Abstract Completeness

Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel March 17, 2025

Abstract

This is a formalization of an abstract property of possibly infinite derivation trees (modeled by a codatatype), that represents the core of a Beth–Hintikka-style proof of the first-order logic completeness theorem and is independent of the concrete syntax or inference rules. This work is described in detail in a publication by the authors [2].

The abstract proof can be instantiated for a wide range of Gentzen and tableau systems as well as various flavors of FOL—e.g., with or without predicates, equality, or sorts. Here, we give only a toy example instantiation with classical propositional logic. A more serious instance—many-sorted FOL with equality—is described elsewhere [1].

References

- [1] J. C. Blanchette and A. Popescu. Mechanizing the metatheory of sledge-hammer. In P. Fontaine, C. Ringeissen, and R. A. Schmidt, editors, *FroCoS* 2013, volume 8152 of *LNCS*, pages 245–260. Springer, 2013.
- [2] J. C. Blanchette, A. Popescu, and D. Traytel. Unified classical logic completeness: A coinductive pearl. In S. Demri, D. Kapur, and C. Weidenbach, editors, *IJCAR 2014*, LNCS. Springer, 2014.

Contents

1	General Tree Concepts	2
2	Rule Systems	2
3	A Fair Enumeration of the Rules	3
4	Persistent rules	7
5	Code generation	9
6	Toy instantiation: Propositional Logic	10

1 General Tree Concepts

```
codatatype 'a tree = Node (root: 'a) (cont: 'a tree fset)
inductive tfinite where
  tfinite: (\bigwedge t'. t' | \in | cont t \Longrightarrow tfinite t') \Longrightarrow tfinite t
coinductive ipath where
  ipath: [root \ t = shd \ steps; \ t' \ | \in | \ cont \ t; \ ipath \ t' \ (stl \ steps)]] \Longrightarrow ipath \ t \ steps
primcorec konig where
  shd (konig t) = root t
| stl (konig t) = konig (SOME t'. t' | \in | cont t \land \neg tfinite t')
lemma Konig: \neg tfinite t \Longrightarrow ipath\ t\ (konig\ t)
 by (coinduction arbitrary: t) (metis (lifting) tfinite.simps konig.simps some I-ex)
\mathbf{2}
      Rule Systems
type-synonym ('state, 'rule) step = 'state \times 'ruletype-synonym ('state, 'rule)
dtree = ('state, 'rule) step tree
locale RuleSystem-Defs =
fixes eff :: 'rule \Rightarrow 'state \Rightarrow 'state fset \Rightarrow bool
and rules :: 'rule stream
begin
abbreviation R \equiv sset \ rules
lemma countable-R: countable R by (metis countable-type countable-image sset-range)
lemma NE-R: R \neq \{\} by (metis UNIV-witness all-not-in-conv empty-is-image
sset-range)
definition enabled r s \equiv \exists sl. \ eff \ r \ s \ sl
definition pickEff r s \equiv if enabled r s then (SOME sl. eff r s sl) else the None
lemma pickEff: enabled r s \Longrightarrow eff r s (pickEff r s)
 by (metis enabled-def pickEff-def tfl-some)
abbreviation effStep \ step \equiv eff \ (snd \ step) \ (fst \ step)
abbreviation enabledAtStep r step \equiv enabled r (fst step)
abbreviation takenAtStep \ r \ step \equiv snd \ step = r
Saturation is a very strong notion of fairness: If a rule is enabled at some
point, it will eventually be taken.
definition saturated r \equiv alw (holds (enabledAtStep r) impl ev (holds (takenAtStep
definition Saturated steps \equiv \forall r \in R. saturated r steps
```

```
coinductive wf where
  wf: [snd (root t) \in R; effStep (root t) (fimage (fst o root) (cont t));
   \bigwedge t'. t' \in |cont| t \Longrightarrow wf t'| \Longrightarrow wf t
coinductive epath where
  epath: [snd (shd steps) \in R; fst (shd (stl steps)) | \in ]sl; effStep (shd steps) sl;
   epath (stl steps) \implies epath steps
lemma wf-ipath-epath:
 assumes wf t ipath t steps
 shows epath steps
proof -
 have *: \bigwedge t st. ipath t st \Longrightarrow root t = shd st by (auto elim: ipath.cases)
 show ?thesis using assms
 proof (coinduction arbitrary: t steps)
   case epath
   then show ?case by (cases rule: wf.cases[case-product ipath.cases]) (metis *
o-apply fimageI)
 qed
qed
definition fair rs \equiv sset \ rs \subseteq R \land (\forall \ r \in R. \ alw \ (ev \ (holds \ ((=) \ r))) \ rs)
lemma fair-stl: fair rs \Longrightarrow fair (stl rs)
  unfolding fair-def by (metis alw.simps subsetD stl-sset subsetI)
lemma sdrop-fair: fair <math>rs \Longrightarrow fair (sdrop \ m \ rs)
 using alw-sdrop unfolding fair-def by (metis alw.coinduct alw-nxt fair-def fair-stl)
3
      A Fair Enumeration of the Rules
definition fenum \equiv flat (smap (\lambda n. stake n rules) (from N 1))
lemma sset-fenum: sset fenum = R
 unfolding fenum-def by (subst sset-flat)
  (auto simp: stream.set-map in-set-conv-nth sset-range[of rules],
    metis atLeast-Suc-greaterThan greaterThan-0 lessI range-eqI stake-nth)
lemma fair-fenum: fair fenum
proof -
  { fix r assume r \in R
   then obtain m where r: r = rules !! m unfolding sset-range by blast
   { fix n :: nat \text{ and } rs \text{ let } ?fenum = \lambda n. flat (smap (\lambda n. stake n rules) (from N)}
n))
     assume n > \theta
     hence alw (ev \ (holds \ ((=) \ r))) \ (rs @-?fenum \ n)
     proof (coinduction arbitrary: n rs)
       case alw
       show ?case
```

```
proof (rule exI[of - rs @-?fenum n], safe)
                    show \exists n' rs'. stl (rs @-?fenum n) = rs' @-?fenum n' \land n' > 0
                    \mathbf{proof}(\mathit{cases}\ \mathit{rs})
                         case Nil thus ?thesis unfolding alw by (intro exI) auto
                    qed (auto simp: alw intro: exI[of - n])
                  show ev \ (holds \ ((=) \ r)) \ (rs @-flat \ (smap \ (\lambda n. \ stake \ n \ rules) \ (from N \ n)))
                         using alw \ r unfolding ev-holds-sset
                         by (cases m < n) (force simp: stream.set-map in-set-conv-nth)+
                \mathbf{qed}
          qed
       }
    thus fair fenum unfolding fair-def sset-fenum
        by (metis fenum-def alw-shift le-less zero-less-one)
qed
definition trim \ rs \ s = sdrop\text{-}while \ (\lambda r. \ Not \ (enabled \ r \ s)) \ rs
primcorec mkTree where
    root (mkTree \ rs \ s) = (s, (shd (trim \ rs \ s)))
| cont (mkTree \ rs \ s) = fimage (mkTree (stl (trim \ rs \ s))) (pickEff (shd (trim \ rs \ s)))
lemma mkTree-unfold[code]: mkTree \ rs \ s =
    (case trim rs s of SCons r s' \Rightarrow Node (s, r) (fimage (mkTree s') (pickEff r s)))
    by (subst mkTree.ctr) (simp split: stream.splits)
end
locale RuleSystem = RuleSystem-Defs eff rules
for eff :: 'rule \Rightarrow 'state \Rightarrow 'state fset \Rightarrow bool and rules :: 'rule stream +
fixes S :: 'state set
assumes eff-S: \land s \ r \ sl \ s'. [s \in S; \ r \in R; \ eff \ r \ s \ sl; \ s' \mid \in \mid sl]] \Longrightarrow s' \in S
and enabled-R: \bigwedge s. s \in S \Longrightarrow \exists r \in R. \exists sl. eff r s sl
definition minWait \ rs \ s \equiv LEAST \ n. \ enabled \ (shd \ (sdrop \ n \ rs)) \ s
lemma trim-alt:
    assumes s: s \in S and rs: fair rs
    shows trim \ rs \ s = sdrop \ (minWait \ rs \ s) \ rs
\textbf{proof} \ (\textit{unfold trim-def minWait-def sdrop-simps}, \textit{rule sdrop-while-sdrop-LEAST} [\textit{unfolded} \ \texttt{varp-while-sdrop-LEAST}] \ \texttt{varp-while-sdrop-least} \ \texttt{varp-w
    from enabled-R[OF s] obtain r sl where r: r \in R and sl: eff r s sl by blast
    from bspec[OF\ conjunct2[OF\ rs[unfolded\ fair-def]]\ r] obtain m where r=rs
        by atomize-elim (erule alw.cases, auto simp only: ev-holds-sset sset-range)
    with r \ sl \ show \ \exists \ n. \ enabled \ (rs !! \ n) \ s \ unfolding \ enabled-def \ by \ auto
qed
```

```
lemma minWait-ex:
 assumes s: s \in S and rs: fair rs
 shows \exists n. enabled (shd (sdrop n rs)) s
proof -
  obtain r where r: r \in R and e: enabled r s using enabled R s unfolding
enabled-def by blast
 then obtain n where shd (sdrop \ n \ rs) = r using sdrop\text{-}fair[OF \ rs]
   by (metis (full-types) alw-nxt holds.simps sdrop.simps(1) fair-def sdrop-wait)
 thus ?thesis using r e by auto
qed
lemma assumes s \in S and fair rs
 shows trim-in-R: shd (trim rs s) \in R
 and trim-enabled: enabled (shd (trim rs s)) s
 and trim-fair: fair (trim rs s)
 unfolding trim-alt[OF assms] minWait-def
 using LeastI-ex[OF\ minWait-ex[OF\ assms]]\ sdrop-fair[OF\ assms(2)]
  conjunct1[OF assms(2)[unfolded fair-def]] by simp-all (metis subsetD snth-sset)
lemma minWait-least: [enabled (shd (sdrop n rs)) s] \implies minWait rs s \leq n
 unfolding minWait-def by (intro Least-le conjI)
lemma in\text{-}cont\text{-}mkTree:
 assumes s: s \in S and rs: fair\ rs and t': t' \in (mkTree\ rs\ s)
 shows \exists sl's'. s' \in S \land eff (shd (trim rs s)) s sl' \land
              s' \in s' \wedge t' = mkTree (stl (trim rs s)) s'
proof -
 define sl' where sl' = pickEff (shd (trim rs s)) s
 obtain s' where s': s' \mid \in \mid sl' and t' = mkTree (stl (trim rs s)) s'
   using t' unfolding sl'-def by auto
 moreover have 1: enabled (shd (trim \ rs \ s)) s using trim-enabled[OF \ s \ rs].
 moreover with trim-in-R pickEff eff-S s rs s'[unfolded sl'-def] have s' \in S by
blast
 ultimately show ?thesis unfolding sl'-def using pickEff by blast
qed
lemma ipath-mkTree-sdrop:
 assumes s: s \in S and rs: fair\ rs and i: ipath\ (mkTree\ rs\ s)\ steps
 shows \exists n s'. s' \in S \land ipath (mkTree (sdrop n rs) s') (sdrop m steps)
using s rs i proof (induct m arbitrary: steps rs)
 case (Suc \ m)
 then obtain n s' where s': s' \in S
   and ip: ipath (mkTree\ (sdrop\ n\ rs)\ s')\ (sdrop\ m\ steps)\ (is\ ipath\ ?t\ -) by blast
 from ip obtain t' where r: root ?t = shd (sdrop m steps) and t': t' \in cont ?t
   and i: ipath t' (sdrop (Suc m) steps) by (cases, simp)
 from in\text{-}cont\text{-}mkTree[OF\ s'\ sdrop\text{-}fair[OF\ Suc.prems(2)]\ t'] obtain sl''\ s'' where
   e: eff (shd\ (trim\ (sdrop\ n\ rs)\ s'))\ s'\ sl'' and
   s'': s'' \mid \in \mid sl'' and t'-def: t' = mkTree (stl (trim (sdrop n rs) s')) s'' by blast
 have shd (trim (sdrop n rs) s') \in R by (metis sdrop-fair Suc.prems(2) trim-in-R
```

```
thus ?case using i s'' e s' unfolding sdrop-stl \ t'-def \ sdrop-add \ add.commute[of
   trim-alt[OF\ s'\ sdrop-fair[OF\ Suc.prems(2)]]
   by (intro exI[of - minWait (sdrop n rs) s' + Suc n] exI[of - s'']) (simp add:
qed (auto intro!: exI[of - \theta] exI[of - s])
lemma wf-mkTree:
 assumes s: s \in S and fair rs
 shows wf (mkTree \ rs \ s)
using assms proof (coinduction arbitrary: rs s)
 case (wf rs s) let ?t = mkTree rs s
 have snd (root ?t) \in R using trim-in-R[OF wf] by simp
 moreover have fst \circ root \circ mkTree (stl (trim rs s)) = id by auto
 hence effStep (root ?t) (fimage (fst \circ root) (cont ?t))
   using trim-enabled[OF wf] by (simp add: pickEff)
 ultimately show ?case using fair-stl[OF trim-fair[OF wf]] in-cont-mkTree[OF
   by (auto intro!: exI[of - stl (trim \ rs \ s)])
qed
definition pos rs r \equiv LEAST n. shd (sdrop n rs) = r
lemma pos: \llbracket fair\ rs;\ r\in R \rrbracket \Longrightarrow shd\ (sdrop\ (pos\ rs\ r)\ rs) = r
 unfolding pos-def
 by (rule LeastI-ex) (metis (full-types) alw.cases fair-def holds.simps sdrop-wait)
lemma pos-least: shd (sdrop n rs) = r \Longrightarrow pos rs r \le n
 unfolding pos-def by (metis (full-types) Least-le)
lemma minWait-le-pos: [fair\ rs;\ r\in R;\ enabled\ r\ s] \implies minWait\ rs\ s\leq pos\ rs\ r
 by (auto simp del: sdrop-simps intro: minWait-least simp: pos)
\mathbf{lemma}\ stake	ext{-}pos	ext{-}minWait:
 assumes rs: fair rs and m: minWait rs s < pos rs r and r: r \in R and s: s \in S
 shows pos (stl (trim rs s)) r = pos rs r - Suc (minWait rs s)
 have pos rs r - Suc (minWait rs s) + minWait rs s = pos rs r - Suc \theta using
 moreover have shd (stl (sdrop (pos rs r - Suc 0) rs)) = shd (sdrop (pos rs r))
   by (metis Suc-pred gr-implies-not0 m neg0-conv sdrop.simps(2) sdrop-stl)
  ultimately have pos (stl (trim rs s)) r \leq pos \ rs \ r - Suc \ (minWait \ rs \ s)
     using pos[OF \ rs \ r] by (auto simp: add.commute trim-alt[OF s rs] intro:
pos-least)
  moreover
 have pos rs \ r \le pos \ (stl \ (trim \ rs \ s)) \ r + Suc \ (minWait \ rs \ s)
   using pos[OF sdrop-fair[OF fair-stl[OF rs]] r, of minWait rs s]
```

```
by (auto simp: trim-alt[OF s rs] add.commute intro: pos-least)
 hence pos rs \ r - Suc \ (minWait \ rs \ s) \le pos \ (stl \ (trim \ rs \ s)) \ r \ by \ linarith
 ultimately show ?thesis by simp
qed
lemma ipath-mkTree-ev:
 assumes s: s \in S and rs: fair rs
 and i: ipath (mkTree rs s) steps and r: r \in R
 and alw: alw (holds (enabledAtStep r)) steps
 shows ev (holds (takenAtStep r)) steps
using s rs i alw proof (induction pos rs r arbitrary: rs s steps rule: less-induct)
 case (less rs s steps) note s = \langle s \in S \rangle and trim\text{-}def' = trim\text{-}alt[OF \ s \ \langle fair \ rs \rangle]
 let ?t = mkTree \ rs \ s
 from less(4,3) s in-cont-mkTree obtain t':: ('state, 'rule) step tree and s' where
   rt: root ?t = shd steps and i: ipath (mkTree (stl (trim rs s)) s') (stl steps) and
   s': s' \in S by cases fast
 show ?case
 \mathbf{proof}(cases\ pos\ rs\ r=minWait\ rs\ s)
   case True
    with pos[OF\ less.prems(2)\ r]\ rt[symmetric]\ show\ ?thesis\ by\ (auto\ simp:
trim-def' ev.base)
 next
   case False
    have e: enabled r s using less.prems(4) rt by (subst (asm) alw-nxt, cases
steps) auto
    with False r less.prems(2) have 2: minWait rs s < pos rs r using min-
Wait-le-pos by force
   let ?m1 = pos \ rs \ r - Suc \ (minWait \ rs \ s)
   have Suc ?m1 \le pos rs r using 2 by auto
   moreover have ?m1 = pos (stl (trim rs s)) r using e (fair rs) 2 r s
    by (auto intro: stake-pos-minWait[symmetric])
   moreover have fair (stl (trim rs s)) alw (holds (enabledAtStep r)) (stl steps)
    using less.prems by (metis fair-stl trim-fair, metis alw.simps)
   ultimately show ?thesis by (auto intro: ev.step[OF less.hyps[OF - s' - i]])
 qed
qed
     Persistent rules
4
definition
   enabled\ r\ s'
lemma per-alw:
 assumes p: per r and e: epath steps \land fst (shd steps) \in S
 shows alw (holds (enabledAtStep \ r) impl
   (holds\ (takenAtStep\ r)\ or\ nxt\ (holds\ (enabledAtStep\ r))))\ steps
using e proof coinduct
```

```
case (alw steps)
 moreover
 { let ?s = fst (shd steps) let ?r1 = snd (shd steps)
   let ?s' = fst \ (shd \ (stl \ steps))
   assume ?s \in S and enabled r ?s and ?r1 \neq r
   moreover have ?r1 \in R using alw by (auto elim: epath.cases)
   moreover obtain sl' where eff ?r1 ?s sl' \land ?s' | \in |sl' using alw by (auto
elim: epath.cases)
   ultimately have enabled r ?s' using p unfolding per-def by blast
 ultimately show ?case by (auto intro: eff-S elim: epath.cases)
qed
end — context RuleSystem
locale PersistentRuleSystem = RuleSystem eff rules S
for eff :: 'rule \Rightarrow 'state \Rightarrow 'state fset \Rightarrow bool and rules :: 'rule stream and S +
assumes per: \bigwedge r. r \in R \Longrightarrow per r
begin
lemma ipath-mkTree-saturated:
 assumes s: s \in S and rs: fair rs
 and i: ipath (mkTree rs s) steps and r: r \in R
 shows saturated r steps
unfolding saturated-def using s rs i proof (coinduction arbitrary: rs s steps)
 case (alw rs s steps)
 show ?case
 proof (intro exI[of - steps], safe)
   assume holds (enabledAtStep r) steps
   hence alw (holds (enabledAtStep r)) steps \vee ev (holds (takenAtStep r)) steps
     by (rule\ variance[OF - per-alw[OF\ per[OF\ r]]])
       (metis\ wf\ -ipath\ -epath\ wf\ -mkTree\ alw\ mkTree\ .simps(1)\ ipath\ .simps\ fst\ -conv)
   thus ev\ (holds\ (takenAtStep\ r))\ steps\ by\ (metis\ ipath-mkTree-ev[OF\ alw\ r])
   from alw show \exists rs' s' steps'.
     stl\ steps = steps' \land s' \in S \land fair\ rs' \land ipath\ (mkTree\ rs'\ s')\ steps'
      using ipath-mkTree-sdrop[where m=1, simplified] trim-in-R sdrop-fair by
fast
 qed
qed
theorem ipath-mkTree-Saturated:
 assumes s \in S and fair rs and ipath (mkTree rs s) steps
 shows Saturated steps
 unfolding Saturated-def using ipath-mkTree-saturated[OF assms] by blast
theorem epath-completeness-Saturated:
 assumes s \in S
 shows
```

```
(\exists t. fst (root t) = s \land wf t \land tfinite t) \lor
  (\exists steps. fst (shd steps) = s \land epath steps \land Saturated steps) (is ?A \lor ?B)
proof -
  { assume \neg ?A
   with assms have \neg tfinite (mkTree fenum s) using wf-mkTree fair-fenum by
auto
   then obtain steps where ipath (mkTree fenum s) steps using Konig by blast
   with assms have fst (shd\ steps) = s \land epath\ steps \land Saturated\ steps
     by (metis wf-ipath-epath ipath.simps ipath-mkTree-Saturated
       wf-mkTree\ fair-fenum\ mkTree.simps(1)\ fst-conv)
   hence ?B by blast
 }
 thus ?thesis by blast
qed
end — context PersistentRuleSystem
5
      Code generation
{\bf locale}\ {\it Rule System-Code} =
fixes eff' :: 'rule \Rightarrow 'state \Rightarrow 'state fset option
and rules :: 'rule stream — countably many rules
begin
definition eff r s sl \equiv eff' r s = Some sl
end
definition [code del]: effG eff' r s sl \equiv RuleSystem-Code.eff eff' r s sl
sublocale RuleSystem-Code < RuleSystem-Defs
 where eff = effG \ eff' and rules = rules.
context RuleSystem-Code
begin
lemma enabled-eff': enabled r s \longleftrightarrow eff' r s \neq None
unfolding enabled-def effG-def eff-def by auto
lemma pickEff-the[code]: pickEff r s = the (eff' r s)
unfolding pickEff-def enabled-def effG-def eff-def by auto
lemmas [code-unfold] = trim-def enabled-eff' pickEff-the
\mathbf{setup}\ Locale\text{-}Code.open\text{-}block
interpretation i: RuleSystem-Code eff' rules for eff' and rules.
declare [[lc-delete RuleSystem-Defs.mkTree (effG ?eff')]]
declare [[lc-delete RuleSystem-Defs.trim]]
```

```
declare [[lc-delete RuleSystem-Defs.enabled]]
declare [[lc-delete RuleSystem-Defs.pickEff]]
declare [[lc-add RuleSystem-Defs.mkTree (effG ?eff') i.mkTree-unfold]]
setup Locale-Code.close-block

code-printing
constant the → (Haskell) fromJust
| constant Option.is-none → (Haskell) isNothing

export-code mkTree-effG-uu in Haskell module-name Tree
```

6 Toy instantiation: Propositional Logic

```
datatype fmla = Atom nat \mid Neg fmla \mid Conj fmla fmla
primrec max-depth where
  max-depth (Atom -) = 0
 max-depth (Neg \varphi) = Suc (max-depth \varphi)
| max\text{-}depth \ (Conj \ \varphi \ \psi) = Suc \ (max \ (max\text{-}depth \ \varphi) \ (max\text{-}depth \ \psi))
lemma max-depth-0: max-depth \varphi = 0 = (\exists n. \varphi = Atom n)
 by (cases \varphi) auto
lemma max-depth-Suc: max-depth \varphi = Suc \ n = ((\exists \psi. \ \varphi = Neg \ \psi \land max-depth \ \psi)
  (\exists \psi 1 \ \psi 2. \ \varphi = Conj \ \psi 1 \ \psi 2 \land max \ (max-depth \ \psi 1) \ (max-depth \ \psi 2) = n))
 by (cases \varphi) auto
abbreviation atoms \equiv smap \ Atom \ nats
abbreviation depth1 \equiv
  sinterleave (smap Neg atoms) (smap (case-prod Conj) (sproduct atoms atoms))
abbreviation sinterleaves \equiv fold \ sinterleave
fun extendLevel where extendLevel (belowN, N) =
  (let\ Next = sinterleaves
   (map (smap (case-prod Conj)) [sproduct belowN N, sproduct N belowN, sproduct
N[N]
   (smap\ Neq\ N)
  in (sinterleave belowN N, Next))
lemma extendLevel-step:
  [sset belowN = {\varphi. max-depth \varphi < n};
    sset \ N = \{\varphi. \ max\text{-}depth \ \varphi = n\}; \ st = (below N, \ N) \rrbracket \Longrightarrow
```

 $sset\ below Next = \{\varphi.\ max-depth\ \varphi < Suc\ n\} \land sset\ Next = \{\varphi.\ max-depth\ \varphi\}$

 $\exists belowNext\ Next.\ extendLevel\ st = (belowNext,\ Next) \land$

 $\mathbf{by}\ (\mathit{auto}\ \mathit{simp}:\ \mathit{sset-sinterleave}\ \mathit{sset-sproduct}\ \mathit{stream.set-map}$

 $= Suc \ n$

```
image-iff max-depth-Suc)
lemma sset-atoms: sset atoms = \{\varphi. max-depth \varphi < 1\}
 by (auto simp: stream.set-map max-depth-\theta)
lemma sset-depth1: sset depth1 = \{\varphi. max-depth \varphi = 1\}
 by (auto simp: sset-sinterleave sset-sproduct stream.set-map
   max-depth-Suc max-depth-0 max-def image-iff)
lemma extendLevel-Nsteps:
 sset\ below Next = \{\varphi.\ max-depth\ \varphi < n+m\} \land sset\ Next = \{\varphi.\ max-depth\ \varphi\}
= n + m
proof (induction m arbitrary: below N N n)
 case (Suc\ m)
 then obtain belowNext Next where (extendLevel ^m m) (belowN, N) = (belowNext,
   sset belowNext = \{\varphi. max-depth \varphi < n + m\} sset Next = \{\varphi. max-depth \varphi = \{\varphi\}
n + m
   by blast
 thus ?case unfolding funpow.simps o-apply add-Suc-right
   by (intro extendLevel-step[of belowNext - Next])
\mathbf{qed}\ simp
corollary extendLevel:
 \exists belowNext\ Next.\ (extendLevel \ ^ m)\ (atoms,\ depth1) = (belowNext,\ Next) \land
    sset\ below Next = \{\varphi.\ max-depth\ \varphi < 1 + m\} \land sset\ Next = \{\varphi.\ max-depth\ \varphi\}
= 1 + m
 by (rule extendLevel-Nsteps) (auto simp: sset-atoms sset-depth1)
definition fmlas = sinterleave atoms (smerge (smap snd (siterate extendLevel
(atoms, depth1))))
lemma fmlas-UNIV: sset fmlas = (UNIV :: fmla set)
proof (intro equalityI subsetI UNIV-I)
 fix \varphi
 show \varphi \in sset\ fmlas
 proof (cases max-depth \varphi)
   case 0 thus ?thesis unfolding fmlas-def sset-sinterleave stream.set-map
     by (intro UnI1) (auto simp: max-depth-0)
   case (Suc m) thus ?thesis using extendLevel[of m]
   {\bf unfolding}\ fmlas\text{-}def\ sset\text{-}smerge\ sset\text{-}siterate\ sset\text{-}sinterleave\ stream.set\text{-}map
     by (intro UnI2) (auto, metis (mono-tags) mem-Collect-eq)
 ged
qed
```

```
\mathbf{datatype} \ rule = Idle \mid Ax \ nat \mid NegL \ fmla \mid NegR \ fmla \mid ConjL \ fmla \ fmla \mid ConjR
fmla fmla
abbreviation mkRules f \equiv smap f fmlas
abbreviation mkRulePairs f \equiv smap (case-prod f) (sproduct fmlas fmlas)
definition rules where
      rules = Idle \# \#
             sinterleaves [mkRules NegL, mkRules NegR, mkRulePairs ConjL, mkRulePairs
 ConjR
             (smap \ Ax \ nats)
lemma rules-UNIV: sset rules = (UNIV :: rule set)
     unfolding rules-def by (auto simp: sset-sinterleave sset-sproduct stream.set-map
          fmlas-UNIV image-iff) (metis rule.exhaust)
type-synonym state = fmla fset * fmla fset
fun eff' :: rule \Rightarrow state \Rightarrow state fset option where
      eff' Idle (\Gamma, \Delta) = Some \{ |(\Gamma, \Delta)| \}
|eff'(Ax n)(\Gamma, \Delta)| =
          (if Atom n \in \Gamma \land Atom n \in \Delta then Some \{ | \} else None \}
| eff'(NegL \varphi)(\Gamma, \Delta) =
           (if Neg \varphi \in \Gamma then Some \{|(\Gamma \mid -| \{| Neg \varphi |\}, finsert \varphi \Delta)|\} else None)
| eff'(NegR \varphi)(\Gamma, \Delta) =
          (if Neg \varphi \in \Delta then Some {|(finsert \varphi \Gamma, \Delta \mid -| \{ | Neg \varphi | \})|} else None)
\mid eff' (ConjL \varphi \psi) (\Gamma, \Delta) =
          (if Conj \varphi \psi \in \Gamma
           then Some {|(finsert \varphi (finsert \psi (\Gamma | -| \{| Conj \varphi \psi |\})), \Delta)|\}
           else None)
| eff' (ConjR \varphi \psi) (\Gamma, \Delta) =
          (if Conj \varphi \psi \in \Delta
          then Some \{|(\Gamma, finsert \varphi (\Delta \mid - \mid \{\mid Conj \varphi \psi \mid \})), (\Gamma, finsert \psi (\Delta \mid - \mid \{\mid Conj \mid |\mid Conj \mid \{\mid Conj \mid \{\mid Conj \mid \{\mid Conj \mid |\mid Conj \mid |\mid Conj \mid |\mid Conj
\varphi \psi |\}))|\}
           else None)
abbreviation Disj \varphi \psi \equiv Neg (Conj (Neg \varphi) (Neg \psi))
abbreviation Imp \varphi \psi \equiv Disj \ (Neg \ \varphi) \ \psi
abbreviation Iff \varphi \psi \equiv Conj (Imp \varphi \psi) (Imp \psi \varphi)
definition thm1 \equiv (\{|Conj(Atom 0)(Neg(Atom 0))|\}, \{||\})
declare Stream.smember-code [code del]
lemma [code]: Stream.smember x (y \# \# s) = (x = y \lor Stream.smember <math>x s)
     unfolding Stream.smember-def by auto
interpretation RuleSystem \lambda r s ss. eff' r s = Some ss rules UNIV
```

by unfold-locales (auto simp: rules-UNIV intro: exI[of - Idle])

```
interpretation PersistentRuleSystem \lambda r s ss. eff' r s = Some ss rules UNIV proof (unfold-locales, unfold enabled-def per-def rules-UNIV, clarsimp) fix r \Gamma \Delta ss r' \Gamma' \Delta' ss' assume r' \neq r eff' r (\Gamma, \Delta) = Some ss eff' r' (\Gamma, \Delta) = Some ss' (\Gamma', \Delta') | \in | ss' then show \exists sl. eff' r (\Gamma', \Delta') = Some sl by (cases r r' rule: rule.exhaust[case-product rule.exhaust]) (auto split: if-splits) qed definition rho \equiv i.fenum rules definition prop Tree \equiv i.mkTree eff' rho export-code prop Tree thm1 in Haskell module-name Prop Tree as Tree T
```