then show Collect P = {x} by blast
next

assume Px: Collect P = {x}
then have P y ←→ x = y for y by auto
then show Ex1 P by auto
from Px show P x by auto

qed

lemma ex1-Collect-singleton[consumes 2]:
assumes ∃ !x. P x and P x and Collect P = {x} =⇒ thesis shows thesis
by (rule assms(3), subst ex1-imp-Collect-singleton[symmetric], insert assms(1 ,2),

auto)

lemma ex1-iff-Collect-singleton: P x =⇒ (∃ !x. P x) ←→ Collect P = {x}
by (subst ex1-imp-Collect-singleton[symmetric], auto)

lemma bij-imp-card: assumes bij: bij f shows card {x. P (f x)} = card {x. P x}
unfolding bij-imp-Collect-image[OF bij] bij-imp-card-image[OF bij-imp-bij-inv[OF
bij]]..

lemma bij-add: bij (λx. x + y :: ′a :: group-add) (is ?g1)
and bij-minus: bij (λx. x − y :: ′a) (is ?g2)
and inv-add[simp]: Hilbert-Choice.inv (λx. x + y) = (λx. x − y) (is ?g3)

118

and inv-minus[simp]: Hilbert-Choice.inv (λx. x − y) = (λx. x + y) (is ?g4)
proof−

have 1 : (λx. x − y) ◦ (λx. x + y) = id and 2 : (λx. x + y) ◦ (λx. x − y) = id
by auto

from o-bij[OF 1 2] show ?g1 .
from o-bij[OF 2 1] show ?g2 .
from inv-unique-comp[OF 2 1] show ?g3 .
from inv-unique-comp[OF 1 2] show ?g4 .

qed

lemmas ex1-shift[simp] = bij-imp-ex1-iff [OF bij-add] bij-imp-ex1-iff [OF bij-minus]

lemma ex1-the-shift:
assumes ex1 : ∃ !y :: ′a :: group-add. P y
shows (THE x . P (x + d)) = (THE y. P y) − d

and (THE x . P (x − d)) = (THE y. P y) + d
unfolding bij-ex1-imp-the-shift[OF bij-add ex1] bij-ex1-imp-the-shift[OF bij-minus

ex1] by auto

lemma card-shift-image[simp]:
shows card ((λx :: ′a :: group-add. x + d) ‘ X) = card X

and card ((λx. x − d) ‘ X) = card X
by (auto simp: bij-imp-card-image[OF bij-add] bij-imp-card-image[OF bij-minus])

lemma irreducible-root-free:
fixes p :: ′a :: {idom,comm-ring-1} poly
assumes irr : irreducible p shows root-free p

proof (cases degree p 1 ::nat rule: linorder-cases)
case greater
{

fix x
assume poly p x = 0
hence [:−x,1 :] dvd p using poly-eq-0-iff-dvd by blast
then obtain r where p: p = r ∗ [:−x,1 :] by (elim dvdE , auto)
have deg: degree [:−x,1 :] = 1 by simp
have dvd: ¬ [:−x,1 :] dvd 1 by (auto simp: poly-dvd-1)
from greater have degree r 6= 0 using degree-mult-le[of r [:−x,1 :], unfolded

deg, folded p] by auto
then have ¬ r dvd 1 by (auto simp: poly-dvd-1)
with p irr irreducibleD[OF irr p] dvd have False by auto

}
thus ?thesis unfolding root-free-def by auto

next
case less then have deg: degree p = 0 by auto
from deg obtain p0 where p: p = [:p0 :] using degree0-coeffs by auto
with irr have p 6= 0 by auto
with p have poly p x 6= 0 for x by auto
thus ?thesis by (auto simp: root-free-def)

qed (auto simp: root-free-def)

119

11.1 Real Algebraic Numbers – Innermost Layer
We represent a real algebraic number α by a tuple (p,l,r): α is the unique
root in the interval [l,r] and l and r have the same sign. We always assume
that p is normalized, i.e., p is the unique irreducible and positive content-free
polynomial which represents the algebraic number.

This representation clearly admits duplicate representations for the same
number, e.g. (...,x-3, 3,3) is equivalent to (...,x-3,2,10).

11.1.1 Basic Definitions
type-synonym real-alg-1 = int poly × rat × rat

fun poly-real-alg-1 :: real-alg-1 ⇒ int poly where poly-real-alg-1 (p,-,-) = p
fun rai-ub :: real-alg-1 ⇒ rat where rai-ub (-,-,r) = r
fun rai-lb :: real-alg-1 ⇒ rat where rai-lb (-,l,-) = l

abbreviation roots-below p x ≡ {y :: real. y ≤ x ∧ ipoly p y = 0}

abbreviation(input) unique-root :: real-alg-1 ⇒ bool where
unique-root plr ≡ (∃ ! x. root-cond plr x)

abbreviation the-unique-root :: real-alg-1 ⇒ real where
the-unique-root plr ≡ (THE x . root-cond plr x)

abbreviation real-of-1 where real-of-1 ≡ the-unique-root

lemma root-condI [intro]:
assumes of-rat (rai-lb plr) ≤ x and x ≤ of-rat (rai-ub plr) and ipoly (poly-real-alg-1

plr) x = 0
shows root-cond plr x
using assms by (auto simp: root-cond-def)

lemma root-condE [elim]:
assumes root-cond plr x

and of-rat (rai-lb plr) ≤ x =⇒ x ≤ of-rat (rai-ub plr) =⇒ ipoly (poly-real-alg-1
plr) x = 0 =⇒ thesis

shows thesis
using assms by (auto simp: root-cond-def)

lemma
assumes ur : unique-root plr
defines x ≡ the-unique-root plr and p ≡ poly-real-alg-1 plr and l ≡ rai-lb plr

and r ≡ rai-ub plr
shows unique-rootD: of-rat l ≤ x x ≤ of-rat r ipoly p x = 0 root-cond plr x

x = y ←→ root-cond plr y y = x ←→ root-cond plr y
and the-unique-root-eqI : root-cond plr y =⇒ y = x root-cond plr y =⇒ x = y

proof −
from ur show x: root-cond plr x unfolding x-def by (rule theI ′)

120

have plr = (p,l,r) by (cases plr , auto simp: p-def l-def r-def)
from x[unfolded this] show of-rat l ≤ x x ≤ of-rat r ipoly p x = 0 by auto
from x ur
show root-cond plr y =⇒ y = x and root-cond plr y =⇒ x = y
and x = y ←→ root-cond plr y and y = x ←→ root-cond plr y by auto

qed

lemma unique-rootE :
assumes ur : unique-root plr
defines x ≡ the-unique-root plr and p ≡ poly-real-alg-1 plr and l ≡ rai-lb plr

and r ≡ rai-ub plr
assumes main: of-rat l ≤ x =⇒ x ≤ of-rat r =⇒ ipoly p x = 0 =⇒ root-cond

plr x =⇒
(
∧

y. x = y ←→ root-cond plr y) =⇒ (
∧

y. y = x ←→ root-cond plr y) =⇒
thesis

shows thesis by (rule main, unfold x-def p-def l-def r-def ; rule unique-rootD[OF
ur])

lemma unique-rootI :
assumes

∧
y. root-cond plr y =⇒ x = y root-cond plr x

shows unique-root plr using assms by blast

definition invariant-1 :: real-alg-1 ⇒ bool where
invariant-1 tup ≡ case tup of (p,l,r) ⇒

unique-root (p,l,r) ∧ sgn l = sgn r ∧ poly-cond p

lemma invariant-1I :
assumes unique-root plr and sgn (rai-lb plr) = sgn (rai-ub plr) and poly-cond

(poly-real-alg-1 plr)
shows invariant-1 plr
using assms by (auto simp: invariant-1-def)

lemma
assumes invariant-1 plr
defines x ≡ the-unique-root plr and p ≡ poly-real-alg-1 plr and l ≡ rai-lb plr

and r ≡ rai-ub plr
shows invariant-1D: root-cond plr x

sgn l = sgn r sgn x = of-rat (sgn r) unique-root plr poly-cond p degree p > 0
primitive p

and invariant-1-root-cond:
∧

y. root-cond plr y ←→ y = x
proof −

let ?l = of-rat l :: real
let ?r = of-rat r :: real
have plr : plr = (p,l,r) by (cases plr , auto simp: p-def l-def r-def)
from assms
show ur : unique-root plr and sgn: sgn l = sgn r and pc: poly-cond p by (auto

simp: invariant-1-def)
from ur show rc: root-cond plr x by (auto simp add: x-def plr intro: theI ′)

121

from this[unfolded plr] have x: ipoly p x = 0 and bnd: ?l ≤ x x ≤ ?r by auto
show sgn x = of-rat (sgn r)
proof (cases 0 ::real x rule:linorder-cases)

case less
with bnd(2) have 0 < ?r by arith
thus ?thesis using less by simp

next
case equal
with bnd have ?l ≤ 0 ?r ≥ 0 by auto
hence l ≤ 0 r ≥ 0 by auto
with ‹sgn l = sgn r› have l = 0 r = 0 unfolding sgn-rat-def by (auto split:

if-splits)
with rc[unfolded plr]
show ?thesis by auto

next
case greater
with bnd(1) have ?l < 0 by arith
thus ?thesis unfolding ‹sgn l = sgn r›[symmetric] using greater by simp

qed
from the-unique-root-eqI [OF ur] rc
show

∧
y. root-cond plr y ←→ y = x by metis

{
assume degree p = 0
with poly-zero[OF x, simplified] sgn bnd have p = 0 by auto
with pc have False by auto

}
then show degree p > 0 by auto
with pc show primitive p by (intro irreducible-imp-primitive, auto)

qed

lemma invariant-1E [elim]:
assumes invariant-1 plr
defines x ≡ the-unique-root plr and p ≡ poly-real-alg-1 plr and l ≡ rai-lb plr

and r ≡ rai-ub plr
assumes main: root-cond plr x =⇒

sgn l = sgn r =⇒ sgn x = of-rat (sgn r) =⇒ unique-root plr =⇒ poly-cond p
=⇒ degree p > 0 =⇒

primitive p =⇒ thesis
shows thesis apply (rule main)
using assms(1) unfolding x-def p-def l-def r-def by (auto dest: invariant-1D)

lemma invariant-1-realI :
fixes plr :: real-alg-1
defines p ≡ poly-real-alg-1 plr and l ≡ rai-lb plr and r ≡ rai-ub plr
assumes x: root-cond plr x and sgn l = sgn r

and ur : unique-root plr
and poly-cond p

shows invariant-1 plr ∧ real-of-1 plr = x
using the-unique-root-eqI [OF ur x] assms by (cases plr , auto intro: invariant-1I)

122

lemma real-of-1-0 :
assumes invariant-1 (p,l,r)
shows [simp]: the-unique-root (p,l,r) = 0 ←→ r = 0

and [dest]: l = 0 =⇒ r = 0
and [intro]: r = 0 =⇒ l = 0

using assms by (auto simp: sgn-0-0)

lemma invariant-1-pos: assumes rc: invariant-1 (p,l,r)
shows [simp]:the-unique-root (p,l,r) > 0 ←→ r > 0 (is ?x > 0 ←→ -)

and [simp]:the-unique-root (p,l,r) < 0 ←→ r < 0
and [simp]:the-unique-root (p,l,r) ≤ 0 ←→ r ≤ 0
and [simp]:the-unique-root (p,l,r) ≥ 0 ←→ r ≥ 0
and [intro]: r > 0 =⇒ l > 0
and [dest]: l > 0 =⇒ r > 0
and [intro]: r < 0 =⇒ l < 0
and [dest]: l < 0 =⇒ r < 0

proof(atomize(full),goal-cases)
case 1
let ?r = real-of-rat
from assms[unfolded invariant-1-def]
have ur : unique-root (p,l,r) and sgn: sgn l = sgn r by auto
from unique-rootD(1−2)[OF ur] have le: ?r l ≤ ?x ?x ≤ ?r r by auto
from rc show ?case
proof (cases r 0 ::rat rule:linorder-cases)

case greater
with sgn have sgn l = 1 by simp
hence l0 : l > 0 by (auto simp: sgn-1-pos)
hence ?r l > 0 by auto
hence ?x > 0 using le(1) by arith
with greater l0 show ?thesis by auto

next
case equal
with real-of-1-0 [OF rc] show ?thesis by auto

next
case less
hence ?r r < 0 by auto
with le(2) have ?x < 0 by arith
with less sgn show ?thesis by (auto simp: sgn-1-neg)

qed
qed

definition invariant-1-2 where
invariant-1-2 rai ≡ invariant-1 rai ∧ degree (poly-real-alg-1 rai) > 1

definition poly-cond2 where poly-cond2 p ≡ poly-cond p ∧ degree p > 1

lemma poly-cond2I [intro!]: poly-cond p =⇒ degree p > 1 =⇒ poly-cond2 p by

123

(simp add: poly-cond2-def)

lemma poly-cond2D:
assumes poly-cond2 p
shows poly-cond p and degree p > 1 using assms by (auto simp: poly-cond2-def)

lemma poly-cond2E [elim!]:
assumes poly-cond2 p and poly-cond p =⇒ degree p > 1 =⇒ thesis shows thesis
using assms by (auto simp: poly-cond2-def)

lemma invariant-1-2-poly-cond2 : invariant-1-2 rai =⇒ poly-cond2 (poly-real-alg-1
rai)

unfolding invariant-1-def invariant-1-2-def poly-cond2-def by auto

lemma invariant-1-2I [intro!]:
assumes invariant-1 rai and degree (poly-real-alg-1 rai) > 1 shows invariant-1-2

rai
using assms by (auto simp: invariant-1-2-def)

lemma invariant-1-2E [elim!]:
assumes invariant-1-2 rai

and invariant-1 rai =⇒ degree (poly-real-alg-1 rai) > 1 =⇒ thesis
shows thesis using assms[unfolded invariant-1-2-def] by auto

lemma invariant-1-2-realI :
fixes plr :: real-alg-1
defines p ≡ poly-real-alg-1 plr and l ≡ rai-lb plr and r ≡ rai-ub plr
assumes x: root-cond plr x and sgn: sgn l = sgn r and ur : unique-root plr and

p: poly-cond2 p
shows invariant-1-2 plr ∧ real-of-1 plr = x
using invariant-1-realI [OF x] p sgn ur unfolding p-def l-def r-def by auto

11.2 Real Algebraic Numbers = Rational + Irrational Real
Algebraic Numbers

In the next representation of real algebraic numbers, we distinguish between
rational and irrational numbers. The advantage is that whenever we only
work on rational numbers, there is not much overhead involved in compari-
son to the existing implementation of real numbers which just supports the
rational numbers. For irrational numbers we additionally store the number
of the root, counting from left to right. For instance −

√
2 and

√
2 would be

root number 1 and 2 of x2 − 2.

11.2.1 Definitions and Algorithms on Raw Type
datatype real-alg-2 = Rational rat | Irrational nat real-alg-1

124

fun invariant-2 :: real-alg-2 ⇒ bool where
invariant-2 (Irrational n rai) = (invariant-1-2 rai
∧ n = card(roots-below (poly-real-alg-1 rai) (real-of-1 rai)))

| invariant-2 (Rational r) = True

fun real-of-2 :: real-alg-2 ⇒ real where
real-of-2 (Rational r) = of-rat r
| real-of-2 (Irrational n rai) = real-of-1 rai

definition of-rat-2 :: rat ⇒ real-alg-2 where
[code-unfold]: of-rat-2 = Rational

lemma of-rat-2 : real-of-2 (of-rat-2 x) = of-rat x invariant-2 (of-rat-2 x)
by (auto simp: of-rat-2-def)

typedef real-alg-3 = Collect invariant-2
morphisms rep-real-alg-3 Real-Alg-Invariant
by (rule exI [of - Rational 0], auto)

setup-lifting type-definition-real-alg-3

lift-definition real-of-3 :: real-alg-3 ⇒ real is real-of-2 .

11.2.2 Definitions and Algorithms on Quotient Type
quotient-type real-alg = real-alg-3 / λ x y. real-of-3 x = real-of-3 y

morphisms rep-real-alg Real-Alg-Quotient
by (auto simp: equivp-def) metis

lift-definition real-of :: real-alg ⇒ real is real-of-3 .

lemma real-of-inj: (real-of x = real-of y) = (x = y)
by (transfer , simp)

11.2.3 Sign
definition sgn-1 :: real-alg-1 ⇒ rat where

sgn-1 x = sgn (rai-ub x)

lemma sgn-1 : invariant-1 x =⇒ real-of-rat (sgn-1 x) = sgn (real-of-1 x)
unfolding sgn-1-def by auto

lemma sgn-1-inj: invariant-1 x =⇒ invariant-1 y =⇒ real-of-1 x = real-of-1 y =⇒
sgn-1 x = sgn-1 y

by (auto simp: sgn-1-def elim!: invariant-1E)

125

11.2.4 Normalization: Bounds Close Together
lemma unique-root-lr : assumes ur : unique-root plr shows rai-lb plr ≤ rai-ub plr
(is ?l ≤ ?r)
proof −

let ?p = poly-real-alg-1 plr
from ur [unfolded root-cond-def]
have ex1 : ∃ ! x :: real. of-rat ?l ≤ x ∧ x ≤ of-rat ?r ∧ ipoly ?p x = 0 by (cases

plr , simp)
then obtain x :: real where bnd: of-rat ?l ≤ x x ≤ of-rat ?r and rt: ipoly ?p x

= 0 by auto
from bnd have real-of-rat ?l ≤ of-rat ?r by linarith
thus ?l ≤ ?r by (simp add: of-rat-less-eq)

qed

locale map-poly-zero-hom-0 = base: zero-hom-0
begin

sublocale zero-hom-0 map-poly hom by (unfold-locales,auto)
end
interpretation of-int-poly-hom:

map-poly-zero-hom-0 of-int :: int ⇒ ′a :: {ring-1 , ring-char-0} ..

lemma roots-below-the-unique-root:
assumes ur : unique-root (p,l,r)
shows roots-below p (the-unique-root (p,l,r)) = roots-below p (of-rat r) (is roots-below

p ?x = -)
proof−

from ur have rc: root-cond (p,l,r) ?x by (auto dest!: unique-rootD)
with ur have x: {x. root-cond (p,l,r) x} = {?x} by (auto intro: the-unique-root-eqI)
from rc have ?x ∈ {y. ?x ≤ y ∧ y ≤ of-rat r ∧ ipoly p y = 0} by auto
with rc have l1x: ... = {?x} by (intro equalityI , fold x(1), force, simp add: x)

have rb:roots-below p (of-rat r) = roots-below p ?x ∪ {y. ?x < y ∧ y ≤ of-rat r
∧ ipoly p y = 0}

using rc by auto
have emp:

∧
x. the-unique-root (p, l, r) < x =⇒
x /∈ {ra. ?x ≤ ra ∧ ra ≤ real-of-rat r ∧ ipoly p ra = 0}

using l1x by auto
with rb show ?thesis by auto

qed

lemma unique-root-sub-interval:
assumes ur : unique-root (p,l,r)

and rc: root-cond (p,l ′,r ′) (the-unique-root (p,l,r))
and between: l ≤ l ′ r ′ ≤ r

shows unique-root (p,l ′,r ′)
and the-unique-root (p,l ′,r ′) = the-unique-root (p,l,r)

proof −
from between have ord: real-of-rat l ≤ of-rat l ′ real-of-rat r ′ ≤ of-rat r by (auto

126

simp: of-rat-less-eq)
from rc have lr ′: real-of-rat l ′ ≤ of-rat r ′ by auto
with ord have lr : real-of-rat l ≤ real-of-rat r by auto
show ∃ !x. root-cond (p, l ′, r ′) x
proof (rule, rule rc)

fix y
assume root-cond (p,l ′,r ′) y
with ord have root-cond (p,l,r) y by (auto intro!:root-condI)
from the-unique-root-eqI [OF ur this] show y = the-unique-root (p,l,r) by simp

qed
from the-unique-root-eqI [OF this rc]
show the-unique-root (p,l ′,r ′) = the-unique-root (p,l,r) by simp

qed

lemma invariant-1-sub-interval:
assumes rc: invariant-1 (p,l,r)

and sub: root-cond (p,l ′,r ′) (the-unique-root (p,l,r))
and between: l ≤ l ′ r ′ ≤ r

shows invariant-1 (p,l ′,r ′) and real-of-1 (p,l ′,r ′) = real-of-1 (p,l,r)
proof −

let ?r = real-of-rat
note rcD = invariant-1D[OF rc]
from rc
have ur : unique-root (p, l ′, r ′)

and id: the-unique-root (p, l ′, r ′) = the-unique-root (p, l, r)
by (atomize(full), intro conjI unique-root-sub-interval[OF - sub between], auto)

show real-of-1 (p,l ′,r ′) = real-of-1 (p,l,r)
using id by simp

from rcD(1)[unfolded split] have ?r l ≤ ?r r by auto
hence lr : l ≤ r by (auto simp: of-rat-less-eq)
from unique-rootD[OF ur] have ?r l ′ ≤ ?r r ′ by auto
hence lr ′: l ′ ≤ r ′ by (auto simp: of-rat-less-eq)
have sgn l ′ = sgn r ′

proof (cases r 0 ::rat rule: linorder-cases)
case less
with lr lr ′ between have l < 0 l ′ < 0 r ′ < 0 r < 0 by auto
thus ?thesis unfolding sgn-rat-def by auto

next
case equal with rcD(2) have l = 0 using sgn-0-0 by auto
with equal between lr ′ have l ′ = 0 r ′ = 0 by auto then show ?thesis by auto

next
case greater
with rcD(4) have sgn r = 1 unfolding sgn-rat-def by (cases r = 0 , auto)
with rcD(2) have sgn l = 1 by simp
hence l: l > 0 unfolding sgn-rat-def by (cases l = 0 ; cases l < 0 ; auto)
with lr lr ′ between have l > 0 l ′ > 0 r ′ > 0 r > 0 by auto
thus ?thesis unfolding sgn-rat-def by auto

qed
with between ur rc show invariant-1 (p,l ′,r ′) by (auto simp add: invariant-1-def

127

id)
qed

lemma rational-root-free-degree-iff : assumes rf : root-free (map-poly rat-of-int p)
and rt: ipoly p x = 0

shows (x ∈ �) = (degree p = 1)
proof

assume x ∈ �
then obtain y where x: x = of-rat y (is - = ?x) unfolding Rats-def by blast
from rt[unfolded x] have poly (map-poly rat-of-int p) y = 0 by simp
with rf show degree p = 1 unfolding root-free-def by auto

next
assume degree p = 1
from degree1-coeffs[OF this]
obtain a b where p: p = [:a,b:] and b: b 6= 0 by auto
from rt[unfolded p hom-distribs] have of-int a + x ∗ of-int b = 0 by auto
from arg-cong[OF this, of λ x. (x − of-int a) / of-int b]
have x = − of-rat (of-int a) / of-rat (of-int b) using b by auto
also have . . . = of-rat (− of-int a / of-int b) unfolding of-rat-minus of-rat-divide

..
finally show x ∈ � by auto

qed

lemma rational-poly-cond-iff : assumes poly-cond p and ipoly p x = 0 and degree
p > 1

shows (x ∈ �) = (degree p = 1)
proof (rule rational-root-free-degree-iff [OF - assms(2)])

from poly-condD[OF assms(1)] irreducible-connect-rev[of p] assms(3)
have p: irreducibled p by auto
from irreducibled-int-rat[OF this]
have irreducible (map-poly rat-of-int p) by simp
thus root-free (map-poly rat-of-int p) by (rule irreducible-root-free)

qed

lemma poly-cond-degree-gt-1 : assumes poly-cond p degree p > 1 ipoly p x = 0
shows x /∈ �
using rational-poly-cond-iff [OF assms(1 ,3)] assms(2) by simp

lemma poly-cond2-no-rat-root: assumes poly-cond2 p
shows ipoly p (real-of-rat x) 6= 0
using poly-cond-degree-gt-1 [of p real-of-rat x] assms by auto

context
fixes p :: int poly
and x :: rat

begin

lemma gt-rat-sign-change:
assumes ur : unique-root plr

128

defines p ≡ poly-real-alg-1 plr and l ≡ rai-lb plr and r ≡ rai-ub plr
assumes p: poly-cond2 p and in-interval: l ≤ y y ≤ r
shows (sgn (ipoly p y) = sgn (ipoly p r)) = (of-rat y > the-unique-root plr)

proof −
have plr : plr = (p,l,r) by (cases plr , auto simp: p-def l-def r-def)
show ?thesis
proof (rule gt-rat-sign-change-square-free[OF ur plr - in-interval])

note nz = poly-cond2-no-rat-root[OF p]
from nz[of y] show ipoly p y 6= 0 by auto
from nz[of r] show ipoly p r 6= 0 by auto
from p have irreducible p by auto
thus square-free p by (rule irreducible-imp-square-free)

qed
qed

definition tighten-poly-bounds :: rat ⇒ rat ⇒ rat ⇒ rat × rat × rat where
tighten-poly-bounds l r sr = (let m = (l + r) / 2 ; sm = sgn (ipoly p m) in

if sm = sr
then (l,m,sm) else (m,r ,sr))

lemma tighten-poly-bounds: assumes res: tighten-poly-bounds l r sr = (l ′,r ′,sr ′)
and ur : unique-root (p,l,r)
and p: poly-cond2 p
and sr : sr = sgn (ipoly p r)
shows root-cond (p,l ′,r ′) (the-unique-root (p,l,r)) l ≤ l ′ l ′ ≤ r ′ r ′ ≤ r
(r ′ − l ′) = (r − l) / 2 sr ′ = sgn (ipoly p r ′)

proof −
let ?x = the-unique-root (p,l,r)
let ?x ′ = the-unique-root (p,l ′,r ′)
let ?m = (l + r) / 2
note d = tighten-poly-bounds-def Let-def
from unique-root-lr [OF ur] have lr : l ≤ r by auto
thus l ≤ l ′ l ′ ≤ r ′ r ′ ≤ r (r ′ − l ′) = (r − l) / 2 sr ′ = sgn (ipoly p r ′)

using res sr unfolding d by (auto split: if-splits)
hence l ≤ ?m ?m ≤ r by auto
note le = gt-rat-sign-change[OF ur ,simplified,OF p this]
note urD = unique-rootD[OF ur]
show root-cond (p,l ′,r ′) ?x
proof (cases sgn (ipoly p ?m) = sgn (ipoly p r))

case ∗: False
with res sr have id: l ′ = ?m r ′ = r unfolding d by auto
from ∗[unfolded le] urD show ?thesis unfolding id by auto

next
case ∗: True
with res sr have id: l ′ = l r ′ = ?m unfolding d by auto
from ∗[unfolded le] urD show ?thesis unfolding id by auto

qed
qed

129

partial-function (tailrec) tighten-poly-bounds-epsilon :: rat ⇒ rat ⇒ rat ⇒ rat ×
rat × rat where
[code]: tighten-poly-bounds-epsilon l r sr = (if r − l ≤ x then (l,r ,sr) else
(case tighten-poly-bounds l r sr of (l ′,r ′,sr ′) ⇒ tighten-poly-bounds-epsilon l ′ r ′

sr ′))

partial-function (tailrec) tighten-poly-bounds-for-x :: rat ⇒ rat ⇒ rat ⇒
rat × rat × rat where
[code]: tighten-poly-bounds-for-x l r sr = (if x < l ∨ r < x then (l, r , sr) else

(case tighten-poly-bounds l r sr of (l ′,r ′,sr ′) ⇒ tighten-poly-bounds-for-x l ′ r ′

sr ′))

lemma tighten-poly-bounds-epsilon:
assumes ur : unique-root (p,l,r)
defines u: u ≡ the-unique-root (p,l,r)
assumes p: poly-cond2 p

and res: tighten-poly-bounds-epsilon l r sr = (l ′,r ′,sr ′)
and sr : sr = sgn (ipoly p r)
and x: x > 0

shows l ≤ l ′ r ′ ≤ r root-cond (p,l ′,r ′) u r ′ − l ′ ≤ x sr ′ = sgn (ipoly p r ′)
proof −

let ?u = the-unique-root (p,l,r)
define delta where delta = x / 2
have delta: delta > 0 unfolding delta-def using x by auto
let ?dist = λ (l,r ,sr). r − l
let ?rel = inv-image {(x, y). 0 ≤ y ∧ delta-gt delta x y} ?dist
note SN = SN-inv-image[OF delta-gt-SN [OF delta], of ?dist]
note simps = res[unfolded tighten-poly-bounds-for-x.simps[of l r]]
let ?P = λ (l,r ,sr). unique-root (p,l,r) −→ u = the-unique-root (p,l,r)
−→ tighten-poly-bounds-epsilon l r sr = (l ′,r ′,sr ′)
−→ sr = sgn (ipoly p r)
−→ l ≤ l ′ ∧ r ′ ≤ r ∧ r ′ − l ′ ≤ x ∧ root-cond (p,l ′,r ′) u ∧ sr ′ = sgn (ipoly p

r ′)
have ?P (l,r ,sr)
proof (induct rule: SN-induct[OF SN])

case (1 lr)
obtain l r sr where lr : lr = (l,r ,sr) by (cases lr , auto)
show ?case unfolding lr split
proof (intro impI)

assume ur : unique-root (p, l, r)
and u: u = the-unique-root (p, l, r)
and res: tighten-poly-bounds-epsilon l r sr = (l ′, r ′, sr ′)
and sr : sr = sgn (ipoly p r)

note tur = unique-rootD[OF ur]
note simps = tighten-poly-bounds-epsilon.simps[of l r sr]
show l ≤ l ′ ∧ r ′ ≤ r ∧ r ′ − l ′ ≤ x ∧ root-cond (p, l ′, r ′) u ∧ sr ′ = sgn (ipoly

p r ′)
proof (cases r − l ≤ x)

case True

130

with res[unfolded simps] ur tur(4) u sr
show ?thesis by auto

next
case False
hence x: r − l > x by auto
let ?tight = tighten-poly-bounds l r sr
obtain L R SR where tight: ?tight = (L,R,SR) by (cases ?tight, auto)
note tighten = tighten-poly-bounds[OF tight[unfolded sr] ur p]
from unique-root-sub-interval[OF ur tighten(1−2 ,4)] p
have ur ′: unique-root (p,L,R) u = the-unique-root (p,L,R) unfolding u by

auto
from res[unfolded simps tight] False sr have tighten-poly-bounds-epsilon L

R SR = (l ′,r ′,sr ′) by auto
note IH = 1 [of (L,R,SR), unfolded tight split lr , rule-format, OF - ur ′ this]
have L ≤ l ′ ∧ r ′ ≤ R ∧ r ′ − l ′ ≤ x ∧ root-cond (p, l ′, r ′) u ∧ sr ′ = sgn

(ipoly p r ′)
by (rule IH , insert tighten False, auto simp: delta-gt-def delta-def)

thus ?thesis using tighten by auto
qed

qed
qed
from this[unfolded split u, rule-format, OF ur refl res sr]
show l ≤ l ′ r ′ ≤ r root-cond (p,l ′,r ′) u r ′ − l ′ ≤ x sr ′ = sgn (ipoly p r ′) using

u by auto
qed

lemma tighten-poly-bounds-for-x:
assumes ur : unique-root (p,l,r)
defines u: u ≡ the-unique-root (p,l,r)
assumes p: poly-cond2 p

and res: tighten-poly-bounds-for-x l r sr = (l ′,r ′,sr ′)
and sr : sr = sgn (ipoly p r)

shows l ≤ l ′ l ′ ≤ r ′ r ′ ≤ r root-cond (p,l ′,r ′) u ¬ (l ′ ≤ x ∧ x ≤ r ′) sr ′ = sgn
(ipoly p r ′) unique-root (p,l ′,r ′)
proof −

let ?u = the-unique-root (p,l,r)
let ?x = real-of-rat x
define delta where delta = abs ((u − ?x) / 2)
let ?p = real-of-int-poly p
note ru = unique-rootD[OF ur]
{

assume u = ?x
note u = this[unfolded u]
from poly-cond2-no-rat-root[OF p] ur have False by (elim unique-rootE , auto

simp: u)
}
hence delta: delta > 0 unfolding delta-def by auto
let ?dist = λ (l,r ,sr). real-of-rat (r − l)
let ?rel = inv-image {(x, y). 0 ≤ y ∧ delta-gt delta x y} ?dist

131

note SN = SN-inv-image[OF delta-gt-SN [OF delta], of ?dist]
note simps = res[unfolded tighten-poly-bounds-for-x.simps[of l r]]
let ?P = λ (l,r ,sr). unique-root (p,l,r) −→ u = the-unique-root (p,l,r)
−→ tighten-poly-bounds-for-x l r sr = (l ′,r ′,sr ′)
−→ sr = sgn (ipoly p r)
−→ l ≤ l ′ ∧ r ′ ≤ r ∧ ¬ (l ′ ≤ x ∧ x ≤ r ′) ∧ root-cond (p,l ′,r ′) u ∧ sr ′ = sgn

(ipoly p r ′)
have ?P (l,r ,sr)
proof (induct rule: SN-induct[OF SN])

case (1 lr)
obtain l r sr where lr : lr = (l,r ,sr) by (cases lr , auto)
let ?l = real-of-rat l
let ?r = real-of-rat r
show ?case unfolding lr split
proof (intro impI)

assume ur : unique-root (p, l, r)
and u: u = the-unique-root (p, l, r)
and res: tighten-poly-bounds-for-x l r sr = (l ′, r ′, sr ′)
and sr : sr = sgn (ipoly p r)

note tur = unique-rootD[OF ur]
note simps = tighten-poly-bounds-for-x.simps[of l r]
show l ≤ l ′ ∧ r ′ ≤ r ∧ ¬ (l ′ ≤ x ∧ x ≤ r ′) ∧ root-cond (p, l ′, r ′) u ∧ sr ′ =

sgn (ipoly p r ′)
proof (cases x < l ∨ r < x)

case True
with res[unfolded simps] ur tur(4) u sr
show ?thesis by auto

next
case False
hence x: ?l ≤ ?x ?x ≤ ?r by (auto simp: of-rat-less-eq)
let ?tight = tighten-poly-bounds l r sr
obtain L R SR where tight: ?tight = (L,R,SR) by (cases ?tight, auto)
note tighten = tighten-poly-bounds[OF tight ur p sr]
from unique-root-sub-interval[OF ur tighten(1−2 ,4)] p
have ur ′: unique-root (p,L,R) u = the-unique-root (p,L,R) unfolding u by

auto
from res[unfolded simps tight] False have tighten-poly-bounds-for-x L R SR

= (l ′,r ′,sr ′) by auto
note IH = 1 [of ?tight, unfolded tight split lr , rule-format, OF - ur ′ this]
let ?DIFF = real-of-rat (R − L) let ?diff = real-of-rat (r − l)
have diff0 : 0 ≤ ?DIFF using tighten(3)

by (metis cancel-comm-monoid-add-class.diff-cancel diff-right-mono of-rat-less-eq
of-rat-hom.hom-zero)

have ∗: r − l − (r − l) / 2 = (r − l) / 2 by (auto simp: field-simps)
have delta-gt delta ?diff ?DIFF = (abs (u − of-rat x) ≤ real-of-rat (r − l)

∗ 1)
unfolding delta-gt-def tighten(5) delta-def of-rat-diff [symmetric] ∗ by

(simp add: hom-distribs)
also have real-of-rat (r − l) ∗ 1 = ?r − ?l

132

unfolding of-rat-divide of-rat-mult of-rat-diff by auto
also have abs (u − of-rat x) ≤ ?r − ?l using x ur by (elim unique-rootE ,

auto simp: u)
finally have delta: delta-gt delta ?diff ?DIFF .
have L ≤ l ′ ∧ r ′ ≤ R ∧ ¬ (l ′ ≤ x ∧ x ≤ r ′) ∧ root-cond (p, l ′, r ′) u ∧ sr ′

= sgn (ipoly p r ′)
by (rule IH , insert delta diff0 tighten(6), auto)

with ‹l ≤ L› ‹R ≤ r› show ?thesis by auto
qed

qed
qed
from this[unfolded split u, rule-format, OF ur refl res sr]
show ∗: l ≤ l ′ r ′ ≤ r root-cond (p,l ′,r ′) u ¬ (l ′ ≤ x ∧ x ≤ r ′) sr ′ = sgn (ipoly

p r ′) unfolding u
by auto

from ∗(3)[unfolded split] have real-of-rat l ′ ≤ of-rat r ′ by auto
thus l ′ ≤ r ′ unfolding of-rat-less-eq .
show unique-root (p,l ′,r ′) using ur ∗(1−3) p poly-condD(5) u unique-root-sub-interval(1)

by blast
qed
end

definition real-alg-precision :: rat where
real-alg-precision ≡ Rat.Fract 1 2

lemma real-alg-precision: real-alg-precision > 0
by eval

definition normalize-bounds-1-main :: rat ⇒ real-alg-1 ⇒ real-alg-1 where
normalize-bounds-1-main eps rai = (case rai of (p,l,r) ⇒

let (l ′,r ′,sr ′) = tighten-poly-bounds-epsilon p eps l r (sgn (ipoly p r));
fr = rat-of-int (floor r ′);
(l ′′,r ′′,-) = tighten-poly-bounds-for-x p fr l ′ r ′ sr ′

in (p,l ′′,r ′′))

definition normalize-bounds-1 :: real-alg-1 ⇒ real-alg-1 where
normalize-bounds-1 = (normalize-bounds-1-main real-alg-precision)

context
fixes p q and l r :: rat
assumes cong:

∧
x. real-of-rat l ≤ x =⇒ x ≤ of-rat r =⇒ (ipoly p x = (0 ::

real)) = (ipoly q x = 0)
begin
lemma root-cond-cong: root-cond (p,l,r) = root-cond (q,l,r)

by (intro ext, insert cong, auto simp: root-cond-def)

lemma the-unique-root-cong:
the-unique-root (p,l,r) = the-unique-root (q,l,r)
unfolding root-cond-cong ..

133

lemma unique-root-cong:
unique-root (p,l,r) = unique-root (q,l,r)
unfolding root-cond-cong ..

end

lemma normalize-bounds-1-main: assumes eps: eps > 0 and rc: invariant-1-2 x
defines y: y ≡ normalize-bounds-1-main eps x
shows invariant-1-2 y ∧ (real-of-1 y = real-of-1 x)

proof −
obtain p l r where x: x = (p,l,r) by (cases x) auto
note rc = rc[unfolded x]
obtain l ′ r ′ sr ′ where tb: tighten-poly-bounds-epsilon p eps l r (sgn (ipoly p r))

= (l ′,r ′,sr ′)
by (cases rule: prod-cases3 , auto)

let ?fr = rat-of-int (floor r ′)
obtain l ′′ r ′′ sr ′′ where tbx: tighten-poly-bounds-for-x p ?fr l ′ r ′ sr ′= (l ′′,r ′′,sr ′′)

by (cases rule: prod-cases3 , auto)
from y[unfolded normalize-bounds-1-main-def x] tb tbx
have y: y = (p, l ′′, r ′′)

by (auto simp: Let-def)
from rc have unique-root (p, l, r) and p2 : poly-cond2 p by auto
from tighten-poly-bounds-epsilon[OF this tb refl eps]
have bnd: l ≤ l ′ r ′ ≤ r and rc ′: root-cond (p, l ′, r ′) (the-unique-root (p, l, r))

and eps: r ′ − l ′ ≤ eps
and sr ′: sr ′ = sgn (ipoly p r ′) by auto

from invariant-1-sub-interval[OF - rc ′ bnd] rc
have inv ′: invariant-1 (p, l ′, r ′) and eq: real-of-1 (p, l ′, r ′) = real-of-1 (p, l, r)

by auto
have bnd: l ′ ≤ l ′′ r ′′ ≤ r ′ and rc ′: root-cond (p, l ′′, r ′′) (the-unique-root (p, l ′,

r ′))
by (rule tighten-poly-bounds-for-x[OF - p2 tbx sr ′], fact invariant-1D[OF inv ′])+

from invariant-1-sub-interval[OF inv ′ rc ′ bnd] p2 eq
show ?thesis unfolding y x by auto

qed

lemma normalize-bounds-1 : assumes x: invariant-1-2 x
shows invariant-1-2 (normalize-bounds-1 x) ∧ (real-of-1 (normalize-bounds-1 x)

= real-of-1 x)
proof(cases x)

case xx:(fields p l r)
let ?res = (p,l,r)
have norm: normalize-bounds-1 x = (normalize-bounds-1-main real-alg-precision

?res)
unfolding normalize-bounds-1-def by (simp add: xx)

from x have x: invariant-1-2 ?res real-of-1 ?res = real-of-1 x unfolding xx by
auto

from normalize-bounds-1-main[OF real-alg-precision x(1)] x(2−)
show ?thesis unfolding normalize-bounds-1-def xx by auto

134

qed

lemma normalize-bound-1-poly: poly-real-alg-1 (normalize-bounds-1 rai) = poly-real-alg-1
rai

unfolding normalize-bounds-1-def normalize-bounds-1-main-def Let-def
by (auto split: prod.splits)

definition real-alg-2-main :: root-info ⇒ real-alg-1 ⇒ real-alg-2 where
real-alg-2-main ri rai ≡ let p = poly-real-alg-1 rai

in (if degree p = 1 then Rational (Rat.Fract (− coeff p 0) (coeff p 1))
else (case normalize-bounds-1 rai of (p ′,l,r) ⇒
Irrational (root-info.number-root ri r) (p ′,l,r)))

definition real-alg-2 :: real-alg-1 ⇒ real-alg-2 where
real-alg-2 rai ≡ let p = poly-real-alg-1 rai

in (if degree p = 1 then Rational (Rat.Fract (− coeff p 0) (coeff p 1))
else (case normalize-bounds-1 rai of (p ′,l,r) ⇒
Irrational (root-info.number-root (root-info p) r) (p ′,l,r)))

lemma degree-1-ipoly: assumes degree p = Suc 0
shows ipoly p x = 0 ←→ (x = real-of-rat (Rat.Fract (− coeff p 0) (coeff p 1)))

proof −
from roots1 [of map-poly real-of-int p] assms
have ipoly p x = 0 ←→ x ∈ {roots1 (real-of-int-poly p)} by auto
also have . . . = (x = real-of-rat (Rat.Fract (− coeff p 0) (coeff p 1)))

unfolding Fract-of-int-quotient roots1-def hom-distribs
by auto

finally show ?thesis .
qed

lemma invariant-1-degree-0 :
assumes inv: invariant-1 rai
shows degree (poly-real-alg-1 rai) 6= 0 (is degree ?p 6= 0)

proof (rule notI)
assume deg: degree ?p = 0
from inv have ipoly ?p (real-of-1 rai) = 0 by auto
with deg have ?p = 0 by (meson less-Suc0 representsI represents-degree)
with inv show False by auto

qed

lemma real-alg-2-main:
assumes inv: invariant-1 rai
defines [simp]: p ≡ poly-real-alg-1 rai
assumes ric: irreducible (poly-real-alg-1 rai) =⇒ root-info-cond ri (poly-real-alg-1

rai)
shows invariant-2 (real-alg-2-main ri rai) real-of-2 (real-alg-2-main ri rai) =

real-of-1 rai
proof (atomize(full))

define l r where [simp]: l ≡ rai-lb rai and [simp]: r ≡ rai-ub rai

135

show invariant-2 (real-alg-2-main ri rai) ∧ real-of-2 (real-alg-2-main ri rai) =
real-of-1 rai

unfolding id using invariant-1D
proof (cases degree p Suc 0 rule: linorder-cases)

case deg: equal
hence id: real-alg-2-main ri rai = Rational (Rat.Fract (− coeff p 0) (coeff p

1))
unfolding real-alg-2-main-def Let-def by auto

note rc = invariant-1D[OF inv]
from degree-1-ipoly[OF deg, of the-unique-root rai] rc(1)
show ?thesis unfolding id by auto

next
case deg: greater
with inv have inv: invariant-1-2 rai unfolding p-def by auto
define rai ′ where rai ′ = normalize-bounds-1 rai
have rai ′: real-of-1 rai = real-of-1 rai ′ and inv ′: invariant-1-2 rai ′

unfolding rai ′-def using normalize-bounds-1 [OF inv] by auto
obtain p ′ l ′ r ′ where rai ′ = (p ′,l ′,r ′) by (cases rai ′)
with arg-cong[OF rai ′-def , of poly-real-alg-1 , unfolded normalize-bound-1-poly]

split
have split: rai ′ = (p,l ′,r ′) by auto
from inv ′[unfolded split]
have poly-cond p by auto
from poly-condD[OF this] have irr : irreducible p by simp
from ric irr have ric: root-info-cond ri p by auto
have id: real-alg-2-main ri rai = (Irrational (root-info.number-root ri r ′) rai ′)

unfolding real-alg-2-main-def Let-def using deg split rai ′-def
by (auto simp: rai ′-def rai ′)

show ?thesis unfolding id using rai ′ root-info-condD(2)[OF ric]
inv ′[unfolded split]

apply (elim invariant-1-2E invariant-1E) using inv ′

by(auto simp: split roots-below-the-unique-root)
next

case deg: less then have degree p = 0 by auto
from this invariant-1-degree-0 [OF inv] have p = 0 by simp
with inv show ?thesis by auto

qed
qed

lemma real-alg-2 : assumes invariant-1 rai
shows invariant-2 (real-alg-2 rai) real-of-2 (real-alg-2 rai) = real-of-1 rai

proof −
have deg: 0 < degree (poly-real-alg-1 rai) using assms by auto
have real-alg-2 rai = real-alg-2-main (root-info (poly-real-alg-1 rai)) rai

unfolding real-alg-2-def real-alg-2-main-def Let-def by auto
from real-alg-2-main[OF assms root-info, folded this, simplified] deg
show invariant-2 (real-alg-2 rai) real-of-2 (real-alg-2 rai) = real-of-1 rai by auto

qed

136

lemma invariant-2-realI :
fixes plr :: real-alg-1
defines p ≡ poly-real-alg-1 plr and l ≡ rai-lb plr and r ≡ rai-ub plr
assumes x: root-cond plr x and sgn: sgn l = sgn r

and ur : unique-root plr
and p: poly-cond p

shows invariant-2 (real-alg-2 plr) ∧ real-of-2 (real-alg-2 plr) = x
using invariant-1-realI [OF x,folded p-def l-def r-def] sgn ur p

real-alg-2 [of plr] by auto

11.2.5 Comparisons
fun compare-rat-1 :: rat ⇒ real-alg-1 ⇒ order where

compare-rat-1 x (p,l,r) = (if x < l then Lt else if x > r then Gt else
if sgn (ipoly p x) = sgn(ipoly p r) then Gt else Lt)

lemma compare-rat-1 : assumes rai: invariant-1-2 y
shows compare-rat-1 x y = compare (of-rat x) (real-of-1 y)

proof−
define p l r where p ≡ poly-real-alg-1 y l ≡ rai-lb y r ≡ rai-ub y
then have y [simp]: y = (p,l,r) by (cases y, auto)
from rai have ur : unique-root y by auto
show ?thesis
proof (cases x < l ∨ x > r)

case True
{

assume xl: x < l
hence real-of-rat x < of-rat l unfolding of-rat-less by auto
with rai have of-rat x < the-unique-root y by (auto elim!: invariant-1E)
with xl rai have ?thesis by (cases y, auto simp: compare-real-def compara-

tor-of-def)
}
moreover
{

assume xr : ¬ x < l x > r
hence real-of-rat x > of-rat r unfolding of-rat-less by auto
with rai have of-rat x > the-unique-root y by (auto elim!: invariant-1E)
with xr rai have ?thesis by (cases y, auto simp: compare-real-def compara-

tor-of-def)
}
ultimately show ?thesis using True by auto

next
case False
have 0 : ipoly p (real-of-rat x) 6= 0 by (rule poly-cond2-no-rat-root, insert rai,

auto)
with rai have diff : real-of-1 y 6= of-rat x by (auto elim!: invariant-1E)
have

∧
P. (1 < degree (poly-real-alg-1 y) =⇒ ∃ !x. root-cond y x =⇒ poly-cond

p =⇒ P) =⇒ P
using poly-real-alg-1 .simps y rai invariant-1-2E invariant-1E by metis

137

from this[OF gt-rat-sign-change] False
have left: compare-rat-1 x y = (if real-of-rat x ≤ the-unique-root y then Lt else

Gt)
by (auto simp:poly-cond2-def)

also have . . . = compare (real-of-rat x) (real-of-1 y) using diff
by (auto simp: compare-real-def comparator-of-def)

finally show ?thesis .
qed

qed

lemma cf-pos-0 [simp]: ¬ cf-pos 0
unfolding cf-pos-def by auto

11.2.6 Negation
fun uminus-1 :: real-alg-1 ⇒ real-alg-1 where

uminus-1 (p,l,r) = (abs-int-poly (poly-uminus p), −r , −l)

lemma uminus-1 : assumes x: invariant-1 x
defines y: y ≡ uminus-1 x
shows invariant-1 y ∧ (real-of-1 y = − real-of-1 x)

proof (cases x)
case plr : (fields p l r)
from x plr have inv: invariant-1 (p,l,r) by auto
note ∗ = invariant-1D[OF this]
from plr have x: x = (p,l,r) by simp
let ?p = poly-uminus p
let ?mp = abs-int-poly ?p
have y: y = (?mp, −r , −l)

unfolding y plr by (simp add: Let-def)
{

fix y
assume root-cond (?mp, − r , − l) y
hence mpy: ipoly ?mp y = 0 and bnd: − of-rat r ≤ y y ≤ − of-rat l

unfolding root-cond-def by (auto simp: of-rat-minus)
from mpy have id: ipoly p (− y) = 0 by auto
from bnd have bnd: of-rat l ≤ − y −y ≤ of-rat r by auto
from id bnd have root-cond (p, l, r) (−y) unfolding root-cond-def by auto
with inv x have real-of-1 x = −y by (auto intro!: the-unique-root-eqI)
then have −real-of-1 x = y by auto

} note inj = this
have rc: root-cond (?mp, − r , − l) (− real-of-1 x)
using ∗ unfolding root-cond-def y x by (auto simp: of-rat-minus sgn-minus-rat)

from inj rc have ur ′: unique-root (?mp, −r , −l) by (auto intro: unique-rootI)
with rc have the: − real-of-1 x = the-unique-root (?mp, −r , −l) by (auto intro:

the-unique-root-eqI)
have xp: p represents (real-of-1 x) using ∗ unfolding root-cond-def split repre-

sents-def x by auto
from ∗ have mon: lead-coeff ?mp > 0 by (unfold pos-poly-abs-poly, auto)

138

from poly-uminus-irreducible ∗ have mi: irreducible ?mp by auto
from mi mon have pc ′: poly-cond ?mp by (auto simp: cf-pos-def)
from poly-condD[OF pc ′] have irr : irreducible ?mp by auto
show ?thesis unfolding y apply (intro invariant-1-realI ur ′ rc) using pc ′ inv

by auto
qed

lemma uminus-1-2 :
assumes x: invariant-1-2 x
defines y: y ≡ uminus-1 x
shows invariant-1-2 y ∧ (real-of-1 y = − real-of-1 x)

proof −
from x have invariant-1 x by auto
from uminus-1 [OF this] have ∗: real-of-1 y = − real-of-1 x

invariant-1 y unfolding y by auto
obtain p l r where id: x = (p,l,r) by (cases x)
from x[unfolded id] have degree p > 1 by auto
moreover have poly-real-alg-1 y = abs-int-poly (poly-uminus p)

unfolding y id uminus-1 .simps split Let-def by auto
ultimately have degree (poly-real-alg-1 y) > 1 by simp
with ∗ show ?thesis by auto

qed

fun uminus-2 :: real-alg-2 ⇒ real-alg-2 where
uminus-2 (Rational r) = Rational (−r)
| uminus-2 (Irrational n x) = real-alg-2 (uminus-1 x)

lemma uminus-2 : assumes invariant-2 x
shows real-of-2 (uminus-2 x) = uminus (real-of-2 x)
invariant-2 (uminus-2 x)
using assms real-alg-2 uminus-1 by (atomize(full), cases x, auto simp: hom-distribs)

declare uminus-1 .simps[simp del]

lift-definition uminus-3 :: real-alg-3 ⇒ real-alg-3 is uminus-2
by (auto simp: uminus-2)

lemma uminus-3 : real-of-3 (uminus-3 x) = − real-of-3 x
by (transfer , auto simp: uminus-2)

instantiation real-alg :: uminus
begin
lift-definition uminus-real-alg :: real-alg ⇒ real-alg is uminus-3

by (simp add: uminus-3)
instance ..
end

lemma uminus-real-alg: − (real-of x) = real-of (− x)

139

by (transfer , rule uminus-3 [symmetric])

11.2.7 Inverse
fun inverse-1 :: real-alg-1 ⇒ real-alg-2 where

inverse-1 (p,l,r) = real-alg-2 (abs-int-poly (reflect-poly p), inverse r , inverse l)

lemma invariant-1-2-of-rat: assumes rc: invariant-1-2 rai
shows real-of-1 rai 6= of-rat x

proof −
obtain p l r where rai: rai = (p, l, r) by (cases rai, auto)
from rc[unfolded rai]
have poly-cond2 p ipoly p (the-unique-root (p, l, r)) = 0 by (auto elim!: invari-

ant-1E)
from poly-cond2-no-rat-root[OF this(1), of x] this(2) show ?thesis unfolding

rai by auto
qed

lemma inverse-1 :
assumes rcx: invariant-1-2 x
defines y: y ≡ inverse-1 x
shows invariant-2 y ∧ (real-of-2 y = inverse (real-of-1 x))

proof (cases x)
case x: (fields p l r)
from x rcx have rcx: invariant-1-2 (p,l,r) by auto
from invariant-1-2-poly-cond2 [OF rcx] have pc2 : poly-cond2 p by simp
have x0 : real-of-1 (p,l,r) 6= 0 using invariant-1-2-of-rat[OF rcx, of 0] x by auto
let ?x = real-of-1 (p,l,r)
let ?mp = abs-int-poly (reflect-poly p)
from x0 rcx have lr0 : l 6= 0 and r 6= 0 by auto
from x0 rcx have y: y = real-alg-2 (?mp, inverse r , inverse l)

unfolding y x Let-def inverse-1 .simps by auto
from rcx have mon: lead-coeff ?mp > 0 by (unfold lead-coeff-abs-int-poly, auto)
{

fix y
assume root-cond (?mp, inverse r , inverse l) y
hence mpy: ipoly ?mp y = 0 and bnd: inverse (of-rat r) ≤ y y ≤ inverse

(of-rat l)
unfolding root-cond-def by (auto simp: of-rat-inverse)

from sgn-real-mono[OF bnd(1)] sgn-real-mono[OF bnd(2)]
have sgn (of-rat r) ≤ sgn y sgn y ≤ sgn (of-rat l)

by (simp-all add: algebra-simps)
with rcx have sgn: sgn (inverse (of-rat r)) = sgn y sgn y = sgn (inverse (of-rat

l))
unfolding sgn-inverse inverse-sgn
by (auto simp add: real-of-rat-sgn intro: order-antisym)

from sgn[simplified, unfolded real-of-rat-sgn] lr0 have y 6= 0 by (auto simp:sgn-0-0)
with mpy have id: ipoly p (inverse y) = 0 by (auto simp: ipoly-reflect-poly)
from inverse-le-sgn[OF sgn(1) bnd(1)] inverse-le-sgn[OF sgn(2) bnd(2)]

140

have bnd: of-rat l ≤ inverse y inverse y ≤ of-rat r by auto
from id bnd have root-cond (p,l,r) (inverse y) unfolding root-cond-def by

auto
from rcx this x0 have ?x = inverse y by auto
then have inverse ?x = y by auto

} note inj = this
have rc: root-cond (?mp, inverse r , inverse l) (inverse ?x)

using rcx x0 apply (elim invariant-1-2E invariant-1E)
by (simp add: root-cond-def of-rat-inverse real-of-rat-sgn inverse-le-iff-sgn ipoly-reflect-poly)
from inj rc have ur : unique-root (?mp, inverse r , inverse l) by (auto intro:

unique-rootI)
with rc have the: the-unique-root (?mp, inverse r , inverse l) = inverse ?x by

(auto intro: the-unique-root-eqI)
have xp: p represents ?x unfolding split represents-def using rcx by (auto elim!:

invariant-1E)
from reflect-poly-irreducible[OF - xp x0] poly-condD rcx
have mi: irreducible ?mp by auto
from mi mon have un: poly-cond ?mp by (auto simp: poly-cond-def)
show ?thesis using rcx rc ur unfolding y

by (intro invariant-2-realI , auto simp: x y un)
qed

fun inverse-2 :: real-alg-2 ⇒ real-alg-2 where
inverse-2 (Rational r) = Rational (inverse r)
| inverse-2 (Irrational n x) = inverse-1 x

lemma inverse-2 : assumes invariant-2 x
shows real-of-2 (inverse-2 x) = inverse (real-of-2 x)
invariant-2 (inverse-2 x)

using assms
by (atomize(full), cases x, auto simp: real-alg-2 inverse-1 hom-distribs)

lift-definition inverse-3 :: real-alg-3 ⇒ real-alg-3 is inverse-2
by (auto simp: inverse-2)

lemma inverse-3 : real-of-3 (inverse-3 x) = inverse (real-of-3 x)
by (transfer , auto simp: inverse-2)

11.2.8 Floor
fun floor-1 :: real-alg-1 ⇒ int where

floor-1 (p,l,r) = (let
(l ′,r ′,sr ′) = tighten-poly-bounds-epsilon p (1/2) l r (sgn (ipoly p r));
fr = floor r ′;
fl = floor l ′;
fr ′ = rat-of-int fr
in (if fr = fl then fr else
let (l ′′,r ′′,sr ′′) = tighten-poly-bounds-for-x p fr ′ l ′ r ′ sr ′

in if fr ′ < l ′′ then fr else fl))

141

lemma floor-1 : assumes invariant-1-2 x
shows floor (real-of-1 x) = floor-1 x

proof (cases x)
case (fields p l r)
obtain l ′ r ′ sr ′ where tbe: tighten-poly-bounds-epsilon p (1 / 2) l r (sgn (ipoly

p r)) = (l ′,r ′,sr ′)
by (cases rule: prod-cases3 , auto)

let ?fr = floor r ′

let ?fl = floor l ′
let ?fr ′ = rat-of-int ?fr
obtain l ′′ r ′′ sr ′′ where tbx: tighten-poly-bounds-for-x p ?fr ′ l ′ r ′ sr ′= (l ′′,r ′′,sr ′′)

by (cases rule: prod-cases3 , auto)
note rc = assms[unfolded fields]
hence rc1 : invariant-1 (p,l,r) by auto
have id: floor-1 x = ((if ?fr = ?fl then ?fr

else if ?fr ′ < l ′′ then ?fr else ?fl))
unfolding fields floor-1 .simps tbe Let-def split tbx by simp

let ?x = real-of-1 x
have x: ?x = the-unique-root (p,l,r) unfolding fields by simp
have bnd: l ≤ l ′ r ′ ≤ r r ′ − l ′ ≤ 1 / 2

and rc ′: root-cond (p, l ′, r ′) (the-unique-root (p, l, r))
and sr ′: sr ′ = sgn (ipoly p r ′)
by (atomize(full), intro conjI tighten-poly-bounds-epsilon[OF - - tbe refl],insert

rc,auto elim!: invariant-1E)
let ?r = real-of-rat
from rc ′[folded x, unfolded split]
have ineq: ?r l ′ ≤ ?x ?x ≤ ?r r ′ ?r l ′ ≤ ?r r ′ by auto
hence lr ′: l ′ ≤ r ′ unfolding of-rat-less-eq by simp
have flr : ?fl ≤ ?fr

by (rule floor-mono[OF lr ′])
from invariant-1-sub-interval[OF rc1 rc ′ bnd(1 ,2)]
have rc ′: invariant-1 (p, l ′, r ′)

and id ′: the-unique-root (p, l ′, r ′) = the-unique-root (p, l, r) by auto
with rc have rc2 ′: invariant-1-2 (p, l ′, r ′) by auto
have x: ?x = the-unique-root (p,l ′,r ′)

unfolding fields using id ′ by simp
{

assume ?fr 6= ?fl
with flr have flr : ?fl ≤ ?fr − 1 by simp
have ?fr ′ ≤ r ′ l ′ ≤ ?fr ′ using flr bnd by linarith+

} note fl-diff = this
show ?thesis
proof (cases ?fr = ?fl)

case True
hence id1 : floor-1 x = ?fr unfolding id by auto
from True have id: floor (?r l ′) = floor (?r r ′)

by simp

142

have floor ?x ≤ floor (?r r ′)
by (rule floor-mono[OF ineq(2)])

moreover have floor (?r l ′) ≤ floor ?x
by (rule floor-mono[OF ineq(1)])

ultimately have floor ?x = floor (?r r ′)
unfolding id by (simp add: id)

then show ?thesis by (simp add: id1)
next

case False
with id have id: floor-1 x = (if ?fr ′ < l ′′ then ?fr else ?fl) by simp
from rc2 ′ have unique-root (p,l ′,r ′) poly-cond2 p by auto
from tighten-poly-bounds-for-x[OF this tbx sr ′]
have ineq ′: l ′ ≤ l ′′ r ′′ ≤ r ′ and lr ′′: l ′′ ≤ r ′′ and rc ′′: root-cond (p,l ′′,r ′′) ?x

and fr ′: ¬ (l ′′ ≤ ?fr ′ ∧ ?fr ′ ≤ r ′′) unfolding x by auto
from rc ′′[unfolded split]
have ineq ′′: ?r l ′′ ≤ ?x ?x ≤ ?r r ′′ by auto
from False have ?fr 6= ?fl by auto
note fr = fl-diff [OF this]
show ?thesis
proof (cases ?fr ′ < l ′′)

case True
with id have id: floor-1 x = ?fr by simp
have floor ?x ≤ ?fr using floor-mono[OF ineq(2)] by simp
moreover
from True have ?r ?fr ′ < ?r l ′′ unfolding of-rat-less .
with ineq ′′(1) have ?r ?fr ′ ≤ ?x by simp
from floor-mono[OF this]
have ?fr ≤ floor ?x by simp
ultimately show ?thesis unfolding id by auto

next
case False
with id have id: floor-1 x = ?fl by simp
from False have l ′′ ≤ ?fr ′ by auto
from floor-mono[OF ineq(1)] have ?fl ≤ floor ?x by simp
moreover have floor ?x ≤ ?fl
proof −

from False fr ′ have fr ′: r ′′ < ?fr ′ by auto
hence floor r ′′ < ?fr by linarith
with floor-mono[OF ineq ′′(2)]
have floor ?x ≤ ?fr − 1 by auto
also have ?fr − 1 = floor (r ′ − 1) by simp
also have . . . ≤ ?fl

by (rule floor-mono, insert bnd, auto)
finally show ?thesis .

qed
ultimately show ?thesis unfolding id by auto

qed
qed

qed

143

11.2.9 Generic Factorization and Bisection Framework
lemma card-1-Collect-ex1 : assumes card (Collect P) = 1

shows ∃ ! x. P x
proof −

from assms[unfolded card-eq-1-iff] obtain x where Collect P = {x} by auto
thus ?thesis

by (intro ex1I [of - x], auto)
qed

fun sub-interval :: rat × rat ⇒ rat × rat ⇒ bool where
sub-interval (l,r) (l ′,r ′) = (l ′ ≤ l ∧ r ≤ r ′)

fun in-interval :: rat × rat ⇒ real ⇒ bool where
in-interval (l,r) x = (of-rat l ≤ x ∧ x ≤ of-rat r)

definition converges-to :: (nat ⇒ rat × rat) ⇒ real ⇒ bool where
converges-to f x ≡ (∀ n. in-interval (f n) x ∧ sub-interval (f (Suc n)) (f n))
∧ (∀ (eps :: real) > 0 . ∃ n l r . f n = (l,r) ∧ of-rat r − of-rat l ≤ eps)

context
fixes bnd-update :: ′a ⇒ ′a
and bnd-get :: ′a ⇒ rat × rat

begin

definition at-step :: (nat ⇒ rat × rat) ⇒ nat ⇒ ′a ⇒ bool where
at-step f n a ≡ ∀ i. bnd-get ((bnd-update ^^ i) a) = f (n + i)

partial-function (tailrec) select-correct-factor-main
:: ′a ⇒ (int poly × root-info)list ⇒ (int poly × root-info)list
⇒ rat ⇒ rat ⇒ nat ⇒ (int poly × root-info) × rat × rat where

[code]: select-correct-factor-main bnd todo old l r n = (case todo of Nil
⇒ if n = 1 then (hd old, l, r) else let bnd ′ = bnd-update bnd in (case bnd-get

bnd ′ of (l,r) ⇒
select-correct-factor-main bnd ′ old [] l r 0)

| Cons (p,ri) todo ⇒ let m = root-info.l-r ri l r in
if m = 0 then select-correct-factor-main bnd todo old l r n
else select-correct-factor-main bnd todo ((p,ri) # old) l r (n + m))

definition select-correct-factor :: ′a ⇒ (int poly × root-info)list ⇒
(int poly × root-info) × rat × rat where

select-correct-factor init polys = (case bnd-get init of (l,r) ⇒
select-correct-factor-main init polys [] l r 0)

lemma select-correct-factor-main: assumes conv: converges-to f x
and at: at-step f i a
and res: select-correct-factor-main a todo old l r n = ((q,ri-fin),(l-fin,r-fin))
and bnd: bnd-get a = (l,r)
and ri:

∧
q ri. (q,ri) ∈ set todo ∪ set old =⇒ root-info-cond ri q

and q0 :
∧

q ri. (q,ri) ∈ set todo ∪ set old =⇒ q 6= 0

144

and ex: ∃ q. q ∈ fst ‘ set todo ∪ fst ‘ set old ∧ ipoly q x = 0
and dist: distinct (map fst (todo @ old))
and old:

∧
q ri. (q,ri) ∈ set old =⇒ root-info.l-r ri l r 6= 0

and un:
∧

x :: real. (∃ q. q ∈ fst ‘ set todo ∪ fst ‘ set old ∧ ipoly q x = 0) =⇒
∃ !q. q ∈ fst ‘ set todo ∪ fst ‘ set old ∧ ipoly q x = 0

and n: n = sum-list (map (λ (q,ri). root-info.l-r ri l r) old)
shows unique-root (q,l-fin,r-fin) ∧ (q,ri-fin) ∈ set todo ∪ set old ∧ x = the-unique-root

(q,l-fin,r-fin)
proof −

define orig where orig = set todo ∪ set old
have orig: set todo ∪ set old ⊆ orig unfolding orig-def by auto
let ?rts = {x :: real. ∃ q ri. (q,ri) ∈ orig ∧ ipoly q x = 0}
define rts where rts = ?rts
let ?h = λ (x,y). abs (x − y)
let ?r = real-of-rat
have rts: ?rts = (

⋃
((λ (q,ri). {x. ipoly q x = 0}) ‘ set (todo @ old))) unfolding

orig-def by auto
have finite rts unfolding rts rts-def

using finite-ipoly-roots[OF q0] finite-set[of todo @ old] by auto
hence fin: finite (rts × rts − Id) by auto
define diffs where diffs = insert 1 {abs (x − y) | x y. x ∈ rts ∧ y ∈ rts ∧ x 6=

y}
have finite {abs (x − y) | x y. x ∈ rts ∧ y ∈ rts ∧ x 6= y}

by (rule subst[of - - finite, OF - finite-imageI [OF fin, of ?h]], auto)
hence diffs: finite diffs diffs 6= {} unfolding diffs-def by auto
define eps where eps = Min diffs / 2
have

∧
x. x ∈ diffs =⇒ x > 0 unfolding diffs-def by auto

with Min-gr-iff [OF diffs] have eps: eps > 0 unfolding eps-def by auto
note conv = conv[unfolded converges-to-def]
from conv eps obtain N L R where

N : f N = (L,R) ?r R − ?r L ≤ eps by auto
obtain pair where pair : pair = (todo,i) by auto
define rel where rel = measures [λ (t,i). N − i, λ (t :: (int poly × root-info)

list,i). length t]
have wf : wf rel unfolding rel-def by simp
show ?thesis

using at res bnd ri q0 ex dist old un n pair orig
proof (induct pair arbitrary: todo i old a l r n rule: wf-induct[OF wf])

case (1 pair todo i old a l r n)
note IH = 1 (1)[rule-format]
note at = 1 (2)
note res = 1 (3)[unfolded select-correct-factor-main.simps[of - todo]]
note bnd = 1 (4)
note ri = 1 (5)
note q0 = 1 (6)
note ex = 1 (7)
note dist = 1 (8)
note old = 1 (9)
note un = 1 (10)

145

note n = 1 (11)
note pair = 1 (12)
note orig = 1 (13)
from at[unfolded at-step-def , rule-format, of 0] bnd have fi: f i = (l,r) by auto
with conv have inx: in-interval (f i) x by blast
hence lxr : ?r l ≤ x x ≤ ?r r unfolding fi by auto
from order .trans[OF this] have lr : l ≤ r unfolding of-rat-less-eq .
show ?case
proof (cases todo)

case (Cons rri tod)
obtain s ri where rri: rri = (s,ri) by force
with Cons have todo: todo = (s,ri) # tod by simp
note res = res[unfolded todo list.simps split Let-def]
from root-info-condD(1)[OF ri[of s ri, unfolded todo] lr]
have ri ′: root-info.l-r ri l r = card {x. root-cond (s, l, r) x} by auto
from q0 have s0 : s 6= 0 unfolding todo by auto
from finite-ipoly-roots[OF s0] have fins: finite {x. root-cond (s, l, r) x}

unfolding root-cond-def by auto
have rel: ((tod,i), pair) ∈ rel unfolding rel-def pair todo by simp
show ?thesis
proof (cases root-info.l-r ri l r = 0)

case True
with res have res: select-correct-factor-main a tod old l r n = ((q, ri-fin),

l-fin, r-fin) by auto
from ri ′[symmetric, unfolded True] fins have empty: {x. root-cond (s, l, r)

x} = {} by simp
from ex lxr empty have ex ′: (∃ q. q ∈ fst ‘ set tod ∪ fst ‘ set old ∧ ipoly q

x = 0)
unfolding todo root-cond-def split by auto

have unique-root (q, l-fin, r-fin) ∧ (q, ri-fin) ∈ set tod ∪ set old ∧
x = the-unique-root (q, l-fin, r-fin)

proof (rule IH [OF rel at res bnd ri - ex ′ - - - n refl], goal-cases)
case (5 y) thus ?case using un[of y] unfolding todo by auto

next
case 2 thus ?case using q0 unfolding todo by auto

qed (insert dist old orig, auto simp: todo)
thus ?thesis unfolding todo by auto

next
case False
with res have res: select-correct-factor-main a tod ((s, ri) # old) l r
(n + root-info.l-r ri l r) = ((q, ri-fin), l-fin, r-fin) by auto

from ex have ex ′: ∃ q. q ∈ fst ‘ set tod ∪ fst ‘ set ((s, ri) # old) ∧ ipoly q
x = 0

unfolding todo by auto
from dist have dist: distinct (map fst (tod @ (s, ri) # old)) unfolding

todo by auto
have id: set todo ∪ set old = set tod ∪ set ((s, ri) # old) unfolding todo

by simp
show ?thesis unfolding id

146

proof (rule IH [OF rel at res bnd ri - ex ′ dist], goal-cases)
case 4 thus ?case using un unfolding todo by auto

qed (insert old False orig, auto simp: q0 todo n)
qed

next
case Nil
note res = res[unfolded Nil list.simps Let-def]
from ex[unfolded Nil] lxr obtain s where s ∈ fst ‘ set old ∧ root-cond (s,l,r)

x
unfolding root-cond-def by auto

then obtain q1 ri1 old ′ where old ′: old = (q1 ,ri1) # old ′ using id by (cases
old, auto)

let ?ri = root-info.l-r ri1 l r
from old[unfolded old ′] have 0 : ?ri 6= 0 by auto
from n[unfolded old ′] 0 have n0 : n 6= 0 by auto
from ri[unfolded old ′] have ri ′: root-info-cond ri1 q1 by auto
show ?thesis
proof (cases n = 1)

case False
with n0 have n1 : n > 1 by auto
obtain l ′ r ′ where bnd ′: bnd-get (bnd-update a) = (l ′,r ′) by force
with res False have res: select-correct-factor-main (bnd-update a) old [] l ′

r ′ 0 =
((q, ri-fin), l-fin, r-fin) by auto

have at ′: at-step f (Suc i) (bnd-update a) unfolding at-step-def
proof (intro allI , goal-cases)

case (1 n)
have id: (bnd-update ^^ Suc n) a = (bnd-update ^^ n) (bnd-update a)

by (induct n, auto)
from at[unfolded at-step-def , rule-format, of Suc n]
show ?case unfolding id by simp

qed
from 0 [unfolded root-info-condD(1)[OF ri ′ lr]] obtain y1 where y1 :

root-cond (q1 ,l,r) y1
by (cases Collect (root-cond (q1 , l, r)) = {}, auto)

from n1 [unfolded n old ′]
have ?ri > 1 ∨ sum-list (map (λ (q,ri). root-info.l-r ri l r) old ′) 6= 0

by (cases sum-list (map (λ (q,ri). root-info.l-r ri l r) old ′), auto)
hence ∃ q2 ri2 y2 . (q2 ,ri2) ∈ set old ∧ root-cond (q2 ,l,r) y2 ∧ y1 6= y2
proof

assume ?ri > 1
with root-info-condD(1)[OF ri ′ lr] have card {x. root-cond (q1 , l, r) x}

> 1 by simp
from card-gt-1D[OF this] y1 obtain y2 where root-cond (q1 ,l,r) y2 and

y1 6= y2 by auto
thus ?thesis unfolding old ′ by auto

next
assume sum-list (map (λ (q,ri). root-info.l-r ri l r) old ′) 6= 0

then obtain q2 ri2 where mem: (q2 ,ri2) ∈ set old ′ and ri2 : root-info.l-r

147

ri2 l r 6= 0 by auto
with q0 ri have root-info-cond ri2 q2 unfolding old ′ by auto
from ri2 [unfolded root-info-condD(1)[OF this lr]] obtain y2 where y2 :

root-cond (q2 ,l,r) y2
by (cases Collect (root-cond (q2 , l, r)) = {}, auto)

from dist[unfolded old ′] split-list[OF mem] have diff : q1 6= q2 by auto
from y1 have q1 : q1 ∈ fst ‘ set todo ∪ fst ‘ set old ∧ ipoly q1 y1 = 0

unfolding old ′ root-cond-def by auto
from y2 have q2 : q2 ∈ fst ‘ set todo ∪ fst ‘ set old ∧ ipoly q2 y2 = 0

unfolding old ′ root-cond-def using mem by force
have y1 6= y2
proof

assume id: y1 = y2
from q1 have ∃ q1 . q1 ∈ fst ‘ set todo ∪ fst ‘ set old ∧ ipoly q1 y1 = 0

by blast
from un[OF this] q1 q2 [folded id] have q1 = q2 by auto
with diff show False by simp

qed
with mem y2 show ?thesis unfolding old ′ by auto

qed
then obtain q2 ri2 y2 where

mem2 : (q2 ,ri2) ∈ set old and y2 : root-cond (q2 ,l,r) y2 and diff : y1 6=
y2 by auto

from mem2 orig have (q1 ,ri1) ∈ orig (q2 ,ri2) ∈ orig unfolding old ′ by
auto

with y1 y2 diff have abs (y1 − y2) ∈ diffs unfolding diffs-def rts-def
root-cond-def by auto

from Min-le[OF diffs(1) this] have abs (y1 − y2) ≥ 2 ∗ eps unfolding
eps-def by auto

with eps have eps: abs (y1 − y2) > eps by auto
from y1 y2 have l: of-rat l ≤ min y1 y2 unfolding root-cond-def by auto
from y1 y2 have r : of-rat r ≥ max y1 y2 unfolding root-cond-def by auto
from l r eps have eps: of-rat r − of-rat l > eps by auto
have i < N
proof (rule ccontr)

assume ¬ i < N
hence ∃ k. i = N + k by presburger
then obtain k where i: i = N + k by auto
{

fix k l r
assume f (N + k) = (l,r)
hence of-rat r − of-rat l ≤ eps
proof (induct k arbitrary: l r)

case 0
with N show ?case by auto

next
case (Suc k l r)
obtain l ′ r ′ where f : f (N + k) = (l ′,r ′) by force
from Suc(1)[OF this] have IH : ?r r ′ − ?r l ′ ≤ eps by auto

148

from f Suc(2) conv[THEN conjunct1 , rule-format, of N + k]
have ?r l ≥ ?r l ′ ?r r ≤ ?r r ′

by (auto simp: of-rat-less-eq)
thus ?case using IH by auto

qed
} note ∗ = this
from at[unfolded at-step-def i, rule-format, of 0] bnd have f (N + k) =

(l,r) by auto
from ∗[OF this] eps
show False by auto

qed
hence rel: ((old, Suc i), pair) ∈ rel unfolding pair rel-def by auto
from dist have dist: distinct (map fst (old @ [])) unfolding Nil by auto
have id: set todo ∪ set old = set old ∪ set [] unfolding Nil by auto
show ?thesis unfolding id
proof (rule IH [OF rel at ′ res bnd ′ ri - - dist - - - refl], goal-cases)

case 2 thus ?case using q0 by auto
qed (insert ex un orig Nil, auto)

next
case True
with res old ′ have id: q = q1 ri-fin = ri1 l-fin = l r-fin = r by auto
from n[unfolded True old ′] 0 have 1 : ?ri = 1

by (cases ?ri; cases ?ri − 1 , auto)
from root-info-condD(1)[OF ri ′ lr] 1 have card {x. root-cond (q1 ,l,r) x}

= 1 by auto
from card-1-Collect-ex1 [OF this]
have unique: unique-root (q1 ,l,r) .
from ex[unfolded Nil old ′] consider (A) ipoly q1 x = 0
| (B) q where q ∈ fst ‘ set old ′ ipoly q x = 0 by auto

hence x = the-unique-root (q1 ,l,r)
proof (cases)

case A
with lxr have root-cond (q1 ,l,r) x unfolding root-cond-def by auto
from the-unique-root-eqI [OF unique this] show ?thesis by simp

next
case (B q)
with lxr have root-cond (q,l,r) x unfolding root-cond-def by auto
hence empty: {x. root-cond (q,l,r) x} 6= {} by auto
from B(1) obtain ri ′ where mem: (q,ri ′) ∈ set old ′ by force
from q0 [unfolded old ′] mem have q0 : q 6= 0 by auto
from finite-ipoly-roots[OF this] have finite {x. root-cond (q,l,r) x}

unfolding root-cond-def by auto
with empty have card: card {x. root-cond (q,l,r) x} 6= 0 by simp
from ri[unfolded old ′] mem have root-info-cond ri ′ q by auto
from root-info-condD(1)[OF this lr] card have root-info.l-r ri ′ l r 6= 0 by

auto
with n[unfolded True old ′] 1 split-list[OF mem] have False by auto
thus ?thesis by simp

qed

149

thus ?thesis unfolding id using unique ri ′ unfolding old ′ by auto
qed

qed
qed

qed

lemma select-correct-factor : assumes
conv: converges-to (λ i. bnd-get ((bnd-update ^^ i) init)) x

and res: select-correct-factor init polys = ((q,ri),(l,r))
and ri:

∧
q ri. (q,ri) ∈ set polys =⇒ root-info-cond ri q

and q0 :
∧

q ri. (q,ri) ∈ set polys =⇒ q 6= 0
and ex: ∃ q. q ∈ fst ‘ set polys ∧ ipoly q x = 0
and dist: distinct (map fst polys)
and un:

∧
x :: real. (∃ q. q ∈ fst ‘ set polys ∧ ipoly q x = 0) =⇒

∃ !q. q ∈ fst ‘ set polys ∧ ipoly q x = 0
shows unique-root (q,l,r) ∧ (q,ri) ∈ set polys ∧ x = the-unique-root (q,l,r)

proof −
obtain l ′ r ′ where init: bnd-get init = (l ′,r ′) by force
from res[unfolded select-correct-factor-def init split]
have res: select-correct-factor-main init polys [] l ′ r ′ 0 = ((q, ri), l, r) by auto
have at: at-step (λ i. bnd-get ((bnd-update ^^ i) init)) 0 init unfolding at-step-def

by auto
have unique-root (q,l,r) ∧ (q,ri) ∈ set polys ∪ set [] ∧ x = the-unique-root (q,l,r)

by (rule select-correct-factor-main[OF conv at res init ri], insert dist un ex q0 ,
auto)

thus ?thesis by auto
qed

definition real-alg-2 ′ :: root-info ⇒ int poly ⇒ rat ⇒ rat ⇒ real-alg-2 where
[code del]: real-alg-2 ′ ri p l r = (

if degree p = 1 then Rational (Rat.Fract (− coeff p 0) (coeff p 1)) else
real-alg-2-main ri (case tighten-poly-bounds-for-x p 0 l r (sgn (ipoly p r)) of

(l ′,r ′,sr ′) ⇒ (p, l ′, r ′)))

lemma real-alg-2 ′-code[code]: real-alg-2 ′ ri p l r =
(if degree p = 1 then Rational (Rat.Fract (− coeff p 0) (coeff p 1))

else case normalize-bounds-1
(case tighten-poly-bounds-for-x p 0 l r (sgn (ipoly p r)) of (l ′, r ′, sr ′) ⇒ (p,

l ′, r ′))
of (p ′, l, r) ⇒ Irrational (root-info.number-root ri r) (p ′, l, r))

unfolding real-alg-2 ′-def real-alg-2-main-def
by (cases tighten-poly-bounds-for-x p 0 l r (sgn (ipoly p r)), simp add: Let-def)

definition real-alg-2 ′′ :: root-info ⇒ int poly ⇒ rat ⇒ rat ⇒ real-alg-2 where
real-alg-2 ′′ ri p l r = (case normalize-bounds-1

(case tighten-poly-bounds-for-x p 0 l r (sgn (ipoly p r)) of (l ′, r ′, sr ′) ⇒ (p,
l ′, r ′))

of (p ′, l, r) ⇒ Irrational (root-info.number-root ri r) (p ′, l, r))

150

lemma real-alg-2 ′′: degree p 6= 1 =⇒ real-alg-2 ′′ ri p l r = real-alg-2 ′ ri p l r
unfolding real-alg-2 ′-code real-alg-2 ′′-def by auto

lemma poly-cond-degree-0-imp-no-root:
fixes x :: ′b :: {comm-ring-1 ,ring-char-0}
assumes pc: poly-cond p and deg: degree p = 0 shows ipoly p x 6= 0

proof
from pc have p 6= 0 by auto
moreover assume ipoly p x = 0

note poly-zero[OF this]
ultimately show False using deg by auto

qed

lemma real-alg-2 ′:
assumes ur : unique-root (q,l,r) and pc: poly-cond q and ri: root-info-cond ri q
shows invariant-2 (real-alg-2 ′ ri q l r) ∧ real-of-2 (real-alg-2 ′ ri q l r) =

the-unique-root (q,l,r) (is - ∧ - = ?x)
proof (cases degree q Suc 0 rule: linorder-cases)

case deg: less
then have degree q = 0 by auto
from poly-cond-degree-0-imp-no-root[OF pc this] ur have False by force
then show ?thesis by auto

next
case deg: equal
hence id: real-alg-2 ′ ri q l r = Rational (Rat.Fract (− coeff q 0) (coeff q 1))

unfolding real-alg-2 ′-def by auto
show ?thesis unfolding id using degree-1-ipoly[OF deg]

using unique-rootD(4)[OF ur] by auto
next

case deg: greater
with pc have pc2 : poly-cond2 q by auto
let ?rai = real-alg-2 ′ ri q l r
let ?r = real-of-rat
obtain l ′ r ′ sr ′ where tight: tighten-poly-bounds-for-x q 0 l r (sgn (ipoly q r)) =

(l ′,r ′,sr ′)
by (cases rule: prod-cases3 , auto)

let ?rai ′ = (q, l ′, r ′)
have rai ′: ?rai = real-alg-2-main ri ?rai ′

unfolding real-alg-2 ′-def using deg tight by auto
hence rai: real-of-1 ?rai ′ = the-unique-root (q,l ′,r ′) by auto
note tight = tighten-poly-bounds-for-x[OF ur pc2 tight refl]
let ?x = the-unique-root (q, l, r)
from tight have tight: root-cond (q,l ′,r ′) ?x l ≤ l ′ l ′ ≤ r ′ r ′ ≤ r l ′ > 0 ∨ r ′ <

0 by auto
from unique-root-sub-interval[OF ur tight(1) tight(2 ,4)] poly-condD[OF pc]
have ur ′: unique-root (q, l ′, r ′) and x: ?x = the-unique-root (q,l ′,r ′) by auto
from tight(2−) have sgn: sgn l ′ = sgn r ′ by auto
show ?thesis unfolding rai ′ using real-alg-2-main[of ?rai ′ ri] invariant-1-realI [of

?rai ′ ?x]

151

by (auto simp: tight(1) sgn pc ri ur ′)
qed

definition select-correct-factor-int-poly :: ′a ⇒ int poly ⇒ real-alg-2 where
select-correct-factor-int-poly init p ≡

let qs = factors-of-int-poly p;
polys = map (λ q. (q, root-info q)) qs;
((q,ri),(l,r)) = select-correct-factor init polys

in real-alg-2 ′ ri q l r

lemma select-correct-factor-int-poly: assumes
conv: converges-to (λ i. bnd-get ((bnd-update ^^ i) init)) x

and rai: select-correct-factor-int-poly init p = rai
and x: ipoly p x = 0
and p: p 6= 0
shows invariant-2 rai ∧ real-of-2 rai = x

proof −
obtain qs where fact: factors-of-int-poly p = qs by auto
define polys where polys = map (λ q. (q, root-info q)) qs
obtain q ri l r where res: select-correct-factor init polys = ((q,ri),(l,r))

by (cases select-correct-factor init polys, auto)
have fst: map fst polys = qs fst ‘ set polys = set qs unfolding polys-def map-map

o-def
by force+

note fact ′ = factors-of-int-poly[OF fact]
note rai = rai[unfolded select-correct-factor-int-poly-def Let-def fact,

folded polys-def , unfolded res split]
from fact ′ fst have dist: distinct (map fst polys) by auto
from fact ′(2)[OF p, of x] x fst
have ex: ∃ q. q ∈ fst ‘ set polys ∧ ipoly q x = 0 by auto
{

fix q ri
assume (q,ri) ∈ set polys
hence ri: ri = root-info q and q: q ∈ set qs unfolding polys-def by auto
from fact ′(1)[OF q] have ∗: lead-coeff q > 0 irreducible q degree q > 0 by auto
from ∗ have q0 : q 6= 0 by auto
from root-info[OF ∗(2−3)] ri have ri: root-info-cond ri q by auto
note ri q0 ∗

} note polys = this
have unique-root (q, l, r) ∧ (q, ri) ∈ set polys ∧ x = the-unique-root (q, l, r)

by (rule select-correct-factor [OF conv res polys(1) - ex dist, unfolded fst, OF -
- fact ′(3)[OF p]],

insert fact ′(2)[OF p] polys(2), auto)
hence ur : unique-root (q,l,r) and mem: (q,ri) ∈ set polys and x: x = the-unique-root

(q,l,r) by auto
note polys = polys[OF mem]
from polys(3−4) have ty: poly-cond q by (simp add: poly-cond-def)
show ?thesis unfolding x rai[symmetric] by (intro real-alg-2 ′ ur ty polys(1))

qed

152

end

11.2.10 Addition
lemma ipoly-0-0 [simp]: ipoly f (0 :: ′a::{comm-ring-1 ,ring-char-0}) = 0 ←→ poly
f 0 = 0

unfolding poly-0-coeff-0 by simp

lemma add-rat-roots-below[simp]: roots-below (poly-add-rat r p) x = (λy. y + of-rat
r) ‘ roots-below p (x − of-rat r)
proof (unfold add-rat-roots image-def , intro Collect-eqI , goal-cases)

case (1 y) then show ?case by (auto intro: exI [of - y − real-of-rat r])
qed

lemma add-rat-root-cond:
shows root-cond (cf-pos-poly (poly-add-rat m p),l,r) x = root-cond (p, l − m, r
− m) (x − of-rat m)

by (unfold root-cond-def , auto simp add: add-rat-roots hom-distribs)

lemma add-rat-unique-root: unique-root (cf-pos-poly (poly-add-rat m p), l, r) =
unique-root (p, l−m, r−m)

by (auto simp: add-rat-root-cond)

fun add-rat-1 :: rat ⇒ real-alg-1 ⇒ real-alg-1 where
add-rat-1 r1 (p2 ,l2 ,r2) = (

let p = cf-pos-poly (poly-add-rat r1 p2);
(l,r ,sr) = tighten-poly-bounds-for-x p 0 (l2+r1) (r2+r1) (sgn (ipoly p

(r2+r1)))
in
(p,l,r))

lemma poly-real-alg-1-add-rat[simp]:
poly-real-alg-1 (add-rat-1 r y) = cf-pos-poly (poly-add-rat r (poly-real-alg-1 y))
by (cases y, auto simp: Let-def split: prod.split)

lemma sgn-cf-pos:
assumes lead-coeff p > 0 shows sgn (ipoly (cf-pos-poly p) (x:: ′a::linordered-field))

= sgn (ipoly p x)
proof (cases p = 0)

case True with assms show ?thesis by auto
next

case False
from cf-pos-poly-main False obtain d where p ′: Polynomial.smult d (cf-pos-poly

p) = p by auto
have d > 0
proof (rule zero-less-mult-pos2)

from False assms have 0 < lead-coeff p by (auto simp: cf-pos-def)
also from p ′ have . . . = d ∗ lead-coeff (cf-pos-poly p) by (metis lead-coeff-smult)
finally show 0 <

153

show lead-coeff (cf-pos-poly p) > 0 using False by (unfold lead-coeff-cf-pos-poly)
qed
moreover from p ′ have ipoly p x = of-int d ∗ ipoly (cf-pos-poly p) x

by (fold poly-smult of-int-hom.map-poly-hom-smult, auto)
ultimately show ?thesis by (auto simp: sgn-mult[where ′a= ′a])

qed

lemma add-rat-1 : fixes r1 :: rat assumes inv-y: invariant-1-2 y
defines z ≡ add-rat-1 r1 y
shows invariant-1-2 z ∧ (real-of-1 z = of-rat r1 + real-of-1 y)

proof (cases y)
case y-def : (fields p2 l2 r2)
define p where p ≡ cf-pos-poly (poly-add-rat r1 p2)
obtain l r sr where lr : tighten-poly-bounds-for-x p 0 (l2+r1) (r2+r1) (sgn

(ipoly p (r2+r1))) = (l,r ,sr)
by (metis surj-pair)

from lr have z: z = (p,l,r) by (auto simp: y-def z-def p-def Let-def)
from inv-y have ur : unique-root (p, l2 + r1 , r2 + r1)

by (auto simp: p-def add-rat-root-cond y-def add-rat-unique-root)
from inv-y[unfolded y-def invariant-1-2-def ,simplified] have pc2 : poly-cond2 p

unfolding p-def
apply (intro poly-cond2I poly-add-rat-irreducible poly-condI , unfold lead-coeff-cf-pos-poly)
apply (auto elim!: invariant-1E)

done
note main = tighten-poly-bounds-for-x[OF ur pc2 lr refl, simplified]
then have sgn l = sgn r unfolding sgn-if apply simp apply linarith done
from invariant-1-2-realI [OF main(4) - main(7), simplified, OF this pc2] main(1−3)

ur
show ?thesis by (auto simp: z p-def y-def add-rat-root-cond ex1-the-shift)

qed

fun tighten-poly-bounds-binary :: int poly ⇒ int poly ⇒ (rat × rat × rat) × rat ×
rat × rat ⇒ (rat × rat × rat) × rat × rat × rat where

tighten-poly-bounds-binary cr1 cr2 ((l1 ,r1 ,sr1),(l2 ,r2 ,sr2)) =
(tighten-poly-bounds cr1 l1 r1 sr1 , tighten-poly-bounds cr2 l2 r2 sr2)

lemma tighten-poly-bounds-binary:
assumes ur : unique-root (p1 ,l1 ,r1) unique-root (p2 ,l2 ,r2) and pt: poly-cond2

p1 poly-cond2 p2
defines x ≡ the-unique-root (p1 ,l1 ,r1) and y ≡ the-unique-root (p2 ,l2 ,r2)
assumes bnd:

∧
l1 r1 l2 r2 l r sr1 sr2 . I l1 =⇒ I l2 =⇒ root-cond (p1 ,l1 ,r1) x

=⇒ root-cond (p2 ,l2 ,r2) y =⇒
bnd ((l1 ,r1 ,sr1),(l2 ,r2 ,sr2)) = (l,r) =⇒ of-rat l ≤ f x y ∧ f x y ≤ of-rat r

and approx:
∧

l1 r1 l2 r2 l1 ′ r1 ′ l2 ′ r2 ′ l l ′ r r ′ sr1 sr2 sr1 ′ sr2 ′.
I l1 =⇒ I l2 =⇒
l1 ≤ r1 =⇒ l2 ≤ r2 =⇒
(l,r) = bnd ((l1 ,r1 ,sr1), (l2 ,r2 ,sr2)) =⇒
(l ′,r ′) = bnd ((l1 ′,r1 ′,sr1 ′), (l2 ′,r2 ′,sr2 ′)) =⇒
(l1 ′,r1 ′) ∈ {(l1 ,(l1+r1)/2),((l1+r1)/2 ,r1)} =⇒

154

(l2 ′,r2 ′) ∈ {(l2 ,(l2+r2)/2),((l2+r2)/2 ,r2)} =⇒
(r ′ − l ′) ≤ 3/4 ∗ (r − l) ∧ l ≤ l ′ ∧ r ′ ≤ r

and I-mono:
∧

l l ′. I l =⇒ l ≤ l ′ =⇒ I l ′
and I : I l1 I l2
and sr : sr1 = sgn (ipoly p1 r1) sr2 = sgn (ipoly p2 r2)
shows converges-to (λ i. bnd ((tighten-poly-bounds-binary p1 p2 ^^ i) ((l1 ,r1 ,sr1),(l2 ,r2 ,sr2))))

(f x y)
proof −

let ?upd = tighten-poly-bounds-binary p1 p2
define upd where upd = ?upd
define init where init = ((l1 , r1 , sr1), l2 , r2 , sr2)
let ?g = (λi. bnd ((upd ^^ i) init))
obtain l r where bnd-init: bnd init = (l,r) by force
note ur1 = unique-rootD[OF ur(1)]
note ur2 = unique-rootD[OF ur(2)]
from ur1 (4) ur2 (4) x-def y-def
have rc1 : root-cond (p1 ,l1 ,r1) x and rc2 : root-cond (p2 ,l2 ,r2) y by auto
define g where g = ?g
{

fix i L1 R1 L2 R2 L R j SR1 SR2
assume ((upd ^^ i)) init = ((L1 ,R1 ,SR1),(L2 ,R2 ,SR2)) g i = (L,R)
hence I L1 ∧ I L2 ∧ root-cond (p1 ,L1 ,R1) x ∧ root-cond (p2 ,L2 ,R2) y ∧

unique-root (p1 , L1 , R1) ∧ unique-root (p2 , L2 , R2) ∧ in-interval (L,R) (f
x y) ∧

(i = Suc j −→ sub-interval (g i) (g j) ∧ (R − L ≤ 3/4 ∗ (snd (g j) − fst (g
j))))

∧ SR1 = sgn (ipoly p1 R1) ∧ SR2 = sgn (ipoly p2 R2)
proof (induct i arbitrary: L1 R1 L2 R2 L R j SR1 SR2)

case 0
thus ?case using I rc1 rc2 ur bnd[of l1 l2 r1 r2 sr1 sr2 L R] g-def sr unfolding

init-def by auto
next

case (Suc i)
obtain l1 r1 l2 r2 sr1 sr2 where updi: (upd ^^ i) init = ((l1 , r1 , sr1), l2 ,

r2 , sr2) by (cases (upd ^^ i) init, auto)
obtain l r where bndi: bnd ((l1 , r1 , sr1), l2 , r2 , sr2) = (l,r) by force
hence gi: g i = (l,r) using updi unfolding g-def by auto
have (upd ^^ Suc i) init = upd ((l1 , r1 , sr1), l2 , r2 , sr2) using updi by

simp
from Suc(2)[unfolded this] have upd: upd ((l1 , r1 , sr1), l2 , r2 , sr2) = ((L1 ,

R1 , SR1), L2 , R2 , SR2) .
from upd updi Suc(3) have bndsi: bnd ((L1 , R1 , SR1), L2 , R2 , SR2) =

(L,R) by (auto simp: g-def)
from Suc(1)[OF updi gi] have I : I l1 I l2

and rc: root-cond (p1 ,l1 ,r1) x root-cond (p2 ,l2 ,r2) y
and ur : unique-root (p1 , l1 , r1) unique-root (p2 , l2 , r2)
and sr : sr1 = sgn (ipoly p1 r1) sr2 = sgn (ipoly p2 r2)
by auto

from upd[unfolded upd-def]

155

have tight: tighten-poly-bounds p1 l1 r1 sr1 = (L1 , R1 , SR1) tighten-poly-bounds
p2 l2 r2 sr2 = (L2 , R2 , SR2)

by auto
note tight1 = tighten-poly-bounds[OF tight(1) ur(1) pt(1) sr(1)]
note tight2 = tighten-poly-bounds[OF tight(2) ur(2) pt(2) sr(2)]
from tight1 have lr1 : l1 ≤ r1 by auto
from tight2 have lr2 : l2 ≤ r2 by auto
note ur1 = unique-rootD[OF ur(1)]
note ur2 = unique-rootD[OF ur(2)]
from tight1 I-mono[OF I (1)] have I1 : I L1 by auto
from tight2 I-mono[OF I (2)] have I2 : I L2 by auto
note ur1 = unique-root-sub-interval[OF ur(1) tight1 (1 ,2 ,4)]
note ur2 = unique-root-sub-interval[OF ur(2) tight2 (1 ,2 ,4)]
from rc(1) ur ur1 have x: x = the-unique-root (p1 ,L1 ,R1) by (auto in-

tro!:the-unique-root-eqI)
from rc(2) ur ur2 have y: y = the-unique-root (p2 ,L2 ,R2) by (auto in-

tro!:the-unique-root-eqI)
from unique-rootD[OF ur1 (1)] x have x: root-cond (p1 ,L1 ,R1) x by auto
from unique-rootD[OF ur2 (1)] y have y: root-cond (p2 ,L2 ,R2) y by auto
from tight(1) have half1 : (L1 , R1) ∈ {(l1 , (l1 + r1) / 2), ((l1 + r1) / 2 ,

r1)}
unfolding tighten-poly-bounds-def Let-def by (auto split: if-splits)

from tight(2) have half2 : (L2 , R2) ∈ {(l2 , (l2 + r2) / 2), ((l2 + r2) / 2 ,
r2)}

unfolding tighten-poly-bounds-def Let-def by (auto split: if-splits)
from approx[OF I lr1 lr2 bndi[symmetric] bndsi[symmetric] half1 half2]
have R − L ≤ 3 / 4 ∗ (r − l) ∧ l ≤ L ∧ R ≤ r .
hence sub-interval (g (Suc i)) (g i) R − L ≤ 3/4 ∗ (snd (g i) − fst (g i))

unfolding gi Suc(3) by auto
with bnd[OF I1 I2 x y bndsi]
show ?case using I1 I2 x y ur1 ur2 tight1 (6) tight2 (6) by auto

qed
} note invariants = this
define L where L = (λ i. fst (g i))
define R where R = (λ i. snd (g i))
{

fix i
obtain l1 r1 l2 r2 sr1 sr2 where updi: (upd ^^ i) init = ((l1 , r1 , sr1), l2 , r2 ,

sr2) by (cases (upd ^^ i) init, auto)
obtain l r where bnd ′: bnd ((l1 , r1 , sr1), l2 , r2 , sr2) = (l,r) by force
have gi: g i = (l,r) unfolding g-def updi bnd ′ by auto
hence id: l = L i r = R i unfolding L-def R-def by auto
from invariants[OF updi gi[unfolded id]]
have in-interval (L i, R i) (f x y)∧

j. i = Suc j =⇒ sub-interval (g i) (g j) ∧ R i − L i ≤ 3 / 4 ∗ (R j − L j)
unfolding L-def R-def by auto

} note ∗ = this
{

fix i

156

from ∗(1)[of i] ∗(2)[of Suc i, OF refl]
have in-interval (g i) (f x y) sub-interval (g (Suc i)) (g i)

R (Suc i) − L (Suc i) ≤ 3 / 4 ∗ (R i − L i) unfolding L-def R-def by auto
} note ∗ = this
show ?thesis unfolding upd-def [symmetric] init-def [symmetric] g-def [symmetric]

unfolding converges-to-def
proof (intro conjI allI impI , rule ∗(1), rule ∗(2))

fix eps :: real
assume eps: 0 < eps
let ?r = real-of-rat
define r where r = (λ n. ?r (R n))
define l where l = (λ n. ?r (L n))
define diff where diff = (λ n. r n − l n)
{

fix n
from ∗(3)[of n] have ?r (R (Suc n) − L (Suc n)) ≤ ?r (3 / 4 ∗ (R n − L

n))
unfolding of-rat-less-eq by simp

also have ?r (R (Suc n) − L (Suc n)) = (r (Suc n) − l (Suc n))
unfolding of-rat-diff r-def l-def by simp

also have ?r (3 / 4 ∗ (R n − L n)) = 3 / 4 ∗ (r n − l n)
unfolding r-def l-def by (simp add: hom-distribs)

finally have diff (Suc n) ≤ 3 / 4 ∗ diff n unfolding diff-def .
} note ∗ = this
{

fix i
have diff i ≤ (3/4)^i ∗ diff 0
proof (induct i)

case (Suc i)
from Suc ∗[of i] show ?case by auto

qed auto
}
then obtain c where ∗:

∧
i. diff i ≤ (3/4)^i ∗ c by auto

have ∃ n. diff n ≤ eps
proof (cases c ≤ 0)

case True
with ∗[of 0] eps show ?thesis by (intro exI [of - 0], auto)

next
case False
hence c: c > 0 by auto
with eps have inverse c ∗ eps > 0 by auto
from exp-tends-to-zero[of 3/4 :: real, OF - - this] obtain n where
(3/4) ^ n ≤ inverse c ∗ eps by auto

from mult-right-mono[OF this, of c] c
have (3/4) ^ n ∗ c ≤ eps by (auto simp: field-simps)
with ∗[of n] show ?thesis by (intro exI [of - n], auto)

qed
then obtain n where ?r (R n) − ?r (L n) ≤ eps unfolding l-def r-def diff-def

by blast

157

thus ∃n l r . g n = (l, r) ∧ ?r r − ?r l ≤ eps unfolding L-def R-def by (intro
exI [of - n], force)

qed
qed

fun add-1 :: real-alg-1 ⇒ real-alg-1 ⇒ real-alg-2 where
add-1 (p1 ,l1 ,r1) (p2 ,l2 ,r2) = (

select-correct-factor-int-poly
(tighten-poly-bounds-binary p1 p2)
(λ ((l1 ,r1 ,sr1),(l2 ,r2 ,sr2)). (l1 + l2 , r1 + r2))
((l1 ,r1 ,sgn (ipoly p1 r1)),(l2 ,r2 , sgn (ipoly p2 r2)))
(poly-add p1 p2))

lemma add-1 :
assumes x: invariant-1-2 x and y: invariant-1-2 y
defines z: z ≡ add-1 x y
shows invariant-2 z ∧ (real-of-2 z = real-of-1 x + real-of-1 y)

proof (cases x)
case xt: (fields p1 l1 r1)
show ?thesis
proof (cases y)

case yt: (fields p2 l2 r2)
let ?x = real-of-1 (p1 , l1 , r1)
let ?y = real-of-1 (p2 , l2 , r2)
let ?p = poly-add p1 p2
note x = x[unfolded xt]
note y = y[unfolded yt]
from x have ax: p1 represents ?x unfolding represents-def by (auto elim!:

invariant-1E)
from y have ay: p2 represents ?y unfolding represents-def by (auto elim!:

invariant-1E)
let ?bnd = (λ((l1 , r1 , sr1 :: rat), l2 :: rat, r2 :: rat, sr2 :: rat). (l1 + l2 , r1

+ r2))
define bnd where bnd = ?bnd
have invariant-2 z ∧ real-of-2 z = ?x + ?y
proof (intro select-correct-factor-int-poly)

from represents-add[OF ax ay]
show ?p 6= 0 ipoly ?p (?x + ?y) = 0 by auto
from z[unfolded xt yt]
show sel: select-correct-factor-int-poly

(tighten-poly-bounds-binary p1 p2)
bnd
((l1 ,r1 ,sgn (ipoly p1 r1)),(l2 ,r2 , sgn (ipoly p2 r2)))
(poly-add p1 p2) = z by (auto simp: bnd-def)

have ur1 : unique-root (p1 ,l1 ,r1) poly-cond2 p1 using x by auto
have ur2 : unique-root (p2 ,l2 ,r2) poly-cond2 p2 using y by auto
show converges-to
(λi. bnd ((tighten-poly-bounds-binary p1 p2 ^^ i)
((l1 ,r1 ,sgn (ipoly p1 r1)),(l2 ,r2 , sgn (ipoly p2 r2))))) (?x + ?y)

158

by (intro tighten-poly-bounds-binary ur1 ur2 ; force simp: bnd-def hom-distribs)
qed
thus ?thesis unfolding xt yt .

qed
qed

declare add-rat-1 .simps[simp del]
declare add-1 .simps[simp del]

11.2.11 Multiplication
context
begin
private fun mult-rat-1-pos :: rat ⇒ real-alg-1 ⇒ real-alg-2 where
mult-rat-1-pos r1 (p2 ,l2 ,r2) = real-alg-2 (cf-pos-poly (poly-mult-rat r1 p2), l2∗r1 ,

r2∗r1)

private fun mult-1-pos :: real-alg-1 ⇒ real-alg-1 ⇒ real-alg-2 where
mult-1-pos (p1 ,l1 ,r1) (p2 ,l2 ,r2) =

select-correct-factor-int-poly
(tighten-poly-bounds-binary p1 p2)
(λ ((l1 ,r1 ,sr1),(l2 ,r2 ,sr2)). (l1 ∗ l2 , r1 ∗ r2))
((l1 ,r1 ,sgn (ipoly p1 r1)),(l2 ,r2 , sgn (ipoly p2 r2)))
(poly-mult p1 p2)

fun mult-rat-1 :: rat ⇒ real-alg-1 ⇒ real-alg-2 where
mult-rat-1 x y =
(if x < 0 then uminus-2 (mult-rat-1-pos (−x) y)

else if x = 0 then Rational 0 else (mult-rat-1-pos x y))

fun mult-1 :: real-alg-1 ⇒ real-alg-1 ⇒ real-alg-2 where
mult-1 x y = (case (x,y) of ((p1 ,l1 ,r1),(p2 ,l2 ,r2)) ⇒
if r1 > 0 then

if r2 > 0 then mult-1-pos x y
else uminus-2 (mult-1-pos x (uminus-1 y))

else if r2 > 0 then uminus-2 (mult-1-pos (uminus-1 x) y)
else mult-1-pos (uminus-1 x) (uminus-1 y))

lemma mult-rat-1-pos: fixes r1 :: rat assumes r1 : r1 > 0 and y: invariant-1 y
defines z: z ≡ mult-rat-1-pos r1 y
shows invariant-2 z ∧ (real-of-2 z = of-rat r1 ∗ real-of-1 y)

proof −
obtain p2 l2 r2 where yt: y = (p2 ,l2 ,r2) by (cases y, auto)
let ?x = real-of-rat r1
let ?y = real-of-1 (p2 , l2 , r2)
let ?p = poly-mult-rat r1 p2
let ?mp = cf-pos-poly ?p
note y = y[unfolded yt]
note yD = invariant-1D[OF y]

159

from yD r1 have p: ?p 6= 0 and r10 : r1 6= 0 by auto
hence mp: ?mp 6= 0 by simp
from yD(1)
have rt: ipoly p2 ?y = 0 and bnd: of-rat l2 ≤ ?y ?y ≤ of-rat r2 by auto
from rt r1 have rt: ipoly ?mp (?x ∗ ?y) = 0 by (auto simp add: field-simps

ipoly-mult-rat[OF r10])
from yD(5) have irr : irreducible p2

unfolding represents-def using y unfolding root-cond-def split by auto
from poly-mult-rat-irreducible[OF this - r10] yD
have irr : irreducible ?mp by simp
from p have mon: cf-pos ?mp by auto
obtain l r where lr : l = l2 ∗ r1 r = r2 ∗ r1 by force
from bnd r1 have bnd: of-rat l ≤ ?x ∗ ?y ?x ∗ ?y ≤ of-rat r unfolding lr

of-rat-mult by auto
with rt have rc: root-cond (?mp,l,r) (?x ∗ ?y) unfolding root-cond-def by auto
have ur : unique-root (?mp,l,r)
proof (rule ex1I , rule rc)

fix z
assume root-cond (?mp,l,r) z
from this[unfolded root-cond-def split] have bndz: of-rat l ≤ z z ≤ of-rat r

and rt: ipoly ?mp z = 0 by auto
have fst (quotient-of r1) 6= 0 using quotient-of-div[of r1] r10 by (cases quo-

tient-of r1 , auto)
with rt have rt: ipoly p2 (z ∗ inverse ?x) = 0 by (auto simp: ipoly-mult-rat[OF

r10])
from bndz r1 have of-rat l2 ≤ z ∗ inverse ?x z ∗ inverse ?x ≤ of-rat r2

unfolding lr of-rat-mult
by (auto simp: field-simps)

with rt have root-cond (p2 ,l2 ,r2) (z ∗ inverse ?x) unfolding root-cond-def
by auto

also note invariant-1-root-cond[OF y]
finally have ?y = z ∗ inverse ?x by auto
thus z = ?x ∗ ?y using r1 by auto

qed
from r1 have sgnr : sgn r = sgn r2 unfolding lr

by (cases r2 = 0 ; cases r2 < 0 ; auto simp: mult-neg-pos mult-less-0-iff)
from r1 have sgnl: sgn l = sgn l2 unfolding lr

by (cases l2 = 0 ; cases l2 < 0 ; auto simp: mult-neg-pos mult-less-0-iff)
from the-unique-root-eqI [OF ur rc] have xy: ?x ∗ ?y = the-unique-root (?mp,l,r)

by auto
from z[unfolded yt, simplified, unfolded Let-def lr [symmetric] split]
have z: z = real-alg-2 (?mp, l, r) by simp
have yp2 : p2 represents ?y using yD unfolding root-cond-def split represents-def

by auto
with irr mon have pc: poly-cond ?mp by (auto simp: poly-cond-def cf-pos-def)
have rc: invariant-1 (?mp, l, r) unfolding z using yD(2) pc ur

by (auto simp add: invariant-1-def ur mp sgnr sgnl)
show ?thesis unfolding z using real-alg-2 [OF rc]

unfolding yt xy unfolding z by simp

160

qed

lemma mult-1-pos: assumes x: invariant-1-2 x and y: invariant-1-2 y
defines z: z ≡ mult-1-pos x y
assumes pos: real-of-1 x > 0 real-of-1 y > 0
shows invariant-2 z ∧ (real-of-2 z = real-of-1 x ∗ real-of-1 y)

proof −
obtain p1 l1 r1 where xt: x = (p1 ,l1 ,r1) by (cases x, auto)
obtain p2 l2 r2 where yt: y = (p2 ,l2 ,r2) by (cases y, auto)
let ?x = real-of-1 (p1 , l1 , r1)
let ?y = real-of-1 (p2 , l2 , r2)
let ?r = real-of-rat
let ?p = poly-mult p1 p2
note x = x[unfolded xt]
note y = y[unfolded yt]
from x y have basic: unique-root (p1 , l1 , r1) poly-cond2 p1 unique-root (p2 , l2 ,

r2) poly-cond2 p2 by auto
from basic have irr1 : irreducible p1 and irr2 : irreducible p2 by auto
from x have ax: p1 represents ?x unfolding represents-def by (auto elim!:invariant-1E)
from y have ay: p2 represents ?y unfolding represents-def by (auto elim!:invariant-1E)
from ax ay pos[unfolded xt yt] have axy: ?p represents (?x ∗ ?y)

by (intro represents-mult represents-irr-non-0 [OF irr2], auto)
from representsD[OF this] have p: ?p 6= 0 and rt: ipoly ?p (?x ∗ ?y) = 0 .
from x pos(1)[unfolded xt] have ?r r1 > 0 unfolding split by auto
hence sgn r1 = 1 unfolding sgn-rat-def by (auto split: if-splits)
with x have sgn l1 = 1 by auto
hence l1-pos: l1 > 0 unfolding sgn-rat-def by (cases l1 = 0 ; cases l1 < 0 ;

auto)
from y pos(2)[unfolded yt] have ?r r2 > 0 unfolding split by auto
hence sgn r2 = 1 unfolding sgn-rat-def by (auto split: if-splits)
with y have sgn l2 = 1 by auto
hence l2-pos: l2 > 0 unfolding sgn-rat-def by (cases l2 = 0 ; cases l2 < 0 ;

auto)
let ?bnd = (λ((l1 , r1 , sr1 :: rat), l2 :: rat, r2 :: rat, sr2 :: rat). (l1 ∗ l2 , r1 ∗

r2))
define bnd where bnd = ?bnd
obtain z ′ where sel: select-correct-factor-int-poly

(tighten-poly-bounds-binary p1 p2)
bnd
((l1 ,r1 ,sgn (ipoly p1 r1)),(l2 ,r2 , sgn (ipoly p2 r2)))
?p = z ′ by auto

have main: invariant-2 z ′ ∧ real-of-2 z ′ = ?x ∗ ?y
proof (rule select-correct-factor-int-poly[OF - sel rt p])

{
fix l1 r1 l2 r2 l1 ′ r1 ′ l2 ′ r2 ′ l l ′ r r ′ :: rat
let ?m1 = (l1+r1)/2 let ?m2 = (l2+r2)/2
define d1 where d1 = r1 − l1
define d2 where d2 = r2 − l2
let ?M1 = l1 + d1/2 let ?M2 = l2 + d2/2

161

assume le: l1 > 0 l2 > 0 l1 ≤ r1 l2 ≤ r2 and id: (l, r) = (l1 ∗ l2 , r1 ∗ r2)
(l ′, r ′) = (l1 ′ ∗ l2 ′, r1 ′ ∗ r2 ′)
and mem: (l1 ′, r1 ′) ∈ {(l1 , ?m1), (?m1 , r1)}
(l2 ′, r2 ′) ∈ {(l2 , ?m2), (?m2 , r2)}

hence id: l = l1 ∗ l2 r = (l1 + d1) ∗ (l2 + d2) l ′ = l1 ′ ∗ l2 ′ r ′ = r1 ′ ∗ r2 ′

r1 = l1 + d1 r2 = l2 + d2 and id ′: ?m1 = ?M1 ?m2 = ?M2
unfolding d1-def d2-def by (auto simp: field-simps)

define l1d1 where l1d1 = l1 + d1
from le have ge0 : d1 ≥ 0 d2 ≥ 0 l1 ≥ 0 l2 ≥ 0 unfolding d1-def d2-def

by auto
have 4 ∗ (r ′ − l ′) ≤ 3 ∗ (r − l)
proof (cases l1 ′ = l1 ∧ r1 ′ = ?M1 ∧ l2 ′ = l2 ∧ r2 ′ = ?M2)

case True
hence id2 : l1 ′ = l1 r1 ′ = ?M1 l2 ′ = l2 r2 ′ = ?M2 by auto

show ?thesis unfolding id id2 unfolding ring-distribs using ge0 by simp
next

case False note 1 = this
show ?thesis
proof (cases l1 ′ = l1 ∧ r1 ′ = ?M1 ∧ l2 ′ = ?M2 ∧ r2 ′ = r2)

case True
hence id2 : l1 ′ = l1 r1 ′ = ?M1 l2 ′ = ?M2 r2 ′ = r2 by auto

show ?thesis unfolding id id2 unfolding ring-distribs using ge0 by simp
next

case False note 2 = this
show ?thesis
proof (cases l1 ′ = ?M1 ∧ r1 ′ = r1 ∧ l2 ′ = l2 ∧ r2 ′ = ?M2)

case True
hence id2 : l1 ′ = ?M1 r1 ′ = r1 l2 ′ = l2 r2 ′ = ?M2 by auto

show ?thesis unfolding id id2 unfolding ring-distribs using ge0 by simp
next

case False note 3 = this
from 1 2 3 mem have id2 : l1 ′ = ?M1 r1 ′ = r1 l2 ′ = ?M2 r2 ′ = r2

unfolding id ′ by auto
show ?thesis unfolding id id2 unfolding ring-distribs using ge0 by simp
qed

qed
qed
hence r ′ − l ′ ≤ 3 / 4 ∗ (r − l) by simp

} note decr = this
show converges-to

(λi. bnd ((tighten-poly-bounds-binary p1 p2 ^^ i)
((l1 ,r1 ,sgn (ipoly p1 r1)),(l2 ,r2 , sgn (ipoly p2 r2))))) (?x ∗ ?y)

proof (intro tighten-poly-bounds-binary[where f = (∗) and I = λ l. l > 0]
basic l1-pos l2-pos, goal-cases)
case (1 L1 R1 L2 R2 L R)
hence L = L1 ∗ L2 R = R1 ∗ R2 unfolding bnd-def by auto
hence id: ?r L = ?r L1 ∗ ?r L2 ?r R = ?r R1 ∗ ?r R2 by (auto simp:

hom-distribs)
from 1 (3−4) have le: ?r L1 ≤ ?x ?x ≤ ?r R1 ?r L2 ≤ ?y ?y ≤ ?r R2

162

unfolding root-cond-def by auto
from 1 (1−2) have lt: 0 < ?r L1 0 < ?r L2 by auto
from mult-mono[OF le(1 ,3), folded id] lt le have L: ?r L ≤ ?x ∗ ?y by

linarith
have R: ?x ∗ ?y ≤ ?r R

by (rule mult-mono[OF le(2 ,4), folded id], insert lt le, linarith+)
show ?case using L R by blast

next
case (2 l1 r1 l2 r2 l1 ′ r1 ′ l2 ′ r2 ′ l l ′ r r ′)
from 2 (5−6) have lr : l = l1 ∗ l2 r = r1 ∗ r2 l ′ = l1 ′ ∗ l2 ′ r ′ = r1 ′ ∗ r2 ′

unfolding bnd-def by auto
from 2 (1−4) have le: 0 < l1 0 < l2 l1 ≤ r1 l2 ≤ r2 by auto
from 2 (7−8) le have le ′: l1 ≤ l1 ′ r1 ′ ≤ r1 l2 ≤ l2 ′ r2 ′ ≤ r2 0 < r2 ′ 0 <

r2 by auto
from mult-mono[OF le ′(1 ,3), folded lr] le le ′ have l: l ≤ l ′ by auto

have r : r ′ ≤ r by (rule mult-mono[OF le ′(2 ,4), folded lr], insert le le ′,
linarith+)

have r ′ − l ′ ≤ 3 / 4 ∗ (r − l)
by (rule decr [OF - - - - - - 2 (7−8)], insert le le ′ lr , auto)

thus ?case using l r by blast
qed auto

qed
have z ′: z ′= z unfolding z[unfolded xt yt, simplified, unfolded bnd-def [symmetric]

sel]
by auto

from main[unfolded this] show ?thesis unfolding xt yt by simp
qed

lemma mult-1 : assumes x: invariant-1-2 x and y: invariant-1-2 y
defines z[simp]: z ≡ mult-1 x y
shows invariant-2 z ∧ (real-of-2 z = real-of-1 x ∗ real-of-1 y)

proof −
obtain p1 l1 r1 where xt[simp]: x = (p1 ,l1 ,r1) by (cases x)
obtain p2 l2 r2 where yt[simp]: y = (p2 ,l2 ,r2) by (cases y)
let ?xt = (p1 , l1 , r1)
let ?yt = (p2 , l2 , r2)
let ?x = real-of-1 ?xt
let ?y = real-of-1 ?yt
let ?mxt = uminus-1 ?xt
let ?myt = uminus-1 ?yt
let ?mx = real-of-1 ?mxt
let ?my = real-of-1 ?myt
let ?r = real-of-rat
from invariant-1-2-of-rat[OF x, of 0] have x0 : ?x < 0 ∨ ?x > 0 by auto
from invariant-1-2-of-rat[OF y, of 0] have y0 : ?y < 0 ∨ ?y > 0 by auto
from uminus-1-2 [OF x] have mx: invariant-1-2 ?mxt and [simp]: ?mx = − ?x

by auto
from uminus-1-2 [OF y] have my: invariant-1-2 ?myt and [simp]: ?my = − ?y

by auto

163

have id: r1 > 0 ←→ ?x > 0 r1 < 0 ←→ ?x < 0 r2 > 0 ←→ ?y > 0 r2 < 0
←→ ?y < 0

using x y by auto
show ?thesis
proof (cases ?x > 0)

case x0 : True
show ?thesis
proof (cases ?y > 0)

case y0 : True
with x y x0 mult-1-pos[OF x y] show ?thesis by auto

next
case False
with y0 have y0 : ?y < 0 by auto
with x0 have z: z = uminus-2 (mult-1-pos ?xt ?myt)

unfolding z xt yt mult-1 .simps split id by simp
from x0 y0 mult-1-pos[OF x my] uminus-2 [of mult-1-pos ?xt ?myt]
show ?thesis unfolding z by simp

qed
next

case False
with x0 have x0 : ?x0 < 0 by simp
show ?thesis
proof (cases ?y > 0)

case y0 : True
with x0 x y id have z: z = uminus-2 (mult-1-pos ?mxt ?yt) by simp
from x0 y0 mult-1-pos[OF mx y] uminus-2 [of mult-1-pos ?mxt ?yt]
show ?thesis unfolding z by auto

next
case False
with y0 have y0 : ?y < 0 by simp
with x0 x y have z: z = mult-1-pos ?mxt ?myt by auto
with x0 y0 x y mult-1-pos[OF mx my]
show ?thesis unfolding z by auto

qed
qed

qed

lemma mult-rat-1 : fixes x assumes y: invariant-1 y
defines z: z ≡ mult-rat-1 x y
shows invariant-2 z ∧ (real-of-2 z = of-rat x ∗ real-of-1 y)

proof (cases y)
case yt: (fields p2 l2 r2)
let ?yt = (p2 , l2 , r2)
let ?x = real-of-rat x
let ?y = real-of-1 ?yt
let ?myt = mult-rat-1-pos (− x) ?yt
note y = y[unfolded yt]
note z = z[unfolded yt]

164

show ?thesis
proof(cases x 0 ::rat rule:linorder-cases)

case x: greater
with z have z: z = mult-rat-1-pos x ?yt by simp
from mult-rat-1-pos[OF x y]
show ?thesis unfolding yt z by auto

next
case less
then have x: − x > 0 by auto
hence z: z = uminus-2 ?myt unfolding z by simp
from mult-rat-1-pos[OF x y] have rc: invariant-2 ?myt

and rr : real-of-2 ?myt = − ?x ∗ ?y by (auto simp: hom-distribs)
from uminus-2 [OF rc] rr show ?thesis unfolding z[symmetric] unfolding

yt[symmetric]
by simp

qed (auto simp: z)
qed
end

declare mult-1 .simps[simp del]
declare mult-rat-1 .simps[simp del]

11.2.12 Root
definition ipoly-root-delta :: int poly ⇒ real where

ipoly-root-delta p = Min (insert 1 { abs (x − y) | x y. ipoly p x = 0 ∧ ipoly p y
= 0 ∧ x 6= y}) / 4

lemma ipoly-root-delta: assumes p 6= 0
shows ipoly-root-delta p > 0

2 ≤ card (Collect (root-cond (p, l, r))) =⇒ ipoly-root-delta p ≤ real-of-rat (r
− l) / 4
proof −

let ?z = 0 :: real
let ?R = {x. ipoly p x = ?z}
let ?set = { abs (x − y) | x y. ipoly p x = ?z ∧ ipoly p y = 0 ∧ x 6= y}
define S where S = insert 1 ?set
from finite-ipoly-roots[OF assms] have finR: finite ?R and fin: finite (?R × ?R)

by auto
have finite ?set
by (rule finite-subset[OF - finite-imageI [OF fin, of λ (x,y). abs (x − y)]], force)

hence fin: finite S and ne: S 6= {} and pos:
∧

x. x ∈ S =⇒ x > 0 unfolding
S-def by auto

have delta: ipoly-root-delta p = Min S / 4 unfolding ipoly-root-delta-def S-def
..

have pos: Min S > 0 using fin ne pos by auto
show ipoly-root-delta p > 0 unfolding delta using pos by auto
let ?S = Collect (root-cond (p, l, r))
assume 2 ≤ card ?S

165

hence 2 : Suc (Suc 0) ≤ card ?S by simp
from 2 [unfolded card-le-Suc-iff [of - ?S]] obtain x T where

ST : ?S = insert x T and xT : x /∈ T and 1 : Suc 0 ≤ card T by auto
from 1 [unfolded card-le-Suc-iff [of - T]] obtain y where yT : y ∈ T by auto
from ST xT yT have x: x ∈ ?S and y: y ∈ ?S and xy: x 6= y by auto
hence abs (x − y) ∈ S unfolding S-def root-cond-def [abs-def] by auto
with fin have Min S ≤ abs (x − y) by auto
with pos have le: Min S / 2 ≤ abs (x − y) / 2 by auto
from x y have abs (x − y) ≤ of-rat r − of-rat l unfolding root-cond-def [abs-def]

by auto
also have . . . = of-rat (r − l) by (auto simp: of-rat-diff)
finally have abs (x − y) / 2 ≤ of-rat (r − l) / 2 by auto
with le show ipoly-root-delta p ≤ real-of-rat (r − l) / 4 unfolding delta by

auto
qed

lemma sgn-less-eq-1-rat: fixes a b :: rat
shows sgn a = 1 =⇒ a ≤ b =⇒ sgn b = 1
by (metis (no-types, opaque-lifting) not-less one-neq-neg-one one-neq-zero or-

der-trans sgn-rat-def)

lemma sgn-less-eq-1-real: fixes a b :: real
shows sgn a = 1 =⇒ a ≤ b =⇒ sgn b = 1
by (metis (no-types, opaque-lifting) not-less one-neq-neg-one one-neq-zero or-

der-trans sgn-real-def)

definition compare-1-rat :: real-alg-1 ⇒ rat ⇒ order where
compare-1-rat rai = (let p = poly-real-alg-1 rai in

if degree p = 1 then let x = Rat.Fract (− coeff p 0) (coeff p 1)
in (λ y. compare y x)

else (λ y. compare-rat-1 y rai))

lemma compare-real-of-rat: compare (real-of-rat x) (of-rat y) = compare x y
unfolding compare-rat-def compare-real-def comparator-of-def of-rat-less by auto

lemma compare-1-rat: assumes rc: invariant-1 y
shows compare-1-rat y x = compare (of-rat x) (real-of-1 y)

proof (cases degree (poly-real-alg-1 y) Suc 0 rule: linorder-cases)
case less with invariant-1-degree-0 [OF rc] show ?thesis by auto

next
case deg: greater
with rc have rc: invariant-1-2 y by auto
from deg compare-rat-1 [OF rc, of x]
show ?thesis unfolding compare-1-rat-def by auto

next
case deg: equal
obtain p l r where y: y = (p,l,r) by (cases y)
note rc = invariant-1D[OF rc[unfolded y]]
from deg have p: degree p = Suc 0

166

and id: compare-1-rat y x = compare x (Rat.Fract (− coeff p 0) (coeff p 1))
unfolding compare-1-rat-def by (auto simp: Let-def y)

from rc(1)[unfolded split] have ipoly p (real-of-1 y) = 0
unfolding y by auto

with degree-1-ipoly[OF p, of real-of-1 y]
have id ′: real-of-1 y = real-of-rat (Rat.Fract (− coeff p 0) (coeff p 1)) by simp
show ?thesis unfolding id id ′ compare-real-of-rat ..

qed

context
fixes n :: nat

begin
private definition initial-lower-bound :: rat ⇒ rat where

initial-lower-bound l = (if l ≤ 1 then l else of-int (root-rat-floor n l))

private definition initial-upper-bound :: rat ⇒ rat where
initial-upper-bound r = (of-int (root-rat-ceiling n r))

context
fixes cmpx :: rat ⇒ order

begin
fun tighten-bound-root ::

rat × rat ⇒ rat × rat where
tighten-bound-root (l ′,r ′) = (let

m ′ = (l ′ + r ′) / 2 ;
m = m ′ ^ n
in case cmpx m of

Eq ⇒ (m ′,m ′)
| Lt ⇒ (m ′,r ′)
| Gt ⇒ (l ′,m ′))

lemma tighten-bound-root: assumes sgn: sgn il = 1 real-of-1 x ≥ 0 and
il: real-of-rat il ≤ root n (real-of-1 x) and
ir : root n (real-of-1 x) ≤ real-of-rat ir and
rai: invariant-1 x and
cmpx: cmpx = compare-1-rat x and
n: n 6= 0

shows converges-to (λ i. (tighten-bound-root ^^ i) (il, ir))
(root n (real-of-1 x)) (is converges-to ?f ?x)

unfolding converges-to-def
proof (intro conjI impI allI)

{
fix x :: real
have x ≥ 0 =⇒ (root n x) ^ n = x using n by simp

} note root-exp-cancel = this
{

fix x :: real
have x ≥ 0 =⇒ root n (x ^ n) = x using n

using real-root-pos-unique by blast

167

} note root-exp-cancel ′ = this
from il ir have real-of-rat il ≤ of-rat ir by auto
hence ir-il: il ≤ ir by (auto simp: of-rat-less-eq)
from n have n ′: n > 0 by auto
{

fix i
have in-interval (?f i) ?x ∧ sub-interval (?f i) (il,ir) ∧ (i 6= 0 −→ sub-interval

(?f i) (?f (i − 1)))
∧ snd (?f i) − fst (?f i) ≤ (ir − il) / 2^i

proof (induct i)
case 0
show ?case using il ir by auto

next
case (Suc i)
obtain l ′ r ′ where id: (tighten-bound-root ^^ i) (il, ir) = (l ′,r ′)

by (cases (tighten-bound-root ^^ i) (il, ir), auto)
let ?m ′ = (l ′ + r ′) / 2
let ?m = ?m ′ ^ n
define m where m = ?m
note IH = Suc[unfolded id split snd-conv fst-conv]
from IH have sub-interval (l ′, r ′) (il, ir) by auto
hence ill ′: il ≤ l ′ r ′ ≤ ir by auto
with sgn have l ′0 : l ′ > 0 using sgn-1-pos sgn-less-eq-1-rat by blast
from IH have lr ′x: in-interval (l ′, r ′) ?x by auto
hence lr ′′: real-of-rat l ′ ≤ of-rat r ′ by auto
hence lr ′: l ′ ≤ r ′ unfolding of-rat-less-eq .
with l ′0 have r ′0 : r ′ > 0 by auto
note compare = compare-1-rat[OF rai, of ?m, folded cmpx]
from IH have ∗: r ′ − l ′ ≤ (ir − il) / 2 ^ i by auto
have r ′ − (l ′ + r ′) / 2 = (r ′ − l ′) / 2 by (simp add: field-simps)
also have . . . ≤ (ir − il) / 2 ^ i / 2 using ∗

by (rule divide-right-mono, auto)
finally have size: r ′ − (l ′ + r ′) / 2 ≤ (ir − il) / (2 ∗ 2 ^ i) by simp
also have r ′ − (l ′ + r ′) / 2 = (l ′ + r ′) / 2 − l ′ by auto
finally have size ′: (l ′ + r ′) / 2 − l ′ ≤ (ir − il) / (2 ∗ 2 ^ i) by simp
have root n (real-of-rat ?m) = root n ((real-of-rat ?m ′) ^ n) by (simp add:

hom-distribs)
also have . . . = real-of-rat ?m ′

by (rule root-exp-cancel ′, insert l ′0 lr ′, auto)
finally have root: root n (of-rat ?m) = of-rat ?m ′ .
show ?case
proof (cases cmpx ?m)

case Eq
from compare[unfolded Eq] have real-of-1 x = of-rat ?m

unfolding compare-real-def comparator-of-def by (auto split: if-splits)
from arg-cong[OF this, of root n] have ?x = root n (of-rat ?m) .
also have . . . = root n (real-of-rat ?m ′) ^ n

using n real-root-power by (auto simp: hom-distribs)
also have . . . = of-rat ?m ′

168

by (rule root-exp-cancel, insert IH sgn(2) l ′0 r ′0 , auto)
finally have x: ?x = of-rat ?m ′ .
show ?thesis using x id Eq lr ′ ill ′ ir-il by (auto simp: Let-def)

next
case Lt
from compare[unfolded Lt] have lt: of-rat ?m ≤ real-of-1 x

unfolding compare-real-def comparator-of-def by (auto split: if-splits)
have id ′′: ?f (Suc i) = (?m ′,r ′) ?f (Suc i − 1) = (l ′,r ′)

using Lt id by (auto simp add: Let-def)
from real-root-le-mono[OF n ′ lt]
have of-rat ?m ′ ≤ ?x unfolding root by simp
with lr ′x lr ′′ have ineq ′: real-of-rat l ′ + real-of-rat r ′ ≤ ?x ∗ 2 by (auto

simp: hom-distribs)
show ?thesis unfolding id ′′

by (auto simp: Let-def hom-distribs, insert size ineq ′ lr ′ ill ′ lr ′x ir-il, auto)
next

case Gt
from compare[unfolded Gt] have lt: of-rat ?m ≥ real-of-1 x

unfolding compare-real-def comparator-of-def by (auto split: if-splits)
have id ′′: ?f (Suc i) = (l ′,?m ′) ?f (Suc i − 1) = (l ′,r ′)

using Gt id by (auto simp add: Let-def)
from real-root-le-mono[OF n ′ lt]
have ?x ≤ of-rat ?m ′ unfolding root by simp
with lr ′x lr ′′ have ineq ′: ?x ∗ 2 ≤ real-of-rat l ′ + real-of-rat r ′ by (auto

simp: hom-distribs)
show ?thesis unfolding id ′′

by (auto simp: Let-def hom-distribs, insert size ′ ineq ′ lr ′ ill ′ lr ′x ir-il, auto)
qed

qed
} note main = this
fix i
from main[of i] show in-interval (?f i) ?x by auto
from main[of Suc i] show sub-interval (?f (Suc i)) (?f i) by auto
fix eps :: real
assume eps: 0 < eps
define c where c = eps / (max (real-of-rat (ir − il)) 1)
have c0 : c > 0 using eps unfolding c-def by auto
from exp-tends-to-zero[OF - - this, of 1/2] obtain i where c: (1/2)^i ≤ c by

auto
obtain l ′ r ′ where fi: ?f i = (l ′,r ′) by force
from main[of i, unfolded fi] have le: r ′ − l ′ ≤ (ir − il) / 2 ^ i by auto
have iril: real-of-rat (ir − il) ≥ 0 using ir-il by (auto simp: of-rat-less-eq)
show ∃n la ra. ?f n = (la, ra) ∧ real-of-rat ra − real-of-rat la ≤ eps
proof (intro conjI exI , rule fi)
have real-of-rat r ′− of-rat l ′ = real-of-rat (r ′− l ′) by (auto simp: hom-distribs)
also have . . . ≤ real-of-rat ((ir − il) / 2 ^ i) using le unfolding of-rat-less-eq

.
also have . . . = (real-of-rat (ir − il)) ∗ ((1/2) ^ i) by (simp add: field-simps

hom-distribs)

169

also have . . . ≤ (real-of-rat (ir − il)) ∗ c
by (rule mult-left-mono[OF c iril])

also have . . . ≤ eps
proof (cases real-of-rat (ir − il) ≤ 1)

case True
hence c = eps unfolding c-def by (auto simp: hom-distribs)
thus ?thesis using eps True by auto

next
case False
hence max (real-of-rat (ir − il)) 1 = real-of-rat (ir − il) real-of-rat (ir − il)

6= 0
by (auto simp: hom-distribs)

hence (real-of-rat (ir − il)) ∗ c = eps unfolding c-def by auto
thus ?thesis by simp

qed
finally show real-of-rat r ′ − of-rat l ′ ≤ eps .

qed
qed
end

private fun root-pos-1 :: real-alg-1 ⇒ real-alg-2 where
root-pos-1 (p,l,r) = (

(select-correct-factor-int-poly
(tighten-bound-root (compare-1-rat (p,l,r)))
(λ x. x)
(initial-lower-bound l, initial-upper-bound r)
(poly-nth-root n p)))

fun root-1 :: real-alg-1 ⇒ real-alg-2 where
root-1 (p,l,r) = (

if n = 0 ∨ r = 0 then Rational 0
else if r > 0 then root-pos-1 (p,l,r)
else uminus-2 (root-pos-1 (uminus-1 (p,l,r))))

context
assumes n: n 6= 0

begin

lemma initial-upper-bound: assumes x: x > 0 and xr : x ≤ of-rat r
shows sgn (initial-upper-bound r) = 1 root n x ≤ of-rat (initial-upper-bound r)

proof −
have n: n > 0 using n by auto
note d = initial-upper-bound-def
let ?r = initial-upper-bound r
from x xr have r0 : r > 0 by (meson not-less of-rat-le-0-iff order-trans)
hence of-rat r > (0 :: real) by auto
hence root n (of-rat r) > 0 using n by simp
hence 1 ≤ ceiling (root n (of-rat r)) by auto
hence (1 :: rat) ≤ of-int (ceiling (root n (of-rat r))) by linarith

170

also have . . . = ?r unfolding d by simp
finally show sgn ?r = 1 unfolding sgn-rat-def by auto
have root n x ≤ root n (of-rat r)

unfolding real-root-le-iff [OF n] by (rule xr)
also have . . . ≤ of-rat ?r unfolding d by simp
finally show root n x ≤ of-rat ?r .

qed

lemma initial-lower-bound: assumes l: l > 0 and lx: of-rat l ≤ x
shows sgn (initial-lower-bound l) = 1 of-rat (initial-lower-bound l) ≤ root n x

proof −
have n: n > 0 using n by auto
note d = initial-lower-bound-def
let ?l = initial-lower-bound l
from l lx have x0 : x > 0 by (meson not-less of-rat-le-0-iff order-trans)
have sgn ?l = 1 ∧ of-rat ?l ≤ root n x
proof (cases l ≤ 1)

case True
hence ll: ?l = l and l0 : of-rat l ≥ (0 :: real) and l1 : of-rat l ≤ (1 :: real)

using l unfolding True d by auto
have sgn: sgn ?l = 1 using l unfolding ll by auto
have of-rat ?l = of-rat l unfolding ll by simp
also have of-rat l ≤ root n (of-rat l) using real-root-increasing[OF - - l0 l1 , of

1 n] n
by (cases n = 1 , auto)

also have . . . ≤ root n x using lx unfolding real-root-le-iff [OF n] .
finally show ?thesis using sgn by auto

next
case False
hence l: (1 :: real) ≤ of-rat l and ll: ?l = of-int (floor (root n (of-rat l)))

unfolding d by auto
hence root n 1 ≤ root n (of-rat l)

unfolding real-root-le-iff [OF n] by auto
hence 1 ≤ root n (of-rat l) using n by auto
from floor-mono[OF this] have 1 ≤ ?l

using one-le-floor unfolding ll by fastforce
hence sgn: sgn ?l = 1 by simp
have of-rat ?l ≤ root n (of-rat l) unfolding ll by simp
also have . . . ≤ root n x using lx unfolding real-root-le-iff [OF n] .
finally have of-rat ?l ≤ root n x .
with sgn show ?thesis by auto

qed
thus sgn ?l = 1 of-rat ?l ≤ root n x by auto

qed

lemma root-pos-1 :
assumes x: invariant-1 x and pos: rai-ub x > 0
defines y: y ≡ root-pos-1 x
shows invariant-2 y ∧ real-of-2 y = root n (real-of-1 x)

171

proof (cases x)
case (fields p l r)
let ?l = initial-lower-bound l
let ?r = initial-upper-bound r
from x fields have rai: invariant-1 (p,l,r) by auto
note ∗ = invariant-1D[OF this]
let ?x = the-unique-root (p,l,r)
from pos[unfolded fields] ∗
have sgnl: sgn l = 1 by auto
from sgnl have l0 : l > 0 by (unfold sgn-1-pos)
hence ll0 : real-of-rat l > 0 by auto
from ∗ have lx: of-rat l ≤ ?x by auto
with ll0 have x0 : ?x > 0 by linarith
note il = initial-lower-bound[OF l0 lx]
from ∗ have ?x ≤ of-rat r by auto
note iu = initial-upper-bound[OF x0 this]
let ?p = poly-nth-root n p
from x0 have id: root n ?x ^ n = ?x using n real-root-pow-pos by blast
have rc: root-cond (?p, ?l, ?r) (root n ?x)

using il iu ∗ by (intro root-condI , auto simp: ipoly-nth-root id)
hence root: ipoly ?p (root n (real-of-1 x)) = 0

unfolding root-cond-def fields by auto
from ∗ have p 6= 0 by auto
hence p ′: ?p 6= 0 using poly-nth-root-0 [of n p] n by auto
have tbr : 0 ≤ real-of-1 x

real-of-rat (initial-lower-bound l) ≤ root n (real-of-1 x)
root n (real-of-1 x) ≤ real-of-rat (initial-upper-bound r)

using x0 il(2) iu(2) fields by auto
from select-correct-factor-int-poly[OF tighten-bound-root[OF il(1)[folded fields]

tbr x refl n] refl root p ′]
show ?thesis by (simp add: y fields)

qed

end

lemma root-1 : assumes x: invariant-1 x
defines y: y ≡ root-1 x
shows invariant-2 y ∧ (real-of-2 y = root n (real-of-1 x))

proof (cases n = 0 ∨ rai-ub x = 0)
case True
with x have n = 0 ∨ real-of-1 x = 0 by (cases x, auto)
then have root n (real-of-1 x) = 0 by auto
then show ?thesis unfolding y root-1 .simps

using x by (cases x, auto)
next

case False with x have n: n 6= 0 and x0 : real-of-1 x 6= 0 by (simp, cases x ,
auto)

note rt = root-pos-1
show ?thesis

172

proof (cases rai-ub x 0 ::rat rule:linorder-cases)
case greater
with rt[OF n x this] n show ?thesis by (unfold y, cases x, simp)

next
case less
let ?um = uminus-1
let ?rt = root-pos-1
from n less y x0 have y: y = uminus-2 (?rt (?um x)) by (cases x, auto)
from uminus-1 [OF x] have umx: invariant-1 (?um x) and umx2 : real-of-1

(?um x) = − real-of-1 x by auto
with x less have 0 < rai-ub (uminus-1 x)

by (cases x, auto simp: uminus-1 .simps Let-def)
from rt[OF n umx this] umx2 have rumx: invariant-2 (?rt (?um x))

and rumx2 : real-of-2 (?rt (?um x)) = root n (− real-of-1 x)
by auto

from uminus-2 [OF rumx] rumx2 y real-root-minus show ?thesis by auto
next

case equal with x0 x show ?thesis by (cases x, auto)
qed

qed
end

declare root-1 .simps[simp del]

11.2.13 Embedding of Rational Numbers
definition of-rat-1 :: rat ⇒ real-alg-1 where

of-rat-1 x ≡ (poly-rat x,x,x)

lemma of-rat-1 :
shows invariant-1 (of-rat-1 x) and real-of-1 (of-rat-1 x) = of-rat x
unfolding of-rat-1-def

by (atomize(full), intro invariant-1-realI unique-rootI poly-condI , auto)

fun info-2 :: real-alg-2 ⇒ rat + int poly × nat where
info-2 (Rational x) = Inl x
| info-2 (Irrational n (p,l,r)) = Inr (p,n)

lemma info-2-card: assumes rc: invariant-2 x
shows info-2 x = Inr (p,n) =⇒ poly-cond p ∧ ipoly p (real-of-2 x) = 0 ∧ degree

p ≥ 2
∧ card (roots-below p (real-of-2 x)) = n
info-2 x = Inl y =⇒ real-of-2 x = of-rat y

proof (atomize(full), goal-cases)
case 1
show ?case
proof (cases x)

case (Irrational m rai)
then obtain q l r where x: x = Irrational m (q,l,r) by (cases rai, auto)

173

show ?thesis
proof (cases q = p ∧ m = n)

case False
thus ?thesis using x by auto

next
case True
with x have x: x = Irrational n (p,l,r) by auto
from rc[unfolded x, simplified] have inv: invariant-1-2 (p,l,r) and

n: card (roots-below p (real-of-2 x)) = n and 1 : degree p 6= 1
by (auto simp: x)

from inv have degree p 6= 0 unfolding irreducible-def by auto
with 1 have degree p ≥ 2 by linarith
thus ?thesis unfolding n using inv x by (auto elim!: invariant-1E)

qed
qed auto

qed

lemma real-of-2-Irrational: invariant-2 (Irrational n rai) =⇒ real-of-2 (Irrational
n rai) 6= of-rat x
proof

assume invariant-2 (Irrational n rai) and rat: real-of-2 (Irrational n rai) =
real-of-rat x

hence real-of-1 rai ∈ � invariant-1-2 rai by auto
from invariant-1-2-of-rat[OF this(2)] rat show False by auto

qed

lemma info-2 : assumes
ix: invariant-2 x and iy: invariant-2 y

shows info-2 x = info-2 y ←→ real-of-2 x = real-of-2 y
proof (cases x)

case x: (Irrational n1 rai1)
note ix = ix[unfolded x]
show ?thesis
proof (cases y)

case (Rational y)
with real-of-2-Irrational[OF ix, of y] show ?thesis unfolding x by (cases rai1 ,

auto)
next

case y: (Irrational n2 rai2)
obtain p1 l1 r1 where rai1 : rai1 = (p1 ,l1 ,r1) by (cases rai1)
obtain p2 l2 r2 where rai2 : rai2 = (p2 ,l2 ,r2) by (cases rai2)
let ?rx = the-unique-root (p1 ,l1 ,r1)
let ?ry = the-unique-root (p2 ,l2 ,r2)
have id: (info-2 x = info-2 y) = (p1 = p2 ∧ n1 = n2)
(real-of-2 x = real-of-2 y) = (?rx = ?ry)
unfolding x y rai1 rai2 by auto

from ix[unfolded x rai1]
have ix: invariant-1 (p1 , l1 , r1) and deg1 : degree p1 > 1 and n1 : n1 = card

(roots-below p1 ?rx) by auto

174

note Ix = invariant-1D[OF ix]
from deg1 have p1-0 : p1 6= 0 by auto
from iy[unfolded y rai2]
have iy: invariant-1 (p2 , l2 , r2) and degree p2 > 1 and n2 : n2 = card

(roots-below p2 ?ry) by auto
note Iy = invariant-1D[OF iy]
show ?thesis unfolding id
proof

assume eq: ?rx = ?ry
from Ix
have algx: p1 represents ?rx ∧ irreducible p1 ∧ lead-coeff p1 > 0 unfolding

represents-def by auto
from iy
have algy: p2 represents ?rx ∧ irreducible p2 ∧ lead-coeff p2 > 0 unfolding

represents-def eq by (auto elim!: invariant-1E)
from algx have algebraic ?rx unfolding algebraic-altdef-ipoly by auto
note unique = algebraic-imp-represents-unique[OF this]
with algx algy have id: p2 = p1 by auto
from eq id n1 n2 show p1 = p2 ∧ n1 = n2 by auto

next
assume p1 = p2 ∧ n1 = n2
hence id: p1 = p2 n1 = n2 by auto
hence card: card (roots-below p1 ?rx) = card (roots-below p1 ?ry) unfolding

n1 n2 by auto
show ?rx = ?ry
proof (cases ?rx ?ry rule: linorder-cases)

case less
have roots-below p1 ?rx = roots-below p1 ?ry
proof (intro card-subset-eq finite-subset[OF - ipoly-roots-finite] card)

from less show roots-below p1 ?rx ⊆ roots-below p1 ?ry by auto
qed (insert p1-0 , auto)
then show ?thesis using id less unique-rootD(3)[OF Iy(4)] by (auto simp:

less-eq-real-def)
next

case equal
then show ?thesis by (simp add: id)

next
case greater
have roots-below p1 ?ry = roots-below p1 ?rx

proof (intro card-subset-eq card[symmetric] finite-subset[OF - ipoly-roots-finite[OF
p1-0]])

from greater show roots-below p1 ?ry ⊆ roots-below p1 ?rx by auto
qed auto
hence roots-below p2 ?ry = roots-below p2 ?rx unfolding id by auto
thus ?thesis using id greater unique-rootD(3)[OF Ix(4)] by (auto simp:

less-eq-real-def)
qed

qed
qed

175

next
case x: (Rational x)
show ?thesis
proof (cases y)

case (Rational y)
thus ?thesis using x by auto

next
case y: (Irrational n rai)
with real-of-2-Irrational[OF iy[unfolded y], of x] show ?thesis unfolding x by

(cases rai, auto)
qed

qed

lemma info-2-unique: invariant-2 x =⇒ invariant-2 y =⇒
real-of-2 x = real-of-2 y =⇒ info-2 x = info-2 y
using info-2 by blast

lemma info-2-inj: invariant-2 x =⇒ invariant-2 y =⇒ info-2 x = info-2 y =⇒
real-of-2 x = real-of-2 y
using info-2 by blast

context
fixes cr1 cr2 :: rat ⇒ rat ⇒ nat

begin
partial-function (tailrec) compare-1 :: int poly ⇒ int poly ⇒ rat ⇒ rat ⇒ rat ⇒
rat ⇒ rat ⇒ rat ⇒ order where
[code]: compare-1 p1 p2 l1 r1 sr1 l2 r2 sr2 = (if r1 < l2 then Lt else if r2 < l1

then Gt
else let
(l1 ′,r1 ′,sr1 ′) = tighten-poly-bounds p1 l1 r1 sr1 ;
(l2 ′,r2 ′,sr2 ′) = tighten-poly-bounds p2 l2 r2 sr2

in compare-1 p1 p2 l1 ′ r1 ′ sr1 ′ l2 ′ r2 ′ sr2 ′)

lemma compare-1 :
assumes ur1 : unique-root (p1 ,l1 ,r1)
and ur2 : unique-root (p2 ,l2 ,r2)
and pc: poly-cond2 p1 poly-cond2 p2
and diff : the-unique-root (p1 ,l1 ,r1) 6= the-unique-root (p2 ,l2 ,r2)
and sr : sr1 = sgn (ipoly p1 r1) sr2 = sgn (ipoly p2 r2)

shows compare-1 p1 p2 l1 r1 sr1 l2 r2 sr2 = compare (the-unique-root (p1 ,l1 ,r1))
(the-unique-root (p2 ,l2 ,r2))
proof −

let ?r = real-of-rat
{

fix d x y
assume d: d = (r1 − l1) + (r2 − l2) and xy: x = the-unique-root (p1 ,l1 ,r1)

y = the-unique-root (p2 ,l2 ,r2)
define delta where delta = abs (x − y) / 4

176

have delta: delta > 0 and diff : x 6= y unfolding delta-def using diff xy by
auto

let ?rel ′ = {(x, y). 0 ≤ y ∧ delta-gt delta x y}
let ?rel = inv-image ?rel ′ ?r
have SN : SN ?rel by (rule SN-inv-image[OF delta-gt-SN [OF delta]])
from d ur1 ur2
have ?thesis unfolding xy[symmetric] using xy sr
proof (induct d arbitrary: l1 r1 l2 r2 sr1 sr2 rule: SN-induct[OF SN])

case (1 d l1 r1 l2 r2)
note IH = 1 (1)
note d = 1 (2)
note ur = 1 (3−4)
note xy = 1 (5−6)
note sr = 1 (7−8)
note simps = compare-1 .simps[of p1 p2 l1 r1 sr1 l2 r2 sr2]
note urx = unique-rootD[OF ur(1), folded xy]
note ury = unique-rootD[OF ur(2), folded xy]
show ?case (is ?l = -)
proof (cases r1 < l2)

case True
hence l: ?l = Lt and lt: ?r r1 < ?r l2 unfolding simps of-rat-less by auto
show ?thesis unfolding l using lt True urx(2) ury(1)

by (auto simp: compare-real-def comparator-of-def)
next

case False note le = this
show ?thesis
proof (cases r2 < l1)

case True
with le have l: ?l = Gt and lt: ?r r2 < ?r l1 unfolding simps of-rat-less

by auto
show ?thesis unfolding l using lt True ury(2) urx(1)

by (auto simp: compare-real-def comparator-of-def)
next

case False
obtain l1 ′ r1 ′ sr1 ′ where tb1 : tighten-poly-bounds p1 l1 r1 sr1 =

(l1 ′,r1 ′,sr1 ′)
by (cases rule: prod-cases3 , auto)

obtain l2 ′ r2 ′ sr2 ′ where tb2 : tighten-poly-bounds p2 l2 r2 sr2 =
(l2 ′,r2 ′,sr2 ′)

by (cases rule: prod-cases3 , auto)
from False le tb1 tb2 have l: ?l = compare-1 p1 p2 l1 ′ r1 ′ sr1 ′ l2 ′ r2 ′

sr2 ′ unfolding simps
by auto

from tighten-poly-bounds[OF tb1 ur(1) pc(1) sr(1)]
have rc1 : root-cond (p1 , l1 ′, r1 ′) (the-unique-root (p1 , l1 , r1))
and bnd1 : l1 ≤ l1 ′ l1 ′ ≤ r1 ′ r1 ′ ≤ r1 and d1 : r1 ′ − l1 ′ = (r1 − l1) /

2
and sr1 : sr1 ′ = sgn (ipoly p1 r1 ′) by auto

from pc have p1 6= 0 p2 6= 0 by auto

177

from unique-root-sub-interval[OF ur(1) rc1 bnd1 (1 ,3)] xy ur this
have ur1 : unique-root (p1 , l1 ′, r1 ′) and x: x = the-unique-root (p1 , l1 ′,

r1 ′) by (auto intro!: the-unique-root-eqI)
from tighten-poly-bounds[OF tb2 ur(2) pc(2) sr(2)]
have rc2 : root-cond (p2 , l2 ′, r2 ′) (the-unique-root (p2 , l2 , r2))
and bnd2 : l2 ≤ l2 ′ l2 ′ ≤ r2 ′ r2 ′ ≤ r2 and d2 : r2 ′ − l2 ′ = (r2 − l2) /

2
and sr2 : sr2 ′ = sgn (ipoly p2 r2 ′) by auto

from unique-root-sub-interval[OF ur(2) rc2 bnd2 (1 ,3)] xy ur pc
have ur2 : unique-root (p2 , l2 ′, r2 ′) and y: y = the-unique-root (p2 , l2 ′,

r2 ′) by auto
define d ′ where d ′ = d/2
have d ′: d ′ = r1 ′ − l1 ′ + (r2 ′ − l2 ′) unfolding d ′-def d d1 d2 by (simp

add: field-simps)
have d ′0 : d ′ ≥ 0 using bnd1 bnd2 unfolding d ′ by auto
have dd: d − d ′ = d/2 unfolding d ′-def by simp
have abs (x − y) ≤ 2 ∗ ?r d
proof (rule ccontr)

assume ¬ ?thesis
hence lt: 2 ∗ ?r d < abs (x − y) by auto
have r1 − l1 ≤ d r2 − l2 ≤ d unfolding d using bnd1 bnd2 by auto
from this[folded of-rat-less-eq[where ′a = real]] lt
have ?r (r1 − l1) < abs (x − y) / 2 ?r (r2 − l2) < abs (x − y) / 2

and dd: ?r r1 − ?r l1 ≤ ?r d ?r r2 − ?r l2 ≤ ?r d by (auto simp:
of-rat-diff)

from le have r1 ≥ l2 by auto hence r1l2 : ?r r1 ≥ ?r l2 unfolding
of-rat-less-eq by auto

from False have r2 ≥ l1 by auto hence r2l1 : ?r r2 ≥ ?r l1 unfolding
of-rat-less-eq by auto

show False
proof (cases x ≤ y)

case True
from urx(1−2) dd(1) have ?r r1 ≤ x + ?r d by auto
with r1l2 have ?r l2 ≤ x + ?r d by auto
with True lt ury(2) dd(2) show False by auto

next
case False
from ury(1−2) dd(2) have ?r r2 ≤ y + ?r d by auto
with r2l1 have ?r l1 ≤ y + ?r d by auto
with False lt urx(2) dd(1) show False by auto

qed
qed
hence dd ′: delta-gt delta (?r d) (?r d ′)

unfolding delta-gt-def delta-def using dd by (auto simp: hom-distribs)
show ?thesis unfolding l

by (rule IH [OF - d ′ ur1 ur2 x y sr1 sr2], insert d ′0 dd ′, auto)
qed

qed
qed

178

}
thus ?thesis by auto

qed
end

fun real-alg-1 :: real-alg-2 ⇒ real-alg-1 where
real-alg-1 (Rational r) = of-rat-1 r
| real-alg-1 (Irrational n rai) = rai

lemma real-alg-1 : real-of-1 (real-alg-1 x) = real-of-2 x
by (cases x, auto simp: of-rat-1)

definition root-2 :: nat ⇒ real-alg-2 ⇒ real-alg-2 where
root-2 n x = root-1 n (real-alg-1 x)

lemma root-2 : assumes invariant-2 x
shows real-of-2 (root-2 n x) = root n (real-of-2 x)
invariant-2 (root-2 n x)

proof (atomize(full), cases x, goal-cases)
case (1 y)
from of-rat-1 [of y] root-1 [of of-rat-1 y n] assms 1 real-alg-2
show ?case by (simp add: root-2-def)

next
case (2 i rai)
from root-1 [of rai n] assms 2 real-alg-2
show ?case by (auto simp: root-2-def)

qed

fun add-2 :: real-alg-2 ⇒ real-alg-2 ⇒ real-alg-2 where
add-2 (Rational r) (Rational q) = Rational (r + q)
| add-2 (Rational r) (Irrational n x) = Irrational n (add-rat-1 r x)
| add-2 (Irrational n x) (Rational q) = Irrational n (add-rat-1 q x)
| add-2 (Irrational n x) (Irrational m y) = add-1 x y

lemma add-2 : assumes x: invariant-2 x and y: invariant-2 y
shows invariant-2 (add-2 x y) (is ?g1)

and real-of-2 (add-2 x y) = real-of-2 x + real-of-2 y (is ?g2)
using assms add-rat-1 add-1
by (atomize (full), (cases x; cases y), auto simp: hom-distribs)

fun mult-2 :: real-alg-2 ⇒ real-alg-2 ⇒ real-alg-2 where
mult-2 (Rational r) (Rational q) = Rational (r ∗ q)
| mult-2 (Rational r) (Irrational n y) = mult-rat-1 r y
| mult-2 (Irrational n x) (Rational q) = mult-rat-1 q x
| mult-2 (Irrational n x) (Irrational m y) = mult-1 x y

lemma mult-2 : assumes invariant-2 x invariant-2 y

179

shows real-of-2 (mult-2 x y) = real-of-2 x ∗ real-of-2 y
invariant-2 (mult-2 x y)
using assms
by (atomize(full), (cases x; cases y; auto simp: mult-rat-1 mult-1 hom-distribs))

fun to-rat-2 :: real-alg-2 ⇒ rat option where
to-rat-2 (Rational r) = Some r
| to-rat-2 (Irrational n rai) = None

lemma to-rat-2 : assumes rc: invariant-2 x
shows to-rat-2 x = (if real-of-2 x ∈ � then Some (THE q. real-of-2 x = of-rat

q) else None)
proof (cases x)

case (Irrational n rai)
from real-of-2-Irrational[OF rc[unfolded this]] show ?thesis

unfolding Irrational Rats-def by auto
qed simp

fun equal-2 :: real-alg-2 ⇒ real-alg-2 ⇒ bool where
equal-2 (Rational r) (Rational q) = (r = q)
| equal-2 (Irrational n (p,-)) (Irrational m (q,-)) = (p = q ∧ n = m)
| equal-2 (Rational r) (Irrational - yy) = False
| equal-2 (Irrational - xx) (Rational q) = False

lemma equal-2 [simp]: assumes rc: invariant-2 x invariant-2 y
shows equal-2 x y = (real-of-2 x = real-of-2 y)
using info-2 [OF rc]
by (cases x; cases y, auto)

fun compare-2 :: real-alg-2 ⇒ real-alg-2 ⇒ order where
compare-2 (Rational r) (Rational q) = (compare r q)
| compare-2 (Irrational n (p,l,r)) (Irrational m (q,l ′,r ′)) = (if p = q ∧ n = m then
Eq

else compare-1 p q l r (sgn (ipoly p r)) l ′ r ′ (sgn (ipoly q r ′)))
| compare-2 (Rational r) (Irrational - xx) = (compare-rat-1 r xx)
| compare-2 (Irrational - xx) (Rational r) = (invert-order (compare-rat-1 r xx))

lemma compare-2 : assumes rc: invariant-2 x invariant-2 y
shows compare-2 x y = compare (real-of-2 x) (real-of-2 y)

proof (cases x)
case (Rational r) note xx = this
show ?thesis
proof (cases y)

case (Rational q) note yy = this
show ?thesis unfolding xx yy by (simp add: compare-rat-def compare-real-def

comparator-of-def of-rat-less)
next

case (Irrational n yy) note yy = this
from compare-rat-1 rc

180

show ?thesis unfolding xx yy by (simp add: of-rat-1)
qed

next
case (Irrational n xx) note xx = this
show ?thesis
proof (cases y)

case (Rational q) note yy = this
from compare-rat-1 rc
show ?thesis unfolding xx yy by simp

next
case (Irrational m yy) note yy = this
obtain p l r where xxx: xx = (p,l,r) by (cases xx)
obtain q l ′ r ′ where yyy: yy = (q,l ′,r ′) by (cases yy)
note rc = rc[unfolded xx xxx yy yyy]
from rc have I : invariant-1-2 (p,l,r) invariant-1-2 (q,l ′,r ′) by auto
then have unique-root (p,l,r) unique-root (q,l ′,r ′) poly-cond2 p poly-cond2 q

by auto
from compare-1 [OF this - refl refl]
show ?thesis using equal-2 [OF rc] unfolding xx xxx yy yyy by simp

qed
qed

fun sgn-2 :: real-alg-2 ⇒ rat where
sgn-2 (Rational r) = sgn r
| sgn-2 (Irrational n rai) = sgn-1 rai

lemma sgn-2 : invariant-2 x =⇒ real-of-rat (sgn-2 x) = sgn (real-of-2 x)
using sgn-1 by (cases x, auto simp: real-of-rat-sgn)

fun floor-2 :: real-alg-2 ⇒ int where
floor-2 (Rational r) = floor r
| floor-2 (Irrational n rai) = floor-1 rai

lemma floor-2 : invariant-2 x =⇒ floor-2 x = floor (real-of-2 x)
by (cases x, auto simp: floor-1)

11.2.14 Definitions and Algorithms on Type with Invariant
lift-definition of-rat-3 :: rat ⇒ real-alg-3 is of-rat-2

by (auto simp: of-rat-2)

lemma of-rat-3 : real-of-3 (of-rat-3 x) = of-rat x
by (transfer , auto simp: of-rat-2)

lift-definition root-3 :: nat ⇒ real-alg-3 ⇒ real-alg-3 is root-2
by (auto simp: root-2)

181

lemma root-3 : real-of-3 (root-3 n x) = root n (real-of-3 x)
by (transfer , auto simp: root-2)

lift-definition equal-3 :: real-alg-3 ⇒ real-alg-3 ⇒ bool is equal-2 .

lemma equal-3 : equal-3 x y = (real-of-3 x = real-of-3 y)
by (transfer , auto)

lift-definition compare-3 :: real-alg-3 ⇒ real-alg-3 ⇒ order is compare-2 .

lemma compare-3 : compare-3 x y = (compare (real-of-3 x) (real-of-3 y))
by (transfer , auto simp: compare-2)

lift-definition add-3 :: real-alg-3 ⇒ real-alg-3 ⇒ real-alg-3 is add-2
by (auto simp: add-2)

lemma add-3 : real-of-3 (add-3 x y) = real-of-3 x + real-of-3 y
by (transfer , auto simp: add-2)

lift-definition mult-3 :: real-alg-3 ⇒ real-alg-3 ⇒ real-alg-3 is mult-2
by (auto simp: mult-2)

lemma mult-3 : real-of-3 (mult-3 x y) = real-of-3 x ∗ real-of-3 y
by (transfer , auto simp: mult-2)

lift-definition sgn-3 :: real-alg-3 ⇒ rat is sgn-2 .

lemma sgn-3 : real-of-rat (sgn-3 x) = sgn (real-of-3 x)
by (transfer , auto simp: sgn-2)

lift-definition to-rat-3 :: real-alg-3 ⇒ rat option is to-rat-2 .

lemma to-rat-3 : to-rat-3 x =
(if real-of-3 x ∈ � then Some (THE q. real-of-3 x = of-rat q) else None)
by (transfer , simp add: to-rat-2)

lift-definition floor-3 :: real-alg-3 ⇒ int is floor-2 .

lemma floor-3 : floor-3 x = floor (real-of-3 x)
by (transfer , auto simp: floor-2)

lift-definition info-3 :: real-alg-3 ⇒ rat + int poly × nat is info-2 .

lemma info-3-fun: real-of-3 x = real-of-3 y =⇒ info-3 x = info-3 y
by (transfer , intro info-2-unique, auto)

182

lift-definition info-real-alg :: real-alg ⇒ rat + int poly × nat is info-3
by (metis info-3-fun)

lemma info-real-alg:
info-real-alg x = Inr (p,n) =⇒ p represents (real-of x) ∧ card {y. y ≤ real-of x
∧ ipoly p y = 0} = n ∧ irreducible p

info-real-alg x = Inl q =⇒ real-of x = of-rat q
proof (atomize(full), transfer , transfer , goal-cases)

case (1 x p n q)
from 1 have x: invariant-2 x by auto
note info = info-2-card[OF this]
show ?case
proof (cases x)

case irr : (Irrational m rai)
from info(1)[of p n]
show ?thesis unfolding irr by (cases rai, auto simp: poly-cond-def)

qed (insert 1 info, auto)
qed

instantiation real-alg :: plus
begin
lift-definition plus-real-alg :: real-alg ⇒ real-alg ⇒ real-alg is add-3

by (simp add: add-3)
instance ..
end

lemma plus-real-alg: (real-of x) + (real-of y) = real-of (x + y)
by (transfer , rule add-3 [symmetric])

instantiation real-alg :: minus
begin
definition minus-real-alg :: real-alg ⇒ real-alg ⇒ real-alg where

minus-real-alg x y = x + (−y)
instance ..
end

lemma minus-real-alg: (real-of x) − (real-of y) = real-of (x − y)
unfolding minus-real-alg-def minus-real-def uminus-real-alg plus-real-alg ..

lift-definition of-rat-real-alg :: rat ⇒ real-alg is of-rat-3 .

lemma of-rat-real-alg: real-of-rat x = real-of (of-rat-real-alg x)
by (transfer , rule of-rat-3 [symmetric])

instantiation real-alg :: zero

183

begin
definition zero-real-alg :: real-alg where zero-real-alg ≡ of-rat-real-alg 0
instance ..
end

lemma zero-real-alg: 0 = real-of 0
unfolding zero-real-alg-def by (simp add: of-rat-real-alg[symmetric])

instantiation real-alg :: one
begin
definition one-real-alg :: real-alg where one-real-alg ≡ of-rat-real-alg 1
instance ..
end

lemma one-real-alg: 1 = real-of 1
unfolding one-real-alg-def by (simp add: of-rat-real-alg[symmetric])

instantiation real-alg :: times
begin
lift-definition times-real-alg :: real-alg ⇒ real-alg ⇒ real-alg is mult-3

by (simp add: mult-3)
instance ..
end

lemma times-real-alg: (real-of x) ∗ (real-of y) = real-of (x ∗ y)
by (transfer , rule mult-3 [symmetric])

instantiation real-alg :: inverse
begin
lift-definition inverse-real-alg :: real-alg ⇒ real-alg is inverse-3

by (simp add: inverse-3)
definition divide-real-alg :: real-alg ⇒ real-alg ⇒ real-alg where

divide-real-alg x y = x ∗ inverse y
instance ..
end

lemma inverse-real-alg: inverse (real-of x) = real-of (inverse x)
by (transfer , rule inverse-3 [symmetric])

lemma divide-real-alg: (real-of x) / (real-of y) = real-of (x / y)
unfolding divide-real-alg-def times-real-alg[symmetric] divide-real-def inverse-real-alg

..

instance real-alg :: ab-group-add
apply intro-classes

184

apply (transfer , unfold add-3 , force)
apply (unfold zero-real-alg-def , transfer , unfold add-3 of-rat-3 , force)
apply (transfer , unfold add-3 of-rat-3 , force)
apply (transfer , unfold add-3 uminus-3 of-rat-3 , force)
apply (unfold minus-real-alg-def , force)

done

instance real-alg :: field
apply intro-classes
apply (transfer , unfold mult-3 , force)
apply (transfer , unfold mult-3 , force)
apply (unfold one-real-alg-def , transfer , unfold mult-3 of-rat-3 , force)
apply (transfer , unfold mult-3 add-3 , force simp: field-simps)
apply (unfold zero-real-alg-def , transfer , unfold of-rat-3 , force)
apply (transfer , unfold mult-3 inverse-3 of-rat-3 , force simp: field-simps)
apply (unfold divide-real-alg-def , force)
apply (transfer , unfold inverse-3 of-rat-3 , force)

done

instance real-alg :: numeral ..

lift-definition root-real-alg :: nat ⇒ real-alg ⇒ real-alg is root-3
by (simp add: root-3)

lemma root-real-alg: root n (real-of x) = real-of (root-real-alg n x)
by (transfer , rule root-3 [symmetric])

lift-definition sgn-real-alg-rat :: real-alg ⇒ rat is sgn-3
by (insert sgn-3 , metis to-rat-of-rat)

lemma sgn-real-alg-rat: real-of-rat (sgn-real-alg-rat x) = sgn (real-of x)
by (transfer , auto simp: sgn-3)

instantiation real-alg :: sgn
begin
definition sgn-real-alg :: real-alg ⇒ real-alg where

sgn-real-alg x = of-rat-real-alg (sgn-real-alg-rat x)
instance ..
end

lemma sgn-real-alg: sgn (real-of x) = real-of (sgn x)
unfolding sgn-real-alg-def of-rat-real-alg[symmetric]
by (transfer , simp add: sgn-3)

185

instantiation real-alg :: equal
begin
lift-definition equal-real-alg :: real-alg ⇒ real-alg ⇒ bool is equal-3

by (simp add: equal-3)
instance
proof

fix x y :: real-alg
show equal-class.equal x y = (x = y)

by (transfer , simp add: equal-3)
qed
end

lemma equal-real-alg: HOL.equal (real-of x) (real-of y) = (x = y)
unfolding equal-real-def by (transfer , auto)

instantiation real-alg :: ord
begin

definition less-real-alg :: real-alg ⇒ real-alg ⇒ bool where
[code del]: less-real-alg x y = (real-of x < real-of y)

definition less-eq-real-alg :: real-alg ⇒ real-alg ⇒ bool where
[code del]: less-eq-real-alg x y = (real-of x ≤ real-of y)

instance ..
end

lemma less-real-alg: less (real-of x) (real-of y) = (x < y) unfolding less-real-alg-def
..
lemma less-eq-real-alg: less-eq (real-of x) (real-of y) = (x ≤ y) unfolding less-eq-real-alg-def
..

instantiation real-alg :: compare-order
begin

lift-definition compare-real-alg :: real-alg ⇒ real-alg ⇒ order is compare-3
by (simp add: compare-3)

lemma compare-real-alg: compare (real-of x) (real-of y) = (compare x y)
by (transfer , simp add: compare-3)

instance
proof (intro-classes, unfold compare-real-alg[symmetric, abs-def])

show le-of-comp (λx y. compare (real-of x) (real-of y)) = (≤)
by (intro ext, auto simp: compare-real-def comparator-of-def le-of-comp-def

less-eq-real-alg-def)
show lt-of-comp (λx y. compare (real-of x) (real-of y)) = (<)

by (intro ext, auto simp: compare-real-def comparator-of-def lt-of-comp-def

186

less-real-alg-def)
show comparator (λx y. compare (real-of x) (real-of y))

unfolding comparator-def
proof (intro conjI impI allI)

fix x y z :: real-alg
let ?r = real-of
note rc = comparator-compare[where ′a = real, unfolded comparator-def]
from rc show invert-order (compare (?r x) (?r y)) = compare (?r y) (?r x)

by blast
from rc show compare (?r x) (?r y) = Lt =⇒ compare (?r y) (?r z) = Lt =⇒

compare (?r x) (?r z) = Lt by blast
assume compare (?r x) (?r y) = Eq
with rc have ?r x = ?r y by blast
thus x = y unfolding real-of-inj .

qed
qed
end

lemma less-eq-real-alg-code[code]:
(less-eq :: real-alg ⇒ real-alg ⇒ bool) = le-of-comp compare
(less :: real-alg ⇒ real-alg ⇒ bool) = lt-of-comp compare
by (rule ord-defs(1)[symmetric], rule ord-defs(2)[symmetric])

instantiation real-alg :: abs
begin

definition abs-real-alg :: real-alg ⇒ real-alg where
abs-real-alg x = (if real-of x < 0 then uminus x else x)

instance ..
end

lemma abs-real-alg: abs (real-of x) = real-of (abs x)
unfolding abs-real-alg-def abs-real-def if-distrib
by (auto simp: uminus-real-alg)

lemma sgn-real-alg-sound: sgn x = (if x = 0 then 0 else if 0 < real-of x then 1
else − 1)
(is - = ?r)

proof −
have real-of (sgn x) = sgn (real-of x) by (simp add: sgn-real-alg)
also have . . . = real-of ?r unfolding sgn-real-def if-distrib
by (auto simp: less-real-alg-def
zero-real-alg-def one-real-alg-def of-rat-real-alg[symmetric] equal-real-alg[symmetric]
equal-real-def uminus-real-alg[symmetric])

finally show sgn x = ?r unfolding equal-real-alg[symmetric] equal-real-def by
simp
qed

lemma real-of-of-int: real-of-rat (rat-of-int z) = real-of (of-int z)

187

proof (cases z ≥ 0)
case True
define n where n = nat z
from True have z: z = int n unfolding n-def by simp
show ?thesis unfolding z

by (induct n, auto simp: zero-real-alg plus-real-alg[symmetric] one-real-alg
hom-distribs)
next

case False
define n where n = nat (−z)
from False have z: z = − int n unfolding n-def by simp
show ?thesis unfolding z

by (induct n, auto simp: zero-real-alg plus-real-alg[symmetric] one-real-alg umi-
nus-real-alg[symmetric]

minus-real-alg[symmetric] hom-distribs)
qed

instance real-alg :: linordered-field
apply standard

apply (unfold less-eq-real-alg-def plus-real-alg[symmetric], force)
apply (unfold abs-real-alg-def less-real-alg-def zero-real-alg[symmetric], rule refl)
apply (unfold less-real-alg-def times-real-alg[symmetric], force)

apply (rule sgn-real-alg-sound)
done

instantiation real-alg :: floor-ceiling
begin
lift-definition floor-real-alg :: real-alg ⇒ int is floor-3

by (auto simp: floor-3)

lemma floor-real-alg: floor (real-of x) = floor x
by (transfer , auto simp: floor-3)

instance
proof

fix x :: real-alg
show of-int bxc ≤ x ∧ x < of-int (bxc + 1) unfolding floor-real-alg[symmetric]

using floor-correct[of real-of x] unfolding less-eq-real-alg-def less-real-alg-def
real-of-of-int[symmetric] by (auto simp: hom-distribs)

hence x ≤ of-int (bxc + 1) by auto
thus ∃ z. x ≤ of-int z by blast

qed
end

instantiation real-alg ::
{unique-euclidean-ring, normalization-euclidean-semiring, normalization-semidom-multiplicative}

begin

definition [simp]: normalize-real-alg = (normalize-field :: real-alg ⇒ -)

188

definition [simp]: unit-factor-real-alg = (unit-factor-field :: real-alg ⇒ -)
definition [simp]: modulo-real-alg = (mod-field :: real-alg ⇒ -)
definition [simp]: euclidean-size-real-alg = (euclidean-size-field :: real-alg ⇒ -)
definition [simp]: division-segment (x :: real-alg) = 1

instance
by standard
(simp-all add: dvd-field-iff field-split-simps split: if-splits)

end

instantiation real-alg :: euclidean-ring-gcd
begin

definition gcd-real-alg :: real-alg ⇒ real-alg ⇒ real-alg where
gcd-real-alg = Euclidean-Algorithm.gcd

definition lcm-real-alg :: real-alg ⇒ real-alg ⇒ real-alg where
lcm-real-alg = Euclidean-Algorithm.lcm

definition Gcd-real-alg :: real-alg set ⇒ real-alg where
Gcd-real-alg = Euclidean-Algorithm.Gcd

definition Lcm-real-alg :: real-alg set ⇒ real-alg where
Lcm-real-alg = Euclidean-Algorithm.Lcm

instance by standard (simp-all add: gcd-real-alg-def lcm-real-alg-def Gcd-real-alg-def
Lcm-real-alg-def)

end

instance real-alg :: field-gcd ..

definition min-int-poly-real-alg :: real-alg ⇒ int poly where
min-int-poly-real-alg x = (case info-real-alg x of Inl r ⇒ poly-rat r | Inr (p,-) ⇒

p)

lemma min-int-poly-real-alg-real-of : min-int-poly-real-alg x = min-int-poly (real-of
x)
proof (cases info-real-alg x)

case (Inl r)
show ?thesis unfolding info-real-alg(2)[OF Inl] min-int-poly-real-alg-def Inl

by (simp add: min-int-poly-of-rat)
next

case (Inr pair)
then obtain p n where Inr : info-real-alg x = Inr (p,n) by (cases pair , auto)
hence poly-cond p by (transfer , transfer , auto simp: info-2-card)
hence min-int-poly (real-of x) = p using info-real-alg(1)[OF Inr]

by (intro min-int-poly-unique, auto)
thus ?thesis unfolding min-int-poly-real-alg-def Inr by simp

qed

189

lemma min-int-poly-real-code: min-int-poly-real (real-of x) = min-int-poly-real-alg
x

by (simp add: min-int-poly-real-alg-real-of)

lemma min-int-poly-real-of : min-int-poly (real-of x) = min-int-poly x
proof (rule min-int-poly-unique[OF - min-int-poly-irreducible lead-coeff-min-int-poly-pos])

show min-int-poly x represents real-of x oops

definition real-alg-of-real :: real ⇒ real-alg where
real-alg-of-real x = (if (∃ y. x = real-of y) then (THE y. x = real-of y) else 0)

lemma real-alg-of-real-code[code]: real-alg-of-real (real-of x) = x
using real-of-inj unfolding real-alg-of-real-def by auto

lift-definition to-rat-real-alg-main :: real-alg ⇒ rat option is to-rat-3
by (simp add: to-rat-3)

lemma to-rat-real-alg-main: to-rat-real-alg-main x = (if real-of x ∈ � then
Some (THE q. real-of x = of-rat q) else None)
by (transfer , simp add: to-rat-3)

definition to-rat-real-alg :: real-alg ⇒ rat where
to-rat-real-alg x = (case to-rat-real-alg-main x of Some q ⇒ q | None ⇒ 0)

definition is-rat-real-alg :: real-alg ⇒ bool where
is-rat-real-alg x = (case to-rat-real-alg-main x of Some q ⇒ True | None ⇒ False)

lemma is-rat-real-alg: is-rat (real-of x) = (is-rat-real-alg x)
unfolding is-rat-real-alg-def is-rat to-rat-real-alg-main by auto

lemma to-rat-real-alg: to-rat (real-of x) = (to-rat-real-alg x)
unfolding to-rat to-rat-real-alg-def to-rat-real-alg-main by auto

lemma algebraic-real-code[code]: algebraic-real (real-of x) = True
proof (cases info-real-alg x)

case (Inl r)
show ?thesis using info-real-alg(2)[OF Inl] by (auto simp: algebraic-of-rat)

next
case (Inr pair)
then obtain p n where Inr : info-real-alg x = Inr (p,n) by (cases pair , auto)
from info-real-alg(1)[OF Inr] have p represents (real-of x) by auto
thus ?thesis by (auto simp: algebraic-altdef-ipoly)

qed

190

11.3 Real Algebraic Numbers as Implementation for Real
Numbers

lemmas real-alg-code-eqns =
one-real-alg
zero-real-alg
uminus-real-alg
root-real-alg
minus-real-alg
plus-real-alg
times-real-alg
inverse-real-alg
divide-real-alg
equal-real-alg
less-real-alg
less-eq-real-alg
compare-real-alg
sgn-real-alg
abs-real-alg
floor-real-alg
is-rat-real-alg
to-rat-real-alg
min-int-poly-real-code

code-datatype real-of

declare [[code drop:
plus :: real ⇒ real ⇒ real
uminus :: real ⇒ real
minus :: real ⇒ real ⇒ real
times :: real ⇒ real ⇒ real
inverse :: real ⇒ real
divide :: real ⇒ real ⇒ real
floor :: real ⇒ int
HOL.equal :: real ⇒ real ⇒ bool
compare :: real ⇒ real ⇒ order
less-eq :: real ⇒ real ⇒ bool
less :: real ⇒ real ⇒ bool
0 :: real
1 :: real
sgn :: real ⇒ real
abs :: real ⇒ real
min-int-poly-real
root]]

declare real-alg-code-eqns [code equation]

lemma Ratreal-code[code]:
Ratreal = real-of ◦ of-rat-real-alg
by (transfer , transfer) (simp add: fun-eq-iff of-rat-2)

191

lemma real-of-post[code-post]: real-of (Real-Alg-Quotient (Real-Alg-Invariant (Rational
x))) = of-rat x
proof (transfer)

fix x
show real-of-3 (Real-Alg-Invariant (Rational x)) = real-of-rat x

by (simp add: Real-Alg-Invariant-inverse real-of-3 .rep-eq)
qed

end

12 Real Roots
This theory contains an algorithm to determine the set of real roots of a
rational polynomial. For polynomials with real coefficients, we refer to the
AFP entry "Factor-Algebraic-Polynomial".
theory Real-Roots

imports
Cauchy-Root-Bound
Real-Algebraic-Numbers

begin

hide-const (open) UnivPoly.coeff
hide-const (open) Module.smult

partial-function (tailrec) roots-of-2-main ::
int poly ⇒ root-info ⇒ (rat ⇒ rat ⇒ nat) ⇒ (rat × rat)list ⇒ real-alg-2 list ⇒

real-alg-2 list where
[code]: roots-of-2-main p ri cr lrs rais = (case lrs of Nil ⇒ rais
| (l,r) # lrs ⇒ let c = cr l r in

if c = 0 then roots-of-2-main p ri cr lrs rais
else if c = 1 then roots-of-2-main p ri cr lrs (real-alg-2 ′′ ri p l r # rais)
else let m = (l + r) / 2 in roots-of-2-main p ri cr ((m,r) # (l,m) # lrs) rais)

definition roots-of-2-irr :: int poly ⇒ real-alg-2 list where
roots-of-2-irr p = (if degree p = 1

then [Rational (Rat.Fract (− coeff p 0) (coeff p 1))] else
let ri = root-info p;

cr = root-info.l-r ri;
B = root-bound p

in (roots-of-2-main p ri cr [(−B,B)] []))

fun pairwise-disjoint :: ′a set list ⇒ bool where
pairwise-disjoint [] = True
| pairwise-disjoint (x # xs) = ((x ∩ (

⋃
y ∈ set xs. y) = {}) ∧ pairwise-disjoint

xs)

lemma roots-of-2-irr : assumes pc: poly-cond p and deg: degree p > 0

192

shows real-of-2 ‘ set (roots-of-2-irr p) = {x. ipoly p x = 0} (is ?one)
Ball (set (roots-of-2-irr p)) invariant-2 (is ?two)
distinct (map real-of-2 (roots-of-2-irr p)) (is ?three)

proof −
note d = roots-of-2-irr-def
from poly-condD[OF pc] have mon: lead-coeff p > 0 and irr : irreducible p by

auto
let ?norm = real-alg-2 ′

have ?one ∧ ?two ∧ ?three
proof (cases degree p = 1)

case True
define c where c = coeff p 0
define d where d = coeff p 1
from True have rr : roots-of-2-irr p = [Rational (Rat.Fract (− c) (d))] un-

folding d d-def c-def by auto
from degree1-coeffs[OF True] have p: p = [:c,d:] and d: d 6= 0 unfolding

c-def d-def by auto
have ∗: real-of-int c + x ∗ real-of-int d = 0 =⇒ x = − (real-of-int c / real-of-int

d) for x
using d by (simp add: field-simps)

show ?thesis unfolding rr using d ∗ unfolding p using of-rat-1 [of Rat.Fract
(− c) (d)]

by (auto simp: Fract-of-int-quotient hom-distribs)
next

case False
let ?r = real-of-rat
let ?rp = map-poly ?r
let ?rr = set (roots-of-2-irr p)
define ri where ri = root-info p
define cr where cr = root-info.l-r ri
define bnds where bnds = [(−root-bound p, root-bound p)]
define empty where empty = (Nil :: real-alg-2 list)
have empty: Ball (set empty) invariant-2 ∧ distinct (map real-of-2 empty)

unfolding empty-def by auto
from mon have p: p 6= 0 by auto
from root-info[OF irr deg] have ri: root-info-cond ri p unfolding ri-def .
from False
have rr : roots-of-2-irr p = roots-of-2-main p ri cr bnds empty

unfolding d ri-def cr-def Let-def bnds-def empty-def by auto
note root-bound = root-bound[OF refl deg]
from root-bound(2)
have bnds:

∧
l r . (l,r) ∈ set bnds =⇒ l ≤ r unfolding bnds-def by auto

have ipoly p x = 0 =⇒ ?r (− root-bound p) ≤ x ∧ x ≤ ?r (root-bound p) for x
using root-bound(1)[of x] by (auto simp: hom-distribs)

hence rts: {x. ipoly p x = 0}
= real-of-2 ‘ set empty ∪ {x. ∃ l r . root-cond (p,l,r) x ∧ (l,r) ∈ set bnds}
unfolding empty-def bnds-def by (force simp: root-cond-def)

define rts where rts lr = Collect (root-cond (p,lr)) for lr
have disj: pairwise-disjoint (real-of-2 ‘ set empty # map rts bnds)

193

unfolding empty-def bnds-def by auto
from deg False have deg1 : degree p > 1 by auto
define delta where delta = ipoly-root-delta p
note delta = ipoly-root-delta[OF p, folded delta-def]
define rel ′ where rel ′ = ({(x, y). 0 ≤ y ∧ delta-gt delta x y})^−1
define mm where mm = (λbnds. mset (map (λ (l,r). ?r r − ?r l) bnds))
define rel where rel = inv-image (mult1 rel ′) mm
have wf : wf rel unfolding rel-def rel ′-def
by (rule wf-inv-image[OF wf-mult1 [OF SN-imp-wf [OF delta-gt-SN [OF delta(1)]]]])
let ?main = roots-of-2-main p ri cr
have real-of-2 ‘ set (?main bnds empty) =

real-of-2 ‘ set empty ∪
{x. ∃ l r . root-cond (p, l, r) x ∧ (l, r) ∈ set bnds} ∧
Ball (set (?main bnds empty)) invariant-2 ∧ distinct (map real-of-2 (?main

bnds empty)) (is ?one ′ ∧ ?two ′ ∧ ?three ′)
using empty bnds disj

proof (induct bnds arbitrary: empty rule: wf-induct[OF wf])
case (1 lrss rais)
note rais = 1 (2)[rule-format]
note lrs = 1 (3)
note disj = 1 (4)
note IH = 1 (1)[rule-format]
note simp = roots-of-2-main.simps[of p ri cr lrss rais]
show ?case
proof (cases lrss)

case Nil
with rais show ?thesis unfolding simp by auto

next
case (Cons lr lrs)
obtain l r where lr ′: lr = (l,r) by force
{

fix lr ′

assume lt:
∧

l ′ r ′. (l ′,r ′) ∈ set lr ′ =⇒
l ′ ≤ r ′ ∧ delta-gt delta (?r r − ?r l) (?r r ′ − ?r l ′)

have l: mm (lr ′ @ lrs) = mm lrs + mm lr ′ unfolding mm-def by (auto
simp: ac-simps)

have r : mm lrss = mm lrs + {# ?r r − ?r l #} unfolding Cons lr ′

rel-def mm-def
by auto

have (mm (lr ′ @ lrs), mm lrss) ∈ mult1 rel ′ unfolding l r mult1-def
proof (rule, unfold split, intro exI conjI , unfold add-mset-add-single[symmetric],

rule refl, rule refl, intro allI impI)
fix d
assume d ∈# mm lr ′

then obtain l ′ r ′ where d: d = ?r r ′ − ?r l ′ and lr ′: (l ′,r ′) ∈ set lr ′

unfolding mm-def in-multiset-in-set by auto
from lt[OF lr ′]
show (d, ?r r − ?r l) ∈ rel ′ unfolding d rel ′-def

by (auto simp: of-rat-less-eq)

194

qed
hence (lr ′ @ lrs, lrss) ∈ rel unfolding rel-def by auto

} note rel = this
from rel[of Nil] have easy-rel: (lrs,lrss) ∈ rel by auto
define c where c = cr l r
from simp Cons lr ′ have simp: ?main lrss rais =
(if c = 0 then ?main lrs rais else if c = 1 then

?main lrs (real-alg-2 ′ ri p l r # rais)
else let m = (l + r) / 2 in ?main ((m, r) # (l, m) # lrs) rais)

unfolding c-def simp Cons lr ′ using real-alg-2 ′′[OF False] by auto
note lrs = lrs[unfolded Cons lr ′]
from lrs have lr : l ≤ r by auto
from root-info-condD(1)[OF ri lr , folded cr-def]
have c: c = card {x. root-cond (p,l,r) x} unfolding c-def by auto
let ?rt = λ lrs. {x. ∃ l r . root-cond (p, l, r) x ∧ (l, r) ∈ set lrs}
have rts: ?rt lrss = ?rt lrs ∪ {x. root-cond (p,l,r) x} (is ?rt1 = ?rt2 ∪

?rt3)
unfolding Cons lr ′ by auto

show ?thesis
proof (cases c = 0)

case True
with simp have simp: ?main lrss rais = ?main lrs rais by simp
from disj have disj: pairwise-disjoint (real-of-2 ‘ set rais # map rts lrs)

unfolding Cons by auto
from finite-ipoly-roots[OF p] True[unfolded c] have empty: ?rt3 = {}

unfolding root-cond-def [abs-def] split by simp
with rts have rts: ?rt1 = ?rt2 by auto
show ?thesis unfolding simp rts

by (rule IH [OF easy-rel rais lrs disj], auto)
next

case False
show ?thesis
proof (cases c = 1)

case True
let ?rai = real-alg-2 ′ ri p l r
from True simp have simp: ?main lrss rais = ?main lrs (?rai # rais)

by auto
from card-1-Collect-ex1 [OF c[symmetric, unfolded True]]
have ur : unique-root (p,l,r) .
from real-alg-2 ′[OF ur pc ri]
have rai: invariant-2 ?rai real-of-2 ?rai = the-unique-root (p, l, r) by

auto
with rais have rais:

∧
x. x ∈ set (?rai # rais) =⇒ invariant-2 x

and dist: distinct (map real-of-2 rais) by auto
have rt3 : ?rt3 = {real-of-2 ?rai}

using ur rai by (auto intro: the-unique-root-eqI theI ′)
have real-of-2 ‘ set (roots-of-2-main p ri cr lrs (?rai # rais)) =

real-of-2 ‘ set (?rai # rais) ∪ ?rt2 ∧
Ball (set (roots-of-2-main p ri cr lrs (?rai # rais))) invariant-2 ∧

195

distinct (map real-of-2 (roots-of-2-main p ri cr lrs (?rai # rais)))
(is ?one ∧ ?two ∧ ?three)

proof (rule IH [OF easy-rel, of ?rai # rais, OF conjI lrs])
show Ball (set (real-alg-2 ′ ri p l r # rais)) invariant-2 using rais by

auto
have real-of-2 (real-alg-2 ′ ri p l r) /∈ set (map real-of-2 rais)

using disj rt3 unfolding Cons lr ′ rts-def by auto
thus distinct (map real-of-2 (real-alg-2 ′ ri p l r # rais)) using dist by

auto
show pairwise-disjoint (real-of-2 ‘ set (real-alg-2 ′ ri p l r # rais) #

map rts lrs)
using disj rt3 unfolding Cons lr ′ rts-def by auto

qed auto
hence ?one ?two ?three by blast+
show ?thesis unfolding simp rts rt3

by (rule conjI [OF - conjI [OF ‹?two› ‹?three›]], unfold ‹?one›, auto)
next

case False
let ?m = (l+r)/2
let ?lrs = [(?m,r),(l,?m)] @ lrs
from False ‹c 6= 0 › have simp: ?main lrss rais = ?main ?lrs rais

unfolding simp by (auto simp: Let-def)
from False ‹c 6= 0 › have c ≥ 2 by auto
from delta(2)[OF this[unfolded c]] have delta: delta ≤ ?r (r − l) / 4

by auto
have lrs:

∧
l r . (l,r) ∈ set ?lrs =⇒ l ≤ r

using lr lrs by (fastforce simp: field-simps)
have ?r ?m ∈ � unfolding Rats-def by blast
with poly-cond-degree-gt-1 [OF pc deg1 , of ?r ?m]
have disj1 : ?r ?m /∈ rts lr for lr unfolding rts-def root-cond-def by

auto
have disj2 : rts (?m, r) ∩ rts (l, ?m) = {} using disj1 [of (l,?m)] disj1 [of

(?m,r)]
unfolding rts-def root-cond-def by auto

have disj3 : (rts (l,?m) ∪ rts (?m,r)) = rts (l,r)
unfolding rts-def root-cond-def by (auto simp: hom-distribs)
have disj4 : real-of-2 ‘ set rais ∩ rts (l,r) = {} using disj unfolding

Cons lr ′ by auto
have disj: pairwise-disjoint (real-of-2 ‘ set rais # map rts ([(?m, r), (l,

?m)] @ lrs))
using disj disj2 disj3 disj4 by (auto simp: Cons lr ′)

have (?lrs,lrss) ∈ rel
proof (rule rel, intro conjI)

fix l ′ r ′

assume mem: (l ′, r ′) ∈ set [(?m,r),(l,?m)]
from mem lr show l ′ ≤ r ′ by auto
from mem have diff : ?r r ′ − ?r l ′ = (?r r − ?r l) / 2 by auto
(metis eq-diff-eq minus-diff-eq mult-2-right of-rat-add of-rat-diff ,
metis of-rat-add of-rat-mult of-rat-numeral-eq)

196

show delta-gt delta (?r r − ?r l) (?r r ′ − ?r l ′) unfolding diff
delta-gt-def by (rule order .trans[OF delta], insert lr ,
auto simp: field-simps of-rat-diff of-rat-less-eq)

qed
note IH = IH [OF this, of rais, OF rais lrs disj]
have real-of-2 ‘ set (?main ?lrs rais) =

real-of-2 ‘ set rais ∪ ?rt ?lrs ∧
Ball (set (?main ?lrs rais)) invariant-2 ∧ distinct (map real-of-2 (?main

?lrs rais))
(is ?one ∧ ?two)
by (rule IH)

hence ?one ?two by blast+
have cong:

∧
a b c. b = c =⇒ a ∪ b = a ∪ c by auto

have id: ?rt ?lrs = ?rt lrs ∪ ?rt [(?m,r),(l,?m)] by auto
show ?thesis unfolding rts simp ‹?one› id
proof (rule conjI [OF cong[OF cong] conjI])

have
∧

x. root-cond (p,l,r) x = (root-cond (p,l,?m) x ∨ root-cond
(p,?m,r) x)

unfolding root-cond-def by (auto simp:hom-distribs)
hence id: Collect (root-cond (p,l,r)) = {x. (root-cond (p,l,?m) x ∨

root-cond (p,?m,r) x)}
by auto
show ?rt [(?m,r),(l,?m)] = Collect (root-cond (p,l,r)) unfolding id

list.simps by blast
show ∀ a ∈ set (?main ?lrs rais). invariant-2 a using ‹?two› by auto
show distinct (map real-of-2 (?main ?lrs rais)) using ‹?two› by auto

qed
qed

qed
qed

qed
hence idd: ?one ′ and cond: ?two ′ ?three ′ by blast+
define res where res = roots-of-2-main p ri cr bnds empty
have e: set empty = {} unfolding empty-def by auto

from idd[folded res-def] e have idd: real-of-2 ‘ set res = {} ∪ {x. ∃ l r . root-cond
(p, l, r) x ∧ (l, r) ∈ set bnds}

by auto
show ?thesis

unfolding rr unfolding rts id e norm-def using cond
unfolding res-def [symmetric] image-empty e idd[symmetric] by auto

qed
thus ?one ?two ?three by blast+

qed

definition roots-of-2 :: int poly ⇒ real-alg-2 list where
roots-of-2 p = concat (map roots-of-2-irr

(factors-of-int-poly p))

lemma roots-of-2 :

197

shows p 6= 0 =⇒ real-of-2 ‘ set (roots-of-2 p) = {x. ipoly p x = 0}
Ball (set (roots-of-2 p)) invariant-2
distinct (map real-of-2 (roots-of-2 p))

proof −
let ?rr = roots-of-2 p
note d = roots-of-2-def
note frp1 = factors-of-int-poly
{

fix q r
assume q ∈ set ?rr
then obtain s where

s: s ∈ set (factors-of-int-poly p) and
q: q ∈ set (roots-of-2-irr s)
unfolding d by auto

from frp1 (1)[OF refl s] have poly-cond s degree s > 0 by (auto simp: poly-cond-def)
from roots-of-2-irr [OF this] q
have invariant-2 q by auto

}
thus Ball (set ?rr) invariant-2 by auto
{

assume p: p 6= 0
have real-of-2 ‘ set ?rr = (

⋃
((λ p. real-of-2 ‘ set (roots-of-2-irr p)) ‘

(set (factors-of-int-poly p))))
(is - = ?rrr)
unfolding d set-concat set-map by auto

also have . . . = {x. ipoly p x = 0}
proof −

{
fix x
assume x ∈ ?rrr
then obtain q s where

s: s ∈ set (factors-of-int-poly p) and
q: q ∈ set (roots-of-2-irr s) and
x: x = real-of-2 q by auto

from frp1 (1)[OF refl s] have s0 : s 6= 0 and pt: poly-cond s degree s > 0
by (auto simp: poly-cond-def)

from roots-of-2-irr [OF pt] q have rt: ipoly s x = 0 unfolding x by auto
from frp1 (2)[OF refl p, of x] rt s have rt: ipoly p x = 0 by auto

}
moreover
{

fix x :: real
assume rt: ipoly p x = 0

from rt frp1 (2)[OF refl p, of x] obtain s where s: s ∈ set (factors-of-int-poly
p)

and rt: ipoly s x = 0 by auto
from frp1 (1)[OF refl s] have s0 : s 6= 0 and ty: poly-cond s degree s > 0

by (auto simp: poly-cond-def)
from roots-of-2-irr(1)[OF ty] rt obtain q where

198

q: q ∈ set (roots-of-2-irr s) and
x: x = real-of-2 q by blast

have x ∈ ?rrr unfolding x using q s by auto
}
ultimately show ?thesis by auto

qed
finally show real-of-2 ‘ set ?rr = {x. ipoly p x = 0} by auto

}
show distinct (map real-of-2 (roots-of-2 p))
proof (cases p = 0)

case True
from factors-of-int-poly-const[of 0] True show ?thesis unfolding roots-of-2-def

by auto
next

case p: False
note frp1 = frp1 [OF refl]
let ?fp = factors-of-int-poly p
let ?cc = concat (map roots-of-2-irr ?fp)
show ?thesis unfolding roots-of-2-def distinct-conv-nth length-map
proof (intro allI impI notI)

fix i j
assume ij: i < length ?cc j < length ?cc i 6= j and id: map real-of-2 ?cc ! i

= map real-of-2 ?cc ! j
from ij id have id: real-of-2 (?cc ! i) = real-of-2 (?cc ! j) by auto
from nth-concat-diff [OF ij, unfolded length-map] obtain j1 k1 j2 k2 where
∗: (j1 ,k1) 6= (j2 ,k2)
j1 < length ?fp j2 < length ?fp and
k1 < length (map roots-of-2-irr ?fp ! j1)
k2 < length (map roots-of-2-irr ?fp ! j2)
?cc ! i = map roots-of-2-irr ?fp ! j1 ! k1
?cc ! j = map roots-of-2-irr ?fp ! j2 ! k2 by blast

hence ∗∗: k1 < length (roots-of-2-irr (?fp ! j1))
k2 < length (roots-of-2-irr (?fp ! j2))
?cc ! i = roots-of-2-irr (?fp ! j1) ! k1
?cc ! j = roots-of-2-irr (?fp ! j2) ! k2
by auto

from ∗ have mem: ?fp ! j1 ∈ set ?fp ?fp ! j2 ∈ set ?fp by auto
from frp1 (1)[OF mem(1)] frp1 (1)[OF mem(2)]
have pc1 : poly-cond (?fp ! j1) degree (?fp ! j1) > 0 and pc10 : ?fp ! j1 6= 0

and pc2 : poly-cond (?fp ! j2) degree (?fp ! j2) > 0
by (auto simp: poly-cond-def)

show False
proof (cases j1 = j2)

case True
with ∗ have neq: k1 6= k2 by auto
from ∗∗[unfolded True] id ∗
have map real-of-2 (roots-of-2-irr (?fp ! j2)) ! k1 = real-of-2 (?cc ! j)

map real-of-2 (roots-of-2-irr (?fp ! j2)) ! k1 = real-of-2 (?cc ! j)
by auto

199

hence ¬ distinct (map real-of-2 (roots-of-2-irr (?fp ! j2)))
unfolding distinct-conv-nth using ∗ ∗∗ True by auto

with roots-of-2-irr(3)[OF pc2] show False by auto
next

case neq: False
with frp1 (4)[of p] ∗ have neq: ?fp ! j1 6= ?fp ! j2 unfolding distinct-conv-nth

by auto
let ?x = real-of-2 (?cc ! i)
define x where x = ?x
from ∗∗ have x ∈ real-of-2 ‘ set (roots-of-2-irr (?fp ! j1)) unfolding x-def

by auto
with roots-of-2-irr(1)[OF pc1] have x1 : ipoly (?fp ! j1) x = 0 by auto
from ∗∗ id have x ∈ real-of-2 ‘ set (roots-of-2-irr (?fp ! j2)) unfolding

x-def
by (metis image-eqI nth-mem)

with roots-of-2-irr(1)[OF pc2] have x2 : ipoly (?fp ! j2) x = 0 by auto
have ipoly p x = 0 using x1 mem unfolding roots-of-2-def by (metis

frp1 (2) p)
from frp1 (3)[OF p this] x1 x2 neq mem show False by blast

qed
qed

qed
qed

lift-definition (code-dt) roots-of-3 :: int poly ⇒ real-alg-3 list is roots-of-2
by (insert roots-of-2 , auto simp: list-all-iff)

lemma roots-of-3 :
shows p 6= 0 =⇒ real-of-3 ‘ set (roots-of-3 p) = {x. ipoly p x = 0}

distinct (map real-of-3 (roots-of-3 p))
proof −

show p 6= 0 =⇒ real-of-3 ‘ set (roots-of-3 p) = {x. ipoly p x = 0}
by (transfer ; intro roots-of-2 , auto)

show distinct (map real-of-3 (roots-of-3 p))
by (transfer ; insert roots-of-2 , auto)

qed

lift-definition roots-of-real-alg :: int poly ⇒ real-alg list is roots-of-3 .

lemma roots-of-real-alg:
p 6= 0 =⇒ real-of ‘ set (roots-of-real-alg p) = {x. ipoly p x = 0}
distinct (map real-of (roots-of-real-alg p))

proof −
show p 6= 0 =⇒ real-of ‘ set (roots-of-real-alg p) = {x. ipoly p x = 0}

by (transfer ′, insert roots-of-3 , auto)
show distinct (map real-of (roots-of-real-alg p))

by (transfer , insert roots-of-3 (2), auto)
qed

200

definition real-roots-of-int-poly :: int poly ⇒ real list where
real-roots-of-int-poly p = map real-of (roots-of-real-alg p)

definition real-roots-of-rat-poly :: rat poly ⇒ real list where
real-roots-of-rat-poly p = map real-of (roots-of-real-alg (snd (rat-to-int-poly p)))

abbreviation rpoly :: rat poly ⇒ ′a :: field-char-0 ⇒ ′a
where rpoly f ≡ poly (map-poly of-rat f)

lemma real-roots-of-int-poly: p 6= 0 =⇒ set (real-roots-of-int-poly p) = {x. ipoly p
x = 0}

distinct (real-roots-of-int-poly p)
unfolding real-roots-of-int-poly-def using roots-of-real-alg[of p] by auto

lemma real-roots-of-rat-poly: p 6= 0 =⇒ set (real-roots-of-rat-poly p) = {x. rpoly
p x = 0}

distinct (real-roots-of-rat-poly p)
proof −

obtain c q where cq: rat-to-int-poly p = (c,q) by force
from rat-to-int-poly[OF this]
have pq: p = smult (inverse (of-int c)) (of-int-poly q)

and c: c 6= 0 by auto
have id: {x. rpoly p x = (0 :: real)} = {x. ipoly q x = 0}

unfolding pq by (simp add: c of-rat-of-int-poly hom-distribs)
show distinct (real-roots-of-rat-poly p) unfolding real-roots-of-rat-poly-def cq

snd-conv
using roots-of-real-alg(2)[of q] .

assume p 6= 0
with pq c have q: q 6= 0 by auto
show set (real-roots-of-rat-poly p) = {x. rpoly p x = 0} unfolding id

unfolding real-roots-of-rat-poly-def cq snd-conv using roots-of-real-alg(1)[OF
q]

by auto
qed

end

13 Complex Roots of Real Valued Polynomials
We provide conversion functions between polynomials over the real and the
complex numbers, and prove that the complex roots of real-valued polyno-
mial always come in conjugate pairs. We further show that also the order
of the complex conjugate roots is identical.

As a consequence, we derive that every real-valued polynomial can be
factored into real factors of degree at most 2, and we prove that every
polynomial over the reals with odd degree has a real root.
theory Complex-Roots-Real-Poly

201

imports
HOL−Computational-Algebra.Fundamental-Theorem-Algebra
Polynomial-Factorization.Order-Polynomial
Polynomial-Factorization.Explicit-Roots
Polynomial-Interpolation.Ring-Hom-Poly

begin

interpretation of-real-poly-hom: map-poly-idom-hom complex-of-real..

lemma real-poly-real-coeff : assumes set (coeffs p) ⊆ �
shows coeff p x ∈ �

proof −
have coeff p x ∈ range (coeff p) by auto
from this[unfolded range-coeff] assms show ?thesis by auto

qed

lemma complex-conjugate-root:
assumes real: set (coeffs p) ⊆ � and rt: poly p c = 0
shows poly p (cnj c) = 0

proof −
let ?c = cnj c
{

fix x
have coeff p x ∈ �

by (rule real-poly-real-coeff [OF real])
hence cnj (coeff p x) = coeff p x by (cases coeff p x, auto)

} note cnj-coeff = this
have poly p ?c = poly (

∑
x≤degree p. monom (coeff p x) x) ?c

unfolding poly-as-sum-of-monoms ..
also have . . . = (

∑
x≤degree p . coeff p x ∗ cnj (c ^ x))

unfolding poly-sum poly-monom complex-cnj-power ..
also have . . . = (

∑
x≤degree p . cnj (coeff p x ∗ c ^ x))

unfolding complex-cnj-mult cnj-coeff ..
also have . . . = cnj (

∑
x≤degree p . coeff p x ∗ c ^ x)

unfolding cnj-sum ..
also have (

∑
x≤degree p . coeff p x ∗ c ^ x) =

poly (
∑

x≤degree p. monom (coeff p x) x) c
unfolding poly-sum poly-monom ..

also have . . . = 0 unfolding poly-as-sum-of-monoms rt ..
also have cnj 0 = 0 by simp
finally show ?thesis .

qed

context
fixes p :: complex poly
assumes coeffs: set (coeffs p) ⊆ �

begin
lemma map-poly-Re-poly: fixes x :: real

202

shows poly (map-poly Re p) x = poly p (of-real x)
proof −

have id: map-poly (of-real o Re) p = p
by (rule map-poly-idI , insert coeffs, auto)

show ?thesis unfolding arg-cong[OF id, of poly, symmetric]
by (subst map-poly-map-poly[symmetric], auto)

qed

lemma map-poly-Re-coeffs:
coeffs (map-poly Re p) = map Re (coeffs p)

proof (rule coeffs-map-poly)
have lead-coeff p ∈ range (coeff p) by auto
hence x: lead-coeff p ∈ � using coeffs by (auto simp: range-coeff)
show (Re (lead-coeff p) = 0) = (p = 0)

using of-real-Re[OF x] by auto
qed

lemma map-poly-Re-0 : map-poly Re p = 0 =⇒ p = 0
using map-poly-Re-coeffs by auto

end

lemma real-poly-add:
assumes set (coeffs p) ⊆ � set (coeffs q) ⊆ �
shows set (coeffs (p + q)) ⊆ �

proof −
define pp where pp = coeffs p
define qq where qq = coeffs q
show ?thesis using assms
unfolding coeffs-plus-eq-plus-coeffs pp-def [symmetric] qq-def [symmetric]

by (induct pp qq rule: plus-coeffs.induct, auto simp: cCons-def)
qed

lemma real-poly-sum:
assumes

∧
x. x ∈ S =⇒ set (coeffs (f x)) ⊆ �

shows set (coeffs (sum f S)) ⊆ �
using assms

proof (induct S rule: infinite-finite-induct)
case (insert x S)
hence id: sum f (insert x S) = f x + sum f S by auto
show ?case unfolding id

by (rule real-poly-add[OF - insert(3)], insert insert, auto)
qed auto

lemma real-poly-smult: fixes p :: ′a :: {idom,real-algebra-1} poly
assumes c ∈ � set (coeffs p) ⊆ �
shows set (coeffs (smult c p)) ⊆ �
using assms by (auto simp: coeffs-smult)

203

lemma real-poly-pCons:
assumes c ∈ � set (coeffs p) ⊆ �
shows set (coeffs (pCons c p)) ⊆ �
using assms by (auto simp: cCons-def)

lemma real-poly-mult: fixes p :: ′a :: {idom,real-algebra-1} poly
assumes p: set (coeffs p) ⊆ � and q: set (coeffs q) ⊆ �
shows set (coeffs (p ∗ q)) ⊆ � using p

proof (induct p)
case (pCons a p)
show ?case unfolding mult-pCons-left

by (intro real-poly-add real-poly-smult real-poly-pCons pCons(2) q,
insert pCons(1 ,3), auto simp: cCons-def if-splits)

qed simp

lemma real-poly-power : fixes p :: ′a :: {idom,real-algebra-1} poly
assumes p: set (coeffs p) ⊆ �
shows set (coeffs (p ^ n)) ⊆ �

proof (induct n)
case (Suc n)
from real-poly-mult[OF p this]
show ?case by simp

qed simp

lemma real-poly-prod: fixes f :: ′a ⇒ ′b :: {idom,real-algebra-1} poly
assumes

∧
x. x ∈ S =⇒ set (coeffs (f x)) ⊆ �

shows set (coeffs (prod f S)) ⊆ �
using assms

proof (induct S rule: infinite-finite-induct)
case (insert x S)
hence id: prod f (insert x S) = f x ∗ prod f S by auto
show ?case unfolding id

by (rule real-poly-mult[OF - insert(3)], insert insert, auto)
qed auto

lemma real-poly-uminus:
assumes set (coeffs p) ⊆ �
shows set (coeffs (−p)) ⊆ �
using assms unfolding coeffs-uminus by auto

lemma real-poly-minus:
assumes set (coeffs p) ⊆ � set (coeffs q) ⊆ �
shows set (coeffs (p − q)) ⊆ �
using assms unfolding diff-conv-add-uminus
by (intro real-poly-uminus real-poly-add, auto)

204

lemma fixes p :: ′a :: real-field poly
assumes p: set (coeffs p) ⊆ � and ∗: set (coeffs q) ⊆ �
shows real-poly-div: set (coeffs (q div p)) ⊆ �

and real-poly-mod: set (coeffs (q mod p)) ⊆ �
proof (atomize(full), insert ∗, induct q)

case 0
thus ?case by auto

next
case (pCons a q)
from pCons(1 ,3) have a: a ∈ � and q: set (coeffs q) ⊆ � by auto
note res = pCons
show ?case
proof (cases p = 0)

case True
with res pCons(3) show ?thesis by auto

next
case False
from pCons have IH : set (coeffs (q div p)) ⊆ � set (coeffs (q mod p)) ⊆ � by

auto
define c where c = coeff (pCons a (q mod p)) (degree p) / coeff p (degree p)
{

have coeff (pCons a (q mod p)) (degree p) ∈ �
by (rule real-poly-real-coeff , insert IH a, intro real-poly-pCons)

moreover have coeff p (degree p) ∈ �
by (rule real-poly-real-coeff [OF p])

ultimately have c ∈ � unfolding c-def by simp
} note c = this
from False
have r : pCons a q div p = pCons c (q div p) and s: pCons a q mod p = pCons

a (q mod p) − smult c p
unfolding c-def div-pCons-eq mod-pCons-eq by simp-all

show ?thesis unfolding r s using a p c IH by (intro conjI real-poly-pCons
real-poly-minus real-poly-smult)

qed
qed

lemma real-poly-factor : fixes p :: ′a :: real-field poly
assumes set (coeffs (p ∗ q)) ⊆ �
set (coeffs p) ⊆ �

p 6= 0
shows set (coeffs q) ⊆ �

proof −
have q = p ∗ q div p using ‹p 6= 0 › by simp
hence id: coeffs q = coeffs (p ∗ q div p) by simp
show ?thesis unfolding id

by (rule real-poly-div, insert assms, auto)
qed

lemma complex-conjugate-order : assumes real: set (coeffs p) ⊆ �

205

p 6= 0
shows order (cnj c) p = order c p

proof −
define n where n = degree p
have degree p ≤ n unfolding n-def by auto
thus ?thesis using assms
proof (induct n arbitrary: p)

case (0 p)
{

fix x
have order x p ≤ degree p

by (rule order-degree[OF 0 (3)])
hence order x p = 0 using 0 by auto

}
thus ?case by simp

next
case (Suc m p)
note order = order [OF ‹p 6= 0 ›]
let ?c = cnj c
show ?case
proof (cases poly p c = 0)

case True note rt1 = this
from complex-conjugate-root[OF Suc(3) True]
have rt2 : poly p ?c = 0 .
show ?thesis
proof (cases c ∈ �)

case True
hence ?c = c by (cases c, auto)
thus ?thesis by auto

next
case False
hence neq: ?c 6= c by (simp add: Reals-cnj-iff)
let ?fac1 = [: −c, 1 :]
let ?fac2 = [: −?c, 1 :]
let ?fac = ?fac1 ∗ ?fac2
from rt1 have ?fac1 dvd p unfolding poly-eq-0-iff-dvd .
from this[unfolded dvd-def] obtain q where p: p = ?fac1 ∗ q by auto
from rt2 [unfolded p poly-mult] neq have poly q ?c = 0 by auto
hence ?fac2 dvd q unfolding poly-eq-0-iff-dvd .
from this[unfolded dvd-def] obtain r where q: q = ?fac2 ∗ r by auto
have p: p = ?fac ∗ r unfolding p q by algebra
from ‹p 6= 0 › have nz: ?fac1 6= 0 ?fac2 6= 0 ?fac 6= 0 r 6= 0 unfolding p

by auto
have id: ?fac = [: ?c ∗ c, − (?c + c), 1 :] by simp
have cfac: coeffs ?fac = [?c ∗ c, − (?c + c), 1] unfolding id by simp
have cfac: set (coeffs ?fac) ⊆ � unfolding cfac by (cases c, auto simp:

Reals-cnj-iff)
have degree p = degree ?fac + degree r unfolding p

by (rule degree-mult-eq, insert nz, auto)

206

also have degree ?fac = degree ?fac1 + degree ?fac2
by (rule degree-mult-eq, insert nz, auto)

finally have degree p = 2 + degree r by simp
with Suc have deg: degree r ≤ m by auto
from real-poly-factor [OF Suc(3)[unfolded p] cfac] nz have set (coeffs r) ⊆

� by auto
from Suc(1)[OF deg this ‹r 6= 0 ›] have IH : order ?c r = order c r .
{

fix cc
have order cc p = order cc ?fac + order cc r using ‹p 6= 0 › unfolding p

by (rule order-mult)
also have order cc ?fac = order cc ?fac1 + order cc ?fac2

by (rule order-mult, rule nz)
also have order cc ?fac1 = (if cc = c then 1 else 0)

unfolding order-linear ′ by simp
also have order cc ?fac2 = (if cc = ?c then 1 else 0)

unfolding order-linear ′ by simp
finally have order cc p =
(if cc = c then 1 else 0) + (if cc = cnj c then 1 else 0) + order cc r .

} note order = this
show ?thesis unfolding order IH by auto

qed
next

case False note rt1 = this
{

assume poly p ?c = 0
from complex-conjugate-root[OF Suc(3) this] rt1
have False by auto

}
hence rt2 : poly p ?c 6= 0 by auto
from rt1 rt2 show ?thesis

unfolding order-root by simp
qed

qed
qed

lemma map-poly-of-real-Re: assumes set (coeffs p) ⊆ �
shows map-poly of-real (map-poly Re p) = p
by (subst map-poly-map-poly, force+, rule map-poly-idI , insert assms, auto)

lemma map-poly-Re-of-real: map-poly Re (map-poly of-real p) = p
by (subst map-poly-map-poly, force+, rule map-poly-idI , auto)

lemma map-poly-Re-mult: assumes p: set (coeffs p) ⊆ �
and q: set (coeffs q) ⊆ � shows map-poly Re (p ∗ q) = map-poly Re p ∗ map-poly

Re q
proof −

let ?r = map-poly Re
let ?c = map-poly complex-of-real

207

have ?r (p ∗ q) = ?r (?c (?r p) ∗ ?c (?r q))
unfolding map-poly-of-real-Re[OF p] map-poly-of-real-Re[OF q] by simp

also have ?c (?r p) ∗ ?c (?r q) = ?c (?r p ∗ ?r q) by (simp add: hom-distribs)
also have ?r . . . = ?r p ∗ ?r q unfolding map-poly-Re-of-real ..
finally show ?thesis .

qed

lemma map-poly-Re-power : assumes p: set (coeffs p) ⊆ �
shows map-poly Re (p^n) = (map-poly Re p)^n

proof (induct n)
case (Suc n)
let ?r = map-poly Re
have ?r (p^Suc n) = ?r (p ∗ p^n) by simp
also have . . . = ?r p ∗ ?r (p^n)

by (rule map-poly-Re-mult[OF p real-poly-power [OF p]])
also have ?r (p^n) = (?r p)^n by (rule Suc)
finally show ?case by simp

qed simp

lemma real-degree-2-factorization-exists-complex: fixes p :: complex poly
assumes pR: set (coeffs p) ⊆ �
shows ∃ qs. p = prod-list qs ∧ (∀ q ∈ set qs. set (coeffs q) ⊆ � ∧ degree q ≤ 2)

proof −
obtain n where degree p = n by auto
thus ?thesis using pR
proof (induct n arbitrary: p rule: less-induct)

case (less n p)
hence pR: set (coeffs p) ⊆ � by auto
show ?case
proof (cases n ≤ 2)

case True
thus ?thesis using pR

by (intro exI [of - [p]], insert less(2), auto)
next

case False
hence degp: degree p ≥ 2 using less(2) by auto
hence ¬ constant (poly p) by (simp add: constant-degree)
from fundamental-theorem-of-algebra[OF this] obtain x where x: poly p x =

0 by auto
from x have dvd: [: −x, 1 :] dvd p using poly-eq-0-iff-dvd by blast
have ∃ f . f dvd p ∧ set (coeffs f) ⊆ � ∧ 1 ≤ degree f ∧ degree f ≤ 2
proof (cases x ∈ �)

case True
with dvd show ?thesis

by (intro exI [of - [: −x, 1 :]], auto)
next

case False
let ?x = cnj x
let ?a = ?x ∗ x

208

let ?b = − ?x − x
from complex-conjugate-root[OF pR x]
have xx: poly p ?x = 0 by auto
from False have diff : x 6= ?x by (simp add: Reals-cnj-iff)
from dvd obtain r where p: p = [: −x, 1 :] ∗ r unfolding dvd-def by

auto
from xx[unfolded this] diff have poly r ?x = 0 by simp
hence [: −?x, 1 :] dvd r using poly-eq-0-iff-dvd by blast
then obtain s where r : r = [: −?x, 1 :] ∗ s unfolding dvd-def by auto
have p = ([: −x, 1 :] ∗ [: −?x, 1 :]) ∗ s unfolding p r by algebra
also have [: −x, 1 :] ∗ [: −?x, 1 :] = [: ?a, ?b, 1 :] by simp
finally have [: ?a, ?b, 1 :] dvd p unfolding dvd-def by auto
moreover have ?a ∈ � by (simp add: Reals-cnj-iff)
moreover have ?b ∈ � by (simp add: Reals-cnj-iff)
ultimately show ?thesis by (intro exI [of - [:?a,?b,1 :]], auto)

qed
then obtain f where dvd: f dvd p and fR: set (coeffs f) ⊆ � and degf : 1

≤ degree f degree f ≤ 2 by auto
from dvd obtain r where p: p = f ∗ r unfolding dvd-def by auto
from degp have p0 : p 6= 0 by auto
with p have f0 : f 6= 0 and r0 : r 6= 0 by auto
from real-poly-factor [OF pR[unfolded p] fR f0] have rR: set (coeffs r) ⊆ � .
have deg: degree p = degree f + degree r unfolding p

by (rule degree-mult-eq[OF f0 r0])
with degf less(2) have degr : degree r < n by auto
from less(1)[OF this refl rR] obtain qs

where IH : r = prod-list qs (∀ q∈set qs. set (coeffs q) ⊆ � ∧ degree q ≤ 2)
by auto

from IH (1) have p: p = prod-list (f # qs) unfolding p by auto
with IH (2) fR degf show ?thesis

by (intro exI [of - f # qs], auto)
qed

qed
qed

lemma real-degree-2-factorization-exists: fixes p :: real poly
shows ∃ qs. p = prod-list qs ∧ (∀ q ∈ set qs. degree q ≤ 2)

proof −
let ?cp = map-poly complex-of-real
let ?rp = map-poly Re
let ?p = ?cp p
have set (coeffs ?p) ⊆ � by auto
from real-degree-2-factorization-exists-complex[OF this]
obtain qs where p: ?p = prod-list qs and

qs:
∧

q. q ∈ set qs =⇒ set (coeffs q) ⊆ � ∧ degree q ≤ 2 by auto
have p: p = ?rp (prod-list qs) unfolding arg-cong[OF p, of ?rp, symmetric]

by (subst map-poly-map-poly, force, rule sym, rule map-poly-idI , auto)
from qs have ∃ rs. prod-list qs = ?cp (prod-list rs) ∧ (∀ r ∈ set rs. degree r ≤

2)

209

proof (induct qs)
case Nil
show ?case by (auto intro!: exI [of - Nil])

next
case (Cons q qs)
then obtain rs where qs: prod-list qs = ?cp (prod-list rs)

and rs:
∧

q. q∈set rs =⇒ degree q ≤ 2 by force+
from Cons(2)[of q] have q: set (coeffs q) ⊆ � and dq: degree q ≤ 2 by auto
define r where r = ?rp q
have q: q = ?cp r unfolding r-def

by (subst map-poly-map-poly, force, rule sym, rule map-poly-idI , insert q,
auto)

have dr : degree r ≤ 2 using dq unfolding q by (simp add: degree-map-poly)
show ?case

by (rule exI [of - r # rs], unfold prod-list.Cons qs q, insert dr rs, auto simp:
hom-distribs)

qed
then obtain rs where id: prod-list qs = ?cp (prod-list rs) and deg: ∀ r ∈ set

rs. degree r ≤ 2 by auto
show ?thesis unfolding p id
by (intro exI , rule conjI [OF - deg], subst map-poly-map-poly, force, rule map-poly-idI ,

auto)
qed

lemma odd-degree-imp-real-root: assumes odd (degree p)
shows ∃ x. poly p x = (0 :: real)

proof −
from real-degree-2-factorization-exists[of p] obtain qs where

id: p = prod-list qs and qs:
∧

q. q ∈ set qs =⇒ degree q ≤ 2 by auto
show ?thesis using assms qs unfolding id
proof (induct qs)

case (Cons q qs)
from Cons(3)[of q] have dq: degree q ≤ 2 by auto
show ?case
proof (cases degree q = 1)

case True
from roots1 [OF this] show ?thesis by auto

next
case False
with dq have deg: degree q = 0 ∨ degree q = 2 by arith
from Cons(2) have q ∗ prod-list qs 6= 0 by fastforce
hence q 6= 0 prod-list qs 6= 0 by auto
from degree-mult-eq[OF this]
have degree (prod-list (q # qs)) = degree q + degree (prod-list qs) by simp
from Cons(2)[unfolded this] deg have odd (degree (prod-list qs)) by auto
from Cons(1)[OF this Cons(3)] obtain x where poly (prod-list qs) x = 0

by auto
thus ?thesis by auto

210

qed
qed simp

qed

end

13.1 Compare Instance for Complex Numbers
We define some code equations for complex numbers, provide a compara-
tor for complex numbers, and register complex numbers for the container
framework.
theory Compare-Complex
imports

HOL.Complex
Polynomial-Interpolation.Missing-Unsorted
Deriving.Compare-Real
Containers.Set-Impl

begin

declare [[code drop: Gcd-fin]]
declare [[code drop: Lcm-fin]]

definition gcds :: ′a::semiring-gcd list ⇒ ′a
where [simp, code-abbrev]: gcds xs = gcd-list xs

lemma [code]:
gcds xs = fold gcd xs 0
by (simp add: Gcd-fin.set-eq-fold)

definition lcms :: ′a::semiring-gcd list ⇒ ′a
where [simp, code-abbrev]: lcms xs = lcm-list xs

lemma [code]:
lcms xs = fold lcm xs 1
by (simp add: Lcm-fin.set-eq-fold)

lemma in-reals-code [code-unfold]:
x ∈ � ←→ Im x = 0
by (fact complex-is-Real-iff)

definition is-norm-1 :: complex ⇒ bool where
is-norm-1 z = ((Re z)2 + (Im z)2 = 1)

lemma is-norm-1 [simp]: is-norm-1 x = (norm x = 1)
unfolding is-norm-1-def norm-complex-def by simp

definition is-norm-le-1 :: complex ⇒ bool where
is-norm-le-1 z = ((Re z)2 + (Im z)2 ≤ 1)

211

lemma is-norm-le-1 [simp]: is-norm-le-1 x = (norm x ≤ 1)
unfolding is-norm-le-1-def norm-complex-def by simp

instantiation complex :: finite-UNIV
begin
definition finite-UNIV = Phantom(complex) False
instance
by (intro-classes, unfold finite-UNIV-complex-def , simp add: infinite-UNIV-char-0)

end

instantiation complex :: compare
begin
definition compare-complex :: complex ⇒ complex ⇒ order where

compare-complex x y = compare (Re x, Im x) (Re y, Im y)

instance
proof (intro-classes, unfold-locales; unfold compare-complex-def)

fix x y z :: complex
let ?c = compare :: (real × real) comparator
interpret comparator ?c by (rule comparator-compare)
show invert-order (?c (Re x, Im x) (Re y, Im y)) = ?c (Re y, Im y) (Re x, Im

x)
by (rule sym)

{
assume ?c (Re x, Im x) (Re y, Im y) = Lt

?c (Re y, Im y) (Re z, Im z) = Lt
thus ?c (Re x, Im x) (Re z, Im z) = Lt

by (rule comp-trans)
}
{

assume ?c (Re x, Im x) (Re y, Im y) = Eq
from weak-eq[OF this] show x = y unfolding complex-eq-iff by auto

}
qed
end

derive (eq) ceq complex real
derive (compare) ccompare complex
derive (compare) ccompare real
derive (dlist) set-impl complex real

end

14 Interval Arithmetic
We provide basic interval arithmetic operations for real and complex inter-
vals. As application we prove that complex polynomial evaluation is contin-
uous w.r.t. interval arithmetic. To be more precise, if an interval sequence

212

converges to some element x, then the interval polynomial evaluation of f
tends to f(x).
theory Interval-Arithmetic
imports

Algebraic-Numbers-Prelim
begin

Intervals
datatype (′a) interval = Interval (lower : ′a) (upper : ′a)

hide-const(open) lower upper

definition to-interval where to-interval a ≡ Interval a a

abbreviation of-int-interval :: int ⇒ ′a :: ring-1 interval where
of-int-interval x ≡ to-interval (of-int x)

14.1 Syntactic Class Instantiations
instantiation interval :: (zero) zero begin

definition zero-interval where 0 ≡ Interval 0 0
instance..

end

instantiation interval :: (one) one begin
definition 1 = Interval 1 1
instance..

end

instantiation interval :: (plus) plus begin
fun plus-interval where Interval lx ux + Interval ly uy = Interval (lx + ly) (ux

+ uy)
instance..

end

instantiation interval :: (uminus) uminus begin
fun uminus-interval where − Interval l u = Interval (−u) (−l)
instance..

end

instantiation interval :: (minus) minus begin
fun minus-interval where Interval lx ux − Interval ly uy = Interval (lx − uy)

(ux − ly)
instance..

end

instantiation interval :: ({ord,times}) times begin
fun times-interval where
Interval lx ux ∗ Interval ly uy =

213

(let x1 = lx ∗ ly; x2 = lx ∗ uy; x3 = ux ∗ ly; x4 = ux ∗ uy
in Interval (min x1 (min x2 (min x3 x4))) (max x1 (max x2 (max x3 x4))))

instance..
end

instantiation interval :: ({ord,times,inverse}) inverse begin
fun inverse-interval where

inverse (Interval l u) = Interval (inverse u) (inverse l)
definition divide-interval :: ′a interval ⇒ - where

divide-interval X Y = X ∗ (inverse Y)
instance..

end

14.2 Class Instantiations
instance interval :: (semigroup-add) semigroup-add
proof

fix a b c :: ′a interval
show a + b + c = a + (b + c) by (cases a, cases b, cases c, auto simp: ac-simps)

qed

instance interval :: (monoid-add) monoid-add
proof

fix a :: ′a interval
show 0 + a = a by (cases a, auto simp: zero-interval-def)
show a + 0 = a by (cases a, auto simp: zero-interval-def)

qed

instance interval :: (ab-semigroup-add) ab-semigroup-add
proof

fix a b :: ′a interval
show a + b = b + a by (cases a, cases b, auto simp: ac-simps)

qed

instance interval :: (comm-monoid-add) comm-monoid-add by (intro-classes, auto)

Intervals do not form an additive group, but satisfy some properties.
lemma interval-uminus-zero[simp]:

shows −(0 :: ′a :: group-add interval) = 0
by (simp add: zero-interval-def)

lemma interval-diff-zero[simp]:
fixes a :: ′a :: cancel-comm-monoid-add interval
shows a − 0 = a by (cases a, simp add: zero-interval-def)

Without type invariant, intervals do not form a multiplicative monoid,
but satisfy some properties.
instance interval :: ({linorder ,mult-zero}) mult-zero
proof

214

fix a :: ′a interval
show a ∗ 0 = 0 0 ∗ a = 0 by (atomize(full), cases a, auto simp: zero-interval-def)

qed

14.3 Membership
fun in-interval :: ′a :: order ⇒ ′a interval ⇒ bool ((-/ ∈i -) [51 , 51] 50) where

y ∈i Interval lx ux = (lx ≤ y ∧ y ≤ ux)

lemma in-interval-to-interval[intro!]: a ∈i to-interval a
by (auto simp: to-interval-def)

lemma plus-in-interval:
fixes x y :: ′a :: ordered-comm-monoid-add
shows x ∈i X =⇒ y ∈i Y =⇒ x + y ∈i X + Y
by (cases X , cases Y , auto dest:add-mono)

lemma uminus-in-interval:
fixes x :: ′a :: ordered-ab-group-add
shows x ∈i X =⇒ −x ∈i −X
by (cases X , auto)

lemma minus-in-interval:
fixes x y :: ′a :: ordered-ab-group-add
shows x ∈i X =⇒ y ∈i Y =⇒ x − y ∈i X − Y
by (cases X , cases Y , auto dest:diff-mono)

lemma times-in-interval:
fixes x y :: ′a :: linordered-ring
assumes x ∈i X y ∈i Y
shows x ∗ y ∈i X ∗ Y

proof −
obtain X1 X2 where X :Interval X1 X2 = X by (cases X ,auto)
obtain Y1 Y2 where Y :Interval Y1 Y2 = Y by (cases Y ,auto)
from assms X Y have assms: X1 ≤ x x ≤ X2 Y1 ≤ y y ≤ Y2 by auto
have (X1 ∗ Y1 ≤ x ∗ y ∨ X1 ∗ Y2 ≤ x ∗ y ∨ X2 ∗ Y1 ≤ x ∗ y ∨ X2 ∗ Y2 ≤

x ∗ y) ∧
(X1 ∗ Y1 ≥ x ∗ y ∨ X1 ∗ Y2 ≥ x ∗ y ∨ X2 ∗ Y1 ≥ x ∗ y ∨ X2 ∗ Y2 ≥

x ∗ y)
proof (cases x 0 :: ′a rule: linorder-cases)

case x0 : less
show ?thesis
proof (cases y < 0)

case y0 : True
from y0 x0 assms have x ∗ y ≤ X1 ∗ y by (intro mult-right-mono-neg, auto)
also from x0 y0 assms have X1 ∗ y ≤ X1 ∗ Y1 by (intro mult-left-mono-neg,

auto)
finally have 1 : x ∗ y ≤ X1 ∗ Y1 .
show ?thesis proof(cases X2 ≤ 0)

215

case True
with assms have X2 ∗ Y2 ≤ X2 ∗ y by (auto intro: mult-left-mono-neg)
also from assms y0 have ... ≤ x ∗ y by (auto intro: mult-right-mono-neg)
finally have X2 ∗ Y2 ≤ x ∗ y.
with 1 show ?thesis by auto

next
case False
with assms have X2 ∗ Y1 ≤ X2 ∗ y by (auto intro: mult-left-mono)
also from assms y0 have ... ≤ x ∗ y by (auto intro: mult-right-mono-neg)
finally have X2 ∗ Y1 ≤ x ∗ y.
with 1 show ?thesis by auto

qed
next

case False
then have y0 : y ≥ 0 by auto
from x0 y0 assms have X1 ∗ Y2 ≤ x ∗ Y2 by (intro mult-right-mono, auto)
also from y0 x0 assms have ... ≤ x ∗ y by (intro mult-left-mono-neg, auto)
finally have 1 : X1 ∗ Y2 ≤ x ∗ y.
show ?thesis
proof(cases X2 ≤ 0)

case X2 : True
from assms y0 have x ∗ y ≤ X2 ∗ y by (intro mult-right-mono)

also from assms X2 have ... ≤ X2 ∗ Y1 by (auto intro: mult-left-mono-neg)
finally have x ∗ y ≤ X2 ∗ Y1 .
with 1 show ?thesis by auto

next
case X2 : False
from assms y0 have x ∗ y ≤ X2 ∗ y by (intro mult-right-mono)
also from assms X2 have ... ≤ X2 ∗ Y2 by (auto intro: mult-left-mono)
finally have x ∗ y ≤ X2 ∗ Y2 .
with 1 show ?thesis by auto

qed
qed

next
case [simp]: equal
with assms show ?thesis by (cases Y2 ≤ 0 , auto intro:mult-sign-intros)

next
case x0 : greater
show ?thesis
proof (cases y < 0)

case y0 : True
from x0 y0 assms have X2 ∗ Y1 ≤ X2 ∗ y by (intro mult-left-mono, auto)
also from y0 x0 assms have X2 ∗ y ≤ x ∗ y by (intro mult-right-mono-neg,

auto)
finally have 1 : X2 ∗ Y1 ≤ x ∗ y.
show ?thesis
proof(cases Y2 ≤ 0)

case Y2 : True
from x0 assms have x ∗ y ≤ x ∗ Y2 by (auto intro: mult-left-mono)

216

also from assms Y2 have ... ≤ X1 ∗ Y2 by (auto intro: mult-right-mono-neg)
finally have x ∗ y ≤ X1 ∗ Y2 .
with 1 show ?thesis by auto

next
case Y2 : False
from x0 assms have x ∗ y ≤ x ∗ Y2 by (auto intro: mult-left-mono)
also from assms Y2 have ... ≤ X2 ∗ Y2 by (auto intro: mult-right-mono)
finally have x ∗ y ≤ X2 ∗ Y2 .
with 1 show ?thesis by auto

qed
next

case y0 : False
from x0 y0 assms have x ∗ y ≤ X2 ∗ y by (intro mult-right-mono, auto)
also from y0 x0 assms have ... ≤ X2 ∗ Y2 by (intro mult-left-mono, auto)
finally have 1 : x ∗ y ≤ X2 ∗ Y2 .
show ?thesis
proof(cases X1 ≤ 0)

case True
with assms have X1 ∗ Y2 ≤ X1 ∗ y by (auto intro: mult-left-mono-neg)
also from assms y0 have ... ≤ x ∗ y by (auto intro: mult-right-mono)
finally have X1 ∗ Y2 ≤ x ∗ y.
with 1 show ?thesis by auto

next
case False
with assms have X1 ∗ Y1 ≤ X1 ∗ y by (auto intro: mult-left-mono)
also from assms y0 have ... ≤ x ∗ y by (auto intro: mult-right-mono)
finally have X1 ∗ Y1 ≤ x ∗ y.
with 1 show ?thesis by auto

qed
qed

qed
hence min:min (X1 ∗ Y1) (min (X1 ∗ Y2) (min (X2 ∗ Y1) (X2 ∗ Y2))) ≤ x
∗ y

and max:x ∗ y ≤ max (X1 ∗ Y1) (max (X1 ∗ Y2) (max (X2 ∗ Y1) (X2 ∗
Y2)))

by (auto simp:min-le-iff-disj le-max-iff-disj)
show ?thesis using min max X Y by (auto simp: Let-def)

qed

14.4 Convergence
definition interval-tendsto :: (nat ⇒ ′a :: topological-space interval) ⇒ ′a ⇒ bool
(infixr −−−−→i 55) where
(X −−−−→i x) ≡ ((interval.upper ◦ X) −−−−→ x) ∧ ((interval.lower ◦ X) −−−−→

x)

lemma interval-tendstoI [intro]:
assumes (interval.upper ◦ X) −−−−→ x and (interval.lower ◦ X) −−−−→ x
shows X −−−−→i x

217

using assms by (auto simp:interval-tendsto-def)

lemma const-interval-tendsto: (λi. to-interval a) −−−−→i a
by (auto simp: o-def to-interval-def)

lemma interval-tendsto-0 : (λi. 0) −−−−→i 0
by (auto simp: o-def zero-interval-def)

lemma plus-interval-tendsto:
fixes x y :: ′a :: topological-monoid-add
assumes X −−−−→i x Y −−−−→i y
shows (λ i. X i + Y i) −−−−→i x + y

proof −
have ∗: X i + Y i = Interval (interval.lower (X i) + interval.lower (Y i))

(interval.upper (X i) + interval.upper (Y i)) for i
by (cases X i; cases Y i, auto)

from assms show ?thesis unfolding ∗ interval-tendsto-def o-def by (auto intro:
tendsto-intros)
qed

lemma uminus-interval-tendsto:
fixes x :: ′a :: topological-group-add
assumes X −−−−→i x
shows (λi. − X i) −−−−→i −x

proof−
have ∗: − X i = Interval (− interval.upper (X i)) (− interval.lower (X i)) for i

by (cases X i, auto)
from assms show ?thesis unfolding o-def ∗ interval-tendsto-def by (auto intro:

tendsto-intros)
qed

lemma minus-interval-tendsto:
fixes x y :: ′a :: topological-group-add
assumes X −−−−→i x Y −−−−→i y
shows (λ i. X i − Y i) −−−−→i x − y

proof −
have ∗: X i − Y i = Interval (interval.lower (X i) − interval.upper (Y i))

(interval.upper (X i) − interval.lower (Y i)) for i
by (cases X i; cases Y i, auto)

from assms show ?thesis unfolding o-def ∗ interval-tendsto-def by (auto intro:
tendsto-intros)
qed

lemma times-interval-tendsto:
fixes x y :: ′a :: {linorder-topology, real-normed-algebra}
assumes X −−−−→i x Y −−−−→i y
shows (λ i. X i ∗ Y i) −−−−→i x ∗ y

proof −
have ∗: (interval.lower (X i ∗ Y i)) = (

218

let lx = (interval.lower (X i)); ux = (interval.upper (X i));
ly = (interval.lower (Y i)); uy = (interval.upper (Y i));
x1 = lx ∗ ly; x2 = lx ∗ uy; x3 = ux ∗ ly; x4 = ux ∗ uy in

(min x1 (min x2 (min x3 x4)))) (interval.upper (X i ∗ Y i)) = (
let lx = (interval.lower (X i)); ux = (interval.upper (X i));

ly = (interval.lower (Y i)); uy = (interval.upper (Y i));
x1 = lx ∗ ly; x2 = lx ∗ uy; x3 = ux ∗ ly; x4 = ux ∗ uy in
(max x1 (max x2 (max x3 x4)))) for i

by (cases X i; cases Y i, auto simp: Let-def)+
have (λi. (interval.lower (X i ∗ Y i))) −−−−→ min (x ∗ y) (min (x ∗ y) (min (x
∗ y) (x ∗y)))

using assms unfolding interval-tendsto-def ∗ Let-def o-def
by (intro tendsto-min tendsto-intros, auto)

moreover
have (λi. (interval.upper (X i ∗ Y i))) −−−−→ max (x ∗ y) (max (x ∗ y) (max

(x ∗ y) (x ∗y)))
using assms unfolding interval-tendsto-def ∗ Let-def o-def
by (intro tendsto-max tendsto-intros, auto)

ultimately show ?thesis unfolding interval-tendsto-def o-def by auto
qed

lemma interval-tendsto-neq:
fixes a b :: real
assumes (λ i. f i) −−−−→i a and a 6= b
shows ∃ n. ¬ b ∈i f n

proof −
let ?d = norm (b − a) / 2
from assms have d: ?d > 0 by auto
from assms(1)[unfolded interval-tendsto-def]
have cvg: (interval.lower o f) −−−−→ a (interval.upper o f) −−−−→ a by auto
from LIMSEQ-D[OF cvg(1) d] obtain n1 where

n1 :
∧

n. n ≥ n1 =⇒ norm ((interval.lower ◦ f) n − a) < ?d by auto
from LIMSEQ-D[OF cvg(2) d] obtain n2 where

n2 :
∧

n. n ≥ n2 =⇒ norm ((interval.upper ◦ f) n − a) < ?d by auto
define n where n = max n1 n2
from n1 [of n] n2 [of n] have bnd:

norm ((interval.lower ◦ f) n − a) < ?d
norm ((interval.upper ◦ f) n − a) < ?d
unfolding n-def by auto

show ?thesis by (rule exI [of - n], insert bnd, cases f n, auto,argo)
qed

14.5 Complex Intervals
datatype complex-interval = Complex-Interval (Re-interval: real interval) (Im-interval:
real interval)

definition in-complex-interval :: complex ⇒ complex-interval ⇒ bool ((-/ ∈c -)
[51 , 51] 50) where

219

y ∈c x ≡ (case x of Complex-Interval r i ⇒ Re y ∈i r ∧ Im y ∈i i)

instantiation complex-interval :: comm-monoid-add begin

definition 0 ≡ Complex-Interval 0 0

fun plus-complex-interval :: complex-interval ⇒ complex-interval ⇒ complex-interval
where

Complex-Interval rx ix + Complex-Interval ry iy = Complex-Interval (rx + ry)
(ix + iy)

instance
proof

fix a b c :: complex-interval
show a + b + c = a + (b + c) by (cases a, cases b, cases c, simp add: ac-simps)
show a + b = b + a by (cases a, cases b, simp add: ac-simps)
show 0 + a = a by (cases a, simp add: ac-simps zero-complex-interval-def)

qed
end

lemma plus-complex-interval: x ∈c X =⇒ y ∈c Y =⇒ x + y ∈c X + Y
unfolding in-complex-interval-def using plus-in-interval by (cases X , cases Y ,

auto)

definition of-int-complex-interval :: int ⇒ complex-interval where
of-int-complex-interval x = Complex-Interval (of-int-interval x) 0

lemma of-int-complex-interval-0 [simp]: of-int-complex-interval 0 = 0
by (simp add: of-int-complex-interval-def zero-complex-interval-def to-interval-def

zero-interval-def)

lemma of-int-complex-interval: of-int i ∈c of-int-complex-interval i
unfolding in-complex-interval-def of-int-complex-interval-def
by (auto simp: zero-complex-interval-def zero-interval-def)

instantiation complex-interval :: mult-zero begin

fun times-complex-interval where
Complex-Interval rx ix ∗ Complex-Interval ry iy =
Complex-Interval (rx ∗ ry − ix ∗ iy) (rx ∗ iy + ix ∗ ry)

instance
proof

fix a :: complex-interval
show 0 ∗ a = 0 a ∗ 0 = 0 by (atomize(full), cases a, auto simp: zero-complex-interval-def)

qed
end

instantiation complex-interval :: minus begin

220

fun minus-complex-interval where
Complex-Interval R I − Complex-Interval R ′ I ′ = Complex-Interval (R−R ′)

(I−I ′)

instance..

end

lemma times-complex-interval: x ∈c X =⇒ y ∈c Y =⇒ x ∗ y ∈c X ∗ Y
unfolding in-complex-interval-def
by (cases X , cases Y , auto intro: times-in-interval minus-in-interval plus-in-interval)

definition ipoly-complex-interval :: int poly ⇒ complex-interval ⇒ complex-interval
where

ipoly-complex-interval p x = fold-coeffs (λa b. of-int-complex-interval a + x ∗ b)
p 0

lemma ipoly-complex-interval-0 [simp]:
ipoly-complex-interval 0 x = 0
by (auto simp: ipoly-complex-interval-def)

lemma ipoly-complex-interval-pCons[simp]:
ipoly-complex-interval (pCons a p) x = of-int-complex-interval a + x ∗ (ipoly-complex-interval

p x)
by (cases p = 0 ; cases a = 0 , auto simp: ipoly-complex-interval-def)

lemma ipoly-complex-interval: assumes x: x ∈c X
shows ipoly p x ∈c ipoly-complex-interval p X

proof −
define xs where xs = coeffs p
have 0 : in-complex-interval 0 0 (is in-complex-interval ?Z ?z)

unfolding in-complex-interval-def zero-complex-interval-def zero-interval-def
by auto

define Z where Z = ?Z
define z where z = ?z
from 0 have 0 : in-complex-interval Z z unfolding Z-def z-def by auto
note x = times-complex-interval[OF x]
show ?thesis

unfolding poly-map-poly-code ipoly-complex-interval-def fold-coeffs-def
xs-def [symmetric] Z-def [symmetric] z-def [symmetric] using 0

by (induct xs arbitrary: Z z, auto intro!: plus-complex-interval of-int-complex-interval
x)
qed

definition complex-interval-tendsto (infix −−−−→c 55) where
C −−−−→c c ≡ ((Re-interval ◦ C) −−−−→i Re c) ∧ ((Im-interval ◦ C) −−−−→i

Im c)

221

lemma complex-interval-tendstoI [intro!]:
(Re-interval ◦ C) −−−−→i Re c =⇒ (Im-interval ◦ C) −−−−→i Im c =⇒ C
−−−−→c c

by (simp add: complex-interval-tendsto-def)

lemma of-int-complex-interval-tendsto: (λi. of-int-complex-interval n) −−−−→c of-int
n

by (auto simp: o-def of-int-complex-interval-def intro!:const-interval-tendsto in-
terval-tendsto-0)

lemma Im-interval-plus: Im-interval (A + B) = Im-interval A + Im-interval B
by (cases A; cases B, auto)

lemma Re-interval-plus: Re-interval (A + B) = Re-interval A + Re-interval B
by (cases A; cases B, auto)

lemma Im-interval-minus: Im-interval (A − B) = Im-interval A − Im-interval B

by (cases A; cases B, auto)

lemma Re-interval-minus: Re-interval (A − B) = Re-interval A − Re-interval B
by (cases A; cases B, auto)

lemma Re-interval-times: Re-interval (A ∗ B) = Re-interval A ∗ Re-interval B −
Im-interval A ∗ Im-interval B

by (cases A; cases B, auto)

lemma Im-interval-times: Im-interval (A ∗ B) = Re-interval A ∗ Im-interval B +
Im-interval A ∗ Re-interval B

by (cases A; cases B, auto)

lemma plus-complex-interval-tendsto:
A −−−−→c a =⇒ B −−−−→c b =⇒ (λi. A i + B i) −−−−→c a + b
unfolding complex-interval-tendsto-def
by (auto intro!: plus-interval-tendsto simp: o-def Re-interval-plus Im-interval-plus)

lemma minus-complex-interval-tendsto:
A −−−−→c a =⇒ B −−−−→c b =⇒ (λi. A i − B i) −−−−→c a − b
unfolding complex-interval-tendsto-def
by (auto intro!: minus-interval-tendsto simp: o-def Re-interval-minus Im-interval-minus)

lemma times-complex-interval-tendsto:
A −−−−→c a =⇒ B −−−−→c b =⇒ (λi. A i ∗ B i) −−−−→c a ∗ b
unfolding complex-interval-tendsto-def
by (auto intro!: minus-interval-tendsto times-interval-tendsto plus-interval-tendsto

simp: o-def Re-interval-times Im-interval-times)

lemma ipoly-complex-interval-tendsto:

222

assumes C −−−−→c c
shows (λi. ipoly-complex-interval p (C i)) −−−−→c ipoly p c

proof(induct p)
case 0
show ?case by (auto simp: o-def zero-complex-interval-def zero-interval-def com-

plex-interval-tendsto-def)
next

case (pCons a p)
show ?case

apply (unfold ipoly-complex-interval-pCons of-int-hom.map-poly-pCons-hom
poly-pCons)

apply (intro plus-complex-interval-tendsto times-complex-interval-tendsto assms
pCons of-int-complex-interval-tendsto)

done
qed

lemma complex-interval-tendsto-neq: assumes (λ i. f i) −−−−→c a
and a 6= b

shows ∃ n. ¬ b ∈c f n
proof −

from assms(1)[unfolded complex-interval-tendsto-def o-def]
have cvg: (λx. Re-interval (f x)) −−−−→i Re a (λx. Im-interval (f x)) −−−−→i

Im a by auto
from assms(2) have Re a 6= Re b ∨ Im a 6= Im b

using complex.expand by blast
thus ?thesis
proof

assume Re a 6= Re b
from interval-tendsto-neq[OF cvg(1) this] show ?thesis
unfolding in-complex-interval-def by (metis (no-types, lifting) complex-interval.case-eq-if)

next
assume Im a 6= Im b
from interval-tendsto-neq[OF cvg(2) this] show ?thesis
unfolding in-complex-interval-def by (metis (no-types, lifting) complex-interval.case-eq-if)

qed
qed

end

15 Complex Algebraic Numbers
Since currently there is no immediate analog of Sturm’s theorem for the
complex numbers, we implement complex algebraic numbers via their real
and imaginary part.

The major algorithm in this theory is a factorization algorithm which
factors a rational polynomial over the complex numbers.

For factorization of polynomials with complex algebraic coefficients, there
is a separate AFP entry "Factor-Algebraic-Polynomial".

223

theory Complex-Algebraic-Numbers
imports

Real-Roots
Complex-Roots-Real-Poly
Compare-Complex
Jordan-Normal-Form.Char-Poly
Berlekamp-Zassenhaus.Code-Abort-Gcd
Interval-Arithmetic

begin

15.1 Complex Roots
hide-const (open) UnivPoly.coeff
hide-const (open) Module.smult
hide-const (open) Coset.order

abbreviation complex-of-int-poly :: int poly ⇒ complex poly where
complex-of-int-poly ≡ map-poly of-int

abbreviation complex-of-rat-poly :: rat poly ⇒ complex poly where
complex-of-rat-poly ≡ map-poly of-rat

lemma poly-complex-to-real: (poly (complex-of-int-poly p) (complex-of-real x) = 0)
= (poly (real-of-int-poly p) x = 0)

proof −
have id: of-int = complex-of-real o real-of-int by auto
interpret cr : semiring-hom complex-of-real by (unfold-locales, auto)
show ?thesis unfolding id

by (subst map-poly-map-poly[symmetric], force+)
qed

lemma represents-cnj: assumes p represents x shows p represents (cnj x)
proof −

from assms have p: p 6= 0 and ipoly p x = 0 by auto
hence rt: poly (complex-of-int-poly p) x = 0 by auto
have poly (complex-of-int-poly p) (cnj x) = 0

by (rule complex-conjugate-root[OF - rt], subst coeffs-map-poly, auto)
with p show ?thesis by auto

qed

definition poly-2i :: int poly where
poly-2i ≡ [: 4 , 0 , 1 :]

lemma represents-2i: poly-2i represents (2 ∗ i)
unfolding represents-def poly-2i-def by simp

definition root-poly-Re :: int poly ⇒ int poly where
root-poly-Re p = cf-pos-poly (poly-mult-rat (inverse 2) (poly-add p p))

224

lemma root-poly-Re-code[code]:
root-poly-Re p = (let fs = coeffs (poly-add p p); k = length fs

in cf-pos-poly (poly-of-list (map (λ(fi, i). fi ∗ 2 ^ i) (zip fs [0 ..<k]))))
proof −

have [simp]: quotient-of (1 / 2) = (1 ,2) by eval
show ?thesis unfolding root-poly-Re-def poly-mult-rat-def poly-mult-rat-main-def

Let-def by simp
qed

definition root-poly-Im :: int poly ⇒ int poly list where
root-poly-Im p = (let fs = factors-of-int-poly
(poly-add p (poly-uminus p))
in remdups ((if (∃ f ∈ set fs. coeff f 0 = 0) then [[:0 ,1 :]] else [])) @
[cf-pos-poly (poly-div f poly-2i) . f ← fs, coeff f 0 6= 0])

lemma represents-root-poly:
assumes ipoly p x = 0 and p: p 6= 0
shows (root-poly-Re p) represents (Re x)

and ∃ q ∈ set (root-poly-Im p). q represents (Im x)
proof −

let ?Rep = root-poly-Re p
let ?Imp = root-poly-Im p
from assms have ap: p represents x by auto
from represents-cnj[OF this] have apc: p represents (cnj x) .
from represents-mult-rat[OF - represents-add[OF ap apc], of inverse 2]
have ?Rep represents (1 / 2 ∗ (x + cnj x)) unfolding root-poly-Re-def Let-def

by (auto simp: hom-distribs)
also have 1 / 2 ∗ (x + cnj x) = of-real (Re x)

by (simp add: complex-add-cnj)
finally have Rep: ?Rep 6= 0 and rt: ipoly ?Rep (complex-of-real (Re x)) = 0

unfolding represents-def by auto
from rt[unfolded poly-complex-to-real]
have ipoly ?Rep (Re x) = 0 .
with Rep show ?Rep represents (Re x) by auto
let ?q = poly-add p (poly-uminus p)
from represents-add[OF ap, of poly-uminus p − cnj x] represents-uminus[OF apc]

have apq: ?q represents (x − cnj x) by auto
from factors-int-poly-represents[OF this] obtain pi where pi: pi ∈ set (factors-of-int-poly

?q)
and appi: pi represents (x − cnj x) and irr-pi: irreducible pi by auto

have id: inverse (2 ∗ i) ∗ (x − cnj x) = of-real (Im x)
apply (cases x) by (simp add: complex-split imaginary-unit.ctr legacy-Complex-simps)

from represents-2i have 12 : poly-2i represents (2 ∗ i) by simp
have ∃ qi ∈ set ?Imp. qi represents (inverse (2 ∗ i) ∗ (x − cnj x))
proof (cases x − cnj x = 0)

case False
have poly poly-2i 0 6= 0 unfolding poly-2i-def by auto

225

from represents-div[OF appi 12 this]
represents-irr-non-0 [OF irr-pi appi False, unfolded poly-0-coeff-0] pi
show ?thesis unfolding root-poly-Im-def Let-def by (auto intro: bexI [of -

cf-pos-poly (poly-div pi poly-2i)])
next

case True
hence id2 : Im x = 0 by (simp add: complex-eq-iff)
from appi[unfolded True represents-def] have coeff pi 0 = 0 by (cases pi, auto)
with pi have mem: [:0 ,1 :] ∈ set ?Imp unfolding root-poly-Im-def Let-def by

auto
have [:0 ,1 :] represents (complex-of-real (Im x)) unfolding id2 represents-def

by simp
with mem show ?thesis unfolding id by auto

qed
then obtain qi where qi: qi ∈ set ?Imp qi 6= 0 and rt: ipoly qi (complex-of-real

(Im x)) = 0
unfolding id represents-def by auto

from qi rt[unfolded poly-complex-to-real]
show ∃ qi ∈ set ?Imp. qi represents (Im x) by auto

qed

definition complex-poly :: int poly ⇒ int poly ⇒ int poly list where
complex-poly re im = (let i = [:1 ,0 ,1 :]

in factors-of-int-poly (poly-add re (poly-mult im i)))

lemma complex-poly: assumes re: re represents (Re x)
and im: im represents (Im x)

shows ∃ f ∈ set (complex-poly re im). f represents x
∧

f . f ∈ set (complex-poly
re im) =⇒ poly-cond f
proof −

let ?p = poly-add re (poly-mult im [:1 , 0 , 1 :])
from re have re: re represents complex-of-real (Re x) by simp
from im have im: im represents complex-of-real (Im x) by simp
have [:1 ,0 ,1 :] represents i by auto
from represents-add[OF re represents-mult[OF im this]]
have ?p represents of-real (Re x) + complex-of-real (Im x) ∗ i by simp
also have of-real (Re x) + complex-of-real (Im x) ∗ i = x

by (metis complex-eq mult.commute)
finally have p: ?p represents x by auto
have factors-of-int-poly ?p = complex-poly re im

unfolding complex-poly-def Let-def by simp
from factors-of-int-poly(1)[OF this] factors-of-int-poly(2)[OF this, of x] p
show ∃ f ∈ set (complex-poly re im). f represents x

∧
f . f ∈ set (complex-poly

re im) =⇒ poly-cond f
unfolding represents-def by auto

qed

lemma algebraic-complex-iff : algebraic x = (algebraic (Re x) ∧ algebraic (Im x))

226

proof
assume algebraic x
from this[unfolded algebraic-altdef-ipoly] obtain p where ipoly p x = 0 p 6= 0

by auto
from represents-root-poly[OF this] show algebraic (Re x) ∧ algebraic (Im x)

unfolding represents-def algebraic-altdef-ipoly by auto
next

assume algebraic (Re x) ∧ algebraic (Im x)
from this[unfolded algebraic-altdef-ipoly] obtain re im where

re represents (Re x) im represents (Im x) by blast
from complex-poly[OF this] show algebraic x

unfolding represents-def algebraic-altdef-ipoly by auto
qed

definition algebraic-complex :: complex ⇒ bool where
[simp]: algebraic-complex = algebraic

lemma algebraic-complex-code-unfold[code-unfold]: algebraic = algebraic-complex
by simp

lemma algebraic-complex-code[code]:
algebraic-complex x = (algebraic (Re x) ∧ algebraic (Im x))
unfolding algebraic-complex-def algebraic-complex-iff ..

Determine complex roots of a polynomial, intended for polynomials of
degree 3 or higher, for lower degree polynomials use roots1 or croots2
hide-const (open) eq

primrec remdups-gen :: (′a ⇒ ′a ⇒ bool) ⇒ ′a list ⇒ ′a list where
remdups-gen eq [] = []
| remdups-gen eq (x # xs) = (if (∃ y ∈ set xs. eq x y) then

remdups-gen eq xs else x # remdups-gen eq xs)

lemma real-of-3-remdups-equal-3 [simp]: real-of-3 ‘ set (remdups-gen equal-3 xs) =
real-of-3 ‘ set xs

by (induct xs, auto simp: equal-3)

lemma distinct-remdups-equal-3 : distinct (map real-of-3 (remdups-gen equal-3 xs))
by (induct xs, auto, auto simp: equal-3)

lemma real-of-3-code [code]: real-of-3 x = real-of (Real-Alg-Quotient x)
by (transfer , auto)

definition real-parts-3 p = roots-of-3 (root-poly-Re p)

definition pos-imaginary-parts-3 p =
remdups-gen equal-3 (filter (λ x. sgn-3 x = 1) (concat (map roots-of-3 (root-poly-Im

p))))

227

lemma real-parts-3 : assumes p: p 6= 0 and ipoly p x = 0
shows Re x ∈ real-of-3 ‘ set (real-parts-3 p)
unfolding real-parts-3-def using represents-root-poly(1)[OF assms(2 ,1)]

roots-of-3 (1) unfolding represents-def by auto

lemma distinct-real-parts-3 : distinct (map real-of-3 (real-parts-3 p))
unfolding real-parts-3-def using roots-of-3 (2) .

lemma pos-imaginary-parts-3 : assumes p: p 6= 0 and ipoly p x = 0 and Im x >
0

shows Im x ∈ real-of-3 ‘ set (pos-imaginary-parts-3 p)
proof −

from represents-root-poly(2)[OF assms(2 ,1)] obtain q where
q: q ∈ set (root-poly-Im p) q represents Im x by auto

from roots-of-3 (1)[of q] have Im x ∈ real-of-3 ‘ set (roots-of-3 q) using q
unfolding represents-def by auto

then obtain i3 where i3 : i3 ∈ set (roots-of-3 q) and id: Im x = real-of-3 i3
by auto

from ‹Im x > 0 › have sgn (Im x) = 1 by simp
hence sgn: sgn-3 i3 = 1 unfolding id by (metis of-rat-eq-1-iff sgn-3)
show ?thesis unfolding pos-imaginary-parts-3-def real-of-3-remdups-equal-3 id

using sgn i3 q(1) by auto
qed

lemma distinct-pos-imaginary-parts-3 : distinct (map real-of-3 (pos-imaginary-parts-3
p))

unfolding pos-imaginary-parts-3-def by (rule distinct-remdups-equal-3)

lemma remdups-gen-subset: set (remdups-gen eq xs) ⊆ set xs
by (induct xs, auto)

lemma positive-pos-imaginary-parts-3 : assumes x ∈ set (pos-imaginary-parts-3
p)

shows 0 < real-of-3 x
proof −

from subsetD[OF remdups-gen-subset assms[unfolded pos-imaginary-parts-3-def]]
have sgn-3 x = 1 by auto
thus ?thesis using sgn-3 [of x] by (simp add: sgn-1-pos)

qed

definition pair-to-complex ri ≡ case ri of (r ,i) ⇒ Complex (real-of-3 r) (real-of-3
i)

fun get-itvl-2 :: real-alg-2 ⇒ real interval where
get-itvl-2 (Irrational n (p,l,r)) = Interval (of-rat l) (of-rat r)
| get-itvl-2 (Rational r) = (let rr = of-rat r in Interval rr rr)

lemma get-bounds-2 : assumes invariant-2 x

228

shows real-of-2 x ∈i get-itvl-2 x
proof (cases x)

case (Irrational n plr)
with assms obtain p l r where plr : plr = (p,l,r) by (cases plr , auto)
from assms Irrational plr have inv1 : invariant-1 (p,l,r)

and id: real-of-2 x = real-of-1 (p,l,r) by auto
show ?thesis unfolding id using invariant-1D(1)[OF inv1] by (auto simp: plr

Irrational)
qed (insert assms, auto simp: Let-def)

lift-definition get-itvl-3 :: real-alg-3 ⇒ real interval is get-itvl-2 .

lemma get-itvl-3 : real-of-3 x ∈i get-itvl-3 x
by (transfer , insert get-bounds-2 , auto)

fun tighten-bounds-2 :: real-alg-2 ⇒ real-alg-2 where
tighten-bounds-2 (Irrational n (p,l,r)) = (case tighten-poly-bounds p l r (sgn (ipoly

p r))
of (l ′,r ′,-) ⇒ Irrational n (p,l ′,r ′))

| tighten-bounds-2 (Rational r) = Rational r

lemma tighten-bounds-2 : assumes inv: invariant-2 x
shows real-of-2 (tighten-bounds-2 x) = real-of-2 x invariant-2 (tighten-bounds-2

x)
get-itvl-2 x = Interval l r =⇒
get-itvl-2 (tighten-bounds-2 x) = Interval l ′ r ′ =⇒ r ′ − l ′ = (r−l) / 2

proof (atomize(full), cases x)
case (Irrational n plr)
show real-of-2 (tighten-bounds-2 x) = real-of-2 x ∧

invariant-2 (tighten-bounds-2 x) ∧
(get-itvl-2 x = Interval l r −→
get-itvl-2 (tighten-bounds-2 x) = Interval l ′ r ′ −→ r ′ − l ′ = (r − l) / 2)

proof −
obtain p l r where plr : plr = (p,l,r) by (cases plr , auto)
let ?tb = tighten-poly-bounds p l r (sgn (ipoly p r))
obtain l ′ r ′ sr ′ where tb: ?tb = (l ′,r ′,sr ′) by (cases ?tb, auto)
have id: tighten-bounds-2 x = Irrational n (p,l ′,r ′) unfolding Irrational plr

using tb by auto
from inv[unfolded Irrational plr] have inv: invariant-1-2 (p, l, r)

n = card {y. y ≤ real-of-1 (p, l, r) ∧ ipoly p y = 0} by auto
have rof : real-of-2 x = real-of-1 (p, l, r)
real-of-2 (tighten-bounds-2 x) = real-of-1 (p, l ′, r ′) using Irrational plr id by

auto
from inv have inv1 : invariant-1 (p, l, r) and poly-cond2 p by auto
hence rc: ∃ !x. root-cond (p, l, r) x poly-cond2 p by auto
note tb ′ = tighten-poly-bounds[OF tb rc refl]
have eq: real-of-1 (p, l, r) = real-of-1 (p, l ′, r ′) using tb ′ inv1

using invariant-1-sub-interval(2) by presburger
from inv1 tb ′ have invariant-1 (p, l ′, r ′) by (metis invariant-1-sub-interval(1))

229

hence inv2 : invariant-2 (tighten-bounds-2 x) unfolding id using inv eq by
auto

thus ?thesis unfolding rof eq unfolding id unfolding Irrational plr
using tb ′(1−4) arg-cong[OF tb ′(5), of real-of-rat] by (auto simp: hom-distribs)

qed
qed (auto simp: Let-def)

lift-definition tighten-bounds-3 :: real-alg-3 ⇒ real-alg-3 is tighten-bounds-2
using tighten-bounds-2 by auto

lemma tighten-bounds-3 :
real-of-3 (tighten-bounds-3 x) = real-of-3 x
get-itvl-3 x = Interval l r =⇒
get-itvl-3 (tighten-bounds-3 x) = Interval l ′ r ′ =⇒ r ′ − l ′ = (r−l) / 2

by (transfer , insert tighten-bounds-2 , auto)+

partial-function (tailrec) filter-list-length
:: (′a ⇒ ′a) ⇒ (′a ⇒ bool) ⇒ nat ⇒ ′a list ⇒ ′a list where
[code]: filter-list-length f p n xs = (let ys = filter p xs

in if length ys = n then ys else
filter-list-length f p n (map f ys))

lemma filter-list-length: assumes length (filter P xs) = n
and

∧
i x. x ∈ set xs =⇒ P x =⇒ p ((f ^^ i) x)

and
∧

x. x ∈ set xs =⇒ ¬ P x =⇒ ∃ i. ¬ p ((f ^^ i) x)
and g:

∧
x. g (f x) = g x

and P:
∧

x. P (f x) = P x
shows map g (filter-list-length f p n xs) = map g (filter P xs)
proof −

from assms(3) have ∀ x. ∃ i. x ∈ set xs −→ ¬ P x −→ ¬ p ((f ^^ i) x)
by auto

from choice[OF this] obtain i where i:
∧

x. x ∈ set xs =⇒ ¬ P x =⇒ ¬ p ((f
^^ (i x)) x)

by auto
define m where m = max-list (map i xs)
have m:

∧
x. x ∈ set xs =⇒ ¬ P x =⇒ ∃ i ≤ m. ¬ p ((f ^^ i) x)

using max-list[of - map i xs, folded m-def] i by auto
show ?thesis using assms(1−2) m
proof (induct m arbitrary: xs rule: less-induct)

case (less m xs)
define ys where ys = filter p xs
have xs-ys: filter P xs = filter P ys unfolding ys-def filter-filter

by (rule filter-cong[OF refl], insert less(3)[of - 0], auto)
have filter (P ◦ f) ys = filter P ys using P unfolding o-def by auto
hence id3 : filter P (map f ys) = map f (filter P ys) unfolding filter-map by

simp
hence id2 : map g (filter P (map f ys)) = map g (filter P ys) by (simp add: g)
show ?case
proof (cases length ys = n)

230

case True
hence id: filter-list-length f p n xs = ys unfolding ys-def

filter-list-length.simps[of - - - xs] Let-def by auto
show ?thesis using True unfolding id xs-ys using less(2)

by (metis filter-id-conv length-filter-less less-le xs-ys)
next

case False
{

assume m = 0
from less(4)[unfolded this] have Pp: x ∈ set xs =⇒ ¬ P x =⇒ ¬ p x for x

by auto
with xs-ys False[folded less(2)] have False

by (metis (mono-tags, lifting) filter-True mem-Collect-eq set-filter ys-def)
} note m0 = this
then obtain M where mM : m = Suc M by (cases m, auto)
hence m: M < m by simp
from False have id: filter-list-length f p n xs = filter-list-length f p n (map f

ys)
unfolding ys-def filter-list-length.simps[of - - - xs] Let-def by auto

show ?thesis unfolding id xs-ys id2 [symmetric]
proof (rule less(1)[OF m])

fix y
assume y ∈ set (map f ys)
then obtain x where x: x ∈ set xs p x and y: y = f x unfolding ys-def

by auto
{

assume ¬ P y
hence ¬ P x unfolding y P .
from less(4)[OF x(1) this] obtain i where i: i ≤ m and p: ¬ p ((f ^^

i) x) by auto
with x obtain j where ij: i = Suc j by (cases i, auto)
with i have j: j ≤ M unfolding mM by auto
have ¬ p ((f ^^ j) y) using p unfolding ij y funpow-Suc-right by simp
thus ∃ i≤ M . ¬ p ((f ^^ i) y) using j by auto

}
{

fix i
assume P y
hence P x unfolding y P .
from less(3)[OF x(1) this, of Suc i]
show p ((f ^^ i) y) unfolding y funpow-Suc-right by simp

}
next
show length (filter P (map f ys)) = n unfolding id3 length-map using xs-ys

less(2) by auto
qed

qed
qed

qed

231

definition complex-roots-of-int-poly3 :: int poly ⇒ complex list where
complex-roots-of-int-poly3 p ≡ let n = degree p;

rrts = real-roots-of-int-poly p;
nr = length rrts;
crts = map (λ r . Complex r 0) rrts
in
if n = nr then crts
else let nr-crts = n − nr in if nr-crts = 2 then
let pp = real-of-int-poly p div (prod-list (map (λ x. [:−x,1 :]) rrts));

cpp = map-poly (λ r . Complex r 0) pp
in crts @ croots2 cpp else

let
nr-pos-crts = nr-crts div 2 ;
rxs = real-parts-3 p;
ixs = pos-imaginary-parts-3 p;
rts = [(rx, ix). rx <− rxs, ix <− ixs];
crts ′ = map pair-to-complex

(filter-list-length (map-prod tighten-bounds-3 tighten-bounds-3)
(λ (r , i). 0 ∈c ipoly-complex-interval p (Complex-Interval (get-itvl-3 r)

(get-itvl-3 i))) nr-pos-crts rts)
in crts @ (concat (map (λ x. [x, cnj x]) crts ′))

definition complex-roots-of-int-poly-all :: int poly ⇒ complex list where
complex-roots-of-int-poly-all p = (let n = degree p in

if n ≥ 3 then complex-roots-of-int-poly3 p
else if n = 1 then [roots1 (map-poly of-int p)] else if n = 2 then croots2 (map-poly

of-int p)
else [])

lemma in-real-itvl-get-bounds-tighten: real-of-3 x ∈i get-itvl-3 ((tighten-bounds-3
^^ n) x)
proof (induct n arbitrary: x)

case 0
thus ?case using get-itvl-3 [of x] by simp

next
case (Suc n x)
have id: (tighten-bounds-3 ^^ (Suc n)) x = (tighten-bounds-3 ^^ n) (tighten-bounds-3

x)
by (metis comp-apply funpow-Suc-right)

show ?case unfolding id tighten-bounds-3 (1)[of x, symmetric] by (rule Suc)
qed

lemma sandwitch-real:
fixes l r :: nat ⇒ real
assumes la: l −−−−→ a and ra: r −−−−→ a
and lm:

∧
i. l i ≤ m i and mr :

∧
i. m i ≤ r i

232

shows m −−−−→ a
proof (rule LIMSEQ-I)

fix e :: real
assume 0 < e
hence e: 0 < e / 2 by simp
from LIMSEQ-D[OF la e] obtain n1 where n1 :

∧
n. n ≥ n1 =⇒ norm (l n

− a) < e/2 by auto
from LIMSEQ-D[OF ra e] obtain n2 where n2 :

∧
n. n ≥ n2 =⇒ norm (r n

− a) < e/2 by auto
show ∃no. ∀n≥no. norm (m n − a) < e
proof (rule exI [of - max n1 n2], intro allI impI)

fix n
assume max n1 n2 ≤ n
with n1 n2 have ∗: norm (l n − a) < e/2 norm (r n − a) < e/2 by auto
from lm[of n] mr [of n] have norm (m n − a) ≤ norm (l n − a) + norm (r n

− a) by simp
with ∗ show norm (m n − a) < e by auto

qed
qed

lemma real-of-tighten-bounds-many[simp]: real-of-3 ((tighten-bounds-3 ^^ i) x) =
real-of-3 x

apply (induct i) using tighten-bounds-3 by auto

definition lower-3 where lower-3 x i ≡ interval.lower (get-itvl-3 ((tighten-bounds-3
^^ i) x))
definition upper-3 where upper-3 x i ≡ interval.upper (get-itvl-3 ((tighten-bounds-3
^^ i) x))

lemma interval-size-3 : upper-3 x i − lower-3 x i = (upper-3 x 0 − lower-3 x
0)/2^i
proof (induct i)

case (Suc i)
have upper-3 x (Suc i) − lower-3 x (Suc i) = (upper-3 x i − lower-3 x i) / 2

unfolding upper-3-def lower-3-def using tighten-bounds-3 get-itvl-3 by auto
with Suc show ?case by auto

qed auto

lemma interval-size-3-tendsto-0 : (λi. (upper-3 x i − lower-3 x i)) −−−−→ 0
by (subst interval-size-3 , auto intro: LIMSEQ-divide-realpow-zero)

lemma dist-tendsto-0-imp-tendsto: (λi. |f i − a| :: real) −−−−→ 0 =⇒ f −−−−→ a
using LIM-zero-cancel tendsto-rabs-zero-iff by blast

lemma upper-3-tendsto: upper-3 x −−−−→ real-of-3 x
proof(rule dist-tendsto-0-imp-tendsto, rule sandwitch-real)

fix i
obtain l r where lr : get-itvl-3 ((tighten-bounds-3 ^^ i) x) = Interval l r

by (metis interval.collapse)

233

with get-itvl-3 [of (tighten-bounds-3 ^^ i) x]
show |(upper-3 x) i − real-of-3 x| ≤ (upper-3 x i − lower-3 x i)

unfolding upper-3-def lower-3-def by auto
qed (insert interval-size-3-tendsto-0 , auto)

lemma lower-3-tendsto: lower-3 x −−−−→ real-of-3 x
proof(rule dist-tendsto-0-imp-tendsto, rule sandwitch-real)

fix i
obtain l r where lr : get-itvl-3 ((tighten-bounds-3 ^^ i) x) = Interval l r

by (metis interval.collapse)
with get-itvl-3 [of (tighten-bounds-3 ^^ i) x]
show |lower-3 x i − real-of-3 x| ≤ (upper-3 x i − lower-3 x i)

unfolding upper-3-def lower-3-def by auto
qed (insert interval-size-3-tendsto-0 , auto)

lemma tends-to-tight-bounds-3 : (λx. get-itvl-3 ((tighten-bounds-3 ^^ x) y)) −−−−→i

real-of-3 y
using lower-3-tendsto[of y] upper-3-tendsto[of y] unfolding lower-3-def upper-3-def

interval-tendsto-def o-def by auto

lemma complex-roots-of-int-poly3 : assumes p: p 6= 0 and sf : square-free p
shows set (complex-roots-of-int-poly3 p) = {x. ipoly p x = 0} (is ?l = ?r)

distinct (complex-roots-of-int-poly3 p)
proof −

interpret map-poly-inj-idom-hom of-real..
define q where q = real-of-int-poly p
let ?q = map-poly complex-of-real q
from p have q0 : q 6= 0 unfolding q-def by auto
hence q: ?q 6= 0 by auto
define rr where rr = real-roots-of-int-poly p
define rrts where rrts = map (λr . Complex r 0) rr
note d = complex-roots-of-int-poly3-def [of p, unfolded Let-def , folded rr-def ,

folded rrts-def]
have rr : set rr = {x. ipoly p x = 0} unfolding rr-def

using real-roots-of-int-poly(1)[OF p] .
have rrts: set rrts = {x. poly ?q x = 0 ∧ x ∈ �} unfolding rrts-def set-map rr

q-def
complex-of-real-def [symmetric] by (auto elim: Reals-cases)

have dist: distinct rr unfolding rr-def using real-roots-of-int-poly(2) .
from dist have dist1 : distinct rrts unfolding rrts-def distinct-map inj-on-def

by auto
have lrr : length rr = card {x. poly (real-of-int-poly p) x = 0}

unfolding rr-def using real-roots-of-int-poly[of p] p distinct-card by fastforce
have cr : length rr = card {x. poly ?q x = 0 ∧ x ∈ �} unfolding lrr q-def [symmetric]
proof −

have card {x. poly q x = 0} ≤ card {x. poly (map-poly complex-of-real q) x =
0 ∧ x ∈ �} (is ?l ≤ ?r)

by (rule card-inj-on-le[of of-real], insert poly-roots-finite[OF q], auto simp:
inj-on-def)

234

moreover have ?l ≥ ?r
by (rule card-inj-on-le[of Re, OF - - poly-roots-finite[OF q0]], auto simp:

inj-on-def elim!: Reals-cases)
ultimately show ?l = ?r by simp

qed
have conv:

∧
x. ipoly p x = 0 ←→ poly ?q x = 0

unfolding q-def by (subst map-poly-map-poly, auto simp: o-def)
have r : ?r = {x. poly ?q x = 0} unfolding conv ..
have ?l = {x. ipoly p x = 0} ∧ distinct (complex-roots-of-int-poly3 p)
proof (cases degree p = length rr)

case False note oFalse = this
show ?thesis
proof (cases degree p − length rr = 2)

case False
let ?nr = (degree p − length rr) div 2
define cpxI where cpxI = pos-imaginary-parts-3 p
define cpxR where cpxR = real-parts-3 p
let ?rts = [(rx,ix). rx <− cpxR, ix <− cpxI]

define cpx where cpx = map pair-to-complex (filter (λ c. ipoly p (pair-to-complex
c) = 0)

?rts)
let ?LL = cpx @ map cnj cpx
let ?LL ′ = concat (map (λ x. [x,cnj x]) cpx)
let ?ll = rrts @ ?LL
let ?ll ′ = rrts @ ?LL ′

have cpx: set cpx ⊆ ?r unfolding cpx-def by auto
have ccpx: cnj ‘ set cpx ⊆ ?r using cpx unfolding r

by (auto intro!: complex-conjugate-root[of ?q] simp: Reals-def)
have set ?ll ⊆ ?r using rrts cpx ccpx unfolding r by auto
moreover
{

fix x :: complex
assume rt: ipoly p x = 0
{

fix x
assume rt: ipoly p x = 0

and gt: Im x > 0
define rx where rx = Re x
let ?x = Complex rx (Im x)
have x: x = ?x by (cases x, auto simp: rx-def)
from rt x have rt ′: ipoly p ?x = 0 by auto
from real-parts-3 [OF p rt, folded rx-def] pos-imaginary-parts-3 [OF p rt

gt] rt ′

have ?x ∈ set cpx unfolding cpx-def cpxI-def cpxR-def
by (force simp: pair-to-complex-def [abs-def])

hence x ∈ set cpx using x by simp
} note gt = this
have cases: Im x = 0 ∨ Im x > 0 ∨ Im x < 0 by auto
from rt have rt ′: ipoly p (cnj x) = 0 unfolding conv

235

by (intro complex-conjugate-root[of ?q x], auto simp: Reals-def)
{

assume Im x > 0
from gt[OF rt this] have x ∈ set ?ll by auto

}
moreover
{

assume Im x < 0
hence Im (cnj x) > 0 by simp

from gt[OF rt ′ this] have cnj (cnj x) ∈ set ?ll unfolding set-append
set-map by blast

hence x ∈ set ?ll by simp
}
moreover
{

assume Im x = 0
hence x ∈ � using complex-is-Real-iff by blast
with rt rrts have x ∈ set ?ll unfolding conv by auto

}
ultimately have x ∈ set ?ll using cases by blast

}
ultimately have lr : set ?ll = {x. ipoly p x = 0} by blast
let ?rr = map real-of-3 cpxR
let ?pi = map real-of-3 cpxI
have dist2 : distinct ?rr unfolding cpxR-def by (rule distinct-real-parts-3)

have dist3 : distinct ?pi unfolding cpxI-def by (rule distinct-pos-imaginary-parts-3)
have idd: concat (map (map pair-to-complex) (map (λrx. map (Pair rx) cpxI)

cpxR))
= concat (map (λr . map (λ i. Complex (real-of-3 r) (real-of-3 i)) cpxI)

cpxR)
unfolding pair-to-complex-def by (auto simp: o-def)

have dist4 : distinct cpx unfolding cpx-def
proof (rule distinct-map-filter , unfold map-concat idd, unfold distinct-conv-nth,

intro allI impI , goal-cases)
case (1 i j)

from nth-concat-diff [OF 1 , unfolded length-map] dist2 [unfolded distinct-conv-nth]
dist3 [unfolded distinct-conv-nth] show ?case by auto

qed
have dist5 : distinct (map cnj cpx) using dist4 unfolding distinct-map by

(auto simp: inj-on-def)
{

fix x :: complex
have rrts: x ∈ set rrts =⇒ Im x = 0 unfolding rrts-def by auto
have cpx:

∧
x. x ∈ set cpx =⇒ Im x > 0 unfolding cpx-def cpxI-def

by (auto simp: pair-to-complex-def [abs-def] positive-pos-imaginary-parts-3)
have cpx ′: x ∈ cnj ‘ set cpx =⇒ sgn (Im x) = −1 using cpx by auto
have x /∈ set rrts ∩ set cpx ∪ set rrts ∩ cnj ‘ set cpx ∪ set cpx ∩ cnj ‘ set

cpx
using rrts cpx[of x] cpx ′ by auto

236

} note dist6 = this
have dist: distinct ?ll

unfolding distinct-append using dist6 by (auto simp: dist1 dist4 dist5)
let ?p = complex-of-int-poly p
have pp: ?p 6= 0 using p by auto
from p square-free-of-int-poly[OF sf] square-free-rsquarefree
have rsf :rsquarefree ?p by auto
from dist lr have length ?ll = card {x. poly ?p x = 0}

by (metis distinct-card)
also have . . . = degree p

using rsf unfolding rsquarefree-card-degree[OF pp] by simp
finally have deg-len: degree p = length ?ll by simp
let ?P = λ c. ipoly p (pair-to-complex c) = 0

let ?itvl = λ r i. ipoly-complex-interval p (Complex-Interval (get-itvl-3 r)
(get-itvl-3 i))

let ?itv = λ (r ,i). ?itvl r i
let ?p = (λ (r ,i). 0 ∈c (?itvl r i))
let ?tb = tighten-bounds-3
let ?f = map-prod ?tb ?tb

have filter : map pair-to-complex (filter-list-length ?f ?p ?nr ?rts) = map
pair-to-complex (filter ?P ?rts)

proof (rule filter-list-length)
have length (filter ?P ?rts) = length cpx

unfolding cpx-def by simp
also have . . . = ?nr unfolding deg-len by (simp add: rrts-def)
finally show length (filter ?P ?rts) = ?nr by auto

next
fix n x
assume x: ?P x
obtain r i where xri: x = (r ,i) by force
have id: (?f ^^ n) x = ((?tb ^^ n) r , (?tb ^^ n) i) unfolding xri

by (induct n, auto)
have px: pair-to-complex x = Complex (real-of-3 r) (real-of-3 i)

unfolding xri pair-to-complex-def by auto
show ?p ((?f ^^ n) x)

unfolding id split
by (rule ipoly-complex-interval[of pair-to-complex x - p, unfolded x], unfold

px,
auto simp: in-complex-interval-def in-real-itvl-get-bounds-tighten)

next
fix x
assume x: x ∈ set ?rts ¬ ?P x
let ?x = pair-to-complex x
obtain r i where xri: x = (r ,i) by force
have id: (?f ^^ n) x = ((?tb ^^ n) r , (?tb ^^ n) i) for n unfolding xri

by (induct n, auto)
have px: ?x = Complex (real-of-3 r) (real-of-3 i)

unfolding xri pair-to-complex-def by auto
have cvg: (λ n. ?itv ((?f ^^ n) x)) −−−−→c ipoly p ?x

237

unfolding id split px
proof (rule ipoly-complex-interval-tendsto)

show (λia. Complex-Interval (get-itvl-3 ((?tb ^^ ia) r)) (get-itvl-3 ((?tb
^^ ia) i))) −−−−→c

Complex (real-of-3 r) (real-of-3 i)
unfolding complex-interval-tendsto-def by (simp add: tends-to-tight-bounds-3

o-def)
qed
from complex-interval-tendsto-neq[OF this x(2)]
show ∃ i. ¬ ?p ((?f ^^ i) x) unfolding id by auto

next
show pair-to-complex (?f x) = pair-to-complex x for x

by (cases x, auto simp: pair-to-complex-def tighten-bounds-3 (1))
next

show ?P (?f x) = ?P x for x
by (cases x, auto simp: pair-to-complex-def tighten-bounds-3 (1))

qed
have l: complex-roots-of-int-poly3 p = ?ll ′
unfolding d filter cpx-def [symmetric] cpxI-def [symmetric] cpxR-def [symmetric]

using False oFalse
by auto

have distinct ?ll ′ = (distinct rrts ∧ distinct ?LL ′ ∧ set rrts ∩ set ?LL ′ = {})
unfolding distinct-append ..

also have set ?LL ′ = set ?LL by auto
also have distinct ?LL ′ = distinct ?LL by (induct cpx, auto)
finally have distinct ?ll ′ = distinct ?ll unfolding distinct-append by auto
with dist have distinct ?ll ′ by auto
with lr l show ?thesis by auto

next
case True
let ?cr = map-poly of-real :: real poly ⇒ complex poly
define pp where pp = complex-of-int-poly p
have id: pp = map-poly of-real q unfolding q-def pp-def

by (subst map-poly-map-poly, auto simp: o-def)
let ?rts = map (λ x. [:−x,1 :]) rr
define rts where rts = prod-list ?rts
let ?c2 = ?cr (q div rts)
have pq:

∧
x. ipoly p x = 0 ←→ poly q x = 0 unfolding q-def by simp

from True have 2 : degree q − card {x. poly q x = 0} = 2 unfolding
pq[symmetric] lrr

unfolding q-def by simp
from True have id: degree p = length rr ←→ False

degree p − length rr = 2 ←→ True by auto
have l: ?l = of-real ‘ {x. poly q x = 0} ∪ set (croots2 ?c2)

unfolding d rts-def id if-False if-True set-append rrts Reals-def
by (fold complex-of-real-def q-def , auto)

from dist
have len-rr : length rr = card {x. poly q x = 0} unfolding rr [unfolded pq,

symmetric]

238

by (simp add: distinct-card)
have rr ′:

∧
r . r ∈ set rr =⇒ poly q r = 0 using rr unfolding q-def by

simp
with dist have q = q div prod-list ?rts ∗ prod-list ?rts
proof (induct rr arbitrary: q)

case (Cons r rr q)
note dist = Cons(2)
let ?p = q div [:−r ,1 :]
from Cons.prems(2) have poly q r = 0 by simp
hence [:−r ,1 :] dvd q using poly-eq-0-iff-dvd by blast
from dvd-mult-div-cancel[OF this]
have q = ?p ∗ [:−r ,1 :] by simp
moreover have ?p = ?p div (

∏
x←rr . [:− x, 1 :]) ∗ (

∏
x←rr . [:− x, 1 :])

proof (rule Cons.hyps)
show distinct rr using dist by auto
fix s
assume s ∈ set rr
with dist Cons(3) have s 6= r poly q s = 0 by auto
hence poly (?p ∗ [:− 1 ∗ r , 1 :]) s = 0 using calculation by force
thus poly ?p s = 0 by (simp add: ‹s 6= r›)

qed
ultimately have q: q = ?p div (

∏
x←rr . [:− x, 1 :]) ∗ (

∏
x←rr . [:− x, 1 :])

∗ [:−r ,1 :]
by auto

also have . . . = (?p div (
∏

x←rr . [:− x, 1 :])) ∗ (
∏

x←r # rr . [:− x, 1 :])
unfolding mult.assoc by simp

also have ?p div (
∏

x←rr . [:− x, 1 :]) = q div (
∏

x←r # rr . [:− x, 1 :])
unfolding poly-div-mult-right[symmetric] by simp

finally show ?case .
qed simp
hence q-div: q = q div rts ∗ rts unfolding rts-def .
from q-div q0 have q div rts 6= 0 rts 6= 0 by auto
from degree-mult-eq[OF this] have degree q = degree (q div rts) + degree rts

using q-div by simp
also have degree rts = length rr unfolding rts-def by (rule degree-linear-factors)

also have . . . = card {x. poly q x = 0} unfolding len-rr by simp
finally have deg2 : degree ?c2 = 2 using 2 by simp
note croots2 = croots2 [OF deg2 , symmetric]
have ?q = ?cr (q div rts ∗ rts) using q-div by simp
also have . . . = ?cr rts ∗ ?c2 unfolding hom-distribs by simp
finally have q-prod: ?q = ?cr rts ∗ ?c2 .
from croots2 l
have l: ?l = of-real ‘ {x. poly q x = 0} ∪ {x. poly ?c2 x = 0} by simp
from r [unfolded q-prod]
have r : ?r = {x. poly (?cr rts) x = 0} ∪ {x. poly ?c2 x = 0} by auto
also have ?cr rts = (

∏
x←rr . ?cr [:− x, 1 :]) by (simp add: rts-def o-def

of-real-poly-hom.hom-prod-list)
also have {x. poly . . . x = 0} = of-real ‘ set rr

unfolding poly-prod-list-zero-iff by auto

239

also have set rr = {x. poly q x = 0} unfolding rr q-def by simp
finally have lr : ?l = ?r unfolding l by simp
show ?thesis
proof (intro conjI [OF lr])
from sf have sf : square-free q unfolding q-def by (rule square-free-of-int-poly)

{
interpret field-hom-0 ′ complex-of-real ..
from sf have square-free ?q unfolding square-free-map-poly .

} note sf = this
have l: complex-roots-of-int-poly3 p = rrts @ croots2 ?c2

unfolding d rts-def id if-False if-True set-append rrts q-def complex-of-real-def
by auto

have dist2 : distinct (croots2 ?c2) unfolding croots2-def Let-def by auto

{
fix x
assume x: x ∈ set (croots2 ?c2) x ∈ set rrts
from x(1)[unfolded croots2] have x1 : poly ?c2 x = 0 by auto
from x(2) have x2 : poly (?cr rts) x = 0

unfolding rrts-def rts-def complex-of-real-def [symmetric]
by (auto simp: poly-prod-list-zero-iff o-def)

from square-free-multD(1)[OF sf [unfolded q-prod], of [: −x, 1 :]]
x1 x2 have False unfolding poly-eq-0-iff-dvd by auto

} note dist3 = this
show distinct (complex-roots-of-int-poly3 p) unfolding l distinct-append

by (intro conjI dist1 dist2 , insert dist3 , auto)
qed

qed
next

case True
have card {x. poly ?q x = 0} ≤ degree ?q by (rule poly-roots-degree[OF q])
also have . . . = degree p unfolding q-def by simp
also have . . . = card {x. poly ?q x = 0 ∧ x ∈ �} using True cr by simp
finally have le: card {x. poly ?q x = 0} ≤ card {x. poly ?q x = 0 ∧ x ∈ �}

by auto
have {x. poly ?q x = 0 ∧ x ∈ �} = {x. poly ?q x = 0}

by (rule card-seteq[OF - - le], insert poly-roots-finite[OF q], auto)
with True rrts dist1 show ?thesis unfolding r d by auto

qed
thus distinct (complex-roots-of-int-poly3 p) ?l = ?r by auto

qed

lemma complex-roots-of-int-poly-all: assumes sf : degree p ≥ 3 =⇒ square-free p
shows p 6= 0 =⇒ set (complex-roots-of-int-poly-all p) = {x. ipoly p x = 0} (is -

=⇒ set ?l = ?r)
and distinct (complex-roots-of-int-poly-all p)

proof −
note d = complex-roots-of-int-poly-all-def Let-def
have (p 6= 0 −→ set ?l = ?r) ∧ (distinct (complex-roots-of-int-poly-all p))

240

proof (cases degree p ≥ 3)
case True
hence p: p 6= 0 by auto
from True complex-roots-of-int-poly3 [OF p] sf show ?thesis unfolding d by

auto
next

case False
let ?p = map-poly (of-int :: int ⇒ complex) p
have deg: degree ?p = degree p

by (simp add: degree-map-poly)
show ?thesis
proof (cases degree p = 1)

case True
hence l: ?l = [roots1 ?p] unfolding d by auto
from True have degree ?p = 1 unfolding deg by auto
from roots1 [OF this] show ?thesis unfolding l roots1-def by auto

next
case False
show ?thesis
proof (cases degree p = 2)

case True
hence l: ?l = croots2 ?p unfolding d by auto
from True have degree ?p = 2 unfolding deg by auto
from croots2 [OF this] show ?thesis unfolding l by (simp add: croots2-def

Let-def)
next

case False
with ‹degree p 6= 1 › ‹degree p 6= 2 › ‹¬ (degree p ≥ 3)› have True: degree

p = 0 by auto
hence l: ?l = [] unfolding d by auto
from True have degree ?p = 0 unfolding deg by auto
from roots0 [OF - this] show ?thesis unfolding l by simp

qed
qed

qed
thus p 6= 0 =⇒ set ?l = ?r distinct (complex-roots-of-int-poly-all p) by auto

qed

It now comes the preferred function to compute complex roots of an
integer polynomial.
definition complex-roots-of-int-poly :: int poly ⇒ complex list where

complex-roots-of-int-poly p = (
let ps = (if degree p ≥ 3 then factors-of-int-poly p else [p])
in concat (map complex-roots-of-int-poly-all ps))

definition complex-roots-of-rat-poly :: rat poly ⇒ complex list where
complex-roots-of-rat-poly p = complex-roots-of-int-poly (snd (rat-to-int-poly p))

241

lemma complex-roots-of-int-poly:
shows p 6= 0 =⇒ set (complex-roots-of-int-poly p) = {x. ipoly p x = 0} (is - =⇒

?l = ?r)
and distinct (complex-roots-of-int-poly p)

proof −
have (p 6= 0 −→ ?l = ?r) ∧ (distinct (complex-roots-of-int-poly p))
proof (cases degree p ≥ 3)

case False
hence complex-roots-of-int-poly p = complex-roots-of-int-poly-all p

unfolding complex-roots-of-int-poly-def Let-def by auto
with complex-roots-of-int-poly-all[of p] False show ?thesis by auto

next
case True
{

fix q
assume q ∈ set (factors-of-int-poly p)
from factors-of-int-poly(1)[OF refl this] irreducible-imp-square-free[of q]
have 0 : q 6= 0 and sf : square-free q by auto

from complex-roots-of-int-poly-all(1)[OF sf 0] complex-roots-of-int-poly-all(2)[OF
sf]

have set (complex-roots-of-int-poly-all q) = {x. ipoly q x = 0}
distinct (complex-roots-of-int-poly-all q) by auto

} note all = this
from True have

?l = (
⋃

((λ p. set (complex-roots-of-int-poly-all p)) ‘ set (factors-of-int-poly
p)))

unfolding complex-roots-of-int-poly-def Let-def by auto
also have . . . = (

⋃
((λ p. {x. ipoly p x = 0}) ‘ set (factors-of-int-poly p)))

using all by blast
finally have l: ?l = (

⋃
((λ p. {x. ipoly p x = 0}) ‘ set (factors-of-int-poly p)))

.
have lr : p 6= 0 −→ ?l = ?r using l factors-of-int-poly(2)[OF refl, of p] by

auto
show ?thesis
proof (rule conjI [OF lr])

from True have id: complex-roots-of-int-poly p =
concat (map complex-roots-of-int-poly-all (factors-of-int-poly p))

unfolding complex-roots-of-int-poly-def Let-def by auto
show distinct (complex-roots-of-int-poly p) unfolding id distinct-conv-nth
proof (intro allI impI , goal-cases)

case (1 i j)
let ?fp = factors-of-int-poly p
let ?rr = complex-roots-of-int-poly-all
let ?cc = concat (map ?rr (factors-of-int-poly p))
from nth-concat-diff [OF 1 , unfolded length-map]
obtain j1 k1 j2 k2 where
∗: (j1 ,k1) 6= (j2 ,k2)
j1 < length ?fp j2 < length ?fp and
k1 < length (map ?rr ?fp ! j1)

242

k2 < length (map ?rr ?fp ! j2)
?cc ! i = map ?rr ?fp ! j1 ! k1
?cc ! j = map ?rr ?fp ! j2 ! k2 by blast

hence ∗∗: k1 < length (?rr (?fp ! j1))
k2 < length (?rr (?fp ! j2))
?cc ! i = ?rr (?fp ! j1) ! k1
?cc ! j = ?rr (?fp ! j2) ! k2
by auto

from ∗ have mem: ?fp ! j1 ∈ set ?fp ?fp ! j2 ∈ set ?fp by auto
show ?cc ! i 6= ?cc ! j
proof (cases j1 = j2)

case True
with ∗ have k1 6= k2 by auto

with all(2)[OF mem(2)] ∗∗(1−2) show ?thesis unfolding ∗∗(3−4)
unfolding True

distinct-conv-nth by auto
next

case False
from ‹degree p ≥ 3 › have p: p 6= 0 by auto
note fip = factors-of-int-poly(2−3)[OF refl this]
show ?thesis unfolding ∗∗(3−4)
proof

define x where x = ?rr (?fp ! j2) ! k2
assume id: ?rr (?fp ! j1) ! k1 = ?rr (?fp ! j2) ! k2

from ∗∗ have x1 : x ∈ set (?rr (?fp ! j1)) unfolding x-def id[symmetric]
by auto

from ∗∗ have x2 : x ∈ set (?rr (?fp ! j2)) unfolding x-def by auto

from all(1)[OF mem(1)] x1 have x1 : ipoly (?fp ! j1) x = 0 by auto
from all(1)[OF mem(2)] x2 have x2 : ipoly (?fp ! j2) x = 0 by auto
from False factors-of-int-poly(4)[OF refl, of p] have neq: ?fp ! j1 6= ?fp

! j2
using ∗ unfolding distinct-conv-nth by auto

have poly (complex-of-int-poly p) x = 0 by (meson fip(1) mem(2) x2)
from fip(2)[OF this] mem x1 x2 neq
show False by blast

qed
qed

qed
qed

qed
thus p 6= 0 =⇒ ?l = ?r distinct (complex-roots-of-int-poly p) by auto

qed

lemma complex-roots-of-rat-poly:
p 6= 0 =⇒ set (complex-roots-of-rat-poly p) = {x. rpoly p x = 0} (is - =⇒ ?l =

?r)
distinct (complex-roots-of-rat-poly p)

proof −

243

obtain c q where cq: rat-to-int-poly p = (c,q) by force
from rat-to-int-poly[OF this]
have pq: p = smult (inverse (of-int c)) (of-int-poly q)

and c: c 6= 0 by auto
show distinct (complex-roots-of-rat-poly p) unfolding complex-roots-of-rat-poly-def

using complex-roots-of-int-poly(2) .
assume p: p 6= 0
with pq c have q: q 6= 0 by auto
have id: {x. rpoly p x = (0 :: complex)} = {x. ipoly q x = 0}

unfolding pq by (simp add: c of-rat-of-int-poly hom-distribs)
show ?l = ?r unfolding complex-roots-of-rat-poly-def cq snd-conv id

complex-roots-of-int-poly(1)[OF q] ..
qed

lemma min-int-poly-complex-of-real[simp]: min-int-poly (complex-of-real x) = min-int-poly
x
proof (cases algebraic x)

case False
hence ¬ algebraic (complex-of-real x) unfolding algebraic-complex-iff by auto
with False show ?thesis unfolding min-int-poly-def by auto

next
case True
from min-int-poly-represents[OF True]
have min-int-poly x represents x by auto
thus ?thesis

by (intro min-int-poly-unique, auto simp: lead-coeff-min-int-poly-pos)
qed

TODO: the implemention might be tuned, since the search process should
be faster when using interval arithmetic to figure out the correct factor. (One
might also implement the search via checking ipoly f x = (0 :: ′a), but be-
cause of complex-algebraic-number arithmetic, I think that search would be
slower than the current one via "x ∈ set (complex-roots-of-int-poly f)
definition min-int-poly-complex :: complex ⇒ int poly where

min-int-poly-complex x = (if algebraic x then if Im x = 0 then min-int-poly-real
(Re x)

else the (find (λ f . x ∈ set (complex-roots-of-int-poly f)) (complex-poly (min-int-poly
(Re x)) (min-int-poly (Im x))))

else [:0 ,1 :])

lemma min-int-poly-complex[code-unfold]: min-int-poly = min-int-poly-complex
proof (standard)

fix x
define fs where fs = complex-poly (min-int-poly (Re x)) (min-int-poly (Im x))
let ?f = min-int-poly-complex x
show min-int-poly x = ?f
proof (cases algebraic x)

case False
thus ?thesis unfolding min-int-poly-def min-int-poly-complex-def by auto

244

next
case True
show ?thesis
proof (cases Im x = 0)

case ∗: True
have id: ?f = min-int-poly-real (Re x) unfolding min-int-poly-complex-def ∗

using True by auto
show ?thesis unfolding id min-int-poly-real-code-unfold[symmetric] min-int-poly-complex-of-real[symmetric]

using ∗ by (intro arg-cong[of - - min-int-poly] complex-eqI , auto)
next

case False
from True[unfolded algebraic-complex-iff] have algebraic (Re x) algebraic (Im

x) by auto
from complex-poly[OF min-int-poly-represents[OF this(1)] min-int-poly-represents[OF

this(2)]]
have fs: ∃ f ∈ set fs. ipoly f x = 0

∧
f . f ∈ set fs =⇒ poly-cond f unfolding

fs-def by auto
let ?fs = find (λ f . ipoly f x = 0) fs
let ?fs ′ = find (λ f . x ∈ set (complex-roots-of-int-poly f)) fs
have ?f = the ?fs ′ unfolding min-int-poly-complex-def fs-def

using True False by auto
also have ?fs ′ = ?fs

by (rule find-cong[OF refl], subst complex-roots-of-int-poly, insert fs, auto)
finally have id: ?f = the ?fs .
from fs(1) have ?fs 6= None unfolding find-None-iff by auto
then obtain f where Some: ?fs = Some f by auto
from find-Some-D[OF this] fs(2)[of f]
show ?thesis unfolding id Some

by (intro min-int-poly-unique, auto)
qed

qed
qed

end

16 Show for Real Algebraic Numbers – Interface
We just demand that there is some function from real algebraic numbers to
string and register this as show-function and use it to implement show-real.

Implementations for real algebraic numbers are available in one of the
theories Show-Real-Precise and Show-Real-Approx.
theory Show-Real-Alg
imports

Real-Algebraic-Numbers
Show.Show-Real

begin

consts show-real-alg :: real-alg ⇒ string

245

definition showsp-real-alg :: real-alg showsp where
showsp-real-alg p x y = (show-real-alg x @ y)

lemma show-law-real-alg [show-law-intros]:
show-law showsp-real-alg r
by (rule show-lawI) (simp add: showsp-real-alg-def show-law-simps)

lemma showsp-real-alg-append [show-law-simps]:
showsp-real-alg p r (x @ y) = showsp-real-alg p r x @ y
by (intro show-lawD show-law-intros)

local-setup ‹
Show-Generator .register-foreign-showsp @{typ real-alg} @{term showsp-real-alg}

@{thm show-law-real-alg}
›

derive show real-alg

We now define show-real.
overloading show-real ≡ show-real
begin

definition show-real ≡ show-real-alg o real-alg-of-real
end

end

17 Show for Real (Algebraic) Numbers – Approx-
imate Representation

We implement the show-function for real (algebraic) numbers by calculating
the number precisely for three digits after the comma.
theory Show-Real-Approx
imports

Show-Real-Alg
Show.Show-Instances

begin

overloading show-real-alg ≡ show-real-alg
begin

definition show-real-alg[code]: show-real-alg x ≡ let
x1000 ′ = floor (1000 ∗ x);
(x1000 ,s) = (if x1000 ′ < 0 then (−x1000 ′, ′′− ′′) else (x1000 ′, ′′′′));
(bef ,aft) = divmod-int x1000 1000 ;
a ′ = show aft;
a = replicate (3−length a ′) (CHR ′′0 ′′) @ a ′

in

246

′′ ∼ ′′ @ s @ show bef @ ′′. ′′ @ a

end

end

18 Show for Real (Algebraic) Numbers – Unique
Representation

We implement the show-function for real (algebraic) numbers by printing
them uniquely via their monic irreducible polynomial with a special cases
for polynomials of degree at most 2.
theory Show-Real-Precise
imports

Show-Real-Alg
Show.Show-Instances

begin

datatype real-alg-show-info = Rat-Info rat | Sqrt-Info rat rat | Real-Alg-Info int
poly nat

fun convert-info :: rat + int poly × nat ⇒ real-alg-show-info where
convert-info (Inl q) = Rat-Info q
| convert-info (Inr (f ,n)) = (if degree f = 2 then (let a = coeff f 2 ; b = coeff f 1 ;
c = coeff f 0 ;

b2a = Rat.Fract (−b) (2 ∗ a);
below = Rat.Fract (b∗b − 4 ∗ a ∗ c) (4 ∗ a ∗ a)

in Sqrt-Info b2a (if n = 1 then −below else below))
else Real-Alg-Info f n)

definition real-alg-show-info :: real-alg ⇒ real-alg-show-info where
real-alg-show-info x = convert-info (info-real-alg x)

We prove that the extracted information for showing an algebraic real
number is correct.
lemma real-alg-show-info: real-alg-show-info x = Rat-Info r =⇒ real-of x = of-rat
r

real-alg-show-info x = Sqrt-Info r sq =⇒ real-of x = of-rat r + sqrt (of-rat sq)
real-alg-show-info x = Real-Alg-Info p n =⇒ p represents (real-of x) ∧ n = card
{y. y ≤ real-of x ∧ ipoly p y = 0}
(is ?l =⇒ ?r)

proof (atomize(full), goal-cases)
case 1
note d = real-alg-show-info-def
show ?case
proof (cases info-real-alg x)

case (Inl q)

247

from info-real-alg(2)[OF this] this show ?thesis unfolding d by auto
next

case (Inr qm)
then obtain p n where id: info-real-alg x = Inr (p,n) by (cases qm, auto)
from info-real-alg(1)[OF id]
have ap: p represents (real-of x) and n: n = card {y. y ≤ real-of x ∧ ipoly p y

= 0}
and irr : irreducible p by auto
note id ′ = real-alg-show-info-def id convert-info.simps Fract-of-int-quotient

Let-def
have last: ?l =⇒ ?r unfolding id ′ using ap n by (auto split: if-splits)
{

assume ∗: real-alg-show-info x = Sqrt-Info r sq
from this[unfolded id ′] have deg: degree p = 2 by (auto split: if-splits)
from degree2-coeffs[OF this] obtain a b c where p: p = [:c,b,a:] and a: a 6=

0 by auto
hence coeffs: coeff p 0 = c coeff p 1 = b coeff p (Suc (Suc 0)) = a 2 = Suc

(Suc 0) by auto
let ?a = real-of-int a
let ?b = real-of-int b
let ?c = real-of-int c
define A where A = ?a
define B where B = ?b
define C where C = ?c
let ?r = − (B / (2 ∗ A))
define R where R = ?r
let ?sq = (B ∗ B − 4 ∗ A ∗ C) / (4 ∗ A ∗ A)
let ?p = real-of-int-poly p
let ?disc = (B / (2 ∗ A)) ^ Suc (Suc 0) − C / A
define D where D = ?disc
from arg-cong[OF p, of map-poly real-of-int]
have rp: ?p = [: C , B, A :]

using a by (auto simp: A-def B-def C-def)
from a have A: A 6= 0 unfolding A-def by auto
from ∗[unfolded id ′ deg, unfolded coeffs of-int-minus of-int-minus of-int-mult

of-int-diff , simplified]
have r : real-of-rat r = R and sq: sqrt (of-rat sq) = (if n = 1 then − sqrt ?sq

else sqrt ?sq)
by (auto simp: A-def B-def C-def R-def real-sqrt-minus hom-distribs)

note sq
also have ?sq = D using A by (auto simp: field-simps D-def)
finally have sq: sqrt (of-rat sq) = (if n = 1 then − sqrt D else sqrt D) by

simp
with rp have coeffs ′: coeff ?p 0 = C coeff ?p 1 = B coeff ?p (Suc (Suc 0))

= A 2 = Suc (Suc 0) by auto
from rp A have degree (real-of-int-poly p) = 2 by auto
note roots = rroots2 [OF this, unfolded rroots2-def Let-def coeffs ′, folded D-def

R-def]
from ap[unfolded represents-def] have root: ipoly p (real-of x) = 0 by auto

248

from root roots have D: (D < 0) = False by auto
note roots = roots[unfolded this if-False, folded R-def]
have real-of x = of-rat r + sqrt (of-rat sq)
proof (cases D = 0)

case True
show ?thesis using roots root unfolding sq r True by auto

next
case False
with D have D: D > 0 by auto
from roots False have roots: {x. ipoly p x = 0} = {R + sqrt D, R − sqrt

D} by auto
let ?Roots = {y. y ≤ real-of x ∧ ipoly p y = 0}
have x: real-of x ∈ ?Roots using root by auto
from root roots have choice: real-of x = R + sqrt D ∨ real-of x = R − sqrt

D by auto
hence small: R − sqrt D ∈ ?Roots using roots D by auto
show ?thesis
proof (cases n = 1)

case True
from card-1-singletonE [OF n[symmetric, unfolded this]] obtain y where

id: ?Roots = {y} by auto
from x small show ?thesis unfolding sq r id using True by auto

next
case False
from x obtain Y where Y : ?Roots = insert (real-of x) (Y − {real-of

x}) by auto
with False[unfolded n] obtain z Z where Z : Y − {real-of x} = insert z

Z by (cases Y − {real-of x} = {}, auto)
from Y [unfolded Z] Z have sub: {real-of x, z} ⊆ ?Roots and z: z 6= real-of

x by auto
with roots choice D have real-of x = R + sqrt D by force
thus ?thesis unfolding sq r id using False by auto

qed
qed

}
with last show ?thesis unfolding d by (auto simp: id Let-def)

qed
qed

fun show-rai-info :: int ⇒ real-alg-show-info ⇒ string where
show-rai-info fl (Rat-Info r) = show r
| show-rai-info fl (Sqrt-Info r sq) = (let sqrt = ′′sqrt(′′ @ show (abs sq) @ ′′) ′′

in if r = 0 then (if sq < 0 then ′′ − ′′ else []) @ sqrt
else (′′(′′ @ show r @ (if sq < 0 then ′′− ′′ else ′′+ ′′) @ sqrt @ ′′) ′′))

| show-rai-info fl (Real-Alg-Info p n) =
′′(root # ′′ @ show n @ ′′ of ′′ @ show p @ ′′, in (′′ @ show fl @ ′′, ′′ @ show (fl

+ 1) @ ′′)) ′′

overloading show-real-alg ≡ show-real-alg

249

begin
definition show-real-alg[code]:

show-real-alg x ≡ show-rai-info (floor x) (real-alg-show-info x)
end
end

19 Algebraic Number Tests
We provide a sequence of examples which demonstrate what can be done
with the implementation of algebraic numbers.
theory Algebraic-Number-Tests
imports

Jordan-Normal-Form.Char-Poly
Jordan-Normal-Form.Determinant-Impl
Show.Show-Complex
HOL−Library.Code-Target-Nat
HOL−Library.Code-Target-Int
Berlekamp-Zassenhaus.Factorize-Rat-Poly
Complex-Algebraic-Numbers
Show-Real-Precise

begin

19.1 Stand-Alone Examples
abbreviation (input) show-lines x ≡ shows-lines x Nil

fun show-factorization :: ′a :: {semiring-1 ,show} × ((′a poly × nat)list) ⇒ string
where

show-factorization (c,[]) = show c
| show-factorization (c,((p,i) # ps)) = show-factorization (c,ps) @ ′′ ∗ (′′ @ show
p @ ′′) ′′ @
(if i = 1 then [] else ′′̂ ′′ @ show i)

definition show-sf-factorization :: ′a :: {semiring-1 ,show} × ((′a poly × nat)list)
⇒ string where

show-sf-factorization x = show-factorization (map-prod id (map (map-prod id
Suc)) x)

Determine the roots over the rational, real, and complex numbers.
definition testpoly = [:5/2 , −7/2 , 1/2 , −5 , 7 , −1 , 5/2 , −7/2 , 1/2 :]
definition test = show-lines (real-roots-of-rat-poly testpoly)

value [code] show-lines (roots-of-rat-poly testpoly)
value [code] show-lines (real-roots-of-rat-poly testpoly)
value [code] show-lines (complex-roots-of-rat-poly testpoly)

Compute real and complex roots of a polynomial with rational coeffi-
cients.

250

value [code] show (complex-roots-of-rat-poly testpoly)
value [code] show (real-roots-of-rat-poly testpoly)

A sequence of calculations.
value [code] show (− sqrt 2 − sqrt 3)
lemma root 3 4 > sqrt (root 4 3) + b1/10 ∗ root 3 7 c by eval
lemma csqrt (4 + 3 ∗ i) /∈ � by eval
value [code] show (csqrt (4 + 3 ∗ i))
value [code] show (csqrt (1 + i))

19.2 Example Application: Compute Norms of Eigenvalues
For complexity analysis of some matrix A it is important to compute the
spectral radius of a matrix, i.e., the maximal norm of all complex eigenvalues,
since the spectral radius determines the growth rates of matrix-powers An,
cf. [4] for a formalized statement of this fact.
definition eigenvalues :: rat mat ⇒ complex list where

eigenvalues A = complex-roots-of-rat-poly (char-poly A)

definition testmat = mat-of-rows-list 3 [
[1 ,−4 ,2],
[1/5 ,7 ,9],
[7 ,1 ,5 :: rat]
]

definition spectral-radius-test = show (Max (set [norm ev. ev ← eigenvalues
testmat]))
value [code] char-poly testmat
value [code] spectral-radius-test

end

20 Explicit Constants for External Code
theory Algebraic-Numbers-External-Code

imports Algebraic-Number-Tests
begin

We define constants for most operations on real- and complex- algebraic
numbers, so that they are easily accessible in target languages. In particular,
we use target languages integers, pairs of integers, strings, and integer lists,
resp., in order to represent the Isabelle types int/nat, rat, string, and int
poly, resp.
definition decompose-rat = map-prod integer-of-int integer-of-int o quotient-of

20.1 Operations on Real Algebraic Numbers
definition zero-ra = (0 :: real-alg)

251

definition one-ra = (1 :: real-alg)
definition of-integer-ra = (of-int o int-of-integer :: integer ⇒ real-alg)
definition of-rational-ra = ((λ (num, denom). of-rat-real-alg (Rat.Fract (int-of-integer
num) (int-of-integer denom)))
:: integer × integer ⇒ real-alg)

definition plus-ra = ((+) :: real-alg ⇒ real-alg ⇒ real-alg)
definition minus-ra = ((−) :: real-alg ⇒ real-alg ⇒ real-alg)
definition uminus-ra = (uminus :: real-alg ⇒ real-alg)
definition times-ra = ((∗) :: real-alg ⇒ real-alg ⇒ real-alg)
definition divide-ra = ((/) :: real-alg ⇒ real-alg ⇒ real-alg)
definition inverse-ra = (inverse :: real-alg ⇒ real-alg)
definition abs-ra = (abs :: real-alg ⇒ real-alg)
definition floor-ra = (integer-of-int o floor :: real-alg ⇒ integer)
definition ceiling-ra = (integer-of-int o ceiling :: real-alg ⇒ integer)
definition minimum-ra = (min :: real-alg ⇒ real-alg ⇒ real-alg)
definition maximum-ra = (max :: real-alg ⇒ real-alg ⇒ real-alg)
definition equals-ra = ((=) :: real-alg ⇒ real-alg ⇒ bool)
definition less-ra = ((<) :: real-alg ⇒ real-alg ⇒ bool)
definition less-equal-ra = ((≤) :: real-alg ⇒ real-alg ⇒ bool)
definition compare-ra = (compare :: real-alg ⇒ real-alg ⇒ order)
definition roots-of-poly-ra = (roots-of-real-alg o poly-of-list o map int-of-integer ::
integer list ⇒ real-alg list)
definition root-ra = (root-real-alg o nat-of-integer :: integer ⇒ real-alg ⇒ real-alg)

definition show-ra = ((String.implode o show) :: real-alg ⇒ String.literal)
definition is-rational-ra = (is-rat-real-alg :: real-alg ⇒ bool)
definition to-rational-ra = (decompose-rat o to-rat-real-alg :: real-alg ⇒ integer ×
integer)
definition sign-ra = (fst o to-rational-ra o sgn :: real-alg ⇒ integer)
definition decompose-ra = (map-sum decompose-rat (map-prod (map integer-of-int
o coeffs) integer-of-nat) o info-real-alg
:: real-alg ⇒ integer × integer + integer list × integer)

20.2 Operations on Complex Algebraic Numbers
definition zero-ca = (0 :: complex)
definition one-ca = (1 :: complex)
definition imag-unit-ca = (i :: complex)
definition of-integer-ca = (of-int o int-of-integer :: integer ⇒ complex)
definition of-rational-ca = ((λ (num, denom). of-rat (Rat.Fract (int-of-integer
num) (int-of-integer denom)))
:: integer × integer ⇒ complex)

definition of-real-imag-ca = ((λ (real, imag). Complex (real-of real) (real-of imag))
:: real-alg × real-alg ⇒ complex)
definition plus-ca = ((+) :: complex ⇒ complex ⇒ complex)
definition minus-ca = ((−) :: complex ⇒ complex ⇒ complex)
definition uminus-ca = (uminus :: complex ⇒ complex)
definition times-ca = ((∗) :: complex ⇒ complex ⇒ complex)
definition divide-ca = ((/) :: complex ⇒ complex ⇒ complex)

252

definition inverse-ca = (inverse :: complex ⇒ complex)
definition equals-ca = ((=) :: complex ⇒ complex ⇒ bool)
definition roots-of-poly-ca = (complex-roots-of-int-poly o poly-of-list o map int-of-integer
:: integer list ⇒ complex list)
definition csqrt-ca = (csqrt :: complex ⇒ complex)
definition show-ca = ((String.implode o show) :: complex ⇒ String.literal)
definition real-of-ca = (real-alg-of-real o Re :: complex ⇒ real-alg)
definition imag-of-ca = (real-alg-of-real o Im :: complex ⇒ real-alg)

20.3 Export Constants in Haskell
export-code

order .Eq order .Lt order .Gt — for comparison
Inl Inr — make disjoint sums available for decomposition information

zero-ra
one-ra
of-integer-ra
of-rational-ra
plus-ra
minus-ra
uminus-ra
times-ra
divide-ra
inverse-ra
abs-ra
floor-ra
ceiling-ra
minimum-ra
maximum-ra
equals-ra
less-ra
less-equal-ra
compare-ra
roots-of-poly-ra
root-ra
show-ra
is-rational-ra
to-rational-ra
sign-ra
decompose-ra

zero-ca
one-ca
imag-unit-ca
of-integer-ca

253

of-rational-ca
of-real-imag-ca
plus-ca
minus-ca
uminus-ca
times-ca
divide-ca
inverse-ca
equals-ca
roots-of-poly-ca
csqrt-ca
show-ca
real-of-ca
imag-of-ca

in Haskell module-name Algebraic-Numbers

end

References
[1] M. Eberl. A decision procedure for univariate real polynomials in Is-

abelle/HOL. In Proc. CPP 2015, pages 75–83. ACM, 2015.

[2] B. Mishra. Algorithmic Algebra. Texts and Monographs in Computer
Science. Springer, 1993.

[3] R. Thiemann. Implementing field extensions of the form Q[
√
b]. Archive

of Formal Proofs, 2014, 2014.

[4] R. Thiemann and A. Yamada. Matrices, Jordan normal forms, and
spectral radius theory. Archive of Formal Proofs, 2015, 2015.

254

	Introduction
	Auxiliary Algorithms
	Algebraic Numbers – Excluding Addition and Multiplication
	Polynomial Evaluation of Integer and Rational Polynomials in Fields.
	Algebraic Numbers – Definition, Inverse, and Roots

	Resultants
	Bivariate Polynomials
	Evaluation of Bivariate Polynomials
	Swapping the Order of Variables

	Resultant
	Sylvester matrices and vector representation of polynomials
	Homomorphism and Resultant
	Resultant as Polynomial Expression
	Resultant as Nonzero Polynomial Expression

	Algebraic Numbers: Addition and Multiplication
	Addition of Algebraic Numbers
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 poly-add has desired root
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 poly-add is nonzero
	Summary for addition

	Division of Algebraic Numbers
	Summary for division

	Multiplication of Algebraic Numbers
	Summary: Closure Properties of Algebraic Numbers
	More on algebraic integers

	Separation of Roots: Sturm
	Interface for Separating Roots
	Implementing Sturm on Rational Polynomials

	Getting Small Representative Polynomials via Factorization
	The minimal polynomial of an algebraic number
	Algebraic Numbers – Preliminary Implementation
	Cauchy's Root Bound
	Real Algebraic Numbers
	Real Algebraic Numbers – Innermost Layer
	Basic Definitions

	Real Algebraic Numbers = Rational + Irrational Real Algebraic Numbers
	Definitions and Algorithms on Raw Type
	Definitions and Algorithms on Quotient Type
	Sign
	Normalization: Bounds Close Together
	Comparisons
	Negation
	Inverse
	Floor
	Generic Factorization and Bisection Framework
	Addition
	Multiplication
	Root
	Embedding of Rational Numbers
	Definitions and Algorithms on Type with Invariant

	Real Algebraic Numbers as Implementation for Real Numbers

	Real Roots
	Complex Roots of Real Valued Polynomials
	Compare Instance for Complex Numbers

	Interval Arithmetic
	Syntactic Class Instantiations
	Class Instantiations
	Membership
	Convergence
	Complex Intervals

	Complex Algebraic Numbers
	Complex Roots

	Show for Real Algebraic Numbers – Interface
	Show for Real (Algebraic) Numbers – Approximate Representation
	Show for Real (Algebraic) Numbers – Unique Representation
	Algebraic Number Tests
	Stand-Alone Examples
	Example Application: Compute Norms of Eigenvalues

	Explicit Constants for External Code
	Operations on Real Algebraic Numbers
	Operations on Complex Algebraic Numbers
	Export Constants in Haskell

