Abstract Completeness

Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel

March 17, 2025

Abstract

This is a formalization of an abstract property of possibly infinite
derivation trees (modeled by a codatatype), that represents the core of
a Beth—Hintikka-style proof of the first-order logic completeness theo-
rem and is independent of the concrete syntax or inference rules. This
work is described in detail in a publication by the authors [2].

The abstract proof can be instantiated for a wide range of Gentzen
and tableau systems as well as various flavors of FOL—e.g., with or
without predicates, equality, or sorts. Here, we give only a toy ex-
ample instantiation with classical propositional logic. A more serious
instance—many-sorted FOL with equality—is described elsewhere [1].

References

[1] J. C. Blanchette and A. Popescu. Mechanizing the metatheory of sledge-
hammer. In P. Fontaine, C. Ringeissen, and R. A. Schmidt, editors,
FroCoS 2013, volume 8152 of LNCS, pages 245—-260. Springer, 2013.

[2] J. C. Blanchette, A. Popescu, and D. Traytel. Unified classical logic
completeness: A coinductive pearl. In S. Demri, D. Kapur, and C. Wei-
denbach, editors, IJCAR 2014, LNCS. Springer, 2014.

Contents

1 General Tree Concepts 2
2 Rule Systems 2
3 A Fair Enumeration of the Rules 3
4 Persistent rules 7
5 Code generation 9
6 Toy instantiation: Propositional Logic 10

1 General Tree Concepts

codatatype 'a tree = Node (root: 'a) (cont: 'a tree fset)

inductive tfinite where
tfinite: (\ t'. t' |€| cont t = tfinite t') = tfinite ¢

coinductive ipath where
ipath: [root t = shd steps; t' |€| cont t; ipath t' (stl steps)] = ipath t steps

primcorec konig where
shd (konig t) = root t
| stl (konig t) = konig (SOME t'. t' |€| cont t A — tfinite t”)

lemma Konig: — tfinite t = ipath t (konig t)
by (coinduction arbitrary: t) (metis (lifting) tfinite.simps konig.simps somel-ex)

2 Rule Systems

type-synonym (’state, 'rule) step = 'state x 'ruletype-synonym (’state, 'rule)
dtree = ('state, 'rule) step tree

locale RuleSystem-Defs =
fixes eff :: 'rule = 'state = 'state fset = bool

and rules :: 'rule stream
begin

abbreviation R = sset rules

lemma countable-R: countable R by (metis countablel-type countable-image sset-range)
lemma NE-R: R # {} by (metis UNIV-witness all-not-in-conv empty-is-image
sset-range)

definition enabled r s = 3 sl. eff r s sl
definition pickEff r s = if enabled r s then (SOME sl. eff r s sl) else the None

lemma pickEff: enabled r s = eff r s (pickEff r)
by (metis enabled-def pickEff-def tfl-some)

abbreviation effStep step = eff (snd step) (fst step)
abbreviation enabledAtStep r step = enabled r (fst step)
abbreviation takenAtStep r step = snd step = r

Saturation is a very strong notion of fairness: If a rule is enabled at some
point, it will eventually be taken.

definition saturated r = alw (holds (enabledAtStep r) impl ev (holds (takenAtStep

7))

definition Saturated steps =V r € R. saturated r steps

coinductive wf where
wf: [snd (root t) € R; effStep (root t) (fimage (fst o root) (cont t));
Nt t' €| cont t = wft] = wf ¢

coinductive epath where
epath: [snd (shd steps) € R; fst (shd (stl steps)) |€| sl; effStep (shd steps) sl;
epath (stl steps)] = epath steps

lemma wf-ipath-epath:
assumes wf t ipath t steps
shows epath steps
proof —
have *: At st. ipath t st = root t = shd st by (auto elim: ipath.cases)
show ?thesis using assms
proof (coinduction arbitrary: t steps)
case epath
then show %case by (cases rule: wf.cases[case-product ipath.cases]) (metis *
o-apply fimagel)
qed
qed

definition fair rs = sset rs C R A (¥ r € R. alw (ev (holds ((=) 1))) rs)

lemma fair-stl: fair rs = fair (stl rs)
unfolding fair-def by (metis alw.simps subsetD stl-sset subsetl)

lemma sdrop-fair: fair rs = fair (sdrop m rs)
using alw-sdrop unfolding fair-def by (metis alw. coinduct alw-nzt fair-def fair-stl)

3 A Fair Enumeration of the Rules

definition fenum = flat (smap (An. stake n rules) (fromN 1))

lemma sset-fenum: sset fenum = R
unfolding fenum-def by (subst sset-flat)
(auto simp: stream.set-map in-set-conv-nth sset-rangelof rules),
metis atLeast-Suc-greaterThan greaterThan-0 lessI range-eql stake-nth)

lemma fair-fenum: fair fenum
proof —
{ fix r assume r € R
then obtain m where r: r = rules !! m unfolding sset-range by blast
{ fix n :: nat and rs let ?fenum = An. flat (smap (An. stake n rules) (fromN
n))
assume n > (
hence alw (ev (holds ((=) r))) (rs @Q— Zfenum n)
proof (coinduction arbitrary: n rs)
case alw
show ?Zcase

proof (rule exI[of - s @Q— Zfenum n], safe)
show 3n’' rs'. stl (rs Q— 2fenum n) = rs’ Q— 2fenum n’ A n' > 0
proof(cases rs)
case Nil thus ?thesis unfolding alw by (intro exl) auto
qged (auto simp: alw intro: exI[of - n])
next
show ev (holds ((=) 7)) (rs @Q— flat (smap (An. stake n rules) (fromN n)))
using alw r unfolding ev-holds-sset
by (cases m < n) (force simp: stream.set-map in-set-conv-nth)+
qged
qed

}

thus fair fenum unfolding fair-def sset-fenum
by (metis fenum-def alw-shift le-less zero-less-one)
qed

definition trim rs s = sdrop-while (Ar. Not (enabled r s)) rs

primcorec mkTree where
root (mkTree rs s) = (s, (shd (trim rs s)))
| cont (mkTree rs s) = fimage (mkTree (stl (trim rs s))) (pickEff (shd (trim rs s))
)
lemma mkTree-unfold[code]: mkTree rs s =
(case trim rs s of SCons r s’ = Node (s, r) (fimage (mkTree s (pickEff r s)))
by (subst mkTree.ctr) (simp split: stream.splits)

end

locale RuleSystem = RuleSystem-Defs eff rules

for eff :: 'rule = 'state = 'state fset = bool and rules :: 'rule stream +
fixes S :: 'state set

assumes eff-S: \ srsls’. [se€ S;r e R;eff rssl; s'|e| sl] = s'€ S
and enabled-R: \ s.s€ S= 3 r e R 3 sl eff rssl

begin

definition minWait rs s = LEAST n. enabled (shd (sdrop n 1s)) s

lemma trim-alt:
assumes s: s € S and rs: fair s
shows trim rs s = sdrop (minWait rs s) rs
proof (unfold trim-def min Wait-def sdrop-simps, rule sdrop-while-sdrop-LEAST [unfolded
o-def])
from enabled-R[OF s] obtain r sl where r: r € R and sl: eff r s sl by blast
from bspec[OF conjunct2]|OF rs[unfolded fair-def]] r] obtain m where r = rs
'm
by atomize-elim (erule alw.cases, auto simp only: ev-holds-sset sset-range)
with r sl show I n. enabled (rs !! n) s unfolding enabled-def by auto
qed

lemma minWait-ex:
assumes s: s € § and 7s: fair rs
shows 3 n. enabled (shd (sdrop n rs)) s
proof —
obtain r where r: r € R and e: enabled r s using enabled-R s unfolding
enabled-def by blast
then obtain n where shd (sdrop n rs) = r using sdrop-fair[OF rs]
by (metis (full-types) alw-nzt holds.simps sdrop.simps(1) fair-def sdrop-wait)
thus ?thesis using r e by auto
qed

lemma assumes s € S and fair rs
shows trim-in-R: shd (trim rs s) € R
and trim-enabled: enabled (shd (trim rs s)) s
and trim-fair: fair (trim rs s)
unfolding trim-alt|OF assms] minWait-def
using Leastl-ex|OF minWait-ex|OF assms]| sdrop-fair|OF assms(2)]
conjunctl [OF assms(2)[unfolded fair-def]] by simp-all (metis subsetD snth-sset)

lemma minWait-least: [enabled (shd (sdrop n rs)) s] = minWait rs s < n
unfolding minWait-def by (intro Least-le congl)

lemma in-cont-mkTree:
assumes s: s € S and rs: fair rs and t”: t' |€| cont (mkTree rs s)
shows 3 sl’ s’. s' € S A eff (shd (trim rs s)) s sl’ A
s"|€| sl' A t' = mkTree (stl (trim rs s)) s’
proof —
define sl’ where sl’ = pickEff (shd (trim rs s)) s
obtain s’ where s”: s’ |€| s’ and ¢’ = mkTree (stl (trim rs s)) s
using ¢’ unfolding sl’-def by auto
moreover have I: enabled (shd (trim rs s)) s using trim-enabled[OF s rs] .
moreover with trim-in-R pickEff eff-S s rs s'[unfolded sl’-def] have s’ € S by
blast
ultimately show ?thesis unfolding si’-def using pickEff by blast
qed

!

lemma ipath-mkTree-sdrop:
assumes s: s € S and rs: fair rs and i: ipath (mkTree rs s) steps
shows 3 n s'. s’ € S A ipath (mkTree (sdrop n rs) s') (sdrop m steps)
using s rs ¢ proof (induct m arbitrary: steps rs)
case (Suc m)
then obtain n s’ where s s’ € S
and ip: ipath (mkTree (sdrop n rs) s’) (sdrop m steps) (is ipath ¢t -) by blast
from ip obtain t’ where r: root 7t = shd (sdrop m steps) and t": t' |€| cont %t
and 1: ipath t' (sdrop (Suc m) steps) by (cases, simp)
from in-cont-mkTree[OF s’ sdrop-fair|OF Suc.prems(2)] t'] obtain sl”’ s’ where
e: eff (shd (trim (sdrop n rs) s’)) s’ sl’’ and
s': 8" |€| sl' and t'-def: t' = mkTree (stl (trim (sdrop n rs) s")) s” by blast
have shd (trim (sdrop n rs) s’) € R by (metis sdrop-fair Suc.prems(2) trim-in-R

s’)
thus ?case using i s’ e s’ unfolding sdrop-stl t’-def sdrop-add add.commute|of
n]
trim-alt|OF s’ sdrop-fair[OF Suc.prems(2)]]
by (intro exI[of - minWait (sdrop n rs) s’ + Suc n] exI[of - s"]) (simp add:
eff-S)
qed (auto introl: exI[of - 0] exI[of - s])

lemma wf-mkTree:
assumes s: s € S and fair rs
shows wf (mkTree rs)
using assms proof (coinduction arbitrary: rs s)
case (wf rs s) let 2t = mkTree rs s
have snd (root ?t) € R using trim-in-R[OF wf] by simp
moreover have fst o root o mkTree (stl (trim rs s)) = id by auto
hence effStep (root ?t) (fimage (fst o root) (cont %t))
using trim-enabled| OF wf] by (simp add: pickEff)
ultimately show ?case using fair-stl|OF trim-fair|OF wf]] in-cont-mkTree[OF
wf]
by (auto intro!: exl[of - stl (trim rs s)])
qed

definition pos rs r = LEAST n. shd (sdrop n rs) = r

lemma pos: [fair rs; r € R] = shd (sdrop (pos rsr) rs) =r
unfolding pos-def
by (rule Leastl-ex) (metis (full-types) alw.cases fair-def holds.simps sdrop-wait)

lemma pos-least: shd (sdrop nrs) = r = posrsr < n
unfolding pos-def by (metis (full-types) Least-le)

lemma minWait-le-pos: [fair rs; v € R; enabled r s] = minWait rs s < pos rs r
by (auto simp del: sdrop-simps intro: minWait-least simp: pos)

lemma stake-pos-minWait:
assumes 7rs: fair rs and m: minWait rs s < posrsrand r: r € Rand s: s € S
shows pos (stl (trim rs s)) v = pos rs r — Suc (minWait rs s)
proof —
have pos rs v — Suc (minWait rs s) + minWait rs s = pos rs r — Suc 0 using
m by auto
moreover have shd (stl (sdrop (pos rs v — Suc 0) rs)) = shd (sdrop (pos rs r)
Ts)
by (metis Suc-pred gr-implies-not0 m neq0-conv sdrop.simps(2) sdrop-stl)
ultimately have pos (stl (trim rs s)) r < pos rs r — Suc (minWait s s)
using pos|OF rs r] by (auto simp: add.commute trim-alt{OF s rs| intro:
pos-least)
moreover
have pos rs r < pos (stl (trim rs s)) r + Suc (minWait rs s)
using pos[OF sdrop-fair|OF fair-stl|OF rs]| r, of minWait rs s

by (auto simp: trim-alt[OF s rs] add.commute intro: pos-least)
hence pos rs r — Suc (minWait rs s) < pos (stl (trim rs s)) r by linarith
ultimately show ?thesis by simp
qed

lemma ipath-mkTree-ev:
assumes s: s € S and rs: fair rs
and i: ipath (mkTree 1s s) steps and r: r € R
and alw: alw (holds (enabledAtStep r)) steps
shows ev (holds (takenAtStep r)) steps
using s rs i alw proof (induction pos rs r arbitrary: rs s steps rule: less-induct)
case (less s s steps) note s = <s € Sy and trim-def’ = trim-alt|OF s «fair rs)]
let 2t = mkTree rs s
from less(4,3) s in-cont-mkTree obtain t':: (‘state, 'rule) step tree and s’ where
rt: root ?t = shd steps and i: ipath (mkTree (stl (trim rs s)) s’) (stl steps) and
st s' € S by cases fast
show Zcase
proof(cases pos rs 1 = minWait rs s)
case True
with pos[OF less.prems(2) r] rt[symmetric] show f?thesis by (auto simp:
trim-def' ev.base)
next
case Fulse
have e: enabled r s using less.prems(4) rt by (subst (asm) alw-nat, cases
steps) auto
with False r less.prems(2) have 2: minWait rs s < pos rs r using min-
Wait-le-pos by force
let ?m1 = pos rs r — Suc (minWait rs s)
have Suc ?m1 < pos rs r using 2 by auto
moreover have ?ml = pos (stl (trim rs s)) r using e fair rs» 21 s
by (auto intro: stake-pos-minWait[symmetric])
moreover have fair (stl (trim rs s)) alw (holds (enabledAtStep r)) (stl steps)
using less.prems by (metis fair-stl trim-fair, metis alw.simps)
ultimately show ?thesis by (auto intro: ev.step|OF less.hyps|OF - s’ - i]])
qed
qed

4 Persistent rules

definition
per r =
Vsrlisl's'. se S Aenabledrshrl € R—{r} Neffrlssl’As'|e| sl —
enabled r s’

lemma per-alw:
assumes p: per r and e: epath steps A fst (shd steps) € S
shows alw (holds (enabledAtStep r) impl
(holds (takenAtStep r) or nat (holds (enabledAtStep 1)))) steps
using e proof coinduct

case (alw steps)
moreover
{ let ?s = fst (shd steps) let ?r1 = snd (shd steps)
let ?s’ = fst (shd (stl steps))
assume ?s € S and enabled r ?s and ?r1 # r
moreover have ?r! € R using alw by (auto elim: epath.cases)
moreover obtain sl’ where eff ?r1 ?s si’ A ?s’ |€| sl’ using alw by (auto
elim: epath.cases)
ultimately have enabled r s’ using p unfolding per-def by blast
}
ultimately show ?case by (auto intro: eff-S elim: epath.cases)
qed

end — context RuleSystem

locale PersistentRuleSystem = RuleSystem eff rules S

for eff :: 'rule = 'state = ’state fset = bool and rules :: 'rule stream and S +
assumes per: \ r.r € R = perr

begin

lemma ipath-mkTree-saturated:
assumes s: s € S and rs: fair rs
and i: ipath (mkTree rs s) steps and r: r € R
shows saturated r steps
unfolding saturated-def using s rs i proof (coinduction arbitrary: rs s steps)
case (alw rs s steps)
show ?Zcase
proof (intro exlI|of - steps|, safe)
assume holds (enabledAtStep) steps
hence alw (holds (enabledAtStep r)) steps V ev (holds (takenAtStep r)) steps
by (rule variance| OF - per-alw[OF per[OF r]]])
(metis wf-ipath-epath wf-mkTree alw mkTree.simps(1) ipath.simps fst-conw)
thus ev (holds (takenAtStep r)) steps by (metis ipath-mkTree-ev[OF alw 1))
next
from alw show I rs’ s’ steps’.
stl steps = steps’ A s € S A fair rs’ A ipath (mkTree s’ s') steps’
using ipath-mkTree-sdropjwhere m=1, simplified] trim-in-R sdrop-fair by
fast
qed
qed

theorem ipath-mkTree-Saturated:
assumes s € S and fair rs and ipath (mkTree rs s) steps
shows Saturated steps
unfolding Saturated-def using ipath-mkTree-saturated[OF assms] by blast

theorem epath-completeness-Saturated:
assumes s € S
shows

(3 t. fst (root t) = s A wf t A tfinite t) V
(3 steps. fst (shd steps) = s A epath steps N\ Saturated steps) (is ?A V ?B)
proof —
{ assume - ?4
with assms have — tfinite (mkTree fenum s) using wf-mkTree fair-fenum by
auto
then obtain steps where ipath (mkTree fenum s) steps using Konig by blast
with assms have fst (shd steps) = s A epath steps N\ Saturated steps
by (metis wf-ipath-epath ipath.simps ipath-mkTree-Saturated
wf-mkTree fair-fenum mkTree.simps(1) fst-conv)
hence ?B by blast
}
thus ?thesis by blast
qed

end — context PersistentRuleSystem

5 Code generation

locale RuleSystem-Code =

fixes eff’ :: 'rule = ’'state = 'state fset option
and rules :: 'rule stream — countably many rules
begin

definition eff r s sl = eff’ r s = Some sl
end
definition [code del]: effG eff ' r s sl = RuleSystem-Code.eff eff' r s sl

sublocale RuleSystem-Code < RuleSystem-Defs
where eff = effG eff and rules = rules .

context RuleSystem-Code
begin

lemma enabled-eff”: enabled r s < eff’ r s # None
unfolding enabled-def effG-def eff-def by auto

lemma pickEff-the[code]: pickEff r s = the (eff r s)
unfolding pickEff-def enabled-def effG-def eff-def by auto

lemmas [code-unfold] = trim-def enabled-eff " pickEff-the

setup Locale-Code.open-block

interpretation i: RuleSystem-Code eff’ rules for eff’ and rules .
declare [[lc-delete RuleSystem-Defs.mkTree (effG ?eff")]]

declare [[lc-delete RuleSystem-Defs.trim]]

declare [[lc-delete RuleSystem-Defs.enabled]]

declare [[lc-delete RuleSystem-Defs.pickEff]]

declare [[lc-add RuleSystem-Defs.mkTree (effG ?eff’) i.mkTree-unfold]]
setup Locale-Code.close-block

code-printing
constant the — (Haskell) fromJust
| constant Option.is-none — (Haskell) isNothing

export-code mkTree-effG-uu in Haskell module-name Tree

6 Toy instantiation: Propositional Logic

datatype frla = Atom nat | Neg fmla | Conj fmla fmla

primrec maz-depth where
maz-depth (Atom -) = 0
| maz-depth (Neg) = Suc (max-depth @)
| maz-depth (Conj ¢) = Suc (maz (maz-depth) (max-depth 1))

lemma maz-depth-0: maz-depth ¢ = 0 = (In. ¢ = Atom n)
by (cases @) auto

lemma maz-depth-Suc: maz-depth ¢ = Suc n = ((31. ¢ = Neg 1 A maz-depth 1
=n)V

(Y1 2. ¢ = Conj 1 Y2 A maz (maz-depth 1) (maz-depth ¥2) = n))

by (cases @) auto

abbreviation atoms = smap Atom nats
abbreviation depthl =
sinterleave (smap Neg atoms) (smap (case-prod Conj) (sproduct atoms atoms))

abbreviation sinterleaves = fold sinterleave

fun extendLevel where extendLevel (belowN, N) =
(let Next = sinterleaves
(map (smap (case-prod Conj)) [sproduct belowN N, sproduct N belowN, sproduct
N N))
(smap Neg N)
in (sinterleave belowN N, Next))

lemma extendLevel-step:
[sset belowN = {p. maz-depth ¢ < n};
sset N = {p. maz-depth ¢ = n}; st = (belowN, N)] =
3 belowNext Neat. extendLevel st = (belowNext, Next) N
sset belowNext = {p. maz-depth ¢ < Suc n} A sset Next = {@. maz-depth ¢
= Suc n}

by (auto simp: sset-sinterleave sset-sproduct stream.set-map

10

image-iff maz-depth-Suc)

lemma sset-atoms: sset atoms = {p. maz-depth ¢ < 1}
by (auto simp: stream.set-map maz-depth-0)

lemma sset-depthl: sset depthl = {p. maz-depth ¢ = 1}
by (auto simp: sset-sinterleave sset-sproduct stream.set-map
maz-depth-Suc maz-depth-0 maz-def image-iff)

lemma extendLevel-Nsteps:
[sset belowN = {p. maz-depth ¢ < n}; sset N = {¢. maz-depth ¢ = n}] =
3 belowNext Next. (extendLevel =~ m) (belowN, N) = (belowNext, Next) A
sset belowNext = {p. maz-depth ¢ < n + m} A sset Next = {¢. maz-depth
=n+ m}
proof (induction m arbitrary: belowN N n)
case (Suc m)
then obtain belowNext Next where (extendLevel =~ m) (belowN, N) = (belowNext,
Neat)
sset belowNext = {p. max-depth ¢ < n + m} sset Next = {¢. maz-depth p =
n+ m}
by blast
thus ?case unfolding funpow.simps o-apply add-Suc-right
by (intro extendLevel-step[of belowNext - Next))
qed simp

corollary extendLevel:
3 belowNext Next. (extendLevel =~ m) (atoms, depthl) = (belowNext, Next) A
sset belowNext = {p. maz-depth ¢ < 1 + m} A sset Next = {p. maz-depth ¢
=1+ m}
by (rule extendLevel-Nsteps) (auto simp: sset-atoms sset-depthl)

definition fmlas = sinterleave atoms (smerge (smap snd (siterate extendLevel

(atoms, depthl))))

lemma fmlas-UNIV: sset fmlas = (UNIV :: fmla set)
proof (intro equalityl subset] UNIV-I)
fix ¢
show ¢ € sset fmlas
proof (cases maz-depth)
case 0 thus ?thesis unfolding fmlas-def sset-sinterleave stream.set-map
by (intro Unl1) (auto simp: max-depth-0)
next
case (Suc m) thus ?thesis using extendLevel]of m]
unfolding fmlas-def sset-smerge sset-siterate sset-sinterleave stream.set-map
by (intro Unl2) (auto, metis (mono-tags) mem-Collect-eq)
qed
qed

11

datatype rule = Idle | Az nat | NegL fmla | NegR fmla | ConjL fmla fmla | ConjR
fmla fmla

abbreviation mkRules f = smap f fmlas
abbreviation mkRulePairs f = smap (case-prod f) (sproduct fmlas fmlas)

definition rules where
rules = Idle #+#
sinterleaves [mkRules NegL, mkRules NegR, mkRulePairs ConjL, mkRulePairs
ConjR)
(smap Az nats)

lemma rules-UNIV: sset rules = (UNIV :: rule set)
unfolding rules-def by (auto simp: sset-sinterleave sset-sproduct stream.set-map
fmlas-UNIV image-iff) (metis rule.exhaust)

type-synonym state = fmla fset x fmla fset

fun eff’ :: rule = state = state fset option where
eff’ Idle (T, A) = Some {|(T, A)|}

| eff” (Azn) (T, A) =

(if Atom n |€] T A Atom n |€| A then Some {||} else None)
| eff’ (NegL) (I'; A) =

(if Neg ¢ |€| T then Some {|(T' |—| {| Neg ¢ |}, finsert ¢ A)|} else None)
| eff" (NegR) (I'; A) =

(if Neg ¢ |€| A then Some {|(finsert ¢ T'; A |—| {| Neg ¢ |})|} else None)
| eff" (ConjL ¢) (T, A) =

(if Conj o ¢ |€| T

then Some {|(finsert o (finsert (T |~| {| Conj o % 1)), A)l}

else None)
| eff (ConjR ¢) (T, A) =

(if Conj ¢ ¢ |€] A

then Some {|(T', finsert ¢ (A |=| {| Conj ¢ ¢ [})), (L, finsert 1 (A |—| {| Conj
e v [}

else None)

abbreviation Disj ¢ ¢ = Neg (Conj (Neg ¢) (Neg 1))
abbreviation Imp ¢ v = Disj (Neg @) ¢

abbreviation Iff ¢ ¥ = Conj (Imp ¢ ¥) (Imp ¥ @)

definition thm1 = ({|Conj (Atom 0) (Neg (Atom 0))|}, {||})

declare Stream.smember-code [code del]

lemma [code]: Stream.smember x (y ## s) = (x = y V Stream.smember z)

unfolding Stream.smember-def by auto

interpretation RuleSystem Ar s ss. eff' s = Some ss rules UNIV
by unfold-locales (auto simp: rules-UNIV intro: exI[of - Idle])

12

interpretation PersistentRuleSystem Ar s ss. eff ' r s = Some ss rules UNIV
proof (unfold-locales, unfold enabled-def per-def rules-UNIV, clarsimp)

fix rT" Assr'TV A’ ss’

assume r’' # reff’ r (I, A) = Some ss eff v’ (T, A) = Some ss’ (I, A') |€|

ss’

then show Jsl. eff’ r (T, A’) = Some sl
by (cases r v’ rule: rule.exhaust|case-product rule.ezhaust]) (auto split: if-splits)
qed

definition rho = i.fenum rules
definition propTree = i.mkTree eff’ rho

export-code propTree thml1 in Haskell module-name Proplnstance

13

	General Tree Concepts
	Rule Systems
	A Fair Enumeration of the Rules
	Persistent rules
	Code generation
	Toy instantiation: Propositional Logic

